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Preface

This volume collects the 33 extended abstracts presented at IPCO 2022, the 23rd
Conference on Integer Programming and Combinatorial Optimization, held during June
27-29, 2022, in Eindhoven (The Netherlands).

IPCO is under the auspices of the Mathematical Optimization Society, and it is an
important forum for presenting the latest results on the theory and practice of the various
aspects of discrete optimization. The first IPCO conference took place at the University
of Waterloo in May 1990, and the Eindhoven University of Technology organized the
23rd such event. The conference had a Program Committee consisting of 15 members.
In response to the Call for Papers, we received 93 submissions. Each submission was
reviewed by at least three Program Committee members. Because of the limited number
of time slots for presentations, many excellent submissions could not be accepted. The
page limit for contributions to this proceedings was set to 14. We expect the full versions
of the extended abstracts appearing in this Lecture Notes in Computer Science volume
to be submitted for publication in refereed journals, and a special issue of Mathematical
Programming Series B containing such versions is in process.

For the third time, IPCO had a Best Paper Award. The IPCO 2022 Best Paper Award
was given to Gennadiy Averkov and Matthias Schymura for their paper On the maximal
number of columns of a A -modular matrix. This year, [IPCO was preceded by a Sum-
mer School held during June 25-26, 2022, with lectures by Shipra Agrawal (Columbia
University), Shayan Oveis Gharan (University of Washington), and Stefan Weltge (TU
Munich). We thank them warmly for their contributions. We would also like to thank

— the authors who submitted their research to IPCO;

— the members of the Program Committee, who spent much time and energy reviewing
the submissions;

— the expert additional reviewers whose opinions were crucial in the paper selection;

— the members of the Local Organizing Committee, who made this conference possible;

— the Mathematical Optimization Society and in particular the members of its IPCO
Steering Committee, Oktay Giinliik, Jochen Kénemann, and Giacomo Zambelli, for
their help and advice;

— EasyChair for making paper management simple and effective; and

— Springer for their efficient cooperation in producing this volume and for financial
support for the Best Paper Award.

We would further like to thank the following sponsors for their financial support:
NETWORKS, DIAMANT, NWO, Eurandom, Cardinal Operations, Google, Gurobi,
Mosek, and the Optimization firm.

March 2022 Karen Aardal
Laura Sanita
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Total Dual Dyadicness and Dyadic
Generating Sets

Ahmad Abdi!®™) Gérard Cornuéjols?, Bertrand Guenin®, and Levent Tuncel®

! Department of Mathematics, LSE, London, UK
a.abdil@lse.ac.uk
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
gcOv@andrew.cmu.edu
3 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada
{bguenin,ltuncel}@uwaterloo.ca

Abstract. A vector is dyadic if each of its entries is a dyadic rational
number, i.e. of the form g for some integers a,k with k> 0. A lin-
ear system Ax <b with integral data is totally dual dyadic if whenever
min{b"y : ATy =w,y >0} for w integral, has an optimal solution, it has
a dyadic optimal solution. In this paper, we study total dual dyadicness,
and give a co-NP characterization of it in terms of dyadic generating sets
for cones and subspaces, the former being the dyadic analogue of Hilbert
bases, and the latter a polynomial-time recognizable relaxation of the
former. Along the way, we see some surprising turn of events when com-
pared to total dual integrality, primarily led by the density of the dyadic
rationals. Our study ultimately leads to a better understanding of total
dual integrality and polyhedral integrality. We see examples from dyadic
matrices, T-joins, circuits, and perfect matchings of a graph.

1 Introduction

A dyadic rational is a number of the form g for some integers a, k where k > 0.
The dyadic rationals are precisely the rational numbers with a finite binary
representation, and are therefore relevant for (binary) floating-point arithmetic
in numerical computations. Modern computers represent the rational numbers
by fixed-size floating points, inevitably leading to error terms, which are com-
pounded if serial arithmetic operations are performed such as in the case of
mixed-integer linear, semidefinite, and more generally convex optimization. This
has led to an effort to mitigate floating-point errors [27] as well as the need for
exact solvers [6,25].

We address a different, though natural theoretical question: When does a
linear program admit an optimal solution whose entries are dyadic rationals? A
vector is dyadic if every entry is a dyadic rational. Consider the following primal
dual pair of linear programs for A€ Z™*" beZ™ and w € Z".

(P) max{w'z:Az<b} (D) min{d'y: ATy=w,y>0}.

© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanitd (Eds.): IPCO 2022, LNCS 13265, pp. 1-14, 2022.
https://doi.org/10.1007/978-3-031-06901-7_1
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(0 and 1 denote respectively the all-zeros and all-ones column, or row, vectors
of appropriate dimension.) When does (D) admit a dyadic optimal solution for
all weZ™? How about (P)? Keeping close to the integral case, these questions
lead to the notions of totally dual dyadic systems and dyadic polyhedra. In this
paper, we reassure the reader that dyadic polyhedra enjoy a similar characteri-
zation as integral polyhedra, but in studying totally dual dyadic systems, we see
an intriguing and somewhat surprising turn of events when compared to totally
dual integral (TDI) systems [10]. As such, we shall keep the focus of the paper
on total dual dyadicness and its various characterizations. The characterizations
lead to dyadic generating sets for cones and subspaces, where the first notion is
polyhedral and can be thought of as a dyadic analogue of Hilbert bases, while the
second notion is lattice-theoretic and new. We shall see some intriguing examples
of totally dual dyadic systems and dyadic generating sets from Integer Program-
ming, Combinatorial Optimization, and Graph Theory. Our study eventually
leads to a better understanding of TDI systems and integral polyhedra.

Our characterizations extend easily to the p-adic rationals for any prime
number p>3. For this reason, we shall prove our characterizations in the general
setting. Interestingly, however, most of our examples do not extend to the p-adic
setting for p > 3.

1.1 Totally Dual p-adic Systems and p-adic Generating Sets

Let p > 2 be a prime number. A p-adic rational is a number of the form % for

some integers a, k where k>0. A vector is p-adic if every entry is a p-adic rational.
Consider a linear system Az < b where A € Z"™*" beZ"™. We say that Az < b is
totally dual p-adic if for all w e Z™ for which min{bd"y : ATy = w,y > 0} has an
optimum, it has a p-adic optimal solution. For p=2, we abbreviate ‘totally dual
dyadic’ as ‘TDD’. We prove the following characterization, which relies on two
key notions defined afterwards.

Theorem 1 (Proved in Sect.4). Let Ae Z™"™, be Z™ and P := {x : Az <
b}. Given a nonempty face F, denote by Apx < bp the subsystem of Ax < b
corresponding to the implicit equalities of F'. Then the following statements are
equivalent for every prime p: (1) Ax < b is totally dual p-adic, (2) for every
nonempty face F' of P, the rows of Ap form a p-adic generating set for a cone,
(3) for every nonempty face F of P, the rows of Ap form a p-adic generating
set for a subspace.

In fact, in (2), it suffices to consider only the minimal nonempty faces.

Let {a!,...,a"} € Z™. The set {a',...,a"} is a p-adic generating set for
a cone (p-GSC) if every integral vector in the conic hull of the vectors can
be expressed as a p-adic conic combination of the vectors (meaning that the
coefficients used are p-adic). In contrast, {a!,...,a"} is a p-adic generating set
for a subspace (p-GSS) if every integral vector in the linear hull of the vectors
can be expressed as a p-adic linear combination of the vectors. For p =2, we use
the acronyms DGSC and DGSS instead of 2-GSC and 2-GSS, respectively.

The careful reader may notice that an integral generating set for a cone
is just a Hilbert basis [13] (following [21], Sect.22.3). In contrast with Hilbert
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bases where a satisfying characterization remains elusive, we have the following
polyhedral characterization of a p-GSC:

Theorem 2 (Proved in  Sect.3). Let  {a',...,a"} < 7Z™,
C :=cone{al,...,a"}, and p a prime. Then {a',... a"} is a p-GSC if, and
only if, for every nonempty face F of C, {a® : a* € F'} is a p-GSS.

The careful reader may notice that in contrast to total dual integrality, the
characterization of totally dual p-adic systems, Theorem 1, enjoys a third equiv-
alent condition, namely (3). This new condition, as well as the characterization
of a p-GSC, Theorem 2, is made possible due to a distinguishing feature of the
p-adic rationals: density. The p-adic rationals, as opposed to the integers, form
a dense subset of R. We shall elaborate on this in Sect. 2.

Going further, we have the following lattice-theoretic characterization of a
p-GSS. We recall that the elementary divisors (a.k.a. invariant factors) of an
integral matrix are the nonzero entries of the Smith normal form of the matrix;
see Sect. 3 for more.

Theorem 3 (Proved in Sect.3). The following statements are equivalent for
a matriz A € Z™" of rank v and every prime p: (1) the columns of A form a
p-GSS, (2) the rows of A form a p-GSS, (3) whenever y" A and Ax are integral,
then y" Ax is a p-adic rational, (4) every elementary divisor of A is a power of
p, (5) the GCD of the subdeterminants of A of order r is a power of p, (6) there
exists a matriz B with p-adic entries such that ABA = A.

Theorem 3 is used in Sect.3 to prove that testing the p-GSS property can
be done in polynomial time. Subsequently, the problem of testing total dual p-
adicness belongs to co-NP by Theorem 1 (see Sect. 4), and the problem of testing
the p-GSC property belongs to co-NP by Theorem 2 (see Sect. 3). Whether the
two problems belong to NP, or P, remains unsolved. It should be pointed out
that testing total dual integrality, as well as testing the Hilbert basis property,
is co-NP-complete [9,19].

1.2 Connection to Integral Polyhedra and TDI Systems

Our characterizations stated so far, as well as our characterization of p-adic
polyhedra explained in Sect. 5, have the following intriguing consequence:

Theorem 4. Let AcZ™ ™ beZ™, and P :={x : Ax<b}. Then the following are
equivalent: (1) Ax <b is totally dual p-adic for all primes p, (2) Az <b is totally
dual p- and g-adic, for distinct primes p,q, (3) for every nonempty face F of P,
the GCD of the subdeterminants of Ap of order rank(Ap) is 1.

Proof. (1) = (2) is immediate. (2) = (3) For every nonempty face F' of P,
the rows of Ar form both a p- and a ¢-GSS by Theroem 1, so the GCD of the
subdeterminants of Ap of order rank(Ar) is both a power of p and a power of
g by Theorem 3, so the GCD of the subdeterminants of Ar of order rank(Ar)
must be 1. (3) = (1) follows from Theorem 1 and Theorem 3 O
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If Ax <b is TDI, and therefore totally dual p-adic for any prime p, then
statement (3) above must hold (this is folklore, and explored in [22]. In fact, if
P is pointed, then for every vertex of P, we have a stronger property known as
local strong unimodularity [12].) It was a widely known fact that the converse is
not true. Theorem 4 clarifies this further by equating (3) with (1) and (2). Going
a step further, it is known that if Az <b is TDI, then {x : Ax <b} is an integral
polyhedron [10,13]. We shall strengthen this result as follows:

Theorem 5 (Proved in Sect.5). If Az <b is totally dual p- and q-adic, for
distinct primes p,q, then {x : Ax < b} is an integral polyhedron.

Fulkerson’s theorem that every integral set packing system is TDI, can be
seen as a (stronger) converse to Theorem 5 [11]. As for set covering systems, there
is a conjecture of Paul Seymour that predicts a (stronger) converse toTheorem 5.

Congecture 6 (The Dyadic Conjecture [20], Sect. 79.3¢). Let A be a matrix with
0,1 entries. If Az > 1,z >0 defines an integral polyhedron, then it is TDD.

The step of the Dyadic Conjecture: If Az> 1, x> 0 defines an integral polyhe-
dron, then for every nonnegative integral w such that min{w'z : Az > 1,z > 0}
has optimal value two, the dual has a dyadic optimal solution [1].

1.3 Examples

Our first example comes from Integer Programming, and more precisely, from
matrices with restricted subdeterminants.

Theorem 7. Let A€ Z"™™ be a matriz whose subdeterminants belong to {0} U
{+p* : ke Z,} for some prime p, and let be Z™. Then Az <b is totally dual
p-adic.

Similar, if not identical, settings have been studied previously; see for exam-
ple [4,16] (the last reference has more relevant citations); see the full version
for more details and the proof [2]. The node-edge incidence matrix of a graph
is known to satisfy the hypothesis for p = 2 (folklore), and therefore leads to
a TDD system. More generally, matrices whose subdeterminants belong to
{0} U {£2* : k € Z,} have been studied from a matroid theoretic perspective;
matroids representable over the rationals by such matrices are known as dyadic
matroids and their study was initiated by Whittle [28].

Moving on, from Combinatorial Optimization, we get examples only in the
dyadic setting. Let G = (V, E) be a graph, and T a nonempty subset of even
cardinality. A T-join is a subset J ¢ E such that the odd-degree vertices of G[J]
is precisely T. T-joins were studied due to their connection to the minimum
weight perfect matching problem, but also to the Chinese postman set problem
(see [7], Chap.5). As a consequence of a recent result [3], we obtain the following.

Theorem 8 (Proved in Sect.6). Let G = (V, E) be a graph, and TV a
nonempty subset of even cardinality. Then x(J)>1 ¥ T-joins J;x >0 is TDD.
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The basic solutions to the dual of min{17z : xz(J) > 1 V T-joins J;x > 0}
may actually be non-dyadic, with many examples coming from snarks G on at
least 18 vertices with 7'=V(G) and w =1 [18], thereby creating an interesting
contrast between the proofs of Theorem 7 and Theorem 8. Also, Theorem 8 does
not extend to the p-adic setting for any prime p > 3. To see this, let G be the
graph with vertices 1,2, 3,4, 5 and edges {1, 3}, {1,4}, {1,5}, {3, 2}, {4, 2}, {5, 2},
let T :={1,2,3,4}, and let w :=1. Then the dual has a unique optimal solution,
namely y* = % -1, which is not p-adic for any p > 3.

The system in Theorem 8 defines an integral set covering polyhedron (see [§],
Chap. 2), so Theorem 8 verifies Conjecture 6 for such instances. In fact, it has
been conjectured that the system in Theorem 8 is totally dual quarter-integral
([8], Conjecture 2.15). Observe that quarter-integrality is a stronger variant of
dyadicness, and should not be confused with “4-adicness”, which is not even
defined in this paper.

Moving on, let G = (V, E) be a graph. A circuit is a nonempty subset C ¢ F
such that the subgraph (V(C),C) is connected where every vertex has degree
two. A perfect matching is a subset M € FE such that every vertex in V is
incident with exactly one edge in M. Define C(G) :={x¢ : C a circuit of G} and
M(G) :={xn : M a perfect matching of G}. See [14] for an excellent survey on
lattice and conic characterizations of these two sets.

Theorem 9 (Proved in Sect.6). Let G = (V, E) be a graph such that |V| is
even. Then M(G) is a DGSC.

This theorem does not extend to the p-adic setting for p > 3 either; this is
justified in Sect.6. If G is an r-graph, then the Generalized Berge-Fulkerson
Conjecture [23] predicts that the all-ones vector can be written as a half-integral
conic combination of M(G); Theorem 9 proves this can be done dyadically.

Theorem 10. Let G=(V,E) be a graph. Then C(G) is a DGSC. O

If G is bridgeless, then the Cycle Double Cover Conjecture [24,26] predicts
that the all-ones vector can be written as a half-integral conic combination of the
vectors in C(G); Theorem 10 implies this can be done dyadically. The theorem is
proved in the full version [2], and uses Theorem 1 and interestingly the notion of
cuboids [1]. There, we also note that the theorem does not extend to the p-adic
setting for p > 3.

2 Density Lemma and the Theorem of the Alternative

Many of our results are made possible by an important feature of the p-adic
rationals distinguishing them from the integers, namely density.

Remark 11. The p-adic rationals form a dense subset of R.

Lemma 12 (Density Lemma). Let A e Z™" beZ™ and p a prime. If {z :
Az = b} contains a p-adic point, then the p-adic points in the set form a dense
subset. In particular, a nonempty rational polyhedron contains a p-adic point if,
and only if, its affine hull contains a p-adic point.
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Proof. Tt suffices to prove the first statement. Suppose {z : Ax=0b} contains a p-
adic point, say 2. Since A has integral entries, its kernel has an integral basis, say
d',...,d". Observe that {z : A= b} is the set of vectors of the form #+)_,_; \;d’
where A € R". Consider the set S := {ﬁc + 300 Nid? 2 ) is p-adic for each z} . By
Remark 11, it can be readily checked that S is a dense subset of {z : Ax = b}.
Since # is p-adic, and the d’s are integral, the points in S are p-adic, thereby
proving the lemma. g

A natural follow-up question arises: When does a rational subspace contain
a p-adic point? Addressing this question requires a familiar notion in Integer
Programming. Every integral matrix of full row rank can be brought into Her-
mite normal form by means of elementary unimodular column operations. In
particular, if A is an integral m x n matrix of full row rank, there exists an n xn
unimodular matrix U such that AU = (B 0), where B is a non-singular m x m
matrix, and 0 is an mx (n—m) matrix with zero entries. By a square unimodular
matrix, we mean a square integral matrix whose determinant is +1; note that
the inverse of such a matrix is also unimodular. See ([5], Sect.1.5.2) or ([21],
Chap. 4) for more details.

Lemma 13 (Theorem of the Alternative). Let A€ Z™™ beZ™, and p a
prime. Then either Ax =b has a p-adic solution, or there exists a y € R™ such
that y™ A is integral and y'b is non-p-adic, but not both.

Proof. Suppose Az =b for a p-adic point Z, and y" A is integral. Then y'b =
y"(Az) = (y"A)Z is an integral linear combination of p-adic rationals, and is
therefore a p-adic rational. Thus, both statements cannot hold simultaneously.
Suppose Az =b has no p-adic solution. If Az =5 has no solution at all, then there
exists a vector y such that y"A =0 and y'b £0; by scaling y appropriately, we
can ensure that y"b is non-p-adic, as desired. Otherwise, Az = b has a solution.
We may assume that A has full row rank. Then there exists a square unimodular
matrix U such that AU = (B 0), where B is a non-singular matrix. Observe that
{z: Az=0b}={Uz: AUz=b}. Thus, as Az= b has no p-adic solution z, and U has
integral entries, we may conclude that the system AUz = b has no p-adic solution
z either. Let us expand the latter system. Let I, J be the sets of column labels
of B,0 in AU = (B 0), respectively. Then {z: AUz=b}={z: (B 0)(Z!)=b}=
{z:Bzr=b,2z; free} = {z c2r=B71b, 25 free} . In particular, since AUz =b has
no p-adic solution, the vector B~'b is non-p-adic. Thus, there exists a row y* of
B! for which yb is non-p-adic. We claim that yT A is integral, thereby showing
y is the desired vector. To this end, observe that B-1AU = B™1(B 0) = (I 0),
implying in turn that B~ A = (I 0)U~!. As the inverse of a square unimodular
matrix, U~! is also unimodular and therefore has integral entries, implying in
turn that B A, and so y" A, is integral. O

The reader may notice a similarity between Lemma 13 and its integer ana-
logue, which characterizes when a linear system of equations admits an integral
solution, commonly known as the Integer Farkas Lemma (see [5], Theorem 1.20).
We refrain from calling Lemma 13 the “p-adic Farkas Lemma” as we reserve that
title for Corollary 16 below.
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Remark 14. If t is a p- and g-adic rational, for distinct primes p,q, then ¢ is
integral.

Corollary 15. Let Ae Z™™ beZ™. If Az =b has p- and q-adic solutions, for
distinct primes p and q, then the system has an integral solution.

Proof. By the Theorem of the Alternative, whenever y™ A is integral, y'b is both
p- and g-adic, implying in turn that y7b is integral by Remark 14. Thus, by the
Integer Farkas Lemma, Ax = b has an integral solution. a

Finally, the Density Lemma and the Theorem of the Alternative have the
following p-adic analogue of Farkas Lemma in Linear Programming.

Corollary 16 (p-Adic Farkas Lemma). Let P be a nonempty rational poly-
hedron whose affine hull is {x : Az =b}, where A,b are integral. Then for every
prime p, P contains a p-adic point if, and only if, there does not exist y such
that y" A is integral and y™b is non-p-adic.

3 p-Adic Generating Sets for Subspaces and Cones

Recall that a set of vectors {a',...,a"} € Z™ forms a p-GSS if every integral
vector in the linear hull of the vectors can be expressed as a p-adic linear com-
bination of the vectors. Observe that every p-adic vector in the linear hull of a
p-GSS can also be expressed as a p-adic linear combination of the vectors. We
prove the following lemma in the full version [2].

Lemma 17. Let Ae Z™*™, and U a unimodular matrixz of appropriate dimen-
sions. Then (1) the columns of A form a p-GSS if, and only if, the columns of
UA do, and (2) the columns of A form a p-GSS if, and only if, the columns of
AU do. O

In order to prove Theorem 3, we need a definition. Let A be an integral
matrix of rank r. It is well-known that by applying elementary row and column
operations, we can bring A into Smith normal form, that is, into a matrix with
a leading r x r minor D and zeros everywhere else, where D is a diagonal matrix
with diagonal entries 61, ...,0d, >1 such that 01 | d2 | --- | &, (see [21], Sect. 4.4).
It can be readily checked that for each i € [r], H;:1 d; is the GCD of the subde-
terminants of A of order ¢. The §;’s are referred to as the elementary divisors,
or tnvariant factors, of A.

Proof of Theorem3. (1) < (3) Suppose (1) holds. Choose x,y such that y™ A
and Ax are integral. Let b := Az € Z™. By (1), there exists a p-adic Z such that
b=Az. Thus, y" Az =y AZ = (y" A)Z, which is p-adic because y" A is integral and
Z p-adic, as required. Suppose conversely that (3) holds. Pick b € Z™ such that
Az =b for some Z. We need to prove that Az =b has a p-adic solution. If yT A is
integral, then y"b = y" AZ, which is p-adic by (3). Thus, by the Theorem of the
Alternative, Ax = b has a p-adic solution, as required.
(2) & (3) holds by applying the established equivalence (1) < (3) to AT.
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(1)—(3) & (4): By Lemma 17, the equivalent conditions (1)—(3) are preserved
under elementary unimodular row/column operations; these operations clearly
preserve (4) as well. Thus, it suffices to prove the equivalence between (1)—(3)
and (4) for integral matrices in Smith normal form. That is, we may assume
that A has a leading r x r minor D and zeros everywhere else, where D is a
diagonal matrix with diagonal entries d1,...,d, > 1 such that 61 | d2 | -+ | .
Suppose (1)—(3) hold. We need to show that each J; is a power of p. Consider the
feasible system Ax = e;; every solution z to this system satisfies z; =0, je[r] - {i}
and z; = Ji Since the columns of A form a p-GSS, 5% must be p-adic, so §; is
a power of p, as required. Suppose conversely that (4) holds. We need to show
that whenever Az =0,beZ™ has a solution, then it has a p-adic solution. Clearly,
it suffices to prove this for b = e;, i € [r], which holds because each d;,i € [r] is a
power of p.

(4) < (5) is rather immediate; the only additional remark is that every
divisor of a power of p is also a power of p.

(6) = (8) If y" A and Az are integral, then y" Az=y"(ABA)z= (y'A)B(Ax),
which is p-adic since y" A, Az are integral and B has p-adic entries, as required.

(4) = (6) Choose unimodular matrices U, W such that UAW is in Smith
normal form with elementary divisors 41, ..., d,. Let B’ be the nxm matrix with
a leading diagonal matrix D! :Diag(%, ceey é), and zeros everywhere else. Let
B :=WB'U, which is a matrix with p-adic entries since each §; is a power of
p. We claim that ABA = A, thereby proving (6). This equality holds if, and
only if, UABAW = UAW. To this end, we have UABAW = UA(WB'U)AW =
(UAW)B'(UAW) =U AW, where the last equality holds due to the definition of
B’ and the Smith normal form of UAW. O

In light of the previous proposition we may say that an integral matriz forms
a p-GSS if its rows, respectively its columns, form a p-GSS. Consider the following
complexity problem: (A) Given an integral matriz, does it form a p-GSS? The
Smith normal form of an integral matrix, and therefore its elementary divisors,
can be computed in polynomial time [15]. Thus, Theorem 3 has the following
consequence.

Corollary 18. (A) belongs to P.

Recall that a set of vectors {al,...,a"}c Z™ forms a p-GSC if every integral
vector in the conic hull of the vectors can be expressed as a p-adic conic com-
bination of the vectors. Observe that every p-adic vector in the conic hull of a
p-GSC can also be expressed as a p-adic conic combination of the vectors.

Proposition 19. If {a',...,a"} € Z™ is a p-GSC, then it is a p-GSS.

Proof. Let A € Z™™ be the matrix whose columns are a',...,a". Take beZ™
such that AZ = b for some Z. We need to show that the system Ax =b has a
p-adic solution. To this end, let #’ := Z — || >0 and V' := Az’ =b- A|Z] e Z™.
Thus, Az =0,z >0 has a solution, namely Z’, so it has a p-adic solution, say z’,
as the columns of A form a p-GSC. Let z := 2’ + | Z|, which is also p-adic. Then
Az=AZ + A|Z| =V + A|Z]| =), so Z is a p-adic solution to Az =b, as required. O
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The converse of this result, however, does not hold. For example, let k>3 be
an integer, n :=p* + 1, and m an integer in {4,...,p"} such that m -1 is not a
power of p. Consider the matrix

E,, - I,
A= (En—ln 5 )

where Eg4,I; denote the all-ones square and identity matrices of dimension d,
respectively. We claim that the columns of A form a p-GSS but not a p-GSC. To
see the former, note that A has rank n, and since det(E, — I,,) =n - 1 =p*, the
GCD of the subdeterminants of A of order n is a power of p, so the columns of
A form a p-GSS by Theorem 3. To see the latter, consider the vector be {0,1}"
whose first m entries are equal to 1, and whose last n —m entries are equal to 0.
Then Ay =0,y >0 has a unique solution, namely 3 defined as g; =0 for 1 <i<n,
and g; = m%l for n +1<i<n+m. In particular, as m — 1 is not a power of p,
b is an integral vector in the conic hull of the columns of A, but it cannot be
expressed as a p-adic conic combination of the columns. Thus, the columns of A
do not form a p-GSC.
However, we do have the following sort of converse.

Remark 20. If {a',...,a"} € Z™ is a p-GSS, then {za’,...,+a"} is a p-GSC.

Proposition 21. Let {a',...,a"} S Z™ be a p-adic generating set for a cone,
and F a nonempty face of the cone. Then {a’ : a* € F'} is a p-adic generating set
for the cone F.

Proof. Let b be an integral vector in the face F'. Since be C, we can write b as a
p-adic conic combination of the vectors in {a!,...,a"}. However, since b is con-
tained in the face F', the conic combination can only assign nonzero coefficients
to the vectors in F', implying in turn that b is a p-adic conic combination of the
vectors in {a’ : a® € F'}. As this holds for every b, {a’ : a* € F'} forms a p-GSC. O

Proof of Theorem?2. (=) follows from Proposition21 and Proposition 19. (<)
Let b be an integral vector in C', and F' the minimal face of C' containing b. Let
B be the matrix whose columns are the vectors {a’ : a’ € F'}. We need to show
that @ :={y : By =0,y > 0}, which is nonempty, contains a p-adic point. By the
Density Lemma, it suffices to show that aff(@), the affine hull of @, contains a
p-adic point. Our minimal choice of F' implies that () contains a point g such
that ¢ > 0, implying in turn that aff(Q) = {y : By = b}. As the columns of B
form a p-GSS, and b is integral, it follows that aff(Q) contains a p-adic point, as
required. a
Consider the following complexity problem: (B) Given a set of vectors, does
it form a p-GSC¥? Theorem 2 and Theorem 18 have the following consequence.

Corollary 22. (B) belongs to co-NP.
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4 Totally Dual p-adic Systems

Given integral A, b, recall that Az <b is totally dual p-adic if for every integral
w for which min{b"y : ATy =w,y >0} has an optimal solution, it has a p-adic
optimal solution. It can be readily checked that the rows of A form a p-GSS if,
and only if, Az =0 is totally dual p-adic; and the rows of A form a p-GSC if,
and only if, Az <0 is totally dual p-adic.

Proof of Theorem1. Consider the following pair of dual linear programs, for w
later specified.

(P) max{w'z: Az <b} (D) min{b"y: ATy=w,y 20}

For every nonempty face F' of P, denote by Aj the row submatrix of A cor-
responding to the rows not in Ap. For every vector y, denote by yr,ys the
variables corresponding to the rows in Ap, Az, respectively.

(1) = (2) Consider a nonempty face F' of P. We need to show that the rows
of Ar form a p-GSC. Let w be an integral vector in the conic hull of the rows
of Ap. It suffices to express w as a p-adic conic combination of the rows of Ap.
To this end, observe that every point in F' is an optimal solution to (P). As
Az <bis TDD, (D) has a p-adic optimal solution, say 3§ > 0. As Complementary
Slackness holds for all pairs (z,7),Z € F, it follows that gz = 0. Subsequently,
we have w = ATy = ALyr, thereby achieving our objective. (2) = (8) follows
from Proposition19. (3) = (1) Choose an integral w for which (D) has an
optimal solution; we need to show now that it has a p-adic optimal solution.
Denote by F the face of the optimal solutions to the primal linear program (P).
By Complementary Slackness, the set of optimal solutions to the dual (D) is
Q :={y: ATy =w,y >0,ys = 0}. We need to show that @ contains a p-adic
point. In fact, by the Density Lemma, it suffices to find a p-adic point in aff(Q),
the affine hull of @. By Strict Complementarity, () contains a point g such that
yr >0, implying in turn that aff(Q) = {y : ALyr = w,yz = 0}. Since the rows of
Ap form a p-GSS, and w is integral, we get that aff(Q) contains a p-adic point,
as required. a

The careful reader may notice that by applying polarity to Theorem 1 with
b =0, we obtain another proof of Theorem 2. Moving on, consider the following
complexity problem: (C') Given a system Ax <b where A,b are integral, is the
system totally dual p-adic? Theorem 1 (3) and Corollary 18 have the following
consequence.

Corollary 23. (C) belongs to co-NP.

5 p-Adic Polyhedra

A nonempty rational polyhedron is p-adic if every nonempty face contains a
p-adic point. In this section we provide a characterization of p-adic polyhedra.
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Remark 24. Let AeZ™ ™ beZ™,yeR™ and y .=y - |y| 20. Then ATy e Z" if
and only if ATy’ € Z", y is p-adic if and only if ¥’ is p-adic, and b"y is p-adic if
and only if b7y’ is p-adic.

Theorem 25. Let Ae Z™™ beZ™ and P := {z : Az <b}. Then the following
are equivalent for every prime p: (1) P is a p-adic polyhedron, (2) for every
nonempty face F of P, aff (F) contains a p-adic point, (3) for every nonempty
face F of P, and z, if ALz is integral then bLz is p-adic, (4) for all w e R™
for which max{w'z : x € P} has an optimum, it has a p-adic optimal solution,
(5) for all weZ™ for which max{w"x : x € P} has an optimum, il has a p-adic
optimal value. O

There is an intriguing contrast between this characterization and that of
integral polyhedra (see [5], Theorem 4.1), namely the novelty of statements (2)
and (3), which are ultimately due to Strict Complementarity and the Density
Lemma.

Proof. (1) = (2) follows immediately from definition. (2) = (1) By the Density
Lemma, every nonempty face contains a p-adic point, so P is a p-adic polyhedron.
(2) & (3) follows from the Theorem of the Alternative. (1) = (4) Suppose
max{w"z : x € P} has an optimum. Let F' be the set of optimal solutions. As F’
is in fact a face of P, and P is p-adic, it follows that F' contains a p-adic point.
(4) = (5) If = is a p-adic vector, and w an integral vector, then w'x is a p-adic
rational.

(5) = (3) We prove the contrapositive. Suppose (3) does not hold, that is,
there exist a nonempty face F' and z such that w := ALz € Z™ and bLz is not
p-adic. By Remark 24, we may assume that z > 0. Consider the following pair of
dual linear programs:

(P) max{w'z: Az <b} (D) min{b'y: ATy=w,y>0}

Denote by Az the row submatrix of A corresponding to rows not in Ap. Denote
by yr,ys the variables of (D) corresponding to rows Ap and Az of A, respec-
tively. Define § >0 where §r =2 and §z=0. Then ATj=ALz=w, so 7 is feasible
for (D). Moreover, Complementary Slackness holds for every pair (z,7),x € F.
Subsequently, g is an optimal solution to (D), and b"§=bLz is the common opti-
mal value of the two linear programs. Since w is integral and bfz is not p-adic,
(5) does not hold, as required. O

Corollary 26. Let Ae Z™ ", be Z™, and p a prime. If Ax < b is totally dual
p-adic, then {x : Az < b} is a p-adic polyhedron.

Proof. This follows immediately from Theorem 25 (5) = (1). O

Proof of Theorem5. By Corollary 26, P :={x : Az <b} is a p- and g-adic poly-
hedron, that is, every minimal nonempty face of P contains a p-adic point and
a g-adic point. Each minimal nonempty face of P is an affine subspace, so by
Corollary 15, it contains an integral point. Thus, every minimal nonempty face
of P contains an integral point, so P is an integral polyhedron. O
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6 T-joins and Perfect Matchings

Let G=(V, E) be a graph, and T a nonempty subset of even cardinality. A T-cut
is a cut of the form 6(U) where |[U N T is odd. Recall that a T-join is a subset
J € E such that the set of odd-degree vertices of G[.J] is precisely T. It can
be readily checked that every T-cut and T-join intersect (see [8], Chap.2). The
following result was recently proved:

Theorem 27 ([3]). Let G = (V,E) be a graph, and T a nonempty subset of
even cardinality. Let T be the minimum cardinality of a T-cut. Then there
exists a dyadic assignment yy > 0 to every T-join J such that 1y = 7 and
> (ys: J aT-join containing e) <1 Ve e E.

The proof of Theorem 27 uses the Density Lemma, the Theorem of the Alter-
native, and a result of Lovdsz on the matching lattice [17].

Proof of Theorem8. Let A be the matrix whose columns are labeled by E, and
whose rows are the incidence vectors of the T-joins. We need to show that
min{w™@ : Az > 1,2 > 0} yields a TDD system. Choose an integral w such
that the dual max{17y : ATy <w,y >0} has an optimal solution, that is, w > 0.
Let G’ be obtained from G after replacing every edge e with w. parallel edges
(if we =0, then e is deleted). Let 7, be the minimum cardinality of a T-cut of
G', which is also the minimum weight of a T-cut of G. By Theorem 27, there
exists a dyadic assignment 7; > 0 to every T-join of G’ such that 17y = 7,
and Y (gs : J a T-join of G’ containing e€) <1 Vee E(G’). This naturally gives a
dyadic assignment 3% >0 to every T-join of G such that 17y* =7, and ATy* <w.
Now let 6(U) be a minimum weight T-cut of G. Then ;1) is a feasible solution
to the primal which has value 7,,. As a result, x5 is optimal for the primal,
and y* is optimal for the dual. Thus, the dual has a dyadic optimal solution, as
required. a

Moving on, let G =(V, E) be a graph such that |V| is even. Let us prove that
M(G), which is equal to the set {xas : M a perfect matching of G}, is a DGSC.
Proof of Theorem9. We may assume that G contains a perfect matching. Let
T :=V. Note that every T-join has cardinality at least %, with equality holding
precisely for the perfect matchings. By Theorem 8, the linear system z(J) >
1V T-joins J;x >0 is TDD. Let P be the corresponding polyhedron, and F' the
minimal face containing the point \27| -1. The tight constraints of F' are precisely
z(M) > 1 for perfect matchings M, so by Theorem 1 for p = 2, the rows of the
corresponding coefficient matrix form a DGSC, implying in turn that M(G) is
a DGSC. O

Let Pip be the Petersen graph. Then Pjg has six perfect matchings. Let
M be the matrix whose columns are labeled by E(Pjg), and whose rows are the
incidence vectors of the perfect matchings. It can be checked that the elementary
divisors of M are (1,1,1,1,1,2). Thus, for any prime p >3, the rows of M which
are the vectors in M(Pjg) do not form a p-GSS by Theorem 3, and so they do
not form a p-GSC by Proposition 19. Thus, Theorem 9 does not extend to the
p-adic setting for p > 3.
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Abstract. We develop new algorithmic techniques for VLSI detailed
routing. First, we improve the goal-oriented version of Dijkstra’s algo-
rithm to find shortest paths in huge incomplete grid graphs with edge
costs depending on the direction and the layer, and possibly on rectan-
gular regions. We devise estimates of the distance to the targets that
offer better trade-offs between running time and quality than previously
known methods, leading to an overall speed-up. Second, we combine
the advantages of the two classical detailed routing approaches—global
shortest path search and track assignment with local corrections—by
treating input wires (such as the output of track assignment) as reserva-
tions that can be used at a discount by the respective net. We show how
to implement this new approach efficiently.

1 Introduction

The task of VLSI routing [4,22] is to connect the set of pins of every net on
a chip by wires so that wires of different nets are sufficiently far apart and
various other constraints are met. See Fig. 1 (left) for an example. Typically, one
first computes a global routing, a rough packing of wires that ignores all local
constraints but guarantees that the wires in certain areas do not require more
space than available. This allows for globally optimizing objectives such as power
consumption and timing constraints [10,16].

The output of global routing then restricts the search space for every net
in detailed routing, where many complicated rules need to be obeyed and one
essentially routes one net at a time. While the detailed routing graph formed by
routing tracks on an entire chip can contain about 10'2 vertices on 10-20 layers,
the restricted area corresponding to the global routing solution for a net results
in a much smaller detailed routing graph, with rarely more than 10® vertices.
Nevertheless, these subgraphs are still huge, and there are millions of nets to
connect. Two general strategies have been proposed (cf. [22]).
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Fig. 1. Left: tiny part of a routed chip. The blue wires connect the two dark blue pins
and the red wires connect the three dark red pins. Pins of the same color belong to
the same net. The gray wires are part of the connections of multiple other nets with
pins outside of the visible region. Right: the relevant part of the detailed routing graph
before routing the blue and the red net. (Color figure online)

The first approach is based on a fast subroutine to find a shortest path that
connects two metal components, each of which can consist of a pin or a set
of previously computed wires connecting a subset of the pins of that net. The
subgraph is given by the global routing solution, excluding vertices and edges
that would result in a conflict to previously routed wires. For an example of
the resulting graph, see Fig. 1 (right). To allow for an efficient packing of wires
and to model various aspects such as signal delays, one uses different costs for
horizontal and for vertical edges on each layer as well as for vias connecting two
adjacent layers.

The second approach first considers the layers one after the other and assigns
wires to routing tracks so that the most important detailed routing rules are
satisfied, at least for most wires. This is often called track assignment [5,21].
Then detailed routing tries to correct violations locally. A very similar problem
occurs when a detailed routing has already been computed, but a few changes to
the input have been made (e.g., corrections of the logical behavior or to speed up
signals that arrived too late). In both cases, one asks for an incremental detailed
routing, largely following the input but deviating where necessary. However, local
corrections are often not possible if the routing is very dense.

One classical speed-up technique of Dijkstra’s shortest path algorithm [6]
(sometimes called A*) is to use reduced costs, based on a feasible potential
that estimates the distance to the targets [9,14,19]. Instead of the undirected
graph with the original edge cost c¢(e), we orient each edge in both ways and run
Dijkstra’s algorithm with the reduced cost c,(e) := c(e) — m(v) + w(w) for every
edge e directed from v to w, where the vertex potentials 7 are chosen so that ¢,
is nonnegative and 7 (t) = 0 for every target ¢. These conditions imply that m(v)
is a lower bound on the distance between v and the closest target. The better
this lower bound is, the fewer vertices this goal-oriented version of Dijkstra’s
algorithm must label before it knows a shortest path to a target.

Hence, there is a trade-off between a possible preprocessing time, the query
time to compute the potential of a vertex, and the quality of the lower bound.
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For example, in subgraphs of unweighted grid graphs, the ¢;-distance to the
nearest target can be a reasonable choice for m [11]. A better estimate, which
however requires substantial preprocessing, was suggested by [17]. In this paper,
we propose new methods with better trade-offs than previously known.

Moreover, we combine the advantages of the two classical detailed routing
approaches mentioned above. Our new, more global approach treats given input
wires as so-called reservations and encourages, but not forces, the detailed router
to follow the reservations where feasible. This is achieved by finding a shortest
path where reservations can be used at a discount.

However, this does not work well together with the classical goal-oriented
techniques. For example, if there are some reservations (edges) that can be used
at a 50% discount, the ¢;-distance would have to be divided by 2 in order
to induce a feasible potential. This would often be a very inaccurate estimate,
leading to an increased number of labels in Dijkstra’s algorithm and hence larger
running time. We show that our better potentials make goal-oriented Dijkstra
not only as fast as without reservations, but in fact faster. Overall, this yields a
new efficient incremental detailed routing algorithm.

1.1 Problem Statement

Our core problem will consist of computing distances in a weighted grid graph
with a simple structure. To define the grid graph, we number the layers 1,...,1
and let V=Z xZx{1,...,l} and

E={{zy.2) @y, e (§) =o'l +ly—yl+|z - =1}

be the vertex set and edge set of an infinite grid with [ layers. Edges connecting
adjacent layers are called wias, edges in x-direction are horizontal and edges
in y-direction vertical. We will consider finite subgraphs of G = (V| E)). These
subgraphs correspond to the area defined by the global routing solution and to
the restriction to the routing tracks that can be used for the current net. Often,
many vertices of these subgraphs will have degree 2 and will not be considered
explicitly, but we ignore this here for the sake of a simpler exposition.

Every layer has a preference direction (< or ]); edges in the other direction
are more expensive. Horizontal and vertical layers alternate. Moreover, the layers
have very different electrical properties which is reflected by appropriate edge
costs. In the simplest model, the cost of an edge depends only on its direction and
the layer: let c;_’,c£ >0forze{l,...,l}and ¢, ,41 >0 for z € {1,...,1 — 1}
then

C({(ZE,y, Z)a (I,ay/a Z/)}) = C£ if y/ =y +1 -
Cppr if 2 =z+1

In a more general model, a rectilinear grid induces rectangular regions, called
tiles, and the cost also depends on the tile. Let

—0 =<l <. <P <P =00, —co =" <t <. <l <0l =0
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(a) Example of the general cost model. (b) A target 7" consisting of three rectangles
The red edges form the set [{?. The and the coarsest partition consistent with 7.
blue horizontal edges have cost ¢'<, For three possible query locations, the short-
the blue vertical edges have cost cili, est si-T-path, so-T-path, and s3-T-path for
and the blue via edges have cost cf}z. a cost function depending only on direction
The cost of the blue vertical edges on and layer are shown. The preference direc-
&5 is given by min{c}li,cfm}, which is tions of layer 1 and 2 are <> and J, respec-
Cfli in this example. The edges that are tively. Nevertheless it is cheapest for the s;-

not drawn have cost infinity in this ex- 7-path to stay on layer 1 since its vertical
ample. segment is very short.

Fig. 2. Examples for grids, edge costs, target sets, and shortest paths (Color figure
online)

be integer coordinates that define the rectangular tiles
Vi ={(z,y,2) eV I <a<g™ ol <y<o/T),
and set

EY ={{(z,y,2), (@', 2 )} e E| { <a<a' <,
v <y <y <ot 2 <A

Now we have costs ¢, ¢, ¢ .1 > 0 that also depend on the tile and define
the edge costs accordingly. If an edge belongs to more than one tile, the minimum
cost applies. See Fig.2a for an example. We allow that two (but not three)
consecutive coordinates are identical, i.e., & = £ or v/ = v/, in order to
model a cheap cost at one x- or y-coordinate only.

With this more general model, one can, for example, punish wires on low
layers near the electrical source of a net (which would lead to poor delays) or
implement a discount on reservations as we will describe in detail in Sect.5.2.
Moreover, we can set edge costs to infinity outside the area corresponding to the
global routing solution so that the distances in (G, ¢) reflect necessary detours
that are implied by routing in this subgraph.
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Given a finite subgraph G’ = (V' E’) of G and sets S,T C V', we look for
a shortest path from S to T in G’ with respect to the length function c¢. For a
goal-oriented path search, we define a potential 7 (v) for every vertex v € V' by
the distance to T in G (instead of G'):

m(v) = dist(g,e) (v, T).

The idea is that distances in GG are much easier to compute than in the sub-
graph G’ (we will see how fast), but often still give a good lower bound. The
reason is that (G, c¢) has a simple structure, given by the tiles, while G’ can be
very complicated as it does not contain vertices or edges whose use would result
in a conflict to nets routed previously. This allows us to use Dijkstra’s algorithm
with the reduced costs ¢, in the digraph resulting from G’ by orienting every
edge in both ways, since the reduced costs are nonnegative.

Some of our algorithms work best for simple targets. We often assume that 7'
is represented as the union of ¢ rectangles, where a rectangle is a vertex set
of the form {(z,y,2) € V | £ < ax < &H v <y < wvT, z = (} for some
E7,¢M v, vt €Z and ¢ € {1,...,1}. Often ¢ is small in practice. Sometimes it
will be useful to assume that this representation is consistent with the partition
of V into tiles in the following sense: each of the ¢ rectangles representing T
fits into the grid, i.e., is of the form {(x,y,2) € V | £& < a < € it <
y < vi', z = ¢} for some indices i~, i*, j~ and j*. This can be achieved by
adding at most 2t new x-coordinates £’ and 2t new y-coordinates v*. We call this
procedure refining the grid with respect to the targets. See Fig. 2b for an example
of the empty grid refined with respect to several target rectangles.

1.2 Previous Work and Our Results

In the simple model without regions (i.e., for p = ¢ = 0), one can query 7
in O(tl?) time without preprocessing. We improve this to O(tl) in Theorem 2.
With a preprocessing time polynomial in ¢t and [, we obtain a query time of
O(log(t +1)); see Theorem 3. We present these results in Sects. 2 and 3.

For the more general model, which is the subject of Sect. 4, Peyer et al. [17]
refined the grid with respect to the targets and showed that then the restriction
of m: V — Rxg to V7 is the minimum of k? affine functions for any 4, j, 2, where
k is the number of different horizontal and vertical edge costs, i.e.,

k= |{c9 i€ {0,....p},j €{0,....q},d € {=, 1}z e {1,....1}}]. (1)

They also showed that all these functions can be computed in O((p + t)(q +
t)lk*log(p+q+1+1)) time, allowing O(k?) time queries after this preprocessing
(plus O(log(p + g + t)) to find the region containing the given vertex by binary
search; here and henceforth p and ¢ refer to the original number of rows and
columns, before refining the grid).

We make multiple improvements over the approach of Peyer et al. [17]. By
considering domination between affine functions with different slopes, we reduce
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the number of affine functions needed to describe the minimum. By first comput-
ing the distances from the edges on the boundaries of the tiles to the targets, we
can compute these affine functions faster. Finally, we use a regional query data
structure to reduce query time. For any 0 < € < 1, we can obtain an algorithm
with preprocessing time O((p+t)(g+t) min{k, (p+q+1)I}* "L log(p+q+1+t))
and query time O(log(p 4+ ¢ + t) + L log(k +1)). See Table 1 for an overview.

Our second contribution is a new approach to incremental routing. Rather
than trying to correct a given infeasible input routing with local transformations
only, we compute a new routing from scratch, at least for all nets for which the
input routing does not obey all rules. However, to compute a solution similar to
the input where reasonable, we reserve the space occupied by legal input wires
for the respective net and allow to use edges corresponding to input wires at a
discount. By letting each input wire be a separate tile V7, we can model the
discount in the cost function ¢ and work with reduced costs efficiently. When
most of the input routing can be used, we can find a shortest path much faster
than without a discount.

This makes this new approach not only useful for incremental routing, but
also for bulk routing. Treating the output of a track assignment as reservations
(wherever it is legal) and then pursuing our new incremental routing approach
can combine the advantages of the two classical bulk routing approaches, suc-
cessive shortest paths and track assignment with local corrections. We explain
our new approach in detail in Sect. 5, where we also show experimental results.

Full proofs and more detailed experimental results can be found in [1].

2 Distances Without Preprocessing in the Simple Model

In the simple model, there is always a shortest path with a very simple structure:

Lemma 1. Let ¢: E — Ry depend only on direction and layer, and let r,s €
V. Then there is a shortest path P between r and s in (G,c) that consists of at
most one sequence of horizontal edges, at most one sequence of vertical edges,
and hence at most three sequences of vias.

Table 1. Various methods to compute 7(v), possibly after preprocessing. The running
times depend on the number t of target rectangles, the number [ of layers, and in the
general model on the numbers p and ¢ of coordinates that define the (p + 1)(q + 1)
regions, and on the number k of different horizontal and vertical edge costs (cf. (1)).
Note that £ < 2(p+ 1)(g + 1)!. For simplicity, we assume 7" to be consistent with the
grid in this table, which may increase p and ¢ by up to 2t.

Model Preprocessing time Query time Reference
Simple - O(tl) Theorem 2
Simple O(t*1%log!) O(log(t +1)) Theorem 3
General O(pglk*log(p + q +1)) O(log(p + q) + k) [17]

General O(pgl'*kilog(p+q+1)) O(log(p+ q) + Llog(k +1)) Theorem 7
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Proof. Let P be a shortest path, and Py, ,,) and P,/ ) two maximal subpaths of
P in the same direction (all-horizontal or all-vertical), say from v to w and from
v’ to w’, respectively, and let P, .} be the subpath in between. Suppose, w.l.o.g.,
that P, ) and P, . are horizontal paths and that the cost of an edge of Py, 4
is not more expensive than the cost of an edge of Py, . (note that these paths
may be on different layers). Then translating Py, . by adding w — v’ to all its
vertices, translating P, . by adding w’ — v’ to all its vertices, and swapping
these two paths yields a walk from r to s with one maximal horizontal subpath
less and at most the same number of maximal vertical subpaths, while the cost
does not increase. If the walk is not a path, we can shortcut it to a path. By
induction, the assertion follows. O

Hence, in order to compute a shortest path, we can enumerate the targets
and then the layers on which the horizontal sequence and the vertical sequence
are, and which of the two comes first. This has running time O(tl?). We show
how to improve on this, obtaining a linear dependence on the number of layers:

Theorem 2. Let ¢ : E — Rsg depend only on direction and layer. Then, with-
out preprocessing, one can compute dist(q ¢)(s,T) for any given s € V' and given
T CV consisting of t rectangles in O(tl) time.

Proof. We enumerate over all ¢ rectangles of T'. For each such rectangle R, we
determine the vertex r € R that is closest to s (geometrically) in constant time.
First compute the total cost c, ., of a path of vias between layer z; and layer
29 for all 21,29 € {1,...,1} with {z1,22} N {2, 25} # 0, where z, and z; denote
the layers of r and s, respectively. This can easily be done in O(l) time.

Now we compute, in O(l) time, the minimum length of a path from r to s
that (when traversed from r to s) consists of a path of vias, then a horizontal
path, then a path of vias, then a vertical path, then a path of vias. We will then
do the same with exchanging the roles of r and s, and we are done by Lemma 1.

For each layer z € {1,...,1}, consider the vertex v, on layer z whose y-
coordinate is the one of r and whose x-coordinate is the one of s. We first
compute for z = 1,1 —1,...,1 the distance d, between r and v, in the subgraph
of G that contains no horizontal edges on the layers 1,. .., z—1: set d;.; = oo and
d, =min{d, 41+ s .11,Cs, -+ - |2 — 24|} Then we compute for z = 1,...,1
the distance d, from 7 to v, by setting dy = oo and d, = min{d,,d,_1+c,_1,.}.
Finally, the shortest path from r to s that goes first horizontal and then vertical

has length min{d, + ek lyr —ys| + oz, | 2 € {1, ... 1}} O

3 Logarithmic Query Time in the Simple Model

We now achieve O(log(t + 1)) query time with polynomial preprocessing time:

Theorem 3. Let ¢: E — R+ depend only on direction and layer, and let T C
V consist of t rectangles. Then there is a data structure that requires O(t21% log )
preprocessing time and, for any given s € V', can then determine dist(g (s, T)
in O(log(t +1)) query time.
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Proof (sketch). We first interpret our instance as an instance of the general
model by choosing p = ¢ = 0 and then refine the grid with respect to the
targets, which yields O(t?l) tiles V. By Lemma 1, and since the number of
possible slopes in either direction is at most 2] 4+ 1, the distance from any tile
to T can be expressed as a minimum of at most 412 + 41 + 1 affine functions.
A dynamic program can compute all required functions for every tile in O(t213)
time. Since a tile containing a query location can be determined in O(logt)
time using binary search, it now suffices to evaluate the minimum of at most
41% 4+ 41 + 1 affine functions in O(logl) query time after O(I? logl) preprocessing
time for each tile independently using the following lemma. a

Lemma 4. Let F be a set of affine functions f: R? — R and R := [z~,27F] x
[y=,y "] a rectangle. Then there is a data structure that requires O(|F|log|F|)
preprocessing time and, given any query point p € R, can then determine the
value mingep f(p) in O(log|F|) query time.

Proof. First intersect the half spaces {(z,y,¢) € R® | ¢ < f(z,y)} for f € F in
O(|F|log |F|) time [18]. By projecting the lower faces of the resulting polyhedron
into the plane, we obtain a subdivision of R into at most |F| convex polygons
and the minimizing function f € F for each polgyon. Using [15], we can build
a data structure in O(|F|log|F|) preprocessing time and can then determine a
polygon containing any given query point p € R in O(log|F|) time. O

Point location algorithms which attain the same theoretic guarantees as [15],

but successively improve practical performance and ease of implementation have
been described in [7,12,20].

4 The General Model

In this section, we develop an algorithm to compute the potential dist (g (v, T')
for any v in the general model efficiently after preprocessing. We will assume
T to be consistent with the grid, i.e., we have already refined the grid if it
was not. Our preprocessing will work on the horizontal and vertical line seg-
ments of the grid, i.e., the sets Hor” = {(z,y,2) € V7 |y =17} and Ver’ :=
{(z,y, 2) eV |z = {i}. The exposition will focus on the horizontal line seg-
ments; vertical segments can be handled analogously. Our algorithm consists of
two preprocessing steps and a query step. The first preprocessing step is a vari-
ant of Dijkstra’s algorithm. For its correctness, the following observation about
the structure of shortest paths, which can be shown similarly to Lemma 1 for
the simple model, is essential:

Lemma 5. Let ¢c: E — Rsq depend on tile and direction, let T CV be consis-
tent with the grid, and s € V\T. Then there is a shortest path P from s to T in
(G, c) that uses only one type of edges (either horizontal, vertical or via) before
entering some tile in which s does not lie.
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Our algorithm will first compute dist(g (s, T) for all s lying in horizontal
segments of the grid. More precisely, for each horizontal segment Hor , the
algorithm maintains a set F7 of affine functions f: [¢%,£!] — R such that
each value f(x) corresponds to the length of a path between (z,v7,2) and T'. At
any point during the algorithm, for every vertex (z,v7, 2), the value min{ f(z) |
f € Fi7} can be considered to be its current label. If £ = ¢+ we simply store
that value. Otherwise we use a binary search tree to keep only those functions
that are not dominated, i.e., attain the pointwise minimum in more than one
point.

In addition, we maintain a binary heap representing all functions in |J{F¥ |
1 €{0,....,p},7 €{1,...,q},z € {1,...,1}} that have not been processed yet,
where the key of a function is the minimum of the labels it implicitly represents.
The functions that are added to or removed from some F%/ must be added to or
removed from the heap at the same time, and whenever a key changes, it must
be updated also in the heap.

The algorithm starts by initializing F¥ = () for all i € {0,...,p}, j €
{1,...,q},and z € {1,...,1}. If Hor¥ C T, we add the constant function z — 0
to the corresponding set F'J. If not the whole segment but one (or both) of its
endpoints is in 7', we add the affine function describing the distance to this point,
ie., z— min{ci=, VY7L (2 — €) or @ — min{c =, TV (6L - g).

In every iteration, a function f with minimum key is chosen and removed
from the heap. The function f describes the labels of a subset of some horizontal
segment HorY, corresponding to an interval [J:f , T f] We now propagate the
labels from thebe vertices to the neighboring horizontal segments by computing
at most six new affine functions:

Zj<—>

x +— 20+ 2z T +— 26 — 2x r— 14+
®
b =20 ¢t =10
@ @ ¢ = 2 @ ¢ =1
©
T T+ 2 r—4+x

Fig. 3. Example run of the algorithm computing the distance from all horizontal line
segments to T'. The instance consists of two horizontally adjacent tiles with coordinates
€' =0,82=4,6 =170 =0, and v* = 1. The target T = {(0,0,1)} consists of the
single point in the bottom left corner. We disregard the outside tiles (by setting their
costs to infinity). All other costs are as written in the centers of the respective tiles.
During the algorithm, five affine functions are added to the four horizontal segments,
which are colored by the function attaining the minimum in the end of the algorithm.
The incoming arrow depicts the propagation by which that function was added and is
numbered by the iteration of the algorithm (where 0 stands for initialization). (Color
figure online)
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down) If z > 1, add the function z ~— f(z) +min{c? , ,, V7 1)} to F7 |

( z— 1,20 Crl1,2
(up)  If 2 < I, add the function z + f(z) +min{c?_, ¢ Z(jz+11)} to F;ZH
(south) If j > 1, add the function z — f(x) + A (v =T to FiU=D,
(north) If j < ¢, add the function z — f(x) + c”I (vI+l —07) to LU+
(west) If ¢ > 0, add the function

x o f(E) + mm{c(l Vi c(i_l)(j_l)H} (¢ —1x) to FO13,
(east) If ¢ < p, add the function

z e f(EH) + mln{C(H_l)JH, gi+1)(j—1)H} Az — £ to F,z(i+1)j.

The algorithm stops when the heap is empty. For an example run of the
algorithm, see Fig. 3.

It is easy to show that each function we add gives an upper bound on the
distance from the corresponding horizontal segment to the target. To show that
the algorithm works correctly, we prove that there will be a function attaining the
distance from any point to the target once the minimum key in the heap exceeded
that distance. The proof uses induction on the distance to T. By Lemma 5, we
may assume that the corresponding shortest path never uses a horizontal edge
or a via in the interior of a tile. We exploit this structure to find an appropriate
predecessor function in the dynamic program.

To ensure that the algorithm terminates and has the desired running time,
we first observe that the functions in F¥ have at most 2k’ + 1 different slopes,
where k' := min{k, (¢ + 1){}. This allows us to bound the number of iterations
by (p + 1)q(2k" + 1), since two functions propagated from the same horizontal
segment in different iterations can be shown to have different slopes. This yields:

Theorem 6. There is an algorithm that computes for each horizontal seg-
ment Horij a set FY9 of at most 2k' + 1 affine functions such that
min {f(z) | f € F¥} = dist(g.)((z,v7, 2),T) for all (z,v7, ) € Hor’J. The algo-
rithm can be implemented to run in O(pgk'llog(p + q +1)) time.

The second preprocessing step builds regional query data structures using
Lemma 4. Each affine function in each horizontal and vertical segment induces
an affine function on each query layer. To avoid a quadratic dependence on the
number of layers in the preprocessing running time, we limit the number of
query data structures to which any affine function contributes: any subset of
query layers 1, ...,z can share a data structure for any subset z,...,[ of layers
containing the segments and vice versa. We choose a trade-off factor 0 < e <1
between the number of data structures which need to be considered during each
query and the number of layers sharing the same data structures. By carefully
choosing the correct subranges of layers, we obtain the following result:

Theorem 7. Let 0 < ¢ < 1, let ¢ : E — Rsq depend on tile and direction,
and let T C V', not necessarily consistent with the grid. Then there is a data
structure that requires O((p+1t)(g+1t) min{k, (p+q-+ 1)} Llog(p+q+1+1t))
preprocessing time and, for any given s € V', can then determine dist(g (s, T)
in O(log(p + q +t) + Llog(k +1)) query time.
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5 Practical Aspects

5.1 Implementation

With some improvements to practical performance that we describe in the full
version [1], we implemented the algorithms presented in the previous sections as
part of BonnRoute [2,3,8,13], a detailed router developed at the University of
Bonn in joint work with IBM. BonnRoute is the main detailed routing tool used
by IBM for the design of its processor chips.

Up to parallelization and conflict resolution, BonnRoute routes one net after
the other. Each net is routed by iteratively connecting two of its components by
a path until the net is fully connected. The path search is the algorithmic core
of BonnRoute and requires approximately 80-90 % of the total runtime.

All experiments were performed on the same AMD EPYC 7601 machine with
64 CPUs and 1024 GB main memory using 64 threads. Our testbed consists of
nine real-world instances from three recent IBM processor chips in 7nm and
5nm technology nodes. We started all experiments on the same instance from
the same snapshot, which was taken right before the detailed routing. At this
point, a (three-dimensional) global routing was already computed for each net.

Table 2. Performance of the following four different feasible potentials on our testbed.
In the rows without potential, each query returns 0 in constant time. When using
£1-distance, the O(t) query computes the minimum required cost in each of the three
directions separately. This requires an O(l) preprocessing. In the simple and general
rows, the shortest distance to 1" in the respective models is returned. Here the difference
between the two is that the general model restricts to the area corresponding to the
global routing solution (outside of it, the costs are infinite). Runtimes are summed over
all 64 threads except for the last column, which shows the BonnRoute wall time.

All Dijkstra calls | Standard Dijkstra calls | Total BonnRoute

Potential | Preprocessing | Runtime Labels | Runtime Labels Wall time
h:mm h:mm 109 h:mm 109 h:mm

Without 0:00 | 7933:04 5246.5 | 4619:12 3633.9 142:52
£1-distance 0:02 | 5457:19 2867.0 | 2535:45 1618.6 104:12
Simple 0:39 | 4191:51 2232.0 | 1517:52 1082.4 83:54
General 46:40 | 3608:00 1916.2 | 1094:36 848.9 75:44

Table 2 compares the performance of path searches using different feasible
potentials. Each potential is the distance to T in the same supergraph G of G’,
but with respect to different edge costs c.

The results show that the general potential performs much better than the
simple potential, which already performs much better than the ¢;-distance poten-
tial. Both the number of labels and the runtime improve significantly, even when
considering the additional preprocessing time. Certain instances benefit less from
these potentials. If there is no path to be found, all vertices are labeled regardless
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of which potential is used. After a path search failed, BonnRoute may perform a
backup path search which allows routing through existing wires at high cost (and
then would rip-up such wires and try to re-route them). Since these rip-up costs
are not modeled in any of our potentials, a large portion of the graph may be
labeled regardless of which potential is used. The column Standard Dijkstra calls
in Table 2 excludes these situations and hence shows an even larger gain than
the column All Dijkstra calls. The question how to model rip-up costs efficiently
when computing potentials remains for future research.

5.2 Reservations and Discounts for Incremental Routing

In chip design practice, there are two main scenarios where a detailed routing
is not computed from scratch, using just a global routing as input, but in an
incremental way, using an almost feasible detailed routing as input. The first
scenario is when a detailed routing has already been computed, but now a few
changes have been made, for example in order to correct the logical function of
the chip or to improve its timing behavior. The second scenario is when a step
in between global and detailed routing is used, typically called track assignment,
that maps the global wires to routing tracks in a way that obeys most—but not
all—design rules. In both scenarios, the task is to compute a completely feasible
detailed routing by doing only few changes. While it is not exactly specified
what “few” means, the motivation is that the input routing has already been
optimized, for example with respect to the timing behavior of the chip; moreover,
one aims at saving runtime.

