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Preface

This volume collects the 33 extended abstracts presented at IPCO 2022, the 23rd
Conference on Integer Programming and Combinatorial Optimization, held during June
27–29, 2022, in Eindhoven (The Netherlands).

IPCO is under the auspices of the Mathematical Optimization Society, and it is an
important forum for presenting the latest results on the theory and practice of the various
aspects of discrete optimization. The first IPCO conference took place at the University
of Waterloo in May 1990, and the Eindhoven University of Technology organized the
23rd such event. The conference had a Program Committee consisting of 15 members.
In response to the Call for Papers, we received 93 submissions. Each submission was
reviewed by at least three Program Committee members. Because of the limited number
of time slots for presentations, many excellent submissions could not be accepted. The
page limit for contributions to this proceedings was set to 14. We expect the full versions
of the extended abstracts appearing in this Lecture Notes in Computer Science volume
to be submitted for publication in refereed journals, and a special issue of Mathematical
Programming Series B containing such versions is in process.

For the third time, IPCO had a Best Paper Award. The IPCO 2022 Best Paper Award
was given to Gennadiy Averkov and Matthias Schymura for their paper On the maximal
number of columns of a � -modular matrix. This year, IPCO was preceded by a Sum-
mer School held during June 25–26, 2022, with lectures by Shipra Agrawal (Columbia
University), Shayan Oveis Gharan (University of Washington), and Stefan Weltge (TU
Munich). We thank them warmly for their contributions. We would also like to thank

– the authors who submitted their research to IPCO;
– the members of the Program Committee, who spent much time and energy reviewing
the submissions;

– the expert additional reviewers whose opinions were crucial in the paper selection;
– the members of the Local Organizing Committee, whomade this conference possible;
– the Mathematical Optimization Society and in particular the members of its IPCO
Steering Committee, Oktay Günlük, Jochen Könemann, and Giacomo Zambelli, for
their help and advice;

– EasyChair for making paper management simple and effective; and
– Springer for their efficient cooperation in producing this volume and for financial
support for the Best Paper Award.

We would further like to thank the following sponsors for their financial support:
NETWORKS, DIAMANT, NWO, Eurandom, Cardinal Operations, Google, Gurobi,
Mosek, and the Optimization firm.

March 2022 Karen Aardal
Laura Sanità
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Total Dual Dyadicness and Dyadic
Generating Sets

Ahmad Abdi1(B), Gérard Cornuéjols2, Bertrand Guenin3, and Levent Tunçel3

1 Department of Mathematics, LSE, London, UK
a.abdi1@lse.ac.uk

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
gc0v@andrew.cmu.edu

3 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada

{bguenin,ltuncel}@uwaterloo.ca

Abstract. A vector is dyadic if each of its entries is a dyadic rational
number, i.e. of the form a

2k
for some integers a, k with k ≥ 0. A lin-

ear system Ax ≤ b with integral data is totally dual dyadic if whenever
min{b⊤y : A⊤y = w, y ≥ 0} for w integral, has an optimal solution, it has
a dyadic optimal solution. In this paper, we study total dual dyadicness,
and give a co-NP characterization of it in terms of dyadic generating sets
for cones and subspaces, the former being the dyadic analogue of Hilbert
bases, and the latter a polynomial-time recognizable relaxation of the
former. Along the way, we see some surprising turn of events when com-
pared to total dual integrality, primarily led by the density of the dyadic
rationals. Our study ultimately leads to a better understanding of total
dual integrality and polyhedral integrality. We see examples from dyadic
matrices, T -joins, circuits, and perfect matchings of a graph.

1 Introduction

A dyadic rational is a number of the form a
2k

for some integers a, k where k ≥ 0.
The dyadic rationals are precisely the rational numbers with a finite binary
representation, and are therefore relevant for (binary) floating-point arithmetic
in numerical computations. Modern computers represent the rational numbers
by fixed-size floating points, inevitably leading to error terms, which are com-
pounded if serial arithmetic operations are performed such as in the case of
mixed-integer linear, semidefinite, and more generally convex optimization. This
has led to an effort to mitigate floating-point errors [27] as well as the need for
exact solvers [6,25].

We address a different, though natural theoretical question: When does a
linear program admit an optimal solution whose entries are dyadic rationals? A
vector is dyadic if every entry is a dyadic rational. Consider the following primal
dual pair of linear programs for A ∈ Zm×n, b ∈ Zm and w ∈ Zn.

(P ) max{w⊤x : Ax ≤ b} (D) min{b⊤y : A⊤y = w, y ≥ 0}.

c© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 1–14, 2022.
https://doi.org/10.1007/978-3-031-06901-7_1
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(0 and 1 denote respectively the all-zeros and all-ones column, or row, vectors
of appropriate dimension.) When does (D) admit a dyadic optimal solution for
all w ∈ Zn? How about (P)? Keeping close to the integral case, these questions
lead to the notions of totally dual dyadic systems and dyadic polyhedra. In this
paper, we reassure the reader that dyadic polyhedra enjoy a similar characteri-
zation as integral polyhedra, but in studying totally dual dyadic systems, we see
an intriguing and somewhat surprising turn of events when compared to totally
dual integral (TDI) systems [10]. As such, we shall keep the focus of the paper
on total dual dyadicness and its various characterizations. The characterizations
lead to dyadic generating sets for cones and subspaces, where the first notion is
polyhedral and can be thought of as a dyadic analogue of Hilbert bases, while the
second notion is lattice-theoretic and new. We shall see some intriguing examples
of totally dual dyadic systems and dyadic generating sets from Integer Program-
ming, Combinatorial Optimization, and Graph Theory. Our study eventually
leads to a better understanding of TDI systems and integral polyhedra.

Our characterizations extend easily to the p-adic rationals for any prime
number p≥3. For this reason, we shall prove our characterizations in the general
setting. Interestingly, however, most of our examples do not extend to the p-adic
setting for p ≥ 3.

1.1 Totally Dual p-adic Systems and p-adic Generating Sets

Let p ≥ 2 be a prime number. A p-adic rational is a number of the form a
pk for

some integers a, k where k≥0. A vector is p-adic if every entry is a p-adic rational.
Consider a linear system Ax ≤ b where A ∈ Zm×n, b ∈ Zm. We say that Ax ≤ b is
totally dual p-adic if for all w ∈ Zn for which min{b⊤y : A⊤y = w, y ≥ 0} has an
optimum, it has a p-adic optimal solution. For p = 2, we abbreviate ‘totally dual
dyadic’ as ‘TDD’. We prove the following characterization, which relies on two
key notions defined afterwards.

Theorem 1 (Proved in Sect. 4). Let A ∈ Zm×n, b ∈ Zm and P := {x : Ax ≤
b}. Given a nonempty face F , denote by AF x ≤ bF the subsystem of Ax ≤ b
corresponding to the implicit equalities of F . Then the following statements are
equivalent for every prime p: (1) Ax ≤ b is totally dual p-adic, (2) for every
nonempty face F of P , the rows of AF form a p-adic generating set for a cone,
(3) for every nonempty face F of P , the rows of AF form a p-adic generating
set for a subspace.

In fact, in (2), it suffices to consider only the minimal nonempty faces.
Let {a1, . . . , an} ⊆ Zm. The set {a1, . . . , an} is a p-adic generating set for

a cone ( p-GSC) if every integral vector in the conic hull of the vectors can
be expressed as a p-adic conic combination of the vectors (meaning that the
coefficients used are p-adic). In contrast, {a1, . . . , an} is a p-adic generating set
for a subspace ( p-GSS) if every integral vector in the linear hull of the vectors
can be expressed as a p-adic linear combination of the vectors. For p = 2, we use
the acronyms DGSC and DGSS instead of 2-GSC and 2-GSS, respectively.

The careful reader may notice that an integral generating set for a cone
is just a Hilbert basis [13] (following [21], Sect. 22.3). In contrast with Hilbert
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bases where a satisfying characterization remains elusive, we have the following
polyhedral characterization of a p-GSC:

Theorem 2 (Proved in Sect. 3). Let {a1, . . . , an} ⊆ Z
m,

C := cone{a1, . . . , an}, and p a prime. Then {a1, . . . , an} is a p-GSC if, and
only if, for every nonempty face F of C, {ai : ai

∈ F} is a p-GSS.

The careful reader may notice that in contrast to total dual integrality, the
characterization of totally dual p-adic systems, Theorem 1, enjoys a third equiv-
alent condition, namely (3). This new condition, as well as the characterization
of a p-GSC, Theorem 2, is made possible due to a distinguishing feature of the
p-adic rationals: density. The p-adic rationals, as opposed to the integers, form
a dense subset of R. We shall elaborate on this in Sect. 2.

Going further, we have the following lattice-theoretic characterization of a
p-GSS. We recall that the elementary divisors (a.k.a. invariant factors) of an
integral matrix are the nonzero entries of the Smith normal form of the matrix;
see Sect. 3 for more.

Theorem 3 (Proved in Sect. 3). The following statements are equivalent for
a matrix A ∈ Zm×n of rank r and every prime p: (1) the columns of A form a
p-GSS, (2) the rows of A form a p-GSS, (3) whenever y⊤A and Ax are integral,
then y⊤Ax is a p-adic rational, (4) every elementary divisor of A is a power of
p, (5) the GCD of the subdeterminants of A of order r is a power of p, (6) there
exists a matrix B with p-adic entries such that ABA =A.

Theorem 3 is used in Sect. 3 to prove that testing the p-GSS property can
be done in polynomial time. Subsequently, the problem of testing total dual p-
adicness belongs to co-NP by Theorem 1 (see Sect. 4), and the problem of testing
the p-GSC property belongs to co-NP by Theorem2 (see Sect. 3). Whether the
two problems belong to NP, or P, remains unsolved. It should be pointed out
that testing total dual integrality, as well as testing the Hilbert basis property,
is co-NP-complete [9,19].

1.2 Connection to Integral Polyhedra and TDI Systems

Our characterizations stated so far, as well as our characterization of p-adic
polyhedra explained in Sect. 5, have the following intriguing consequence:

Theorem 4. Let A ∈Zm×n, b ∈Zm, and P := {x : Ax≤ b}. Then the following are
equivalent: (1) Ax ≤ b is totally dual p-adic for all primes p, (2) Ax ≤ b is totally
dual p- and q-adic, for distinct primes p, q, (3) for every nonempty face F of P ,
the GCD of the subdeterminants of AF of order rank(AF ) is 1.

Proof. (1) ⇒ (2) is immediate. (2) ⇒ (3) For every nonempty face F of P ,
the rows of AF form both a p- and a q-GSS by Theroem 1, so the GCD of the
subdeterminants of AF of order rank(AF ) is both a power of p and a power of
q by Theorem 3, so the GCD of the subdeterminants of AF of order rank(AF )
must be 1. (3) ⇒ (1) follows from Theorem 1 and Theorem 3 ��
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If Ax ≤ b is TDI, and therefore totally dual p-adic for any prime p, then
statement (3) above must hold (this is folklore, and explored in [22]. In fact, if
P is pointed, then for every vertex of P , we have a stronger property known as
local strong unimodularity [12].) It was a widely known fact that the converse is
not true. Theorem4 clarifies this further by equating (3) with (1) and (2). Going
a step further, it is known that if Ax ≤ b is TDI, then {x : Ax ≤ b} is an integral
polyhedron [10,13]. We shall strengthen this result as follows:

Theorem 5 (Proved in Sect. 5). If Ax ≤ b is totally dual p- and q-adic, for
distinct primes p, q, then {x : Ax ≤ b} is an integral polyhedron.

Fulkerson’s theorem that every integral set packing system is TDI, can be
seen as a (stronger) converse to Theorem 5 [11]. As for set covering systems, there
is a conjecture of Paul Seymour that predicts a (stronger) converse toTheorem5.

Conjecture 6 (The Dyadic Conjecture [20], Sect. 79.3e). Let A be a matrix with
0, 1 entries. If Ax ≥ 1, x ≥ 0 defines an integral polyhedron, then it is TDD.

The step of the Dyadic Conjecture: If Ax≥ 1, x≥ 0 defines an integral polyhe-
dron, then for every nonnegative integral w such that min{w⊤x : Ax ≥ 1, x ≥ 0}
has optimal value two, the dual has a dyadic optimal solution [1].

1.3 Examples

Our first example comes from Integer Programming, and more precisely, from
matrices with restricted subdeterminants.

Theorem 7. Let A ∈ Zm×n be a matrix whose subdeterminants belong to {0} ∪
{±pk : k ∈ Z+} for some prime p, and let b ∈ Zm. Then Ax ≤ b is totally dual
p-adic.

Similar, if not identical, settings have been studied previously; see for exam-
ple [4,16] (the last reference has more relevant citations); see the full version
for more details and the proof [2]. The node-edge incidence matrix of a graph
is known to satisfy the hypothesis for p = 2 (folklore), and therefore leads to
a TDD system. More generally, matrices whose subdeterminants belong to
{0} ∪ {±2k : k ∈ Z+} have been studied from a matroid theoretic perspective;
matroids representable over the rationals by such matrices are known as dyadic
matroids and their study was initiated by Whittle [28].

Moving on, from Combinatorial Optimization, we get examples only in the
dyadic setting. Let G = (V,E) be a graph, and T a nonempty subset of even
cardinality. A T -join is a subset J ⊆ E such that the odd-degree vertices of G[J ]
is precisely T . T -joins were studied due to their connection to the minimum
weight perfect matching problem, but also to the Chinese postman set problem
(see [7], Chap. 5). As a consequence of a recent result [3], we obtain the following.

Theorem 8 (Proved in Sect. 6). Let G = (V,E) be a graph, and T ⊆ V a
nonempty subset of even cardinality. Then x(J) ≥ 1 ∀ T -joins J ;x ≥ 0 is TDD.
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The basic solutions to the dual of min{1⊤x : x(J) ≥ 1 ∀ T -joins J ;x ≥ 0}
may actually be non-dyadic, with many examples coming from snarks G on at
least 18 vertices with T = V (G) and w = 1 [18], thereby creating an interesting
contrast between the proofs of Theorem 7 and Theorem 8. Also, Theorem 8 does
not extend to the p-adic setting for any prime p ≥ 3. To see this, let G be the
graph with vertices 1, 2, 3, 4, 5 and edges {1, 3}, {1, 4}, {1, 5}, {3, 2}, {4, 2}, {5, 2},
let T := {1, 2, 3, 4}, and let w :=1. Then the dual has a unique optimal solution,
namely y�

=
1
2 · 1, which is not p-adic for any p ≥ 3.

The system in Theorem 8 defines an integral set covering polyhedron (see [8],
Chap. 2), so Theorem 8 verifies Conjecture 6 for such instances. In fact, it has
been conjectured that the system in Theorem 8 is totally dual quarter-integral
([8], Conjecture 2.15). Observe that quarter-integrality is a stronger variant of
dyadicness, and should not be confused with “4-adicness”, which is not even
defined in this paper.

Moving on, let G = (V,E) be a graph. A circuit is a nonempty subset C ⊆ E
such that the subgraph (V (C), C) is connected where every vertex has degree
two. A perfect matching is a subset M ⊆ E such that every vertex in V is
incident with exactly one edge in M . Define C(G) := {χC : C a circuit of G} and
M(G) := {χM : M a perfect matching of G}. See [14] for an excellent survey on
lattice and conic characterizations of these two sets.

Theorem 9 (Proved in Sect. 6). Let G = (V,E) be a graph such that |V | is
even. Then M(G) is a DGSC.

This theorem does not extend to the p-adic setting for p ≥ 3 either; this is
justified in Sect. 6. If G is an r-graph, then the Generalized Berge-Fulkerson
Conjecture [23] predicts that the all-ones vector can be written as a half-integral
conic combination of M(G); Theorem 9 proves this can be done dyadically.

Theorem 10. Let G = (V,E) be a graph. Then C(G) is a DGSC. ��
If G is bridgeless, then the Cycle Double Cover Conjecture [24,26] predicts

that the all-ones vector can be written as a half-integral conic combination of the
vectors in C(G); Theorem 10 implies this can be done dyadically. The theorem is
proved in the full version [2], and uses Theorem 1 and interestingly the notion of
cuboids [1]. There, we also note that the theorem does not extend to the p-adic
setting for p ≥ 3.

2 Density Lemma and the Theorem of the Alternative

Many of our results are made possible by an important feature of the p-adic
rationals distinguishing them from the integers, namely density.

Remark 11. The p-adic rationals form a dense subset of R.

Lemma 12 (Density Lemma). Let A ∈ Zm×n, b ∈ Zm and p a prime. If {x :
Ax = b} contains a p-adic point, then the p-adic points in the set form a dense
subset. In particular, a nonempty rational polyhedron contains a p-adic point if,
and only if, its affine hull contains a p-adic point.
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Proof. It suffices to prove the first statement. Suppose {x : Ax= b} contains a p-
adic point, say x̂. Since A has integral entries, its kernel has an integral basis, say
d1, . . . , dr. Observe that {x : Ax= b} is the set of vectors of the form x̂+

∑r
i=1 λid

i

where λ ∈ Rr. Consider the set S :=
{
x̂ +

∑r
i=1 λid

i : λi is p-adic for each i
}

. By
Remark 11, it can be readily checked that S is a dense subset of {x : Ax = b}.
Since x̂ is p-adic, and the di’s are integral, the points in S are p-adic, thereby
proving the lemma. ��

A natural follow-up question arises: When does a rational subspace contain
a p-adic point? Addressing this question requires a familiar notion in Integer
Programming. Every integral matrix of full row rank can be brought into Her-
mite normal form by means of elementary unimodular column operations. In
particular, if A is an integral m×n matrix of full row rank, there exists an n×n
unimodular matrix U such that AU = (B 0), where B is a non-singular m ×m
matrix, and 0 is an m×(n−m) matrix with zero entries. By a square unimodular
matrix, we mean a square integral matrix whose determinant is ±1; note that
the inverse of such a matrix is also unimodular. See ([5], Sect. 1.5.2) or ([21],
Chap. 4) for more details.

Lemma 13 (Theorem of the Alternative). Let A ∈ Zm×n, b ∈ Zm, and p a
prime. Then either Ax = b has a p-adic solution, or there exists a y ∈ Rm such
that y⊤A is integral and y⊤b is non-p-adic, but not both.

Proof. Suppose Ax̂ = b for a p-adic point x̂, and y⊤A is integral. Then y⊤b =
y⊤(Ax̂) = (y⊤A)x̂ is an integral linear combination of p-adic rationals, and is
therefore a p-adic rational. Thus, both statements cannot hold simultaneously.
Suppose Ax= b has no p-adic solution. If Ax= b has no solution at all, then there
exists a vector y such that y⊤A = 0 and y⊤b � =0; by scaling y appropriately, we
can ensure that y⊤b is non-p-adic, as desired. Otherwise, Ax = b has a solution.
We may assume that A has full row rank. Then there exists a square unimodular
matrix U such that AU = (B 0), where B is a non-singular matrix. Observe that
{x : Ax= b}={Uz : AUz= b}. Thus, as Ax= b has no p-adic solution x, and U has
integral entries, we may conclude that the system AUz= b has no p-adic solution
z either. Let us expand the latter system. Let I, J be the sets of column labels
of B,0 in AU = (B 0), respectively. Then {z : AUz = b} = {

z : (B 0)
(

zI
zJ

)
= b

}
=

{z : BzI = b, zJ free} = {
z : zI =B−1b, zJ free

}
. In particular, since AUz = b has

no p-adic solution, the vector B−1b is non-p-adic. Thus, there exists a row y⊤ of
B−1 for which y⊤b is non-p-adic. We claim that y⊤A is integral, thereby showing
y is the desired vector. To this end, observe that B−1AU = B−1(B 0) = (I 0),
implying in turn that B−1A = (I 0)U−1. As the inverse of a square unimodular
matrix, U−1 is also unimodular and therefore has integral entries, implying in
turn that B−1A, and so y⊤A, is integral. ��

The reader may notice a similarity between Lemma 13 and its integer ana-
logue, which characterizes when a linear system of equations admits an integral
solution, commonly known as the Integer Farkas Lemma (see [5], Theorem 1.20).
We refrain from calling Lemma 13 the “p-adic Farkas Lemma” as we reserve that
title for Corollary 16 below.
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Remark 14. If t is a p- and q-adic rational, for distinct primes p, q, then t is
integral.

Corollary 15. Let A ∈ Zm×n, b ∈ Zm. If Ax = b has p- and q-adic solutions, for
distinct primes p and q, then the system has an integral solution.

Proof. By the Theorem of the Alternative, whenever y⊤A is integral, y⊤b is both
p- and q-adic, implying in turn that y⊤b is integral by Remark 14. Thus, by the
Integer Farkas Lemma, Ax = b has an integral solution. ��

Finally, the Density Lemma and the Theorem of the Alternative have the
following p-adic analogue of Farkas Lemma in Linear Programming.

Corollary 16 (p-Adic Farkas Lemma). Let P be a nonempty rational poly-
hedron whose affine hull is {x : Ax = b}, where A, b are integral. Then for every
prime p, P contains a p-adic point if, and only if, there does not exist y such
that y⊤A is integral and y⊤b is non-p-adic.

3 p-Adic Generating Sets for Subspaces and Cones

Recall that a set of vectors {a1, . . . , an} ⊆ Zm forms a p-GSS if every integral
vector in the linear hull of the vectors can be expressed as a p-adic linear com-
bination of the vectors. Observe that every p-adic vector in the linear hull of a
p-GSS can also be expressed as a p-adic linear combination of the vectors. We
prove the following lemma in the full version [2].

Lemma 17. Let A ∈ Zm×n, and U a unimodular matrix of appropriate dimen-
sions. Then (1) the columns of A form a p-GSS if, and only if, the columns of
UA do, and (2) the columns of A form a p-GSS if, and only if, the columns of
AU do. ��

In order to prove Theorem 3, we need a definition. Let A be an integral
matrix of rank r. It is well-known that by applying elementary row and column
operations, we can bring A into Smith normal form, that is, into a matrix with
a leading r× r minor D and zeros everywhere else, where D is a diagonal matrix
with diagonal entries δ1, . . . , δr ≥ 1 such that δ1 | δ2 | · · · | δr (see [21], Sect. 4.4).
It can be readily checked that for each i ∈ [r],

∏i
j=1 δj is the GCD of the subde-

terminants of A of order i. The δi’s are referred to as the elementary divisors,
or invariant factors, of A.

Proof of Theorem 3. (1) ⇔ (3) Suppose (1) holds. Choose x, y such that y⊤A
and Ax are integral. Let b :=Ax ∈ Zm. By (1), there exists a p-adic x̄ such that
b=Ax̄. Thus, y⊤Ax= y⊤Ax̄= (y⊤A)x̄, which is p-adic because y⊤A is integral and
x̄ p-adic, as required. Suppose conversely that (3) holds. Pick b ∈ Zm such that
Ax̄ = b for some x̄. We need to prove that Ax = b has a p-adic solution. If y⊤A is
integral, then y⊤b = y⊤Ax̄, which is p-adic by (3). Thus, by the Theorem of the
Alternative, Ax = b has a p-adic solution, as required.

(2) ⇔ (3) holds by applying the established equivalence (1) ⇔ (3) to A⊤.
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(1)–(3) ⇔ (4): By Lemma 17, the equivalent conditions (1)–(3) are preserved
under elementary unimodular row/column operations; these operations clearly
preserve (4) as well. Thus, it suffices to prove the equivalence between (1)–(3)
and (4) for integral matrices in Smith normal form. That is, we may assume
that A has a leading r × r minor D and zeros everywhere else, where D is a
diagonal matrix with diagonal entries δ1, . . . , δr ≥ 1 such that δ1 | δ2 | · · · | δr.
Suppose (1)–(3) hold. We need to show that each δi is a power of p. Consider the
feasible system Ax= ei; every solution x to this system satisfies xj =0, j ∈ [r]−{i}
and xi =

1
δi

. Since the columns of A form a p-GSS, 1
δi

must be p-adic, so δi is
a power of p, as required. Suppose conversely that (4) holds. We need to show
that whenever Ax=b, b∈Zm has a solution, then it has a p-adic solution. Clearly,
it suffices to prove this for b = ei, i ∈ [r], which holds because each δi, i ∈ [r] is a
power of p.

(4) ⇔ (5) is rather immediate; the only additional remark is that every
divisor of a power of p is also a power of p.

(6) ⇒ (3) If y⊤A and Ax are integral, then y⊤Ax= y⊤(ABA)x= (y⊤A)B(Ax),
which is p-adic since y⊤A,Ax are integral and B has p-adic entries, as required.

(4) ⇒ (6) Choose unimodular matrices U,W such that UAW is in Smith
normal form with elementary divisors δ1, . . . , δr. Let B′ be the n×m matrix with
a leading diagonal matrix D−1 =Diag( 1

δ1
, . . . , 1

δr
), and zeros everywhere else. Let

B :=WB′U , which is a matrix with p-adic entries since each δi is a power of
p. We claim that ABA = A, thereby proving (6). This equality holds if, and
only if, UABAW = UAW . To this end, we have UABAW = UA(WB′U)AW =

(UAW )B′(UAW )=UAW , where the last equality holds due to the definition of
B′ and the Smith normal form of UAW . ��

In light of the previous proposition we may say that an integral matrix forms
a p-GSS if its rows, respectively its columns, form a p-GSS. Consider the following
complexity problem: (A) Given an integral matrix, does it form a p-GSS? The
Smith normal form of an integral matrix, and therefore its elementary divisors,
can be computed in polynomial time [15]. Thus, Theorem 3 has the following
consequence.

Corollary 18. (A) belongs to P.

Recall that a set of vectors {a1, . . . , an}⊆ Zm forms a p-GSC if every integral
vector in the conic hull of the vectors can be expressed as a p-adic conic com-
bination of the vectors. Observe that every p-adic vector in the conic hull of a
p-GSC can also be expressed as a p-adic conic combination of the vectors.

Proposition 19. If {a1, . . . , an} ⊆ Zm is a p-GSC, then it is a p-GSS.

Proof. Let A ∈ Zm×n be the matrix whose columns are a1, . . . , an. Take b ∈ Zm

such that Ax̄ = b for some x̄. We need to show that the system Ax = b has a
p-adic solution. To this end, let x̄′ := x̄ − �x̄	 ≥ 0 and b′ :=Ax̄′

= b − A�x̄	 ∈ Zm.
Thus, Ax = b′, x ≥ 0 has a solution, namely x̄′, so it has a p-adic solution, say z̄′,
as the columns of A form a p-GSC. Let z̄ := z̄′

+ �x̄	, which is also p-adic. Then
Az̄ =Az̄′

+A�x̄	 = b′
+A�x̄	 = b, so z̄ is a p-adic solution to Ax = b, as required. ��
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The converse of this result, however, does not hold. For example, let k ≥ 3 be
an integer, n := pk

+ 1, and m an integer in {4, . . . , pk} such that m − 1 is not a
power of p. Consider the matrix

A :=
(

En − In
Em − Im

0

)

where Ed, Id denote the all-ones square and identity matrices of dimension d,
respectively. We claim that the columns of A form a p-GSS but not a p-GSC. To
see the former, note that A has rank n, and since det(En − In) = n − 1 = pk, the
GCD of the subdeterminants of A of order n is a power of p, so the columns of
A form a p-GSS by Theorem 3. To see the latter, consider the vector b ∈ {0, 1}n

whose first m entries are equal to 1, and whose last n−m entries are equal to 0.
Then Ay = b, y ≥ 0 has a unique solution, namely ȳ defined as ȳi = 0 for 1 ≤ i ≤ n,
and ȳi =

1
m−1 for n + 1 ≤ i ≤ n +m. In particular, as m − 1 is not a power of p,

b is an integral vector in the conic hull of the columns of A, but it cannot be
expressed as a p-adic conic combination of the columns. Thus, the columns of A
do not form a p-GSC.

However, we do have the following sort of converse.

Remark 20. If {a1, . . . , an} ⊆ Zm is a p-GSS, then {±a1, . . . ,±an} is a p-GSC.

Proposition 21. Let {a1, . . . , an} ⊆ Z
m be a p-adic generating set for a cone,

and F a nonempty face of the cone. Then {ai : ai
∈F} is a p-adic generating set

for the cone F .

Proof. Let b be an integral vector in the face F . Since b ∈C, we can write b as a
p-adic conic combination of the vectors in {a1, . . . , an}. However, since b is con-
tained in the face F , the conic combination can only assign nonzero coefficients
to the vectors in F , implying in turn that b is a p-adic conic combination of the
vectors in {ai : ai

∈ F}. As this holds for every b, {ai : ai
∈ F} forms a p-GSC. ��

Proof of Theorem 2. (⇒) follows from Proposition 21 and Proposition 19. (⇐)
Let b be an integral vector in C, and F the minimal face of C containing b. Let
B be the matrix whose columns are the vectors {ai : ai

∈ F}. We need to show
that Q := {y : By = b, y ≥ 0}, which is nonempty, contains a p-adic point. By the
Density Lemma, it suffices to show that aff(Q), the affine hull of Q, contains a
p-adic point. Our minimal choice of F implies that Q contains a point ẙ such
that ẙ > 0, implying in turn that aff(Q) = {y : By = b}. As the columns of B
form a p-GSS, and b is integral, it follows that aff(Q) contains a p-adic point, as
required. ��

Consider the following complexity problem: (B) Given a set of vectors, does
it form a p-GSC? Theorem 2 and Theorem 18 have the following consequence.

Corollary 22. (B) belongs to co-NP.
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4 Totally Dual p-adic Systems

Given integral A, b, recall that Ax ≤ b is totally dual p-adic if for every integral
w for which min{b⊤y : A⊤y = w, y ≥ 0} has an optimal solution, it has a p-adic
optimal solution. It can be readily checked that the rows of A form a p-GSS if,
and only if, Ax = 0 is totally dual p-adic; and the rows of A form a p-GSC if,
and only if, Ax ≤ 0 is totally dual p-adic.

Proof of Theorem 1. Consider the following pair of dual linear programs, for w
later specified.

(P ) max{w⊤x : Ax ≤ b} (D) min{b⊤y : A⊤y = w, y ≥ 0}

For every nonempty face F of P , denote by AF̄ the row submatrix of A cor-
responding to the rows not in AF . For every vector y, denote by yF , yF̄ the
variables corresponding to the rows in AF , AF̄ , respectively.

(1) ⇒ (2) Consider a nonempty face F of P . We need to show that the rows
of AF form a p-GSC. Let w be an integral vector in the conic hull of the rows
of AF . It suffices to express w as a p-adic conic combination of the rows of AF .
To this end, observe that every point in F is an optimal solution to (P). As
Ax ≤ b is TDD, (D) has a p-adic optimal solution, say ȳ ≥ 0. As Complementary
Slackness holds for all pairs (x̄, ȳ), x̄ ∈ F , it follows that ȳF̄ = 0. Subsequently,
we have w = A⊤ȳ = A⊤F ȳF , thereby achieving our objective. (2) ⇒ (3) follows
from Proposition 19. (3) ⇒ (1) Choose an integral w for which (D) has an
optimal solution; we need to show now that it has a p-adic optimal solution.
Denote by F the face of the optimal solutions to the primal linear program (P).
By Complementary Slackness, the set of optimal solutions to the dual (D) is
Q := {y : A⊤y = w, y ≥ 0, yF̄ = 0}. We need to show that Q contains a p-adic
point. In fact, by the Density Lemma, it suffices to find a p-adic point in aff(Q),
the affine hull of Q. By Strict Complementarity, Q contains a point ẙ such that
ẙF > 0, implying in turn that aff(Q) = {y : A⊤F yF = w, yF̄ = 0}. Since the rows of
AF form a p-GSS, and w is integral, we get that aff(Q) contains a p-adic point,
as required. ��

The careful reader may notice that by applying polarity to Theorem1 with
b = 0, we obtain another proof of Theorem2. Moving on, consider the following
complexity problem: (C) Given a system Ax ≤ b where A, b are integral, is the
system totally dual p-adic? Theorem 1 (3) and Corollary 18 have the following
consequence.

Corollary 23. (C) belongs to co-NP.

5 p-Adic Polyhedra

A nonempty rational polyhedron is p-adic if every nonempty face contains a
p-adic point. In this section we provide a characterization of p-adic polyhedra.
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Remark 24. Let A ∈ Zm×n, b ∈ Zm, y ∈ Rm and y′ := y − �y	 ≥ 0. Then A⊤y ∈ Zn if
and only if A⊤y′

∈ Z
n, y is p-adic if and only if y′ is p-adic, and b⊤y is p-adic if

and only if b⊤y′ is p-adic.

Theorem 25. Let A ∈ Zm×n, b ∈ Zm and P := {x : Ax ≤ b}. Then the following
are equivalent for every prime p: (1) P is a p-adic polyhedron, (2) for every
nonempty face F of P , aff(F ) contains a p-adic point, (3) for every nonempty
face F of P , and z, if A⊤F z is integral then b⊤F z is p-adic, (4) for all w ∈ Rn

for which max{w⊤x : x ∈ P} has an optimum, it has a p-adic optimal solution,
(5) for all w ∈ Zn for which max{w⊤x : x ∈ P} has an optimum, it has a p-adic
optimal value. ��

There is an intriguing contrast between this characterization and that of
integral polyhedra (see [5], Theorem 4.1), namely the novelty of statements (2)
and (3), which are ultimately due to Strict Complementarity and the Density
Lemma.

Proof. (1) ⇒ (2) follows immediately from definition. (2) ⇒ (1) By the Density
Lemma, every nonempty face contains a p-adic point, so P is a p-adic polyhedron.
(2) ⇔ (3) follows from the Theorem of the Alternative. (1) ⇒ (4) Suppose
max{w⊤x : x ∈ P} has an optimum. Let F be the set of optimal solutions. As F
is in fact a face of P , and P is p-adic, it follows that F contains a p-adic point.
(4) ⇒ (5) If x is a p-adic vector, and w an integral vector, then w⊤x is a p-adic
rational.

(5) ⇒ (3) We prove the contrapositive. Suppose (3) does not hold, that is,
there exist a nonempty face F and z such that w :=A⊤F z ∈ Zn and b⊤F z is not
p-adic. By Remark 24, we may assume that z ≥ 0. Consider the following pair of
dual linear programs:

(P ) max{w⊤x : Ax ≤ b} (D) min{b⊤y : A⊤y = w, y ≥ 0}
Denote by AF̄ the row submatrix of A corresponding to rows not in AF . Denote
by yF , yF̄ the variables of (D) corresponding to rows AF and AF̄ of A, respec-
tively. Define ȳ ≥0 where ȳF = z and ȳF̄ =0. Then A⊤ȳ =A⊤F z =w, so ȳ is feasible
for (D). Moreover, Complementary Slackness holds for every pair (x, ȳ), x ∈ F .
Subsequently, ȳ is an optimal solution to (D), and b⊤ȳ = b⊤F z is the common opti-
mal value of the two linear programs. Since w is integral and b⊤F z is not p-adic,
(5) does not hold, as required. ��
Corollary 26. Let A ∈ Zm×n, b ∈ Zm, and p a prime. If Ax ≤ b is totally dual
p-adic, then {x : Ax ≤ b} is a p-adic polyhedron.

Proof. This follows immediately from Theorem 25 (5) ⇒ (1). ��

Proof of Theorem 5. By Corollary 26, P := {x : Ax ≤ b} is a p- and q-adic poly-
hedron, that is, every minimal nonempty face of P contains a p-adic point and
a q-adic point. Each minimal nonempty face of P is an affine subspace, so by
Corollary 15, it contains an integral point. Thus, every minimal nonempty face
of P contains an integral point, so P is an integral polyhedron. ��
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6 T -joins and Perfect Matchings

Let G= (V,E) be a graph, and T a nonempty subset of even cardinality. A T -cut
is a cut of the form δ(U) where |U ∩ T | is odd. Recall that a T -join is a subset
J ⊆ E such that the set of odd-degree vertices of G[J ] is precisely T . It can
be readily checked that every T -cut and T -join intersect (see [8], Chap. 2). The
following result was recently proved:

Theorem 27 ([3]). Let G = (V,E) be a graph, and T a nonempty subset of
even cardinality. Let τ be the minimum cardinality of a T -cut. Then there
exists a dyadic assignment yJ ≥ 0 to every T -join J such that 1⊤y = τ and∑

(yJ : J a T -join containing e) ≤ 1 ∀e ∈E.

The proof of Theorem 27 uses the Density Lemma, the Theorem of the Alter-
native, and a result of Lovász on the matching lattice [17].

Proof of Theorem 8. Let A be the matrix whose columns are labeled by E, and
whose rows are the incidence vectors of the T -joins. We need to show that
min{w⊤x : Ax ≥ 1, x ≥ 0} yields a TDD system. Choose an integral w such
that the dual max{1⊤y : A⊤y ≤ w, y ≥ 0} has an optimal solution, that is, w ≥ 0.
Let G′ be obtained from G after replacing every edge e with we parallel edges
(if we = 0, then e is deleted). Let τw be the minimum cardinality of a T -cut of
G′, which is also the minimum weight of a T -cut of G. By Theorem 27, there
exists a dyadic assignment ȳJ ≥ 0 to every T -join of G′ such that 1⊤ȳ = τw

and
∑

(ȳJ : J a T -join of G′ containing e) ≤ 1 ∀e ∈E(G′). This naturally gives a
dyadic assignment y�

J ≥ 0 to every T -join of G such that 1⊤y�
= τw and A⊤y�

≤w.
Now let δ(U) be a minimum weight T -cut of G. Then χδ(U) is a feasible solution
to the primal which has value τw. As a result, χδ(U) is optimal for the primal,
and y� is optimal for the dual. Thus, the dual has a dyadic optimal solution, as
required. ��

Moving on, let G= (V,E) be a graph such that |V | is even. Let us prove that
M(G), which is equal to the set {χM : M a perfect matching of G}, is a DGSC.

Proof of Theorem 9. We may assume that G contains a perfect matching. Let
T :=V . Note that every T -join has cardinality at least |V |

2 , with equality holding
precisely for the perfect matchings. By Theorem 8, the linear system x(J) ≥
1 ∀ T -joins J ;x ≥ 0 is TDD. Let P be the corresponding polyhedron, and F the
minimal face containing the point 2

|V | ·1. The tight constraints of F are precisely
x(M) ≥ 1 for perfect matchings M , so by Theorem 1 for p = 2, the rows of the
corresponding coefficient matrix form a DGSC, implying in turn that M(G) is
a DGSC. ��

Let P10 be the Petersen graph. Then P10 has six perfect matchings. Let
M be the matrix whose columns are labeled by E(P10), and whose rows are the
incidence vectors of the perfect matchings. It can be checked that the elementary
divisors of M are (1, 1, 1, 1, 1, 2). Thus, for any prime p≥ 3, the rows of M which
are the vectors in M(P10) do not form a p-GSS by Theorem 3, and so they do
not form a p-GSC by Proposition 19. Thus, Theorem 9 does not extend to the
p-adic setting for p ≥ 3.
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programming solver. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 104–116. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20807-2 9

7. Cook, W., Cunningham, W., Pulleyblank, W.R., Schrijver, A.: Combinatorial Opti-
mization. Wiley, Hoboken (1998)
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Abstract. We develop new algorithmic techniques for VLSI detailed
routing. First, we improve the goal-oriented version of Dijkstra’s algo-
rithm to find shortest paths in huge incomplete grid graphs with edge
costs depending on the direction and the layer, and possibly on rectan-
gular regions. We devise estimates of the distance to the targets that
offer better trade-offs between running time and quality than previously
known methods, leading to an overall speed-up. Second, we combine
the advantages of the two classical detailed routing approaches—global
shortest path search and track assignment with local corrections—by
treating input wires (such as the output of track assignment) as reserva-
tions that can be used at a discount by the respective net. We show how
to implement this new approach efficiently.

1 Introduction

The task of VLSI routing [4,22] is to connect the set of pins of every net on
a chip by wires so that wires of different nets are sufficiently far apart and
various other constraints are met. See Fig. 1 (left) for an example. Typically, one
first computes a global routing, a rough packing of wires that ignores all local
constraints but guarantees that the wires in certain areas do not require more
space than available. This allows for globally optimizing objectives such as power
consumption and timing constraints [10,16].

The output of global routing then restricts the search space for every net
in detailed routing, where many complicated rules need to be obeyed and one
essentially routes one net at a time. While the detailed routing graph formed by
routing tracks on an entire chip can contain about 1013 vertices on 10–20 layers,
the restricted area corresponding to the global routing solution for a net results
in a much smaller detailed routing graph, with rarely more than 108 vertices.
Nevertheless, these subgraphs are still huge, and there are millions of nets to
connect. Two general strategies have been proposed (cf. [22]).
c© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 15–28, 2022.
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Fig. 1. Left: tiny part of a routed chip. The blue wires connect the two dark blue pins
and the red wires connect the three dark red pins. Pins of the same color belong to
the same net. The gray wires are part of the connections of multiple other nets with
pins outside of the visible region. Right: the relevant part of the detailed routing graph
before routing the blue and the red net. (Color figure online)

The first approach is based on a fast subroutine to find a shortest path that
connects two metal components, each of which can consist of a pin or a set
of previously computed wires connecting a subset of the pins of that net. The
subgraph is given by the global routing solution, excluding vertices and edges
that would result in a conflict to previously routed wires. For an example of
the resulting graph, see Fig. 1 (right). To allow for an efficient packing of wires
and to model various aspects such as signal delays, one uses different costs for
horizontal and for vertical edges on each layer as well as for vias connecting two
adjacent layers.

The second approach first considers the layers one after the other and assigns
wires to routing tracks so that the most important detailed routing rules are
satisfied, at least for most wires. This is often called track assignment [5,21].
Then detailed routing tries to correct violations locally. A very similar problem
occurs when a detailed routing has already been computed, but a few changes to
the input have been made (e.g., corrections of the logical behavior or to speed up
signals that arrived too late). In both cases, one asks for an incremental detailed
routing, largely following the input but deviating where necessary. However, local
corrections are often not possible if the routing is very dense.

One classical speed-up technique of Dijkstra’s shortest path algorithm [6]
(sometimes called A∗) is to use reduced costs, based on a feasible potential
that estimates the distance to the targets [9,14,19]. Instead of the undirected
graph with the original edge cost c(e), we orient each edge in both ways and run
Dijkstra’s algorithm with the reduced cost cπ(e) := c(e) − π(v) + π(w) for every
edge e directed from v to w, where the vertex potentials π are chosen so that cπ

is nonnegative and π(t) = 0 for every target t. These conditions imply that π(v)
is a lower bound on the distance between v and the closest target. The better
this lower bound is, the fewer vertices this goal-oriented version of Dijkstra’s
algorithm must label before it knows a shortest path to a target.

Hence, there is a trade-off between a possible preprocessing time, the query
time to compute the potential of a vertex, and the quality of the lower bound.
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For example, in subgraphs of unweighted grid graphs, the �1-distance to the
nearest target can be a reasonable choice for π [11]. A better estimate, which
however requires substantial preprocessing, was suggested by [17]. In this paper,
we propose new methods with better trade-offs than previously known.

Moreover, we combine the advantages of the two classical detailed routing
approaches mentioned above. Our new, more global approach treats given input
wires as so-called reservations and encourages, but not forces, the detailed router
to follow the reservations where feasible. This is achieved by finding a shortest
path where reservations can be used at a discount.

However, this does not work well together with the classical goal-oriented
techniques. For example, if there are some reservations (edges) that can be used
at a 50 % discount, the �1-distance would have to be divided by 2 in order
to induce a feasible potential. This would often be a very inaccurate estimate,
leading to an increased number of labels in Dijkstra’s algorithm and hence larger
running time. We show that our better potentials make goal-oriented Dijkstra
not only as fast as without reservations, but in fact faster. Overall, this yields a
new efficient incremental detailed routing algorithm.

1.1 Problem Statement

Our core problem will consist of computing distances in a weighted grid graph
with a simple structure. To define the grid graph, we number the layers 1, . . . , l
and let V = Z × Z × {1, . . . , l} and

E =
{

{(x, y, z), (x′, y′, z′)} ∈ (
V
2

) | |x − x′| + |y − y′| + |z − z′| = 1
}

be the vertex set and edge set of an infinite grid with l layers. Edges connecting
adjacent layers are called vias, edges in x-direction are horizontal and edges
in y-direction vertical. We will consider finite subgraphs of G = (V,E). These
subgraphs correspond to the area defined by the global routing solution and to
the restriction to the routing tracks that can be used for the current net. Often,
many vertices of these subgraphs will have degree 2 and will not be considered
explicitly, but we ignore this here for the sake of a simpler exposition.

Every layer has a preference direction (↔ or �); edges in the other direction
are more expensive. Horizontal and vertical layers alternate. Moreover, the layers
have very different electrical properties which is reflected by appropriate edge
costs. In the simplest model, the cost of an edge depends only on its direction and
the layer: let c↔

z , c
�
z > 0 for z ∈ {1, . . . , l} and cz,z+1 > 0 for z ∈ {1, . . . , l − 1};

then

c({(x, y, z), (x′, y′, z′)}) =

⎧
⎪⎨
⎪⎩

c↔
z if x′ = x + 1

c
�
z if y′ = y + 1

cz,z′ if z′ = z + 1

.

In a more general model, a rectilinear grid induces rectangular regions, called
tiles, and the cost also depends on the tile. Let

−∞ = ξ0 < ξ1 ≤ . . . ≤ ξp < ξp+1 = ∞, −∞ = υ0 < υ1 ≤ . . . ≤ υq < υq+1 = ∞
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Fig. 2. Examples for grids, edge costs, target sets, and shortest paths (Color figure
online)

be integer coordinates that define the rectangular tiles

V ij
z =

{
(x, y, z) ∈ V | ξi ≤ x ≤ ξi+1, υj ≤ y ≤ υj+1

}
,

and set

Eij
z =

{{(x, y, z), (x′, y′, z′)} ∈ E | ξi ≤ x ≤ x′ ≤ ξi+1,

υj ≤ y ≤ y′ ≤ υj+1, z ≤ z′}.

Now we have costs cij↔
z , c

ij�
z , cij

z,z+1 > 0 that also depend on the tile and define
the edge costs accordingly. If an edge belongs to more than one tile, the minimum
cost applies. See Fig. 2a for an example. We allow that two (but not three)
consecutive coordinates are identical, i.e., ξi = ξi+1 or υj = υj+1, in order to
model a cheap cost at one x- or y-coordinate only.

With this more general model, one can, for example, punish wires on low
layers near the electrical source of a net (which would lead to poor delays) or
implement a discount on reservations as we will describe in detail in Sect. 5.2.
Moreover, we can set edge costs to infinity outside the area corresponding to the
global routing solution so that the distances in (G, c) reflect necessary detours
that are implied by routing in this subgraph.
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Given a finite subgraph G′ = (V ′, E′) of G and sets S, T ⊆ V ′, we look for
a shortest path from S to T in G′ with respect to the length function c. For a
goal-oriented path search, we define a potential π(v) for every vertex v ∈ V ′ by
the distance to T in G (instead of G′):

π(v) := dist(G,c)(v, T ).

The idea is that distances in G are much easier to compute than in the sub-
graph G′ (we will see how fast), but often still give a good lower bound. The
reason is that (G, c) has a simple structure, given by the tiles, while G′ can be
very complicated as it does not contain vertices or edges whose use would result
in a conflict to nets routed previously. This allows us to use Dijkstra’s algorithm
with the reduced costs cπ in the digraph resulting from G′ by orienting every
edge in both ways, since the reduced costs are nonnegative.

Some of our algorithms work best for simple targets. We often assume that T
is represented as the union of t rectangles, where a rectangle is a vertex set
of the form {(x, y, z) ∈ V | ξ− ≤ x ≤ ξ+, υ− ≤ y ≤ υ+, z = ζ} for some
ξ−, ξ+, υ−, υ+ ∈ Z and ζ ∈ {1, . . . , l}. Often t is small in practice. Sometimes it
will be useful to assume that this representation is consistent with the partition
of V into tiles in the following sense: each of the t rectangles representing T
fits into the grid, i.e., is of the form {(x, y, z) ∈ V | ξi− ≤ x ≤ ξi+ , υj− ≤
y ≤ υj+

, z = ζ} for some indices i−, i+, j− and j+. This can be achieved by
adding at most 2t new x-coordinates ξi and 2t new y-coordinates υi. We call this
procedure refining the grid with respect to the targets. See Fig. 2b for an example
of the empty grid refined with respect to several target rectangles.

1.2 Previous Work and Our Results

In the simple model without regions (i.e., for p = q = 0), one can query π
in O(tl2) time without preprocessing. We improve this to O(tl) in Theorem 2.
With a preprocessing time polynomial in t and l, we obtain a query time of
O(log(t + l)); see Theorem 3. We present these results in Sects. 2 and 3.

For the more general model, which is the subject of Sect. 4, Peyer et al. [17]
refined the grid with respect to the targets and showed that then the restriction
of π : V → R≥0 to V ij

z is the minimum of k2 affine functions for any i, j, z, where
k is the number of different horizontal and vertical edge costs, i.e.,

k :=
∣∣{cijd

z | i ∈ {0, . . . , p}, j ∈ {0, . . . , q}, d ∈ {↔, �}, z ∈ {1, . . . , l}}∣∣ . (1)

They also showed that all these functions can be computed in O((p + t)(q +
t)lk4 log(p+ q + l+ t)) time, allowing O(k2) time queries after this preprocessing
(plus O(log(p + q + t)) to find the region containing the given vertex by binary
search; here and henceforth p and q refer to the original number of rows and
columns, before refining the grid).

We make multiple improvements over the approach of Peyer et al. [17]. By
considering domination between affine functions with different slopes, we reduce
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the number of affine functions needed to describe the minimum. By first comput-
ing the distances from the edges on the boundaries of the tiles to the targets, we
can compute these affine functions faster. Finally, we use a regional query data
structure to reduce query time. For any 0 < ε ≤ 1, we can obtain an algorithm
with preprocessing time O((p+t)(q+t)min{k, (p+q+1)l}l1+ε 1

ε log(p+q+l+t))
and query time O(log(p + q + t) + 1

ε log(k + l)). See Table 1 for an overview.
Our second contribution is a new approach to incremental routing. Rather

than trying to correct a given infeasible input routing with local transformations
only, we compute a new routing from scratch, at least for all nets for which the
input routing does not obey all rules. However, to compute a solution similar to
the input where reasonable, we reserve the space occupied by legal input wires
for the respective net and allow to use edges corresponding to input wires at a
discount. By letting each input wire be a separate tile V ij

z , we can model the
discount in the cost function c and work with reduced costs efficiently. When
most of the input routing can be used, we can find a shortest path much faster
than without a discount.

This makes this new approach not only useful for incremental routing, but
also for bulk routing. Treating the output of a track assignment as reservations
(wherever it is legal) and then pursuing our new incremental routing approach
can combine the advantages of the two classical bulk routing approaches, suc-
cessive shortest paths and track assignment with local corrections. We explain
our new approach in detail in Sect. 5, where we also show experimental results.

Full proofs and more detailed experimental results can be found in [1].

2 Distances Without Preprocessing in the Simple Model

In the simple model, there is always a shortest path with a very simple structure:

Lemma 1. Let c : E → R>0 depend only on direction and layer, and let r, s ∈
V . Then there is a shortest path P between r and s in (G, c) that consists of at
most one sequence of horizontal edges, at most one sequence of vertical edges,
and hence at most three sequences of vias.

Table 1. Various methods to compute π(v), possibly after preprocessing. The running
times depend on the number t of target rectangles, the number l of layers, and in the
general model on the numbers p and q of coordinates that define the (p + 1)(q + 1)
regions, and on the number k of different horizontal and vertical edge costs (cf. (1)).
Note that k ≤ 2(p + 1)(q + 1)l. For simplicity, we assume T to be consistent with the
grid in this table, which may increase p and q by up to 2t.

Model Preprocessing time Query time Reference

Simple – O(tl) Theorem 2

Simple O(t2l3 log l) O(log(t + l)) Theorem 3

General O(pqlk4 log(p + q + l)) O(log(p + q) + k2) [17]

General O(pql1+εk 1
ε

log(p + q + l)) O(log(p + q) + 1
ε

log(k + l)) Theorem 7
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Proof. Let P be a shortest path, and P[v,w] and P[v′,w′] two maximal subpaths of
P in the same direction (all-horizontal or all-vertical), say from v to w and from
v′ to w′, respectively, and let P[w,v′] be the subpath in between. Suppose, w.l.o.g.,
that P[v,w] and P[v′,w′] are horizontal paths and that the cost of an edge of P[v,w]

is not more expensive than the cost of an edge of P[v′,w′] (note that these paths
may be on different layers). Then translating P[v′,w′] by adding w − v′ to all its
vertices, translating P[w,v′] by adding w′ − v′ to all its vertices, and swapping
these two paths yields a walk from r to s with one maximal horizontal subpath
less and at most the same number of maximal vertical subpaths, while the cost
does not increase. If the walk is not a path, we can shortcut it to a path. By
induction, the assertion follows. 	


Hence, in order to compute a shortest path, we can enumerate the targets
and then the layers on which the horizontal sequence and the vertical sequence
are, and which of the two comes first. This has running time O(tl2). We show
how to improve on this, obtaining a linear dependence on the number of layers:

Theorem 2. Let c : E → R>0 depend only on direction and layer. Then, with-
out preprocessing, one can compute dist(G,c)(s, T ) for any given s ∈ V and given
T ⊆ V consisting of t rectangles in O(tl) time.

Proof. We enumerate over all t rectangles of T . For each such rectangle R, we
determine the vertex r ∈ R that is closest to s (geometrically) in constant time.
First compute the total cost cz1,z2 of a path of vias between layer z1 and layer
z2 for all z1, z2 ∈ {1, . . . , l} with {z1, z2} ∩ {zr, zs} �= ∅, where zr and zs denote
the layers of r and s, respectively. This can easily be done in O(l) time.

Now we compute, in O(l) time, the minimum length of a path from r to s
that (when traversed from r to s) consists of a path of vias, then a horizontal
path, then a path of vias, then a vertical path, then a path of vias. We will then
do the same with exchanging the roles of r and s, and we are done by Lemma 1.

For each layer z ∈ {1, . . . , l}, consider the vertex vz on layer z whose y-
coordinate is the one of r and whose x-coordinate is the one of s. We first
compute for z = l, l − 1, . . . , 1 the distance d̄z between r and vz in the subgraph
of G that contains no horizontal edges on the layers 1, . . . , z−1: set d̄l+1 = ∞ and
d̄z = min{d̄z+1 + cz,z+1, czr,z + c↔

z · |xr − xs|}. Then we compute for z = 1, . . . , l
the distance dz from r to vz by setting d0 = ∞ and dz = min{d̄z, dz−1 + cz−1,z}.
Finally, the shortest path from r to s that goes first horizontal and then vertical
has length min{dz + c

�
z · |yr − ys| + cz,zs

| z ∈ {1, . . . , l}}. 	


3 Logarithmic Query Time in the Simple Model

We now achieve O(log(t + l)) query time with polynomial preprocessing time:

Theorem 3. Let c : E → R>0 depend only on direction and layer, and let T ⊆
V consist of t rectangles. Then there is a data structure that requires O(t2l3 log l)
preprocessing time and, for any given s ∈ V , can then determine dist(G,c)(s, T )
in O(log(t + l)) query time.
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Proof (sketch). We first interpret our instance as an instance of the general
model by choosing p = q = 0 and then refine the grid with respect to the
targets, which yields O(t2l) tiles V ij

z . By Lemma 1, and since the number of
possible slopes in either direction is at most 2l + 1, the distance from any tile
to T can be expressed as a minimum of at most 4l2 + 4l + 1 affine functions.
A dynamic program can compute all required functions for every tile in O(t2l3)
time. Since a tile containing a query location can be determined in O(log t)
time using binary search, it now suffices to evaluate the minimum of at most
4l2 + 4l + 1 affine functions in O(log l) query time after O(l2 log l) preprocessing
time for each tile independently using the following lemma. 	

Lemma 4. Let F be a set of affine functions f : R2 → R and R := [x−, x+] ×
[y−, y+] a rectangle. Then there is a data structure that requires O(|F | log|F |)
preprocessing time and, given any query point p ∈ R, can then determine the
value minf∈F f(p) in O(log|F |) query time.

Proof. First intersect the half spaces {(x, y, φ) ∈ R
3 | ϕ ≤ f(x, y)} for f ∈ F in

O(|F | log |F |) time [18]. By projecting the lower faces of the resulting polyhedron
into the plane, we obtain a subdivision of R into at most |F | convex polygons
and the minimizing function f ∈ F for each polgyon. Using [15], we can build
a data structure in O(|F | log |F |) preprocessing time and can then determine a
polygon containing any given query point p ∈ R in O(log |F |) time. 	


Point location algorithms which attain the same theoretic guarantees as [15],
but successively improve practical performance and ease of implementation have
been described in [7,12,20].

4 The General Model

In this section, we develop an algorithm to compute the potential dist(G,c)(v, T )
for any v in the general model efficiently after preprocessing. We will assume
T to be consistent with the grid, i.e., we have already refined the grid if it
was not. Our preprocessing will work on the horizontal and vertical line seg-
ments of the grid, i.e., the sets Horij

z :=
{
(x, y, z) ∈ V ij

z | y = υj
}

and Verij
z :={

(x, y, z) ∈ V ij
z | x = ξi

}
. The exposition will focus on the horizontal line seg-

ments; vertical segments can be handled analogously. Our algorithm consists of
two preprocessing steps and a query step. The first preprocessing step is a vari-
ant of Dijkstra’s algorithm. For its correctness, the following observation about
the structure of shortest paths, which can be shown similarly to Lemma 1 for
the simple model, is essential:

Lemma 5. Let c : E → R>0 depend on tile and direction, let T ⊆ V be consis-
tent with the grid, and s ∈ V \T . Then there is a shortest path P from s to T in
(G, c) that uses only one type of edges (either horizontal, vertical or via) before
entering some tile in which s does not lie.
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Our algorithm will first compute dist(G,c)(s, T ) for all s lying in horizontal
segments of the grid. More precisely, for each horizontal segment Horij

z , the
algorithm maintains a set F ij

z of affine functions f : [ξi, ξi+1] → R≥0 such that
each value f(x) corresponds to the length of a path between (x, υj , z) and T . At
any point during the algorithm, for every vertex (x, υj , z), the value min{f(x) |
f ∈ F ij

z } can be considered to be its current label. If ξi = ξi+1, we simply store
that value. Otherwise we use a binary search tree to keep only those functions
that are not dominated, i.e., attain the pointwise minimum in more than one
point.

In addition, we maintain a binary heap representing all functions in
⋃{F ij

z |
i ∈ {0, . . . , p}, j ∈ {1, . . . , q}, z ∈ {1, . . . , l}} that have not been processed yet,
where the key of a function is the minimum of the labels it implicitly represents.
The functions that are added to or removed from some F ij

z must be added to or
removed from the heap at the same time, and whenever a key changes, it must
be updated also in the heap.

The algorithm starts by initializing F ij
z := ∅ for all i ∈ {0, . . . , p}, j ∈

{1, . . . , q}, and z ∈ {1, . . . , l}. If Horij
z ⊆ T , we add the constant function x �→ 0

to the corresponding set F ij
z . If not the whole segment but one (or both) of its

endpoints is in T , we add the affine function describing the distance to this point,
i.e., x �→ min{cij↔

z , c
i(j−1)↔
z } · (x − ξi) or x �→ min{cij↔

z , c
i(j−1)↔
z } · (ξi+1 − x).

In every iteration, a function f with minimum key is chosen and removed
from the heap. The function f describes the labels of a subset of some horizontal
segment Horij

z , corresponding to an interval [x−
f , x+

f ]. We now propagate the
labels from these vertices to the neighboring horizontal segments by computing
at most six new affine functions:

Fig. 3. Example run of the algorithm computing the distance from all horizontal line
segments to T . The instance consists of two horizontally adjacent tiles with coordinates
ξ1 = 0, ξ2 = 4, ξ3 = 7, υ1 = 0, and υ2 = 1. The target T = {(0, 0, 1)} consists of the
single point in the bottom left corner. We disregard the outside tiles (by setting their
costs to infinity). All other costs are as written in the centers of the respective tiles.
During the algorithm, five affine functions are added to the four horizontal segments,
which are colored by the function attaining the minimum in the end of the algorithm.
The incoming arrow depicts the propagation by which that function was added and is
numbered by the iteration of the algorithm (where 0 stands for initialization). (Color
figure online)
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(down) If z > 1, add the function x �→ f(x) + min{cij
z−1,z, c

i(j−1)
z−1,z } to F ij

z−1.
(up) If z < l, add the function x �→ f(x) + min{cij

z,z+1, c
i(j−1)
z,z+1 } to F ij

z+1.
(south) If j > 1, add the function x �→ f(x) + c

i(j−1)�
z · (υj − υj−1) to F

i(j−1)
z .

(north) If j < q, add the function x �→ f(x) + c
ij�
z · (υj+1 − υj) to F

i(j+1)
z .

(west) If i > 0, add the function
x �→ f(ξi) + min{c

(i−1)j↔
z , c

(i−1)(j−1)↔
z } · (ξi − x) to F

(i−1)j
z .

(east) If i < p, add the function
x �→ f(ξi+1) + min{c

(i+1)j↔
z , c

(i+1)(j−1)↔
z } · (x − ξi+1) to F

(i+1)j
z .

The algorithm stops when the heap is empty. For an example run of the
algorithm, see Fig. 3.

It is easy to show that each function we add gives an upper bound on the
distance from the corresponding horizontal segment to the target. To show that
the algorithm works correctly, we prove that there will be a function attaining the
distance from any point to the target once the minimum key in the heap exceeded
that distance. The proof uses induction on the distance to T . By Lemma 5, we
may assume that the corresponding shortest path never uses a horizontal edge
or a via in the interior of a tile. We exploit this structure to find an appropriate
predecessor function in the dynamic program.

To ensure that the algorithm terminates and has the desired running time,
we first observe that the functions in F ij

z have at most 2k′ + 1 different slopes,
where k′ := min{k, (q + 1)l}. This allows us to bound the number of iterations
by (p + 1)q(2k′ + 1)l, since two functions propagated from the same horizontal
segment in different iterations can be shown to have different slopes. This yields:

Theorem 6. There is an algorithm that computes for each horizontal seg-
ment Horij

z a set F ij
z of at most 2k′ + 1 affine functions such that

min
{
f(x) | f ∈ F ij

z

}
= dist(G,c)((x, υj , z), T ) for all (x, υj , z) ∈ Horij

z . The algo-
rithm can be implemented to run in O(pqk′l log(p + q + l)) time.

The second preprocessing step builds regional query data structures using
Lemma 4. Each affine function in each horizontal and vertical segment induces
an affine function on each query layer. To avoid a quadratic dependence on the
number of layers in the preprocessing running time, we limit the number of
query data structures to which any affine function contributes: any subset of
query layers 1, . . . , z can share a data structure for any subset z, . . . , l of layers
containing the segments and vice versa. We choose a trade-off factor 0 < ε ≤ 1
between the number of data structures which need to be considered during each
query and the number of layers sharing the same data structures. By carefully
choosing the correct subranges of layers, we obtain the following result:

Theorem 7. Let 0 < ε ≤ 1, let c : E → R>0 depend on tile and direction,
and let T ⊆ V , not necessarily consistent with the grid. Then there is a data
structure that requires O((p+ t)(q + t)min{k, (p+ q +1)l}l1+ε 1

ε log(p+ q + l+ t))
preprocessing time and, for any given s ∈ V , can then determine dist(G,c)(s, T )
in O(log(p + q + t) + 1

ε log(k + l)) query time.
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5 Practical Aspects

5.1 Implementation

With some improvements to practical performance that we describe in the full
version [1], we implemented the algorithms presented in the previous sections as
part of BonnRoute [2,3,8,13], a detailed router developed at the University of
Bonn in joint work with IBM. BonnRoute is the main detailed routing tool used
by IBM for the design of its processor chips.

Up to parallelization and conflict resolution, BonnRoute routes one net after
the other. Each net is routed by iteratively connecting two of its components by
a path until the net is fully connected. The path search is the algorithmic core
of BonnRoute and requires approximately 80–90 % of the total runtime.

All experiments were performed on the same AMD EPYC 7601 machine with
64 CPUs and 1024 GB main memory using 64 threads. Our testbed consists of
nine real-world instances from three recent IBM processor chips in 7 nm and
5 nm technology nodes. We started all experiments on the same instance from
the same snapshot, which was taken right before the detailed routing. At this
point, a (three-dimensional) global routing was already computed for each net.

Table 2. Performance of the following four different feasible potentials on our testbed.
In the rows without potential, each query returns 0 in constant time. When using
�1-distance, the O(t) query computes the minimum required cost in each of the three
directions separately. This requires an O(l) preprocessing. In the simple and general
rows, the shortest distance to T in the respective models is returned. Here the difference
between the two is that the general model restricts to the area corresponding to the
global routing solution (outside of it, the costs are infinite). Runtimes are summed over
all 64 threads except for the last column, which shows the BonnRoute wall time.

All Dijkstra calls Standard Dijkstra calls Total BonnRoute

Potential Preprocessing Runtime Labels Runtime Labels Wall time

h:mm h:mm 109 h:mm 109 h:mm

Without 0:00 7933:04 5246.5 4619:12 3633.9 142:52

�1-distance 0:02 5457:19 2867.0 2535:45 1618.6 104:12

Simple 0:39 4191:51 2232.0 1517:52 1082.4 83:54

General 46:40 3608:00 1916.2 1094:36 848.9 75:44

Table 2 compares the performance of path searches using different feasible
potentials. Each potential is the distance to T in the same supergraph G of G′,
but with respect to different edge costs c.

The results show that the general potential performs much better than the
simple potential, which already performs much better than the �1-distance poten-
tial. Both the number of labels and the runtime improve significantly, even when
considering the additional preprocessing time. Certain instances benefit less from
these potentials. If there is no path to be found, all vertices are labeled regardless
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of which potential is used. After a path search failed, BonnRoute may perform a
backup path search which allows routing through existing wires at high cost (and
then would rip-up such wires and try to re-route them). Since these rip-up costs
are not modeled in any of our potentials, a large portion of the graph may be
labeled regardless of which potential is used. The column Standard Dijkstra calls
in Table 2 excludes these situations and hence shows an even larger gain than
the column All Dijkstra calls. The question how to model rip-up costs efficiently
when computing potentials remains for future research.

5.2 Reservations and Discounts for Incremental Routing

In chip design practice, there are two main scenarios where a detailed routing
is not computed from scratch, using just a global routing as input, but in an
incremental way, using an almost feasible detailed routing as input. The first
scenario is when a detailed routing has already been computed, but now a few
changes have been made, for example in order to correct the logical function of
the chip or to improve its timing behavior. The second scenario is when a step
in between global and detailed routing is used, typically called track assignment,
that maps the global wires to routing tracks in a way that obeys most—but not
all—design rules. In both scenarios, the task is to compute a completely feasible
detailed routing by doing only few changes. While it is not exactly specified
what “few” means, the motivation is that the input routing has already been
optimized, for example with respect to the timing behavior of the chip; moreover,
one aims at saving runtime.

Fig. 4. Example of a net (consisting of the pins p1, p2, and p3) that is re-routed using
reservations after changes to the input have been made. Even though all of the green
input wires are legal, we may choose to create reservations only for the thick green
wires, e.g., if we expect the harm of blocking other nets to outweigh the benefit of
keeping them usable for this net. (Color figure online)
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We suggest to repair violations globally but with a preference of using the
initial solution. To this end, we convert any detailed wire in the input to a
global wire and possibly a reservation. A reservation reserves that space for
the particular net. When other nets are routed earlier, this space is blocked.
Therefore, reservations are created only for (parts of) detailed wires that do not
conflict with other detailed wires in the input. For an example, see Fig. 4.

Once a net is routed for which we have created reservations, we would like to
encourage, but not force, the net to use the reserved space. We do this by defining
a discount factor 0 < δ < 1 and multiplying all edge costs on a reservation of that
net by δ. In our experiments, we have chosen δ = 3

4 . With the traditional goal-
oriented search techniques, reservations would lead to a slow-down, since many
or even all of the edge costs in the supergraph G would need to be multiplied by
δ in order for the potential to stay feasible. Our generalized framework, however,
allows us to refine the grid not only with respect to the targets, but also with
respect to the reservations, and define individual (discounted) costs on the edges
corresponding to reservations.

On six instances from real design practice, in which a detailed routing is no
longer completely legal after some changes to the input, we compare two runs,
each computing a new solution for every path containing a violation. The run
that creates reservations based on the initial solution attains a 33% speed-up
in the sum of Dijkstra run times over the run which creates no reservations,
from 50 h and 51 min to 34 h and 9 min. If we instead start from an almost
legal solution—the output of BonnRoute in one of the runs in Table 2—and
repeat all path searches, this speed-up increases to 55%. Naturally, the overall
BonnRoute wall time improves less, namely by 11% and 42%, respectively. See
the full version [1] for details.
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Abstract. We study the maximal number of pairwise distinct columns
in a Δ-modular integer matrix with m rows. Recent results by Lee et
al. provide an asymptotically tight upper bound of O(m2) for fixed Δ.
We complement this and obtain an upper bound of the form O(Δ) for
fixed m, and with the implied constant depending polynomially on m.

1 Introduction

Full row rank integer matrices with minors bounded by a given constant Δ in the
absolute value have been extensively studied in integer linear programming as
well as matroid theory: The interest for optimization was coined by the paper of
Artmann, Weismantel & Zenklusen [1] who showed that integer linear programs
with a bimodular constraint matrix, meaning that all its maximal size minors
are bounded by two in absolute value, can be solved in strongly polynomial time.
With the goal of generalizing the results of Artmann et al. beyond the bimodular
case, Nägele, Santiago & Zenklusen [8] studied feasibility and proximity questions
of a subclass of integer programs with bounded subdeterminants. Fiorini et al. [3]
obtained a strongly polynomial-time algorithm for integer linear programs whose
defining coefficient matrix has the property that all its subdeterminants are
bounded by a constant and all of its rows contain at most two nonzero entries.
For more information on the development regarding this topic, we refer to the
three cited contributions above and the references therein.

For a matrix A ∈ R
m×n and for 1 ≤ k ≤ min{m,n}, we write

Δk(A) := max{|det(B)| : B is a k × k submatrix of A}

for the maximal absolute value of a k×k minor of A. Given an integer Δ ∈ Z>0,
a matrix A ∈ R

m×n of rank m is said to be Δ-modular and Δ-submodular, if
Δm(A) = Δ and Δm(A) ≤ Δ, respectively.1 Moreover, a matrix A ∈ R

m×n is
said to be totally Δ-modular and totally Δ-submodular, if maxk∈[m] Δk(A) = Δ
and maxk∈[m] Δk(A) ≤ Δ, respectively, where [m] := {1, 2, . . . ,m}.

1 The authors of [4,7] use the term Δ-modular for what we call Δ-submodular.
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Our object of studies is the generalized Heller constant, which we define as

h(Δ,m) := max
{
n ∈ Z>0 : A ∈ Z

m×n has pairwise distinct columns

and Δm(A) = Δ
}
.

If Δ = 1, we are concerned with the classical notion of unimodular integer
matrices. Lee [6, Sect. 10] initiated the study of the maximal number of columns
beyond unimodular matrices in 1989 and proved a bound of order O(r2Δ), for
totally Δ-submodular integer matrices of row-rank r. Glanzer, Weismantel &
Zenklusen [4] revived the story by extending the investigation to Δ-submodular
integer matrices and obtaining a polynomial bound in the parameter m.

The value h(Δ,m) is directly related to the value c(Δ,m) studied in [4,7]
and defined as the maximum number n of columns in a Δ-submodular integer
matrix A with m rows with the properties that A has no zero columns and for
any two distinct columns Ai and Aj with 1 ≤ i < j ≤ n one has Ai �= Aj and
Ai �= −Aj . It is clear that

c(Δ,m) =
1
2
(
max{h(1,m), . . . ,h(Δ,m)} − 1

)

holds, showing that c(Δ,m) and h(Δ,m) are “equivalent” in many respects.
However, our proofs are more naturally phrased in terms of h(Δ,m) rather than
c(Δ,m), as we prefer to prescribe Δm(A) rather than providing an upper bound
on Δm(A) and we do not want to eliminate the potential symmetries within A
coming from taking columns Ai and Aj that satisfy Ai = −Aj .

Upper bounds on the number of columns in Δ-(sub)modular integer matrices
with m rows have been gradually improved over time as described in the intro-
duction of [4]. Glanzer et al. [4] showed that for each fixed Δ ≥ 2, h(Δ,m) is
of order at most O(Δ2+log2 log2 Δ · m2), a result that has been recently improved
by Lee, Paat, Stallknecht & Xu [7] to the following estimate:

Theorem 1 ([7, Thm. 2 & Prop. 1 & Prop. 2]). Let Δ,m ∈ Z>0. Then,

h(Δ,m) = m2 + m + 1 + 2m(Δ − 1) if Δ ≤ 2 or m ≤ 2,

and, for all other cases (Δ,m), one has the bounds2

m2 + m + 1 + 2m(Δ − 1) ≤ h(Δ,m) ≤ (m2 + m)Δ2 + 1. (1)

Note that the case Δ = 1 is the classical result of Heller [5] stating that the
maximal number of pairwise distinct columns in a unimodular integer matrix
with m rows is h(1,m) = m2 + m + 1. As a conjecture Lee et al. [7] formulate
that the lower bound in (1) is actually the correct value of h(Δ,m), for any
choice of Δ,m ∈ Z>0. A Δ-modular integer matrix with m rows and that many
columns has the difference set of

{0, e1, e2, . . . , em} ∪ {2e1, 3e1, . . . ,Δe1}
2 Lee et al. [7, p. 23] remark that their techniques provide h(Δ, m) ≤ O(m2 · Δ1.95).
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as its columns, where ei denotes the ith coordinate unit vector.
The upper bound in (1) is quadratic both in m and in Δ. However, it is known

that, for each fixed m, h(Δ,m) is linear in Δ, see the comment on page 24 in [7].
Still, so far there has not been any bound that is polynomial in m and linear
in Δ. The authors of [7, p. 24] ask if there exists a bound of the form O(md)Δ
for some constant d ∈ Z>0. As our main result, we answer this question in the
affirmative by showing that a bound of order O(m4)Δ exists.

Theorem 2. Let Δ ∈ Z>0 and m ≥ 5. Then,

h(Δ,m) ≤ m(m + 1) + 1 + 2 (Δ − 1) ·
4∑

i=0

(
m

i

)
.

It remains an open question whether our bound can be improved to a bound of
order O(md)Δ for some exponent d < 4.

2 Counting by Residue Classes

Our main idea is to count the columns of a Δ-modular integer matrix by residue
classes of a certain lattice. This is the geometric explanation for the linearity
in Δ of our upper bound in Theorem 2.

To be able to count in the non-trivial residue classes, we need to extend the
Heller constant h(1,m) to a shifted setting. Given a translation vector t ∈ R

m

and a matrix A ∈ R
m×n, the shifted matrix t+A := t1ᵀ +A has columns t+Ai,

where A1, . . . , An are the columns of A, and 1 denotes the all-one vector.

Definition 1. For any m ∈ Z>0, we define the shifted Heller constant hs(m) as
the maximal number n such that there exists a translation vector t ∈ [0, 1)m \{0}
and a matrix A ∈ {−1, 0, 1}m×n with pairwise distinct columns such that t + A
is totally 1-submodular, that is, maxk∈[m] Δk(t + A) ≤ 1.

Note that, in contrast to the generalized Heller constant h(Δ,m), we do not
necessarily require t + A to have full rank, but we restrict A to have entries
in {−1, 0, 1} only. Moreover, the reason for restricting the non-zero translation
vectors to the half-open unit cube [0, 1)m becomes apparent in the proof of the
following crucial estimate.

Lemma 1. For every Δ,m ∈ Z>0, we have

h(Δ,m) ≤ h(1,m) + (Δ − 1) · hs(m).

Proof. Let A ∈ Z
m×n be a matrix with Δm(A) = Δ and pairwise distinct

columns and let XA ⊆ Z
m be the set of columns of A. Further, let b1, . . . , bm ∈

XA be such that |det(b1, . . . , bm)| = Δ and consider the parallelepiped

PA := [−b1, b1] + . . . + [−bm, bm] =
{ m∑

i=1

αibi : −1 ≤ αi ≤ 1,∀i ∈ [m]
}

.
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Observe that XA ⊆ PA. Indeed, assume to the contrary that there is an x =∑m
i=1 αibi ∈ XA, with, say |αj | > 1. Then, |det(b1, . . . , bj−1, x, bj+1, . . . , bm)| =

|αj |Δ > Δ, which contradicts that A was chosen to be Δ-modular.
Now, consider the sublattice Λ := Zb1 + . . .+Zbm of Zm, whose index in Z

m

equals Δ. We seek to bound the number of elements of XA that fall into a fixed
residue class of Zm modulo Λ. To this end, let x ∈ Z

m and consider the residue
class x + Λ. Every element z ∈ (x + Λ) ∩ PA is of the form z =

∑m
i=1 αibi, for

some uniquely determined α1, . . . , αm ∈ [−1, 1], and can be written as

z =
m∑

i=1


αi�bi +
m∑

i=1

{αi}bi, (2)

where {αi} = αi − 
αi� ∈ [0, 1) is the fractional part of αi, and where x̄ :=∑m
i=1{αi}bi is the unique representative of x+Λ in the half-open parallelepiped

[0, b1)+ . . .+[0, bm), and in particular, is independent of z. We use the notation

z� := (
α1�, . . . , 
αm�) ∈ {−1, 0, 1}m and {z} := ({α1}, . . . , {αm}) ∈ [0, 1)m

and thus have z = B(
z� + {z}), where B = (b1, . . . , bm) ∈ Z
m×m.

Because the vectors (x + Λ) ∩ XA constitute a Δ-submodular system and
since |det(b1, . . . , bm)| = Δ, the set of vectors {
z� + {z} : z ∈ (x + Λ) ∩ XA}
are a 1-submodular system. For the residue class Λ, this system is given by
{
z� : z ∈ Λ ∩ XA} ⊆ {−1, 0, 1}m and moreover has full rank as it contains
e1, . . . , em, and we are thus in the setting of the classical Heller constant h(1,m).

For the Δ − 1 non-trivial residue classes x + Λ, x /∈ Λ, we are in the set-
ting of the shifted Heller constant hs(m). Indeed, as the matrix with columns
{b1, . . . , bm} ∪ ((x + Λ) ∩ XA) ⊆ XA is Δ-submodular, the matrix with columns

{e1, . . . , em} ∪ {
z� + {z} : z ∈ (x + Λ) ∩ XA}
has all its minors, of any size, bounded by 1 in absolute value. By the definition
of hs(m), the second set in this union has at most hs(m) elements.

As a consequence, we get n = |XA| ≤ h(1,m)+ (Δ− 1) ·hs(m), as desired. �
Remark 1. The proof above shows that we actually want to bound the number
of columns n of a matrix A ∈ {−1, 0, 1}m×n such that the system

{e1, . . . , em} ∪ {t + A1, . . . , t + An}
is 1-submodular, for some t ∈ [0, 1)m\{0}. However, t+A is totally 1-submodular
if and only if {e1, . . . , em} ∪ (t + A) is 1-submodular.

Remark 2. As any matrix A ∈ {−1, 0, 1}m×n with pairwise distinct columns
can have at most 3m columns, one trivially gets the bound hs(m) ≤ 3m. Thus,
Lemma 1 directly implies the estimate h(Δ,m) ≤ 3m · Δ.

2.1 Small Dimensions and Lower Bounds in the Shifted Setting

Recall that the original Heller constant is given by h(1,m) = m2 + m + 1. The
following exact results for dimensions two and three show the difference between
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this original (unshifted) and the shifted setting grasped by hs(m). Note that as
in the shifted setting we require t �= 0, the Heller constant h(1,m) is not a lower
bound on the shifted Heller constant hs(m).

Proposition 1. We have hs(2) = 6 and hs(3) = 12.

Proof. First, we show that hs(2) = 6. Let A ∈ {−1, 0, 1}2×n have distinct
columns and let t ∈ [0, 1)2 \ {0} be such that t + A is totally 1-submodular.
Since t �= 0, it has a non-zero coordinate, say t1 > 0. As the 1 × 1 minors of
t + A, that is, the entries of t + A, are bounded in absolute value by 1, we get
that the first row of A can only have entries in {−1, 0}. This shows already that
n ≤ 6, as there are simply only 6 options for the columns of A respecting this
condition.

An example attaining this bound is given by

A =

[−1 −1 −1 0 0 0
−1 0 1 −1 0 1

]
and t =

[
1/2
0

]
.

One can check that (up to permutations of rows and columns) this is actually
the unique example (A, t) with 6 columns in A.

Now, we turn our attention to proving hs(3) = 12. The lower bound follows
by the existence of the following matrix and translation vector

A =

⎡
⎣−1 −1 −1 −1 −1 −1 0 0 0 0 0 0

−1 −1 −1 0 0 0 −1 −1 −1 0 0 0
−1 0 1 −1 0 1 −1 0 1 −1 0 1

⎤
⎦ and t =

⎡
⎣1/2

1/2
0

⎤
⎦ .

Checking that t + A is indeed totally 1-submodular is a routine task that we
leave to the reader.

For the upper bound, let A ∈ {−1, 0, 1}3×n and t ∈ [0, 1)3 \ {0} be such that
t + A is totally 1-submodular. Let s be the number of non-zero entries of t �= 0.
Just as we observed for hs(2), we get that there are s ≥ 1 rows of A only
containing elements from {−1, 0}. Thus, if s = 3 there are only 23 = 8 possible
columns and if s = 2, there are only 22 · 3 = 12 possible columns, showing that
n ≤ 12 in both cases.

We are left with the case that s = 1, and we may assume that A has no
entry equal to 1 in the first row and that t1 > 0. Assume for contradiction that
n ≥ 13. There must be � ≥ 7 columns of A with the same first coordinate, which
we subsume into the submatrix A′. By the identity h(1, 2) = 7 applied to the
last two rows, and t2 = t3 = 0, we must have � = 7 and up to permutations
and multiplication of any of the last two rows by −1, A′ =

[
a a a a a a a
0 1 0 −1 0 1 −1
0 0 1 0 −1 −1 1

]
,

for some a ∈ {−1, 0}. Since the absolute values of the 2 × 2 minors of t + A are
bounded by 1, the remaining n − � ≥ 6 columns of A are different from (b, 1, 1)ᵀ

and (b,−1,−1)ᵀ, where b is such that {a, b} = {−1, 0}. Under these conditions,
we find that A contains either B =

[−1 −1 0
1 0 1
0 −1 −1

]
, B′ =

[−1 −1 0
−1 0 −1

0 1 1

]
, C =

[
0 0 −1
1 0 1
0 −1 −1

]
or

C ′ =
[

0 0 −1
−1 0 −1

0 1 1

]
as a submatrix. However, both the conditions |det(t + B)| ≤ 1

and |det(t+B′)| ≤ 1 give t1 ≥ 1, and both |det(t+C)| ≤ 1 and |det(t+C ′)| ≤ 1
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give t1 ≤ 0. Hence, in either case we get a contradiction to the assumption that
0 < t1 < 1. �

Combining Lemma 1, the identity h(1,m) = m2 + m + 1, and Proposition 1
yields the bounds h(Δ, 2) ≤ 6Δ + 1 and h(Δ, 3) ≤ 12Δ + 1. The latter bound
improves upon Theorem 1. However, as h(Δ, 2) = 4Δ + 3 by Theorem 1, we
see that the approach via the shifted Heller constant hs(m) cannot give optimal
results for all m.

A quadratic lower bound on hs(m) can be obtained as follows:

Proposition 2. For every m ∈ Z>0, we have

hs(m) ≥ h(1,m − 1) = m(m − 1) + 1.

Proof. Let A′ ∈ {−1, 0, 1}(m−1)×n be a totally unimodular matrix with n =
h(1,m − 1) columns, and let A ∈ {−1, 0, 1}m×n be obtained from A′ by
simply adding a zero-row as the first row. Then, for the translation vector
t = ( 1

m , 0, . . . , 0)ᵀ the matrix t + A is totally 1-submodular.
Indeed, we only need to look at its k × k minors, for k ≤ m, that involve the

first row, as A′ is totally unimodular by choice. But then, the triangle inequal-
ity combined with developing the given minor by the first row, shows that its
absolute value is bounded by 1. �

3 A Polynomial Upper Bound on hs(m)

An elegant and alternative proof for Heller’s result that h(1,m) = m2 + m + 1
has been suggested by Bixby & Cunningham [2] and carried out in detail in
Schrijver’s book [10, § 21.3]. They first reduce the problem to consider only the
supports of the columns of a given (totally) unimodular matrix and then apply
Sauer’s Lemma from extremal set theory that guarantees the existence of a large
cardinality set that is shattered by a large enough family of subsets of [m].