\ \ayet 2
illegal input wire
legal input wire
reservation
\(\\'Q\L A\
new solution
old pin position new pin position

"

Fig. 4. Example of a net (consisting of the pins p1, p2, and ps) that is re-routed using
reservations after changes to the input have been made. Even though all of the green
input wires are legal, we may choose to create reservations only for the thick green
wires, e.g., if we expect the harm of blocking other nets to outweigh the benefit of
keeping them usable for this net. (Color figure online)
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We suggest to repair violations globally but with a preference of using the
initial solution. To this end, we convert any detailed wire in the input to a
global wire and possibly a reservation. A reservation reserves that space for
the particular net. When other nets are routed earlier, this space is blocked.
Therefore, reservations are created only for (parts of) detailed wires that do not
conflict with other detailed wires in the input. For an example, see Fig. 4.

Once a net is routed for which we have created reservations, we would like to
encourage, but not force, the net to use the reserved space. We do this by defining
a discount factor 0 < § < 1 and multiplying all edge costs on a reservation of that
net by d. In our experiments, we have chosen § = %. With the traditional goal-
oriented search techniques, reservations would lead to a slow-down, since many
or even all of the edge costs in the supergraph G would need to be multiplied by
0 in order for the potential to stay feasible. Our generalized framework, however,
allows us to refine the grid not only with respect to the targets, but also with
respect to the reservations, and define individual (discounted) costs on the edges
corresponding to reservations.

On six instances from real design practice, in which a detailed routing is no
longer completely legal after some changes to the input, we compare two runs,
each computing a new solution for every path containing a violation. The run
that creates reservations based on the initial solution attains a 33% speed-up
in the sum of Dijkstra run times over the run which creates no reservations,
from 50 h and 51 min to 34 h and 9 min. If we instead start from an almost
legal solution—the output of BonnRoute in one of the runs in Table2—and
repeat all path searches, this speed-up increases to 55%. Naturally, the overall
BonnRoute wall time improves less, namely by 11% and 42%, respectively. See
the full version [1] for details.
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Abstract. We study the maximal number of pairwise distinct columns
in a A-modular integer matrix with m rows. Recent results by Lee et
al. provide an asymptotically tight upper bound of O(m?) for fixed A.
We complement this and obtain an upper bound of the form O(A) for
fixed m, and with the implied constant depending polynomially on m.

1 Introduction

Full row rank integer matrices with minors bounded by a given constant A in the
absolute value have been extensively studied in integer linear programming as
well as matroid theory: The interest for optimization was coined by the paper of
Artmann, Weismantel & Zenklusen [1] who showed that integer linear programs
with a bimodular constraint matrix, meaning that all its maximal size minors
are bounded by two in absolute value, can be solved in strongly polynomial time.
With the goal of generalizing the results of Artmann et al. beyond the bimodular
case, Négele, Santiago & Zenklusen [8] studied feasibility and proximity questions
of a subclass of integer programs with bounded subdeterminants. Fiorini et al. [3]
obtained a strongly polynomial-time algorithm for integer linear programs whose
defining coefficient matrix has the property that all its subdeterminants are
bounded by a constant and all of its rows contain at most two nonzero entries.
For more information on the development regarding this topic, we refer to the
three cited contributions above and the references therein.
For a matrix A € R™*" and for 1 < k < min{m,n}, we write

Ak(A) := max{|det(B)| : B is a k x k submatrix of A}

for the maximal absolute value of a k x k minor of A. Given an integer A € Z+y,
a matrix A € R™*" of rank m is said to be A-modular and A-submodular, if
An(A) = A and A,,(A4) < A, respectively.! Moreover, a matrix A € R™*" is
said to be totally A-modular and totally A-submodular, if maxye(y,) Ar(A) = A
and maxe[m) Ax(A) < A, respectively, where [m] := {1,2,...,m}.

! The authors of [4,7] use the term A-modular for what we call A-submodular.
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Our object of studies is the generalized Heller constant, which we define as

h(A,m) := max{n € Z~g : A € Z™ " has pairwise distinct columns
and A,,(4) = A}.

If A = 1, we are concerned with the classical notion of unimodular integer
matrices. Lee [6, Sect. 10] initiated the study of the maximal number of columns
beyond unimodular matrices in 1989 and proved a bound of order O(r?4), for
totally A-submodular integer matrices of row-rank r. Glanzer, Weismantel &
Zenklusen [4] revived the story by extending the investigation to A-submodular
integer matrices and obtaining a polynomial bound in the parameter m.

The value h(A,m) is directly related to the value ¢(A, m) studied in [4,7]
and defined as the maximum number n of columns in a A-submodular integer
matrix A with m rows with the properties that A has no zero columns and for
any two distinct columns A; and A; with 1 <4 < j < n one has A; # A; and
A; # —A;. It is clear that

(A,m) = %(max{h(l,m), (A m)} — 1)

holds, showing that ¢(A, m) and h(A,m) are “equivalent” in many respects.
However, our proofs are more naturally phrased in terms of h(A, m) rather than
¢(A, m), as we prefer to prescribe A,,(A) rather than providing an upper bound
on A, (A) and we do not want to eliminate the potential symmetries within A
coming from taking columns A; and A; that satisfy 4, = —A;.

Upper bounds on the number of columns in A-(sub)modular integer matrices
with m rows have been gradually improved over time as described in the intro-
duction of [4]. Glanzer et al. [4] showed that for each fixed A > 2, h(A,m) is
of order at most O(A2*1o821082 4.3 2) 4 result that has been recently improved
by Lee, Paat, Stallknecht & Xu [7] to the following estimate:

Theorem 1 ([7, Thm. 2 & Prop. 1 & Prop. 2]). Let A,m € Z~o. Then,
h(A,m) =m?+m+1+2m(A—-1) if A<2 or m<2,
and, for all other cases (A,m), one has the bounds®
m? +m+142m(A—1) <h(4,m) < (m? +m)A? + 1. (1)

Note that the case A = 1 is the classical result of Heller [5] stating that the
maximal number of pairwise distinct columns in a unimodular integer matrix
with m rows is h(1,m) = m? + m + 1. As a conjecture Lee et al. [7] formulate
that the lower bound in (1) is actually the correct value of h(A,m), for any
choice of A;m € Z~g. A A-modular integer matrix with m rows and that many
columns has the difference set of

{0,61,627 e ,€m} @] {261,361, .. .,Ael}

2 Lee et al. [7, p. 23] remark that their techniques provide h(A,m) < O(m? - A%).
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as its columns, where e; denotes the ith coordinate unit vector.

The upper bound in (1) is quadratic both in m and in A. However, it is known
that, for each fixed m, h(A,m) is linear in A, see the comment on page 24 in [7].
Still, so far there has not been any bound that is polynomial in m and linear
in A. The authors of [7, p. 24] ask if there exists a bound of the form O(m?)A
for some constant d € Z~g. As our main result, we answer this question in the
affirmative by showing that a bound of order O(m*)A exists.

Theorem 2. Let A € Z~qg and m > 5. Then,

4
h(A,m)gm(m+1)+1+2m—1)-z<"f‘>.

- 1
=0

It remains an open question whether our bound can be improved to a bound of
order O(m?)A for some exponent d < 4.

2 Counting by Residue Classes

Our main idea is to count the columns of a A-modular integer matrix by residue
classes of a certain lattice. This is the geometric explanation for the linearity
in A of our upper bound in Theorem 2.

To be able to count in the non-trivial residue classes, we need to extend the
Heller constant h(1,m) to a shifted setting. Given a translation vector ¢ € R™
and a matrix A € R™*", the shifted matrix ¢t + A := ¢17 + A has columns ¢ + A;,
where Ay, ..., A, are the columns of A, and 1 denotes the all-one vector.

Definition 1. For any m € Z~, we define the shifted Heller constant hs(m) as
the mazimal number n such that there exists a translation vectort € [0,1)™\{0}
and a matriz A € {—1,0,1}"*" with pairwise distinct columns such that t + A
is totally 1-submodular, that is, maxyep,) Ar(t + A) < 1.

Note that, in contrast to the generalized Heller constant h(A,m), we do not
necessarily require ¢ + A to have full rank, but we restrict A to have entries
in {—1,0,1} only. Moreover, the reason for restricting the non-zero translation
vectors to the half-open unit cube [0,1)™ becomes apparent in the proof of the
following crucial estimate.

Lemma 1. For every A,m € Z~g, we have
h(A,m) <h(l,m)+ (A —1) - hg(m).

Proof. Let A € Z™*™ be a matrix with A,,(4) = A and pairwise distinct
columns and let X4 C Z™ be the set of columns of A. Further, let by,...,b,, €
X 4 be such that |det(by,...,by,)| = A and consider the parallelepiped

Pyi=[=by,bi] + ...+ [~bpm, b = {Zaibi —1<a; <1,Vie [m]}.
=1
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Observe that X4 C P4. Indeed, assume to the contrary that there is an x =
Z:il a;b; € Xa, Wlth, say |OZj| > 1. Then, |det(b1, ey bj_l,I7 bj+1, ey bm)‘ =
laj|A > A, which contradicts that A was chosen to be A-modular.

Now, consider the sublattice A := Zby + ...+ Zb,, of Z™, whose index in Z™
equals A. We seek to bound the number of elements of X 4 that fall into a fixed
residue class of Z™ modulo A. To this end, let x € Z™ and consider the residue
class = + A. Every element z € (z + A) N P4 is of the form z = > | a;b;, for

some uniquely determined ayq, ..., q,, € [—1,1], and can be written as
z= ZL%J b; + Z{ai}bia (2)
i=1 i=1

where {a;} = a; — |a;] € [0,1) is the fractional part of «;, and where Z :=
>t {a;}b; is the unique representative of z + A in the half-open parallelepiped
[0,b1)+...4[0, by, ), and in particular, is independent of z. We use the notation
2] == (lea],---, lam]) € {-1,0,1}™ and {z} := ({a1},...,{am}) € [0,1)™
and thus have z = B(|z| + {z}), where B = (by,...,by,) € Z™>*™.

Because the vectors (z + A) N X 4 constitute a A-submodular system and
since |det(by,...,bm)| = A, the set of vectors {|z] + {z} : z € (x + A) N X4}
are a l-submodular system. For the residue class A, this system is given by
{lz] : z € AN X4} C {-1,0,1}"" and moreover has full rank as it contains
€1,...,em, and we are thus in the setting of the classical Heller constant h(1,m).

For the A — 1 non-trivial residue classes © + A, x ¢ A, we are in the set-
ting of the shifted Heller constant hg(m). Indeed, as the matrix with columns
{b1,.. ., b} U((x + A) N X4) C X4 is A-submodular, the matrix with columns

{e1,..,em}tU{lz] +{z} 2z € (x+A)NXy}

has all its minors, of any size, bounded by 1 in absolute value. By the definition
of hs(m), the second set in this union has at most hs(m) elements.
As a consequence, we get n = | X 4| < h(1,m)+ (A—1) -hs(m), as desired. O

Remark 1. The proof above shows that we actually want to bound the number
of columns n of a matrix A € {—1,0,1}™*™ such that the system

{e1,...,emtU{t+Ay,...;t+ Ay}

is 1-submodular, for some ¢ € [0,1)"\{0}. However, t+A is totally 1-submodular
if and only if {e1,...,em} U (t + A) is 1-submodular.

Remark 2. As any matrix A € {—1,0,1}"™*" with pairwise distinct columns
can have at most 3™ columns, one trivially gets the bound hy(m) < 3™. Thus,
Lemma 1 directly implies the estimate h(A,m) < 3™ - A.

2.1 Small Dimensions and Lower Bounds in the Shifted Setting

Recall that the original Heller constant is given by h(1,m) = m? + m + 1. The
following exact results for dimensions two and three show the difference between
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this original (unshifted) and the shifted setting grasped by hs(m). Note that as
in the shifted setting we require ¢ # 0, the Heller constant h(1,m) is not a lower
bound on the shifted Heller constant hy(m).

Proposition 1. We have hs(2) = 6 and hs(3) = 12.

Proof. First, we show that hg(2) = 6. Let A € {—1,0,1}?>*" have distinct
columns and let t € [0,1)% \ {0} be such that ¢t + A is totally l1-submodular.
Since t # 0, it has a non-zero coordinate, say t; > 0. As the 1 x 1 minors of
t + A, that is, the entries of t + A, are bounded in absolute value by 1, we get
that the first row of A can only have entries in {—1,0}. This shows already that
n < 6, as there are simply only 6 options for the columns of A respecting this
condition.
An example attaining this bound is given by

[-1-1-1l 000 172
A_[—l 0 1‘—101} and t‘{o}‘

One can check that (up to permutations of rows and columns) this is actually
the unique example (A, t) with 6 columns in A.

Now, we turn our attention to proving hg(3) = 12. The lower bound follows
by the existence of the following matrix and translation vector

-1-1-1|-1-1-1f 0 0 0] 00O 1/2
A=|-1-1-1] 0 0 0|-1-1-1] 00O and t=[1/2].
-1 0 1j-1 0 1|-1 0 1j-1 01 0

Checking that ¢ + A is indeed totally 1-submodular is a routine task that we
leave to the reader.

For the upper bound, let A € {—1,0,1}3*" and t € [0,1)\ {0} be such that
t + A is totally 1-submodular. Let s be the number of non-zero entries of ¢ # 0.
Just as we observed for hg(2), we get that there are s > 1 rows of A only
containing elements from {—1,0}. Thus, if s = 3 there are only 2% = 8 possible
columns and if s = 2, there are only 22 - 3 = 12 possible columns, showing that
n < 12 in both cases.

We are left with the case that s = 1, and we may assume that A has no
entry equal to 1 in the first row and that ¢; > 0. Assume for contradiction that
n > 13. There must be £ > 7 columns of A with the same first coordinate, which
we subsume into the submatrix A’. By the identity h(1,2) = 7 applied to the
last two rows, and to = t3 = 0, we must have £ = 7 and up to permutations

aaa a a a a

and multiplication of any of the last two rows by —1, A’ = [g 1o-1 0 1 f}],

for some a € {—1,0}. Since the absolute values of the 2 x 2 minors of t + A are
bounded by 1, the remaining n — ¢ > 6 columns of A are different from (b,1,1)T
and (b, —1,—1)T, where b is such that {a,b} = {—1,0}. Under these conditions,
we find that A contains either B = [71 K Cl)}, B = {:} "o —?}, C = F 0 71} or
0-1-1 0o 1 1 0 -1 -1
o {,2 ? :ﬂ as a submatrix. However, both the conditions |det(t + B)| < 1
and |det(t+ B’)| <1 give t; > 1, and both |det(t+C)| < 1 and |det(t+C")| <1
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give t; < 0. Hence, in either case we get a contradiction to the assumption that
0<t <1 O

Combining Lemma 1, the identity h(1,m) = m? +m + 1, and Proposition 1
yields the bounds h(A,2) < 6A + 1 and h(A,3) < 12A 4 1. The latter bound
improves upon Theorem 1. However, as h(A,2) = 4A + 3 by Theorem 1, we
see that the approach via the shifted Heller constant hs(m) cannot give optimal
results for all m.

A quadratic lower bound on hg(m) can be obtained as follows:

Proposition 2. For every m € Z~g, we have
hs(m) > h(l,m—1)=m(m —1)+ 1.

Proof. Let A" € {—1,0,1}(m=1D*" be a totally unimodular matrix with n =
h(1,m — 1) columns, and let A € {—1,0,1}"*" be obtained from A’ by
simply adding a zero-row as the first row. Then, for the translation vector
t=(=,0,...,0)T the matrix ¢ + A is totally 1-submodular.

Indeed, we only need to look at its k& x k minors, for £ < m, that involve the
first row, as A’ is totally unimodular by choice. But then, the triangle inequal-
ity combined with developing the given minor by the first row, shows that its
absolute value is bounded by 1. a

3 A Polynomial Upper Bound on hg(m)

An elegant and alternative proof for Heller’s result that h(1,m) = m? + m + 1
has been suggested by Bixby & Cunningham [2] and carried out in detail in
Schrijver’s book [10, § 21.3]. They first reduce the problem to consider only the
supports of the columns of a given (totally) unimodular matrix and then apply
Sauer’s Lemma from extremal set theory that guarantees the existence of a large
cardinality set that is shattered by a large enough family of subsets of [m].

We show that this approach can in fact be adapted for the shifted Heller
constant hy(m). The additional freedom in the problem that is introduced by
the translation vectors ¢ € [0,1)™\ {0} makes the argument a bit more involved,
but still gives a low degree polynomial bound. To this end, we write supp(y) :=
{j € [m] : y; # 0} for the support of a vector y € R™ and

Ea = {supp(4;) : i € [n]} C 21"

for the family of supports in a matrix A € R™*™ with columns Ay,..., A,. We
use the notation 2 for the power set of a finite set Y.

Just as in the unshifted Heller setting, each support can be realized by at
most two columns of A, if there exists a translation vector ¢ € [0,1)™ such that
t + A is totally 1-submodular.

Proposition 3. Let A € {—1,0,1}™*" and ¢ € [0,1)™ be such that Ap(t+A) <
1, for k € {1,2}. Then, each E € £4 is the support of at most two columns of A.
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Proof. Observe that in view of the condition A (¢t + A) < 1 and the assumption
that t; > 0, for every i € [m], we must have ¢, = 0, as soon as there is an entry
equal to 1 in the rth row of A.

Now, assume to the contrary that there are three columns A;, A;, Ay of A
having the same support E € £4. Then, clearly |E| > 2 and the restriction of the
matrix (A;, A;, Ag) € {—1,0,1}™*3 to the rows indexed by F is a +1-matrix.
Also observe that there must be two rows r, s € E so that (4;, A;, Ax) contains
an entry equal to 1 in both of these rows. Indeed, if there is at most one such
row, then the columns A;, A;, A, cannot be pairwise distinct. Therefore, we
necessarily have ¢, = t; = 0. Now, there are two options. Either two of the
columns A;, A;, Ay, are such that their restriction to the rows r,s give linearly
independent +1-vectors. This however would yield a 2 x 2 submatrix of ¢4+ A with
minor 2, contradicting that Ay(t + A) < 1. In the other case, the restriction
of the three columns to the rows r, s has the form +[; 1] or £[; 1 Z1], up to
permutation of the indices 4, j, k. If |E| = 2, then this cannot happen as A is
assumed to have pairwise distinct columns. So, |E| > 3, and considering the
columns, say A;, A;, which agree in the rows r, s, there must be another index
¢ € E\ {r,s} such that (4;)¢ = 1 and (A4;)¢ = —1, or vice versa. In any case
this means that also t; = 0 and that there is a 2 x 2 submatrix of ¢ + A in the
rows r, ¢ consisting of linearly independent +1-vectors. Again this contradicts
that Ay(t 4+ A) < 1, and thus proves the claim. O

As mentioned above, this observation on the supports allows to use Sauer’s
Lemma from extremal set theory which we state for the reader’s convenience.
It was independently published by Sauer [9] and Shelah [11] (who also credits
M. Perles) in 1972, and again independently by Vapnik & Chervonenkis [13] a
few years earlier.

Lemma 2. Let m,k € Zsg be such that m > k. If € C 20" s such that |E] >
() + () +-..+ (), then there is a subset Y C [m] with k + 1 elements that
is shattered by &, meaning that {ENY : E € £} = 2Y.

Now, the strategy to bounding the number of columns in a matrix A €
{=1,0,1}™*™ such that ¢ + A is totally 1-submodular for some ¢t € [0,1)™ is

to use the inequality |E4| > %n, which holds by Proposition 3, and then to

argue by contradiction. Indeed, if n > 221:01 (T), then by Sauer’s Lemma
there would be a k-element subset Y C [m] that is shattered by £4. In terms
of the matrix A, this means that (possibly after permuting rows or columns)
it contains a submatrix of size k x 2* which has exactly one column for each
of the 2% possible supports and where in each column the non-zero entries are
chosen arbitrarily from {—1,1}. For convenience we call any such matrix a Sauer
Matriz of size k. For concreteness, a Sauer Matrix of size 3 is of the form

0£1 0 0 141 0 #£1
00 +£1 0 £1 0 £1+£1
00 0 +£1 0 £1£1=£1

)

for any choice of signs.
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The combinatorial proof of h(1,m) = m?+m+1 is based on the fact that no
Sauer Matrix of size 3 is totally 1-submodular. This is discussed in Schrijver [10,
§21.3], Bixby & Cunningham [2], and Tutte [12], and also implicitly in the anal-
ysis of the first equation on page 1361 of Heller’s paper [5]. In order to extend
this kind of argument to the shifted setting, we need some more notation.

Definition 2. Let S be a Sauer Matriz of size k. We say that a vectorr € [0,1)"
1s feasible for S if r+.S is totally 1-submodular. Further, we say that S is feasible
for translations if there exists a vector r € [0,1)* that is feasible for S, and
otherwise we say that S is infeasible for translations.

Moreover, the Sauer Matrix S is said to be of type (s,k — s), if there are
exactly s rows in S that contain at least one entry equal to 1.

Note that there is (up to permuting rows or columns) only one Sauer Matrix of
type (0,k). As feasibility of a Sauer Matrix of type (s, k — s) is invariant under
permuting rows, we usually assume that each of its first s rows contains an entry
equal to 1.

Proposition 4. Let m,k € Z~qo be such that m > k and assume that no Sauer
Matriz of size k is feasible for translations. Then,

Proof. Assume for contradiction that there is a matrix A € {—1,0,1}™*™ and
a translation vector ¢ € [0,1)™ such that ¢ + A is totally 1-submodular and
n > 22;:01 (™). By Proposition 3, we have |E4] > 3n > Ei:ol (") and thus by
Sauer’s Lemma (up to permuting rows or columns) the matrix A has a Sauer
Matrix S of size k as a submatrix. Writing r € [0,1)* for the restriction of ¢
to the k rows of A in which we find the Sauer Matrix S, we get that by the
total 1-submodularity of ¢ + A, the matrix r + S necessarily must be totally
1-submodular as well. This however contradicts the assumption. a

In contrast to the unshifted setting, for the sizes 3 and 4, there are Sauer
Matrices S and vectors r, such that r 4+ S is totally 1-submodular. For instance,

0-1 0 0-1-1 0-1 1/2
S=10 0-1 0-1 0-1-1|,r=|1/2],

00 0-1 0-1-1-1 1/2
and
0-1 0 0 0-1-1-1 0 0 0-1-1-1 0-1 1/2
G_ |0 0-1 0 0-1 0 0-1-1 0-1-1 0-1-1f _|1/2
1o 0 0-1 0 0-1 0-1 0-1-1 0-1-1-1|""7 [1/2
000 0-100-1 0-1-1 0-1-1-1-1 1/2

In both cases, 2(r + 5) is a matrix all of whose entries are either 1 or —1. By
Hadamard’s inequality, the determinant of any +1-matrix of size k < 4 is at
most 2%, and thus Ag(r + S) < 1 for all k¥ < 4, in the two examples above.
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Our aim is to show that this pattern does not extend to higher dimensions,
and that no Sauer Matrix of size 5 is feasible for translations. The proof requires
a more detailed study of Sauer Matrices of special types and sizes 4 and 5.

Proposition 5.

(i) The vector v € [0,1)* is feasible for the Sauer Matriz of type (0,4) if and
(ii) The Sauer Matriz of type (0,5) is infeasible for translations.
(#1i) No Sauer Matriz of type (1,4) is feasible for translations.

(iv) If r € [0,1)* is feasible for a Sauer Matriz of type (1,3), then r =

0.3 57

(v) No Sauer Matriz of type (2,3) is feasible for translations.
The proof of these statements is based on identifying certain full-rank subma-
trices of the respective Sauer Matrix for which the minor condition provides a

strong obstruction for feasibility. The details are given in Sect. 4.

Lemma 3. There does not exist a Sauer Matriz S of size 5 and a translation
vector r € [0,1)° such that r + S is totally 1-submodular.

Proof. Assume that there is a Sauer Matrix S of size 5 and a vector r € [0,1)°
such that Ag(r +S5) < 1, for all & < 5. Note that if in the ith row of S there
is an entry equal to 1, then r; = 0, because of A;(r +.5) < 1. So, if there are
three rows in S containing an entry equal to 1, then they contain a Sauer Matrix
of size 3 that is itself totally 1-submodular. However, we already noted that no
such Sauer Matrix exists.

Thus, we may assume that S is a Sauer Matrix whose type is either (0,5),
(1,4), or (2,3). We have proven in Proposition 5 (ii), (iii), and (v), however, that
all such Sauer Matrices are infeasible for translations. O

With these preparations we are now able to prove our main result.

Proof (Theorem 2). In view of Lemma 1, we have h(A,m) < h(1,m)+ (A—-1)-
hg(m). The claimed bound now follows by Heller’s identity h(1,m) = m?+m+1
and the fact that hg(m) < 2 Z?:o ("), which holds by combining Proposition 4

and Lemma 3. O

4 Feasibility of Sauer Matrices in Low Dimensions

Here, we complete the discussion from the previous section and give the proof
of Proposition 5. Parts of the argument are based on the observation that the
condition |det(r + M)| < 1, for any M € R*¥*¥_is equivalent to a pair of linear
inequalities in the coordinates of » € R¥. This turns the question on whether a
given Sauer Matrix is feasible for translations into the question of whether an
associated polyhedron is non-empty.
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Proof (Proposition 5). (i): Assume that r € [0,1)? is such that r + S is totally
1-submodular, and consider the following two 4 x 4 submatrices of S:
ol 0 0 O _1]—1 -1 —1
v= [ wa = [FE
0

1 -1 o0 —1| 0 0 —1

By the 4 x 4 minor condition on r + .5, we have
011
|det(r + M)| = ry - det {} 0 é} =2r <1,
and hence r < % Likewise, we have

[det(r+ N)| = (1= 1) - det [{ 03] =2(1 =) <1,

L. Analogous arguments for the other

and hence r; > 1 5, SO that actually ry = 2
coordinates of r, show that r = (2, 3 %, 5)T as claimed. The fact that r 4- S is
totally 1-submodular has been already discussed above.

(ii): The argument is similar to the one for the first part. Assume for con-
tradiction, that there is a vector r € [0,1)% such that As(r + S) < 1. Consider

the following two 5 x 5 submatrices of S:

0] o 0o o0 O

X = [g —(1) _é :i :{| and Y =

—1|—1 —1 —1 —1]

0|—-1 -1 0 —1
0|—1 -1 -1 0

By the 5 x 5 minor condition on r + .5, we have

[,

11
01
10
11

|det(r + X)| = ry - det [

and hence r; < % Likewise, we have

[

1
0
1
1

O e
oOr R

|det(r +Y)| = (1 —r1) - det [ } =3(1-r) <L

Therefore, we get r1 > %7 a contradiction.

(iii): Without loss of generality, we may assume that the first row of S
contains an entry equal to 1, and we assume for contradiction that there is some

€ [0,1)® such that r + S is totally 1-submodular. As the entries of r + S are

contained in [—1, 1], we get that 1 = 0. Moreover, the last four rows of S contain
a Sauer Matrix of type (0,4). By part (i), this means that ro = r3 =r4y =15 = %,
so that in summary there is only one possibility for the translation vector r.

Now, as 1 = 0, we may multiply the first row of S with —1 if needed, and
can assume that the vector (—1,—1,—1,—1,—1)T is a column of S. If M denotes
any of the four matrices

[-1]-1 0 o0 0] [—1] 0 -1 0 0] [—1] 0 o0 -1 0] [-1] 0o 0 o0 —1]
—1[—-1 0 0 0 —1i[—-1 0 0 0 —1[-1 0 0 0 —1[—-1 0 0 0
-1l 0o-1 0o of ,|-1f o-1 o of , -1 0-1 0 of /[-1] 0-1 0 0O
-1 0 0-1 o0 -1 0 0-1 0 -1 0 0-1 0 -1 0 0-1 o0
-1 0 0 0 -1 -1/ 0 0 0 -1 -1/ 0 0 0 -1 -1/ 0 0o o0 -1
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then the absolute value of the determinant of r + M equals 3/2. Thus, if indeed
As(r 4+ S) < 1, then these matrices cannot be submatrices of S. In particular,

this implies that
0 1 1 1 1
2 - [ S 31
—1 0 0 —1 0
—1 0 0 0 —1
must be a submatrix of S. However, the determinant of r + M’ equals —2, in
contradiction to r 4+ S being totally 1-submodular.

(iv): We assume that the first row of each considered Sauer Matrix S of type
(1,3) contains an entry equal to 1, so that 1 = 0. As in (iii) we can moreover
assume that (—1,—1,—1,—1)T is a column of S (by possibly multiplying the
first row by —1). We now employ a case distinction based on the signs of the
entries in the first row of the columns ¢ = (£1,-1,0,0)7, b = (£1,0,—1,0)T,
and ¢ = (£1,0,0,—1)7 of S.

Case 1: a1 = by =¢1 = —1.

Under this assumption, S contains the matrix N from part (i) as a submatrix

and thus r > %, contradicting that r; = 0.
Case 2: a1 = by =c; = 1.
In this case, S contains the submatrices
0 1 1 1 0 1 1 1
A= wa m= T

0 0O 0 -1 -1 0O 0 -1
The conditions |det(r + A)| <1 and |det(r + B)| < 1 translate into the contra-
dicting inequalities ro + r3 + 74 < 1 and ro + r3 + r4 > 2, respectively.
Case 3: Exactly two of the entries a1, b1, 1 equal —1.

Without loss of generality, we may permute the last three rows of .S, and

assume that a; = by = —1. We find that S now contains the submatrices
0 0 0|—1 -1 0 —1]—-1 -1 0O
=[] o= wa = ]
0 1 0 —1

—1| 0 —1] 0 0 O

The conditions |det(r + C)| < 1, |det(r + D)| < 1 and |det(r + E)| < 1 translate

into the contradicting inequalities ro +r3 < 1, r4 > %, and r4 +1 < 79 + 13,
respectively.
Case 4: Exactly two of the entries aq, b1, ¢ equal 1.
As in Case 3, we may assume that a; = b; = 1. Here, the following six
matrices can be found as submatrices in S:
[—1] 0o o0 —1] [-1] 0 o0 —1] —1] 0 0 —1]
—1|—-1 0 0 —1{—1 —1 0 —1 0 0 0
—1 0 —1 0 ) -1 0 0 0 ) —-1|-1 —1 of »
\‘—1 0 0 —1J [—1 0 -1 —1J \‘—1 -1 0 —1J
[0 1 1 0] [0l 1 1 0] [0] 1 1 0]
l71 —1 0 OJ \‘71 -1 0 71J [0 -1 0 OJ
-1 0 —1 0 b -1 0 -1 -1 ) 0 0 —1 o]
—1 0o 0 -1 —1 0O 0 o 0 0o 0 -1

The minor conditions for these matrices translate into the inequality system
Ty < r3 < T2 Ty S T3

ro+1r3>1 ro+1r3 <1

N= NI

r4 >
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in the same order as the matrices were given above. Solving this system of
inequalities shows that necessarily ro =r3 =1ry = %, and the proof is complete.

(v): Assume that there is a Sauer Matrix S of type (2,3) and a vector
r € [0,1)5 that is feasible for S. Observe that S contains feasible Sauer Matrices
of types (1, 3) in its rows indexed by {1,3,4,5} and by {2,3,4,5}. By part (iv)
this means that necessarily we have r = (0,0, %, %, %)T, and we can now argue
similarly as we did in part (iii).

First of all, as r; = ro = 0, we may multiply the first or second row of S
with —1 if needed, and can assume that the vectors (—1,0,—1,—1,—1)T and
(0,—1,0,0,0)T are columns of S. We distinguish cases based on the signs of
the entries in the first or second row of the columns ¢ = (£1,0,—1,0,0)T,
b = (£1,0,0,—-1,0)T, ¢ = (£1,0,0,0,—1)7, and ¢’ = (0,4£1,—-1,0,0)T, ¥/ =
(0,£1,0,—1,0)7, ¢/ = (0,4£1,0,0,—1)T of S.

Case 1: a1 =by =c; =1ora,=0b,=ch=-1.
Here, one of the matrices

o o 1 1 1 0-1 0 0 0

0o-1 0 0 o 0o o|l-1-1-1

Ci= |-t o[-T 0 o0 or (Cy=|o-1[-T 0 0
-1 0ol 0-1 o0 0-1 0-1 o

-1 ol 0o o0-1 0o-1 0 o0-1

must be a submatrix of S, but the absolute value of the determinant of both
r+ C; and r + Cs equals 3/2.
Case 2: Two of the entries aj,by,c; equal —1 or two of the entries aj,bh, c)
equal 1.

Without loss of generality, we may permute the last three rows of S, and

assume that either a; = by = —1 or a}, = b, = 1. Now, one of the matrices
-1 0|—1 -1 0 -1 9] 0 0 0
0 —1 0O 0 O 0 —1 1 1 0
C3= =T o1 0 o or Cy= [T o[- 0 o
-1 0 0 —1 0 -1 0 —1 0
—1 0 0 -1 —1 0 0 0 —1

must be a submatrix of S, but again the absolute value of the determinant of
both r + C3 and r + C4 equals 3/2.
Case 3: Up to permuting the last three rows of S we have [Zé Zé ;ﬂ = [ 1 ,1].
With this assumption, one of the matrices
0

[ e
s — 0o of , |-T ©
[71 0 0 —1 OJ [71 0
—1 0 (0] 0 —1 —1 0
must be a submatrix of .S, because one of the four vectors (£1,+1,—1,-1,—-1)T

must be a column of S. As before, if F' denotes any of these four matrices, then
the absolute value of the determinant of r 4+ F' equals 3/2.

1 b1

Case 4: Up to permuting the last three rows of S we have [Zg o Zé] = [:} 1 }]
In this case, one of the matrices

Cr =

~1 o] 1 0 O
0-1/ 0-1 0
0 —1] 0 0 0 or Cs =
0o o|l-1-1 o0
o ol o o0-1
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must be a submatrix of S, because one of the vectors (£1,0,0,0,0)T must be a
column of S. As before, the absolute value of the determinant of both r + Cy
and r 4+ Cg equals 3/2.

In conclusion, in all cases we found a 5 x 5 minor of r + S whose absolute
value is greater than 1, and thus no feasible Sauer Matrix of type (2,3) can
exist. O

5 Discussion and Open Problems

The determination of the exact value of h(A,m) remains an open problem.
Note that the bounds from other sources and the bound we prove here are
incomparable when both m and A vary. In order to understand the limits of
our method for upper bounding h(A, m), it is necessary to determine the exact
asymptotic behavior of hy(m). Finally, for (partial) verification of the conjecture
by Lee et al. one could try checking this conjecture in the cases where m and/or A
are fixed to small values. The smallest choice of A, for which the conjecture is
open is A = 3. As for the case of fixed m, we suspect that our upper bounds on
h(A,m), for m = 3 and m = 4, are not tight.
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Abstract. Worst-case analysis is a performance measure that is often
too pessimistic to indicate which algorithms we should use in practice.
A classical example is in the context of the Euclidean Traveling Sales-
man Problem (TSP) in the plane, where local search performs extremely
well in practice even though it only achieves an .Q(IO?E) Zn) worst-case
approximation ratio. In such cases, a natural alternative approach to
worst-case analysis is to analyze the performance of algorithms in semi-
random models.

In this paper, we propose and investigate a novel semi-random model
for the Euclidean TSP. In this model, called the simultaneous semi-
random model, an instance over m points consists of the union of an
adversarial instance over (1 — a)n points and a random instance over an
points, for some a € [0, 1]. As with smoothed analysis, the semi-random
model interpolates between distributional (random) analysis when o = 1
and worst-case analysis when a = 0. In contrast to smoothed analysis,
this model trades off allowing some completely random points in order
to have other points that exhibit a fully arbitrary structure.

We show that with only an a = @ fraction of the points being ran-
dom, local search achieves an O(loglogn) approximation in the simul-
taneous semi-random model for Euclidean TSP in fixed dimensions. On
the other hand, we show that at least a polynomial number of random
points are required to obtain an asymptotic improvement in the approx-
imation ratio of local search compared to its worst-case approximation,
even in two dimensions.

Keywords: Traveling Salesman Problem - Semi-random Models -
Local Search

1 Introduction

The Traveling Salesman Problem (TSP) is a cornerstone of integer programming
and combinatorial optimization, having been investigated for more than 60 years.
Since Dantzig, Fulkerson, and Johnson [10] developed the cutting plane method
to solve a (then astonishing) 42 cities instance, the TSP has been at the forefront
of research in optimization, pushing the limits of computation in practice (see,
e.g., [2,5,9,25]), while at the same time being the test bed for many new ideas
in the theory of algorithms (see, e.g., [16,18,24,31,32]).
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The simplest non-trivial TSP instances are arguably those that go under
the name of Fuclidean: given a set of points in the d-dimensional unit cube,
find a cycle of minimum total length containing all those points (a tour), where
the length of an edge between any two points is given by their Euclidean dis-
tance. Euclidean TSP is NP-hard [15,26], but in fixed dimension a PTAS can be
obtained using approximate dynamic programming ideas [3]. However, in prac-
tice, even simple algorithms perform very well on Euclidean instances. Take for
instance the 2-opt local search algorithm: given the current tour 7', orient it
arbitrarily and let (a,b) and (c,d) be two edges of T', traversed in this order.
Consider the tour 7" obtained from T by replacing (a, b), (¢, d) with (a,c), (b,d)
(i.e., performing a swap). If T’ has a strictly smaller length than 77, let T = T"
and iterate; else, attempt to swap two different pairs of edges from T'. The algo-
rithm halts when all pairs of edges from the current tour 7" have been tested for
a swap, with none leading to an improved tour.

2-opt is known to perform extremely well on many Euclidean instances, such
as those from the TSPLIB library, both in terms of convergence time and qual-
ity of the output [12,17,27]. However, classical worst-case analysis does not
seem adequate to match these empirical findings with theorems on the per-
formance of 2-opt. For instance, it is known that 2-opt only gives an .Q(log’i gn)—
approximation for Euclidean TSP in the plane and may terminate after a number
of steps exponential in n [7,8], where n is the number of points. A fundamental
quest(ion) is thus to find a theoretical explanation for the empirical performance
of 2-opt:

Why does local search per form well on T'SP in practice?

A first, natural alternative model assumes that the n points are distributed
independently and uniformly at random, instead of being given adversarially.
Following [28], we call this model Distributional. In the distributional model, the
performance of 2-opt — and, more generally, optimal solutions to the Euclidean
TSP — are well-understood for fixed dimensions d. The expected number of
iterations of 2-opt is polynomial in n [8], while its output obtains, with high
probability, a constant factor approximation to the optimal tour. This latter
fact holds since the value of the solution found by 2-opt on any set of n points in
the d-dimensional unit cube is O(n'~1/9) [8] and the length of the optimal tour
in the distributional model is, with high probability, £2(n'~'/%) [30]. However,
a main limitation of the distributional model is that random instances have a
very particular structure. For example, for a random instance of size n in the
unit square, any region of constant size ¢ € [0, 1] contains, with high probability,
cn * € points.

In order to interpolate between worst-case scenarios and distributional mod-
els, much research in optimization has been devoted to define and study semi-
random models. Such models contain both an adversarial and a random com-
ponent. A classical example is smoothed analysis, where all the input data is
perturbed by some noise, and the performance of the algorithm is then stud-
ied on the perturbed instance. In the Euclidean TSP case, this perturbation is
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usually achieved by adding to the positions of each point a value sampled from
the same Gaussian distribution N(0,0). It is known that, in this model, the
expected running time and approximation ratio of 2-opt are polynomial in o
and logarithmic in 1/0, respectively [12,22]. Other common semi-random mod-
els for discrete optimization problems first generate a random instance, e.g., a
graph, and then adversarialy perturbs it, e.g., by adding/removing edges of the
graph, or vice versa (see e.g., [28]).

1.1 Owur Contributions

A New Semi-random Model. As a step towards answering the motivat-
ing question of this paper, we define and study a new semi-random model
for Euclidean TSP instances, that we dub Simultaneous Semi-Random. In this
model, a 1 — « fraction of the points are chosen by an adversary and an « frac-
tion of the points are uniformly random, for some parameter a € [0,1]. This
semi-random model provides an explanation for the approximation performance
of algorithms that complements the explanation provided by smoothed analysis.
In order to appreciate this complementarity, we distinguish two different levels
of the structure of a point set instance in the unit square. Given a parameter
¢ < 1, consider a ¢! x ¢! grid that partitions the unit square into squares of
size ¢ X ¢ called local regions. The global structure of an instance is the number
of points inside of each local region. The local structure of a local region is the
positions of the points in that region.

Informally, smoothed instances exhibit an arbitrary global structure and ran-
dom local structures. In contrast, simultaneous semi-random instances have arbi-
trary local structures, except for a small random fraction of the local regions.
Thus, smoothed analysis explains the performance of local search on instances
with specific global structures, e.g., instances where all the points are only in
a constant number of local regions. In contrast, our simultaneous semi-random
model explains the performance of local search on instances with specific local
structures, e.g., points that form perfectly straight lines. In other words, this
semi-random model tradeoffs allowing some completely random points in order
to capture instances where there is a subset of the points that exhibit a fully
arbitrary structure.

Bounds. We show that an @ = 1/logn fraction of random points are suffi-
cient for local search to obtain an O(loglogn) approximation ratio in the simul-
taneous semi-random model in constant dimensions, which improves over the
lower bound 2(logn/loglogn) from worst-case analysis, which holds even in
two dimensions [8].

Theorem 1. For Euclidean TSP in [0,1]% where d is constant, 2-opt obtains,
with probability 1—o(1), an O(loglog n)-approximation ratio in the simultaneous
semi-random model, with o =

logn

Theorem 1 is proved in Sect. 3. This result implies that the hard instances
of Euclidean TSP are not robust to the addition of a small number of random
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points. Combined with smoothed analysis, we get that either a small amount
of random noise to all points or a small fraction of completely random points
improves the performance of local search. Interestingly, even though the analyses
are completely different, the “amount of noise” ¢ needed for smoothness, and
the fraction of points « needed for the simultaneous model, to improve the
approximation to O(loglogn) is 1/logn in both cases.

We note that we actually prove a result that is stronger than Theorem 1
in many ways. For instance, one can take o = log%n for any constant 6 > 0
without changing the approximation ratio. We refer the reader to Sect.3 for
details. From our proof, it is also easy to see that we obtain the same result in
the more challenging model where the adversary may first observe the random
points before placing the adversarial points.

Our second main result is that if a < n , then the approximation
ratio of local search cannot be improved in the simultaneous semi-random model
compared to its worst-case approximation.

—3/5—¢

Theorem 2. For Euclidean TSP in [0,1)%, 2-opt achieves, with probability

1—o0(1), an 2 (b?fgogn) approximation ratio in the simultaneous semi-random

model with a = n=3/5¢ for any constant € > 0.

Theorem 2, which is proved in Sect.4, implies that polynomially many
random points are required to obtain an approximation that asymptotically
improves over the worst-case approximation. We believe that closing the gap
between Theorem 1 and Theorem 2 is an intriguing open problem, and in par-
ticular resolving whether there is some a = o(1) such that local search obtains
a constant approximation. Answering this question could shed further light on
the relationship between the simultaneous semi-random model and “real-world”
behavior of the local search algorithm. Obtaining bounds on the running time of
local search in this model and investigating it in the context of other optimization
problems are also interesting paths forward.

1.2 Technical Overview

The Upper Bound. The upper bound consists of two main steps. We first show
a new upper bound on the worst-case length of a 2-optimal set of edges over an
instance V' that gives an O(log %) approximation (here and throughout the
paper, an instance V' is given by a set of point in the Euclidean space). This
bound is useful because it separates adversarial instances V into two regimes.
In the first regime, the optimal length of a tour is large (OPTy = Q(”;);T/Ld))
and the approximation of local search on V', even without random points, is
O(loglogn). In the second regime, OPTy is small and we get that the optimal
tour length OPTg over the random points R, with a = 1/logn, is such that
0PTr > OPTy . We then use our newly proved worst-case bound to analyze the
lengths of 2-optimal tours and optimal tours in the simultaneous semi-random
model by combining bounds from both worst-case and distributional analysis.
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The Lower Bound. We first present a framework that reduces proving lower
bounds in the simultaneous semi-random model to constructing an adversarial
instance V and a Hamiltonian path P over V from a point s € V to a point
t € V that satisfy three parametrized properties: the length ¢(P) of P is such
that ¢(P) > ~0PTy (called the y-bad property), OPTy > L (called L-long), and
finally, PU{(s,z)}, PU{(z,y)} and PU{(¢,y)} are 2-optimal for some K C [0,1]?
and any x,y € K (called K -resistant). Existing hard instances of course satisfy
the v-bad property with v = ©(logn/loglogn), but they do not satisfy the
L-long and the K-resistant properties for desirable parameters L and K. These
latter two properties cause significant additional challenges.

Our construction starts with the construction from [8] for the Q(lo{;i o)
worst-case lower bound and then consists of three steps that modify it. We first
make the construction thinner, so that it fits in [0, 1] x [0, €] for some small €.
Then, we stack multiple copies of the thin instance, without incurring any loss
in the «-bad parameter and while keeping the construction relatively thin, to
increase the L-long parameter. Finally, the most challenging step is to satisfy the
K-resistance property. For that, we carefully add a small number of additional
points to the construction so that, with high probability, there is a Hamiltonian
path P on the adversarial instance V' that can be connected to a 2-optimal
Hamiltonian path on the random vertices R to obtain a 2-optimal tour on VUR.

1.3 Additional Related Work

Approximation Algorithms for Euclidean TSP. For TSP in the plane,
Karp [19] showed that a partitioning algorithm that subdivides the points into
groups of size t obtains an O(y/n/t) approximation, which improves to O(t~1/2)
if the points are uniformly random. A seminal result by Arora [3] obtained a
PTAS for d-dimensional Euclidean TSP, for any constant d. The approxima-
tion ratio of the 2-opt algorithm was recently improved from O(logn) [8] to
O(log’fgo <) [7] for Euclidean TSP in the plane, which is the best approximation
achievable [8]. For additional approximation algorithms results on Euclidean
TSP, see e.g. [1,20].
We next discuss three different families of semi-random models.

Semi-random Models with a Monotone Adversary. Seminal work by
Blum and Spencer [6] proposed semi-random models for k-coloring. In the col-
orgame model, edges are first placed at random between pairs of vertices and
then an adversary places additional edges. Similar semi-random models where an
adversary manipulates randomly generated instances were considered for prob-
lems such as minimum bisection and maximum independent set [14].

Smoothed analysis is a semi-random model where random perturbations are
applied to an adversarial instance. It was first studied by Spielman and Teng [29]
to explain the fast running time of the simplex method in practice. Smoothed
analysis of both the running time and approximation of local search (2-opt)
for TSP was first studied by [12] who obtained an O(1/c) approximation when
Gaussian random variables with mean 0 and standard deviation o are added
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to each point. They also obtained more general bounds for any distributions
with bounded densities. This approximation was then improved to O(log1/0)
by [22]. Smoothed analysis of local search has also been studied for general, non-
Euclidean, graphs [13] and in the context of clustering [4]. We are not aware of
other semi-random models that have been studied for TSP.

Multi-stage Semi-random Models. More complex semi-random models that
generate instances in three or more steps, where some steps are adversarial and
the others are made randomly, have also been studied for many problems, includ-
ing unique games [21], partitioning [23], 3-coloring [11], and clustering mixtures
of Gaussians [33].

In contrast to all previous semi-random models, where the randomized and
adversarial steps occur sequentially, in the simultaneous semi-random model
that we introduce and study in this paper these steps occur simultaneously and
independently of each other. We are not aware of previously studied semi-random
models that have this property.

2 Preliminaries

In the following, given n,d € N, an instance of size n and dimension d, or n-
instance, is a set of n points in [0,1]¢. When the dimension is not mentioned,
it is assumed to be 2. For m € N, the random instance R(m) is a set of m
points drawn uniformly and independently from [0,1]¢. For an instance V, we
indifferently call v € V a point or a verter. Given z € R%, we let ||| be its
Euclidean norm. For an edge e = (v1,vs), we often write ||e|| = |jv; — vz||. The
angle between two edges e = (v1,v2) and e’ = (v, v}) is the angle between the
vectors u = ve — v1 and u' = vh — v}, which is equal to arccos TalliaT € [0, ].
We let U denote the disjoint union operator of sets.

Given an instance V and a set of m edges T = {(v;,,vi,) | ¢ € [m]}, the
length of T is £(T) = Y"1 ||viy — v, |- A tour on an instance V is a set of |V|
edges T that form a cycle. Given an instance V', OPTy is the length of a tour on
V' of minimum length. Assume T is an arbitrary collection of edges, a 2-swap
replaces (vi,,v;,) and (vj,,v,,) in T with (v;,,v;,) and (v,,,v,,). We say that
T is 2-optimal if there is no set T” of strictly smaller length obtained from T
via a 2-swap. In particular, when T defines a tour, the concept of 2-optimality
coincides with the stopping criterion for 2-opt. We now present some general
facts about optimal and 2-optimal TSP tours on Euclidean instances. The first
is a bound on the length of any 2-optimal set of edges.

UHHu

Lemma 1. ([8]). Let T be a 2-optimal set of n edges on an instance V € [0,1]%,
and assume d to be a constant. Then ({(T) = O (n*=/4).

This in particular implies that the optimal tour, up to a constant factor, always
has length at most n'~'/¢. We also know the behavior of OPT on random
instances.

Lemma 2. ([30]). With probability 1 — o(1), we have OPTg(,) = O (n'~1/9).
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From Lemma 1 and Lemma 2, we immediately deduce the following corollary.

Corollary 1. On a random instance, the approximation ratio of 2-opt is con-
stant with probability 1 — o(1).

Last, we recall the following best-known upper bounds on the performance
of 2-opt on general instances.

Lemma 3. ([7,8]). Let V be an arbitrary d-dimensional instance of size n with
d constant. Let T C V? be a 2-optimal set of edges. Then ¢(T) = O(logn)0PTy.

Moreover, if d =2, then ¢(T) = O ( logn ) OPTy.

loglogn

3 An Improved Approximation for Local Search
in the Simultaneous Semi-random Model

In this section, we show that an o = 1/logn fraction of random points is suf-
ficient to improve the approximation achieved by local search to O(loglogn) in
the simultaneous semi-random model.

3.1 An Improved Worst-Case Approximation for Local Search
We first show a new upper bound on the worst case approximation of 2-opt.

Lemma 4. Let V be an arbitrary d-dimensional instance of size n with d con-
stant. Let T C V2 be a 2-optimal set of edges. Then £(T) = O (OPTV log "10;7;‘]/{1) .

This new bound is helpful because it separates instances into two regimes.

The first is when the length of the optimal tour is large, when OPTy = Q(%)
In this regime, we immediately get from Lemma 4 that ¢(T") = O(loglogn-0PTy)
for any 2-optimal set of edges T', so a locally optimal tour performs well on the
adversarial instance, without even needing random points.

In the second regime, when OPTy = 0(%), we have that for « = 1/logn,
the length of the optimal tour on the random points R dominates the length
of the optimal tour on the adversarial instance V: OPTp = O(|R['~Y/?) =
9((%)1*1/‘1) > OPTy where the first equality is by Lemma 2. We later com-
bine the constant approximation obtained by 2-opt on random instances and the
fact that OPTr > OPTy to get that 2-opt obtains a constant approximation on
VUR in that regime. In summary, Lemma 4 is helpful because it shows that it is
only when the length of the optimal tour is small that 2-opt performs poorly on
adversarial instances. We will show that, in this regime, adding random points
to an adversarial instance improves the approximation obtained by 2-opt.

The remainder of Sect.3.1 is devoted to the proof of Lemma 4. We first
introduce the concepts of similarly-oriented edges and similar-length edges that

will be used in the proof.
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Similarly-Oriented Edges. We use the notion of similarly-oriented edges from [8].

Definition 1. ([8]). Edges e and ¢’ are similarly-oriented if the angle between

e and €' is at most arctani.

Edges can be partitioned into a constant number of families of edges such
that every pair of edges in a same family are similarly-oriented. For a vector
u € R?, we denote by T the collection of all vectors v’ € T such that the
angle between u and v’ is at most % arctan % and by S¥~! the unit sphere in R?.
Thus, for any u € R?, every pair of edges in T are similarly-oriented. Using
the topological definition of compactness, we know that there exists a constant
I and uy,...u; € S*! such that 7' = Ul_,T%. Hence, up to a constant loss, it
is sufficient to bound the total length of all edges in 7" for an arbitrary i. For
the remainder of this section, we abuse notation and write 7% instead of T%:.
Similarly oriented edges have the following useful property.

Lemma 5. ([8]). Let e = (v1,v2) and €' = (vi,v}) be two similarly-oriented
edges which form a 2-optimal set. Then ||v} — vy|| > 4 min ([le]|, [|€/[]).

Similar-Length Edges. In addition to being partitioned into families of similarly-
oriented edges, edges are also partitioned into families of similar length edges.
In particular, let 1 > 1 > ¢ > 0, we define Te = {e € T | |le|| < €}, T~ =
{e € T'| |le|| > n}, and, for any j > 0 such that 27 <n, T; := {e € T | 27 <
le]| < 27F1e}. Thus writing J = |log, 2|, we have T =T LUT5 U |_|;-]:O T;. The
following result is known for long edges.

Lemma 6. ([8]). For any n > 0 and constant dimension d, {(Ts) = O(n'~9).

We denote families of edges that are both similarly-oriented and of similar-
length by Tj’ =T'N T;. We similarly denote Ti =T'NT. and T; =T'NTs.
Now we are ready to prove Lemma 4.

Proof. (of Lemma 4). Let i € [I] and consider the family 7% C T of similarly-
oriented edges. First, we have /(T2 ) < ne. Second, by Lemma 6, we have (1% ) <
O(n*=4). To bound £(T*) = ¢(TL) + ((TL) + Z}']:o ((T}), it remains to bound
the length of the family of similarly-oriented and similar length edges T for an
arbitrary j € [J].

Let T* be an optimal tour on V: if we fix any point to be the first one, T™*
defines an order on V', and we can use it to order T]? by saying that (v1,v2) <
(v}, v5) if v < vf in T*. Hence, for fixed i and j, we can enumerate T} = {e! =
(vf,v}) [ 1 <1< N} (where N = |T?[), such that v} appears before v{*" in 7.

Let 7% = {(v},0""') | 1 < I < N} (where we let o¥*! = v1). By the
triangular inequality, we have Z(f*) < 4(T*). Moreover, for any [ , since T]? =
{e! = (v},v) | 1 <1 < N} C T and is therefore 2-optimal, we have by Lemma
5 [Jo} — o] > Lmin (||e']], [Je1]]). As el el € T, and the length of every
vector in T} is between 2/¢ and 2/'e, the longest of |[e!||, |[e!T1]| is at most two
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times larger than the shortest. Thus, we get |[v} — o!T1[| > 1 Tll€']]. Summing for
L € [N], we obtain ((T7) = S, [[e!]] < 4377, [Jo] — o[ = 46(T™) < 44(T).

Hence, putting the bounds on ¢(T%), ¢(T%), Z‘LO ((T}) together, we have
0T < ne + O~ + |log, j4DPT =0 (ns +7'~% 4+ OPTlog g) .

and

Summing over all families of similarly-oriented edges and letting ¢ = %

n= OPTﬁ, we get

I _ . "
T) < ZE(T%) =0 (ns + 1'%+ 0PTlog g> = O | 0PTlog w7 |
i=1

3.2 Proof of Theorem 1

By combining the new worst-case bound from Sect. 3.1 together with the bound
in Lemma 1, one obtains the following upper bound on the length of a 2-optimal
tour on the union of two instances.

Lemma 7. Let V and U be disjoint instances of sizes n and m. Then, if d is

-1
constant, for any 2-optimal tour T on V UU, £(T) = O(0PTy log ”DPT: +m!a),

The last lemma needed is a bound on the optimal length of a tour on an
instance of the simultaneous semi-random model.

Lemma 8. Let n,m € N and V' be a d-dimensional n-instance with d constant.
With probability 1 — o(1), OPTyLR(m) = {2 (max (OPTV, m1_5)>.

We are now ready to prove the main result for this section, from which
Theorem 1 follows.

Theorem 3. Let V be any d-dimensional n-instance, with d a fixed constant.
With probability 1— 0( ), the apprommatwn ratio of 2-opt on VUR(m) is O(1) if

—4 > OPTy log 22 Ty < and O(log 2 Ty
for any constant ¢ > 0, the approxzimation ratio is O(loglogn).

_n
logcn?’

i ) otherwise. In particular, form =

) 1
Proof. Let T be any 2-optimal tour on V U R(m). If m'~@ > OPTy log %;Tj,
by Lemma 7 we obtain that ¢(T) = O(m'~4) while by Lemma 8 we have
OPTyLR(m) = Q(ml’é). Hence, the approximation ratio of 2-opt on this

instance is O(1). However, when ml~i < 0PTy 1og < Lemma 7 tells us that

0Ty,
1
£(T) = O(0OPTy log %;Tj) O(OPTv i R(m) 108 ‘Bor: ) hence we can deduce that

1
the approximation ratio is O(log opr\j ).

Now take m = i+, for any ¢ > 0. For OPTy = (’)((log”cn)l_i/logn), the
first regime applies and 2-opt gives a constant approximation. Else, using the

second regime, we obtain a O(loglogn)-approximation. g
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4 Improved Approximations Require poly(n) Random
Points

In this section, we complement the upper bound from the previous section by
showing that, with a = n=3/5%¢ for any constant ¢ > 0, local search obtains an
Q(log’i Zn) approximation ratio in the simultaneous semi-random model when
d = 2. This lower bound implies that more than n2/°—¢

required to obtain an asymptotic improvement over the O(
approximation in the simultaneous semi-random model.

To show this lower bound, we construct a 2-optimal tour 7" over an adversarial
instance V that is far from optimal and is such that, with high probability, T
can be augmented to obtain a 2-optimal tour Ty over V LI R that contains T,
where R consists of m random points. The length of the optimal tour on V U R
is upper bounded by combining the lengths of the optimal tours on both V' and
R. We first develop a framework for proving lower bounds in the simultaneous
semi-random model, see Sect.4.1. We then sketch the construction of the bad
instance, which builds upon the construction from [8], in Sect. 4.2, and then we
analyze it using the framework from Sect. 4.1. Complete details can be found in
the full version of the paper.

random points are

1
281 worst-case
loglogn

4.1 A Framework for Simultaneous Semi-random Lower Bounds

In this section, we define parametrized properties of an instance that, if satisfied,
guarantee a lower bound. In other words, this section reduces the problem of
showing a lower bound to constructing an instance that satisfies the following
properties. A path of an instance V is called Hamiltonian if it passes exactly
once through each vertex of V.

Definition 2. An instance V' and a 2-optimal Hamiltonian path P over V from
seVitoteV are

- L-long if 0PTy > L;

- 7y-bad if {(P) > ~0PTy ;

— K-resistant, K C [0,1)?, if for any x,y € K, PU{(s,7)}, PU{(z,y)} and
PuU{(t,y)} are 2-optimal.

We now give some intuition on why we care about the above properties. If
K is sufficiently big and « sufficiently small, then, with high probability, the an
random points R all lie in K. Combined with the K-resistance condition, this
implies that a 2-optimal Hamiltonian path P over V can be extended to obtain
a 2-optimal tour over V LI R. More precisely, we have the following lemma.

Lemma 9. Let V be an instance and K C [0,1]? be any region. If V has a
Hamiltonian path P that is K-resistant, then for any instance U C K disjoint
from V, there exists a 2-optimal tour T on U UV which extends P, i.e., such
that P is a subpath of T.
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I II 1|
i |1 i

random points

Fig. 1. High-level illustration of the construction from Sect.4 (image not to scale).
The gray area K accounts for most of the area of the unit square, hence w.h.p. all
random points v are such that v € K. The adversarial construction is in the top part
of the square. A 2-optimal tour is given by the bold path P (which is a 2-optimal
Hamiltonian path on the adversarial instance and far from optimal), plus an optimal
Hamiltonian path covering the random points. The striped area is w.h.p. empty, and
serves as a buffer between the deterministic and the random points, in order to ensure
K-resistance of P in the adversarial instance.

The ~-bad condition guarantees that there is a bad 2-opt tour on V', which we
care about because the tour we want to expand must have a bad approximation
ratio for the lower bound to be effective. The L-long condition guarantees that
the length of the part of the optimal tour on V' U R that connects vertices in V'
dominates the length of the part that connects the random vertices R, which is
important since a 2-opt tour on random vertices R performs well compared to
OPTg. The intuition discussed above is summarized in the next lemma.

Lemma 10. Let « € (0,1) be some parameter that can depend on n. If there
exists a v/an-long n-instance V. with a y-bad, K -resistant Hamiltonian path P,
for some region K with area 1 — o(1/(an)), then with probability 1 — o(1) the
approzimation ratio of 2-opt on the a-semi-random instance R(an)UV is (7).

4.2 The Construction

In this section, we give a sketch of the construction of an instance that satisfies
Lemma 10. The full construction can be found in the full version of the paper.
Our starting point is the construction of [8], which does not satisfy the y-bad and
K-resistant properties for desirable parameters v and K. We gradually modify
and extend it so that it acquires the desired properties:
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1. first, we modify it by making it fit in a small region and having a “bad”
Hamiltonian path that only consists of “short” edges. Hence, this ensures a
property useful for the separation condition, i.e., the adversarial instance is
w.h.p. separated from the random points.

2. then, we modify it again to ensure the longness condition by stacking and
connecting multiple copies of the thin instance;

3. finally, for the resistance condition, we add a small number of additional
points so that the bad Hamiltonian path P over the adversarial instance V'
can be extended to a 2-optimal tour Ty r over the semi-random instance
V U R with random points R such that P is a subpath of Ty g.

A high-level sketch of the construction is given in Fig. 1. The properties of the
resulting instance V' are summarized in the following lemmas. We let € > 0 be a
rational number such 0 < € < i and p > 3 such that p/4 and ep are integers. We
also assume that ep is odd. Since there are infinitely many of such p, all limits
are understood as when p goes to infinity. Let z = p/4 and s = (1 — €)p.

Lemma 11. V is included in S = [0,1] x [1 — p*>*=%) —2p=2 1] and has n =

O(p*=tr)) = @(pgp) points. In particular, we have p = © (m?ign)

Lemma 12. The optimal tour on V has length O(p?*) = O(n'/?).

Lemma 13. There exists a 2-optimal Hamiltonian path P on the adversarial

instance V' of length {(P) > 2ep** ™! = © (51;;1%711/5) .

Let K = [0,1] x [0,1 — p?(*~%) — 4p~—*]. The following is the main technical
lemma of this section. Its proof requires a careful geometric analysis of V.

Lemma 14. The instance V and the path P are K -resistant.
Combining the previous lemmas, we get the following.

Lemma 15. The n-instance V is n'/5-long, and the Hamiltonian path P is
n ( logn )-bad and K -resistant, for some region K of area 1 — o(n~(2/5-9)),

€ loglogn

Proof. By Lemma 11, Lemma 12, and Lemma 13, V with P are n'/5-long and

n (5log’ign>—bad. Moreover, for K = [0,1] x [0,1 — p?*=) — 4p=5], V with P

are K-resistant by Lemma 14. Note that p2(*=%) = pr/2=(1=€)py=s and since
e < 1/4, p?==9) = o(p~*). Finally, p~* = O(n"5179)) = o(n~(5-9), thus K
has area 1 — o(n~(9)). O

The previous lemma combined with Lemma 10 immediately give us the proof
of Theorem 2. Indeed, let 1/4 > & > 0 be constant. Let n be a number and V an
instance as above (recall that there are infinitely many of them). By Lemma 15,
the instance V verifies the hypothesis of Lemma 10 with o = n=3/5~¢ and

v =1 (log’ﬁ) gn); thus by Lemma 10 the approximation ratio of 2-opt on V is

n ( log n ) with probability 1 — o(1).

loglogn
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Abstract. The Matching Augmentation Problem (MAP) has recently
received significant attention as an important step towards better
approximation algorithms for finding cheap 2-edge connected subgraphs.
This has culminated in a g—approximation algorithm. However, the algo-
rithm and its analysis are fairly involved and do not compare against the
problem’s well-known LP relaxation called the cut LP.