We show that this approach can in fact be adapted for the shifted Heller
constant hs(m). The additional freedom in the problem that is introduced by
the translation vectors t ∈ [0, 1)m \{0} makes the argument a bit more involved,
but still gives a low degree polynomial bound. To this end, we write supp(y) :=
{j ∈ [m] : yj �= 0} for the support of a vector y ∈ R

m and

EA := {supp(Ai) : i ∈ [n]} ⊆ 2[m]

for the family of supports in a matrix A ∈ R
m×n with columns A1, . . . , An. We

use the notation 2Y for the power set of a finite set Y .
Just as in the unshifted Heller setting, each support can be realized by at

most two columns of A, if there exists a translation vector t ∈ [0, 1)m such that
t + A is totally 1-submodular.

Proposition 3. Let A ∈ {−1, 0, 1}m×n and t ∈ [0, 1)m be such that Δk(t+A) ≤
1, for k ∈ {1, 2}. Then, each E ∈ EA is the support of at most two columns of A.
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Proof. Observe that in view of the condition Δ1(t + A) ≤ 1 and the assumption
that ti ≥ 0, for every i ∈ [m], we must have tr = 0, as soon as there is an entry
equal to 1 in the rth row of A.

Now, assume to the contrary that there are three columns Ai, Aj , Ak of A
having the same support E ∈ EA. Then, clearly |E| ≥ 2 and the restriction of the
matrix (Ai, Aj , Ak) ∈ {−1, 0, 1}m×3 to the rows indexed by E is a ±1-matrix.
Also observe that there must be two rows r, s ∈ E so that (Ai, Aj , Ak) contains
an entry equal to 1 in both of these rows. Indeed, if there is at most one such
row, then the columns Ai, Aj , Ak cannot be pairwise distinct. Therefore, we
necessarily have tr = ts = 0. Now, there are two options. Either two of the
columns Ai, Aj , Ak are such that their restriction to the rows r, s give linearly
independent ±1-vectors. This however would yield a 2×2 submatrix of t+A with
minor ±2, contradicting that Δ2(t + A) ≤ 1. In the other case, the restriction
of the three columns to the rows r, s has the form ±[

1 1 1
1 1 1

]
or ±[

1 1 −1
1 1 −1

]
, up to

permutation of the indices i, j, k. If |E| = 2, then this cannot happen as A is
assumed to have pairwise distinct columns. So, |E| ≥ 3, and considering the
columns, say Ai, Aj , which agree in the rows r, s, there must be another index
� ∈ E \ {r, s} such that (Ai)� = 1 and (Aj)� = −1, or vice versa. In any case
this means that also t� = 0 and that there is a 2 × 2 submatrix of t + A in the
rows r, � consisting of linearly independent ±1-vectors. Again this contradicts
that Δ2(t + A) ≤ 1, and thus proves the claim. �

As mentioned above, this observation on the supports allows to use Sauer’s
Lemma from extremal set theory which we state for the reader’s convenience.
It was independently published by Sauer [9] and Shelah [11] (who also credits
M. Perles) in 1972, and again independently by Vapnik & Chervonenkis [13] a
few years earlier.

Lemma 2. Let m, k ∈ Z>0 be such that m > k. If E ⊆ 2[m] is such that |E| >(
m
0

)
+

(
m
1

)
+ . . . +

(
m
k

)
, then there is a subset Y ⊆ [m] with k + 1 elements that

is shattered by E, meaning that {E ∩ Y : E ∈ E} = 2Y .

Now, the strategy to bounding the number of columns in a matrix A ∈
{−1, 0, 1}m×n such that t + A is totally 1-submodular for some t ∈ [0, 1)m is
to use the inequality |EA| ≥ 1

2n, which holds by Proposition 3, and then to
argue by contradiction. Indeed, if n > 2

∑k−1
i=0

(
m
i

)
, then by Sauer’s Lemma

there would be a k-element subset Y ⊆ [m] that is shattered by EA. In terms
of the matrix A, this means that (possibly after permuting rows or columns)
it contains a submatrix of size k × 2k which has exactly one column for each
of the 2k possible supports and where in each column the non-zero entries are
chosen arbitrarily from {−1, 1}. For convenience we call any such matrix a Sauer
Matrix of size k. For concreteness, a Sauer Matrix of size 3 is of the form

⎡

⎣
0 ±1 0 0 ±1 ±1 0 ±1
0 0 ±1 0 ±1 0 ±1 ±1
0 0 0 ±1 0 ±1 ±1 ±1

⎤

⎦ ,

for any choice of signs.
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The combinatorial proof of h(1,m) = m2 +m+1 is based on the fact that no
Sauer Matrix of size 3 is totally 1-submodular. This is discussed in Schrijver [10,
§21.3], Bixby & Cunningham [2], and Tutte [12], and also implicitly in the anal-
ysis of the first equation on page 1361 of Heller’s paper [5]. In order to extend
this kind of argument to the shifted setting, we need some more notation.

Definition 2. Let S be a Sauer Matrix of size k. We say that a vector r ∈ [0, 1)k

is feasible for S if r+S is totally 1-submodular. Further, we say that S is feasible
for translations if there exists a vector r ∈ [0, 1)k that is feasible for S, and
otherwise we say that S is infeasible for translations.

Moreover, the Sauer Matrix S is said to be of type (s, k − s), if there are
exactly s rows in S that contain at least one entry equal to 1.

Note that there is (up to permuting rows or columns) only one Sauer Matrix of
type (0, k). As feasibility of a Sauer Matrix of type (s, k − s) is invariant under
permuting rows, we usually assume that each of its first s rows contains an entry
equal to 1.

Proposition 4. Let m, k ∈ Z>0 be such that m > k and assume that no Sauer
Matrix of size k is feasible for translations. Then,

hs(m) ≤ 2 ·
k−1∑

i=0

(
m

i

)
∈ O(mk−1).

Proof. Assume for contradiction that there is a matrix A ∈ {−1, 0, 1}m×n and
a translation vector t ∈ [0, 1)m such that t + A is totally 1-submodular and
n > 2

∑k−1
i=0

(
m
i

)
. By Proposition 3, we have |EA| ≥ 1

2n >
∑k−1

i=0

(
m
i

)
and thus by

Sauer’s Lemma (up to permuting rows or columns) the matrix A has a Sauer
Matrix S of size k as a submatrix. Writing r ∈ [0, 1)k for the restriction of t
to the k rows of A in which we find the Sauer Matrix S, we get that by the
total 1-submodularity of t + A, the matrix r + S necessarily must be totally
1-submodular as well. This however contradicts the assumption. �

In contrast to the unshifted setting, for the sizes 3 and 4, there are Sauer
Matrices S and vectors r, such that r + S is totally 1-submodular. For instance,

S =

⎡
⎣0 −1 0 0 −1 −1 0 −1
0 0 −1 0 −1 0 −1 −1
0 0 0 −1 0 −1 −1 −1

⎤
⎦ , r =

⎡
⎣1/2

1/2
1/2

⎤
⎦ ,

and

S =

⎡
⎢⎢⎣
0 −1 0 0 0 −1 −1 −1 0 0 0 −1 −1 −1 0 −1
0 0 −1 0 0 −1 0 0 −1 −1 0 −1 −1 0 −1 −1
0 0 0 −1 0 0 −1 0 −1 0 −1 −1 0 −1 −1 −1
0 0 0 0 −1 0 0 −1 0 −1 −1 0 −1 −1 −1 −1

⎤
⎥⎥⎦ , r =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ .

In both cases, 2(r + S) is a matrix all of whose entries are either 1 or −1. By
Hadamard’s inequality, the determinant of any ±1-matrix of size k ≤ 4 is at
most 2k, and thus Δk(r + S) ≤ 1 for all k ≤ 4, in the two examples above.
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Our aim is to show that this pattern does not extend to higher dimensions,
and that no Sauer Matrix of size 5 is feasible for translations. The proof requires
a more detailed study of Sauer Matrices of special types and sizes 4 and 5.

Proposition 5.

(i) The vector r ∈ [0, 1)4 is feasible for the Sauer Matrix of type (0, 4) if and
only if r = (12 , 1

2 , 1
2 , 1

2 )ᵀ.
(ii) The Sauer Matrix of type (0, 5) is infeasible for translations.
(iii) No Sauer Matrix of type (1, 4) is feasible for translations.
(iv) If r ∈ [0, 1)4 is feasible for a Sauer Matrix of type (1, 3), then r =

(0, 1
2 , 1

2 , 1
2 )ᵀ.

(v) No Sauer Matrix of type (2, 3) is feasible for translations.

The proof of these statements is based on identifying certain full-rank subma-
trices of the respective Sauer Matrix for which the minor condition provides a
strong obstruction for feasibility. The details are given in Sect. 4.

Lemma 3. There does not exist a Sauer Matrix S of size 5 and a translation
vector r ∈ [0, 1)5 such that r + S is totally 1-submodular.

Proof. Assume that there is a Sauer Matrix S of size 5 and a vector r ∈ [0, 1)5

such that Δk(r + S) ≤ 1, for all k ≤ 5. Note that if in the ith row of S there
is an entry equal to 1, then ri = 0, because of Δ1(r + S) ≤ 1. So, if there are
three rows in S containing an entry equal to 1, then they contain a Sauer Matrix
of size 3 that is itself totally 1-submodular. However, we already noted that no
such Sauer Matrix exists.

Thus, we may assume that S is a Sauer Matrix whose type is either (0, 5),
(1, 4), or (2, 3). We have proven in Proposition 5 (ii), (iii), and (v), however, that
all such Sauer Matrices are infeasible for translations. �

With these preparations we are now able to prove our main result.

Proof (Theorem 2). In view of Lemma 1, we have h(Δ,m) ≤ h(1,m) + (Δ − 1) ·
hs(m). The claimed bound now follows by Heller’s identity h(1,m) = m2+m+1
and the fact that hs(m) ≤ 2

∑4
i=0

(
m
i

)
, which holds by combining Proposition 4

and Lemma 3. �

4 Feasibility of Sauer Matrices in Low Dimensions

Here, we complete the discussion from the previous section and give the proof
of Proposition 5. Parts of the argument are based on the observation that the
condition |det(r + M)| ≤ 1, for any M ∈ R

k×k, is equivalent to a pair of linear
inequalities in the coordinates of r ∈ R

k. This turns the question on whether a
given Sauer Matrix is feasible for translations into the question of whether an
associated polyhedron is non-empty.
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Proof (Proposition 5). (i): Assume that r ∈ [0, 1)4 is such that r + S is totally
1-submodular, and consider the following two 4 × 4 submatrices of S:

M =
[

0 0 0 0
0 0 −1 −1
0 −1 0 −1
0 −1 −1 0

]
and N =

[−1 −1 −1 −1
−1 −1 0 0
−1 0 −1 0
−1 0 0 −1

]
.

By the 4 × 4 minor condition on r + S, we have

|det(r + M)| = r1 · det
[
0 1 1
1 0 1
1 1 0

]
= 2r1 ≤ 1,

and hence r1 ≤ 1
2 . Likewise, we have

|det(r + N)| = (1 − r1) · det
[
0 1 1
1 0 1
1 1 0

]
= 2(1 − r1) ≤ 1,

and hence r1 ≥ 1
2 , so that actually r1 = 1

2 . Analogous arguments for the other
coordinates of r, show that r = (12 , 1

2 , 1
2 , 1

2 )ᵀ as claimed. The fact that r + S is
totally 1-submodular has been already discussed above.

(ii): The argument is similar to the one for the first part. Assume for con-
tradiction, that there is a vector r ∈ [0, 1)5 such that Δ5(r + S) ≤ 1. Consider
the following two 5 × 5 submatrices of S:

X =

[
0 0 0 0 0
0 0 −1 −1 −1
0 −1 0 −1 −1
0 −1 −1 0 −1
0 −1 −1 −1 0

]

and Y =

[−1 −1 −1 −1 −1
−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

.

By the 5 × 5 minor condition on r + S, we have

|det(r + X)| = r1 · det
[

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

]
= 3r1 ≤ 1,

and hence r1 ≤ 1
3 . Likewise, we have

|det(r + Y )| = (1 − r1) · det
[

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

]
= 3(1 − r1) ≤ 1.

Therefore, we get r1 ≥ 2
3 , a contradiction.

(iii): Without loss of generality, we may assume that the first row of S
contains an entry equal to 1, and we assume for contradiction that there is some
r ∈ [0, 1)5 such that r + S is totally 1-submodular. As the entries of r + S are
contained in [−1, 1], we get that r1 = 0. Moreover, the last four rows of S contain
a Sauer Matrix of type (0, 4). By part (i), this means that r2 = r3 = r4 = r5 = 1

2 ,
so that in summary there is only one possibility for the translation vector r.

Now, as r1 = 0, we may multiply the first row of S with −1 if needed, and
can assume that the vector (−1,−1,−1,−1,−1)ᵀ is a column of S. If M denotes
any of the four matrices

[−1 −1 0 0 0
−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

,

[−1 0 −1 0 0
−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

,

[−1 0 0 −1 0
−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

,

[−1 0 0 0 −1
−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]
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then the absolute value of the determinant of r + M equals 3/2. Thus, if indeed
Δ5(r + S) ≤ 1, then these matrices cannot be submatrices of S. In particular,
this implies that

M ′ =

[
0 1 1 1 1

−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

must be a submatrix of S. However, the determinant of r + M ′ equals −2, in
contradiction to r + S being totally 1-submodular.

(iv): We assume that the first row of each considered Sauer Matrix S of type
(1, 3) contains an entry equal to 1, so that r1 = 0. As in (iii) we can moreover
assume that (−1,−1,−1,−1)ᵀ is a column of S (by possibly multiplying the
first row by −1). We now employ a case distinction based on the signs of the
entries in the first row of the columns a = (±1,−1, 0, 0)ᵀ, b = (±1, 0,−1, 0)ᵀ,
and c = (±1, 0, 0,−1)ᵀ of S.
Case 1: a1 = b1 = c1 = −1.

Under this assumption, S contains the matrix N from part (i) as a submatrix
and thus r1 ≥ 1

2 , contradicting that r1 = 0.
Case 2: a1 = b1 = c1 = 1.

In this case, S contains the submatrices

A =
[

0 1 1 1
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
and B =

[
0 1 1 1

−1 −1 0 0
−1 0 −1 0
−1 0 0 −1

]
.

The conditions |det(r + A)| ≤ 1 and |det(r + B)| ≤ 1 translate into the contra-
dicting inequalities r2 + r3 + r4 ≤ 1 and r2 + r3 + r4 ≥ 2, respectively.
Case 3: Exactly two of the entries a1, b1, c1 equal −1.

Without loss of generality, we may permute the last three rows of S, and
assume that a1 = b1 = −1. We find that S now contains the submatrices

C =
[

0 −1 −1 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
, D =

[
0 −1 −1 0

−1 −1 0 0
−1 0 −1 0
−1 0 0 −1

]
and E =

[−1 −1 −1 0
−1 −1 0 −1
−1 0 −1 −1
−1 0 0 0

]
.

The conditions |det(r + C)| ≤ 1, |det(r + D)| ≤ 1 and |det(r + E)| ≤ 1 translate
into the contradicting inequalities r2 + r3 ≤ 1, r4 ≥ 1

2 , and r4 + 1 ≤ r2 + r3,
respectively.
Case 4: Exactly two of the entries a1, b1, c1 equal 1.

As in Case 3, we may assume that a1 = b1 = 1. Here, the following six
matrices can be found as submatrices in S:

[−1 0 0 −1
−1 −1 0 0
−1 0 −1 0
−1 0 0 −1

]
,

[−1 0 0 −1
−1 −1 −1 0
−1 0 0 0
−1 0 −1 −1

]
,

[−1 0 0 −1
−1 0 0 0
−1 −1 −1 0
−1 −1 0 −1

]
,

[
0 1 1 0

−1 −1 0 0
−1 0 −1 0
−1 0 0 −1

]
,

[
0 1 1 0

−1 −1 0 −1
−1 0 −1 −1
−1 0 0 0

]
,

[
0 1 1 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
.

The minor conditions for these matrices translate into the inequality system

r4 ≤ 1
2 r3 ≤ r2 r2 ≤ r3

r4 ≥ 1
2 r2 + r3 ≥ 1 r2 + r3 ≤ 1
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in the same order as the matrices were given above. Solving this system of
inequalities shows that necessarily r2 = r3 = r4 = 1

2 , and the proof is complete.
(v): Assume that there is a Sauer Matrix S of type (2, 3) and a vector

r ∈ [0, 1)5 that is feasible for S. Observe that S contains feasible Sauer Matrices
of types (1, 3) in its rows indexed by {1, 3, 4, 5} and by {2, 3, 4, 5}. By part (iv)
this means that necessarily we have r = (0, 0, 1

2 , 1
2 , 1

2 )ᵀ, and we can now argue
similarly as we did in part (iii).

First of all, as r1 = r2 = 0, we may multiply the first or second row of S
with −1 if needed, and can assume that the vectors (−1, 0,−1,−1,−1)ᵀ and
(0,−1, 0, 0, 0)ᵀ are columns of S. We distinguish cases based on the signs of
the entries in the first or second row of the columns a = (±1, 0,−1, 0, 0)ᵀ,
b = (±1, 0, 0,−1, 0)ᵀ, c = (±1, 0, 0, 0,−1)ᵀ, and a′ = (0,±1,−1, 0, 0)ᵀ, b′ =
(0,±1, 0,−1, 0)ᵀ, c′ = (0,±1, 0, 0,−1)ᵀ of S.
Case 1: a1 = b1 = c1 = 1 or a′

2 = b′
2 = c′

2 = −1.
Here, one of the matrices

C1 =

[
0 0 1 1 1
0 −1 0 0 0

−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

or C2 =

[
0 −1 0 0 0
0 0 −1 −1 −1
0 −1 −1 0 0
0 −1 0 −1 0
0 −1 0 0 −1

]

must be a submatrix of S, but the absolute value of the determinant of both
r + C1 and r + C2 equals 3/2.
Case 2: Two of the entries a1, b1, c1 equal −1 or two of the entries a′

2, b
′
2, c

′
2

equal 1.
Without loss of generality, we may permute the last three rows of S, and

assume that either a1 = b1 = −1 or a′
2 = b′

2 = 1. Now, one of the matrices

C3 =

[−1 0 −1 −1 0
0 −1 0 0 0

−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

or C4 =

[−1 0 0 0 0
0 −1 1 1 0

−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

must be a submatrix of S, but again the absolute value of the determinant of
both r + C3 and r + C4 equals 3/2.
Case 3: Up to permuting the last three rows of S we have

[
a1 b1 c1
a′
2 b′

2 c′
2

]
=

[−1 1 1
1 −1 −1

]
.

With this assumption, one of the matrices
[−1 0 0 1 1

−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

,

[−1 −1 0 0 0
1 0 1 0 0

−1 −1 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

,

[
1 0 −1 1 1

−1 −1 0 0 0
−1 0 −1 0 0
−1 0 0 −1 0
−1 0 0 0 −1

]

,

[
1 −1 0 0 0
1 0 0 −1 −1

−1 −1 −1 0 0
−1 −1 0 −1 0
−1 −1 0 0 −1

]

must be a submatrix of S, because one of the four vectors (±1,±1,−1,−1,−1)ᵀ

must be a column of S. As before, if F denotes any of these four matrices, then
the absolute value of the determinant of r + F equals 3/2.
Case 4: Up to permuting the last three rows of S we have

[
a1 b1 c1
a′
2 b′

2 c′
2

]
=

[−1 1 1
−1 −1 1

]
.

In this case, one of the matrices

C7 =

[−1 0 1 0 0
0 −1 0 −1 0
0 −1 0 0 0
0 0 −1 −1 0
0 0 0 0 −1

]

or C8 =

[
1 −1 0 0 0
0 0 −1 −1 0
0 −1 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

]
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must be a submatrix of S, because one of the vectors (±1, 0, 0, 0, 0)ᵀ must be a
column of S. As before, the absolute value of the determinant of both r + C7

and r + C8 equals 3/2.
In conclusion, in all cases we found a 5 × 5 minor of r + S whose absolute

value is greater than 1, and thus no feasible Sauer Matrix of type (2, 3) can
exist. �

5 Discussion and Open Problems

The determination of the exact value of h(Δ,m) remains an open problem.
Note that the bounds from other sources and the bound we prove here are
incomparable when both m and Δ vary. In order to understand the limits of
our method for upper bounding h(Δ,m), it is necessary to determine the exact
asymptotic behavior of hs(m). Finally, for (partial) verification of the conjecture
by Lee et al. one could try checking this conjecture in the cases where m and/or Δ
are fixed to small values. The smallest choice of Δ, for which the conjecture is
open is Δ = 3. As for the case of fixed m, we suspect that our upper bounds on
h(Δ,m), for m = 3 and m = 4, are not tight.
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Abstract. Worst-case analysis is a performance measure that is often
too pessimistic to indicate which algorithms we should use in practice.
A classical example is in the context of the Euclidean Traveling Sales-
man Problem (TSP) in the plane, where local search performs extremely
well in practice even though it only achieves an Ω( logn

log logn
) worst-case

approximation ratio. In such cases, a natural alternative approach to
worst-case analysis is to analyze the performance of algorithms in semi-
random models.

In this paper, we propose and investigate a novel semi-random model
for the Euclidean TSP. In this model, called the simultaneous semi-
random model, an instance over n points consists of the union of an
adversarial instance over (1−α)n points and a random instance over αn
points, for some α ∈ [0, 1]. As with smoothed analysis, the semi-random
model interpolates between distributional (random) analysis when α = 1
and worst-case analysis when α = 0. In contrast to smoothed analysis,
this model trades off allowing some completely random points in order
to have other points that exhibit a fully arbitrary structure.

We show that with only an α = 1
logn

fraction of the points being ran-
dom, local search achieves an O(log log n) approximation in the simul-
taneous semi-random model for Euclidean TSP in fixed dimensions. On
the other hand, we show that at least a polynomial number of random
points are required to obtain an asymptotic improvement in the approx-
imation ratio of local search compared to its worst-case approximation,
even in two dimensions.

Keywords: Traveling Salesman Problem · Semi-random Models ·
Local Search

1 Introduction

The Traveling Salesman Problem (TSP) is a cornerstone of integer programming
and combinatorial optimization, having been investigated for more than 60 years.
Since Dantzig, Fulkerson, and Johnson [10] developed the cutting plane method
to solve a (then astonishing) 42 cities instance, the TSP has been at the forefront
of research in optimization, pushing the limits of computation in practice (see,
e.g., [2,5,9,25]), while at the same time being the test bed for many new ideas
in the theory of algorithms (see, e.g., [16,18,24,31,32]).
c© Springer Nature Switzerland AG 2022
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The simplest non-trivial TSP instances are arguably those that go under
the name of Euclidean: given a set of points in the d-dimensional unit cube,
find a cycle of minimum total length containing all those points (a tour), where
the length of an edge between any two points is given by their Euclidean dis-
tance. Euclidean TSP is NP-hard [15,26], but in fixed dimension a PTAS can be
obtained using approximate dynamic programming ideas [3]. However, in prac-
tice, even simple algorithms perform very well on Euclidean instances. Take for
instance the 2-opt local search algorithm: given the current tour T , orient it
arbitrarily and let (a, b) and (c, d) be two edges of T , traversed in this order.
Consider the tour T ’ obtained from T by replacing (a, b), (c, d) with (a, c), (b, d)
(i.e., performing a swap). If T ′ has a strictly smaller length than T ′, let T = T ′

and iterate; else, attempt to swap two different pairs of edges from T . The algo-
rithm halts when all pairs of edges from the current tour T have been tested for
a swap, with none leading to an improved tour.

2-opt is known to perform extremely well on many Euclidean instances, such
as those from the TSPLIB library, both in terms of convergence time and qual-
ity of the output [12,17,27]. However, classical worst-case analysis does not
seem adequate to match these empirical findings with theorems on the per-
formance of 2-opt. For instance, it is known that 2-opt only gives an Ω( log n

log log n )-
approximation for Euclidean TSP in the plane and may terminate after a number
of steps exponential in n [7,8], where n is the number of points. A fundamental
quest(ion) is thus to find a theoretical explanation for the empirical performance
of 2-opt:

Why does local search perform well on TSP in practice?

A first, natural alternative model assumes that the n points are distributed
independently and uniformly at random, instead of being given adversarially.
Following [28], we call this model Distributional. In the distributional model, the
performance of 2-opt – and, more generally, optimal solutions to the Euclidean
TSP – are well-understood for fixed dimensions d. The expected number of
iterations of 2-opt is polynomial in n [8], while its output obtains, with high
probability, a constant factor approximation to the optimal tour. This latter
fact holds since the value of the solution found by 2-opt on any set of n points in
the d-dimensional unit cube is O(n1−1/d) [8] and the length of the optimal tour
in the distributional model is, with high probability, Ω(n1−1/d) [30]. However,
a main limitation of the distributional model is that random instances have a
very particular structure. For example, for a random instance of size n in the
unit square, any region of constant size c ∈ [0, 1] contains, with high probability,
cn ± ε points.

In order to interpolate between worst-case scenarios and distributional mod-
els, much research in optimization has been devoted to define and study semi-
random models. Such models contain both an adversarial and a random com-
ponent. A classical example is smoothed analysis, where all the input data is
perturbed by some noise, and the performance of the algorithm is then stud-
ied on the perturbed instance. In the Euclidean TSP case, this perturbation is
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usually achieved by adding to the positions of each point a value sampled from
the same Gaussian distribution N(0, σ). It is known that, in this model, the
expected running time and approximation ratio of 2-opt are polynomial in σ
and logarithmic in 1/σ, respectively [12,22]. Other common semi-random mod-
els for discrete optimization problems first generate a random instance, e.g., a
graph, and then adversarialy perturbs it, e.g., by adding/removing edges of the
graph, or vice versa (see e.g., [28]).

1.1 Our Contributions

A New Semi-random Model. As a step towards answering the motivat-
ing question of this paper, we define and study a new semi-random model
for Euclidean TSP instances, that we dub Simultaneous Semi-Random. In this
model, a 1 − α fraction of the points are chosen by an adversary and an α frac-
tion of the points are uniformly random, for some parameter α ∈ [0, 1]. This
semi-random model provides an explanation for the approximation performance
of algorithms that complements the explanation provided by smoothed analysis.
In order to appreciate this complementarity, we distinguish two different levels
of the structure of a point set instance in the unit square. Given a parameter
c < 1, consider a c−1 × c−1 grid that partitions the unit square into squares of
size c × c called local regions. The global structure of an instance is the number
of points inside of each local region. The local structure of a local region is the
positions of the points in that region.

Informally, smoothed instances exhibit an arbitrary global structure and ran-
dom local structures. In contrast, simultaneous semi-random instances have arbi-
trary local structures, except for a small random fraction of the local regions.
Thus, smoothed analysis explains the performance of local search on instances
with specific global structures, e.g., instances where all the points are only in
a constant number of local regions. In contrast, our simultaneous semi-random
model explains the performance of local search on instances with specific local
structures, e.g., points that form perfectly straight lines. In other words, this
semi-random model tradeoffs allowing some completely random points in order
to capture instances where there is a subset of the points that exhibit a fully
arbitrary structure.

Bounds. We show that an α = 1/ log n fraction of random points are suffi-
cient for local search to obtain an O(log log n) approximation ratio in the simul-
taneous semi-random model in constant dimensions, which improves over the
lower bound Ω(log n/ log log n) from worst-case analysis, which holds even in
two dimensions [8].

Theorem 1. For Euclidean TSP in [0, 1]d where d is constant, 2-opt obtains,
with probability 1−o(1), an O(log log n)-approximation ratio in the simultaneous
semi-random model, with α = 1

log n .

Theorem 1 is proved in Sect. 3. This result implies that the hard instances
of Euclidean TSP are not robust to the addition of a small number of random
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points. Combined with smoothed analysis, we get that either a small amount
of random noise to all points or a small fraction of completely random points
improves the performance of local search. Interestingly, even though the analyses
are completely different, the “amount of noise” σ needed for smoothness, and
the fraction of points α needed for the simultaneous model, to improve the
approximation to O(log log n) is 1/ log n in both cases.

We note that we actually prove a result that is stronger than Theorem 1
in many ways. For instance, one can take α = 1

logδ n
for any constant δ > 0

without changing the approximation ratio. We refer the reader to Sect. 3 for
details. From our proof, it is also easy to see that we obtain the same result in
the more challenging model where the adversary may first observe the random
points before placing the adversarial points.

Our second main result is that if α ≤ n−3/5−ε, then the approximation
ratio of local search cannot be improved in the simultaneous semi-random model
compared to its worst-case approximation.

Theorem 2. For Euclidean TSP in [0, 1]2, 2-opt achieves, with probability
1 − o(1), an Ω

(
log n

log log n

)
approximation ratio in the simultaneous semi-random

model with α = n−3/5−ε, for any constant ε > 0.

Theorem 2, which is proved in Sect. 4, implies that polynomially many
random points are required to obtain an approximation that asymptotically
improves over the worst-case approximation. We believe that closing the gap
between Theorem 1 and Theorem 2 is an intriguing open problem, and in par-
ticular resolving whether there is some α = o(1) such that local search obtains
a constant approximation. Answering this question could shed further light on
the relationship between the simultaneous semi-random model and “real-world”
behavior of the local search algorithm. Obtaining bounds on the running time of
local search in this model and investigating it in the context of other optimization
problems are also interesting paths forward.

1.2 Technical Overview

The Upper Bound. The upper bound consists of two main steps. We first show
a new upper bound on the worst-case length of a 2-optimal set of edges over an
instance V that gives an O(log n1−1/d

OPTV
) approximation (here and throughout the

paper, an instance V is given by a set of point in the Euclidean space). This
bound is useful because it separates adversarial instances V into two regimes.
In the first regime, the optimal length of a tour is large (OPTV = Ω(n1−1/d

log n ))
and the approximation of local search on V , even without random points, is
O(log log n). In the second regime, OPTV is small and we get that the optimal
tour length OPTR over the random points R, with α = 1/ log n, is such that
OPTR ≥ OPTV . We then use our newly proved worst-case bound to analyze the
lengths of 2-optimal tours and optimal tours in the simultaneous semi-random
model by combining bounds from both worst-case and distributional analysis.
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The Lower Bound. We first present a framework that reduces proving lower
bounds in the simultaneous semi-random model to constructing an adversarial
instance V and a Hamiltonian path P over V from a point s ∈ V to a point
t ∈ V that satisfy three parametrized properties: the length �(P ) of P is such
that �(P ) ≥ γOPTV (called the γ-bad property), OPTV ≥ L (called L-long), and
finally, P ∪{(s, x)}, P ∪{(x, y)} and P ∪{(t, y)} are 2-optimal for some K ⊆ [0, 1]2

and any x, y ∈ K (called K-resistant). Existing hard instances of course satisfy
the γ-bad property with γ = Θ(log n/ log log n), but they do not satisfy the
L-long and the K-resistant properties for desirable parameters L and K. These
latter two properties cause significant additional challenges.

Our construction starts with the construction from [8] for the Ω( log n
log log n )

worst-case lower bound and then consists of three steps that modify it. We first
make the construction thinner, so that it fits in [0, 1] × [0, ε] for some small ε.
Then, we stack multiple copies of the thin instance, without incurring any loss
in the γ-bad parameter and while keeping the construction relatively thin, to
increase the L-long parameter. Finally, the most challenging step is to satisfy the
K-resistance property. For that, we carefully add a small number of additional
points to the construction so that, with high probability, there is a Hamiltonian
path P on the adversarial instance V that can be connected to a 2-optimal
Hamiltonian path on the random vertices R to obtain a 2-optimal tour on V ∪R.

1.3 Additional Related Work

Approximation Algorithms for Euclidean TSP. For TSP in the plane,
Karp [19] showed that a partitioning algorithm that subdivides the points into
groups of size t obtains an O(

√
n/t) approximation, which improves to O(t−1/2)

if the points are uniformly random. A seminal result by Arora [3] obtained a
PTAS for d-dimensional Euclidean TSP, for any constant d. The approxima-
tion ratio of the 2-opt algorithm was recently improved from O(log n) [8] to
O( log n

log log n ) [7] for Euclidean TSP in the plane, which is the best approximation
achievable [8]. For additional approximation algorithms results on Euclidean
TSP, see e.g. [1,20].

We next discuss three different families of semi-random models.

Semi-random Models with a Monotone Adversary. Seminal work by
Blum and Spencer [6] proposed semi-random models for k-coloring. In the col-
orgame model, edges are first placed at random between pairs of vertices and
then an adversary places additional edges. Similar semi-random models where an
adversary manipulates randomly generated instances were considered for prob-
lems such as minimum bisection and maximum independent set [14].

Smoothed analysis is a semi-random model where random perturbations are
applied to an adversarial instance. It was first studied by Spielman and Teng [29]
to explain the fast running time of the simplex method in practice. Smoothed
analysis of both the running time and approximation of local search (2-opt)
for TSP was first studied by [12] who obtained an O(1/σ) approximation when
Gaussian random variables with mean 0 and standard deviation σ are added
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to each point. They also obtained more general bounds for any distributions
with bounded densities. This approximation was then improved to O(log 1/σ)
by [22]. Smoothed analysis of local search has also been studied for general, non-
Euclidean, graphs [13] and in the context of clustering [4]. We are not aware of
other semi-random models that have been studied for TSP.

Multi-stage Semi-random Models. More complex semi-random models that
generate instances in three or more steps, where some steps are adversarial and
the others are made randomly, have also been studied for many problems, includ-
ing unique games [21], partitioning [23], 3-coloring [11], and clustering mixtures
of Gaussians [33].

In contrast to all previous semi-random models, where the randomized and
adversarial steps occur sequentially, in the simultaneous semi-random model
that we introduce and study in this paper these steps occur simultaneously and
independently of each other. We are not aware of previously studied semi-random
models that have this property.

2 Preliminaries

In the following, given n, d ∈ N, an instance of size n and dimension d, or n-
instance, is a set of n points in [0, 1]d. When the dimension is not mentioned,
it is assumed to be 2. For m ∈ N, the random instance R(m) is a set of m
points drawn uniformly and independently from [0, 1]d. For an instance V , we
indifferently call v ∈ V a point or a vertex. Given x ∈ R

d, we let ‖x‖ be its
Euclidean norm. For an edge e = (v1, v2), we often write ‖e‖ = ‖v1 − v2‖. The
angle between two edges e = (v1, v2) and e′ = (v′

1, v
′
2) is the angle between the

vectors u = v2 − v1 and u′ = v′
2 − v′

1, which is equal to arccos u·u′
‖u‖‖u′‖ ∈ [0, π].

We let � denote the disjoint union operator of sets.
Given an instance V and a set of m edges T = {(vi1 , vi2) | i ∈ [m]}, the

length of T is �(T ) =
∑m

i=1 ‖vi1 − vi2‖. A tour on an instance V is a set of |V |
edges T that form a cycle. Given an instance V , OPTV is the length of a tour on
V of minimum length. Assume T is an arbitrary collection of edges, a 2-swap
replaces (vi1 , vi2) and (vj1 , vj2) in T with (vi1 , vj1) and (vi2 , vj2). We say that
T is 2-optimal if there is no set T ′ of strictly smaller length obtained from T
via a 2-swap. In particular, when T defines a tour, the concept of 2-optimality
coincides with the stopping criterion for 2-opt. We now present some general
facts about optimal and 2-optimal TSP tours on Euclidean instances. The first
is a bound on the length of any 2-optimal set of edges.

Lemma 1. ([8]). Let T be a 2-optimal set of n edges on an instance V ∈ [0, 1]d,
and assume d to be a constant. Then �(T ) = O (

n1−1/d
)
.

This in particular implies that the optimal tour, up to a constant factor, always
has length at most n1−1/d. We also know the behavior of OPT on random
instances.

Lemma 2. ([30]). With probability 1 − o(1), we have OPTR(n) = Θ
(
n1−1/d

)
.
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From Lemma 1 and Lemma 2, we immediately deduce the following corollary.

Corollary 1. On a random instance, the approximation ratio of 2-opt is con-
stant with probability 1 − o(1).

Last, we recall the following best-known upper bounds on the performance
of 2-opt on general instances.

Lemma 3. ([7,8]). Let V be an arbitrary d-dimensional instance of size n with
d constant. Let T ⊂ V 2 be a 2-optimal set of edges. Then �(T ) = O(log n)OPTV.
Moreover, if d = 2, then �(T ) = O

(
log n

log log n

)
OPTV.

3 An Improved Approximation for Local Search
in the Simultaneous Semi-random Model

In this section, we show that an α = 1/ log n fraction of random points is suf-
ficient to improve the approximation achieved by local search to O(log log n) in
the simultaneous semi-random model.

3.1 An Improved Worst-Case Approximation for Local Search

We first show a new upper bound on the worst case approximation of 2-opt.

Lemma 4. Let V be an arbitrary d-dimensional instance of size n with d con-
stant. Let T ⊂ V 2 be a 2-optimal set of edges. Then �(T ) = O

(
OPTV log n1−1/d

OPTV

)
.

This new bound is helpful because it separates instances into two regimes.
The first is when the length of the optimal tour is large, when OPTV = Ω(n1−1/d

log n ).
In this regime, we immediately get from Lemma 4 that �(T ) = O(log log n·OPTV )
for any 2-optimal set of edges T , so a locally optimal tour performs well on the
adversarial instance, without even needing random points.

In the second regime, when OPTV = o(n1−1/d

log n ), we have that for α = 1/ log n,
the length of the optimal tour on the random points R dominates the length
of the optimal tour on the adversarial instance V : OPTR = Θ(|R|1−1/d) =
Θ(( n

log n )1−1/d) ≥ OPTV where the first equality is by Lemma 2. We later com-
bine the constant approximation obtained by 2-opt on random instances and the
fact that OPTR ≥ OPTV to get that 2-opt obtains a constant approximation on
V �R in that regime. In summary, Lemma 4 is helpful because it shows that it is
only when the length of the optimal tour is small that 2-opt performs poorly on
adversarial instances. We will show that, in this regime, adding random points
to an adversarial instance improves the approximation obtained by 2-opt.

The remainder of Sect. 3.1 is devoted to the proof of Lemma 4. We first
introduce the concepts of similarly-oriented edges and similar-length edges that
will be used in the proof.
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Similarly-Oriented Edges. We use the notion of similarly-oriented edges from [8].

Definition 1. ([8]). Edges e and e′ are similarly-oriented if the angle between
e and e′ is at most arctan 1

4 .

Edges can be partitioned into a constant number of families of edges such
that every pair of edges in a same family are similarly-oriented. For a vector
u ∈ R

d, we denote by Tu the collection of all vectors u′ ∈ T such that the
angle between u and u′ is at most 1

2 arctan 1
4 and by S

d−1 the unit sphere in R
d.

Thus, for any u ∈ R
d, every pair of edges in Tu are similarly-oriented. Using

the topological definition of compactness, we know that there exists a constant
I and u1, . . . uI ∈ S

d−1 such that T = ∪I
i=1T

ui . Hence, up to a constant loss, it
is sufficient to bound the total length of all edges in Tui for an arbitrary i. For
the remainder of this section, we abuse notation and write T i instead of Tui .
Similarly oriented edges have the following useful property.

Lemma 5. ([8]). Let e = (v1, v2) and e′ = (v′
1, v

′
2) be two similarly-oriented

edges which form a 2-optimal set. Then ‖v′
1 − v1‖ ≥ 1

2 min (‖e‖ , ‖e′‖).

Similar-Length Edges. In addition to being partitioned into families of similarly-
oriented edges, edges are also partitioned into families of similar length edges.
In particular, let 1 > η > ε > 0, we define T< = {e ∈ T | ‖e‖ < ε}, T> =
{e ∈ T | ‖e‖ ≥ η}, and, for any j ≥ 0 such that 2jε ≤ η, Tj := {e ∈ T | 2jε ≤
‖e‖ < 2j+1ε}. Thus writing J = 
log2

η
ε �, we have T = T< � T> � ⊔J

j=0 Tj . The
following result is known for long edges.

Lemma 6. ([8]). For any η > 0 and constant dimension d, �(T>) = O(η1−d).

We denote families of edges that are both similarly-oriented and of similar-
length by T i

j = T i ∩ Tj . We similarly denote T i
< = T i ∩ T< and T i

> = T i ∩ T>.
Now we are ready to prove Lemma 4.

Proof. (of Lemma 4). Let i ∈ [I] and consider the family T i ⊂ T of similarly-
oriented edges. First, we have �(T i

<) ≤ nε. Second, by Lemma 6, we have �(T i
>) ≤

O(η1−d). To bound �(T i) = �(T i
<) + �(T i

>) +
∑J

j=0 �(T i
j ), it remains to bound

the length of the family of similarly-oriented and similar length edges T i
j for an

arbitrary j ∈ [J ].
Let T ∗ be an optimal tour on V : if we fix any point to be the first one, T ∗

defines an order on V , and we can use it to order T i
j by saying that (v1, v2) <

(v′
1, v

′
2) if v1 < v′

1 in T ∗. Hence, for fixed i and j, we can enumerate T i
j = {el =

(vl
1, v

l
2) | 1 ≤ l ≤ N} (where N = |T i

j |), such that vl
1 appears before vl+1

1 in T ∗.
Let T̃ ∗ = {(vl

1, v
l+1
1 ) | 1 ≤ l ≤ N} (where we let vN+1

1 = v1
1). By the

triangular inequality, we have �(T̃ ∗) ≤ �(T ∗). Moreover, for any l , since T i
j =

{el = (vl
1, v

l
2) | 1 ≤ l ≤ N} ⊆ T and is therefore 2-optimal, we have by Lemma

5 ||vl
1 − vl+1

1 || ≥ 1
2 min

(||el||, ||el+1||). As el, el+1 ∈ T i
j , and the length of every

vector in T i
j is between 2jε and 2j+1ε, the longest of ||el||, ||el+1|| is at most two
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times larger than the shortest. Thus, we get ||vl
1 − vl+1

1 || ≥ 1
4 ||el||. Summing for

l ∈ [N ], we obtain �(T i
j ) =

∑N
l=1 ||el|| ≤ 4

∑N
l=1 ||vl

1 − vl+1
1 || = 4�(T̃ ∗) ≤ 4�(T ∗).

Hence, putting the bounds on �(T i
<), �(T i

>),
∑J

j=0 �(T i
j ) together, we have

�(T i) ≤ nε + O(η1−d) + 
log2
η

ε
�4OPT = O

(
nε + η1−d + OPT log

η

ε

)
.

Summing over all families of similarly-oriented edges and letting ε = OPT
n and

η = OPT
1

1−d , we get

�(T ) ≤
I∑

i=1

�(T i) = O
(
nε + η1−d + OPT log

η

ε

)
= O

(
OPT log

n1− 1
d

OPT

)
.

�

3.2 Proof of Theorem 1

By combining the new worst-case bound from Sect. 3.1 together with the bound
in Lemma 1, one obtains the following upper bound on the length of a 2-optimal
tour on the union of two instances.

Lemma 7. Let V and U be disjoint instances of sizes n and m. Then, if d is

constant, for any 2-optimal tour T on V � U , �(T ) = O(OPTV log n1− 1
d

OPTV
+ m1− 1

d ).

The last lemma needed is a bound on the optimal length of a tour on an
instance of the simultaneous semi-random model.

Lemma 8. Let n,m ∈ N and V be a d-dimensional n-instance with d constant.
With probability 1 − o(1), OPTV �R(m) = Ω

(
max

(
OPTV ,m1− 1

d

))
.

We are now ready to prove the main result for this section, from which
Theorem 1 follows.

Theorem 3. Let V be any d-dimensional n-instance, with d a fixed constant.
With probability 1−o(1), the approximation ratio of 2-opt on V �R(m) is O(1) if

m1− 1
d > OPTV log n1− 1

d

OPTV
and O(log n1− 1

d

OPTV
) otherwise. In particular, for m = n

logc n ,
for any constant c > 0, the approximation ratio is O(log log n).

Proof. Let T be any 2-optimal tour on V � R(m). If m1− 1
d > OPTV log n1− 1

d

OPTV
,

by Lemma 7 we obtain that �(T ) = O(m1− 1
d ) while by Lemma 8 we have

OPTV �R(m) = Ω(m1− 1
d ). Hence, the approximation ratio of 2-opt on this

instance is O(1). However, when m1− 1
d ≤ OPTV log n1− 1

d

OPTV
Lemma 7 tells us that

�(T ) = O(OPTV log n1− 1
d

OPTV
) = O(OPTV �R(m) log n1− 1

d

OPTV
), hence we can deduce that

the approximation ratio is O(log n1− 1
d

OPTV
).

Now take m = n
logc n , for any c > 0. For OPTV = O(( n

logc n )1− 1
d / log n), the

first regime applies and 2-opt gives a constant approximation. Else, using the
second regime, we obtain a O(log log n)-approximation. �
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4 Improved Approximations Require poly(n) Random
Points

In this section, we complement the upper bound from the previous section by
showing that, with α = n−3/5+ε for any constant ε > 0, local search obtains an
Ω( log n

log log n ) approximation ratio in the simultaneous semi-random model when
d = 2. This lower bound implies that more than n2/5−ε random points are
required to obtain an asymptotic improvement over the O( log n

log log n ) worst-case
approximation in the simultaneous semi-random model.

To show this lower bound, we construct a 2-optimal tour T over an adversarial
instance V that is far from optimal and is such that, with high probability, T
can be augmented to obtain a 2-optimal tour TV �R over V � R that contains T ,
where R consists of m random points. The length of the optimal tour on V � R
is upper bounded by combining the lengths of the optimal tours on both V and
R. We first develop a framework for proving lower bounds in the simultaneous
semi-random model, see Sect. 4.1. We then sketch the construction of the bad
instance, which builds upon the construction from [8], in Sect. 4.2, and then we
analyze it using the framework from Sect. 4.1. Complete details can be found in
the full version of the paper.

4.1 A Framework for Simultaneous Semi-random Lower Bounds

In this section, we define parametrized properties of an instance that, if satisfied,
guarantee a lower bound. In other words, this section reduces the problem of
showing a lower bound to constructing an instance that satisfies the following
properties. A path of an instance V is called Hamiltonian if it passes exactly
once through each vertex of V .

Definition 2. An instance V and a 2-optimal Hamiltonian path P over V from
s ∈ V to t ∈ V are

– L-long if OPTV ≥ L;
– γ-bad if �(P ) ≥ γOPTV ;
– K-resistant, K ⊆ [0, 1]2, if for any x, y ∈ K, P ∪ {(s, x)}, P ∪ {(x, y)} and

P ∪ {(t, y)} are 2-optimal.

We now give some intuition on why we care about the above properties. If
K is sufficiently big and α sufficiently small, then, with high probability, the αn
random points R all lie in K. Combined with the K-resistance condition, this
implies that a 2-optimal Hamiltonian path P over V can be extended to obtain
a 2-optimal tour over V � R. More precisely, we have the following lemma.

Lemma 9. Let V be an instance and K ⊆ [0, 1]2 be any region. If V has a
Hamiltonian path P that is K-resistant, then for any instance U ⊆ K disjoint
from V , there exists a 2-optimal tour T on U � V which extends P , i.e., such
that P is a subpath of T .
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Fig. 1. High-level illustration of the construction from Sect. 4 (image not to scale).
The gray area K accounts for most of the area of the unit square, hence w.h.p. all
random points v are such that v ∈ K. The adversarial construction is in the top part
of the square. A 2-optimal tour is given by the bold path P (which is a 2-optimal
Hamiltonian path on the adversarial instance and far from optimal), plus an optimal
Hamiltonian path covering the random points. The striped area is w.h.p. empty, and
serves as a buffer between the deterministic and the random points, in order to ensure
K-resistance of P in the adversarial instance.

The γ-bad condition guarantees that there is a bad 2-opt tour on V , which we
care about because the tour we want to expand must have a bad approximation
ratio for the lower bound to be effective. The L-long condition guarantees that
the length of the part of the optimal tour on V � R that connects vertices in V
dominates the length of the part that connects the random vertices R, which is
important since a 2-opt tour on random vertices R performs well compared to
OPTR. The intuition discussed above is summarized in the next lemma.

Lemma 10. Let α ∈ (0, 1) be some parameter that can depend on n. If there
exists a

√
αn-long n-instance V with a γ-bad, K-resistant Hamiltonian path P ,

for some region K with area 1 − o(1/(αn)), then with probability 1 − o(1) the
approximation ratio of 2-opt on the α-semi-random instance R(αn)�V is Ω(γ).

4.2 The Construction

In this section, we give a sketch of the construction of an instance that satisfies
Lemma 10. The full construction can be found in the full version of the paper.
Our starting point is the construction of [8], which does not satisfy the γ-bad and
K-resistant properties for desirable parameters γ and K. We gradually modify
and extend it so that it acquires the desired properties:
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1. first, we modify it by making it fit in a small region and having a “bad”
Hamiltonian path that only consists of “short” edges. Hence, this ensures a
property useful for the separation condition, i.e., the adversarial instance is
w.h.p. separated from the random points.

2. then, we modify it again to ensure the longness condition by stacking and
connecting multiple copies of the thin instance;

3. finally, for the resistance condition, we add a small number of additional
points so that the bad Hamiltonian path P over the adversarial instance V
can be extended to a 2-optimal tour TV �R over the semi-random instance
V � R with random points R such that P is a subpath of TV �R.

A high-level sketch of the construction is given in Fig. 1. The properties of the
resulting instance V are summarized in the following lemmas. We let ε > 0 be a
rational number such 0 < ε < 1

4 and p ≥ 3 such that p/4 and εp are integers. We
also assume that εp is odd. Since there are infinitely many of such p, all limits
are understood as when p goes to infinity. Let z = p/4 and s = (1 − ε)p.

Lemma 11. V is included in S = [0, 1] × [1 − p2(z−s) − 2p−s, 1] and has n =
Θ(p2(z+p)) = Θ(p

5
2p) points. In particular, we have p = Θ

(
log n

log log n

)
.

Lemma 12. The optimal tour on V has length Θ(p2z) = Θ(n1/5).

Lemma 13. There exists a 2-optimal Hamiltonian path P on the adversarial
instance V of length �(P ) ≥ 2

3εp2z+1 = Θ
(
ε log n
log log nn1/5

)
.

Let K = [0, 1] × [0, 1 − p2(z−s) − 4p−s]. The following is the main technical
lemma of this section. Its proof requires a careful geometric analysis of V .

Lemma 14. The instance V and the path P are K-resistant.

Combining the previous lemmas, we get the following.

Lemma 15. The n-instance V is n1/5-long, and the Hamiltonian path P is
Ω

(
ε log n
log log n

)
-bad and K-resistant, for some region K of area 1 − o(n−(2/5−ε)).

Proof. By Lemma 11, Lemma 12, and Lemma 13, V with P are n1/5-long and
Ω

(
ε log n
log log n

)
-bad. Moreover, for K = [0, 1] × [0, 1 − p2(z−s) − 4p−s], V with P

are K-resistant by Lemma 14. Note that p2(z−s) = pp/2−(1−ε)pp−s, and since
ε < 1/4, p2(z−s) = o(p−s). Finally, p−s = Θ(n− 2

5 (1−ε)) = o(n−( 2
5−ε)), thus K

has area 1 − o(n−( 2
5−ε)). �

The previous lemma combined with Lemma 10 immediately give us the proof
of Theorem 2. Indeed, let 1/4 > ε > 0 be constant. Let n be a number and V an
instance as above (recall that there are infinitely many of them). By Lemma 15,
the instance V verifies the hypothesis of Lemma 10 with α = n−3/5−ε and
γ = Ω

(
log n

log log n

)
; thus by Lemma 10 the approximation ratio of 2-opt on V is

Ω
(

log n
log log n

)
with probability 1 − o(1).
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Abstract. The Matching Augmentation Problem (MAP) has recently
received significant attention as an important step towards better
approximation algorithms for finding cheap 2-edge connected subgraphs.
This has culminated in a 5

3
-approximation algorithm. However, the algo-

rithm and its analysis are fairly involved and do not compare against the
problem’s well-known LP relaxation called the cut LP.

In this paper, we propose a simple algorithm that, guided by an opti-
mal solution to the cut LP, first selects a DFS tree and then finds a solu-
tion to MAP by computing an optimum augmentation of this tree. Using
properties of extreme point solutions, we show that our algorithm always
returns (in polynomial time) a better than 2-approximation when com-
pared to the cut LP. We thereby also obtain an improved upper bound
on the integrality gap of this natural relaxation.

1 Introduction

Designing cheap networks that are robust to edge failures is a basic and impor-
tant problem in the field of approximation algorithms. The area containing these
problems is often referred to as survivable network design. Generally, one has to
compute the cheapest network that satisfies some connectivity requirements in-
between some prespecified set of vertices. Classic examples are for instance the
Minimum Spanning Tree problem in which one has to augment the connectiv-
ity of a graph from 0 to 1 or related questions such as the Steiner Tree/Forest
problem. Another type of network design problem is to build 2-edge connected
spanning subgraph (2-ECSS) or multisubgraph (2-ECSM), where one has to
augment the connectivity of a graph from 0 to 2. The latter problems are closely
related to the famous Traveling Salesman Problem (TSP). Unfortunately, most
of the problems in this area are NP-hard (or even APX-hard), and what one
can hope for is generally to compute an approximate solution in polynomial
time. Powerful and versatile techniques such as primal-dual [15,31] or itera-
tive rounding [19,24] guarantee an approximation within factor 2 for many of
these problems but improving on this bound for any connectivity problem is
often quite challenging. In the case of 2-ECSS, a 4/3-approximation is known if
the underlying graph G is unweighted [18,28]. However, a similar result for the
weighted case has remained elusive, and the best approximation algorithm only
c© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 57–69, 2022.
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guarantee a factor 2 approximation. A prominent special case of the weighted
2-ECSS problem is the so-called Forest Augmentation Problem (FAP). In such
instances of 2-ECSS all edge weights are either 0 or 1 (we will refer to edges of
cost 0 as light edges and edges of cost 1 as heavy edges). The name stems from
the fact that one can assume that the light edges form a forest F , and the goal is
to find the smallest set of heavy edges E′ such that F ∪ E′ is 2-edge connected.

A famous special case of FAP is the Tree Augmentation Problem (TAP)
which has been extensively studied for decades. In this problem, the forest F is a
single spanning tree, and one has to find the smallest set of edges to make the tree
2-edge connected. For this problem, several better-than-2 approximations were
designed in a long line of research [1,3,6–9,11,12,14,17,20,22,23,26,27,29,30].
One can see TAP as an extreme case of FAP where the forest is a single compo-
nent. Another interesting special case is the Matching Augmentation Problem
(MAP), in which the forest of light edges forms a matching M and one has to
find the smallest set of heavy edges E′ such that M ∪ E′ is 2-edge connected. It
can be seen as the other extreme case in which the forest forms as many compo-
nents as possible. We also remark that MAP generalizes the unweighted 2-ECSS
problem, which can be viewed as an instance of MAP with an empty matching.
For MAP, only recently a better-than-2 approximation was given by Cheriyan
et al. [4,5]. These two works culminate in a 5/3-approximation, obtained via a
fairly involved algorithm and analysis.

For many of these network design problems, there is a simple linear pro-
gramming relaxation called the cut LP. In the case of FAP, for a given graph
G = (V,E), forest F ⊆ E the cut LP is written as follows, with a variable xe

to decide to take each edge e or not. Recall that δ(S) denotes the edges with
exactly one endpoint in S.

LP (G,F ) : min
∑

e∈E\F

xe

∑

e∈δ(S)

xe ≥ 2, for all S, ∅ � S � V

0 ≤ xe ≤ 1, ∀e ∈ E.

The integrality gap of this linear program is an interesting question by itself.
Recently, in the case of TAP (i.e. F is a spanning tree), Nutov [27] showed that
the integrality gap is at most 2 − 2/15 ≈ 1.87. Cheriyan et al. [8] showed that
the integrality gap is at least 3/2 in the case of TAP. In the case of MAP, the
best upper bound on the integrality gap is 2, and the best lower bound is 9/8
[2,28]. We note that the recent works [4,5] do not seem to compare against the
cut LP, and therefore do not show an integrality gap better than 2 for MAP.

1.1 Our Results

In this paper, we give an algorithm that guarantees an approximation ratio 2−c
(for some absolute constant c > 0) with respect to the best fractional solution of
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the cut LP. The algorithm is the following. We note that some of our techniques
are reminiscent of the algorithm of Mömke and Svensson [25] for the travelling
salesman problem.

The LP-based algorithm:

1. Compute an optimal extreme point solution x∗ to LP (G,M).
2. Let E′ = {e ∈ E, x∗

e > 0} be the support of x∗, and run a DFS
on the support graph G′ = (V,E′) which always give priority first
to an available light edge and second to the available heavy edge e
maximizing x∗

e.
3. Compute an optimum augmentation A to the TAP problem with

respect to the DFS tree T computed in the previous step and return
H = T ∪ A.

We note that the LP-based algorithm indeed runs in polynomial time. Step
2 computes a DFS in which some edges are explored in priority (if possible).
Step 3 can also be completed in polynomial time because the tree T is a DFS
tree. This implies that all non-tree edges are back-edges (i.e. one endpoint is an
ancestor of the other). In the language of TAP, these edges are often referred
to as “uplinks”, and it is well-known that TAP instances in which the edges are
only “uplinks” are solvable in polynomial time [9,13].

Finally, the solution given by the algorithm is feasible since Step 2 increases
connectivity from 0 to 1 and Step 3 from 1 to 2. One can check that no edge is
taken twice in the process since A and T are disjoint.

In this paper, our main result shows that this simple algorithm guarantees
an approximation within factor strictly better than 2 with respect to the cut LP
relaxation.

Theorem 1. The LP-based algorithm returns a feasible solution to any MAP
instance of cost at most 2 − c times the cost of the fractional solution x∗, for
some absolute constant c > 0.

For the sake of exposition, we did not try to optimize the constant c but we
believe that improving the ratio of 5/3 in [5] (that holds with respect to the
optimum integral solution) would require new techniques in the analysis. Since
Nutov [27] proved the integrality gap of the cut LP to be strictly better than 2 for
TAP, the cut LP seems a promising relaxation for the general FAP. Additionally,
we prove the following simple theorem.

Theorem 2. The integrality gap of the cut LP for MAP is at least 4/3.

Proof. Consider the example given in Fig. 1a, which is a simple adaptation of a
classic example for the related TSP problem. One can check that the fractional
solution that gives 1/2 fractional value to all heavy edges and value 1 to all light
edges is feasible for a total cost of 6/2 = 3. However, any integral solution costs
at least 4.
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heavy edge

light edge

1/2

1/2

1/21/2

1/2

1/2

(a)

heavy edge in the DFS tree
light edge (all in the DFS tree)
heavy edge outside the DFS tree

r

(b)

Fig. 1. (a) An integrality gap example. (b) An example of a bad DFS tree.

1.2 Our Techniques

The proof of Theorem 1 relies on several crucial observations that we sketch
here. The first observation is that the total cost of the DFS tree T is always at
most the cost of x∗ (denoted c(x∗)). This follows because T must contain all the
light edges since they are given priority over any other edge (note that since we
assume that M is a matching, it cannot happen that two distinct light edges
want priority at the same time). Therefore, the total cost of the tree T is exactly
equal to n − 1 − |M |, while it is easy to show that c(x∗) ≥ (n − |M |).

Another interesting fact is that if one considers the LP solution x∗ restricted
to edges not in the tree T (denote this solution by x∗

E\T ), then this is a feasible
solution to the cut LP of the TAP instance with respect to the tree T (i.e.
x∗

E\T is a feasible solution to LP (G,T )). Hence, if we denote by y∗ the optimum
fractional solution to LP (G,T ), we have that c(y∗) ≤ c(x∗

E\T ).
Because T is a DFS tree, the TAP instance with respect to the tree T contains

only “uplinks” and therefore LP (G,T ) is known to be integral [1]. We note that
this already gives a simple proof that the integrality gap of LP (G,M) is at most
2. To get better than 2, we only need to show that

(n − |M | − 1) + c(y∗) ≤ (2 − c)c(x∗).

Conceptually, we distinguish between two cases. If c(x∗) > (1 + c)(n − |M |) (i.e.
the LP solution is expensive), then the DFS tree is significantly cheaper than
c(x∗) and it is easy to conclude that the cost of our solution T ∪A is better than
2c(x∗). Otherwise, assume that the LP value is close to the trivial lower bound
of (n − |M |). In this case, we show that c(y∗) ≤ (1 − c)c(x∗).

To show this, we consider two possibilities. We can prove that either we can
scale down a significant portion of x∗

E\T to obtain a cheaper feasible solution
to LP (G,T ), or that c(x∗

E\T ) itself is already significantly smaller than c(x∗).
When a lot of the tree cuts in T (i.e. the cuts defined by removing an edge from
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T to obtain two trees and taking the edges with one endpoint in each tree) have
some slack in the TAP solution x∗

E\T (that is when a lot of tree cuts S satisfy
x∗

E\T (δ(S)) > 1 + c), the first case is realized. Otherwise, when almost all of the
tree cuts are nearly tight (i.e. satisfy x∗

E\T (δ(S)) ≤ 1 + c), we can show that the
DFS must have captured a good fraction of the value of c(x∗) inside the tree T .
This step uses some crucial properties of extreme point solutions as well as our
choice of DFS. Therefore the cost of x∗

E\T is significantly smaller than the cost
of x∗ completing the argument.

Before proceeding to the proof, it is worthwhile to mention that we are not
aware of any example on which our algorithm has a ratio worse than 4/3 times
the cost of x∗. It remains open to give a tighter analysis of this algorithm. We also
note that [21] also makes use of DFS for the related problem of unweighted 2-
ECSS. They obtain a ratio of 3/2 for the unweighted 2-ECSS problem. However,
their DFS is not LP-based and we remark that if we do not guide the DFS with
the LP solution, the approximation ratio can be arbitrarily close to 2. We give an
example in Fig. 1b. One can see that the DFS tree (rooted at r) contains all the
matching edges, and the tree augmentation problem requires us to take all but
one of the back-edges. However, the optimum solution to the MAP instance is
to take a Hamiltonian tour containing all the light edges. Generalizing the same
example by simply increasing the depth of the tree leads to an approximation
arbitrarily close to 2.

2 The Analysis of the LP-Based Algorithm

In this section, we prove Theorem 1. It is organized as follows. In Subsect. 2.1,
we introduce some basic definitions. In the subsequent subsection, we proceed
via a case distinction to prove the theorem.

2.1 Preliminaries

We will use T to refer to the DFS tree computed by the algorithm, and we will
list edges in G as uv, where u is an ancestor of v in T . Since T is a DFS tree,
all edges in G must have the property that one endpoint is an ancestor of the
other in T . We will let B = E \ T denote the set of back-edges of G. As in the
introduction, we will call an edge of weight 1 a heavy edge and an edge of weight
0 a light edge. For every edge e in the DFS tree T computed, we let T (e) denote
the tree cut corresponding to the edge e in the tree T . Formally, T (e) = δ(Tv),
where e = uv and Tv is the sub-tree rooted at v. We call an edge e ∈ T α-tight
if we have

x∗(T (e)) − x∗
e < 1 + α.

Implicitly, if we call an edge e α-tight, this will mean that e belongs to the tree T .
In addition, we denote by N

(α)
t the number of α-tight edges in the tree T . For a

tree T , we denote by x∗
T the restriction of x∗ to the edges in the tree T . We note

that for any instance of the MAP, it must be that c(x∗) ≥ (n−|M |). This follows
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by a simple double counting argument on the fractional degree of each component
(precisely we have n−|M | components that must have fractional degree 2 each).
It is also clear that the DFS tree T must contain all the light edges in M since
they are given priority. Hence the cost of T is at most n − |M | − 1 ≤ c(x∗). In
the following, we will fix two parameters ε = 10−1, γ = 10−3.

2.2 The Analysis of the Algorithm

We note that if c(x∗) ≥ (1 + γ)(n − |M |), it is easy to show that the cost of the
returned solution T ∪ A is at most

(n − |M | − 1) + c(x∗) ≤ c(x∗)
1 + γ

+ c(x∗) = c(x∗)
(

2 − γ

1 + γ

)
. (1)

However, if c(x∗) < (1 + γ)(n − |M |) and N
(γ)
t ≤ (1 − γ)(n − |M |) (i.e. there are

few γ-tight tree cuts), then we proceed as follows. We partition the set of back
edges in our graph B into B

(γ)
t ∪ B

(γ)
s , where B

(γ)
t contains all edges e ∈ B that

are contained in T (e′) for some γ-tight edge e′ ∈ T . Then x′, defined by

x′(e) =

⎧
⎪⎨

⎪⎩

x∗(e) e ∈ B
(γ)
t

x∗(e)
1+γ e ∈ B

(γ)
s

1 otherwise

is also a feasible solution to LP (G,T ). The total fractional value represented
by edges in B

(γ)
t is at most (1 + γ)N (γ)

t . Hence, c(x′) can be upper bounded as
follows.

c(x′) ≤ c(x∗) − (1 + γ)N (γ)
t

1 + γ
+ (1 + γ)N (γ)

t =
c(x∗)
1 + γ

+ γN
(γ)
t .

Since the cost of T ∪ A is at most c(x∗) + c(x′) and we assume that N
(γ)
t ≤

(1 − γ)(n − |M |), it is easy to get the upper-bound of

c(x∗)
(

1 +
1

1 + γ

)
+ γ(1 − γ)(n − |M |) ≤ c(x∗)

(
2 − γ3

1 + γ

)
, (2)

where the last inequality follows because n − |M | ≤ c(x∗). Since these two cases
clearly give a better than 2 approximation, we assume in the rest of the analysis
that

(n − |M |) ≤ c(x∗) < (1 + γ)(n − |M |), (3)

and
N

(γ)
t > (1 − γ)(n − |M |). (4)

We will show that c(x∗
T ) is at least a constant fraction times c(x∗). Since the

cost of the returned solution T ∪ A is at most 2c(x∗) − c(x∗
T ), this will conclude

the proof. First, we partition the γ-tight tree cuts into two sets of cuts S0 and
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S1 containing the tight tree cuts associated with light edges and heavy edges,
respectively. We can then distinguish between two sub-cases. For each edge e =
uv ∈ T , we say that e is a leaf edge if v is a leaf in the tree T (recall that we
always write an edge e as e = uv such that v is a descendant of u in T ). We
denote S+

0 the non-leaf edges in S0 and S−
0 the leaf edges in S0. We have two

main cases.

Suppose that |S1| ≥ γ(n − |M |) or that |S+
0 | ≥ γ(n − |M |). By feasibil-

ity of x∗ at least 2 units of x∗ must cross any tree cut. Hence x∗(δ(Tv)) ≥ 2,
for any v ∈ V . By definition of γ-tightness we know that for any γ-tight edge
e = uv we have x∗(e) ≥ x∗(δ(Tv)) − (1 + γ) ≥ 1 − γ.

Hence if |S1| ≥ γ(n − |M |), we have that

c(x∗
T ) ≥ γ(1 − γ)(n − |M |) ≥ γ(1 − γ)

1 + γ
c(x∗),

which concludes the case when |S1| is large. In the following we use some proper-
ties of extreme point solutions. We say that an edge e is fractional (with respect
to the fractional solution x∗) if 0 < x∗

e < 1. A vertex v is said to be α-fractional
if it has more than 1/α incident fractional edges in the support of x∗ (for any
α > 0). We claim the following lemma, the proof of which relies on standard
techniques and can be found in Appendix A. We note that a similar result was
used in [25].

Lemma 1. If x∗ is an extreme point solution of the cut LP, then there are at
most 2n − 1 fractional edges in G. Moreover, for any α > 0, there are at most
4αn α-fractional vertices with respect to x∗.

Using Lemma 1 with α = γ/16, we get that if |S+
0 | ≥ γ(n−|M |), then (recall

that n − |M | ≥ n/2) there are at least

γ(n − |M |) − (γ/4)n ≥ (γ/2)(n − |M |)

edges uv ∈ S+
0 such that v is not γ/16-fractional. We then claim the following

simple lemma.

Lemma 2. Fix any α, α′ > 0. Suppose that e = uv is an α-tight light edge, such
that v is not a leaf in T . Then if v is not α′-fractional there exists some edge
e′ = vw in T such that x∗(e′) ≥ (1 − α)α′.

Proof. By feasibility of x∗ we know that x∗(δ(Tv \ v)) ≥ 2. Since e is α-tight
and T is a DFS tree we have that x∗(δ(Tv)) − x∗(e) ≤ 1 + α. We know that
E(Tv \ v, v) = δ(Tv \ v) \ δ(Tv), and as a result x∗(E(Tv \ v, v)) ≥ 1 − α. Since
v is not α′-fractional there must be an edge e′ ∈ E(Tv \ v, v) with value at least
x∗(E(Tv \v, v))α′ ≥ (1−α)α′. Since our DFS selects always the highest possible
fractional value if there is no light edge to explore, the first edge selected after
exploring v must be of fractional value at least (1 − α)α′. 
�
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Combining Lemma 2 with the previous observation, if |S+
0 | ≥ γ(n − |M |) we

get that

c(x∗
T ) ≥ (γ/2)(n − |M |)(1 − γ)(γ/16) ≥ c(x∗)

γ2(1 − γ)
32(1 + γ)

.

Combining these two cases we get that if |S1| ≥ γ(n−|M |) or |S+
0 | ≥ γ(n−|M |)

then

c(x∗
T ) ≥ c(x∗) · min

(
γ2(1 − γ)
32(1 + γ)

,
γ(1 − γ)

1 + γ

)
,

hence the cost of T ∪ A is upper bounded by

2c(x∗) − c(x∗
T ) ≤ c(x∗)

(
2 − γ2(1 − γ)

32(1 + γ)

)
, (5)

which is clearly better than 2. Hence we are left with the last case, in which

|S−
0 | > (1 − γ)(n − |M |) − |S1| − |S+

0 | > (1 − 3γ)(n − |M |).

Suppose |S−
0 | > (1 − 3γ)(n − |M |). This is the most interesting case. Note

that for each edge e = uv ∈ S−
0 , the fractional degree of v restricted to heavy

edges must be at least 1, and all of this fractional degree is carried by backedges
in T . Denote by B′ this subset of backedges. Next we define B′′ ⊆ B′ to be the
subset of B′ containing only edges with fractional value at least ε = 10−1. We
claim that

|B′′| ≥ n/10. (6)

Assume the contrary, since the fractional value of any edge is at most 1 then
the total value carried by edges in B′ \ B′′ must be at least

|S−
0 | − (n/10) > (1 − 3γ)(n − |M |) − n/10 > 3n/8 − n/10.

(Recall that (n − |M |) ≥ n/2 and (1 − 3γ) > 3/4). Since all the edges in
B′ \B′′ have fractional value at most ε, there must be at least (3n/8−n/10)/ε =
30n/8 − n > 2n − 1 such edges, contradicting Lemma 1. Hence |B′′| ≥ n/10.

For completeness we consider the case when E contains heavy edges that are
parallel to light edges. Partition B′′ into B′′

1 ∪ B′′
2 , where B′′

2 is the set of edges
in B′′ parallel to an edge in S−

0 . We define B′′
1 to be the remaining edges in B′′.

We claim that |B′′
2 | ≤ n/100, and thus loosely |B′′

1 | ≥ n/20.
To see this note that,

c(x∗) − (n − |M |) ≥ |B′′
2 |ε. (7)

Equation (7) holds as the lower bound of (n−|M |) on c(x∗) is obtained only
by counting the fractional degree of each component in M . Since those parallel
edges are not counted in this bound (they are only within a single component),
they directly count in the value of c(x∗) − (n − |M |), which counts the surplus
of c(x∗) above (n − |M |).
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Then as c(x∗) − (n − |M |) ≤ γ(n − |M |), by choice of ε and γ we obtain that
|B′′

2 | ≤ n/100.
Consider the set of vertices X that contains the ancestor vertices of the edges

in B′′
1 . We claim that

|X| ≥ n/500. (8)

To prove this, we first claim that

c(x∗) − (n − |M |) ≥ |B′′
1 |ε − 2|X|. (9)

To see this, note again that the value c(x∗)−(n−|M |) represents the surplus value
of c(x∗) above the lower bound that gives fractional degree 2 to every vertex.
This trivial lower bound gives a fractional value—which is the fractional degree
restricted to heavy edges—of at most 2 to every vertex, hence a fractional value
of at most 2|X| to the set of vertices X. Since every edge in B′′

1 has fractional
value of at least ε and is adjacent to a single vertex in X, we get that the surplus
value of c(x∗) above the trivial lower bound is at least |B′′

1 |ε−2|X| which proves
Eq. (9).

Since by assumption we have c(x∗) < (1 + γ)(n − |M |) we conclude with Eq.
(9) that

γ(n − |M |) > c(x∗) − (n − |M |) ≥ |B′′
1 |ε − 2|X|

which implies, by our lower bound on |B′′
1 | and our choice of γ and ε,

|X| ≥ |B′′
1 |ε − γ(n − |M |)

2
≥ n/200 − n/103

2
= n/500. (10)

For each vertex u ∈ X, denote by eu the first edge selected by the DFS after
reaching u. Denote X ′ ⊆ X the subset of X containing only vertices u ∈ X such
that eu does not belong to S+

0 . Then, we have by assumption,

|X ′| ≥ |X| − |S+
0 | ≥ n/500 − γ(n − |M |) ≥ n/500 − n/103 = n/103.

We finally claim the following, which crucially uses how the DFS selects the
edges to explore in priority.

Claim.
c(x∗

T ) ≥ ε|X ′|.
Proof. There are two cases to consider (depicted in Fig. 2).

If u ∈ X ′ is such that eu = uv is a heavy edge, by definition of X ′ there
must be an edge e′ = uf coming from a leaf f in the tree T to u of fractional
value xe′ ≥ ε. At the first time the DFS visits the vertex u, the leaf f was not
explored yet hence the edge e′ was a valid choice of edge to explore. Since our
DFS always takes the highest fractional value, it must be that

xeu
≥ xe′ ≥ ε.

If u ∈ X ′ is such that eu = uv is a light edge, recall that by definition of
X ′, v must be a leaf in T . Then when the DFS arrived at v, it must be that
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heavy edge in the tree

light edge

backedge

≥ ε

u

v

u

v

Heavy Light

f

Tu
Tu

f

≥ ε

≥ ε ≥ ε

Fig. 2. On the left side, the case when the first edge selected out of u is heavy. On the
right the case when the first edge selected out of u is light.

all reachable vertices from v were already visited. Hence the DFS must have
backtracked to u. Now note that by our construction of B′′

1 , we know that there
must be another leaf f such that e′ = uf is a back-edge in the tree of fractional
value xuf ≥ ε (recall that uf is not parallel to the edge eu). Since f is a leaf,
u must have been explored before f therefore, after backtracking from v to u
the edge uf was a valid edge to take. Therefore the DFS must have selected a
second edge e′′ in the tree from u such that

xe′ ≥ xuf ≥ ε.

Hence we proved that all vertices u in X must be adjacent to at least one
heavy edge of fractional value ε that belongs to the tree T and goes to a child
of u. Hence the proof of the claim. 
�

By the previous claim, we have c(x∗
T ) ≥ ε|X ′| hence the cost of the returned

solution T ∪ A is at most

2c(x∗) − c(x∗
T ) ≤ 2c(x∗) − n/104 ≤ c(x∗)

(
2 − 10−4

)
, (11)

which ends the proof of Theorem 1.

3 Conclusion

In this paper, we gave a simple 2 − c approximation algorithm for MAP with
respect to the standard cut LP. Our algorithm computes a DFS tree using an
optimal extreme point solution to the above-mentioned LP solution as a guide
when selecting edges and then augments the resulting tree optimally. We leave
it as an open problem to see if the analysis can be refined to get an improved
guarantee for the algorithm. We remark that it is not difficult to see that if the
LP solution is f -fractional, then our algorithm produces a solution of at most
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2 − f times its value. In particular, this gives an upper bound of 3/2 for half-
integral solutions. We wonder if a better understanding of the algorithm will
lead to a 4

3 -approximation for the half-integral case.
Another interesting connection of our work to related works is by its relevance

to the Path Augmentation Problem (PAP). An instance of PAP is an instance
of FAP where the forest F contains only paths. We note that our techniques
generalize to instances of PAP, if the cut LP returns a solution of cost equal to
the number of components in F . This follows because the support of the optimal
extreme point solution of the cut LP for such instances has no fractional value
incident to internal nodes of the paths in F . Some independent work [16] shows
that the general FAP reduces to special instances of PAP where the cost of
the LP solution is almost equal to the number of components in F . However
these techniques do not preserve the integrality gap. Determining whether we
can bound the integrality gap of the cut LP for the FAP strictly below 2 remains
an interesting open problem.

A Deferred Proofs

Suppose that x∗ is an extreme point solution of LP (G,M). We know that x∗

can be defined as the unique solution to the following system of |E| equations,
for some S ⊆ 2V and E0 ∪ E1 ⊆ E.

∑

e∈δ(S)

xe = 2, for all S ∈ S

xe = 0 ∀e ∈ E0

xe = 1 ∀e ∈ E1

Lemma 3 shows that we can select S not too large. The proof of this lemma
is the same as Theorem 4.9 from [10].

Lemma 3 (Theorem 4.9 in [10]). Let x∗ be an extreme point of the MAP cut
LP then the family of equations S can be chosen to be a laminar family.

It is well known that any laminar family has size at most 2n − 1. Therefore
the number of fractional edges is at most |E| − |E0| − |E1| = |S| ≤ 2n − 1.

References

1. Adjiashvili, D.: Beating approximation factor two for weighted tree augmentation
with bounded costs. ACM Trans. Algorithms (TALG) 15(2), 1–26 (2018)

2. Alexander, A., Boyd, S., Elliott-Magwood, P.: On the integrality gap of the 2-edge
connected subgraph problem. Technical report. Citeseer (2006)
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Abstract. The connectivity of a hypergraph is the minimum number
of hyperedges whose deletion disconnects the hypergraph. We design

an Ôr(p + min{λ
r−3
r−1 n2, nr/λ

r
r−1 , λ

5r−7
4r−4 n

7
4 }) (The Ôr(·) notation hides

terms that are subpolynomial in the main parameter and terms that
depend only on r) time algorithm for computing hypergraph connectiv-
ity, where p :=

∑
e∈E |e| is the input size of the hypergraph, n is the

number of vertices, r is the rank (size of the largest hyperedge), and λ
is the connectivity of the input hypergraph. Our algorithm also finds a
minimum cut in the hypergraph. Our algorithm is faster than existing
algorithms if r = O(1) and λ = nΩ(1). The heart of our algorithm is a
structural result showing a trade-off between the number of hyperedges
taking part in all minimum cuts and the size of the smaller side of any
minimum cut. This structural result can be viewed as a generalization
of an acclaimed structural theorem for simple graphs [Kawarabayashi-
Thorup, JACM 19 (Fulkerson Prize 2021)]. We extend the framework of
expander decomposition to hypergraphs to prove this structural result. In
addition to the expander decomposition framework, our faster algorithm
also relies on a new near-linear time procedure to compute connectivity
when one of the sides in a minimum cut is small.

Keywords: Hypergraphs · Connectivity · Expander decomposition

1 Introduction

A hypergraph G = (V,E) is specified by a vertex set V and a collection E of
hyperedges, where each hyperedge e ∈ E is a subset of vertices. In this work, we
address the problem of computing connectivity/global min-cut in hypergraphs
with low rank (e.g., constant rank). The rank of a hypergraph, denoted r, is
the size of the largest hyperedge—in particular, if the rank of a hypergraph is
2, then the hypergraph is a graph. In the global min-cut problem, the input
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is a hypergraph with hyperedge weights w : E → R+, and the goal is to find
a minimum weight subset of hyperedges whose removal disconnects the hyper-
graph. Equivalently, the goal is to find a partition of the vertex set V into two
non-empty parts (C, V \C) so as to minimize the weight of the set of hyperedges
intersecting both parts. For a subset C ⊆ V , we will denote the weight of the
set of hyperedges intersecting both C and V \ C by d(C), the resulting function
d : V → R+ as the cut function of the hypergraph, and the weight of a min-cut
by λ(G) (we will use λ when the graph G is clear from context).

If the input hypergraph is simple—i.e., each hyperedge has unit weight and no
parallel copies—then the weight of a min-cut is also known as the connectivity of
the hypergraph. We focus on finding connectivity in hypergraphs. We emphasize
that, in contrast to graphs whose representation size is the number of edges, the
representation size of a hypergraph G = (V,E) is p :=

∑
e∈E |e|. We note that

p ≤ rm, where r is the rank and m is the number of hyperedges in the hypergraph,
and moreover, r ≤ n, where n is the number of vertices. We emphasize that the
number of hyperedges m in a hypergraph could be exponential in the number of
vertices.

Previous Work. Since the focus of our work is on simple unweighted hypergraphs,
we discuss previous work for computing global min-cut in simple unweighted
hypergraphs/graphs (i.e., computing connectivity) here. Although global min-
cut in weighted graphs has a rich literature, fast computation of global min-cut
in simple unweighted graphs was initiated more recently in a seminal work by
Kawarabayashi and Thorup (Fulkerson Prize 2021) [20]. The current fastest algo-
rithms to compute graph connectivity (i.e., when r = 2) are randomized and run
in time Õ(m) [11,13,15,18,20,25]. In contrast, algorithms to compute hyper-
graph connectivity are much slower. Furthermore, for hypergraph connectiv-
ity/global min-cut, the known randomized approaches are not always faster than
the known deterministic approaches. There are two broad algorithmic approaches
for global min-cut in hypergraphs: vertex-ordering and random contraction. We
discuss these approaches now.

Nagamochi and Ibaraki [26] introduced a groundbreaking vertex-ordering
approach to solve global min-cut in graphs in time O(mn). In independent works,
Klimmek and Wagner [21] as well as Mak and Wong [24] gave two different
generalizations of the vertex-ordering approach to compute hypergraph connec-
tivity in O(pn) time. Queyranne [29] generalized the vertex-ordering approach
further to solve non-trivial symmetric submodular minimization.1 Queyranne’s
algorithm can be implemented to compute hypergraph connectivity in O(pn)
time. Thus, all three vertex-ordering based approaches to compute hypergraph
connectivity have a run-time of O(pn). This run-time was improved to O(p+λn2)
1 The input here is a symmetric submodular function f : 2V → R via an evaluation

oracle and the goal is to find a partition of V into two non-empty parts (C, V \C) to
minimize f(C). We recall that a function f : 2V → R is symmetric if f(A) = f(V \A)
for all A ⊆ V and is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for
all A, B ⊆ V . The cut function of a hypergraph d : V → R+ is symmetric and
submodular.
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by Chekuri and Xu [7]: They designed an O(p)-time algorithm to construct a
min-cut-sparsifier, namely a subhypergraph G′ of the given hypergraph with
size p′ = O(λn) such that λ(G′) = λ(G). Applying the vertex-ordering based
algorithm to G′ gives the connectivity of G within a run-time of O(p + λn2).

We emphasize that all algorithms discussed in the preceding paragraph are
deterministic. Karger [16] introduced the influential random contraction app-
roach to solve global min-cut in graphs which was adapted by Karger and
Stein [17] to design an Õ(n2) time algorithm2. Kogan and Krauthgamer [22]
extended the random contraction approach to solve global min-cut in r-rank
hypergraphs in time Õr(mn2). Ghaffari, Karger, and Panigrahi [12] suggested
a non-uniform distribution for random contraction in hypergraphs and used it
to design an algorithm to compute hypergraph connectivity in Õ((m + λn)n2)
time. Chandrasekaran, Xu, and Yu [4] refined their non-uniform distribution to
obtain an O(pn3 log n) time algorithm for global min-cut in hypergraphs. Fox,
Panigrahi, and Zhang [10] proposed a branching approach to exploit the refined
distribution leading to an O(p+nr log2 n) time algorithm for hypergraph global
min-cut, where r is the rank of the input hypergraph. Chekuri and Quanrud
[5] designed an algorithm based on isolating cuts which achieves a runtime of
Õ(

√
pn(m + n)1.5) for global min-cut in hypergraphs.