In this paper, we propose a simple algorithm that, guided by an opti-
mal solution to the cut LP, first selects a DFS tree and then finds a solu-
tion to MAP by computing an optimum augmentation of this tree. Using
properties of extreme point solutions, we show that our algorithm always
returns (in polynomial time) a better than 2-approximation when com-
pared to the cut LP. We thereby also obtain an improved upper bound
on the integrality gap of this natural relaxation.

1 Introduction

Designing cheap networks that are robust to edge failures is a basic and impor-
tant problem in the field of approximation algorithms. The area containing these
problems is often referred to as survivable network design. Generally, one has to
compute the cheapest network that satisfies some connectivity requirements in-
between some prespecified set of vertices. Classic examples are for instance the
Minimum Spanning Tree problem in which one has to augment the connectiv-
ity of a graph from 0 to 1 or related questions such as the Steiner Tree/Forest
problem. Another type of network design problem is to build 2-edge connected
spanning subgraph (2-ECSS) or multisubgraph (2-ECSM), where one has to
augment the connectivity of a graph from 0 to 2. The latter problems are closely
related to the famous Traveling Salesman Problem (TSP). Unfortunately, most
of the problems in this area are NP-hard (or even APX-hard), and what one
can hope for is generally to compute an approximate solution in polynomial
time. Powerful and versatile techniques such as primal-dual [15,31] or itera-
tive rounding [19,24] guarantee an approximation within factor 2 for many of
these problems but improving on this bound for any connectivity problem is
often quite challenging. In the case of 2-ECSS, a 4/3-approximation is known if
the underlying graph G is unweighted [18,28]. However, a similar result for the
weighted case has remained elusive, and the best approximation algorithm only
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guarantee a factor 2 approximation. A prominent special case of the weighted
2-ECSS problem is the so-called Forest Augmentation Problem (FAP). In such
instances of 2-ECSS all edge weights are either 0 or 1 (we will refer to edges of
cost 0 as light edges and edges of cost 1 as heavy edges). The name stems from
the fact that one can assume that the light edges form a forest F', and the goal is
to find the smallest set of heavy edges E’ such that FFU E’ is 2-edge connected.

A famous special case of FAP is the Tree Augmentation Problem (TAP)
which has been extensively studied for decades. In this problem, the forest I is a
single spanning tree, and one has to find the smallest set of edges to make the tree
2-edge connected. For this problem, several better-than-2 approximations were
designed in a long line of research [1,3,6-9,11,12,14,17,20,22,23,26,27,29,30].
One can see TAP as an extreme case of FAP where the forest is a single compo-
nent. Another interesting special case is the Matching Augmentation Problem
(MAP), in which the forest of light edges forms a matching M and one has to
find the smallest set of heavy edges E’ such that M U E’ is 2-edge connected. It
can be seen as the other extreme case in which the forest forms as many compo-
nents as possible. We also remark that MAP generalizes the unweighted 2-ECSS
problem, which can be viewed as an instance of MAP with an empty matching.
For MAP, only recently a better-than-2 approximation was given by Cheriyan
et al. [4,5]. These two works culminate in a 5/3-approximation, obtained via a
fairly involved algorithm and analysis.

For many of these network design problems, there is a simple linear pro-
gramming relaxation called the cut LP. In the case of FAP, for a given graph
G = (V,E), forest F C E the cut LP is written as follows, with a variable z.
to decide to take each edge e or not. Recall that §(S) denotes the edges with
exactly one endpoint in S.

e€E\F
Z T >2, forall ;0 CSCV
e€d(S)
0<z. <1, Ve e E.

The integrality gap of this linear program is an interesting question by itself.
Recently, in the case of TAP (i.e. F' is a spanning tree), Nutov [27] showed that
the integrality gap is at most 2 — 2/15 ~ 1.87. Cheriyan et al. [8] showed that
the integrality gap is at least 3/2 in the case of TAP. In the case of MAP, the
best upper bound on the integrality gap is 2, and the best lower bound is 9/8
[2,28]. We note that the recent works [4,5] do not seem to compare against the
cut LP, and therefore do not show an integrality gap better than 2 for MAP.

1.1 Owur Results

In this paper, we give an algorithm that guarantees an approximation ratio 2—c
(for some absolute constant ¢ > 0) with respect to the best fractional solution of
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the cut LP. The algorithm is the following. We note that some of our techniques
are reminiscent of the algorithm of Mémke and Svensson [25] for the travelling
salesman problem.

The LP-based algorithm:

1. Compute an optimal extreme point solution z* to LP(G, M).

2. Let B/ = {e € E,z} > 0} be the support of z*, and run a DFS
on the support graph G’ = (V, E’) which always give priority first
to an available light edge and second to the available heavy edge e
maximizing x}.

3. Compute an optimum augmentation A to the TAP problem with
respect to the DFS tree T' computed in the previous step and return
H=TUA.

We note that the LP-based algorithm indeed runs in polynomial time. Step
2 computes a DFS in which some edges are explored in priority (if possible).
Step 3 can also be completed in polynomial time because the tree T is a DFS
tree. This implies that all non-tree edges are back-edges (i.e. one endpoint is an
ancestor of the other). In the language of TAP, these edges are often referred
to as “uplinks”, and it is well-known that TAP instances in which the edges are
only “uplinks” are solvable in polynomial time [9,13].

Finally, the solution given by the algorithm is feasible since Step 2 increases
connectivity from 0 to 1 and Step 3 from 1 to 2. One can check that no edge is
taken twice in the process since A and T are disjoint.

In this paper, our main result shows that this simple algorithm guarantees
an approximation within factor strictly better than 2 with respect to the cut LP
relaxation.

Theorem 1. The LP-based algorithm returns a feasible solution to any MAP
instance of cost at most 2 — ¢ times the cost of the fractional solution x*, for
some absolute constant ¢ > 0.

For the sake of exposition, we did not try to optimize the constant ¢ but we
believe that improving the ratio of 5/3 in [5] (that holds with respect to the
optimum integral solution) would require new techniques in the analysis. Since
Nutov [27] proved the integrality gap of the cut LP to be strictly better than 2 for
TAP, the cut LP seems a promising relaxation for the general FAP. Additionally,
we prove the following simple theorem.

Theorem 2. The integrality gap of the cut LP for MAP is at least 4/3.

Proof. Consider the example given in Fig. la, which is a simple adaptation of a
classic example for the related TSP problem. One can check that the fractional
solution that gives 1/2 fractional value to all heavy edges and value 1 to all light
edges is feasible for a total cost of 6/2 = 3. However, any integral solution costs
at least 4.
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—— heavy edge

- === light edge

heavy edge in the DFS tree
------- light edge (all in the DFS tree)
----  heavy edge outside the DFS tree

(a) (b)

Fig. 1. (a) An integrality gap example. (b) An example of a bad DFS tree.

1.2 Our Techniques

The proof of Theorem 1 relies on several crucial observations that we sketch
here. The first observation is that the total cost of the DFS tree T is always at
most the cost of z* (denoted c¢(z*)). This follows because T must contain all the
light edges since they are given priority over any other edge (note that since we
assume that M is a matching, it cannot happen that two distinct light edges
want priority at the same time). Therefore, the total cost of the tree T' is exactly
equal to n — 1 — |M|, while it is easy to show that ¢(x*) > (n — |M|).

Another interesting fact is that if one considers the LP solution z* restricted
to edges not in the tree T' (denote this solution by x*E\T), then this is a feasible
solution to the cut LP of the TAP instance with respect to the tree T (i.e.
xj‘E\T is a feasible solution to LP(G,T)). Hence, if we denote by y* the optimum
fractional solution to LP(G,T), we have that c(y*) < c¢(27 1)

Because T is a DF'S tree, the TAP instance with respect to the tree T’ contains
only “uplinks” and therefore LP(G,T) is known to be integral [1]. We note that
this already gives a simple proof that the integrality gap of LP(G, M) is at most
2. To get better than 2, we only need to show that

(n— M| =1)+c(y") < (2 —c)e(z”).

Conceptually, we distinguish between two cases. If ¢(z*) > (1 +c¢)(n —|M|) (i-e.
the LP solution is expensive), then the DFS tree is significantly cheaper than
c(z*) and it is easy to conclude that the cost of our solution T'U A is better than
2¢(x*). Otherwise, assume that the LP value is close to the trivial lower bound
of (n — |M|). In this case, we show that ¢(y*) < (1 — ¢)e(x™*).

To show this, we consider two possibilities. We can prove that either we can
scale down a significant portion of q:*E\T to obtain a cheaper feasible solution
to LP(G,T), or that c(xp, 7) itself is already significantly smaller than c(z*).
When a lot of the tree cuts in T (i.e. the cuts defined by removing an edge from
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T to obtain two trees and taking the edges with one endpoint in each tree) have
some slack in the TAP solution ;v*E\T (that is when a lot of tree cuts S satisfy
27 (0(5)) > 14 c), the first case is realized. Otherwise, when almost all of the
tree cuts are nearly tight (i.e. satisfy 73, 7.(6(S)) < 14 c), we can show that the
DFS must have captured a good fraction of the value of ¢(z*) inside the tree T
This step uses some crucial properties of extreme point solutions as well as our
choice of DFS. Therefore the cost of x}iJ\T is significantly smaller than the cost
of * completing the argument.

Before proceeding to the proof, it is worthwhile to mention that we are not
aware of any example on which our algorithm has a ratio worse than 4/3 times
the cost of z*. It remains open to give a tighter analysis of this algorithm. We also
note that [21] also makes use of DFS for the related problem of unweighted 2-
ECSS. They obtain a ratio of 3/2 for the unweighted 2-ECSS problem. However,
their DFS is not LP-based and we remark that if we do not guide the DFS with
the LP solution, the approximation ratio can be arbitrarily close to 2. We give an
example in Fig. 1b. One can see that the DFS tree (rooted at ) contains all the
matching edges, and the tree augmentation problem requires us to take all but
one of the back-edges. However, the optimum solution to the MAP instance is
to take a Hamiltonian tour containing all the light edges. Generalizing the same
example by simply increasing the depth of the tree leads to an approximation
arbitrarily close to 2.

2 The Analysis of the LP-Based Algorithm

In this section, we prove Theorem 1. It is organized as follows. In Subsect. 2.1,
we introduce some basic definitions. In the subsequent subsection, we proceed
via a case distinction to prove the theorem.

2.1 Preliminaries

We will use T to refer to the DFS tree computed by the algorithm, and we will
list edges in G as uv, where u is an ancestor of v in T'. Since T is a DFS tree,
all edges in G must have the property that one endpoint is an ancestor of the
other in 7. We will let B = E'\ T denote the set of back-edges of G. As in the
introduction, we will call an edge of weight 1 a heavy edge and an edge of weight
0 a light edge. For every edge e in the DFS tree T' computed, we let T'(e) denote
the tree cut corresponding to the edge e in the tree T. Formally, T'(e) = 6(T,),
where e = wv and T, is the sub-tree rooted at v. We call an edge e € T a-tight
if we have
x*(T(e)) —xl <1+ a.

Implicitly, if we call an edge e a-tight, this will mean that e belongs to the tree T'.

In addition, we denote by Nt(a) the number of a-tight edges in the tree T'. For a
tree T', we denote by x7. the restriction of * to the edges in the tree T'. We note
that for any instance of the MAP, it must be that ¢(z*) > (n—|M|). This follows
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by a simple double counting argument on the fractional degree of each component
(precisely we have n— |M| components that must have fractional degree 2 each).
It is also clear that the DF'S tree T" must contain all the light edges in M since
they are given priority. Hence the cost of T is at most n — |M| — 1 < ¢(z*). In
the following, we will fix two parameters e = 107!,y = 1073,

2.2 The Analysis of the Algorithm

We note that if e(ax*) > (14 )(n — |M]), it is easy to show that the cost of the
returned solution 7'U A is at most
c(x*)

1+

(n—|M| - 1)+ cla*) < 1 o(z*) = e(z) (2 _ 117) . (1)

2

However, if ¢(z*) < (1+7)(n—|M|) and Nt(’Y) < (1—=7)(n—|M|) (i-e. there are
few ~-tight tree cuts), then we proceed as follows. We partition the set of back
edges in our graph B into Bf@ U B, where Bt(w contains all edges e € B that
are contained in T'(e’) for some ~-tight edge ¢’ € T. Then ', defined by

z*(e) ee€ Bt(V)
HOEREEONNEY:
1 otherwise

is also a feasible solution to LP(G,T). The total fractional value represented
by edges in B,ﬁ” is at most (1 + fy)Nt(V). Hence, ¢(z’) can be upper bounded as

follows.

c(a*) — (1 +7)N
1+~

c(x*)
1+~

+ AN,

c(a') < +(1+7)N =

Since the cost of T'U A is at most ¢(z*) + ¢(2’) and we assume that Nt(y) <
(1 —7)(n— |M]), it is easy to get the upper-bound of

1 73
c(z) |14+ —— ) +v1 =) (n—|M]|) <c(z*) |2 - , 2
@) (1t )+ == 26 (2- 1) @
where the last inequality follows because n — | M| < ¢(z*). Since these two cases
clearly give a better than 2 approximation, we assume in the rest of the analysis
that

(n—[M]) < c(z”) < (1 +7)(n—|M]), 3)

and o)
N> (1= 7)(n— |M]). (4)

We will show that c(z%) is at least a constant fraction times c¢(z*). Since the
cost of the returned solution T'U A is at most 2¢(x*) — ¢(z%), this will conclude
the proof. First, we partition the y-tight tree cuts into two sets of cuts Sy and
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S containing the tight tree cuts associated with light edges and heavy edges,
respectively. We can then distinguish between two sub-cases. For each edge e =
uv € T, we say that e is a leaf edge if v is a leaf in the tree T' (recall that we
always write an edge e as e = uv such that v is a descendant of u in 7). We
denote S the non-leaf edges in Sy and S; the leaf edges in Sy. We have two
main cases.

Suppose that |S;| > v(n — |M]) or that |S;"| > ~v(n — |M]). By feasibil-
ity of * at least 2 units of * must cross any tree cut. Hence z*(6(7},)) > 2,
for any v € V. By definition of ~-tightness we know that for any v-tight edge
e = uv we have z*(e) > z*(§(T,)) — (1 +~v) > 1—~.

Hence if |S1| > v(n — |M|), we have that

c(a) 2 2(1 = )(n — 31) 2 L=

c(z®),

which concludes the case when |S;| is large. In the following we use some proper-
ties of extreme point solutions. We say that an edge e is fractional (with respect
to the fractional solution 2*) if 0 < z¥ < 1. A vertex v is said to be a-fractional
if it has more than 1/« incident fractional edges in the support of z* (for any
a > 0). We claim the following lemma, the proof of which relies on standard
techniques and can be found in Appendix A. We note that a similar result was
used in [25].

Lemma 1. If x* is an extreme point solution of the cut LP, then there are at
most 2n — 1 fractional edges in G. Moreover, for any a > 0, there are at most
4dan a-fractional vertices with respect to z*.

Using Lemma 1 with a = /16, we get that if |Sj| > ~v(n—|M]|), then (recall
that n — | M| > n/2) there are at least

v(n —[M]) = (v/4)n = (v/2)(n — |M])

edges uv € S such that v is not v/16-fractional. We then claim the following
simple lemma.

Lemma 2. Fiz any o,a’ > 0. Suppose that e = uv is an a-tight light edge, such
that v is not a leaf in T. Then if v is not o/ -fractional there exists some edge
e =vw in T such that x*(') > (1 — o).

Proof. By feasibility of z* we know that z*(6(T, \ v)) > 2. Since e is a-tight
and T is a DFS tree we have that z*(§(7T,)) — z*(e) < 1 4+ a. We know that
E(T, \v,v) =6(T, \v) \ 6(Ty), and as a result 2*(E(T}, \ v,v)) > 1 — «. Since
v is not o/-fractional there must be an edge ¢’ € E(T, \ v,v) with value at least
2 (E(Ty\v,v))a’ > (1 —a)a’. Since our DFS selects always the highest possible
fractional value if there is no light edge to explore, the first edge selected after
exploring v must be of fractional value at least (1 — a)a’. O
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Combining Lemma 2 with the previous observation, if |S;| > v(n — |M|) we
get that

c(zg) = (v/2)(n — [M|)(1 = 7)(7/16) = c(x )m-
Combining these two cases we get that if |S;| > v(n—|M|) or |Sf| > v(n—|M])

then
. o (PO =) v =)
c(xT)Zc(x)~m1n<32(1+7>, Ty ),

hence the cost of T'U A is upper bounded by

(1 —7)) ’ 5)

2¢(x") = c(ay) < e(x”) (2 - 32(1+7)

which is clearly better than 2. Hence we are left with the last case, in which

[So | > (1 =)(n— |M]) = |81] = 85| > (1 = 37)(n — [M]).

Suppose |85 | > (1 — 3v)(n — |M]|). This is the most interesting case. Note
that for each edge e = uv € S, the fractional degree of v restricted to heavy
edges must be at least 1, and all of this fractional degree is carried by backedges
in T. Denote by B’ this subset of backedges. Next we define B” C B’ to be the
subset of B’ containing only edges with fractional value at least € = 10~!. We
claim that

|B"| > n/10. (6)

Assume the contrary, since the fractional value of any edge is at most 1 then
the total value carried by edges in B’ \ B” must be at least

|So | — (n/10) > (1 = 3v)(n — |M]|) —n/10 > 3n/8 — n/10.

(Recall that (n — |M|) > n/2 and (1 — 3y) > 3/4). Since all the edges in
B’\ B” have fractional value at most €, there must be at least (3n/8 —n/10)/e =
30n/8 —n > 2n — 1 such edges, contradicting Lemma 1. Hence |B”| > n/10.
For completeness we consider the case when F contains heavy edges that are
parallel to light edges. Partition B” into B U BY, where BY is the set of edges
in B” parallel to an edge in S; . We define B to be the remaining edges in B”.
We claim that |BY| < n/100, and thus loosely |BY| > n/20.
To see this note that,

c(a”) = (n—|M|) = |By]e. (7)

Equation (7) holds as the lower bound of (n — |M]) on ¢(z*) is obtained only
by counting the fractional degree of each component in M. Since those parallel
edges are not counted in this bound (they are only within a single component),
they directly count in the value of ¢(z*) — (n — |M|), which counts the surplus
of ¢(z*) above (n — |M]).
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Then as c(z*) — (n — |M]) < y(n — |M]|), by choice of € and  we obtain that
|BY| < n/100.
Consider the set of vertices X that contains the ancestor vertices of the edges
in BY. We claim that
| X| > n/500. (8)

To prove this, we first claim that
c(z*) = (n—[M[) = |Bf|e — 2|X]. 9)

To see this, note again that the value ¢(x*)—(n—|M]|) represents the surplus value
of ¢(z*) above the lower bound that gives fractional degree 2 to every vertex.
This trivial lower bound gives a fractional value—which is the fractional degree
restricted to heavy edges—of at most 2 to every vertex, hence a fractional value
of at most 2|X| to the set of vertices X. Since every edge in B} has fractional
value of at least € and is adjacent to a single vertex in X, we get that the surplus
value of ¢(z*) above the trivial lower bound is at least | By |e — 2| X | which proves
Eq. (9).

Since by assumption we have c¢(z*) < (1+)(n —|M]|) we conclude with Eq.
(9) that

A(n — [M]) > e(@*) — (n— |M]) > |B}le - 21X]

which implies, by our lower bound on |BY| and our choice of v and e,

|BY e — v(n — | M]) S n,/200 — n/103
2 - 2

For each vertex u € X, denote by e, the first edge selected by the DFS after

reaching u. Denote X’ C X the subset of X containing only vertices u € X such
that e, does not belong to S;". Then, we have by assumption,

| X| = = n/500. (10)

|X'| > |X| =S| = n/500 — y(n — |M]) >n/500 — n/10° = n/10°.

We finally claim the following, which crucially uses how the DFS selects the
edges to explore in priority.

Claim.
c(xh) > el X').

Proof. There are two cases to consider (depicted in Fig. 2).

If w € X' is such that e, = uv is a heavy edge, by definition of X’ there
must be an edge ¢/ = uf coming from a leaf f in the tree T to u of fractional
value xo > e. At the first time the DFS visits the vertex u, the leaf f was not
explored yet hence the edge ¢ was a valid choice of edge to explore. Since our
DFS always takes the highest fractional value, it must be that

Te, > Ter Z €.

If w € X’ is such that e, = uv is a light edge, recall that by definition of
X', v must be a leaf in T. Then when the DFS arrived at v, it must be that
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heavy edge in the tree
——————— light edge

u u
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4N N
i \ a0
Al \ AY I
’ ‘et
7 (o \\ ‘' YIRS
7 ’ \
7 ,l > € \ ’ ,' > € \
’ \ ,
;0 N L0 \
’ ’ ’ \
// 7 \ ’ 7 \
’ ’ \\ 7 ’ \
7 7/
e S > \ 0t R \
/ 1 - \ ’ 1 1i ht
’ II, Heavy T s i 4 g T\
u -
é '

Fig. 2. On the left side, the case when the first edge selected out of u is heavy. On the
right the case when the first edge selected out of u is light.

all reachable vertices from v were already visited. Hence the DFS must have
backtracked to u. Now note that by our construction of B, we know that there
must be another leaf f such that ¢/ = uf is a back-edge in the tree of fractional
value x,r > € (recall that uf is not parallel to the edge e, ). Since f is a leaf,
u must have been explored before f therefore, after backtracking from v to u
the edge uf was a valid edge to take. Therefore the DFS must have selected a
second edge €” in the tree from u such that

Ter > Loy f > €.

Hence we proved that all vertices v in X must be adjacent to at least one
heavy edge of fractional value e that belongs to the tree T' and goes to a child
of u. Hence the proof of the claim. O

By the previous claim, we have ¢(z%.) > €| X’| hence the cost of the returned
solution T"U A is at most

2¢(z™) — c(z]) < 2c¢(z™) — n/lO4 < c¢(z) (2 — 10*4) , (11)

which ends the proof of Theorem 1.

3 Conclusion

In this paper, we gave a simple 2 — ¢ approximation algorithm for MAP with
respect to the standard cut LP. Our algorithm computes a DFS tree using an
optimal extreme point solution to the above-mentioned LP solution as a guide
when selecting edges and then augments the resulting tree optimally. We leave
it as an open problem to see if the analysis can be refined to get an improved
guarantee for the algorithm. We remark that it is not difficult to see that if the
LP solution is f-fractional, then our algorithm produces a solution of at most
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2 — f times its value. In particular, this gives an upper bound of 3/2 for half-
integral solutions. We wonder if a better understanding of the algorithm will
lead to a %—approximation for the half-integral case.

Another interesting connection of our work to related works is by its relevance
to the Path Augmentation Problem (PAP). An instance of PAP is an instance
of FAP where the forest F' contains only paths. We note that our techniques
generalize to instances of PAP, if the cut LP returns a solution of cost equal to
the number of components in F'. This follows because the support of the optimal
extreme point solution of the cut LP for such instances has no fractional value
incident to internal nodes of the paths in F'. Some independent work [16] shows
that the general FAP reduces to special instances of PAP where the cost of
the LP solution is almost equal to the number of components in F'. However
these techniques do not preserve the integrality gap. Determining whether we
can bound the integrality gap of the cut LP for the FAP strictly below 2 remains
an interesting open problem.

A Deferred Proofs

Suppose that z* is an extreme point solution of LP(G, M). We know that x*
can be defined as the unique solution to the following system of |E| equations,
for some S C 2V and Ey U E; C E.

Z z,=2, forallSeS

e€d(S)
Te =0 Ve € Ey
Te =1 Ve € F;

Lemma 3 shows that we can select S not too large. The proof of this lemma
is the same as Theorem 4.9 from [10].

Lemma 3 (Theorem 4.9 in [10]). Let z* be an extreme point of the MAP cut
LP then the family of equations S can be chosen to be a laminar family.

It is well known that any laminar family has size at most 2n — 1. Therefore
the number of fractional edges is at most |E| — |Ey| — |E1| = |S| < 2n — 1.
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Abstract. The connectivity of a hypergraph is the minimum number
of hyperedges whose deletion disconnects the hypergraph. We design
an O, (p + min{AgnQ,nr/Aﬁ,A%n%}) (The O,(-) notation hides
terms that are subpolynomial in the main parameter and terms that
depend only on 7) time algorithm for computing hypergraph connectiv-
ity, where p := ZEeE le| is the input size of the hypergraph, n is the
number of vertices, r is the rank (size of the largest hyperedge), and A
is the connectivity of the input hypergraph. Our algorithm also finds a
minimum cut in the hypergraph. Our algorithm is faster than existing
algorithms if 7 = O(1) and A = n*. The heart of our algorithm is a
structural result showing a trade-off between the number of hyperedges
taking part in all minimum cuts and the size of the smaller side of any
minimum cut. This structural result can be viewed as a generalization
of an acclaimed structural theorem for simple graphs [Kawarabayashi-
Thorup, JACM 19 (Fulkerson Prize 2021)]. We extend the framework of
expander decomposition to hypergraphs to prove this structural result. In
addition to the expander decomposition framework, our faster algorithm
also relies on a new near-linear time procedure to compute connectivity
when one of the sides in a minimum cut is small.

Keywords: Hypergraphs + Connectivity + Expander decomposition

1 Introduction

A hypergraph G = (V, E) is specified by a vertex set V and a collection E of
hyperedges, where each hyperedge e € E is a subset of vertices. In this work, we
address the problem of computing connectivity/global min-cut in hypergraphs
with low rank (e.g., constant rank). The rank of a hypergraph, denoted r, is
the size of the largest hyperedge—in particular, if the rank of a hypergraph is
2, then the hypergraph is a graph. In the global min-cut problem, the input
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is a hypergraph with hyperedge weights w : E — R, and the goal is to find
a minimum weight subset of hyperedges whose removal disconnects the hyper-
graph. Equivalently, the goal is to find a partition of the vertex set V into two
non-empty parts (C, V'\ C) so as to minimize the weight of the set of hyperedges
intersecting both parts. For a subset C C V', we will denote the weight of the
set of hyperedges intersecting both C and V' \ C by d(C), the resulting function
d:V — Ry as the cut function of the hypergraph, and the weight of a min-cut
by A(G) (we will use A when the graph G is clear from context).

If the input hypergraph is simple—i.e., each hyperedge has unit weight and no
parallel copies—then the weight of a min-cut is also known as the connectivity of
the hypergraph. We focus on finding connectivity in hypergraphs. We emphasize
that, in contrast to graphs whose representation size is the number of edges, the
representation size of a hypergraph G = (V, E) is p := ) . |e|. We note that
p < rm, where r is the rank and m is the number of hyperedges in the hypergraph,
and moreover, r < n, where n is the number of vertices. We emphasize that the
number of hyperedges m in a hypergraph could be exponential in the number of
vertices.

Previous Work. Since the focus of our work is on simple unweighted hypergraphs,
we discuss previous work for computing global min-cut in simple unweighted
hypergraphs/graphs (i.e., computing connectivity) here. Although global min-
cut in weighted graphs has a rich literature, fast computation of global min-cut
in simple unweighted graphs was initiated more recently in a seminal work by
Kawarabayashi and Thorup (Fulkerson Prize 2021) [20]. The current fastest algo-
rithms to compute graph connectivity (i.e., when r = 2) are randomized and run
in time O(m) [11,13,15,18,20,25]. In contrast, algorithms to compute hyper-
graph connectivity are much slower. Furthermore, for hypergraph connectiv-
ity /global min-cut, the known randomized approaches are not always faster than
the known deterministic approaches. There are two broad algorithmic approaches
for global min-cut in hypergraphs: vertex-ordering and random contraction. We
discuss these approaches now.

Nagamochi and Ibaraki [26] introduced a groundbreaking vertex-ordering
approach to solve global min-cut in graphs in time O(mn). In independent works,
Klimmek and Wagner [21] as well as Mak and Wong [24] gave two different
generalizations of the vertex-ordering approach to compute hypergraph connec-
tivity in O(pn) time. Queyranne [29] generalized the vertex-ordering approach
further to solve non-trivial symmetric submodular minimization.! Queyranne’s
algorithm can be implemented to compute hypergraph connectivity in O(pn)
time. Thus, all three vertex-ordering based approaches to compute hypergraph
connectivity have a run-time of O(pn). This run-time was improved to O(p+An?)

! The input here is a symmetric submodular function f : 2 — R via an evaluation
oracle and the goal is to find a partition of V' into two non-empty parts (C,V '\ C) to
minimize f(C). We recall that a function f : 2V — R is symmetric if f(A) = f(V\A)
for all A C V and is submodular if f(A) + f(B) > f(A N B) + f(A U B) for
all A,B C V. The cut function of a hypergraph d : V — R, is symmetric and
submodular.
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by Chekuri and Xu [7]: They designed an O(p)-time algorithm to construct a
min-cut-sparsifier, namely a subhypergraph G’ of the given hypergraph with
size p’ = O(An) such that A(G') = A(G). Applying the vertex-ordering based
algorithm to G’ gives the connectivity of G within a run-time of O(p + An?).

We emphasize that all algorithms discussed in the preceding paragraph are
deterministic. Karger [16] introduced the influential random contraction app-
roach to solve global min-cut in graphs which was adapted by Karger and
Stein [17] to design an O(n?) time algorithm?. Kogan and Krauthgamer [22]
extended the random contraction approach to solve global min-cut in r-rank
hypergraphs in time O, (mn?). Ghaffari, Karger, and Panigrahi [12] suggested
a non-uniform distribution for random contraction in hypergraphs and used it
to design an algorithm to compute hypergraph connectivity in O((m + An)n?)
time. Chandrasekaran, Xu, and Yu [4] refined their non-uniform distribution to
obtain an O(pn3logn) time algorithm for global min-cut in hypergraphs. Fox,
Panigrahi, and Zhang [10] proposed a branching approach to exploit the refined
distribution leading to an O(p +n" log? n) time algorithm for hypergraph global
min-cut, where r is the rank of the input hypergraph. Chekuri and Quanrud
[5] designed an algorithm based on isolating cuts which achieves a runtime of
O(y/pn(m + n)3) for global min-cut in hypergraphs.

Thus, the current fastest known algorithm to compute hypergraph connec-
tivity is a combination of the algorithms of Chekuri and Xu [7], Fox, Panigrahi,
and Zhang [10], and Chekuri and Quanrud [5] with a run-time of

0) <p—|— min {/\nz,nr, pn(m + n)1~5}) .

1.1 Owur Results

In this work, we improve the run-time to compute hypergraph connectivity in
low rank simple hypergraphs.

Theorem 1. [Algorithm] Let G be an r-rank n-vertex simple hypergraph of size
p. Then, there exists a randomized algorithm that takes G as input and runs in

time .
N r— n r—
O, <p + min {)\T—i’nQ, = AT=ind })
—1

to return the connectivity A of G with high probability. Moreover, the algorithm
returns a min-cut in G with high probability.

Our techniques can also be used to obtain a deterministic algorithm that
runs in time
A . 2 (=3 o n”
O, [p+min < An“, A7=1n JrT .

of n, we say that f(n) = o}
O(g(n)) if f(n) = O(g(n)'*°"
hat () Or(g(n)) if f(n) = O(yg
) and O, (f(n)) analogously.

(g9(n)) if f(n) =
)), where the o(1)
(n)h(r)) for some

2 For functions f(n) and g(n) o

O(g(n)polylog(n)) and f(n)
is with respect to n. We say

t
function h. We define O,.(f(n)
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Our deterministic algorithm is faster than Chekuri and Xu’s algorithm when 7 is
a constant and X\ = 2(n("=2/2), while our randomized algorithm is faster than
known algorithms if 7 is a constant and A = n®(). We summarize the previous
fastest algorithms and our results in Table 1.

Table 1. Comparison of results to compute hypergraph connectivity (simple
unweighted r-rank n-vertex m-hyperedge p-size hypergraphs with connectivity \).

Deterministic Randomized
Previous run-time O(p + \n?) [7] O(p +min{An2, n", \/pn(m + n)'5}})
[5,7,10]

Our run-time O (p + min {)\nZ,)\%nZ + "TT}) O, (p—i— min {)\:'%?nZ, il s Nar=4 n%})

—

Our algorithm for Theorem 1 proceeds by considering two cases: either (i)
the hypergraph has a min-cut where one of the sides is small or (ii) both sides
of every min-cut in the hypergraph are large. To account for case (i), we design
a near-linear time algorithm to compute a min-cut; to account for case (ii), we
perform contractions to reduce the size of the hypergraph without destroying a
min-cut and then run known algorithms on the smaller-sized hypergraph lead-
ing to savings in run-time. Our contributions in this work are twofold: (1) On
the algorithmic front, we design a near-linear time algorithm to find a min-cut
where one of the sides is small (if it exists); (2) On the structural front, we show
a trade-off between the number of hyperedges taking part in all minimum cuts
and the size of the smaller side of any minimum cut (see Theorem 2). This struc-
tural result is a generalization of the acclaimed Kawarabayashi-Thorup graph
structural theorem [19,20] (Fulkerson prize 2021). We use the structural result
to reduce the size of the hypergraph in case (ii). We elaborate on this structural
result now.

Theorem 2. [Structure] Let G = (V, E) be an r-rank n-vertex simple hyper-
graph with m hyperedges and connectivity \. Suppose X > r(4r?)". Then, at least
one of the following holds:

1. There exists a min-cut (C,V \ C) such that

log (£+)

| o
min|C,|V\ €]} <r - <0

)

2. The number of hyperedges in the union of all min-cuts is

5 2\ 71 -
O | 9 +2 <6T> mlogn :OT( Wf )
A A1

The Kawarabayashi-Thorup structural theorem for graphs [19,20] states that
if every min-cut is non-trivial, then the number of edges in the union of all min-
cuts is O(m/)), where a cut is defined to be non-trivial if it has at least two
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vertices on each side. Substituting » = 2 in our structural theorem recovers this
known Kawarabayashi-Thorup structural theorem for graphs. We emphasize that
the Kawarabayashi-Thorup structural theorem for graphs is the backbone of the
current fastest algorithms for computing connectivity in graphs and has been
proved in the literature via several different techniques [13,15,20,30,31]. Part of
the motivation behind our work was to understand whether the Kawarabayashi-
Thorup structural theorem for graphs could hold for constant rank hypergraphs
and if not, then what would be an appropriate generalization. We discovered that
the Kawarabayashi-Thorup graph structural theorem does not hold for constant
rank hypergraphs: There exist hypergraphs in which (i) the min-cut capacity A
is £2(n), (ii) there are no trivial min-cuts, and (iii) the number of hyperedges in
the union of all min-cuts is a constant fraction of the number of hyperedges—
see the full version of this work [1] for such an example. The existence of such
examples suggests that we need an alternative definition of trivial min-cuts if
we hope to extend the Kawarabayashi-Thorup structural theorem for graphs
to r-rank hypergraphs. Conclusion 1 of Theorem 2 can be viewed as a way to
redefine the notion of trivial min-cuts. We denote the size of a cut (C,V '\ C) to
be min{|C|, |V \ C|}—we emphasize that the size of a cut refers to the size of
the smaller side of the cut as opposed to the capacity of the cut. A min-cut is
small-sized if the smaller side of the cut has at most r — log(A\/4r)/logn many
vertices. With this definition, Conclusion 2 of Theorem 2 can be viewed as a
generalization of the Kawarabayashi-Thorup structural theorem to hypergraphs
which have no small-sized min-cuts: it says that if there is no small-sized min-cut,
then the number of hyperedges in the union of all min-cuts is O,.(m/ )\%1)

We mention that the factor A=%/("=1) in Conclusion 2 of Theorem 2 cannot
be improved: There exist hypergraphs in which every min-cut has at least /n
vertices on both sides and the number of hyperedges in the union of all min-
cuts is @(m - A\~ ("=1))—see the full version of this work [1]. We also note that
the structural theorem holds only for simple hypergraphs/graphs and is known
to fail for weighted graphs. As a consequence, our algorithmic techniques are
applicable only in simple hypergraphs and not in weighted hypergraphs.

1.2 Technical Overview

Concepts used in the proof strategy of Theorem 2 will be used in the algorithm of
Theorem 1 as well, so it will be helpful to discuss the proof strategy of Theorem
2 before the algorithm. We discuss this now. We define a cut (C,V \ C) to be
moderate-sized if min{|C|, |V \ C|} € (r —log(A\/4r)/logn,4r?) and to be large-
sized if min{|C|,|V \ C|} > 4r?; we recall that the cut (C,V \ C) is small-sized
if min{|C|, |V \ C|} <r —log(A/4r)/logn.

Proof Strategy for the Structural Theorem (Theorem?2). We assume that A\ >
r(4r?)" as in the statement of Theorem 2. The first step of our proof is to
show that every min-cut in a hypergraph is either large-sized or small-sized
but not moderate-sized—in particular, we prove that if (C,V \ C) is a min-
cut with min{|C|, |V \ C|} < 4r2, then it is in fact a small-sized min-cut (see
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Lemma 2 with the additional assumption that A > r(4r%)"). Here is the informal
argument: For simplicity, we will show that if (C,V \ C) is a min-cut with
min{|C|, [V\C|} < 4r%, then min{|C|, |V \C|} < r. For the sake of contradiction,
suppose that min{|C/|,|V \ C|} > r. The crucial observation is that since the
hypergraph has rank r, no hyperedge can contain the smaller side of the min-cut
entirely. The absence of such hyperedges means that even if we pack hyperedges
in G as densely as possible while keeping (C,V \ C) as a min-cut, we cannot
pack sufficiently large number of hyperedges to ensure that the degree of each
vertex is at least A. A more careful counting argument extends this approach to
show that min{|C|, |V \ C|} < r —log A/ logn.

Now, in order to prove Theorem 2, it suffices to prove Conclusion 2 under
the assumption that all min-cuts are large-sized, i.e., min{|C|, |V \ C|} > 4r? for
every min-cut (C, V\C). Our strategy to prove Conclusion 2 is to find a partition
of the vertex set V such that (i) every hyperedge that is completely contained in
one of the parts does not cross any min-cut, and (ii) the number of hyperedges
that intersect multiple parts (and therefore, possibly cross some min-cut) is small,
ie., Or(m . )\_1/(“1)). To this end, we start by partitioning the vertex set of
the hypergraph G into Xi,..., Xy such that the total number of hyperedges
intersecting more than one part of the partition is Or(m . )\*1/(“1)) and the
subhypergraph induced by each X; has conductance £2,(A\~/("=1)) (see Sect. 1.3
for the definition of conductance)—such a decomposition is known as an expander
decomposition. An expander decomposition immediately satisfies (ii) since the
number of hyperedges intersecting more than one part is small. Unfortunately, it
may not satisfy (i); yet, it is very close to satisfying (i)—we can guarantee that for
every min-cut (C,V \ C) and every X;, either C includes very few vertices from
X;, or C includes almost all the vertices of X; i.e., min{|X; N C|,|X; \ C|} =
O, (A=), We note that if min{|X; N C|,|X; \ C|} = 0 for every min-cut
(C,V \ C) and every part X; then (i) would be satisfied; moreover, if a part
X, is a singleton vertex part (i.e., | X;| = 1), then min{|X; N C|,|X; \ C|} =0
holds. So, our strategy, at this point, is to remove some of the vertices from
X, to form their own singleton vertex parts in the partition in order to achieve
min{|X; N C|,|X; \ C|} = 0 while controlling the increase in the number of
hyperedges that cross the parts. This is achieved by a TRIM operation and a
series of SHAVE operations.

The crucial parameter underlying TRIM and SHAVE operations is the notion
of degree within a subset: We will denote the degree of a vertex v as d(v) and
define the degree contribution of a vertex v inside a vertex set X, denoted by
dx(v), to be the number of hyperedges containing v that are completely con-
tained in X. The TRIM operation on a part X; repeatedly removes from X;
vertices with small degree contribution inside Xj, i.e., dx,(v) < d(v)/2r until
no such vertex can be found. Let X denote the set obtained from X; after the
TRIM operation. We note that our partition now consists of X7, ..., X} as well as
singleton vertex parts for each vertex that we removed with the TRIM operation.
This operation alone makes a lot of progress towards our goal-—we show that
min{| X! N C|,|X/\ C|} = O(r?), while the number of hyperedges crossing the
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partition blows up only by an O(r) factor (see Claims 3 and 4). The little progress
that is left to our final goal is achieved by a series of (O(r?) many) SHAVE oper-
ations. The SHAVE operation finds the set of vertices in each X! whose degree
contribution inside X/ is not very large, i.e., dx;(v) < (1— r=2)d(v) and removes
this set of vertices from X/ in one shot—such vertices are again declared as sin-
gleton vertex parts in the partition. We show that the SHAVE operation strictly
reduces min{| X/ N C|,| X!\ C|} without adding too many hyperedges across the
parts (see Claims 3 and 5)—this argument crucially uses the assumption that all
min-cuts are large-sized (i.e., min{|C|, |V \ C|} > 472). Because of our guarantee
from the TRIM operation regarding min{|X/ N C|, | X/ \ C|}, we need to perform
the SHAVE operation O(r?) times to obtain a partition that satisfies conditions
(i) and (ii) stated in the preceding paragraph.

Algorithm from Structural Theorem (Theorem 1). We now briefly describe our
algorithm: Given an r-rank hypergraph G, we estimate the connectivity A to
within a constant factor in O(p) time using an algorithm of Chekuri and Xu
[7]. Next, we use the estimated connectivity value k = ©()) to obtain a sub-
hypergraph G’ with size p’ = O,(An) such that all min-cuts are preserved in
time O(p). The rest of the steps are run on this subhypergraph G’. We have
two possibilities as stated in Theorem 2. We account for these two possibili-
ties by running two different algorithms: (i) Assuming that some min-cut has
size less than r — log(A\/4r)/logn, we design a near-linear time algorithm to
find a min-cut. This algorithm is inspired by recent vertex connectivity algo-
rithms, in particular the local vertex connectivity algorithm of [9,28] and the
sublinear-time kernelization technique of [23]. This algorithm runs in O,(p)
time. (ii) Assuming that every min-cut is large-sized, we design a fast algo-
rithm to find a min-cut. For this, we find an expander decomposition X of
G, perform a TRIM operation followed by a series of O(r?) SHAVE operations,
and then contract each part of the trimmed and shaved expander decomposi-
tion to obtain a hypergraph G”. This reduces the number of vertices in G”
to O,(n/AY("=1) and consequently, running the global min-cut algorithm of
either [10] or [6] or [5] (whichever is faster) on G” leads to an overall run-time
of Oy (p 4 min{ \("=3)/(r=1)p2 pyr /\r/(r=1) \(Gr=7)/(r=4)y7/41Y for step (ii). We
return the cheaper of the two cuts found in steps (i) and (ii). The correctness
of the algorithm follows by the structural theorem and the total run-time is
Or(p + min{nr/Ar/(rfl)’ )\(r73)/(7‘71)n2’ )\(57“77)/(4’)"74)717/4}).

We note here that the expander decomposition framework for graphs was
developed in a series of works for the dynamic connectivity problem [8,27,32,33].
Very recently, it has found applications for other problems [2,3,14]. Closer to our
application, Saranurak [31] used expander decomposition to give an algorithm to
compute edge connectivity in graphs via the use of TRIM and SHAVE operations.
The TRIM and SHAVE operations were introduced by Kawarabayashi and Thorup
[20] to compute graph connectivity in deterministic O(mlog'?n) time. Our line
of attack is an adaptation of Saranurak’s approach. Since our structural theorem
is meant for hypergraph connectivity (and is hence, more complicated than what
is used by [31]), we have to work more.
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Organization. We prove the structural theorem in Sect. 2. We defer the proof of
the algorithmic result and all missing proofs to the full version of the work [1]
due to space limitations. We also elaborate on relevant previous work in the full
version.

1.3 Preliminaries

Let G = (V, E) be a hypergraph. Let S,T C V be subsets of vertices. We define
E[S] to be the set of hyperedges completely contained in S, E(S,T) to be the set
of hyperedges contained in S U T and intersecting both S and T, and E°(S,T)
to be the set of hyperedges intersecting both S and T'. With this notation, if S
and T are disjoint, then F(S,T) = E[SUT] — E[S] — E[T] and moreover, if the
hypergraph is a graph, then E(S,T) = E°(S,T). A cut is a partition (S,V \ S)
where both S and V' \ S are non-empty. Let §(S) := E(S,V \ S). For a vertex
v €V, welet §(v) represent §({v}). We define the capacity of (S, V'\ S) as |d(5)],
and call a cut as a min-cut if it has minimum capacity among all cuts in G. The
connectivity of a simple hypergraph G is the capacity of a min-cut in G.

We recall that the size of a cut (S, V' \ S) is min{|S|,|V '\ S|}. We emphasize
the distinction between the size of a cut and the capacity of a cut: size is the car-
dinality of the smaller side of the cut while capacity is the number of hyperedges
crossing the cut.

For a vertex v € V and a subset S C V, we define the degree of v by
d(v) := [6(v)| and its degree inside S by dg(v) := |e € §(v) : e C S|. We define
d := minyey d(v) to be the minimum degree in G. We define vol(S) := ¢ d(v)

and for T C V, volg(T') := ) . ds(v). We define the conductance of a set

. E°(S,X\S . . . .
X CV as mln@;ésgx{min{lvol((s)yvc}l())(l\s)}}. For positive integers, i < j, we let

[i, ] represent the set {i,s + 1,...,5 — 1,j}. The following proposition will be
useful while counting hyperedges within nested sets.

Proposition 1. Let G = (V, E) be an r-rank n-vertex hypergraph and let T C
S CV. Then,

B S\ 2 (27 ) (vols(T) = r BT,

1
2 Structural Theorem

We prove Theorem 2 in this section. We call a min-cut (C,V \ C) moderate-
sized if its size min{|C/|, |V \ C|} is in the range (r — log (\/4r)/logn, (\/2)'/).
In Sect.2.1, we show that a hypergraph has no moderate-sized min-cuts. In
Sect. 2.2, we define TRIM and SHAVE operations and prove properties about these
operations. We prove Theorem 2 in Sect. 2.3. We begin with the following lemma
showing the existence of an expander decomposition for low-rank hypergraphs
(which follows from the existence of an expander decomposition for graphs).
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Lemma 1 (Existential hypergraph expander decomposition). For every
r-rank n-vertex hypergraph G = (V, E) with p := ) . le| and every positive real
value ¢ < 1/(r — 1), there exists a partition {X1,..., X} of the vertex set V
such that the following hold:

L0, |8(X,)| = O(réplogn), and

2. For every i € [k] and every non-empty set S C X;, we have that

|E°(S, X; \ S)| = ¢ - min{vol(S), vol(X; \ S)}.

2.1 No Moderate-Sized Min-Cuts

The following lemma is the main result of this section. It shows that there are
no moderate-sized min-cuts.

Lemma 2. Let G = (V, E) be an r-rank n-vertex hypergraph with connectivity A
such that X > r27 1. Let (C,V\C) be an arbitrary min-cut. If min{|C|, |[V\C|} >
r —log(\/4r)/logn, then min{|C|,|V \ C|} > (\/2)'/".

Proof. Without loss of generality, let |C| = min{|C|, |V \ C|}. Let ¢t := |C| and
s =1 —log (A/4r)/logn. We know that s < t. Suppose for contradiction that
t < (A\/2)Y/7. We will show that there exists a vertex v with |[§(v)| < A, thus
contradicting the fact that A is the min-cut capacity. We classify the hyperedges
of G which intersect C' into three types as follows: E1 :={e € E: e C C}, Ey :=
{ec E:CCe},and Es:={ec E:0#enC#Canden(V\C) # 0}. We
distinguish two cases:

Case 1: Suppose t < r. Then, the number of hyperedges that can be fully
contained in C'is at most 27, so |Ey| < 2. Since (C, V' \ C) is a min-cut, we have
that A = |0(C)| = |Ez| + | E3|. We note that the number of hyperedges of size i
that contain all of C' is at most (2’:;) Hence,

T n—t r—t n—t r—t
By < = < < onh
DB oY (i B ol g B o
i=t+1 =1 =1
Since each hyperedge in E3 contains at most t—1 vertices of C, a uniform random
vertex of C is in such a hyperedge with probability at most (¢ — 1)/t. Therefore,
if we pick a uniform random vertex from C, the expected number of hyperedges
from Ej5 incident to it is at most (%)|E3\ Hence, there exists a vertex v € C

such that
t—1 t—1 —-1
|6(v) N E3| < (t> |Bs| < <t> 16(C)| < (T . > A

Combining the bounds for Fy, Fs, and F3, we have that
[0(v)| = 16(v) N Ex| + |E2| +[6(v) N B3| < |Ex| + [E2| + [6(v) N E3

1 1
<o 4ot 4 (T))\<2T+2nrs+ (T) A
T T

A -1 r+l )\
—2T++(T ))\—A—FT <A\
r 2r

2r
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Case 2: Suppose t > r. Then, no hyperedge can contain C' as a proper subset,
so |E2| = 0. For each v € C, the number of hyperedges e of size i such that
v € e CC is at most (:j) Hence,

r—1 r—1

sonei<y () =) s T s

=1

Since each hyperedge in E3 contains at most r — 1 vertices of C, a random
vertex of C is in such a hyperedge with probability at most (r — 1)/t. Therefore,
if we pick a random vertex from C, the expected number of hyperedges from Fs

incident to it is at most (“71)|E3|. Hence, there exists a vertex v € C such that

16(v) N Es| < (7’;1> |Bs| < (7’;1> A

Since t < (A/2)Y/" and t > r, we have that 2t"/\ < t — 7 + 1. Combining this
with our bounds on |6(v) N E4] and |6(v) N E3|, we have that

16(v)

—1 AT
=|6<v>mE1|+6<v>mE3|s2tr-1+(rt )Az(r—1+§)j<A.

2.2 Trim and Shave Operations

In this section, we define the trim and shave operations and prove certain useful
properties about them. Throughout this section, let G = (V, E) be an r-rank, n-
vertex hypergraph with minimum degree § and min-cut capacity A. For X C V,
let TRIM(X) be the set obtained by repeatedly removing from X a vertex v with
dx (v) < d(v)/2r until no such vertices remain, SHAVE(X) := {v € X: dx(v) >
(1—1/r?)d(v)}, and SHAVE,(X) := SHAVE(SHAVE - - - (SHAVE(X))) be the result
of applying k consecutive shave operations to X. We emphasize that TRIM is
an adaptive operation while SHAVE is a non-adaptive operation and SHAVE(X)
is a sequence of shave operations. The next claim shows that TRIM and SHAVE
operations could increase the cut value only by a small factor.

Claim 3. Let X be a subset of V, X' := TRIM(X), and X" := SHAVE(X).
Then

1. |B[X] - BIX']| < |8(X)], |B[X] - E[X"]| < r2(r — DIS(X)], and
2. |5(X")| < 208(X)], and |5(X")] < r*[5(X)].

The following claim shows that the TRIM operation on a set X that has small
intersection with a min-cut further reduces the intersection.

Claim 4. Let (C,V \ C) be a min-cut. Let X be a subset of V and X' :=
TriM(X). If min{|X NC|,|X N (V\C)[} < (6/6r2)Y/ =1 then

min{| X' NC|,| X' n(V\C)|} < 3r?
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The following claim shows that the SHAVE operation on a set X which has
small intersection with a large-sized min-cut further reduces the intersection.

Claim 5. Suppose A > r(4r?)". Let (C,V \ C) be a min-cut with min{|C/|,|V \
C|} > 4r2. Let X' be a subset of V and X" := SHAVE(X'). If 0 < min{|X' N
CLIX'n(V\CO)|} <3r2, then

min{|X” N C|,|X” N (V\ O)|} <min{| X' NC|,| X' N (V\C)}—1.

Proof. Without loss of generality, we assume that | X' NC| = min{|X’'NC|,|X'N
(V\QO)|}. Since X" C X', we have that | X" NC| < |X’'NC|. Thus, we only need
to show that this inequality is strict. Suppose for contradiction that | X"’ NC| =
| X’ N C|. We note that 0 < | X" N C| < 3r2.

Let Z:=X'NnC=X"NC, and let C' := C — X’. Since |C| > min{|C|, |V \
C|} > 472 and | Z] < 3r%, we know that C’ is nonempty.

We note that Z C X”. By definition of SHAVE, we have that volx/ (Z) =
Yvez dxi(v) >,y (1—55) d(v) = (1 5) vol(2).

We note that |[E(Z,V \ C)| > |E(Z,X'\C)| = |E(Z,X'\ Z)|, so by Propo-
sition 1, we have that |E(Z, V\C)| > |E(Z, X'\ Z)] > ( il) (volx/(Z) —

T

r|E[Z]]) > (T 1) (1= %) vol(Z) — r|Z|"). We also know from the definition

of SHAVE that |E(Z,C'\ )| < ZUEZ B({v}, 0\ 2)| < 5,z Frd(v) = 5P
Thus, using our assumption that A > r(4r2)", we have that |E(Z, (V \ C))| >

(22) (- )= (i -

d
_vol(Z)  vol(Z) iz > YD) | 2wez V) o
72 r r—1 r2 r
> Lg ) |Z|A —rlZ|" > LOSQZ) + (4| Z| - 7| 2|
(Z (Z
> VOT(Q i (47”2)\Z|7’ —rlz|" > Vor(z ) > |Bz.0\ 2))

We note that E(Z,(V \ C)) is the set of hyperedges which are cut by C but
not C', while E(Z,C \ Z) is the set of hyperedges which are cut by C’ but not
C'. Since we have shown that |E(Z,V \ C)| > |E(Z,C \ Z)|, we conclude that
[6(C)] > 16(C")]. Since (C,V \ C) is a min-cut and ) #= C' C C C V, this is a

contradiction.

2.3 Proof of Theorem 2

Proof (Proof of Theorem 2). Suppose the first conclusion does not hold. Then,
by Lemma 2, the smaller side of every min-cut has size at least (A\/2)Y/" > 472,
Let (C,V\C) be an arbitrary min-cut. We use Lemma 1 with ¢ = (6r2/X)/("=1)
to get an expander decomposition X = {X7, ..., X)}. We note that ¢ < 1/(r—1)
holds by the assumption that A > r(4r2)". For i € [k], let X] := TRIM(X;) and
X/ := SHAVEg,2(X]).
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Let ¢ € [k]. By the definition of the expander decomposition and our

choice of ¢ = (6r2/\)Y (=1 we have that A > |E°(X; N C,X; N (V\ C))| >
1 1

(GT) " min{vol(X; N C),vol(X; \ O)} > (GT) T min{|X; N C|, |1 X\ O}

Thus, min{|X; N C[,|X; \ C|} < (A\/8)(N/6r2)V/ =1 < (A/6r2)V/ (=1 <
(6/6r2)1/(r=1) Therefore, by Claim 4, we have that min{| X/ N C|, | XN (V\CO)|} <
3r2. We recall that A > r(4r2?)" and every min-cut has size at least 4r2. By 3r2
repeated applications of Claim 5, we have that min{| X/ NC/|, | X/ N(V\C)|} = 0.

Let X" :={X{,..., X}/}. Since min{| X/ NC|,| X/ N (V \ C)|} = 0 for every
min-cut (C,V \ C) and every X/ € X", it follows that no hyperedge crossing a
min-cut is fully contained within a single part of X”’. Thus, it suffices to show
that |E — Uf L E[X]] is small—i e., the number of hyperedges not contained in

any of the parts of X is O (m/)\r 1)

By the first part of Claim 3, we have that |E[X;] — E[X]]| < 2|§(X;)| and
[0(X1)] < 2|6(X;)| for each i € [k]. By the second part of Claim 3, we have
that |§(SHAVE;41(X]))| < r3|6(SHAVE;(X]))| for every non-negative integer j.
Therefore, by repeated application of the second part of Claim 3, for every j €
[3r?], we have that |§(SHAVE;(X]))| < 2r37|6(X;)|. By the first part of Claim
3, for every j € [3r%], we have that |E[SHAVE;_1(X])] — E[SHAVE;(X])]| <
r36(SHAVE; 1 (X]))| < 2r37[6(X;)].

Therefore, ‘E ~ Uk, Ex)| - ’E ~ U, BIX))

|E[X,] — E[X7]]

M=

@
Il
-

X+ 32T: |E[SHAVE;_1 (X])] — E[SHAVE; (X])]|

(e
-

k 3r?
2(6 |+er3J|a =Dl 2+ 2
i=1 j=1

[
™=

@
Il
-

M=

~.
Il
—

'Mw

@
Il
-

o 18(X;)| < 30 Z\E (X5, V\ X;)l.
i=1
Hence, )E - Ule E[X!]| < 4por* Ele |E(X;,V\ X;)|- By Lemma 1, since X is

an expander decomposition for ¢ = (6r%/A)Y/"~1) and since p = 3", le| < mr,
we have that

k 1 1
67»2 r—1 67‘2 r—1
5 |E(X;,V\ X;)| = O(r¢plogn) = O(r) (T) plogn = O(r?) (T) mlogn.
i=1

Thus, |E — Ule EX!) = O(ro*+2(6r2 /A)Y/ ("=Dimlog n), thus proving the sec-

ond conclusion.
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Abstract. Consider a linear program of the form max{cT.’c : Az < b},
where A is an m X n integral matrix. In 1986 Cook, Gerards, Schrijver,
and Tardos proved that, given an optimal solution «*, if an optimal
integral solution 2™ exists, then it may be chosen such that ||* — 2| <
nA, where A is the largest magnitude of any subdeterminant of A. Since
then an open question has been to improve this bound, assuming that
b is integral valued too. In this manuscript we show that nA can be
replaced with 7/2 - A whenever n > 2 and =" is a vertex. We also show
that, in certain circumstances, the factor n can be removed entirely.

1 Introduction

Suppose A is an integral full-column-rank m x n matrix. The polyhedron corre-
sponding to a right hand side b € Q™ is

P(Ab) :={xcR": Ax <b}.
The linear program corresponding to P(A,b) and an objective vector ¢ € Q™ is

LP(A,b,c) :=max{c'z: z € P(A,b)},

and the corresponding integer linear program is

IP(A,b,c) :==max{c'z: z € P(A,b)NZ"}.

The proximity question in integer linear programming can be stated as follows:
Given an optimal vertex solution &* of LP(A, b, ¢), how far away is the nearest
optimal solution z* to IP(A, b, ¢) (if one exists)? Proximity has a wide array of
applications in integer linear programming. Perhaps not too surprisingly, upper
bounds on proximity can help identify integer vectors in P(A,b) from vertices;
this is relevant in search techniques such as the feasibility pump [6] and dynamic
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K. Aardal and L. Sanitd (Eds.): IPCO 2022, LNCS 13265, pp. 84-97, 2022.
https://doi.org/10.1007/978-3-031-06901-7_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06901-7_7&domain=pdf
http://orcid.org/0000-0003-3480-4835
https://doi.org/10.1007/978-3-031-06901-7_7

Improving the Cook et al. Proximity Bound 85

programming [5,10]. An upper bound of 7w on proximity also leads to a trivial
enumeration algorithm to optimize IP(A,b, c): Solve LP(A, b, ¢) to identify an
optimal vertex &* and then enumerate up to (27 + 1)™ many integer points z*
satisfying ||z* — 2*||o0 < 7.

Proximity has been studied for decades with perhaps the most foundational
result due to Cook, Gerards, Schrijver, and Tardos. To state their result, we
denote the largest absolute k& x k minor of A by

Ag (A) ;== max {|det M| : M is a k x k submatrix of A}.

Theorem 1 (Theorem 1 in [3]). Let b€ Q™ and c € Q™. Let x* be an opti-
mal vertex of LP(A,b,c). If IP(A, b, c) is feasible, then there exists an optimal
solution z* such that!

le* — 2"l < - Auiy (A).

Cook et al’s result is truly a cornerstone result. Their proof technique has
been used to establish proximity bounds involving other data parameters [21] and
different norms [11,12]. Furthermore, their result has been extended to derive
proximity results for convex separable programs [7,9,20] (where the bound in
Theorem 1 remains valid), for mixed integer programs [16], and for random
integer programs [15].

Lovész [18, Section 17.2] and Del Pia and Ma [4, Section 4] identified tuples
(A, b, c) such that proximity is arbitrarily close to the upper bound in Theo-
rem 1. However, their examples crucially rely on the fact that b can take arbitrary
rational values. In fact, Lovasz’s example uses a totally unimodular matrix A
while Del Pia and Ma use a unimodular matrix. Therefore, if the right hand sides
b in their examples were to be replaced by the integral rounded down vector |b],
then the polyhedron P(A, |b]) would only have integral vertices. From an inte-
ger programming perspective, replacing b with |b| is natural as it strengthens
the linear relaxation without cutting off any feasible integer solutions.

It remains an open question whether Cook et al’s bound is tight when b €
Z™. Under this assumption, Paat et al. [16] conjecture that the true bound is
independent of n. This conjecture is supported by various results: Aliev et al. [2]
prove that proximity is upper bounded by the largest entry of A for knapsack
polytopes, Veselov and Chirkov’s result [19] implies a proximity bound of 2 when
A, (A) <2, and Aliev et al. [1] prove a bound of A, (A) for corner polyhedra.

Our main result is the first improvement on Cook et al’’s result. Furthermore,
our proof technique generalizes theirs, and we believe that it can be applied in
the multiple settings where their technique is used.

Theorem 2. Letn > 2, b€ Z™, and c € Q™. Let x* be an optimal vertex of
LP(A,b,c). If IP(A,b,c) is feasible, then there exists an optimal solution z*

! Their upper bound is stated as n - max {Ak (A): k=1,... ,n}, but their argument
actually yields an upper bound of n - A,_1 (A). Furthermore, their result holds for
any (not necessarily vertex) optimal LP solution x*.
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such that

A (A).

& = 2l < 3

Our proof of Theorem 2 consists of three parts. First, we relate proximity
to the volume of a certain polytope associated with the matrix A. Second, we
establish lower bounds on the volume of this polytope when n = 2 and n = 3;
see Sect. 2. Third, we show how these proximity bounds in lower dimensions can
be used to derive proximity bounds in higher dimensions; see Sect.3. We can
improve Theorem 2 in certain settings. For instance, if n is a multiple of 3 then
we can replace the factor /2 with (v2/3) - n, and the factor (v2/3) -n+ 1 can be
used for every n; see Remark 2.

We also consider the case when A is strictly A-modular, that is, A = T B for
a totally unimodular matrix T" and a square integer matrix B with determinant
A; see Sect. 5. Here we show the factor /2 can be removed entirely, generalizing
a recent result of Nagele, Santiago, and Zenklusen [14, Theorem 5]. We also give
essentially matching lower bounds; see Sect. 6. It is more or less straightforward
to find a 1-dimensional polytope P(A,b) C R"™ with a matching lower bound
on proximity when n > 2. Thus, our contribution with this lower bound is a
full-dimensional polytope P (A,b) C R™ with a unique integral point z*, and a
vertex * sharing no common facet with z*, such that the proximity is, up to a
constant additive factor, equal to A,_; (A).

Theorem 3. Let A >1 and n > 2.

1. For all feasible instances IP (A, b, c) with A strictly A-modular and b integral,
and for all optimal vertices x* of LP(A, b, ¢), there exists an optimal solution
z* of IP(A, b, ¢) such that

lz* — 2%||oo <max{A,_1(A),A,(A)} — 1.

2. Let A > 3. There exists a feasible instance IP (A, b, c) with A strictly A-
modular and b integral, and an optimal vertex x* of LP(A,b,c), such that
every feasible integral solution z* of IP(A, b, c) satisfies

" — 2o = max {A,_1(A), A,(A)} — 2.

Moreover, P (A, b) is full-dimensional, and x* and z* do not lie on a common

facet of P (A,Db).

1.1 Preliminaries and Notation

Here we outline the key objects and parameters used in the paper.

Let A € Z™*" be a full-column-rank matrix, and b € Z™ be such that
P(A,b)NZY £ 0. For I C [m] :={1,...,m}, we use A; and b; to denote the
rows of A and b indexed by I. If I = {i}, then we write a; := A;. We use 0
and 1 to denote the all zero and all one vector (in appropriate dimension). For
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a polyhedron @ C R", the dimension of Q is the dimension of the linear span of
Q and is denoted by dim Q. We also define, for I C [m)],

ged Ap :=ged {|det M| : M is a rank(Ay) x rank(Ay) submatrix of As},

with ged Ag = 1. In the case when P NZ™ = {0}, bounding proximity is equiv-
alent to bounding

max ||zl = max max{a'z: z € P(A,b)}, (1)
xzeP(A,b) ac{te,...,te,}
where eq, ..., e, € Z™ are the standard unit vectors. As we shall see in the proof

of Theorem 2, the general case then follows from this case. In light of this, we
analyze the maximum of an arbitrary linear form a 'z over P(A, b) for a € Z™.

We provide non-trivial bounds on the maximum of these linear forms for
small values of n; see Sect. 2. In order to lift low dimensional proximity results to
higher dimensions (see Sect. 3), we consider slices of P (A, b) through the origin
induced by rows of A. Given I C [m] such that |[I| <n — 1 and rank A; = |1,
define

Pr(A,b) =P (A,b) Nker As.

We specify ker Ay = R", so that Py(A,b) = P(A,b). The bounds that we
provide on o' are given in terms of the parameter

1
Ar (A = .
1 (A a) sl A max{

and we write A(A, o) := Ag(A, ). In particular, we define k; (A, b, ) to be
the number satisfying

aT
det(AK)‘.IgKg[m], K|:n—1},

Te = Ab Ar (A . 2
weg}r%fib)a Z K[( 770‘) 1( ,OL) ()

Maximizing over all I C [m] such that Pr (A, b) has a fixed dimension d, define

Ab = Ab .
’id( ) 5a) I:dimgla(ﬁ,b):dﬁj( ) 7a)

Equation (2) looks similar to the proximity bound we seek. However, A; (A, «)
depends on «, whereas our main result (Theorem 2) only depends on A,,_;(A).
Later (see Sect.4), we will substitute tey,...,+e, in for o as in (1). We also
want to consider I = () because Py(A, b) = P(A,b) by definition. These substi-
tutions will convert Ay (A, ) to proving proximity of A, _1(A) over P(A,b) as
desired in our proximity theorem.

Another important object for us is the following cone. For * € R", define

sien (a,] *) -a]x >0Vie such that a z* # 0
C(A,z"):={xzcR": 1gn( ! ) lT - Z [m] su ZT 7 )
a; =0V i€ [m] such that a; x* =0
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The cone C (A, x*) serves as a key ingredient in the proof of Theorem 1 in [3].
We also define the polytope

S(A,xz"):=C(A,z")N(x" —C(A,zY)).

One checks that if * € P (A,b), then S (A,x*) C P (A,b). Moreover, if y* €
S (A, x*) then S (A,y*) C S(A,x*). Polytopes of this form, namely, ones in
which every facet is incident to one of two distinguished vertices, known as
spindles, were used in [17] to construct counterexamples to the Hirsch conjecture.

In Sects. 2 and 3, we fix A € Z™*™ and b € Z™. Thus, in our notation we
drop the dependence on A and b, and write Py for Pr(A, b), Ar(a) for Ar(A, ),
k() for k(A,b, @), S(x*) for S(A, z*) and so on.

1.2 Dimension Reduction

When analyzing proximity, one must consider those polyhedra dimP < n. A
useful fact for us is that we need only consider the case when dimP = n,
by replacing a not-necessarily full-dimensional instance with an equivalent full-
dimensional instance in a lower-dimensional space.

Lemma 1. Let a € Z" such that the mazimum of max{a'x : x € P} is
attained and is finite. Assume I C [m] determines a linearly independent subset
of the rows of A such that the linear span of Py is ker Ay, which has dimension
d. Then there exists a linear isomorphism ker A; — R? given by x — Px where
P ¢ 79" which maps ker A; N Z" onto Z* and maps Pr(A,b) onto P(A,b)
for some A ¢ gim—ntd)xd p ¢ gm=—ntd gp] satisfies

kr (A,b,a) = nd(A, b, d)

where & € Z% is the unique vector satisfying a'P=a’.

Proof. Without loss of generality, suppose I = [n — d]. Set J := [n — d], J =
{n—d+1,...;n},and I := {n —d+1,...,m}. Choose a unimodular matrix
U € Z™*" (e.g., via the Hermite Normal Form of Ap,) such that

_(av),, o
AU = ((AU)LJ <AU>I,J)

with (AU); ; square and invertible.
Set A := (AU)I—’j, b= b, and a'l = (aTU)J—. For x € ker A, we have

0= AIm = AIUUilm = [(AU)[,J 0] U71:I: = (AU)I7J(U71§E)J.

Thus, (U_lw)J = 0. Hence, the map  — (U_lw)j is a linear isomorphism from

ker A; to RV = R?, which restricts to a lattice isomorphism from ker A; N Z"
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to Z¢ and maps P;(A,b) (A I;) It follows that P(A, 5) NZ* = {0}. For
x € ker Ay, the equation ( ) = 0 implies that
a'z=a'UU 'z=a" (U_lzc)j. (3)

Moreover, if K C I with |[K|=d — 1, then

det (Z;)‘ = |det (Ea;ggi)’

1 E éU;I’J ( TO )
= = aet| («TU a'U);
|det (AU), | ( AU);J( AU)i,j

1 a’
=—— - |det
ged Af ’ ¢ (AIUK>"
where we have used |det (AU)I’J’ = gcd(AU); = ged A;U = ged Aj. Taking

the maximum over all such K, we get
A(A,a) =41 (A ). (4)
Putting (3) and (4) together, we get

——= max ———F——=r7(4,ba). O

a vy a'zx
( 7@) zeP(Ab) A (A, )

2 Proximity for 1, 2, and 3-Dimensional Polyhedra

The Cook et al. bound roughly translates to the statement x,, < n forn =1,2,3
whenever P NZ™ = {0}. In this section, in particular in Lemma 4, we improve
upon these bounds. Define the polyhedron

Po :={z €R": |Az| <1, aTac:O}.

This is an (n — 1)-dimensional polyhedron, which is bounded since A has full
column rank by assumption. We use vol;(-) to denote the i-dimensional Lebesgue
measure.

Lemma 2. Let a € Z" be non-zero. Assume dimP = n and P NZ" = {0}.

Then .
2" ey

fin(@t) < vol,—_1 (Pa) A(er)
Proof. Recall P = P(A,b). Let * € P attain the maximum of

aTw

fin(@) = max 7S
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which we assume is positive without loss of generality. Define the polytope
Q(x*) =Py + [-x", 2],
which is 0-symmetric and full-dimensional in R™. Observe that

2kn () Ala)

-vol,_1 (Pa) -
ol 1 (Pa)

vol, (Q(x*)) =

All integer points not in Q(x*) are a positive distance away from Q(x*), hence
there exists § > 0 such that Q((1+ d)ax*) and Q(x*) contain precisely the same
set of integer points. This choice of § uniquely determines € > 0 for which

Q(z):=(1-2)Q((1+d)z")
has the same n-dimensional volume as Q(x*), and furthermore
Q (z*)NZ™ C Q(x*)NZ".

Assume to the contrary that vol, (Q (*)) > 2™. By Minkowski’s convex body
theorem, there exists z* € Q(x*) N Q' (x*) NZ™ \ {0} by the above inclusion.
Therefore, with respect to the vector space decomposition of R™ into the line
R - x* and the hyperplane 'z = 0, the vector z* decomposes uniquely as
z* = dx* + (z* — Ax*) with X € [0,1] and 2* — Ax* € (1 — ¢) Po. Hence,

IA(z* —dz)| < (1—¢)1.

As PNZ" = {0} and z* # 0, there exists some row a;-'— of A such that a;z* >
b; + 1. Since * € P(A,b), we also have ajT:I:* < bj. Thus, we get
b;+1< a;z* :a;-r ()\a:*)—i—a;r (2" =Ax") <Abj+(1—¢) <b; +1.
This is a contradiction. Hence,
2kn () Ala)
[l

- voly_1 (Po) = vol, (Q (z*)) < 2™

Rearranging yields the desired inequality. ad

Remark 1. Integrality of b, which is the key assumption of this paper, is used
above in the assertion a;-rz* > b; + 1. If b were not integral, then we would only
be able to assert that asz* > [b,], which is not sufficient to complete the proof.

For the proof of Lemma 4 we apply the following classical result of Mahler [13]
(see also [8, Page 177]) on the relationship between the area of a nonempty
compact convex set K C R? and the area of its polar

K°::{azeRQ:miglforallyeK}.
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Lemma 3 (Mahler’s Inequality when n = 2 [13]). Let K C R? be nonempty
compact and convex whose interior contains 0. Then voly (K)vols (K°) > 8.

Lemma 4. Let o € Z™ be non-zero. Suppose P NZ"™ = {0}. Then k1(ar) < 1,
rko(a) < 1 and r3(a) < V2.

Proof. By Lemma 1 we may assume P is full-dimensional. If n = 1, then P (A, b)
is contained in the open interval (—1,1), which immediately implies x;1(a) < 1.
If n = 2, then the polytope Py is an origin-symmetric line segment [—y*, y*],
where y* € R? satisfies " y* = 0 and @ y* = 1 for some j € [m]. Hence

R 2 ||l
voly (Pa) = 2ly"|l, = Wa;'ﬂ'
7
Applying Lemma 2, we get
2 ||l |det (cx a;)|
= <1.
7)< TP Ala) Ala) =

If n = 3, then choose I C [m] with |I| = 2 such that

5 (%)

satisfies |det B| = A. Let A’ denote the last two columns of AB™'. Then
B-P,={0} x Q,

where
Q.= {mERQ:‘A’az| gl}.

We enumerate the rows of A" as al,...,al,. Since Py is a polytope, so is Q.

The polar of @ is the convex hull of the rows of A
Q° :=conv{a; : i€ [m]}.

Let 7 : R? — R? denote the 90° counterclockwise rotation in R2. Observe
that 7 (Q°) C Q. Indeed, for each pair {i,j} C [m], we have

— |det (a} a)| = 9t (@ @i ;)]

! <1.

/)T
|det B -

‘T (a;

!
a;

Hence, by Mahler’s Inequality,
voly (Q) > v/voly (Q) voly (7 (Q°)) = v/voly (Q) voly (Q°) > 2v/2.
We have

det B
vol2 (Q) = ||a|| :
2

vols (Py) -

By Lemma 2, we get
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3 Lifting Proximity Results to Higher Dimensions

The next step is to prove Theorem 2 by showing how proximity results for
low dimensional polytopes can be used to derive proximity results for higher
dimensional polytopes.

Lemma 5. Let z* € R", and let d = dim(S («*)). Let y* € S (z*), let k =
dim S (y*), and fir d € {1,...,k}. There exists a d-face of S (y*) incident to y*
that intersects some (k — d)-face of S (y*) incident to 0.

Proof. Let I C [m] index the components 4 such that a;'—y* # 0. For i € I let
a; =sign (a; y*) - a;. The spindle S (y*) can be written as

S(y*)={weR": Ogdhgajy*vz'efandajmzowgz[}.

The constraints are indexed by the disjoint union fg U I« U I, where Iy and Iy~
denote the two copies of I indexing constraints tight at 0 and at y*, respectively.
Let Jo, J1, ..., J be a sequence of feasible bases of this system, with correspond-
ing basic feasible solutions 0 =y, yM .. 4y = y* such that for each i < r,
the symmetric difference of J;11 and J; is a 2-element subset of Io U I-. We
have |JoN1Iy«| = 0 and |J, NIy~| = k, and |J;41\J;| = 1 for each ¢ < r. It follows
that there must exist some ¢ such that |J, N I+| = k — d. Since we always have
|J; N (Io U I+ )| = k for every choice of ¢, we also get |J, N Io| = d.

The basic feasible solution y© associated to J; is a vertex of the face of
S (y*) obtained by making the constraints of J, N I~ tight. It is also a vertex
of the face of S (y*) obtained by making the constraints of J; N Iy tight. These
faces are contained in a d-face and a (k — d)-face, respectively. O

Lemma 5 will be used to create a path from one vertex of a spindle to another
by traveling over d dimensional faces. In the next result, we apply proximity
results to each d dimensional face that we travel over. This generalizes the proof
of Cook et al., which can be interpreted as walking along edges of a spindle.

Lemma 6. Let o € Z" be non-zero. Let dimP =: d = Z?:o d; where each d; is

a positive integer. Then
k
Ka(o) <300 g Ka, ().

Proof. In this proof, we supress in our notation dependence on a. Let * max-

imize @'z over P. Build a sequence x* =: xj, z,...,x} := 0 of points induc-
tively as follows. Assume ¢ > 0 and x{j,..., ] have been determined already. If
both

i<k and d; < dimS (x]), (5)

then we use Lemma 5 to choose a vertex 7, ; of S (x]) that is incident to both
a d;-dimensional face F; of S (x}) containing x}, as well as a (dim S (x}) — d;)-
dimensional face G; of S (x}) containing 0. Otherwise, if (5) fails, then we set
F; = S () and =, = 0, and we terminate the sequence by setting t =i + 1.
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Let i € {0,...,t—2}. We show x},; # 0. If not, then F; contains both 0 and
x;. But the only face of S (z}) containing 0 and x} is S (x}) itself. One can see
this by observing that the centre of symmetry of the centrally symmetric spindle
S (x}) is 1/2- x}. But this contradicts the fact that G; has positive dimension by
(5). Thus, x;,, is non-zero, which implies

dim S (z5,,) > 1. (6)

Moreover, as both G; and S (¢}, ) are contained in the affine (equivalently,
linear) span of G;, we must have

dimS (z},,) < dim G; = dim S (x}) — d;. (7)
Applying (6) and then (7) sequentially with s € {t — 2,¢ —3,...,0}, we have
1<dimS (z} ;) <dimS (zf) — ' de <d— Y13 ds,

which is to say d = Y2F_ ds > 3200 d. Tt follows that t —1 < k.

Suppose I C [m] indexes linearly independent rows of A such that kg = &7,
so that in particular ker A is the linear span of P. Let i € {0,...,t — 1}. We
have that xf — F; is a face of S (x}) containing 0. Choose an index set I;, where
I C I; C [m], such that the rows of Aj, are linearly independent and ker Aj, is
the linear span of &} — F;. We have

a' (zf —x},) < max_ a'z< max a'z < ki Ap.
ZEmrfFi Zepji
If i <t —1, then since F; is a d;-dimensional face, we have k5, A, < kg, Ar for

i €40,...,t—2}. Otherwise ¢ = t — 1, in which case one of the inequalities in (5)
fails. We have established that ¢ — 1 < k, thus

di—1 > dim S (w’:fl) = dim F;_;. (8)

and hence k1, _, A1, , < Kq,_, Ar. Putting these all together we get

t—1 k

t—1
A1~nd:aTm*: E CXT (Zl!:(*:l::Jrl) < E HIiAIi < Ar- E Kd; - 0O
i=0

1=0 i=0

4 Proof of the Main Theorem

Proof (of Theorem?2). Suppose &* is an optimal vertex of LP(A,b, c). Let z*
be any optimal solution to IP(A,b,c). By LP duality, there exists an optimal
LP basis I* C [m], i.e., x* = A.'b;-, and a vector y € RL that satisfies
¢’ = yTA;-. The polytope P(A,b) := {x € P(A,b) : Apxz > Ap2z*}
contains &* and z* and Ai(A) = Ag(A) for all k € [n]. Any integer vector
w* € P(A,b) \ {z*} is also an optimal solution to IP(A, b, ¢) because c¢'w* =
y' (Apw*) >y (Ap2z*) = ¢ 2%, and Ap-w* > Ap-2z* with at least one of
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the n inequalities satisfied strictly because I* is a basis. Thus, by replacing z*
by an integer vector in P(A,b) \ {z*} finitely many times, we may assume that
P(A,b) N Z" = {z*}. Translating the instance, we may further assume that
z* = 0, so that our objective is now to show [|z*||_ < § - A,—1(A).

Now let s € {—1,1}, let i € {1,2,...,n}, and let o = se;. We have

s} < max o'z =re(a) A(A, ) < kgla) - A,_1(A).

By Lemma 4, k1(a) < 1, so we may assume d > 2. We write d = 3a + 2b,
where a, b are nonnegative integers, and we further specify a = |d/3]. Applying
Lemma 6, then Lemma 4, then the fact d < n, we get

d—3[d/3]

d
< =<
2 -2

ka(a) < ks(@) - a+ ko(a) - b < V2[d/3] +

SE
O

Remark 2. The right hand side above could also be replaced with ? -n+ 1.

5 Proximity in the Strictly A-Modular Case

In this section we assume A = T'B, where T is totally unimodular and B is an
invertible square matrix with |det B| = A, (A). The following lemma is similar
to [14, Lemma 29 and Lemma 30] after linear transformation with B. We say a
nonzero vector & in a lattice A is primitive if kx ¢ A for all k € (0,1).

Lemma 7. Set A := B™'Z" and let ** € A. Then each ray of C(x*) con-
tains a primitive vector in A, and x* can be written as a non-negative integral
combination of those vectors.

Proof. Let I C [m] index a one-dimensional subspace ker A; which contains a
ray of C (x*). Further, let j € [m]\I index another row of A such that Ajy;
is invertible with last row A;. We choose the following scaled vector
ri= A;J{j}en = BilT;J{j}en €C(xz*)Nker Aj. 9)
We have T;J{j}en € Z", so r € A, because T is totally unimodular. The first
claim follows, as the existence of a nonzero lattice vector on a ray implies the
existence of a primitive lattice vector.
For the latter statement we study S (x*). If S (x*) is zero-dimensional, then
x* = 0 and we are done. If S (x*) is one-dimensional, then &* is by construction
an integer multiple of some primitive lattice ray. Hence, we assume that S (x*)
is at least two-dimensional. Choose a vertex v adjacent to 0 which is not *. As
the constraint matrix defining S (x*) is strictly A, (A)-modular, every vertex
of §(x*) is in A, in particular v € A. Thus, v is an integer multiple of some
primitive vector in A. Furthermore, the symmetry of S (z*) implies * —v € A
and is a vertex of S (x*) adjancent to x*. It follows there exists a constraint of
S (x*) tight at * — v and 0 but not *, and this implies that the dimension of
S (z* — v) is strictly smaller than S («*). We may therefore repeat the procedure
with S (z* — v) and so on, and termination is guaranteed when we reach the
origin. g
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Proof (of Theorem3 Part 1). Recall P = P(A,b). Set A := B~'Z", and choose
a vertex x* of P such that ||z*|_ is as large as possible. Every vertex of P is
in A, so £* € A. Lemma 7 yields

t
P Z AT (10)
s=1

where r1,..., 7 € C (x*) denote the primitive vectors in A and Ay, ..., ¢ € Z>o.

Observe that each subsum of the right side in (10) is an element in S (*).
Further, recall that S (x*) C P. Let N := A\; + --- + \;. We choose a sequence
0=2©, 2@ @™ = g* such that

2@ — 20D e {r )

for all i € [N]. Thus, (") € A for i € [N] and all these vectors are pairwise
distinct elements in S (x*). If N > A, (A), then by S (z*) NZ™ = {0} and the
pigeonhole principle there are (¥ and ) for i < j that lie in the same residue
class of A modulo Z"™. Hence, we have the contradiction

0+4£20 —2@ eS@nzr CcPNZ™.

We proceed with N < A, (A) — 1. We have |rq|| < AA";(IX?) for all s € [t] by

Cramer’s rule applied to (9). Altogether, this yields

o £ 30 el £ PP A (4) i {401(4), A0(A)} 1

a

6 A Lower Bound Example

The following construction proves Theorem 3, Part 2. Let § > 3 be an integer.
Fix the matrix

B(k) — (Ilgzl 2) c ann,

where I,,_; denotes the (n — 1) x (n — 1) unit matrix and, for 0 <k <n —1,

B*:=(0,...,0,6 —1,...,6 —1).
k zeros

As a first step, we define the parallelepiped
1,
PBW).={zeR":0<BWax<|d-—n+k
1n—k—1
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for 6 —n +k > 1. Using the fact that the first £ columns of B®~1 are integral,
one can show IP(B(k)) NZ"| = 2*. In order to cut off all non-zero integer points

in P(B™), we define for k > 1 the row vectors

algy=0,..., 1 ,...,0, =6 ,...,—0)

i-th column (k+1)-st column

for each i € [k]. The resulting polytope is
P = P(BW) N {m €R":a] yr<0forallic [k]} .

If k = 0, then P, 0 = P(B®). Let &* denote the only vertex in P(B*)) that
does not share a facet with 0. Further, let A and b be such that P(A, b) = Ps p, k-
Then one can show that

1. " € Pspnr and x* does not share a facet with 0,
2. P&,n,k NZ" = {O},
3. A is strictly é-modular.

We select Ps, n—2 and get
" = 0|, = |z)_,| =0 - 2.
Observe that A,,_1(A) = 0 for Ps,p n—o which proves Part 2 of Theorem 3.

Remark 3. The polytope Psnn—1 does not work as an example since in this
instance, the greatest common divisor of the n-th row of B ("=1) ig §. As a result,
we only obtain the weak proximity bound |z*|, = 1. However, a question
related to the proximity question is to bound ||b||, given that P NZ" = {0}
and all constraints of P are tight. The polytope Ps,,.n—1 yields an example with

I1blloe =0 — 1.
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Abstract. We propose a new method for generating cuts valid for the
epigraph of a function of binary variables. The proposed cuts are disjunc-
tive cuts defined by many disjunctive terms obtained by enumerating a
subset I of the binary variables. We show that by restricting the sup-
port of the cut to the same set of variables I, a cut can be obtained
by solving a linear program with 21l constraints. While this limits the
size of the set I used to define the multi-term disjunction, the procedure
enables generation of multi-term disjunctive cuts using far more terms
than existing approaches. Experience on three MILP problems with block
diagonal structure using || up to size 10 indicates the sparse cuts can
often close nearly as much gap as the multi-term disjunctive cuts without
this restriction and in a fraction of the time.

Keywords: Disjunctive cuts - Epigraph - Sparsity - Valid inequalities

1 Introduction

We explore techniques for generating valid inequalities (cuts) for the epigraph
E of a function @ : X — R over binary variables:

E={(0,2) cRx X :0>Q(z)}, (1)

where X C {0,1}". An important application motivating this study is stochastic
mixed-integer programming (SMIP) [1], or more generally mixed-integer linear
programs (MILPs) with block diagonal structures. Such MILPs take the follow-
ing form

N
min ¢’z + Z(dk)Tyk
= ©)
st TFe + WhyF = hF 4 >0, ke [NV],
xeX C{0,1}™
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In the case of two-stage SMIPs, the binary variables = represent first-stage deci-
sions, IV is the number of scenarios representing the possible outcomes, and
for each k € [N] := {1,..., N}, the continuous decision variables y* represent
recourse actions taken in response to observing the data (dk, Tk WF, h”“) in sce-
nario k. A common approach to solving such problems is Benders decomposition,
which works with a reformulation of the form

N
riien{ch—l—;Gk:@szk(x) for k € [N], xeX}, (3)

where Qp(x) = min, {(d*)Ty : T*z+Wky = h* y > 0} for k € [N], z € X. The
epigraph of @y of the form (1) shows up as a substructure in (3). In Benders
decomposition, valid inequalities (Benders cuts) for this epigraph are derived via
linear programming (LP) duality, but these are not generally sufficient to define
the convex hull of the epigraph, thus motivating the need to derive stronger
valid inequalities for sets of this form. This topic has been extensively studied
both theoretically and computationally; see [15,23,25,30,34,37-39,41] as just a
sample of the literature. Aside from SMIPs, this epigraph substructure appears
in a variety of other optimization problems (e.g., [10,32,40]).

We study a technique for generating inequalities for F based on a disjunc-
tive relaxation having many terms, specifically obtained by enumerating all 2!/
feasible values for a subset I of the binary variables. Disjunctive programming
has been a central tool in MILP since its origin in 1970s [4,5]. A disjunction is
a union of sets, and if the feasible region of an MILP is contained within such
a union, inequalities valid for the disjunction are valid for the MILP, and are
referred to as disjunctive cuts. Most disjunctive cuts used in practice are based
on two disjunctive terms, e.g., split cuts [16] and lift-and-project cuts [6-8,13].
While there has been significant work on classes of cuts that are derived from
multiple-term disjunctions [2,9,18,21,31], the current methods remain focused
on disjunctions with a relatively small number of terms. Perregaard and Balas
[36] considered an iterative scheme for generating disjunctive cuts from many
terms (see Sect.2), but the approach remains computationally demanding.

Our proposal for generating multi-term disjunctive cuts more efficiently is
based on restricting the support of the generated cut to the index set I, the
same set used to define the disjunctive terms. We refer to such cuts as I-sparse
cuts. Thus, our approach aligns with the spirit of generation of sparse cuts,
which is motivated by the benefit of sparse constraints in terms of solution time
of the LP relaxations and recent studies that have investigated the theoretical
strength of sparse cuts [20,22,23]. Our use of sparsity is with respect to the
generated cut, which differentiates it from Fukasawa et al. [24] who empirically
show that split cuts derived from (two-term) split disjunctions defined by a
sparse integer vector can close the majority of the split closure gap. In Sect. 2 we
show that our proposed sparsity restriction enables the generation of a multi-
term disjunctive cut by solving a single subproblem per term, and then solving a
single cut-generating LP. Thus, while this remains a computationally demanding
cut generation process, we find empirically that it is feasible to use many more
disjunctive terms than have previously been considered. In Sect. 3, we propose
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two rules for selecting the support I to generate I-sparse inequalities. In Sect. 4,
we present results of a computational study using the I-sparse inequalities based
on up to 20 disjunctive terms on three test problems. We find that in many cases
the I-sparse cuts close nearly as much gap as multi-term disjunctive cuts without
the sparsity restriction, and can be generated orders of magnitude faster.

2 Sparse Multi-term 0-1 Disjunctive Cuts

We study the problem of generating valid inequalities for the epigraph E defined
in (1). Without loss of generality, we assume the domain X of the function @ is
full-dimensional. (Otherwise, we can project out certain variables to make the
set full-dimensional after projection.) Let R(X) be a (continuous) relaxation of
X with R(X)N{0,1}" = X. We assume @ has a real-valued extended definition
on R(X). We require that minimizing @ over R(X) be a problem that can be
efficiently solved. E.g., this would be the case if R(X) and Q over R(X) are
closed and convex. If this is not the case, one can replace @ with a relaxation
Q satisfying Q(z) < Q(z) for all 2 € X. For example, in the case of an SMIP
having integer second-stage decisions, the recourse function Q(x) is nonconvex
and expensive to evaluate, in which case one may use instead Q defined using
an LP relaxation of the recourse problem. The strength of the resulting cuts will
naturally depend on the quality of the relaxation @, which could for example be
improved using standard MILP valid inequalities.

We let B := {(§,7) e Rx R(X) : 6 > Q(z)} denote the epigraph of Q over
R(X) and let I be a nonempty subset of [n]. We derive valid inequalities for E
by finding valid inequalities for the following multi-term disjunctive relaxation

of E:
Ef = |J Ef(0), (4)
XE{O,I}I

where EE(x) := {(0,2) € E® : 1 = x}, o1 refers to the subvector of x with
indices I, and {0,1}! = {z; : 2; € {0,1},i € I}. We call the relaxation EF
of E a multi-term 0-1 disjunction, and any cut valid for E¥ a multi-term 0-1
disjunctive cut.

2.1 Generating Multi-term 0-1 Disjunctive Cuts
By (4), an inequality of the form mof + 77x > 7 is valid for EF if and only if

Helin {7r09 +rlz:(0,x) € Eﬁ(x)} > 7 for all x € {0,1} . (5)

Therefore, to separate a point (é,:?:) from EZ in principle one can solve the
following problem:

min 7wl +77E —1n (6a)
0,751
s.t. mof + 7w >, ¥(x,0) € Ef (x),x € {0,1}, (6b)

o Z 07 ‘|(7T077T)H1 S 1a (66)
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where (6¢) is just one example of a normalization constraint that can be used
to ensure the separation has an optimal solution. The iterative row generating
algorithm of Perregaard and Balas [36] can be used for solving (6) by starting
with a relaxation defined by a small subset of the constraints (6b) and adding
missing constraints (corresponding to extreme points of EE(x)) that are violated
by the current relaxation solution. Given coefficients of candidate cut (o, 7, 1)
obtained from this relaxation, determining if there is a violated constraint in
(6b) is accomplished by solving the problem

min{7of+77z : (x,0) € EF(x)} = min{#yQ(z)+7Tz:z € R(X),z; = x} (7)

for each x € {0,1}!. While this approach is guaranteed to yield a valid inequality
for EE that cuts off (é, %) whenever one exists, it is computationally demanding
when the number of terms is larger than just a few. In particular, the scalability
of the algorithm is limited by the multiplied effect of (a) the size of {0,1}{,
and (b) the potential need to solve (7) multiple times for each x € {0,1}!.
Numerical experiments in [36] generate valid inequalities for MILPs using only
up to 16 disjunctive terms. In this work, we propose to restrict attention to cuts
supported on I, which we find eliminates the effect of (b).

2.2 I-Sparse Inequalities

We next explore how restricting the support of the generated cut can be used to
accelerate the generation of multi-term 0-1 disjunction cuts for EF for a fixed I.

Definition 1. Let I C [n]. We say an inequality 8 > pTx +n is an I-sparse
inequality(/cut) for E if the following two conditions hold:

1. 0 > uTx +n is valid for BE;
2. pu; =0 foralli¢l.

The following proposition characterizes I-sparse inequalities.

Proposition 2. An inequality 0 > p 'z +n with p; = 0 for all i ¢ I is an
I-sparse inequality for E if and only if

ZMiXi +n< Vﬁ(X)a Vx € {0, 1}17 (8)
icl
where for each x € {0,1}1,

vE(x) :=min{Q(z) : x € R(X),z; = x}. (9)

Observe that the problem (9) has a similar form as (7) which is used when
applying the Perregaard and Balas algorithm [36] to solve (6).

The following result follows from Proposition 2 and provides a condition
under which every nontrivial valid inequality for E with coefficients supported
on the index set I is an I-sparse inequality.
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Corollary 3. If X = {0,1}", R(X) = [0,1]™ and Q is componentwise mono-
tonically increasing or decreasing on R(X), then an inequality 6 > u”x +n with
wi =0 for alli ¢ I is valid for E if and only if it is an I-sparse inequality.

Based on Proposition 2, for a fixed I, finding an [-sparse inequality that is
violated by a point (6, #) if one exists can be done by solving the LP

g:(I) = max{z,uifci +7n: mei +n < vE(x), x €0, 1}1}. (10)
i€l i€l

Specifically, the optimal solution of (10) defines an inequality that cuts off (é, z)
if and only if gz (I) > 6. When it is easy to determine whether or not a vector
is in proj;(X), we can replace x € {0,1}! in (10) with x € proj,;(X) since
vE(x) = +oo if x ¢ proj;(X). Since Q is finite valued in R(X), vE(x) € R for
X € proj;(X). When (&;)ier € conv(proj;(X)), the LP (10) is guaranteed to
have an optimal solution since X being full-dimensional implies that proj;(X)
is full-dimensional. When (#;)ic; ¢ conv(proj; (X)), (8,#) can be cut off by an
inequality separating (&;);es from proj;(X).

The main work to generate an I-sparse inequality is evaluating vF(y) by
solving (9) for each y € {0,1}, and then solving the LP (10) once. Note that
(10) has |I] 4+ 1 variables in contrast to n + 2 variables in the problem (6) used
in the Perregaard and Balas (PB) [36] algorithm, and requires solving at most
271 subproblems of the form (9), in contrast to the PB algorithm which solves
211 subproblems of this form in multiple iterations until convergence.

2.3 Accelerating the Evaluation of v (.)

Evaluating v (x) for all y € {0,1}! is the most significant computational com-
ponent of generating an I-sparse inequality. We thus discuss techniques to accel-
erate this evaluation, focusing on our motivating example of MILPs with block
diagonal structures (2). In this context, assume R(X) = {z : Az < b} is a
polyhedral relaxation of X and for a fixed k € [N] let Qi (z) = min,{(d*)Ty :
Tkx +Wky = h* y >0} and assume it is finite valued for all z € R(X). In this
case, when generating an I-sparse inequality for the set By = {(0x,z) € R x X :
0r > Qr(z)} the evaluation of vE(y) for x € {0,1}! can be formulated as the
following LP

vi'(x) = min{(d")"y" : Tra+ Why = B%, y > 0, Av < b, ar=x}. (1)

A first simple idea for accelerating the solution of (11) for all x € {0,1}! is to
exploit the possibility to warm-start these LPs (see, e.g., [11] for background).
LP solvers like Gurobi [29] and CPLEX [19] automatically implement a simplex
warm start when only variable bounds are changed in a LP. Thus, solving the
sequence of problems (11) for x € {0,1}! by making changes to variable bounds
implied by the constraints x; = x will naturally benefit from these warm-start
capabilities. This motivates a careful selection of the sequence these problems
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are solved in. For example, by following the sequence defined by a Gray code
[26], at most one variable bound will change from one subproblem to the next.

We do not explore this in our computational experiments, but another pos-
sibility for reducing the time required for evaluating v (y) is to use a simpler
to evaluate lower bound on Q. E.g., in the context of a Benders decomposition
approach for solving MILPs with block diagonal structure, one could obtain a
lower bound on v () by solving a problem of the form:

R (x) = min{Qp(2) : # € R(X),z; = x}

where Q, is the current piecewise-linear convex lower bound of Qy defined by
Benders cuts. These lower bounds could then be used in (10) which would yield
a valid but potentially weaker inequality. This inequality could then be improved
by exactly evaluating v (y) for the x that correspond to binding constraints in
the solution of (10), and then re-solving (10) with these improved values.

3 Two Selection Rules for the Support I

We now discuss techniques for choosing the set I when generating I-sparse cuts.
Given a point (é, %), the goal is to select I in order to maximize the cut violation
9z(I) (defined in (10)). Since the complexity of generating these cuts grows
exponentially with |I| we investigate techniques that choose I satisfying |I| < K
for some fixed (small) integer K. We describe two selection rules that are derived
from two different approximations of Q).

3.1 A Greedy Rule Based on a Monotone Submodular
Approximation

The problem of choosing I that maximizes gz (I) is a set function optimization
problem. For notational convenience, we do not distinguish between a set func-
tion and a function with binary variables, i.e., we interchangeably use f(A) for
f(xa) for all A C [n] where x4 € {0,1}" is the indicator vector of A. One par-
ticular class of set functions satisfying good theoretical properties is monotone
submodular functions [27]. Given & € [0, 1], we can show that the cut violation
function gz (I) is monotone submodular in 7 if @ is monotone submodular.

Proposition 4. Assume Q is monotone submodular, X = {0,1}" and R(X) =
[0,1]™. Then the cut violation function gz(I) is also monotone submodular in I.

Although maximizing a monotone submodular function subject to a cardi-
nality constraint is NP-hard [17] in general, the well-known greedy algorithm
of Nemhauser et al. [33] attains a good approximation ratio to this problem.
However, directly applying a greedy algorithm for choosing I may not be a
good choice because (i) @ is not necessarily monotone submodular, and (ii)
the greedy algorithm requires evaluating g;(-) many times, which is computa-
tionally expensive. Therefore, we seek alternatives to this approach by applying
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the greedy algorithm to a different cut violation function g; associated with an
approximation Q : {0,1}" — R of the function Q. We choose Q (and hence §;)
such that Q is monotone and submodular and the cut violation §;(-) can be
evaluated much more efficiently than g;(-).

To construct such an approximation, we first state a result for convexifying
a special set, studied in [3,28].

Theorem 5 ([3,28]). Let
F={0,2) e Rx{0,1}":0 > ax;+b, i=1,...,n} (12)

with 0 < a1 <...<a,. Then

conv(F) = {(0,z) € R x [0,1]" : 0 > a;, x;, + Z(aik — a4y _, )%, + b,
k=2
for all subsequences (iy)pey of [n] such that 1 < iy < ... <y, =n}.

The inequalities defining F' have only one z; variable on the right-hand side
and share the same constant term b. The set F' defines the epigraph of a mono-
tone submodular function max;c(,j{a;z; + b}. Although this characterization of
the convex hull consists of exponentially many inequalities, it has been shown
that the corresponding separation can be solved in polynomial time [3,28]. Such
separation results can be easily extended for separating from valid inequalities
for F' that are supported on 1.

We next describe how to construct an approximation @ of Q of the form
max;ei,{aiz; + b}. The first step is to construct an underestimate of @ by
deriving the I-sparse inequalities with I = {i} for each ¢ € [n]. The polyhedron
defined by (8) has a unique extreme point (Vﬁ:}(l) - Z/g}(()), yﬁ} (0)) when I =
{3}, which corresponds to a valid inequality of E:

0> (v (1) = v (0))z: + ]} (0). (13)

For i € [n], LB, := min{yﬁ} (0), uﬁ}(l)} is a lower bound of @ on {0,1}", and so
is LB* := max;¢[,) LB;. Therefore, we can strengthen (13) to be 6 > (f/g}(l) -
74 (0))zi + (% (0), where o}, (k) = max{v{,(k),LB"} for k € {0,1}. After
complementing the variables z; < 1 — x; for i € [n] with Dg}(l) - ﬁﬁ}(O) <0,
we obtain inequalities of the form 6 > a;x; + b for i € [n] with a > 0, which are
valid for (reflected) E. Assume without loss of generality that 0 < a; < ... < ay.
We can then apply the greedy algorithm to generate I using g;, where the

evaluation of gz(-) is similar to the separation algorithm proposed in [28] (see
[14] for details).

3.2 A Cutting-Plane Approximation Rule

We next describe an alternative selection rule for I that is based on a single
cutting-plane approximation of ). By Corollary 3, the following result charac-
terizes the most violated I-sparse inequality for a function on {0,1}" defined by
a single cutting plane.
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Proposition 6. Let
Flap) ={(0,2) e Rx {0,1}": 0 > a" 2 + b}.

Given (é,zfs) € R x [0,1]", the mazimum violation of a valid inequality of Fqp)
of the form 6 > %", pix; +n by 0,%) is — Soia; + Y ier(aidi+a;)+b— 0,

where a; = max{—a;,0}.

By Proposition 6, the value a;&; +a; in some sense measures the importance
of variable z; for the cutting plane 6 > a”x + b at 2. We use this intuition
to construct a selection rule. We first pick a cutting plane 6 > a”x + b that
approximates the epigraph of @ at . Then indices i € [n] are added to the set T
in decreasing order of the value a;%; +a; until |I| = K. Note that a;&;+a; >0
for any a; € R and #; € [0, 1]. If the cutting plane approximation 6§ > a7z + b is
sparse (i.e., |[{i € [n] : a; # 0}| is small), it is possible that |{i € [n] : a;&; +a; >
0}| < K. In such cases, we first add those indices with positive a;%; + a; values
into I, then pick another cutting plane and repeat the procedure until |I| = K. A
potential advantage of this selection rule is that it does not require any evaluation
of g; and therefore can be implemented efficiently. And unlike the selection rule
in Sect. 3.1, this selection rule can take advantage of the availability of dense
cutting plane approximations. The potential limitation, of course, is the reliance
on the single cutting-plane approximation.

The final detail we need to specify for this approach is how to choose the
cutting-plane approximation(s). Assume a collection A of cutting planes of the
form 6 > aTx + b is available. A natural choice for A is the set of cutting
planes (e.g., Benders cuts) that have been added in the algorithm so far for
approximating E. A natural ordering for choosing which cutting plane in A
to use first is based on the tightness of the cutting plane at the point . The
inequality in A with coefficients (a,b) that yield the highest a2 + b value is
chosen first, etc.

4 Computational Results

To provide insight into the potential of our method, we conduct numerical exper-
iments on three MILP problems with block diagonal structures (2):

— The stochastic network interdiction (SNIP) problem [35]: n = 320 for these
instances.

— The latent-class logit assortment (LLA) problem [32]: n = 500 for these
instances.

— A stochastic version of the capacitated facility location (CAP) problem [12]:
n ranges between 25 and 50 for these instances.

For the first two test problems, each block of their MILP formulations is sparse
in variables x, but in distinct ways. For the SNIP problem, we observe that when
applying Benders decomposition to solve its LP relaxation the Benders cuts are
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mostly very sparse in z. In the LLA problem each block of the MILP formulation
only uses a small portion (between 12 and 20) of the x variables, making the
use of sparse cuts very natural for this problem. Neither of these two sparsity
properties holds for the CAP problem. See [14] for details of the test instances.

The constraints x € X in all our test problems consist of x being binary
and either a lower-bounding or upper-bounding cardinality constraint on the
number of nonzero x; variables. Therefore, we use R(X) = conv(X) for all our
tests instances. We use the direct LP relaxation as @y for each block of the
MILP as described in Sect.2.3. For testing the effectiveness of the generated
cuts, we add I-sparse cuts on top of the LP relaxation that is first solved by
Benders decomposition. The cut generating process is described in Algorithm 1.
We consider the following variants of Algorithm 1:

— Greedy-K: Use the greedy rule described in Sect. 3.1 for generating the sup-
port I of size up to K;

— Cutpl-K: Use the cutting plane approximation rule described in Sect. 3.2 for
generating the support I of size up to K.

For Cutpl-K, we use the collection of all the Benders cuts added for block k
in line 1 of Algorithm 1 as A for Q. To improve the efficiency of the algorithm,
when applying Greedy-K, we only select I from indices for which the corre-
sponding variables have a nonzero coefficient in at least one of the Benders cuts
for block k. This restriction is also implicitly implemented when using Cutpl-K
since indices ¢ with a; = 0 for all (a,b) € A can never be selected by Cutpl-K. It
significantly improves the efficiency of Greedy-K on SNIP instances (by skipping
the generation of {i}-sparse cuts for most i € [n]).

To visually compare the performance of I-sparse cuts across multiple test
instances, we present results in the form of an integrality-gap-closed profile. Each
curve in such a profile corresponds to a particular selection rule for I and size
limit K, and its value at time ¢ represents the average (over the set of instances
for that problem class) integrality gap closed by time ¢, where the integrality gap
closed at time ¢ is calculated as (zg(t) — zrp)/(2* — zLp) x 100%, where zg(t) is
the bound obtained by the algorithm at time ¢, z; p is the basic LP relaxation
bound, and z* is the optimal value.

The results for the SNIP, LLA, and CAP test problems are given in Figs. 1,
2, and 3, respectively, where in each case we vary K € {4,7,10} and compare
the Greedy-K and Cutpl-K selection rules. In each case we find that the two
different selection rules have similar trends in gap closed over time. The Cutpl-K
rule has better performance on the SNIP test instances, whereas Greedy-K has
significantly better performance on the LLA and CAP instances when K = 4
or K = 7. In terms of the effect of K, as expected smaller values of K yield
quicker initial gap improvement, whereas larger values of K require more time
to close the gap but eventually lead to more gap closed. For the SNIP instances
we find that using K = 4 already closes most of the gap, and does so much
more quickly than with K = 7 or K = 10. For the LLA instances we find that
increasing K leads to more gap closed, although significant gap is already closed
with K = 4, and the additional gap closed using K = 10 is marginal, while
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Algorithm 1: Generating I-sparse cuts

1 Initialize a master LP using Benders decomposition;

2 repeat

3 Solve the master LP to obtain solution (6, Z);

4 for block k € [N] do

5 Choose a support I;

6 Generate an I-sparse cut by solving (10);

7 Add the I-sparse cut to the master LP if it is violated by (ék, z);
8 end

9 until No violated cut can be generated or time limit is reached;
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Fig. 1. Integrality-gap-closed profiles for SNIP instances obtained by Greedy-K (solid)
and Cutpl-K (dashed) for K € {4,7,10}

requiring significantly more time. For the CAP instances, we find that the I-
sparse cuts close significantly less gap than the other test problems, although
the gap closed is still significant. Large values of K yield significantly more gap
closed on the CAP instances, but also requires considerably longer running time.

We observe that the number of I-sparse cuts added by the algorithm does not
increase when K increases. Thus, the improvement in the bound is attributable
to stronger cuts rather than an increase in the number of cuts added.

As a final experiment, we compare the I-sparse cuts with the multi-term 0-1
disjunctive cuts without the sparsity restriction, but generated from the same
sets I, where the cuts are generated using the Perregaard and Balas (PB) [306]
approach. Our interest in this comparison is to demonstrate the potential time
reductions from using the I-sparse cuts and to estimate the extent to which
the sparsity restriction degrades the quality of the relaxation. We conduct this
experiment only on the CAP test instances, since we have already seen that
the I-sparse cuts are sufficient to close most of the gap in the SNIP and LLA
instances, and thus there is little potential to close more gap when eliminating
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Fig. 3. Integrality-gap-closed profiles for CAP instances obtained by Greedy-K (solid)
and Cutpl-K (dashed) for K € {4,7,10}

the sparsity restriction. We set a 24-h time limit for the PB algorithm. For both
the I-sparse and PB cuts, we use Greedy-K as the rule for selecting the set I to
define the multi-term disjunction.

Figure4 displays the integrality gap closed over time for two specific CAP
instances, one for which I-sparse cuts were able to close a significant portion
of the gap (CAP101), and one for which they were not (CAP111). The figures
on the left display results for both the I-sparse cuts (solid lines) and PB cuts
(dashed lines), with the time-scale (z-axis) determined by the time required
to generate all I-sparse cuts for the largest value of K. From these figures we
observe that for any value of K, within this time frame the [-sparse cuts close
significantly more gap than the PB cuts. To estimate the potential for PB cuts
to eventually close more gap, we show the gap closed by the PB cuts over the
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Fig. 4. Integrality gap closed by [-sparse cuts and cuts generated by the PB algorithm
on instances CAP101 (top) and CAP111 (bottom)

full 24-h time limit in the figures on the right. For CAP101 we find that the PB
cuts do not close more gap than the I-sparse cuts, suggesting that the sparsity
restriction is not significantly degrading the strength of the cuts in this case.
On the other hand, for CAP111, we find that when given enough time the PB
cuts can close significantly more gap, as seen particularly for the K = 4 results,
although requiring far more time to do so. For both CAP instances, we observe
that most of the generated PB cuts are as sparse as the I-sparse cuts in the
first few iterations but become significantly denser (e.g., with non-zeros on more
than half the variables) in later iterations.

5 Future Directions

A natural idea inspired by our computational results is to adaptively choose the
size K of the set I when generating I-sparse cuts. While not presented here,
the proposed approach for generating I-sparse inequalities can also be used to
improve the coefficients on a sparse subset of variables for a given valid inequality
for E. It would be interesting to explore this idea further.
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Abstract. In the non-uniform sparsest cut problem, we are given a sup-
ply graph G and a demand graph D, both with the same set of nodes
V. The goal is to find a cut of V' that minimizes the ratio of the total
capacity on the edges of G crossing the cut over the total demand of
the crossing edges of D. In this work, we study the non-uniform sparsest
cut problem for supply graphs with bounded treewidth k. For this case,
Gupta, Talwar and Witmer [STOC 2013] obtained a 2-approximation
with polynomial running time for fixed k£, and the question of whether
there exists a c-approximation algorithm for a constant ¢ independent
of k, that runs in FPT time, remained open. We answer this question
in the affirmative. We design a 2-approximation algorithm for the non-
uniform sparsest cut with bounded treewidth supply graphs that runs
in FPT time, when parameterized by the treewidth. Our algorithm is
based on rounding the optimal solution of a linear programming relax-
ation inspired by the Sherali-Adams hierarchy. In contrast to the clas-
sic Sherali-Adams approach, we construct a relaxation driven by a tree
decomposition of the supply graph by including a carefully chosen set
of lifting variables and constraints to encode information of subsets of
nodes with super-constant size, and at the same time we have a suffi-
ciently small linear program that can be solved in FPT time.

Keywords: Sparsest Cut - Linear Programming - Approximation
Algorithms

1 Introduction

In the non-uniform sparsest cut problem, we are given two weighted graphs G
and D on the same set of nodes V, such that G = (V, Eg) is the so-called
supply graph, and D = (V, Ep) is the so-called demand graph. For every edge
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e € Eg we have a positive integer weight cap(e) called capacity, and for every
edge e € Ep we have a positive integer weight dem(e) called the demand. An
instance 7 is given by a tuple (G, D, cap,dem) and we denote by |Z| the encoding
length of an instance Z. The goal is to compute a non-empty subset of nodes
S C V that minimizes

Zeeag(S) cap(e)

ZeeaD(S) dem(e)’

where 0g(S) ={e € Eg:lenS| =1} and 6p(S) ={e € Ep : [en S| = 1}. Since
this problem is NP-hard [25], the focus has been on the design of approximation
algorithms. In this line of work, Agrawal, Klein, Rao and Ravi [19,20] took the
first major step by describing a O(log D log C')-approximation algorithm, where
D is the total sum of the demands and C is the total sum of the capacities.
Currently, the best approximation factor is O(y/lognloglogn) due to Arora,
Lee and Naor [2]. The uniform version of the problem, where the demand graph
is unweighted and complete, has received a lot of attention through the years.
The best bound for this problem is slightly better: O(y/logn) [3].

The non-uniform sparsest cut problem is hard to approximate within a con-
stant factor, for any constant, under the unique games conjecture [9,17,18].
Therefore, the problem has also been studied under the assumption that the
supply graph belongs to a specific family of graphs. Most notable examples
include planar graphs, graph excluding a fixed minor, and bounded treewidth
graphs. In this paper, we focus on the latter (see Sect.1.1 for further related
work on minor-closed families).

For inputs to the problem where the supply graph has treewidth at most k,
Chlamtac, Krauthgamer and Raghavendra [11] designed a C(k)-approximation
algorithm that runs in time 20%)|Z |O(1), where C' is a double exponential func-
tion of k. Later, Gupta, Talwar and Witmer designed a 2-approximation algo-
rithm that runs in time |Z|9%*) [17]. However, these two results are only com-
plementary: Chlamtac, Krauthgamer and Raghavendra’s algorithm is Fixed-
Parameter Tractable (FPT) in the treewidth k of the supply graph, (that is,
F(K)|Z)°M time for some computable function f), while the algorithm of Gupta,
Talwar and Witmer is not. The approximation factor achieved by Gupta, Tal-
war and Witmer is independent of k, and furthermore, they show that assuming
the unique games conjecture, there is no (2 — ¢)-approximation algorithm for
any € > 0 on graphs with constant treewidth and that there is no 1.138 — ¢
approximation algorithm for treewidth 2 graphs unless P = NP. This left open
the question of whether there exists a 2-approximation algorithm that runs in
FPT time, when parameterized by the treewidth. We answer this question in the
affirmative and show the following result.

¢(5) =

Theorem 1. There is an algorithm that computes a 2-approximation for every
instance T = (G, D, cap,dem) of the non-uniform sparsest cut problem in time

22o(k) |I‘O(1),

where k is the treewidth of the supply graph G.
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As a corollary, and following the argumentation of Gupta et al. [17], for treewidth
k graphs our result implies the existence of a 2-approximation for the minimum-
distortion ¢; embedding problem, with 22°|Z|9() running time.

The results obtained in the predecessor papers [11,17] were based on round-
ing certain linear programs obtained through the Sherali-Adams lift & project
hierarchy [27]. Our approximation algorithm is also based on rounding a linear
program with a fractional objective given by the non-uniform sparsest cut value,
but we construct this linear program in a different way, with the goal of obtain-
ing a linear program of smaller size, but sufficiently strong in terms of integrality
gap. If we followed the classic Sherali-Adams approach, the relaxation of level
¢ would be constructed by using a variable encoding the value of any subset of
the original variables up to size £, and it would take n©® time to solve this
relaxation, where n is the number of nodes in the graph. In particular, solving a
relaxation of level ©(k) would take nP®) time, which in principle rules out the
possibility of achieving FPT running time by applying directly this approach.
In order to overcome this problem, we construct a linear programming relax-
ation driven by a tree decomposition of the supply graph G, where the variables
are carefully chosen with the goal of encoding information of subsets of nodes
with super-constant size, and at the same time the number of variables and con-
straints is sufficiently small so we can solve the relaxation in FPT time. We show
that the relaxation is strong enough to get a 2-approximation by rounding the
optimal fractional solution. The construction of our relaxation and the analysis
of our algorithm can be found in Sect. 3.

1.1 Related Work

Despite the difficulties in approximating the non-uniform sparsest cut prob-
lem in general graphs, there are several other results for restricted families of
graphs. The case in which G is planar has received a lot of attention. Quite
recently, Cohen-Addad, Gupta, Klein and Li [12] showed the existence of a quasi-
polynomial time (2+¢)-approximation for the non-uniform sparsest cut problem
in the planar case. To get this result they combine a patching lemma approach
with linear programming techniques. We remark that for the planar case there is
no polynomial time 1/(0.878 + ¢) ~ (1.139 — ¢)-approximation algorithm under
the unique games conjecture [17].

Other families with constant factor approximation algorithms are outerplanar
graphs [26], series-parallel [10,16,21], k-outerplanar graphs [9], graphs obtained
by 2-sums of K, [7] and graphs with constant pathwidth [22]. The impact of
the treewidth parameter has also been studied in the context of polynomial
optimization [4]. Finally, we mention that the Sherali-Adams hierarchy has been
useful to design algorithms in other minor-free and bounded treewidth graph
problems, including independent set and vertex cover [5,23], and also in several
recent results on scheduling and clustering [1,14,15,24,28].

1 A full version of this article is available in Arxiv and can be found in [13].
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Very recently and independent of our work, Chalermsook et al. [8] obtained
a O(k?)-approximation algorithm for sparsest cut in treewidth k graphs, with
running time 2°%) . poly(n) and, for arbitrary ¢ > 0, an O(1/e2)-approximation
algorithm with running time 20k /e) - poly(n). Observe that these results are
incomparable with our result: they obtain an asymptotically lower running time,
whereas the obtained (constant) approximation ratio is considerably larger than
2. Similar to our result, they build on the techniques from [11,17]. However, their
approach is based on a new measure for tree decompositions which they call the
combinatorial diameter.

2 Preliminaries: Tree Decompositions

A tree decomposition of a graph G = (V, E) is a pair (X, 7T ) where T = (X, E1)
is a tree and X is a collection of subsets of nodes in V called bags. Each bag
is a node in the tree 7. Furthermore, the pair (X,7) satisfies the following
conditions.

(1) Every node in V is in at least one bag, that is, Uxcx X = V.
(2) For every edge {u,v} € E there exists a bag X € X such that {u,v} C X.
(3) For every node u € V' the bags containing u induce a subtree of 7.

The width of the tree decomposition (X', 7) corresponds to the size of the largest
bag in the tree decomposition, minus one. The treewidth of G is the minimum
possible width of a tree decomposition for G. We typically consider the tree 7°
to be rooted, and we denote its root by R. We denote by depth(7) the depth of
the tree 7 and we say that a bag X is at level £ if the distance from the root R
to X in the tree 7 is equal to £. We denote by u(X) the parent of X in the tree
7. The intersection between a non-root bag X and the parent bag, u(X)N X,
is the called the adhesion of the bag X. We say that a bag Y is a descendant of
X if X #Y and the bag X belongs to the unique path in 7 from Y to the root,
and in this case we say that X is an ancestor of Y.

3 The LP Relaxation and the Rounding Algorithm

Our algorithm is based on rounding the optimal solution of a linear programming
relaxation for the non-uniform sparsest cut problem. In Sect. 3.1 we provide the
construction of our linear programming relaxation and in Sect. 3.2 we provide
the rounding algorithm and the proof of Theorem 1. In the following lemma
we show the existence of a tree structure that we use to construct the linear
program. The proof of this lemma can be found in the full version of the article
[13].

Lemma 1. Let G be a graph with treewidth k and let ¢ be a positive integer.
Then, there exists a tree decomposition (¥, E) of G such that the following holds:

(a) The width of (¥,E) is O(2°k) and depth(£) € O(log(n)/f).
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(b) For every non-root bag Y € Y, the size of the adhesion of Y is O(k).
The decomposition (Y, E) can be found in 206", time.

Definition 1. Given a graph G, we say that a tree decomposition © = (Y, )
satisfying properties (a)-(b) is a (k,£)-decomposition of G.

Given a bag Y € ), we denote by Py the subset of bags that belong to the
path from Y to the root R in the tree £. We denote by Jy the adhesion of Y.
Furthermore, let Vg =U ZePY Jz, and for every pair of non-root bags Y, Z €

Y let So(Y,Z) be the power set of (Y UVY) U (Z U VE). Finally, let Sg =
UY,ZEJJ So(Y,Z). Observe that for every bag Y € Y, the size of Y U VY is
O(2'k + klog(n)/0).

3.1 The LP Relaxation

Consider a positive integer ¢ and an instance (G, D,cap,dem) where G has
treewidth k. Let © = (), &) be a (k, £)-decomposition of the supply graph G.
In what follows we describe our LP relaxation, inspired by the Sherali-Adams
hierarchy [27] and the predecessor works [11,17]. In this linear program there
are two types of variables. The variable x(S5,T), with S € Sg and T C S, indi-
cates that the cut solution C satisfies that C'N.S = T'. The variable y({u,v}) for
u,v € V with u # v, indicates whether the nodes v and v fall in different sides of
the cut. For notation simplicity, we sometimes denote the union between a set A
and a singleton {a} by A + a. Consider the following linear fractional program:

. > eene c@p(e)y(e)
o ZeeED dem(e)y(e S

st z({u,v}u) +zx({u,v},v)) =y({u,v}) Yu,v €V with u # v, (2)
1 VS € So, (3)

z(S,A) >0 VS € So and A C S, (4)

_ VS C V,u ¢ S such that
(S +u,A) +2(S+u,A+u) =x(S,A) StucSeand ACS. (5)

The feasible region of this linear program is a polytope encoding the cuts
in V. Indeed, given any cut C, define U; = 1 if j € C and zero otherwise.
For every S € S and A C S, define x(5,A) = [[;c4 Uj [l ;e 4(1 — U;) and
y({u,v}) = Uu(1 — U,) + Uy(1 — U,). The solution (x,y) satisfies conditions
(2)—(5). We remark that (5) is valid for every cut since given a subset S and
a node u ¢ S, the intersection between S + u and a cut C' is either C' N S or
(C'NS) 4 u, which are the two possibilities in the left hand side of (5). Since for
every bag Y € ) the size of Y U VY is O(2°k + klog(n)/{), we get
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|Se(Y, Z)| = 9O (k(2 +1og(n)/0)) fo any pair of bags Y, Z € ),

ISe| < Z S (Y, Z)| = n220 k2" +log(n)/0),
Y, Zey

and therefore the number of variables and constraints in the linear fractional
program is
O<|S@| ) Qmax{|5\:SEs@}) — 290(k(2 +log(n)/0))

By using a standard reformulation, the linear fractional program (1)—(5) can be
solved by a linear program with one additional variable and constraint [6].

3.2 The Rounding Algorithm

In this section we describe our algorithm for the non-uniform sparsest cut prob-
lem. Before stating the algorithm, we introduce an object that will be used in the
analysis. Recall that G is of treewidth k and © = (), £) is a (k, £)-decomposition
of G.

Definition 2. Given a feasible solution (x,y) satisfying (2)—(5), we define the
function given by EQ(A) =x(R,A) for every A C R, where R is the root bag
of £. Furthermore, given any non-root bag Y € Y and a subset T C Vg such
that z(VE,T) > 0, we define the function given by

TY o CL’(VgUY,TUA)

for every A CY \ u(Y), where u(Y) is the parent of Y (see Fig. 1).

The functions introduced in Definition 2 have a probabilistic interpretation
that will be at the basis of our rounding algorithm. The structure provided by
constraints (3)—(5) induces probability distributions over subsets of a bag in the
decomposition ©. For a bag Y, the value (6) can be interpreted as a conditional
probability given the choice of T' C V(})/ . The following proposition summarizes
these properties.

Proposition 1. Consider an instance (G, D,cap,dem) with G of treewidth k
and let { be a positive integer. Let @ = (Y, E) be a (k,{)-decomposition of the
graph G and let (x,y) be a solution satisfying (2)—(5). Then, the following holds:

(a) Let L,I € Sg such that L C I. Then, for every C C L, we have x(L,C) =
Yrcnpe,CUl).

(b) ZAgz f;?@(A) =1L

(¢) For every non-root bagY € Y and T C VY such that x(VE,T) > 0, we have
Y acviuv) foo (A) = L.
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Fig. 1. Sets used in Definition 2. The set Y is the ellipse with dashed boundary. P} is
the set of bags in the path from Y to the root R. The set V& contains all areas depicted
in gray (both light and dark gray). The dark gray part of V& is 7. The hatched subset
of Y is A.

The proof of Proposition 1 can be found in the full version of the article [13]. We
first design a randomized algorithm to show the existence of 2-approximation by
rounding an optimal solution of the linear fractional program (1)—(5) defined by
a (k, ¢)-decomposition ©. We start by constructing a solution at the root level,
and then by conditioning on this assignment we construct a solution for the
children, and we continue this propagation process until we recover an integral
solution. Theorem 1 is finally obtained by optimizing the running time of our
algorithm as a function of ¢, and by performing a derandomization to get a
deterministic 2-approximation algorithm. We provide the detailed randomized
algorithm below.

Algorithm 1. Randomized Rounding

Input: (G, D, cap,dem) with G of treewidth k£ and a positive integer number /.

Output: A cut in the nodes V.

1: Compute a (k, £)-decomposition © = (Y, ) of G.

2: Let (z,y) be an optimal solution of (1)-(5).

3: Sample a subset Br C R according to the probability distribution f;?@ and let
Hgr = 0.

4: for £ =1 to depth(€) do

For every bag Y of level £ in the tree &, let Hy = H,, vy U (Buxy) N Jy)-

6: Sar}}pl}ef a subset of nodes By C Y\ u(Y') according to the probability distribu-
tion f° &’

7: Return B = Jyy, By

o

For a bag Y € ), the set B, (y)NJy is a subset of the adhesion of Y, and the
set Hy collects the union of these subsets in the path of © that goes from the
root to Y. Then, the set By C Y \ u(Y) is sampled according to a conditional
probability that depends on Hy . The output of Algorithm 1 is a random subset
of nodes in V and we denote by P, ¢ the probability measure induced by this



FPT 2-Approximation for the Bounded Treewidth Sparsest Cut 119

random set-valued variable. The following lemmas summarize some properties
of the algorithm. The proof of Lemma 2 can be found in the full version of the
article [13].

Lemma 2. Consider (G, D, cap,dem) with G of treewidth k and let ¢ be a pos-
itive integer. Let © = (Y, &) be a (k,£)-decomposition of G and let (x,y) be a
solution satisfying (2)—(5). Then, the following holds:

(a) For everyY €Y and every S C YUVY, we have P, o(BNS =T) = x(S,T)
for every T'C S.
(b) For every edge e € Eq in the supply graph, we have P, g(JleNB| = 1) = y(e).

Lemma 3. Consider (G, D, cap,dem) with G of treewidth k and let ¢ be a pos-
itive integer. Let © = (), &) be a (k,£)-decomposition of G and let (x,y) be a
solution satisfying (2)—(5). Then, for every edge e € Ep in the demand graph
we have P,y o(leNB| =1) > y(e)/2.