Thus, the current fastest known algorithm to compute hypergraph connec-
tivity is a combination of the algorithms of Chekuri and Xu [7], Fox, Panigrahi,
and Zhang [10], and Chekuri and Quanrud [5] with a run-time of

Õ
(
p + min

{
λn2, nr,

√
pn(m + n)1.5

})
.

1.1 Our Results

In this work, we improve the run-time to compute hypergraph connectivity in
low rank simple hypergraphs.

Theorem 1. [Algorithm] Let G be an r-rank n-vertex simple hypergraph of size
p. Then, there exists a randomized algorithm that takes G as input and runs in
time

Ôr

(

p + min
{

λ
r−3
r−1 n2,

nr

λ
r

r−1
, λ

5r−7
4r−4 n

7
4

})

to return the connectivity λ of G with high probability. Moreover, the algorithm
returns a min-cut in G with high probability.

Our techniques can also be used to obtain a deterministic algorithm that
runs in time

Ôr

(

p + min
{

λn2, λ
r−3
r−1 n2 +

nr

λ

})

.

2 For functions f(n) and g(n) of n, we say that f(n) = Õ(g(n)) if f(n) =
O(g(n)polylog(n)) and f(n) = Ô(g(n)) if f(n) = O(g(n)1+o(1)), where the o(1)
is with respect to n. We say that f(n) = Or(g(n)) if f(n) = O(g(n)h(r)) for some
function h. We define Õr(f(n)) and Ôr(f(n)) analogously.
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Our deterministic algorithm is faster than Chekuri and Xu’s algorithm when r is
a constant and λ = Ω(n(r−2)/2), while our randomized algorithm is faster than
known algorithms if r is a constant and λ = nΩ(1). We summarize the previous
fastest algorithms and our results in Table 1.

Table 1. Comparison of results to compute hypergraph connectivity (simple
unweighted r-rank n-vertex m-hyperedge p-size hypergraphs with connectivity λ).

Deterministic Randomized

Previous run-time O(p + λn2) [7] Õ(p + min{λn2, nr,
√

pn(m + n)1.5}})

[5,7,10]

Our run-time Ôr

(
p + min

{
λn2, λ

r−3
r−1 n2 + nr

λ

})
Ôr

(
p + min

{
λ

r−3
r−1 n2, nr

λ
r

r−1
, λ

5r−7
4r−4 n

7
4

})

Our algorithm for Theorem 1 proceeds by considering two cases: either (i)
the hypergraph has a min-cut where one of the sides is small or (ii) both sides
of every min-cut in the hypergraph are large. To account for case (i), we design
a near-linear time algorithm to compute a min-cut; to account for case (ii), we
perform contractions to reduce the size of the hypergraph without destroying a
min-cut and then run known algorithms on the smaller-sized hypergraph lead-
ing to savings in run-time. Our contributions in this work are twofold: (1) On
the algorithmic front, we design a near-linear time algorithm to find a min-cut
where one of the sides is small (if it exists); (2) On the structural front, we show
a trade-off between the number of hyperedges taking part in all minimum cuts
and the size of the smaller side of any minimum cut (see Theorem 2). This struc-
tural result is a generalization of the acclaimed Kawarabayashi-Thorup graph
structural theorem [19,20] (Fulkerson prize 2021). We use the structural result
to reduce the size of the hypergraph in case (ii). We elaborate on this structural
result now.

Theorem 2. [Structure] Let G = (V,E) be an r-rank n-vertex simple hyper-
graph with m hyperedges and connectivity λ. Suppose λ ≥ r(4r2)r. Then, at least
one of the following holds:

1. There exists a min-cut (C, V \ C) such that

min{|C|, |V \ C|} ≤ r − log ( λ
4r )

log n
,

2. The number of hyperedges in the union of all min-cuts is

O

(

r9r2+2

(
6r2

λ

) 1
r−1

m log n

)

= Õr

(
m

λ
1

r−1

)

.

The Kawarabayashi-Thorup structural theorem for graphs [19,20] states that
if every min-cut is non-trivial, then the number of edges in the union of all min-
cuts is O(m/λ), where a cut is defined to be non-trivial if it has at least two
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vertices on each side. Substituting r = 2 in our structural theorem recovers this
known Kawarabayashi-Thorup structural theorem for graphs. We emphasize that
the Kawarabayashi-Thorup structural theorem for graphs is the backbone of the
current fastest algorithms for computing connectivity in graphs and has been
proved in the literature via several different techniques [13,15,20,30,31]. Part of
the motivation behind our work was to understand whether the Kawarabayashi-
Thorup structural theorem for graphs could hold for constant rank hypergraphs
and if not, then what would be an appropriate generalization. We discovered that
the Kawarabayashi-Thorup graph structural theorem does not hold for constant
rank hypergraphs: There exist hypergraphs in which (i) the min-cut capacity λ
is Ω(n), (ii) there are no trivial min-cuts, and (iii) the number of hyperedges in
the union of all min-cuts is a constant fraction of the number of hyperedges—
see the full version of this work [1] for such an example. The existence of such
examples suggests that we need an alternative definition of trivial min-cuts if
we hope to extend the Kawarabayashi-Thorup structural theorem for graphs
to r-rank hypergraphs. Conclusion 1 of Theorem 2 can be viewed as a way to
redefine the notion of trivial min-cuts. We denote the size of a cut (C, V \ C) to
be min{|C|, |V \ C|}—we emphasize that the size of a cut refers to the size of
the smaller side of the cut as opposed to the capacity of the cut. A min-cut is
small-sized if the smaller side of the cut has at most r − log(λ/4r)/ log n many
vertices. With this definition, Conclusion 2 of Theorem 2 can be viewed as a
generalization of the Kawarabayashi-Thorup structural theorem to hypergraphs
which have no small-sized min-cuts: it says that if there is no small-sized min-cut,
then the number of hyperedges in the union of all min-cuts is Õr(m/λ

1
r−1 ).

We mention that the factor λ−1/(r−1) in Conclusion 2 of Theorem 2 cannot
be improved: There exist hypergraphs in which every min-cut has at least

√
n

vertices on both sides and the number of hyperedges in the union of all min-
cuts is Θ(m · λ−1/(r−1))—see the full version of this work [1]. We also note that
the structural theorem holds only for simple hypergraphs/graphs and is known
to fail for weighted graphs. As a consequence, our algorithmic techniques are
applicable only in simple hypergraphs and not in weighted hypergraphs.

1.2 Technical Overview

Concepts used in the proof strategy of Theorem 2 will be used in the algorithm of
Theorem 1 as well, so it will be helpful to discuss the proof strategy of Theorem
2 before the algorithm. We discuss this now. We define a cut (C, V \ C) to be
moderate-sized if min{|C|, |V \ C|} ∈ (r − log(λ/4r)/ log n, 4r2) and to be large-
sized if min{|C|, |V \ C|} ≥ 4r2; we recall that the cut (C, V \ C) is small-sized
if min{|C|, |V \ C|} ≤ r − log (λ/4r)/ log n.

Proof Strategy for the Structural Theorem (Theorem 2). We assume that λ >
r(4r2)r as in the statement of Theorem 2. The first step of our proof is to
show that every min-cut in a hypergraph is either large-sized or small-sized
but not moderate-sized—in particular, we prove that if (C, V \ C) is a min-
cut with min{|C|, |V \ C|} < 4r2, then it is in fact a small-sized min-cut (see
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Lemma 2 with the additional assumption that λ > r(4r2)r). Here is the informal
argument: For simplicity, we will show that if (C, V \ C) is a min-cut with
min{|C|, |V \C|} < 4r2, then min{|C|, |V \C|} ≤ r. For the sake of contradiction,
suppose that min{|C|, |V \ C|} > r. The crucial observation is that since the
hypergraph has rank r, no hyperedge can contain the smaller side of the min-cut
entirely. The absence of such hyperedges means that even if we pack hyperedges
in G as densely as possible while keeping (C, V \ C) as a min-cut, we cannot
pack sufficiently large number of hyperedges to ensure that the degree of each
vertex is at least λ. A more careful counting argument extends this approach to
show that min{|C|, |V \ C|} ≤ r − log λ/ log n.

Now, in order to prove Theorem 2, it suffices to prove Conclusion 2 under
the assumption that all min-cuts are large-sized, i.e., min{|C|, |V \C|} ≥ 4r2 for
every min-cut (C, V \C). Our strategy to prove Conclusion 2 is to find a partition
of the vertex set V such that (i) every hyperedge that is completely contained in
one of the parts does not cross any min-cut, and (ii) the number of hyperedges
that intersect multiple parts (and therefore, possibly cross some min-cut) is small,
i.e., Õr(m · λ−1/(r−1)). To this end, we start by partitioning the vertex set of
the hypergraph G into X1, . . . , Xk such that the total number of hyperedges
intersecting more than one part of the partition is Õr(m · λ−1/(r−1)) and the
subhypergraph induced by each Xi has conductance Ωr(λ−1/(r−1)) (see Sect. 1.3
for the definition of conductance)—such a decomposition is known as an expander
decomposition. An expander decomposition immediately satisfies (ii) since the
number of hyperedges intersecting more than one part is small. Unfortunately, it
may not satisfy (i); yet, it is very close to satisfying (i)—we can guarantee that for
every min-cut (C, V \ C) and every Xi, either C includes very few vertices from
Xi, or C includes almost all the vertices of Xi i.e., min{|Xi ∩ C|, |Xi \ C|} =
Or(λ1/(r−1)). We note that if min{|Xi ∩ C|, |Xi \ C|} = 0 for every min-cut
(C, V \ C) and every part Xi then (i) would be satisfied; moreover, if a part
Xj is a singleton vertex part (i.e., |Xj | = 1), then min{|Xj ∩ C|, |Xj \ C|} = 0
holds. So, our strategy, at this point, is to remove some of the vertices from
Xi to form their own singleton vertex parts in the partition in order to achieve
min{|Xi ∩ C|, |Xi \ C|} = 0 while controlling the increase in the number of
hyperedges that cross the parts. This is achieved by a Trim operation and a
series of Shave operations.

The crucial parameter underlying Trim and Shave operations is the notion
of degree within a subset: We will denote the degree of a vertex v as d(v) and
define the degree contribution of a vertex v inside a vertex set X, denoted by
dX(v), to be the number of hyperedges containing v that are completely con-
tained in X. The Trim operation on a part Xi repeatedly removes from Xi

vertices with small degree contribution inside Xi, i.e., dXi
(v) < d(v)/2r until

no such vertex can be found. Let X ′
i denote the set obtained from Xi after the

Trim operation. We note that our partition now consists of X ′
1, . . . , X

′
k as well as

singleton vertex parts for each vertex that we removed with the Trim operation.
This operation alone makes a lot of progress towards our goal—we show that
min{|X ′

i ∩ C|, |X ′
i \ C|} = O(r2), while the number of hyperedges crossing the
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partition blows up only by an O(r) factor (see Claims 3 and 4). The little progress
that is left to our final goal is achieved by a series of (O(r2) many) Shave oper-
ations. The Shave operation finds the set of vertices in each X ′

i whose degree
contribution inside X ′

i is not very large, i.e., dX′
i
(v) ≤ (1−r−2)d(v) and removes

this set of vertices from X ′
i in one shot—such vertices are again declared as sin-

gleton vertex parts in the partition. We show that the Shave operation strictly
reduces min{|X ′

i ∩ C|, |X ′
i \ C|} without adding too many hyperedges across the

parts (see Claims 3 and 5)—this argument crucially uses the assumption that all
min-cuts are large-sized (i.e., min{|C|, |V \C|} ≥ 4r2). Because of our guarantee
from the Trim operation regarding min{|X ′

i ∩ C|, |X ′
i \ C|}, we need to perform

the Shave operation O(r2) times to obtain a partition that satisfies conditions
(i) and (ii) stated in the preceding paragraph.

Algorithm from Structural Theorem (Theorem 1). We now briefly describe our
algorithm: Given an r-rank hypergraph G, we estimate the connectivity λ to
within a constant factor in O(p) time using an algorithm of Chekuri and Xu
[7]. Next, we use the estimated connectivity value k = Θ(λ) to obtain a sub-
hypergraph G′ with size p′ = Or(λn) such that all min-cuts are preserved in
time O(p). The rest of the steps are run on this subhypergraph G′. We have
two possibilities as stated in Theorem 2. We account for these two possibili-
ties by running two different algorithms: (i) Assuming that some min-cut has
size less than r − log(λ/4r)/ log n, we design a near-linear time algorithm to
find a min-cut. This algorithm is inspired by recent vertex connectivity algo-
rithms, in particular the local vertex connectivity algorithm of [9,28] and the
sublinear-time kernelization technique of [23]. This algorithm runs in Õr(p)
time. (ii) Assuming that every min-cut is large-sized, we design a fast algo-
rithm to find a min-cut. For this, we find an expander decomposition X of
G′, perform a Trim operation followed by a series of O(r2) Shave operations,
and then contract each part of the trimmed and shaved expander decomposi-
tion to obtain a hypergraph G′′. This reduces the number of vertices in G′′

to Or(n/λ1/(r−1)) and consequently, running the global min-cut algorithm of
either [10] or [6] or [5] (whichever is faster) on G′′ leads to an overall run-time
of Ôr(p + min{λ(r−3)/(r−1)n2, nr/λr/(r−1), λ(5r−7)/(4r−4)n7/4}) for step (ii). We
return the cheaper of the two cuts found in steps (i) and (ii). The correctness
of the algorithm follows by the structural theorem and the total run-time is
Ôr(p + min{nr/λr/(r−1), λ(r−3)/(r−1)n2, λ(5r−7)/(4r−4)n7/4}).

We note here that the expander decomposition framework for graphs was
developed in a series of works for the dynamic connectivity problem [8,27,32,33].
Very recently, it has found applications for other problems [2,3,14]. Closer to our
application, Saranurak [31] used expander decomposition to give an algorithm to
compute edge connectivity in graphs via the use of Trim and Shave operations.
The Trim and Shave operations were introduced by Kawarabayashi and Thorup
[20] to compute graph connectivity in deterministic O(m log12 n) time. Our line
of attack is an adaptation of Saranurak’s approach. Since our structural theorem
is meant for hypergraph connectivity (and is hence, more complicated than what
is used by [31]), we have to work more.
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Organization. We prove the structural theorem in Sect. 2. We defer the proof of
the algorithmic result and all missing proofs to the full version of the work [1]
due to space limitations. We also elaborate on relevant previous work in the full
version.

1.3 Preliminaries

Let G = (V,E) be a hypergraph. Let S, T ⊆ V be subsets of vertices. We define
E[S] to be the set of hyperedges completely contained in S, E(S, T ) to be the set
of hyperedges contained in S ∪ T and intersecting both S and T , and Eo(S, T )
to be the set of hyperedges intersecting both S and T . With this notation, if S
and T are disjoint, then E(S, T ) = E[S ∪ T ] − E[S] − E[T ] and moreover, if the
hypergraph is a graph, then E(S, T ) = Eo(S, T ). A cut is a partition (S, V \ S)
where both S and V \ S are non-empty. Let δ(S) := E(S, V \ S). For a vertex
v ∈ V , we let δ(v) represent δ({v}). We define the capacity of (S, V \S) as |δ(S)|,
and call a cut as a min-cut if it has minimum capacity among all cuts in G. The
connectivity of a simple hypergraph G is the capacity of a min-cut in G.

We recall that the size of a cut (S, V \ S) is min{|S|, |V \ S|}. We emphasize
the distinction between the size of a cut and the capacity of a cut: size is the car-
dinality of the smaller side of the cut while capacity is the number of hyperedges
crossing the cut.

For a vertex v ∈ V and a subset S ⊆ V , we define the degree of v by
d(v) := |δ(v)| and its degree inside S by dS(v) := |e ∈ δ(v) : e ⊆ S|. We define
δ := minv∈V d(v) to be the minimum degree in G. We define vol(S) :=

∑
v∈S d(v)

and for T ⊆ V , volS(T ) :=
∑

v∈T dS(v). We define the conductance of a set
X ⊆ V as min∅�=S�X{ |Eo(S,X\S)|

min{vol(S),vol(X\S)}}. For positive integers, i < j, we let
[i, j] represent the set {i, i + 1, . . . , j − 1, j}. The following proposition will be
useful while counting hyperedges within nested sets.

Proposition 1. Let G = (V,E) be an r-rank n-vertex hypergraph and let T ⊆
S ⊆ V . Then,

|E(T, S \ T )| ≥
(

1
r − 1

)

(volS(T ) − r |E[T ]|) .

2 Structural Theorem

We prove Theorem 2 in this section. We call a min-cut (C, V \ C) moderate-
sized if its size min{|C|, |V \ C|} is in the range (r − log (λ/4r)/ log n, (λ/2)1/r).
In Sect. 2.1, we show that a hypergraph has no moderate-sized min-cuts. In
Sect. 2.2, we define Trim and Shave operations and prove properties about these
operations. We prove Theorem 2 in Sect. 2.3. We begin with the following lemma
showing the existence of an expander decomposition for low-rank hypergraphs
(which follows from the existence of an expander decomposition for graphs).
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Lemma 1 (Existential hypergraph expander decomposition). For every
r-rank n-vertex hypergraph G = (V,E) with p :=

∑
e∈E |e| and every positive real

value φ ≤ 1/(r − 1), there exists a partition {X1, . . . , Xk} of the vertex set V
such that the following hold:

1.
∑k

i=1 |δ(Xi)| = O(rφp log n), and
2. For every i ∈ [k] and every non-empty set S ⊂ Xi, we have that

|Eo(S,Xi \ S)| ≥ φ · min{vol(S), vol(Xi \ S)}.

2.1 No Moderate-Sized Min-Cuts

The following lemma is the main result of this section. It shows that there are
no moderate-sized min-cuts.

Lemma 2. Let G = (V,E) be an r-rank n-vertex hypergraph with connectivity λ
such that λ ≥ r2r+1. Let (C, V \C) be an arbitrary min-cut. If min{|C|, |V \C|} >
r − log(λ/4r)/ log n, then min{|C|, |V \ C|} ≥ (λ/2)1/r.

Proof. Without loss of generality, let |C| = min{|C|, |V \ C|}. Let t := |C| and
s := r − log (λ/4r)/ log n. We know that s < t. Suppose for contradiction that
t < (λ/2)1/r. We will show that there exists a vertex v with |δ(v)| < λ, thus
contradicting the fact that λ is the min-cut capacity. We classify the hyperedges
of G which intersect C into three types as follows: E1 := {e ∈ E : e ⊆ C}, E2 :=
{e ∈ E : C � e}, and E3 := {e ∈ E : ∅ �= e ∩ C �= C and e ∩ (V \ C) �= ∅}. We
distinguish two cases:

Case 1: Suppose t < r. Then, the number of hyperedges that can be fully
contained in C is at most 2r, so |E1| ≤ 2r. Since (C, V \C) is a min-cut, we have
that λ = |δ(C)| = |E2| + |E3|. We note that the number of hyperedges of size i
that contain all of C is at most

(
n−t
i−t

)
. Hence,

|E2| ≤
r∑

i=t+1

(
n − t

i − t

)

=
r−t∑

i=1

(
n − t

i

)

≤
r−t∑

i=1

ni ≤ 2nr−t.

Since each hyperedge in E3 contains at most t−1 vertices of C, a uniform random
vertex of C is in such a hyperedge with probability at most (t − 1)/t. Therefore,
if we pick a uniform random vertex from C, the expected number of hyperedges
from E3 incident to it is at most ( t−1

t )|E3|. Hence, there exists a vertex v ∈ C
such that

|δ(v) ∩ E3| ≤
(

t − 1
t

)

|E3| ≤
(

t − 1
t

)

|δ(C)| ≤
(

r − 1
r

)

λ.

Combining the bounds for E1, E2, and E3, we have that

|δ(v)| = |δ(v) ∩ E1| + |E2| + |δ(v) ∩ E3| ≤ |E1| + |E2| + |δ(v) ∩ E3|

≤ 2r + 2nr−t +
(

r − 1
r

)

λ < 2r + 2nr−s +
(

r − 1
r

)

λ

= 2r +
λ

2r
+

(
r − 1

r

)

λ = λ +
r2r+1 − λ

2r
≤ λ.
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Case 2: Suppose t ≥ r. Then, no hyperedge can contain C as a proper subset,
so |E2| = 0. For each v ∈ C, the number of hyperedges e of size i such that
v ∈ e ⊆ C is at most

(
t−1
i−1

)
. Hence,

|δ(v) ∩ E1| ≤
r∑

i=2

(
t − 1
i − 1

)

=
r−1∑

i=1

(
t − 1

i

)

≤
r−1∑

i=1

ti ≤ 2tr−1.

Since each hyperedge in E3 contains at most r − 1 vertices of C, a random
vertex of C is in such a hyperedge with probability at most (r − 1)/t. Therefore,
if we pick a random vertex from C, the expected number of hyperedges from E3

incident to it is at most ( r−1
t )|E3|. Hence, there exists a vertex v ∈ C such that

|δ(v) ∩ E3| ≤
(

r − 1
t

)

|E3| ≤
(

r − 1
t

)

λ.

Since t < (λ/2)1/r and t ≥ r, we have that 2tr/λ < t − r + 1. Combining this
with our bounds on |δ(v) ∩ E1| and |δ(v) ∩ E3|, we have that

|δ(v)| = |δ(v) ∩ E1| + |δ(v) ∩ E3| ≤ 2tr−1 +
(

r − 1
t

)

λ =
(

r − 1 +
2tr

λ

)
λ

t
< λ.

2.2 Trim and Shave Operations

In this section, we define the trim and shave operations and prove certain useful
properties about them. Throughout this section, let G = (V,E) be an r-rank, n-
vertex hypergraph with minimum degree δ and min-cut capacity λ. For X ⊆ V ,
let Trim(X) be the set obtained by repeatedly removing from X a vertex v with
dX(v) < d(v)/2r until no such vertices remain, Shave(X) := {v ∈ X : dX(v) >
(1−1/r2)d(v)}, and Shavek(X) := Shave(Shave · · · (Shave(X))) be the result
of applying k consecutive shave operations to X. We emphasize that Trim is
an adaptive operation while Shave is a non-adaptive operation and Shavek(X)
is a sequence of shave operations. The next claim shows that Trim and Shave
operations could increase the cut value only by a small factor.

Claim 3. Let X be a subset of V , X ′ := Trim(X), and X ′′ := Shave(X).
Then

1. |E[X] − E[X ′]| ≤ |δ(X)|, |E[X] − E[X ′′]| ≤ r2(r − 1)|δ(X)|, and
2. |δ(X ′)| ≤ 2|δ(X)|, and |δ(X ′′)| ≤ r3|δ(X)|.

The following claim shows that the Trim operation on a set X that has small
intersection with a min-cut further reduces the intersection.

Claim 4. Let (C, V \ C) be a min-cut. Let X be a subset of V and X ′ :=
Trim(X). If min{|X ∩ C|, |X ∩ (V \ C)|} ≤ (δ/6r2)1/(r−1), then

min{|X ′ ∩ C|, |X ′ ∩ (V \ C)|} ≤ 3r2.
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The following claim shows that the Shave operation on a set X which has
small intersection with a large-sized min-cut further reduces the intersection.

Claim 5. Suppose λ ≥ r(4r2)r. Let (C, V \ C) be a min-cut with min{|C|, |V \
C|} ≥ 4r2. Let X ′ be a subset of V and X ′′ := Shave(X ′). If 0 < min{|X ′ ∩
C|, |X ′ ∩ (V \ C)|} ≤ 3r2, then

min{|X ′′ ∩ C|, |X ′′ ∩ (V \ C)|} ≤ min{|X ′ ∩ C| , |X ′ ∩ (V \ C)|} − 1.

Proof. Without loss of generality, we assume that |X ′ ∩C| = min{|X ′ ∩C|, |X ′ ∩
(V \C)|}. Since X ′′ ⊆ X ′, we have that |X ′′ ∩C| ≤ |X ′ ∩C|. Thus, we only need
to show that this inequality is strict. Suppose for contradiction that |X ′′ ∩ C| =
|X ′ ∩ C|. We note that 0 < |X ′′ ∩ C| ≤ 3r2.

Let Z := X ′ ∩ C = X ′′ ∩ C, and let C ′ := C − X ′. Since |C| ≥ min{|C|, |V \
C|} ≥ 4r2 and |Z| ≤ 3r2, we know that C ′ is nonempty.

We note that Z ⊆ X ′′. By definition of Shave, we have that volX′(Z) =∑
v∈Z dX′(v) >

∑
v∈Z

(
1 − 1

r2

)
d(v) =

(
1 − 1

r2

)
vol(Z).

We note that |E(Z, V \ C)| ≥ |E(Z,X ′ \ C)| = |E(Z,X ′ \ Z)|, so by Propo-
sition 1, we have that |E(Z, V \ C)| ≥ |E(Z,X ′ \ Z)| ≥

(
1

r−1

)
(volX′(Z) −

r|E[Z]|) >
(

1
r−1

) ((
1 − 1

r2

)
vol(Z) − r|Z|r). We also know from the definition

of Shave that |E(Z,C \ Z)| ≤ ∑
v∈Z |E({v}, C \ Z)| ≤ ∑

v∈Z
1
r2 d(v) = vol(Z)

r2 .
Thus, using our assumption that λ ≥ r(4r2)r, we have that |E(Z, (V \ C))| >

(
1

r − 1

)((

1 − 1
r2

)

vol(Z) − r|Z|r
)

=
(

r2 − 1
r2(r − 1)

)

vol(Z) −
(

r

r − 1

)

|Z|r

=
vol(Z)

r2
+

vol(Z)
r

−
(

r

r − 1

)

|Z|r ≥ vol(Z)
r2

+
∑

v∈Z d(v)
r

− r|Z|r

≥ vol(Z)
r2

+
|Z|λ

r
− r|Z|r ≥ vol(Z)

r2
+ (4r2)r|Z| − r|Z|r

≥ vol(Z)
r2

+ (4r2)|Z|r − r|Z|r ≥ vol(Z)
r2

≥ |E(Z,C \ Z)|.

We note that E(Z, (V \ C)) is the set of hyperedges which are cut by C but
not C ′, while E(Z,C \ Z) is the set of hyperedges which are cut by C ′ but not
C. Since we have shown that |E(Z, V \ C)| > |E(Z,C \ Z)|, we conclude that
|δ(C)| > |δ(C ′)|. Since (C, V \ C) is a min-cut and ∅ �= C ′ ⊆ C � V , this is a
contradiction.

2.3 Proof of Theorem 2

Proof (Proof of Theorem 2). Suppose the first conclusion does not hold. Then,
by Lemma 2, the smaller side of every min-cut has size at least (λ/2)1/r ≥ 4r2.
Let (C, V \C) be an arbitrary min-cut. We use Lemma 1 with φ = (6r2/λ)1/(r−1)

to get an expander decomposition X = {X1, . . . , Xk}. We note that φ ≤ 1/(r−1)
holds by the assumption that λ ≥ r(4r2)r. For i ∈ [k], let X ′

i := Trim(Xi) and
X ′′

i := Shave3r2(X ′
i).
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Let i ∈ [k]. By the definition of the expander decomposition and our
choice of φ = (6r2/λ)1/(r−1), we have that λ ≥ |Eo(Xi ∩ C,Xi ∩ (V \ C))| ≥
(

6r2

λ

) 1
r−1

min{vol(Xi ∩ C), vol(Xi \ C)} ≥
(

6r2

λ

) 1
r−1

δ min{|Xi ∩ C|, |Xi \ C|}.

Thus, min{|Xi ∩ C|, |Xi \ C|} ≤ (λ/δ)(λ/6r2)1/(r−1) ≤ (λ/6r2)1/(r−1) ≤
(δ/6r2)1/(r−1). Therefore, by Claim 4, we have that min{|X ′

i ∩ C|, |X ′
i∩(V \C)|} ≤

3r2. We recall that λ ≥ r(4r2)r and every min-cut has size at least 4r2. By 3r2

repeated applications of Claim 5, we have that min{|X ′′
i ∩C|, |X ′′

i ∩ (V \C)|} = 0.
Let X ′′ := {X ′′

1 , . . . , X ′′
k }. Since min{|X ′′

i ∩ C|, |X ′′
i ∩ (V \ C)|} = 0 for every

min-cut (C, V \ C) and every X ′′
i ∈ X ′′, it follows that no hyperedge crossing a

min-cut is fully contained within a single part of X ′′. Thus, it suffices to show
that |E −⋃k

i=1 E[X ′′
i ]| is small—i.e., the number of hyperedges not contained in

any of the parts of X ′′ is Õr(m/λ
1

r−1 ).
By the first part of Claim 3, we have that |E[Xi] − E[X ′

i]| ≤ 2|δ(Xi)| and
|δ(X ′

i)| ≤ 2|δ(Xi)| for each i ∈ [k]. By the second part of Claim 3, we have
that |δ(Shavej+1(X ′

i))| ≤ r3|δ(Shavej(X ′
i))| for every non-negative integer j.

Therefore, by repeated application of the second part of Claim 3, for every j ∈
[3r2], we have that |δ(Shavej(X ′

i))| ≤ 2r3j |δ(Xi)|. By the first part of Claim
3, for every j ∈ [3r2], we have that |E[Shavej−1(X ′

i)] − E[Shavej(X ′
i)]| ≤

r3|δ(Shavej−1(X ′
i))| ≤ 2r3j |δ(Xi)|.

Therefore,
∣
∣
∣E − ⋃k

i=1 E[X ′′
i ]

∣
∣
∣ −

∣
∣
∣E − ⋃k

i=1 E[Xi]
∣
∣
∣

≤
k∑

i=1

|E[Xi] − E[X ′′
i ]|

=
k∑

i=1

⎛

⎝|E[Xi] − E[X ′
i]| +

3r2
∑

j=1

|E[Shavej−1(X ′
i)] − E[Shavej(X ′

i)]|
⎞

⎠

≤
k∑

i=1

⎛

⎝2|δ(Xi)| +
3r2
∑

j=1

2r3j |δ(Xi)|
⎞

⎠ =
k∑

i=1

|δ(Xi)|
⎛

⎝2 +
3r2
∑

j=1

2r3j

⎞

⎠

≤
k∑

i=1

3r9r2 |δ(Xi)| ≤ 3r9r2
k∑

i=1

|E(Xi, V \ Xi)| .

Hence,
∣
∣
∣E − ⋃k

i=1 E[X ′′
i ]

∣
∣
∣ ≤ 4r9r2 ∑k

i=1 |E(Xi, V \ Xi)|. By Lemma 1, since X is

an expander decomposition for φ = (6r2/λ)1/(r−1) and since p =
∑

e∈E |e| ≤ mr,
we have that

k∑

i=1

|E(Xi, V \ Xi)| = O(rφp logn) = O(r)

(
6r2

λ

) 1
r−1

p logn = O(r2)

(
6r2

λ

) 1
r−1

m log n.

Thus, |E −⋃k
i=1 E[X ′′

i ]| = O(r9r2+2(6r2/λ)1/(r−1)m log n), thus proving the sec-
ond conclusion.
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Abstract. Consider a linear program of the form max{c�x : Ax ≤ b},
where A is an m × n integral matrix. In 1986 Cook, Gerards, Schrijver,
and Tardos proved that, given an optimal solution x∗, if an optimal
integral solution z∗ exists, then it may be chosen such that ‖x∗ − z∗‖∞ <
nΔ, where Δ is the largest magnitude of any subdeterminant of A. Since
then an open question has been to improve this bound, assuming that
b is integral valued too. In this manuscript we show that nΔ can be
replaced with n/2 · Δ whenever n ≥ 2 and x∗ is a vertex. We also show
that, in certain circumstances, the factor n can be removed entirely.

1 Introduction

Suppose A is an integral full-column-rank m × n matrix. The polyhedron corre-
sponding to a right hand side b ∈ Q

m is

P (A, b) := {x ∈ R
n : Ax ≤ b} .

The linear program corresponding to P(A, b) and an objective vector c ∈ Q
n is

LP(A, b, c) := max
{

c�x : x ∈ P(A, b)
}

,

and the corresponding integer linear program is

IP(A, b, c) := max
{

c�x : x ∈ P(A, b) ∩ Z
n
}

.

The proximity question in integer linear programming can be stated as follows:
Given an optimal vertex solution x∗ of LP(A, b, c), how far away is the nearest
optimal solution z∗ to IP(A, b, c) (if one exists)? Proximity has a wide array of
applications in integer linear programming. Perhaps not too surprisingly, upper
bounds on proximity can help identify integer vectors in P(A, b) from vertices;
this is relevant in search techniques such as the feasibility pump [6] and dynamic
c© Springer Nature Switzerland AG 2022
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programming [5,10]. An upper bound of π on proximity also leads to a trivial
enumeration algorithm to optimize IP(A, b, c): Solve LP(A, b, c) to identify an
optimal vertex x∗ and then enumerate up to (2π + 1)n many integer points z∗

satisfying ‖x∗ − z∗‖∞ ≤ π.
Proximity has been studied for decades with perhaps the most foundational

result due to Cook, Gerards, Schrijver, and Tardos. To state their result, we
denote the largest absolute k × k minor of A by

Δk (A) := max {|det M | : M is a k × k submatrix of A} .

Theorem 1 (Theorem 1 in [3]). Let b ∈ Q
m and c ∈ Q

n. Let x∗ be an opti-
mal vertex of LP(A, b, c). If IP(A, b, c) is feasible, then there exists an optimal
solution z∗ such that1

‖x∗ − z∗‖∞ ≤ n · Δn−1 (A) .

Cook et al.’s result is truly a cornerstone result. Their proof technique has
been used to establish proximity bounds involving other data parameters [21] and
different norms [11,12]. Furthermore, their result has been extended to derive
proximity results for convex separable programs [7,9,20] (where the bound in
Theorem 1 remains valid), for mixed integer programs [16], and for random
integer programs [15].

Lovász [18, Section 17.2] and Del Pia and Ma [4, Section 4] identified tuples
(A, b, c) such that proximity is arbitrarily close to the upper bound in Theo-
rem 1. However, their examples crucially rely on the fact that b can take arbitrary
rational values. In fact, Lovász’s example uses a totally unimodular matrix A
while Del Pia and Ma use a unimodular matrix. Therefore, if the right hand sides
b in their examples were to be replaced by the integral rounded down vector �b�,
then the polyhedron P(A, �b�) would only have integral vertices. From an inte-
ger programming perspective, replacing b with �b� is natural as it strengthens
the linear relaxation without cutting off any feasible integer solutions.

It remains an open question whether Cook et al.’s bound is tight when b ∈
Z

m. Under this assumption, Paat et al. [16] conjecture that the true bound is
independent of n. This conjecture is supported by various results: Aliev et al. [2]
prove that proximity is upper bounded by the largest entry of A for knapsack
polytopes, Veselov and Chirkov’s result [19] implies a proximity bound of 2 when
Δn(A) ≤ 2, and Aliev et al. [1] prove a bound of Δn(A) for corner polyhedra.

Our main result is the first improvement on Cook et al.’s result. Furthermore,
our proof technique generalizes theirs, and we believe that it can be applied in
the multiple settings where their technique is used.

Theorem 2. Let n ≥ 2, b ∈ Z
m, and c ∈ Q

n. Let x∗ be an optimal vertex of
LP(A, b, c). If IP(A, b, c) is feasible, then there exists an optimal solution z∗

1 Their upper bound is stated as n · max
{

Δk(A) : k = 1, . . . , n
}

, but their argument
actually yields an upper bound of n · Δn−1 (A). Furthermore, their result holds for
any (not necessarily vertex) optimal LP solution x∗.
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such that
‖x∗ − z∗‖∞ <

n

2 · Δn−1(A).

Our proof of Theorem 2 consists of three parts. First, we relate proximity
to the volume of a certain polytope associated with the matrix A. Second, we
establish lower bounds on the volume of this polytope when n = 2 and n = 3;
see Sect. 2. Third, we show how these proximity bounds in lower dimensions can
be used to derive proximity bounds in higher dimensions; see Sect. 3. We can
improve Theorem 2 in certain settings. For instance, if n is a multiple of 3 then
we can replace the factor n/2 with (√

2/3) · n, and the factor (√
2/3) · n + 1 can be

used for every n; see Remark 2.
We also consider the case when A is strictly Δ-modular, that is, A = T B for

a totally unimodular matrix T and a square integer matrix B with determinant
Δ; see Sect. 5. Here we show the factor n/2 can be removed entirely, generalizing
a recent result of Nägele, Santiago, and Zenklusen [14, Theorem 5]. We also give
essentially matching lower bounds; see Sect. 6. It is more or less straightforward
to find a 1-dimensional polytope P(A, b) ⊆ R

n with a matching lower bound
on proximity when n ≥ 2. Thus, our contribution with this lower bound is a
full-dimensional polytope P (A, b) ⊆ R

n with a unique integral point z∗, and a
vertex x∗ sharing no common facet with z∗, such that the proximity is, up to a
constant additive factor, equal to Δn−1 (A).

Theorem 3. Let Δ ≥ 1 and n ≥ 2.

1. For all feasible instances IP (A, b, c) with A strictly Δ-modular and b integral,
and for all optimal vertices x∗ of LP(A, b, c), there exists an optimal solution
z∗ of IP(A, b, c) such that

‖x∗ − z∗‖∞ ≤ max {Δn−1(A), Δn(A)} − 1.

2. Let Δ ≥ 3. There exists a feasible instance IP (A, b, c) with A strictly Δ-
modular and b integral, and an optimal vertex x∗ of LP(A, b, c), such that
every feasible integral solution z∗ of IP(A, b, c) satisfies

‖x∗ − z∗‖∞ = max {Δn−1(A), Δn(A)} − 2.

Moreover, P (A, b) is full-dimensional, and x∗ and z∗ do not lie on a common
facet of P (A, b).

1.1 Preliminaries and Notation

Here we outline the key objects and parameters used in the paper.
Let A ∈ Z

m×n be a full-column-rank matrix, and b ∈ Z
m be such that

P(A, b) ∩ Z
n 
= ∅. For I ⊆ [m] := {1, . . . , m}, we use AI and bI to denote the

rows of A and b indexed by I. If I = {i}, then we write a�
i := AI . We use 0

and 1 to denote the all zero and all one vector (in appropriate dimension). For
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a polyhedron Q ⊆ R
n, the dimension of Q is the dimension of the linear span of

Q and is denoted by dim Q. We also define, for I ⊆ [m],

gcd AI := gcd {|det M | : M is a rank(AI) × rank(AI) submatrix of AI} ,

with gcd A∅ = 1. In the case when P ∩ Z
n = {0}, bounding proximity is equiv-

alent to bounding

max
x∈P(A,b)

‖x‖∞ = max
α∈{±e1,...,±en}

max
{

α�x : x ∈ P(A, b)
}

, (1)

where e1, . . . , en ∈ Z
n are the standard unit vectors. As we shall see in the proof

of Theorem 2, the general case then follows from this case. In light of this, we
analyze the maximum of an arbitrary linear form α�x over P(A, b) for α ∈ Z

n.
We provide non-trivial bounds on the maximum of these linear forms for

small values of n; see Sect. 2. In order to lift low dimensional proximity results to
higher dimensions (see Sect. 3), we consider slices of P (A, b) through the origin
induced by rows of A. Given I ⊆ [m] such that |I| ≤ n − 1 and rank AI = |I|,
define

PI (A, b) := P (A, b) ∩ ker AI .

We specify ker A∅ = R
n, so that P∅(A, b) = P(A, b). The bounds that we

provide on α�x are given in terms of the parameter

ΔI (A, α) := 1
gcd AI

· max
{∣

∣
∣
∣det

(
α�

AK

)∣
∣
∣
∣ : I ⊆ K ⊆ [m] , |K| = n − 1

}
,

and we write Δ(A, α) := Δ∅(A, α). In particular, we define κI (A, b, α) to be
the number satisfying

max
x∈PI(A,b)

α�x = κI (A, b, α) ΔI (A, α) . (2)

Maximizing over all I ⊆ [m] such that PI (A, b) has a fixed dimension d, define

κd (A, b, α) := max
I:dim PI(A,b)=d

κI (A, b, α) .

Equation (2) looks similar to the proximity bound we seek. However, ΔI (A, α)
depends on α, whereas our main result (Theorem 2) only depends on Δn−1(A).
Later (see Sect. 4), we will substitute ±e1, . . . , ±en in for α as in (1). We also
want to consider I = ∅ because P∅(A, b) = P(A, b) by definition. These substi-
tutions will convert ΔI (A, α) to proving proximity of Δn−1(A) over P(A, b) as
desired in our proximity theorem.

Another important object for us is the following cone. For x∗ ∈ R
n, define

C (A, x∗) :=
{

x ∈ R
n :

sign
(
a�

i x∗) · a�
i x ≥ 0 ∀ i ∈ [m] such that a�

i x∗ 
= 0
a�

i x = 0 ∀ i ∈ [m] such that a�
i x∗ = 0

}

.



88 M. Celaya et al.

The cone C (A, x∗) serves as a key ingredient in the proof of Theorem 1 in [3].
We also define the polytope

S (A, x∗) := C (A, x∗) ∩ (x∗ − C (A, x∗)) .

One checks that if x∗ ∈ P (A, b), then S (A, x∗) ⊆ P (A, b). Moreover, if y∗ ∈
S (A, x∗) then S (A, y∗) ⊆ S (A, x∗). Polytopes of this form, namely, ones in
which every facet is incident to one of two distinguished vertices, known as
spindles, were used in [17] to construct counterexamples to the Hirsch conjecture.

In Sects. 2 and 3, we fix A ∈ Z
m×n and b ∈ Z

m. Thus, in our notation we
drop the dependence on A and b, and write PI for PI(A, b), ΔI(α) for ΔI(A, α),
κ(α) for κ(A, b, α), S(x∗) for S(A, x∗) and so on.

1.2 Dimension Reduction

When analyzing proximity, one must consider those polyhedra dim P < n. A
useful fact for us is that we need only consider the case when dim P = n,
by replacing a not-necessarily full-dimensional instance with an equivalent full-
dimensional instance in a lower-dimensional space.

Lemma 1. Let α ∈ Z
n such that the maximum of max{α�x : x ∈ P} is

attained and is finite. Assume I ⊆ [m] determines a linearly independent subset
of the rows of A such that the linear span of PI is ker AI , which has dimension
d. Then there exists a linear isomorphism ker AI → R

d given by x �→ P x where
P ∈ Z

d×n, which maps ker AI ∩ Z
n onto Z

d and maps PI(A, b) onto P(Â, b̂)
for some Â ∈ Z

(m−n+d)×d, b̂ ∈ Z
m−n+d, and satisfies

κI (A, b, α) = κd

(
Â, b̂, α̂

)

where α̂ ∈ Z
d is the unique vector satisfying α̂�P = α�.

Proof. Without loss of generality, suppose I = [n − d]. Set J := [n − d], J̄ :=
{n − d + 1, . . . , n}, and Ī := {n − d + 1, . . . , m}. Choose a unimodular matrix
U ∈ Z

n×n (e.g., via the Hermite Normal Form of A[n]) such that

AU =
(

(AU)I,J 0
(AU)Ī,J (AU)Ī,J̄

)

with (AU)I,J square and invertible.
Set Â := (AU)Ī,J̄ , b̂ := bĪ , and α̂� :=

(
α�U

)
J̄

. For x ∈ ker AI , we have

0 = AIx = AIUU−1x = [(AU)I,J 0] U−1x = (AU)I,J (U−1x)J .

Thus, (U−1x)J = 0. Hence, the map x �→ (
U−1x

)
J̄

is a linear isomorphism from
ker AI to R

|J̄| = R
d, which restricts to a lattice isomorphism from ker AI ∩ Z

n
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to Z
d and maps PI(A, b) to P(

Â, b̂
)
. It follows that P(

Â, b̂
) ∩ Z

d = {0}. For
x ∈ ker AI , the equation

(
U−1x

)
J

= 0 implies that

α�x = α�UU−1x = α̂� (
U−1x

)
J̄

. (3)

Moreover, if K ⊆ Ī with |K| = d − 1, then
∣
∣
∣
∣det

(
α̂�

ÂK

)∣
∣
∣
∣ =

∣
∣
∣
∣det

(
(α�U )J̄

( AU )K,J̄

)∣
∣
∣
∣

= 1∣
∣det (AU)I,J

∣
∣ ·

∣
∣
∣
∣
∣
∣
det

⎛

⎝
( AU )I,J 0
(α�U )J (α�U )J̄

( AU )K,J ( AU )K,J̄

⎞

⎠

∣
∣
∣
∣
∣
∣

= 1
gcd AI

·
∣
∣
∣
∣det

(
α�

AI∪K

)∣
∣
∣
∣ ,

where we have used
∣
∣det (AU)I,J

∣
∣ = gcd(AU)I = gcd AIU = gcd AI . Taking

the maximum over all such K, we get

Δ
(
Â, α̂

)
= ΔI (A, α) . (4)

Putting (3) and (4) together, we get

κd

(
Â, b̂, α̂

)
= max

y∈P(Â,b̂)
α̂�y

Δ
(
Â, α̂

) = max
x∈PI(A,b)

α�x

ΔI (A, α) = κI (A, b, α) . ��

2 Proximity for 1, 2, and 3-Dimensional Polyhedra

The Cook et al. bound roughly translates to the statement κn < n for n = 1, 2, 3
whenever P ∩ Z

n = {0}. In this section, in particular in Lemma 4, we improve
upon these bounds. Define the polyhedron

Pα :=
{

x ∈ R
n : |Ax| ≤ 1, α�x = 0

}
.

This is an (n − 1)-dimensional polyhedron, which is bounded since A has full
column rank by assumption. We use voli(·) to denote the i-dimensional Lebesgue
measure.

Lemma 2. Let α ∈ Z
n be non-zero. Assume dim P = n and P ∩ Z

n = {0}.
Then

κn(α) <
2n−1 ‖α‖2

voln−1 (Pα) Δ(α) .

Proof. Recall P = P(A, b). Let x∗ ∈ P attain the maximum of

κn(α) = max
x∈P

α�x

Δ(α) ,
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which we assume is positive without loss of generality. Define the polytope

Q (x∗) := Pα + [−x∗, x∗] ,

which is 0-symmetric and full-dimensional in R
n. Observe that

voln (Q (x∗)) = 2κn(α)Δ(α)
‖α‖2

· voln−1 (Pα) .

All integer points not in Q(x∗) are a positive distance away from Q(x∗), hence
there exists δ > 0 such that Q((1 + δ)x∗) and Q(x∗) contain precisely the same
set of integer points. This choice of δ uniquely determines ε > 0 for which

Q′ (x∗) := (1 − ε) Q ((1 + δ) x∗)

has the same n-dimensional volume as Q(x∗), and furthermore

Q′ (x∗) ∩ Z
n ⊆ Q (x∗) ∩ Z

n.

Assume to the contrary that voln (Q (x∗)) ≥ 2n. By Minkowski’s convex body
theorem, there exists z∗ ∈ Q(x∗) ∩ Q′(x∗) ∩ Z

n \ {0} by the above inclusion.
Therefore, with respect to the vector space decomposition of R

n into the line
R · x∗ and the hyperplane α�x = 0, the vector z∗ decomposes uniquely as
z∗ = λx∗ + (z∗ − λx∗) with λ ∈ [0, 1] and z∗ − λx∗ ∈ (1 − ε) Pα. Hence,

|A (z∗ − λx∗)| ≤ (1 − ε)1.

As P ∩ Z
n = {0} and z∗ 
= 0, there exists some row a�

j of A such that a�
j z∗ ≥

bj + 1. Since x∗ ∈ P(A, b), we also have a�
j x∗ ≤ bj . Thus, we get

bj + 1 ≤ a�
j z∗ = a�

j (λx∗) + a�
j (z∗ − λx∗) ≤ λbj + (1 − ε) < bj + 1.

This is a contradiction. Hence,

2κn(α)Δ(α)
‖α‖2

· voln−1 (Pα) = voln (Q (x∗)) < 2n.

Rearranging yields the desired inequality. ��
Remark 1. Integrality of b, which is the key assumption of this paper, is used
above in the assertion a�

j z∗ ≥ bj + 1. If b were not integral, then we would only
be able to assert that a�

j z∗ ≥ �bj�, which is not sufficient to complete the proof.

For the proof of Lemma 4 we apply the following classical result of Mahler [13]
(see also [8, Page 177]) on the relationship between the area of a nonempty
compact convex set K ⊆ R

2 and the area of its polar

K◦ :=
{

x ∈ R
2 : y�x ≤ 1 for all y ∈ K

}
.
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Lemma 3 (Mahler’s Inequality when n = 2 [13]). Let K ⊆ R
2 be nonempty

compact and convex whose interior contains 0. Then vol2 (K) vol2 (K◦) ≥ 8.

Lemma 4. Let α ∈ Z
n be non-zero. Suppose P ∩ Z

n = {0}. Then κ1(α) < 1,
κ2(α) < 1 and κ3(α) <

√
2.

Proof. By Lemma 1 we may assume P is full-dimensional. If n = 1, then P (A, b)
is contained in the open interval (−1, 1), which immediately implies κ1(α) < 1.
If n = 2, then the polytope Pα is an origin-symmetric line segment [−y∗, y∗],
where y∗ ∈ R

2 satisfies α�y∗ = 0 and a�
j y∗ = 1 for some j ∈ [m]. Hence

vol1 (Pα) = 2 ‖y∗‖2 =
2 ‖α‖2

|det (α aj)| .

Applying Lemma 2, we get

κ2(α) <
2 ‖α‖2

vol1 (Pα) Δ(α) = |det (α aj)|
Δ(α) ≤ 1.

If n = 3, then choose I ⊆ [m] with |I| = 2 such that

B :=
(

α�

AI

)

satisfies |det B| = Δ. Let A′ denote the last two columns of AB−1. Then

B · Pα = {0} × Q,

where
Q :=

{
x ∈ R

2 :
∣
∣A′x

∣
∣ ≤ 1

}
.

We enumerate the rows of A′ as a′
1, . . . , a′

m. Since Pα is a polytope, so is Q.
The polar of Q is the convex hull of the rows of A′:

Q◦ := conv {a′
i : i ∈ [m]} .

Let τ : R2 → R
2 denote the 90◦ counterclockwise rotation in R

2. Observe
that τ (Q◦) ⊆ Q. Indeed, for each pair {i, j} ⊆ [m], we have

∣
∣
∣τ (a′

i)
�

a′
j

∣
∣
∣ =

∣
∣det

(
a′

i a′
j

)∣
∣ = |det (α ai aj)|

|det B| ≤ 1.

Hence, by Mahler’s Inequality,

vol2 (Q) ≥
√

vol2 (Q) vol2 (τ (Q◦)) =
√

vol2 (Q) vol2 (Q◦) ≥ 2
√

2.

We have
vol2 (Q) = |det B|

‖α‖2
· vol2 (Pα) .

By Lemma 2, we get

κ3(α) <
4 ‖α‖2

vol2 (Pα) Δ(α) ≤ 4
2
√

2
=

√
2. ��
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3 Lifting Proximity Results to Higher Dimensions

The next step is to prove Theorem 2 by showing how proximity results for
low dimensional polytopes can be used to derive proximity results for higher
dimensional polytopes.

Lemma 5. Let x∗ ∈ R
n, and let d = dim(S (x∗)). Let y∗ ∈ S (x∗), let k :=

dim S (y∗), and fix d ∈ {1, . . . , k}. There exists a d-face of S (y∗) incident to y∗

that intersects some (k − d)-face of S (y∗) incident to 0.

Proof. Let I ⊆ [m] index the components i such that a�
i y∗ 
= 0. For i ∈ I let

âi = sign
(
a�

i y∗) · ai. The spindle S (y∗) can be written as

S (y∗) =
{

x ∈ R
n : 0 ≤ â�

i x ≤ â�
i y∗ ∀ i ∈ I and a�

i x = 0 ∀ i 
∈ I
}

.

The constraints are indexed by the disjoint union I0 ∪ Iy∗ ∪ Ī, where I0 and Iy∗

denote the two copies of I indexing constraints tight at 0 and at y∗, respectively.
Let J0, J1, . . . , Jr be a sequence of feasible bases of this system, with correspond-
ing basic feasible solutions 0 = y(0), y(1), . . . , y(r) = y∗ such that for each i < r,
the symmetric difference of Ji+1 and Ji is a 2-element subset of I0 ∪ Iy∗ . We
have |J0 ∩Iy∗ | = 0 and |Jr ∩Iy∗ | = k, and |Ji+1\Ji| = 1 for each i < r. It follows
that there must exist some 	 such that |J� ∩ Iy∗ | = k − d. Since we always have
|Ji ∩ (I0 ∪ Iy∗)| = k for every choice of i, we also get |J� ∩ I0| = d.

The basic feasible solution y(�) associated to J� is a vertex of the face of
S (y∗) obtained by making the constraints of J� ∩ Iy∗ tight. It is also a vertex
of the face of S (y∗) obtained by making the constraints of J� ∩ I0 tight. These
faces are contained in a d-face and a (k − d)-face, respectively. ��

Lemma 5 will be used to create a path from one vertex of a spindle to another
by traveling over d dimensional faces. In the next result, we apply proximity
results to each d dimensional face that we travel over. This generalizes the proof
of Cook et al., which can be interpreted as walking along edges of a spindle.

Lemma 6. Let α ∈ Z
n be non-zero. Let dim P =: d =

∑k
i=0 di where each di is

a positive integer. Then
κd(α) ≤ ∑k

i=0 κdi
(α).

Proof. In this proof, we supress in our notation dependence on α. Let x∗ max-
imize α�x over P. Build a sequence x∗ =: x∗

0, x∗
1, . . . , x∗

t := 0 of points induc-
tively as follows. Assume i ≥ 0 and x∗

0, . . . , x∗
i have been determined already. If

both
i ≤ k and di < dim S (x∗

i ) , (5)

then we use Lemma 5 to choose a vertex x∗
i+1 of S (x∗

i ) that is incident to both
a di-dimensional face Fi of S (x∗

i ) containing x∗
i , as well as a (dim S (x∗

i ) − di)-
dimensional face Gi of S (x∗

i ) containing 0. Otherwise, if (5) fails, then we set
Fi = S (x∗

i ) and x∗
i+1 = 0, and we terminate the sequence by setting t = i + 1.
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Let i ∈ {0, . . . , t−2}. We show x∗
i+1 
= 0. If not, then Fi contains both 0 and

x∗
i . But the only face of S (x∗

i ) containing 0 and x∗
i is S (x∗

i ) itself. One can see
this by observing that the centre of symmetry of the centrally symmetric spindle
S (x∗

i ) is 1/2 · x∗
i . But this contradicts the fact that Gi has positive dimension by

(5). Thus, x∗
i+1 is non-zero, which implies

dim S (
x∗

i+1
) ≥ 1. (6)

Moreover, as both Gi and S (
x∗

i+1
)

are contained in the affine (equivalently,
linear) span of Gi, we must have

dim S (
x∗

i+1
) ≤ dim Gi = dim S (x∗

i ) − di. (7)

Applying (6) and then (7) sequentially with s ∈ {t − 2, t − 3, . . . , 0}, we have

1 ≤ dim S (
x∗

t−1
) ≤ dim S (x∗

0) − ∑t−2
s=0 ds ≤ d − ∑t−2

s=0 ds,

which is to say d =
∑k

s=0 ds >
∑t−2

s=0 ds. It follows that t − 1 ≤ k.
Suppose I ⊆ [m] indexes linearly independent rows of A such that κd = κI ,

so that in particular ker AI is the linear span of P. Let i ∈ {0, . . . , t − 1}. We
have that x∗

i − Fi is a face of S (x∗
i ) containing 0. Choose an index set Ii, where

I ⊆ Ii ⊆ [m], such that the rows of AIi are linearly independent and ker AIi is
the linear span of x∗

i − Fi. We have

α� (
x∗

i − x∗
i+1

) ≤ max
x∈x∗

i
−Fi

α�x ≤ max
x∈PIi

α�x ≤ κIiΔIi .

If i < t − 1, then since Fi is a di-dimensional face, we have κIiΔIi ≤ κdi
ΔI for

i ∈ {0, . . . , t−2}. Otherwise i = t−1, in which case one of the inequalities in (5)
fails. We have established that t − 1 ≤ k, thus

dt−1 ≥ dim S (
x∗

t−1
)

= dim Ft−1. (8)

and hence κIt−1ΔIt−1 ≤ κdt−1ΔI . Putting these all together we get

ΔI · κd = α
�

x
∗ =

t−1∑

i=0

α
� (

x
∗
i − x

∗
i+1

)
≤

t−1∑

i=0

κIi
ΔIi

≤ ΔI ·
k∑

i=0

κdi
. ��

4 Proof of the Main Theorem

Proof (of Theorem 2). Suppose x∗ is an optimal vertex of LP(A, b, c). Let z∗

be any optimal solution to IP(A, b, c). By LP duality, there exists an optimal
LP basis I∗ ⊆ [m], i.e., x∗ = A−1

I∗ bI∗ , and a vector y ∈ R
I∗
≥0 that satisfies

c� = y�AI∗ . The polytope P(A, b) := {x ∈ P(A, b) : AI∗x ≥ AI∗z∗}
contains x∗ and z∗ and Δk(A) = Δk(A) for all k ∈ [n]. Any integer vector
w∗ ∈ P(A, b) \ {z∗} is also an optimal solution to IP(A, b, c) because c�w∗ =
y�(AI∗w∗) ≥ y�(AI∗z∗) = c�z∗, and AI∗w∗ ≥ AI∗z∗ with at least one of



94 M. Celaya et al.

the n inequalities satisfied strictly because I∗ is a basis. Thus, by replacing z∗

by an integer vector in P(A, b) \ {z∗} finitely many times, we may assume that
P(A, b) ∩ Z

n = {z∗}. Translating the instance, we may further assume that
z∗ = 0, so that our objective is now to show ‖x∗‖∞ < n

2 · Δn−1(A).
Now let s ∈ {−1, 1}, let i ∈ {1, 2, . . . , n}, and let α = sei. We have

sx∗
i ≤ max

x∈P
α�x = κd(α) · Δ(A, α) ≤ κd(α) · Δn−1(A).

By Lemma 4, κ1(α) < 1, so we may assume d ≥ 2. We write d = 3a + 2b,
where a, b are nonnegative integers, and we further specify a = �d/3�. Applying
Lemma 6, then Lemma 4, then the fact d ≤ n, we get

κd(α) ≤ κ3(α) · a + κ2(α) · b <
√

2�d/3� + d − 3�d/3�
2 ≤ d

2 ≤ n

2 . ��

Remark 2. The right hand side above could also be replaced with
√
2
3 · n + 1.

5 Proximity in the Strictly Δ-Modular Case

In this section we assume A = T B, where T is totally unimodular and B is an
invertible square matrix with | det B| = Δn(A). The following lemma is similar
to [14, Lemma 29 and Lemma 30] after linear transformation with B. We say a
nonzero vector x in a lattice Λ is primitive if kx 
∈ Λ for all k ∈ (0, 1).

Lemma 7. Set Λ := B−1
Z

n and let x∗ ∈ Λ. Then each ray of C (x∗) con-
tains a primitive vector in Λ, and x∗ can be written as a non-negative integral
combination of those vectors.

Proof. Let I ⊆ [m] index a one-dimensional subspace ker AI which contains a
ray of C (x∗). Further, let j ∈ [m] \I index another row of A such that AI∪{j}
is invertible with last row Aj . We choose the following scaled vector

r := A−1
I∪{j}en = B−1T −1

I∪{j}en ∈ C (x∗) ∩ ker AI . (9)

We have T −1
I∪{j}en ∈ Z

n, so r ∈ Λ, because T is totally unimodular. The first
claim follows, as the existence of a nonzero lattice vector on a ray implies the
existence of a primitive lattice vector.

For the latter statement we study S (x∗). If S (x∗) is zero-dimensional, then
x∗ = 0 and we are done. If S (x∗) is one-dimensional, then x∗ is by construction
an integer multiple of some primitive lattice ray. Hence, we assume that S (x∗)
is at least two-dimensional. Choose a vertex v adjacent to 0 which is not x∗. As
the constraint matrix defining S (x∗) is strictly Δn(A)-modular, every vertex
of S (x∗) is in Λ, in particular v ∈ Λ. Thus, v is an integer multiple of some
primitive vector in Λ. Furthermore, the symmetry of S (x∗) implies x∗ − v ∈ Λ
and is a vertex of S (x∗) adjancent to x∗. It follows there exists a constraint of
S (x∗) tight at x∗ − v and 0 but not x∗, and this implies that the dimension of
S (x∗ − v) is strictly smaller than S (x∗). We may therefore repeat the procedure
with S (x∗ − v) and so on, and termination is guaranteed when we reach the
origin. ��
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Proof (of Theorem 3 Part 1). Recall P = P(A, b). Set Λ := B−1
Z

n, and choose
a vertex x∗ of P such that ‖x∗‖∞ is as large as possible. Every vertex of P is
in Λ, so x∗ ∈ Λ. Lemma 7 yields

x∗ =
t∑

s=1
λsrs (10)

where r1, . . . , rt ∈ C (x∗) denote the primitive vectors in Λ and λ1, . . . , λt ∈ Z≥0.
Observe that each subsum of the right side in (10) is an element in S (x∗).

Further, recall that S (x∗) ⊆ P. Let N := λ1 + · · · + λt. We choose a sequence
0 = x(0), x(1), . . . , x(N) = x∗ such that

x(i) − x(i−1) ∈ {r1, . . . , rt}

for all i ∈ [N ]. Thus, x(i) ∈ Λ for i ∈ [N ] and all these vectors are pairwise
distinct elements in S (x∗). If N ≥ Δn(A), then by S (x∗) ∩ Z

n = {0} and the
pigeonhole principle there are x(i) and x(j) for i < j that lie in the same residue
class of Λ modulo Z

n. Hence, we have the contradiction

0 
= x(j) − x(i) ∈ S (x∗) ∩ Z
n ⊆ P ∩ Z

n.

We proceed with N ≤ Δn(A) − 1. We have ‖rs‖∞ ≤ Δn−1(A)
Δn(A) for all s ∈ [t] by

Cramer’s rule applied to (9). Altogether, this yields

‖x∗‖∞ ≤
t∑

s=1
λs ‖rs‖∞ ≤ Δn(A) − 1

Δn(A) Δn−1(A) ≤ max {Δn−1(A), Δn(A)} − 1.

��

6 A Lower Bound Example

The following construction proves Theorem 3, Part 2. Let δ ≥ 3 be an integer.
Fix the matrix

B(k) :=
(

In−1 0
βk δ

)
∈ Z

n×n,

where In−1 denotes the (n − 1) × (n − 1) unit matrix and, for 0 ≤ k ≤ n − 1,

βk := (0, . . . , 0
︸ ︷︷ ︸

k zeros

, δ − 1, . . . , δ − 1).

As a first step, we define the parallelepiped

P(B(k)) :=

⎧
⎨

⎩
x ∈ R

n : 0 ≤ B(k)x ≤
⎛

⎝
1k

δ − n + k
1n−k−1

⎞

⎠

⎫
⎬

⎭
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for δ − n + k ≥ 1. Using the fact that the first k columns of B(k)−1 are integral,
one can show

∣
∣P(B(k)) ∩Z

n
∣
∣ = 2k. In order to cut off all non-zero integer points

in P(B(k)), we define for k ≥ 1 the row vectors

a�
i,(k) := (0, . . . , 1︸︷︷︸

i-th column

, . . . , 0, −δ︸︷︷︸
(k+1)-st column

, . . . , −δ)

for each i ∈ [k]. The resulting polytope is

Pδ,n,k := P(B(k)) ∩
{

x ∈ R
n : a�

i,(k)x ≤ 0 for all i ∈ [k]
}

.

If k = 0, then Pδ,n,0 = P(B(0)). Let x∗ denote the only vertex in P(B(k)) that
does not share a facet with 0. Further, let A and b be such that P(A, b) = Pδ,n,k.
Then one can show that

1. x∗ ∈ Pδ,n,k and x∗ does not share a facet with 0,
2. Pδ,n,k ∩ Z

n = {0},
3. A is strictly δ-modular.

We select Pδ,n,n−2 and get

‖x∗ − 0‖∞ =
∣
∣x∗

n−1
∣
∣ = δ − 2.

Observe that Δn−1(A) = δ for Pδ,n,n−2 which proves Part 2 of Theorem 3.

Remark 3. The polytope Pδ,n,n−1 does not work as an example since in this
instance, the greatest common divisor of the n-th row of B(n−1) is δ. As a result,
we only obtain the weak proximity bound ‖x∗‖∞ = 1. However, a question
related to the proximity question is to bound ‖b‖∞ given that P ∩ Z

n = {0}
and all constraints of P are tight. The polytope Pδ,n,n−1 yields an example with
‖b‖∞ = δ − 1.
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Abstract. We propose a new method for generating cuts valid for the
epigraph of a function of binary variables. The proposed cuts are disjunc-
tive cuts defined by many disjunctive terms obtained by enumerating a
subset I of the binary variables. We show that by restricting the sup-
port of the cut to the same set of variables I, a cut can be obtained
by solving a linear program with 2|I| constraints. While this limits the
size of the set I used to define the multi-term disjunction, the procedure
enables generation of multi-term disjunctive cuts using far more terms
than existing approaches. Experience on three MILP problems with block
diagonal structure using |I| up to size 10 indicates the sparse cuts can
often close nearly as much gap as the multi-term disjunctive cuts without
this restriction and in a fraction of the time.

Keywords: Disjunctive cuts · Epigraph · Sparsity · Valid inequalities

1 Introduction

We explore techniques for generating valid inequalities (cuts) for the epigraph
E of a function Q : X → R over binary variables:

E = {(θ, x) ∈ R × X : θ ≥ Q(x)}, (1)

where X ⊆ {0, 1}n. An important application motivating this study is stochastic
mixed-integer programming (SMIP) [1], or more generally mixed-integer linear
programs (MILPs) with block diagonal structures. Such MILPs take the follow-
ing form

min cT x +
N∑

k=1

(dk)T yk

s.t. T kx + W kyk = hk, yk ≥ 0, k ∈ [N ],
x ∈ X ⊆ {0, 1}n.

(2)
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In the case of two-stage SMIPs, the binary variables x represent first-stage deci-
sions, N is the number of scenarios representing the possible outcomes, and
for each k ∈ [N ] := {1, . . . , N}, the continuous decision variables yk represent
recourse actions taken in response to observing the data (dk, T k,W k, hk) in sce-
nario k. A common approach to solving such problems is Benders decomposition,
which works with a reformulation of the form

min
x,θ

{
cT x +

N∑

k=1

θk : θk ≥ Qk(x) for k ∈ [N ], x ∈ X
}
, (3)

where Qk(x) = miny{(dk)T y : T kx+W ky = hk, y ≥ 0} for k ∈ [N ], x ∈ X. The
epigraph of Qk of the form (1) shows up as a substructure in (3). In Benders
decomposition, valid inequalities (Benders cuts) for this epigraph are derived via
linear programming (LP) duality, but these are not generally sufficient to define
the convex hull of the epigraph, thus motivating the need to derive stronger
valid inequalities for sets of this form. This topic has been extensively studied
both theoretically and computationally; see [15,23,25,30,34,37–39,41] as just a
sample of the literature. Aside from SMIPs, this epigraph substructure appears
in a variety of other optimization problems (e.g., [10,32,40]).

We study a technique for generating inequalities for E based on a disjunc-
tive relaxation having many terms, specifically obtained by enumerating all 2|I|

feasible values for a subset I of the binary variables. Disjunctive programming
has been a central tool in MILP since its origin in 1970s [4,5]. A disjunction is
a union of sets, and if the feasible region of an MILP is contained within such
a union, inequalities valid for the disjunction are valid for the MILP, and are
referred to as disjunctive cuts. Most disjunctive cuts used in practice are based
on two disjunctive terms, e.g., split cuts [16] and lift-and-project cuts [6–8,13].
While there has been significant work on classes of cuts that are derived from
multiple-term disjunctions [2,9,18,21,31], the current methods remain focused
on disjunctions with a relatively small number of terms. Perregaard and Balas
[36] considered an iterative scheme for generating disjunctive cuts from many
terms (see Sect. 2), but the approach remains computationally demanding.

Our proposal for generating multi-term disjunctive cuts more efficiently is
based on restricting the support of the generated cut to the index set I, the
same set used to define the disjunctive terms. We refer to such cuts as I-sparse
cuts. Thus, our approach aligns with the spirit of generation of sparse cuts,
which is motivated by the benefit of sparse constraints in terms of solution time
of the LP relaxations and recent studies that have investigated the theoretical
strength of sparse cuts [20,22,23]. Our use of sparsity is with respect to the
generated cut, which differentiates it from Fukasawa et al. [24] who empirically
show that split cuts derived from (two-term) split disjunctions defined by a
sparse integer vector can close the majority of the split closure gap. In Sect. 2 we
show that our proposed sparsity restriction enables the generation of a multi-
term disjunctive cut by solving a single subproblem per term, and then solving a
single cut-generating LP. Thus, while this remains a computationally demanding
cut generation process, we find empirically that it is feasible to use many more
disjunctive terms than have previously been considered. In Sect. 3, we propose
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two rules for selecting the support I to generate I-sparse inequalities. In Sect. 4,
we present results of a computational study using the I-sparse inequalities based
on up to 210 disjunctive terms on three test problems. We find that in many cases
the I-sparse cuts close nearly as much gap as multi-term disjunctive cuts without
the sparsity restriction, and can be generated orders of magnitude faster.

2 Sparse Multi-term 0-1 Disjunctive Cuts

We study the problem of generating valid inequalities for the epigraph E defined
in (1). Without loss of generality, we assume the domain X of the function Q is
full-dimensional. (Otherwise, we can project out certain variables to make the
set full-dimensional after projection.) Let R(X) be a (continuous) relaxation of
X with R(X)∩{0, 1}n = X. We assume Q has a real-valued extended definition
on R(X). We require that minimizing Q over R(X) be a problem that can be
efficiently solved. E.g., this would be the case if R(X) and Q over R(X) are
closed and convex. If this is not the case, one can replace Q with a relaxation
Q̂ satisfying Q̂(x) ≤ Q(x) for all x ∈ X. For example, in the case of an SMIP
having integer second-stage decisions, the recourse function Q(x) is nonconvex
and expensive to evaluate, in which case one may use instead Q̂ defined using
an LP relaxation of the recourse problem. The strength of the resulting cuts will
naturally depend on the quality of the relaxation Q̂, which could for example be
improved using standard MILP valid inequalities.

We let ER := {(θ, x) ∈ R× R(X) : θ ≥ Q(x)} denote the epigraph of Q over
R(X) and let I be a nonempty subset of [n]. We derive valid inequalities for E
by finding valid inequalities for the following multi-term disjunctive relaxation
of E:

ER
I :=

⋃

χ∈{0,1}I

ER
I (χ), (4)

where ER
I (χ) := {(θ, x) ∈ ER : xI = χ}, xI refers to the subvector of x with

indices I, and {0, 1}I := {xI : xi ∈ {0, 1}, i ∈ I}. We call the relaxation ER
I

of E a multi-term 0-1 disjunction, and any cut valid for ER
I a multi-term 0-1

disjunctive cut.

2.1 Generating Multi-term 0-1 Disjunctive Cuts

By (4), an inequality of the form π0θ + πT x ≥ η is valid for ER
I if and only if

min
θ,x

{
π0θ + πT x : (θ, x) ∈ ER

I (χ)
}

≥ η for all χ ∈ {0, 1}I . (5)

Therefore, to separate a point (θ̂, x̂) from ER
I , in principle one can solve the

following problem:

min
π0,π,η

π0θ̂ + πT x̂ − η (6a)

s.t. π0θ + πT x ≥ η, ∀(x, θ) ∈ ER
I (χ), χ ∈ {0, 1}I , (6b)

π0 ≥ 0, ‖(π0, π)‖1 ≤ 1, (6c)



Sparse Disjunctive Cuts 101

where (6c) is just one example of a normalization constraint that can be used
to ensure the separation has an optimal solution. The iterative row generating
algorithm of Perregaard and Balas [36] can be used for solving (6) by starting
with a relaxation defined by a small subset of the constraints (6b) and adding
missing constraints (corresponding to extreme points of ER

I (χ)) that are violated
by the current relaxation solution. Given coefficients of candidate cut (π̂0, π̂, η̂)
obtained from this relaxation, determining if there is a violated constraint in
(6b) is accomplished by solving the problem

min{π̂0θ+π̂T x : (x, θ) ∈ ER
I (χ)} = min{π̂0Q(x)+π̂T x : x ∈ R(X), xI = χ} (7)

for each χ ∈ {0, 1}I . While this approach is guaranteed to yield a valid inequality
for ER

I that cuts off (θ̂, x̂) whenever one exists, it is computationally demanding
when the number of terms is larger than just a few. In particular, the scalability
of the algorithm is limited by the multiplied effect of (a) the size of {0, 1}I ,
and (b) the potential need to solve (7) multiple times for each χ ∈ {0, 1}I .
Numerical experiments in [36] generate valid inequalities for MILPs using only
up to 16 disjunctive terms. In this work, we propose to restrict attention to cuts
supported on I, which we find eliminates the effect of (b).

2.2 I-Sparse Inequalities

We next explore how restricting the support of the generated cut can be used to
accelerate the generation of multi-term 0-1 disjunction cuts for ER

I for a fixed I.

Definition 1. Let I ⊆ [n]. We say an inequality θ ≥ μT x + η is an I-sparse
inequality(/cut) for E if the following two conditions hold:

1. θ ≥ μT x + η is valid for ER
I ;

2. μi = 0 for all i /∈ I.

The following proposition characterizes I-sparse inequalities.

Proposition 2. An inequality θ ≥ μT x + η with μi = 0 for all i /∈ I is an
I-sparse inequality for E if and only if

∑

i∈I

μiχi + η ≤ νR
I (χ), ∀χ ∈ {0, 1}I , (8)

where for each χ ∈ {0, 1}I ,

νR
I (χ) := min{Q(x) : x ∈ R(X), xI = χ}. (9)

Observe that the problem (9) has a similar form as (7) which is used when
applying the Perregaard and Balas algorithm [36] to solve (6).

The following result follows from Proposition 2 and provides a condition
under which every nontrivial valid inequality for E with coefficients supported
on the index set I is an I-sparse inequality.
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Corollary 3. If X = {0, 1}n, R(X) = [0, 1]n and Q is componentwise mono-
tonically increasing or decreasing on R(X), then an inequality θ ≥ μT x+ η with
μi = 0 for all i /∈ I is valid for E if and only if it is an I-sparse inequality.

Based on Proposition 2, for a fixed I, finding an I-sparse inequality that is
violated by a point (θ̂, x̂) if one exists can be done by solving the LP

gx̂(I) = max
{ ∑

i∈I

μix̂i + η :
∑

i∈I

μiχi + η ≤ νR
I (χ), χ ∈ {0, 1}I

}
. (10)

Specifically, the optimal solution of (10) defines an inequality that cuts off (θ̂, x̂)
if and only if gx̂(I) > θ̂. When it is easy to determine whether or not a vector
is in projI(X), we can replace χ ∈ {0, 1}I in (10) with χ ∈ projI(X) since
νR

I (χ) = +∞ if χ /∈ projI(X). Since Q is finite valued in R(X), νR
I (χ) ∈ R for

χ ∈ projI(X). When (x̂i)i∈I ∈ conv(projI(X)), the LP (10) is guaranteed to
have an optimal solution since X being full-dimensional implies that projI(X)
is full-dimensional. When (x̂i)i∈I /∈ conv(projI(X)), (θ̂, x̂) can be cut off by an
inequality separating (x̂i)i∈I from projI(X).

The main work to generate an I-sparse inequality is evaluating νR
I (χ) by

solving (9) for each χ ∈ {0, 1}I , and then solving the LP (10) once. Note that
(10) has |I| + 1 variables in contrast to n + 2 variables in the problem (6) used
in the Perregaard and Balas (PB) [36] algorithm, and requires solving at most
2|I| subproblems of the form (9), in contrast to the PB algorithm which solves
2|I| subproblems of this form in multiple iterations until convergence.

2.3 Accelerating the Evaluation of νR
I (·)

Evaluating νR
I (χ) for all χ ∈ {0, 1}I is the most significant computational com-

ponent of generating an I-sparse inequality. We thus discuss techniques to accel-
erate this evaluation, focusing on our motivating example of MILPs with block
diagonal structures (2). In this context, assume R(X) = {x : Ax ≤ b} is a
polyhedral relaxation of X and for a fixed k ∈ [N ] let Qk(x) = miny{(dk)T y :
T kx+W ky = hk, y ≥ 0} and assume it is finite valued for all x ∈ R(X). In this
case, when generating an I-sparse inequality for the set Ek = {(θk, x) ∈ R× X :
θk ≥ Qk(x)} the evaluation of νR

I (χ) for χ ∈ {0, 1}I can be formulated as the
following LP

νR
I (χ) = min

x,y
{(dk)T yk : T kx + W ky = hk, y ≥ 0, Ax ≤ b, xI = χ}. (11)

A first simple idea for accelerating the solution of (11) for all χ ∈ {0, 1}I is to
exploit the possibility to warm-start these LPs (see, e.g., [11] for background).
LP solvers like Gurobi [29] and CPLEX [19] automatically implement a simplex
warm start when only variable bounds are changed in a LP. Thus, solving the
sequence of problems (11) for χ ∈ {0, 1}I by making changes to variable bounds
implied by the constraints xI = χ will naturally benefit from these warm-start
capabilities. This motivates a careful selection of the sequence these problems
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are solved in. For example, by following the sequence defined by a Gray code
[26], at most one variable bound will change from one subproblem to the next.

We do not explore this in our computational experiments, but another pos-
sibility for reducing the time required for evaluating νR

I (χ) is to use a simpler
to evaluate lower bound on Q. E.g., in the context of a Benders decomposition
approach for solving MILPs with block diagonal structure, one could obtain a
lower bound on νR

I (χ) by solving a problem of the form:

ν̂R
I (χ) = min{Q̂k(x) : x ∈ R(X), xI = χ}

where Q̂k is the current piecewise-linear convex lower bound of Qk defined by
Benders cuts. These lower bounds could then be used in (10) which would yield
a valid but potentially weaker inequality. This inequality could then be improved
by exactly evaluating νR

I (χ) for the χ that correspond to binding constraints in
the solution of (10), and then re-solving (10) with these improved values.

3 Two Selection Rules for the Support I

We now discuss techniques for choosing the set I when generating I-sparse cuts.
Given a point (θ̂, x̂), the goal is to select I in order to maximize the cut violation
gx̂(I) (defined in (10)). Since the complexity of generating these cuts grows
exponentially with |I| we investigate techniques that choose I satisfying |I| ≤ K
for some fixed (small) integer K. We describe two selection rules that are derived
from two different approximations of Q.

3.1 A Greedy Rule Based on a Monotone Submodular
Approximation

The problem of choosing I that maximizes gx̂(I) is a set function optimization
problem. For notational convenience, we do not distinguish between a set func-
tion and a function with binary variables, i.e., we interchangeably use f(A) for
f(χA) for all A ⊆ [n] where χA ∈ {0, 1}n is the indicator vector of A. One par-
ticular class of set functions satisfying good theoretical properties is monotone
submodular functions [27]. Given x̂ ∈ [0, 1]n, we can show that the cut violation
function gx̂(I) is monotone submodular in I if Q is monotone submodular.

Proposition 4. Assume Q is monotone submodular, X = {0, 1}n and R(X) =
[0, 1]n. Then the cut violation function gx̂(I) is also monotone submodular in I.

Although maximizing a monotone submodular function subject to a cardi-
nality constraint is NP-hard [17] in general, the well-known greedy algorithm
of Nemhauser et al. [33] attains a good approximation ratio to this problem.
However, directly applying a greedy algorithm for choosing I may not be a
good choice because (i) Q is not necessarily monotone submodular, and (ii)
the greedy algorithm requires evaluating gx̂(·) many times, which is computa-
tionally expensive. Therefore, we seek alternatives to this approach by applying
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the greedy algorithm to a different cut violation function g̃x̂ associated with an
approximation Q̃ : {0, 1}n → R of the function Q. We choose Q̃ (and hence g̃x̂)
such that Q̃ is monotone and submodular and the cut violation g̃x̂(·) can be
evaluated much more efficiently than gx̂(·).

To construct such an approximation, we first state a result for convexifying
a special set, studied in [3,28].

Theorem 5 ([3,28]). Let

F = {(θ, x) ∈ R × {0, 1}n : θ ≥ aixi + b, i = 1, . . . , n} (12)

with 0 ≤ a1 ≤ . . . ≤ an. Then

conv(F ) = {(θ, x) ∈ R × [0, 1]n : θ ≥ ai1xi1 +
m∑

k=2

(aik − aik−1)xik + b,

for all subsequences (ik)m
k=1 of [n] such that 1 ≤ i1 ≤ . . . ≤ im = n}.

The inequalities defining F have only one xi variable on the right-hand side
and share the same constant term b. The set F defines the epigraph of a mono-
tone submodular function maxi∈[n]{aixi + b}. Although this characterization of
the convex hull consists of exponentially many inequalities, it has been shown
that the corresponding separation can be solved in polynomial time [3,28]. Such
separation results can be easily extended for separating from valid inequalities
for F that are supported on I.

We next describe how to construct an approximation Q̃ of Q of the form
maxi∈[n]{aixi + b}. The first step is to construct an underestimate of Q by
deriving the I-sparse inequalities with I = {i} for each i ∈ [n]. The polyhedron
defined by (8) has a unique extreme point

(
νR

{i}(1) − νR
{i}(0), νR

{i}(0)
)

when I =
{i}, which corresponds to a valid inequality of E:

θ ≥ (
νR

{i}(1) − νR
{i}(0)

)
xi + νR

{i}(0). (13)

For i ∈ [n], LBi := min{νR
{i}(0), νR

{i}(1)} is a lower bound of Q on {0, 1}n, and so
is LB∗ := maxi∈[n] LBi. Therefore, we can strengthen (13) to be θ ≥ (

ν̃R
{i}(1) −

ν̃R
{i}(0)

)
xi + ν̃R

{i}(0), where ν̃R
{i}(k) = max{νR

{i}(k),LB∗} for k ∈ {0, 1}. After
complementing the variables xi ← 1 − xi for i ∈ [n] with ν̃R

{i}(1) − ν̃R
{i}(0) < 0,

we obtain inequalities of the form θ ≥ aixi + b for i ∈ [n] with a ≥ 0, which are
valid for (reflected) E. Assume without loss of generality that 0 ≤ a1 ≤ . . . ≤ an.
We can then apply the greedy algorithm to generate I using g̃x̂, where the
evaluation of g̃x̂(·) is similar to the separation algorithm proposed in [28] (see
[14] for details).

3.2 A Cutting-Plane Approximation Rule

We next describe an alternative selection rule for I that is based on a single
cutting-plane approximation of Q. By Corollary 3, the following result charac-
terizes the most violated I-sparse inequality for a function on {0, 1}n defined by
a single cutting plane.
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Proposition 6. Let

F(a,b) = {(θ, x) ∈ R × {0, 1}n : θ ≥ aT x + b}.

Given (θ̂, x̂) ∈ R × [0, 1]n, the maximum violation of a valid inequality of F(a,b)

of the form θ ≥ ∑
i∈I μixi + η by (θ̂, x̂) is −∑n

i=1 a−
i +

∑
i∈I(aix̂i + a−

i )+ b− θ̂,
where a−

i = max{−ai, 0}.
By Proposition 6, the value aix̂i +a−

i in some sense measures the importance
of variable xi for the cutting plane θ ≥ aT x + b at x̂. We use this intuition
to construct a selection rule. We first pick a cutting plane θ ≥ aT x + b that
approximates the epigraph of Q at x̂. Then indices i ∈ [n] are added to the set I
in decreasing order of the value aix̂i +a−

i until |I| = K. Note that aix̂i +a−
i ≥ 0

for any ai ∈ R and x̂i ∈ [0, 1]. If the cutting plane approximation θ ≥ aT x + b is
sparse (i.e., |{i ∈ [n] : ai �= 0}| is small), it is possible that |{i ∈ [n] : aix̂i +a−

i >
0}| < K. In such cases, we first add those indices with positive aix̂i + a−

i values
into I, then pick another cutting plane and repeat the procedure until |I| = K. A
potential advantage of this selection rule is that it does not require any evaluation
of gx̂ and therefore can be implemented efficiently. And unlike the selection rule
in Sect. 3.1, this selection rule can take advantage of the availability of dense
cutting plane approximations. The potential limitation, of course, is the reliance
on the single cutting-plane approximation.