Proof. Let e = {s,t} € Ep be a demand edge. When e € Eg we are done since
Pso(lenNB| =1) = y(e) by Lemma 2 (b). Suppose in what follows that e ¢ E¢,
and let Y; and Y; be the least depth bags in the tree £ such that s € Y, and
t € Y;. Furthermore, let Y be the lowest common ancestor of the bags Y, Y;
in the tree Y. Let C, = (Y UVY) U (Y; UVE). For every T C C. consider the
value g.(T') = z(C.,T). Since x satisfies (3), we have that ) ;. ge(T) = 1
and therefore g, defines a probability mass function over Sg(Ys,Y:), which is
the power set of C.. Consider the set-valued random variable W distributed
according to g. and let Q. the probability measure induced by this random
variable. Then, we have

Qe(leNW]=1)=QcleNW = {s}) + Qe(e N W = {t})
= Y 2(Cs+CN+ D w(Cet+C)
Ccrcee\{e} CcrcCe\{e}
= (e, s) +z(e,t) = y(e),
where the third equality holds by Proposition 1 (a) and the last equality holds
since z satisfies condition (2). Let Z, and Z; be the children bags of Y such that
Zs belongs to unique path from Y to the root R and Z; belongs to unique path

from Y; to the root R, in the tree £. Define the set A = Vg UJz, UJz,. Observe
that

Poo(lenBl=1)=> P,o(lenB|=1|BNA=T) -P,o(BNA=T)
TCA
=Y Poo(lenBl=1|BNA=T) z(AT),
TCA
where the last equality holds by Lemma 2 (a) and the fact that A C Vy UY.
On the other hand, for any L C W and every I C L we have
QWnL=I)= Y (C,IuC)=x(L1I), (7)
C'CC\L
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where the last equality holds by Proposition 1 (a). Therefore, we have

y(e) =Q(lenW|=1)= > QlenW|=1|WNA=T)-Q(WNA=T)
TCA

=D QlenW|=1|WnA=T) z(A,T),
TCA

where the last equality holds by applying (7) with L = A. Then, in order to
conclude the lemma it is sufficient to show that Q.(le"W| =1| Wn4A =
T) <2 -Pyo(lenB=1]BnNnA=T). Given T C A, consider the random
variable wsr € {0,1} that indicates whether s € W given WNA = T, and
let G50 € {0,1} be the random variable that indicates whether s € B given
BN A =T. We define analogously the random variables w; v and S 7. Since
s,t ¢ A, we observe that for any T'C A and v € {s,t} it holds that v € W and
WNnA=Tif and only if W N (A+ v) =T + v. Therefore, for every T' C A, we
have that
Qe(s eW,WNA=T) z(A+sT+s)

Qe(ws,T = ]-) = Qe(W A= T) = JL‘(A,T) = Pz,@(ﬂs,T = ]-)7

(EWWNA=T A+, T+t
Qe(wr,r =1) = Q (QE(WOA:T) ) = o 2(A,T) ) =Pro(Br =1),

where, in both cases, the first equality comes from the above observation and (7)
and the second equality is a consequence of the above observation and Propo-
sition 1 (a). We conclude that for every T' C A the random variables w, r and
By 1 are identically distributed, for v € {s,t}.

Claim. Suppose we have two random variables G and K, not necessarily inde-
pendent, and taking values in {0,1}. Then, we have Pr(G # K) < 2(Pr(G =
1)Pr(K =0)+Pr(G=0)Pr(K =1)).

The proof of the claim can be found in the full version of the article [13]. We show
how to conclude the lemma using the claim. Taking G = w, 7 and K = w; 1, we
have

Qe(leNW|=1|WnNA=T)

= Qe(ws, T # wi,T)

< 2(Qe(ws,r = 1)Qe(wi,r = 0) + Qe(ws, 7 = 0)Qe(wi,r = 1))

= 2(Pz,0(Bs,r = 1)Pr0(Bt,r = 0) + Pro(Bs,r = 0)Pr0(Be,r = 1))
=2-Poo(Bsr #Bir) =2 Pro(lenB|=1|BNA=T),

which concludes the lemma. O

Definition 3. Let G be a graph of treewidth k, let © = (V,€) be a (k,0)-
decomposition of G, and consider a node uw € V. Let X be the least depth bag in
the tree containing the node u. Given a bag Z € ’Pg and H C Vg U Z, we say
that a pair (M, N) is an H-extension for the node u if the following holds:
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(i) NC X\VX andu € N,
(ii) M = (HNVE)UL where LCVE \ (V4 U Z).

We denote by Ao(H,u) the set of H-extensions for u.

Observe that for any node v and X being the least depth bag containing w, for
any bag Z € P& and any H C VZUZ, the set Ag(H,u) has cardinality at most

9O(k(2"+log(n) /0)) (8)

when O is a (k, £)-decomposition. This holds since, by Lemma 1, we have | X \
V& € O(2%) and V& \ (V4 U Z)| € O(klog(n)/f). We need one more lemma
before proving Theorem 1. The proof of Lemma 4 can be found in the full version
of the article [13].

Lemma 4. For every positive real value x > 4, there exists a unique value o*
such that alpha o*2*" = z, and it satisfies the inequality 211 + z/[a*] <
122/ log(x).

Proof (Proof of Theorem1). Let T = (G, D, cap,dem) be an instance of the non-
uniform sparsest cut problem. Recall that we denote by n the number of nodes
in the instance. Let o be the unique positive real solution of the equation
a2 = log(n) and let £* = [a}]. We run Algorithm1 over the instance Z,
using the value ¢*, and let © be the (k, £*)-decomposition computed in step 1
of the algorithm. Let (x,y) be an optimal solution of the optimization problem
(1)—(5) solved in step 2 of the algorithm, and we denote by opt,p the optimal
value >, cap(e)y(e)/ Y .cp, dem(e)y(e). Let B be the solution computed
by the randomized algorithm. For every pair of nodes e = {u,v} C V, with
u # v, let £(e) be equal to one if e N B| = 1 and zero otherwise. This random
variable indicates when a pair of nodes is cut by the algorithm solution. Consider
C=>cer,cap(e)é(e) and D =3_ . dem(e)é(e). By Lemmas 2 (b) and 3 we
have that

E.o(C)= Y cap(e) -Poo(lenBl=1)= Y cap(e)y(e),

ecEg ecEqg
1
E,o(D) = Z dem(e) - Pro(lenB]=1) > 3 Z dem(e)y(e),
ecEp ecEp

and therefore we get E; (C)/Eq,0(DP) <2-o0pt p < 2-mingcy ¢(S), where the
last inequality holds since the sparsest cut of value mingcy ¢(5) defines a feasible
solution for (1)—(5). We now show how to derandomize the solution B to get a
deterministic 2-approximation. We use the method of conditional expectations.
Define the random variable I' = C—2D-opt, p. Then, we have that 0 > E, o(I") =
E(E;,o(I'|Br)) and therefore there exists R’ C R such that E; o(I'|Br = R') <
0. Fix any subset Y{ C R with E; o(I'|Br = Y{) < 0andlet R = Y1,Y3,..., Y]y
be the bags visited according to some BFS ordering. Suppose we have computed
for some ¢ € {1,...,|Y|—1} the set A, = U)_ Y/ CU._,Y,, with Y/ C Y;\ u(Y2)
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for each ¢ € {1,...,t}, and such that E, o(I'|BN (U._,Ys) = A;) < 0. Then, we
have

0>E,o(lBN(U_,Y:) = A;)

= Y EellBN(ULY) = A By,,, =Y')-Poe(By,, =Y)
Y/'CYip1 \p(Yet1)

= > E.o(l|BN(UEY,) = A, UY') P, o(By,, =Y),
Y/ CYipa\p(Yes1)

and therefore there exists Y’ C Vi 11 \ p(Yi41) such that E, o(I'|BN (UE1Y) =
A UY’) < 0. Fix any of these subsets and we denote it by Y/, ;. By the end of this
process, let A be the union of Y/, ... ’Y\Iyl' By construction, we have recovered
a solution such that E, o(I'|B = .A) < 0 and therefore A is a 2-approximation.

We now study the running time of the derandomization, and more specifically,
the running time that we need to compute the conditional expectations. Let
t € {l,...,|Y|]} and let ' C U)_,Y,. To compute the value of the expectation
Evo(l|BN(U,_Y,) = T), it is sufficient to compute the probability value
Pro(lenB| = 11BN (U,_,Y;) = T) for any e € Eg or e € Ep. Furthermore,
when e C U)_,Y; the value of the probability is determined and equal to one
or zero. Then, we suppose that e = {u,v} is not contained in U}_, Y. For every
nodea € V\ (Y1 U---UY;) let X, be the least depth bag in ) that contains
a. In particular, we have that X, ¢ {Y7,...,Y;} and let Z, be the lowest bag
in {Y7,...,Y:} such that Z, belongs to the path from X, to the root. For every
ae€V\(Y1U---UY;) consider the quantity

o = Pw,@(aes ‘ BN (V2 UZ,) =T (Ve uZa)).

Case 1. Suppose that u ¢ U,_,Y; and v ¢ U,_,Y; and that Z, # Z,. Then,
PGZ)“ and ’Pg“ are contained in the subtree induced by the bags Yi,...,Y;. By
construction in Algorithm 1 we have that P, o(leNB| =1|BN (U,_,Y;) =T) =
9u(1— gy) + gu(1 — gu). Furthermore, by denoting T, = T'N (Vg" UZ,), we have

Xa
o = Z FMXa () — Z r(V5e UX,,MUN)

z,0 X
(M,N)eAe(Ta,u) (M,N)eAo (Ta,u) x(V@ , M)

for each a € {u,v}. By the observation in (8), g, and g, can be computed in
time 20(k(2"" +log(n)/€*))

Case 2. Suppose that u ¢ U._,Y; and v ¢ U}_,Y}, and that Z, = Z, = Z. Let
W be the lowest common ancestor of Y,, and Y,,. In particular, Z is an ancestor
of Wand W ¢ {Y1,...,Y;}. For every H C VY \ (VAU Z) and K C W \ u(W)
consider the quantity

(VY UW(TNVY)UHUK)

B(H,K) = e(VY (T NVY)UH)
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Furthermore, for every H C VY \ (VAU Z), K CW \ u(W) and a € {u,v} let

3 (V5 UY,, MUN)

JH,K) =
7( ) LE(V(E)/“,M)

(M,N)eAo ((TNVY )UHUK ,u)

Then, we have that P, o(leNB| = 1|BN (U,_,Y;) =T) is equal to

3 S> B, K) (yuH, K) (=30 (H, K)o (H, K) (17, (H, K)) ).
HCYY\(VEUZ) KCW\u(W)

As before, the above summation can be computed in time 90 (k(2"" +log(n)/£*))

Case 3. Suppose that u € U’_,Y; and v ¢ U._, Y} (the other case is symmetric).
In this case, we have that P, o(leNB| = 1|BN (U,_,Yy) = T) is equal to 1 — g,,
and therefore we can compute it in time

9O(k(2"" +log(n)/£*))

As we observe at the end of Sect. 3.1, the optimization problem (1)—(5) can be

solved in time 20(’@(22*“01%(”)/4*))\I|O(1). On the other hand, for every n > 16,
by Lemma 4 we have

klog(n)

_ polenl 4 klog(n) < 12klog(n),
o [a ] log log(n)

and therefore, the randomized algorithm and the derandomization can be all
performed in time

k2U +

5° (k%) 17|00 = 22°® 7100,

To finish the proof, we verify the above equality by considering two cases. If
k < loglog(n), we have klog(n)/loglog(n) < log(n) and the equality holds.

Otherwise, if & > loglog(n) and n > 4 we have klog(n)/loglog(n) < klog(n) =
9log(k)+log log(n) < olog(k)+k — 9O(k) O
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Abstract. We consider a fundamental pricing problem in combinatorial
auctions. We are given a set of indivisible items and a set of buyers with
randomly drawn monotone valuations over subsets of items. A decision
maker sets item prices and then the buyers make sequential purchas-
ing decisions, taking their favorite set among the remaining items. We
parametrize an instance by d, the size of the largest set a buyer may want.
Our main result asserts that there exist prices such that the expected
(over the random valuations) welfare of the allocation they induce is at
least a factor 1/(d + 1) times the expected optimal welfare in hindsight.
Moreover we prove that this bound is tight. Thus, our result not only
improves upon the 1/(4d — 2) bound of Diitting et al., but also settles
the approximation that can be achieved by using item prices. We fur-
ther show how to compute our prices in polynomial time. We provide
additional results for the special case when buyers’ valuations are known
(but a posted-price mechanism is still desired).

Keywords: Combinatorial Auctions + Online allocations

1 Introduction

In combinatorial auctions, a set of valuable items is to be allocated among a set
of interested agents. Who should get which items in order to maximize the social
welfare? This is a fundamental economic question, and a ubiquitous allocation
mechanism is to simply set a price for each item and let the agents buy their
preferred subset of items under those prices. The study of these mechanisms
dates back to the investigations of Leon Walras over a century ago, and is closely
related to the notion of Walrasrian equilibrium. Understanding the existence
and approximation of Walrasrian equilibrium and related notions under pricing
mechanisms has been an active area of research in recent years [3,4,13,14,20].

In this paper, we follow the approach of online combinatorial auctions and
study the welfare achieved by posted-price mechanisms in a very general setup.
© Springer Nature Switzerland AG 2022
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Specifically, our mechanisms post a price p; on each item . Then, buyers with
randomly-drawn monotone valuations over the subsets of items arrive in arbi-
trary order, and upon arrival pick their preferred subset among those items that
are left (at the posted prices). Of course, in this generality little can be said
about the social welfare induced by posted-price mechanisms, so it is common
to parametrize the instances by d, the largest size of a set a buyer might be inter-
ested in.! This parametrization is interesting from a combinatorial perspective:
finding a socially optimal allocation is NP-hard already when d > 3.2 Moreover,
if we restrict the buyers’ valuations to be deterministic and single-minded,?® we
recover the classic hypergraph matching problem.

Our main result in this paper is to determine the tight approximation guar-
antee of item pricing as a function of d. Specifically, we prove that there always
exist a posted-price mechanism such that the expected welfare of the result-
ing allocation, when buyers arrive in adversarial order and iteratively purchase
their preferred set, is at least a 1/(d + 1) fraction of the expected welfare of
an optimal allocation (Theorem 1). Furthermore, we prove this bound is tight
(Proposition 1).

Interestingly, our result generalizes and/or improves upon several results in
the literature, which we now provide context for.

1.1 Context and Related Work

Posted-Price Mechanisms. Posted-price mechanisms are ubiquitous within
the economics and computation literature due to their simplicity. They are com-
monly used as subroutines in truthful mechanisms that approximately maximize
welfare [1,2,8,9,19]. They are also used as subroutines in simple mechanisms to
approximately maximize revenue in Bayesian settings [5-7,18]. Our work con-
siders the same model (welfare maximization in Bayesian settings) initiated by
Feldman et al. [13]. Other works consider restrictions on the valuations such
as subadditive [11], while others consider the unrestricted case [10]. Our paper
contributes to this line of work by nailing the tight approximation guarantee
of posted-price mechanisms in this model for unrestricted valuations over sets
of size at most d. In particular, our results improve the bound of 1/(4d — 2) of
Diitting et al. [10], to 1/(d + 1), which is tight.

Prophet Inequalities. When there is a single item (and thus d = 1) our prob-
lem is equivalent to the single-item prophet inequality and thus our result takes
the same form as the classic result of Samuel-Cahn [21], who proved that the
optimal prophet inequality (whose factor is 1/2) can be achieved with a single
threshold. A special case of our problem when buyers are single-minded cor-
responds to various multiple-choice prophet inequality settings, and our results
improve upon the state-of-the-art. In particular, all prophet inequalities deduced
from our main result are non-adaptive: for each element e, a threshold T, is set

! That is, for all sets A with |A| > d, v(A) := maxgca, 5 <a{v(B)}
2 And quite hard to approximate [22].
3 That is, each buyer has a fixed set T', and values all sets S at v(S) := I(T C S)-v(T).
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at the beginning of the algorithm. Element e is accepted if and only if w, > T,
(and it is feasible to accept e).

When d = 2 and buyers are single-minded, our problem translates into the
matching prophet inequality problem. Our results when d = 2 therefore extend
the 1/3-approximation of Gravin and Wang [16] from bipartite to general graphs.
Note that recent work of Ezra et al. [12] provides a .337-approximation in this
case, although it sets thresholds adaptively. In the full version, we further con-
tribute to the d = 2 case by proving that no prophet inequality (adaptive or not)
can guarantee better than a 3/7-approximation for the bipartite graph prophet
inequality.

For arbitrary d when buyers are single-minded, our problem translates into
the d-dimensional hypergraph prophet inequality, which generalizes the prophet
inequality problem over the intersection of d partition matroids. Here, a 1/(4d —
2)-approximation was first given by Kleinberg and Weinberg [18], and improved
to 1/(e(d + 1)) by Feldman et al. [15]. A corollary of our main result improves
this to 1/(d+ 1), and with non-adaptive thresholds. A lower bound of Kleinberg
and Weinberg [18] proves that it is not possible to achieve an w(1/v/d) approxi-
mation even for this special case, but it remains an open problem to determine
the tight ratio for prophet inequalities for the intersection of d partition matroids
(and for the d-dimensional hypergraph prophet inequality).

1.2 A Technical Highlight and Additional Results

The proof of our main result breaks down the expected welfare into the “revenue”
and “utility” achieved by setting prices, and searches for properly “balanced
thresholds” as in [10,13,16,18]. In particular, we target prices that are “low
enough” so that a buyer with high value for some set will choose to purchase
it, yet also “high enough” so that the revenue gained when a bidder purchases
items they should not receive in the optimal allocation compensates for the lost
welfare. In comparison to prior work using a similar approach, the conditions
that guarantee such prices are more involved, and we prove their existence using
Brouwer’s fixed point theorem.

As our proof makes use of Brouwer’s fixed point theorem, it is inherently
non-constructive; however, in the full version, we show that the prices can be
efficiently computed by making use of an LP relaxation to cope with the APX-
hardness of optimizing welfare, and we further provide a convex optimization
formulation to find our fixed point.

In Sect. 4, we consider the special case that arises when valuations are deter-
ministic and buyers are single-minded. In this situation the welfare optimization
problem corresponds to matching in a hypergraph with edges of size at most d.
So the problem of finding item prices boils down to finding a set of thresholds,
one for each vertex, such that the value of the solution in which hyperedges arrive
sequentially (for any order) and greedily included in the solution so long as their
weight is higher than the sum of the corresponding vertex thresholds, is as close
as possible to the optimal solution. For the case of standard matching (d = 2) we
prove that there exist prices guaranteeing a factor of 1/2 of the optimal solution
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and that there do not exist prices guaranteeing a factor better than 2/3. The
tight factor is left as an open problem. More generally, we prove that there are
prices obtaining a fraction 1/d of the optimal solution (thus slightly improving
our general 1/(d + 1)), and that it is not possible to do better than £2(1/v/d).

2 Model

In our basic model, we have a (multi)set of items M in which there are k; > 1
copies of each item j € M.* The set of buyers, denoted by N, arrive sequentially
(in arbitrary order) and buy some of those items. Each buyer i« € N has a
valuation function v; : 2 — R, which is randomly chosen according to a
given distribution F; (defined over a set of possible valuation functions). As is
standard, we assume that each possible realization of each v; is monotone (i.e.,
A C B = v;(A) <wv;(B)). We parametrize an instance of the problem by d, the
size of the largest set a buyer might be interested in. Thus we assume that if
A C M is such that |A| > d, then

v(A) = Bgrfll,?l)a(\:dv(B)' (1)

Note that while there are k; > 1 copies of each item ¢ € M, no single buyer can
purchase more than one copy of an item.

In this paper, we are interested in exploring the limits of using item prices as
the mechanism to assign items to buyers. In a pricing mechanism, we set item
prices p € ]Rf and then consider an arbitrary arrival order of the buyers.® Thus,
buyer i buys the set of remaining items that optimizes

max v;(A4) — ij, (2)

ACR; “
JEA

where R; stands for the remaining items for which there exists at least one
unsold copy when i arrives. Note that (2) might be solved by A = {), i.e., buyer
i might opt not to buy anything. When there is a tie between different sets, the
buyer can choose arbitrarily, meaning that our results need to be valid even for
the worst case.5

More precisely, if ¢ is the arrival order of the buyers, so that buyer ¢ comes
at time o (i), then buyer i gets the set B;(c) = argmaxacr, (o) vi(A4) = >_jca Pjs
where Ri(0) ={j e M : k; > |{{ € N : 6(¢) < o(i) and j € By(o)}|}. With
this, given an instance of the problem (determined by M, k; for all j € M,
N, and F; for all i € N), the quality measure of a price vector p € ]Rj\f is the
worst case (over the arrival orders) expected (over the valuations) welfare of the
allocation it induces. Denoting this quantity as ALG(p) we have that

4 Throughout the paper M is actually a set and refers to the set of different items.

5 Note that different copies of the same item need to get the same price.

5 In some of the constructions in Sect. 4 we break ties conveniently but all the results
hold by slightly tweaking the instances.
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ALG(p) := minE (Z ’Ui(Bi(0'>)> .
7 ieN
On the other hand, the benchmark we compare to throughout the paper is the
welfare maximizing allocation, OPT, which is defined as

OPT :zE( max {ZUZ(AZ) cst. [{teN:je A} <kj, for alljeM}) .

A;,iEN
‘ iEN

We denote by OPT; the random set that buyer ¢ gets in an optimal allocation.
In Sect. 4 we consider the special case of our problem in which

(i) valuations are deterministic,
(ii) there is a single copy of each item (k; =1 for all j € M), and
(iii) buyers are single-minded, i.e., each buyer i has a set A;, with |4;| < d, such
that A; g B = ’Uz(B) =0,4,CB= Ul(B) = Ul(Al)

Interestingly, already in this particular setup, the problem of maximizing the
welfare of an allocation corresponds to the classic combinatorial optimization
problem of hypergraph matching with hyperedges of size at most d. Indeed, in
an optimal allocation buyer 4 either gets A; or (), implying that maximizing the
(now deterministic) welfare of the allocation is equivalent to finding a subset of
pairwise disjoint A;’s of maximum total valuation.

3 Random Valuations

In this section we prove there exists a vector of item prices such that the resulting
allocation yields in expectation at least a 1/(d+ 1) fraction of the optimal social
welfare. Additionally, we show that this bound is tight.

Theorem 1. There exists a vector of prices p € Rf such that
(d+1)- ALG(p) > OPT.

To prove the theorem we will make use of the following function. For each
ACM and i € N, we define

zi,a(p) = |E(lopr=a - vi(A)) — P(OPT; = A) ij ,
jea |,

where [ denotes the positive part. We assume without loss of generality that
|OPT;| <d for all i € N, so z; a(p) =0 if |A| > d. We start by showing a lower
bound for ALG(p) in terms of the functions z; 4(p).

Lemma 1. For any vector of prices p € R]‘f,

ALG(p) = Juin, S kim0 zialp)

j¢C iEN ACC
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Proof. In this proof we assume the arrival order o is arbitrary, and for simplicity
we drop the dependency of B;(0) and R;(c) on o and simply denote them by
B; and R;. We separate the welfare of the resulting allocation into revenue and
utility, i.e., we separate ), v;(B;) into

Revenue = Z Z p; and Utility = Z v (B;) — Z Dj

i€EN jEB; i€EN JjEB;

Recall that R; is the set of items such that there are remaining copies when i
arrives. Similarly, denote by R the set of items that have remaining copies by
the end of the process. We have that

E(Revenue) > E Z k;-pj
JER

For the utility, for any ¢ € N, by the definition of B;, it holds that

- ij:,fxngaéi vi(A)—ZPj
JEB; jEA
Note now that v; and R; are independent. Thus, let (¥;);eny be independent

realizations of the valuations, and OPT ; the corresponding optimal solution.
With this we can rewrite the expected utility of agent i as

E <max vi(A Zp;) = <m_ax (A Zp;) >E <maxw )—Zp]) .

JEA JEA JEA

We replace the maximization over subsets of R with a particular choice, OPT i
whenever it is contained by R and gives positive utility (otherwise we take (),
to obtain the following lower bound.

E| Lgpr,cpy - |0(OPT) = Y
36(5—1\55—'1 +

=E Z Li6p7,—ay 0i(A) — pr

AC icA
CR Jj€ I

=E| D E| | Uoprny | 504 =D p; >E (D z.a)
ACR JEA N ACR

The last inequality comes from Jensen’s inequality, noting that [], is a convex
function. Summing over all agents, we get that

E(Utility) > E | Y3 zia(p

iEN ACR
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Therefore, adding the revenue and the utility we get that

ALG(p) > E ij pj+ZZZzA

j¢R i€eN ACR

Replacing the expectation over R with a minimization over subsets of M we
obtain the bound of the lemma. O

Lemma 2. For any vector of prices p € Rf,

OPT < Z k?j ~pj+z Z Zi,A(p)

JEM ieEN ACM
Proof. We have that OPT equals
S E@i(OPT)=E (Y. > pj|+D E|(w(OPT)— > p
i€EN i€EN j€EOPT; iEN JjEOPT;

Now we upper bound these two terms separately. Note that in the first term
each item j € M appears at most k; times, so

YD pi| <) kiw

i€N j€OPT; JjeEM

For the second part we upper bound with the positive part of the difference, and
sum over all possible values of OPT;.

> E|w(OPT)— > p

i€EN JEOPT;
<> D E|Lorn-ay (w(OPT)~ Y p;
ieN ACM JEOPT;
<2 D wal)
i€EN ACM
Putting together the two upper bounds we obtain the bound on OPT. g

Lemma 3. There exists a vector of prices p € ]Rf that satisfies the equation

Z Z Zvﬁ,A(p)-

J ieN ACM: JEA
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Proof. Denote the set K = [0, OPT|™ C RY. We define the function ¢ : K — K
as follows. For an element p € K and j € M, the j-th coordinate of 1 is

Z Z Zi, A (p)

J 4eN ACM: JjEA

We prove now that v is a well defined continuous function, from the compact
set K into itself, and therefore it has a fixed point by Brouwer’s theorem. Note
that a fixed point of v is exactly the vector of prices we are looking for.

Recall that 2; a(p) = [E(Lopr,=a - vi(4)) — P(OPT; = A) 3¢ 4 Pjl+, which
is a decreasing function of p;, for all j € M. Moreover, note that since [-]4+
is a convex function, z; 4 is also a convex function of p; for all j € M. The
monotonicity of z; 4 implies that for all p € K and j € M, ¥,(p) < ¢;(0) <
L E(OPT) and therefore ¢ (p) € K for all p € K. The convexity of z; 4 implies
1t is also continuous, so 1 is a continuous function. O

Proof (of Theorem 1). Using the vector of prices from Lemma 3 in the bound of

Lemma 1 results in
AL6G) 2 Y Y
iEN ACM

To compare to OPT, we use the upper bound of Lemma 2, which shows

OPT <> 3 3 za@+>. Y. 24

JEM €N ACM:jEA i€EN ACM
=2 2 (AI+ 1) za)
iEN ACM
<(d+1) Z Z zi,A(p)
iEN ACM
Comparing the two bounds we get that (d + 1)ALG(p) > OPT. O

To wrap up the section, we establish that the bound of Theorem 1 is best
possible, by modifying a simple example of Diitting et al. [10].

Proposition 1. For all d, and all § > 0, there exists an instance on |N| = 2
bidders and |M| = d items such that for all p, ALG(p) = 1, yet OPT(p) =
d+1-6.

Proof. Consider a set M of exactly d items with a single copy of each, and a
very small € > 0. There are two buyers. The first buyer values any nonempty
subset of the items at 1. The second buyer only assigns value to getting all d
items, and this value is d — e with probability 1 —¢ and it is 1/e with probability
€. Now we consider setting prices p; for all j € M. If we set the prices so that
Zjeij < d— ¢ then there exists an item with price at most 1 —¢/d. Therefore,
the first buyer will get this item and thus the total welfare will be 1. If, on the
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contrary, buyer one does not purchase an item, then we must have ) jemPi = d,
and the second buyer will only purchase items with probability €. In this case,
the expected total welfare is also 1. This establishes that ALG(p) =1 for all p.
Finally, it is clear that in this instance the optimal welfare is achieved by always
assigning all items to the second buyer, which results in an expected welfare of
(d—e)-(1—e)+e-(1/e) >d+1—(d+1)e. Setting ¢ = §/(d+ 1) completes the
proof. a

Efficient Computation. Our above proof is nonconstructive as it requires a fixed
point computation. However, in the full version of the paper, we show that
despite this challenge and others, there exists a polynomial-time algorithm to
compute the prices using only demand queries.

4 Single-Minded Valuations

In this section, we consider the special case where there is a single copy of each
item (k; = 1 for all ¢ € M), buyers’ valuations are deterministic, and buyers
are single-minded. The latter means each buyer 7 has a set A;, with |A4;] < d,
such that 4; € B = v;(B) = 0 and A; C B = v;(B) = v;(4;). The problem
of maximizing the welfare of an allocation in this context can be seen as the
classic combinatorial problem of hypergraph matching with hyperedges of size
at most d, where the buyers correspond to the hyperedges and the items are
the vertices. Indeed, in an optimal allocation for this setting buyer 7 either gets
A; or (), implying that maximizing the welfare of the allocation is equivalent to
finding a subset of pairwise disjoint A;’s of maximum total valuation. As this is
a traditional problem, in the rest of this section we will refer to hypergraphs,
hyperedges and vertices, rather than buyers and items, using the usual notation
G = (V, E) and denoting by w(e) the valuation (or weight) of the hyperedge e.

4.1 Matching in Graphs: d = 2

We first focus on the traditional matching problem, showing that using prices has
limits even for this scenario. As argued in Lemmas 4 and 6, there are instances in
which no pricing scheme can guarantee recovering more than 2/3 of the optimal
solution. This is true even if the graph is bipartite or if there is a unique optimal
matching; on the other hand, if both conditions are fulfilled—i.e., the graph is
bipartite and there is a unique optimal matching, we show that using the dual
prices leads precisely to such optimal solution.

Lemma 4. Prices cannot guarantee obtaining more than 2/3 of the optimal
matching, even if the graph is bipartite.

Proof. Consider the graph depicted in Fig. 1, in which all edges have unit weight.
There are two optimal solutions, given by the black and the red perfect match-
ings. Assume we have prices that are able to build an optimal solution (i.e.,
include three edges) regardless of the order in which the edges arrive. This implies
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Fig. 1. Example of a bipartite graph in which, when all edges have the same weight, no
pricing scheme can guarantee obtaining more than 2/3 of the optimal solution. (Color
figure online)

that for at least one of the optimal solutions, all the edges will be included if
their vertices are available when they arrive. Without loss assume this is the
case for the black matching, i.e. for i = 1,2, 3, we have pr, + pr, < 1.

On the other hand, we need to prevent the red edges to be included if they
appear: to see why this is necessary, consider for instance the case in which the
edge (L1, R2) is not discarded when appearing first; then, if the edge (L3, R3)
appears second, no more edges could be added. To preclude this, we need to
impose that for i = 1,2,3, pr, + PR(; poa 54, > 1. A contradiction follows by
adding these as well as the previous three inequalities. a

In the case of bipartite graphs, it is natural to consider the usual linear
programming formulation, since it has integral optimal solutions. The following
lemma shows that when we require the additional hypothesis that there is a
unique optimal matching, the prices given by the optimal solution of the dual
problem lead to the optimal assignment.

Lemma 5. If the graph G = (V, E) is bipartite and has a unique optimal match-
ing, then such a matching is obtained using the dual prices.

Proof. Because the graph is bipartite, the problem reduces to solving the linear
program max{}_ c p Zew(e) : 3 c5(,) Te < 1 for all v € V, x > 0}, which has an
integral optimal solution. Because there is only one optimal matching, the LP has
a unique optimal solution (z}).cg. Consider the prices (p%),cv corresponding
to an optimal dual solution, satisfying strict complementary slackness.
Consider an edge e = (u, v) that is not part of the optimal matching. Hence,
the corresponding primal variable takes the value 27 = 0. By complementary
slackness, the corresponding dual constraint is not tight, i.e. pf + pf > w(e).
This last condition implies that buyer e will not buy the edge upon arrival.
On the other hand, if e is part of the optimal solution, the corresponding dual
constraint must be tight (again due to strict complementary slackness), so that
those buyers will choose to buy. a

The assumption of a unique solution is crucial for the dual prices to be
useful. Indeed, when there is more than one solution, using the dual prices can
be arbitrarily inefficient. Indeed, consider the same example depicted in Fig. 1,
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Fig. 2. Example of a graph in which, when all edges have the same weight, there is
a unique optimal matching but no pricing scheme can guarantee obtaining more than
2/3 of its weight.

but modify the weight of the edges f = (L1, R;) and g = (L2, R3) to be ¢, so
that that the optimal solution has value 2 + €. On the other hand, consider an
edge e = (u,v) and the resulting dual prices p,,p,: complementary slackness
now states that we have p, + p, = w(e) iff e is part of any optimal solution.
Edge f is part of the black optimal solution, and edge g is part of the red, hence
those edges will be bought if the corresponding vertices are available when they
appear. In particular, if they are the first two edges to appear, then they will
both be in the final solution, and no other edge can be added, leading to a final
weight of 2¢.

However, in general graphs, even the uniqueness assumption is not enough.
Indeed we have the following result.

Lemma 6. Prices cannot guarantee obtaining more than 2/3 of the optimal
matching in a general graph, even if there is only one optimal matching.

Proof. Consider the graph depicted in Fig. 2, where every edge has unit weight.
The optimal matching is given by the three black edges with total value of 3.
On the other hand, if any red edge enters the solution, the resulting total weight
will be at most 2. We now show that any pricing scheme in which every black
edge is willing to buy will also include at least one red edge if it comes first.
Let (pi)i=a,... r prices such that for every black edge, the sum of the involved
vertices is lower than 1. In particular, we have that pc +pp < 1, so without loss
of generality we assume that po < 1/2. If pg < 1/2 as well, then the red edge
(B, C) will want to buy and the proof is complete. Otherwise, i.e. if pg > 1/2,
it implies that p4 < 1/2 because the black edge (A, B) wants to buy. But this
implies that the red edge (A, C) will buy if appearing first.

Finally, if all vertex prices are 1/2, then it is straightforward to see that at
least two edges will be added regardless of the order in which they appear. 0O

In general, there are item prices that guarantee obtaining at least half of the
optimal welfare. This is achieved by splitting the weight of the edges of an
optimal matching uniformly between the two corresponding vertices. We present
this result in Lemma 8 for general d.
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4.2 Hypergraph Matching: d > 2

We begin this section by proving two negative results. First we show an upper
bound of ~ 1/1/d on the fraction of the optimal solution that can be guaranteed
with prices. We then show a specific bound for the case d = 3, in which we
cannot guarantee obtaining more than 1/2 of the optimal welfare. Finally, we
provide a pricing scheme that always obtains at least 1/d of the optimal welfare.

Lemma 7. Prices cannot guarantee welfare more than an ~ \/1/d fraction of
the optimal welfare, even if the arrival order is known.

Proof. Our example is based on constructions for finite projective planes; namely,
we will use the fact that if ¢ — 1 is a prime power there exists a hypergraph on
¢*> — ¢+ 1 vertices with ¢ — ¢ + 1 hyperedges that are g-regular, g-uniform and
intersecting, i.e. every pair of hyperedges has at least one shared vertex (see,
e.g., [17, Chapter 12] for a reference).

To build our example, we will assume that for each hyperedge there exists a
corresponding buyer interested in exclusively that subset of items with a total
valuation of ¢. We will also add one buyer whose only subset of interest is the
entire set of items, with a valuation of d = ¢> — ¢ + 1. Note that clearly the
optimal welfare attainable is ¢? — g + 1.

It hence suffices to show that prices cannot achieve welfare greater than gq.
Assume the buyer interested in the entire set of items arrives last. Note that if
there is any edge e such that the sum of the prices of the vertices in e is at most
than ¢, we are guaranteed welfare at most q. However, if every the sum of the
prices of the vertices in every hyperedge is more than ¢, because our graph is ¢-
uniform that means the sum of the prices of all vertices is more than ¢ — ¢ + 1,
meaning the final buyer would not select anything and the welfare attained is
zero. Hence, the total welfare attainable by prices is at most a

q 1

PF-q+1l /P2 —q+1

fraction of the optimum.
Finally, if d cannot be written as ¢> — ¢ + 1, we replicate the same construc-
tion for the largest d’ < d that can, and the result holds. O

When d = 3 the upper bound given by Lemma 7 is 2/3. We briefly note
that this bound can be tightened to 1/2. Our instance consists of a hypergraph
G = (V,E) with V ={1,2,3,4,5,6} and hyperedges {1,2,3}, {4,5,6}, {1,2,4},
{1,3,5}, {2,5,6}, {3,4,6} all with unit weight; the short proof that this attains
an upper bound of 1/2 is deferred to the full version.

We conclude with our positive result. Consider a hypergraph G = (V, E),
with weights (w(e))ecp. To define the prices, take an optimal matching given by
the hyperedges OPTy,...,OPTy. For each a € OPT}, define p, = w(OPTj)/d.
The prices of the items not covered by the optimal solution are set to co. The
following simple result shows that these prices obtain at least a fraction 1/d of
the optimal welfare.
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Lemma 8. Consider prices defined as above, and hyperedges arriving in an arbi-
trary order. Let () denote the set of edges that are bought. Then

‘
1
S ut> 13 wior)
eeqQ J=1

Proof. First note that for each e € @, it must hold that

>3 p (3)

i€e

as otherwise the buyer associated to e would have decided not to buy. Therefore

IOED DN (4)

eceq eeq ice

On the other hand, for each OPTj in the optimal solution, there must be at
least one vertex, with its corresponding price w(OPT})/d that is covered by the
edges in Q. To see this, note that there are two possible cases: either OPTj; € Q
and all its vertices are covered, or OPT; ¢ @), meaning that when OPT} arrived,
at least one of its vertices was not available, i.e., it was covered by an edge
previously bought. The result follows directly, noting that in the RHS of (4), we
are summing at least once w(OPT)})/d for each j =1...,¢. O
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Abstract. We study the circuit diameter of polyhedra, introduced by
Borgwardt, Finhold, and Hemmecke (SIDMA 2015) as a relaxation of
the combinatorial diameter. We show that the circuit diameter of a sys-
tem {x € R" : Az = b,0 < z < u} for A € R™*" is bounded by
O(m?log(m + k4) + nlogn), where x4 is the circuit imbalance measure
of the constraint matrix. This yields a strongly polynomial circuit diam-
eter bound if e.g., all entries of A have polynomially bounded encoding
length in n. Further, we present circuit augmentation algorithms for LPs
using the minimum-ratio circuit cancelling rule. Even though the stan-
dard minimum-ratio circuit cancelling algorithm is not finite in general,
our variant can solve an LP in O(n®log(n + k4)) augmentation steps.

1 Introduction

The combinatorial diameter of a polyhedron P is the diameter of the vertex-edge
graph associated with P. Hirsch’s famous conjecture from 1957 asserted that
the combinatorial diameter of a d-dimensional polytope (bounded polyhedron)
with f facets is at most f — d. This was disproved by Santos in 2012 [24]. The
polynomial Hirsch conjecture, i.e., finding a poly(f) bound on the combinatorial
diameter remains a central question in the theory of linear programming.

The first quasipolynomial bound was given by Kalai and Kleitman [20,21],
see [27] for the best current bound and an overview of the literature. Dyer
and Frieze [14] proved the polynomial Hirsch conjecture for totally unimodu-
lar (TU) matrices. For a system {z € R? : Mz < b} with integer constraint
matrix M, polynomial diameter bounds were given in terms of the maximum
subdeterminant Ays [2,7,9,15]. These arguments can be strengthened to using
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a parametrization by a ‘discrete curvature measure’ 6p; > 1/(dA3%,). The best
such bound was given by Dadush and Hihnle [9] as O(d®log(d/dn)/00), using
a shadow vertex simplex algorithm.

As a natural relaxation of the combinatorial diameter, Borgwardt, Finhold,
and Hemmecke [4] initiated the study of circuit diameters. Consider a polyhedron
in standard equality form

P={zeR": Az =b,z > 0} (P)

for A € R™*"™ b € R™; we assume rk(A) = m. For the linear space W =
ker(A) C R™, g € W is an elementary vector if g is a support-minimal nonzero
vector in W, that is, no h € W\{0} exists such that supp(h) C supp(g). A
circuit in W is the support of some elementary vector; these are precisely the
circuits of the associated linear matroid M(W). We let F(W) = F(A) C W and
C(W) = C(A) C 2™ denote the set of elementary vectors and circuits in the space
W = ker(A), respectively. All edge directions of P are elementary vectors, and
the set of elementary vectors F(A) equals the set of all possible edge directions
of P in the form (P) for varying b € R™ [26].

A circuit walk is a sequence of points W,z ... z(*+) in P such that
for each i = 1,...,k, 20D = 2 + ¢ for some ¢() € F(A), and further,
2 4 (14€)g) ¢ P for any € > 0, i.e., each consecutive circuit step is mazimal.
The circuit diameter of P is the minimum length (number of steps) of a circuit
walk between any two vertices z,y € P. Note that, in contrast to walks in the
vertex-edge graph, circuit walks are non-reversible and the minimum length from
z to y may be different from the one from y to x; this is due to the maximality
requirement. The circuit-analogue of Hirsch conjecture, formulated in [4], asserts
that the circuit diameter of a d-dimensional polyhedron with f facets is at most
f — d; this may be true even for unbounded polyhedra, see [5]. For P in the form
(P), d = n —m and the number of facets is at most n. Hence, the conjectured
bound is m.

Circuit diameter bounds have been shown for some combinatorial polytopes
such as dual transportation polyhedra [4], matching, travelling salesman, and
fractional stable set polytopes [19]. The paper [3] introduced several other vari-
ants of circuit diameter, and explored the relation between them.

Circuit Augmentation Algorithms. Circuit diameter bounds are inherently
related to circuit augmentation algorithms. This is a general algorithmic scheme
to solve an LP

min {¢,z) st. Az =0b,z>0. (LP)

The algorithm proceeds through a sequence of feasible solutions z*). An initial
feasible £(©) is required in the input. For t = 0,1, ..., the current =) is updated
to 2+ = 2 4 ag for some g € F(A) such that {c,g) <0, and o > 0 such
that 2®) + ag is feasible. The elementary vector g is an augmenting direction if
(c,g) < 0 and such an a > 0 exists; by LP duality, 2(*) is optimal if and only
if no augmenting direction exists. The augmentation is mazimal if z® + o/g is
infeasible for any o’ > a; a is called the maximal stepsize for z® and g. Clearly,
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an upper bound on the number of steps of a circuit augmentation algorithm
with maximal augmentations for arbitrary cost ¢ and starting point z(©) yields
an upper bound on the circuit diameter.

Simplex is a circuit augmentation algorithm that is restricted to using spe-
cial elementary vectors corresponding to edges of the polyhedron. Many network
optimization algorithms can be seen as special circuit augmentation algorithms.
Bland [1] introduced a circuit augmentation algorithm for LP, that generalizes
the Edmonds—Karp-Dinic algorithm and its analysis, see also [22, Proposition
3.1]. Circuit augmentation algorithms were revisited by De Loera, Hemmecke,
and Lee in 2015 [12], analyzing different augmentation rules and also extend-
ing them to integer programming. De Loera, Kafer, and Sanita [13] studied the
convergence of these rules on 0/1-polytopes, as well as the computational com-
plexity of performing them. We refer the reader to [12] and [13] for a more
detailed overview of the background and history of circuit augmentations.

The Circuit Imbalance Measure. For a linear space W = ker(A) C R", the circuit
imbalance ky = k4 is defined as the maximum of |g;/g;| over all elementary
vectors g € F(W), i,j € supp(g). It can be shown that ky = 1 if and only if
W is a unimodular space, i.e., the kernel of a totally unimodular matrix. This
parameter and related variants have been used implicitly or explicitly in many
areas of linear programming and discrete optimization, see [16] for a recent
survey. It is closely related to the Dikin—Stewart-Todd condition number yy
that plays a key role in layered-least-squares interior point methods introduced
by Vavasis and Ye [31]. An LP of the form (LP) for A € R"™*" can be solved in
time poly(n, m, log k4 ), which is strongly polynomial if k4 < 2P (") see [10,11]
for recent developments and references.

Imbalance and Diameter. The combinatorial diameter bound O(d?log
(d/én)/0nr) from [9] mentioned above translates to a bound O((n —
m)3mralog(ka + n)) for the system in the form (P), see [16]. For circuit
diameters, the Goldberg-Tarjan minimum-mean cycle cancelling algorithm for
minimum-cost flows [18] naturally extends to a circuit augmentation algorithm
for general LPs using the steepest-descent rule. This yields a circuit diameter
bound O(n?ms 4 log(ka+n)) [16], see also [17]. However, note that these bounds
may be exponential in the bit-complexity of the input.

1.1 Owur Contributions

Our first main contribution improves the x4 dependence to a log x4 dependence
for circuit diameter bounds.

Theorem 1. The circuit diameter of a system in the form (P) with constraint
matriz A € R™*" is O(m?log(m + ka)).

The proof in Sect. 3 is via a simple ‘shoot towards the optimum’ scheme. We
need the well-known concept of conformal circuit decompositions. We say that
x,y € R™ are sign-compatible if x;y; > 0 for all ¢ € [n], and write z C y if
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they are sign-compatible and further |x;| < |y;| for all ¢ € [n]. It follows from
Carathéodory’s theorem and Minkowski-Weyl theorem that for any linear space
W C R™ and =z € W, there exists a decomposition x = Z?:l h9) such that

h) € F(W), h9) C x for all j € [k] and k < n. This is called a conformal
circuit decomposition of x.

Let B C [n] be a feasible basis and N = [n]\B, i.e., 2* = (A5'b,0n) > 0 is
a basic feasible solution. This is the unique optimal solution to (LP) with cost
function ¢ = (0p,1y). Let 2(0) € P be an arbitrary starting vertex. We may
assume that n < 2m, by restricting to the union of the support of z* and z(®,
and setting all other variables to 0. For the current iterate (), let us consider a
conformal circuit decomposition z* — z(*) = Z?:l hU). Note that the existence
of such a decomposition does not yield a circuit diameter bound of n, due to
the maximality requirement in the definition of circuit walks. For each j € [k],
z® 4+ ) € P, but there might be a larger augmentation () + ahl) € P for
some o > 1.

Still, one can use this decomposition to construct a circuit walk. Let us pick
the most improving circuit from the decomposition, i.e., the one maximizing
—{c,h9)) = 12]]1, and obtain 2+ = 2! + ahl) for the maximum stepsize
a > 1. The proof of Theorem 1 is based on analyzing this procedure. The first
key observation is that (¢, z®) = ||m§\t,) |1 decreases geometrically. Then, we look

at the sets Ly = {i € [n] : z} > nnAng\t,)Hl} and Ry = {i € [n] : xl(t) < nzf},
and show that indices may never leave these sets once they enter. Moreover, a
new index is added to either set every O(mlog(m + k4)) iterations. In Sect. 4,

we extend this bound to the setting with upper bounds on the variables.

Theorem 2. The circuit diameter of a system in the form Ax =b, 0 < x <wu
with constraint matriz A € R™ ™ is O(m?log(m + k) + nlogn).

There is a straightforward reduction from the capacitated form to (P) by adding
n slack variables; however, this would give an O(n?log(n + x4)) bound. For the
stronger bound, we use a preprocessing that involves cancelling circuits in the
support of the current solution; this eliminates all but O(m) of the capacity
bounds in O(nlogn) iterations, independently from k4.

For rational input, log(ka) = O(L4) where L4 denotes the total encoding
length of A [10]. Hence, our result yields an O(m?L 4 +nlogn) diameter bound
on Az = b, 0 < z < u. This can be compared with the bounds O(nL 4 ) using
deepest descent augmentation steps in [12,13], where L4 ; is the encoding length
of (A,b). (Such a bound holds for every augmentation rule that decreases the
optimality gap geometrically, including the minimum-ratio circuit rule discussed
below). Thus, our bound is independent of b. Furthermore, it is also applica-
ble to systems given by irrational inputs, in which case arguments based on
subdeterminants and bit-complexity cannot be used.

In light of these results, the next important step towards the polynomial
Hirsch conjecture might be to show a poly(n,log x4) bound on the combinatorial
diameter of (P). Note that—in contrast with the circuit diameter—mnot even a
poly(n, L) bound is known. In this context, the best known general bound is
O((n —m)®>mer 4 log(ka +n)) implied by [9].
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Circuit Augmentation Algorithms. The diameter bounds in Theorems 1 and
2 rely on knowing the optimal solution x*; thus, they do not provide efhi-
cient LP algorithms. We next present circuit augmentation algorithms with
poly(n,m,log x4) bounds on the number of iterations. Such algorithms require
subroutines for finding augmenting circuits. In many cases, such subroutines are
LPs themselves. However, they may be of a simpler form, and might be easier to
solve in practice. Borgwardt and Viss [6] exhibit an implementation of a steepest-
descent circuit augmentation algorithm with encouraging computational results.

Our main subroutine assumption RATIO-CIRCUIT(A, ¢, w) is the well-known
minimum-ratio circuit rule. It takes as input a matrix A € R™*" ¢ € R",
w € (Ry U{oo})™, and returns a basic optimal solution to the system

min (c,z) st. Az=0, (w,z7) <1, (1)

where (z7); := max{0, —z;} for i € [n]. Note that w;z; = 0 if w; = oo and z; = 0.
This system can be equivalently written as an LP using auxiliary variables.
If bounded, a basic optimal solution is an elementary vector z € F(A) that
minimizes (c, z) / (w, z7).

Given z € P, we use weights w; = 1/z; (and let w; = oo if 2; = 0). For
minimum-cost flow problems, this rule was proposed by Wallacher [32]; such a
cycle can be found in strongly polynomial time for flows. The main advantage of
this rule is that the optimality gap decreases by a factor 1—1/n in every iteration.
This rule, along with the same convergence property, can be naturally extended
to linear programming [23], and has found several combinatorial applications,
e.g., [33,34], and has also been used in the context of integer programming [25].

On the negative side, Wallacher’s algorithm is not strongly polynomial: it does
not terminate finitely for minimum-cost flows, as shown in [23]. In contrast, our
algorithms achieve a strongly polynomial running time whenever k4 < 2P°(m)
An important modification is the occasional use of a second type of circuit aug-
mentation step SUPPORT-CIRCUIT that removes circuits in the support of the cur-
rent (non-basic) iterate z(*) (see Subroutine 2.1); this can be implemented using
simple linear algebra. Our first result addresses the feasibility setting:

Theorem 3. Consider an LP of the form (LP) with cost function ¢ =
(Opp\w,1n) for some N C [n]. There exists a circuit augmentation algorithm
that either finds a solution x such that xx = 0 or a dual certificate that no
such solution exists, using O(n?log(n+ 4)) RATIO-CIRCUIT and n? SUPPORT-
CIRCUIT augmentation steps.

Such problems typically arise in Phase I of the Simplex method when we add
auxiliary variables in order to find a feasible solution. The algorithm is presented
in Sect.5. The analysis extends that of Theorem 1, tracking large coordinates
xz(-t). Our second result considers general optimization:

Theorem 4. Consider an LP of the form (LP). There exists a circuit aug-
mentation algorithm that finds an optimal solution or concludes unboundedness
using O(n3log(n + k4)) RATIO-CIRCUIT and n® SUPPORT-CIRCUIT augmenta-
tion steps.
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The proof is given in Sect. 6. The main subroutine identifies a new index i € [n]
such that mgt) = 0 in the current iteration and x; = 0 in an optimal solution;
we henceforth fix this variable to 0. To derive this conclusion, at the end of each
phase the current iterate z(*) will be optimal to (LP) with a slightly modified
cost function ¢; the conclusion follows using a proximity argument. The overall
algorithm repeats this subroutine n times. The subroutine is reminiscent of the
feasibility algorithm (Theorem 3) with the following main difference: whenever
we identify a new ‘large’ coordinate, we slightly perturb the cost function.

Comparison to Black-Box LP Approaches. An important milestone towards
strongly polynomial linear programming was Tardos’s 1986 paper [28] on solving
(LP) in time poly(n, m,log A4), where A4 is the maximum subdeterminant of A.
Her algorithm makes O(nm) calls to a weakly polynomial LP solver for instances
with small integer constraints and costs, and uses proximity arguments to grad-
ually learn the support of an optimal solution. This approach was extended to
the real model of computation for a poly(n,m,logx4) bound [11]. The latter
result uses proximity arguments with circuit imbalances k4, and eliminates all
dependence on bit-complexity.

Our circuit augmentation algorithms are inspired by the feasibility and opti-
mization algorithms in [11]. However, using a circuit augmentation oracle instead
of an approximate LP oracle changes the setup. Our arguments become simpler
since we proceed through a sequence of feasible solutions, whereas much effort in
[11] is needed to deal with infeasibility of the solutions returned by the approx-
imate solver. On the other hand, we need to be more careful as all steps must
be implemented using circuit augmentations in the original system, in contrast
to the higher degree of freedom in [11] where we can make approximate solver
calls to arbitrary projections and modifications of the input LP.

2 Preliminaries

Circuit Oracles. In Sects.4, 5, 6, we use a simple circuit finding subroutine
SuPPORT-CIRCUIT(A, ¢, z, S) that will be used to identify circuits in the support
of a solution x. This can be implemented easily using Gaussian elimination. Note
that the constraint (c, z) < 0 is superficial as —z is also an elementary vector.

Subroutine 2.1. SUPPORT-CIRCUIT(A4, ¢, z, 5)

For a matrix A € R™*", vectors ¢,z € R™ and S C [n], the output is an
elementary vector z € F(A) with supp(z) C supp(z), supp(z) NS # 0
with (¢, z) < 0, or concludes that no such elementary vector exists.

The circuit augmentation algorithms in Sects.5 and 6 will use the sub-
routine RATIO-CIRCUIT(A, ¢, w). For a € R we define a™ = max{0,a} and
a~ = max{0, —a}. For a vector z € R" we define 21, 2~ € R™ with (2); = (2;) T,
(27)i = (#)” fori € [n].
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Subroutine 2.2. RATIO-CIRCUIT(A4, ¢, w)

The input is a matrix A € R™*", ¢ € R", w € (R4 U {c0})", and returns
a basic optimal solution to the system

min (c,z) st. Az=0, (w,z7) <1, (2)
and a basic optimal solution (y, s) to the following dual program:

max -\ st. s=c+A'y 0<s<Iw (3)

We use the convention that w;z; = 0 whenever w; = oo and z; = 0 in
(2). Note that (2) can be reformulated as an LP using additional variables, and
its dual LP can be equivalently written as (3). If (2) is bounded, then a basic
optimal solution is an elementary vector z € F(A) that minimizes (c, z) / (w, z7).
Moreover, observe that every feasible solution to (3) is also feasible to the dual
of (LP).

For P as in (P), « € P and an elementary vector ¢ € F(A), we let
augp(x,g) := x + ag where @ = argmax{a : x + ag € P}. For z € R™ we let
1/z € (RU{oo})" denote the vector (1/2;)ic[n), With the convention 1/0 = oc.
The following lemma is well-known, see e.g., [23, Lemma 2.2].

Lemma 1. Let OPT denote the optimum wvalue of (LP). Given a feasi-
ble solution x to (LP), let g be the elementary vector returned by RATIO-
CIRCUIT(A, ¢, 1/x), and 2’ = augp(x,g). Then,

(¢,x’y — OPT < (1 —1/n) ({¢,x) — OPT).
Furthermore, a > 1 for the augmentation step.

Proof. Let x* be an optimal solution to (LP), and let z = (z* — z)/n. Then, 2
is feasible to (2) for w = 1/x. The claim easily follows by noting that (c,g) <
(¢c,z) = (OPT — (¢, x))/n, and noting that z+ g € P is implied by (1/z,¢g7) < 1.

Prozimity Results. The imbalance measure k4 is mainly used for proving norm
bounds that can be interpreted as special forms of Hoffman-proximity results. See
[11,16] for such general results and background, in particular, similar proximity
bounds via A4 in e.g., [28] and [8].

Lemma 2. For A € R™*", let z € ker(A), and let N C [n] such that Ay, N
has full column rank. Then, ||z|lco < Kallzn||1-

Proof. Let KV, ... h¥) be a conformal circuit decomposition of z. Conformality
implies that ||z]e < Y25, [|h®]|s0. For each h(®), we have supp(h() N N # §
because A, n has full column rank. Hence, Ao < /<;A|h§-t)| for some j € N.

By conformality again, we obtain Zle A |l0o < Kallzn]l1 as desired.
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The following proximity theorem will be key to derive z7 = 0 for certain
variables in our optimization algorithm; see [11] and [16, Theorem 6.5]. For
¢ € R”, we use LP(¢) to denote (LP) with cost vector ¢, and OPT(¢) as the
optimal value of LP(¢).

Theorem 5. Let ¢, € R™ be two cost vectors, such that both LP(c) and LP(¢)
have finite optimum values. Let s’ be a dual optimal solution to LP(c'). If there
exists an index j € [n] such that

85 > (m+1kallc = |0,
then x; = 0 for every optimal solution x* to LP(c).

Estimating Circuit Imbalances. The circuit augmentation algorithms in Sects. 5
and 6 explicitly use the circuit imbalance measure 4. However, this is NP-hard
to approximate within a factor 20 see [10,29]. We circumvent this problem
using a standard guessing procedure, see e.g., [10,31]. Instead of x4, we use
an estimate &, initialized as # = n. Running the algorithm with this estimate
either finds the desired feasible or optimal solution (which one can verify), or
fails. In case of failure, we conclude that & < k4, and replace # by #2. Since the
running time of the algorithms is linear in log(n + %), the running time of all
runs will be dominated by the last run, giving the desired bound. For simplicity,
the algorithm descriptions use the explicit value k4. Throughout, we use the
shorthand k = k4 whenever A is clear from the context.

3 The Circuit Diameter Bound

In this section, we show Theorem 1, namely the bound O(m?log(m + k)) on
the circuit diameter of a polyhedron in standard form (P). As outlined in the
Introduction, let B C [n] be a feasible basis and N = [n]\B such that z* =
(A5'b,0y) is a basic solution to (LP). We can assume n < 2m: the union of
the supports of the starting vertex z(®) and the target vertex z* is at most 2m;
we can fix all other variables to 0. The simple ‘shoot towards the optimum’
procedure is shown in Algorithm 3.1.

Algorithm 3.1. Diameter Bound

— Start from ¢t = 0 and z(©).

— At each iteration t, let A1), ... h(¥) be a conformal circuit decomposi-
tion of z* —z™®. Let ¢(*) be the elementary vector in the decomposition
that maximises ||h§f,) | for i € [k] and update (1) = augp (2™, g®).

— Terminate once z(*+1) = z*.

A priori, even finite termination is not clear. The first key lemma shows that
ng\t/') |l decreases geometrically, and bounds the relative error to z*.



148 D. Dadush et al.

Lemma 3. For every iteration t > 0 in Algorithm 3.1, we have ||a:§f,+1)||1 <

(1- %)ng\t,)ﬂl and for all i € [n] we have |x(t+ ) Et)|,

(t)\ <nlzf -z

Proof. Let AV, ... h(¥) with k < n be the qonformal circuit decomposition of
z* — ) used in Algorithm 3.1. Note that hgf,) < Oy for i € [k] as zy = O and
2® > 0. Then

i 1 i 1
oI = maas 171 > 3 3~ IR = 2127, and so
iek] (4)

1
1
Iz (t+ )Hl = || augp (Z‘(t),g(t))NHI < ||95(t) +9N)||1 ( %)ng\tf)ul

Let a® be such that 2D = 2®) 4 o) g Then, by conformality and (4),

t+1 t t
lz%t) — 2P =@

t) _ |z
@ (t)H <k

lowlh - llg
and so for all i we have |z{"™) — 2{7| = a®|g"| < k|gP| < k|zr — 2{7).
We analyze the sets

Ly={i€]: a} >nufaQ |1}, Ti=[n\L, Ri={icn]: " <naj}.

(5)
Lemma 4. For every iteration t > 0, we have Ly C Lyy1 C B and Ry C Ry41.
Proof. Clearly, Ly C Ly as H:Cs\t/)Hl is monotonically decreasing by Lemma 3,
and Ly C B as o}y = On. Next, let j € R;. If xg-t) > x;, then x;tﬂ) < acg-t) by
conformality. Otherwise, if x;t) < 7, then xg-tﬂ) < :U;t) + n|x;‘ — x;t)\ < nz} by
Lemma 3. In both cases, we conclude that j € Ry41.

Lemma 5. If ||x(t) — 2%, [loe > 2mn2k?(|2%, [|oo, then Ry © Ryyy.

Proof. Let i € supp(z®))\supp(z*+1); such a variable exists by the maximality
of the augmentation. Lemma 2 for x(*1) — 2* € ker(A) implies that

27 < [ —o"[loo < wllaly T —ailh = wllal "V < sllailh (6)

and so i ¢ L. Noting that 2(**D — z(®) is an elementary vector and x(t+1) 0,
it follows that

Iz — 2l < (ms+ 1)z < 2mra”. (7)

On the other hand, let (1), ... h(¥) be the conformal circuit decomposition of

z* — ") used in iteration ¢ in Algorithm 3.1. Let j € T} such that |:17§t) -} =
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(®) (t) * |

|27, — @7, [|oo- There exists h in this decomposition such that [i;| > 1 Sy =

Smce Ap has full column rank, we have supp( )AN # 0 and so

= iyl = a5
x> == > : (8)
K nKk
From (7), (8) and noting that |2yl < [lg? 1 < |2 — 2|l we get
T t
0 o 18 =28 [l o o) — 2l
x> > > : (9)
' 2mek 2mek 2mnk?

In particular, if as in the assumption of the lemma ||x(Ttt) — 77l >

2mn?K2||2%, || oo, then xgt) > nl|lzf, oo > nxj. We conclude that i ¢ R; and

i€ Riyq as x( D =0.

We are ready to give the convergence bound.

Proof (Proof of Theorem 1). In light of Lemma 4, it suffices to show that either
L, or R, is extended in every O(nlog(n + k)) iterations; recall the assumption
n < 2m. By Lemma 5, if ||:c(t) — 27, oo > 2mn?k2||2F, [|oo, then Ry C Ryyy is
extended. ' ® - . ©
Otherwise, ||z, — 27, llcc < 2mnk?||27, [|oo. Assuming [|zy/[1 > 0, by
Lemma 3, there is an iteration r = t + O(nlog(n + k)) such that n?x(2mn2x? +
)HmN)Hl < ||x ||1 In particular,

2 2 * t t 1 t 2 2
@mn’k® + Dllzh, oo > 125 oo > 12§ lee = = llzW 1 > ne@mn’s® + 1)|l2§ 1.

(10)
Therefore ||27, [|oo > nf<:||x§$)\|1 and so L; C L,.
4 Diameter Bounds for the Capacitated Case
In this section we consider diameter bounds for systems of the form
P,={zeR": Az =0,0 <z <u}. (Cap-P)

We prove Theorem 2 via the following new procedure. A basic feasible point
x* € P, is characterised by a partition BULUH = [n] where Ap is a basis (has
full column rank), 27 = Or and 2}, = ug. In O(nlogn) iterations, we fix all
but 2m variables to the same bound as in z*; for the remaining system with 2m
variables, we can use the standard reformulation. The diameter of the polytope
obtained in the reformulation equals the diameter of the original polytope, and
it is easy to verify that s is also preserved.

The analysis starts by showing that after O(nlogn) circuit cancellations from
the conformal decompositions in Algorithm 4.1, we get to (c, 2 < —|H| + 1;
this is maintained after subsequent support circuit cancellations. For such a
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()

i

®

solution, z;” < wu; for i+ € L and ;7 > 0 for i € H. Every support circuit

cancellation sets xl(.t) € {0,u;} for some i € L U H, and by the above property,
it always sets the ‘correct’ bound, i.e., 0 if i € L and w; if 1 € H.

Algorithm 4.1. Capacitated Diameter Bound

Let BULUH = [n] be the partition for z*, i.e., 0p < Aglb < ug,
xj = 0r and 2} = up. Set the cost ce R} as ¢; =0ifi € B, ¢; = 1/u,
ifieL,and ¢; = —1/u; ifi € H.

— Start from ¢ = 0 and some z(©) € P,,.
— At each iteration t:
o If (c,a®) > —|H| + 1, let AV, ... A*) be a conformal circuit
decomposition of z* — (). Let g € arg min; ¢ (c, h(").
e Else, let ¢® be the circuit returned by SUPPORT-
CIRCUIT(ASt,cSt,mgB, St), where Sy :={i€ LUH : :vl(.t) #ar}.
Update z(*+1) = augp(z(®), g®).

— Repeat until |S;| < m. Then, run Algorithm 3.1 on A := [

and b = [b}
U

Apus, 0
I I

5 A Circuit-Augmentation Algorithm for Feasibility

In this section we prove Theorem 3: given a system (LP) with cost ¢ =
(Oppp\~, 1) for some N C [n], find a solution = with xx = 0, or show that
no such solution exists. Our algorithm is presented in Algorithm 1. We maintain
a set £; C [n]\N, initialized as (). Whenever :cl(-t) > 8n3m2Hx§\t,) |1 for the current
iterate (), we add i to £;. The key part of the analysis is to show that £; is
extended in every O(nlog(n + k)) iterations.

We let T; = [n]\L; denote the complement set. At each iteration when L,
is extended, we run a sequence of at most n SUPPORT-CIRCUIT(A, ¢, z(), T})

®)
N

steps. These are repeated as long as ||:c%) lloo < 4nkl||zy’ |1 and there are circuits

in supp(:c(t)) intersecting T;. Afterwards, we run a sequence of RATIO-CIRCUIT
iterations until a new index is added to L;.

The crux of the proof is showing that L£; is extended after a sequence of
O(nlog(n 4+ k)) RATIO-CIRCUIT iterations. Similarly to Lemma 1, it follows

that either ||x§\t,+1) 1 <(1-4) ||.13§\t,) |l1, or the algorithm terminates with a dual
certificate. This is used to derive that if l‘;—t) / ||x§\f}) |l1 is sufficiently large at some
point of the algorithm, it remains large throughout. There are two possible ter-

. . . . . . t
minations of a sequence of support circuit cancellations: either ||x(Tt)

|l is above
the threshold, or there are no more circuits to cancel. In both cases, x§-r)/||x%) 1Bt

will grow above the threshold after ||a:5\r,) |l has sufficently decreased.
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Algorithm 1: FEASIBILITY-ALGORITHM

Input : Linear program in standard form (LP) with cost ¢ = (Ou)\n,1n) for

some N C [n], and initial feasible solution 2.
Output: A solution x with zx = 0, or a dual solution y with (b,y) > 0.

1t<—0;L_10;
2 while z{ > 0 do
3 | Li—Liauficn]: 2 >822V} T — [\Li ;
4 if t=0 or L;\Li—1 # 0 then
5 while ||gr:§ft)||DO < 4nﬁ\|x§\t,) |1 and there is a circuit in supp(z*)
intersecting T do
6 g® — SUPPORT-CIRCUIT(4, ¢, 2, T}) such that g\ < 0 for some
k € Tz
7 D —augp (2™, M)t —t 4 1;
(g9, yM, s®) — Rario-CIrcuIT(A, ¢, 1/2P) ;
if (b,y¥) > 0 then
10 L Terminate with infeasibility certificate
1| e — augp (29, gO); b —t+1;

12 return z;

6 A Circuit-Augmentation Algorithm for Optimization

In this section, we give a circuit-augmentation algorithm for solving (LP), assum-
ing an initial feasible solution z(°) is provided. At all times, the algorithm main-
tains a feasible primal solution ) to (LP), initialized with z(®). The goal is
to augment z(*) using the subroutines SUPPORT-CIRCUIT and RATIO-CIRCUIT
until the emergence of a set ) # N C [n] which satisfies xg\t,) = z% = 0 for every
optimal solution z* to (LP). This conclusion can be derived using the proxim-
ity result Theorem 5. When this happens, we have reached a lower dimensional
face of the feasible region (P) that contains the optimal face. Then, the same
procedure is repeated on a smaller LP; these circuit walks can be concatenated
to obtain the overall circuit walk in the original instance.

In what follows, we focus on the aforementioned VARIABLE-FIXING procedure
(see pseudocode in the full version). We start by orthogonally projecting the
original cost vector ¢ to ker(A). This does not change the optimal face of (LP).
If ¢ = 0, then we terminate and return the current feasible solution z(?) as it is
optimal. Otherwise, we scale the cost to |||z = 1, and use RATIO-CIRCUIT to
obtain a basic dual feasible solution s(~1) to LP(c).

The majority of VARIABLE-FIXING consists of repeated phases, ending when
<x(t), s(t_1)> = 0. At the start of a phase, the set S of coordinates with large dual

slack sl(-tfl) > § is identified for some § < 1/(n*/?(m+2)x). Based on this, a mod-
ified cost function é > 0 is derived from s(*~1) by truncating the entries not in S
to zero. This modified cost ¢ will be used until the end of the phase. Next, we aug-
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ment our current primal solution z® by calling SuPPORT-CIRCUIT(A4, ¢, z®), 8)

to eliminate circuits in supp(z(*)) intersecting S with nonpositive é-cost. Note
(t)

that there are at most n such calls because each call sets a primal variable x;
to zero.

In the remaining part of the phase, we augment z(*) using RATIO-CIRCUIT(A,
¢, 1/x®) for T = O(nlog(n + k)) iterations. In every iteration, RATIO-
CIRCUIT(A, ¢ 1/z®) returns a minimum cost-to-weight ratio circuit ¢, where
the choice of weights 1/x(®) follows Wallacher [32]. Recall that the oracle also
gives a basic dual feasible solution s to LP(¢). If ¢® does not improve the
current solution 2, i.e., (¢,g¥) = 0, then we terminate the phase early as z(*)
is already optimal to LP(é). In this case, s®) is an optimal dual solution to LP(¢&)
because (z®), s)) = 0. This finishes the description of a phase. We show that
there are at most n phases. Then, applying Theorem 5 for ¢’ with ||¢’ —¢||cc < nd
allows us to conclude that a variable can be fixed to zero.
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Abstract. We give a simple and natural method for computing approx-
imately optimal solutions for minimizing a convex function f over a con-
vex set K given by a separation oracle. Our method utilizes the Frank—
Wolfe algorithm over the cone of valid inequalities of K and subgradients
of f. Under the assumption that f is L-Lipschitz and that K contains a
ball of radius r and is contained inside the origin centered ball of radius
R, using O( (E;_LQF Ij—j) iterations and calls to the oracle, our main method
outputs a point x € K satisfying f(z) < € + min.ex f(2).

Our algorithm is easy to implement, and we believe it can serve as a
useful alternative to existing cutting plane methods. As evidence towards
this, we show that it compares favorably in terms of iteration counts to
the standard LP based cutting plane method and the analytic center
cutting plane method, on a testbed of combinatorial, semidefinite and
machine learning instances.

Keywords: convex optimization * separation oracle - cutting plane
method

1 Introduction

We consider the problem of minimizing a convex function f: R®™ — R over
a compact convex set K C R™. We assume that K contains an (unknown)
Euclidean ball of radius » > 0 and is contained inside the origin centered ball
of radius R > 0, and that f is L-Lipschitz. We have first-order access to f that
yields f(z) and a subgradient of f at x for any given x. Moreover, we only have
access to K through a separation oracle (SO), which, given a point x € R"™,
either asserts that € K or returns a linear constraint valid for K but violated
by x.
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Convex optimization in the SO model is one of the fundamental settings
in optimization. The model is relevant for a wide variety of implicit optimiza-
tion problems, where an explicit description of the defining inequalities for K
is either too large to store or not fully known. The SO model was first intro-
duced in [29] where it was shown that an additive e-approximate solution can
be obtained using O(nlog(LR/(er))) queries via the center of gravity method
and O(n?log(LR/(er))) queries via the ellipsoid method. This latter result was
used by Khachiyan [27] to give the first polynomial time method for linear pro-
gramming. The study of oracle-type models was greatly extended in the classic
book of Grotschel, Lovdsz, and Schrijver [23], where many applications to com-
binatorial optimization were provided. Further progress on the SO model was
given by Vaidya [36], who showed that the O(nlog(LR/(er))) oracle complexity
can be efficiently achieved using the so-called volumetric barrier as a potential
function, where the best current running time for such methods was given very
recently [25,28].

From the practical perspective, two of the most popular methods in the
SO model are the standard linear programming (LP) based cutting plane
method, independently discovered by Kelley [26], Goldstein-Cheney [9] as well
as Gomory [22] (in the integer programming context), and the analytic center
cutting plane method [34] (ACCPM).

The LP based cutting plane method, which we henceforth dub the standard
cut loop, proceeds as follows: starting with finitely many linear underestimators
of f and linear constraints valid for K, in each iteration it solves a linear program
that minimizes the lower envelope of f subject to the current linear relaxation
of K. The resulting point « is then used to query f and the SO to obtain a
new underestimator for f and a new constraint valid for K. Note that if f is
a linear function, it repeatedly minimizes f over linear relaxations of K. While
it is typically fast in practice, it can be unstable, and no general quantitative
convergence guarantees are known for the standard cut loop.

To link to integer programming, in that context K is the convex hull of integer
points of some polytope P and the objective is often linear, and the method is
initialized with a linear description of P. A crucial difference there is that the
separator SO is generally only efficient when queried at vertices of the current
relaxation.

ACCPM is a barrier based method, in which the next query point is the
minimizer of the barrier for the current inequalities in the system. ACCPM is in
general a more stable method with provable complexity guarantees. Interestingly,
while variants of ACCPM with O(nlog(RL/(re))?) convergence exist, achieved
by judiciously dropping constraints [1], the more practical variants have worse
guarantees. For instance, if K is the ball of radius R, the standard variant of
ACCPM is only shown to achieve O(n(RL/¢)?log(RL/<)) convergence [30].

In this paper, we describe a new method for convex optimization in the SO
model that computes an additive e-approximate solution within O(R4L2/r252)
iterations. Our algorithm is easy to implement, and we believe it can serve as
a useful alternative to existing methods. In our experimental results, we show
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that it compares favorably in terms of iteration counts to the standard cut loop
and the analytic center cutting plane method, on a testbed of combinatorial,
semidefinite and machine learning instances.

Before explaining our approach, we review the relevant work in related mod-
els. To begin, there has been a tremendous amount of work in the context of
first-order methods [3,5], where the goal is to minimize a possibly complicated
function, given by a gradient oracle, over a simple domain K (e.g., the sim-
plex, cube, ¢5 ball). These methods tend to have cheap iterations and to achieve
poly(1/e) convergence rates. They are often superior in practice when the requi-
site accuracy is low or moderate, e.g., within 1% of optimal. For these methods,
often variants of (sub-)gradient descent, it is generally assumed that comput-
ing (Euclidean) projections onto K as well as linear optimization over K are
easy. If one only assumes access to a linear optimization (LO) oracle on K, K
can become more interesting (e.g., the shortest-path or spanning-tree polytope).
In this context, one of the most popular methods is the so-called Frank—Wolfe
algorithm [19] (see [24] for a modern treatment), which iteratively computes a
convex combination of vertices of K to obtain an approximate minimizer of a
smooth convex function.

In the context of combinatorial optimization, there has been a consider-
able line of work on solving (implicit) packing and covering problems using
the so-called multiplicative weights update (MWU) framework [20,31,33]. In
this framework, one must be able to implement an MWU oracle, which in
essence computes optimal solutions for the target problem after the “difficult”
constraints have been aggregated according to the current weights. This frame-
work has been applied for getting fast (1 & ¢)-approximate solutions to multi-
commodity flow [20,33], packing spanning trees [8], the Held-Karp approxima-
tion for TSP [7], and more, where the MWU oracle computes shortest paths, min-
imum cost spanning trees, minimum cuts respectively in a sequence of weighted
graphs. The MWU oracle is in general just a special type of LO oracle, which
can often be interpreted as a SO that returns a maximally violated constraint.
While certainly related to the SO model, it is not entirely clear how to adapt
MWU to work with a general SO, in particular in settings unrelated to packing
and covering.

A final line of work, which directly inspires our work, has examined simple
iterative methods for computing a point in the interior of a cone X' that directly
apply in the SO model. The application of simple iterative methods for solving
conic feasibility problems can be traced to Von Neumann in 1948 (see [15]),
and a variant of this method, the perceptron algorithm [32] is still very popular
today. Von Neumann’s algorithm computes a convex combination of the defining
inequalities of the cone, scaled to be of unit length, of nearly minimal Euclidean
norm. The separation oracle is called to find an inequality violated by the current
convex combination, and this inequality is then used to make the current convex
combination shorter, in an analogous way to Frank—Wolfe. This method is guar-
anteed to find a point in the cone in O(1/p?) iterations, where p is the so-called
width of X' (the radius of the largest ball contained in X' centered at a point of
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norm 1). Starting in 2004, polynomial time variants of this and related methods
(i.e., achieving log(1/p) dependence) have been found [6,10,17], which itera-
tively “rescale” the norm to speed up the convergence. These rescaled variants
can also be applied in the oracle setting [4,11,14] with appropriate adaptations.
The main shortcoming of existing conic approaches is that they are currently not
well-adapted for solving optimization problems rather than feasibility problems.

Our Approach. In this work, we build upon von Neumann’s approach and utilize
the Frank—Wolfe algorithm over the cone of valid inequalities of K as well as the
subgradients of f in a way that yields a clean, simple, and flexible framework
for solving general convex optimization problems in the SO model. For simpler
explanation, let us assume that f(z) = (¢, x) is a linear function and that we
know an upper bound UB on the minimum of f over K. Given some linear
inequalities (a;,x) < b; that are valid for all z € K, our goal is to find convex
combinations p of the homogenized points (¢, UB) and (a;,b;) that are “close”
to the origin. Note that if p = 0, the fact that K is full-dimensional implies that
(¢, UB) appears with a nonzero coefficient and hence (—c¢, —UB) is a nonnegative
combination of the points (a;, b;), which in turn shows that UB is equal to the
minimum of f over K. In view of this, we will consider a potential : R"*! — R,
with the property that if @(p) is sufficiently small, then the convex combination
will yield an explicit certificate that UB is close to the minimum of f over K.

Given a certain convex combination p, note that the gradient of @ at p
provides information about whether moving towards one of the known points
will (significantly) decrease @(p). However, if no such known point exists, it turns
out that the “dehomogenization” of the gradient (a scaling of its projection onto
the first n coordinates) is a natural point « € R™ to query the SO with. In fact,
if z € K, it will have improved objective value with respect to f. Otherwise, the
SO will provide a linear inequality such that moving towards its homogenization
decreases @ (p).

In this work, we will show that the above paradigm immediately yields a
rigorous algorithm for various natural choices of @ and scalings of inequalities.
We will also see that general convex functions can be directly handled in the
same manner by simply replacing (¢, UB) with all subgradient cuts of f learned
throughout the iterations. The same applies to pure feasibility problems for
which we set f = 0. The convergence analysis of our algorithm is simple and
based on standard estimates for the Frank—Wolfe algorithm.

Besides its conceptual simplicity and distinction to existing methods for con-
vex optimization in the SO model, we also regard it as a practical alternative. In
fact, in terms of iterations, our vanilla implementation in Julia' performs sim-
ilarly and often even better than the standard cut loop and the analytic center
cutting plane method evaluated on a testbed of oracle-based linear optimization
problems for matching problems, semidefinite relaxations of the maximum cut

! https://github.com/christopherhojny /supplement_simple-iterative-methods-linopt-
convex-sets.
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problem, and LPBoost. Moreover, the flexibility of our framework leaves several
degrees of freedom to obtain optimized implementations that outperform our
naive implementation.

2  Algorithm

Recall that we are given first-order access to a convex function f: R" — R
that we want to minimize over a convex body K C R™. In the case where f
is not differentiable, with a slight abuse of notation we interpret V f(x) to be
any subgradient of f at x. We can access K by a separation oracle that, given
a point © € R™, either asserts that z € K or returns a point (a,b) € A C R**!
with (a,z) > b such that (a,y) < b holds for all y € K. Here, (-,-) denotes
the standard scalar product and we assume that all points in A correspond to
linear constraints valid for K. To state our algorithm, let || - || denote any norm
on R and || - ||, its dual norm. Moreover, let ¢: R"*! — R, be any strictly
convex and differentiable function with min,cgn+: @(x) = ¢(0) = 0. Our method
is given in Algorithm 1, in which we denote the number of iterations by T for
later reference. However, T" does not need to be specified in advance, and the
algorithm may be stopped at any time, e.g., when a solution or bound of desired
accuracy has been found.

Algorithm 1
1: UB « oo, A1 < {(0,1)/]/(0,1)]|+}, G1 < 0
2: fort=1,2,....,T do
3: pt «— argmin{®(p) : p € conv(A4; UGy)}

4: if p, = 0 then return UB.

5: xp — —=VO(p)[1: n]/VP(pi)[n + 1]

6: if 2; € K then

7 UB <« min{UB, f(x:)}

8: At+1 — At-

9: Giy1 — GLU{(Vf(z1), (Vf(2e), 24))}
10: else
11: get (a,b) € A, with (a,z;) > b and |[(a,b)]]. =1
12: At+l — At @] {(a, b)}
13: Giy1 — Gy.

14: return UB.

In Line 5, V&(p)[1 : n| denotes the first n components of V&(p;), and
V&(pt)[n+ 1] denotes the last component of V&(p;). The sets A; and G denote
the already known/separated inequalities and objective gradients during itera-
tion ¢.

Lemma 1. When x; € R™ is computed in iteration t of Algorithm 1, it is well-
defined and we have {(c,z:) < d for every (c,d) € A; U Gy.
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Proof. Since p; minimizes ¢ over conv(A; U Gy), for every ¢ € conv(A; U Gy)
we have (V®(p;),q — p:) > 0. If p, # 0 then from strict convexity of ¢ and
mingcrn+1 @(x) = H(0) = 0 we get

(VO(pe),q) = (VO(pt),pt) > 0. (1)

First, apply (1) to ¢ = (0,1)/]|(0,1)|l. € A; and conclude V@(p;)[n + 1] > 0.
This makes sure that z; can be computed. Second, we apply Inequality (1) to
q = (¢,d) € Ay UG, and find that d — (¢, ;) = W(V@(pt), (c,d)) > 0,
thus z; satisfies (¢, z;) < d for all (¢,d) € A; U Gy. O

Note that, for the sake of presentation, in Line 3 we require p; to be the
convex combination of minimum @-value. However, it is usually not necessary
to compute such a minimum. The same convergence rates can be obtained
if, in every iteration, p; is a suitable convex combination of p;,_; and some
(¢,d) € Ay UGy with (V@(pi_1), (c,d)) < 0. If the last coordinate of p;_1, as
discussed in the above proof, is not positive, then such an update can be made
towards (0,1)/]/(0,1)]|« € A:. Any such update will significantly decrease ®(p;),
and the computation in Line 3 is guaranteed to make at least that much progress.
This shows that simple updates of p;, which may be more preferable in practice,
still suffice to achieve the claimed convergence rates.

Lemma 2. Suppose that @ is 1-smooth with respect to || - ||« and that

I(VF (@), (Vf(x), 2))ll. <1

for every x € K. Then for everyt =1,...,T, Algorithm 1 satisfies &(p;) < t%‘
Proof Idea. In every iteration, we add a point ¢ € A1 U Gryr with [|g]l« < 1
such that (V&(p;), ) < 0 holds. The line segment between p; and ¢; contains
a point p’ with ¢(p) < &(p;) — %(ﬁ(pt)z, which is enough to prove the claim. A
complete proof can be found in the arXiv [13] version. O

The following lemma yields conditions under which a small value of ®(p;)
implies that UB is close to the minimum of f over K. Note in particular that it
proves that if ||p;|| = 0 then UB = OPT.

Lemma 3. Assume that ||(x,—1)|| < 2 holds for every x € K, and there exist
z € K and a € (0,1] such that {(a,b),(—2z,1)) > a|(=2,1)||||(a,d)|l. holds for
every (a,b) € AU{(0,1)}. Moreover, assume that ||(V f(x),(Vf(x),x))]« <1

holds for every x € K. If ||pr| < a/2 in Algorithm 1, then the returned value
satisfies UB > OPT > UB — W,

Proof. Let z* € K minimize f(x) over x € K and let F' C [T — 1] be the set of
iterations (except the last one) in which z; € K. Now write the point py as a
convex combination

pr=Y Naw(@:0)+ > (V@) (Vf(we), )

(a,b)EAT teF
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where A > 0,7 > 0 and ||(A,7)|l1 = 1. Then we have

Dowlf ) = f(@) < YV (we),a —a7)

tel tel
= ( YoV @) (V@) ), (—a*,1))
teF
<Z’Yf V() (Vf(xe), 2)) Z /\(ab) a,b), (—x )>
teF (a,b)eAr

= (pr, (=2", 1)) <llpzll« - [(==*, DIl < 2[lpr|.

Here, the inequalities respectively arise from convexity of f, that * € K sat-

isfies ((a,b),(—x*,1)) > 0 for every (a,b) € Ar, and the Cauchy—Schwarz

inequality. In particular, we find that miniep f(a:) — f(z*) < % when-
EF

ever »,.r7: > 0. To lower bound this latter quantity, we use the assumptions
on z to derive the inequalities

<1_z%> —= Dl =al =Dl Y Ay

teF (a,b)eAr

Z Aapy(a,0),(=2,1))  (since||(a, )|+ = 1)

(a,b)EAT
= (pr, (=2, 1) = > (VS (@0), (Vf (@), 1)), (=2,1))
teF
<lprlle - 1=z DI+ D vl (Vf (@), (VF (@), )|« - [1(=2, D

teF

Now observe that ||(Vf(xt), (Vf(ze), )|« < 1 for every t € F and divide

through by |[(—z, D]l to find a(1 = Y,cp7) < [prll + X, 7. Hence, if
lprl« < § then a/2 < (a +1) >, V- This lower bound on ), v suffices

to prove the lemma. O

Combining the previous two lemmas, we obtain the following convergence
rate of our algorithm:

Theorem 1. Assume that 3 > 0 is such that ®(z) > f||z||? for all z € R™+1.
Under the assumptions of Lemmas 2 and 3, Algorithm 1 computes, for every
T> %, a value UB < oo satisfying UB > ming e f(z) > UB— ——5_ . Lta,

VB(T+2) @

Proof. After T iterations, we have §||pr||? < ®(pr) < T+2 < Ba?/4 per Lemma

2. Since then ||pr|. < 8 < < «/2, Lemma 3 tells us that OPT > UB —
VB(T+2)
16(14a) O

\/B(T+2)a”

Let us now apply the previous findings to a concrete setting, in which we
assume that the objective function f is L-Lipschitz, i.e., | f(2)—f(y)| < L||lz—y||2
for all z,y € R™.
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Theorem 2. Let K C R" be a convexr body satisfying z + rBy C K C RBY,
given by a separation oracle A, and let f: R™ — R be an L-Lipschitz convex
function given by a subgradient oracle.

Apply Algorithm 1 to the function g f using norm || (z,y)|| = v2||(z/R, )2
and potential B(a,b) = 1|(Ra,b)||3. Then, for every e >0, after

2 p2r2
T:O(R-RL)

r2 g2

iterations we have UB > mingec i f(x) > UB —¢.

Proof. By replacing f(z) by f(Rz)/(RL), K by K/R, ¢ by ¢/(RL), r by r/R,
and z by z/R, we may assume that R = L = 1, that » € (0,1]. After this
rescaling, note ||(z,9) || = v2[|(z,y)ll> and &(a,b) = 1}|(a,b)[3 = li(a,b)|.
Crucially, note that Algorithm 1 is invariant under the above replacement.

We now claim that our choice of input satisfies the conditions of Theorem 1
with § = 1/2 and o = r/4. Given the claim, Theorem 1 directly proves the
result. To prove the claim, apart from verifying that the bounds on § and «
hold, we must verify smoothness of @ with respect to the dual norm, a bound
of 2 on the norm of (—z,1) for x € K, as well as a dual norm bound of 1 on
(Vf(x),(Vf(z),z)) for z € K.

The setting § = 1/2 is direct by definition of @. Since || - ||« is a Euclidean
norm, it is immediate that @ is 1-smooth with respect to || - ||«. For each z € K,
using that R = L = 1, we may also verify that

Iz, DI = V2ll(, D2 = V2y/llzl3 + 1 < V2VR2 +1 =2,

and

|V £ @), (V@) aDll. = ==l (VF@), (T (), 2))]l:

I~

< VIV @I+ 19 @) el

1
< —=VIL2+L2R?=1.
V2
We now show the lower bound a > r/4. Firstly, since ||(—z,1)|[|[(0,1)|. =

I(=2, D]12/1(0,1)]|2 < V2, we see that ((~z,1),(0,1)) =1 > 3[[(=2,1)[I(0,1)]].
Next, any (a,b) returned by the oracle is normalized so that [|(a,b)||« = 1 <
(a,b)||2 = V2. Note then that |[(—z,1)||||(a,b)||« < 2. From here, we observe
that

((@,0),(=2,1)) =b—(a,2) =b—{a,z + ra/lall2) + rllalla = ral2,

since z 4+ ra/||a||2 € K by assumption. Furthermore, b — (a, 2) > b — ||a||2]|z||2 >
b — ||lal]l2 and 0 < b—{a, z) < b+ ||a||2- Thus, b — {(a,z) > max{r|all2,b— ||a]|2}.
We now examine two cases. If |lall2 > 1/2, then b — (a,2) > /2 > r/4 -
(=2, D|ll[(a,b)]+ If |all2 < 1/2, then [b] > 1 since ||(a,b)||3 = 2. This gives
b—(a,z) >b—|allz >1/2 > r/2. Thus, o > r/4, as needed. O
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3 Computational Experiments

In this section, we provide a computational comparison of our method with the
standard cut loop, the ellipsoid method, and the analytic center cutting plane
method on a testbed of linear optimization instances. For comparison purposes,
all four methods are embedded into a common cutting plane framework such
that the same termination criteria apply.

Framework. Each method has access to a separation oracle that is equipped with
a set of initial linear inequalities valid for K (such as bounds on variables), which
are incorporated within each method in a straightforward way. For instance, we
initialize our algorithm by adding these constraints to the set A;. Moreover, for
each instance, we will be given a finite upper bound UB and incorporate the
linear inequality f(z) < UB in a similar way. This upper bound gets updated
whenever a feasible solution of better objective value was found. Our framework
collects all inequalities queried by the current method and computes the resulting
lower bound on the optimum value in every iteration. Each method is stopped
whenever the difference of upper and lower bound is below 1073,

We will also inspect the possibility of a smart oracle that, regardless of
whether a given point x is feasible, may still provide a valid inequality as well
as a feasible solution (for instance, by modifying z in a simple way so that it
becomes feasible). Such an oracle is often automatically available and can have a
positive impact on the performance of the considered algorithms. For the prob-
lems we consider, the actual implementation of a smart oracle will be specified
below.

Implementation. The framework has been implemented in julia 1.6.2 using
JuMP and Gurobi 9.1.1. To guarantee a fair comparison, all four methods have
been implemented in a straightforward fashion. We use the textbook implemen-
tation of the ellipsoid method, and Badenbroek’s implementation of the analytic
center cutting plane method [2]. Our method is implemented? in the spirit of
Theorem 2, where p; is computed using Gurobi.

Test Sets. We use three problem classes in our experiments: linear programming
formulations of the maximum-cardinality matching problem, semidefinite relax-
ations of the maximum cut problem, and LPBoost instances for classification
problems.

For the maximum-cardinality matching problem, we consider the linear pro-
gram

. E <
max {ZeEExe :xe0,1]7, g ces(o) 2. <1lforalveV,
) ze < W for all U €V with |U] odd },
e€E[U]

2 https://github.com/christopherhojny /supplement_simple-iterative-methods-linopt-
convex-sets.
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due to Edmonds [18], where G = (V, E) is a given undirected graph, §(v) is the
set of all edges incident to v, and E[U] is the set of all edges with both endpoints
in U. The latter constraints are handled within an oracle that computes an
inequality minimizing (|[U| —1)/2 = }_.c gy Te, Whereas the other inequalities
are provided as initial constraints. For the above problem, the smart version
of the oracle does not provide a feasible point since there is no obvious way of
transforming a given point into a feasible one. However, the smart version always
provides the minimizing inequality.

We consider 16 random instances with 500 nodes, generated as follows.
For each r € {30,33,...,75} we build an instance by sampling r triples of
nodes {u,v,w} and adding the edges of the induced triangles to the graph,
forming the test set matching. We believe that these instances are interesting
because the r triangles give rise to many constraints to be added by the oracle.
Moreover, we selected all 13 instances from the Color02 symposium [12] with
less than 300 edges, yielding the test set matching02.

Our second set of instances is based on the semidefinite relaxation of Goe-
mans and Williamson [21] for the maximum cut problem

max {Z{v,w}eE c(v,w)(1 — Xypw)/2 :Xpw = Xy, for all v,w eV,
X =1forallveV, X =0}

where ¢ are edge weights on the edges of (V| E). We add the box constraints
X € [-1,1]V*V to the initial constraints and handle the semidefiniteness con-
straint by a separation oracle that, given X, computes an eigenvector h of X of
minimum eigenvalue and returns the inequality (hhT, X) > 0.

Within the smart version of the oracle, this constraint is returned regardless
of the feasibility of X. If X is not feasible, the semidefinite matrix ﬁX — ﬁ] is
returned, where A denotes the minimum eigenvalue and I the identity matrix. We
generated 10 complete graphs on 10 nodes with edge weights chosen uniformly
at random in [0, 1].

Our third set of instances arises from LPBoost [16], a classifier algorithm
based on column generation. To solve the pricing problem in column generation,
the following linear program is solved:

m

max {7+ (7,0) € [=1,1]x [0, D", (1,X) = 1, Y gah(a', w)As < = for w € 2},

i=1

where (2 is a set of parameters, for i € [m], 2% is a data point labeled as y; = +1,
h(-,w) is a classifier parameterized by w € 2 that predicts the label of z°
as h(z,w) € {-1,+1}, and D > 0 is a parameter. In our experiments, we
restrict h(-,w) to be a decision tree of height 1, so-called tree stumps, and
choose D = % To separate a point (7', \'), we use julia’s DecisionTree module
to compute a decision stump with score function A’ that weights the data points,
whose corresponding inequality classifies (7', \') as feasible or not. A smart oracle
always returns the computed inequality and decreases 7" until (7', \') becomes
feasible according to the found decision stump.
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Table 1. Comparison of iterations and dual/primal integral without smart oracles.

instance #iterations dual integral primal integral

LP ellipsoid analytic our LP ellipsoid analytic our ellipsoid analytic our
matching 175.44 500.00 500.00 99.81 48.34 473.02 22.13 21.10 52.12 9.29 4.40
matching02 283.77 460.77  491.69 47.15 257.76 339.67 194.26 21.64 23.41 5.91 2.13
maxcut 265.30 500.00 500.00 193.30 7.72  44.32 3.48 6.14 21.15 9.04 6.32
LPboost 91.94 489.06 479.12 278.06 3.15 13.62 20.65 53.15 459.97 100.71 64.08

We extracted all data sets from the UC Irvine Machine Learning Repos-
itory [35] that are labeled as multivariate, classification, ten-to-hundred
attributes, hundred-to-thousand instances. Data sets with alpha-numeric values
or too many missing values have been discarded.

Results. In what follows, we report on the number of iterations, i.e., oracle
calls, each method needs to obtain a gap (upper bound minus lower bound)
below 1072, We impose a limit of 500 iterations per instance. Since we are test-
ing naive implementations of each method, we do not report on running time.

To get more insights on the primal and dual performance of the tested meth-
ods, we also report on their primal and dual integrals. Note that we are solving
maximization problems in this section, as opposed to minimization problems in
Sect. 2. That is, primal (dual) solutions provide lower (upper) bounds on OPT.
If ¢; is the lower bound on the optimal objective value OPT in iteration 4, the
primal integral is ngi 85%1:2'. The dual integral is computed analogously. If
an integral is small, this indicates quick progress in finding the correct value of
the corresponding bound.

Table 1 summarizes our results without smart oracles, where all numbers are
average values. Here, “matching” refers to the random instances and “match-
ing02” to the instances from the Color02 symposium. The standard cut loop
is referred to as “LP”, the ellipsoid method as “ellipsoid”, the analytic center
method as “analytic”, and Algorithm 1 as “our”. Note that Table1 does not
report on the primal integral of “LP” since the standard cut loop is a dual
method.

We see that the ellipsoid and analytic center methods are struggling with
solving any instance within 500 iterations independent from the problem class.
Our algorithm solves the instances of the matching and max-cut problem much
faster than the standard cut loop. Only for LPBoost, the standard cut loop
clearly dominates our algorithm. To better understand this behavior, the inte-
grals reveal that our algorithm is better in improving the primal bound than
the dual bound, with the only exception being LPBoost. The analytic center
method, however, performs significantly worse than our algorithm in improving
the primal bound. Regarding the dual bound, it performs better than our algo-
rithm (with the exception of matching02). The ellipsoid method is much worse
in improving the primal bound in comparison with the analytic center method
and our algorithm. Regarding the dual bound, a similar trend can be observed
with LPBoost being an exception.
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Fig. 1. Typical primal/dual bounds for a random matching instance.

In summary, the analytic center cutting plane method improves the dual
bound more quickly than our algorithm. It can find a good primal solution early
as the primal integral is small, however it fails to close the remaining gap within
the iteration limit. Our algorithm is able to close the primal gap faster, with
the trade-off of a slightly slower dual convergence. A typical plot of the of the
relative primal and dual gaps is given in Fig. 1.

In a second experiment, we investigate the effect of smart oracles. As Table 2
shows, the algorithms mostly benefit from having access to a smart oracle in the
case of LPBoost. A reason might be in the particular structure of these instances:
the objective just consists of v and every truncated convex combination A is
feasible. However, there is no impact of smart oracles on the matching and
maxcut instances, respectively.

Table 2. Comparison of iterations and dual/primal integral with smart oracles.

instance #iterations dual integral primal integral

LP ellipsoid analytic our LP ellipsoid analytic our ellipsoid analytic our
matching 175.44 500.00 500.00 99.81 48.34 473.02 22.13 21.10 52.12 9.29 4.40
matching02 283.77 460.77  491.69 47.15 257.76 339.67 194.26 21.64 23.41 5.91 2.13
maxcut 265.30 500.00 500.00 231.00 7.72 4290 3.48 6.15 20.42 8.91 5.59
LPboost 86.94 346.38 88.00 127.00 3.04 13.50 5.54 5.46 25.41 6.83 6.95

Acknowledgments. We would like to thank Robert Luce and Sebastian Pokutta for
their very valuable feedback on our work.
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Abstract. We close three open problems on the separation complexity
of valid inequalities for the knapsack polytope. Specifically, we estab-
lish that the separation problems for extended cover inequalities, (1, k)-
configuration inequalities, and weight inequalities are all A"P-complete.
We also show that, when the number of constraints of the LP relaxation
is constant and its optimal solution is an extreme point, then the separa-
tion problems of both extended cover inequalities and weight inequalities
can be solved in polynomial time.

Keywords: Knapsack polytope - Separation problem - Complexity
theory

1 Introduction

The multi-dimensional knapsack problem is the integer programming (IP) prob-
lem
max{c'z | Az <d, x € {0,1}"}, (1)

where A € ZI'*", c € ZIt, and d € Z'}'. When the constraint matrix A only has
one row a and the right-hand side vector is a positive integer b, problem (1) is
referred to as knapsack problem, and the convex hull of the associated feasible
region, conv({x € {0,1}" | a"x < b}), is referred to as the knapsack polytope.

The multi-dimensional knapsack problem is a fundamental problem in dis-
crete optimization, and valid inequalities for the feasible region have been widely
studied, see, e.g., [4,14,19] and paper [11] provides a modern survey. In this
paper, we study the complexity of the separation problem for well-known fami-
lies of valid inequalities for (1).
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A standard and computationally useful way for generating cuts for (1) is to
generate cuts for the knapsack polytope defined by its individual constraints.
Suppose a is a row of the constraint matrix A, and let b be the corresponding
coordinate of the right-hand side d. We denote the associated knapsack polytope
by K := conv({z € {0,1}" | aTz < b}).

Many families of valid inequalities for K are based on the notion of a cover,
which is a subset C of {1,2,...,n} such that ) ., a; > b. Given a cover C, the

inequality
Y o <iC]-1
i€eC
is valid for K, and it is called a cover inequality (CI). Cover inequalities can often
be strengthened through a process called lifting, and the resulting inequalities
are called lifted cover inequalities (LCIs) [3,8,16,17,22].
Balas [2] gave one family of LCIs known as extended cover inequality (ECI),

which have the form
> zi+ Y @ <|Cl -1

j¢C:a;>max;cc a; eC

A minimal cover is a cover C such that EieC\{j} a; <bforany j € C. A
set N U{t} with N C {1,...,n} and ¢t ¢ N is called a (1, k)-configuration for
ke{2,...,IN|}if Y ,cnai <band QU {t} is a minimal cover for every Q C N
with |@| = k. Padberg [18] showed that for any (1, k)-configuration N U {¢}, the
inequality

(S| = k+ Dz + > a; < [S]
ics
is valid for K for every |S| C N with |S| > k. This inequality is called a (1, k)-
configuration inequality.

Other valid inequalities for the knapsack polytope K arise from the concept
of a pack. For the knapsack polytope K, a set P C {1,...,n} is a pack if
> icp @i < b. Given a pack P, the corresponding pack inequality ), pa;r; <
> icp @i is trivially valid for K, as it is implied by the upper bound constraints
x; < 1. However, pack inequalities can be lifted in several different ways to obtain
more interesting lifted pack inequalities (LPIs) [1]. Weismantel [21] derived the
weight-inequalities, which are LPIs. To define the weight inequalities, let r(P) :=
b— > ,cpai be the residual capacity of the pack P. The indices j ¢ P with
a; > r(P) are lifted to obtain the weight inequality (WI):

Zaimi + Z max{a; — r(P),0}z; < Zai.

icP jeP ieP
Consider the linear programming (LP) relazation of (1):
max{c'z | Az < d, = € [0,1]"}. (2)

For a given family .# of valid inequalities for (1), the associated separation
problem is defined as follows: “Let z* be a feasible solution to (2), does there
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exist an inequality in .# that is violated by x*7 If so, return one such inequality
from .%.” In this paper, we are mainly interested in the weaker decision version
of the separation problem where we do not have to return a separating inequality
even if it does exist, and we assume that z* is an optimal solution to (2). In fact,
the separation of optimal solution is no harder than the separation of general
feasible solution, and from the computational point of view, x* almost always
comes from the optimal solution to some linear relaxation.

The separation problem for several families of valid inequalities for the knap-
sack polytope has been shown to be AN'P-complete, including Cls [15], and LCIs
[9]. On the other hand the complexity of the separation problem for extended
cover inequalities, (1, k)-configuration inequalities, and weight inequalities are, to
the best of our knowledge, unknown. Kaparis and Letchford stated that the sep-
aration problem seems likely to be A'P-hard for ECIs in [12]. It was conjectured
explicitly in [6] that the separation problem for (1, k)-configuration inequalities
is N'P-hard. Moreover, the complexity of the separation problem for WIs is also
open, as mentioned in [11]. In this paper we provide positive answers to all
these conjectures. Namely, we show that the separation problems for ECIs, for
(1, k)-configuration inequalities, and for W1s are all N’P-complete. The first two
results are proven via a reduction from the separation problem for Cls, and the
separation complexity for WIs is given via the reduction from the Subset Sum
Problem (SSP).

Along with this NP-hard results, we also present some positive results about
the separation problems of those cutting-planes. Specifically, we show that when
the number of constraints of the LP relaxation (2) is constant, and the optimal
solution x* is an extreme point, then the seapration problems for ECIs and WIs
are both polynomial-time solvable. See Corollary 1 and Corollary 2.

We remark that several heuristics and exact separation algorithms are present
in the literature for these families of cuts. Both Gabrel and Minoux [7] and
Kaparis and Letchford [12] provide an exact separation algorithm for ECIs that
runs in pseudo-polynomial time. Ferreira et al. [6] presented simple heuristics
for the separation problem of (1, k)-configuration inequalities. For the separa-
tion problem for WIs, Weismantel [21] proposed an exact algorithm that runs
in pseudo-polynomial time. Helmberg and Weismantel [10] further presented a
fast separation heuristic for WIs that simply inserts items into the pack P in
non-increasing order of x* value. Kaparis and Letchford [12] gave two exact
algorithms and a heuristic for separating WIs and show how to convert these
methods into heuristics for separating LPIs.

The separation problems considered in this paper can be defined formally as
follows:

Problem CI-SP

Input: (A,d,c) € (2", 727,727 ) and an optimal solution z* to the LP relax-
ation (2).

Question: Is there a cover C' with respect to some row constraint ¢’z < b of
(2), such that ), -z > |C| - 17
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Problem ECI-SP

Input: (A,d,c) e (27", 27,77 ) and an optimal solution z* to the LP relax-
ation (2).

Question: Is there a cover C' with respect to some row constraint a'z < b of
(2), such that ZMCzana&wm T+ ecoxi > |Cl =17

Problem CONFIG-SP

Input: (A,d,c) € (Z]*",Z7,Z7) and an optimal solution z* to the LP relax-
ation (2).

Question: Is there a (1,k)-configuration N U {t} and a subset S C N

with |S| > k with respect to some row constraint a'z < b of (2), such that
(IS] =k +Daj + 3 icg i > |S]7

Problem WI-SP

Input: (A,d,c) € (Z7*", 27,27 ) and an optimal solution z* to the LP relax-
ation (2).

Question: Is there a pack P with respect to some row constraint a'z < b of
(2), such that 3>, pa;zy + 3,0 p max{a; — r(P),0ta} > > ,cpa;?

For CI-SP, we have the following classic results.

Theorem 1 ([15]).

— CI-SP is N'P-complete, even if m = 1.
— CI-SP is N'P-complete, even if x* is an extreme point.

We will show the other three problems, ECI-SP, CONFIG-SP, and WI-SP are
all N'P-Complete.

Clearly, the N"P-hardness of the above problems imply the A'P-hardness of
the more general separation problem where z* is a feasible, and not necessarily
optimal, solution to (2). We should also remark that, since verifying if a given
point violates a given inequality can be obviously done in polynomial time with
respect to the input size of such point and inequality, the separation problems for
these families of cuts are clearly in class A'P. Therefore, when we talk about the
separation complexity for those cuts, we do not distinguish between AP-hard
and NP-complete throughout this paper.

Notation. For an integer n we set [n] := {1,2,...,n}. We define e, as n-
dimensional vector of ones, where we often repress the n if the vector dimension
may be implied by the context. For a vector x € R™ and S C [n], we set
x(S) ==Y ,cq Ti- So for a vector a € R",a([n]) =a’e =", a;.

2 Extended Cover Inequality Separation

In this section, we establish the complexity of extended cover inequality sep-
aration with a simple reduction from the cover inequality separation problem.
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In the case where the point to be separated has a small number of fractional
components, then extended cover inequality separation can be accomplished in
polynomial time.

Theorem 2. Problem ECI-SP is N'P-complete, even if m = 1. Furthermore,
Problem ECI-SP is N'P-complete, even if x* is an extreme point solution to the
LP relazation (2).

Proof. We transform CI-SP to ECI-SP. Let (A, d, ¢, z*) € (2", 27, 7%, [0,1]™)
be the input to CI-SP. We construct input to ECI-SP with the prop-
erty that there is a yes-certificate to CI-SP with input (A,d,c,2*) if and
only if there is a yes-certificate to ECI-SP with input (A',d,c,y*) €
(ZTX(W,+1)7 ZTa Z:L_-i-l7 [0, 1]n+1).

The data for the ECI-SP instance are constructed as follows:

A;j = Aij Vi € [mLVJ c [n] A;,n+1 = ZA” Vi € [m]
j=1
¢ =

d;=d;i+ ) Aij Vi € [m].

Jj=1

cj vj € [TL] C;L—'—l =M

The constant M is chosen to be large enough so that if * is an optimal solution
to the linear program (2), then y* = (x*,1) is an optimal solution to the linear
program

max{(¢)Ty | A'y < d',y € [0,1]"*}. (3)

It is a consequence of linear programming duality that selecting M > (7*)7 Ae,
where 7* are optimal dual multipliers for the inequality constraints in (2), will
ensure the optimality of y*. Since there is an optimal solution 7* whose encoding
length is of polynomial size [20], the encoding size of M is a polynomial function
of the input size of CI-SP.

Let C' C [n] be a cover with respect to a row constraint a’z < b of Az < d
such that the associated CI does not hold at z*, so *(C) > |C| — 1. Then
C' := CU{n+1} is a cover with respect to the constraint (a",a’e) -y < b+a'e
within A’y < d’, and the associated ECI cuts off y*, since y*(C’) = 1+ 2*(C) >
=1~ 1.

On the other hand, assume that C’ is a cover with respect to some row
constraint o’y = (a",ae) -y < b+a"e = b within A’y < d' such that the
associated ECI cuts off y*. Note that if n +1 ¢ C”, then } . a} < d/([n]) =
a"e < b4aTe, and C’ cannot be a cover with respect to that row constraint. Thus,
n + 1 € C’, and the ECI of C’ is just its cover inequality y(C’) < |C’| — 1. By
construction, the set C' := C’"\{n + 1} is a cover with respect to the constraint
a'z < b within Az < d. The ECI of C’ cuts off y*, y*(C') = 1+ 2*(C) >
|C'| —1=]C], so *(C) > |C| — 1, and the CI from C' cuts off z*.

We have shown that there is a yes-certificate to CI-SP with input (4, d, ¢, z*)
if and only if there is a yes-certificate to ECI-SP with input (A’,d’,c,y*).
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Together with Theorem 1, this establishes that ECI-SP is N'P-complete, even
if m = 1, and that ECI-SP is N'P-complete, even if z* is an extreme point
to the LP relaxation (2). For the second statement of the theorem, it suffices
to realize that the input y* = (z*,1) for ECI-SP will be an extreme point of
{y € [0,1]" T | A’y < d'} if 2* is an extreme point of {x € [0,1]" | Az < d}. O

If the fractional support of the input vector x* is “sparse”, then we can
separate ECI in polynomial time.

Theorem 3. Let x* be the input solution to ECI-SP. If |{i € [n] : z} € (0,1)}]
s a constant, then a separating ECI can be obtained in polynomial time if one
exists.

Proof. For a given point z* and constraint a'z < bof Az < d, there exists a
separating ECI from the constraint if and only if for some ¢ € [n], there exists a
cover C with max;cc a; = a4, such that

oo+ Y ar>C-1 (4)

i€[n]:a;>at i€C:a;<ay

We partition C into four sets, C = Ty UT, UTy UT, withTh = {i € C | a; <
ap,zf =1}3Tp={ie€Cla; <apzf € (0,1)},To={i € C|a; <ag,xf =0},

and T' = {i € C | a; = a;}. With this definition, (4) can be equivalently stated

Soar > (-2 + Tl + T - L. (5)

i€[n]:a;>at €Ty

The algorithm loops over all ¢ € [n] and enumerates all Ty C {i € [n] | a; <
a,xf € (0,1)}. By our assumption on the cardinality of fractional support of
x*, this is a polynomial number of iterations. For a fixed ¢ € [n] and Ty C C,
the separation problem then amounts to completing the cover C' so that

To| + 1T < > ap—> (1—a2))+1L (6)

i€[n]:a;>ay €Ty

The right-hand side of (6) is a constant, so separation for a fixed index ¢ and
subset Ty amounts to solving the knapsack problem

min {Z 2 | Z a;z; > bt,Tf} ) (7)

[Stl
S CH A (e i€S,

where S; = {i € [n] | a; = a; or a; < ay, 2] =0}, and by, =b+1— ZieTf
Zi:ai <a, a+—1 @i- As the non-zero objective coefficients of the knapsack prob-

a; —

lem (7) are all the same, the problem can be solved in polynomial time by a
simple greedy procedure. a

Theorem 3 immediately implies the following corollary.
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Corollary 1. If the number of constraints in the LP relazation (2) is a con-
stant and x* is an extreme point solution to (2), then the separating ECI can be
obtained in polynomial time if one exists.

Proof. Let the number of constraints be a constant a. Since x* is an extreme
point, we know that at most o components of x* are fractional. Hence |{i € [n] :
xf € (0,1)} < a. The result then follows from Theorem 3. O

3 (1, k)-Configuration Inequality Separation

In this section we establish that the separation problem for (1, k)-configuration
inequalities is NP-complete using a similar reduction as in the proof of Theo-
rem 2.

Theorem 4. Problem CONFIG-SP is N'P-complete, even if m = 1. Further-
more, Problem CONFIG-SP is N'P-complete, even if x* is an extreme point
solution to the LP relazation (2).

Proof. The proof is very similar to that of Theorem 2. The reduction is from the
NP-Complete CI-SP to CONFIG-SP, and details of the reduction are given in
the full version of the paper [5]. O

We have settled the complexity of separation for (1, k)-configuration inequal-
ities for an input solution z* that is an extreme point to the LP-relaxation (2),
but the complexity of separation for points * with a small number of fractional
components is still open. In fact, we conjecture it to be A"P-Complete.

Conjecture 1. There exists a constant a such that CONFIG-SP is N'P-complete,
even if the input solution x* satisfies |{i € [n] | 2z} € (0,1)}] < a.

4 Weight Inequality Separation

In this section we show that WI-SP is A/P-hard and present special cases where
it can be solved in polynomial time. For a pack P of a given knapsack constraint
a'x < b, we denote by C(P) := {i € [n]\P | a; > r(P)}. With this notation, the
WI associated with P takes the form

> awi+ Y (a5 —r(P))x; < al(P),

i€P jeC(P)

where we remind the reader that r(P) := b — a(P). First, we will need the
following auxiliary result.

Lemma 1. Let (a,b) € Z}T" with a([n])/b ¢ Z, and let 2 = ... = z}, =
b/a([n]). Then there exists a pack P of a'x < b whose associated WI separates =*
if and only if there exists a pack P' of ax < b such that r(P') > 0, PPUC(P') =
[n], and |C(P")| = a([n])/b].
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Proof. The proof of Lemma 1 is self-contained and can be found in the full
version of the paper [5]. O

To prove that the separation problem WI-SP is NP-hard, we establish a
reduction from the Subset Sum Problem (SSP) to WI-SP.

Problem SSP
Input: o € Z"} and w € Z.
Question: Is there a subset S C [n] such that «(S) = w?

The SSP is among Karp’s 21 AP-complete problems [13]. It is simple to
check that SSP is A'P-complete even if w > max(a). We are now ready to prove
that WI-SP is AN'P-hard.

Theorem 5. Problem WI-SP is N'P-complete, even if m = 1. Furthermore,
Problem WI-SP is N'P-complete, even if x* is an extreme point solution to the
LP relazation (2).

Proof. First, we prove the first part of the statement. We show that WI-SP
is N"P-hard even in case of a single knapsack constraint. Given an instance
(a,w) € Z%" of SSP with w > max(a), we construct a knapsack problem
max{c'z | a'z < b,z € {0,1}*"*2} and give an optimal solution z* to the
associated LP relaxation. The data a, b, ¢ of the constructed knapsack problem
is defined as follows:

a; == a; + 2, Vi=1,...,n,

i1 :=w- (n+1)+2(n+1)2 = 3n — a[n)),

Ant14j = 2, Vi=1,...,n+1,

b:=w+2n+ 3, (8)
c:=aq,

. . w+2n+3

TLI= e T Banan ::w~(n+1)+2n2+5n+4'

It is simple to check that a, b, ¢ are all integral, that (a, b, ¢, *) has polynomial
encoding size with respect to that of (a, w), and that a"2* = b. Furthermore, z*
is an optimal solution to the knapsack problem described by (8), since c'a* =
a'x* = b. Hence (a, b, ¢, z*) is a feasible input to WI-SP where m = 1. Note that
(w-(n+1)+2n*+5n+4)/(w+2n+3)=n+1+1/(w+2n+ 3) ¢ Z. Hence,
we can apply Lemma 1 and obtain that there exists a separating WI for z* if
and only if there exists a pack P such that:

r(P) >0, PUC(P) =[2n+ 2],

w-(n+1)+2n%+5n+4
[C(P)] =
w+2n+3

(9)

J:n—&—l.

Claim 1. There exists a WI from constraint o'z < b that separates z* if and
only if there exists a subset S C [n] such that a(S) = w.
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Proof of claim. Tt suffices to show that there exists pack P such that (9) holds
if and only if there exists a subset S C [n] such that «(S) = w.

First, we assume that P is a pack such that (9) holds. The two equations in
(9) imply |P|=2n+2—|C(P)|=n+1.If {n+2,n+3,...,2n+2}NC(P) =0,
then PUC(P) = [2n+2] implies that {n+2,n+3,...,2n+2} C P, which means
P={n+2,n+3,...,2n+2} since |P| = n+ 1. However, since w > max(«), we
know that 2+ max(a)+2(n+1) < w + 2n + 3 = b, which implies that PU {3’}
is a pack for any ¢’ € [n], and this contradicts the assumption C'(P) = [2n+2]\P
of (9). Therefore, there must exist some ' € {n + 2,n + 3,...,2n + 2} N C(P).
Hence r(P) = b — a(P) < ay = 2. Moreover, because r(P) > 0, we have r(P)
= 1, which implies a(P) =b—1=w + 2n + 2. Since ap+1 = w-(n + 1) +
2(n + 1)2=3n—a([n]) >w + 2(n + 1)2=3n+ (w-n—a([n])) >w + 2n + 2,
we know n+ 1 ¢ P. Let S := P N [n]. We then obtain a(S) = 2|S| + «(S)
and a(P\S) = 2(|P| — |S]) = 2(n + 1 — |S|). Therefore, w + 2n + 2 = a(P) =
a(S) + a(P\S) = a(S) + 2n + 2, which gives us a(S) = w.

Next, we assume that S is a subset of [n] with «(S) = w. Clearly, n+1 ¢ S.
Then we define the set S containing n 4+ 1 — |S| arbitrary indices from {n +
2,...,2n+2}. Then P := SUS is a pack such that (9) holds. In fact, we have

r(P)=0b—a(P)
=w+2n+3—a(S) —a(S)
=w+2n+3—- 28|+ a(S) —2(n+1-|5])
=1.

This further implies C(P) = [2n+2]\P and |C(P)| = 2n+2—|P| = n+1, since
a; > 1 for all i € [2n + 2]. Hence (9) is satisfied by pack P. o

Claim 1 completes the proof of the first part of the statement, since SSP
itself is AN'P-hard.

Next, we prove the second part of the statement. We show that WI-SP is N'P-
hard, even if * is an extreme point solution to the LP relaxation (2). Given an
instance (a,w) € Z" of SSP with w > max(«), we construct an instance of the
multi-dimensional knapsack problem max{c'z | Ax < d,x € {0,1}*N} and give
an optimal solution x* to the associated LP relaxation, where N = 2n+2. Let G
be a node-node adjacency matrix of a cycle on N nodes. The constraints of the
constructed multi-dimensional knapsack problem are then defined as follows:

a'y<b,  Gz<ey,

Yi + 221 + 220 + 223 < 3+ ¢, Vi € [N]. (10)
Here (a,b) € ZY ™ is defined as in (8), € := (w+2n+3)/(w-(n+1) +2n? + 5n +
4) and ey is the N-dimensional vector with all components equal to one. Now we
define the objective vector ¢ := (a, en), and we let z* = (y*, z*) := (een, en/2).
Note that we can multiply all the rows of (10) by w - (n + 1) +2n? + 5n + 4 to
get an instance of WI-SP with integral data. The instance defined here clearly
has polynomial encoding size with respect to that of («, w).
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First, we verify that this is a valid input for WI-SP. Clearly z* is feasible.
Furthermore, by summing all inequalities in Gz < ey, it follows that z* is an
optimal solution to the LP relaxation.

Next we show that x* is an extreme point of the polyhedron given by (10).
Since N = 2n + 2 is even, then G is a square matrix with rank N — 1. We can
further verify that the first 2N constraints in (10) give a system of 2N linearly
independent constraints in 2N variables, and the only vector that satisfies all of
them at equality is z*.

Claim 2. There exists a WI from (10) that separates x* if and only if there exists
a WI from the constraint a'y < b that separates 3*.

Proof of claim. First, we assume that P is a pack with respect to some constraint
a Tz <V of (10) such that its corresponding WI separates x*. If such constraint
a 'z < b comes from the subsystem Gz < ey, say z; + 2o < 1, then the
only WI is z1 4+ zo < 1, which cannot be violated by z* since z* is a feasible
point. If aTr < b is Yi + 221 + 220 + 223 < 3 + € for some i € [N], then
all the nonempty packs that do not include variables with zero coefficient are
{i},{i, N+1},{i, N+2},{i, N+3}, {N+1}, {N+2}, {N+3}. The corresponding
WIs are y; <1 and:

yi + 221+ (2 —€)(22 + 23) <3, 221+ (1 —€)(22 + 23) < 2,
Yi + 220 + (2 —€)(21 + 23) < 3, 225 + (1 —€)(21 + 23) < 2,
Yi + 223+ (2 —€)(21 + 23) < 3, 2234+ (1 —€)(z1 + 22) < 2.

It is simple to check that none of the above inequalities is violated by z* =
(een,en/2). Hence the constraint o’ 'z < b is just aTy < b. In other words,
we have shown that if (10) admits a separating WI that separates *, then the
constraint a'y < b admits a separating WI that separates y*.

On the other hand, any WI from the constraint a"y < b is also an a WI from
the entire linear system (10). We have thereby proven this claim. o

Note that y* = eey in this proof coincides with the 2* in Claim 1. From
Claim 2 and Claim 1, we have completed the proof for the second part of the
statement of this theorem, since SSP is N"P-hard. a

Even though the problem WI-SP is N"P-hard in general, in the next theorem
we provide a special case where it can be solved in polynomial time, and such
separating WI can be obtained in polynomial time if one exists.

Theorem 6. Let z* be the input solution to WI-SP. If max{|S| : z} € (0,1) Vi €
S,x*(S) < 1} is a constant, then the separating WI can be obtained in polynomial
time if one exists.

Proof. We assume without loss of generality that Az < d has only a single con-
straint a"x < b, since we can always solve WI-SP with input (A,d,c,z*) by
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solving the corresponding WI-SP problems for each single constraint individu-

ally. For any P C [n], let f(P) := 3 ,cp aiz] + X cc(py(a; — 7(P))zj — a(P).
Then f(P) > 0 implies that

=1.

Z 2 zGPUC(P) a;z} — a(P) < b—a(P)
2 (P) <)

Among all the packs with the largest f(P) value, let P’ be one that is inclusion-
wise maximal. In other words, f(P’) > f(P) for any pack P, and f(P) = f(P’)
implies that P’ is not contained in P. Let C := C(P’). Note that for any i’ € P’
we have

F(P) — fF(P\{i'}) = aw ( Z x; +ap — 1) + Z (aj —r(P")) z}

JEC(P\{i'}) JEC\C(P'\{i'})

€ |a; Z LB;-‘FJJ:/—]. , Qg <ZJ};+1‘;—1> .
JEC(P'\{'}) Jjec

Here the last inequality f(P’) — f(P"\{i'}) < air (2jcc @) + 2 — 1) is simply

because a; < a; + r(P’) for any j € C\C(P’'\{i'}). Since P"\{i'} is also a pack
and f(P") > f(P'\{i'}), we have

dai+an =1, WWeP. (11)
jec
On the other hand, for any i’ € [n]\(C' U P’):

f(P'U{i'}) = f(P) =ay (Z Tl — 1) + > (aj —r(P'U{i'}))

JEC JEC(P'U{i’})\C

€ |ay <Zx;+x;‘/l>,a,/ Z l‘;+l‘:/71 .
JjEC JjEC(P'U{i'})

Since i’ € [n]\(C U P’), the set P’ U {¢'} is still a pack, hence f(P' U {i'}) —
f(P’) < 0. Furthermore, since P’ is an inclusion-wise maximal pack with the
largest f(P’) value, we have f(P'U{i'}) — f(P’) < 0. Therefore,

Sl 4an <1, Vi€ n)\(CUP), (12)
jec

From (11) and (12), we obtain
P' ={ien)\C|z"(C)+z}>1}. (13)

We have thereby shown that there exists a WI from knapsack constraint
a’z < b which separates z*, if and only if there exists C' C [n], such that the
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corresponding P’, as defined in (13), is a pack satisfying f(P’) > 0. Therefore,
WI-SP can be solved by checking whether the set P’ = {i € [n]\C | 2*(C)+a} >
1} is a pack with f(P’) > 0, for any possible C C [n] with z*(C) < 1.

Let Ip == {i € [n] | ) = 0} and Iy := {i € [n] | 2f € (0,1)}. From the
assumptions of this theorem, we know that a := max{|S|: 2*(5) < 1,5 C I}
is a constant. For any T' C Iy and S C Iy with z*(S5) < 1, it is easy to see that

Gen\S|a*(S)+ar>1y={iep\(SUT) | z*(SUT)+a* > 1}.

Hence, {i € [n]\C | *(C) + zf > 1} is a pack with positive f value for some
C C [n] with 2*(C) < 1, if and only if {i € [n]\(C\Ip) | z*(C\Ip) + x} > 1}
is a pack with positive value, where C\Iy C Iy and z*(C\lp) = z*(C) < 1.
Therefore, WI-SP can be solved by the following procedure:

1. For any S C Iy with 2*(S) < 1, construct the corresponding P’ = {i € [n]\S |
x*(S) +af > 1}.

2. Check if P’ is a pack with f(P’) > 0.

3. If the answer to the previous check is yes for some S C Iy with z*(5) <
1, then the corresponding P’ works as a yes-certificate to WI-SP, and its
corresponding WI separates *; If the answer is no for all S C Iy with z*(S5) <
1, then z* cannot be separated by any WI from the knapsack constraint
a'z <b.

Since o = max{|S|: z*(S) < 1,5 C Iy}, we have

(S |a*(S) < 1,5 C I} <Y (Z) — O(n®).

k=0

So this above procedure can be implemented in polynomial time, and we com-
plete the proof. O

In particular, Theorem 6 implies that, if £* has a constant number of frac-
tional components, then WI-SP can be solved in polynomial time. Following the
same logic as in Corollary 1, we directly obtain the following corollary.

Corollary 2. If the number of constraints in the LP relazation (2) is a constant
and x* is an extreme point solution to (2), then the separating WI can be obtained
in polynomial time if one exists.
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Abstract. We consider the multilinear polytope which arises naturally
in binary polynomial optimization. Del Pia and Di Gregorio introduced
the class of odd (-cycle inequalities valid for this polytope, showed that
these generally have Chvéatal rank 2 with respect to the standard relax-
ation and that, together with flower inequalities, they yield a perfect
formulation for cycle hypergraph instances. Moreover, they describe a
separation algorithm in case the instance is a cycle hypergraph. We intro-
duce a weaker version, called simple odd (3-cycle inequalities, for which we
establish a strongly polynomial-time separation algorithm for arbitrary
instances. These inequalities still have Chvétal rank 2 in general and still
suffice to describe the multilinear polytope for cycle hypergraphs.