The final detail we need to specify for this approach is how to choose the
cutting-plane approximation(s). Assume a collection A of cutting planes of the
form θ ≥ aT x + b is available. A natural choice for A is the set of cutting
planes (e.g., Benders cuts) that have been added in the algorithm so far for
approximating E. A natural ordering for choosing which cutting plane in A
to use first is based on the tightness of the cutting plane at the point x̂. The
inequality in A with coefficients (a, b) that yield the highest aT x̂ + b value is
chosen first, etc.

4 Computational Results

To provide insight into the potential of our method, we conduct numerical exper-
iments on three MILP problems with block diagonal structures (2):

– The stochastic network interdiction (SNIP) problem [35]: n = 320 for these
instances.

– The latent-class logit assortment (LLA) problem [32]: n = 500 for these
instances.

– A stochastic version of the capacitated facility location (CAP) problem [12]:
n ranges between 25 and 50 for these instances.

For the first two test problems, each block of their MILP formulations is sparse
in variables x, but in distinct ways. For the SNIP problem, we observe that when
applying Benders decomposition to solve its LP relaxation the Benders cuts are
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mostly very sparse in x. In the LLA problem each block of the MILP formulation
only uses a small portion (between 12 and 20) of the x variables, making the
use of sparse cuts very natural for this problem. Neither of these two sparsity
properties holds for the CAP problem. See [14] for details of the test instances.

The constraints x ∈ X in all our test problems consist of x being binary
and either a lower-bounding or upper-bounding cardinality constraint on the
number of nonzero xi variables. Therefore, we use R(X) = conv(X) for all our
tests instances. We use the direct LP relaxation as Qk for each block of the
MILP as described in Sect. 2.3. For testing the effectiveness of the generated
cuts, we add I-sparse cuts on top of the LP relaxation that is first solved by
Benders decomposition. The cut generating process is described in Algorithm 1.
We consider the following variants of Algorithm1:

– Greedy-K: Use the greedy rule described in Sect. 3.1 for generating the sup-
port I of size up to K;

– Cutpl-K: Use the cutting plane approximation rule described in Sect. 3.2 for
generating the support I of size up to K.

For Cutpl-K, we use the collection of all the Benders cuts added for block k
in line 1 of Algorithm 1 as A for Qk. To improve the efficiency of the algorithm,
when applying Greedy-K, we only select I from indices for which the corre-
sponding variables have a nonzero coefficient in at least one of the Benders cuts
for block k. This restriction is also implicitly implemented when using Cutpl-K
since indices i with ai = 0 for all (a, b) ∈ A can never be selected by Cutpl-K. It
significantly improves the efficiency of Greedy-K on SNIP instances (by skipping
the generation of {i}-sparse cuts for most i ∈ [n]).

To visually compare the performance of I-sparse cuts across multiple test
instances, we present results in the form of an integrality-gap-closed profile. Each
curve in such a profile corresponds to a particular selection rule for I and size
limit K, and its value at time t represents the average (over the set of instances
for that problem class) integrality gap closed by time t, where the integrality gap
closed at time t is calculated as (zR(t)− zLP )/(z∗ − zLP )×100%, where zR(t) is
the bound obtained by the algorithm at time t, zLP is the basic LP relaxation
bound, and z∗ is the optimal value.

The results for the SNIP, LLA, and CAP test problems are given in Figs. 1,
2, and 3, respectively, where in each case we vary K ∈ {4, 7, 10} and compare
the Greedy-K and Cutpl-K selection rules. In each case we find that the two
different selection rules have similar trends in gap closed over time. The Cutpl-K
rule has better performance on the SNIP test instances, whereas Greedy-K has
significantly better performance on the LLA and CAP instances when K = 4
or K = 7. In terms of the effect of K, as expected smaller values of K yield
quicker initial gap improvement, whereas larger values of K require more time
to close the gap but eventually lead to more gap closed. For the SNIP instances
we find that using K = 4 already closes most of the gap, and does so much
more quickly than with K = 7 or K = 10. For the LLA instances we find that
increasing K leads to more gap closed, although significant gap is already closed
with K = 4, and the additional gap closed using K = 10 is marginal, while
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Algorithm 1: Generating I-sparse cuts
1 Initialize a master LP using Benders decomposition;
2 repeat

3 Solve the master LP to obtain solution (θ̂, x̂);
4 for block k ∈ [N ] do
5 Choose a support I;
6 Generate an I-sparse cut by solving (10);

7 Add the I-sparse cut to the master LP if it is violated by (θ̂k, x̂);

8 end

9 until No violated cut can be generated or time limit is reached ;

Fig. 1. Integrality-gap-closed profiles for SNIP instances obtained by Greedy-K (solid)
and Cutpl-K (dashed) for K ∈ {4, 7, 10}

requiring significantly more time. For the CAP instances, we find that the I-
sparse cuts close significantly less gap than the other test problems, although
the gap closed is still significant. Large values of K yield significantly more gap
closed on the CAP instances, but also requires considerably longer running time.

We observe that the number of I-sparse cuts added by the algorithm does not
increase when K increases. Thus, the improvement in the bound is attributable
to stronger cuts rather than an increase in the number of cuts added.

As a final experiment, we compare the I-sparse cuts with the multi-term 0-1
disjunctive cuts without the sparsity restriction, but generated from the same
sets I, where the cuts are generated using the Perregaard and Balas (PB) [36]
approach. Our interest in this comparison is to demonstrate the potential time
reductions from using the I-sparse cuts and to estimate the extent to which
the sparsity restriction degrades the quality of the relaxation. We conduct this
experiment only on the CAP test instances, since we have already seen that
the I-sparse cuts are sufficient to close most of the gap in the SNIP and LLA
instances, and thus there is little potential to close more gap when eliminating
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Fig. 2. Integrality-gap-closed profiles for LLA instances obtained by Greedy-K (solid)
and Cutpl-K (dashed) for K ∈ {4, 7, 10}

Fig. 3. Integrality-gap-closed profiles for CAP instances obtained by Greedy-K (solid)
and Cutpl-K (dashed) for K ∈ {4, 7, 10}

the sparsity restriction. We set a 24-h time limit for the PB algorithm. For both
the I-sparse and PB cuts, we use Greedy-K as the rule for selecting the set I to
define the multi-term disjunction.

Figure 4 displays the integrality gap closed over time for two specific CAP
instances, one for which I-sparse cuts were able to close a significant portion
of the gap (CAP101), and one for which they were not (CAP111). The figures
on the left display results for both the I-sparse cuts (solid lines) and PB cuts
(dashed lines), with the time-scale (x-axis) determined by the time required
to generate all I-sparse cuts for the largest value of K. From these figures we
observe that for any value of K, within this time frame the I-sparse cuts close
significantly more gap than the PB cuts. To estimate the potential for PB cuts
to eventually close more gap, we show the gap closed by the PB cuts over the
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Fig. 4. Integrality gap closed by I-sparse cuts and cuts generated by the PB algorithm
on instances CAP101 (top) and CAP111 (bottom)

full 24-h time limit in the figures on the right. For CAP101 we find that the PB
cuts do not close more gap than the I-sparse cuts, suggesting that the sparsity
restriction is not significantly degrading the strength of the cuts in this case.
On the other hand, for CAP111, we find that when given enough time the PB
cuts can close significantly more gap, as seen particularly for the K = 4 results,
although requiring far more time to do so. For both CAP instances, we observe
that most of the generated PB cuts are as sparse as the I-sparse cuts in the
first few iterations but become significantly denser (e.g., with non-zeros on more
than half the variables) in later iterations.

5 Future Directions

A natural idea inspired by our computational results is to adaptively choose the
size K of the set I when generating I-sparse cuts. While not presented here,
the proposed approach for generating I-sparse inequalities can also be used to
improve the coefficients on a sparse subset of variables for a given valid inequality
for E. It would be interesting to explore this idea further.
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Abstract. In the non-uniform sparsest cut problem, we are given a sup-
ply graph G and a demand graph D, both with the same set of nodes
V . The goal is to find a cut of V that minimizes the ratio of the total
capacity on the edges of G crossing the cut over the total demand of
the crossing edges of D. In this work, we study the non-uniform sparsest
cut problem for supply graphs with bounded treewidth k. For this case,
Gupta, Talwar and Witmer [STOC 2013] obtained a 2-approximation
with polynomial running time for fixed k, and the question of whether
there exists a c-approximation algorithm for a constant c independent
of k, that runs in FPT time, remained open. We answer this question
in the affirmative. We design a 2-approximation algorithm for the non-
uniform sparsest cut with bounded treewidth supply graphs that runs
in FPT time, when parameterized by the treewidth. Our algorithm is
based on rounding the optimal solution of a linear programming relax-
ation inspired by the Sherali-Adams hierarchy. In contrast to the clas-
sic Sherali-Adams approach, we construct a relaxation driven by a tree
decomposition of the supply graph by including a carefully chosen set
of lifting variables and constraints to encode information of subsets of
nodes with super-constant size, and at the same time we have a suffi-
ciently small linear program that can be solved in FPT time.

Keywords: Sparsest Cut · Linear Programming · Approximation
Algorithms

1 Introduction

In the non-uniform sparsest cut problem, we are given two weighted graphs G
and D on the same set of nodes V , such that G = (V,EG) is the so-called
supply graph, and D = (V,ED) is the so-called demand graph. For every edge
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e ∈ EG we have a positive integer weight cap(e) called capacity, and for every
edge e ∈ ED we have a positive integer weight dem(e) called the demand. An
instance I is given by a tuple (G,D, cap, dem) and we denote by |I| the encoding
length of an instance I. The goal is to compute a non-empty subset of nodes
S ⊆ V that minimizes

φ(S) =

∑
e∈δG(S) cap(e)

∑
e∈δD(S) dem(e)

,

where δG(S) = {e ∈ EG : |e∩S| = 1} and δD(S) = {e ∈ ED : |e∩S| = 1}. Since
this problem is NP-hard [25], the focus has been on the design of approximation
algorithms. In this line of work, Agrawal, Klein, Rao and Ravi [19,20] took the
first major step by describing a O(log D log C)-approximation algorithm, where
D is the total sum of the demands and C is the total sum of the capacities.
Currently, the best approximation factor is O(

√
log n log log n) due to Arora,

Lee and Naor [2]. The uniform version of the problem, where the demand graph
is unweighted and complete, has received a lot of attention through the years.
The best bound for this problem is slightly better: O(

√
log n) [3].

The non-uniform sparsest cut problem is hard to approximate within a con-
stant factor, for any constant, under the unique games conjecture [9,17,18].
Therefore, the problem has also been studied under the assumption that the
supply graph belongs to a specific family of graphs. Most notable examples
include planar graphs, graph excluding a fixed minor, and bounded treewidth
graphs. In this paper, we focus on the latter (see Sect. 1.1 for further related
work on minor-closed families).

For inputs to the problem where the supply graph has treewidth at most k,
Chlamtac, Krauthgamer and Raghavendra [11] designed a C(k)-approximation
algorithm that runs in time 2O(k)|I|O(1), where C is a double exponential func-
tion of k. Later, Gupta, Talwar and Witmer designed a 2-approximation algo-
rithm that runs in time |I|O(k) [17]. However, these two results are only com-
plementary: Chlamtac, Krauthgamer and Raghavendra’s algorithm is Fixed-
Parameter Tractable (FPT) in the treewidth k of the supply graph, (that is,
f(k)|I|O(1) time for some computable function f), while the algorithm of Gupta,
Talwar and Witmer is not. The approximation factor achieved by Gupta, Tal-
war and Witmer is independent of k, and furthermore, they show that assuming
the unique games conjecture, there is no (2 − ε)-approximation algorithm for
any ε > 0 on graphs with constant treewidth and that there is no 1.138 − ε
approximation algorithm for treewidth 2 graphs unless P = NP. This left open
the question of whether there exists a 2-approximation algorithm that runs in
FPT time, when parameterized by the treewidth. We answer this question in the
affirmative and show the following result.

Theorem 1. There is an algorithm that computes a 2-approximation for every
instance I = (G,D, cap, dem) of the non-uniform sparsest cut problem in time

22
O(k) |I|O(1),

where k is the treewidth of the supply graph G.
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As a corollary, and following the argumentation of Gupta et al. [17], for treewidth
k graphs our result implies the existence of a 2-approximation for the minimum-
distortion �1 embedding problem, with 22

O(k) |I|O(1) running time.
The results obtained in the predecessor papers [11,17] were based on round-

ing certain linear programs obtained through the Sherali-Adams lift & project
hierarchy [27]. Our approximation algorithm is also based on rounding a linear
program with a fractional objective given by the non-uniform sparsest cut value,
but we construct this linear program in a different way, with the goal of obtain-
ing a linear program of smaller size, but sufficiently strong in terms of integrality
gap. If we followed the classic Sherali-Adams approach, the relaxation of level
� would be constructed by using a variable encoding the value of any subset of
the original variables up to size �, and it would take nO(�) time to solve this
relaxation, where n is the number of nodes in the graph. In particular, solving a
relaxation of level Θ(k) would take nO(k) time, which in principle rules out the
possibility of achieving FPT running time by applying directly this approach.
In order to overcome this problem, we construct a linear programming relax-
ation driven by a tree decomposition of the supply graph G, where the variables
are carefully chosen with the goal of encoding information of subsets of nodes
with super-constant size, and at the same time the number of variables and con-
straints is sufficiently small so we can solve the relaxation in FPT time. We show
that the relaxation is strong enough to get a 2-approximation by rounding the
optimal fractional solution. The construction of our relaxation and the analysis
of our algorithm can be found in Sect. 3.1

1.1 Related Work

Despite the difficulties in approximating the non-uniform sparsest cut prob-
lem in general graphs, there are several other results for restricted families of
graphs. The case in which G is planar has received a lot of attention. Quite
recently, Cohen-Addad, Gupta, Klein and Li [12] showed the existence of a quasi-
polynomial time (2+ε)-approximation for the non-uniform sparsest cut problem
in the planar case. To get this result they combine a patching lemma approach
with linear programming techniques. We remark that for the planar case there is
no polynomial time 1/(0.878 + ε) ≈ (1.139 − ε)-approximation algorithm under
the unique games conjecture [17].

Other families with constant factor approximation algorithms are outerplanar
graphs [26], series-parallel [10,16,21], k-outerplanar graphs [9], graphs obtained
by 2-sums of K4 [7] and graphs with constant pathwidth [22]. The impact of
the treewidth parameter has also been studied in the context of polynomial
optimization [4]. Finally, we mention that the Sherali-Adams hierarchy has been
useful to design algorithms in other minor-free and bounded treewidth graph
problems, including independent set and vertex cover [5,23], and also in several
recent results on scheduling and clustering [1,14,15,24,28].

1 A full version of this article is available in Arxiv and can be found in [13].
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Very recently and independent of our work, Chalermsook et al. [8] obtained
a O(k2)-approximation algorithm for sparsest cut in treewidth k graphs, with
running time 2O(k) · poly(n) and, for arbitrary ε > 0, an O(1/ε2)-approximation
algorithm with running time 2O(k1+ε/ε) · poly(n). Observe that these results are
incomparable with our result: they obtain an asymptotically lower running time,
whereas the obtained (constant) approximation ratio is considerably larger than
2. Similar to our result, they build on the techniques from [11,17]. However, their
approach is based on a new measure for tree decompositions which they call the
combinatorial diameter.

2 Preliminaries: Tree Decompositions

A tree decomposition of a graph G = (V,E) is a pair (X , T ) where T = (X , ET )
is a tree and X is a collection of subsets of nodes in V called bags. Each bag
is a node in the tree T . Furthermore, the pair (X , T ) satisfies the following
conditions.

(1) Every node in V is in at least one bag, that is, ∪X∈X X = V .
(2) For every edge {u, v} ∈ E there exists a bag X ∈ X such that {u, v} ⊆ X.
(3) For every node u ∈ V the bags containing u induce a subtree of T .

The width of the tree decomposition (X , T ) corresponds to the size of the largest
bag in the tree decomposition, minus one. The treewidth of G is the minimum
possible width of a tree decomposition for G. We typically consider the tree T
to be rooted, and we denote its root by R. We denote by depth(T ) the depth of
the tree T and we say that a bag X is at level � if the distance from the root R
to X in the tree T is equal to �. We denote by μ(X) the parent of X in the tree
T . The intersection between a non-root bag X and the parent bag, μ(X) ∩ X,
is the called the adhesion of the bag X. We say that a bag Y is a descendant of
X if X �= Y and the bag X belongs to the unique path in T from Y to the root,
and in this case we say that X is an ancestor of Y .

3 The LP Relaxation and the Rounding Algorithm

Our algorithm is based on rounding the optimal solution of a linear programming
relaxation for the non-uniform sparsest cut problem. In Sect. 3.1 we provide the
construction of our linear programming relaxation and in Sect. 3.2 we provide
the rounding algorithm and the proof of Theorem 1. In the following lemma
we show the existence of a tree structure that we use to construct the linear
program. The proof of this lemma can be found in the full version of the article
[13].

Lemma 1. Let G be a graph with treewidth k and let � be a positive integer.
Then, there exists a tree decomposition (Y, E) of G such that the following holds:

(a) The width of (Y, E) is O(2�k) and depth(E) ∈ O(log(n)/�).
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(b) For every non-root bag Y ∈ Y, the size of the adhesion of Y is O(k).

The decomposition (Y, E) can be found in 2O(k3)n time.

Definition 1. Given a graph G, we say that a tree decomposition Θ = (Y, E)
satisfying properties (a)-(b) is a (k, �)-decomposition of G.

Given a bag Y ∈ Y, we denote by PY
Θ the subset of bags that belong to the

path from Y to the root R in the tree E . We denote by JY the adhesion of Y .
Furthermore, let VY

Θ =
⋃

Z∈PY
Θ

JZ , and for every pair of non-root bags Y,Z ∈
Y let SΘ(Y,Z) be the power set of (Y ∪ VY

Θ ) ∪ (Z ∪ VZ
Θ ). Finally, let SΘ =⋃

Y,Z∈Y SΘ(Y,Z). Observe that for every bag Y ∈ Y, the size of Y ∪ VY
Θ is

O(2�k + k log(n)/�).

3.1 The LP Relaxation

Consider a positive integer � and an instance (G,D, cap, dem) where G has
treewidth k. Let Θ = (Y, E) be a (k, �)-decomposition of the supply graph G.
In what follows we describe our LP relaxation, inspired by the Sherali-Adams
hierarchy [27] and the predecessor works [11,17]. In this linear program there
are two types of variables. The variable x(S, T ), with S ∈ SΘ and T ⊆ S, indi-
cates that the cut solution C satisfies that C ∩S = T . The variable y({u, v}) for
u, v ∈ V with u �= v, indicates whether the nodes u and v fall in different sides of
the cut. For notation simplicity, we sometimes denote the union between a set A
and a singleton {a} by A + a. Consider the following linear fractional program:

min

∑
e∈EG

cap(e)y(e)
∑

e∈ED
dem(e)y(e)

(1)

st x({u, v}, u) + x({u, v}, v)) = y({u, v}) ∀u, v ∈ V with u �= v, (2)
∑

A⊆S

x(S,A) = 1 ∀S ∈ SΘ, (3)

x(S,A) ≥ 0 ∀S ∈ SΘ and A ⊆ S, (4)

x(S + u,A) + x(S + u,A + u) = x(S,A)
∀S ⊆ V, u /∈ S such that
S + u ∈ SΘ and A ⊆ S.

(5)

The feasible region of this linear program is a polytope encoding the cuts
in V . Indeed, given any cut C, define Uj = 1 if j ∈ C and zero otherwise.
For every S ∈ SΘ and A ⊆ S, define x(S,A) =

∏
j∈A Uj

∏
j∈S\A(1 − Uj) and

y({u, v}) = Uu(1 − Uv) + Uv(1 − Uu). The solution (x, y) satisfies conditions
(2)–(5). We remark that (5) is valid for every cut since given a subset S and
a node u /∈ S, the intersection between S + u and a cut C is either C ∩ S or
(C ∩S)+u, which are the two possibilities in the left hand side of (5). Since for
every bag Y ∈ Y the size of Y ∪ VY

Θ is O(2�k + k log(n)/�), we get
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|SΘ(Y,Z)| = 2O(k(2�+log(n)/�)) for any pair of bags Y,Z ∈ Y,

|SΘ| ≤
∑

Y,Z∈Y
|SΘ(Y,Z)| = n22O(k(2�+log(n)/�)),

and therefore the number of variables and constraints in the linear fractional
program is

O
(
|SΘ| · 2max{|S|:S∈SΘ}

)
= n22O(k(2�+log(n)/�)).

By using a standard reformulation, the linear fractional program (1)–(5) can be
solved by a linear program with one additional variable and constraint [6].

3.2 The Rounding Algorithm

In this section we describe our algorithm for the non-uniform sparsest cut prob-
lem. Before stating the algorithm, we introduce an object that will be used in the
analysis. Recall that G is of treewidth k and Θ = (Y, E) is a (k, �)-decomposition
of G.

Definition 2. Given a feasible solution (x, y) satisfying (2)–(5), we define the
function given by fR

x,Θ(A) = x(R, A) for every A ⊆ R, where R is the root bag
of E. Furthermore, given any non-root bag Y ∈ Y and a subset T ⊆ VY

Θ such
that x(VY

Θ , T ) > 0, we define the function given by

fT,Y
x,Θ (A) =

x(VY
Θ ∪ Y, T ∪ A)
x(VY

Θ , T )
(6)

for every A ⊆ Y \ μ(Y ), where μ(Y ) is the parent of Y (see Fig. 1).

The functions introduced in Definition 2 have a probabilistic interpretation
that will be at the basis of our rounding algorithm. The structure provided by
constraints (3)–(5) induces probability distributions over subsets of a bag in the
decomposition Θ. For a bag Y , the value (6) can be interpreted as a conditional
probability given the choice of T ⊆ VY

Θ . The following proposition summarizes
these properties.

Proposition 1. Consider an instance (G,D, cap, dem) with G of treewidth k
and let � be a positive integer. Let Θ = (Y, E) be a (k, �)-decomposition of the
graph G and let (x, y) be a solution satisfying (2)–(5). Then, the following holds:

(a) Let L, I ∈ SΘ such that L ⊆ I. Then, for every C ⊆ L, we have x(L,C) =∑
I′⊆I\L x(I, C ∪ I ′).

(b)
∑

A⊆R fR
x,Θ(A) = 1.

(c) For every non-root bag Y ∈ Y and T ⊆ VY
Θ such that x(VY

Θ , T ) > 0, we have
∑

A⊆Y \μ(Y ) fT,Y
x,Θ (A) = 1.
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Fig. 1. Sets used in Definition 2. The set Y is the ellipse with dashed boundary. PY
Θ is

the set of bags in the path from Y to the root R. The set VY
Θ contains all areas depicted

in gray (both light and dark gray). The dark gray part of VY
Θ is T . The hatched subset

of Y is A.

The proof of Proposition 1 can be found in the full version of the article [13]. We
first design a randomized algorithm to show the existence of 2-approximation by
rounding an optimal solution of the linear fractional program (1)–(5) defined by
a (k, �)-decomposition Θ. We start by constructing a solution at the root level,
and then by conditioning on this assignment we construct a solution for the
children, and we continue this propagation process until we recover an integral
solution. Theorem 1 is finally obtained by optimizing the running time of our
algorithm as a function of �, and by performing a derandomization to get a
deterministic 2-approximation algorithm. We provide the detailed randomized
algorithm below.

Algorithm 1. Randomized Rounding
Input: (G, D, cap, dem) with G of treewidth k and a positive integer number �.
Output: A cut in the nodes V .
1: Compute a (k, �)-decomposition Θ = (Y, E) of G.
2: Let (x, y) be an optimal solution of (1)-(5).
3: Sample a subset BR ⊆ R according to the probability distribution fR

x,Θ and let
HR = ∅.

4: for � = 1 to depth(E) do
5: For every bag Y of level � in the tree E , let HY = Hμ(Y ) ∪ (Bμ(Y ) ∩ JY ).
6: Sample a subset of nodes BY ⊆ Y \ μ(Y ) according to the probability distribu-

tion fHY ,Y
x,Θ .

7: Return B =
⋃

Y ∈Y BY .

For a bag Y ∈ Y, the set Bμ(Y )∩JY is a subset of the adhesion of Y , and the
set HY collects the union of these subsets in the path of Θ that goes from the
root to Y . Then, the set BY ⊆ Y \ μ(Y ) is sampled according to a conditional
probability that depends on HY . The output of Algorithm1 is a random subset
of nodes in V and we denote by Px,Θ the probability measure induced by this
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random set-valued variable. The following lemmas summarize some properties
of the algorithm. The proof of Lemma 2 can be found in the full version of the
article [13].

Lemma 2. Consider (G,D, cap, dem) with G of treewidth k and let � be a pos-
itive integer. Let Θ = (Y, E) be a (k, �)-decomposition of G and let (x, y) be a
solution satisfying (2)–(5). Then, the following holds:

(a) For every Y ∈ Y and every S ⊆ Y ∪VY
Θ , we have Px,Θ(B∩S = T ) = x(S, T )

for every T ⊆ S.
(b) For every edge e ∈ EG in the supply graph, we have Px,Θ(|e∩B| = 1) = y(e).

Lemma 3. Consider (G,D, cap, dem) with G of treewidth k and let � be a pos-
itive integer. Let Θ = (Y, E) be a (k, �)-decomposition of G and let (x, y) be a
solution satisfying (2)–(5). Then, for every edge e ∈ ED in the demand graph
we have Px,Θ(|e ∩ B| = 1) ≥ y(e)/2.

Proof. Let e = {s, t} ∈ ED be a demand edge. When e ∈ EG we are done since
Px,Θ(|e ∩ B| = 1) = y(e) by Lemma 2 (b). Suppose in what follows that e /∈ EG,
and let Ys and Yt be the least depth bags in the tree E such that s ∈ Ys and
t ∈ Yt. Furthermore, let Y be the lowest common ancestor of the bags Ys, Yt

in the tree Y. Let Ce = (Ys ∪ VYs

Θ ) ∪ (Yt ∪ VYt

Θ ). For every T ⊆ Ce consider the
value ge(T ) = x(Ce, T ). Since x satisfies (3), we have that

∑
T⊆Ce

ge(T ) = 1
and therefore ge defines a probability mass function over SΘ(Ys, Yt), which is
the power set of Ce. Consider the set-valued random variable W distributed
according to ge and let Qe the probability measure induced by this random
variable. Then, we have

Qe(|e ∩ W | = 1) = Qe(e ∩ W = {s}) + Qe(e ∩ W = {t})

=
∑

C′⊆Ce\{e}
x(Ce, s + C ′) +

∑

C′⊆Ce\{e}
x(Ce, t + C ′)

= x(e, s) + x(e, t) = y(e),

where the third equality holds by Proposition 1 (a) and the last equality holds
since x satisfies condition (2). Let Zs and Zt be the children bags of Y such that
Zs belongs to unique path from Ys to the root R and Zt belongs to unique path
from Yt to the root R, in the tree E . Define the set Λ = VY

Θ ∪JZs
∪JZt

. Observe
that

Px,Θ(|e ∩ B| = 1) =
∑

T⊆Λ

Px,Θ(|e ∩ B| = 1 | B ∩ Λ = T ) · Px,Θ(B ∩ Λ = T )

=
∑

T⊆Λ

Px,Θ(|e ∩ B| = 1 | B ∩ Λ = T ) · x(Λ, T ),

where the last equality holds by Lemma 2 (a) and the fact that Λ ⊆ VY
Θ ∪ Y .

On the other hand, for any L ⊆ W and every I ⊆ L we have

Qe(W ∩ L = I) =
∑

C′⊆Ce\L

x(Ce, I ∪ C ′) = x(L, I), (7)
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where the last equality holds by Proposition 1 (a). Therefore, we have

y(e) = Qe(|e ∩ W | = 1) =
∑

T⊆Λ

Qe(|e ∩ W | = 1 | W ∩ Λ = T ) · Qe(W ∩ Λ = T )

=
∑

T⊆Λ

Qe(|e ∩ W | = 1 | W ∩ Λ = T ) · x(Λ, T ),

where the last equality holds by applying (7) with L = Λ. Then, in order to
conclude the lemma it is sufficient to show that Qe(|e ∩ W | = 1 | W ∩ Λ =
T ) ≤ 2 · Px,Θ(|e ∩ B| = 1 | B ∩ Λ = T ). Given T ⊆ Λ, consider the random
variable ωs,T ∈ {0, 1} that indicates whether s ∈ W given W ∩ Λ = T , and
let βs,T ∈ {0, 1} be the random variable that indicates whether s ∈ B given
B ∩ Λ = T . We define analogously the random variables ωt,T and βt,T . Since
s, t /∈ Λ, we observe that for any T ⊆ Λ and v ∈ {s, t} it holds that v ∈ W and
W ∩ Λ = T if and only if W ∩ (Λ + v) = T + v. Therefore, for every T ⊆ Λ, we
have that

Qe(ωs,T = 1) =
Qe(s ∈ W,W ∩ Λ = T )

Qe(W ∩ Λ = T )
=

x(Λ + s, T + s)
x(Λ, T )

= Px,Θ(βs,T = 1),

Qe(ωt,T = 1) =
Qe(t ∈ W,W ∩ Λ = T )

Qe(W ∩ Λ = T )
=

x(Λ + t, T + t)
x(Λ, T )

= Px,Θ(βt,T = 1),

where, in both cases, the first equality comes from the above observation and (7)
and the second equality is a consequence of the above observation and Propo-
sition 1 (a). We conclude that for every T ⊆ Λ the random variables ωv,T and
βv,T are identically distributed, for v ∈ {s, t}.

Claim. Suppose we have two random variables G and K, not necessarily inde-
pendent, and taking values in {0, 1}. Then, we have Pr(G �= K) ≤ 2(Pr(G =
1)Pr(K = 0) + Pr(G = 0)Pr(K = 1)).

The proof of the claim can be found in the full version of the article [13]. We show
how to conclude the lemma using the claim. Taking G = ωs,T and K = ωt,T , we
have

Qe(|e ∩ W | = 1 | W ∩ Λ = T )
= Qe(ωs,T �= ωt,T )
≤ 2(Qe(ωs,T = 1)Qe(ωt,T = 0) + Qe(ωs,T = 0)Qe(ωt,T = 1))
= 2(Px,Θ(βs,T = 1)Px,Θ(βt,T = 0) + Px,Θ(βs,T = 0)Px,Θ(βt,T = 1))
= 2 · Px,Θ(βs,T �= βt,T ) = 2 · Px,Θ(|e ∩ B| = 1 | B ∩ Λ = T ),

which concludes the lemma. �

Definition 3. Let G be a graph of treewidth k, let Θ = (Y, E) be a (k, �)-
decomposition of G, and consider a node u ∈ V . Let X be the least depth bag in
the tree containing the node u. Given a bag Z ∈ PX

Θ and H ⊆ VZ
Θ ∪ Z, we say

that a pair (M,N) is an H-extension for the node u if the following holds:
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(i) N ⊆ X \ VX
Θ and u ∈ N ,

(ii) M = (H ∩ VX
Θ ) ∪ L where L ⊆ VX

Θ \ (VZ
Θ ∪ Z).

We denote by ΔΘ(H,u) the set of H-extensions for u.

Observe that for any node u and X being the least depth bag containing u, for
any bag Z ∈ PX

Θ and any H ⊆ VZ
Θ ∪Z, the set ΔΘ(H,u) has cardinality at most

2O(k(2�+log(n)/�)) (8)

when Θ is a (k, �)-decomposition. This holds since, by Lemma 1, we have |X \
VX

Θ | ∈ O(2�k) and |VX
Θ \ (VZ

Θ ∪ Z)| ∈ O(k log(n)/�). We need one more lemma
before proving Theorem 1. The proof of Lemma 4 can be found in the full version
of the article [13].

Lemma 4. For every positive real value x ≥ 4, there exists a unique value α�

such that alpha α�2α�

= x, and it satisfies the inequality 2�α�� + x/�α�� ≤
12x/ log(x).

Proof (Proof of Theorem 1). Let I = (G,D, cap, dem) be an instance of the non-
uniform sparsest cut problem. Recall that we denote by n the number of nodes
in the instance. Let α�

n be the unique positive real solution of the equation
α2α = log(n) and let �� = �α�

n�. We run Algorithm1 over the instance I,
using the value ��, and let Θ be the (k, ��)-decomposition computed in step 1
of the algorithm. Let (x, y) be an optimal solution of the optimization problem
(1)–(5) solved in step 2 of the algorithm, and we denote by optLP the optimal
value

∑
e∈EG

cap(e)y(e)/
∑

e∈ED
dem(e)y(e). Let B be the solution computed

by the randomized algorithm. For every pair of nodes e = {u, v} ⊆ V , with
u �= v, let ξ(e) be equal to one if |e ∩ B| = 1 and zero otherwise. This random
variable indicates when a pair of nodes is cut by the algorithm solution. Consider
C =

∑
e∈EG

cap(e)ξ(e) and D =
∑

e∈ED
dem(e)ξ(e). By Lemmas 2 (b) and 3 we

have that

Ex,Θ(C) =
∑

e∈EG

cap(e) · Px,Θ(|e ∩ B| = 1) =
∑

e∈EG

cap(e)y(e),

Ex,Θ(D) =
∑

e∈ED

dem(e) · Px,Θ(|e ∩ B| = 1) ≥ 1
2

∑

e∈ED

dem(e)y(e),

and therefore we get Ex,Θ(C)/Ex,Θ(D) ≤ 2 · optLP ≤ 2 · minS⊆V φ(S), where the
last inequality holds since the sparsest cut of value minS⊆V φ(S) defines a feasible
solution for (1)–(5). We now show how to derandomize the solution B to get a
deterministic 2-approximation. We use the method of conditional expectations.
Define the random variable Γ = C−2D·optLP. Then, we have that 0 ≥ Ex,Θ(Γ ) =
E(Ex,Θ(Γ |BR)) and therefore there exists R′ ⊆ R such that Ex,Θ(Γ |BR = R′) ≤
0. Fix any subset Y ′

1 ⊆ R with Ex,Θ(Γ |BR = Y ′
1) ≤ 0 and let R = Y1, Y2, . . . , Y|Y|

be the bags visited according to some BFS ordering. Suppose we have computed
for some t ∈ {1, . . . , |Y|−1} the set At = ∪t

�=1Y
′
� ⊆ ∪t

�=1Y�, with Y ′
� ⊆ Y� \μ(Y�)
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for each � ∈ {1, . . . , t}, and such that Ex,Θ(Γ |B ∩ (∪t
�=1Y�) = At) ≤ 0. Then, we

have

0 ≥ Ex,Θ(Γ |B ∩ (∪t
�=1Y�) = At)

=
∑

Y ′⊆Yt+1\μ(Yt+1)

Ex,Θ(Γ |B ∩ (∪t
�=1Y�) = At, BYt+1 = Y ′) · Px,Θ(BYt+1 = Y ′)

=
∑

Y ′⊆Yt+1\μ(Yt+1)

Ex,Θ(Γ |B ∩ (∪t+1
�=1Y�) = At ∪ Y ′) · Px,Θ(BYt+1 = Y ′),

and therefore there exists Y ′ ⊆ Yt+1 \ μ(Yt+1) such that Ex,Θ(Γ |B ∩ (∪t+1
�=1Y�) =

At∪Y ′) ≤ 0. Fix any of these subsets and we denote it by Y ′
t+1. By the end of this

process, let A be the union of Y ′
1 , . . . , Y ′

|Y|. By construction, we have recovered
a solution such that Ex,Θ(Γ |B = A) ≤ 0 and therefore A is a 2-approximation.

We now study the running time of the derandomization, and more specifically,
the running time that we need to compute the conditional expectations. Let
t ∈ {1, . . . , |Y|} and let T ⊆ ∪t

�=1Y�. To compute the value of the expectation
Ex,Θ(Γ |B ∩ (∪t

�=1Y�) = T ), it is sufficient to compute the probability value
Px,Θ(|e ∩ B| = 1|B ∩ (∪t

�=1Y�) = T ) for any e ∈ EG or e ∈ ED. Furthermore,
when e ⊆ ∪t

�=1Y� the value of the probability is determined and equal to one
or zero. Then, we suppose that e = {u, v} is not contained in ∪t

�=1Y�. For every
node a ∈ V \ (Y1 ∪ · · · ∪ Yt) let Xa be the least depth bag in Y that contains
a. In particular, we have that Xa /∈ {Y1, . . . , Yt} and let Za be the lowest bag
in {Y1, . . . , Yt} such that Za belongs to the path from Xa to the root. For every
a ∈ V \ (Y1 ∪ · · · ∪ Yt) consider the quantity

ga = Px,Θ

(
a ∈ B

∣
∣
∣ B ∩ (VZa

Θ ∪ Za) = T ∩ (VZa

Θ ∪ Za)
)
.

Case 1. Suppose that u /∈ ∪t
�=1Y� and v /∈ ∪t

�=1Y� and that Zu �= Zv. Then,
PZu

Θ and PZv

Θ are contained in the subtree induced by the bags Y1, . . . , Yt. By
construction in Algorithm 1 we have that Px,Θ(|e ∩ B| = 1|B ∩ (∪t

�=1Y�) = T ) =
gu(1 − gv) + gv(1 − gu). Furthermore, by denoting Ta = T ∩ (VZa

Θ ∪ Za), we have

ga =
∑

(M,N)∈ΔΘ(Ta,u)

fM,Xa

x,Θ (N) =
∑

(M,N)∈ΔΘ(Ta,u)

x(VXa

Θ ∪ Xa,M ∪ N)
x(VXa

Θ ,M)

for each a ∈ {u, v}. By the observation in (8), gu and gv can be computed in
time 2O(k(2��

+log(n)/��)).

Case 2. Suppose that u /∈ ∪t
�=1Y� and v /∈ ∪t

�=1Y�, and that Zu = Zv = Z. Let
W be the lowest common ancestor of Yu and Yv. In particular, Z is an ancestor
of W and W /∈ {Y1, . . . , Yt}. For every H ⊆ VW

Θ \ (VZ
Θ ∪ Z) and K ⊆ W \ μ(W )

consider the quantity

β(H,K) =
x(VW

Θ ∪ W, (T ∩ VW
Θ ) ∪ H ∪ K)

x(VW
Θ , (T ∩ VW

Θ ) ∪ H)
.
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Furthermore, for every H ⊆ VW
Θ \ (VZ

Θ ∪ Z), K ⊆ W \ μ(W ) and a ∈ {u, v} let

γa(H,K) =
∑

(M,N)∈ΔΘ((T∩VW
Θ )∪H∪K,u)

x(VYa

Θ ∪ Ya,M ∪ N)
x(VYa

Θ ,M)

Then, we have that Px,Θ(|e ∩ B| = 1|B ∩ (∪t
�=1Y�) = T ) is equal to

∑

H⊆VW
Θ \(VZ

Θ∪Z)

∑

K⊆W\μ(W )

β(H,K)
(
γu(H,K)(1−γv(H,K))+γv(H,K)(1−γu(H,K))

)
.

As before, the above summation can be computed in time 2O(k(2��
+log(n)/��)).

Case 3. Suppose that u ∈ ∪t
�=1Y� and v /∈ ∪t

�=1Y� (the other case is symmetric).
In this case, we have that Px,Θ(|e ∩ B| = 1|B ∩ (∪t

�=1Y�) = T ) is equal to 1 − gv,
and therefore we can compute it in time

2O(k(2��
+log(n)/��)).

As we observe at the end of Sect. 3.1, the optimization problem (1)–(5) can be
solved in time 2O(k(2��

+log(n)/��))|I|O(1). On the other hand, for every n ≥ 16,
by Lemma 4 we have

k2��

+
k log(n)

��
= k2�α�

n� +
k log(n)
�α�

n� ≤ 12k log(n)
log log(n)

,

and therefore, the randomized algorithm and the derandomization can be all
performed in time

2
O

(
k

log(n)
log log(n)

)

|I|O(1) = 22
O(k) |I|O(1).

To finish the proof, we verify the above equality by considering two cases. If
k < log log(n), we have k log(n)/ log log(n) < log(n) and the equality holds.
Otherwise, if k ≥ log log(n) and n ≥ 4 we have k log(n)/ log log(n) ≤ k log(n) =
2log(k)+log log(n) ≤ 2log(k)+k = 2O(k). �
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Abstract. We consider a fundamental pricing problem in combinatorial
auctions. We are given a set of indivisible items and a set of buyers with
randomly drawn monotone valuations over subsets of items. A decision
maker sets item prices and then the buyers make sequential purchas-
ing decisions, taking their favorite set among the remaining items. We
parametrize an instance by d, the size of the largest set a buyer may want.
Our main result asserts that there exist prices such that the expected
(over the random valuations) welfare of the allocation they induce is at
least a factor 1/(d + 1) times the expected optimal welfare in hindsight.
Moreover we prove that this bound is tight. Thus, our result not only
improves upon the 1/(4d − 2) bound of Dütting et al., but also settles
the approximation that can be achieved by using item prices. We fur-
ther show how to compute our prices in polynomial time. We provide
additional results for the special case when buyers’ valuations are known
(but a posted-price mechanism is still desired).

Keywords: Combinatorial Auctions · Online allocations

1 Introduction

In combinatorial auctions, a set of valuable items is to be allocated among a set
of interested agents. Who should get which items in order to maximize the social
welfare? This is a fundamental economic question, and a ubiquitous allocation
mechanism is to simply set a price for each item and let the agents buy their
preferred subset of items under those prices. The study of these mechanisms
dates back to the investigations of Leon Walras over a century ago, and is closely
related to the notion of Walrasrian equilibrium. Understanding the existence
and approximation of Walrasrian equilibrium and related notions under pricing
mechanisms has been an active area of research in recent years [3,4,13,14,20].

In this paper, we follow the approach of online combinatorial auctions and
study the welfare achieved by posted-price mechanisms in a very general setup.
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Specifically, our mechanisms post a price pi on each item i. Then, buyers with
randomly-drawn monotone valuations over the subsets of items arrive in arbi-
trary order, and upon arrival pick their preferred subset among those items that
are left (at the posted prices). Of course, in this generality little can be said
about the social welfare induced by posted-price mechanisms, so it is common
to parametrize the instances by d, the largest size of a set a buyer might be inter-
ested in.1 This parametrization is interesting from a combinatorial perspective:
finding a socially optimal allocation is NP-hard already when d ≥ 3.2 Moreover,
if we restrict the buyers’ valuations to be deterministic and single-minded,3 we
recover the classic hypergraph matching problem.

Our main result in this paper is to determine the tight approximation guar-
antee of item pricing as a function of d. Specifically, we prove that there always
exist a posted-price mechanism such that the expected welfare of the result-
ing allocation, when buyers arrive in adversarial order and iteratively purchase
their preferred set, is at least a 1/(d + 1) fraction of the expected welfare of
an optimal allocation (Theorem 1). Furthermore, we prove this bound is tight
(Proposition 1).

Interestingly, our result generalizes and/or improves upon several results in
the literature, which we now provide context for.

1.1 Context and Related Work

Posted-Price Mechanisms. Posted-price mechanisms are ubiquitous within
the economics and computation literature due to their simplicity. They are com-
monly used as subroutines in truthful mechanisms that approximately maximize
welfare [1,2,8,9,19]. They are also used as subroutines in simple mechanisms to
approximately maximize revenue in Bayesian settings [5–7,18]. Our work con-
siders the same model (welfare maximization in Bayesian settings) initiated by
Feldman et al. [13]. Other works consider restrictions on the valuations such
as subadditive [11], while others consider the unrestricted case [10]. Our paper
contributes to this line of work by nailing the tight approximation guarantee
of posted-price mechanisms in this model for unrestricted valuations over sets
of size at most d. In particular, our results improve the bound of 1/(4d − 2) of
Dütting et al. [10], to 1/(d + 1), which is tight.

Prophet Inequalities. When there is a single item (and thus d = 1) our prob-
lem is equivalent to the single-item prophet inequality and thus our result takes
the same form as the classic result of Samuel-Cahn [21], who proved that the
optimal prophet inequality (whose factor is 1/2) can be achieved with a single
threshold. A special case of our problem when buyers are single-minded cor-
responds to various multiple-choice prophet inequality settings, and our results
improve upon the state-of-the-art. In particular, all prophet inequalities deduced
from our main result are non-adaptive: for each element e, a threshold Te is set
1 That is, for all sets A with |A| > d, v(A) := maxB⊂A,|B|≤d{v(B)}.
2 And quite hard to approximate [22].
3 That is, each buyer has a fixed set T , and values all sets S at v(S) := I(T ⊆ S)·v(T ).
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at the beginning of the algorithm. Element e is accepted if and only if we ≥ Te

(and it is feasible to accept e).
When d = 2 and buyers are single-minded, our problem translates into the

matching prophet inequality problem. Our results when d = 2 therefore extend
the 1/3-approximation of Gravin and Wang [16] from bipartite to general graphs.
Note that recent work of Ezra et al. [12] provides a .337-approximation in this
case, although it sets thresholds adaptively. In the full version, we further con-
tribute to the d = 2 case by proving that no prophet inequality (adaptive or not)
can guarantee better than a 3/7-approximation for the bipartite graph prophet
inequality.

For arbitrary d when buyers are single-minded, our problem translates into
the d-dimensional hypergraph prophet inequality, which generalizes the prophet
inequality problem over the intersection of d partition matroids. Here, a 1/(4d−
2)-approximation was first given by Kleinberg and Weinberg [18], and improved
to 1/(e(d + 1)) by Feldman et al. [15]. A corollary of our main result improves
this to 1/(d+1), and with non-adaptive thresholds. A lower bound of Kleinberg
and Weinberg [18] proves that it is not possible to achieve an ω(1/

√
d) approxi-

mation even for this special case, but it remains an open problem to determine
the tight ratio for prophet inequalities for the intersection of d partition matroids
(and for the d-dimensional hypergraph prophet inequality).

1.2 A Technical Highlight and Additional Results

The proof of our main result breaks down the expected welfare into the “revenue”
and “utility” achieved by setting prices, and searches for properly “balanced
thresholds” as in [10,13,16,18]. In particular, we target prices that are “low
enough” so that a buyer with high value for some set will choose to purchase
it, yet also “high enough” so that the revenue gained when a bidder purchases
items they should not receive in the optimal allocation compensates for the lost
welfare. In comparison to prior work using a similar approach, the conditions
that guarantee such prices are more involved, and we prove their existence using
Brouwer’s fixed point theorem.

As our proof makes use of Brouwer’s fixed point theorem, it is inherently
non-constructive; however, in the full version, we show that the prices can be
efficiently computed by making use of an LP relaxation to cope with the APX-
hardness of optimizing welfare, and we further provide a convex optimization
formulation to find our fixed point.

In Sect. 4, we consider the special case that arises when valuations are deter-
ministic and buyers are single-minded. In this situation the welfare optimization
problem corresponds to matching in a hypergraph with edges of size at most d.
So the problem of finding item prices boils down to finding a set of thresholds,
one for each vertex, such that the value of the solution in which hyperedges arrive
sequentially (for any order) and greedily included in the solution so long as their
weight is higher than the sum of the corresponding vertex thresholds, is as close
as possible to the optimal solution. For the case of standard matching (d = 2) we
prove that there exist prices guaranteeing a factor of 1/2 of the optimal solution
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and that there do not exist prices guaranteeing a factor better than 2/3. The
tight factor is left as an open problem. More generally, we prove that there are
prices obtaining a fraction 1/d of the optimal solution (thus slightly improving
our general 1/(d + 1)), and that it is not possible to do better than Ω(1/

√
d).

2 Model

In our basic model, we have a (multi)set of items M in which there are kj ≥ 1
copies of each item j ∈ M .4 The set of buyers, denoted by N , arrive sequentially
(in arbitrary order) and buy some of those items. Each buyer i ∈ N has a
valuation function vi : 2M → R+, which is randomly chosen according to a
given distribution Fi (defined over a set of possible valuation functions). As is
standard, we assume that each possible realization of each vi is monotone (i.e.,
A ⊆ B ⇒ vi(A) ≤ vi(B)). We parametrize an instance of the problem by d, the
size of the largest set a buyer might be interested in. Thus we assume that if
A ⊆ M is such that |A| > d, then

v(A) = max
B⊆A,|B|=d

v(B). (1)

Note that while there are ki ≥ 1 copies of each item i ∈ M , no single buyer can
purchase more than one copy of an item.

In this paper, we are interested in exploring the limits of using item prices as
the mechanism to assign items to buyers. In a pricing mechanism, we set item
prices p ∈ R

M
+ and then consider an arbitrary arrival order of the buyers.5 Thus,

buyer i buys the set of remaining items that optimizes

max
A⊆Ri

vi(A) −
∑

j∈A

pj , (2)

where Ri stands for the remaining items for which there exists at least one
unsold copy when i arrives. Note that (2) might be solved by A = ∅, i.e., buyer
i might opt not to buy anything. When there is a tie between different sets, the
buyer can choose arbitrarily, meaning that our results need to be valid even for
the worst case.6

More precisely, if σ is the arrival order of the buyers, so that buyer i comes
at time σ(i), then buyer i gets the set Bi(σ) = arg maxA⊆Ri(σ) vi(A)−∑

j∈A pj ,
where Ri(σ) = {j ∈ M : kj > |{� ∈ N : σ(�) < σ(i) and j ∈ B�(σ)}|}. With
this, given an instance of the problem (determined by M , kj for all j ∈ M ,
N , and Fi for all i ∈ N), the quality measure of a price vector p ∈ R

M
+ is the

worst case (over the arrival orders) expected (over the valuations) welfare of the
allocation it induces. Denoting this quantity as ALG(p) we have that

4 Throughout the paper M is actually a set and refers to the set of different items.
5 Note that different copies of the same item need to get the same price.
6 In some of the constructions in Sect. 4 we break ties conveniently but all the results

hold by slightly tweaking the instances.



130 J. Correa et al.

ALG(p) := min
σ

E

(
∑

i∈N

vi(Bi(σ))

)
.

On the other hand, the benchmark we compare to throughout the paper is the
welfare maximizing allocation, OPT , which is defined as

OPT := E

(
max

Ai, i∈N

{
∑

i∈N

vi(Ai) : s.t. |{i ∈ N : j ∈ Ai}| ≤ kj , for all j ∈M

})
.

We denote by OPTi the random set that buyer i gets in an optimal allocation.
In Sect. 4 we consider the special case of our problem in which

(i) valuations are deterministic,
(ii) there is a single copy of each item (kj = 1 for all j ∈ M), and
(iii) buyers are single-minded, i.e., each buyer i has a set Ai, with |Ai| ≤ d, such

that Ai 
⊆ B ⇒ vi(B) = 0, Ai ⊆ B ⇒ vi(B) = vi(Ai).

Interestingly, already in this particular setup, the problem of maximizing the
welfare of an allocation corresponds to the classic combinatorial optimization
problem of hypergraph matching with hyperedges of size at most d. Indeed, in
an optimal allocation buyer i either gets Ai or ∅, implying that maximizing the
(now deterministic) welfare of the allocation is equivalent to finding a subset of
pairwise disjoint Ai’s of maximum total valuation.

3 Random Valuations

In this section we prove there exists a vector of item prices such that the resulting
allocation yields in expectation at least a 1/(d+1) fraction of the optimal social
welfare. Additionally, we show that this bound is tight.

Theorem 1. There exists a vector of prices p ∈ R
M
+ such that

(d + 1) · ALG(p) ≥ OPT.

To prove the theorem we will make use of the following function. For each
A ⊆ M and i ∈ N , we define

zi,A(p) =

⎡

⎣E(1OPTi=A · vi(A)) − P(OPTi = A)
∑

j∈A

pj

⎤

⎦

+

,

where [·]+ denotes the positive part. We assume without loss of generality that
|OPTi| ≤ d for all i ∈ N , so zi,A(p) = 0 if |A| > d. We start by showing a lower
bound for ALG(p) in terms of the functions zi,A(p).

Lemma 1. For any vector of prices p ∈ R
M
+ ,

ALG(p) ≥ min
C⊆M

⎧
⎨

⎩
∑

j /∈C

kj · pj +
∑

i∈N

∑

A⊆C

zi,A(p)

⎫
⎬

⎭ .
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Proof. In this proof we assume the arrival order σ is arbitrary, and for simplicity
we drop the dependency of Bi(σ) and Ri(σ) on σ and simply denote them by
Bi and Ri. We separate the welfare of the resulting allocation into revenue and
utility, i.e., we separate

∑
i∈N vi(Bi) into

Revenue =
∑

i∈N

∑

j∈Bi

pj and Utility =
∑

i∈N

⎛

⎝vi(Bi) −
∑

j∈Bi

pj

⎞

⎠ .

Recall that Ri is the set of items such that there are remaining copies when i
arrives. Similarly, denote by R the set of items that have remaining copies by
the end of the process. We have that

E(Revenue) ≥ E

⎛

⎝
∑

j /∈R

kj · pj

⎞

⎠ .

For the utility, for any i ∈ N , by the definition of Bi, it holds that

vi(Bi) −
∑

j∈Bi

pj = max
A⊆Ri

⎛

⎝vi(A) −
∑

j∈A

pj

⎞

⎠

Note now that vi and Ri are independent. Thus, let (ṽi)i∈N be independent
realizations of the valuations, and ÕPT i the corresponding optimal solution.
With this we can rewrite the expected utility of agent i as

E

(
max
A⊆Ri

vi(A) −
∑
j∈A

pj

)
= E

(
max
A⊆Ri

ṽi(A) −
∑
j∈A

pj

)
≥ E

(
max
A⊆R

ṽi(A) −
∑
j∈A

pj

)
.

We replace the maximization over subsets of R with a particular choice, ÕPT i,
whenever it is contained by R and gives positive utility (otherwise we take ∅),
to obtain the following lower bound.

E

⎛

⎜⎝1{ ˜OPT i⊆R} ·
⎡

⎣ṽi(ÕPT i) −
∑

j∈ ˜OPT i

pj

⎤

⎦

+

⎞

⎟⎠

= E

⎛

⎝
∑

A⊆R

1{ ˜OPT i=A} ·
⎡

⎣ṽi(A) −
∑

j∈A

pj

⎤

⎦

+

⎞

⎠

= E

⎛

⎝
∑

A⊆R

E

⎛

⎝

⎡

⎣1{ ˜OPT i=A}

⎛

⎝ṽi(A) −
∑

j∈A

pj

⎞

⎠

⎤

⎦

+

⎞

⎠

⎞

⎠ ≥ E

⎛

⎝
∑

A⊆R

zi,A(p)

⎞

⎠ .

The last inequality comes from Jensen’s inequality, noting that [·]+ is a convex
function. Summing over all agents, we get that

E(Utility) ≥ E

⎛

⎝
∑

i∈N

∑

A⊆R

zi,A(p)

⎞

⎠ .
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Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

⎛

⎝
∑

j /∈R

kj · pj +
∑

i∈N

∑

A⊆R

zi,A(p)

⎞

⎠ .

Replacing the expectation over R with a minimization over subsets of M we
obtain the bound of the lemma. ��
Lemma 2. For any vector of prices p ∈ R

M
+ ,

OPT ≤
∑

j∈M

kj · pj +
∑

i∈N

∑

A⊆M

zi,A(p).

Proof. We have that OPT equals

∑

i∈N

E(vi(OPTi)) = E

⎛

⎝
∑

i∈N

∑

j∈OPTi

pj

⎞

⎠ +
∑

i∈N

E

⎛

⎝vi(OPTi) −
∑

j∈OPTi

pj

⎞

⎠ .

Now we upper bound these two terms separately. Note that in the first term
each item j ∈ M appears at most kj times, so

E

⎛

⎝
∑

i∈N

∑

j∈OPTi

pj

⎞

⎠ ≤
∑

j∈M

kj · pj .

For the second part we upper bound with the positive part of the difference, and
sum over all possible values of OPTi.

∑

i∈N

E

⎛

⎝vi(OPTi) −
∑

j∈OPTi

pj

⎞

⎠

≤
∑

i∈N

∑

A⊆M

E

⎛

⎝1{OPTi=A}

⎛

⎝vi(OPTi) −
∑

j∈OPTi

pj

⎞

⎠

⎞

⎠

≤
∑

i∈N

∑

A⊆M

zi,A(p).

Putting together the two upper bounds we obtain the bound on OPT . ��
Lemma 3. There exists a vector of prices p ∈ R

M
+ that satisfies the equation

pj =
1
kj

∑

i∈N

∑

A⊆M :j∈A

zi,A(p).
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Proof. Denote the set K = [0, OPT ]M ⊆ R
M
+ . We define the function ψ : K → K

as follows. For an element p ∈ K and j ∈ M , the j-th coordinate of ψ is

ψj(p) =
1
kj

∑

i∈N

∑

A⊆M :j∈A

zi,A(p).

We prove now that ψ is a well defined continuous function, from the compact
set K into itself, and therefore it has a fixed point by Brouwer’s theorem. Note
that a fixed point of ψ is exactly the vector of prices we are looking for.

Recall that zi,A(p) = [E(1OPTi=A · vi(A)) − P(OPTi = A)
∑

j∈A pj ]+, which
is a decreasing function of pj , for all j ∈ M . Moreover, note that since [·]+
is a convex function, zi,A is also a convex function of pj for all j ∈ M . The
monotonicity of zi,A implies that for all p ∈ K and j ∈ M , ψj(p) ≤ ψj(0) ≤
1
kj

E(OPT ), and therefore ψ(p) ∈ K for all p ∈ K. The convexity of zi,A implies
it is also continuous, so ψ is a continuous function. ��
Proof (of Theorem 1). Using the vector of prices from Lemma 3 in the bound of
Lemma 1 results in

ALG(p) ≥
∑

i∈N

∑

A⊆M

zi,A(p).

To compare to OPT , we use the upper bound of Lemma 2, which shows

OPT ≤
∑

j∈M

∑

i∈N

∑

A⊆M :j∈A

zi,A(p) +
∑

i∈N

∑

A⊆M

zi,A(p)

=
∑

i∈N

∑

A⊆M

(|A| + 1) · zi,A(p)

≤ (d + 1)
∑

i∈N

∑

A⊆M

zi,A(p).

Comparing the two bounds we get that (d + 1)ALG(p) ≥ OPT . ��
To wrap up the section, we establish that the bound of Theorem 1 is best

possible, by modifying a simple example of Dütting et al. [10].

Proposition 1. For all d, and all δ > 0, there exists an instance on |N | = 2
bidders and |M | = d items such that for all p, ALG(p) = 1, yet OPT (p) =
d + 1 − δ.

Proof. Consider a set M of exactly d items with a single copy of each, and a
very small ε > 0. There are two buyers. The first buyer values any nonempty
subset of the items at 1. The second buyer only assigns value to getting all d
items, and this value is d−ε with probability 1−ε and it is 1/ε with probability
ε. Now we consider setting prices pj for all j ∈ M . If we set the prices so that∑

j∈M pj ≤ d−ε then there exists an item with price at most 1−ε/d. Therefore,
the first buyer will get this item and thus the total welfare will be 1. If, on the
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contrary, buyer one does not purchase an item, then we must have
∑

j∈M pj ≥ d,
and the second buyer will only purchase items with probability ε. In this case,
the expected total welfare is also 1. This establishes that ALG(p) = 1 for all p.
Finally, it is clear that in this instance the optimal welfare is achieved by always
assigning all items to the second buyer, which results in an expected welfare of
(d − ε) · (1 − ε) + ε · (1/ε) ≥ d + 1 − (d + 1)ε. Setting ε = δ/(d + 1) completes the
proof. ��

Efficient Computation. Our above proof is nonconstructive as it requires a fixed
point computation. However, in the full version of the paper, we show that
despite this challenge and others, there exists a polynomial-time algorithm to
compute the prices using only demand queries.

4 Single-Minded Valuations

In this section, we consider the special case where there is a single copy of each
item (ki = 1 for all i ∈ M), buyers’ valuations are deterministic, and buyers
are single-minded. The latter means each buyer i has a set Ai, with |Ai| ≤ d,
such that Ai 
⊆ B ⇒ vi(B) = 0 and Ai ⊆ B ⇒ vi(B) = vi(Ai). The problem
of maximizing the welfare of an allocation in this context can be seen as the
classic combinatorial problem of hypergraph matching with hyperedges of size
at most d, where the buyers correspond to the hyperedges and the items are
the vertices. Indeed, in an optimal allocation for this setting buyer i either gets
Ai or ∅, implying that maximizing the welfare of the allocation is equivalent to
finding a subset of pairwise disjoint Ai’s of maximum total valuation. As this is
a traditional problem, in the rest of this section we will refer to hypergraphs,
hyperedges and vertices, rather than buyers and items, using the usual notation
G = (V,E) and denoting by w(e) the valuation (or weight) of the hyperedge e.

4.1 Matching in Graphs: d = 2

We first focus on the traditional matching problem, showing that using prices has
limits even for this scenario. As argued in Lemmas 4 and 6, there are instances in
which no pricing scheme can guarantee recovering more than 2/3 of the optimal
solution. This is true even if the graph is bipartite or if there is a unique optimal
matching; on the other hand, if both conditions are fulfilled—i.e., the graph is
bipartite and there is a unique optimal matching, we show that using the dual
prices leads precisely to such optimal solution.

Lemma 4. Prices cannot guarantee obtaining more than 2/3 of the optimal
matching, even if the graph is bipartite.

Proof. Consider the graph depicted in Fig. 1, in which all edges have unit weight.
There are two optimal solutions, given by the black and the red perfect match-
ings. Assume we have prices that are able to build an optimal solution (i.e.,
include three edges) regardless of the order in which the edges arrive. This implies



Optimal Item Pricing in Online Combinatorial Auctions 135

L1

L2

L3

R1

R2

R3

Fig. 1. Example of a bipartite graph in which, when all edges have the same weight, no
pricing scheme can guarantee obtaining more than 2/3 of the optimal solution. (Color
figure online)

that for at least one of the optimal solutions, all the edges will be included if
their vertices are available when they arrive. Without loss assume this is the
case for the black matching, i.e. for i = 1, 2, 3, we have pLi

+ pRi
≤ 1.

On the other hand, we need to prevent the red edges to be included if they
appear: to see why this is necessary, consider for instance the case in which the
edge (L1, R2) is not discarded when appearing first; then, if the edge (L3, R3)
appears second, no more edges could be added. To preclude this, we need to
impose that for i = 1, 2, 3, pLi

+ pR(i mod 3)+1 > 1. A contradiction follows by
adding these as well as the previous three inequalities. ��

In the case of bipartite graphs, it is natural to consider the usual linear
programming formulation, since it has integral optimal solutions. The following
lemma shows that when we require the additional hypothesis that there is a
unique optimal matching, the prices given by the optimal solution of the dual
problem lead to the optimal assignment.

Lemma 5. If the graph G = (V,E) is bipartite and has a unique optimal match-
ing, then such a matching is obtained using the dual prices.

Proof. Because the graph is bipartite, the problem reduces to solving the linear
program max{∑e∈E xew(e) :

∑
e∈δ(v) xe ≤ 1 for all v ∈ V, x ≥ 0}, which has an

integral optimal solution. Because there is only one optimal matching, the LP has
a unique optimal solution (x∗

e)e∈E . Consider the prices (p∗
u)u∈V corresponding

to an optimal dual solution, satisfying strict complementary slackness.
Consider an edge e = (u, v) that is not part of the optimal matching. Hence,

the corresponding primal variable takes the value x∗
e = 0. By complementary

slackness, the corresponding dual constraint is not tight, i.e. p∗
u + p∗

v > w(e).
This last condition implies that buyer e will not buy the edge upon arrival.
On the other hand, if e is part of the optimal solution, the corresponding dual
constraint must be tight (again due to strict complementary slackness), so that
those buyers will choose to buy. ��

The assumption of a unique solution is crucial for the dual prices to be
useful. Indeed, when there is more than one solution, using the dual prices can
be arbitrarily inefficient. Indeed, consider the same example depicted in Fig. 1,
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A

B

C D

E

F

Fig. 2. Example of a graph in which, when all edges have the same weight, there is
a unique optimal matching but no pricing scheme can guarantee obtaining more than
2/3 of its weight.

but modify the weight of the edges f = (L1, R1) and g = (L2, R3) to be ε, so
that that the optimal solution has value 2 + ε. On the other hand, consider an
edge e = (u, v) and the resulting dual prices pu, pv: complementary slackness
now states that we have pu + pv = w(e) iff e is part of any optimal solution.
Edge f is part of the black optimal solution, and edge g is part of the red, hence
those edges will be bought if the corresponding vertices are available when they
appear. In particular, if they are the first two edges to appear, then they will
both be in the final solution, and no other edge can be added, leading to a final
weight of 2ε.

However, in general graphs, even the uniqueness assumption is not enough.
Indeed we have the following result.

Lemma 6. Prices cannot guarantee obtaining more than 2/3 of the optimal
matching in a general graph, even if there is only one optimal matching.

Proof. Consider the graph depicted in Fig. 2, where every edge has unit weight.
The optimal matching is given by the three black edges with total value of 3.
On the other hand, if any red edge enters the solution, the resulting total weight
will be at most 2. We now show that any pricing scheme in which every black
edge is willing to buy will also include at least one red edge if it comes first.
Let (pi)i=A,...,F prices such that for every black edge, the sum of the involved
vertices is lower than 1. In particular, we have that pC +pD ≤ 1, so without loss
of generality we assume that pC ≤ 1/2. If pB ≤ 1/2 as well, then the red edge
(B,C) will want to buy and the proof is complete. Otherwise, i.e. if pB > 1/2,
it implies that pA ≤ 1/2 because the black edge (A,B) wants to buy. But this
implies that the red edge (A,C) will buy if appearing first.

Finally, if all vertex prices are 1/2, then it is straightforward to see that at
least two edges will be added regardless of the order in which they appear. ��
In general, there are item prices that guarantee obtaining at least half of the
optimal welfare. This is achieved by splitting the weight of the edges of an
optimal matching uniformly between the two corresponding vertices. We present
this result in Lemma 8 for general d.
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4.2 Hypergraph Matching: d > 2

We begin this section by proving two negative results. First we show an upper
bound of ∼ √

1/d on the fraction of the optimal solution that can be guaranteed
with prices. We then show a specific bound for the case d = 3, in which we
cannot guarantee obtaining more than 1/2 of the optimal welfare. Finally, we
provide a pricing scheme that always obtains at least 1/d of the optimal welfare.

Lemma 7. Prices cannot guarantee welfare more than an ∼ √
1/d fraction of

the optimal welfare, even if the arrival order is known.

Proof. Our example is based on constructions for finite projective planes; namely,
we will use the fact that if q − 1 is a prime power there exists a hypergraph on
q2 − q + 1 vertices with q2 − q + 1 hyperedges that are q-regular, q-uniform and
intersecting, i.e. every pair of hyperedges has at least one shared vertex (see,
e.g., [17, Chapter 12] for a reference).

To build our example, we will assume that for each hyperedge there exists a
corresponding buyer interested in exclusively that subset of items with a total
valuation of q. We will also add one buyer whose only subset of interest is the
entire set of items, with a valuation of d = q2 − q + 1. Note that clearly the
optimal welfare attainable is q2 − q + 1.

It hence suffices to show that prices cannot achieve welfare greater than q.
Assume the buyer interested in the entire set of items arrives last. Note that if
there is any edge e such that the sum of the prices of the vertices in e is at most
than q, we are guaranteed welfare at most q. However, if every the sum of the
prices of the vertices in every hyperedge is more than q, because our graph is q-
uniform that means the sum of the prices of all vertices is more than q2 − q + 1,
meaning the final buyer would not select anything and the welfare attained is
zero. Hence, the total welfare attainable by prices is at most a

q

q2 − q + 1
∼ 1√

q2 − q + 1

fraction of the optimum.
Finally, if d cannot be written as q2 − q + 1, we replicate the same construc-

tion for the largest d′ < d that can, and the result holds. ��
When d = 3 the upper bound given by Lemma 7 is 2/3. We briefly note

that this bound can be tightened to 1/2. Our instance consists of a hypergraph
G = (V,E) with V = {1, 2, 3, 4, 5, 6} and hyperedges {1, 2, 3}, {4, 5, 6}, {1, 2, 4},
{1, 3, 5}, {2, 5, 6}, {3, 4, 6} all with unit weight; the short proof that this attains
an upper bound of 1/2 is deferred to the full version.

We conclude with our positive result. Consider a hypergraph G = (V,E),
with weights (w(e))e∈E . To define the prices, take an optimal matching given by
the hyperedges OPT1, . . . , OPT�. For each a ∈ OPTj , define pa = w(OPTj)/d.
The prices of the items not covered by the optimal solution are set to ∞. The
following simple result shows that these prices obtain at least a fraction 1/d of
the optimal welfare.
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Lemma 8. Consider prices defined as above, and hyperedges arriving in an arbi-
trary order. Let Q denote the set of edges that are bought. Then

∑

e∈Q

w(e) ≥ 1
d

�∑

j=1

w(OPTj)

Proof. First note that for each e ∈ Q, it must hold that

w(e) ≥
∑

i∈e

pi (3)

as otherwise the buyer associated to e would have decided not to buy. Therefore
∑

e∈Q

w(e) ≥
∑

e∈Q

∑

i∈e

pi (4)

On the other hand, for each OPTj in the optimal solution, there must be at
least one vertex, with its corresponding price w(OPTj)/d that is covered by the
edges in Q. To see this, note that there are two possible cases: either OPTj ∈ Q
and all its vertices are covered, or OPTj /∈ Q, meaning that when OPTj arrived,
at least one of its vertices was not available, i.e., it was covered by an edge
previously bought. The result follows directly, noting that in the RHS of (4), we
are summing at least once w(OPTj)/d for each j = 1 . . . , �. ��
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Abstract. We study the circuit diameter of polyhedra, introduced by
Borgwardt, Finhold, and Hemmecke (SIDMA 2015) as a relaxation of
the combinatorial diameter. We show that the circuit diameter of a sys-
tem {x ∈ Rn : Ax = b, 0 ≤ x ≤ u} for A ∈ Rm×n is bounded by
O(m2 log(m + κA) + n log n), where κA is the circuit imbalance measure
of the constraint matrix. This yields a strongly polynomial circuit diam-
eter bound if e.g., all entries of A have polynomially bounded encoding
length in n. Further, we present circuit augmentation algorithms for LPs
using the minimum-ratio circuit cancelling rule. Even though the stan-
dard minimum-ratio circuit cancelling algorithm is not finite in general,
our variant can solve an LP in O(n3 log(n + κA)) augmentation steps.

1 Introduction

The combinatorial diameter of a polyhedron P is the diameter of the vertex-edge
graph associated with P . Hirsch’s famous conjecture from 1957 asserted that
the combinatorial diameter of a d-dimensional polytope (bounded polyhedron)
with f facets is at most f − d. This was disproved by Santos in 2012 [24]. The
polynomial Hirsch conjecture, i.e., finding a poly(f) bound on the combinatorial
diameter remains a central question in the theory of linear programming.

The first quasipolynomial bound was given by Kalai and Kleitman [20,21],
see [27] for the best current bound and an overview of the literature. Dyer
and Frieze [14] proved the polynomial Hirsch conjecture for totally unimodu-
lar (TU) matrices. For a system {x ∈ Rd : Mx ≤ b} with integer constraint
matrix M , polynomial diameter bounds were given in terms of the maximum
subdeterminant ΔM [2,7,9,15]. These arguments can be strengthened to using
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a parametrization by a ‘discrete curvature measure’ δM ≥ 1/(dΔ2
M ). The best

such bound was given by Dadush and Hähnle [9] as O(d3 log(d/δM )/δM ), using
a shadow vertex simplex algorithm.

As a natural relaxation of the combinatorial diameter, Borgwardt, Finhold,
and Hemmecke [4] initiated the study of circuit diameters. Consider a polyhedron
in standard equality form

P = {x ∈ Rn : Ax = b, x ≥ 0} (P)

for A ∈ Rm×n, b ∈ Rm; we assume rk(A) = m. For the linear space W =
ker(A) ⊆ Rn, g ∈ W is an elementary vector if g is a support-minimal nonzero
vector in W , that is, no h ∈ W\{0} exists such that supp(h) � supp(g). A
circuit in W is the support of some elementary vector; these are precisely the
circuits of the associated linear matroid M(W ). We let F(W ) = F(A) ⊆ W and
C(W ) = C(A) ⊆ 2n denote the set of elementary vectors and circuits in the space
W = ker(A), respectively. All edge directions of P are elementary vectors, and
the set of elementary vectors F(A) equals the set of all possible edge directions
of P in the form (P) for varying b ∈ Rm [26].

A circuit walk is a sequence of points x(1), x(2), . . . , x(k+1) in P such that
for each i = 1, . . . , k, x(i+1) = x(i) + g(i) for some g(i) ∈ F(A), and further,
x(i) +(1+ε)g(i) /∈ P for any ε > 0, i.e., each consecutive circuit step is maximal.
The circuit diameter of P is the minimum length (number of steps) of a circuit
walk between any two vertices x, y ∈ P . Note that, in contrast to walks in the
vertex-edge graph, circuit walks are non-reversible and the minimum length from
x to y may be different from the one from y to x; this is due to the maximality
requirement. The circuit-analogue of Hirsch conjecture, formulated in [4], asserts
that the circuit diameter of a d-dimensional polyhedron with f facets is at most
f −d; this may be true even for unbounded polyhedra, see [5]. For P in the form
(P), d = n − m and the number of facets is at most n. Hence, the conjectured
bound is m.

Circuit diameter bounds have been shown for some combinatorial polytopes
such as dual transportation polyhedra [4], matching, travelling salesman, and
fractional stable set polytopes [19]. The paper [3] introduced several other vari-
ants of circuit diameter, and explored the relation between them.

Circuit Augmentation Algorithms. Circuit diameter bounds are inherently
related to circuit augmentation algorithms. This is a general algorithmic scheme
to solve an LP

min 〈c, x〉 s.t. Ax = b , x ≥ 0. (LP)

The algorithm proceeds through a sequence of feasible solutions x(t). An initial
feasible x(0) is required in the input. For t = 0, 1, . . . , the current x(t) is updated
to x(t+1) = x(t) + αg for some g ∈ F(A) such that 〈c, g〉 ≤ 0, and α > 0 such
that x(t) + αg is feasible. The elementary vector g is an augmenting direction if
〈c, g〉 < 0 and such an α > 0 exists; by LP duality, x(t) is optimal if and only
if no augmenting direction exists. The augmentation is maximal if x(t) + α′g is
infeasible for any α′ > α; α is called the maximal stepsize for x(t) and g. Clearly,
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an upper bound on the number of steps of a circuit augmentation algorithm
with maximal augmentations for arbitrary cost c and starting point x(0) yields
an upper bound on the circuit diameter.

Simplex is a circuit augmentation algorithm that is restricted to using spe-
cial elementary vectors corresponding to edges of the polyhedron. Many network
optimization algorithms can be seen as special circuit augmentation algorithms.
Bland [1] introduced a circuit augmentation algorithm for LP, that generalizes
the Edmonds–Karp–Dinic algorithm and its analysis, see also [22, Proposition
3.1]. Circuit augmentation algorithms were revisited by De Loera, Hemmecke,
and Lee in 2015 [12], analyzing different augmentation rules and also extend-
ing them to integer programming. De Loera, Kafer, and Sanità [13] studied the
convergence of these rules on 0/1-polytopes, as well as the computational com-
plexity of performing them. We refer the reader to [12] and [13] for a more
detailed overview of the background and history of circuit augmentations.

The Circuit Imbalance Measure. For a linear space W = ker(A) ⊆ Rn, the circuit
imbalance κW = κA is defined as the maximum of |gj/gi| over all elementary
vectors g ∈ F(W ), i, j ∈ supp(g). It can be shown that κW = 1 if and only if
W is a unimodular space, i.e., the kernel of a totally unimodular matrix. This
parameter and related variants have been used implicitly or explicitly in many
areas of linear programming and discrete optimization, see [16] for a recent
survey. It is closely related to the Dikin–Stewart–Todd condition number χ̄W

that plays a key role in layered-least-squares interior point methods introduced
by Vavasis and Ye [31]. An LP of the form (LP) for A ∈ Rm×n can be solved in
time poly(n,m, log κA), which is strongly polynomial if κA ≤ 2poly(n); see [10,11]
for recent developments and references.

Imbalance and Diameter. The combinatorial diameter bound O(d3 log
(d/δM )/δM ) from [9] mentioned above translates to a bound O((n −
m)3mκA log(κA + n)) for the system in the form (P), see [16]. For circuit
diameters, the Goldberg-Tarjan minimum-mean cycle cancelling algorithm for
minimum-cost flows [18] naturally extends to a circuit augmentation algorithm
for general LPs using the steepest-descent rule. This yields a circuit diameter
bound O(n2mκA log(κA+n)) [16], see also [17]. However, note that these bounds
may be exponential in the bit-complexity of the input.

1.1 Our Contributions

Our first main contribution improves the κA dependence to a log κA dependence
for circuit diameter bounds.

Theorem 1. The circuit diameter of a system in the form (P) with constraint
matrix A ∈ Rm×n is O(m2 log(m + κA)).

The proof in Sect. 3 is via a simple ‘shoot towards the optimum’ scheme. We
need the well-known concept of conformal circuit decompositions. We say that
x, y ∈ Rn are sign-compatible if xiyi ≥ 0 for all i ∈ [n], and write x � y if
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they are sign-compatible and further |xi| ≤ |yi| for all i ∈ [n]. It follows from
Carathéodory’s theorem and Minkowski–Weyl theorem that for any linear space
W ⊆ Rn and x ∈ W , there exists a decomposition x =

∑k
j=1 h(j) such that

h(j) ∈ F(W ), h(j) � x for all j ∈ [k] and k ≤ n. This is called a conformal
circuit decomposition of x.

Let B ⊆ [n] be a feasible basis and N = [n]\B, i.e., x∗ = (A−1
B b,0N ) ≥ 0 is

a basic feasible solution. This is the unique optimal solution to (LP) with cost
function c = (0B ,1N ). Let x(0) ∈ P be an arbitrary starting vertex. We may
assume that n ≤ 2m, by restricting to the union of the support of x∗ and x(0),
and setting all other variables to 0. For the current iterate x(t), let us consider a
conformal circuit decomposition x∗ − x(t) =

∑k
j=1 h(j). Note that the existence

of such a decomposition does not yield a circuit diameter bound of n, due to
the maximality requirement in the definition of circuit walks. For each j ∈ [k],
x(t) + h(j) ∈ P , but there might be a larger augmentation x(t) + αh(j) ∈ P for
some α > 1.

Still, one can use this decomposition to construct a circuit walk. Let us pick
the most improving circuit from the decomposition, i.e., the one maximizing
− 〈

c, h(j)
〉

= ‖h
(j)
N ‖1, and obtain x(t+1) = x(t) + αh(j) for the maximum stepsize

α ≥ 1. The proof of Theorem 1 is based on analyzing this procedure. The first
key observation is that

〈
c, x(t)

〉
= ‖x

(t)
N ‖1 decreases geometrically. Then, we look

at the sets Lt = {i ∈ [n] : x∗
i > nκA‖x

(t)
N ‖1} and Rt = {i ∈ [n] : x

(t)
i ≤ nx∗

i },
and show that indices may never leave these sets once they enter. Moreover, a
new index is added to either set every O(m log(m + κA)) iterations. In Sect. 4,
we extend this bound to the setting with upper bounds on the variables.

Theorem 2. The circuit diameter of a system in the form Ax = b, 0 ≤ x ≤ u
with constraint matrix A ∈ Rm×n is O(m2 log(m + κA) + n log n).

There is a straightforward reduction from the capacitated form to (P) by adding
n slack variables; however, this would give an O(n2 log(n + κA)) bound. For the
stronger bound, we use a preprocessing that involves cancelling circuits in the
support of the current solution; this eliminates all but O(m) of the capacity
bounds in O(n log n) iterations, independently from κA.

For rational input, log(κA) = O(LA) where LA denotes the total encoding
length of A [10]. Hence, our result yields an O(m2LA + n log n) diameter bound
on Ax = b, 0 ≤ x ≤ u. This can be compared with the bounds O(nLA,b) using
deepest descent augmentation steps in [12,13], where LA,b is the encoding length
of (A, b). (Such a bound holds for every augmentation rule that decreases the
optimality gap geometrically, including the minimum-ratio circuit rule discussed
below). Thus, our bound is independent of b. Furthermore, it is also applica-
ble to systems given by irrational inputs, in which case arguments based on
subdeterminants and bit-complexity cannot be used.

In light of these results, the next important step towards the polynomial
Hirsch conjecture might be to show a poly(n, log κA) bound on the combinatorial
diameter of (P). Note that—in contrast with the circuit diameter—not even a
poly(n,LA,b) bound is known. In this context, the best known general bound is
O((n − m)3mκA log(κA + n)) implied by [9].
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Circuit Augmentation Algorithms. The diameter bounds in Theorems 1 and
2 rely on knowing the optimal solution x∗; thus, they do not provide effi-
cient LP algorithms. We next present circuit augmentation algorithms with
poly(n,m, log κA) bounds on the number of iterations. Such algorithms require
subroutines for finding augmenting circuits. In many cases, such subroutines are
LPs themselves. However, they may be of a simpler form, and might be easier to
solve in practice. Borgwardt and Viss [6] exhibit an implementation of a steepest-
descent circuit augmentation algorithm with encouraging computational results.

Our main subroutine assumption Ratio-Circuit(A, c, w) is the well-known
minimum-ratio circuit rule. It takes as input a matrix A ∈ Rm×n, c ∈ Rn,
w ∈ (R+ ∪ {∞})n, and returns a basic optimal solution to the system

min 〈c, z〉 s.t. Az = 0,
〈
w, z−〉 ≤ 1, (1)

where (z−)i := max{0,−zi} for i ∈ [n]. Note that wizi = 0 if wi = ∞ and zi = 0.
This system can be equivalently written as an LP using auxiliary variables.
If bounded, a basic optimal solution is an elementary vector z ∈ F(A) that
minimizes 〈c, z〉 / 〈w, z−〉.

Given x ∈ P , we use weights wi = 1/xi (and let wi = ∞ if xi = 0). For
minimum-cost flow problems, this rule was proposed by Wallacher [32]; such a
cycle can be found in strongly polynomial time for flows. The main advantage of
this rule is that the optimality gap decreases by a factor 1−1/n in every iteration.
This rule, along with the same convergence property, can be naturally extended
to linear programming [23], and has found several combinatorial applications,
e.g., [33,34], and has also been used in the context of integer programming [25].

On the negative side, Wallacher’s algorithm is not strongly polynomial: it does
not terminate finitely for minimum-cost flows, as shown in [23]. In contrast, our
algorithms achieve a strongly polynomial running time whenever κA ≤ 2poly(n).
An important modification is the occasional use of a second type of circuit aug-
mentation step Support-Circuit that removes circuits in the support of the cur-
rent (non-basic) iterate x(t) (see Subroutine 2.1); this can be implemented using
simple linear algebra. Our first result addresses the feasibility setting:

Theorem 3. Consider an LP of the form (LP) with cost function c =
(0[n]\N ,1N ) for some N ⊆ [n]. There exists a circuit augmentation algorithm
that either finds a solution x such that xN = 0 or a dual certificate that no
such solution exists, using O(n2 log(n+κA)) Ratio-Circuit and n2 Support-
Circuit augmentation steps.

Such problems typically arise in Phase I of the Simplex method when we add
auxiliary variables in order to find a feasible solution. The algorithm is presented
in Sect. 5. The analysis extends that of Theorem 1, tracking large coordinates
x
(t)
i . Our second result considers general optimization:

Theorem 4. Consider an LP of the form (LP). There exists a circuit aug-
mentation algorithm that finds an optimal solution or concludes unboundedness
using O(n3 log(n + κA)) Ratio-Circuit and n3 Support-Circuit augmenta-
tion steps.
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The proof is given in Sect. 6. The main subroutine identifies a new index i ∈ [n]
such that x

(t)
i = 0 in the current iteration and x∗

i = 0 in an optimal solution;
we henceforth fix this variable to 0. To derive this conclusion, at the end of each
phase the current iterate x(t) will be optimal to (LP) with a slightly modified
cost function c̃; the conclusion follows using a proximity argument. The overall
algorithm repeats this subroutine n times. The subroutine is reminiscent of the
feasibility algorithm (Theorem 3) with the following main difference: whenever
we identify a new ‘large’ coordinate, we slightly perturb the cost function.