Keywords: Binary polynomial optimization - Cutting planes -
Separation algorithm

1 Introduction

In binary polynomial optimization our task is to find a binary vector that maxi-
mizes a given multivariate polynomial function. In order to give a mathematical
formulation, it is useful to use a hypergraph G = (V, E), where the node set V'
represents the variables in the polynomial function, and the edge set E represents
the monomials with nonzero coefficients. In a binary polynomial optimization
problem, we are then given a hypergraph G = (V, E), a profit vector p € RVYE
and our goal is to solve the optimization problem

max {Z Pozy + Zpe H zy 2 €40, I}V} . (1)
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Using Fortet’s linearization [13,15], we introduce binary auxiliary variables z,
for e € E, which are linked to the variables z,, for v € V| via the linear inequal-
ities

Zy —2¢ >0 Veec E, Vvee (2a)
(ze=1)+ Y (1—2)>0 Ve € E. (2b)

vee

It is simple to see that

{z €{0,1}VF . 2z, = sz Ve € E} ={z€{0,1}V°":(2)}.

veEe

Hence, we can reformulate (1) as the integer linear optimization problem

max {vazv + Z:peze :(2), z € {0, 1}VUE} . (3)

veV ecE

We define the multilinear polytope ML(G) [6], which is the convex hull of the
feasible points of (3), and its standard relazation SR(G):

ML(G) = conv {z € {0,1}VVF : (2)},
SR(G) :={z € [0,1]VYF : (2)}.

Recently, several classes of inequalities valid for ML(G) have been intro-
duced, including 2-link inequalities [4], flower inequalities [7], running intersec-
tion inequalities [8], and odd [-cycle inequalities [5]. On a theoretical level,
these inequalities fully describe the multilinear polytope for several hypergraph
instances: flower inequalities for ~y-acyclic hypergraphs, running intersection
inequalities for kite-free B-acyclic hypergraphs, and flower inequalities together
with odd [B-cycle inequalities for cycle hypergraphs. Furthermore, these cutting
planes greatly reduce the integrality gap of (3) [5,8] and their addition leads to
a significant reduction of the runtime of the state-of-the-art solver BARON [9].
Unfortunately, we are not able to separate efficiently over most of these inequal-
ities. In fact, while the simplest 2-link inequalities can be trivially separated in
polynomial time, there is no known polynomial-time algorithm to separate the
other classes of cutting planes, and it is known that separating flower inequalities
is NP-hard [9].

Contribution. In this paper we introduce a novel class of cutting planes called
simple odd (-cycle inequalities. As the name suggests, these inequalities form a
subclass of the odd S-cycle inequalities introduced in [5]. The main result of this
paper is that simple odd (-cycle inequalities can be separated in strongly poly-
nomial time. While our inequalities form a subclass of the inequalities introduced
in [5], they still inherit the two most interesting properties of the odd S-cycle
inequalities. First, simple odd (-cycle inequalities can have Chvatal rank 2. To



Simple Odd (-Cycle Inequalities 183

the best of our knowledge, our algorithm is the first known polynomial-time sep-
aration algorithm over an exponential class of inequalities with Chvatal rank 2.
Second, simple odd B-cycle inequalities, together with standard linearization
inequalities and flower inequalities with at most two neighbors, provide a per-
fect formulation of the multilinear polytope for cycle hypergraphs. Finally, we
believe that our separation algorithm could lead to significant speedups in solv-
ing several applications that can be formulated as (1) with a hypergraph that
contains (3-cycles. These applications include the image restoration problem in
computer vision [4,5], and the low auto-correlation binary sequence problem in
theoretical physics [2,5,16,18,19].

Outline. We first introduce certain simple inequalities in Sect.2 that are then
combined to form the simple odd S-cycle inequalities in Sect. 3. Section 4 is ded-
icated to the polynomial-time separation algorithm. Finally, Sect.5 relates the
simple odd B-cycle inequalities to the general (non-simple) odd S-cycle inequal-
ities in [5].

2 Building Block Inequalities

We consider certain affine linear functions s : RYYF — R defined as follows. For
each e € F and each v € e we define

inc inc

Se,v(z) =2y T Ze (Se,v)

For each e € F and all Uy W C e with U W # @ and U NW = & we define

(e)d(}iW( = 226_1+Z 1—2y) Z (1—zw) + Z (2-22,) (s (e)dt}iw)

uelU weWw vee\(UUW)

Foralle,f € EwithenNnf# @andallU CewithU #@and UN f = & we
define

S p(2) = 2214 ) (=2 (1—2p) + D (2-22) (seitr.r)

uelU vee\(UUf)
Foralle, f,ge EwitheNf#3,eNg+# @ and eN fNg= I we define

S0 ()= 22— 1+ (L—2p) + (1= 2)+ 3. (2-22,) (s87%,)
vee\(fUg)

In this paper we often refer to 51“3, sgfllj{w, Sl f> sgwj?g as building blocks.
Although in these definitions U and W can be arbitrary subsets of an edge e,
in the following U and W will always correspond to the intersection of e with
another edge. In the next lemma we will show that all building blocks are nonneg-
ative on a relaxation of ML(G) obtained by adding some flower inequalities [7] to
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SR(G), which we will define now. For ease of notation, in this paper, we denote
by [m] the set {1,...,m}, for any nonnegative integer m.

Let f € F and let e;, i € [m], be a collection of distinct edges in E, adjacent
to f, such that fNe;Ne; = 0 for all 4,5 € [m] with ¢ # j. Then the flower
inequality [5,7] centered at f with neighbors e;, i € [m], is defined by

-+ > A=z)+ >, (1—z)=0

i€[m] vEf\Uic[m)ei

We denote by FR(G) the polytope obtained from SR(G) by adding all flower
inequalities with at most two neighbors. Clearly FR(G) is a relaxation of ML(G).
Furthermore, FR(G) is defined by a number of inequalities that is bounded by
a polynomial in |V| and |E].

Lemma 1. Let G = (V,E) be a hypergraph and let s be one of sglg, gd(}{w,

s 55 s, Then s(z) > 0 is valid for FR(G). Furthermore, if 2 € ML(G) N

e f.g9°
ZVYE and s(z) = 0, then the corresponding implication below holds.

(i) If s'5(z) = 0 then z, = z.

(1) If Sgd{}W(z) =0 then [[,cy 2u + [Lwew 2w = 1.
(1i7) If s‘me ;(2) =0 then zp + [[,cp2u =1
(iv) Ifstw0 ( ) =0 then zy + z4 = 1.

e, f,g

Proof. First, si(z) > 0 is part of the standard relaxation and implication (i) is
obvious.

Second, s‘gdﬁlw(z) > 0 is the sum of the following inequalities from the
standard relaxation: z. > 0, 1 — 2z, > 0 for all v € €\(UU W), and
(zZe =1+ cc(1=2) > 0.If z € ML(G) N ZV"F and 5277y, (2) = 0, then each
of these inequalities must be tight, thus z, = 0, z, = 1 for each v € e\(U Uw).
The last (tight) inequality yields —1 + ZUEUUW(l zy) = 0, i.e., precisely one
variable z,, for v € U U W, is 0, while all others are 1, which yields implica-
tion (ii).

Third, s¢%5 ;(2) > 0 is the sum of the following inequalities: 2z > 0, 1—2, > 0
for all v € e\ (UUf) and (ze — 1) + (1 — 2r) + 2 peer (1 — 20) = 0. The latter
is the flower inequality centered at e with neighbor f. If z € ML(G) N ZVY?
and s‘gnUef(z) = 0, then each of these inequalities must be tight, thus z, = 0,
zy = 1 for each v € e\ (U U f). The last (tight) inequality yields —1+ (1 —zf) +
Yowcr(l = 2zy) = 0, ie., either z; = 1 and z, = 0 for exactly one u € U, or
zy =0 and z, = 1 holds for all u € U. Both cases yield implication (iii).

Fourth, we consider st“;? (z) > 0. Note that due to eN f # @, eNg # & and
eN fNg= @, the three edges e, f, g must all be different. Thus, ng\})’g (2) >0is
the sum of z. > 0,1 — 2z, > 0 for all v € e\(f Ug) and of (z. — 1)+ (1 — z5) +
(1—29)+ ZUEQ\(ng)(l — 2zp) > 0. The latter is the flower inequality centered
at e with neighbors f and g. If 2 € ML(G) NZY"" and s} (2) = 0 holds, then
each of the involved inequalities must be tight, thus z, = 0 and z, = 1 for each
vee\ (fUg). The last (tight) inequality implies —1 4+ (1 — z¢) + (1 — 2z4) =0,
i.e., zf + z4 = 1. Hence, implication (iv). holds. O
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3 Simple Odd B-Cycle Inequalities

We will consider signed edges by associating either a “4” or a “—” with each
edge. We denote by {£} the set {+,—} and by —p a sign change for p € {+}.
In order to introduce simple odd 3-cycle inequalities, we first present some more
definitions.

Definition 1. A closed walk in G of length k > 3 is a sequence C' = vi-e1-va-
€9-Ug~ * + -Up_1-€k_1-Vg-€k-V1, where we have e; € E as well as v; € e;_1Ne; and
ei—1Ne;Ne;i11 = & for each i € [k], where we denote ey = ey, and eg41 = ey for
convenience. A signature of C' is a map o : [k] — {£}. 4 signed closed walk in G
is a pair (C, o) for a closed walk C' and a signature o of C. Similarly, we denote
Vo = U, Vg1 = v1, 0(0) :=o(k) and o(k + 1) := o(1). We say that (C,0) is
odd if there is an odd number of indices i € [k] with o(i) = —; otherwise we say
that (C,0) is even. Finally, for any signed closed walk (C,0) in G, its length
function is the map £(c ) : FR(G) — R defined by

— i i dd
Z(C,U) (Z) = E (Sler,:(,:v,i (Z) + Sler;?v,prl (Z)) + E sgi,eiﬁei,l,ei Nejt1 (z)
€l 1) €l—,—)

LD DR HOE D DR - ORI DR AN ©

€044, €l -4 €l 1)
one two
+ Z Seiveimei+1:ei—l(z) + Z Sei,ei—1,€i41 (2),
CEES €l -

where I(qp.c) 5 the set of edge indices i for which e;_1, e; and e;+1 have sign
pattern (a,b,c) € {£}3, i.e., Lapey = {i € [k] : 0(i —1) = a, (i) = b,
o(i+1)=c}.

We remark that the definition of £(¢ () is independent of where the closed

walk starts and ends. Namely, if instead of C' we consider C' = v;-¢; -+ - - -v-
ex-vi-e1-- - - -v;_1-€;_1-v;, and we define o’ accordingly, then we have /(¢ ,)(2) =
L(cr o1y (2). Moreover, if o(i — 1) = — or (i) = —, then £(¢ () is independent

of the choice of v; € ¢;_1 Ne;.

By Lemma 1, the length function of a signed closed walk is nonnegative. We
will show that for odd signed closed walks, the length function evaluated in each
integer solution is at least 1. Hence, we define the simple odd 3-cycle inequality
corresponding to the odd signed closed walk (C, o) as

E(C,a’)(z) > 1. (4)
We first establish that this inequality is indeed valid for ML(G).
Theorem 1. Simple odd 3-cycle inequalities (4) are valid for ML(G).

Proof. Let z € ML(G) N {0,1}VYE and assume, for the sake of contradiction,
that z violates inequality (4) for some odd signed closed walk (C, o). Since the
coefficients of /(¢ ,) are integer, we obtain /(¢ ) < 0. From Lemma 1, we have
that s(z) = 0 holds for all involved functions s(z). Moreover, edge variables
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ze; for all edges e; with o(i) = 4+, node variables z,, for all nodes v; with
o(i—1) = o(i) = +, and the expressions [[,c. ., # for all nodes i with
o(i—1) = o(i) = — are either equal or complementary, where the latter happens
if and only if the corresponding edge e; satisfies o(i) = —1. Since the signed

closed walk C'is odd, this yields a contradiction z, = 1 — z, for some edge e of
Cor z, =1— z, for some node v of C or Hueemf Zy=1— Hueemf z, for a pair
e, f of subsequent edges of C. O

Next, we provide an example of a simple odd (-cycle inequality.

Fig. 1. Figure of the closed walk considered in Example 1. The solid edges have sign
+ and the dashed edges have sign —.

Ezxample 1. We consider the closed walk of length 5 given by the sequence
C = wvi-e1-vg-e3-U3-- - --Us-e5-v1  With signature (o(1),0(2),...,0(5)) =
(=, +,+,—,—) depicted in Fig.1. We have 1 € [_ _ ), 2 € I[_ ), 3 €
Ig 4y, 4 € Iy, 5 € I _ _). The corresponding simple odd B-cycle
inequality is £(¢c »)(2) > 1. Using Definition 1, we write {(c ,)(2) in terms of
the building blocks as

Z(Cyff)(z) = sz?iilﬁ%,ez (Z) + Siir;C,US (Z) + Siirgcﬂle, (Z) + 822?64065,63 (z) + 52(51?}35ﬂ64’€5ﬂ61 (z)

Using the definition of the building blocks, we obtain
Lic,oy () = 42z =1+ > (L—zu)+(1—zep) + > (2 — 22,)
u€eqNes vEeq\(ejNegUesn)
+ (zvg - 282) + (zvg - ZEB)
+2ze, — 1+ Z (1 —2y) + (1 = 2e3) + Z (2 — 2z,)

u€egnes vEegq\(egNesUeg)

+2ze5 — 14+ > (I—za)+ >, (I—zu)+ > (2 — 22,).

u€esNey we€esNey vees\(esNegU(esNer))
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We write the sums explicitly and obtain

oy (2) = 422, =1+ (1= 2p) + (1 = 20,) + (1 = 2¢,)
+(Z'Us 7262)4»(21)3 7’263)
+22e, =1+ (1 —2p) + (1 — 2¢5) + (2 — 224,)
+ 2205 — 14+ (1= zu5) + (1= 20,) + (1 — 24)
= 2(2¢; — Zey = Zes T Zeg T Zes — Zvy — Zuy T Zvg — Zuy — Zvg) T 7
o

Example 1 suggests that, when the function is written explicitly, the coeffi-
cients in the function (¢ ,)(2) exhibit a certain pattern. This different expression
of £(¢,4)(2) is formalized in the next lemma.

Lemma 2. Given a signed closed walk (C, o) in G with k > 3, we have

Lo (R)= > (22, +1) = > 2z, + > 22y, + > 2(1 — zy)
i€[k]

i€lk] i€[k] i€[k]
o(i)=— o(i)=+ o(i—1)=0c(i)=+ o(i—1)=o(i)=—
vee; _1MNe;

+ > 201 —zp) —2l{i € [k] : 0(i — 1) = o (i) = —}|. (5)
i€lk]io(i)=—
vEe;\(ej—1Ueit1)

Using Definition 2, we obtain the following result.

Proposition 1. Simple odd (3-cycle inequalities are Chvdtal-Gomory inequali-
ties for FR(G) and can be written in the form

P D D D D D DR C s Vi > (=0 - 1)

ielk] i€ [k] i€k i€ [k] i€[k]io(i)=—
o(i)=— o(i)=+ o(i—1)=o(i)=+ o(i—1)=0o(i)=— veej\(e;—1Ueit1) 6
vEe;_1Me; ( )
1—|{i €[k]:0(i) =} ) ) )
> —Hi€lkl:o(i—1)=0() = -}

2

Proof. Let (C,0) be an odd signed closed walk in a hypergraph G. From Lemma
1 we obtain that {(¢,)(2) > 0 holds for each z € FR(G). Lemma 2 reveals
that in the inequality £(c,)(2) > 0, all variables’ coefficients are even integers,
while the constant term is an odd integer. Hence, the inequality divided by 2
has integral variable coefficients, and we can obtain the corresponding Chvatal-
Gomory inequality by rounding the constant term up. The resulting inequality
is the simple odd $-cycle inequality (4) scaled by 1/2 and has the form (6). This
shows that simple odd (-cycle inequalities are Chvatal-Gomory inequalities for
FR(G). O

It follows from Proposition 1 that, under some conditions on (C, o), simple
odd f-cycle inequalities are in fact {0, 1/2}-cuts (see [3]) with respect to FR(G).
Some classes of such cutting planes can be separated in polynomial time, in
particular if the involved inequalities only have two odd coefficients. In such a
case, these inequalities are patched together such that odd coefficients cancel
out and eventually all coefficients are even. We want to emphasize that this
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generic separation approach does not work in our case since our building block
inequalities may have more than 2 odd-degree coefficients. Nevertheless, the
separation algorithm presented in the next section is closely related to the idea
of cancellation of odd-degree coefficients.

4 Separation Algorithm

The main goal of this section is to show that the separation problem over simple
odd (-cycle inequalities can be solved in strongly polynomial time (Theorem
2). This will be achieved by means of an auxiliary undirected graph in which
several shortest-path computations must be carried out. The auxiliary graph is
inspired by the one for the separation problem of odd-cycle inequalities for the
maximum cut problem [1]. However, to deal with our different problem and the
more general hypergraphs we will extend it significantly.

Let G = (V, E) be a hypergraph and let 2 € FR(G). Define 7 := {(e, f,g) €
E:enf#9, fNng#a, eNfNg=} to be the set of potential subsequent
edge triples. We define the auxiliary graph

G=(V,E)=(V, UV_UVg, E- " UED"TUET>" UEHTE)

and length function £ : E — R as follows.

V+ =V x {:t}

Vo={enf:e,f€EE, e#f enf+#a}x{+}

VE = F x {i}
E-mm={{(enf,p),(fNg,—p)}:(e,f,9) €T, pe{=}}

E{(U,p),(W,—p)} = gl;l;{s?dgw(é) :U=enf, W= fng for some (e, f,g) € T}

EPTr = {{(e,p),(9:—p)} e, g€ Eenf#@and fNg# o
for some f € F withen fNng=g, pe {£}}

Ui (ep) (g,—p)} = m}n{SZV,?fg(i) feE, enf#@, fng#@, enfng=a}

BT ={(en), (fNg,-p)} (e fr9) €T, pe{£})
U (ep),(U—p)} = lg{ign{«???ﬁ,e(f) (e, f,9) €T, U= fng}

E+’+’i = {{(va)7 (eap)} IV EE€EE E‘7 p (S {:l:}}
Ciwp)(en)y = Ses(2)

We point out that the graph G can have parallel edges, possibly with different
lengths. We immediately obtain the following corollary from Lemma 1.

Corollary 1. The edge lengths [ : E — R are nonnegative.

We say that two nodes @,7 € V are twins if they only differ in the second
component, i.e., the sign. We call a walk W in the graph G a twin walk if its
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end nodes are twin nodes. For a walk W in G, we denote by E( ) the total
length, i.e., the sum of the edge lengths £, along the edges e in W. In the next
two lemmas we study the relationship between odd signed closed walks in G and
twin walks in G.

Lemma 3. For each odd signed closed walk (C, o) in G there exists a twin walk
W in G of length {(W) < 1+ s, where s is the slack of the simple odd (3-cycle
inequality (4) induced by (C, o) with respect to £. In particular, if the inequality
is violated by 2, then we have (W) < 1.

Proof. Let (C,0) be an odd signed closed walk with C' = vy-e1-vy-€9-v3-+ - - -
Vg—1-Ugp—1-Vk-€k-v1. For i € [k], let p; == ]_[] 1 0(j) be the product of signs of
all edges up to e;. Moreover, define pg = o(0) = o(k). For each i € [k], we
determine a walk W; in G of length at most 2, and construct W by going along
all these walks in their respective order. The walk W; depends on (i — 1), o (i)
and o(i + 1):

(vi,pi—1) = (€ispi) = (vip1,pi)  ifi € 14 4 4
(vi, pi—1) — (€i,pi) ifiel 4
(ezvpz) (Ui+1,pi) ifie I_ 44
W, — (i, i) (length 0) iféiel_ 4 _
(ei-1,pi-1) — (& Neit1,p;) ifiely
(ei—1Nei,pim1) — (€541, P5) ifiel_ _ 4
(ei—1Meipic1) — (e;Nejpr,py) fiel
(€i-1,pi—1) = (€it1, i) ifiel, ..

The walks W; help to understand the meaning of the different node types:
the walk W; starts at a node from V, if o(i — 1) = (i) = +, it starts at a node
from V_ if (i — 1) = o(i) = —, and it starts at a node from Vg if o(i — 1) # o (i)
holds. Similarly, the walk W; ends at a node from V if o(i) = o(i + 1) = +, it
ends at a node from V_ if o(i) = o(i + 1) = —, and it ends at a node from Vg if
o(i) # o(i + 1) holds.

Note that all edges traversed by each W; are indeed in E. It is easily verified
that, for each i € [k — 1], the walk W; ends at the same node at which the
walk W, starts. Hence W is indeed a walk in G. Since vg,1 = v; holds, C' is
closed and (C, o) is odd, it can be checked that W is a twin walk. Finally, by
construction, /(W) < (0,0)(2) holds, where the inequality comes from the fact
that the minima in the definition of £ need not be attained by the edges from
C. By definition of s we have {(¢,)(2) =1+ s, thus /(W) < 1+ s. O

Lemma 4. For each twin walk W in G there exists an odd signed closed walk
(C,0) in G whose induced simple odd (3-cycle inequality (4) has slack ((W) —
with respect to 2. In particular, if (W) < 1 holds, then the inequality is violated
by Z.
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Proof. Let W be a twin walk in G. We first construct the signed closed walk
(C, o) by processing the edges of W in their order. Throughout the construction
we maintain the index ¢ of the next edge to be constructed, which initially is ¢ ==
1. Since the construction depends on the type of the current edge & = {u,v} € W
(where W visits @ first), we distinguish the relevant cases:

Case 1: ¢ € ETT* and 4 € Vi. Hence, @ = (e,p) and © = (v,p) for some
v € e € E and some p € {£}. We define v; := v and continue.

Case 2: ¢ € ETt* and @ € V. Hence, 4 = (v,p) and o = (e, p) for some
v € e € F and some p € {£} as well as {; = s.7. We define ¢; == e and
o (i) = +. We then increase 7 by 1 and continue.

Case 3: ¢ € E~~ and 4 € V. Hence, @ = (e,p) and © = (f N g, —p) for some
(e, f.g) €T as well as le = s27 ;(2). We define v; (resp. v;41) to be any node in

enf (resp. fNg), e; .= f and o(i) := —. We then increase ¢ by 1 and continue.
Case 4: ¢ € E= 7. Hence, & = (eN f,p) and v = (f N g,—p) for some
(e, f,9) € T as well as ¢z = sgfi[jijw(é). We define ¢; :== f, o(i) := — and v;41 to

be any node in f N g. We then increase ¢ by 1 and continue.

Case 5: ¢ € EY~~ and @ € V_. Hence, & = (e N f,p,—) and © = (g, —p) for
some (e, f,g) € T with £z = sg1f5 ;(2). We define e; == f, (i) :== — and v;11 to
be any node in f N g. We then increase ¢ by 1 and continue.

Case 6: ¢ € ET—F. Hence, i = (e,p) and v = (g, —p) for some (e, f,g) € T
as well as le = sy (2). We define v; (resp. v;41) to be any node in e N f (resp.
fng),e =f o()=—, ey =gando(i+ 1) :=+. We then increase i by 2

and continue.

After processing all edges of W, the last defined edge is e;_; and thus we
define k := 7 — 1 and C := vj-e1-vz-€9-v3-+ - - Uk _1-Vp_1-Vg-€x-v1. By checking
pairs of edges of W that arise consecutively, one verifies that for each i € [k], we
also have v; € e;_1 Ne;.

To see that (C,0) is odd, we use the fact that the endnodes of W are twin
nodes. When traversing an edge € from @ to v, the second entries of @ and v
differ if and only if we set a o-entry to —. Note that in Case 6 we set two such
entries, but only one to —. We conclude that o (i) = — holds for an odd number
of indices 7 € [k].

By construction we have £(W) = {(¢,4)(2). The slack of the simple odd S-
cycle inequality induced by (C, o) with respect to 2 is then £(¢ ) (2) — 1 =
(W) —1. O

Theorem 2. Let G = (V, E) be a hypergraph and let 2 € FR(G). The separation
problem for simple odd [3-cycle inequalities (4) can be solved in time O(|E|® +
V|- |E]).

Proof. Let n := |V| and m = |E| and assume m > log(n) since otherwise we
can merge nodes that are incident to exactly the same edges. First note that,
regarding the size of the auxiliary graph G, we have |V| = O(m? + n) and
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|E| = O(mn+m?). For the construction of G and the computation of ¢ we need
to inspect all triples (e, f,g) € T of edges. This can be done in time O(m3n)
since for each of the m? edge triples (e, f, g) we have to inspect at most n nodes
to check the requirements on the intersections of e, f and g.

According to Lemmas 3 and 4 we only need to check for the existence of a twin
walk W in G with £(W) < 1. This can be accomplished with |V|/2 = O(m? +n)
runs of Dijkstra’s algorithm [12] on G, each of which takes

O(|E| + V] -log(IV])) = O((mn +m?) + (m* +n) - log(m* +n))

time when implemented with Fibonacci heaps [14]. If m? > n, then the total
running time simplifies to O(m?), and otherwise we obtain O(n?m). O

The main reason for this large running time bound is the fact that |V_| can
be quadratic in |E|.

Clearly, our separation algorithm requires that the edge lengths ¢ of the
auxiliary graph G are nonnegative. This in turn requires 2 € FR(G), i.e., that
the flower inequalities with at most two neighbors are satisfied. As we already
mentioned, the number of these flower inequalities is bounded by a polynomial
in |V] and |E|. We like to point out that one can combine the separation of these
flower inequalities with the construction of G, i.e., one can determine violated
inequalities while constructing the auxiliary graph.

5 Relation to Non-simple Odd 3-Cycle Inequalities

In this section we relate our simple odd (-cycle inequalities to the odd B-cycle
inequalities in [5].

A cycle hypergraph is a hypergraph G = (V. E), with E = {e1,...,em},
where m > 3, and every edge e; has nonempty intersection only with e;_; and
e;+1 for every i € {1,...,m}, where, for convenience, we define e,,+1 := e; and
eg := ey. If m = 3, it is also required that e; Ney Nesz = (. Given a closed walk
C = vy-e1-vg-€9- - - -Up-€-v1 in a hypergraph G = (V, E), the support hypergraph
of C is the hypergraph G(C) = (V(C), E(C)), where E(C) := {e1,e2,...,ex}
and V(C):=e3Uea U---Ueg.

Lemma 5. Let (C,0) be a signed closed walk in a hypergraph G and assume
that the support hypergraph of C is a cycle hypergraph. Let E~ = {e; : i €
K], o)) = —}, B = {er i € [K], 0() = +}, $1 = Uren- ©) \Usepr € and
So = {v1,..., 0} \Ueer- € Then

looy)(2) == 22+ 3 2%+ 3 22— Y 22 +2|5]

vESL ecE—~ vES2 ecE+t
- 2‘{2 S [k‘] tei—1,€; € E_}| + ‘E_|

In particular, the simple odd [(3-cycle inequality corresponding to (C, o) coincides
with the odd B-cycle inequality corresponding to (C, o). Furthermore, in a cycle
hypergraph, every odd B-cycle inequality is a simple odd B-cycle inequality.
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Proof. 1t suffices to observe that

Z 2zy; = Z 22y, Z 22y + Z 2z, = Z 22y,

1€[k] vES2 i€ (k] i€[k]io(i)=— veES]
o(i—1)=o(i)=+ U(i—61)=0g')=— vEe;\(ej—1Ueiy1)
vEe;—1Me;

> 2+ > 2=2(%] and Y 1=|E|.
i€k

i€[k] i€[k]:o(i)=— i ]
o(i—1)=o(i)=— vEe;\(e;—1Ue;41) o(i)=—
veEe;_1Me;

The statement for cycle hypergraphs G follows by inspecting the definition of
the odd (-cycle inequalities. a

As a consequence, we can use the two following known results in order to
gain insights about simple odd (-cycle inequalities.

Proposition 2 (Example 2 in [5]). There exists a cycle hypergraph for which
the Chvdtal rank of odd (-cycle inequalities can be equal to 2.

Proposition 3 (Implied by Theorem 1 in [5]). Flower inequalities are
Chudtal-Gomory cuts for SR(G).

Theorem 3. Simple odd (-cycle inequalities can have Chvdtal rank 2 with
respect to SR(G).

Proof. Combining Proposition 3 with Proposition 1 shows that simple odd (-
cycle inequalities have Chvatal rank at most 2. Lemma 5 and Proposition 2 show
that the Chvéatal rank of simple odd (-cycle inequalities for cycle hypergraphs
can be equal to 2. a

For the second insight, we consider a strengthened form of Theorem 5 in [5].

Proposition 4 (Theorem 5 in [5], strengthened). Let G = (V,E) be a
cycle hypergraph. Then ML(G) is described by all odd [-cycle inequalities and
all inequalities from FR(G).

The strengthening lies in the fact that in the original statement of Theorem 5
in [5] all flower inequalities are used rather than only those with at most two
neighbors. This strengthening of the original statement can be seen by inspecting
its proof in [5]. By applying Lemma 5 to Proposition 4 we immediately obtain
the following result.

Theorem 4. Let G = (V, E) be a cycle hypergraph. Then

ML(G) = {z € FR(G) : x satisfies all simple odd 3-cycle inequalities}.

Future Research. We would like to conclude this paper with a couple of open
questions that could be investigated. An interesting research direction is a
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computational investigation of simple odd (-cycle inequalities, especially in rela-
tion to the applications discussed in Sect. 1, i.e., the image restoration problem
in computer vision and the low auto-correlation binary sequence problem in
theoretical physics.

The next research direction has a more theoretical flavor. The LP relaxations
defined by odd-cycle inequalities [1] for the cut polytope and the affinely isomor-
phic correlation polytope (see [11]) have the following property: when maximiz-
ing a specific objective vector, then one can remove a subset of the odd-cycle
inequalities upfront without changing the optimum. More precisely, the removal
is based only on the sign pattern of the objective vector (see Theorem 2 in [17]).
Since the simple odd (-cycle inequalities can be seen as an extension of the odd
cycle inequalities for the cut polytope, the research question is whether a similar
property can be proven for simple odd (3-cycle inequalities.

The final research direction is that of redundancy of simple odd (-cycle
inequalities for which we provide some insight in the full version of the paper [10].
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Abstract. We consider the rooted prize-collecting walks (PCW) prob-
lem, wherein we seek a collection C of rooted walks having minimum
prize-collecting cost, which is the (total cost of walks in C) + (total
node-reward of the nodes not visited by any walk in C). This problem
arises naturally as the Lagrangian relaxation of both orienteering (find a
length-bounded walk of maximum reward), and the £-stroll problem (find
a minimum-length walk covering at least ¢ nodes). Our main contribu-
tion is to devise a simple, combinatorial algorithm for the PCW problem
that returns a rooted tree whose prize-collecting cost is at most the opti-
mum value of the prize-collecting walks problem. This result applies also
to directed graphs, and holds for arbitrary nonnegative edge costs.

We present two applications of our result. We utilize our algorithm
to develop combinatorial approximation algorithms for two fundamental
vehicle-routing problems (VRPs): (1) orienteering; and (2) k-minimum-
latency problem (k-MLP), wherein we seek to cover all nodes using
k paths starting at a prescribed root node, so as to minimize the
sum of the node visiting times. Our combinatorial algorithm allows
us to sidestep the part where we solve a preflow-based LP in the LP-
rounding algorithms of [13] for orienteering, and in the state-of-the-
art 7.183-approximation algorithm for k-MLP in [17]. Consequently,
we obtain combinatorial implementations of these algorithms (with the
same approximation factors). Compared to algorithms that achieve the
current-best approximation factors for orienteering and k-MLP, our algo-
rithms have substantially improved running time, and achieve approx-
imation guarantees that match (k-MLP), or are slightly worse (orien-
teering) than the current-best approximation factors for these problems.
We report various computational results for our resulting orienteering
algorithms showing that they perform quite well in practice.
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1 Introduction

Vehicle-routing problems (VRPs) are a rich class of optimization problems that
find various applications, and have been extensively studied in the Operations
Research and Computer Science literature (see, e.g., [19].) Broadly speaking,
we can distinguish between two types of vehicle-routing problems: one where
resource constraints require us to select which set of nodes or clients to visit and
plan a suitable route(s) for visiting these clients; and the other, where we have a
fized set of clients, and seek the most effective route(s) for visiting these clients.

We consider two prominent and well-motivated problems in these two cat-
egories: (1) orienteering [2,4,7,13], belonging to the first category, wherein
nodes have associated rewards for visiting them, and we seek a length-
bounded path that collects maximum reward; and (2) minimum-latency prob-
lems (MLPs) [3,6,17], belonging to the second category, wherein, we seek one
or more rooted paths to visit a given set of clients so as to minimize the sum
of the client visiting times (i.e., the total latency). Besides its appeal as a natu-
ral and clean way of capturing resource constraints in a VRP, the fundamental
nature of orienteering stems from the fact that it often naturally arises as a
subroutine when solving other VRPs, both in approximation algorithms—e.g.,
for MLPs (see [5,10,17]), VRPs with time windows [2], distance bounds [15], and
regret bounds [12]—as also in computational methods, where orienteering corre-
sponds to the “pricing” problem encountered in solving set covering/partitioning
LPs (a.k.a configuration LPs) for VRPs via a column-generation or branch-cut-
and-price method (see, e.g., [8]). In particular, we can often formulate the VRP
as one of covering clients using suitable paths; solving this covering problem,
approximately via a set-cover approach, or its corresponding configuration-LP
relaxation, then entails solving an orienteering problem.

Some recent work on orienteering [13] and MLPs [17], has led to promising LP-
based approaches for tackling these problems, yielding, for multi-vehicle MLPs,
the current-best approximation factors. This approach is based on moving to a
bidirected version of the underlying metric and considering a preflow-based LP-
relaxation for rooted walk(s) (with in-degree > out-degree constraints), and using
a powerful arborescence-packing result of Bang-Jensen et al. [1] to decompose
an (optimal) LP solution into a convex combination of arborescences that is
“at least as good” as the LP solution. Viewing these arborescences as rooted
trees in the undirected graph, one can convert the tree into a rooted path/cycle
by doubling and shortcutting, and the above works show how to leverage the
resulting convex combination of paths/cycles to extract a good solution.

Our Contributions and Related Work. We study the prize-collecting walks
(PCW) problem, which is the problem of finding a collection C of r-rooted walks
in a digraph G = (V, F) with nonnegative edge costs and node rewards, having
minimum prize-collecting cost, which is the total cost of the walks in C + the
total node-reward of the nodes not visited by any walk in C. This problem arises
as the Lagrangian relaxation of orienteering, and a subroutine encountered in
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MLP algorithms, namely that of finding a rooted path of minimum cost covering
a certain number of nodes.

Our main contribution is to devise a simple, combinatorial algorithm for the
PCW problem that returns a directed tree (more precisely, an out-arborescence)
rooted at r whose prize-collecting cost is at most the optimal value of the PCW
problem. Let G = (V, A) be a directed graph with arc-set A, arc lengths ¢, > 0 for
all a € A, and root r. Let each node v € V have a reward or penalty w, > 0. For
a multiset of arcs 7', define ¢(T) = ), 4 ca - (number of occurrences of a in T').
Define 7(S) = >, g7y for any set of nodes S. An out-arborescence rooted at
r is a subgraph T whose undirected version is a tree containing r, and where
every node spanned by T except r has exactly one incoming arc in T'; we will
often abbreviate this to an out-arborescence. For any subgraph 7' of G where
all nodes in V(T') are reachable from r in T (e.g., out-arborescence rooted at r),
define the prize-collecting cost of T to be PCC(T') := ¢(T) + m(VA\V(T)).

We give a combinatorial polytime algorithm ITERPCA (see Sect.3) that
finds an out-arborescence T whose prize-collecting cost is at most that of any
collection of r-rooted walks, i.e.,

oT) +n(VAV(T) <O :=  min [Z e(P) +7r(V\ U V(P))] .
r-rooted walks PeC PeC

We actually obtain the stronger guarantee that PCC(T') is at most the optimal
value OPT of a preflow-based LP-relaxation (P) for the PCW problem.

We briefly discuss the ideas underlying our combinatorial algorithm ITER-
PCA. Our algorithm and analysis is quite simple, and resembles Edmonds’ algo-
rithm for finding a minimum-cost arborescence. It is based on three main ideas
for iteratively simplifying the instance. We observe that if we modify the instance
by picking any non-root node v, and subtracting a common value 6 from the
cost of all incoming arcs of v and from 7, while ensuring that the new costs and
rewards are nonnegative, then it suffices to prove the desired guarantee for the
modified instance. Next, by choosing a suitable 6,, for all non-root nodes, and
modifying costs and rewards as above, we ensure that in the modified instance,
either: (a) there is a node v # r with zero reward; (b) there is a (directed) cycle
Z consisting of zero cost arcs; or (c) there is an out-arborescence consisting of
zero cost arcs. If (c) applies, then we are done. If (a) or (b) apply, we further
simplify the instance as follows: in case (a), we shortcut past v by merging every
pair of incoming and outgoing arcs of v and deleting v; in case (b), we contract
the cycle Z and set the reward of the contracted node to be the sum of the
(modified) rewards of nodes in Z. We then recurse on the simplified instance.

We believe that the above result, and the techniques underlying it, are of
independent interest, and will find various applications. We present two applica-
tions of our result (Sects. 4, 5), where use our combinatorial algorithm for PCW
to give combinatorial implementations of the LP-rounding algorithm for orien-
teering in [13], and for k-MLP in [17]. We emphasize that our contribution and
focus here is to demonstrate how our PCW-algorithm can be utilized to give a
more-efficient implementation of existing algorithms; in particular, our resulting
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algorithms inherit the performance guarantees of the LP-rounding algorithms
that they implement. We now discuss these applications, and in doing so, place
our result in the context of some extant work. We say that x € Rﬁ is an r-preflow
(or simply preflow), if we have z(6 ™ (v)) > (8 °* (v)) for all v # r.

e Friggstad and Swamy [13] proposed a novel LP-based approach for orienteer-
ing, wherein the LP-relaxation searches for a (r-) preflow of large reward.
The first step (and key insight) in their rounding algorithm is to utilize the
arborescence-packing result of [1] to cast the LP-solution z as a convex com-
bination of arborescences whose expected reward is at least the LP-optimum
and whose expected cost is at most the length bound, say B. They leverage
this to show that one can then extract a rooted path having reward at least
(LP-optimum)/3 via a simple combinatorial procedure.

We show (see Sect.4) that one can utilize our algorithm ITERPCA, in con-
junction with binary search, to obtain the desired convex combination com-
binatorially, that is, without having to solve their LP-relaxation, and thereby
obtain a combinatorial 3-approximation. This follows because the PCW prob-
lem is obtained by Lagrangifying the “length at most B” constraint. A stan-
dard fine tuning of the Lagrangian variable (which affects the node rewards)
via binary search then yields the desired distribution (over at most two rooted
trees). The same ideas also apply and yield combinatorial approximation algo-
rithms for other variants of orienteering, such as P2P-orienteering (where we
seek an r-t path) and cycle orienteering (where we seek a cycle containing 7).
As noted by [13], while their approximation factor of 3 does not as yet beat
the (2 + €)-approximation factor for orienteering [7], their LP-rounding app-
roach is significantly simpler than prior dynamic-programming (DP) based
algorithms for orienteering [2,4,7]; with our combinatorial implementation,
we also obtain significantly faster algorithms.! Moreover, an added subtle
benefit of the algorithms in [13] is that they also yield an upper bound on the
optimum, which can be used to evaluate the approximation factor of the solu-
tion computed on a per-instance basis; our combinatorial algorithms inherit
this benefit.

Our combinatorial algorithm and the associated upper bound may also find
use in the context of computational methods for solving other VRPs, since (as
mentioned earlier) orienteering corresponds to the pricing problem that needs
to be solved in these contexts. Indeed [8] utilizes our combinatorial algorithm
to obtain near-optimal solutions to distance-constrained vehicle routing.

In Sect. 6, we perform a computational study of our combinatorial orienteer-
ing algorithms, to better understand the performance of our algorithms in
practice. Our computational experiments show that our algorithms perform

! A straightforward implementation of our orienteering algorithm takes O(n*- K) time,
where K is the time for binary search. In contrast, the algorithm in [7] has running
time at least O(nl/52 »K) for obtaining a ﬁ—approximation; thus, O(n9 - K) time
for returning a 3-approximation. The DP-algorithm of Blum et al. [4] has running
time at least O(n® - K), and its approximation guarantee is no better than 4.
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fairly well in practice—in terms of both the solution and the upper bound
computed—and much better than that indicated by the theoretical analysis.
e Post and Swamy [17] consider multi-vehicle MLPs. For k-MLP, wherein we
seek k rooted paths of minimum total latency that together visit all nodes,
they devise two 7.183-approximation algorithms. One of their algorithms
(Algorithm 3 in §6.2 [17]) utilizes a subroutine for computing a distribution
of rooted trees covering at least k nodes in expectation, whose expected cost
is at most that of any collection of rooted walks that together cover at least
k nodes. Lagrangifying the coverage constraint again yields a PCW prob-
lem. Post and Swamy [17] devised an LP-rounding algorithm for this PCW
problem, by considering its LP-relaxation (P), using arborescence packing
to obtain a rooted tree with PCC(T) at most the LP-optimum OPT, and
then fine-tuning the node rewards via binary search to obtain the desired
distribution. In particular, they obtain the same guarantee that we do, but
via solving the LP (P). While not a combinatorial algorithm, they dub their
resulting k-MLP algorithm a “more combinatorial” algorithm (as opposed to
their other 7.183-approximation algorithm, which needs to explicitly solve a
configuration LP).
We can instead utilize our combinatorial algorithm to produce the rooted tree
T (see Sect.5); incorporating this within the “more combinatorial” algorithm
of [17] yields a fully and truly combinatorial 7.183-approximation algorithm
for k-MLP, which is the state-of-the-art for this problem.
We remark that our result bounding the prize-collecting cost of the tree T
by the prize-collecting cost of any collection of rooted walks is a substantial
generalization of an analogous result in [6], who compare against the prize-
collecting cost of a single walk (and specifically in undirected graphs). As
noted in [17], this stronger guarantee is essential for obtaining guarantees for
k-MLP.

2 LP-Relaxation for the Prize-Collecting-Walks Problem

Recall that we are given a directed graph G = (V, A), arc costs ¢, > 0 for all
a € A, root node r € V, and a reward or penalty m, > 0 for each node v. (Note
that . does not affect the prize-collecting cost of any rooted object; so it will
sometimes be convenient notationally to assume that 7, = 0.)

Our LP-relaxation (P) for prize-collecting walks has a variable x, for each
arc a, which represents the multiplicity of arc a in the walk-collection, and a
variable p, for each node v # r, which indicates whether node v is not covered.

(P)
min Z Calaq + Z TPy St x(éi“(S)) +p,>1 VSCV\{rlves

acA veV
z(6™(v)) > (8" (v)) Vo € V\{r}, x,p>0.
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The first constraint encodes that for every set S C V' and every v € S,
either S has an incoming arc or we pay the penalty m, for not visiting v; the
second encodes that every node v # r has in-degree at least out-degree, so that
the solution corresponds to a collection of walks rather than a tree. (Variable p,.
does not appear in any constraint, so we may assume that p, is always 0).

3 A Combinatorial Algorithm

We now present a combinatorial algorithm for prize-collecting walks based
on iteratively simplifying the instance. Recall that O* is the minimum value
of [Y pecc(P) + 7(V\Upee V(P))] over all collections C of r-rooted walks.
(Recall that a walk may have repeated nodes and arcs, and ¢(T') = >, 4 Ca -
(number of occurrences of a in T') for a multiset of arcs T'). Throughout this
section, the root will remain 7, so we drop r from the notation used to refer to
an instance. Since we will modify the instance (G, ¢, 7) during the course of our
algorithm, we use O*(G, ¢, ) to denote the above quantity. We use (P (g c,r))
to refer to the LP-relaxation (P) for the instance (G,c¢,w), and OPT(G,¢,)
to denote its optimal value. We use PCC(T; G, ¢, ) := ¢(T) + n(VA\V(T)) to
denote the prize-collecting value of T" under arc costs ¢ and penalties 7, where
T is a subgraph of G such that all nodes in V(T) are reachable from r in T
Whenever we say optimal solution below, we mean the optimal walk-collection
(i.e., an optimal integral solution to (P)).

Our algorithm ITERPCA resembles Edmond’s algorithm for finding a
minimum-cost arborescence, and is based on three main ideas for simplifying
the instance. However, unlike in the case of min-cost spanning arborescences,
our simplifications do not leave the problem unchanged; we really exploit the
asymmetry that we seek an out-arborescence but are comparing its value against
the best collection of r-rooted walks in (G, ¢, 7).

Let V! = V' \ {r}. We observe that we may modify the instance by pick-
ing a node v € V', and subtracting a common value 6 from the cost of all
incoming arcs of v and from m,, while ensuring that the new values of these
quantities are nonnegative (see step (7)). That is, it suffices to prove the desired
guarantee for the modified instance (G, ¢, 7): if T is an out-arborescence with
PCC(T;G,c,7) < O*(G,¢,7), then PCC(T;G,c,m) < O*(G,c,m) (Lemma 2).
By choosing a suitable 6, for all v € V’ and modifying costs and penalties as
above, we may assume that either: (a) there is a node v € V' with 7, = 0;
(b) there is a (directed) cycle Z consisting of zero ¢-cost arcs; or (c) there is an
out-arborescence consisting of zero ¢-cost arcs. If (¢) applies, then we are done.
If (a) or (b) apply, we further simplify the instance: in case (a), we shortcut past
v by merging every pair of incoming and outgoing arcs of v to create a new arc,
and delete v (see steps (9)—(15), Lemma 3); in case (b), we contract Z and set
the penalty of the contracted node to be Zvev(z) Ty (see steps —, Lemma 4).
We then recurse on the simplified instance.

An additional feature of our algorithm is that, by aggregating the 6, val-
ues computed by our algorithm across all recursive calls and translating them
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suitably to the original graph G, we obtain a certificate y = (ys)scy’ such
that the quantity Y = > ¢y, ys is sandwiched between the prize-collecting
value PCC(T'; G, ¢, 7) of our solution, and O*(G, ¢, ) (which is NP-hard to com-
pute). (We can in fact strengthen the upper bound on Y to Y < OPT (G, ¢, 7).)
This is especially useful when we utilize ITERPCA to implement approxima-
tion algorithms for orienteering (see Sect.4), because there we can utilize Y to
obtain a suitable upper bound on the optimum value of the orienteering problem
(and in fact, the optimal value of the LP-relaxation for orienteering proposed
by [13]). This allows us to obtain an instance-wise approzimation guarantee i.e.,
an instance-specific bound on the approximation factor of the solution computed
for each instance. This instance-wise approximation guarantee is often signifi-
cantly better than the worst-case approximation guarantee, as is demonstrated
by our computational results (Sect.6). Our computational results also show that
our upper bound is a fairly good (over-)estimate of the orienteering optimum.
We remark that having both (good) lower and upper bounds on the optimum
can be quite useful also for ezact computational methods for orienteering.

Theorem 1. On any input (G,c,m), algorithm ITERPCA runs in polynomial
time and returns an out-arborescence T and vector y such that PCC(T; G, ¢, m) <
ZSQV\{T} ys < O*(G, ¢, ). Furthermore, ZSQV, ys < OPT(G, ¢, 7).

The proof of the stronger bound on )¢~y ys above is a bit technical, so we
focus on proving the remainder of Theorem 1 here. Given the recursive nature
of ITERPCA, it is natural to use induction (on |V (G)|). First, Lemma 2 argues
that it suffices to show the inequalities stated in Theorem 1 hold for the instance
(G, ¢, ) specified in step (7)(with “simpler” edge costs and penalties), the out-
arborescence T', and the vector § returned in step (28) or (16). Next, Lemmas 3
and 4 supply essentially the induction step. They show that if the output (7,7%)
of ITERPCA when it is called recursively on the smaller instance (G,¢,7) in
step (12) or (23) satisfies the inequalities stated in Theorem 1, then (T, §) satisfies
PCC(T;G,¢,m) <Y gcyr Us < O*(G, ¢, 7). The key observation underlying both
proofs is that O*(G,¢,7) < O*(G, ¢, 7). Combining this with Lemma 2 finishes
the proof. Proofs omitted below appear in the full version [9)].

Lemma 2. Consider the PCW instance (G,¢, ) obtained after step (7). If the
out-arborescence T computed in step (15), (26), (27), or (29), and the vector y
satisfy T and the final vector y returned satisfy PCC(T;G,c,m) < > gy ys <
O*(G, ¢, ). N

Proof. We show that PCC(T;G,c,m) = PCC(T; G, ¢,7) + ), ey 0w, and O*(G,
¢,m) < O*(G,c,m) — > cyr 0y These inequalities, along with > ¢y ys =
Y oscyr s + D peyr Ov, yield the lemma.

The first equality follows easily, since every node v € V' covered by T has
exactly one incoming edge whose cost increases by 6, when going from ¢ to ¢,
and the penalty of every node v € V' not covered by T increases by 6, when
going from 7 to w. (Here we crucially exploit that T is an out-arborescence; if
|64 (v)| > 1 then PCC(T) increases by more than 6, when going from ¢ to c.)
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Algorithm. IterPCA(G, ¢, 7, r): iterative simplification

N0 s W N

®

10
11
12
13
14
15
16

17

18

19
20

21

22
23

24
25

26

27
28

29

30
31

Input: PCW instance (G = (V,A),c, 7r,r)
Output: r-rooted out-arborescence T in G; y = (ys)scv\{r}
Let V' =V\{r}, initialize y « ec0, ¥+ ec0
if |V| =1 then return (T = 0, null vector)
if |V| =2, say V = {r,v} then
Set y(vy « min{c; o, T}
if m, > ¢, » then return (T = {(r,v)},y) else return (T =0, y)
Set 0, «— min{min(u,v)eA Cuvs m,} forallv e V'’
For all v € V', set Cu,p < Cu,o — Oy for all (u,v) € A, and 7, «— 7, — 0,; set
7 — 0
if there exists v € V' with 7, = 0 then
G — (V\{U}, A\(6 in (W)Ud° (v)) U{(u,w):u€ V\{v},we V\{r,v}})
For all u € V\{v}, w € V\{r,v}, set Cu,w — min{Cuy, w, Cu,v + Co,w}
Set T — {%u}uev(é)
(T,5) « ITERPCA(G, ¢, 7, 7)
A—{(u,w) €T : Cyw < Cuw} [/ note that Cyw = Cuv + Co,w V(u,w) € A
T T\AU U(u,w)ez{(u7 v), (U7 w)}
T + minimum ¢-cost spanning arborescence in (V(T"), A(T"))
Set ys «— yg for all S C V\{r,v}

else if there exists a cycle Z with r ¢ V(Z) and ¢y, = 0 for all (u,v) € A(Z)
then
Set G « digraph obtained from G by contracting Z into a single supernode
uz, removing self-loops, and replacing parallel (incoming or outgoing) arcs
incident to u. by a single arc
Set Ty v« Cu,o for all u € VA\V(Z),v € V\V(2)
For all u € V\V(Z) such that § °"* (u) N § ™ (Z) # 0, set
Eu,uz — min(um)e(; in (7) Eu,'u )
For all u € V/\V(Z) such that § ™ (u) N é " (Z) # 0, set
Euz,u — min(v’u)eg out (z) Eu,u
Set Tu, < D, cv(z) Tv, Tu < Ty for all u € VAV(Z)
(T,y) « ITERPCA(G, ¢, 7, 7)
if u. € V(T) then
Obtain T’ from T as follows: replace every arc a € T entering or leaving
u. by the corresponding arc in G whose ¢-cost defines ¢,; also add (the
nodes and edges of) Z
T «+ minimum ¢-cost spanning arborescence in (V(T"), A(T"))

else T« T
For each set S C V(G)\{r}, consider the corresponding set S C V', which is
Sifuz ¢ S, and S\{u.} UV (Z) otherwise; set Js «— ¥z

else Let T« arborescence spanning V' with ¢, = 0 for all (u,v) € A(T)

Set Y(v} — Yo} + 0y for all v € V', and ys < ys for all other subsets S C V'.
return (7, y)
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To see the second inequality, let C be an optimal solution to the (G,c,7)
instance. So for every node v € V', if v is covered by C, it has at least one
incoming edge in this collection of paths, whose cost decreases by 6, when moving

from c to ¢; if v’ is not covered, its penalty decreases by 6, when moving from 7
to . Hence, O*(G,¢,7) < O*(G,c,m) = 3 ey Oo. O

Lemma 3. Consider a recursive call ITERPCA (G, ¢, m, 1), where steps (9)-
(16) are executed. If (T,y) obtained in step (12) satisfies PCC(T;G,c,7) <
ngv(é)\{r} Ys < O*(G,¢,T), then the tuple (T,7) obtained in steps (15), (16
satisfy PCC(T; G, ¢,7) <> gcvr s < OF(G, ¢, 7).

~~

Lemma 4. Consider a recursive call ITERPCA (G, ¢, m,r), where steps (18)-
(28) are executed. If (T,y) obtained in step (23) satisfies PCC(T;G,c,7) <
> scv@nr Us < O (G,e,7), then the tuple (T,7) obtained in steps (26), (28)
or (27), (28) satisfies PCC(T;G,¢,7) < > gy Ys < O*(G, 6, ).

4 Applications for Orienteering Problems

We now show that ITERPCA can be used to obtain fast, combinatorial imple-
mentations of the LP-rounding based approximation algorithms devised by [13]
for orienteering. The input here consists of a (rational) metric space (V] ¢), root
r € V, a distance bound B > 0, and nonnegative node rewards {m,},cv. Let
G = (V, E) denote the complete graph on G. Three versions of orienteering are
often considered in the literature.

e Rooted orienteering: find an r-rooted path of cost at most B that collects the
maximum reward.

e Point-to-point (P2P) orienteering: we are also given an end node t, and we
seek an r-t path of cost at most B that collects maximum reward.

e (lycle orienteering: find a cycle containing r of cost at most B that collects
maximum reward.

By merging nodes at zero distance from each other, and scaling, we may assume
that all distances, and B, are positive integers. Friggstad and Swamy [13] pro-
pose an LP-relaxation for rooted orienteering, and show that an optimal LP-
solution can be rounded to an integer solution losing a factor of 3. This is
obtained by decomposing an LP-optimal solution into a convex combination of
out-arborescences, and then extracting a rooted path from these arborescences.
They adapt their approach to also obtain a 6-approximation for P2P orienteer-
ing. Their rounding theorem is stated below, suitably paraphrased. The regret
(or excess [2,4]) of a u-v path P is ¢"8(P) = ¢(P) — cyuyp.

Theorem 5 ([13]). Fiz w € V. Let T1,..., Ty be rooted trees in G, and

Yook > 0 be such that: (i) S8 v = 1; (i) Y8 vie(Ty) < B; and (iii)
w € V(T;) for alli = 1,... k. Then, for each i = 1,...,k, we can extract a
rooted path P; from T; (visiting some subset of V(T;)) with ¢"8(P;) < B — Cpa,
such that max;=1 F(V(PZ‘)) > % . Ele 'ym(V(Ti)).
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We show that one can utilize ITERPCA to obtain combinatorial algorithms
for rooted- and P2P- orienteering with the above approximation factors. The
high level idea is that Lagrangifying the “cost at most B” constraint for rooted
orienteering yields a prize-collecting walks problem, and by fine-tuning the value
of the Lagrangian variable, we can leverage ITERPCA to obtain a distribution of
r-rooted trees having expected cost at most B, and expected reward (essentially)
at least the optimum of the rooted orienteering problem.

Theorem 6. Lete >0, N CV, r,w & N, and L > cp. Let IT* be the maxi-
mum reward of an r-rooted path @ with {w} C V(Q) C N. There is a procedure
BINSEARCHPCA (N, L, r, w; €) that utilizes ITERPCA to find in polytime rooted
trees T1, T, and y1,7v2 > 0 with v1 +v2 = 1 such that: (a) {w} CV(T;) C N for

i =12 (b) T2 e(T) < L and (¢) Y2, 7in(V(T)) 2 (1 - 11",

We then apply the rounding algorithm in [13] (i.e., Theorem 5) to the output
of Theorem 6 to obtain the stated approximation factors. Our algorithms can
thus be seen as a combinatorial implementation of the LP-rounding algorithms
n [13]. For cycle orienteering, we adapt the above idea and the analysis in [13],
to obtain a combinatorial 4-approximation algorithm. We also leverage the cer-
tificate y returned by ITERPCA to provide upper bounds on the optimal value of
the {rooted, P2P, cycle}- orienteering problem. This is quite useful as it allows
to assess the approximation guarantee on an instance-by-instance basis. Indeed,
our computational experiments in Sect.6 show that the instance-wise ratio is
much better than the worst-case approximation ratio.

Rooted Orienteering. For w € V with ¢, < B, let II be the maximum
reward of a rooted path that visits w, and only visits nodes in V,, = {u € V :
Cry < Cry}. Let € € (0,1). We consider each w € V with ¢, < B, apply The-
orem 5 on the output of BINSEARCHPCA (V,, B, 7, w;¢€), and return the best
solution found. This yields a combinatorial 3/(1 — €)-approximation algorithm.

For a given guess w (and any L), BINSEARCHPCA (V,,, L,r, w;€) varies
A > 0, and calls ITERPCA on inputs where the reward of each v € V,,\{w} is
set to Amy; define Y(A) 1= Y oy yg)‘), where y) is the certificate returned
by ITERPCA for this instance. We have Y (\) < B + A(w(V) — II;) by
Theorem 1, and rearranging gives I}, < UBl(w,B;)\) = 7(Vy) + B%Y(/\).
Thus, the optimal value for rooted orienteering is at most UB1(B) :=
MaXyeV e, <p Miny>o UBL(w, B; \).

P2P Orienteering. Recall that here we seek an r-t path of cost at most
B that achieves maximum reward. In [13], a 6-approximation is obtained for
this problem by (essentially) guessing the node w on the optimal r-¢ path with
largest ¢, + ¢y value, and utilizing Theorem 5 on two suitable weighted col-
lections of trees. While they obtain the two collections from an optimal solution
to their P2P-orienteering LP, as with rooted orienteering, we can utilize BIN-

SEARCHPCA instead: we return BINSEARCHPCA (VZ)ZP,B — Cwt, Ty w;€) and
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—P2p —P2p
BINSEARCHPCA (V,, , B — ¢rw,t,w;€) as the two collections, where V=

{u €V :cry+ cut < Crw + ot} (and w is a guess with ¢y + cypr < B).

For a given guess w, let Y.(\) denote » ¢y y(SA) in BINSEARCHPCA

(VfP’B — cwt;mywie), and Yi(A) denote D g yM in BINSEARCHPCA

—Pop
(Vw2 ,B — ¢y, t,wie). For any A > 0, and any walks @1, Q2 rooted at r

and t respectively, such that {w} C V(Q1),V(Q2) C VS?P, we have Y,.(\) <
—P2P —P2P

(@) + A [xr(V, ) = a(V(Q1))], and Yi(A) < ¢(Q2) + A[n(V,, ) — 7(V(Q2))].

We obtain an upper bound on the optimal value for P2P orienteering by consid-

ering all w with ¢, +cwt < B, taking Q1 € {P; ., P}, and Q2 € {P;,,wt, Py,

and collecting all the reward upper bounds resulting from the above inequalities.

Cycle Orienteering. Recall that here we seek a cycle containing r of cost
at most B that achieves maximum reward. Taking ¢ = r in our approach for
P2P-orienteering yields a combinatorial 6-approximation algorithm. But we can
refine this approach and utilize BINSEARCHPCA to obtain a 4-approximation,
as also refine our upper-bounding strategy, by leveraging the fact that the tree
returned by ITERPCA has prize-collecting cost at most the optimal value of
(P).

For any w € V with ¢, < B/2, let C be the maximum-reward cycle that
visits w, and only visits nodes in Vi, = {u € V : ¢py < ¢}, and let 1130 =
7(V(C?)). The distribution output by BINSEARCHPCA (V,,, B/2,7,w;¢) has
expected reward at least IT*9Y°/2 — e - IT}©v°, since its expected prize-collecting
cost is (essentially) at most that of the fractional solution to (P) where we send
a %—unit of flow from r to w along the two r-w paths in C}. One can extract
from this distribution a feasible solution of reward at least 152 - IO

For the upper bound, for a given guess w, we compare Y (A) (which denotes
Y scN yg’\) in BINSEARCHPCA (V,, L, 7, w; €)) with the prize-collecting cost of
Cr . and the above fractional solution. Collecting the reward upper bounds, the
optimal value for cycle orienteering is at most

UB-Cyc(B):= _ max = minmin {UBl(w, B; \), UB4(w, B; A)}

) 374 B—2-Y(\
where UB4(w, B; \) :==2-7(V ) — T — Ty + f)

5 Applications for the £k Minimum-Latency Problem

Recall that in the & minimum-latency problem (k-MLP), we have a metric space
(V,¢) and root r € V. The goal is to find (at most) k-rooted paths that together
cover every node, so as to minimize the sum of visiting times of the nodes. The
current-best approximation ratio for k-MLP is 7.183, due to Post and Swamy [17],
who devise two algorithms for k-MLP having (roughly) this approximation ratio.
Their “more combinatorial” algorithm (see Algorithm 3 in §6.2 [17]) relies on
a procedure that “solves” the problem of finding a minimum-cost collection of
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r-rooted walks that together cover at least k nodes, by returning a distribution
of r-rooted trees that in expectation covers at least k£ nodes and has cost at most
the optimal walk-collection cost. In [17], this distribution is obtained by applying
the arborescence-packing result of Bang-Jensen et al. [1] to the optimal solution
to (P) with node rewards A, and then varying A in a binary-search procedure
(as we do). We can instead utilize ITERPCA within a binary-search procedure
to obtain the desired distribution (over at most two trees). Incorporating this in
the more-combinatorial algorithm of [17] yields a fully (and truly) combinatorial
7.183-approximation algorithm for k-MLP.

6 Computational Results for Orienteering

We now present various computational results on the performance of our ori-
enteering algorithms (from Sect.4) in order to assess the performance of our
algorithms in practice. Our experiments demonstrate the effectiveness of our
algorithms and upper bounds. They show that the instance-wise approximation
ratios, for both the solution returned and the computed upper bound, are much
better than the theoretical worst-case bounds, and in fact fairly close to 1.

We implemented our algorithms in C++11, and ran the code on a 2019 Mac-
Book Pro with 2.3 GHz Intel Core 19 processor (8 cores) & 16 GB RAM. Our
implementation essentially matches the description in Sect. 4, with the following
differences. (1) We terminate the binary search (in BINSEARCHPCA) when the
interval [A1, A2] has width Ay — A\; < 107, the precision of the double data
type in C++; (2) We extract a solution from the tree T) returned by ITERPCA
for each \ value encountered in the binary search (as opposed to using only the
trees Th,, Th,), and return the best of these solutions; (3) When extracting a
rooted path of a given regret bound R from a path P (obtained from a tree),
instead of using a greedy procedure (Lemma 5.1 in [4], or Lemma 2.2 in [12]), we
find the maximum-reward subpath @ of P meeting the specifications; (4) When
computing the upper bounds on the orienteering optimum, we consider only the
As encountered in the binary search.