Comparison to Black-Box LP Approaches. An important milestone towards
strongly polynomial linear programming was Tardos’s 1986 paper [28] on solving
(LP) in time poly(n,m, log ΔA), where ΔA is the maximum subdeterminant of A.
Her algorithm makes O(nm) calls to a weakly polynomial LP solver for instances
with small integer constraints and costs, and uses proximity arguments to grad-
ually learn the support of an optimal solution. This approach was extended to
the real model of computation for a poly(n,m, log κA) bound [11]. The latter
result uses proximity arguments with circuit imbalances κA, and eliminates all
dependence on bit-complexity.

Our circuit augmentation algorithms are inspired by the feasibility and opti-
mization algorithms in [11]. However, using a circuit augmentation oracle instead
of an approximate LP oracle changes the setup. Our arguments become simpler
since we proceed through a sequence of feasible solutions, whereas much effort in
[11] is needed to deal with infeasibility of the solutions returned by the approx-
imate solver. On the other hand, we need to be more careful as all steps must
be implemented using circuit augmentations in the original system, in contrast
to the higher degree of freedom in [11] where we can make approximate solver
calls to arbitrary projections and modifications of the input LP.

2 Preliminaries

Circuit Oracles. In Sects. 4, 5, 6, we use a simple circuit finding subroutine
Support-Circuit(A, c, x, S) that will be used to identify circuits in the support
of a solution x. This can be implemented easily using Gaussian elimination. Note
that the constraint 〈c, z〉 ≤ 0 is superficial as −z is also an elementary vector.

Subroutine 2.1. Support-Circuit(A, c, x, S)

For a matrix A ∈ Rm×n, vectors c, x ∈ Rn and S ⊆ [n], the output is an
elementary vector z ∈ F(A) with supp(z) ⊆ supp(x), supp(z) ∩ S = ∅
with 〈c, z〉 ≤ 0, or concludes that no such elementary vector exists.

The circuit augmentation algorithms in Sects. 5 and 6 will use the sub-
routine Ratio-Circuit(A, c, w). For α ∈ R we define α+ = max{0, α} and
α− = max{0,−α}. For a vector z ∈ Rn we define z+, z− ∈ Rn with (z+)i = (zi)+,
(z−)i = (zi)− for i ∈ [n].
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Subroutine 2.2. Ratio-Circuit(A, c, w)

The input is a matrix A ∈ Rm×n, c ∈ Rn, w ∈ (R+ ∪ {∞})n, and returns
a basic optimal solution to the system

min 〈c, z〉 s.t. Az = 0 ,
〈
w, z−〉 ≤ 1 , (2)

and a basic optimal solution (y, s) to the following dual program:

max −λ s.t. s = c + A�y 0 ≤ s ≤ λw (3)

We use the convention that wiz
−
i = 0 whenever wi = ∞ and z−

i = 0 in
(2). Note that (2) can be reformulated as an LP using additional variables, and
its dual LP can be equivalently written as (3). If (2) is bounded, then a basic
optimal solution is an elementary vector z ∈ F(A) that minimizes 〈c, z〉 / 〈w, z−〉.
Moreover, observe that every feasible solution to (3) is also feasible to the dual
of (LP).

For P as in (P), x ∈ P and an elementary vector g ∈ F(A), we let
augP (x, g) := x + αg where α = arg max{ᾱ : x + ᾱg ∈ P}. For z ∈ Rn we let
1/z ∈ (R ∪ {∞})n denote the vector (1/zi)i∈[n], with the convention 1/0 = ∞.
The following lemma is well-known, see e.g., [23, Lemma 2.2].

Lemma 1. Let OPT denote the optimum value of (LP). Given a feasi-
ble solution x to (LP), let g be the elementary vector returned by Ratio-
Circuit(A, c, 1/x), and x′ = augP (x, g). Then,

〈c, x′〉 − OPT ≤ (1 − 1/n) (〈c, x〉 − OPT) .

Furthermore, α ≥ 1 for the augmentation step.

Proof. Let x∗ be an optimal solution to (LP), and let z = (x∗ − x)/n. Then, z
is feasible to (2) for w = 1/x. The claim easily follows by noting that 〈c, g〉 ≤
〈c, z〉 = (OPT−〈c, x〉)/n, and noting that x+g ∈ P is implied by 〈1/x, g−〉 ≤ 1.

Proximity Results. The imbalance measure κA is mainly used for proving norm
bounds that can be interpreted as special forms of Hoffman-proximity results. See
[11,16] for such general results and background, in particular, similar proximity
bounds via ΔA in e.g., [28] and [8].

Lemma 2. For A ∈ Rm×n, let z ∈ ker(A), and let N ⊆ [n] such that A[n]\N
has full column rank. Then, ‖z‖∞ ≤ κA‖zN‖1.
Proof. Let h(1), . . . , h(k) be a conformal circuit decomposition of z. Conformality
implies that ‖z‖∞ ≤ ∑k

t=1 ‖h(t)‖∞. For each h(t), we have supp(h(t)) ∩ N = ∅
because A[n]\N has full column rank. Hence, ‖h(t)‖∞ ≤ κA|h(t)

j | for some j ∈ N .
By conformality again, we obtain

∑k
t=1 ‖h(t)‖∞ ≤ κA‖zN‖1 as desired.
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The following proximity theorem will be key to derive x∗
i = 0 for certain

variables in our optimization algorithm; see [11] and [16, Theorem 6.5]. For
c̃ ∈ Rn, we use LP(c̃) to denote (LP) with cost vector c̃, and OPT(c̃) as the
optimal value of LP(c̃).

Theorem 5. Let c, c′ ∈ Rn be two cost vectors, such that both LP(c) and LP(c′)
have finite optimum values. Let s′ be a dual optimal solution to LP(c′). If there
exists an index j ∈ [n] such that

s′
j > (m + 1)κA‖c − c′‖∞,

then x∗
j = 0 for every optimal solution x∗ to LP(c).

Estimating Circuit Imbalances. The circuit augmentation algorithms in Sects. 5
and 6 explicitly use the circuit imbalance measure κA. However, this is NP-hard
to approximate within a factor 2O(n), see [10,29]. We circumvent this problem
using a standard guessing procedure, see e.g., [10,31]. Instead of κA, we use
an estimate κ̂, initialized as κ̂ = n. Running the algorithm with this estimate
either finds the desired feasible or optimal solution (which one can verify), or
fails. In case of failure, we conclude that κ̂ < κA, and replace κ̂ by κ̂2. Since the
running time of the algorithms is linear in log(n + κ̂), the running time of all
runs will be dominated by the last run, giving the desired bound. For simplicity,
the algorithm descriptions use the explicit value κA. Throughout, we use the
shorthand κ = κA whenever A is clear from the context.

3 The Circuit Diameter Bound

In this section, we show Theorem 1, namely the bound O(m2 log(m + κ)) on
the circuit diameter of a polyhedron in standard form (P). As outlined in the
Introduction, let B ⊆ [n] be a feasible basis and N = [n]\B such that x∗ =
(A−1

B b,0N ) is a basic solution to (LP). We can assume n ≤ 2m: the union of
the supports of the starting vertex x(0) and the target vertex x∗ is at most 2m;
we can fix all other variables to 0. The simple ‘shoot towards the optimum’
procedure is shown in Algorithm 3.1.

Algorithm 3.1. Diameter Bound

– Start from t = 0 and x(0).
– At each iteration t, let h(1), . . . , h(k) be a conformal circuit decomposi-

tion of x∗−x(t). Let g(t) be the elementary vector in the decomposition
that maximises ‖h

(i)
N ‖1 for i ∈ [k] and update x(t+1) = augP (x(t), g(t)).

– Terminate once x(t+1) = x∗.

A priori, even finite termination is not clear. The first key lemma shows that
‖x

(t)
N ‖1 decreases geometrically, and bounds the relative error to x∗.



148 D. Dadush et al.

Lemma 3. For every iteration t ≥ 0 in Algorithm 3.1, we have ‖x
(t+1)
N ‖1 ≤

(1 − 1
n )‖x

(t)
N ‖1 and for all i ∈ [n] we have |x(t+1)

i − x
(t)
i | ≤ n|x∗

i − x
(t)
i |.

Proof. Let h(1), . . . , h(k) with k ≤ n be the conformal circuit decomposition of
x∗ − x(t) used in Algorithm 3.1. Note that h

(i)
N ≤ 0N for i ∈ [k] as x∗

N = 0N and
x(t) ≥ 0. Then

‖g
(t)
N ‖1 = max

i∈[k]
‖h

(i)
N ‖1 ≥ 1

k

∑

i∈[k]

‖h
(i)
N ‖1 =

1
k

‖x
(t)
N ‖1, and so

‖x
(t+1)
N ‖1 = ‖ augP (x(t), g(t))N‖1 ≤ ‖x(t)

N + g
(t)
N ‖1 ≤ (

1 − 1
k

)‖x
(t)
N ‖1.

(4)

Let α(t) be such that x(t+1) = x(t) + α(t)g(t). Then, by conformality and (4),

α(t) =
‖x

(t+1)
N − x

(t)
N ‖1

‖g
(t)
N ‖1

≤ ‖x
(t)
N ‖1

‖g
(t)
N ‖1

≤ k,

and so for all i we have |x(t+1)
i − x

(t)
i | = α(t)|g(t)i | ≤ k|g(t)i | ≤ k|x∗

i − x
(t)
i |.

We analyze the sets

Lt = {i ∈ [n] : x∗
i > nκ‖x

(t)
N ‖1} , Tt = [n]\Lt , Rt = {i ∈ [n] : x

(t)
i ≤ nx∗

i } .
(5)

Lemma 4. For every iteration t ≥ 0, we have Lt ⊆ Lt+1 ⊆ B and Rt ⊆ Rt+1.

Proof. Clearly, Lt ⊆ Lt+1 as ‖x
(t)
N ‖1 is monotonically decreasing by Lemma 3,

and Lt ⊆ B as x∗
N = 0N . Next, let j ∈ Rt. If x

(t)
j ≥ x∗

j , then x
(t+1)
j ≤ x

(t)
j by

conformality. Otherwise, if x
(t)
j < x∗

j , then x
(t+1)
j ≤ x

(t)
j + n|x∗

j − x
(t)
j | ≤ nx∗

j by
Lemma 3. In both cases, we conclude that j ∈ Rt+1.

Lemma 5. If ‖x
(t)
Tt

− x∗
Tt

‖∞ > 2mn2κ2‖x∗
Tt

‖∞, then Rt � Rt+1.

Proof. Let i ∈ supp(x(t))\supp(x(t+1)); such a variable exists by the maximality
of the augmentation. Lemma 2 for x(t+1) − x∗ ∈ ker(A) implies that

x∗
i ≤ ‖x(t+1) − x∗‖∞ ≤ κ‖x

(t+1)
N − x∗

N‖1 = κ‖x
(t+1)
N ‖1 < κ‖x

(t)
N ‖1, (6)

and so i /∈ Lt. Noting that x(t+1) − x(t) is an elementary vector and x
(t+1)
i = 0,

it follows that

‖x
(t)
N − x

(t+1)
N ‖1 ≤ (mκ + 1)x(t)

i ≤ 2mκx
(t)
i . (7)

On the other hand, let h(1), . . . , h(k) be the conformal circuit decomposition of
x∗ − x(t) used in iteration t in Algorithm 3.1. Let j ∈ Tt such that |x(t)

j − x∗
j | =
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‖x
(t)
Tt

−x∗
Tt

‖∞. There exists h̃ in this decomposition such that |h̃j | ≥ 1
n |x(t)

j −x∗
j |.

Since AB has full column rank, we have supp(h̃) ∩ N = ∅ and so

‖h̃N‖1 ≥ |h̃j |
κ

≥ |x(t)
j − x∗

j |
nκ

. (8)

From (7), (8) and noting that ‖h̃N‖1 ≤ ‖g(t)N ‖1 ≤ ‖x(t)
N − x

(t+1)
N ‖1 we get

x
(t)
i ≥ ‖x

(t)
N − x

(t+1)
N ‖1

2mκ
≥ ‖h̃N‖1

2mκ
≥ ‖x

(t)
Tt

− x∗
Tt

‖∞
2mnκ2

. (9)

In particular, if as in the assumption of the lemma ‖x
(t)
Tt

− x∗
Tt

‖∞ >

2mn2κ2‖x∗
Tt

‖∞, then x
(t)
i > n‖x∗

Tt
‖∞ ≥ nx∗

i . We conclude that i /∈ Rt and
i ∈ Rt+1 as x

(t+1)
i = 0.

We are ready to give the convergence bound.

Proof (Proof of Theorem 1). In light of Lemma 4, it suffices to show that either
Lt or Rt is extended in every O(n log(n + κ)) iterations; recall the assumption
n ≤ 2m. By Lemma 5, if ‖x

(t)
Tt

− x∗
Tt

‖∞ > 2mn2κ2‖x∗
Tt

‖∞, then Rt � Rt+1 is
extended.

Otherwise, ‖x
(t)
Tt

− x∗
Tt

‖∞ ≤ 2mn2κ2‖x∗
Tt

‖∞. Assuming ‖x
(t)
N ‖1 > 0, by

Lemma 3, there is an iteration r = t + O(n log(n + κ)) such that n2κ(2mn2κ2 +
1)‖x

(r)
N ‖1 < ‖x

(t)
N ‖1. In particular,

(2mn2κ2 + 1)‖x∗
Tt

‖∞ ≥ ‖x
(t)
Tt

‖∞ ≥ ‖x
(t)
N ‖∞ ≥ 1

n
‖x

(t)
N ‖1 > nκ(2mn2κ2 + 1)‖x

(r)
N ‖1.

(10)
Therefore ‖x∗

Tt
‖∞ > nκ‖x

(r)
N ‖1 and so Lt � Lr.

4 Diameter Bounds for the Capacitated Case

In this section we consider diameter bounds for systems of the form

Pu = {x ∈ Rn : Ax = b,0 ≤ x ≤ u}. (Cap-P)

We prove Theorem 2 via the following new procedure. A basic feasible point
x∗ ∈ Pu is characterised by a partition B ∪L∪H = [n] where AB is a basis (has
full column rank), x∗

L = 0L and x∗
H = uH . In O(n log n) iterations, we fix all

but 2m variables to the same bound as in x∗; for the remaining system with 2m
variables, we can use the standard reformulation. The diameter of the polytope
obtained in the reformulation equals the diameter of the original polytope, and
it is easy to verify that κ is also preserved.

The analysis starts by showing that after O(n log n) circuit cancellations from
the conformal decompositions in Algorithm 4.1, we get to 〈c, x(t)〉 < −|H| + 1;
this is maintained after subsequent support circuit cancellations. For such a
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solution, x
(t)
i < ui for i ∈ L and x

(t)
i > 0 for i ∈ H. Every support circuit

cancellation sets x
(t)
i ∈ {0, ui} for some i ∈ L ∪ H, and by the above property,

it always sets the ‘correct’ bound, i.e., 0 if i ∈ L and ui if i ∈ H.

Algorithm 4.1. Capacitated Diameter Bound

Let B ∪ L ∪ H = [n] be the partition for x∗, i.e., 0B ≤ A−1
B b ≤ uB ,

x∗
L = 0L and x∗

H = uH . Set the cost c ∈ Rn
+ as ci = 0 if i ∈ B, ci = 1/ui

if i ∈ L, and ci = −1/ui if i ∈ H.

– Start from t = 0 and some x(0) ∈ Pu.
– At each iteration t:

• If 〈c, x(t)〉 ≥ −|H| + 1, let h(1), . . . , h(k) be a conformal circuit
decomposition of x∗ − x(t). Let g(t) ∈ arg mini∈[k]〈c, h(i)〉.

• Else, let g(t) be the circuit returned by Support-

Circuit(ASt
, cSt

, x
(t)
St

, St), where St := {i ∈ L ∪ H : x
(t)
i = x∗

i }.
Update x(t+1) = augP (x(t), g(t)).

– Repeat until |St| ≤ m. Then, run Algorithm 3.1 on Ã :=
[
AB∪St

0
I I

]

and b̃ =
[
b
u

]

.

5 A Circuit-Augmentation Algorithm for Feasibility

In this section we prove Theorem 3: given a system (LP) with cost c =
(0[n]\N ,1N ) for some N ⊆ [n], find a solution x with xN = 0, or show that
no such solution exists. Our algorithm is presented in Algorithm 1. We maintain
a set Lt ⊆ [n]\N , initialized as ∅. Whenever x

(t)
i ≥ 8n3κ2‖x

(t)
N ‖1 for the current

iterate x(t), we add i to Lt. The key part of the analysis is to show that Lt is
extended in every O(n log(n + κ)) iterations.

We let Tt = [n]\Lt denote the complement set. At each iteration when Lt

is extended, we run a sequence of at most n Support-Circuit(A, c, x(t), Tt)
steps. These are repeated as long as ‖x

(t)
Tt

‖∞ < 4nκ‖x
(t)
N ‖1 and there are circuits

in supp(x(t)) intersecting Tt. Afterwards, we run a sequence of Ratio-Circuit
iterations until a new index is added to Lt.

The crux of the proof is showing that Lt is extended after a sequence of
O(n log(n + κ)) Ratio-Circuit iterations. Similarly to Lemma 1, it follows
that either ‖x

(t+1)
N ‖1 ≤ (

1 − 1
n

) ‖x
(t)
N ‖1, or the algorithm terminates with a dual

certificate. This is used to derive that if x
(t)
j /‖x

(t)
N ‖1 is sufficiently large at some

point of the algorithm, it remains large throughout. There are two possible ter-
minations of a sequence of support circuit cancellations: either ‖x

(t)
Tt

‖∞ is above

the threshold, or there are no more circuits to cancel. In both cases, x
(r)
j /‖x

(r)
N ‖1

will grow above the threshold after ‖x
(r)
N ‖1 has sufficently decreased.
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Algorithm 1: Feasibility-Algorithm

Input : Linear program in standard form (LP) with cost c = (0[n]\N , 1N ) for

some N ⊆ [n], and initial feasible solution x(0).
Output: A solution x with xN = 0, or a dual solution y with 〈b, y〉 > 0.

1 t ← 0; L−1 ← ∅ ;

2 while x
(t)
N > 0 do

3 Lt ← Lt−1 ∪ {i ∈ [n] : x
(t)
i ≥ 8n3κ2‖x

(t)
N ‖1}; Tt ← [n]\Lt ;

4 if t = 0 or Lt\Lt−1 �= ∅ then

5 while ‖x
(t)
Tt

‖∞ < 4nκ‖x
(t)
N ‖1 and there is a circuit in supp(x(t))

intersecting T do

6 g(t) ← Support-Circuit(A, c, x(t), Tt) such that g
(t)
k < 0 for some

k ∈ Tt;

7 x(t+1) ← augP (x(t), g(t)); t ← t + 1;

8 (g(t), y(t), s(t)) ← Ratio-Circuit(A, c, 1/x(t)) ;

9 if 〈b, y(t)〉 > 0 then
10 Terminate with infeasibility certificate

11 x(t+1) ← augP (x(t), g(t)); t ← t + 1 ;

12 return x;

6 A Circuit-Augmentation Algorithm for Optimization

In this section, we give a circuit-augmentation algorithm for solving (LP), assum-
ing an initial feasible solution x(0) is provided. At all times, the algorithm main-
tains a feasible primal solution x(t) to (LP), initialized with x(0). The goal is
to augment x(t) using the subroutines Support-Circuit and Ratio-Circuit

until the emergence of a set ∅ = N ⊆ [n] which satisfies x
(t)
N = x∗

N = 0 for every
optimal solution x∗ to (LP). This conclusion can be derived using the proxim-
ity result Theorem 5. When this happens, we have reached a lower dimensional
face of the feasible region (P) that contains the optimal face. Then, the same
procedure is repeated on a smaller LP; these circuit walks can be concatenated
to obtain the overall circuit walk in the original instance.

In what follows, we focus on the aforementioned Variable-Fixing procedure
(see pseudocode in the full version). We start by orthogonally projecting the
original cost vector c to ker(A). This does not change the optimal face of (LP).
If c = 0, then we terminate and return the current feasible solution x(0) as it is
optimal. Otherwise, we scale the cost to ‖c‖2 = 1, and use Ratio-Circuit to
obtain a basic dual feasible solution s(−1) to LP(c).

The majority of Variable-Fixing consists of repeated phases, ending when〈
x(t), s(t−1)

〉
= 0. At the start of a phase, the set S of coordinates with large dual

slack s
(t−1)
i ≥ δ is identified for some δ < 1/(n3/2(m+2)κ). Based on this, a mod-

ified cost function c̃ ≥ 0 is derived from s(t−1) by truncating the entries not in S
to zero. This modified cost c̃ will be used until the end of the phase. Next, we aug-
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ment our current primal solution x(t) by calling Support-Circuit(A, c̃, x(t), S)
to eliminate circuits in supp(x(t)) intersecting S with nonpositive c̃-cost. Note
that there are at most n such calls because each call sets a primal variable x

(t)
i

to zero.
In the remaining part of the phase, we augment x(t) using Ratio-Circuit(A,

c̃, 1/x(t)) for T = O(n log(n + κ)) iterations. In every iteration, Ratio-
Circuit(A, c̃, 1/x(t)) returns a minimum cost-to-weight ratio circuit g(t), where
the choice of weights 1/x(t) follows Wallacher [32]. Recall that the oracle also
gives a basic dual feasible solution s(t) to LP(c̃). If g(t) does not improve the
current solution x(t), i.e.,

〈
c̃, g(t)

〉
= 0, then we terminate the phase early as x(t)

is already optimal to LP(c̃). In this case, s(t) is an optimal dual solution to LP(c̃)
because

〈
x(t), s(t)

〉
= 0. This finishes the description of a phase. We show that

there are at most n phases. Then, applying Theorem 5 for c′ with ‖c′ −c‖∞ ≤ nδ
allows us to conclude that a variable can be fixed to zero.
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9. Dadush, D., Hähnle, N.: On the shadow simplex method for curved polyhedra.
Discrete Comput. Geom. 56(4), 882–909 (2016)

10. Dadush, D., Huiberts, S., Natura, B., Végh, L.A.: A scaling-invariant algorithm for
linear programming whose running time depends only on the constraint matrix.
In: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 761–774 (2020)

11. Dadush, D., Natura, B., Végh, L.A.: Revisiting Tardos’s framework for linear pro-
gramming: faster exact solutions using approximate solvers. In: Proceedings of the
61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
931–942 (2020)

https://doi.org/10.1007/978-3-642-39206-1_24
https://doi.org/10.1007/978-3-642-39206-1_24


On Circuit Diameter Bounds via Circuit Imbalances 153

12. De Loera, J.A., Hemmecke, R., Lee, J.: On augmentation algorithms for linear and
integer-linear programming: from Edmonds-Karp to Bland and beyond. SIAM J.
Optim. 25(4), 2494–2511 (2015)
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Abstract. We give a simple and natural method for computing approx-
imately optimal solutions for minimizing a convex function f over a con-
vex set K given by a separation oracle. Our method utilizes the Frank–
Wolfe algorithm over the cone of valid inequalities of K and subgradients
of f . Under the assumption that f is L-Lipschitz and that K contains a
ball of radius r and is contained inside the origin centered ball of radius

R, using O( (RL)2

ε2
· R2

r2 ) iterations and calls to the oracle, our main method
outputs a point x ∈ K satisfying f(x) ≤ ε + minz∈K f(z).

Our algorithm is easy to implement, and we believe it can serve as a
useful alternative to existing cutting plane methods. As evidence towards
this, we show that it compares favorably in terms of iteration counts to
the standard LP based cutting plane method and the analytic center
cutting plane method, on a testbed of combinatorial, semidefinite and
machine learning instances.

Keywords: convex optimization · separation oracle · cutting plane
method

1 Introduction

We consider the problem of minimizing a convex function f : Rn → R over
a compact convex set K ⊆ R

n. We assume that K contains an (unknown)
Euclidean ball of radius r > 0 and is contained inside the origin centered ball
of radius R > 0, and that f is L-Lipschitz. We have first-order access to f that
yields f(x) and a subgradient of f at x for any given x. Moreover, we only have
access to K through a separation oracle (SO), which, given a point x ∈ R

n,
either asserts that x ∈ K or returns a linear constraint valid for K but violated
by x.
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Convex optimization in the SO model is one of the fundamental settings
in optimization. The model is relevant for a wide variety of implicit optimiza-
tion problems, where an explicit description of the defining inequalities for K
is either too large to store or not fully known. The SO model was first intro-
duced in [29] where it was shown that an additive ε-approximate solution can
be obtained using O(n log(LR/(εr))) queries via the center of gravity method
and O(n2 log(LR/(εr))) queries via the ellipsoid method. This latter result was
used by Khachiyan [27] to give the first polynomial time method for linear pro-
gramming. The study of oracle-type models was greatly extended in the classic
book of Grötschel, Lovász, and Schrijver [23], where many applications to com-
binatorial optimization were provided. Further progress on the SO model was
given by Vaidya [36], who showed that the O(n log(LR/(εr))) oracle complexity
can be efficiently achieved using the so-called volumetric barrier as a potential
function, where the best current running time for such methods was given very
recently [25,28].

From the practical perspective, two of the most popular methods in the
SO model are the standard linear programming (LP) based cutting plane
method, independently discovered by Kelley [26], Goldstein-Cheney [9] as well
as Gomory [22] (in the integer programming context), and the analytic center
cutting plane method [34] (ACCPM).

The LP based cutting plane method, which we henceforth dub the standard
cut loop, proceeds as follows: starting with finitely many linear underestimators
of f and linear constraints valid for K, in each iteration it solves a linear program
that minimizes the lower envelope of f subject to the current linear relaxation
of K. The resulting point x is then used to query f and the SO to obtain a
new underestimator for f and a new constraint valid for K. Note that if f is
a linear function, it repeatedly minimizes f over linear relaxations of K. While
it is typically fast in practice, it can be unstable, and no general quantitative
convergence guarantees are known for the standard cut loop.

To link to integer programming, in that context K is the convex hull of integer
points of some polytope P and the objective is often linear, and the method is
initialized with a linear description of P . A crucial difference there is that the
separator SO is generally only efficient when queried at vertices of the current
relaxation.

ACCPM is a barrier based method, in which the next query point is the
minimizer of the barrier for the current inequalities in the system. ACCPM is in
general a more stable method with provable complexity guarantees. Interestingly,
while variants of ACCPM with O(n log(RL/(rε))2) convergence exist, achieved
by judiciously dropping constraints [1], the more practical variants have worse
guarantees. For instance, if K is the ball of radius R, the standard variant of
ACCPM is only shown to achieve O(n(RL/ε)2 log(RL/ε)) convergence [30].

In this paper, we describe a new method for convex optimization in the SO
model that computes an additive ε-approximate solution within O(R4L2

/r2ε2)
iterations. Our algorithm is easy to implement, and we believe it can serve as
a useful alternative to existing methods. In our experimental results, we show
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that it compares favorably in terms of iteration counts to the standard cut loop
and the analytic center cutting plane method, on a testbed of combinatorial,
semidefinite and machine learning instances.

Before explaining our approach, we review the relevant work in related mod-
els. To begin, there has been a tremendous amount of work in the context of
first-order methods [3,5], where the goal is to minimize a possibly complicated
function, given by a gradient oracle, over a simple domain K (e.g., the sim-
plex, cube, �2 ball). These methods tend to have cheap iterations and to achieve
poly(1/ε) convergence rates. They are often superior in practice when the requi-
site accuracy is low or moderate, e.g., within 1% of optimal. For these methods,
often variants of (sub-)gradient descent, it is generally assumed that comput-
ing (Euclidean) projections onto K as well as linear optimization over K are
easy. If one only assumes access to a linear optimization (LO) oracle on K, K
can become more interesting (e.g., the shortest-path or spanning-tree polytope).
In this context, one of the most popular methods is the so-called Frank–Wolfe
algorithm [19] (see [24] for a modern treatment), which iteratively computes a
convex combination of vertices of K to obtain an approximate minimizer of a
smooth convex function.

In the context of combinatorial optimization, there has been a consider-
able line of work on solving (implicit) packing and covering problems using
the so-called multiplicative weights update (MWU) framework [20,31,33]. In
this framework, one must be able to implement an MWU oracle, which in
essence computes optimal solutions for the target problem after the “difficult”
constraints have been aggregated according to the current weights. This frame-
work has been applied for getting fast (1 ± ε)-approximate solutions to multi-
commodity flow [20,33], packing spanning trees [8], the Held–Karp approxima-
tion for TSP [7], and more, where the MWU oracle computes shortest paths, min-
imum cost spanning trees, minimum cuts respectively in a sequence of weighted
graphs. The MWU oracle is in general just a special type of LO oracle, which
can often be interpreted as a SO that returns a maximally violated constraint.
While certainly related to the SO model, it is not entirely clear how to adapt
MWU to work with a general SO, in particular in settings unrelated to packing
and covering.

A final line of work, which directly inspires our work, has examined simple
iterative methods for computing a point in the interior of a cone Σ that directly
apply in the SO model. The application of simple iterative methods for solving
conic feasibility problems can be traced to Von Neumann in 1948 (see [15]),
and a variant of this method, the perceptron algorithm [32] is still very popular
today. Von Neumann’s algorithm computes a convex combination of the defining
inequalities of the cone, scaled to be of unit length, of nearly minimal Euclidean
norm. The separation oracle is called to find an inequality violated by the current
convex combination, and this inequality is then used to make the current convex
combination shorter, in an analogous way to Frank–Wolfe. This method is guar-
anteed to find a point in the cone in O(1/ρ2) iterations, where ρ is the so-called
width of Σ (the radius of the largest ball contained in Σ centered at a point of
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norm 1). Starting in 2004, polynomial time variants of this and related methods
(i.e., achieving log(1/ρ) dependence) have been found [6,10,17], which itera-
tively “rescale” the norm to speed up the convergence. These rescaled variants
can also be applied in the oracle setting [4,11,14] with appropriate adaptations.
The main shortcoming of existing conic approaches is that they are currently not
well-adapted for solving optimization problems rather than feasibility problems.

Our Approach. In this work, we build upon von Neumann’s approach and utilize
the Frank–Wolfe algorithm over the cone of valid inequalities of K as well as the
subgradients of f in a way that yields a clean, simple, and flexible framework
for solving general convex optimization problems in the SO model. For simpler
explanation, let us assume that f(x) = 〈c, x〉 is a linear function and that we
know an upper bound UB on the minimum of f over K. Given some linear
inequalities 〈ai, x〉 ≤ bi that are valid for all x ∈ K, our goal is to find convex
combinations p of the homogenized points (c,UB) and (ai, bi) that are “close”
to the origin. Note that if p = 0, the fact that K is full-dimensional implies that
(c,UB) appears with a nonzero coefficient and hence (−c,−UB) is a nonnegative
combination of the points (ai, bi), which in turn shows that UB is equal to the
minimum of f over K. In view of this, we will consider a potential Φ : Rn+1 → R+

with the property that if Φ(p) is sufficiently small, then the convex combination
will yield an explicit certificate that UB is close to the minimum of f over K.

Given a certain convex combination p, note that the gradient of Φ at p
provides information about whether moving towards one of the known points
will (significantly) decrease Φ(p). However, if no such known point exists, it turns
out that the “dehomogenization” of the gradient (a scaling of its projection onto
the first n coordinates) is a natural point x ∈ R

n to query the SO with. In fact,
if x ∈ K, it will have improved objective value with respect to f . Otherwise, the
SO will provide a linear inequality such that moving towards its homogenization
decreases Φ(p).

In this work, we will show that the above paradigm immediately yields a
rigorous algorithm for various natural choices of Φ and scalings of inequalities.
We will also see that general convex functions can be directly handled in the
same manner by simply replacing (c,UB) with all subgradient cuts of f learned
throughout the iterations. The same applies to pure feasibility problems for
which we set f = 0. The convergence analysis of our algorithm is simple and
based on standard estimates for the Frank–Wolfe algorithm.

Besides its conceptual simplicity and distinction to existing methods for con-
vex optimization in the SO model, we also regard it as a practical alternative. In
fact, in terms of iterations, our vanilla implementation in Julia1 performs sim-
ilarly and often even better than the standard cut loop and the analytic center
cutting plane method evaluated on a testbed of oracle-based linear optimization
problems for matching problems, semidefinite relaxations of the maximum cut

1 https://github.com/christopherhojny/supplement simple-iterative-methods-linopt-
convex-sets.

https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets
https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets
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problem, and LPBoost. Moreover, the flexibility of our framework leaves several
degrees of freedom to obtain optimized implementations that outperform our
naive implementation.

2 Algorithm

Recall that we are given first-order access to a convex function f : Rn → R

that we want to minimize over a convex body K ⊆ R
n. In the case where f

is not differentiable, with a slight abuse of notation we interpret ∇f(x) to be
any subgradient of f at x. We can access K by a separation oracle that, given
a point x ∈ R

n, either asserts that x ∈ K or returns a point (a, b) ∈ A ⊆ R
n+1

with 〈a, x〉 > b such that 〈a, y〉 ≤ b holds for all y ∈ K. Here, 〈·, ·〉 denotes
the standard scalar product and we assume that all points in A correspond to
linear constraints valid for K. To state our algorithm, let ‖ · ‖ denote any norm
on R

n+1 and ‖ · ‖∗ its dual norm. Moreover, let Φ : Rn+1 → R+ be any strictly
convex and differentiable function with minx∈Rn+1 Φ(x) = Φ(0) = 0. Our method
is given in Algorithm 1, in which we denote the number of iterations by T for
later reference. However, T does not need to be specified in advance, and the
algorithm may be stopped at any time, e.g., when a solution or bound of desired
accuracy has been found.

Algorithm 1
1: UB ← ∞, A1 ← {(0, 1)/‖(0, 1)‖∗}, G1 ← ∅
2: for t = 1, 2, . . . , T do
3: pt ← arg min{Φ(p) : p ∈ conv(At ∪ Gt)}
4: if pt = 0 then return UB.
5: xt ← −∇Φ(pt)[1 : n]/∇Φ(pt)[n + 1]
6: if xt ∈ K then
7: UB ← min{UB, f(xt)}
8: At+1 ← At.
9: Gt+1 ← Gt ∪ {(∇f(xt), 〈∇f(xt), xt〉)}

10: else
11: get (a, b) ∈ A, with 〈a, xt〉 > b and ‖(a, b)‖∗ = 1
12: At+1 ← At ∪ {(a, b)}.
13: Gt+1 ← Gt.
14: return UB.

In Line 5, ∇Φ(pt)[1 : n] denotes the first n components of ∇Φ(pt), and
∇Φ(pt)[n+1] denotes the last component of ∇Φ(pt). The sets At and Gt denote
the already known/separated inequalities and objective gradients during itera-
tion t.

Lemma 1. When xt ∈ R
n is computed in iteration t of Algorithm 1, it is well-

defined and we have 〈c, xt〉 ≤ d for every (c, d) ∈ At ∪ Gt.
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Proof. Since pt minimizes Φ over conv(At ∪ Gt), for every q ∈ conv(At ∪ Gt)
we have 〈∇Φ(pt), q − pt〉 ≥ 0. If pt �= 0 then from strict convexity of Φ and
minx∈Rn+1 Φ(x) = Φ(0) = 0 we get

〈∇Φ(pt), q〉 ≥ 〈∇Φ(pt), pt〉 > 0. (1)

First, apply (1) to q = (0, 1)/‖(0, 1)‖∗ ∈ At and conclude ∇Φ(pt)[n + 1] > 0.
This makes sure that xt can be computed. Second, we apply Inequality (1) to
q = (c, d) ∈ At ∪ Gt and find that d − 〈c, xt〉 = 1

∇Φ(pt)[n+1] 〈∇Φ(pt), (c, d)〉 > 0,

thus xt satisfies 〈c, xt〉 ≤ d for all (c, d) ∈ At ∪ Gt. ��
Note that, for the sake of presentation, in Line 3 we require pt to be the

convex combination of minimum Φ-value. However, it is usually not necessary
to compute such a minimum. The same convergence rates can be obtained
if, in every iteration, pt is a suitable convex combination of pt−1 and some
(c, d) ∈ At ∪ Gt with 〈∇Φ(pt−1), (c, d)〉 < 0. If the last coordinate of pt−1, as
discussed in the above proof, is not positive, then such an update can be made
towards (0, 1)/‖(0, 1)‖∗ ∈ At. Any such update will significantly decrease Φ(pt),
and the computation in Line 3 is guaranteed to make at least that much progress.
This shows that simple updates of pt, which may be more preferable in practice,
still suffice to achieve the claimed convergence rates.

Lemma 2. Suppose that Φ is 1-smooth with respect to ‖ · ‖∗ and that

‖(∇f(x), 〈∇f(x), x〉)‖∗ ≤ 1

for every x ∈ K. Then for every t = 1, . . . , T , Algorithm 1 satisfies Φ(pt) ≤ 8
t+2 .

Proof Idea. In every iteration, we add a point qt ∈ At+1 ∪ Gt+1 with ‖qt‖∗ ≤ 1
such that 〈∇Φ(pt), qt〉 ≤ 0 holds. The line segment between pt and qt contains
a point p′ with Φ(p′) ≤ Φ(pt) − 1

8Φ(pt)2, which is enough to prove the claim. A
complete proof can be found in the arXiv [13] version. ��

The following lemma yields conditions under which a small value of Φ(pt)
implies that UB is close to the minimum of f over K. Note in particular that it
proves that if ‖pt‖ = 0 then UB = OPT.

Lemma 3. Assume that ‖(x,−1)‖ ≤ 2 holds for every x ∈ K, and there exist
z ∈ K and α ∈ (0, 1] such that 〈(a, b), (−z, 1)〉 ≥ α‖(−z, 1)‖‖(a, b)‖∗ holds for
every (a, b) ∈ A ∪ {(0, 1)}. Moreover, assume that ‖(∇f(x), 〈∇f(x), x〉)‖∗ ≤ 1
holds for every x ∈ K. If ‖pT ‖ ≤ α/2 in Algorithm 1, then the returned value
satisfies UB ≥ OPT ≥ UB − 4‖pT ‖∗(1+α)

α .

Proof. Let x∗ ∈ K minimize f(x) over x ∈ K and let F ⊂ [T − 1] be the set of
iterations (except the last one) in which xt ∈ K. Now write the point pT as a
convex combination

pT =
∑

(a,b)∈AT

λ(a,b)(a, b) +
∑

t∈F

γt(∇f(xt), 〈∇f(xt), xt〉)
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where λ ≥ 0, γ ≥ 0 and ‖(λ, γ)‖1 = 1. Then we have
∑

t∈F

γt(f(xt) − f(x∗)) ≤
∑

t∈F

γt〈∇f(xt), xt − x∗〉

=
〈 ∑

t∈F

γt(∇f(xt), 〈∇f(xt), xt〉), (−x∗, 1)
〉

≤
〈 ∑

t∈F

γt(∇f(xt), 〈∇f(xt), xt〉) +
∑

(a,b)∈AT

λ(a,b)(a, b), (−x∗, 1)
〉

= 〈pT , (−x∗, 1)〉 ≤ ‖pT ‖∗ · ‖(−x∗, 1)‖ ≤ 2‖pT ‖∗.

Here, the inequalities respectively arise from convexity of f , that x∗ ∈ K sat-
isfies 〈(a, b), (−x∗, 1)〉 ≥ 0 for every (a, b) ∈ AT , and the Cauchy–Schwarz
inequality. In particular, we find that mint∈F f(xt) − f(x∗) ≤ 2‖pT ‖∗∑

t∈F γt
when-

ever
∑

t∈F γt > 0. To lower bound this latter quantity, we use the assumptions
on z to derive the inequalities

α

(
1 −

∑

t∈F

γt

)
‖(−z, 1)‖ = α‖(−z, 1)‖

∑

(a,b)∈AT

λ(a,b)

≤ 〈
∑

(a,b)∈AT

λ(a,b)(a, b), (−z, 1)〉 (since‖(a, b)‖∗ = 1)

= 〈pT , (−z, 1)〉 −
∑

t∈F

γt〈(∇f(xt), 〈∇f(xt), xt〉), (−z, 1)〉

≤ ‖pT ‖∗ · ‖(−z, 1)‖ +
∑

t∈F

γt‖(∇f(xt), 〈∇f(xt), xt〉)‖∗ · ‖(−z, 1)‖.

Now observe that ‖(∇f(xt), 〈∇f(xt), xt〉)‖∗ ≤ 1 for every t ∈ F and divide
through by ‖(−z, 1)‖ to find α(1 − ∑

t∈F γt) ≤ ‖pT ‖∗ +
∑

t∈F γt. Hence, if
‖pT ‖∗ ≤ α

2 then α/2 ≤ (α + 1)
∑

t∈F γt. This lower bound on
∑

t∈F γt suffices
to prove the lemma. ��

Combining the previous two lemmas, we obtain the following convergence
rate of our algorithm:

Theorem 1. Assume that β > 0 is such that Φ(x) ≥ β‖x‖2∗ for all x ∈ R
n+1.

Under the assumptions of Lemmas 2 and 3, Algorithm 1 computes, for every
T ≥ 32

βα2 , a value UB < ∞ satisfying UB ≥ minx∈K f(x) ≥ UB− 16√
β(T+2)

· 1+α
α .

Proof. After T iterations, we have β‖pT ‖2∗ ≤ Φ(pT ) ≤ 8
T+2 ≤ βα2/4 per Lemma

2. Since then ‖pT ‖∗ ≤
√
8√

β(T+2)
≤ α/2, Lemma 3 tells us that OPT ≥ UB −

16(1+α)√
β(T+2)α

. ��

Let us now apply the previous findings to a concrete setting, in which we
assume that the objective function f is L-Lipschitz, i.e., |f(x)−f(y)| ≤ L‖x−y‖2
for all x, y ∈ R

n.
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Theorem 2. Let K ⊂ R
n be a convex body satisfying z + rBn

2 ⊂ K ⊂ RB
n
2 ,

given by a separation oracle A, and let f : Rn → R be an L-Lipschitz convex
function given by a subgradient oracle.

Apply Algorithm 1 to the function 1
RLf using norm ‖(x, y)‖ :=

√
2‖(x/R, y)‖2

and potential Φ(a, b) := 1
4‖(Ra, b)‖22. Then, for every ε > 0, after

T = O

(
R2

r2
· R2L2

ε2

)

iterations we have UB ≥ minx∈K f(x) ≥ UB − ε.

Proof. By replacing f(x) by f(Rx)/(RL), K by K/R, ε by ε/(RL), r by r/R,
and z by z/R, we may assume that R = L = 1, that r ∈ (0, 1]. After this
rescaling, note ‖(x, y)‖ :=

√
2‖(x, y)‖2 and Φ(a, b) := 1

4‖(a, b)‖22 = 1
2‖(a, b)‖2∗.

Crucially, note that Algorithm 1 is invariant under the above replacement.
We now claim that our choice of input satisfies the conditions of Theorem 1

with β = 1/2 and α = r/4. Given the claim, Theorem 1 directly proves the
result. To prove the claim, apart from verifying that the bounds on β and α
hold, we must verify smoothness of Φ with respect to the dual norm, a bound
of 2 on the norm of (−x, 1) for x ∈ K, as well as a dual norm bound of 1 on
(∇f(x), 〈∇f(x), x〉) for x ∈ K.

The setting β = 1/2 is direct by definition of Φ. Since ‖ · ‖∗ is a Euclidean
norm, it is immediate that Φ is 1-smooth with respect to ‖ · ‖∗. For each x ∈ K,
using that R = L = 1, we may also verify that

‖(x, 1)‖ =
√

2‖(x, 1)‖2 =
√

2
√

‖x‖22 + 1 ≤
√

2
√

R2 + 1 = 2,

and

‖(∇f(x), 〈∇f(x), x〉)‖∗ =
1√
2
‖(∇f(x), 〈∇f(x), x〉)‖2

≤ 1√
2

√
‖∇f(x)‖22 + ‖∇f(x)‖2‖x‖2

≤ 1√
2

√
L2 + L2R2 = 1.

We now show the lower bound α ≥ r/4. Firstly, since ‖(−z, 1)‖‖(0, 1)‖∗ =
‖(−z, 1)‖2‖(0, 1)‖2 ≤ √

2, we see that 〈(−z, 1), (0, 1)〉 = 1 ≥ 1
2‖(−z, 1)‖‖(0, 1)‖∗.

Next, any (a, b) returned by the oracle is normalized so that ‖(a, b)‖∗ = 1 ⇔
‖(a, b)‖2 =

√
2. Note then that ‖(−z, 1)‖‖(a, b)‖∗ ≤ 2. From here, we observe

that

〈(a, b), (−z, 1)〉 = b − 〈a, z〉 = b − 〈a, z + ra/‖a‖2〉 + r‖a‖2 ≥ r‖a‖2,
since z + ra/‖a‖2 ∈ K by assumption. Furthermore, b − 〈a, z〉 ≥ b − ‖a‖2‖z‖2 ≥
b − ‖a‖2 and 0 ≤ b−〈a, z〉 ≤ b+‖a‖2. Thus, b − 〈a, z〉 ≥ max{r‖a‖2, b−‖a‖2}.
We now examine two cases. If ‖a‖2 ≥ 1/2, then b − 〈a, z〉 ≥ r/2 ≥ r/4 ·
‖(−z, 1)‖‖(a, b)‖∗. If ‖a‖2 ≤ 1/2, then |b| ≥ 1 since ‖(a, b)‖22 = 2. This gives
b − 〈a, z〉 ≥ b − ‖a‖2 ≥ 1/2 ≥ r/2. Thus, α ≥ r/4, as needed. ��
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3 Computational Experiments

In this section, we provide a computational comparison of our method with the
standard cut loop, the ellipsoid method, and the analytic center cutting plane
method on a testbed of linear optimization instances. For comparison purposes,
all four methods are embedded into a common cutting plane framework such
that the same termination criteria apply.

Framework. Each method has access to a separation oracle that is equipped with
a set of initial linear inequalities valid for K (such as bounds on variables), which
are incorporated within each method in a straightforward way. For instance, we
initialize our algorithm by adding these constraints to the set A1. Moreover, for
each instance, we will be given a finite upper bound UB and incorporate the
linear inequality f(x) ≤ UB in a similar way. This upper bound gets updated
whenever a feasible solution of better objective value was found. Our framework
collects all inequalities queried by the current method and computes the resulting
lower bound on the optimum value in every iteration. Each method is stopped
whenever the difference of upper and lower bound is below 10−3.

We will also inspect the possibility of a smart oracle that, regardless of
whether a given point x is feasible, may still provide a valid inequality as well
as a feasible solution (for instance, by modifying x in a simple way so that it
becomes feasible). Such an oracle is often automatically available and can have a
positive impact on the performance of the considered algorithms. For the prob-
lems we consider, the actual implementation of a smart oracle will be specified
below.

Implementation. The framework has been implemented in julia 1.6.2 using
JuMP and Gurobi 9.1.1. To guarantee a fair comparison, all four methods have
been implemented in a straightforward fashion. We use the textbook implemen-
tation of the ellipsoid method, and Badenbroek’s implementation of the analytic
center cutting plane method [2]. Our method is implemented2 in the spirit of
Theorem 2, where pt is computed using Gurobi.

Test Sets. We use three problem classes in our experiments: linear programming
formulations of the maximum-cardinality matching problem, semidefinite relax-
ations of the maximum cut problem, and LPBoost instances for classification
problems.

For the maximum-cardinality matching problem, we consider the linear pro-
gram

max
{∑

e∈E
xe : x ∈ [0, 1]E ,

∑
e∈δ(v)

xe ≤ 1 for all v ∈ V,

∑
e∈E[U ]

xe ≤ |U |−1
2 for all U ⊆ V with |U | odd

}
,

2 https://github.com/christopherhojny/supplement simple-iterative-methods-linopt-
convex-sets.

https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets
https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets
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due to Edmonds [18], where G = (V,E) is a given undirected graph, δ(v) is the
set of all edges incident to v, and E[U ] is the set of all edges with both endpoints
in U . The latter constraints are handled within an oracle that computes an
inequality minimizing (|U | − 1)/2 − ∑

e∈E[U ] xe, whereas the other inequalities
are provided as initial constraints. For the above problem, the smart version
of the oracle does not provide a feasible point since there is no obvious way of
transforming a given point into a feasible one. However, the smart version always
provides the minimizing inequality.

We consider 16 random instances with 500 nodes, generated as follows.
For each r ∈ {30, 33, . . . , 75} we build an instance by sampling r triples of
nodes {u, v, w} and adding the edges of the induced triangles to the graph,
forming the test set matching. We believe that these instances are interesting
because the r triangles give rise to many constraints to be added by the oracle.
Moreover, we selected all 13 instances from the Color02 symposium [12] with
less than 300 edges, yielding the test set matching02.

Our second set of instances is based on the semidefinite relaxation of Goe-
mans and Williamson [21] for the maximum cut problem

max
{ ∑

{v,w}∈E
c(v, w)(1 − Xv,w)/2 :Xv,w = Xw,v for all v, w ∈ V,

Xv,v = 1 for all v ∈ V, X � 0
}

where c are edge weights on the edges of (V,E). We add the box constraints
X ∈ [−1, 1]V ×V to the initial constraints and handle the semidefiniteness con-
straint by a separation oracle that, given X, computes an eigenvector h of X of
minimum eigenvalue and returns the inequality 〈hhᵀ,X〉 ≥ 0.

Within the smart version of the oracle, this constraint is returned regardless
of the feasibility of X. If X is not feasible, the semidefinite matrix 1

λ−1X− λ
λ−1I is

returned, where λ denotes the minimum eigenvalue and I the identity matrix. We
generated 10 complete graphs on 10 nodes with edge weights chosen uniformly
at random in [0, 1].

Our third set of instances arises from LPBoost [16], a classifier algorithm
based on column generation. To solve the pricing problem in column generation,
the following linear program is solved:

max
{

γ : (γ, λ) ∈ [−1, 1] × [0,D]n, 〈1, λ〉 = 1,

m∑

i=1

yih(xi, ω)λi ≤ −γ for ω ∈ Ω
}
,

where Ω is a set of parameters, for i ∈ [m], xi is a data point labeled as yi = ±1,
h(·, ω) is a classifier parameterized by ω ∈ Ω that predicts the label of xi

as h(xi, ω) ∈ {−1,+1}, and D > 0 is a parameter. In our experiments, we
restrict h(·, ω) to be a decision tree of height 1, so-called tree stumps, and
choose D = 5

n . To separate a point (γ′, λ′), we use julia’s DecisionTree module
to compute a decision stump with score function λ′ that weights the data points,
whose corresponding inequality classifies (γ′, λ′) as feasible or not. A smart oracle
always returns the computed inequality and decreases γ′ until (γ′, λ′) becomes
feasible according to the found decision stump.
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Table 1. Comparison of iterations and dual/primal integral without smart oracles.

instance #iterations dual integral primal integral

LP ellipsoid analytic our LP ellipsoid analytic our ellipsoid analytic our

matching 175.44 500.00 500.00 99.81 48.34 473.02 22.13 21.10 52.12 9.29 4.40

matching02 283.77 460.77 491.69 47.15 257.76 339.67 194.26 21.64 23.41 5.91 2.13

maxcut 265.30 500.00 500.00 193.30 7.72 44.32 3.48 6.14 21.15 9.04 6.32

LPboost 91.94 489.06 479.12 278.06 3.15 13.62 20.65 53.15 459.97 100.71 64.08

We extracted all data sets from the UC Irvine Machine Learning Repos-
itory [35] that are labeled as multivariate, classification, ten-to-hundred
attributes, hundred-to-thousand instances. Data sets with alpha-numeric values
or too many missing values have been discarded.

Results. In what follows, we report on the number of iterations, i.e., oracle
calls, each method needs to obtain a gap (upper bound minus lower bound)
below 10−3. We impose a limit of 500 iterations per instance. Since we are test-
ing naive implementations of each method, we do not report on running time.

To get more insights on the primal and dual performance of the tested meth-
ods, we also report on their primal and dual integrals. Note that we are solving
maximization problems in this section, as opposed to minimization problems in
Sect. 2. That is, primal (dual) solutions provide lower (upper) bounds on OPT.
If �i is the lower bound on the optimal objective value OPT in iteration i, the
primal integral is

∑500
i=1

OPT−	i
OPT−	1

. The dual integral is computed analogously. If
an integral is small, this indicates quick progress in finding the correct value of
the corresponding bound.

Table 1 summarizes our results without smart oracles, where all numbers are
average values. Here, “matching” refers to the random instances and “match-
ing02” to the instances from the Color02 symposium. The standard cut loop
is referred to as “LP”, the ellipsoid method as “ellipsoid”, the analytic center
method as “analytic”, and Algorithm 1 as “our”. Note that Table 1 does not
report on the primal integral of “LP” since the standard cut loop is a dual
method.

We see that the ellipsoid and analytic center methods are struggling with
solving any instance within 500 iterations independent from the problem class.
Our algorithm solves the instances of the matching and max-cut problem much
faster than the standard cut loop. Only for LPBoost, the standard cut loop
clearly dominates our algorithm. To better understand this behavior, the inte-
grals reveal that our algorithm is better in improving the primal bound than
the dual bound, with the only exception being LPBoost. The analytic center
method, however, performs significantly worse than our algorithm in improving
the primal bound. Regarding the dual bound, it performs better than our algo-
rithm (with the exception of matching02). The ellipsoid method is much worse
in improving the primal bound in comparison with the analytic center method
and our algorithm. Regarding the dual bound, a similar trend can be observed
with LPBoost being an exception.
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Fig. 1. Typical primal/dual bounds for a random matching instance.

In summary, the analytic center cutting plane method improves the dual
bound more quickly than our algorithm. It can find a good primal solution early
as the primal integral is small, however it fails to close the remaining gap within
the iteration limit. Our algorithm is able to close the primal gap faster, with
the trade-off of a slightly slower dual convergence. A typical plot of the of the
relative primal and dual gaps is given in Fig. 1.

In a second experiment, we investigate the effect of smart oracles. As Table 2
shows, the algorithms mostly benefit from having access to a smart oracle in the
case of LPBoost. A reason might be in the particular structure of these instances:
the objective just consists of γ and every truncated convex combination λ is
feasible. However, there is no impact of smart oracles on the matching and
maxcut instances, respectively.

Table 2. Comparison of iterations and dual/primal integral with smart oracles.

instance #iterations dual integral primal integral

LP ellipsoid analytic our LP ellipsoid analytic our ellipsoid analytic our

matching 175.44 500.00 500.00 99.81 48.34 473.02 22.13 21.10 52.12 9.29 4.40

matching02 283.77 460.77 491.69 47.15 257.76 339.67 194.26 21.64 23.41 5.91 2.13

maxcut 265.30 500.00 500.00 231.00 7.72 42.90 3.48 6.15 20.42 8.91 5.59

LPboost 86.94 346.38 88.00 127.00 3.04 13.50 5.54 5.46 25.41 6.83 6.95

Acknowledgments. We would like to thank Robert Luce and Sebastian Pokutta for
their very valuable feedback on our work.
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Abstract. We close three open problems on the separation complexity
of valid inequalities for the knapsack polytope. Specifically, we estab-
lish that the separation problems for extended cover inequalities, (1, k)-
configuration inequalities, and weight inequalities are all NP-complete.
We also show that, when the number of constraints of the LP relaxation
is constant and its optimal solution is an extreme point, then the separa-
tion problems of both extended cover inequalities and weight inequalities
can be solved in polynomial time.

Keywords: Knapsack polytope · Separation problem · Complexity
theory

1 Introduction

The multi-dimensional knapsack problem is the integer programming (IP) prob-
lem

max{cTx | Ax ≤ d, x ∈ {0, 1}n}, (1)

where A ∈ Zm×n
+ , c ∈ Zn

+, and d ∈ Zm
+ . When the constraint matrix A only has

one row a and the right-hand side vector is a positive integer b, problem (1) is
referred to as knapsack problem, and the convex hull of the associated feasible
region, conv({x ∈ {0, 1}n | aTx ≤ b}), is referred to as the knapsack polytope.

The multi-dimensional knapsack problem is a fundamental problem in dis-
crete optimization, and valid inequalities for the feasible region have been widely
studied, see, e.g., [4,14,19] and paper [11] provides a modern survey. In this
paper, we study the complexity of the separation problem for well-known fami-
lies of valid inequalities for (1).
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A standard and computationally useful way for generating cuts for (1) is to
generate cuts for the knapsack polytope defined by its individual constraints.
Suppose a is a row of the constraint matrix A, and let b be the corresponding
coordinate of the right-hand side d. We denote the associated knapsack polytope
by K := conv({x ∈ {0, 1}n | aTx ≤ b}).

Many families of valid inequalities for K are based on the notion of a cover,
which is a subset C of {1, 2, . . . , n} such that

∑
i∈C ai > b. Given a cover C, the

inequality ∑

i∈C

xi ≤ |C| − 1

is valid for K, and it is called a cover inequality (CI). Cover inequalities can often
be strengthened through a process called lifting, and the resulting inequalities
are called lifted cover inequalities (LCIs) [3,8,16,17,22].

Balas [2] gave one family of LCIs known as extended cover inequality (ECI),
which have the form

∑

j /∈C:aj≥maxi∈C ai

xj +
∑

i∈C

xi ≤ |C| − 1.

A minimal cover is a cover C such that
∑

i∈C\{j} ai ≤ b for any j ∈ C. A
set N ∪ {t} with N � {1, . . . , n} and t /∈ N is called a (1, k)-configuration for
k ∈ {2, . . . , |N |} if

∑
i∈N ai ≤ b and Q ∪ {t} is a minimal cover for every Q ⊆ N

with |Q| = k. Padberg [18] showed that for any (1, k)-configuration N ∪ {t}, the
inequality

(|S| − k + 1)xt +
∑

i∈S

xi ≤ |S|

is valid for K for every |S| ⊆ N with |S| ≥ k. This inequality is called a (1, k)-
configuration inequality.

Other valid inequalities for the knapsack polytope K arise from the concept
of a pack. For the knapsack polytope K, a set P ⊆ {1, . . . , n} is a pack if∑

i∈P ai ≤ b. Given a pack P , the corresponding pack inequality
∑

i∈P aixi ≤∑
i∈P ai is trivially valid for K, as it is implied by the upper bound constraints

xi ≤ 1. However, pack inequalities can be lifted in several different ways to obtain
more interesting lifted pack inequalities (LPIs) [1]. Weismantel [21] derived the
weight-inequalities, which are LPIs. To define the weight inequalities, let r(P ) :=
b − ∑

i∈P ai be the residual capacity of the pack P . The indices j /∈ P with
aj > r(P ) are lifted to obtain the weight inequality (WI):

∑

i∈P

aixi +
∑

j /∈P

max{aj − r(P ), 0}xj ≤
∑

i∈P

ai.

Consider the linear programming (LP) relaxation of (1):

max{cTx | Ax ≤ d, x ∈ [0, 1]n}. (2)

For a given family F of valid inequalities for (1), the associated separation
problem is defined as follows: “Let x∗ be a feasible solution to (2), does there
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exist an inequality in F that is violated by x∗? If so, return one such inequality
from F .” In this paper, we are mainly interested in the weaker decision version
of the separation problem where we do not have to return a separating inequality
even if it does exist, and we assume that x∗ is an optimal solution to (2). In fact,
the separation of optimal solution is no harder than the separation of general
feasible solution, and from the computational point of view, x∗ almost always
comes from the optimal solution to some linear relaxation.

The separation problem for several families of valid inequalities for the knap-
sack polytope has been shown to be NP-complete, including CIs [15], and LCIs
[9]. On the other hand the complexity of the separation problem for extended
cover inequalities, (1, k)-configuration inequalities, and weight inequalities are, to
the best of our knowledge, unknown. Kaparis and Letchford stated that the sep-
aration problem seems likely to be NP-hard for ECIs in [12]. It was conjectured
explicitly in [6] that the separation problem for (1, k)-configuration inequalities
is NP-hard. Moreover, the complexity of the separation problem for WIs is also
open, as mentioned in [11]. In this paper we provide positive answers to all
these conjectures. Namely, we show that the separation problems for ECIs, for
(1, k)-configuration inequalities, and for WIs are all NP-complete. The first two
results are proven via a reduction from the separation problem for CIs, and the
separation complexity for WIs is given via the reduction from the Subset Sum
Problem (SSP).

Along with this NP-hard results, we also present some positive results about
the separation problems of those cutting-planes. Specifically, we show that when
the number of constraints of the LP relaxation (2) is constant, and the optimal
solution x∗ is an extreme point, then the seapration problems for ECIs and WIs
are both polynomial-time solvable. See Corollary 1 and Corollary 2.

We remark that several heuristics and exact separation algorithms are present
in the literature for these families of cuts. Both Gabrel and Minoux [7] and
Kaparis and Letchford [12] provide an exact separation algorithm for ECIs that
runs in pseudo-polynomial time. Ferreira et al. [6] presented simple heuristics
for the separation problem of (1, k)-configuration inequalities. For the separa-
tion problem for WIs, Weismantel [21] proposed an exact algorithm that runs
in pseudo-polynomial time. Helmberg and Weismantel [10] further presented a
fast separation heuristic for WIs that simply inserts items into the pack P in
non-increasing order of x∗ value. Kaparis and Letchford [12] gave two exact
algorithms and a heuristic for separating WIs and show how to convert these
methods into heuristics for separating LPIs.

The separation problems considered in this paper can be defined formally as
follows:

Problem CI-SP
Input: (A, d, c) ∈ (Zm×n

+ , Zm
+ , Zn

+) and an optimal solution x∗ to the LP relax-
ation (2).
Question: Is there a cover C with respect to some row constraint aTx ≤ b of
(2), such that

∑
i∈C x∗

i > |C| − 1?
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Problem ECI-SP
Input: (A, d, c) ∈ (Zm×n

+ , Zm
+ , Zn

+) and an optimal solution x∗ to the LP relax-
ation (2).
Question: Is there a cover C with respect to some row constraint aTx ≤ b of
(2), such that

∑
j /∈C:aj≥maxi∈C ai

xj +
∑

i∈C xi > |C| − 1?

Problem CONFIG-SP
Input: (A, d, c) ∈ (Zm×n

+ , Zm
+ , Zn

+) and an optimal solution x∗ to the LP relax-
ation (2).
Question: Is there a (1, k)-configuration N ∪ {t} and a subset S ⊆ N
with |S| ≥ k with respect to some row constraint aTx ≤ b of (2), such that
(|S| − k + 1)x∗

t +
∑

i∈S x∗
i > |S|?

Problem WI-SP
Input: (A, d, c) ∈ (Zm×n

+ , Zm
+ , Zn

+) and an optimal solution x∗ to the LP relax-
ation (2).
Question: Is there a pack P with respect to some row constraint aTx ≤ b of
(2), such that

∑
i∈P aix

∗
i +

∑
j /∈P max{aj − r(P ), 0}x∗

j >
∑

i∈P ai?

For CI-SP, we have the following classic results.

Theorem 1 ([15]).

– CI-SP is NP-complete, even if m = 1.
– CI-SP is NP-complete, even if x∗ is an extreme point.

We will show the other three problems, ECI-SP, CONFIG-SP, and WI-SP are
all NP-Complete.

Clearly, the NP-hardness of the above problems imply the NP-hardness of
the more general separation problem where x∗ is a feasible, and not necessarily
optimal, solution to (2). We should also remark that, since verifying if a given
point violates a given inequality can be obviously done in polynomial time with
respect to the input size of such point and inequality, the separation problems for
these families of cuts are clearly in class NP. Therefore, when we talk about the
separation complexity for those cuts, we do not distinguish between NP-hard
and NP-complete throughout this paper.

Notation. For an integer n we set [n] := {1, 2, . . . , n}. We define en as n-
dimensional vector of ones, where we often repress the n if the vector dimension
may be implied by the context. For a vector x ∈ Rn and S ⊆ [n], we set
x(S) :=

∑
i∈S xi. So for a vector a ∈ Rn, a([n]) = aTe =

∑n
i=1 ai.

2 Extended Cover Inequality Separation

In this section, we establish the complexity of extended cover inequality sep-
aration with a simple reduction from the cover inequality separation problem.
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In the case where the point to be separated has a small number of fractional
components, then extended cover inequality separation can be accomplished in
polynomial time.

Theorem 2. Problem ECI-SP is NP-complete, even if m = 1. Furthermore,
Problem ECI-SP is NP-complete, even if x∗ is an extreme point solution to the
LP relaxation (2).

Proof. We transform CI-SP to ECI-SP. Let (A, d, c, x∗) ∈ (Zm×n
+ , Zm

+ , Zn
+, [0, 1]n)

be the input to CI-SP. We construct input to ECI-SP with the prop-
erty that there is a yes-certificate to CI-SP with input (A, d, c, x∗) if and
only if there is a yes-certificate to ECI-SP with input (A′, d′, c′, y∗) ∈
(Zm×(n+1)

+ , Zm
+ , Zn+1

+ , [0, 1]n+1).
The data for the ECI-SP instance are constructed as follows:

A′
ij = Aij ∀i ∈ [m],∀j ∈ [n] A′

i,n+1 =
n∑

j=1

Aij ∀i ∈ [m]

c′
j = cj ∀j ∈ [n] c′

n+1 = M

d′
i = di +

n∑

j=1

Aij ∀i ∈ [m].

The constant M is chosen to be large enough so that if x∗ is an optimal solution
to the linear program (2), then y∗ = (x∗, 1) is an optimal solution to the linear
program

max{(c′)Ty | A′y ≤ d′, y ∈ [0, 1]n+1}. (3)

It is a consequence of linear programming duality that selecting M ≥ (π∗)TAe,
where π∗ are optimal dual multipliers for the inequality constraints in (2), will
ensure the optimality of y∗. Since there is an optimal solution π∗ whose encoding
length is of polynomial size [20], the encoding size of M is a polynomial function
of the input size of CI-SP.

Let C ⊆ [n] be a cover with respect to a row constraint aTx ≤ b of Ax ≤ d
such that the associated CI does not hold at x∗, so x∗(C) > |C| − 1. Then
C ′ := C ∪{n+1} is a cover with respect to the constraint (aT, aTe) ·y ≤ b+aTe
within A′y ≤ d′, and the associated ECI cuts off y∗, since y∗(C ′) = 1 + x∗(C) >
|C| = |C ′| − 1.

On the other hand, assume that C ′ is a cover with respect to some row
constraint a′Ty = (aT, aTe) · y ≤ b + aTe = b′ within A′y ≤ d′ such that the
associated ECI cuts off y∗. Note that if n + 1 /∈ C ′, then

∑
j∈C′ a′

j ≤ a′([n]) =
aTe < b+aTe, and C ′ cannot be a cover with respect to that row constraint. Thus,
n + 1 ∈ C ′, and the ECI of C ′ is just its cover inequality y(C ′) ≤ |C ′| − 1. By
construction, the set C := C ′\{n + 1} is a cover with respect to the constraint
aTx ≤ b within Ax ≤ d. The ECI of C ′ cuts off y∗, y∗(C ′) = 1 + x∗(C) >
|C ′| − 1 = |C|, so x∗(C) > |C| − 1, and the CI from C cuts off x∗.

We have shown that there is a yes-certificate to CI-SP with input (A, d, c, x∗)
if and only if there is a yes-certificate to ECI-SP with input (A′, d′, c′, y∗).
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Together with Theorem 1, this establishes that ECI-SP is NP-complete, even
if m = 1, and that ECI-SP is NP-complete, even if x∗ is an extreme point
to the LP relaxation (2). For the second statement of the theorem, it suffices
to realize that the input y∗ = (x∗, 1) for ECI-SP will be an extreme point of
{y ∈ [0, 1]n+1 | A′y ≤ d′} if x∗ is an extreme point of {x ∈ [0, 1]n | Ax ≤ d}. �	

If the fractional support of the input vector x∗ is “sparse”, then we can
separate ECI in polynomial time.

Theorem 3. Let x∗ be the input solution to ECI-SP. If |{i ∈ [n] : x∗
i ∈ (0, 1)}|

is a constant, then a separating ECI can be obtained in polynomial time if one
exists.

Proof. For a given point x∗ and constraint aTx ≤ b of Ax ≤ d, there exists a
separating ECI from the constraint if and only if for some t ∈ [n], there exists a
cover C with maxi∈C ai = at, such that

∑

i∈[n]:ai≥at

x∗
i +

∑

i∈C:ai<at

x∗
i > |C| − 1. (4)

We partition C into four sets, C = T1 ∪ Tf ∪ T0 ∪ T , with T1 = {i ∈ C | ai <
at, x

∗
i = 1}, Tf = {i ∈ C | ai < at, x

∗
i ∈ (0, 1)}, T0 = {i ∈ C | ai < at, x

∗
i = 0},

and T = {i ∈ C | ai = at}. With this definition, (4) can be equivalently stated
as ∑

i∈[n]:ai≥at

x∗
i >

∑

i∈Tf

(1 − x∗
i ) + |T0| + |T | − 1. (5)

The algorithm loops over all t ∈ [n] and enumerates all Tf ⊆ {i ∈ [n] | ai <
at, x

∗
i ∈ (0, 1)}. By our assumption on the cardinality of fractional support of

x∗, this is a polynomial number of iterations. For a fixed t ∈ [n] and Tf ⊆ C,
the separation problem then amounts to completing the cover C so that

|T0| + |T | <
∑

i∈[n]:ai≥at

x∗
i −

∑

i∈Tf

(1 − x∗
i ) + 1. (6)

The right-hand side of (6) is a constant, so separation for a fixed index t and
subset Tf amounts to solving the knapsack problem

min
z∈{0,1}|St|

{
∑

i∈St

zi |
∑

i∈St

aizi ≥ bt,Tf

}

, (7)

where St = {i ∈ [n] | ai = at or ai < at, x
∗
i = 0}, and bt,Tf

= b + 1 − ∑
i∈Tf

ai −
∑

i:ai<at,x∗
i =1 ai. As the non-zero objective coefficients of the knapsack prob-

lem (7) are all the same, the problem can be solved in polynomial time by a
simple greedy procedure. �	

Theorem 3 immediately implies the following corollary.
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Corollary 1. If the number of constraints in the LP relaxation (2) is a con-
stant and x∗ is an extreme point solution to (2), then the separating ECI can be
obtained in polynomial time if one exists.

Proof. Let the number of constraints be a constant α. Since x∗ is an extreme
point, we know that at most α components of x∗ are fractional. Hence |{i ∈ [n] :
x∗

i ∈ (0, 1)}| ≤ α. The result then follows from Theorem 3. �	

3 (1, k)-Configuration Inequality Separation

In this section we establish that the separation problem for (1, k)-configuration
inequalities is NP-complete using a similar reduction as in the proof of Theo-
rem 2.

Theorem 4. Problem CONFIG-SP is NP-complete, even if m = 1. Further-
more, Problem CONFIG-SP is NP-complete, even if x∗ is an extreme point
solution to the LP relaxation (2).

Proof. The proof is very similar to that of Theorem 2. The reduction is from the
NP-Complete CI-SP to CONFIG-SP, and details of the reduction are given in
the full version of the paper [5]. �	

We have settled the complexity of separation for (1, k)-configuration inequal-
ities for an input solution x∗ that is an extreme point to the LP-relaxation (2),
but the complexity of separation for points x∗ with a small number of fractional
components is still open. In fact, we conjecture it to be NP-Complete.

Conjecture 1. There exists a constant α such that CONFIG-SP is NP-complete,
even if the input solution x∗ satisfies |{i ∈ [n] | x∗

i ∈ (0, 1)}| ≤ α.

4 Weight Inequality Separation

In this section we show that WI-SP is NP-hard and present special cases where
it can be solved in polynomial time. For a pack P of a given knapsack constraint
aTx ≤ b, we denote by C(P ) := {i ∈ [n]\P | ai > r(P )}. With this notation, the
WI associated with P takes the form

∑

i∈P

aixi +
∑

j∈C(P )

(aj − r(P ))xj ≤ a(P ),

where we remind the reader that r(P ) := b − a(P ). First, we will need the
following auxiliary result.

Lemma 1. Let (a, b) ∈ Zn+1
+ with a([n])/b /∈ Z, and let x∗

1 = . . . = x∗
n =

b/a([n]). Then there exists a pack P of aTx ≤ b whose associated WI separates x∗

if and only if there exists a pack P ′ of aTx ≤ b such that r(P ′) > 0, P ′ ∪C(P ′) =
[n], and |C(P ′)| = 
a([n])/b�.
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Proof. The proof of Lemma 1 is self-contained and can be found in the full
version of the paper [5]. �	

To prove that the separation problem WI-SP is NP-hard, we establish a
reduction from the Subset Sum Problem (SSP) to WI-SP.

Problem SSP
Input: α ∈ Zn

+ and w ∈ Z+.
Question: Is there a subset S ⊆ [n] such that α(S) = w?

The SSP is among Karp’s 21 NP-complete problems [13]. It is simple to
check that SSP is NP-complete even if w > max(α). We are now ready to prove
that WI-SP is NP-hard.

Theorem 5. Problem WI-SP is NP-complete, even if m = 1. Furthermore,
Problem WI-SP is NP-complete, even if x∗ is an extreme point solution to the
LP relaxation (2).

Proof. First, we prove the first part of the statement. We show that WI-SP
is NP-hard even in case of a single knapsack constraint. Given an instance
(α,w) ∈ Zn+1

+ of SSP with w > max(α), we construct a knapsack problem
max{cTx | aTx ≤ b, x ∈ {0, 1}2n+2} and give an optimal solution x∗ to the
associated LP relaxation. The data a, b, c of the constructed knapsack problem
is defined as follows:

ai := αi + 2, ∀i = 1, . . . , n,

an+1 := w · (n + 1) + 2(n + 1)2 − 3n − α([n]),
an+1+j := 2, ∀j = 1, . . . , n + 1,

b := w + 2n + 3,

c := a,

x∗
1 := . . . := x∗

2n+2 :=
w + 2n + 3

w · (n + 1) + 2n2 + 5n + 4
.

(8)

It is simple to check that a, b, c are all integral, that (a, b, c, x∗) has polynomial
encoding size with respect to that of (α,w), and that aTx∗ = b. Furthermore, x∗

is an optimal solution to the knapsack problem described by (8), since cTx∗ =
aTx∗ = b. Hence (a, b, c, x∗) is a feasible input to WI-SP where m = 1. Note that
(w · (n + 1) + 2n2 + 5n + 4)/(w + 2n + 3) = n + 1 + 1/(w + 2n + 3) /∈ Z. Hence,
we can apply Lemma 1 and obtain that there exists a separating WI for x∗ if
and only if there exists a pack P such that:

r(P ) > 0, P ∪ C(P ) = [2n + 2],

|C(P )| =
⌊

w · (n + 1) + 2n2 + 5n + 4
w + 2n + 3

⌋

= n + 1.
(9)

Claim 1. There exists a WI from constraint aTx ≤ b that separates x∗ if and
only if there exists a subset S ⊆ [n] such that α(S) = w.
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Proof of claim. It suffices to show that there exists pack P such that (9) holds
if and only if there exists a subset S ⊆ [n] such that α(S) = w.

First, we assume that P is a pack such that (9) holds. The two equations in
(9) imply |P | = 2n+2−|C(P )| = n+1. If {n+2, n+3, . . . , 2n+2}∩C(P ) = ∅,
then P ∪C(P ) = [2n+2] implies that {n+2, n+3, . . . , 2n+2} ⊆ P , which means
P = {n+2, n+3, . . . , 2n+2} since |P | = n+1. However, since w > max(α), we
know that 2+max(α)+2(n+1) ≤ w + 2n + 3 = b, which implies that P ∪{i′}
is a pack for any i′ ∈ [n], and this contradicts the assumption C(P ) = [2n+2]\P
of (9). Therefore, there must exist some i′ ∈ {n + 2, n + 3, . . . , 2n + 2} ∩ C(P ).
Hence r(P ) = b − a(P ) < ai′ = 2. Moreover, because r(P ) > 0, we have r(P )
= 1, which implies a(P ) = b − 1 = w + 2n + 2. Since an+1 = w · (n + 1) +
2(n + 1)2 − 3n − α([n]) ≥ w + 2(n + 1)2 − 3n + (w · n − α([n])) > w + 2n + 2,
we know n + 1 /∈ P. Let S := P ∩ [n]. We then obtain a(S) = 2|S| + α(S)
and a(P\S) = 2(|P | − |S|) = 2(n + 1 − |S|). Therefore, w + 2n + 2 = a(P ) =
a(S) + a(P\S) = α(S) + 2n + 2, which gives us α(S) = w.

Next, we assume that S is a subset of [n] with α(S) = w. Clearly, n + 1 /∈ S.
Then we define the set S̃ containing n + 1 − |S| arbitrary indices from {n +
2, . . . , 2n + 2}. Then P := S ∪ S̃ is a pack such that (9) holds. In fact, we have

r(P ) = b − a(P )

= w + 2n + 3 − a(S) − a(S̃)
= w + 2n + 3 − (2S| + α(S)) − 2(n + 1 − |S|)
= 1.

This further implies C(P ) = [2n+2]\P and |C(P )| = 2n+2−|P | = n+1, since
ai > 1 for all i ∈ [2n + 2]. Hence (9) is satisfied by pack P . �

Claim 1 completes the proof of the first part of the statement, since SSP
itself is NP-hard.

Next, we prove the second part of the statement. We show that WI-SP is NP-
hard, even if x∗ is an extreme point solution to the LP relaxation (2). Given an
instance (α,w) ∈ Zn+1

+ of SSP with w > max(α), we construct an instance of the
multi-dimensional knapsack problem max{cTx | Ax ≤ d, x ∈ {0, 1}2N} and give
an optimal solution x∗ to the associated LP relaxation, where N = 2n+2. Let G
be a node-node adjacency matrix of a cycle on N nodes. The constraints of the
constructed multi-dimensional knapsack problem are then defined as follows:

aTy ≤ b, Gz ≤ eN ,

yi + 2z1 + 2z2 + 2z3 ≤ 3 + ε, ∀i ∈ [N ].
(10)

Here (a, b) ∈ ZN+1
+ is defined as in (8), ε := (w + 2n + 3)/(w·(n + 1) + 2n2 + 5n +

4) and eN is the N -dimensional vector with all components equal to one. Now we
define the objective vector c := (a, eN ), and we let x∗ = (y∗, z∗) := (εeN , eN/2).
Note that we can multiply all the rows of (10) by w · (n + 1) + 2n2 + 5n + 4 to
get an instance of WI-SP with integral data. The instance defined here clearly
has polynomial encoding size with respect to that of (α,w).
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First, we verify that this is a valid input for WI-SP. Clearly x∗ is feasible.
Furthermore, by summing all inequalities in Gz ≤ eN , it follows that x∗ is an
optimal solution to the LP relaxation.

Next we show that x∗ is an extreme point of the polyhedron given by (10).
Since N = 2n + 2 is even, then G is a square matrix with rank N − 1. We can
further verify that the first 2N constraints in (10) give a system of 2N linearly
independent constraints in 2N variables, and the only vector that satisfies all of
them at equality is x∗.

Claim 2. There exists a WI from (10) that separates x∗ if and only if there exists
a WI from the constraint aTy ≤ b that separates y∗.

Proof of claim. First, we assume that P is a pack with respect to some constraint
a′Tx ≤ b′ of (10) such that its corresponding WI separates x∗. If such constraint
a′Tx ≤ b′ comes from the subsystem Gz ≤ eN , say z1 + z2 ≤ 1, then the
only WI is z1 + z2 ≤ 1, which cannot be violated by x∗ since x∗ is a feasible
point. If a′Tx ≤ b′ is yi + 2z1 + 2z2 + 2z3 ≤ 3 + ε for some i ∈ [N ], then
all the nonempty packs that do not include variables with zero coefficient are
{i}, {i,N+1}, {i,N+2}, {i,N+3}, {N+1}, {N+2}, {N+3}. The corresponding
WIs are yi ≤ 1 and:

yi + 2z1 + (2 − ε)(z2 + z3) ≤ 3, 2z1 + (1 − ε)(z2 + z3) ≤ 2,

yi + 2z2 + (2 − ε)(z1 + z3) ≤ 3, 2z2 + (1 − ε)(z1 + z3) ≤ 2,

yi + 2z3 + (2 − ε)(z1 + z3) ≤ 3, 2z3 + (1 − ε)(z1 + z2) ≤ 2.

It is simple to check that none of the above inequalities is violated by x∗ =
(εeN , eN/2). Hence the constraint a′Tx ≤ b′ is just aTy ≤ b. In other words,
we have shown that if (10) admits a separating WI that separates x∗, then the
constraint aTy ≤ b admits a separating WI that separates y∗.

On the other hand, any WI from the constraint aTy ≤ b is also an a WI from
the entire linear system (10). We have thereby proven this claim. �

Note that y∗ = εeN in this proof coincides with the x∗ in Claim 1. From
Claim 2 and Claim 1, we have completed the proof for the second part of the
statement of this theorem, since SSP is NP-hard. �	

Even though the problem WI-SP is NP-hard in general, in the next theorem
we provide a special case where it can be solved in polynomial time, and such
separating WI can be obtained in polynomial time if one exists.

Theorem 6. Let x∗ be the input solution to WI-SP. If max{|S| : x∗
i ∈ (0, 1) ∀i ∈

S, x∗(S) < 1} is a constant, then the separating WI can be obtained in polynomial
time if one exists.

Proof. We assume without loss of generality that Ax ≤ d has only a single con-
straint aTx ≤ b, since we can always solve WI-SP with input (A, d, c, x∗) by
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solving the corresponding WI-SP problems for each single constraint individu-
ally. For any P ⊆ [n], let f(P ) :=

∑
i∈P aix

∗
i +

∑
j∈C(P )(aj − r(P ))x∗

j − a(P ).
Then f(P ) > 0 implies that

∑

j∈C(P )

x∗
j <

∑
i∈P∪C(P ) aix

∗
i − a(P )

r(P )
≤ b − a(P )

r(P )
= 1.

Among all the packs with the largest f(P ) value, let P ′ be one that is inclusion-
wise maximal. In other words, f(P ′) ≥ f(P ) for any pack P , and f(P ) = f(P ′)
implies that P ′ is not contained in P . Let C := C(P ′). Note that for any i′ ∈ P ′

we have

f(P ′) − f(P ′\{i′}) = ai′

⎛
⎝ ∑

j∈C(P ′\{i′})
x∗
j + x∗

i′ − 1

⎞
⎠ +

∑
j∈C\C(P ′\{i′})

(
aj − r(P ′)

)
x∗
j

∈
⎡
⎣ai′

⎛
⎝ ∑

j∈C(P ′\{i′})
x∗
j + x∗

i′ − 1

⎞
⎠ , ai′

(∑
j∈C

x∗
j + x∗

i′ − 1

)⎤
⎦ .

Here the last inequality f(P ′) − f(P ′\{i′}) ≤ ai′
(∑

j∈C x∗
j + x∗

i′ − 1
)

is simply
because aj ≤ ai′ + r(P ′) for any j ∈ C\C(P ′\{i′}). Since P ′\{i′} is also a pack
and f(P ′) ≥ f(P ′\{i′}), we have

∑

j∈C

x∗
j + x∗

i′ ≥ 1, ∀i′ ∈ P ′. (11)

On the other hand, for any i′ ∈ [n]\(C ∪ P ′):

f(P ′ ∪ {i′}) − f(P ′) = ai′

(∑
j∈C

x∗
j + x∗

i′ − 1

)
+

∑
j∈C(P ′∪{i′})\C

(
aj − r(P ′ ∪ {i′})

)
x∗
j

∈
⎡
⎣ai′

(∑
j∈C

x∗
j + x∗

i′ − 1

)
, ai′

⎛
⎝ ∑

j∈C(P ′∪{i′})
x∗
j + x∗

i′ − 1

⎞
⎠

⎤
⎦ .

Since i′ ∈ [n]\(C ∪ P ′), the set P ′ ∪ {i′} is still a pack, hence f(P ′ ∪ {i′}) −
f(P ′) ≤ 0. Furthermore, since P ′ is an inclusion-wise maximal pack with the
largest f(P ′) value, we have f(P ′ ∪ {i′}) − f(P ′) < 0. Therefore,

∑

j∈C

x∗
j + x∗

i′ < 1, ∀i′ ∈ [n]\(C ∪ P ′). (12)

From (11) and (12), we obtain

P ′ = {i ∈ [n]\C | x∗(C) + x∗
i ≥ 1}. (13)

We have thereby shown that there exists a WI from knapsack constraint
aTx ≤ b which separates x∗, if and only if there exists C ⊆ [n], such that the
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corresponding P ′, as defined in (13), is a pack satisfying f(P ′) > 0. Therefore,
WI-SP can be solved by checking whether the set P ′ = {i ∈ [n]\C | x∗(C)+x∗

i ≥
1} is a pack with f(P ′) > 0, for any possible C ⊆ [n] with x∗(C) < 1.

Let I0 := {i ∈ [n] | x∗
i = 0} and If := {i ∈ [n] | x∗

i ∈ (0, 1)}. From the
assumptions of this theorem, we know that α := max{|S| : x∗(S) < 1, S ⊆ If}
is a constant. For any T ⊆ I0 and S ⊆ If with x∗(S) < 1, it is easy to see that

{i ∈ [n]\S | x∗(S) + x∗
i ≥ 1} = {i ∈ [n]\(S ∪ T ) | x∗(S ∪ T ) + x∗

i ≥ 1}.

Hence, {i ∈ [n]\C | x∗(C) + x∗
i ≥ 1} is a pack with positive f value for some

C ⊆ [n] with x∗(C) < 1, if and only if {i ∈ [n]\(C\I0) | x∗(C\I0) + x∗
i ≥ 1}

is a pack with positive value, where C\I0 ⊆ If and x∗(C\I0) = x∗(C) < 1.
Therefore, WI-SP can be solved by the following procedure:

1. For any S ⊆ If with x∗(S) < 1, construct the corresponding P ′ = {i ∈ [n]\S |
x∗(S) + x∗

i ≥ 1}.
2. Check if P ′ is a pack with f(P ′) > 0.
3. If the answer to the previous check is yes for some S ⊆ If with x∗(S) <

1, then the corresponding P ′ works as a yes-certificate to WI-SP, and its
corresponding WI separates x∗; If the answer is no for all S ⊆ If with x∗(S) <
1, then x∗ cannot be separated by any WI from the knapsack constraint
aTx ≤ b.

Since α = max{|S| : x∗(S) < 1, S ⊆ If}, we have

|{S | x∗(S) < 1, S ⊆ If}| ≤
α∑

k=0

(
n

k

)

= O(nα).

So this above procedure can be implemented in polynomial time, and we com-
plete the proof. �	

In particular, Theorem 6 implies that, if x∗ has a constant number of frac-
tional components, then WI-SP can be solved in polynomial time. Following the
same logic as in Corollary 1, we directly obtain the following corollary.

Corollary 2. If the number of constraints in the LP relaxation (2) is a constant
and x∗ is an extreme point solution to (2), then the separating WI can be obtained
in polynomial time if one exists.
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Abstract. We consider the multilinear polytope which arises naturally
in binary polynomial optimization. Del Pia and Di Gregorio introduced
the class of odd β-cycle inequalities valid for this polytope, showed that
these generally have Chvátal rank 2 with respect to the standard relax-
ation and that, together with flower inequalities, they yield a perfect
formulation for cycle hypergraph instances. Moreover, they describe a
separation algorithm in case the instance is a cycle hypergraph. We intro-
duce a weaker version, called simple odd β-cycle inequalities, for which we
establish a strongly polynomial-time separation algorithm for arbitrary
instances. These inequalities still have Chvátal rank 2 in general and still
suffice to describe the multilinear polytope for cycle hypergraphs.

Keywords: Binary polynomial optimization · Cutting planes ·
Separation algorithm

1 Introduction

In binary polynomial optimization our task is to find a binary vector that maxi-
mizes a given multivariate polynomial function. In order to give a mathematical
formulation, it is useful to use a hypergraph G = (V,E), where the node set V
represents the variables in the polynomial function, and the edge set E represents
the monomials with nonzero coefficients. In a binary polynomial optimization
problem, we are then given a hypergraph G = (V,E), a profit vector p ∈ R

V ∪E ,
and our goal is to solve the optimization problem

max

{∑
v∈V

pvzv +
∑
e∈E

pe

∏
v∈e

zv : z ∈ {0, 1}V

}
. (1)
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Using Fortet’s linearization [13,15], we introduce binary auxiliary variables ze,
for e ∈ E, which are linked to the variables zv, for v ∈ V , via the linear inequal-
ities

zv − ze ≥ 0 ∀e ∈ E, ∀v ∈ e (2a)

(ze − 1) +
∑
v∈e

(1 − zv) ≥ 0 ∀e ∈ E. (2b)

It is simple to see that{
z ∈ {0, 1}V ∪E : ze =

∏
v∈e

zv ∀e ∈ E

}
=

{
z ∈ {0, 1}V ∪E : (2)

}
.

Hence, we can reformulate (1) as the integer linear optimization problem

max

{∑
v∈V

pvzv +
∑
e∈E

peze : (2), z ∈ {0, 1}V ∪E

}
. (3)

We define the multilinear polytope ML(G) [6], which is the convex hull of the
feasible points of (3), and its standard relaxation SR(G):

ML(G) := conv
{
z ∈ {0, 1}V ∪E : (2)

}
,

SR(G) :=
{
z ∈ [0, 1]V ∪E : (2)

}
.

Recently, several classes of inequalities valid for ML(G) have been intro-
duced, including 2-link inequalities [4], flower inequalities [7], running intersec-
tion inequalities [8], and odd β-cycle inequalities [5]. On a theoretical level,
these inequalities fully describe the multilinear polytope for several hypergraph
instances: flower inequalities for γ-acyclic hypergraphs, running intersection
inequalities for kite-free β-acyclic hypergraphs, and flower inequalities together
with odd β-cycle inequalities for cycle hypergraphs. Furthermore, these cutting
planes greatly reduce the integrality gap of (3) [5,8] and their addition leads to
a significant reduction of the runtime of the state-of-the-art solver BARON [9].
Unfortunately, we are not able to separate efficiently over most of these inequal-
ities. In fact, while the simplest 2-link inequalities can be trivially separated in
polynomial time, there is no known polynomial-time algorithm to separate the
other classes of cutting planes, and it is known that separating flower inequalities
is NP-hard [9].

Contribution. In this paper we introduce a novel class of cutting planes called
simple odd β-cycle inequalities. As the name suggests, these inequalities form a
subclass of the odd β-cycle inequalities introduced in [5]. The main result of this
paper is that simple odd β-cycle inequalities can be separated in strongly poly-
nomial time. While our inequalities form a subclass of the inequalities introduced
in [5], they still inherit the two most interesting properties of the odd β-cycle
inequalities. First, simple odd β-cycle inequalities can have Chvátal rank 2. To
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the best of our knowledge, our algorithm is the first known polynomial-time sep-
aration algorithm over an exponential class of inequalities with Chvátal rank 2.
Second, simple odd β-cycle inequalities, together with standard linearization
inequalities and flower inequalities with at most two neighbors, provide a per-
fect formulation of the multilinear polytope for cycle hypergraphs. Finally, we
believe that our separation algorithm could lead to significant speedups in solv-
ing several applications that can be formulated as (1) with a hypergraph that
contains β-cycles. These applications include the image restoration problem in
computer vision [4,5], and the low auto-correlation binary sequence problem in
theoretical physics [2,5,16,18,19].

Outline. We first introduce certain simple inequalities in Sect. 2 that are then
combined to form the simple odd β-cycle inequalities in Sect. 3. Section 4 is ded-
icated to the polynomial-time separation algorithm. Finally, Sect. 5 relates the
simple odd β-cycle inequalities to the general (non-simple) odd β-cycle inequal-
ities in [5].

2 Building Block Inequalities

We consider certain affine linear functions s : R
V ∪E → R defined as follows. For

each e ∈ E and each v ∈ e we define

since,v(z) := zv − ze (since,v)

For each e ∈ E and all U,W ⊆ e with U,W �= ∅ and U ∩ W = ∅ we define

sodde,U,W (z) := 2ze−1 +
∑
u∈U

(1−zu) +
∑

w∈W

(1−zw) +
∑

v∈e\(U∪W )

(2−2zv) (sodde,U,W )

For all e, f ∈ E with e ∩ f �= ∅ and all U ⊆ e with U �= ∅ and U ∩ f = ∅ we
define

sonee,U,f (z) := 2ze−1 +
∑
u∈U

(1−zu)+(1−zf ) +
∑

v∈e\(U∪f)

(2−2zv) (sonee,U,f )

For all e, f, g ∈ E with e ∩ f �= ∅, e ∩ g �= ∅ and e ∩ f ∩ g = ∅ we define

stwo
e,f,g(z) := 2ze − 1 + (1 − zf ) + (1 − zg) +

∑
v∈e\(f∪g)

(2 − 2zv) (stwo
e,f,g)

In this paper we often refer to since,v, sodde,U,W , sonee,U,f , stwo
e,f,g as building blocks.

Although in these definitions U and W can be arbitrary subsets of an edge e,
in the following U and W will always correspond to the intersection of e with
another edge. In the next lemma we will show that all building blocks are nonneg-
ative on a relaxation of ML(G) obtained by adding some flower inequalities [7] to
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SR(G), which we will define now. For ease of notation, in this paper, we denote
by [m] the set {1, . . . , m}, for any nonnegative integer m.

Let f ∈ E and let ei, i ∈ [m], be a collection of distinct edges in E, adjacent
to f , such that f ∩ ei ∩ ej = ∅ for all i, j ∈ [m] with i �= j. Then the flower
inequality [5,7] centered at f with neighbors ei, i ∈ [m], is defined by

(zf − 1) +
∑

i∈[m]

(1 − zei
) +

∑
v∈f\∪i∈[m]ei

(1 − zv) ≥ 0.

We denote by FR(G) the polytope obtained from SR(G) by adding all flower
inequalities with at most two neighbors. Clearly FR(G) is a relaxation of ML(G).
Furthermore, FR(G) is defined by a number of inequalities that is bounded by
a polynomial in |V | and |E|.
Lemma 1. Let G = (V,E) be a hypergraph and let s be one of since,v, sodde,U,W ,
sonee,U,f , stwo

e,f,g. Then s(z) ≥ 0 is valid for FR(G). Furthermore, if z ∈ ML(G) ∩
Z

V ∪E and s(z) = 0, then the corresponding implication below holds.

(i) If since,v(z) = 0 then zv = ze.
(ii) If sodde,U,W (z) = 0 then

∏
u∈U zu +

∏
w∈W zw = 1.

(iii) If sonee,U,f (z) = 0 then zf +
∏

u∈U zu = 1.
(iv) If stwo

e,f,g(z) = 0 then zf + zg = 1.

Proof. First, since,v(z) ≥ 0 is part of the standard relaxation and implication (i) is
obvious.

Second, sodde,U,W (z) ≥ 0 is the sum of the following inequalities from the
standard relaxation: ze ≥ 0, 1 − zv ≥ 0 for all v ∈ e\(U ∪ W ), and
(ze −1)+

∑
v∈e(1−zv) ≥ 0. If z ∈ ML(G) ∩ Z

V ∪E and sodde,U,W (z) = 0, then each
of these inequalities must be tight, thus ze = 0, zv = 1 for each v ∈ e\(U ∪ W ).
The last (tight) inequality yields −1 +

∑
v∈U∪W (1 − zv) = 0, i.e., precisely one

variable zv, for v ∈ U ∪ W , is 0, while all others are 1, which yields implica-
tion (ii).

Third, sonee,U,f (z) ≥ 0 is the sum of the following inequalities: ze ≥ 0, 1−zv ≥ 0
for all v ∈ e \ (U ∪ f) and (ze − 1) + (1 − zf ) +

∑
v∈e\f (1 − zv) ≥ 0. The latter

is the flower inequality centered at e with neighbor f . If z ∈ ML(G) ∩ Z
V ∪E

and sonee,U,f (z) = 0, then each of these inequalities must be tight, thus ze = 0,
zv = 1 for each v ∈ e \ (U ∪ f). The last (tight) inequality yields −1+ (1− zf )+∑

u∈U (1 − zu) = 0, i.e., either zf = 1 and zu = 0 for exactly one u ∈ U , or
zf = 0 and zu = 1 holds for all u ∈ U . Both cases yield implication (iii).

Fourth, we consider stwo
e,f,g(z) ≥ 0. Note that due to e ∩ f �= ∅, e ∩ g �= ∅ and

e ∩ f ∩ g = ∅, the three edges e, f, g must all be different. Thus, stwo
e,f,g(z) ≥ 0 is

the sum of ze ≥ 0, 1 − zv ≥ 0 for all v ∈ e\(f ∪ g) and of (ze − 1) + (1 − zf ) +
(1 − zg) +

∑
v∈e\(f∪g)(1 − zv) ≥ 0. The latter is the flower inequality centered

at e with neighbors f and g. If z ∈ ML(G) ∩ Z
V ∪E and stwo

e,f,g(z) = 0 holds, then
each of the involved inequalities must be tight, thus ze = 0 and zv = 1 for each
v ∈ e \ (f ∪ g). The last (tight) inequality implies −1 + (1 − zf ) + (1 − zg) = 0,
i.e., zf + zg = 1. Hence, implication (iv). holds. ��
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3 Simple Odd β-Cycle Inequalities

We will consider signed edges by associating either a “+” or a “−” with each
edge. We denote by {±} the set {+,−} and by −p a sign change for p ∈ {±}.
In order to introduce simple odd β-cycle inequalities, we first present some more
definitions.

Definition 1. A closed walk in G of length k ≥ 3 is a sequence C = v1-e1-v2-
e2-v3-· · · -vk−1-ek−1-vk-ek-v1, where we have ei ∈ E as well as vi ∈ ei−1 ∩ei and
ei−1 ∩ei ∩ei+1 = ∅ for each i ∈ [k], where we denote e0 := ek and ek+1 := e1 for
convenience. A signature of C is a map σ : [k] → {±}. A signed closed walk in G
is a pair (C, σ) for a closed walk C and a signature σ of C. Similarly, we denote
v0 := vk, vk+1 := v1, σ(0) := σ(k) and σ(k + 1) := σ(1). We say that (C, σ) is
odd if there is an odd number of indices i ∈ [k] with σ(i) = −; otherwise we say
that (C, σ) is even. Finally, for any signed closed walk (C, σ) in G, its length
function is the map �(C,σ) : FR(G) → R defined by

�(C,σ)(z) :=
∑

i∈I(+,+,+)

(
sincei,vi

(z) + sincei,vi+1
(z)

)
+

∑

i∈I(−,−,−)

soddei,ei∩ei−1,ei∩ei+1
(z)

+
∑

i∈I(+,+,−)

sincei,vi
(z) +

∑

i∈I(−,−,+)

soneei,ei∩ei−1,ei+1
(z) +

∑

i∈I(−,+,+)

sincei,vi+1
(z)

+
∑

i∈I(+,−,−)

soneei,ei∩ei+1,ei−1
(z) +

∑

i∈I(+,−,+)

stwo
ei,ei−1,ei+1

(z),

where I(a,b,c) is the set of edge indices i for which ei−1, ei and ei+1 have sign
pattern (a, b, c) ∈ {±}3, i.e., I(a,b,c) := {i ∈ [k] : σ(i − 1) = a, σ(i) = b,
σ(i + 1) = c}.

We remark that the definition of �(C,σ)(z) is independent of where the closed
walk starts and ends. Namely, if instead of C we consider C ′ = vi-ei -· · · -vk-
ek-v1-e1-· · · -vi−1-ei−1-vi, and we define σ′ accordingly, then we have �(C,σ)(z) =
�(C′,σ′)(z). Moreover, if σ(i − 1) = − or σ(i) = −, then �(C,σ)(z) is independent
of the choice of vi ∈ ei−1 ∩ ei.

By Lemma 1, the length function of a signed closed walk is nonnegative. We
will show that for odd signed closed walks, the length function evaluated in each
integer solution is at least 1. Hence, we define the simple odd β-cycle inequality
corresponding to the odd signed closed walk (C, σ) as

�(C,σ)(z) ≥ 1. (4)

We first establish that this inequality is indeed valid for ML(G).

Theorem 1. Simple odd β-cycle inequalities (4) are valid for ML(G).

Proof. Let z ∈ ML(G) ∩ {0, 1}V ∪E and assume, for the sake of contradiction,
that z violates inequality (4) for some odd signed closed walk (C, σ). Since the
coefficients of �(C,σ) are integer, we obtain �(C,σ) ≤ 0. From Lemma 1, we have
that s(z) = 0 holds for all involved functions s(z). Moreover, edge variables



186 A. Del Pia and M. Walter

zei
for all edges ei with σ(i) = +, node variables zvi

for all nodes vi with
σ(i − 1) = σ(i) = +, and the expressions

∏
v∈ei−1∩ei

zv for all nodes i with
σ(i−1) = σ(i) = − are either equal or complementary, where the latter happens
if and only if the corresponding edge ei satisfies σ(i) = −1. Since the signed
closed walk C is odd, this yields a contradiction ze = 1 − ze for some edge e of
C or zv = 1 − zv for some node v of C or

∏
v∈e∩f zv = 1 −

∏
v∈e∩f zv for a pair

e, f of subsequent edges of C. ��

Next, we provide an example of a simple odd β-cycle inequality.

e1

e2e3e4

e5
v1

v2

v3
v4

v5

u1

u2

u4

u3

Fig. 1. Figure of the closed walk considered in Example 1. The solid edges have sign
+ and the dashed edges have sign −.

Example 1. We consider the closed walk of length 5 given by the sequence
C = v1-e1-v2-e2-v3-· · · -v5-e5-v1 with signature (σ(1), σ(2), . . . , σ(5)) =
(−,+,+,−,−) depicted in Fig. 1. We have 1 ∈ I(−,−,+), 2 ∈ I(−,+,+), 3 ∈
I(+,+,−), 4 ∈ I(+,−,−), 5 ∈ I(−,−,−). The corresponding simple odd β-cycle
inequality is �(C,σ)(z) ≥ 1. Using Definition 1, we write �(C,σ)(z) in terms of
the building blocks as

�(C,σ)(z) = sonee1,e1∩e5,e2(z) + since2,v3(z) + since3,v3(z) + sonee4,e4∩e5,e3(z) + sodde5,e5∩e4,e5∩e1(z).

Using the definition of the building blocks, we obtain

�(C,σ)(z) = + 2ze1 − 1 +
∑

u∈e1∩e5

(1 − zu) + (1 − ze2 ) +
∑

v∈e1\(e1∩e5∪e2)

(2 − 2zv)

+ (zv3 − ze2 ) + (zv3 − ze3 )

+ 2ze4 − 1 +
∑

u∈e4∩e5

(1 − zu) + (1 − ze3 ) +
∑

v∈e4\(e4∩e5∪e3)

(2 − 2zv)

+ 2ze5 − 1 +
∑

u∈e5∩e4

(1 − zu) +
∑

w∈e5∩e1

(1 − zw) +
∑

v∈e5\(e5∩e4∪(e5∩e1))

(2 − 2zv).
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We write the sums explicitly and obtain

�(C,σ)(z) = +2ze1 − 1 + (1 − zv1) + (1 − zu1) + (1 − ze2)
+ (zv3 − ze2) + (zv3 − ze3)
+ 2ze4 − 1 + (1 − zv5) + (1 − ze3) + (2 − 2zu4)
+ 2ze5 − 1 + (1 − zv5) + (1 − zv1) + (1 − zu1)
= 2(ze1 − ze2 − ze3 + ze4 + ze5 − zv1 − zu1 + zv3 − zu4 − zv5) + 7.

�

Example 1 suggests that, when the function is written explicitly, the coeffi-
cients in the function �(C,σ)(z) exhibit a certain pattern. This different expression
of �(C,σ)(z) is formalized in the next lemma.

Lemma 2. Given a signed closed walk (C, σ) in G with k ≥ 3, we have

�(C,σ)(z) =
∑

i∈[k]
σ(i)=−

(2zei + 1) −
∑

i∈[k]
σ(i)=+

2zei +
∑

i∈[k]
σ(i−1)=σ(i)=+

2zvi +
∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

2(1 − zv)

+
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2(1 − zv) − 2|{i ∈ [k] : σ(i − 1) = σ(i) = −}|. (5)

Using Definition 2, we obtain the following result.

Proposition 1. Simple odd β-cycle inequalities are Chvátal-Gomory inequali-
ties for FR(G) and can be written in the form

∑

i∈[k]
σ(i)=−

zei
−

∑

i∈[k]
σ(i)=+

zei
+

∑

i∈[k]
σ(i−1)=σ(i)=+

zvi
−

∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

(zv − 1) −
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

(zv − 1)

≥ 1 − |{i ∈ [k] : σ(i) = −}|
2

− |{i ∈ [k] : σ(i − 1) = σ(i) = −}|.

(6)

Proof. Let (C, σ) be an odd signed closed walk in a hypergraph G. From Lemma
1 we obtain that �(C,σ)(z) ≥ 0 holds for each z ∈ FR(G). Lemma 2 reveals
that in the inequality �(C,σ)(z) ≥ 0, all variables’ coefficients are even integers,
while the constant term is an odd integer. Hence, the inequality divided by 2
has integral variable coefficients, and we can obtain the corresponding Chvátal-
Gomory inequality by rounding the constant term up. The resulting inequality
is the simple odd β-cycle inequality (4) scaled by 1/2 and has the form (6). This
shows that simple odd β-cycle inequalities are Chvátal-Gomory inequalities for
FR(G). ��

It follows from Proposition 1 that, under some conditions on (C, σ), simple
odd β-cycle inequalities are in fact {0, 1/2}-cuts (see [3]) with respect to FR(G).
Some classes of such cutting planes can be separated in polynomial time, in
particular if the involved inequalities only have two odd coefficients. In such a
case, these inequalities are patched together such that odd coefficients cancel
out and eventually all coefficients are even. We want to emphasize that this
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generic separation approach does not work in our case since our building block
inequalities may have more than 2 odd-degree coefficients. Nevertheless, the
separation algorithm presented in the next section is closely related to the idea
of cancellation of odd-degree coefficients.

4 Separation Algorithm

The main goal of this section is to show that the separation problem over simple
odd β-cycle inequalities can be solved in strongly polynomial time (Theorem
2). This will be achieved by means of an auxiliary undirected graph in which
several shortest-path computations must be carried out. The auxiliary graph is
inspired by the one for the separation problem of odd-cycle inequalities for the
maximum cut problem [1]. However, to deal with our different problem and the
more general hypergraphs we will extend it significantly.

Let G = (V,E) be a hypergraph and let ẑ ∈ FR(G). Define T := {(e, f, g) ∈
E : e ∩ f �= ∅, f ∩ g �= ∅, e ∩ f ∩ g = ∅} to be the set of potential subsequent
edge triples. We define the auxiliary graph

Ḡ = (V̄ , Ē) = (V̄+ ∪ V̄− ∪ V̄E, Ē−,−,− ∪ Ē+,−,+ ∪ Ē+,−,− ∪ Ē+,+,±)

and length function �̄ : Ē → R as follows.

V̄+ := V × {±}
V̄− := {e ∩ f : e, f ∈ E, e �= f, e ∩ f �= ∅} × {±}
V̄E := E × {±}

Ē−,−,− := {{(e ∩ f, p), (f ∩ g,−p)} : (e, f, g) ∈ T , p ∈ {±}}
�̄{(U,p),(W,−p)} := min

e,f,g
{soddf,U,W (ẑ) : U = e ∩ f, W = f ∩ g for some (e, f, g) ∈ T }

Ē+,−,+ := {{(e, p), (g,−p)} : e, g ∈ E, e ∩ f �= ∅ and f ∩ g �= ∅

for some f ∈ E with e ∩ f ∩ g = ∅, p ∈ {±}}
�̄{(e,p),(g,−p)} := min

f
{stwo

e,f,g(ẑ) : f ∈ E, e ∩ f �= ∅, f ∩ g �= ∅, e ∩ f ∩ g = ∅}

Ē+,−,− := {{(e, p), (f ∩ g,−p)} : (e, f, g) ∈ T , p ∈ {±}}
�̄{(e,p),(U,−p)} := min

f,g
{sonef,U,e(ẑ) : (e, f, g) ∈ T , U = f ∩ g}

Ē+,+,± := {{(v, p), (e, p)} : v ∈ e ∈ E, p ∈ {±}}
�̄{(v,p),(e,p)} := since,v(ẑ)

We point out that the graph Ḡ can have parallel edges, possibly with different
lengths. We immediately obtain the following corollary from Lemma 1.

Corollary 1. The edge lengths �̄ : Ē → R are nonnegative.

We say that two nodes ū, v̄ ∈ V̄ are twins if they only differ in the second
component, i.e., the sign. We call a walk W̄ in the graph Ḡ a twin walk if its
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end nodes are twin nodes. For a walk W̄ in Ḡ, we denote by �̄(W̄ ) the total
length, i.e., the sum of the edge lengths �̄e along the edges e in W̄ . In the next
two lemmas we study the relationship between odd signed closed walks in G and
twin walks in Ḡ.

Lemma 3. For each odd signed closed walk (C, σ) in G there exists a twin walk
W̄ in Ḡ of length �̄(W̄ ) ≤ 1 + s, where s is the slack of the simple odd β-cycle
inequality (4) induced by (C, σ) with respect to ẑ. In particular, if the inequality
is violated by ẑ, then we have �̄(W̄ ) < 1.

Proof. Let (C, σ) be an odd signed closed walk with C = v1-e1-v2-e2-v3-· · · -
vk−1-vk−1-vk-ek-v1. For i ∈ [k], let pi :=

∏i
j=1 σ(j) be the product of signs of

all edges up to ei. Moreover, define p0 := σ(0) = σ(k). For each i ∈ [k], we
determine a walk W̄i in Ḡ of length at most 2, and construct W̄ by going along
all these walks in their respective order. The walk W̄i depends on σ(i − 1), σ(i)
and σ(i + 1):

W̄i :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(vi, pi−1) → (ei, pi) → (vi+1, pi) if i ∈ I+,+,+

(vi, pi−1) → (ei, pi) if i ∈ I+,+,−
(ei, pi) → (vi+1, pi) if i ∈ I−,+,+

(ei, pi) (length 0) if i ∈ I−,+,−
(ei−1, pi−1) → (ei ∩ ei+1, pi) if i ∈ I+,−,−
(ei−1 ∩ ei, pi−1) → (ei+1, pi) if i ∈ I−,−,+

(ei−1 ∩ ei, pi−1) → (ei ∩ ei+1, pi) if i ∈ I−,−,−
(ei−1, pi−1) → (ei+1, pi) if i ∈ I+,−,+.

The walks W̄i help to understand the meaning of the different node types:
the walk W̄i starts at a node from V̄+ if σ(i − 1) = σ(i) = +, it starts at a node
from V̄− if σ(i−1) = σ(i) = −, and it starts at a node from V̄E if σ(i−1) �= σ(i)
holds. Similarly, the walk W̄i ends at a node from V̄+ if σ(i) = σ(i + 1) = +, it
ends at a node from V̄− if σ(i) = σ(i + 1) = −, and it ends at a node from V̄E if
σ(i) �= σ(i + 1) holds.

Note that all edges traversed by each W̄i are indeed in Ē. It is easily verified
that, for each i ∈ [k − 1], the walk W̄i ends at the same node at which the
walk W̄i+1 starts. Hence W̄ is indeed a walk in Ḡ. Since vk+1 = v1 holds, C is
closed and (C, σ) is odd, it can be checked that W̄ is a twin walk. Finally, by
construction, �̄(W̄ ) ≤ �(C,σ)(ẑ) holds, where the inequality comes from the fact
that the minima in the definition of �̄ need not be attained by the edges from
C. By definition of s we have �(C,σ)(ẑ) = 1 + s, thus �̄(W̄ ) ≤ 1 + s. ��

Lemma 4. For each twin walk W̄ in Ḡ there exists an odd signed closed walk
(C, σ) in G whose induced simple odd β-cycle inequality (4) has slack �̄(W̄ ) − 1
with respect to ẑ. In particular, if �̄(W̄ ) < 1 holds, then the inequality is violated
by ẑ.
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Proof. Let W̄ be a twin walk in Ḡ. We first construct the signed closed walk
(C, σ) by processing the edges of W̄ in their order. Throughout the construction
we maintain the index i of the next edge to be constructed, which initially is i :=
1. Since the construction depends on the type of the current edge ē = {ū, v̄} ∈ W̄
(where W̄ visits ū first), we distinguish the relevant cases:

Case 1: ē ∈ Ē+,+,± and ū ∈ V̄E. Hence, ū = (e, p) and v̄ = (v, p) for some
v ∈ e ∈ E and some p ∈ {±}. We define vi := v and continue.

Case 2: ē ∈ Ē+,+,± and ū ∈ V̄+. Hence, ū = (v, p) and v̄ = (e, p) for some
v ∈ e ∈ E and some p ∈ {±} as well as �ē = since,v. We define ei := e and
σ(i) := +. We then increase i by 1 and continue.

Case 3: ē ∈ Ē+,−,− and ū ∈ VE. Hence, ū = (e, p) and v̄ = (f ∩ g,−p) for some
(e, f, g) ∈ T as well as �ē = sonee,U,f (ẑ). We define vi (resp. vi+1) to be any node in
e ∩ f (resp. f ∩ g), ei := f and σ(i) := −. We then increase i by 1 and continue.

Case 4: ē ∈ Ē−,−,−. Hence, ū = (e ∩ f, p) and v̄ = (f ∩ g,−p) for some
(e, f, g) ∈ T as well as �ē = sodde,U,W (ẑ). We define ei := f , σ(i) := − and vi+1 to
be any node in f ∩ g. We then increase i by 1 and continue.

Case 5: ē ∈ Ē+,−,− and ū ∈ V−. Hence, ū = (e ∩ f, p,−) and v̄ = (g,−p) for
some (e, f, g) ∈ T with �ē = sonee,U,f (ẑ). We define ei := f , σ(i) := − and vi+1 to
be any node in f ∩ g. We then increase i by 1 and continue.

Case 6: ē ∈ Ē+,−,+. Hence, ū = (e, p) and v̄ = (g,−p) for some (e, f, g) ∈ T
as well as �ē = stwo

e,f,g(ẑ). We define vi (resp. vi+1) to be any node in e ∩ f (resp.
f ∩ g), ei := f , σ(i) := −, ei+1 := g and σ(i + 1) := +. We then increase i by 2
and continue.

After processing all edges of W̄ , the last defined edge is ei−1 and thus we
define k := i − 1 and C := v1-e1-v2-e2-v3-· · · -vk−1-vk−1-vk-ek-v1. By checking
pairs of edges of W̄ that arise consecutively, one verifies that for each i ∈ [k], we
also have vi ∈ ei−1 ∩ ei.

To see that (C, σ) is odd, we use the fact that the endnodes of W̄ are twin
nodes. When traversing an edge ē from ū to v̄, the second entries of ū and v̄
differ if and only if we set a σ-entry to −. Note that in Case 6 we set two such
entries, but only one to −. We conclude that σ(i) = − holds for an odd number
of indices i ∈ [k].

By construction we have �̄(W̄ ) = �(C,σ)(ẑ). The slack of the simple odd β-
cycle inequality induced by (C, σ) with respect to ẑ is then �(C,σ)(ẑ) − 1 =
�̄(W̄ ) − 1. ��

Theorem 2. Let G = (V,E) be a hypergraph and let ẑ ∈ FR(G). The separation
problem for simple odd β-cycle inequalities (4) can be solved in time O(|E|5 +
|V |2 · |E|).

Proof. Let n := |V | and m := |E| and assume m ≥ log(n) since otherwise we
can merge nodes that are incident to exactly the same edges. First note that,
regarding the size of the auxiliary graph Ḡ, we have |V̄ | = O(m2 + n) and



Simple Odd β-Cycle Inequalities 191

|Ē| = O(mn+m3). For the construction of Ḡ and the computation of �̄ we need
to inspect all triples (e, f, g) ∈ T of edges. This can be done in time O(m3n)
since for each of the m3 edge triples (e, f, g) we have to inspect at most n nodes
to check the requirements on the intersections of e, f and g.

According to Lemmas 3 and 4 we only need to check for the existence of a twin
walk W̄ in Ḡ with �(W̄ ) < 1. This can be accomplished with |V̄ |/2 = O(m2 +n)
runs of Dijkstra’s algorithm [12] on Ḡ, each of which takes

O(|Ē| + |V̄ | · log(|V̄ |)) = O((mn + m3) + (m2 + n) · log(m2 + n))

time when implemented with Fibonacci heaps [14]. If m2 ≥ n, then the total
running time simplifies to O(m5), and otherwise we obtain O(n2m). ��

The main reason for this large running time bound is the fact that |V̄−| can
be quadratic in |E|.

Clearly, our separation algorithm requires that the edge lengths �̄ of the
auxiliary graph Ḡ are nonnegative. This in turn requires ẑ ∈ FR(G), i.e., that
the flower inequalities with at most two neighbors are satisfied. As we already
mentioned, the number of these flower inequalities is bounded by a polynomial
in |V | and |E|. We like to point out that one can combine the separation of these
flower inequalities with the construction of Ḡ, i.e., one can determine violated
inequalities while constructing the auxiliary graph.

5 Relation to Non-simple Odd β-Cycle Inequalities

In this section we relate our simple odd β-cycle inequalities to the odd β-cycle
inequalities in [5].

A cycle hypergraph is a hypergraph G = (V,E), with E = {e1, . . . , em},
where m ≥ 3, and every edge ei has nonempty intersection only with ei−1 and
ei+1 for every i ∈ {1, . . . , m}, where, for convenience, we define em+1 := e1 and
e0 := em. If m = 3, it is also required that e1 ∩ e2 ∩ e3 = ∅. Given a closed walk
C = v1-e1-v2-e2-· · · -vk-ek-v1 in a hypergraph G = (V,E), the support hypergraph
of C is the hypergraph G(C) = (V (C), E(C)), where E(C) := {e1, e2, . . . , ek}
and V (C) := e1 ∪ e2 ∪ · · · ∪ ek.

Lemma 5. Let (C, σ) be a signed closed walk in a hypergraph G and assume
that the support hypergraph of C is a cycle hypergraph. Let E− := {ei : i ∈
[k], σ(i) = −}, E+ := {ei : i ∈ [k], σ(i) = +}, S1 := (

⋃
e∈E− e) \

⋃
e∈E+ e, and

S2 := {v1, . . . , vk} \
⋃

e∈E− e. Then

�(C,σ)(z) = −
∑
v∈S1

2zv +
∑

e∈E−
2ze +

∑
v∈S2

2zv −
∑

e∈E+

2ze + 2|S1|

− 2|{i ∈ [k] : ei−1, ei ∈ E−}| + |E−|.

In particular, the simple odd β-cycle inequality corresponding to (C, σ) coincides
with the odd β-cycle inequality corresponding to (C, σ). Furthermore, in a cycle
hypergraph, every odd β-cycle inequality is a simple odd β-cycle inequality.
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Proof. It suffices to observe that
∑

i∈[k]
σ(i−1)=σ(i)=+

2zvi =
∑

v∈S2

2zv,
∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

2zv +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2zv =
∑

v∈S1

2zv,

∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

2 +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2 = 2|S1| and
∑

i∈[k]
σ(i)=−

1 = |E−|.

The statement for cycle hypergraphs G follows by inspecting the definition of
the odd β-cycle inequalities. ��

As a consequence, we can use the two following known results in order to
gain insights about simple odd β-cycle inequalities.

Proposition 2 (Example 2 in [5]). There exists a cycle hypergraph for which
the Chvátal rank of odd β-cycle inequalities can be equal to 2.

Proposition 3 (Implied by Theorem 1 in [5]). Flower inequalities are
Chvátal-Gomory cuts for SR(G).

Theorem 3. Simple odd β-cycle inequalities can have Chvátal rank 2 with
respect to SR(G).

Proof. Combining Proposition 3 with Proposition 1 shows that simple odd β-
cycle inequalities have Chvátal rank at most 2. Lemma 5 and Proposition 2 show
that the Chvátal rank of simple odd β-cycle inequalities for cycle hypergraphs
can be equal to 2. ��

For the second insight, we consider a strengthened form of Theorem 5 in [5].

Proposition 4 (Theorem 5 in [5], strengthened). Let G = (V,E) be a
cycle hypergraph. Then ML(G) is described by all odd β-cycle inequalities and
all inequalities from FR(G).

The strengthening lies in the fact that in the original statement of Theorem 5
in [5] all flower inequalities are used rather than only those with at most two
neighbors. This strengthening of the original statement can be seen by inspecting
its proof in [5]. By applying Lemma 5 to Proposition 4 we immediately obtain
the following result.

Theorem 4. Let G = (V,E) be a cycle hypergraph. Then

ML(G) = {x ∈ FR(G) : x satisfies all simple oddβ-cycle inequalities}.

Future Research. We would like to conclude this paper with a couple of open
questions that could be investigated. An interesting research direction is a
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computational investigation of simple odd β-cycle inequalities, especially in rela-
tion to the applications discussed in Sect. 1, i.e., the image restoration problem
in computer vision and the low auto-correlation binary sequence problem in
theoretical physics.

The next research direction has a more theoretical flavor. The LP relaxations
defined by odd-cycle inequalities [1] for the cut polytope and the affinely isomor-
phic correlation polytope (see [11]) have the following property: when maximiz-
ing a specific objective vector, then one can remove a subset of the odd-cycle
inequalities upfront without changing the optimum. More precisely, the removal
is based only on the sign pattern of the objective vector (see Theorem 2 in [17]).
Since the simple odd β-cycle inequalities can be seen as an extension of the odd
cycle inequalities for the cut polytope, the research question is whether a similar
property can be proven for simple odd β-cycle inequalities.

The final research direction is that of redundancy of simple odd β-cycle
inequalities for which we provide some insight in the full version of the paper [10].
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Abstract. We consider the rooted prize-collecting walks (PCW) prob-
lem, wherein we seek a collection C of rooted walks having minimum
prize-collecting cost, which is the (total cost of walks in C) + (total
node-reward of the nodes not visited by any walk in C). This problem
arises naturally as the Lagrangian relaxation of both orienteering (find a
length-bounded walk of maximum reward), and the �-stroll problem (find
a minimum-length walk covering at least � nodes). Our main contribu-
tion is to devise a simple, combinatorial algorithm for the PCW problem
that returns a rooted tree whose prize-collecting cost is at most the opti-
mum value of the prize-collecting walks problem. This result applies also
to directed graphs, and holds for arbitrary nonnegative edge costs.

We present two applications of our result. We utilize our algorithm
to develop combinatorial approximation algorithms for two fundamental
vehicle-routing problems (VRPs): (1) orienteering; and (2) k-minimum-
latency problem (k-MLP), wherein we seek to cover all nodes using
k paths starting at a prescribed root node, so as to minimize the
sum of the node visiting times. Our combinatorial algorithm allows
us to sidestep the part where we solve a preflow-based LP in the LP-
rounding algorithms of [13] for orienteering, and in the state-of-the-
art 7.183-approximation algorithm for k-MLP in [17]. Consequently,
we obtain combinatorial implementations of these algorithms (with the
same approximation factors). Compared to algorithms that achieve the
current-best approximation factors for orienteering and k-MLP, our algo-
rithms have substantially improved running time, and achieve approx-
imation guarantees that match (k-MLP), or are slightly worse (orien-
teering) than the current-best approximation factors for these problems.
We report various computational results for our resulting orienteering
algorithms showing that they perform quite well in practice.
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1 Introduction

Vehicle-routing problems (VRPs) are a rich class of optimization problems that
find various applications, and have been extensively studied in the Operations
Research and Computer Science literature (see, e.g., [19].) Broadly speaking,
we can distinguish between two types of vehicle-routing problems: one where
resource constraints require us to select which set of nodes or clients to visit and
plan a suitable route(s) for visiting these clients; and the other, where we have a
fixed set of clients, and seek the most effective route(s) for visiting these clients.

We consider two prominent and well-motivated problems in these two cat-
egories: (1) orienteering [2,4,7,13], belonging to the first category, wherein
nodes have associated rewards for visiting them, and we seek a length-
bounded path that collects maximum reward; and (2) minimum-latency prob-
lems (MLPs) [3,6,17], belonging to the second category, wherein, we seek one
or more rooted paths to visit a given set of clients so as to minimize the sum
of the client visiting times (i.e., the total latency). Besides its appeal as a natu-
ral and clean way of capturing resource constraints in a VRP, the fundamental
nature of orienteering stems from the fact that it often naturally arises as a
subroutine when solving other VRPs, both in approximation algorithms—e.g.,
for MLPs (see [5,10,17]), VRPs with time windows [2], distance bounds [15], and
regret bounds [12]—as also in computational methods, where orienteering corre-
sponds to the “pricing” problem encountered in solving set covering/partitioning
LPs (a.k.a configuration LPs) for VRPs via a column-generation or branch-cut-
and-price method (see, e.g., [8]). In particular, we can often formulate the VRP
as one of covering clients using suitable paths; solving this covering problem,
approximately via a set-cover approach, or its corresponding configuration-LP
relaxation, then entails solving an orienteering problem.

Some recent work on orienteering [13] and MLPs [17], has led to promising LP-
based approaches for tackling these problems, yielding, for multi-vehicle MLPs,
the current-best approximation factors. This approach is based on moving to a
bidirected version of the underlying metric and considering a preflow-based LP-
relaxation for rooted walk(s) (with in-degree ≥ out-degree constraints), and using
a powerful arborescence-packing result of Bang-Jensen et al. [1] to decompose
an (optimal) LP solution into a convex combination of arborescences that is
“at least as good” as the LP solution. Viewing these arborescences as rooted
trees in the undirected graph, one can convert the tree into a rooted path/cycle
by doubling and shortcutting, and the above works show how to leverage the
resulting convex combination of paths/cycles to extract a good solution.

Our Contributions and Related Work. We study the prize-collecting walks
(PCW) problem, which is the problem of finding a collection C of r-rooted walks
in a digraph G = (V,E) with nonnegative edge costs and node rewards, having
minimum prize-collecting cost, which is the total cost of the walks in C + the
total node-reward of the nodes not visited by any walk in C. This problem arises
as the Lagrangian relaxation of orienteering, and a subroutine encountered in
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MLP algorithms, namely that of finding a rooted path of minimum cost covering
a certain number of nodes.

Our main contribution is to devise a simple, combinatorial algorithm for the
PCW problem that returns a directed tree (more precisely, an out-arborescence)
rooted at r whose prize-collecting cost is at most the optimal value of the PCW
problem. Let G = (V,A) be a directed graph with arc-set A, arc lengths ca ≥ 0 for
all a ∈ A, and root r. Let each node v ∈ V have a reward or penalty πv ≥ 0. For
a multiset of arcs T , define c(T ) =

∑
a∈A ca · (number of occurrences of a in T ).

Define π(S) =
∑

v∈S πv for any set of nodes S. An out-arborescence rooted at
r is a subgraph T whose undirected version is a tree containing r, and where
every node spanned by T except r has exactly one incoming arc in T ; we will
often abbreviate this to an out-arborescence. For any subgraph T of G where
all nodes in V (T ) are reachable from r in T (e.g., out-arborescence rooted at r),
define the prize-collecting cost of T to be PCC(T ) := c(T ) + π(V \V (T )).

We give a combinatorial polytime algorithm IterPCA (see Sect. 3) that
finds an out-arborescence T whose prize-collecting cost is at most that of any
collection of r-rooted walks, i.e.,

c(T ) + π(V \ V (T )) ≤ O∗ := min
collections C of
r-rooted walks

[∑
P∈C

c(P ) + π
(
V \

⋃
P∈C

V (P )
)]

.

We actually obtain the stronger guarantee that PCC(T ) is at most the optimal
value OPT of a preflow-based LP-relaxation (P) for the PCW problem.

We briefly discuss the ideas underlying our combinatorial algorithm Iter-
PCA. Our algorithm and analysis is quite simple, and resembles Edmonds’ algo-
rithm for finding a minimum-cost arborescence. It is based on three main ideas
for iteratively simplifying the instance. We observe that if we modify the instance
by picking any non-root node v, and subtracting a common value θ from the
cost of all incoming arcs of v and from πv while ensuring that the new costs and
rewards are nonnegative, then it suffices to prove the desired guarantee for the
modified instance. Next, by choosing a suitable θv for all non-root nodes, and
modifying costs and rewards as above, we ensure that in the modified instance,
either: (a) there is a node v �= r with zero reward; (b) there is a (directed) cycle
Z consisting of zero cost arcs; or (c) there is an out-arborescence consisting of
zero cost arcs. If (c) applies, then we are done. If (a) or (b) apply, we further
simplify the instance as follows: in case (a), we shortcut past v by merging every
pair of incoming and outgoing arcs of v and deleting v; in case (b), we contract
the cycle Z and set the reward of the contracted node to be the sum of the
(modified) rewards of nodes in Z. We then recurse on the simplified instance.

We believe that the above result, and the techniques underlying it, are of
independent interest, and will find various applications. We present two applica-
tions of our result (Sects. 4, 5), where use our combinatorial algorithm for PCW
to give combinatorial implementations of the LP-rounding algorithm for orien-
teering in [13], and for k-MLP in [17]. We emphasize that our contribution and
focus here is to demonstrate how our PCW-algorithm can be utilized to give a
more-efficient implementation of existing algorithms; in particular, our resulting
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algorithms inherit the performance guarantees of the LP-rounding algorithms
that they implement. We now discuss these applications, and in doing so, place
our result in the context of some extant work. We say that x ∈ R

A
+ is an r-preflow

(or simply preflow), if we have x
(
δ in (v)

)
≥ x

(
δ out (v)

)
for all v �= r.

• Friggstad and Swamy [13] proposed a novel LP-based approach for orienteer-
ing, wherein the LP-relaxation searches for a (r-) preflow of large reward.
The first step (and key insight) in their rounding algorithm is to utilize the
arborescence-packing result of [1] to cast the LP-solution x as a convex com-
bination of arborescences whose expected reward is at least the LP-optimum
and whose expected cost is at most the length bound, say B. They leverage
this to show that one can then extract a rooted path having reward at least
(LP-optimum)/3 via a simple combinatorial procedure.
We show (see Sect. 4) that one can utilize our algorithm IterPCA, in con-
junction with binary search, to obtain the desired convex combination com-
binatorially, that is, without having to solve their LP-relaxation, and thereby
obtain a combinatorial 3-approximation. This follows because the PCW prob-
lem is obtained by Lagrangifying the “length at most B” constraint. A stan-
dard fine tuning of the Lagrangian variable (which affects the node rewards)
via binary search then yields the desired distribution (over at most two rooted
trees). The same ideas also apply and yield combinatorial approximation algo-
rithms for other variants of orienteering, such as P2P-orienteering (where we
seek an r-t path) and cycle orienteering (where we seek a cycle containing r).
As noted by [13], while their approximation factor of 3 does not as yet beat
the (2 + ε)-approximation factor for orienteering [7], their LP-rounding app-
roach is significantly simpler than prior dynamic-programming (DP) based
algorithms for orienteering [2,4,7]; with our combinatorial implementation,
we also obtain significantly faster algorithms.1 Moreover, an added subtle
benefit of the algorithms in [13] is that they also yield an upper bound on the
optimum, which can be used to evaluate the approximation factor of the solu-
tion computed on a per-instance basis; our combinatorial algorithms inherit
this benefit.
Our combinatorial algorithm and the associated upper bound may also find
use in the context of computational methods for solving other VRPs, since (as
mentioned earlier) orienteering corresponds to the pricing problem that needs
to be solved in these contexts. Indeed [8] utilizes our combinatorial algorithm
to obtain near-optimal solutions to distance-constrained vehicle routing.
In Sect. 6, we perform a computational study of our combinatorial orienteer-
ing algorithms, to better understand the performance of our algorithms in
practice. Our computational experiments show that our algorithms perform

1 A straightforward implementation of our orienteering algorithm takes O(n4 ·K) time,
where K is the time for binary search. In contrast, the algorithm in [7] has running

time at least O
(
n1/ε2 · K

)
for obtaining a 2

1−ε
-approximation; thus, O(n9 · K) time

for returning a 3-approximation. The DP-algorithm of Blum et al. [4] has running
time at least O(n5 · K), and its approximation guarantee is no better than 4.
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fairly well in practice—in terms of both the solution and the upper bound
computed—and much better than that indicated by the theoretical analysis.

• Post and Swamy [17] consider multi-vehicle MLPs. For k-MLP, wherein we
seek k rooted paths of minimum total latency that together visit all nodes,
they devise two 7.183-approximation algorithms. One of their algorithms
(Algorithm 3 in §6.2 [17]) utilizes a subroutine for computing a distribution
of rooted trees covering at least k nodes in expectation, whose expected cost
is at most that of any collection of rooted walks that together cover at least
k nodes. Lagrangifying the coverage constraint again yields a PCW prob-
lem. Post and Swamy [17] devised an LP-rounding algorithm for this PCW
problem, by considering its LP-relaxation (P), using arborescence packing
to obtain a rooted tree with PCC(T ) at most the LP-optimum OPT , and
then fine-tuning the node rewards via binary search to obtain the desired
distribution. In particular, they obtain the same guarantee that we do, but
via solving the LP (P). While not a combinatorial algorithm, they dub their
resulting k-MLP algorithm a “more combinatorial” algorithm (as opposed to
their other 7.183-approximation algorithm, which needs to explicitly solve a
configuration LP).
We can instead utilize our combinatorial algorithm to produce the rooted tree
T (see Sect. 5); incorporating this within the “more combinatorial” algorithm
of [17] yields a fully and truly combinatorial 7.183-approximation algorithm
for k-MLP, which is the state-of-the-art for this problem.
We remark that our result bounding the prize-collecting cost of the tree T
by the prize-collecting cost of any collection of rooted walks is a substantial
generalization of an analogous result in [6], who compare against the prize-
collecting cost of a single walk (and specifically in undirected graphs). As
noted in [17], this stronger guarantee is essential for obtaining guarantees for
k-MLP.

2 LP-Relaxation for the Prize-Collecting-Walks Problem

Recall that we are given a directed graph G = (V,A), arc costs ca ≥ 0 for all
a ∈ A, root node r ∈ V , and a reward or penalty πv ≥ 0 for each node v. (Note
that πr does not affect the prize-collecting cost of any rooted object; so it will
sometimes be convenient notationally to assume that πr = 0.)

Our LP-relaxation (P) for prize-collecting walks has a variable xa for each
arc a, which represents the multiplicity of arc a in the walk-collection, and a
variable pv for each node v �= r, which indicates whether node v is not covered.

min
∑

a∈A

caxa +
∑

v∈V

πvpv s.t. x
(
δin(S)

)
+ pv ≥ 1 ∀S ⊆ V \{r}, v ∈ S

(P)

x
(
δin(v)

)
≥ x

(
δout(v)

)
∀v ∈ V \{r}, x, p ≥ 0.
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The first constraint encodes that for every set S ⊆ V ′ and every v ∈ S,
either S has an incoming arc or we pay the penalty πv for not visiting v; the
second encodes that every node v �= r has in-degree at least out-degree, so that
the solution corresponds to a collection of walks rather than a tree. (Variable pr

does not appear in any constraint, so we may assume that pr is always 0).

3 A Combinatorial Algorithm

We now present a combinatorial algorithm for prize-collecting walks based
on iteratively simplifying the instance. Recall that O∗ is the minimum value
of

[∑
P∈C c(P ) + π(V \

⋃
P∈C V (P ))

]
over all collections C of r-rooted walks.

(Recall that a walk may have repeated nodes and arcs, and c(T ) =
∑

a∈A ca ·
(number of occurrences of a in T ) for a multiset of arcs T ). Throughout this
section, the root will remain r, so we drop r from the notation used to refer to
an instance. Since we will modify the instance (G, c, π) during the course of our
algorithm, we use O∗(G, c, π) to denote the above quantity. We use (P (G,c,π))
to refer to the LP-relaxation (P) for the instance (G, c, π), and OPT (G, c, π)
to denote its optimal value. We use PCC(T ;G, c, π) := c(T ) + π(V \V (T )) to
denote the prize-collecting value of T under arc costs c and penalties π, where
T is a subgraph of G such that all nodes in V (T ) are reachable from r in T .
Whenever we say optimal solution below, we mean the optimal walk-collection
(i.e., an optimal integral solution to (P)).

Our algorithm IterPCA resembles Edmond’s algorithm for finding a
minimum-cost arborescence, and is based on three main ideas for simplifying
the instance. However, unlike in the case of min-cost spanning arborescences,
our simplifications do not leave the problem unchanged; we really exploit the
asymmetry that we seek an out-arborescence but are comparing its value against
the best collection of r-rooted walks in (G, c, π).

Let V ′ = V \ {r}. We observe that we may modify the instance by pick-
ing a node v ∈ V ′, and subtracting a common value θ from the cost of all
incoming arcs of v and from πv, while ensuring that the new values of these
quantities are nonnegative (see step (7)). That is, it suffices to prove the desired
guarantee for the modified instance (G, c̃, π̃): if T is an out-arborescence with
PCC(T ;G, c̃, π̃) ≤ O∗(G, c̃, π̃), then PCC(T ;G, c, π) ≤ O∗(G, c, π) (Lemma 2).
By choosing a suitable θv for all v ∈ V ′ and modifying costs and penalties as
above, we may assume that either: (a) there is a node v ∈ V ′ with π̃v = 0;
(b) there is a (directed) cycle Z consisting of zero c̃-cost arcs; or (c) there is an
out-arborescence consisting of zero c̃-cost arcs. If (c) applies, then we are done.
If (a) or (b) apply, we further simplify the instance: in case (a), we shortcut past
v by merging every pair of incoming and outgoing arcs of v to create a new arc,
and delete v (see steps (9)–(15), Lemma 3); in case (b), we contract Z and set
the penalty of the contracted node to be

∑
v∈V (Z) π̃v (see steps –, Lemma 4).

We then recurse on the simplified instance.
An additional feature of our algorithm is that, by aggregating the θv val-

ues computed by our algorithm across all recursive calls and translating them
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suitably to the original graph G, we obtain a certificate y = (yS)S⊆V ′ such
that the quantity Y =

∑
S⊆V ′ yS is sandwiched between the prize-collecting

value PCC(T ;G, c, π) of our solution, and O∗(G, c, π) (which is NP-hard to com-
pute). (We can in fact strengthen the upper bound on Y to Y ≤ OPT (G, c, π).)
This is especially useful when we utilize IterPCA to implement approxima-
tion algorithms for orienteering (see Sect. 4), because there we can utilize Y to
obtain a suitable upper bound on the optimum value of the orienteering problem
(and in fact, the optimal value of the LP-relaxation for orienteering proposed
by [13]). This allows us to obtain an instance-wise approximation guarantee i.e.,
an instance-specific bound on the approximation factor of the solution computed
for each instance. This instance-wise approximation guarantee is often signifi-
cantly better than the worst-case approximation guarantee, as is demonstrated
by our computational results (Sect. 6). Our computational results also show that
our upper bound is a fairly good (over-)estimate of the orienteering optimum.
We remark that having both (good) lower and upper bounds on the optimum
can be quite useful also for exact computational methods for orienteering.

Theorem 1. On any input (G, c, π), algorithm IterPCA runs in polynomial
time and returns an out-arborescence T and vector y such that PCC(T ;G, c, π) ≤∑

S⊆V \{r} yS ≤ O∗(G, c, π). Furthermore,
∑

S⊆V ′ yS ≤ OPT (G, c, π).

The proof of the stronger bound on
∑

S⊆V ′ yS above is a bit technical, so we
focus on proving the remainder of Theorem 1 here. Given the recursive nature
of IterPCA, it is natural to use induction (on |V (G)|). First, Lemma 2 argues
that it suffices to show the inequalities stated in Theorem 1 hold for the instance
(G, c̃, π̃) specified in step (7)(with “simpler” edge costs and penalties), the out-
arborescence T , and the vector ỹ returned in step (28) or (16). Next, Lemmas 3
and 4 supply essentially the induction step. They show that if the output (T , y)
of IterPCA when it is called recursively on the smaller instance (G, c, π) in
step (12) or (23) satisfies the inequalities stated in Theorem 1, then (T, ỹ) satisfies
PCC(T ;G, c̃, π) ≤

∑
S⊆V ′ ỹS ≤ O∗(G, c̃, π̃). The key observation underlying both

proofs is that O∗(G, c, π) ≤ O∗(G, c̃, π̃). Combining this with Lemma 2 finishes
the proof. Proofs omitted below appear in the full version [9].

Lemma 2. Consider the PCW instance (G, c̃, π̃) obtained after step (7). If the
out-arborescence T computed in step (15), (26), (27), or (29), and the vector ỹ
satisfy T and the final vector y returned satisfy PCC(T ;G, c, π) ≤

∑
S⊆V ′ yS ≤

O∗(G, c, π).

Proof. We show that PCC(T ;G, c, π) = PCC(T ;G, c̃, π̃) +
∑

v∈V ′ θv, and O∗(G,
c̃, π̃) ≤ O∗(G, c, π) −

∑
v∈V ′ θv. These inequalities, along with

∑
S⊆V ′ yS =∑

S⊆V ′ ỹS +
∑

v∈V ′ θv, yield the lemma.
The first equality follows easily, since every node v ∈ V ′ covered by T has

exactly one incoming edge whose cost increases by θv when going from c̃ to c,
and the penalty of every node v ∈ V ′ not covered by T increases by θv when
going from π̃ to π. (Here we crucially exploit that T is an out-arborescence; if
|δ in

T (v)| > 1 then PCC(T ) increases by more than θv when going from c̃ to c.)
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Algorithm. IterPCA(G, c, π, r): iterative simplification
Input: PCW instance

(
G = (V, A), c, π, r

)
Output: r-rooted out-arborescence T in G; y = (yS)S⊆V \{r}

1 Let V ′ = V \{r}, initialize y ← εc0, ỹ ← εc0
2 if |V | = 1 then return (T = ∅, null vector)
3 if |V | = 2, say V = {r, v} then
4 Set y{v} ← min{cr,v, πv}
5 if πv > cr,v then return

(
T = {(r, v)}, y

)
else return (T = ∅, y)

6 Set θv ← min
{
min(u,v)∈A cu,v, πv

}
for all v ∈ V ′

7 For all v ∈ V ′, set c̃u,v ← cu,v − θv for all (u, v) ∈ A, and π̃v ← πv − θv; set
π̃r ← 0

8 if there exists v ∈ V ′ with π̃v = 0 then

9 G ← (
V \{v}, A\(δ in (v) ∪ δ out (v)) ∪ {(u, w) : u ∈ V \{v}, w ∈ V \{r, v}})

10 For all u ∈ V \{v}, w ∈ V \{r, v}, set cu,w ← min{c̃u,w, c̃u,v + c̃v,w}
11 Set π ← {π̃u}u∈V (G)

12 (T , y) ← IterPCA(G, c, π, r)

13 A ← {(u, w) ∈ T : cu,w < c̃u,w} // note that cu,w = c̃uv + c̃v,w ∀(u, w) ∈ A

14 T ′ ← T\A ∪ ⋃
(u,w)∈A{(u, v), (v, w)}

15 T ← minimum c̃-cost spanning arborescence in (V (T ′), A(T ′))
16 Set ỹS ← yS for all S ⊆ V \{r, v}
17 else if there exists a cycle Z with r /∈ V (Z) and c̃u,v = 0 for all (u, v) ∈ A(Z)

then

18 Set G ← digraph obtained from G by contracting Z into a single supernode
uZ , removing self-loops, and replacing parallel (incoming or outgoing) arcs
incident to uz by a single arc

19 Set cu,v ← c̃u,v for all u ∈ V \V (Z), v ∈ V \V (Z)

20 For all u ∈ V \V (Z) such that δ out (u) ∩ δ in (Z) 
= ∅, set
cu,uz ← min(u,v)∈δ in (Z) c̃u,v

21 For all u ∈ V ′\V (Z) such that δ in (u) ∩ δ out (Z) 
= ∅, set
cuz,u ← min(v,u)∈δ out (Z) c̃v,u

22 Set πuz ← ∑
v∈V (Z) π̃v, πu ← π̃u for all u ∈ V \V (Z)

23 (T , y) ← IterPCA(G, c, π, r)

24 if uz ∈ V (T ) then

25 Obtain T ′ from T as follows: replace every arc a ∈ T entering or leaving
uz by the corresponding arc in G whose c̃-cost defines ca; also add (the
nodes and edges of) Z

26 T ← minimum c̃-cost spanning arborescence in (V (T ′), A(T ′))

27 else T ← T

28 For each set S ⊆ V (G)\{r}, consider the corresponding set S ⊆ V ′, which is

S if uZ /∈ S, and S\{uz} ∪ V (Z) otherwise; set ỹS ← yS

29 else Let T ← arborescence spanning V with c̃u,v = 0 for all (u, v) ∈ A(T )

30 Set y{v} ← ỹ{v} + θv for all v ∈ V ′, and yS ← ỹS for all other subsets S ⊆ V ′.
31 return (T, y)
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To see the second inequality, let C be an optimal solution to the (G, c, π)
instance. So for every node v ∈ V ′, if v is covered by C, it has at least one
incoming edge in this collection of paths, whose cost decreases by θv when moving
from c to c̃; if v′ is not covered, its penalty decreases by θv when moving from π
to π̃. Hence, O∗(G, c̃, π̃) ≤ O∗(G, c, π) −

∑
v∈V ′ θv. �	

Lemma 3. Consider a recursive call IterPCA (G, c, π, r), where steps (9)–
(16) are executed. If (T , y) obtained in step (12) satisfies PCC(T ;G, c, π) ≤∑

S⊆V (G)\{r} yS ≤ O∗(G, c, π), then the tuple (T, ỹ) obtained in steps (15), (16)
satisfy PCC(T ;G, c̃, π̃) ≤

∑
S⊆V ′ ỹS ≤ O∗(G, c̃, π̃).

Lemma 4. Consider a recursive call IterPCA (G, c, π, r), where steps (18)–
(28) are executed. If (T , y) obtained in step (23) satisfies PCC(T ;G, c, π) ≤∑

S⊆V (G)\{r} yS ≤ O∗(G, c, π), then the tuple (T, ỹ) obtained in steps (26), (28)
or (27), (28) satisfies PCC(T ;G, c̃, π̃) ≤

∑
S⊆V ′ ỹS ≤ O∗(G, c̃, π̃).

4 Applications for Orienteering Problems

We now show that IterPCA can be used to obtain fast, combinatorial imple-
mentations of the LP-rounding based approximation algorithms devised by [13]
for orienteering. The input here consists of a (rational) metric space (V, c), root
r ∈ V , a distance bound B ≥ 0, and nonnegative node rewards {πv}v∈V . Let
G = (V,E) denote the complete graph on G. Three versions of orienteering are
often considered in the literature.

• Rooted orienteering: find an r-rooted path of cost at most B that collects the
maximum reward.

• Point-to-point (P2P) orienteering: we are also given an end node t, and we
seek an r-t path of cost at most B that collects maximum reward.

• Cycle orienteering: find a cycle containing r of cost at most B that collects
maximum reward.

By merging nodes at zero distance from each other, and scaling, we may assume
that all distances, and B, are positive integers. Friggstad and Swamy [13] pro-
pose an LP-relaxation for rooted orienteering, and show that an optimal LP-
solution can be rounded to an integer solution losing a factor of 3. This is
obtained by decomposing an LP-optimal solution into a convex combination of
out-arborescences, and then extracting a rooted path from these arborescences.
They adapt their approach to also obtain a 6-approximation for P2P orienteer-
ing. Their rounding theorem is stated below, suitably paraphrased. The regret
(or excess [2,4]) of a u-v path P is creg(P ) = c(P ) − cuv.

Theorem 5 ([13]). Fix w ∈ V . Let T1, . . . , Tk be rooted trees in G, and
γ1, . . . , γk ≥ 0 be such that: (i)

∑k
i=1 γi = 1; (ii)

∑k
i=1 γic(Ti) ≤ B; and (iii)

w ∈ V (Ti) for all i = 1, . . . , k. Then, for each i = 1, . . . , k, we can extract a
rooted path Pi from Ti (visiting some subset of V (Ti)) with creg(Pi) ≤ B − crw,
such that maxi=1,...,k π

(
V (Pi)

)
≥ 1

3 ·
∑k

i=1 γiπ
(
V (Ti)

)
.
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We show that one can utilize IterPCA to obtain combinatorial algorithms
for rooted- and P2P- orienteering with the above approximation factors. The
high level idea is that Lagrangifying the “cost at most B” constraint for rooted
orienteering yields a prize-collecting walks problem, and by fine-tuning the value
of the Lagrangian variable, we can leverage IterPCA to obtain a distribution of
r-rooted trees having expected cost at most B, and expected reward (essentially)
at least the optimum of the rooted orienteering problem.

Theorem 6. Let ε > 0, N ⊆ V , r, w ∈ N , and L ≥ crw. Let Π∗ be the maxi-
mum reward of an r-rooted path Q with {w} ⊆ V (Q) ⊆ N . There is a procedure
BinSearchPCA (N,L, r, w; ε) that utilizes IterPCA to find in polytime rooted
trees T1, T2, and γ1, γ2 ≥ 0 with γ1 +γ2 = 1 such that: (a) {w} ⊆ V (Ti) ⊆ N for
i = 1, 2; (b)

∑2
i=1 γic(Ti) ≤ L; and (c)

∑2
i=1 γiπ(V (Ti)) ≥ (1 − ε)Π∗.

We then apply the rounding algorithm in [13] (i.e., Theorem 5) to the output
of Theorem 6 to obtain the stated approximation factors. Our algorithms can
thus be seen as a combinatorial implementation of the LP-rounding algorithms
in [13]. For cycle orienteering, we adapt the above idea and the analysis in [13],
to obtain a combinatorial 4-approximation algorithm. We also leverage the cer-
tificate y returned by IterPCA to provide upper bounds on the optimal value of
the {rooted, P2P, cycle}- orienteering problem. This is quite useful as it allows
to assess the approximation guarantee on an instance-by-instance basis. Indeed,
our computational experiments in Sect. 6 show that the instance-wise ratio is
much better than the worst-case approximation ratio.

Rooted Orienteering. For w ∈ V with crw ≤ B, let Π∗
w be the maximum

reward of a rooted path that visits w, and only visits nodes in V w = {u ∈ V :
crv ≤ crw}. Let ε ∈ (0, 1). We consider each w ∈ V with crw ≤ B, apply The-
orem 5 on the output of BinSearchPCA (V w, B, r, w; ε), and return the best
solution found. This yields a combinatorial 3/(1 − ε)-approximation algorithm.

For a given guess w (and any L), BinSearchPCA (V w, L, r, w; ε) varies
λ ≥ 0, and calls IterPCA on inputs where the reward of each v ∈ V w\{w} is
set to λπv; define Y (λ) :=

∑
S⊆V ′ y

(λ)
S , where y(λ) is the certificate returned

by IterPCA for this instance. We have Y (λ) ≤ B + λ
(
π(V w) − Π∗

w

)
by

Theorem 1, and rearranging gives Π∗
w ≤ UB1(w,B;λ) := π(V w) + B−Y (λ)

λ .
Thus, the optimal value for rooted orienteering is at most UB1(B) :=
maxw∈V :crw≤B minλ≥0 UB1(w,B;λ).

P2P Orienteering. Recall that here we seek an r-t path of cost at most
B that achieves maximum reward. In [13], a 6-approximation is obtained for
this problem by (essentially) guessing the node w on the optimal r-t path with
largest cru + cut value, and utilizing Theorem 5 on two suitable weighted col-
lections of trees. While they obtain the two collections from an optimal solution
to their P2P-orienteering LP, as with rooted orienteering, we can utilize Bin-

SearchPCA instead: we return BinSearchPCA (V
P2P
w , B − cwt, r, w; ε) and
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BinSearchPCA (V
P2P
w , B − crw, t, w; ε) as the two collections, where V

P2P
w =

{u ∈ V : cru + cut ≤ crw + cwt} (and w is a guess with crw + cwt ≤ B).
For a given guess w, let Yr(λ) denote

∑
S⊆N ′ y

(λ)
S in BinSearchPCA

(V
P2P
w , B − cwt, r, w; ε), and Yt(λ) denote

∑
S⊆N ′ y

(λ)
S in BinSearchPCA

(V
P2P
w , B − crw, t, w; ε). For any λ ≥ 0, and any walks Q1, Q2 rooted at r

and t respectively, such that {w} ⊆ V (Q1), V (Q2) ⊆ V
P2P
w , we have Yr(λ) ≤

c(Q1) + λ
[
π(V

P2P
w ) − π(V (Q1))

]
, and Yt(λ) ≤ c(Q2) + λ

[
π(V

P2P
w ) − π(V (Q2))

]
.

We obtain an upper bound on the optimal value for P2P orienteering by consid-
ering all w with crw +cwt ≤ B, taking Q1 ∈ {P ∗

w,rw, P ∗
w}, and Q2 ∈ {P ∗

w,wt, P
∗
w},

and collecting all the reward upper bounds resulting from the above inequalities.

Cycle Orienteering. Recall that here we seek a cycle containing r of cost
at most B that achieves maximum reward. Taking t = r in our approach for
P2P-orienteering yields a combinatorial 6-approximation algorithm. But we can
refine this approach and utilize BinSearchPCA to obtain a 4-approximation,
as also refine our upper-bounding strategy, by leveraging the fact that the tree
returned by IterPCA has prize-collecting cost at most the optimal value of
(P).

For any w ∈ V with crw ≤ B/2, let C∗
w be the maximum-reward cycle that

visits w, and only visits nodes in V w = {u ∈ V : cru ≤ crw}, and let Π∗Cyc
w =

π(V (C∗
w)). The distribution output by BinSearchPCA (V w, B/2, r, w; ε) has

expected reward at least Π∗Cyc
w /2 − ε · Π∗Cyc

w , since its expected prize-collecting
cost is (essentially) at most that of the fractional solution to (P ) where we send
a 1

2 -unit of flow from r to w along the two r-w paths in C∗
w. One can extract

from this distribution a feasible solution of reward at least 1−2ε
4 · Π∗Cyc

w .
For the upper bound, for a given guess w, we compare Y (λ) (which denotes

∑
S⊆N ′ y

(λ)
S in BinSearchPCA (V w, L, r, w; ε)) with the prize-collecting cost of

C∗
w, and the above fractional solution. Collecting the reward upper bounds, the

optimal value for cycle orienteering is at most

UB-Cyc(B) := max
w∈V :crw≤B/2

min
λ≥0

min
{
UB1(w,B;λ),UB4(w,B;λ)

}

where UB4(w,B;λ) := 2 · π(V w) − πr − πw + B−2·Y (λ)
λ .

5 Applications for the k Minimum-Latency Problem

Recall that in the k minimum-latency problem (k-MLP), we have a metric space
(V, c) and root r ∈ V . The goal is to find (at most) k-rooted paths that together
cover every node, so as to minimize the sum of visiting times of the nodes. The
current-best approximation ratio for k-MLP is 7.183, due to Post and Swamy [17],
who devise two algorithms for k-MLP having (roughly) this approximation ratio.
Their “more combinatorial” algorithm (see Algorithm 3 in §6.2 [17]) relies on
a procedure that “solves” the problem of finding a minimum-cost collection of
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r-rooted walks that together cover at least k nodes, by returning a distribution
of r-rooted trees that in expectation covers at least k nodes and has cost at most
the optimal walk-collection cost. In [17], this distribution is obtained by applying
the arborescence-packing result of Bang-Jensen et al. [1] to the optimal solution
to (P) with node rewards λ, and then varying λ in a binary-search procedure
(as we do). We can instead utilize IterPCA within a binary-search procedure
to obtain the desired distribution (over at most two trees). Incorporating this in
the more-combinatorial algorithm of [17] yields a fully (and truly) combinatorial
7.183-approximation algorithm for k-MLP.

6 Computational Results for Orienteering

We now present various computational results on the performance of our ori-
enteering algorithms (from Sect. 4) in order to assess the performance of our
algorithms in practice. Our experiments demonstrate the effectiveness of our
algorithms and upper bounds. They show that the instance-wise approximation
ratios, for both the solution returned and the computed upper bound, are much
better than the theoretical worst-case bounds, and in fact fairly close to 1.

We implemented our algorithms in C++11, and ran the code on a 2019 Mac-
Book Pro with 2.3 GHz Intel Core i9 processor (8 cores) & 16 GB RAM. Our
implementation essentially matches the description in Sect. 4, with the following
differences. (1) We terminate the binary search (in BinSearchPCA) when the
interval [λ1, λ2] has width λ2 − λ1 ≤ 10−6, the precision of the double data
type in C++; (2) We extract a solution from the tree Tλ returned by IterPCA
for each λ value encountered in the binary search (as opposed to using only the
trees Tλ1 , Tλ2), and return the best of these solutions; (3) When extracting a
rooted path of a given regret bound R from a path P (obtained from a tree),
instead of using a greedy procedure (Lemma 5.1 in [4], or Lemma 2.2 in [12]), we
find the maximum-reward subpath Q of P meeting the specifications; (4) When
computing the upper bounds on the orienteering optimum, we consider only the
λs encountered in the binary search.

We discuss cycle orienteering, as this is computationally the most well-studied
version of orienteering, and detail other computational results in [9]. For each
guess w of furthest node, we run two binary search procedures to find r-rooted
PCA solutions, with target budgets B/2 and B − crw. We use the 45 TSP
instances with at most 400 nodes from the TSPLIB 2.1 library [18]. These are
the instances considered by Fischetti et al. [11] (and by [14]), and three additional
datasets from [14]. For each dataset, [11,14] generate node rewards in three ways:

• Gen 1 - Uniform Rewards: All nodes apart from the root r have reward
1.

• Gen 2 - Pseudo-Random Rewards: The reward of the j-th node is 1 +
(7141 · j + 73) (mod 100) apart from the root, which has reward 0.

• Gen 3 - Far Away Rewards: The reward of a node v �= r is 1 + 
99 ·
crv/maxw crw�. This is meant to create more challenging instances where the
high-reward nodes are further from r.
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The distance bound used in each case is �TSPOpt/2, where TSPOpt is the
cost of the optimal TSP-tour for that dataset (which is provided in TSPLIB).
Optimal values are known for all these datasets; most of these were computed
in [11], and the rest are from [14]. This allows us to evaluate the instance-wise
approximation guarantee of our algorithm, and the quality of our upper bound.

The plots below give an overview of our results: Val is the reward of our
solution, Opt is the optimal value, and UB is the upper bound that we compute.
The histograms specify the distribution of the Opt/Val and UB/Opt ratios across
the instances used in the computational experiments. Each histogram bar corre-
sponds to a range of values (for a particular ratio) as indicated on the x-axis, and
its height specifies the number of instances where the achieved ratio lies in the
range. Detailed results of our experiments appear in the full version [9]. For the
(supposedly more challenging) Gen 3 data sets, we also report the instance-wise
approximation ratio Opt/Val, and the ratio UB/Opt. As our results show, our
algorithm performs fairly well in practice.

Next, we consider the work of Paul et al. [16], which is the only other work
that performs a computational evaluation of an (polytime) approximation algo-
rithm for orienteering. They develop a 2-approximation algorithm for cycle ori-
enteering, and report computational results for the unrooted problem (where no
root node is specified). Instead of a direct comparison of their algorithm vs. ours
(by trying all possible roots), we use our two algorithms in combination to see if
this yields improved solutions for the underlying instances. We run our algorithm
as a postprocessing step, taking the root r and the guess w of the furthest node
to be nodes from the solution returned by [16]. The histograms below show that
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this postprocessing almost always yields improvements, sometimes by a signifi-
cant factor, on both the TSPLIB and the Citi Bike data sets considered in [16].
The improvement factors are on the x-axis; the height of a bar is the number of
instances for which we achieve this factor.
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Abstract. A clutter is a family of sets, called members, such that no
member contains another. It is called intersecting if every two members
intersect, but not all members have a common element. Dense clutters
additionally do not have a fractional packing of value 2. We are looking
at certain substructures of clutters, namely minors and restrictions.

For a set of clutters we introduce a general sufficient condition such
that for every clutter we can decide whether the clutter has a restriction
in that set in polynomial time. It is known that the sets of intersecting
and dense clutters satisfy this condition. For intersecting clutters we
generalize the statement to k-wise intersecting clutters using a much
simpler proof.

We also give a simplified proof that a dense clutter with no proper
dense minor is either a delta or the blocker of an extended odd hole.
This simplification reduces the running time of the algorithm for finding
a delta or the blocker of an extended odd hole minor from previously
O(n4) to O(n3) filter oracle calls.

Keywords: Clutters · Clutter minors · Deltas · Odd holes

1 Introduction

A clutter is a family of sets, called members, over a finite ground set V such that
no member contains another [7]. Clutters are isomorphic if they can be obtained
from each other by relabeling the ground set. A cover of C is a set B ⊆ V such
that B ∩ C �= ∅ for all members C ∈ C. It is called minimal if it does not contain
another cover. The covering number τ(C) is the minimum cardinality of a cover.
A packing of a clutter is a set of pairwise disjoint members. The packing number
ν(C) is the maximum cardinality of a packing. Clearly, τ(C) ≥ ν(C). The blocker
b(C) is the clutter given by the minimal covers of C. Edmonds and Fulkerson [7]
observed that b(b(C)) = C.

Consider the following example of a clutter. Take the edge set of a graph
as the ground set and the s-t-paths as members. The minimal covers are the
inclusionwise minimal s-t-cuts and τ(C) = ν(C) by Menger’s theorem [10].

A clutter C is ideal if the polyhedron {x ≥ 0: x(C) ≥ 1 ∀C ∈ C} is integral.
The notion of idealness was introduced by Cornuéjols and Novick [5]. The above
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K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 210–222, 2022.
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Fig. 1. Δ6 and an extended odd hole of dimension 7

clutter is ideal, which can be shown by using the famous Max-Flow-Min-Cut
theorem by Ford and Fulkerson [8]. Lehman [9] proved that a clutter is ideal if
and only if its blocker is ideal.

As one might expect, not every clutter is ideal. In fact, Ding, Feng and
Zang [6] showed that the problem to decide whether a clutter is ideal is co-
NP -complete. A simple reason why a clutter is not ideal is that it has covering
number at least 2, but no fractional packing of value two. Clutters with this
property are called dense [2].

An important notion needed to study clutters is that of minors.

Definition 1 ([11]). Let C be a clutter over a ground set V and I, J ⊆ V disjoint
subsets. The minor of C obtained after deleting I and contracting J is the clutter
C\I/J over the ground set V − (I ∪ J) whose members are the inclusion-wise
minimal sets of {C − J : C ∈ C, C ∩ I = ∅}. If I ∪ J �= ∅ the minor is called
proper.

Seymour [12] showed that b(C\I/J) = b(C)\J/I. He also proved that every
minor of an ideal clutter is ideal. It therefore suffices to find a non-ideal minor
to certify that the clutter is not ideal. This motivates the problem to decide
whether a clutter has a dense minor. Abdi, Lee and Cornuéjols [2] showed that
this problem can be solved in polynomial time. This is quite surprising as from
the hardness result of Ding, Feng and Zang [6], one can conclude that this
problem is NP -complete if the input is the blocker of the clutter [2].

For the study of dense minors, the following two examples (see Fig. 1) are
fundamental. Let n ≥ 3 be an integer. Take the clutter over the ground set
{1, 2, . . . , n} with members {1, 2}, {1, 3}, . . . , {1, n} and {2, 3, . . . , n}. This clut-
ter is called Δn and a clutter isomorphic to this clutter is called a delta of
dimension n. Observe that b(Δn) = Δn.

Let n ≥ 5 be an odd integer. Consider the clutter C over the ground set
{1, 2 . . . , n} with minimum cardinality members {1, 2}, {2, 3}, . . . , {n−1, n} and
{n, 1}. A clutter that is isomorphic to C is an extended odd hole of dimension n.

Abdi and Lee [4] proved that every dense clutter has a delta or the blocker
of an extended odd hole minor. They also showed that this minor can be found
in polynomial time.

A nontrivial clutter is called k-wise intersecting if it has no cover of size 1
and every k (not necessarily different) members have a common element. Abdi,
Cornuéjols, Huynh and Lee [1] conjectured that for k ≥ 4 these clutters are
non-ideal.
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The 2-wise intersecting clutters are also called intersecting clutters. They
satisfy τ(C) ≥ 2 and ν(C) = 1. Note that dense clutters are intersecting. Abdi,
Cornuéjols and Lee [2] showed that one can decide in polynomial time whether
a clutter has an intersecting minor.

As we do not allow covers of size 1 in many cases, we occasionally consider
only special kinds of minors.

Definition 2 ([2]). Let C be a clutter over a ground set V and I ⊆ V . Let

J := {u ∈ V − I : {u} is a cover of C\I} . (1)

The minor C\I/J is the restriction of C after restricting I.

The following are our main contributions:

– We introduce the concept for a set of clutters S to be k-unifying (Sect. 2).
This gives a sufficient condition to decide whether a clutter has a restriction
in S in polynomial time. The abstract unifying theorem could also be applied
to other sets of clutters and might therefore be of independent interest.

– Abdi, Cornuéjols and Lee [2] showed that the set of intersecting clutters is 3-
unifying. We generalize this result and show that k-wise intersecting clutters
are (k + 1)-unifying (Sect. 3). This is achieved by a much simpler proof.

– We give a simplified proof that dense clutters with no proper dense minors
are deltas or the blocker of extended odd holes (Sect. 4). This is also the main
step to show that the set of dense clutters is 3-unifying.

– This simplification allows us to formulate a faster algorithm to find a delta
or the blocker of an extended odd hole minor (Sect. 5). The running time is
improved from previously O(n4) [4] to O(n3) filter oracle calls.

2 The Unifying Theorem

We will present a sufficient condition to decide whether a clutter has a restriction
with a certain property in polynomial time.

Definition 3. Let S be a set of clutters. A clutter C ∈ S is called restriction-
minimal in S if no proper restriction of C is in S.
Definition 4. A set of clutters is called k-unifying if every restriction-minimal
clutter in this set has k members whose union is the ground set of that clutter.

We are ready to formulate the main theorem of this section.

Theorem 1 (Unifying theorem). Let S be a k-unifying set of clutters and C
be a clutter over a ground set V . Then the following two statements are equiva-
lent:

(i) C has a restriction in S;
(ii) there are k members C1, C2, . . . , Ck of C such that the clutter obtained from

C after restricting V − ⋃k
i=1 Ci is in S.



Intersecting and Dense Restrictions of Clutters in Polynomial Time 213

Proof. (⇐=) is immediate. (=⇒) Since clutters have a finite ground set, C has a
restriction-minimal restriction C\I/J in S. As S is k-unifying, we find k members
C ′

1, C
′
2, . . . , C

′
k in this restriction such that

⋃k
i=1 C ′

i = V − (I ∪ J). Let Ci =
C ′

i ∪ J , which are members of C by the definition of a restriction. That yields
I = V − ⋃k

i=1 Ci. �
Corollary 1. Let C be a clutter over a ground set V with n elements and m
members. Let S be a k-unifying set of clutters for a fixed k ≥ 2. Furthermore,
there is an oracle given, which decides whether a given clutter is in S in poly-
nomial time. Then one can decide in polynomial time depending on n and m
whether C has a restriction in S.
In the next sections we will discuss examples of k-unifying sets of clutters.

3 k-Wise Intersecting Clutters

Theorem 2. For k ≥ 2 the set of k-wise intersecting clutters is (k+1)-unifying.

Proof. Let C be k-wise intersecting such that no proper restriction is k-wise
intersecting. We have to show that C has (k + 1) members whose union is the
ground set. Choose (k + 1) members C1, C2, . . . , Ck+1 of C such that |⋂k+1

i=1 Ci|
is minimal. Assume for a contradiction there is a v ∈ V such that v �∈ Ci for
i = 1, 2, . . . , k + 1. Consider the restriction C′ = C\v/J . We get J ⊆ ⋂k+1

i=1 Ci.
Since C′ is not k-wise intersecting and C′ = {∅} or τ(C′) ≥ 2, we find k not

necessarily different members C ′
1, . . . , C

′
k of C′ with empty intersection. They

imply k members C∗
1 , C∗

2 , . . . , C∗
k in C with

⋂k
i=1 C∗

i ⊆ J . Note that the inter-
section of these k members is not empty since C is k-wise intersecting. We find
an element u ∈ ⋂k

i=1 C∗
i . Since {u} is not a cover, there is a member C∗

k+1 with
u �∈ C∗

k+1. We conclude
k+1⋂

i=1

C∗
i � J ⊆

k+1⋂

i=1

Ci, (2)

contradicting the minimality assumption. �
Corollary 2 (Reformulation of [2], Proposition 3.3). The set of intersect-
ing clutters is 3-unifying.