We discuss cycle orienteering, as this is computationally the most well-studied
version of orienteering, and detail other computational results in [9]. For each
guess w of furthest node, we run two binary search procedures to find r-rooted
PCA solutions, with target budgets B/2 and B — ¢;,,,. We use the 45 TSP
instances with at most 400 nodes from the TSPLIB 2.1 library [18]. These are
the instances considered by Fischetti et al. [11] (and by [14]), and three additional
datasets from [14]. For each dataset, [11,14] generate node rewards in three ways:

e Gen 1 - Uniform Rewards: All nodes apart from the root r have reward
1.

e Gen 2 - Pseudo-Random Rewards: The reward of the j-th node is 1 +
(7141 - j 4 73) (mod 100) apart from the root, which has reward 0.

e Gen 3 - Far Away Rewards: The reward of a node v # r is 1 + |99 -
Cry/ MaXy, Cryp | This is meant to create more challenging instances where the
high-reward nodes are further from r.
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The distance bound used in each case is [TSPOpt/2], where TSPOpt is the
cost of the optimal TSP-tour for that dataset (which is provided in TSPLIB).
Optimal values are known for all these datasets; most of these were computed
in [11], and the rest are from [14]. This allows us to evaluate the instance-wise
approximation guarantee of our algorithm, and the quality of our upper bound.

The plots below give an overview of our results: Val is the reward of our
solution, Opt is the optimal value, and UB is the upper bound that we compute.
The histograms specify the distribution of the Opt/Val and UB/Opt ratios across
the instances used in the computational experiments. Each histogram bar corre-
sponds to a range of values (for a particular ratio) as indicated on the z-axis, and
its height specifies the number of instances where the achieved ratio lies in the
range. Detailed results of our experiments appear in the full version [9]. For the
(supposedly more challenging) Gen 3 data sets, we also report the instance-wise
approximation ratio Opt/Val, and the ratio UB/Opt. As our results show, our
algorithm performs fairly well in practice.

40
# Nodes 48-400
# Experiments 135 30 '
Mean: 1.29 st
Opt/Val | \ax: 1.5 20 4t i
H
Mean: 1.14 10 o ¥
¢
UB/OP | \ax: 1.304 -
100 200 300 400
(Runtime (ms))*/* vs. (# nodes)
40 40
30 30
20 20
10 10
0 , , o | | [
1.081.121.16 1.21.251.291.331.371.421.46 1.5 11.031.061.091.121.151.181.211.241.27 1.3
Opt/Val - cycle orienteering UB/Opt - cycle orienteering

Next, we consider the work of Paul et al. [16], which is the only other work
that performs a computational evaluation of an (polytime) approximation algo-
rithm for orienteering. They develop a 2-approximation algorithm for cycle ori-
enteering, and report computational results for the unrooted problem (where no
root node is specified). Instead of a direct comparison of their algorithm vs. ours
(by trying all possible roots), we use our two algorithms in combination to see if
this yields improved solutions for the underlying instances. We run our algorithm
as a postprocessing step, taking the root r and the guess w of the furthest node
to be nodes from the solution returned by [16]. The histograms below show that
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this postprocessing almost always yields improvements, sometimes by a signifi-
cant factor, on both the TSPLIB and the Citi Bike data sets considered in [16].
The improvement factors are on the x-axis; the height of a bar is the number of
instances for which we achieve this factor.

40

20

40

20

s A SRS S = I

0.971.051.12 1.21.281.351.431.511.591.66 1.74 0.630.710.790.870.951.02 1.11.181.26 1.34 1.42

Citi Bike Dataset TSPLIB Dataset
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Abstract. A clutter is a family of sets, called members, such that no
member contains another. It is called intersecting if every two members
intersect, but not all members have a common element. Dense clutters
additionally do not have a fractional packing of value 2. We are looking
at certain substructures of clutters, namely minors and restrictions.

For a set of clutters we introduce a general sufficient condition such
that for every clutter we can decide whether the clutter has a restriction
in that set in polynomial time. It is known that the sets of intersecting
and dense clutters satisfy this condition. For intersecting clutters we
generalize the statement to k-wise intersecting clutters using a much
simpler proof.

We also give a simplified proof that a dense clutter with no proper
dense minor is either a delta or the blocker of an extended odd hole.
This simplification reduces the running time of the algorithm for finding
a delta or the blocker of an extended odd hole minor from previously
0O(n*) to O(n?) filter oracle calls.

Keywords: Clutters + Clutter minors + Deltas - Odd holes

1 Introduction

A clutter is a family of sets, called members, over a finite ground set V' such that
no member contains another [7]. Clutters are isomorphic if they can be obtained
from each other by relabeling the ground set. A cover of C is a set B C V such
that B N C # § for all members C € C. It is called minimal if it does not contain
another cover. The covering number 7(C) is the minimum cardinality of a cover.
A packing of a clutter is a set of pairwise disjoint members. The packing number
v(C) is the maximum cardinality of a packing. Clearly, 7(C) > v(C). The blocker
b(C) is the clutter given by the minimal covers of C. Edmonds and Fulkerson [7]
observed that b(b(C)) = C.

Consider the following example of a clutter. Take the edge set of a graph
as the ground set and the s-t-paths as members. The minimal covers are the
inclusionwise minimal s-t-cuts and 7(C) = v(C) by Menger’s theorem [10].

A clutter C is ideal if the polyhedron {x > 0: z(C) > 1 VC € C} is integral.
The notion of idealness was introduced by Cornuéjols and Novick [5]. The above

© Springer Nature Switzerland AG 2022
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A= ()

Fig. 1. As and an extended odd hole of dimension 7

clutter is ideal, which can be shown by using the famous Max-Flow-Min-Cut
theorem by Ford and Fulkerson [8]. Lehman [9] proved that a clutter is ideal if
and only if its blocker is ideal.

As one might expect, not every clutter is ideal. In fact, Ding, Feng and
Zang [6] showed that the problem to decide whether a clutter is ideal is co-
N P-complete. A simple reason why a clutter is not ideal is that it has covering
number at least 2, but no fractional packing of value two. Clutters with this
property are called dense [2].

An important notion needed to study clutters is that of minors.

Definition 1 ([11]). Let C be a clutter over a ground set V and I, J C V disjoint
subsets. The minor of C obtained after deleting I and contracting J is the clutter
C\I/J over the ground set V.— (I U J) whose members are the inclusion-wise
minimal sets of {C —J:C € C,C N I=0}. IfTUJ # 0 the minor is called
proper.

Seymour [12] showed that b(C\I/J) = b(C)\J/I. He also proved that every
minor of an ideal clutter is ideal. It therefore suffices to find a non-ideal minor
to certify that the clutter is not ideal. This motivates the problem to decide
whether a clutter has a dense minor. Abdi, Lee and Cornuéjols [2] showed that
this problem can be solved in polynomial time. This is quite surprising as from
the hardness result of Ding, Feng and Zang [6], one can conclude that this
problem is N P-complete if the input is the blocker of the clutter [2].

For the study of dense minors, the following two examples (see Fig.1) are
fundamental. Let n > 3 be an integer. Take the clutter over the ground set
{1,2,...,n} with members {1,2},{1,3},...,{1,n} and {2,3,...,n}. This clut-
ter is called A, and a clutter isomorphic to this clutter is called a delta of
dimension n. Observe that b(4,,) = A,.

Let n > 5 be an odd integer. Consider the clutter C over the ground set
{1,2...,n} with minimum cardinality members {1,2},{2,3},...,{n—1,n} and
{n,1}. A clutter that is isomorphic to C is an extended odd hole of dimension n.

Abdi and Lee [4] proved that every dense clutter has a delta or the blocker
of an extended odd hole minor. They also showed that this minor can be found
in polynomial time.

A nontrivial clutter is called k-wise intersecting if it has no cover of size 1
and every k (not necessarily different) members have a common element. Abdi,
Cornuéjols, Huynh and Lee [1] conjectured that for k& > 4 these clutters are
non-ideal.
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The 2-wise intersecting clutters are also called intersecting clutters. They
satisfy 7(C) > 2 and v(C) = 1. Note that dense clutters are intersecting. Abdi,
Cornuéjols and Lee [2] showed that one can decide in polynomial time whether
a clutter has an intersecting minor.

As we do not allow covers of size 1 in many cases, we occasionally consider
only special kinds of minors.

Definition 2 ([2]). Let C be a clutter over a ground set V and I C V. Let
J:={ueV —1TI:{u} is a cover of C\I}. (1)
The minor C\I/J is the restriction of C after restricting I.
The following are our main contributions:

— We introduce the concept for a set of clutters S to be k-unifying (Sect. 2).
This gives a sufficient condition to decide whether a clutter has a restriction
in § in polynomial time. The abstract unifying theorem could also be applied
to other sets of clutters and might therefore be of independent interest.

— Abdi, Cornuéjols and Lee [2] showed that the set of intersecting clutters is 3-
unifying. We generalize this result and show that k-wise intersecting clutters
are (k + 1)-unifying (Sect. 3). This is achieved by a much simpler proof.

— We give a simplified proof that dense clutters with no proper dense minors
are deltas or the blocker of extended odd holes (Sect. 4). This is also the main
step to show that the set of dense clutters is 3-unifying.

— This simplification allows us to formulate a faster algorithm to find a delta
or the blocker of an extended odd hole minor (Sect. 5). The running time is
improved from previously O(n?*) [4] to O(n?) filter oracle calls.

2 The Unifying Theorem

We will present a sufficient condition to decide whether a clutter has a restriction
with a certain property in polynomial time.

Definition 3. Let S be a set of clutters. A clutter C € S is called restriction-
minimal in S if no proper restriction of C is in S.

Definition 4. A set of clutters is called k-unifying if every restriction-minimal
clutter in this set has k members whose union is the ground set of that clutter.

We are ready to formulate the main theorem of this section.

Theorem 1 (Unifying theorem). Let S be a k-unifying set of clutters and C
be a clutter over a ground set V. Then the following two statements are equiva-
lent:

(i) C has a restriction in S;
(i) there are k members C1,Cs, ..., Cx of C such that the clutter obtained from
C after restricting V — Ule C;isin S.
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Proof. (<) is immediate. (=) Since clutters have a finite ground set, C has a
restriction-minimal restriction C\7/J in S. As § is k-unifying, we find k¥ members
C1,C%,...,C}, in this restriction such that Ule C,=V —-(TUJ). Let C; =
C} U J, which are members of C by the definition of a restriction. That yields
1=v-U-, c. O

Corollary 1. Let C be a clutter over a ground set V with n elements and m
members. Let S be a k-unifying set of clutters for a fived k > 2. Furthermore,
there is an oracle given, which decides whether a given clutter is in S in poly-
nomial time. Then one can decide in polynomial time depending on n and m
whether C has a restriction in S.

In the next sections we will discuss examples of k-unifying sets of clutters.

3 k-Wise Intersecting Clutters

Theorem 2. Fork > 2 the set of k-wise intersecting clutters is (k+1)-unifying.

Proof. Let C be k-wise intersecting such that no proper restriction is k-wise
intersecting. We have to show that C has (k + 1) members whose union is the
ground set. Choose (k + 1) members C1,Cs,...,Cky1 of C such that | ﬂfill G|
is minimal. Assume for a contradiction there is a v € V such that v ¢ C; for
i=1,2,...,k+ 1. Consider the restriction C' = C\v/J. We get J C ﬂf:ll C;.

Since C' is not k-wise intersecting and ¢’ = {0} or 7(C’) > 2, we find k not
necessarily different members C1,...,C} of C’ with empty intersection. They
imply k members Cf,Cj,...,Cf in C with (}_, C; C J. Note that the inter-
section of these k members is not empty since C is k-wise intersecting. We find
an element u € ﬂle C}. Since {u} is not a cover, there is a member C}, | with
u ¢ Cy, 1. We conclude

k+1 k+1

Ncrerc e (2)
i=1 i=1
contradicting the minimality assumption. O

Corollary 2 (Reformulation of [2], Proposition 3.3). The set of intersect-
ing clutters is 3-unifying.

We can therefore decide in polynomial time whether a clutter has an intersecting
restriction.

Remark 1 ([2], Remark 1.2). A clutter has an intersecting restriction if and only
if it has an intersecting minor.

As a consequence thereof, given a clutter explicitly with its members, we can
decide in polynomial time whether the clutter has an intersecting minor. It is
conjectured that ideal clutters with no intersecting minor also have the max-flow
min-cut property [2].



214 M. Drees

4 Dense Clutters

We will prove that the set of dense clutters is 3-unifying. In the process, we will
also prove that minimally dense clutters are deltas or blockers of extended odd
holes.

Abdi and Lee [4] considered clutters with min{|C| : C' € C} = 2 and the
graph with vertex set V' with the members of cardinality 2 as edges. We will
consider this graph of the blocker.

Definition 5. Let C be a clutter over a ground set V. with 7(C) = 2. The cov-
ering graph of C is the graph with vertex set V and the covers of size two of C
as edges.

The covering graph of a delta is a single vertex connected to all other vertices.
The covering graph of an extended odd hole is an odd cycle. Conversely, a clutter
with a covering graph of an odd cycle is an extended odd hole.

The following lemma analyzes the structure of covers of size 2 in clutters
with a fractional packing of value 2.

Lemma 1. Let C be a clutter over a ground set V. with 7(C) = 2, connected
covering graph, and a fractional packing of value 2. Then the covering graph is
bipartite and C has two members representing the colour classes. In particular
there are members L and K of C with KNL=0 and KUL=1V.

Proof. For C € C let x¢ be the value assigned to C' in the fractional packing
of value 2. Let B = {b1,b2} be an arbitrary cover of size 2 of C and C be an
arbitrary member of C with z¢ > 0. Since B is a cover, we have [BNC| > 1.
Assume |BN C| > 1. We conclude

2> Zxc/—i—Zxc/: Z Tor + Z Tor > 2+x0 > 2,

bieC’ baeC’ b1 €C’ or baeC’ b1 EC’ and beC’
3)

a contradiction. Therefore |[BNC| = 1.

Since the cover of size 2 was arbitrary, each member C with ¢ > 0 has
exactly one element with each of these covers in common. In the covering graph
G, such a member is a stable set and vertex cover. Let s and ¢ be two arbitrary
vertices of (G. As G is connected, there is an s-t-path in . Such a path has to
be alternating between vertices in C' and vertices not in C. In particular, the
covering graph cannot contain an odd cycle, since that would result in two paths
between the same vertices of different parity in length. Thus, the covering graph
is bipartite and we get two colour classes.

In a connected bipartite graph, the only sets of vertices that are a stable set
and a vertex cover, are the two colour classes.

It is impossible that all members with x~ > 0 are only one of the two colour
classes, because that would be the only member in the fractional packing and a
value of 2 would not be possible. Therefore, each colour class is represented by
a member, so there are members K and L with KNL=0and KUL=V. 0O
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Definition 6. A clutter is called minimally dense if it is dense and no proper
minor is dense. A clutter is called strictly dense if it is dense and mo proper
restriction is dense.

Given a minimally dense clutter, we will consider proper minors with covering
number at least 2. Such a minor then has a fractional packing of value 2. The
idea is to construct minors with a connected covering graph and then apply
Lemma 1 to deduce specific members of that minor. They will imply members
of the original clutter such that in total we get a delta or the blocker of an
extended odd hole.

The first step is to show that the covering graph of the original clutter is
actually connected.

We will use the following lemma to get a certificate for a dense clutter.

Lemma 2 ([2], Lemma 1.6). Let C be a clutter with 7(C) > 2 over a ground
set V. Then the following are equivalent:

(i) C is dense,
(ii) there is a w € R‘Z/O with 17w =1 such that 3, .o w, > 5 for all C €C.

Lemma 3. A minimally dense clutter has 7(C) = 2 and connected covering
graph.

Proof. If an element v € V does not appear in a cover of size two of C, the
proper minor C\v has covering number at least 2. Thus, this minor has a frac-
tional packing of value 2 which is also a fractional packing of value 2 for C, a
contradiction. Therefore, 7(C) = 2 and each element of the ground set appears
in a cover of size 2.

Let G be the covering graph of C. Assume G is not connected. Let A be the
vertex set of one component of G and B =V — A. Let H be the subgraph of G
induced by A. Note that A is a cover of C since it contains at least one cover.

Consider the minor ¢’ = C/B. If C’ has a cover of size 1, this would also be
a cover of C, since no member is entirely contracted as A is a cover. Hence, C’
has a fractional packing of value 2. The covering graph H’ of C’' contains the
edges of H and is thus connected. By applying Lemma 1 on C’, we get that H’ is
bipartite and the two colour classes K and L are members in C’, implying that
K and L are not covers in C' and C.

Since C is dense, by Lemma 2 there is a w € RY, such that > wec Wu > @
for all C' € C. Let without loss of generality w(K) > w(L). Each member of
C\K/L then has weight greater than

w(V)

— vz

w(V) —w(K)—-w(l) wV—A)
2 B 2 ’ )

Hence, the certificate for C also implies a certificate for C\K/L. Since that minor
cannot be dense, we have 7(C\K/L) < 2. Thus, this minor has a cover of size
1. Let this cover be {b}. The proper minor C” = C\b/(B — {b}) has no cover of
size 1 since there is no edge between the vertex sets A and B. Using the same
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argument as for C’, the covering graph of C” contains the edges of H, is bipartite,
and has the colour classes as members. Therefore, K and L are members of C”,
but not covers. That yields that K U {b} is not a cover of C, a contradiction. O

We will use the following tool to find delta minors.

Lemma 4 ([3], see also [4], Theorem 5). Let C be a clutter over a ground
set V. Let u,v,w € V be distinct elements and such that {u,v} and {u,w} are
members of C. Let C € C such that {u,v,w} N C = {v,w}. Then C has a delta
minor.

Proof. Let I =V — (C U {u}). Let C; = {z € C : {u,z} € C} and let Cy =
C — Ci. Note that |C1| > 2 as v,w € Cy. Starting with the minor C\I, contract
elements z of Cy one by one as long as {u,z} is not a member of the current
minor. We get a clutter ' = C\I/CY. Note that due to the definition of Cs, {u}
is not a member of this clutter as it is not a member of C\I. As C' is a member of
C, we get that C'— Cy contains a member of C'. Actually, C'— C/ is a member in
C’ because there is no member C’ C C — C} as it would imply a member C* C C
of C. Therefore, ¢’ has the members C' — C% and {u, z} for all z € C'— C}. There
cannot be further members due to the definition of a clutter. Therefore, C’ is a
delta and C has a delta minor.

We are now ready to prove the following fundamental result.

Theorem 3 (Reformulation of [4], Theorem 3). A minimally dense clutter
s a delta or the blocker of an extended odd hole.

Proof. By the previous lemma, the covering graph G of the minimally dense
clutter C is connected. If G contains an odd cycle, contracting all other elements
leads to a minor with covering number at least 2, but the covering graph is not
bipartite. If the minor has a fractional packing of value 2, Lemma 1 implies a
contradiction. Therefore, the minor is dense and thus not proper. In conclusion,
G does not properly contain a cycle and thus is a cycle with no additional chords.
Therefore, C is the blocker of an extended odd hole or a delta if |V| = 3.

We can now assume that G is bipartite. Let X and Y be the colour classes
of G.

One of them is a cover, otherwise we would have disjoint members. So let
without loss of generality Y be a cover and B C Y be a minimal cover. We get
|Y| > 3 as there is no edge in G[Y].

Remove an x € X from G such that the number of vertices from X in the
same component of the resulting graph is maximal. Let this maximal component
be M,. If this number is not | X|—1, take an 2’ € X that is not in M,. Removing
2’ instead of z does not disconnect M,. Furthermore, x is connected to M, a
contradiction to the maximality. Therefore, there is an € X such that removing
z from G does not disconnect the other vertices in X.

Let G’ be the graph resulting from G after removing x. The components of
G’ consist of one component containing all other vertices in X and some vertices
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from Y. All other components have to be a single vertex from Y, because there
are no edges between vertices in Y. Let this set of isolated vertices be Z.

Since G is connected, {z, z} is an edge of G for all z € Z. Assume that there
is a y € Z — B. Consider the minor C/y. The covering graph of this minor is
connected. Therefore, this minor has a member C’ C X. It implies a member
C C X U{y} in C, a contradiction to B being a cover. So Z C B.

If |Z] > 2, the blocker of C has members {x, 21}, {z,22}. As B is a minimal
cover of C, it is a member of b(C). Furthermore, we have B N {x, 21, 22} = {71, 22}
Applying Lemma 4 yields that b(C) has a delta minor. Let b(C)\I/J = A,,. We
get C\J/I = b(A,) = A,. Thus, C has a delta minor. As deltas are dense, C is
a delta itself.

If |Z| < 2 consider the minor C\Z/z. This minor has no cover of size 1
because even if |Z| = 1 there is no edge incident to z € Z other than {z, z}.
Furthermore, this minor is not trivial as we would have |V| < 2. As that minor
also has a connected covering graph, we find a member C’ C X. This implies a
member C' C X of C, a contradiction to Y being a cover. O

In the rest of this section, we will prove that the set of dense clutters is
3-unifying.

Lemma 5. A minimally dense clutter over a ground set V' has three members
C1,Cy and Cs with empty intersection whose union is the ground set.

Proof. We will prove that such a clutter C has two members C;7 and Cy whose
union is the ground set and |C; N Cs| = 1. We can then choose an arbitrary Cs
not containing the common element to complete the proof.

If C is a delta, choose C; = {1,2} and Cy = {2,3,...,n}.

If C is the blocker of an extended odd hole, take an arbitrary v € V and
consider the minor C/v. The covering graph of this minor is connected and
bipartite since it is a path. By Lemma 1, we find two disjoint members K and
L of this minor with K UL =V — {v}. Since C has no disjoint members, they
both contain v in C. O

The following lemma bridges the gap from minimally dense to strictly dense
clutters.

Lemma 6. Let C be a strictly dense clutter over a ground set V and J C 'V
such that C/J is dense. Then for each v € J, there is a w € V — J such that
{v,w} is a cover of size 2 in C.

Proof. Assume there is a v € J such that no such cover of size 2 exists. Then
the minor C\v/(J — {v}) has no cover of size 1 and thereby covering number
at least 2. Furthermore, this minor has no fractional packing of value 2 since it
contains only a subset of the members in C/J. Therefore this minor is dense. The
restriction obtained from C after restricting v contracts a subset of J —{v} since
7(C\v/(J—{v})) > 2. This implies that restriction is also dense, a contradiction.

O



218 M. Drees

Theorem 4 ([2], Proposition 4.5). The set of dense clutters is 3-unifying.

Proof. Let C be a strictly dense clutter over a ground set V. Choose U such that
C/U is dense but no proper contraction minor is. Let C\I/(U UU’) be a proper
minor of C/U with covering number at least 2. If I # (), the restriction C\I/J is
not dense and therefore has a fractional packing of value 2. Since J C (UUU’),
the minor C\I/(U UU’) also has a fractional packing of value 2. If I = ), we get
the same result by the definition of U.

Hence, C/U is minimally dense. By Corollary 5, we find three members C7, C%
and C% in C/U with empty intersection and union V —U.

Let C1,C5,C3 € C such that C/ C C; C CjUU for i = 1,2, 3. Suppose there
isav eV —(CyUCyUCS). Clearly, v € U. By Lemma 6, there is a cover {v, w}
with w € V' — U. Since none of the three members contains U, they all contain
w, a contradiction. a

By the unifying theorem, given a clutter explicitly with its members, we can
find a dense restriction in polynomial time or state that there is none. Simi-
larly to Remark 1, having a dense restriction is equivalent to having a dense
minor. Furthermore, this is also equivalent to having a delta or the blocker of
an extended odd hole minor.

Remark 2 ([2], Remark 4.4). Let C be a clutter over a ground set V. Then the
following statements are equivalent:

(i) C has a dense restriction.
(ii) C has a delta or the blocker of an extended odd hole minor.
(iii) C has a dense minor.

5 Finding Delta or Blocker of Extended Odd Hole Minors

We will discuss an algorithm which finds a delta or the blocker of an extended
odd hole minor of a dense clutter.

The clutter C over the ground set V' is given by a filter oracle [13]. This oracle
returns in time 6 whether a set A C V contains a member of C. The algorithm
implied by the proofs given in Sect.4 has a running time of O(n3(6 + n)). This
improves the running time of the algorithm by Abdi and Lee in [4] with a running
time of O(n*) oracle calls.

We will start with some basic properties about filter oracles.

Lemma 7 ([4], Remark 9). Let C be a clutter over a ground set'V given by a
filter oracle. Let n = |V| and 0 be the time required to run the oracle. Then the
following statements hold:

(i) The members of cardinality 1 can be computed in O(nd) time.
(ii) The members of cardinality 2 can be computed in O(n?0) time.
(11i) Given a set C C 'V, it can be checked in O(nf) time, whether C € C.
(iv) Given a set A C V that contains a member, such a member can be found
in O(n20) time.
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Lemma 8 ([13], Theorem 5.1). Let C be a clutter over a ground set V given
by a filter oracle, which runs in time 6. Then the filter oracle also implies a filter
oracle for the blocker b(C) running in 0 + O(|V]) time.

Lemma 9 ([13], Theorem 5.2). Let C be a clutter over a ground set V given
by a filter oracle, which runs in time 0. Let I,J CV be disjoint. Then the filter
oracle implies a filter oracle for the minor C\I/J, which runs in time  + O(|V]).

The input of the final algorithm is a dense clutter including a certificate
w € RZO as in Lemma 2. We allow a scaled certificate, that means it only has

to satisty w(C') > # for all members C € C. Note that the certificate can be
calculated with a linear program, if the members are explicitly given.

We will formulate an algorithm that, given a dense clutter including a certifi-
cate, computes a delta, the blocker of an extended odd hole minor, or a proper
dense minor. If the output is a proper dense minor, we will call the algorithm
again. We need to make sure that a certificate for the proper dense minor can
be computed easily.

Lemma 10. Let C be a dense clutter over a ground set V with 7(C) = 2 and
connected bipartite covering graph. The clutter is inputted via a filter oracle
running in time 0. Let n. = |V|. Then a certificate w € RY; such that w(C) >

wTv) for all members C € C can be computed in O(n?(0 + n)) time.

Proof. Since all members of cardinality 2 of the blocker can be computed in
O(n?(6+n)) time, the covering graph G of C can be computed in that time. Let
X and Y be the colour classes of the bipartition, which can also be calculated
in quadratic time. For v € V let w(v) be the degree of v in G. This defines
an initial certificate with w(V) = 2m where m is the number of edges. Each
member C' € C contains at least one element of each cover of size 2. Thus, C as
a vertex set is incident to all edges, implying w(C') > m. If a member contains
more than one element of a cover, at least one edge has to be counted twice and
therefore w(C') > m+1. By the same argument as in Lemma 1, the only possible
members incident to at most one element of each cover of size 2 are X and Y.
Check whether X or Y are members of C. This can be done in linear time. Only
one of them can be a member since C is dense. If none of them is a member,
return w as the certificate. If without loss of generality X is a member, let x € X
and y € Y. Increase w(z) by 4 and decrease w(y) by % to get a certificate w’.
This does not change the total sum and each member then fulfils w'(C) > m+ 3,
so w’ is indeed a certificate and can be returned.

We are now ready to formulate the main algorithm, see Algorithm 1.

Theorem 5. The algorithm works correctly in O(n?(0 +n)) time. If it returns
a proper dense minor, a certificate for this minor being dense can be calculated
in O(n?(0 +n)) time.
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Algorithm 1: Finding a delta or the blocker of an extended odd hole minor

Input : Dense clutter C over a ground set V with certificate w inputted via a
filter oracle
Output: Delta or extended odd hole minor or a proper dense minor of C

1 if there is v € V such that v does not appear in a cover of size 2 then

2 L return C\v as proper dense minor

3 Compute covering graph G of C;

4 if G is not bipartite then

5 Find an odd cycle O with no chords in G;

6 return C/(V — O) as delta or the blocker of an extended odd hole minor;
7 if G is not connected then

8 Let A be the vertex set of one component, B =V — A;

9 Let K and L be colour classes of this component with w(K) > w(L);
10 if K and L are not members of C/B then

11 L return C/B as proper dense minor;

12 if 7(C\K/L) > 2 then

13 L return C\K/L as proper dense minor;

14 Find cover {b} of C\K/L;
15 | return C\b/(B — {b}) as proper dense minor;

16 Let X and Y be the colour classes of G such that Y is a cover;

17 Compute minimal cover B C Y

18 Compute = € X such that removing z from G does not disconnect X — {z};
19 Compute set of isolated vertices Z C Y after removing ;

20 if Z ¢ B then

21 Let y € Z — B;

22 L return C/y as proper dense minor;

23 if |Z] > 2 then

24 Find a delta minor by Lemma 4;

25 L return that delta minor;

26 return C\Z/x as proper dense minor;

Proof. The correctness of the algorithm is given by the proof of Lemma 3 and
Theorem 3. Whenever we get a contradiction or an excluded case in the proof
due to the clutter being minimally dense, the algorithm outputs the proper dense
minor. Note that in almost all cases where a proper dense minor is returned, we
have the situation of Lemma 10 with the minor C\v in the first step and C\K/L
as the only exceptions.

In both cases, we can take the projection of the certificate of the original
clutter on the new ground set. For C\v this is a certificate because w(C) does
not change for members C, but w(V) > w(V —{v}). For C\K /L the argument is
given in the proof of Lemma 3. The running time for the certificate is satisfied in
both cases. It remains to show that the running time of the algorithm is indeed
O(n%(0 +n)).
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The covers of size 2 can be computed in O(n?(f + n)) time since they are
minimal covers and members of cardinality 2 in the blocker can be computed in
that time. Therefore, we find a v € V' that does not appear in a cover of size 2
or obtain the covering graph G in O(n?(6 + n)) time.

In each connected component of G, we can find an odd cycle or a bipartition
in quadratic time.

Checking whether K and L are members of C/B can be done in a linear
number of oracle calls. By finding all minimal covers of size 1 in the blocker, we
can decide whether 7(C\K/L) > 2 is satisfied in a linear number of oracle calls.
If there is a cover of size 1, we can use it as the cover {b} of C\K/L.

We can decide in one oracle call whether X or Y is a cover. The minimal
cover B C 'Y can be obtained in O(n?( + n)) time by Lemma 7. The x € X
such that removing x from G does not disconnect X — {z} can be computed in
quadratic time as we can start with any element and find a better one given by
the proof in Theorem 3 in linear time.

The set Z is calculated in linear time since these are just components of a
graph. Checking Z C B and possibly finding y € Z — B can also be done in
linear time as an order of the elements can be assumed.

The computation of the delta minor in Lemma 4 can also be implemented to
run in O(n(6 +n)) time. The sets I, C; and Cs of the proof can be determined
in that time. Let X denote the set of elements of Cs that are already contracted
when considering z € Cy. We query the oracle whether {u,z} U X contains a
member in C. As C' is a member of C and {u} is not a member of C\I/X, this is
by construction of X equivalent to {u,z} being a member of C\I/X. Hence, each
element z € Cy can be processed in O(f + n) time. In conclusion, every single
step of the algorithm can be implemented in O(n?(# + n)) time, concluding the
proof. a

By applying the algorithm recursively and calculating the new certificate,
the cardinality of the ground set decreases in each iteration. As an immediate
consequence, we get the following corollary as the main result of this section.

Corollary 3. There is an algorithm that, given a dense clutter over the ground
set V' by a filter oracle and a certificate w for that clutter being dense, finds a
delta or the blocker of an extended odd hole minor in O(|V[2(8 + V) time,
where 0 is the time required for an oracle call.

In conclusion, given a clutter C over a ground set V' explicitly with its mem-
bers, we can decide in polynomial time (in |C| and |V|) whether C has a dense
restriction. Recall that this is equivalent to C having a delta or the blocker of an
extended odd hole minor.

If C has a dense restriction, we can find it and compute a certificate in
polynomial time.
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Abstract. We consider the class of disjoint bilinear programs
max {x"y | x € X, y € Y} where X and ) are packing poly-
topes. We present an O(loilgoii?k’ilgoifn’:z)—approximation algorithm for
this problem where m; and meo are the number of packing constraints
in X and ) respectively. In particular, we show that there exists a
near-optimal solution (x,y) such that x and y are “near-integral”. We
give an LP relaxation of this problem from which we obtain the near-
optimal near-integral solution via randomized rounding. As an appli-
cation of our techniques, we present a tight approximation for the
two-stage adjustable robust optimization problem with covering con-
straints and right-hand side uncertainty where the separation problem
is a bilinear optimization problem. In particular, based on the ideas
above, we give an LP restriction of the two-stage problem that is an

(log’i r log’i ; +)-approximation where L is the number of constraints
in the uncertainty set. This significantly improves over state-of-the-art
approximation bounds known for this problem.

Keywords: Disjoint bilinear programming - Two-stage robust
optimization - Approximation algorithms

1 Introduction
We consider the following class of disjoint bilinear programs,

ZpDB = ImAx {x"y|xeX, yey}, (PDB)

where X and ) are packing polytopes given by an intersection of knapsack
constraints. Specifically,

X:={x=20|Px<p} and V:={y=0|Qy<gq},

where P € R ", Q e R™*", p € RY"* and q € R!['>. We refer to this problem
as a packing disjoint bilinear program PDB. This is a subclass of the well-studied
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disjoint bilinear problem: max {x’My | x € X, y € V}, where M is a general
Xy

n X n matrix.

Disjoint bilinear programming is NP-hard in general (Chen et al. [9]). We
show that it is NP-hard to even approximate within any finite factor. Several
heuristics have been studied for this problem including cutting-planes algorithms
(Konno et al. [24]), polytope generation methods (Vaish et al. [30]), Benders
decomposition (Geoffrion [18]), reduction to concave minimization (Thieu [29])
and two-stage robust optimization (Zhen et al. [33]). Algorithms for non-convex
quadratic optimization can also be used to solve disjoint bilinear programs.

Many important applications can be formulated as a disjoint bilinear pro-
gram including fixed charge network flows (Rebennack et al. [27]), concave cost
facility location (Soland [28]), bilinear assignment problems (Custi¢ et al. [34]),
non-convex cutting-stock problems (Harjunkoski et al. [23]), multicommodity
flow network interdiction problems (Lim and Smith [25]), bimatrix games (Man-
gasarian and Stone [26], Firouzbakht et al. [17]) pooling problems (Gupte et al.
22)).

One important application closely related to disjoint bilinear optimization
that we focus on in this paper, is the two-stage adjustable robust optimization.
In particular, the separation problem of a two-stage adjustable robust problem
can be formulated as a disjoint bilinear optimization problem. More specifically,
we consider the following two-stage adjustable robust problem,

2AR = mitn {"x+t|t>Q(x), x € X}, (AR)

where for all x € X,

. T
Q(x) = rﬁgg{(gl& {d'y | By > h — Ax}.

Here A € R™*", B € RT"*", c € R}, d € R}, X C R} is a polyhedral cone,
and U is a polyhedral uncertainty set. The separation problem of AR is the
following: given a candidate solution (x,t), decide if it is feasible, i.e., x € X
and ¢t > Q(x) or give a separating hyperplane. This is equivalent to solving
Q(x). We will henceforth refer to Q(x) as the separation problem. For ease of
notation, we use Q(x) to refer to both the problem and its optimal value. In this
two-stage problem, the adversary observes the first-stage decision x and reveals
the worst-case scenario of h € Y. Then, the decision maker selects a second-
stage recourse decision y such that By covers h — Ax. The goal is to select a
first-stage decision such that the total cost in the worst-case is minimized. This
model has been widely considered in the literature (Dhamdhere et al. [11], Feige
et al. [16], Gupta et al. [21], Bertsimas and Goyal [4], Bertsimas and Bidkhori
[5], Bertsimas and de Ruiter [7], Xu et al. [31], Zhen et al. [32], E] Housni and
Goyal [12], El Housni et al. [14,15]), and has many applications including set
cover, capacity planning and network design problems under uncertain demand.

Several uncertainty sets have been considered in the literature including poly-
hedral uncertainty sets, ellipsoids and norm balls (see Bertsimas et al. [6]). Some
of the most important uncertainty sets are budget of uncertainty sets (Bertsimas



LP-Based Approximations for PDB and ARO 225

and Sim [8], Gupta et al. [20], El Housni and Goyal [13]) and intersections of
budget of uncertainty sets such as CLT sets (see Bandi and Bertsimas [1]) and
inclusion-constrained budgeted sets (see Gounaris et al. [19]). These have been
widely used in practice. Following this motivation, we consider in this paper the
following uncertainty set,

U:={h>0|Rh<rl,

where R € Rixm and r € Ri. This is a generalization of the previously men-
tioned sets. We refer to this as a packing uncertainty set.

Feige et al. [16] show that AR is hard to approximate within any factor
better than “Q(lolgoﬁ;) gn) even in the special case of a single budget of uncertainty
set. Bertsimas and Goyal [4] give an O(y/m)-approximation in the case where
the first-stage matrix A is non-negative. Recently, El Housni and Goyal [13]

give an O(log’i gn)—approximation in the case of a single budget of uncertainty

2
set and an O(l;gglogn)—approximation in the case of an intersection of disjoint

budgeted sets. In general, they show an O(lfglfjg”n)—approximation in the case
of a packing uncertainty set with L constraints. However, this bound scales
linearly with L. The two-stage robust covering problem was also considered
in the discrete case where the first and second stage solutions x and y are
restricted to be in {0, 1}™. For this problem, Feige et al. [16] and Gupta et al.
[21] give an O(log nlog m)-approximation and an O(log n+log m)-approximation
respectively in the case where A = B € {0,1}"*" d = Ac for some A > 0 and
the uncertainty set U is a budget of uncertainty set with equal weights, i.e.,
U=1{he[0,1]™ | 37" hi <k} Gupta et al. [20] consider a more general
uncertainty set, namely, intersection of p-system and g-knapsack and give an
O(pqlogn)-approximation of the two-stage problem.

The goal of this paper is to provide LP-based approximation algorithms with
provable guarantees for the packing disjoint bilinear program as well as the two-
stage adjustable robust problem that improve over the approximation bounds
known for these problems.

1.1 Owur Contributions

A Polylogarithmic Approximation Algorithm for PDB. We present an
LP-rounding based randomized approximation algorithm for PDB. Our algo-
rithm relies on a new idea that might be of independent interest. In particu-
lar, we show the existence of a near-optimal near-integral solution of this prob-
lem. That is, a near-optimal solution (%,y) such that Z; € {O’Ifeai{ x;/C1} and

Ui € {O,ma)%( yi/C2} for some logarithmic factors ¢; and (5. We give an LP
NAS

relaxation of PDB, i.e., a linear program whose optimal cost is greater than the
optimum of PDB, from which we obtain such (%,y) via randomized rounding.
More specifically, we have the following theorem,

Theorem 1. There exists an LP-rounding based randomized algorithm that

. log log mj loglog mao . .
gives an O(il%m1 e )-approximation to PDB.
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Approximating the Two-Stage Problem AR. We present an LP-based
approximation for AR. The separation problem for AR is a variant of PDB.
However, the objective is a difference of a bilinear and a linear term making
it challenging to approximate. Our approach approximates AR directly. In par-
ticular, using ideas from our approximation of PDB, we give a compact linear
restriction of AR, that is, a linear program whose optimal objective is greater
than the optimum of AR, and show that it is a polylogarithmic approximation
of AR. In particular, we have the following theorem.

Theorem 2. There exists an LP restriction of AR that gives an

logn log L - -
O(Togiogm Togloe T )-@pprozimation to AR.

Our bound improves significantly over the prior approximation bound of
O( lfglffg"n) [13] known for this problem. It also shows a striking contrast between
the fractional and the discrete case of the two-stage robust covering problem. In
fact, the discrete two-stage robust covering problem under a packing uncertainty
set with L constraints (L-knapsack) considered in [20] is hard to approximate
within any factor better than L?, for some ¢ > 0. This follows from the hardness
of the maximum independent set problem.

We compare the performance of our approximation to affine policies. Affine
policies are widely used approximate policies in dynamic robust optimization
where the second-stage decision y is restricted to be an affine function of
the uncertain right-hand side h. It is known that the optimal affine policy
can be computed efficiently (Ben-Tal et al. [2]). We show that our algorithm
is significantly faster than finding the optimal affine policy while providing
good approximate solutions. Specifically, in randomly generated instances with
n = m = L = 100, the cost of our solution is within 30% of the cost of the
optimal affine policy in all of the instances we consider. However, our algorithm
is significantly faster terminating in less than 0.1s for all instances. In contrast, it
takes 1000s or larger on average to compute the optimal affine policy for n > 80.

2 A Polylogarithmic Approximation for PDB

. . log 1 log 1
In this section, we present an (=25 2811 208 08 M2
’ log m1 log mo

orem 1). To prove this theorem, we show an interesting structural property of
PDB. In particular, we show that there exists a near-optimal solution of PDB
that is “near-integral”. Let us define for all i € [n],

)-approximation for PDB (The-

3logm; 3logma

+2 and (=

b; = i Y= i = —
Py 131?59 G log log my log log mo

We formally state our structural property in the following lemma.

Lemma 1. (Structural Property). There exists a feasible solution (X,¥) of

PDB whose objective value is within O(%%) of the optimum and

such that &; € {0, %} and §; € {0, £t} for all i € [n].

We obtain such a solution satisfying the above property using an LP relaxation
of PDB via a randomized rounding approach.
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LP Relaxation and Rounding. We consider the following linear program,

zn: 0;Pw; <p

_pDB = Oiyiw; | ! , LP-PDB
ZLP—PDB glgai Z Yiw n ( )
B Y 1iQiwi < q
=1

where P; is the i-th column of P and Q; is the i-th column of Q. We first show
that LP-PDB is a relaxation of PDB.

Lemma 2. ZPDB S ZLP—PDB-

Proof Let (x*,y*) be an optimal solution of PDB. Let w* be such that w} =
a;: Y for all i € [ ]. By definition, we have z} < 6; and y; < ~; for all i € [n].
Hence
29 Pw; = Z@P i yl < ZPle <p,
i=1
and

n n
3 Qi = va - yi <Y Qu <a
i=1 0i i

i=1
Note that we use the fact that P and Q are non-negative in the above inequali-
ties. Therefore, w* is feasible for LP-PDB with objective value

n n

* * %k
E Oiviw; = E T;Y; = ZPDB,
i=1 i=1

which concludes the proof. a

Now, to construct our near-optimal near-integral solution, we consider the
randomized rounding approach described in Algorithm 1. Note that by definition
of 0;, mﬁx{wi | >7-10;Pjw; < p,w > 0} =1, for all i € [n]. Hence, for all
i € [n], w defined in Algorithm 1 is such that w} < 1. In our proof of Lemma 1,
we use the following variant of Chernoff bounds.

Lemma 3. (Chernoff Bounds [10]).

(a) Let x1,...,xr be independent Bernoulli trials. Denote = := Y ._, €;x; where
€1,...,€ are reals in [0,1]. Let s > 0 such that E(Z) < s. Then for any § > 0
we have,

66 °

(b) Let X1, - .., X be independent Bernoulli trials. Denote = := Y _._, €;x; where
€1,...,€- are reals in (0,1]. Then for any 0 < 6 < 1,

P(Z < (1—0)E(5)) < e 2B,
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Algorithm 1.

Input: € > 0.
Output: feasible solution verifying lemma 1 with probability at least 1 —e — o(1).

1: Let w* be an optimal solution of LP-PDB and let T' = 8[log 1].

2: Initialize x* = 0, y* = 0 and max = 0.

3: fort=1,...,7T do

4: let @1, ...,&, be i.i.d. Bernoulli variables with P(&; = 1) = w; for i € [n].
5: let &; = 0;w; /1 and §s = ;@i /(2 for 1 € [n].

6: if (x,¥) is feasible for PDB and %7y > max then

T set o} = &, yf = ¢ for all i € [n] and max = %7y.

8: end if

9: end for

10: return (x*,y")

Proof of Lemma 1. It is sufficient to prove that, with constant probability,
(%,y) constructed at each iteration of Algorithm 1 is a feasible solution of PDB
verifying the structural property. In particular, let w* be an optimal solution
of LP-PDB as defined in Algorithm 1. Consider some iteration ¢ € [T]. Let
O1,...,w0, and (X,y) be as defined in iteration ¢ of the main loop. We show that
the following properties hold with a constant probability,

> Piii <p, > Qiji <a, > > % (1)

First, we have,

ZPZxZ>p P<;9P12>p> <Zp<i QZP]Z(Z;>]’)J>
Z P(Zeij“z>fl>

j€[m1]:p; >0 =1 J

DS

j€[m1]:p; >0

St
<my a
where the first inequality follows from a union bound on m; constraints. The
second equality holds because for all j € [m4] such that p; = 0, we have
P (Zt 6P % > p]) = 0. In fact, p; = 0 implies Y7, ;P;;% = 0, by fea-
sibility of w* in LP-PDB. Therefore, we have >, HZ-P]-Z-% = 0 almost surely.

The second inequality follows from the Chernoff bounds (a) with 6 = {; — 1 and
s = 1. In particular, ﬁ [0,1] by definition of §; for all i € [n] and j € [m;]

such that p; > 0 and E {Z;;l Gf'l)lg_ji(,bi =>", %w? <1, for all j € [mq] such
J J
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el =0(:h),

that p; > 0, which holds by feasibility of w*. Next, note that £ (D5 pooy

therefore, there exists a constant ¢ > 0 such that,

Z P.i; > p) < (2)

i=1

IR

By a similar argument there exists a constant ¢’ > 0, such that

S‘m

Zszz>q <
=1

Finally we have,
0;v;w -
(E ;7 ZLP PDB) (E C1C2 241@ ;:1 z%%)
0ivi 1 -
E w; < <es,
( Zg 1 05w 2)

where the last inequality follows from Chernoff bounds (b) with 6 = 1/2. In
particular, % < 1 for all ¢ € [n], this is because the unit vector e;
i=1 i

is feasible for LP-PDB for all ¢ € [n] such as 0;v; < z1p_ppg = Z;;l 0;;w;
and we also have, E [ZZ 1 %wz} = 1. Combining inequalities (2), (3)
and (4) we get that (%,¥) Verlﬁes the properties (1) with probability at least

(4)

ool

I—=— m—l —eT i =1—¢F— o(1), which is greater than a constant for m; and
mo large enough This implies in particular that with positive probablhty, (%,¥)
is feasible and has an objective value that is greater than 5 C1 &, ALP—PDB- From
Lemma 2, this is greater than ﬁzppg. Therefore, with constant probability,

(%,y) is a feasible solution of PDB that verifies the structural property. O

Proof of theorem 1. Let (x*,y*) be the output solution of Algorithm 1. Then
(x*,y*) is such that

1
X* S Xa y*< S y7 X*Ty* Z ZPDB;
2¢1G2
if and only if
1
)ACEX, 5’637, PACT}A’Zi ZPDB;
20162

for some iteration ¢ of the main loop. From our proof of lemma 1, this happens
1

with probability at least 1 — (e=8 — 0(1))7 > 1 — € — o(1). Therefore, with

probability at least 1 — e — o(1), Algorithm 1 outputs a feasible solution of PDB

whose objective value is within O(%%) of zppB. O
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Hardness of the General Disjoint Bilinear Program. Like packing linear
programs, the covering linear programs are known to have logarithmic integrality
gaps. Hence, a natural question to ask would be whether similar results can be
proven for an equivalent covering version of PDB, i.e., a disjoint bilinear program
of the form,

Zear = min{x"y | Px > p, Qy > q, x,y = 0} (CDB)

where P € R7"*", Q € R™?™", p € R} and q € RY"?. However, the previous
analysis does not extend to the covering case. In particular, we have the following
inapproximability result.

Theorem 3. The covering disjoint bilinear program CDB is NP-hard to approz-
imate within any finite factor.

The proof of Theorem 3 uses a polynomial time transformation from the Mono-
tone Not-All-Equal 3-Satisfiability (MNAE3SAT) NP-complete problem and is
deferred to the full version of the paper.

3 From Disjoint Bilinear Optimization to Two-Stage
Adjustable Robust Optimization

In this section, we present a polylogarithmic approximation algorithm for AR. In
particular, we give a compact linear restriction of AR that provides near-optimal
first-stage solutions with cost that is within a factor of O(lololg” ; lolgL 7) of zar.
. . . g ogn lo, og
Our proof uses ideas from our approximation of PDB applied to t%le separation
problem Q(x).
Recall the two-stage adjustable problem AR,

min  ¢’x 4+ Q(x),
xeX

where for all x € X,

>
Q(x) = I}Illélzf{(mln {dTy | By > h — Ax}.

Let us write Q(x) in its bilinear form. In particular, we take the dual of the
inner minimization problem on y to get,

9Q(x) = max { h’z — (Ax)Tz Rh<r

BTZSd}

For the special case where A = 0, the optimal first-stage solution is x = 0
and AR reduces to an instance of PDB. Therefore, our algorithm for PDB gives
an O(log)ﬁ) Zn lolgoﬁ) g 7 )-approximation algorithm of AR in this special case.

In the general case, the separation problem Q(x) is the difference of a bilinear

and a linear term. This makes it challenging to approximate Q(x). Instead, we
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attempt to approximate AR directly. In particular, for any x € X and yg > 0
such that Ax + Byy > 0, we consider the following linear program:

m Zeibiwi S d
LP _ e — 00T — 0BT , i=1
Q (X,yo)—glgg Z(ﬁm tia; x — 0;b; yo)w; m ;
=t Z%‘R
=1

w; ST

where 0; := max,{z; | Bz < d,z > 0}, v; := maxu{h; | Rh < r,h > 0}, a;
and b; are the i-th row of A and B respectively and R; is the i-th column of
R. The role of y( here is to handle the case when some of the entries of A are
negative. In fact, our approximation relies on the non-negativity of Ax. Since
this is not the case in general, we add a second-stage covering term By, to Ax
for some static second-stage solution yo > 0 such that Ax+By > 0. For ease of
notation, we use Q" (x,y0) to refer to both the problem and its optimal value.
Let n:= 219" 1 9 and 8 := 211 4 9 Similar to PDB, we show the following

~ loglogn ~ loglog L
structural property of the separation problem.

Structural Property. For x € X and yg > 0 such that Ax 4+ By > 0, there
exists a near-integral solution (h,z) € {0, % }™ x {0, % ™ of Q(x) such that,

ibizi <d, iRihi <r,
i=1 i=1

QLP (5X7 ﬁyO)
2n3 '

m (5)
Z hiz;i — (a] x + b] yo)z >
i—1

We construct such solution following a similar procedure as in Algorithm 1.
In particular, let w* be an optimal solution of Q-7 (3x, Byy), consider @1, ..., o
i.i.d. Bernoulli random variables such that P(w; = 1) = w} for all ¢ € [m] and
let (h,z) and let h; = 7%37‘ and z; = 01'7;:“ for all ¢ € [m]. Such (h,z) satisfies the
properties (5) with a constant probability. The proof of this fact is similar to the
proof of Lemma 1 and is omitted due of lack of space. The proof is given in the
full version of the paper for completeness.

Because of the linear term, the solution given by this structural property is
not necessarily a near-optimal solution of Q(x) anymore. However, the existence
of such solution allows us to bound Q(x) as follows.

Lemma 4. For x € X and yo > 0 such that Ax + Byg > 0 we have,

2niﬁQ”’<ﬁ><,5yo> < 9(x) < O(x.y0) + d"ys.
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Our Linear Restriction. Before proving Lemma 4, let us discuss how we
derive our linear restriction of AR. In particular, consider the following problem
where Q(x) is replaced by Q' (x,y() in the expression of AR:

: T T LP
Ap-AR = min {c'x+d"yo+ Q" (x,y0) | Ax +Byo > 0} . (6)

Note for given x,yo, OF(x,yo) is a maximization LP. Taking its dual and
substituting in (6), we get the following LP:

AP-AR = ﬁ}i?a c'x+dyo+dy +r'a
st. G;alx+0;blyo+0:bly +vRIa> 0y Vi, (LP-AR)
Ax + Byo Z Oa

X€X7y0ay207a20-

We claim that LP-AR is a restriction of AR and gives an O(lolg‘;fgogL 10§ign)‘
approximation for . We first give the proof of Lemma 4.

Proof of Lemma 4. First, let (h*,z*) be an optimal solution of Q(x). Define w*
such that w} = ZT% for all i € [m]. Then w* is feasible for O (x,yq) with
objective value,

m *

m
h
D (07 — bial x — 0,6 yo)wi =Y hizf — (alx+b]yo )7221*
i=1 pt i
> hiz—(alx+blyo)z
i=1

(2

m
* % T * *\T
hizl —a; xz — (g bz )" yo

Il
i

v
L

x) —d"yo,

where the first inequality follows from the fact that hl <1and alx+ bTyo >0
for all 4 € [m], and the last inequality follows from the fact that > " bz} <d.
Hence Q(x) —d Ty < Q'P(x, yo)

Now, consider (h,z) € {0, % }" x {0, %}m satisfying properties (5). The first
two properties imply that (h,z) is a feasible solution for Q(x). The objective
value of this solution is given by,

m m 1
Z hizi — a] xz; > thzz — (alx +biyo)z > %QLPWX,BYO)-
- —

The first inequality holds because blyo > 0 for all i € [m], and the second
inequality follows from the properties (5). Hence, Q(x) > 277[3 OLP(8x, Byo). O
Now, we are ready to prove Theorem 2.
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Proof of Theorem 2. We prove the following;:

2AR < 2p—AR < 3nBzaAR.

Let x{p, ¥5 1 p denote an optimal solution of (6). We have,

T
AP AR = €' X{p + dTYS,LP + QLP(X*vyS,LP) > ¢ xip + Q(x(p) = 2ar,

where the first inequality follows from Lemma 4 and the last inequality follows
from the feasibility of x{'p in AR.

To prove the upper bound for z p_ar, let x* denote an optimal first-stage
solution of AR and let y§ € argmin,-o{d”y | Ax* + By > 0}. Since 0 € U is a
feasible second-stage scenario,

cI'x* + dTyS < ZAR. (7)
Now, we have
ZaR > Q(x")
1
Z 7QLP ﬁx*,ﬁy*
1 * * * * 1 * *
= %(BCTX +pd"ys + 9 (Bx*, Byg)) — %(CTX +d"yp)
1 * * * * 1
> m(ﬂCTX +pd "y + QP (Bx*, Bys)) — 57AR
. 1 1
> 21762LP—AR 2ZAR7

where the second inequality follows from Lemma 4, the third inequality follows
from (7) and the fact that 7 > 1. For the last inequality, note that fx* € X,
Bys > 0 and BAx* + fBy§ > 0. Therefore, 8x*, By{ is a feasible solution
for (6). This implies that z p_ar < 37082ar. |

4 Numerical Experiments

In this section, we compare our approximation to finding the optimal affine
policy. Affine policies are widely used approximation policy for AR. Ben-Tal et
al. [2] show that the optimal affine policy can be found in polynomial time by
solving a linear program with polynomially many constraints and variables. We
show that our algorithm is significantly faster and provides good approximate
solutions. The results of the experiment are given in Table 1.

Experimental Setup. We consider the same instances as in Ben-Tal et al. [3],
namely, we consider instances of AR where n = m,c=d =eand A =B =
I, + G, where I, is the identity matrix and G is a random normalized Gaussian
matrix. We consider the case where X = R’ and U is an intersection of L budget
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of uncertainty sets of the form ¢ = {h € [0,1]™ | w/h < 1Vl € [L]}, where the
weight vectors w; are normalized Gaussian vectors, i.e., w;; = ~ LGl gy

’ V2 (Gri)?
{G, .} i.i.d. standard Gaussian variables.

We compare the running time of our algorithm in seconds denoted by T p_ar
with the running time needed to compute the optimal affine policy denoted by
Tafr, for different values of n = m and L. We also compare the ratio between
the optimal cost of LP-AR denoted by z p_ar and the cost of the optimal affine
policy denoted by z,f. The results are given in Table 1 and were obtained using
Gurobi v9.1.2 on a dual-core laptop with 8 Go of RAM and 1.8 GHz processor.

Results. Table 1 shows that solving LP-AR significantly faster than finding the
optimal affine policy. For example, when n = m = 100 computing the optimal
affine policy is more than 10000 times slower than LP-AR for all considered
values of L. Furthermore, the cost of LP-AR stays within approximately 30% of
the cost of the optimal affine policy. We also observe numerically that this gap
gets smaller when we increase the dimension of our problem and therefore our
algorithm gets close to the optimal affine policy for large instances, which are
usually the computationally challenging instances for the optimal affine policy.

Table 1. Comparison of the optimal value and the running time in seconds between
our algorithm and the optimal affine policy, for different values of n = m and L.

n | Tor | Tip_ar ZLZ%”AR 0 | Tur | Tipoar ZLE;FAR n | Tar | Tip—ar ZLZ:%HAR
20 | 0.57| 0.07 | 1.28 20 |1.15] 0.05 | 1.32 20 158 0.07 | 1.38
30 370 0.08 | 1.25 30 |303] 003 | 1.30 30 3.62 007 | 1.35
40 125 0.06 | 1.25 40 | 8.58 | 003 | 131 40 115 10.05 | 1.32
50 133.2 0.0 | 1.23 50 |28.2] 0.02 | 1.28 50 (20.6 0.08 | 1.33
60 | 76.0 0.03 | 1.23 60 | 78.7| 004 | 127 60 |78.7 0.05 | 1.30
70 | 222 | 0.03 | 1.22 70 1193 | 0.10 | 1.27 70 (175 1 0.09 | 1.27
80 | 430 | 0.04 | 1.21 80 | 508 | 0.10 | 1.26 80 1386 |0.10 |1.28
90 | 768 | 0.06 | 1.21 90 |1116| 0.06 | 1.25 90 |657 |0.13 |1.27
100] 1790 0.17 | 1.22 100]1714] 0.04 | 1.22 100]1354 [0.12 | 1.27
(a) L=20 (b) L=50 (c) L=100

5 Conclusion

In this paper, we consider the class of packing disjoint bilinear programs PDB
and present an LP-rounding based randomized approximation algorithm for this
problem. In particular, we show the existence of a near-optimal near-integral
solution for PDB. We give an LP relaxation from which we obtain such solution
using a randomized rounding of an optimal solution. We apply our ideas to
the two-stage adjustable problem AR whose separation problem is a variant of
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PDB. While a direct application of the approximation algorithm for PDB does
not work for AR, we derive an LP restriction of AR, based on similar ideas,
that gives a polylogarithmic approximation of AR. We compare our algorithm
with the widely used affine policies and show that it is significantly faster and
provides near-optimal solutions.
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Abstract. In generalized malleable scheduling, jobs can be allocated
and processed simultaneously on multiple machines so as to reduce the
overall makespan of the schedule. The required processing time for each
job is determined by the joint processing speed of the allocated machines.
We study the case that processing speeds are job-dependent M*-concave
functions and provide a constant-factor approximation for this setting,
significantly expanding the realm of functions for which such an approxi-
mation is possible. Further, we explore the connection between malleable
scheduling and the problem of fairly allocating items to a set of agents
with distinct utility functions, devising a black-box reduction that allows
to obtain resource-augmented approximation algorithms for the latter.

1 Introduction

Parallel execution of a job on multiple machines is often used to optimize the
overall makespan in time-critical task scheduling systems. Practical applications
are numerous and diverse, varying from task scheduling in production and logis-
tics, such as quay crane allocation in naval logistics [4,15] and cleaning activi-
ties on trains [3], to optimizing the performance of computationally demanding
tasks, such as web search index update [28] and training neural networks [12]
(see also [9,10] for further references and examples).

The model of malleable (a.k.a. moldable) jobs, introduced by Du and Leung [§],
captures the algorithmic aspects of scheduling jobs that can be executed simulta-
neously on multiple machines. A malleable job can be assigned to an arbitrary sub-
set of machines to be processed non-preemptively and in unison, i.e., with the same
starting and completion time on each of the allocated machines. Importantly, the
scheduler decides on the degree of parallelization for each job by choosing the set
of machines allocated to each job (in contrast to non-malleable parallel machine
models, where a single machine is allocated to each task).

Despite the significant interest in the model, most of the work on scheduling
malleable jobs considers the case of identical machines, where the processing
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time of a job only depends on the number of allocated machines. A common
assumption is that a job’s processing time is non-increasing in the number k of
allocated machines, while a job’s work (i.e., k times the job’s processing time on k
machines) is non-decreasing in k. This is usually referred to as the monotone work
assumption and accounts for communication and coordination overhead due to
parallelization. The approximability of makespan minimization in the setting of
malleable job scheduling on identical machines is very well understood. Constant-
factor approximation algorithms are known since the work of Turek et al. [27].
Following a line of successive improvements in the approximation factor [17,
21,22], two recent results by Jansen and Thole [18] and Jansen and Land [16]
implied a polynomial-time approximation scheme for malleable scheduling on
identical machines.

On the other hand, scheduling malleable jobs on non-identical machines has
received much less attention. As a natural first step, building on previous work
by Correa et al. [7] on the closely related splittable job model, Fotakis et al. [9]
introduced the setting of speed-implementable processing-time functions, where
each machine ¢ has an unrelated “speed” s;; for each job j and a job’s processing
time is a non-decreasing function of the total allocated speed fulfilling a natural
generalization of the non-decreasing work assumption. They devised an LP-based
3.16-approximation for this setting.

However, as recently observed in [10], the aforementioned models, in which
the processing power of a heterogeneous set of machines is expressed by a
single scalar, cannot capture the (possibly complicated) combinatorial interac-
tion effects arising among different machines processing the same job. Practical
settings where such complicated interdependencies among machines may arise
include modern heterogeneous parallel computing systems, typically consisting
of CPUs, GPUs, and I/0 nodes [5], and highly distributed processing systems,
where massive parallelization is subject to constraints imposed by the under-
lying communication network [1]; see [10] for further references and examples.
Having such practical settings in mind, Fotakis et al. [10] introduced a general-
ized malleable scheduling model, where the processing time f;(S) = 1/g;(S) of
a job j depends on a job-specific processing speed function g;(.S) of the set of
machines S allocated to j. In addition to motivating and introducing the model,
they derived an LP-based 5-approximation for scaled matroid rank processing
speeds, and a O(log min{n,m})-approximation algorithm for submodular pro-
cessing speeds, where n is the number of jobs and m is the number of machines.

Fotakis et al. [10] left open whether there are processing speed functions
more general than scaled matroid rank functions for which generalized malleable
scheduling can be approximated within a constant factor. In this work, employing
notions and techniques from the field of Discrete Convexity [23], we present a
constant-factor approximation algorithm for job-dependent M?-concave (a.k.a.
gross substitute) processing speed functions, thus significantly expanding the
realm of functions for which such an approximation is possible. We further point
out a connection between malleable scheduling and the so-called max-min fair
allocation problem, devising a black-box reduction that allows to obtain resource-
augmented approximation algorithms for the latter.
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1.1 Generalized Malleable Scheduling and Main Results

To discuss our contribution in more detail, we need to formally introduce the
Generalized Malleable Scheduling problem. We are given a set of jobs J to be
assigned to a set of machines M. Each job j € J is equipped with a processing
time function f; : 2™ — R that specifies the time f;(S) needed for the
completion of j, when assigned to a subset of machines S C M. We assume that
functions f; are accessed through a value oracle that, given S C M, returns the
value of f;(S). A schedule consists of two parts: (i) an assignment S = (S;) ;e
of each job j € J to a non-empty set of machines S; C M; and (ii) a starting
time vector t = (¢;);cs, specifying the time ¢; at which jobs in S; start to
jointly process job j. A schedule is feasible, if S; N S; = 0 for all j, j' € J with
t; < tj < tj+ fj(S;), i.e., while a machine is involved in processing a job j,
it cannot start processing any other job j'. The objective is to find a feasible
schedule of minimum makespan C(S,t) := max;cs{t; + f;(5;)}.

An interesting relaxation of the above SCHEDULING problem is the ASSIGN-
MENT problem, asking for an assignment S that minimizes the load L(S) :=
max;ec pr Zje.]:iesj [i(S;). Clearly, the load of an assignment is a lower bound
on the makespan of any feasible schedule using that same assignment.

The processing speed of a set of machines S for a job j is g;(S) := 1/f;(S).
Under the assumption that for each job j € J, the processing speed function g;
is submodular, [10, Theorem 1] shows that any assignment of maximum machine
load C can be transformed in polynomial time into a so-called well-structured
schedule, where each mac