We can therefore decide in polynomial time whether a clutter has an intersecting
restriction.

Remark 1 ([2], Remark 1.2). A clutter has an intersecting restriction if and only
if it has an intersecting minor.

As a consequence thereof, given a clutter explicitly with its members, we can
decide in polynomial time whether the clutter has an intersecting minor. It is
conjectured that ideal clutters with no intersecting minor also have the max-flow
min-cut property [2].
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4 Dense Clutters

We will prove that the set of dense clutters is 3-unifying. In the process, we will
also prove that minimally dense clutters are deltas or blockers of extended odd
holes.

Abdi and Lee [4] considered clutters with min{|C| : C ∈ C} = 2 and the
graph with vertex set V with the members of cardinality 2 as edges. We will
consider this graph of the blocker.

Definition 5. Let C be a clutter over a ground set V with τ(C) = 2. The cov-
ering graph of C is the graph with vertex set V and the covers of size two of C
as edges.

The covering graph of a delta is a single vertex connected to all other vertices.
The covering graph of an extended odd hole is an odd cycle. Conversely, a clutter
with a covering graph of an odd cycle is an extended odd hole.

The following lemma analyzes the structure of covers of size 2 in clutters
with a fractional packing of value 2.

Lemma 1. Let C be a clutter over a ground set V with τ(C) = 2, connected
covering graph, and a fractional packing of value 2. Then the covering graph is
bipartite and C has two members representing the colour classes. In particular
there are members L and K of C with K ∩ L = ∅ and K ∪ L = V .

Proof. For C ∈ C let xC be the value assigned to C in the fractional packing
of value 2. Let B = {b1, b2} be an arbitrary cover of size 2 of C and C be an
arbitrary member of C with xC > 0. Since B is a cover, we have |B ∩ C| ≥ 1.
Assume |B ∩ C| > 1. We conclude

2 ≥
∑

b1∈C′
xC′ +

∑

b2∈C′
xC′ =

∑

b1∈C′ or b2∈C′
xC′ +

∑

b1∈C′ and b2∈C′
xC′ ≥ 2+xC > 2 ,

(3)
a contradiction. Therefore |B ∩ C| = 1.

Since the cover of size 2 was arbitrary, each member C with xC > 0 has
exactly one element with each of these covers in common. In the covering graph
G, such a member is a stable set and vertex cover. Let s and t be two arbitrary
vertices of G. As G is connected, there is an s-t-path in G. Such a path has to
be alternating between vertices in C and vertices not in C. In particular, the
covering graph cannot contain an odd cycle, since that would result in two paths
between the same vertices of different parity in length. Thus, the covering graph
is bipartite and we get two colour classes.

In a connected bipartite graph, the only sets of vertices that are a stable set
and a vertex cover, are the two colour classes.

It is impossible that all members with xC > 0 are only one of the two colour
classes, because that would be the only member in the fractional packing and a
value of 2 would not be possible. Therefore, each colour class is represented by
a member, so there are members K and L with K ∩ L = ∅ and K ∪ L = V . �



Intersecting and Dense Restrictions of Clutters in Polynomial Time 215

Definition 6. A clutter is called minimally dense if it is dense and no proper
minor is dense. A clutter is called strictly dense if it is dense and no proper
restriction is dense.

Given a minimally dense clutter, we will consider proper minors with covering
number at least 2. Such a minor then has a fractional packing of value 2. The
idea is to construct minors with a connected covering graph and then apply
Lemma 1 to deduce specific members of that minor. They will imply members
of the original clutter such that in total we get a delta or the blocker of an
extended odd hole.

The first step is to show that the covering graph of the original clutter is
actually connected.

We will use the following lemma to get a certificate for a dense clutter.

Lemma 2 ([2], Lemma 1.6). Let C be a clutter with τ(C) ≥ 2 over a ground
set V . Then the following are equivalent:

(i) C is dense,
(ii) there is a w ∈ RV

≥0 with 1Tw = 1 such that
∑

u∈C wu > 1
2 for all C ∈ C.

Lemma 3. A minimally dense clutter has τ(C) = 2 and connected covering
graph.

Proof. If an element v ∈ V does not appear in a cover of size two of C, the
proper minor C\v has covering number at least 2. Thus, this minor has a frac-
tional packing of value 2 which is also a fractional packing of value 2 for C, a
contradiction. Therefore, τ(C) = 2 and each element of the ground set appears
in a cover of size 2.

Let G be the covering graph of C. Assume G is not connected. Let A be the
vertex set of one component of G and B = V − A. Let H be the subgraph of G
induced by A. Note that A is a cover of C since it contains at least one cover.

Consider the minor C′ = C/B. If C′ has a cover of size 1, this would also be
a cover of C, since no member is entirely contracted as A is a cover. Hence, C′

has a fractional packing of value 2. The covering graph H ′ of C′ contains the
edges of H and is thus connected. By applying Lemma 1 on C′, we get that H ′ is
bipartite and the two colour classes K and L are members in C′, implying that
K and L are not covers in C′ and C.

Since C is dense, by Lemma 2 there is a w ∈ RV
≥0 such that

∑
u∈C wu > w(V )

2
for all C ∈ C. Let without loss of generality w(K) ≥ w(L). Each member of
C\K/L then has weight greater than

w(V )
2

− w(L) ≥ w(V ) − w(K) − w(L)
2

=
w(V − A)

2
. (4)

Hence, the certificate for C also implies a certificate for C\K/L. Since that minor
cannot be dense, we have τ(C\K/L) < 2. Thus, this minor has a cover of size
1. Let this cover be {b}. The proper minor C′′ = C\b/(B − {b}) has no cover of
size 1 since there is no edge between the vertex sets A and B. Using the same
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argument as for C′, the covering graph of C′′ contains the edges of H, is bipartite,
and has the colour classes as members. Therefore, K and L are members of C′′,
but not covers. That yields that K ∪ {b} is not a cover of C, a contradiction. �

We will use the following tool to find delta minors.

Lemma 4 ([3], see also [4], Theorem 5). Let C be a clutter over a ground
set V . Let u, v, w ∈ V be distinct elements and such that {u, v} and {u,w} are
members of C. Let C ∈ C such that {u, v, w} ∩ C = {v, w}. Then C has a delta
minor.

Proof. Let I = V − (C ∪ {u}). Let C1 = {x ∈ C : {u, x} ∈ C} and let C2 =
C − C1. Note that |C1| ≥ 2 as v, w ∈ C1. Starting with the minor C\I, contract
elements x of C2 one by one as long as {u, x} is not a member of the current
minor. We get a clutter C′ = C\I/C ′

2. Note that due to the definition of C2, {u}
is not a member of this clutter as it is not a member of C\I. As C is a member of
C, we get that C −C2 contains a member of C′. Actually, C −C ′

2 is a member in
C′ because there is no member C ′ � C −C ′

2 as it would imply a member C∗ � C
of C. Therefore, C′ has the members C −C ′

2 and {u, x} for all x ∈ C −C ′
2. There

cannot be further members due to the definition of a clutter. Therefore, C′ is a
delta and C has a delta minor.

We are now ready to prove the following fundamental result.

Theorem 3 (Reformulation of [4], Theorem 3). A minimally dense clutter
is a delta or the blocker of an extended odd hole.

Proof. By the previous lemma, the covering graph G of the minimally dense
clutter C is connected. If G contains an odd cycle, contracting all other elements
leads to a minor with covering number at least 2, but the covering graph is not
bipartite. If the minor has a fractional packing of value 2, Lemma 1 implies a
contradiction. Therefore, the minor is dense and thus not proper. In conclusion,
G does not properly contain a cycle and thus is a cycle with no additional chords.
Therefore, C is the blocker of an extended odd hole or a delta if |V | = 3.

We can now assume that G is bipartite. Let X and Y be the colour classes
of G.

One of them is a cover, otherwise we would have disjoint members. So let
without loss of generality Y be a cover and B ⊆ Y be a minimal cover. We get
|Y | ≥ 3 as there is no edge in G[Y ].

Remove an x ∈ X from G such that the number of vertices from X in the
same component of the resulting graph is maximal. Let this maximal component
be Mx. If this number is not |X|−1, take an x′ ∈ X that is not in Mx. Removing
x′ instead of x does not disconnect Mx. Furthermore, x is connected to Mx, a
contradiction to the maximality. Therefore, there is an x ∈ X such that removing
x from G does not disconnect the other vertices in X.

Let G′ be the graph resulting from G after removing x. The components of
G′ consist of one component containing all other vertices in X and some vertices
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from Y . All other components have to be a single vertex from Y , because there
are no edges between vertices in Y . Let this set of isolated vertices be Z.

Since G is connected, {x, z} is an edge of G for all z ∈ Z. Assume that there
is a y ∈ Z − B. Consider the minor C/y. The covering graph of this minor is
connected. Therefore, this minor has a member C ′ ⊆ X. It implies a member
C ⊆ X ∪ {y} in C, a contradiction to B being a cover. So Z ⊆ B.

If |Z| ≥ 2, the blocker of C has members {x, z1}, {x, z2}. As B is a minimal
cover of C, it is a member of b(C). Furthermore, we have B ∩ {x, z1, z2} = {z1, z2}.
Applying Lemma 4 yields that b(C) has a delta minor. Let b(C)\I/J = Δn. We
get C\J/I = b(Δn) = Δn. Thus, C has a delta minor. As deltas are dense, C is
a delta itself.

If |Z| < 2 consider the minor C\Z/x. This minor has no cover of size 1
because even if |Z| = 1 there is no edge incident to z ∈ Z other than {x, z}.
Furthermore, this minor is not trivial as we would have |V | ≤ 2. As that minor
also has a connected covering graph, we find a member C ′ ⊆ X. This implies a
member C ⊆ X of C, a contradiction to Y being a cover. �

In the rest of this section, we will prove that the set of dense clutters is
3-unifying.

Lemma 5. A minimally dense clutter over a ground set V has three members
C1, C2 and C3 with empty intersection whose union is the ground set.

Proof. We will prove that such a clutter C has two members C1 and C2 whose
union is the ground set and |C1 ∩ C2| = 1. We can then choose an arbitrary C3

not containing the common element to complete the proof.
If C is a delta, choose C1 = {1, 2} and C2 = {2, 3, . . . , n}.
If C is the blocker of an extended odd hole, take an arbitrary v ∈ V and

consider the minor C/v. The covering graph of this minor is connected and
bipartite since it is a path. By Lemma 1, we find two disjoint members K and
L of this minor with K ∪ L = V − {v}. Since C has no disjoint members, they
both contain v in C. �

The following lemma bridges the gap from minimally dense to strictly dense
clutters.

Lemma 6. Let C be a strictly dense clutter over a ground set V and J ⊆ V
such that C/J is dense. Then for each v ∈ J , there is a w ∈ V − J such that
{v, w} is a cover of size 2 in C.
Proof. Assume there is a v ∈ J such that no such cover of size 2 exists. Then
the minor C\v/(J − {v}) has no cover of size 1 and thereby covering number
at least 2. Furthermore, this minor has no fractional packing of value 2 since it
contains only a subset of the members in C/J . Therefore this minor is dense. The
restriction obtained from C after restricting v contracts a subset of J −{v} since
τ(C\v/(J −{v})) ≥ 2. This implies that restriction is also dense, a contradiction.

�
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Theorem 4 ([2], Proposition 4.5). The set of dense clutters is 3-unifying.

Proof. Let C be a strictly dense clutter over a ground set V . Choose U such that
C/U is dense but no proper contraction minor is. Let C\I/(U ∪ U ′) be a proper
minor of C/U with covering number at least 2. If I �= ∅, the restriction C\I/J is
not dense and therefore has a fractional packing of value 2. Since J ⊆ (U ∪ U ′),
the minor C\I/(U ∪ U ′) also has a fractional packing of value 2. If I = ∅, we get
the same result by the definition of U .

Hence, C/U is minimally dense. By Corollary 5, we find three members C ′
1, C

′
2

and C ′
3 in C/U with empty intersection and union V − U .

Let C1, C2, C3 ∈ C such that C ′
i ⊆ Ci ⊆ C ′

i ∪ U for i = 1, 2, 3. Suppose there
is a v ∈ V − (C1 ∪C2 ∪C3). Clearly, v ∈ U . By Lemma 6, there is a cover {v, w}
with w ∈ V − U . Since none of the three members contains U , they all contain
w, a contradiction. �

By the unifying theorem, given a clutter explicitly with its members, we can
find a dense restriction in polynomial time or state that there is none. Simi-
larly to Remark 1, having a dense restriction is equivalent to having a dense
minor. Furthermore, this is also equivalent to having a delta or the blocker of
an extended odd hole minor.

Remark 2 ([2], Remark 4.4). Let C be a clutter over a ground set V . Then the
following statements are equivalent:

(i) C has a dense restriction.
(ii) C has a delta or the blocker of an extended odd hole minor.
(iii) C has a dense minor.

5 Finding Delta or Blocker of Extended Odd Hole Minors

We will discuss an algorithm which finds a delta or the blocker of an extended
odd hole minor of a dense clutter.

The clutter C over the ground set V is given by a filter oracle [13]. This oracle
returns in time θ whether a set A ⊆ V contains a member of C. The algorithm
implied by the proofs given in Sect. 4 has a running time of O(n3(θ + n)). This
improves the running time of the algorithm by Abdi and Lee in [4] with a running
time of O(n4) oracle calls.

We will start with some basic properties about filter oracles.

Lemma 7 ([4], Remark 9). Let C be a clutter over a ground set V given by a
filter oracle. Let n = |V | and θ be the time required to run the oracle. Then the
following statements hold:

(i) The members of cardinality 1 can be computed in O(nθ) time.
(ii) The members of cardinality 2 can be computed in O(n2θ) time.
(iii) Given a set C ⊆ V , it can be checked in O(nθ) time, whether C ∈ C.
(iv) Given a set A ⊆ V that contains a member, such a member can be found

in O(n2θ) time.
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Lemma 8 ([13], Theorem 5.1). Let C be a clutter over a ground set V given
by a filter oracle, which runs in time θ. Then the filter oracle also implies a filter
oracle for the blocker b(C) running in θ + O(|V |) time.

Lemma 9 ([13], Theorem 5.2). Let C be a clutter over a ground set V given
by a filter oracle, which runs in time θ. Let I, J ⊆ V be disjoint. Then the filter
oracle implies a filter oracle for the minor C\I/J , which runs in time θ + O(|V |).

The input of the final algorithm is a dense clutter including a certificate
w ∈ RV

≥0 as in Lemma 2. We allow a scaled certificate, that means it only has
to satisfy w(C) > w(V )

2 for all members C ∈ C. Note that the certificate can be
calculated with a linear program, if the members are explicitly given.

We will formulate an algorithm that, given a dense clutter including a certifi-
cate, computes a delta, the blocker of an extended odd hole minor, or a proper
dense minor. If the output is a proper dense minor, we will call the algorithm
again. We need to make sure that a certificate for the proper dense minor can
be computed easily.

Lemma 10. Let C be a dense clutter over a ground set V with τ(C) = 2 and
connected bipartite covering graph. The clutter is inputted via a filter oracle
running in time θ. Let n = |V |. Then a certificate w ∈ RV

≥0 such that w(C) >
w(V )

2 for all members C ∈ C can be computed in O(n2(θ + n)) time.

Proof. Since all members of cardinality 2 of the blocker can be computed in
O(n2(θ +n)) time, the covering graph G of C can be computed in that time. Let
X and Y be the colour classes of the bipartition, which can also be calculated
in quadratic time. For v ∈ V let w(v) be the degree of v in G. This defines
an initial certificate with w(V ) = 2m where m is the number of edges. Each
member C ∈ C contains at least one element of each cover of size 2. Thus, C as
a vertex set is incident to all edges, implying w(C) ≥ m. If a member contains
more than one element of a cover, at least one edge has to be counted twice and
therefore w(C) ≥ m+1. By the same argument as in Lemma 1, the only possible
members incident to at most one element of each cover of size 2 are X and Y .
Check whether X or Y are members of C. This can be done in linear time. Only
one of them can be a member since C is dense. If none of them is a member,
return w as the certificate. If without loss of generality X is a member, let x ∈ X
and y ∈ Y . Increase w(x) by 1

2 and decrease w(y) by 1
2 to get a certificate w′.

This does not change the total sum and each member then fulfils w′(C) ≥ m+ 1
2 ,

so w′ is indeed a certificate and can be returned.

We are now ready to formulate the main algorithm, see Algorithm 1.

Theorem 5. The algorithm works correctly in O(n2(θ + n)) time. If it returns
a proper dense minor, a certificate for this minor being dense can be calculated
in O(n2(θ + n)) time.
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Algorithm 1: Finding a delta or the blocker of an extended odd hole minor
Input : Dense clutter C over a ground set V with certificate w inputted via a

filter oracle
Output: Delta or extended odd hole minor or a proper dense minor of C

1 if there is v ∈ V such that v does not appear in a cover of size 2 then
2 return C\v as proper dense minor

3 Compute covering graph G of C;
4 if G is not bipartite then
5 Find an odd cycle O with no chords in G;
6 return C/(V − O) as delta or the blocker of an extended odd hole minor ;

7 if G is not connected then
8 Let A be the vertex set of one component, B = V − A;
9 Let K and L be colour classes of this component with w(K) ≥ w(L);

10 if K and L are not members of C/B then
11 return C/B as proper dense minor ;

12 if τ(C\K/L) ≥ 2 then
13 return C\K/L as proper dense minor ;

14 Find cover {b} of C\K/L;
15 return C\b/(B − {b}) as proper dense minor ;

16 Let X and Y be the colour classes of G such that Y is a cover;
17 Compute minimal cover B ⊆ Y ;
18 Compute x ∈ X such that removing x from G does not disconnect X − {x};
19 Compute set of isolated vertices Z ⊆ Y after removing x;
20 if Z �⊆ B then
21 Let y ∈ Z − B;
22 return C/y as proper dense minor ;

23 if |Z| ≥ 2 then
24 Find a delta minor by Lemma 4;
25 return that delta minor ;

26 return C\Z/x as proper dense minor ;

Proof. The correctness of the algorithm is given by the proof of Lemma 3 and
Theorem 3. Whenever we get a contradiction or an excluded case in the proof
due to the clutter being minimally dense, the algorithm outputs the proper dense
minor. Note that in almost all cases where a proper dense minor is returned, we
have the situation of Lemma 10 with the minor C\v in the first step and C\K/L
as the only exceptions.

In both cases, we can take the projection of the certificate of the original
clutter on the new ground set. For C\v this is a certificate because w(C) does
not change for members C, but w(V ) ≥ w(V −{v}). For C\K/L the argument is
given in the proof of Lemma 3. The running time for the certificate is satisfied in
both cases. It remains to show that the running time of the algorithm is indeed
O(n2(θ + n)).
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The covers of size 2 can be computed in O(n2(θ + n)) time since they are
minimal covers and members of cardinality 2 in the blocker can be computed in
that time. Therefore, we find a v ∈ V that does not appear in a cover of size 2
or obtain the covering graph G in O(n2(θ + n)) time.

In each connected component of G, we can find an odd cycle or a bipartition
in quadratic time.

Checking whether K and L are members of C/B can be done in a linear
number of oracle calls. By finding all minimal covers of size 1 in the blocker, we
can decide whether τ(C\K/L) ≥ 2 is satisfied in a linear number of oracle calls.
If there is a cover of size 1, we can use it as the cover {b} of C\K/L.

We can decide in one oracle call whether X or Y is a cover. The minimal
cover B ⊆ Y can be obtained in O(n2(θ + n)) time by Lemma 7. The x ∈ X
such that removing x from G does not disconnect X − {x} can be computed in
quadratic time as we can start with any element and find a better one given by
the proof in Theorem 3 in linear time.

The set Z is calculated in linear time since these are just components of a
graph. Checking Z ⊆ B and possibly finding y ∈ Z − B can also be done in
linear time as an order of the elements can be assumed.

The computation of the delta minor in Lemma 4 can also be implemented to
run in O(n(θ + n)) time. The sets I, C1 and C2 of the proof can be determined
in that time. Let X denote the set of elements of C2 that are already contracted
when considering x ∈ C2. We query the oracle whether {u, x} ∪ X contains a
member in C. As C is a member of C and {u} is not a member of C\I/X, this is
by construction of X equivalent to {u, x} being a member of C\I/X. Hence, each
element x ∈ C2 can be processed in O(θ + n) time. In conclusion, every single
step of the algorithm can be implemented in O(n2(θ + n)) time, concluding the
proof. �

By applying the algorithm recursively and calculating the new certificate,
the cardinality of the ground set decreases in each iteration. As an immediate
consequence, we get the following corollary as the main result of this section.

Corollary 3. There is an algorithm that, given a dense clutter over the ground
set V by a filter oracle and a certificate w for that clutter being dense, finds a
delta or the blocker of an extended odd hole minor in O(|V |3(θ + |V |)) time,
where θ is the time required for an oracle call.

In conclusion, given a clutter C over a ground set V explicitly with its mem-
bers, we can decide in polynomial time (in |C| and |V |) whether C has a dense
restriction. Recall that this is equivalent to C having a delta or the blocker of an
extended odd hole minor.

If C has a dense restriction, we can find it and compute a certificate in
polynomial time.
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Abstract. We consider the class of disjoint bilinear programs
max {xTy | x ∈ X , y ∈ Y} where X and Y are packing poly-
topes. We present an O( log log m1

log m1

log log m2
log m2

)-approximation algorithm for
this problem where m1 and m2 are the number of packing constraints
in X and Y respectively. In particular, we show that there exists a
near-optimal solution (x,y) such that x and y are “near-integral”. We
give an LP relaxation of this problem from which we obtain the near-
optimal near-integral solution via randomized rounding. As an appli-
cation of our techniques, we present a tight approximation for the
two-stage adjustable robust optimization problem with covering con-
straints and right-hand side uncertainty where the separation problem
is a bilinear optimization problem. In particular, based on the ideas
above, we give an LP restriction of the two-stage problem that is an
O( log n

log log n
log L

log log L
)-approximation where L is the number of constraints

in the uncertainty set. This significantly improves over state-of-the-art
approximation bounds known for this problem.

Keywords: Disjoint bilinear programming · Two-stage robust
optimization · Approximation algorithms

1 Introduction

We consider the following class of disjoint bilinear programs,

zPDB = max
x,y

{xTy | x ∈ X , y ∈ Y}, (PDB)

where X and Y are packing polytopes given by an intersection of knapsack
constraints. Specifically,

X := {x ≥ 0 | Px ≤ p} and Y := {y ≥ 0 | Qy ≤ q},

where P ∈ R
m1×n
+ , Q ∈ R

m2×n
+ , p ∈ R

m1
+ and q ∈ R

m2
+ . We refer to this problem

as a packing disjoint bilinear program PDB. This is a subclass of the well-studied
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disjoint bilinear problem: max
x,y

{xTMy | x ∈ X , y ∈ Y}, where M is a general

n × n matrix.
Disjoint bilinear programming is NP-hard in general (Chen et al. [9]). We

show that it is NP-hard to even approximate within any finite factor. Several
heuristics have been studied for this problem including cutting-planes algorithms
(Konno et al. [24]), polytope generation methods (Vaish et al. [30]), Benders
decomposition (Geoffrion [18]), reduction to concave minimization (Thieu [29])
and two-stage robust optimization (Zhen et al. [33]). Algorithms for non-convex
quadratic optimization can also be used to solve disjoint bilinear programs.

Many important applications can be formulated as a disjoint bilinear pro-
gram including fixed charge network flows (Rebennack et al. [27]), concave cost
facility location (Soland [28]), bilinear assignment problems (Ćustić et al. [34]),
non-convex cutting-stock problems (Harjunkoski et al. [23]), multicommodity
flow network interdiction problems (Lim and Smith [25]), bimatrix games (Man-
gasarian and Stone [26], Firouzbakht et al. [17]) pooling problems (Gupte et al.
[22]).

One important application closely related to disjoint bilinear optimization
that we focus on in this paper, is the two-stage adjustable robust optimization.
In particular, the separation problem of a two-stage adjustable robust problem
can be formulated as a disjoint bilinear optimization problem. More specifically,
we consider the following two-stage adjustable robust problem,

zAR = min
x,t

{cTx + t | t ≥ Q(x), x ∈ X}, (AR)

where for all x ∈ X ,

Q(x) = max
h∈U

min
y≥0

{dTy | By ≥ h − Ax}.

Here A ∈ R
m×n, B ∈ R

m×n
+ , c ∈ R

n
+, d ∈ R

n
+, X ⊂ R

n
+ is a polyhedral cone,

and U is a polyhedral uncertainty set. The separation problem of AR is the
following: given a candidate solution (x, t), decide if it is feasible, i.e., x ∈ X
and t ≥ Q(x) or give a separating hyperplane. This is equivalent to solving
Q(x). We will henceforth refer to Q(x) as the separation problem. For ease of
notation, we use Q(x) to refer to both the problem and its optimal value. In this
two-stage problem, the adversary observes the first-stage decision x and reveals
the worst-case scenario of h ∈ U . Then, the decision maker selects a second-
stage recourse decision y such that By covers h − Ax. The goal is to select a
first-stage decision such that the total cost in the worst-case is minimized. This
model has been widely considered in the literature (Dhamdhere et al. [11], Feige
et al. [16], Gupta et al. [21], Bertsimas and Goyal [4], Bertsimas and Bidkhori
[5], Bertsimas and de Ruiter [7], Xu et al. [31], Zhen et al. [32], El Housni and
Goyal [12], El Housni et al. [14,15]), and has many applications including set
cover, capacity planning and network design problems under uncertain demand.

Several uncertainty sets have been considered in the literature including poly-
hedral uncertainty sets, ellipsoids and norm balls (see Bertsimas et al. [6]). Some
of the most important uncertainty sets are budget of uncertainty sets (Bertsimas
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and Sim [8], Gupta et al. [20], El Housni and Goyal [13]) and intersections of
budget of uncertainty sets such as CLT sets (see Bandi and Bertsimas [1]) and
inclusion-constrained budgeted sets (see Gounaris et al. [19]). These have been
widely used in practice. Following this motivation, we consider in this paper the
following uncertainty set,

U := {h ≥ 0 | Rh ≤ r},

where R ∈ R
L×m
+ and r ∈ R

L
+. This is a generalization of the previously men-

tioned sets. We refer to this as a packing uncertainty set.
Feige et al. [16] show that AR is hard to approximate within any factor

better than Ω( log n
log log n ) even in the special case of a single budget of uncertainty

set. Bertsimas and Goyal [4] give an O(
√

m)-approximation in the case where
the first-stage matrix A is non-negative. Recently, El Housni and Goyal [13]
give an O( log n

log log n )-approximation in the case of a single budget of uncertainty

set and an O( log2 n
log log n )-approximation in the case of an intersection of disjoint

budgeted sets. In general, they show an O( L log n
log log n )-approximation in the case

of a packing uncertainty set with L constraints. However, this bound scales
linearly with L. The two-stage robust covering problem was also considered
in the discrete case where the first and second stage solutions x and y are
restricted to be in {0, 1}m. For this problem, Feige et al. [16] and Gupta et al.
[21] give an O(log n log m)-approximation and an O(log n+log m)-approximation
respectively in the case where A = B ∈ {0, 1}m×n, d = λc for some λ > 0 and
the uncertainty set U is a budget of uncertainty set with equal weights, i.e.,
U = {h ∈ [0, 1]m | ∑m

i=1 hi ≤ k}. Gupta et al. [20] consider a more general
uncertainty set, namely, intersection of p-system and q-knapsack and give an
O(pq log n)-approximation of the two-stage problem.

The goal of this paper is to provide LP-based approximation algorithms with
provable guarantees for the packing disjoint bilinear program as well as the two-
stage adjustable robust problem that improve over the approximation bounds
known for these problems.

1.1 Our Contributions

A Polylogarithmic Approximation Algorithm for PDB. We present an
LP-rounding based randomized approximation algorithm for PDB. Our algo-
rithm relies on a new idea that might be of independent interest. In particu-
lar, we show the existence of a near-optimal near-integral solution of this prob-
lem. That is, a near-optimal solution (x̂, ŷ) such that x̂i ∈ {0,max

x∈X
xi/ζ1} and

ŷi ∈ {0,max
y∈Y

yi/ζ2} for some logarithmic factors ζ1 and ζ2. We give an LP

relaxation of PDB, i.e., a linear program whose optimal cost is greater than the
optimum of PDB, from which we obtain such (x̂, ŷ) via randomized rounding.
More specifically, we have the following theorem,

Theorem 1. There exists an LP-rounding based randomized algorithm that
gives an O( log log m1

log m1

log log m2
log m2

)-approximation to PDB.
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Approximating the Two-Stage Problem AR. We present an LP-based
approximation for AR. The separation problem for AR is a variant of PDB.
However, the objective is a difference of a bilinear and a linear term making
it challenging to approximate. Our approach approximates AR directly. In par-
ticular, using ideas from our approximation of PDB, we give a compact linear
restriction of AR, that is, a linear program whose optimal objective is greater
than the optimum of AR, and show that it is a polylogarithmic approximation
of AR. In particular, we have the following theorem.

Theorem 2. There exists an LP restriction of AR that gives an
O( log n

log log n
log L

log log L )-approximation to AR.

Our bound improves significantly over the prior approximation bound of
O( L log n

log log n ) [13] known for this problem. It also shows a striking contrast between
the fractional and the discrete case of the two-stage robust covering problem. In
fact, the discrete two-stage robust covering problem under a packing uncertainty
set with L constraints (L-knapsack) considered in [20] is hard to approximate
within any factor better than Lδ, for some δ > 0. This follows from the hardness
of the maximum independent set problem.

We compare the performance of our approximation to affine policies. Affine
policies are widely used approximate policies in dynamic robust optimization
where the second-stage decision y is restricted to be an affine function of
the uncertain right-hand side h. It is known that the optimal affine policy
can be computed efficiently (Ben-Tal et al. [2]). We show that our algorithm
is significantly faster than finding the optimal affine policy while providing
good approximate solutions. Specifically, in randomly generated instances with
n = m = L = 100, the cost of our solution is within 30% of the cost of the
optimal affine policy in all of the instances we consider. However, our algorithm
is significantly faster terminating in less than 0.1s for all instances. In contrast, it
takes 1000s or larger on average to compute the optimal affine policy for n > 80.

2 A Polylogarithmic Approximation for PDB

In this section, we present an O( log log m1
log m1

log log m2
log m2

)-approximation for PDB (The-
orem 1). To prove this theorem, we show an interesting structural property of
PDB. In particular, we show that there exists a near-optimal solution of PDB
that is “near-integral”. Let us define for all i ∈ [n],

θi = max
x∈X

xi, γi = max
y∈Y

yi, ζ1 =
3 log m1

log log m1
+ 2 and ζ2 =

3 log m2

log log m2
+ 2.

We formally state our structural property in the following lemma.

Lemma 1. (Structural Property). There exists a feasible solution (x̂, ŷ) of
PDB whose objective value is within O( log log m1

log m1

log log m2
log m2

) of the optimum and
such that x̂i ∈ {0, θi

ζ1
} and ŷi ∈ {0, γi

ζ2
} for all i ∈ [n].

We obtain such a solution satisfying the above property using an LP relaxation
of PDB via a randomized rounding approach.
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LP Relaxation and Rounding. We consider the following linear program,

zLP−PDB = max
ω≥0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

θiγiωi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1

θiPiωi ≤ p

n∑

i=1

γiQiωi ≤ q

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (LP-PDB)

where Pi is the i-th column of P and Qi is the i-th column of Q. We first show
that LP-PDB is a relaxation of PDB.

Lemma 2. zPDB ≤ zLP−PDB.

Proof. Let (x∗,y∗) be an optimal solution of PDB. Let ω∗ be such that ω∗
i =

x∗
i

θi
.
y∗

i

γi
for all i ∈ [n]. By definition, we have x∗

i ≤ θi and y∗
i ≤ γi for all i ∈ [n].

Hence,
n∑

i=1

θiPiω
∗
i =

n∑

i=1

θiPi
x∗

i

θi

y∗
i

γi
≤

n∑

i=1

Pix
∗
i ≤ p,

and
n∑

i=1

γiQiω
∗
i =

n∑

i=1

γiQi
x∗

i

θi

y∗
i

γi
≤

n∑

i=1

Qiy
∗
i ≤ q.

Note that we use the fact that P and Q are non-negative in the above inequali-
ties. Therefore, ω∗ is feasible for LP-PDB with objective value

n∑

i=1

θiγiω
∗
i =

n∑

i=1

x∗
i y

∗
i = zPDB,

which concludes the proof. ��
Now, to construct our near-optimal near-integral solution, we consider the

randomized rounding approach described in Algorithm 1. Note that by definition
of θi, max

ω
{ωi | ∑n

j=1 θjPjωj ≤ p,ω ≥ 0} = 1, for all i ∈ [n]. Hence, for all

i ∈ [n], ω∗
i defined in Algorithm 1 is such that ω∗

i ≤ 1. In our proof of Lemma 1,
we use the following variant of Chernoff bounds.

Lemma 3. (Chernoff Bounds [10]).
(a) Let χ1, . . . , χr be independent Bernoulli trials. Denote Ξ :=

∑r
i=1 εiχi where

ε1, . . . , εr are reals in [0,1]. Let s > 0 such that E(Ξ) ≤ s. Then for any δ > 0
we have,

P(Ξ ≥ (1 + δ)s) ≤
(

eδ

(1 + δ)1+δ

)s

.

(b) Let χ1, . . . , χr be independent Bernoulli trials. Denote Ξ :=
∑r

i=1 εiχi where
ε1, . . . , εr are reals in (0,1]. Then for any 0 < δ < 1,

P(Ξ ≤ (1 − δ)E(Ξ)) ≤ e− 1
2 δ2

E(Ξ).
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Algorithm 1.
Input: ε > 0.
Output: feasible solution verifying lemma 1 with probability at least 1 − ε − o(1).

1: Let ω∗ be an optimal solution of LP-PDB and let T = 8�log 1
ε
�.

2: Initialize x∗ = 0, y∗ = 0 and max = 0.
3: for t = 1, . . . , T do
4: let ω̃1, . . . , ω̃n be i.i.d. Bernoulli variables with P(ω̃i = 1) = ω∗

i for i ∈ [n].
5: let x̂i = θiω̃i/ζ1 and ŷi = γiω̃i/ζ2 for i ∈ [n].
6: if (x̂, ŷ) is feasible for PDB and x̂T ŷ ≥ max then
7: set x∗

i = x̂i, y∗
i = ŷi for all i ∈ [n] and max = x̂T ŷ.

8: end if
9: end for

10: return (x∗,y∗)

Proof of Lemma 1. It is sufficient to prove that, with constant probability,
(x̂, ŷ) constructed at each iteration of Algorithm 1 is a feasible solution of PDB
verifying the structural property. In particular, let ω∗ be an optimal solution
of LP-PDB as defined in Algorithm 1. Consider some iteration t ∈ [T ]. Let
ω̃1, . . . , ω̃n and (x̂, ŷ) be as defined in iteration t of the main loop. We show that
the following properties hold with a constant probability,

n∑

i=1

Pix̂i ≤ p,

n∑

i=1

Qiŷi ≤ q,

n∑

i=1

x̂iŷi ≥ zLP−PDB

2ζ1ζ2
. (1)

First, we have,

P(
n∑

i=1

Pix̂i > p) = P

(
n∑

i=1

θiPi
ω̃i

ζ1
> p

)

≤
m1∑

j=1

P

(
n∑

i=1

θiPji
ω̃i

ζ1
> pj

)

=
∑

j∈[m1]:pj>0

P

(
n∑

i=1

θiPji

pj
ω̃i > ζ1

)

≤
∑

j∈[m1]:pj>0

eζ1−1

(ζ1)ζ1

≤ m1
eζ1−1

(ζ1)ζ1
,

where the first inequality follows from a union bound on m1 constraints. The
second equality holds because for all j ∈ [m1] such that pj = 0, we have

P

(∑n
i=1 θiPji

ω̃i

ζ1
> pj

)
= 0. In fact, pj = 0 implies

∑n
i=1 θiPji

ω∗
i

ζ1
= 0, by fea-

sibility of ω∗ in LP-PDB. Therefore, we have
∑n

i=1 θiPji
ω̃i

ζ1
= 0 almost surely.

The second inequality follows from the Chernoff bounds (a) with δ = ζ1 − 1 and
s = 1. In particular, θiPji

pj
∈ [0, 1] by definition of θi for all i ∈ [n] and j ∈ [m1]

such that pj > 0 and E

[∑n
i=1

θiPji

pj
ω̃i

]
=

∑n
i=1

θiPji

pj
ω∗

i ≤ 1, for all j ∈ [m1] such
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that pj > 0, which holds by feasibility of ω∗. Next, note that eζ1−1

(ζ1)ζ1
= O( 1

m2
1
),

therefore, there exists a constant c > 0 such that,

P(
n∑

i=1

Pix̂i > p) ≤ c

m1
. (2)

By a similar argument there exists a constant c′ > 0, such that

P(
n∑

i=1

Qiŷi > q) ≤ c′

m2
, (3)

Finally we have,

P

(
n∑

i=1

x̂iŷi <
1

2ζ1ζ2
zLP−PDB

)

= P

(
n∑

i=1

θiγiω̃
2
i

ζ1ζ2
<

1
2ζ1ζ2

n∑

i=1

θiγiω
∗
i

)

= P

(
n∑

i=1

θiγi∑n
j=1 θjγjω∗

j

ω̃i <
1
2

)

≤ e− 1
8 ,

(4)

where the last inequality follows from Chernoff bounds (b) with δ = 1/2. In
particular, θiγi∑n

j=1 θjγjω∗
j

≤ 1 for all i ∈ [n], this is because the unit vector ei

is feasible for LP-PDB for all i ∈ [n] such as θiγi ≤ zLP−PDB =
∑n

j=1 θjγjω
∗
j ,

and we also have, E
[∑n

i=1
θiγi∑n

j=1 θjγjω∗
j
ω̃i

]
= 1. Combining inequalities (2), (3)

and (4) we get that (x̂, ŷ) verifies the properties (1) with probability at least
1− c

m1
− c′

m2
−e− 1

8 = 1−e− 1
8 −o(1), which is greater than a constant for m1 and

m2 large enough. This implies in particular that with positive probability, (x̂, ŷ)
is feasible and has an objective value that is greater than 1

2ζ1ζ2
zLP−PDB. From

Lemma 2, this is greater than 1
2ζ1ζ2

zPDB. Therefore, with constant probability,
(x̂, ŷ) is a feasible solution of PDB that verifies the structural property. ��
Proof of theorem 1. Let (x∗,y∗) be the output solution of Algorithm 1. Then
(x∗,y∗) is such that

x∗ ∈ X , y∗ ∈ Y, x∗Ty∗ ≥ 1
2ζ1ζ2

· zPDB,

if and only if

x̂ ∈ X , ŷ ∈ Y, x̂T ŷ ≥ 1
2ζ1ζ2

· zPDB,

for some iteration t of the main loop. From our proof of lemma 1, this happens
with probability at least 1 − (e− 1

8 − o(1))T ≥ 1 − ε − o(1). Therefore, with
probability at least 1 − ε − o(1), Algorithm 1 outputs a feasible solution of PDB
whose objective value is within O( log log m1

log m1

log log m2
log m2

) of zPDB. ��
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Hardness of the General Disjoint Bilinear Program. Like packing linear
programs, the covering linear programs are known to have logarithmic integrality
gaps. Hence, a natural question to ask would be whether similar results can be
proven for an equivalent covering version of PDB, i.e., a disjoint bilinear program
of the form,

zcdb = min
x,y

{xTy | Px ≥ p, Qy ≥ q, x,y ≥ 0} (CDB)

where P ∈ R
m1×n
+ , Q ∈ R

m2×n
+ , p ∈ R

m1
+ and q ∈ R

m2
+ . However, the previous

analysis does not extend to the covering case. In particular, we have the following
inapproximability result.

Theorem 3. The covering disjoint bilinear program CDB is NP-hard to approx-
imate within any finite factor.

The proof of Theorem 3 uses a polynomial time transformation from the Mono-
tone Not-All-Equal 3-Satisfiability (MNAE3SAT) NP-complete problem and is
deferred to the full version of the paper.

3 From Disjoint Bilinear Optimization to Two-Stage
Adjustable Robust Optimization

In this section, we present a polylogarithmic approximation algorithm for AR. In
particular, we give a compact linear restriction of AR that provides near-optimal
first-stage solutions with cost that is within a factor of O( log n

log log n
log L

log log L ) of zAR.
Our proof uses ideas from our approximation of PDB applied to the separation
problem Q(x).

Recall the two-stage adjustable problem AR,

min
x∈X

cTx + Q(x),

where for all x ∈ X ,

Q(x) = max
h∈U

min
y≥0

{dTy | By ≥ h − Ax}.

Let us write Q(x) in its bilinear form. In particular, we take the dual of the
inner minimization problem on y to get,

Q(x) = max
h,z≥0

{

hT z − (Ax)T z

∣
∣
∣
∣
∣

BT z ≤ d

Rh ≤ r

}

.

For the special case where A = 0, the optimal first-stage solution is x = 0
and AR reduces to an instance of PDB. Therefore, our algorithm for PDB gives
an O( log n

log log n
log L

log log L )-approximation algorithm of AR in this special case.
In the general case, the separation problem Q(x) is the difference of a bilinear

and a linear term. This makes it challenging to approximate Q(x). Instead, we
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attempt to approximate AR directly. In particular, for any x ∈ X and y0 ≥ 0
such that Ax + By0 ≥ 0, we consider the following linear program:

QLP(x,y0) = max
ω≥0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=1

(θiγi − θiaT
i x − θibT

i y0)ωi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m∑

i=1

θibiωi ≤ d

m∑

i=1

γiRiωi ≤ r

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where θi := maxz{zi | Bz ≤ d, z ≥ 0}, γi := maxh{hi | Rh ≤ r,h ≥ 0}, ai

and bi are the i-th row of A and B respectively and Ri is the i-th column of
R. The role of y0 here is to handle the case when some of the entries of A are
negative. In fact, our approximation relies on the non-negativity of Ax. Since
this is not the case in general, we add a second-stage covering term By0 to Ax
for some static second-stage solution y0 ≥ 0 such that Ax+By0 ≥ 0. For ease of
notation, we use QLP(x,y0) to refer to both the problem and its optimal value.
Let η := 3 log n

log log n +2 and β := 3 log L
log log L +2. Similar to PDB, we show the following

structural property of the separation problem.

Structural Property. For x ∈ X and y0 ≥ 0 such that Ax + By0 ≥ 0, there
exists a near-integral solution (h, z) ∈ {0, γi

β }m × {0, θi

η }m of Q(x) such that,

m∑

i=1

bizi ≤ d,

m∑

i=1

Rihi ≤ r,

m∑

i=1

hizi − (aT
i x + bT

i y0)zi ≥ QLP(βx, βy0)
2ηβ

.

(5)

We construct such solution following a similar procedure as in Algorithm 1.
In particular, let ω∗ be an optimal solution of QLP(βx, βy0), consider ω̃1, . . . , ω̃m

i.i.d. Bernoulli random variables such that P(ω̃i = 1) = ω∗
i for all i ∈ [m] and

let (h, z) and let hi = γiω̃i

β and zi = θiω̃i

η for all i ∈ [m]. Such (h, z) satisfies the
properties (5) with a constant probability. The proof of this fact is similar to the
proof of Lemma 1 and is omitted due of lack of space. The proof is given in the
full version of the paper for completeness.

Because of the linear term, the solution given by this structural property is
not necessarily a near-optimal solution of Q(x) anymore. However, the existence
of such solution allows us to bound Q(x) as follows.

Lemma 4. For x ∈ X and y0 ≥ 0 such that Ax + By0 ≥ 0 we have,

1
2ηβ

QLP(βx, βy0) ≤ Q(x) ≤ QLP(x,y0) + dTy0.
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Our Linear Restriction. Before proving Lemma 4, let us discuss how we
derive our linear restriction of AR. In particular, consider the following problem
where Q(x) is replaced by QLP(x,y0) in the expression of AR:

zLP−AR = min
x∈X ,y0≥0

{
cTx + dTy0 + QLP(x,y0) | Ax + By0 ≥ 0

}
. (6)

Note for given x,y0, QLP(x,y0) is a maximization LP. Taking its dual and
substituting in (6), we get the following LP:

zLP−AR = min
x,y0,y,α

cTx + dTy0 + dTy + rT α

s.t. θiaT
i x + θibT

i y0 + θibT
i y + γiRT

i α ≥ θiγi ∀i,

Ax + By0 ≥ 0,

x ∈ X ,y0,y ≥ 0,α ≥ 0.

(LP-AR)

We claim that LP-AR is a restriction of AR and gives an O( log L
log log L

log n
log log n )-

approximation for . We first give the proof of Lemma 4.

Proof of Lemma 4. First, let (h∗, z∗) be an optimal solution of Q(x). Define ω∗

such that ω∗
i = z∗

i

θi
.
h∗

i

γi
for all i ∈ [m]. Then ω∗ is feasible for QLP(x,y0) with

objective value,

m∑

i=1

(θiγi − θiaT
i x − θibT

i y0)ω∗
i =

m∑

i=1

h∗
i z

∗
i − (aT

i x + bT
i y0)

h∗
i

γi
z∗
i

≥
m∑

i=1

h∗
i z

∗
i − (aT

i x + bT
i y0)z∗

i

=
m∑

i=1

h∗
i z

∗
i − aT

i xz∗
i − (

m∑

i=1

biz
∗
i )Ty0

≥ Q(x) − dTy0,

where the first inequality follows from the fact that hi

γi
≤ 1 and aT

i x+bT
i y0 ≥ 0

for all i ∈ [m], and the last inequality follows from the fact that
∑m

i=1 biz
∗
i ≤ d.

Hence Q(x) − dTy0 ≤ QLP(x,y0).
Now, consider (h, z) ∈ {0, γi

β }m ×{0, θi

η }m satisfying properties (5). The first
two properties imply that (h, z) is a feasible solution for Q(x). The objective
value of this solution is given by,

m∑

i=1

hizi − aT
i xzi ≥

m∑

i=1

hizi − (aT
i x + bT

i y0)zi ≥ 1
2ηβ

QLP(βx, βy0).

The first inequality holds because bT
i y0 ≥ 0 for all i ∈ [m], and the second

inequality follows from the properties (5). Hence, Q(x) ≥ 1
2ηβ QLP(βx, βy0). ��

Now, we are ready to prove Theorem 2.
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Proof of Theorem 2. We prove the following:

zAR ≤ zLP−AR ≤ 3ηβzAR.

Let x∗
LP, y∗

0,LP denote an optimal solution of (6). We have,

zLP−AR = cTx∗
LP + dTy∗

0,LP + QLP(x∗,y∗
0,LP) ≥ cTx∗

LP + Q(x∗
LP) ≥ zAR,

where the first inequality follows from Lemma 4 and the last inequality follows
from the feasibility of x∗

LP in AR.
To prove the upper bound for zLP−AR, let x∗ denote an optimal first-stage

solution of AR and let y∗
0 ∈ argminy≥0{dTy | Ax∗ +By ≥ 0}. Since 0 ∈ U is a

feasible second-stage scenario,

cTx∗ + dTy∗
0 ≤ zAR. (7)

Now, we have

zAR ≥ Q(x∗)

≥ 1
2ηβ

QLP(βx∗, βy∗
0)

=
1

2ηβ
(βcTx∗ + βdTy∗

0 + QLP(βx∗, βy∗
0)) − 1

2η
(cTx∗ + dTy∗

0)

≥ 1
2ηβ

(βcTx∗ + βdTy∗
0 + QLP(βx∗, βy∗

0)) − 1
2
zAR

≥ 1
2ηβ

zLP−AR − 1
2
zAR,

where the second inequality follows from Lemma 4, the third inequality follows
from (7) and the fact that η ≥ 1. For the last inequality, note that βx∗ ∈ X ,
βy∗

0 ≥ 0 and βAx∗ + βBy∗
0 ≥ 0. Therefore, βx∗, βy∗

0 is a feasible solution
for (6). This implies that zLP−AR ≤ 3ηβzAR. ��

4 Numerical Experiments

In this section, we compare our approximation to finding the optimal affine
policy. Affine policies are widely used approximation policy for AR. Ben-Tal et
al. [2] show that the optimal affine policy can be found in polynomial time by
solving a linear program with polynomially many constraints and variables. We
show that our algorithm is significantly faster and provides good approximate
solutions. The results of the experiment are given in Table 1.

Experimental Setup. We consider the same instances as in Ben-Tal et al. [3],
namely, we consider instances of AR where n = m, c = d = e and A = B =
Im +G, where Im is the identity matrix and G is a random normalized Gaussian
matrix. We consider the case where X = R

m
+ and U is an intersection of L budget
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of uncertainty sets of the form U =
{
h ∈ [0, 1]m | ωT

l h ≤ 1 ∀l ∈ [L]
}

, where the
weight vectors ωl are normalized Gaussian vectors, i.e., ωl,i = |Gl,i|√∑

i(Gl,i)2
for

{Gl,i} i.i.d. standard Gaussian variables.
We compare the running time of our algorithm in seconds denoted by TLP−AR

with the running time needed to compute the optimal affine policy denoted by
Taff , for different values of n = m and L. We also compare the ratio between
the optimal cost of LP-AR denoted by zLP−AR and the cost of the optimal affine
policy denoted by zaff . The results are given in Table 1 and were obtained using
Gurobi v9.1.2 on a dual-core laptop with 8 Go of RAM and 1.8 GHz processor.

Results. Table 1 shows that solving LP-AR significantly faster than finding the
optimal affine policy. For example, when n = m = 100 computing the optimal
affine policy is more than 10000 times slower than LP-AR for all considered
values of L. Furthermore, the cost of LP-AR stays within approximately 30% of
the cost of the optimal affine policy. We also observe numerically that this gap
gets smaller when we increase the dimension of our problem and therefore our
algorithm gets close to the optimal affine policy for large instances, which are
usually the computationally challenging instances for the optimal affine policy.

Table 1. Comparison of the optimal value and the running time in seconds between
our algorithm and the optimal affine policy, for different values of n = m and L.

n Taff TLP−AR
zLP−AR

zaff

20 0.57 0.07 1.28

30 3.70 0.08 1.25

40 12.5 0.06 1.25

50 33.2 0.10 1.23

60 76.0 0.03 1.23

70 222 0.03 1.22

80 430 0.04 1.21

90 768 0.06 1.21

100 1790 0.17 1.22

(a) L=20

n Taff TLP−AR
zLP−AR

zaff

20 1.15 0.05 1.32

30 3.03 0.03 1.30

40 8.58 0.03 1.31

50 28.2 0.02 1.28

60 78.7 0.04 1.27

70 193 0.10 1.27

80 508 0.10 1.26

90 1116 0.06 1.25

100 1714 0.04 1.22

(b) L=50

n Taff TLP−AR
zLP−AR

zaff

20 1.58 0.07 1.38

30 3.62 0.07 1.35

40 11.5 0.05 1.32

50 29.6 0.08 1.33

60 78.7 0.05 1.30

70 175 0.09 1.27

80 386 0.10 1.28

90 657 0.13 1.27

100 1354 0.12 1.27

(c) L=100

5 Conclusion

In this paper, we consider the class of packing disjoint bilinear programs PDB
and present an LP-rounding based randomized approximation algorithm for this
problem. In particular, we show the existence of a near-optimal near-integral
solution for PDB. We give an LP relaxation from which we obtain such solution
using a randomized rounding of an optimal solution. We apply our ideas to
the two-stage adjustable problem AR whose separation problem is a variant of
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PDB. While a direct application of the approximation algorithm for PDB does
not work for AR, we derive an LP restriction of AR, based on similar ideas,
that gives a polylogarithmic approximation of AR. We compare our algorithm
with the widely used affine policies and show that it is significantly faster and
provides near-optimal solutions.
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Abstract. In generalized malleable scheduling, jobs can be allocated
and processed simultaneously on multiple machines so as to reduce the
overall makespan of the schedule. The required processing time for each
job is determined by the joint processing speed of the allocated machines.
We study the case that processing speeds are job-dependent M �-concave
functions and provide a constant-factor approximation for this setting,
significantly expanding the realm of functions for which such an approxi-
mation is possible. Further, we explore the connection between malleable
scheduling and the problem of fairly allocating items to a set of agents
with distinct utility functions, devising a black-box reduction that allows
to obtain resource-augmented approximation algorithms for the latter.

1 Introduction

Parallel execution of a job on multiple machines is often used to optimize the
overall makespan in time-critical task scheduling systems. Practical applications
are numerous and diverse, varying from task scheduling in production and logis-
tics, such as quay crane allocation in naval logistics [4,15] and cleaning activi-
ties on trains [3], to optimizing the performance of computationally demanding
tasks, such as web search index update [28] and training neural networks [12]
(see also [9,10] for further references and examples).

The model ofmalleable (a.k.a.moldable) jobs, introduced by Du and Leung [8],
captures the algorithmic aspects of scheduling jobs that can be executed simulta-
neously on multiple machines. A malleable job can be assigned to an arbitrary sub-
set of machines to be processed non-preemptively and in unison, i.e., with the same
starting and completion time on each of the allocated machines. Importantly, the
scheduler decides on the degree of parallelization for each job by choosing the set
of machines allocated to each job (in contrast to non-malleable parallel machine
models, where a single machine is allocated to each task).

Despite the significant interest in the model, most of the work on scheduling
malleable jobs considers the case of identical machines, where the processing
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time of a job only depends on the number of allocated machines. A common
assumption is that a job’s processing time is non-increasing in the number k of
allocated machines, while a job’s work (i.e., k times the job’s processing time on k
machines) is non-decreasing in k. This is usually referred to as the monotone work
assumption and accounts for communication and coordination overhead due to
parallelization. The approximability of makespan minimization in the setting of
malleable job scheduling on identical machines is very well understood. Constant-
factor approximation algorithms are known since the work of Turek et al. [27].
Following a line of successive improvements in the approximation factor [17,
21,22], two recent results by Jansen and Thöle [18] and Jansen and Land [16]
implied a polynomial-time approximation scheme for malleable scheduling on
identical machines.

On the other hand, scheduling malleable jobs on non-identical machines has
received much less attention. As a natural first step, building on previous work
by Correa et al. [7] on the closely related splittable job model, Fotakis et al. [9]
introduced the setting of speed-implementable processing-time functions, where
each machine i has an unrelated “speed” sij for each job j and a job’s processing
time is a non-decreasing function of the total allocated speed fulfilling a natural
generalization of the non-decreasing work assumption. They devised an LP-based
3.16-approximation for this setting.

However, as recently observed in [10], the aforementioned models, in which
the processing power of a heterogeneous set of machines is expressed by a
single scalar, cannot capture the (possibly complicated) combinatorial interac-
tion effects arising among different machines processing the same job. Practical
settings where such complicated interdependencies among machines may arise
include modern heterogeneous parallel computing systems, typically consisting
of CPUs, GPUs, and I/O nodes [5], and highly distributed processing systems,
where massive parallelization is subject to constraints imposed by the under-
lying communication network [1]; see [10] for further references and examples.
Having such practical settings in mind, Fotakis et al. [10] introduced a general-
ized malleable scheduling model, where the processing time fj(S) = 1/gj(S) of
a job j depends on a job-specific processing speed function gj(S) of the set of
machines S allocated to j. In addition to motivating and introducing the model,
they derived an LP-based 5-approximation for scaled matroid rank processing
speeds, and a O(logmin{n,m})-approximation algorithm for submodular pro-
cessing speeds, where n is the number of jobs and m is the number of machines.

Fotakis et al. [10] left open whether there are processing speed functions
more general than scaled matroid rank functions for which generalized malleable
scheduling can be approximated within a constant factor. In this work, employing
notions and techniques from the field of Discrete Convexity [23], we present a
constant-factor approximation algorithm for job-dependent M �-concave (a.k.a.
gross substitute) processing speed functions, thus significantly expanding the
realm of functions for which such an approximation is possible. We further point
out a connection between malleable scheduling and the so-called max-min fair
allocation problem, devising a black-box reduction that allows to obtain resource-
augmented approximation algorithms for the latter.
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1.1 Generalized Malleable Scheduling and Main Results

To discuss our contribution in more detail, we need to formally introduce the
Generalized Malleable Scheduling problem. We are given a set of jobs J to be
assigned to a set of machines M . Each job j ∈ J is equipped with a processing
time function fj : 2M → R≥0 that specifies the time fj(S) needed for the
completion of j, when assigned to a subset of machines S ⊆ M . We assume that
functions fj are accessed through a value oracle that, given S ⊆ M , returns the
value of fj(S). A schedule consists of two parts: (i) an assignment S = (Sj)j∈J

of each job j ∈ J to a non-empty set of machines Sj ⊆ M ; and (ii) a starting
time vector t = (tj)j∈J , specifying the time tj at which jobs in Sj start to
jointly process job j. A schedule is feasible, if Sj ∩ Sj′ = ∅ for all j, j′ ∈ J with
tj < tj′ < tj + fj(Sj), i.e., while a machine is involved in processing a job j,
it cannot start processing any other job j′. The objective is to find a feasible
schedule of minimum makespan C(S, t) := maxj∈J{tj + fj(Sj)}.

An interesting relaxation of the above Scheduling problem is the Assign-
ment problem, asking for an assignment S that minimizes the load L(S) :=
maxi∈M

∑
j∈J:i∈Sj

fj(Sj). Clearly, the load of an assignment is a lower bound
on the makespan of any feasible schedule using that same assignment.

The processing speed of a set of machines S for a job j is gj(S) := 1/fj(S).
Under the assumption that for each job j ∈ J , the processing speed function gj

is submodular, [10, Theorem 1] shows that any assignment of maximum machine
load C can be transformed in polynomial time into a so-called well-structured
schedule, where each machine shares at most one job with another machine,
of makespan at most 2e

e−1C. Thus, suffering a small constant-factor loss in the
approximation ratio, we can approximate the optimal makespan in Generalized
Malleable Scheduling by approximating the Assignment problem.

Our main contribution is an O(1)-approximation for the Assignment prob-
lem with M �-concave processing speeds (see Sect. 1.2 for definitions of submod-
ularity and M �-concavity). Because all M �-concave functions are submodular,
our results, together with the aforementioned transformation [10], imply the
following theorem.

Theorem 1. There is a polynomial time constant-factor approximation algo-
rithm for Assignment and Scheduling with M �-concave processing speeds.

1.2 Submodularity, M�-Concavity, and Matroids

Let g : 2M → R be a function. The demand set for g and a vector p ∈ R
M is

defined by D(g, p) := argmaxS⊆M g(S) −
∑

i∈S pi. We say that g is

– submodular if g(S ∪ T ) + g(S ∩ T ) ≤ g(S) + g(T ) for all S, T ⊆ M .
– M �-concave if for any p′, p′′ ∈ R

M with p′ ≤ p′′ and any S′ ∈ D(g, p′) there
is an S′′ ∈ D(g, p′′) with S′ ∩ {i ∈ M : p′

i = p′′
i } ⊆ S′′.

Submodularity of g is equivalent to the following diminishing returns property:
g(S ∪ {i}) − g(S) ≥ g(T ∪ {i}) − g(T ) for all S ⊆ T ⊆ M and i ∈ M\T .
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A matroid on the ground set M is a non-empty set family F ⊆ 2M such that
(i) T ∈ F implies S ∈ F for all S ⊆ T and (ii) for every S, T ∈ F with |S| < |T |
there is an i ∈ T\S such that S ∪ {i} ∈ F . It is well known that the the rank
function r(S) := maxS⊆T :S∈F |S| for S ⊆ M of any matroid F is submodular.

M �-concavity, also known as the gross substitutability, defines an important
subclass of submodular functions. Gross-substitute functions have been widely
studied, receiving particular attention in economics and operations research, due
to their applications in diverse fields such as labor and housing markets [14,19],
inventory management [6], or structural analysis for engineering systems [24]; see
the survey by Paes Leme [25] and the textbook by Murota [23] for an overview
of the rich collection of algorithmic results for these class of functions.

In the following, we provide an example for a subclass of M �-concave func-
tions, known as matroid-based valuations [25] or Rado valuations [13], which
naturally arise in the context of malleable scheduling.

Example: Rado Valuations. Assume that each j ∈ J is equipped with a set of
processing slots Vj together with a matroid Fj on Vj . Each slot represents a role
that a machine can take to speed up the completion of job j. For each machine
i ∈ M and each slot v ∈ Vj , a weight wiv ≥ 0 specifies how much i would
contribute to the processing of job j when assigned to v. When j is processed
by a set of machines S, each machine in S can fill at most one of j’s processing
slots and each slot can be taken by at most one machine, i.e., the machines in S
are matched to the slots in Vj . The matroid Fj on Vj specifies which of its slots
can be used simultaneously (e.g., the slots could be partitioned into groups and
from each group only a limited number of slots may be used). Thus, a feasible
matching of the machines in S to the slots in Vj is a function π : S → Vj ∪ {∅}
(where ∅ denotes the machine not being used) such that π(i) = π(i′) 
= ∅ implies
i = i′ and such that {π(i) : i ∈ S, π(i) 
= ∅} ∈ Fj . Denoting the set of feasible
matchings from S to Vj by ΠS,j , the processing speed of a set of machines S for
job j is given by gj(S) = maxπ∈ΠS,j

∑
i∈S,π(i) �=∅ wiπ(i).

1.3 Organization of the Paper

In the following Sects. 2 to 4 we discuss our main result in detail. Our constant-
factor approximation is based on a linear programming relaxation of the Assign-
ment problem that we discuss in Sect. 2, where we show that a pair of optimal
primal and dual solution to the LP generate a weighted matroid that can be used
to approximate the processing speed functions. This is exploited in the remain-
ing three steps of the algorithm, that, based on the LP solution, partition the
set of jobs into three groups, each of which is assigned separately. We first give
an overview of these steps in Sect. 3 and then discuss them in detail in Sect. 4.
In Sect. 5, we finally turn our attention to the Max-min Fair Allocation
(MMFA) problem and present a blackbox reduction that turns approximation
algorithms for generalized malleable scheduling into resource-augmented approx-
imation algorithms for MMFA. All missing proofs can be found in the full version
of the paper [11].
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2 The Configuration LP

In the following we introduce a configuration LP, which features a fractional
variable x(S, j) ≥ 0 for each non-empty S ⊆ M and each j ∈ J (and an auxiliary
slack variable si ≥ 0 for each machine i ∈ M). We will show that this LP, for a
given target bound C, is feasible if there is an assignment of load at most C.

maximize:
∑

i∈M

si (GS)

s.t.:
∑

S⊆M :S �=∅

(
2 − 1

Cgj(S)

)
x(S, j) ≥ 1 ∀j ∈ J

∑

j∈J

∑

S⊆M :i∈S

1
gj(S)x(S, j) + si ≤ C ∀i ∈ M

x, s ≥ 0

The dual of (GS) is the following LP.

minimize: −
∑

j∈J

λj + C
∑

i∈M

μi (GS-D)

s.t.:
(
2gj(S) − 1

C

)
λj −

∑

i∈S

μi ≤ 0 ∀j ∈ J, S ⊆ M,S 
= ∅

μi ≥ 1 ∀i ∈ M

λj ≥ 0 ∀j ∈ J

The following lemma reveals that (GS) is indeed a relaxation of Assignment.

Lemma 1. If there exists an assignment S with L(S) ≤ C, then (GS) is feasible.
In addition, if λ, μ is an optimal solution to (GS-D), then λj > 0 for all j ∈ J .

Henceforth, let (x, s) and (λ, μ) be primal-dual optimal solutions to (GS) and
(GS-D), respectively. For j ∈ J , define

g∗
j (S) := 2gj(S) −

∑

i∈S

μi

λj
and Dj := argmaxS⊆M g∗

j (S).

Note that the first constraint of (GS-D) is equivalent to g∗
j (S) ≤ 1/C for all

S ⊆ M and j ∈ J . Thus complementary slackness implies that sets in the
support of x are maximizers of g∗

j , as formalized in the next lemma.

Lemma 2. If x(S, j) > 0 for S ⊆ M and j ∈ J , then gj(S) ≥ 1
2C and S ∈ Dj.

We now observe that the sets Dj defined in the preceding lemma induce a
matroid. This is a consequence of M �-concavity, which g∗

j inherits from gj .
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Lemma 3. The system Fj := {S ⊆ M : S ⊆ T for some T ∈ Dj} is a matroid
for any j ∈ J

Our final lemma in the analysis of (GS) shows that the values μi/λj provide
an approximation for gj on the matroid Fj .

Lemma 4. Let S ∈ Fj and j ∈ J . Then gj(S) ≥ 1
2

∑
i∈S

μi

λj
.

Proof. Because S ∈ Fj there is T ∈ Dj with S ⊆ T . Let i1, . . . , i� be an arbitrary
ordering of the elements in S and let Sk = {i1, . . . , ik} for k ∈ [�]. We obtain

2gj(S) =
�∑

k=1

2gj(Sk) − 2gj(Sk\{ik}) ≥
�∑

k=1

2gj(T ) − 2gj(T\{ik}) ≥
�∑

k=1

μik

λj
,

where the first inequality follows from submodularity and the second follows from
the fact that T ∈ Dj implies 2gj(T ) −

∑
i∈T

μi

λj
≥ 2gj(T \ {i′}) −

∑
i∈T\{i′}

μi

λj

for all i′ ∈ T , as T is a maximizer of g∗
j . �

3 Overview of the Algorithm

Given a target makespan C, our algorithm starts from computing an optimal
primal-dual solution (x, s) and (λ, μ) to (GS) and (GS-D). Note that such solu-
tions can be computed via dual separation, as the separation problem for (GS-D)
can be solved via a greedy algorithm for M �-concave functions.

If (GS) turns out to be infeasible, we conclude that there is no assignment of
maximum load C by Lemma 1. Otherwise, we continue by partitioning the job
set into three types. For each of these types, we will show independently how to
turn the corresponding part of the solution to (GS) into an assignment whose
load can be bounded by a constant factor times C. Binary search for the smallest
C for which (GS) is feasible then yields a constant-factor approximation.

The first type are the jobs that are assigned by our algorithm to a single-
machine. For j ∈ J define M+

j := {i ∈ M : gj({i}) ≥ 1
16C }. Let

J1 :=
{

j ∈ J :
∑

i∈M+
j

∑
S⊆M :i∈S

gj({i})
gj(S) x(S, j) ≥ 1

16

}
.

In Sect. 4.1, we show how to obtain an assignment for the jobs in J1 using the LP
rounding algorithm of Lenstra et al. [20] for non-malleable unrelated machine
scheduling. This establishes the following result.

Lemma 5. Step 1 of the algorithm computes in polynomial time an assignment
for the jobs in J1 with a maximum machine load of at most 32C.

The second type of jobs are those that are assigned predominantly to groups
of machines with a relatively low total weight. Formally, define

S2
j :=

{
S ⊆ M :

∑
i∈S μi/λj ≤ 4

C

}
and J2 :=

{
j ∈ J \ J1 :

∑
S∈S2

j
x(S, j) ≥ 1

8

}
.

In Sect. 4.2, we show how to assign the jobs in J2 via the so-called Welfare
problem, which can be solved optimally in polynomial time for gross-substitute
functions. This establishes the following result.
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Lemma 6. Step 2 of the algorithm computes in polynomial time an assignment
for the jobs in J2 with a maximum machine load of at most 40C.

Finally, we consider the jobs in J3 := J \ (J1 ∪ J2). Assigning these jobs is
more involved than in the preceding cases.

In Sect. 4.3, we modify the fractional LP solution for the jobs in J3 in such
a way that the sum of fractional assignments for each machine is bounded by
a constant. This transformation uses the fact that we already filtered out jobs
using predominantly fast machines or slow assignments in Steps 1 and 2.

In Sect. 4.4, we partition the set of machines for each job according to their
weights μi/λj into classes whose weight differs by a factor of 2. We then use
the approximation of the functions gj via matroids described in Lemma 4 to
reformulate the problem of assigning a sufficient number of machines from each
weight class to each job in J3, while assigning to each machine only a constant
number of jobs, as an intersection of two polymatroids. The transformed LP
solution derived before guarantees the existence of a feasible solution to this
polymatroid intersection, from which we can derive an assignment of the jobs in
J3, establishing the following result.

Lemma 7. Step 3 of the algorithm computes in polynomial time an assignment
for the jobs in J3 with a maximum machine load of at most 121C.

By concatenating the assignments for the individual job types we obtain the
following result, which implies Theorem 1.

Theorem 2. There exists a polynomial-time 193-approximation algorithm for
Assignment when processing speeds are M �-concave.

4 Description and Analysis of the Intermediate Steps

4.1 Step 1: Single-machine Assignments for J1

Recalling the definitions of M+
j =

{
i ∈ M : gj({i}) ≥ 1

16C

}
for j ∈ J and of

J1 =
{
j ∈ J :

∑
i∈M+

j

∑
S⊆M :i∈S

gj({i})
gj(S) x(S, j) ≥ 1

16

}
, consider the following

assignment LP:
∑

i∈M+
j

yij ≥ 1 ∀ j ∈ J1 (GS-A)
∑

j∈J1

1
gj({i})yij ≤ 16C ∀ i ∈ M

yij = 0 ∀ j ∈ J, i ∈ M \ M+
j

y ≥ 0

Note that (GS-A) corresponds to an instance of the classic makespan mini-
mization problem on unrelated machines. It can be shown that the solution x to
(GS) induces a feasible solution to (GS-A). By applying the rounding algorithm
of Lenstra et al. [20] to an extreme point solution of (GS-A), we get an assign-
ment of the jobs in J1 in which each machine i ∈ M receives a load of at most
16C +1/gj({i}) for some j ∈ J1 with i ∈ M+

j . Because gj({i}) ≥ 1
16C for j ∈ J1

and i ∈ M+
j , the load of this assignment is at most 32C and Lemma 5 follows.
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4.2 Step 2: Assignments with Low Total Speed for J2

Recalling the definitions of S2
j = {S ⊆ M :

∑
i∈S μi/λj ≤ 4/C} and of J2 =

{j ∈ J \ J1 :
∑

S∈S2
j
x(S, j) ≥ 1

8} consider the following LP:

maximize:
∑

S⊆M

∑

j∈J2

g∗
j (S)z(S, j) (GS-W)

s.t.:
∑

S⊆M

z(S, j) ≤ 1 ∀ j ∈ J2

∑

j∈J2

∑

S⊆M :i∈S

z(S, j) ≤ 20 ∀ i ∈ M

z ≥ 0

Again, it can be shown that the solution x to (GS) induces a feasible solution
to (GS-W). Moreover, (GS-W) corresponds to an LP relaxation of the so-called
Welfare Maximization problem. Because the functions g∗

j are M �-concave,
(GS-W) is integral, and integer optimal solutions can be found in polynomial
time [26]. Thus, let z be such an integer optimal solution. Lemma 8 below guar-
antees that for each j ∈ J2 there is a set Sj ⊆ M with z(Sj , j) = 1 and
gj(Sj) ≥ 1/2C. Since each machine participates in the execution of at most
20 jobs, each of processing time 2C, we obtain an assignment with load at most
40C for the jobs in J2, and Lemma 6 follows.

Lemma 8. Let z be an integral optimal to (GS-W). Then for each j ∈ J2 there
is a set Sj with z(Sj , j) = 1 and gj(Sj) ≥ 1

2C .

Proof (sketch). Using the construction of J2, it can be shown that setting
z′(S, j) := x(S, j)/

∑
S′∈S2

j
x(S′, j) for j ∈ J2 and S ∈ S2

j yields a solution
of value

∑
j∈J2

∑
S⊆M g∗

j (S)z
′(S, j) = |J2|/C to (GS-W). Now let z be an inte-

gral optimal solution. Note that
∑

j∈J2

∑
S⊆M g∗(S)z(S, j) ≥ |J2|/C by total

dual integrality. Because g∗
j (S) ≤ 1

C for S ⊆ M and j ∈ J by the constraints of
(GS-D), we conclude that for each j ∈ J2 there is a set Sj with z(Sj , j) = 1 and
g∗

j (Sj) = 1
C . The latter implies gj(Sj) =

(
g∗

j (Sj) +
∑

i∈Sj
μi/λj

)
/2 ≥ 1

2C . �

4.3 Step 3A: Splitting Assignments with High Total Speed

Recall that J3 = J \ (J1 ∪ J2). For j ∈ J3 define

S3
j :=

{
S ⊆ M : x(S, j) > 0, S /∈ S2

j ,
∑

i∈S\M+
j

μi

λj
>

∑
i∈S∩M+

j

μi

λj

}
.

We construct a new fractional assignment x′ : 2M × J3 → R≥0 as follows. For
each j ∈ J3 and each T ∈ S3

j , find a partition Aj(T ) of T \ M+
j such that

–
∑

i∈A μi/λj ≤ 4/C for all A ∈ Aj(T ).
–

∑
i∈A μi/λj +

∑
i∈A′ μi/λj > 4/C for all distinct sets A,A′ ∈ Aj(T ).
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Notice that if i ∈ T \ M+
j for some T ∈ S3

j then {i} ∈ Fj because x(T, j) > 0
and thus μi/λj ≤ 2gj({i}) < 1/(8C) ≤ 4/C by Lemma 4. Therefore, a partition
as the one described above exists and can be constructed greedily. For j ∈ J3

and S ⊆ M let Tj(S) := {T ∈ S3
j : S ∈ Aj(T )} and define

x̄(S, j) :=
∑

T∈Tj(S)

gj(S)∑
A∈Aj(T ) gj(A)

x(T, j) and x′(S, j) :=
x̄(S, j)

γj
,

where γj :=
∑

S⊆M x̄(S, j). We further define x′
ij :=

∑
S⊆M :i∈S x′(S, j) for ease

of notation.
The modified fractional assignment x′ exhibits several properties that will be

useful in the construction of an integral assignment for J3.

Lemma 9. The assignment x′ described above fulfills the following properties:
1.

∑
S⊆M x′(S, j) = 1 for all j ∈ J3,

2. S ∩ M+
j = ∅ and S ∈ Fj for all S ⊆ M and j ∈ J3 with x′(S, j) > 0.

3.
∑

j∈J3
x′

ij ≤ 26 for all i ∈ M ,
4.

∑
i∈M

μi

λj
x′

ij ≥ 79
40C for all j ∈ J3,

Proof (sketch). The first two properties of the lemma follow directly from con-
struction of x′ and from the fact that S ∈ Fj when x(S, j) > 0. Intuitively, the
construction of x′ splits assignments of high total weight into assignments of
moderate weight, then scaling the solution by 1/γj so as to compensate for the
fact that machines in M+

j and assignments in S2
j are ignored. The main part of

the proof is to show that this scaling factor and thus the blow-up in makespan
can be bounded by a small constant. Once this is established, Property 3 follows
from the fact that x′(S, j) > 0 implies gj(S) ≤ 1

2

(
1
C +

∑
i∈S

μi

λj

)
≤ 5

2C by con-
struction and hence the total sum of fractional assignments for every machine
is bounded by a constant. Finally, Property 4 can be derived from the fact that∑

i∈S∩M+
j

μi

λj
> 1

2

∑
i∈S

μi

λj
≥ 2

C for all S ∈ S3
j . �

4.4 Step 3B: Constructing an Integer Assignment for J3

For j ∈ J3 and k ∈ Z define

Mjk :=
{

i ∈ M : 1
2k+1C

< μi

λj
≤ 1

2kC

}
and djk :=

⌊
∑

i∈Mjk
x′

ij

⌋

.

Note that there are only polynomially many k ∈ Z with djk > 0.
Furthermore, define r′

j(U) :=
∑

k∈Z
min {rj(U ∩ Mjk), djk} for j ∈ J3 and

U ⊆ M , where rj is the rank function of the matroid Fj . Consider the LP:

maximize:
∑

i∈M

∑

j∈J3

yij (GS-P)

s.t.:
∑

j∈J3

yij ≤ 26 ∀ i ∈ M

∑

i∈U

yij ≤ r′
j(U) ∀U ⊆ M, j ∈ J3

y ≥ 0
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Let y be an integer optimal solution to the following LP (such a point exists
and can be computed in polynomial time due to Lemmas 10 and 11 below). The
assignment for J3 is constructed by setting Sj := {i ∈ M : yij > 0} for j ∈ J3.

Because y is integral, |{j ∈ J3 : i ∈ Sj}| ≤ 26 for each i ∈ M . Moreover,
Lemma 13 guarantees that fj(Sj) ≤ 320C/69 for each j ∈ J3. We have thus
found an assignment of the jobs in J3 with maximum load 26 ·320C/69 < 121C.
This completes the proof of Lemma 7 and the description of the algorithm.

To complete the analysis, it remains to prove Lemmas 10 and 13 invoked
above. We first observe that the function r′

j is submodular for each j ∈ J3 and
hence (GS-P) is indeed the intersection of two polymatroids. As a consequence,
we obtain the following lemma.

Lemma 10. All extreme points of (GS-P) are integral. If (GS-P) is feasible, an
optimal extreme point can be computed in polynomial time.

We next show that (GS-P) has a feasible solution that attains the bound∑
i∈Mjk

yij ≤ djk implicit in the definition of r′
j for each k and j with equality.

Lemma 11. (GS-P) has a feasible solution of value
∑

j∈J3

∑
k∈Z

djk.

Proof (sketch). For j ∈ J3 and i ∈ Mjk, let y′
ij := djk∑

i′∈Mjk
x′
i′j

x′
ij if djk > 0 and

y′
ij := 0 otherwise. By construction,

∑
i∈M

∑
j∈J3

y′
ij =

∑
j∈J3

∑
k∈Z

djk.
To see that y′ is also feasible, observe that

∑
j∈J3

y′
ij ≤

∑
j∈J3

x′
ij ≤ 26 by

Property 3 of Lemma 9 and the fact that y′
ij ≤ x′

ij by construction. Moreover,
Properties 1 and 2 imply

∑
i∈U∩Mjk

y′
ij ≤ min{djk, r(U ∩ Mjk)} for all U ⊆ M

and all k ∈ Z. As Mjk ∩Mjk′ = ∅ for k 
= k′, we conclude that
∑

i∈U y′
ij ≤ r′(U).

Hence y′ is a feasible solution to (GS-P). �

To prove Lemma 13, we use the following consequence of the properties of x′

described in Lemma 9.

Lemma 12.
∑

k∈Z

1
2kC

djk ≥ 69
40C for every j ∈ J3.

Proof. Note that x′(S, j) > 0 implies S ∩ M+
j = ∅ by Property 2 of Lemma 9

and hence μi

λj
≤ 2gj({i}) < 1

8C for all i ∈ S. Hence djk = 0 for k < 3 and thus

∑

k∈Z

1
2kC

djk =
∞∑

k=3

1
2kC

⌊ ∑

i∈Mjk

x′
ij

⌋

≥
∑

i∈M

μi

λj
x′

ij −
∞∑

k=3

1
2kC

≥
∑

S⊆M

∑

i∈S

μi

λj
x′(S, j) − 1

4C
≥ 79

40C
− 1

4C
=

69
40C

,

where the last inequality follows from Property 4 of Lemma 9. �

We are now ready to combine Lemmas 11 and 12 and the fact that Sj ∈ Fj

to show that each job in J3 is indeed assigned sufficient processing speed.

Lemma 13. For j ∈ J3 let Sj := {i ∈ M : yij > 0}. Then gj(Sj) ≥ 69
320C .
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Proof. Note that
∑

j∈J3

∑

k∈Z

djk ≤
∑

j∈J3

∑

i∈M

yij =
∑

j∈J3

∑

k∈Z

∑

i∈Mjk

yij ≤
∑

j∈J3

∑

k∈Z

r′
j(Mjk) ≤

∑

j∈J3

∑

k∈Z

djk

where the first identity follows from by Lemma 11 and the final two inequalities
follow from feasibility of y and definition of r′

j , respectively. We conclude that all
inequalities are fulfilled with equality, which is only possible if

∑
i∈Mjk

yij = djk

for all j ∈ J3 and k ∈ Z.
Let Tj ⊆ Sj with Tj ∈ Fj maximizing

∑
i∈Tj

μi

λj
computed by the matroid

greedy algorithm. The greedy algorithm ensures
∣
∣
∣Tj ∩

⋃�
k=0 Mjk

∣
∣
∣ ≥ rj(Sj ∩Mj�)

for all � ∈ Z. We conclude that

∑

i∈Tj

μi

λj
≥ 1

2

∞∑

k=0

rj(Sj ∩ Mjk)
1

2k+1C
≥ 1

2

∞∑

k=0

1
2k+1C

∑

i∈Mjk

yij

≥ 1
4

∞∑

k=0

1
2kC

djk ≥ 69
160C

,

where the last inequality follows from Lemma 12. Because Tj ∈ Fj , we conclude
that gj(Sj) ≥ gj(Tj) ≥ 69

320C by Lemma 4. �

5 Generalized Malleable Jobs and Fair Allocations

In this section, we explore an interesting relation between generalized malleable
scheduling and Max-min Fair Allocation (MMFA). In this problem, we are
given a set of items I and a set of agents A. Each agent j ∈ A has a utility
function uj : 2I → R≥0 on the items. Our goal is to assign the items to the
agents in a way to maximize the minimum utility, that is, to find an assignment
T with |{j ∈ A : i ∈ Tj}| ≤ 1 for all i ∈ I so as to maximize minj∈A uj(Tj).

We show that any approximation algorithm for malleable scheduling implies
a resource-augmented approximation for MMFA in which some items may be
assigned to a small number of agents (this can be interpreted as a moderate way
of splitting these items, e.g., multiple agents sharing a resource by taking turns).

To formalize this result, we establish two definitions. A β-augmented α-
approximation algorithm for MMFA is an algorithm that given an MMFA
instance computes in polynomial time an assignment T with minj∈A uj(Tj) ≥
1
αV ∗ and |{j ∈ A : i ∈ Tj}| ≤ β for all i ∈ I, where V ∗ is the optimal solution
value of the MMFA instance. Moreover, we say that a class of set functions C
is closed under truncation if for any h ∈ C and any t ∈ R≥0, the function ht

defined by ht(S) := min{h(S), t} is contained in C.

Theorem 3. Let C be a class of set functions closed under truncation. If there
is an α-approximation algorithm for Assignment with processing speeds from
C, then there is an �α�-augmented α-approximation algorithm for MMFA with
utilities from C.
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Proof. Given an instance of MMFA and a target value V for the minimum utility
(to be determined by binary search), let M := I and J := A, i.e., we introduce a
machine for each item and a job for each agent. Define processing speeds gj for
j ∈ J by gj(S) := min{uj(S), V } for S ⊆ M . Now apply the α-approximation
algorithm to this Assignment instance and obtain an assignment S.

If maxi∈M

∑
j∈J:i∈Sj

1/gj(Sj) ≤ α/V , then return the assignment S as a
solution to the MMFA instance (note that in this case, gj(Sj) ≥ V/α for each
j ∈ J and |{j ∈ J : i ∈ Sj}| ≤ �α� for all i ∈ M , because gj(Sj) ≤ V
for all j ∈ J). If, on the other hand, maxi∈M

∑
j∈J:i∈Sj

1/gj(Sj) > α/V , then
we conclude that the MMFA instance does not allow for a solution of value V
(because such a solution would have load 1/V in the Assignment instance). �

This black-box reduction, together with the 3.16-approximation for speed-
implementable functions [9] implies a 3-augmented 3.16-approximation for the
well-known Santa Claus problem [2] (the special case of MMFA with linear
utilities). A more careful analysis delivers the following stronger result:

Corollary 1. There is a 2-augmented 2-approximation for Santa Claus.

Although M �-concave functions are not closed under truncation as defined
above, a slightly different form of truncating processing speeds allows us to apply
the reduction on the constant-factor approximation for M �-concave processing
speeds presented in this paper. We thus obtain the following result.

Corollary 2. There exists a O(1)-augmentation O(1)-approximation algorithm
for MMFA with M �-concave utilities.

6 Conclusion

In this paper we have presented a constant-factor approximation for generalized
malleable scheduling under M �-concave processing speeds. To achieve a con-
stant approximation guarantee, our algorithm makes extensive use of structural
results from discrete convex analysis. We think that some of the techniques,
such as the rounding technique for weighted polymatroids in Sect. 4.4, might be
of independent interest and applicable in other contexts as well. We have not
made any attempt to optimize the constant in the approximation ratio, but we
expect that significant additional insights are required to achieve a reasonably
small (single-digit) approximation guarantee.

An intriguing open question is whether there exists a constant-factor approxi-
mation for generalized malleable scheduling under submodular processing speeds,
for which only a logarithmic approximation is known to date, together with a
strong inapproximability result for the more general XOS functions [10]. Our
present work is a significant progress in this direction, but several steps of our
algorithm, such as the approximation of processing speeds via weighted matroids
and the elimination of low-speed assignments crucially use structural properties
of M �-concavity not present in submodular functions. Overcoming these issues
is an interesting direction for future research.
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Abstract. In this paper, we present improved approximation algorithms
for the (unsplittable) Capacitated Vehicle Routing Problem (CVRP) in
general metrics. In CVRP, introduced by Dantzig and Ramser (1959), we
are given a set of points (clients) V together with a depot r in a metric
space, with each v ∈ V having a demand dv > 0, and a vehicle of bounded
capacity Q. The goal is to find a minimum cost collection of tours for the
vehicle, each starting and ending at the depot, such that each client is
visited at least once and the total demands of the clients in each tour is
at most Q. In the unsplittable variant we study, the demand of a node
must be served entirely by one tour. We present two approximation algo-
rithms for unsplittable CVRP: a combinatorial (α + 1.75)-approximation,
where α is the approximation factor for the Traveling Salesman Problem,
and an approximation algorithm based on LP rounding with approxima-
tion guarantee α + ln(2) + δ ≈ 3.194 + δ in nO(1/δ) time. Both approx-
imations can further be improved by a small amount when combined
with recent work by Blauth, Traub, and Vygen (2021), who obtained an
(α + 2 · (1− ε))-approximation for unsplittable CVRP for some constant ε
depending on α (ε > 1/3000 for α = 1.5).

Keywords: Capacitated vehicle routing · Combinatorial optimization ·
Approximation algorithm

1 Introduction

Vehicle routing problems are among the most well known and well studied
problems in Combinatorial Optimization. The goal is generally to find cost-
efficient delivery routes for delivering items from depots to clients in a network
using vehicles. The Capacitated Vehicle Routing Problem (CVRP), introduced
by Dantzig and Ramser in 1959 [12], generalizes the classic Traveling Sales-
man Problem and has numerous applications. In CVRP, we are given as input a
complete graph G = (V, E) with metric edge weights (also referred to as costs)
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c(e) ∈ R≥0, a depot r ∈ V, and a vehicle with capacity Q > 0, and wish to
compute a minimum weight/cost collection of tours, each starting and ending
at the depot and visiting at most Q customers, whose union covers all the cus-
tomers. In the more general setting, each node v is given along with a demand
d(v) ∈ Z≥1 and the goal is to find a set of tours of the minimum total cost, each
of which includes r, such that the union of the tours covers the demand at every
client and every tour serves at most Q demand.

There are three common versions of CVRP: unit, splittable, and unsplittable.
In the splittable variant, the demand of a node can be delivered using multiple
tours so each tour must also specify howmuch demand it serves at each client1.
However, in the unsplittable variant the entire demand of a clientmust be deliv-
ered by a single tour (e.g. each demand is an indivisible good of a certain size).
This obviously requires that dv ≤ Q for all clients v. The unit demand case is a
special case of the unsplittable case where every node has a unit demand, and
the demand of a client must be delivered by a single tour. It is easy to see that
the splittable demand case can be reduced to the unit demand case in pseudo-
polynomial time using multiple collocated clients of unit demands. However,
the unsplittable version is more challenging. For example, it contains the bin-
packing problem as a special case; when all clients are have distance 1 from r
and distance 0 from each other.

CVRP has also been referred to as the k-tours problem [3,4]. Both the split-
table and unsplittable versions admit constant factor approximation algorithms
inpolynomial-time.HaimovichandKan[17]showedthataheuristic, called itera-
tivepartitioning, yields an (α+ 1(1− 1/Q))-approximation for theunit demand
case if oneuses an α-approximation for the Traveling SalesmanProblem (TSP).A
similar approachproducesa2+(1− 2/Q)α)-approximation for theunsplittable
variant [2]. Despite their simplicity, these remained the best approximations for
these two variants for over 35 years. Recently, Blauth et al. [10] improved these
approximations giving an (α + 2 · (1− ε))-approximation algorithm for unsplit-
table CVRP and a (α + 1− ε)-approximation algorithm for unit demand CVRP
and splittable CVRP where ε is a constant depending only on α. For α = 3/2,
they showed ε > 1/3000. All the variants are APX-hard in general metric spaces
[25].

In this paper we make significant progress on improving the approximation
guarantee for unsplittable CVRP. More specifically we present a simple com-
binatorial algorithm with ratio 3.25, and then a 3.194-approximation algorithm
based on linear programming (LP). Our algorithms are completely independent
of the improvements by Blauth et al. [10]. By incorporating their approach, we
can further improve both ratios by a small constant ε′ > 0. However, for the
sake of simplicity we prefer to present our main results without factoring in
this last improvement.

Theorem 1. There is an approximation algorithm for the unsplittable CVRP with
ratio α + 1.75, where α is the best approximation ratio for TSP.

1 One can show using that restricting the demand served to each client by each tour to
integer quantities does not change the optimum solution cost.
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The running time of this algorithm is dominated by computing two α-
approximate TSP tours and a minimum cost matching. For example, using
the simple (combinatorial) Christofides-Serdyukov 1.5-approximation we get a
combinatorial 3.25-approximation for unsplittable CVRPwhose running time is
dominated by computing O(1) perfect matchings in graphs with O(|V|) nodes.
Computing a perfect matching in a graph with n nodes can be done in O(n3)
time [15]; hence our algorithm runs in O(|V|3) time.

If we allow greater running time, we can improve the approximation guar-
antee further by using linear programming.

Theorem 2. For any δ > 0, there is an approximation algorithm for unsplittable
CVRP with ratio ln(2) + α+ 1

1−δ and running time nO( 1δ ), where α is the best approx-
imation ratio for TSP.

Finally, we show how combining these two results with the approach in
[10] actually yields further improvements: a combinatorial (α + 1.75 − ε′)-
approximation and an LP-based (α + ln(2) + 1

1−δ − ε′)-approximation in time

nO( 1δ ), where ε′ > 0 is an absolute constant.
It is worth noting as the classical results on CVRP [2,17], our results also can

be extended to the asymmetric metric where c(u, v) is not necessarily equal to
c(v, u). For example, the analogous of Theorem 1 in the asymmetric metric is a
(β + 1.75)-approximation where β is the best approximation factor for Asym-
metric Traveling Salesman Problem.

We discuss these further improvements and the extension to the asymmetric
metric in more details in the full version of the paper [14].

1.1 Related Work

CVRP captures classic TSP when Q, the vehicle capacity, is at least the total
demand of all clients. For general metrics, Haimovich and Kan [17] considered
a simple heuristic, called tour partitioning, which starts from a TSP tour and
then splits it into tours of size at most Q by making back-and-forth trips to r at
certain points along the TSP tour. They showed this gives a (1+ (1 − 1/Q)α)-
approximation for splittable CVRP, where α is the approximation ratio for TSP.
Essentially the same algorithm yields a (2 + (1 − 2/Q)α)-approximation for
unsplittable CVRP [2]. These stood as the best-known bounds until recently,
when Blauth et al. [10] showed that given a TSP approximation α, there is
an ε > 0 such that there is an (α + 2 · (1 − ε))-approximation algorithm for
CVRP. For α = 3/2, they showed ε > 1/3000. They also describe a (α + 1− ε)-
approximation algorithm for unit demand CVRP and splittable CVRP.

For the case of trees, Labbé et al. [23] showed splittable CVRP is NP-hard,
andGolden et al. [16] showed unsplittable version is hard to approximate better
than 1.5. This is via a simple reduction from bin packing. For splittable CVRP
(again on trees), Hamaguchi et al. [18] defined a lower bound for the cost of the
optimal solution and gave a 1.5 approximation with respect to the lower bound.
Asano et al. [4] improved the approximation to (

√
41 − 1)/4 with respect to
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the same lower bound and also showed the existence of instances whose opti-
mal cost is exactly 4/3 times the lower bound. Later, Becker [5] gave a 4/3-
approximation with respect to the lower bound. Becker and Paul [9] showed a
(1, 1+ ε)-bicriteria polynomial-time approximation scheme for splittable CVRP
in trees, i.e. a PTAS but every tour serves at most (1+ ε)Q demand. Recently,
Jayaprakash and Salavatirpour [19] presented a QPTAS for unit-demand CVRP
for trees and more generally graphs of bounded treewidth, bounded doubling
metrics, or bounded highway dimension. Even more recently, building upon
ideas of [9] and [19], Mathieu and Zhou [24] have presented a PTAS for split-
table CVRP on trees.

Das and Mathieu [13] gave a quasi-polynomial-time approximation scheme
(QPTAS) for CVRP in the Euclidean plane (R2). A PTAS for when Q is
O(log n/ log log n) or Q is Ω(n) was shown by Asano et al. [4]. A PTAS for
Euclidean plane R2 for moderately large values of Q, i.e. Q ≤ 2log

δ n where
δ = δ(ε), was shown by Adamaszek et al. [1], building on the work of Das and
Mathieu [13]. For high dimensional Euclidean spaces Rd, Khachay et al. [20]
showed a PTAS when Q is O(log log1/d n). For graphs of bounded doubling
dimension, Khachay et al. [21] gave a QPTASwhen the optimal number of tours
is polylog(n) and Khachay et al. [22] gave a QPTAS when Q is polylog(n).

The next results we summarize are all for the case Q = O(1). CVRP remains
APX-hard in general metrics in this case but is polynomial-time solvable on
trees. There exists a PTAS for CVRP in the Euclidean plane (R2) (again for when
Q is fixed) as shown by Khachay et al. [20]. A PTAS for planar graphs was given
by Becker et al. [8] and a QPTAS for planar and bounded-genus graphs was
then given by Becker et al. [6]. A PTAS for graphs of bounded highway dimen-
sion and an exact algorithm for graphs with treewidth tw with running time
O(ntw·Q) was shown by Becker et al. [7]. Cohen-Addad et al. [11] showed an
efficient PTAS for graphs of bounded-treewidth, an efficient PTAS for bounded
highway dimension, an efficient PTAS for bounded genusmetrics and a QPTAS
for minor-free metrics.

Organization of the Paper: We start with definitions and preliminaries in
Sect. 2. The proof of Theorem 1 is presented in Sect. 3 and the proof of Theo-
rem 2 is presented in Sect. 4.

2 Preliminaries

For ease of exposition, we assume we have scaled all the demands and the
capacity of the vehicle so that the capacity is 1 and each d(v) ∈ (0, 1] (so
demands can be rational numbers). Also, we treat r as a separate node from
the rest of the nodes. Formally:

Definition 1 (CAPACITATED VEHICLE ROUTING). An instance (V, r, c, d) of
CAPACITATED VEHICLE ROUTING (CVRP) consists of:

– a set of clients V, where |V| = n,
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– a depot r, not in V,
– metric travel costs/distances c : (V ∪ {r}) × (V ∪ {r}) → R≥0,
– a demand dv ∈ (0, 1] for each customer v ∈ V.

A feasible solution is a collection of tours T such that

– every tour T ∈ T is a cycle containing r,
– every client belongs to exactly one tour,
– ∑

v∈T
dv ≤ 1 for all T ∈ T .

The goal is to find a feasible solution with minimum cost where the cost is the
sum of costs of the edges in the solution and denoted by c(T ) := ∑

T∈T
c(T) :=

∑
T∈T

∑
(u,v)∈T

c(u, v).

Observe we are viewing a tour T as both a set of edges comprising a cycle plus
the set of endpoints of these edges, so we may use notation like v ∈ T for a
location v and also (u, v) ∈ T for a pair of locations (u, v) appearing consecu-
tively along the tour T. It is convenient to view the depot r as having dr = 0,
for example when we sum the demand of all locations on a tour.

Fix an unsplittable CVRP instance I = (V, r, c, d) for the rest of this paper.
We use OPT to denote an optimal solution for I and opt the value of this opti-
mal solution.

Definition 2 (Feasible tours). A tour T that spans r and some clients is called feasi-
ble for I if the total demand of the clients in T is at most 1, i.e., ∑

v∈T
dv ≤ 1.

Clients are partitioned into small and big clients based on a parameter δ ∈
[0, 12 ], which will be chosen differently for our two algorithms.

Definition 3 (Small and big clients). For a fixed δ ∈ [0, 12 ], we say a client v is
small if dv ∈ [0, δ], and big otherwise.

Let D := ∑
v∈V

2 · dv · c(r, v). This is historically referred to as the radial lower

bound and the following simple well-known lemma has been used often in
previous work.

Lemma 1 (Haimovich and Kan [17]). D ≤ opt.

We also define a similar sum for small and big clients separately, i.e.,
Dsmall := ∑

v∈V:
v is small

2 · dv · c(r, v), and Dbig := ∑
v∈V:

v is big

2 · dv · c(r, v). Also define

D′
big := ∑

v∈V:
v is big

2 · c(r, v), which is the cost of serving all big clients using a sepa-

rate tour for each client.
Given a TSP tour, the algorithm by Haimovich and Kan has the vehicle

begin by randomily filling the “tank” of demand it carries with some value
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θ ∼ (0, 1]. It then travels about the TSP tour: if the tank has insufficient demand
to serve a client it travels to the depot to get enough demand to serve the client,
returns to serve the client, and then returns to the depot to refill the tank appro-
priately before resuming the tour. The probability that such a resupply trip is
performed when trying to serve a client v is dv, so the total cost of performing
these round trips is at most 2 · D ≤ 2 · opt in expectation.

One of the main driving forces behind our improvements is the following
idea. For a small client, if we think of the vehicle’s tank as only holding 1 − δ
demand and keep a reserved tank holding demand δ, then if we cannot serve a
client with the demand in the main tank, we can serve it using the reserve tank
and only make one round trip to the depot to refill both tanks before proceed-
ing. Both of our main algorithms balance this idea with approaches to handling
big clients.

We formalize this notion of using a reserve tank in Lemma 2 below. When
δ = 0 this gives the same result as in [2,17].

Lemma 2 (δ-tank Lemma). Let A be a TSP tour on V ∪ {r} and define small and
big clients based on a fixed δ ≤ 1/2. There is an algorithm that turns A into a feasible
solution for the CVRP instance with cost

c(A) +
1

1− δ
· Dsmall +

2
1− δ

· Dbig − δ

1− δ
· D′

big, (1)

and running time O(n2).

Proof We sketch the high level idea behind the proof. See the full version of the
paper [14] for the complete proof.

The idea is to reserve δ portion of the vehicle’s tank and fill out the rest with
a random amount. Then, the vehicle visits the vertices in the same order as they
appear in A. As the vehicle visits the clients (vertices), it serves their demand.
However, the vehicle might need to make some round trips to the depot to
refill. Using the reserved tank and the initial random filling, we bound the cost
of these round trips to the depot against different parts of D as shown in (1). ��

3 A Combinatorial 3.25-Approximation

In this section, we set δ := 1
3 . So v is a small client if dv ≤ 1

3 and big if
dv > 1

3 . Note that in any feasible solution, there are at most two big clients
in any single tour. Our algorithm tries two things: the first serves only big
clients by pairing them up optimally to form these tours and then runs the
classic 3.5-approximation on the small clients but using our δ-tank procedure
(see Lemma 2) for performing the tour splitting. The other simply runs the 3.5-
approximation using δ-tank tour splitting on all clients.

Let us first explain how we use matching. Consider an auxiliary graph
Gaux = (Vbig, Eaux) where Vbig ⊆ V is the set of all big clients and Eaux con-
structed as follows: for any pair of big clients u, v where du + dv ≤ 1 we add
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and edge between u and v with cost c(r, u) + c(u, v) + c(v, r). Furthermore, for
every big client v there is a loop in Gaux with cost equal to 2 · c(r, v). We com-
pute a min-cost perfect matching2 which corresponds to the cheapest way to
select tours to serve only the big clients. The precise details are presented in
Algorithm 1.

Algorithm 1. (α + 1.75)-approximation
1: The first solution is constructed as follows:
2: Compute a min-cost perfect matching M on Gaux. Let T ′ be the tours correspond-

ing to the edges in M.
3: Compute a TSP tour A on small clients and r.
4: Apply Lemma 2 to A with δ = 1

3 and let T ′′ be the resulting solution.
5: T ← T ′ ∪ T ′′

6: The second solution is constructed as follows:
7: Compute a TSP tour A on V ∪ {r}.
8: Apply Lemma 2 to A with δ = 1

3 and let F be the resulting solution.
9: Return the cheaper of the two solutions T and F .

3.1 Analysis

We begin with two simple observations.

Lemma 3 cost(M) ≤ opt.

Proof Each tour in any feasible solution contains at most two big clients. So,
after shortcutting all tours in OPT past small clients, we get tours corresponding
to a perfect matching Gaux with cost at most opt. ��

Lemma 4 cost(M) ≤ D′
big.

Proof Consider all the loops in Gaux. The cost of all the loops is exactly D′
big and

this is a matching so it is an upper bound on the minimum cost of a perfect
matching. ��

Next, we compute the cost of the first solution in the algorithm. Note that
c(T ′) = cost(M). Using an α-approximation for TSP, the cost of A is at most
α · opt: again we are using the metric property which shows opt upper bounds
the optimum TSP tour since the union of all tours in OPT is connected and
Eulerian. Finally, applying the δ-tank lemma to A results in a solution of cost at
most c(A) + 1

1−δ · Dsmall since there is no big client on A. Overall, we have

c(T ) = c(T ′) + c(T ′′) ≤ cost(M) + α · opt+ 3
2

· Dsmall . (2)

2 A set of edges M that may contain loops is a perfect matching if each node lies in
precisely one edge: so a node is either matched with another node via a normal edge
or with itself via a loop.
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Next, we compute the cost of the second solution. From the δ-tank lemma,

c(F ) = α · opt+ 3
2

· Dsmall + 3 · Dbig − 1
2

· D′
big. (3)

Combining these, we bound the cost of the solution output by the algorithm
as follows:

min{c(T ), c(F )} ≤ c(T ) + c(F )
2

=
2 · α · opt+ 3 · (Dsmall + Dbig) + cost(M)− 1

2 · D′
big

2

≤ 2 · α · opt+ 3 · D + 1
2 · cost(M)

2
≤ α · opt+ 1.5 · opt+ 0.25 · opt
= (α + 1.75) · opt,

(4)

where the second inequality follows from Lemma 4 and the last inequality fol-
lows from Lemmas 1 & 3. This finishes the proof of Theorem 1.

4 An Improved LP-Based Approximation

In this section let δ be a fixed constant in the range (0, 1/2]. Smaller δ lead to
better approximations with increased, but still polynomial, running times.

Define the small and big clients for this value δ as in Definition 3. Let Vbig be
the set of big clients. We consider the following configuration LP for big clients:
Let J be the set of all feasible tours where each tour consists of some big clients
and the depot. Note |J | is bounded by nO( 1δ ) as there can be at most 1

δ big
clients in each tour. For each T ∈ J let c(T) be the cost of tour T. For each tour
T ∈ J , we have a variable xT indicating this tour is chosen by the algorithm.

minimize: ∑
T∈J

c(T) · xT (Configuration-LP)

subject to: ∑
T∈J :
v∈T

xT ≥ 1 ∀v ∈ Vbig (5)

x ≥ 0

By shortcutting all tours in the optimum solution past small clients and
discarding tours with no big clients, we see there is an integer solution to
(Configuration-LP) with cost at most opt. Thus, the optimum LP value pro-
vides a lower bound on opt.

Our algorithm independently samples tours spanning large clients using an
optimal LP solution. After this, some large clients and all small clients remain
uncovered, we cover them using the classic 3.5-approximation but use the δ-
tank tour splitting approach. Algorithm 2 contains the full description of our
approach. With foresight, we set γ := ln(2).
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Algorithm 2. (3.194+ 1
1−δ )-approximation

1: T ← ∅. {This will be a collection of tours.}
2: Compute an optimal solution x∗ of (Configuration-LP).
3: for T ∈ J do
4: with probability min{1,γ · xT} add T to T .
5: Approximate a TSP tour A spanning {r} ∪ (V \ V(T )) where V(T ) is the vertices

covered in T .
6: Apply the δ-tank lemma to A and let T ′ be the resulting collection of tours.
7: Return T ∪ T ′.

It could be that some clients lie on multiple tours due to the randomized
rounding step. One can shortcut the tours past repeated occurrences of clients
so each client lies on exactly one tour.

4.1 Analysis

We first bound the probability of a big client not being covered in the random-
ized rounding step of Algorithm 2 (steps 3–4).

Lemma 5 For a v ∈ Vbig, Pr[v is not covered by T ] ≤ e−γ.

Proof The event that a big client v is not covered is if we do not sample any tour
T that contains v in the randomized rounding step. So

Pr[v is not covered by T ] = ∏
T∈T

(1− γ · xT) ≤ e
−γ· ∑

T∈T :v∈T
xT

≤ e−γ,

where the last bound follows from the constraint in (Configuration-LP) for v.
��
Next, we bound the expected costs of T and T ′, separately. The cost of T is
bounded as follows:

E[T ] = γ · cost(x∗) ≤ γ · opt. (6)

Using the δ-tank lemma, we bound the expected cost of T ′ but with the follow-
ing changes: in (1), we drop the negative term and we incorporate the fact that
a big client is on A with probability at most e−γ, see Lemma 5.

E[c(T ′)] ≤ c(A) +
1

1− δ
· Dsmall

+ 2 · ∑
v∈Vbig

Pr[v is not covered by T ] · dv

1− δ
· 2 · c(r, v)

= c(A) +
1

1− δ
· Dsmall + e−γ · 2

1− δ
· Dbig

= c(A) +
1

1− δ
· Dsmall +

1
1− δ

· Dbig

= c(A) +
1

1− δ
· D ≤ α · opt+ 1

1− δ
· D.

(7)
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The second equality follows from our choice of γ = ln 2. From (6) and (7), the
expected cost of the solution returned by Algorithm 2 is at most

E[c(T ∪ T ′)] ≤ ln 2 · opt+ α · opt+ 1
1− δ

· D

≤ (ln 2+ α +
1

1− δ
) · opt,

(8)

where the last inequality follows from Lemma 1. This finishes the proof of Theo-
rem 2. We briefly comment that this algorithm can be derandomized efficiently
using the method of conditional expectation since the probability a big client is
covered and its expected contribution to the δ-tank upper bound can be com-
puted efficiently even if some tours have been sampled or rejected so far. Note
there is a numerical issue in that γ · xT may not be a rational number, but this
error can be absorbed in the 1

1−δ part of the guarantee by choosing δ to be
slightly smaller.

Acknowledgements. We thank an anonymous reviewer for pointing out that our
approaches could be extended to the asymmetric metric setting.
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Abstract. We study a class of bilevel integer programs with second-
order cone constraints at the upper level and a convex quadratic objec-
tive and linear constraints at the lower level. We develop disjunctive
cuts to separate bilevel infeasible points using a second-order-cone-based
cut-generating procedure. To the best of our knowledge, this is the first
time disjunctive cuts are studied in the context of discrete bilevel opti-
mization. Using these disjunctive cuts, we establish a branch-and-cut
algorithm for the problem class we study, and a cutting plane method
for the problem variant with only binary variables. We present a pre-
liminary computational study on instances with no second-order cone
constraints at the upper level and a single linear constraint at the lower
level. Our study demonstrates that both our approaches outperform a
state-of-the-art generic solver for mixed-integer bilevel linear programs
that is able to solve a linearized version of our test instances, where the
non-linearities are linearized in a McCormick fashion.
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1 Introduction
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solution of the lower level problem. BPs allow to model two-stage two-player
Stackelberg games in which two rational players (often called leader and fol-
lower) compete in a sequential fashion. BPs have applications in many different
domains such as machine learning [1], logistics [15], revenue management [25], the
energy sector [17,31] and portfolio optimization [16]. For more details about BPs
see, e.g., the book by Dempe and Zemkoho [10] and two recent surveys [21,34].

In this work, we consider the following integer nonlinear bilevel programs
with convex leader and follower objective functions (IBNPs)

min c′x + d′y (1a)
s. t. Mx + Ny ≥ h (1b)

M̃x + Ñy − h̃ ∈ K (1c)
y ∈ arg min {q(y) : Ax + By ≥ f, y ∈ Y, y ∈ Z

n2} (1d)
x ∈ Z

n1 , (1e)

where the decision variables x and y are of dimension n1 and n2, respectively, and
n = n1 + n2. Moreover, we have c ∈ R

n1 , d ∈ R
n2 , M ∈ R

m1×n1 , N ∈ R
m1×n2 ,

h ∈ R
m1 , M̃ ∈ R

m̃1×n1 , Ñ ∈ R
m̃1×n2 , h̃ ∈ R

m̃1 , A ∈ Z
m2×n1 , B ∈ Z

m2×n2 ,
and f ∈ Z

m2 . We assume that each row of A and B has at least one non-zero
entry and the constraints Ax + By ≥ f are referred to as linking constraints.
Furthermore, q(y) is a convex quadratic function of the form q(y) = y′Ry + g′y
with R = V ′V and V ∈ R

n3×n2 with n3 ≤ n2, K is a given cross-product of
second-order cones, and Y is a polyhedron.

Note that even though we formulate the objective function (1a) as linear, we
can actually consider any convex objective function which can be represented as a
second-order cone constraint and whose optimal value is integer when (x, y) ∈ Z

n

(e.g., a convex quadratic polynomial with integer coefficients). To do so, we can
use an epigraph reformulation to transform it into a problem of the form (1).

Our work considers the optimistic case of bilevel optimization. This means
that whenever there are multiple optimal solutions for the follower problem, the
one which is best for the leader is chosen, see, e.g., [27]. We note that already
mixed-integer bilevel linear programming (MIBLP) is Σp

2 -hard [26].
The value function reformulation (VFR) of the bilevel model (1) is given as

min c′x + d′y (2a)
s. t. Mx + Ny ≥ h (2b)

M̃x + Ñy − h̃ ∈ K (2c)
Ax + By ≥ f (2d)
q(y) ≤ Φ(x) (2e)
y ∈ Y (2f)
(x, y) ∈ Z

n, (2g)

where the so-called value function Φ(x) of the follower problem

Φ(x) = min {q(y) : Ax + By ≥ f, y ∈ Y, y ∈ Z
n2} (3)
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is typically non-convex and non-continuous. Note that the VFR is equivalent to
the original bilevel model (1). The high point relaxation (HPR) is obtained when
dropping (2e), i.e., the optimality condition of y for the follower problem, from
the VFR (2). We denote the continuous relaxation (i.e., replacing the integer
constraint (2g) with the corresponding variable bound constraints) of the HPR
as HPR. A solution (x∗, y∗) is called bilevel infeasible, if it is feasible for HPR,
but not feasible for the original bilevel model (1).

Our Contribution. Since the seminal work of Balas [3], and more intensively in
the past three decades, disjunctive cuts (DCs) have been successfully exploited
for solving mixed-integer (nonlinear) programs (MI(N)LPs) [4]. While there is a
plethora of work on using DCs for MINLPs [5], we are not aware of any previous
applications of DCs for solving IBNPs. In this work we demonstrate how DCs
can be used within in a branch-and-cut (B&C) algorithm to solve (1). This
is the first time that DCs are used to separate bilevel infeasible points, using
a cut-generating procedure based on second-order cone programming (SOCP).
Moreover, we also show that our DCs can be used in a finitely-convergent cutting
plane procedure for 0–1 IBNPs, where the HPR is solved to optimality before
separating bilevel infeasible points. Our computational study is conducted on
instances in which the follower minimizes a convex quadratic function, subject
to a covering constraint linked with the leader. We compare the proposed B&C
and cutting plane approaches with a state-of-the-art solver for MIBLPs (which
can solve our instances after applying linearization in a McCormick fashion), and
show that the latter one is outperformed by our new DC-based methodologies.

Literature Overview. For MIBLPs with integrality restrictions on (some of)
the follower variables, state-of-the-art computational methods are usually based
on B&C (see, e.g., [11–13,35]). Other interesting concepts are based on multi-
branching, see [36,38].

Considerably less results are available for non-linear BPs, and in particular
with integrality restrictions at the lower level. In [29], Mitsos et al. propose a
general approach for non-convex follower problems which solves nonlinear opti-
mization problems to compute upper and lower bounds in an iterative fashion.
In a series of papers on the so-called branch-and-sandwich approach, tightened
bounds on the optimal value function and on the leader’s objective function value
are calculated [22–24]. A solution algorithm for mixed-IBNPs proposed in [28]
by Lozano and Smith approximates the value function by dynamically inserting
additional variables and big-M type of constraints. Recently, Kleinert et al. [20]
considered bilevel problems with a mixed-integer convex-quadratic upper level
and a continuous convex-quadratic lower level. The method is based on outer
approximation after the problem is reformulated into a single-level one using the
strong duality and convexification. In [8], Byeon and Van Hentenryck develop a
solution algorithm for bilevel problems, where the leader problem can be modeled
as a mixed-integer second-order conic problem and the follower problem can be
modeled as a second-order conic problem. The algorithm is based on a dedicated
Benders decomposition method. In [37], Weninger et al. propose a methodology
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that can tackle any kind of a MINLP at the upper level which can be handled
by an off-the-shelf solver. The mixed-integer lower level problem has to be con-
vex, bounded, and satisfy Slater’s condition for the continuous variables. This
exact method is derived from a previous approach proposed in [39] by Yue et al.
for finding bilevel feasible solutions. For a more detailed overview of the recent
literature on computational bilevel optimization we refer an interested reader
to [9,21,34].

The only existing application of DCs in the context of bilevel linear optimiza-
tion is by Audet et al., [2] who derive DCs from LP-complementarity conditions.
In [18], Júdice et al. exploit a similar idea for solving mathematical programs
with equilibrium constraints. DCs are frequently used for solving MINLPs (see,
e.g., [4], and the many references therein, and [32,33]). In [19], Kılınç-Karzan
and Yıldız derive closed-form expressions for inequalities describing the convex
hull of a two-term disjunction applied to the second-order cone.

2 Disjunctive Cut Methodology

The aim of this section is to derive DCs for the bilevel model (1) with the help
of SOCP, so we want to derive DCs that are able to separate bilevel infeasible
points from the convex hull of bilevel feasible ones. Toward this end, we assume
throughout this section that we have a second-order conic convex set P, such
that the set of feasible solutions of the VFR is a subset of P, and such that P is
a subset of the set of feasible solutions of the HPR. This implies that P fulfills
(2b), (2c), (2d) and (2f) and potentially already some DCs. Moreover, we assume
that (x∗, y∗) is a bilevel infeasible point in P. The point (x∗, y∗) is an extreme
point of P, if it is not a convex combination of any other two points of P.

2.1 Preliminaries

For clarity of exposition in what follows, we consider only one linking constraint
of problem (1), i.e., m2 = 1 and thus A = a′ and B = b′ for some a ∈ Z

n1 ,
b ∈ Z

n2 and f ∈ Z. Note however that our methodology can be generalized
for multiple linking constraints leading to one additional disjunction for every
additional linking constraint. Moreover, our DCs need the following assumptions.

Assumption 1. All variables are bounded in the HPR and Y is bounded.

Assumption 1 ensures that the HPR is bounded. We note that in a bilevel-context
already for the linear case of MIBLPs, unboundedness of the HPR does not imply
anything for the original problem, all three options (infeasible, unbounded, and
existence of an optimum) are possible. For more details see, e.g., [13].

Assumption 2. For every x, such that there exists a y with (x, y) being feasible
for the HPR, the follower problem (3) is feasible.

Assumption 3. HPR has a feasible solution satisfying its nonlinear constraint
(2c) strictly, and its dual has a feasible solution.

Assumption 3 ensures that we have strong duality between HPR and its dual,
and so we can solve the HPR (potentially with added cuts) to arbitrary accuracy.
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2.2 Deriving Disjunctive Cuts

To derive DCs we first examine bilevel feasible points. It is easy to see and also
follows from the results by Fischetti et al. [12], that for any ŷ ∈ Y ∩ Z

n2 the set

S(ŷ) = {(x, y) : a′x ≥ f − b′ŷ, q(y) > q(ŷ)}

does not contain any bilevel feasible solutions, as for any (x, y) ∈ S(ŷ) clearly ŷ
is a better follower solution than y for x. Furthermore, due to the integrality of
our variables and of a and b, the extended set

S+(ŷ) = {(x, y) : a′x ≥ f − b′ŷ − 1, q(y) ≥ q(ŷ)}

does not contain any bilevel feasible solutions in its interior, because any bilevel
feasible solution in the interior of S+(ŷ) is in S(ŷ). Based on this observation
intersection cuts have been derived in [12], however S+(ŷ) is not convex in our
case, so we turn our attention to DCs. As a result, for any ŷ ∈ Y ∩ Z

n2 any
bilevel feasible solution is in the disjunction D1(ŷ) ∨ D2(ŷ), where

D1(ŷ) : a′x ≤ f − b′ŷ − 1 and D2(ŷ) : q(y) ≤ q(ŷ).

To find a DC, we want to generate valid linear inequalities for

{(x, y) ∈ P : D1(ŷ)} ∨ {(x, y) ∈ P : D2(ŷ)} , (4)

so in other words we want to find a valid linear inequality that separates the
bilevel infeasible solution (x∗, y∗) from

D(ŷ) = conv ({(x, y) ∈ P : D1(ŷ)} ∪ {(x, y) ∈ P : D2(ŷ)}) .

Toward this end, we first derive a formulation of P. If we have already gener-
ated some DCs of the form α′x+β′y ≥ τ , then they create a bunch of constraints
Ax+By ≥ T . We take these cuts, together with Mx+Ny ≥ h and a′x+b′y ≥ f
and also y ∈ Y, which can be represented as Cy ≥ U , and we bundle them all
together as

M̄x + N̄y ≥ h̄, (5)

such that P is represented by (5) and (2c), and where

M̄ =

⎛
⎜⎜⎝

M
a′

A
0

⎞
⎟⎟⎠ , N̄ =

⎛
⎜⎜⎝

N
b′

B
C

⎞
⎟⎟⎠ , h̄ =

⎛
⎜⎜⎝

h
f
T
U

⎞
⎟⎟⎠ .

The representation of D1(ŷ) is straightforward. It is convenient to write D2(ŷ)
in SOCP-form using a standard technique. Indeed, D2(ŷ) is equivalent to the
standard second-order (Lorentz) cone constraint z0 ≥

∥∥(z1, z2)
∥∥ with

z0 =
1 − (g′y − q(ŷ))

2
, z1 = V y, z2 =

1 + (g′y − q(ŷ))
2

.
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Because z0, z1 and z2 are linear in y, we can as well write it in the form

D̃y − c̃ ∈ Q, (6)

where Q denotes a standard second-order cone, which is self dual, and

D̃ =

⎛
⎝

− 1
2g′

V
1
2g′

⎞
⎠ and c̃ =

⎛
⎝

−1−q(ŷ)
2
0

−1+q(ŷ)
2

⎞
⎠ .

We employ a scalar dual multiplier σ for the constraint D1(ŷ) and we employ
a vector ρ ∈ Q∗ of dual multipliers for the constraint (6), representing D2(ŷ).
Furthermore, we employ two vectors π̄k, k = 1, 2, of dual multipliers for the
constraints (5) and we employ two vectors π̃k, k = 1, 2, of dual multipliers for
the constraints (2c), both together representing P. Then every (α, β, τ) corre-
sponding to a valid linear inequality α′x + β′y ≥ τ for D(ŷ) corresponds to a
solution of

α′ = π̄′
1M̄ + π̃′

1M̃ + σa′ (7a)

α′ = π̄′
2M̄ + π̃′

2M̃ (7b)

β′ = π̄′
1N̄ + π̃′

1Ñ (7c)

β′ = π̄′
2N̄ + π̃′

2Ñ + ρ′D̃ (7d)

τ ≤ π̄′
1h̄ + π̃′

1h̃ + σ(f − 1 − b′ŷ) (7e)

τ ≤ π̄′
2h̄ + π̃′

2h̃ + ρ′c̃ (7f)
π̄1 ≥ 0, π̄2 ≥ 0, π̃1 ∈ K∗, π̃2 ∈ K∗, σ ≤ 0, ρ ∈ Q∗, (7g)

where K∗ and Q∗ are the dual cones of K and Q, respectively (see, e.g., Balas [4,
Theorem 1.2]).

To attempt to generate a valid inequality for D(ŷ) that is violated by the
bilevel infeasible solution (x∗, y∗), we solve

max τ − α′x∗ − β′y∗ (CG-SOCP)
s. t. (7a)—(7g).

A positive objective value for a feasible (α, β, τ) corresponds to a valid linear
inequality α′x + β′y ≥ τ for D(ŷ) violated by (x∗, y∗), i.e. the inequality gives a
DC separating (x∗, y∗) from D(ŷ).

Finally, we need to deal with the fact that the feasible region of (CG-SOCP)
is a cone. So (CG-SOCP) either has its optimum at the origin (implying that
(x∗, y∗) cannot be separated), or (CG-SOCP) is unbounded, implying that there
is a violated inequality, which of course we could scale by any positive num-
ber so as to make the violation as large as we like. The standard remedy for
this is to introduce a normalization constraint to (CG-SOCP). A typical good
choice (see [14]) is to impose ‖(π̄1, π̄2, π̃1, π̃2, σ, ρ)‖1 ≤ 1, but in our context,
because we are using a conic solver, we can more easily and efficiently impose
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‖(π̄1, π̄2, π̃1, π̃2, σ, ρ)‖2 ≤ 1, which is just one constraint for a conic solver. Thus,
we will from now on consider normalization as part of (CG-SOCP).

To be able to derive DCs we make the following additional assumption.

Assumption 4. The dual of (CG-SOCP) has a feasible solution in its interior
and we have an exact solver for (CG-SOCP).

We have the following theorem, which allows us to use DCs in solution methods.

Theorem 1. Let P be a second-order conic convex set, such that the set of
feasible solutions of the VFR is a subset of P, and such that P is a subset of
the set of feasible solutions of the HPR. Let (x∗, y∗) be bilevel infeasible and be
an extreme point of P. Let ŷ be a feasible solution to the follower problem for
x = x∗ (i.e., ŷ ∈ Y ∩ Z

n2 and a′x∗ + b′ŷ ≥ f) such that q(ŷ) < q(y∗).
Then there is a DC that separates (x∗, y∗) from D(ŷ) and it can be obtained

by solving (CG-SOCP).

Proof. Assume that there is no cut that separates (x∗, y∗) from D(ŷ), then
(x∗, y∗) is in D(ŷ). However, due to the definition of ŷ, the point (x∗, y∗) does
not fulfill D1(ŷ) and does not fulfill D2(ŷ). Therefore, in order to be in D(ŷ),
the point (x∗, y∗) must be a convex combination of one point in P that fulfills
D1(ŷ), and another point in P that fulfills D2(ŷ). This is not possible due to the
fact that (x∗, y∗) is an extreme point of P.

Thus, there is a cut that separates (x∗, y∗) from D(ŷ). By construction of
(CG-SOCP) and due to Assumption 4, we can use (CG-SOCP) to find it. 	


Note that there are two reasons why a feasible HPR solution (x∗, y∗) is bilevel
infeasible: it is not integer or y∗ is not the optimal follower response for x∗. Thus,
in the case that (x∗, y∗) is integer, there is a better follower response ỹ for x∗.
Then Theorem 1 with ŷ = ỹ implies that (x∗, y∗) can be separated from D(ŷ).
We present solution methods based on this observation in Sect. 3.2.

2.3 Separation Procedure for Disjunctive Cuts

We turn our attention to describing how to computationally separate our DCs
for a solution (x∗, y∗) ∈ P now. Note that we do not necessarily need the optimal
solution of the follower problem (3) for x = x∗ to be able to cut off a bilevel
infeasible solution (x∗, y∗), as any ŷ that is feasible for the follower problem with
q(ŷ) < q(y∗) gives a violated DC as described in Theorem 1. Thus, we implement
two different strategies for separation which are described in Algorithm 1.

In the first one, denoted as O, we solve the follower problem to optimality,
and use the optimal ŷ in (CG-SOCP). In the second strategy, denoted as G, for
each feasible integer follower solution ŷ with a better objective value than q(y∗)
obtained during solving the follower problem, we try to solve (CG-SOCP). The
procedure returns the first found significantly violated cut, i.e., it finds a DC
greedily. A cut α′x+β′y ≥ τ is considered to be significantly violated by (x∗, y∗)
if τ − α′x∗ − β′y∗ > ε for some ε > 0.
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Algorithm 1: separation

Input : A feasible HPR solution (x∗, y∗), a separation strategy O or G, a set P
Output: A significantly violated disjunctive cut or nothing

1 while the follower problem is being solved for x = x∗ by an enumeration based
method do

2 for each feasible integer ŷ with q(ŷ) < q(y∗) do
3 if strategy = G or (strategy = O and ŷ is optimal) then
4 solve (CG-SOCP) for (x∗, y∗), ŷ and P;
5 if τ − α′x∗ − β′y∗ > ε then
6 return α′x + β′y ≥ τ ;

If (x∗, y∗) is a bilevel infeasible solution satisfying integrality constraints,
Algorithm 1 returns a violated cut with both strategies. Otherwise, i.e., if (x∗, y∗)
is not integer, a cut may not be obtained, because it is possible that there is no
feasible ŷ for the follower problem with q(ŷ) < q(y∗).

3 Solution Methods Using Disjunctive Cuts

We now present two solution methods based on DCs, one applicable for the
general bilevel model (1), one dedicated to a binary version of (1).

3.1 A Branch-and-Cut Algorithm

We propose to use the DCs in a B&C algorithm to solve the bilevel model (1).
The B&C can be obtained by modifying any given continuous-relaxation-based
B&B algorithm to solve the HPR (assuming that there is an off-the-shelf solver
for HPR that always returns an extreme optimal solution (x∗, y∗) like e.g., a
simplex-based B&B for a linear HPR1).

The algorithm works as follows: Use HPR as initial relaxation P at the root-
node of the B&C. Whenever a solution (x∗, y∗) which is integer is encountered
in a B&C node, call the DC separation. If a violated cut is found, add the cut
to the set P (which also contains, e.g., variable fixing by previous branching
decisions, previously added globally or locally valid DCs, . . . ) of the current
B&C node, otherwise the solution is bilevel feasible and the incumbent can be
updated. Note that DCs are only locally valid except the ones from the root node,
since P includes branching decisions. If P is empty or optimizing over P leads
to an objective function value that is larger than the objective function value
of the current incumbent, we fathom the current node. In our implementation,
we also use DC separation for fractional (x∗, y∗) as described in Sect. 2.3 for
strengthening the relaxation.

1 This assumption is without loss of generality, as we can outer approximate second-
order conic constraints of P and get an extreme optimal point by a simplex method.
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Theorem 2. The B&C solves the bilevel model (1) in a finite number of B&C-
iterations under our assumptions.

Proof. First, suppose the B&C terminates, but the solution (x∗, y∗) is not bilevel
feasible. This is not possible, as by Theorem 1 and the observations thereafter
the DC generation procedure finds a violated cut to cut off the integer point
(x∗, y∗) in this case.

Next, suppose the B&C terminates and the solution (x∗, y∗) is bilevel feasible,
but not optimal. This is not possible, since by construction the DCs never cut
off any bilevel feasible solution.

Finally, suppose the B&C never terminates. This is not possible, as all vari-
ables are integer and bounded, thus there is only a finite number of nodes in the
B&C tree. Moreover, this means there is also a finite number of integer points
(x∗, y∗), thus we solve the follower problem and (CG-SOCP) a finite number of
times. The follower problem is discrete and can therefore be solved in a finite
number of iterations. 	


3.2 An Integer Cutting Plane Algorithm

The DCs can be directly used in a cutting plane algorithm under the following
assumption.

Assumption 5. All variables in the bilevel model (1) are binary variables.

The algorithm is detailed in Algorithm 2. It starts with the HPR as initial
relaxation of VFR, which is solved to optimality. Then the chosen DC separation
routine (either O or G) is called to check if the obtained integer optimal solution
is bilevel feasible. If not, the obtained DC is added to the relaxation to cut off
the optimal solution, and the procedure is repeated with the updated relaxation.

Due to Assumption 5 each obtained integer optimal solution is an extreme
point of the convex hull of HPR, and thus due to Theorem 1 a violated cut will
be produced by the DC separation if the solution is not bilevel feasible.

Algorithm 2: cutting plane

Input : An instance of problem (1) where all variables are binary
Output: An optimal solution (x∗, y∗)

1 R ← HPR; P ← set of feasible solutions of HPR; violated ← True;
2 do
3 violated ← False;
4 solve R to optimality, let (x∗, y∗) be the obtained optimal solution;
5 call separation for (x∗, y∗) and P with strategy O or G;
6 if a violated cut is found for (x∗, y∗) then
7 violated ← True; add the violated cut to R and to P;

8 while violated ;
9 return (x∗, y∗)
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4 Computational Analysis

In this section we present preliminary computational results.

4.1 Instances

In our computations, we consider the quadratic bilevel covering problem

min ĉ′x + d̂′y (8a)

s. t. M̂ ′x + N̂ ′y ≥ ĥ (8b)

y ∈ arg min{y′R̂y : â′x + b̂′y ≥ f̂ , y ∈ {0, 1}n2} (8c)
x ∈ {0, 1}n1 , (8d)

where ĉ ∈ R
n1 , d̂ ∈ R

n2 , M̂ ∈ R
m1×n1 , N̂ ∈ R

m1×n2 , ĥ ∈ R
m1 , R̂ = V̂ ′V̂ ∈

Z
n2×n2 , â ∈ Z

n1 , b̂ ∈ Z
n2 , and f̂ ∈ Z. This problem can be seen as the covering-

version of the quadratic bilevel knapsack problem studied by Zenarosa et al.
in [40] (there it is studied with a quadratic non-convex leader objective function,
only one leader variable and no leader constraint (8b)). The linear variant of
such a bilevel knapsack-problem is studied in, e.g., [6,7]. We note that [6,7,40]
use problem-specific solution approaches to solve their respective problem. The
structure of (8) allows an easy linearization of the nonlinear follower objective
function using a standard McCormick-linearization to transform the problem
into an MIBLP. Thus we can compare the performance of our algorithm against
a state-of-the-art MIBLP-solver MIX++ from Fischetti et al. [12] to get a first
impression of whether our development of a dedicated solution approach for
IBNPs exploiting nonlinear techniques is a promising endeavour.

We generated random instances in the following way. We consider n1 = n2

for n1 +n2 = n ∈ {20, 30, 40, 50} and we study instances with no (as in [40]) and
with one leader constraint (8b), so m1 ∈ {0, 1}. For each n we create five random
instances for m1 = 0 and five random instances for m1 = 1. Furthermore, we
chose all entries of ĉ, d̂, M̂ , N̂ , â, and b̂ randomly from the interval [0, 99]. The
values of ĥ and f̂ are set to the sum of the entries of the corresponding rows
in the constraint matrices divided by four. The matrix V̂ ∈ R

n2×n2 has random
entries from the interval [0, 9].

4.2 Computational Environment

All experiments are executed on a single thread of an Intel Xeon E5-2670v2
machine with 2.5 GHz processor with a memory limit of 8 GB and a time limit of
600 s. Our B&C algorithm and our cutting plane algorithm both are implemented
in C++. They make use of IBM ILOG CPLEX 12.10 (in its default settings)
as branch-and-cut framework in our B&C algorithm and as solver for R in
our cutting plane algorithm. During the B&C, CPLEX’s internal heuristics are
allowed and a bilevel infeasible heuristic solution is just discarded if a violated
cut cannot be obtained. For calculating the follower response ŷ for a given x∗,
we also use CPLEX. For solving (CG-SOCP), we use MOSEK [30].
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Table 1. Results for the quadratic bilevel covering problem.

n Setting t Gap RGap Nodes nICut nFCut tF tS nSol

20 I-O 1.6 0.0 42.9 158.9 44.0 0.0 0.7 0.4 10

IF-O 7.0 0.0 46.1 82.8 13.5 151.3 5.0 1.5 10

I-G 1.1 0.0 42.6 192.4 56.7 0.0 0.2 0.4 10

IF-G 3.3 0.0 42.1 102.4 17.3 183.9 0.7 2.0 10

30 I-O 26.1 0.0 40.4 2480.0 325.5 0.0 22.3 2.2 10

IF-O 246.5 9.6 45.9 522.6 24.9 2104.1 216.0 20.3 8

I-G 2.7 0.0 48.6 1630.6 226.1 0.0 0.4 1.7 10

IF-G 55.2 0.0 39.6 669.6 29.9 1631.7 5.9 40.5 10

40 I-O 262.0 3.6 70.4 9209.4 1308.8 0.0 233.5 18.6 8

IF-O 439.9 35.7 66.8 391.3 30.1 1751.9 390.7 43.8 4

I-G 82.3 0.0 67.9 14225.5 1379.1 0.0 4.2 47.1 10

IF-G 387.1 6.1 64.0 1039.8 53.4 3783.1 22.0 331.4 8

50 I-O 537.6 46.3 72.5 10921.1 1553.6 0.0 458.4 67.5 2

IF-O 600.0 71.6 72.7 156.3 24.8 1272.5 545.2 51.5 0

I-G 417.9 20.2 71.8 93621.8 6928.2 0.0 17.6 102.5 4

IF-G 519.8 40.5 72.8 2537.6 56.0 12548.1 45.4 244.9 3

4.3 Numerical Results

In this preliminary computational study we use a simplified version of both the
the B&C and the cutting plane algorithm, namely we always use the initial P,
i.e., the HPR, as input for the separation of DCs and do not update it.

While executing our B&C algorithm, we consider four different settings for
the separation of cuts. I and IF denote the settings where only integer solu-
tions are separated and where both integer and fractional solutions are sepa-
rated, respectively. For each of them, we separate the cuts using the routine
separation with strategies O and G, which is indicated with an “-O” or “-G”
next to the relevant setting name. The resulting four settings are I-O, IF-O,
I-G and IF-G. Similarly, the cutting plane algorithm is implemented with both
separation strategies, leading to the settings CP-O and CP-G. We determine the
minimum acceptable violation ε = 10−6 for our experiments. During the integer
separation of (x∗, y∗), while solving the follower problem, we make use of the
follower objective function value q(y∗), by setting it as an upper cutoff value.
This is a valid approach because a violated DC exists only if Φ(x∗) < q(y∗).

The results of the B&C algorithm are presented in Table 1, as averages of
the problems with the same size n. We provide the solution time t (in seconds),
the optimality gap Gap at the end of time limit (calculated as 100(z∗ − LB)/z∗,
where z∗ and LB are the best objective function value and the lower bound,
respectively), the root gap RGap (calculated as 100(z∗

R −LBr)/z∗, where z∗
R and

LBr are the best objective function value and the lower bound at the end of the
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Fig. 1. Runtimes and final optimality gaps for the quadratic bilevel covering problem
under our different settings and the benchmark solver MIX++.

root node, respectively), the number of B&C nodes Nodes, the numbers of integer
nICut and fractional cuts nFCut, the time tF to solve the follower problems, the
time tS to solve (CG-SOCP), and the number of optimally solved instance nSol
out of 10. I-G is the best performing setting in terms of solution time and final
optimality gaps. Although IF-O and IF-G yield smaller trees, they are inefficient
because of invoking the separation routine too often, which is computationally
costly. Therefore, they are not included in further comparisons.

In Fig. 1, we compare the B&C results with the results obtained by the
cutting plane algorithm as well as a state-of-the-art MIBLP solver MIX++ of
Fischetti et al. [12], which is able to solve the linearized version of our instances.
Figure 1 shows the cumulative distributions of the runtime and the optimality
gaps at the end of the time limit. It can be seen that settings with G perform
better than their O counterparts. While CP-O and CP-G perform close to I-O, they
are significantly outperformed by I-G. The solver MIX++ is also outperformed by
both the cutting plane algorithm and the B&C.

5 Conclusions

In this article we showed that SOCP-based DCs are an effective and promising
methodology for solving a challenging family of discrete BPs with a convex
quadratic objective and linear constraints at the lower level.

There are still many open questions for future research. From the com-
putational perspective, dealing with multiple linking constraints at the lower
level requires an implementation of a SOCP-based separation procedure based
on multi-disjunctions. The implementation can also be extended to deal with
second-order cone constraints at the upper level. Moreover, the proposed B&C
could be enhanced by bilevel-specific preprocessing procedures, or bilevel-specific
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valid inequalities (as this has been done for MIBLPs in e.g., [11–13]). Problem-
specific strengthening inequalities could be used within disjunctions to obtain
stronger DCs, and finally outer-approximation could be used as an alternative
to SOCP-based separation.
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Abstract. We consider the stochastic score classification problem.
There are several binary tests, where each test i is associated with a
probability pi of being positive, a cost ci, and a weight ai. The score of
an outcome is a weighted sum of all positive tests, and the range of possi-
ble scores is partitioned into intervals corresponding to different classes.
The goal is to perform tests sequentially (and possibly adaptively) so
as to identify the class at the minimum expected cost. We provide the
first constant-factor approximation algorithm for this problem, which
improves over the previously-known logarithmic approximation ratio.
Moreover, our algorithm is non adaptive: it just involves performing tests
in a fixed order until the class is identified. Our approach also extends
to the d-dimensional score classification problem and the “explainable”
stochastic halfspace evaluation problem (where we want to evaluate
some function on d halfspaces). We obtain an O(d2 log d)-approximation
algorithm for both these extensions. Finally, we perform computational
experiments that demonstrate the practical performance of our algorithm
for score classification. We observe that, for most instances, the cost of
our algorithm is within 50% of an information-theoretic lower bound on
the optimal value.

Keywords: Stochastic optimization · Approximation algorithms ·
Stochastic probing · Adaptivity

1 Introduction

The problem of diagnosing complex systems often involves running a large num-
ber of tests for each component of such a system. One option to diagnose such sys-
tems is to perform tests on all components, which can be prohibitively expensive
and slow. Therefore, we are interested in a policy that tests components one by
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one, and minimizes the average cost of testing. (See [23] for a survey.) Concretely,
we consider a setting where the goal is to test various components, in order to
assign a risk class to the system (e.g., whether the system has low/medium/high
risk).

The stochastic score classification (SSClass) problem introduced by [14]
models such situations. There are n components in a system, where each compo-
nent i is “working” with independent probability pi. While the probabilities pi

are known a priori, the random outcomes Xi ∈ {0, 1} are initially unknown. The
outcome Xi of each component i can be determined by performing a test of cost
ci: Xi = 1 if i is working and Xi = 0 otherwise. The overall status of the system
is determined by a linear score r(X) :=

∑n
i=1 aiXi, where the coefficients ai ∈ Z

are input parameters. We are also given a collection of intervals I1, I2, . . . , Ik

that partition the real line (i.e., all possible scores). The goal is to determine the
interval Ij (also called the class) that contains r(X), while incurring minimum
expected cost. A well-studied special case is when there are just two classes,
which corresponds to evaluating a halfspace or linear-threshold-function [11].

Example: Consider a system which must be assigned a risk class of low, medium,
or high. Suppose there are five components in the system, each of which is work-
ing with probability 1

2 . The score for the entire system is the number of working
components. A score of 5 corresponds to the “Low” risk class, scores between 2
and 4 correspond to “Medium” risk, and a score of at most 1 signifies “High”
risk. Suppose that after testing components {1, 2, 3}, the system has score 2
(which occurs with probability 3

8 ) then it will be classified as medium risk irre-
spective of the remaining two components: so testing can be stopped. Instead,
if the system has score 3 after testing components {1, 2, 3} (which occurs with
probability 1

8 ) then the class of the system cannot be determined with certainty
(it may be either medium or low), and so further testing is needed.

A related problem is the d-dimensional stochastic score classification problem
(d-SSClass), which models the situation when a system has d different functions,
each with an associated linear score (as above). We must now perform tests on
the underlying components to simultaneously assign a class to each of the d
functions.

In another related problem, a system again has d different functions. Here,
the status (working or failed) of each function is determined by some halfspace,
and the overall system is considered operational if all d functions are working.
The goal of a diagnosing policy is to decide whether the system is operational,
and if not, to return at least one function that has failed (and therefore needs
maintenance). This is a special case of a problem we call explainable stochastic
halfspace evaluation (EX-SFE).

Solutions for all these problems (SSClass, d-SSClass, and EX-SFE) are
sequential decision processes. At each step, a component is tested and its out-
come (working or failed) is observed. The information from all previously tested
components can then be used to decide on the next component to test; this
makes the process adaptive. This process continues until the risk class can be
determined with certainty from the tested components. One simple class of solu-
tions are non-adaptive solutions, which are simply described by a priority list:
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we then test components in this fixed order until the class can be uniquely
determined. Such solutions are simpler and faster to implement, compared to
their adaptive counterparts: the non-adaptive testing sequence needs to be con-
structed just once, after which it can be used for all input realizations. However,
non-adaptive solutions are weaker than adaptive ones, and our goal is to bound
the adaptivity gap, the multiplicative ratio between the performance of the non-
adaptive solution to that of the optimal adaptive one. Our main result shows
that SSClass has a constant adaptivity gap, thereby answering an open question
posed by [14]. Additionally, we show an adaptivity gap of O(d2 log d) for both
the d-SSClass and EX-SFE problems.

Before we present the results and techniques, we formally define the problem.
For any integer m, we use [m] := {1, 2, . . . ,m}. An instance of SSClass consists
of n independent {0, 1} random variables X = X1, . . . , Xn, where variable Xi has
Pr[Xi = 1] = E[Xi] = pi. The cost to probe/query Xi is ci ∈ R+; both pi, ci are
known to us. We are also given non-negative weights ai ∈ Z+, and the score of
the outcome X = (X1, . . . , Xn) is r(X) =

∑n
i=1 aiXi. In addition, we are given

B + 1 integers α1, . . . , αB+1 such that class j corresponds to the interval Ij :=
{αj , . . . , αj+1 − 1}. The score classification function h : {0, 1}n → {1, . . . , B}
assigns h(X) = j precisely when r(X) ∈ Ij . The goal is to determine h(X) at
minimum expected cost. We assume non-negative weights only for simplicity:
any instance with positive and negative weights can be reduced to an equivalent
instance with all positive weights (see full version for details). Let W :=

∑n
i=1 ai

denote the total weight. In our algorithm, we associate two numbers (β0
j , β1

j ) ∈
Z
2
+ with each class j, where β0

j = W − αj+1 + 1 and β1
j = αj .

1.1 Results and Techniques

Our main result is the following algorithm (and adaptivity gap).

Theorem 1. There is a polynomial-time non-adaptive algorithm (called NaCl)
for stochastic score classification with expected cost at most a constant factor
times that of the optimal adaptive policy.

This result improves on the prior work from [11,14] in several ways. Firstly,
we get a constant-factor approximation, improving upon the previous O(log W )
and O(B) ratios, where W is the sum of weights, and B the number of classes.
Secondly, our algorithm is non-adaptive in contrast to the previous adaptive
ones. Finally, our algorithm has nearly-linear runtime, which is faster than the
previous algorithms.

An added benefit of our approach is that we obtain a “universal” solution
that is simultaneously O(1)-approximate for all class-partitions. Indeed, the non-
adaptive list produced by NaCl only depends on the probabilities, costs, and
weights, and not on the class boundaries {αj}; these αj values are only needed
in the stopping condition for probing.

Algorithm Overview. To motivate our algorithm, suppose that we have
probed a subset S ⊆ [n] of variables, and there is a class j such that

∑
i∈S aiXi ≥

αj and
∑

i∈S ai(1 − Xi) ≥ W − αj+1 + 1. The latter condition can be rewritten
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as
∑

i∈S aiXi +
∑

i�∈S ai ≤ αj+1 − 1. So, we can conclude that the final score
lies in {αj , . . . , αj+1 − 1} irrespective of the outcomes of variables in [n] \ S.
This means that h(X) = j. On the other hand, if the above condition is not
satisfied for any class j, we must continue probing. Towards this end, we
define two types of rewards for each variable i ∈ [n]: R0(i) = ai · (1 − Xi) and
R1(i) = ai ·Xi. (See Fig. 1.) The total R0-reward and R1-reward from the probed
variables correspond to upper and lower bounds on the score, respectively. Our
non-adaptive algorithm NaCl probes the variables in a predetermined order
until

∑
i∈S R0(i) ≥ β0

j = W − αj+1 + 1 and
∑

i∈S R1(i) ≥ β1
j = αj for some

class j (at which point it determines h(X) = j).

(a) The R0 reward (upper bound) and
R1 reward (lower bound) lie in class j
and hence probing can be stopped.

(b) Here f(X) could be j or j + 1, so
probing must continue.

Fig. 1. Illustration of non-adaptive approach

To get this ordering we first build two separate lists: list Lb for the Rb-rewards
(for b = 0, 1) minimizes the cost required to cover some target amount of Rb-
reward. Finally, interleaving lists L0 and L1 gives the final list. The idea behind
list L0 is as follows: if we only care about a single class j, we can set a target of β0

j

and use the non-adaptive algorithm for stochastic knapsack cover [21]. Since the
class j is unknown, so is the target β0

j on the R0-reward. Interestingly, we show
how to construct a “universal” non-adaptive list L0 that works for all targets
simultaneously. The construction proceeds in phases: in each phase � ≥ 0, the
algorithm adds a subset of variables with cost O(2�) that (roughly) maximizes
the expected R0 reward. Naıvely using the expected rewards can lead to poor per-
formance, so a natural idea is to use rewards truncated at logarithmically-many
scales (corresponding to the residual target); see for example, [12]. Moreover, to
get a constant-factor approximation, we use the critical scaling idea from [21].
Roughly speaking, this identifies a single scale κ such that with constant proba-
bility (1) the algorithm obtains large reward (truncated at scale κ), and (2) any
subset of cost 2� has small reward.

Analysis Overview. The analysis of Theorem 1 relates the “non-completion”
probabilities of our algorithm after cost γ · 2� to that of the optimal adaptive
algorithm after cost 2�, for each phase � ≥ 0. The factor γ corresponds to the
approximation ratio of the algorithm. In order to relate these non-completion
probabilities, we consider the R0 and R1-rewards obtained by an optimal adap-
tive algorithm, and argue that the non-adaptive algorithm obtains a higher R0 as
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well as R1 reward (with constant probability). Thus, if the optimal adaptive algo-
rithm decides h(X), so does the non-adaptive algorithm. Our algorithm/analysis
also use various properties of the fractional knapsack problem.

Extensions. Next, we consider the d-dimensional score classification problem
(d-SSClass) and obtain the following result:

Theorem 2. There is a non-adaptive O(d2 log d)-approximation algorithm for
d-dimensional stochastic score classification.

We achieve this by extending the above approach (for d = 1). We now define
two rewards (corresponding to R0 and R1) for each dimension d. Then, we apply
the list building algorithm for each of these rewards, resulting in 2d separate lists.
Finally, we interleave these lists to obtain the non-adaptive probing sequence.
The analysis is also an extension of the d = 1 case. The main differences are
as follows. Just accounting for the 2d lists results in an extra O(d) factor in
the approximation. Furthermore, we need to ensure (for each phase �) that with
constant probability, our non-adaptive algorithm achieves more reward than the
optimum for all the 2d rewards. We incur another O(d log d) factor in the approx-
imation in order to achieve this stronger property.

In a similar vein, our main result for EX-SFE is the following:

Theorem 3. There is a non-adaptive O(d2 log d)-approximation algorithm for
explainable stochastic halfspace evaluation.

The non-adaptive list for EX-SFE is constructed in the same manner as for
d-SSClass, but the stopping rule relies on the oracle for verifying witnesses of
f ◦ h. As a special case, we obtain:

Corollary 1. There is a non-adaptive O(d2 log d)-approximation algorithm for
the explainable stochastic intersection of half-spaces problem.

The stochastic intersection of halfspaces problem (in a slightly different model)
was studied previously by [6], where an O(

√
n log d)-approximation algorithm

was obtained assuming all probabilities pi = 1
2 . The main difference from our

model is that [6] do not require a witness at the end. So their policy can stop if
it concludes that there exists a violated halfspace (even without knowing which
one), whereas our policy can only stop after it identifies a violated halfspace (or
determines that all halfspaces are satisfied). We note that our approximation
ratio is independent of the number of variables n and holds for arbitrary prob-
abilities. The proofs of Theorems 2 and 3 are omitted in this extended abstract
and appear in the full version of the paper.

Computational Results. Finally, we evaluate the empirical performance of
our algorithm for score classification. In these experiments, our non-adaptive
algorithm performs nearly as well as the previous-best adaptive algorithms, while
being an order of magnitude faster. In fact, on many instances, our algorithm
provides an improvement in both the cost as well as the running time. On most
instances, the cost of our algorithm is within 50% of an information-theoretic
lower bound on the optimal value.
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1.2 Related Work

The special case of SSClass with B = 2 classes is the well-studied stochastic
Boolean function evaluation for linear threshold functions (SBFT). Here, the goal
is to identify whether a single halfspace is satisfied (i.e., the score is above or
below a threshold). [11] gave an elegant 3-approximation algorithm for SBFT
using an adaptive dual greedy approach. Prior to their work, only an O(log W )-
approximation was known, based on the more general stochastic submodular
cover problem [15,20].

The general SSClass problem was introduced by [14], who showed that it can
be formulated as an instance of stochastic submodular cover. Then, using gen-
eral results such as [15,20], they obtained an adaptive O(log W )-approximation
algorithm. Furthermore, [14] obtained an adaptive 3(B −1)-approximation algo-
rithm for SSClass by extending the approach of [11] for SBFT; recall that B is
the number of classes. A main open question from this work was the possibility
of a constant approximation for the general SSClass problem. We answer this
in the affirmative. Moreover, our algorithm is non-adaptive: so we also bound
the adaptivity gap.

The stochastic knapsack cover problem (SKC) is closely related to SBFT. Given
a set of items with random rewards and a target k, the goal is to (adaptively)
select a subset of items having total reward at least k. The objective is to mini-
mize the expected cost of selected items. [11] gave an adaptive 3-approximation
algorithm for SKC. Later, [21] gave a non-adaptive O(1)-approximation algo-
rithm for SKC. In fact, the result in [21] applied to the more general stochastic
k-TSP problem [12]. Our algorithm and analysis use some ideas from [12,21].
We use the notion of a “critical scale” from [21] to identify the correct reward
truncation threshold. The approach of using non-completion probabilities in the
analysis is similar to [12]. There are also a number of differences: we exploit
additional structure in the (fractional) knapsack problem and obtain a simpler
and nearly-linear time algorithm.

More generally, non-adaptive solutions (and adaptivity gaps) have been
used in solving various other stochastic optimization problems such as max-
knapsack [5,10], matching [2,4], probing [18,19] and orienteering [3,16,17]. Our
result shows that this approach is also useful for SSClass.

SSClass and EX-SFE also fall under the umbrella of designing query strategies
for “priced information”, where one wants to evaluate a function by sequentially
querying variables (that have costs). There are two lines of work here: comparing
to an optimal strategy (as in our model) [1,6,14,22], and comparing to the min-
cost solution in hindsight (i.e., competitive analysis) [7–9]. We note that the
“explainable” requirement in the EX-SFE problem (that we solve) is similar to
the requirement in [22].

2 Preliminaries

We first state some basic results for the deterministic knapsack problem. In an
instance of the knapsack problem, we are given a set T of items with non-negative
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costs {ci : i ∈ T} and rewards {ri : i ∈ T}, and a budget D on the total cost.
The goal is to select a subset of items of total cost at most D that maximizes
the total reward. The LP relaxation is the following:

g(D) = max
{∑

i∈T ri · xi

∣
∣

∑
i∈T ci · xi ≤ D, x ∈ [0, 1]T

}
, ∀D ≥ 0.

The following algorithm AKS solves the fractional knapsack problem and also
obtains an approximate integral solution. Assume that the items are ordered so
that r1

c1
≥ r2

c2
≥ · · · . Let t index the first item (if any) so that

∑t
i=1 ci ≥ D. Let

ψ := 1
ct

(D − ∑t−1
i=1 ci) which lies in (0, 1]. Define

xi =

⎧
⎨

⎩

1 if i ≤ t − 1
ψ if i = t
0 if i ≥ t + 1

.

Return x as the optimal fractional solution and Q = {1, · · · , t} as an integer
solution. We use the following well-known result (proved in the full version, for
completeness).

Theorem 4. Consider algorithm AKS on any instance of the knapsack problem
with budget D.

1. 〈r, x〉 =
∑t−1

i=1 ri + ψ · rt = g(D) and so x is an optimal LP solution.
2. The derivative g′(D) = rt

ct
.

3. Solution Q has cost c(Q) ≤ D + cmax and reward r(Q) ≥ g(D).
4. g(D) is a concave function of D.

3 The Stochastic Score Classification Algorithm

Our non-adaptive algorithm creates two lists L0 and L1 separately. These lists are
based on the R0 and R1 rewards of the variables, where R0(i) = ai(1 − Xi) and
R1(i) = aiXi. It interleaves lists L0 and L1 together (by power-of-2 costs) and
then probes the variables in this non-adaptive order until the class is identified.

3.1 The Algorithm

We first explain how to build the lists L0 and L1. We only consider list L0

below (the algorithm/analysis for L1 are identical). The list building algorithm
operates in phases. For each phase � ≥ 0 it gets a budget of O(2�), and it
solves several instances of the deterministic knapsack problem, where rewards
are truncated expectations of R0. We will use the following truncation values,
also called scales.

G :=
{
θ� : 0 ≤ � ≤ 1 + logθ W

}
, where θ > 1 is a constant.

For each scale τ ∈ G, we find a deterministic knapsack solution with reward
E[min{R0/τ, 1}] (see Equation 1 for the formal definition) and budget ≈ C2�



284 R. Ghuge et al.

(where C > 1 is a constant). Including solutions for each scale would lead to
an O(log W ) loss in the approximation factor. Instead, as in [21], we identify
a “critical scale” and only include solutions based on the critical scale. To this
end, each scale τ is classified as either rich or poor. Roughly, in a rich scale,
the knapsack solution after budget C2� still has large “incremental” reward
(formalized by the derivative of g being at least some constant δ). The critical
scale is the smallest scale κ that is poor, and so represents a transition from rich
to poor. For our analysis, we will choose constant parameters C, δ and θ so that
Cδ
θ > 1. We note however, that our algorithm achieves a constant approximation

ratio for any constant values C > 1, δ ∈ (0, 1) and θ > 0.

Algorithm 1. PickReps(�, τ, r)
1: let T ⊆ [n] denote the variables with non-zero reward and cost at most 2�

2: run algorithm AKS (Theorem 4) on the knapsack instance with items T and budget
D = C2�

3: let f = g′(D) be the derivative of the LP value and Q ⊆ T the integral solution
from AKS

4: if f > δ2−� then
5: scale τ is rich
6: else
7: scale τ is poor

8: return Q

Subroutine PickReps (Algorithm 1) computes the knapsack solution for
each scale τ , and classifies the scale as rich/poor. The subroutine BuildList(R)
(Algorithm 2) builds the list for any set of random rewards {R(i) : i ∈ [n]}.
List Lb (for b = 0, 1) is obtained by running BuildList(Rb). Finally, the non-
adaptive algorithm NaCl involves interleaving the variables in lists L0 and L1;
this is described in Algorithm 3. The resulting policy probes variables in the
order given by NaCl until the observed upper and lower bounds on the score lie
within the same class. Note that there are O(log(ncmax)) phases and O(log W )
scales: so the total number of deterministic knapsack instances solved is poly-
logarithmic. Moreover, the knapsack algorithm AKS runs in O(n log n) time. So
the overall runtime of our algorithm is nearly linear.

3.2 The Analysis

Lemma 1. The critical scale κ in Step 6 of Algorithm 2 is always well defined.

Proof. To prove that there is a smallest poor scale, it suffices to show that not all
scales can be rich. We claim that the last scale τ ≥ W cannot be rich. Suppose
(for a contradiction) that scale τ is rich. Then, by concavity of g (see property
4 in Theorem 4), we have g(D) ≥ D · g′(D) > D · δ2−� = Cδ ≥ 1. On the other
hand, the total deterministic reward at this scale,

∑n
i=1 rτ

i ≤ W
τ ≤ 1. Thus,

g(D) ≤ 1, a contradiction.
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Algorithm 2. BuildList({R(i) : i ∈ [n]})
1: list Π ← ∅
2: for phase � = 0, 1, . . . do
3: for each scale τ ∈ G do
4: define truncated rewards

rτ
i =

{
E

[
min

{
R(i)

τ
, 1

}]
, if i /∈ Π

0, otherwise
(1)

5: S�,τ ← PickReps(�, τ, rτ )

6: let κ be the smallest poor scale in G (this is called the critical scale)
7: Π� ← S�,κ and Π ← Π ◦ Π�

8: return list Π

Algorithm 3. NaCl (Non-Adaptive Classifier)
1: list Lb ← BuildList({Rb(i) : i ∈ [n]}) for b = 0, 1
2: let L�

b denote the variables in phase � for list Lb

3: for each phase �, set S� ← L�
0 ∪ L�

1

4: return list S0, S1, · · · , S� · · ·

Lemma 2. The cost c(S�,τ ) ≤ (C + 1)2� for any phase �. Hence, the cost
incurred in phase � of NaCl is at most (C + 1)2�+1.

Proof. Consider any call to PickReps in phase �. We have S�,τ = Q where
Q is the integer solution from Theorem 4. It follows that c(S�,τ ) = c(Q) ≤
C2� + maxi∈T ci ≤ (C + 1)2�; note that we only consider variables of cost at
most 2� (see Step 1 of Algorithm 1). Finally, the variables S� in phase � of
NaCl consist of the phase-� variables of both L0 and L1. So the total cost of
these variables is at most (C + 1)2�+1. �

We now analyze the cost incurred by our non-adaptive strategy NaCl. We
denote by OPT an optimal adaptive solution for SSClass. To analyze the algo-
rithm, we use the following notation.

– u�: probability that NaCl is not complete by end of phase �.
– u∗

� : probability that OPT costs at least 2�.

We can assume by scaling that the minimum cost is 1. So u∗
0 = 1. For ease

of notation, we use OPT and NA to denote the random cost incurred by OPT
and NaCl respectively. We also divide OPT into phases: phase � corresponds to
variables in OPT after which the cumulative cost is between 2�−1 and 2�. The
following lemma forms the crux of the analysis.

Lemma 3. For any phase � ≥ 1, we have u� ≤ q · u�−1 + u∗
� where q ≤ 0.3.

Given Lemma 3, the proof of Theorem 1 is standard (see, for example, [12]).
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3.3 Proof of Lemma 3

Recall that NaCl denotes the non-adaptive algorithm, and NA its random cost.
Fix any phase � ≥ 1, and let σ denote the realization of the variables probed in
the first � − 1 phases of NaCl. We further define the following conditioned on
σ:

– u�(σ): probability that NaCl is not complete by end of phase �.
– u∗

� (σ): probability that OPT costs at least 2�, i.e., OPT is not complete by end
of phase �.

If NaCl does not complete before phase � then u�−1(σ) = 1, and we will prove

u�(σ) ≤ u∗
� (σ) + 0.3. (2)

We can complete the proof using this. Note that u�−1(σ) is either 0 or 1. If
u�−1(σ) = 0 then u�(σ) = 0 as well. So, Eq. (2) implies that u�(σ) ≤ u∗

� (σ) +
0.3u�−1(σ) for all σ. Taking expectation over σ gives Lemma 3. It remains to
prove Eq. (2).

We denote by R0 and R∗
0 the total R0 reward obtained in the first � phases by

NaCl and OPT respectively. We similarly define R1 and R∗
1. To prove Equation

(2), we will show that the probabilities (conditioned on σ) P(R∗
0 > R0) and

P(R∗
1 > R1) are small. Intuitively, this implies that with high probability, if OPT

finishes in phase �, then so does NaCl. Formally, we prove the following key
lemma.

Lemma 4 (Key Lemma). For b ∈ {0, 1}, we have P(Rb < R∗
b | σ) ≤ 0.15.

Using these lemmas, we prove Equation (2).

Proof (Proof of Equation (2)). Recall that we associate a pair (β0
j , β1

j ) with every
class j. If OPT finishes in phase �, then there exists some j such that R∗

0 ≥ β0
j

and R∗
1 ≥ β1

j . Thus,

P(OPT finishes in phase � | σ) = 1 − u∗
� (σ) = P(∃j : R∗

0 ≥ β0
j and R∗

1 ≥ β1
j | σ).

From Lemma 4 and union bound, we have P(R0 < R∗
0 or R1 < R∗

1 | σ) ≤
0.3. Then, we have

1 − u�(σ) = P(NA finishes in phase � | σ)

≥ P
(
(OPT finishes in phase �)

∧
R0 ≥ R∗

0

∧
R1 ≥ R∗

1

∣
∣ σ

)

≥ P(OPT finishes in phase � | σ) − P(R0 < R∗
0 or R1 < R∗

1 | σ)
≥ (1 − u∗

� (σ)) − 0.3

Upon rearranging, this gives u�(σ) ≤ u∗
� (σ) + 0.3 as desired. �
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Proof Sketch of the Key Lemma. We now provide an intuition for the proof
of Lemma 4 with b = 0 (the case b = 1 is identical). Henceforth, reward will
only refer to R0. Observe that in phase � of Algorithm 2, the previously probed
variables Π ⊆ σ. For ease of notation, let σ also represent the set of variables
probed in the first � − 1 phases. Recall that S� is the set of variables probed by
NaCl in phase �. Let O� be the variables probed by OPT in phase �; so the total
cost of O� is at most 2�. Note that O� can be a random subset as OPT is adaptive.
Also, S� is a deterministic subset as NaCl is a non-adaptive list. Roughly, we
show that (conditioned on σ) the probability that O� has more reward than S�

is small. The key idea is to use the critical scale κ (in phase �) to argue that the
following hold with constant probability (1) reward of O� \ (S� ∪ σ) is at most
κ, and (2) reward of S� \ O� is at least κ. This would imply that with constant
probability, NaCl gets at least as much reward as OPT by the end of phase �.
Formally, we show:

Lemma 5. If A is any adaptive policy of selecting variables from [n] \ (S� ∪ σ)
with total cost ≤ 2� then P [R0(A) < κ] ≥ 1 − δ. Hence,

P [R0(O� \ (S� ∪ σ)) ≥ κ] ≤ δ.

Lemma 6. We have P (R0(S� \ O�) < κ) ≤ e−(μ−lnμ−1). Here, μ := (C−1)δ/θ.

Combining these two lemmas with an appropriate choice of constants C, δ and
θ, we obtain Lemma 4. We defer the proofs to the full version.

4 Computational Results

We provide a summary of computational results of our non-adaptive algorithm
for the stochastic score classification problem. We conducted all of our computa-
tional experiments using Python 3.8 with a 2.3 GHz Intel Core i5 processor and
16 GB 2133MHz LPDDR3 memory. We use synthetic data to generate instances
of SSClass for our experiments.

Instance Generation. We test our algorithm on synthetic data generated as
follows. We first set n ∈ {100, 200, . . . , 1000}. Given n, we generate n Bernoulli
variables, each with probability chosen uniformly from (0, 1). We set the costs
of each variable to be an integer in [10, 100]. To select cutoffs (when B �= 2), we
first select B ∈ {5, 10, 15} and then select the cutoffs (based on the value of B)
uniformly at random in the score interval. We provide more details and plots
in the full version of the paper. For each n we generate 10 instances. For each
instance, we sample 50 realizations in order to calculate the average cost and
average runtime.

Algorithms. We compare our non-adaptive SSClass algorithm (Theorem 1)
against a number of prior algorithms. For SBFT instances, we compare to
the adaptive 3-approximation algorithm from [11]. For unweighted SSClass
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instances, we compare to the non-adaptive 2(B − 1)-approximation algorithm
from [14]. For general SSClass instances, we compare to the adaptive O(log W )-
approximation algorithm from [14]. As a benchmark, we also compare to a naive
non-adaptive algorithm that probes variables in a random order. We also com-
pare to an information-theoretic lower bound (no adaptive policy can do better
than this lower bound). We obtain this lower bound by using an integer linear
program to compute the (offline) optimal probing cost for a given realization
(see full version for details), and then taking an average over 50 realizations.

Parameters C, δ, and θ. As noted in Sect. 3, our algorithm achieves a constant
factor approximation guarantee for any constant C > 1, δ ∈ (0, 1) and θ > 1.
For our final computations, we (arbitrarily) choose values C = 2, δ = 0.01, and
θ = 2.

Reported Quantities. For every instance, we compute the cost and runtime
of each algorithm by taking an average over 50 independent realizations. For
the non-adaptive algorithms, note that we only need one probing sequence for
each instance. On the other hand, adaptive algorithms need to find the prob-
ing sequence afresh for each realization. Thus, the non-adaptive algorithms are
significantly faster (see full version for corresponding runtime plots).

In Table 1, we report the average performance ratio (cost of the algorithm
divided by the information-theoretic lower bound) of the various algorithms.
For each instance type (SBFT, Unweighted SSClass and SSClass), we report the
performance ratio averaged over all values of n (10 choices) and all instances (10
each). Note that values closer to 1 demonstrate better performance.

Table 1. Average performance ratios relative to the lower bound.

Instance type Our Alg. GGHK Alg. Random list

Unweighted SSClass, B = 5 1.50 1.48 1.80

Unweighted SSClass, B = 10 1.25 1.24 1.33

Unweighted SSClass, B = 15 1.13 1.13 1.19

SSClass, B = 5 1.59 1.94 2.43

SSClass, B = 10 1.34 1.45 1.73

SSClass, B = 15 1.22 1.39 1.47

Instance type Our Alg. DHK Alg. Random list

SBFT 2.18 1.74 5.63

We observe that for unweighted SSClass instances, our algorithm performs
nearly as well as the 2(B − 1)-approximation algorithm. For general (weighted)
SSClass instances, our algorithm performs considerably better than the adaptive
O(log W )-approximation algorithm. For SBFT instances, the performance of our
algorithm is about 25% worse than the adaptive 3-approximation algorithm while
its runtime is an order of magnitude faster.
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Abstract. We investigate the complexity of finding small branch-and-
bound trees using variable disjunctions. We first show that it is not
possible to approximate the size of a smallest branch-and-bound tree
within a factor of 2

1
5 n in time 2δn with δ < 1

5
, unless the strong expo-

nential time hypothesis fails. Similarly, for any ε > 0, no polynomial
time 2( 1

2−ε)n-approximation is possible, unless P = NP. We then dis-
cuss that finding small branch-and-bound trees generalizes finding short
treelike resolution refutations. Therefore, hardness results, in particu-
lar non-automatizability results, transfer from this setting. Finally, we
show that computing the size of a smallest branch-and-bound tree is #P-
hard. Similar results hold for estimating the size of the tree produced by
branching rules like most-infeasible branching.

Keywords: Binary program · Branch-and-bound proof · Counting
problem

1 Introduction

The currently dominant strategy to solve mixed-integer linear programs is the
branch-and-cut method. Besides the addition of cutting planes, the core is formed
by branch-and-bound, based on linear programming (LP) relaxations. The nodes
are usually created by variable branching, i.e., a disjunction on the variable
bounds. Many branching rules, i.e., methods to choose the branching variable at
each node, are known, see, e.g., [1,2,8] to mention a few.

This raises the desire to evaluate the performance of branching rules in com-
parison to the best possible, i.e., to the smallest size of a tree. In this paper,
we investigate the theoretical complexity of computing the size of a smallest
branch-and-bound tree based on variable branching. We concentrate on proving
optimality by assuming that an objective cut using the optimal value is inte-
grated into the system. Then the goal is to estimate the size of a smallest tree to
prove infeasibility of a linear inequality system with integrality requirements on
the variables. Moreover, we restrict attention to pure branch-and-bound algo-
rithms, i.e., no cutting plane separation, domain reduction, presolving is used.
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We first prove in Sect. 3 that it is not possible to approximate the size of a
smallest branch-and-bound tree using variable branching within a factor of 2

1
5n

in time 2δn with δ < 1
5 , where n is the number of variables, unless the strong

exponential time hypothesis fails (Theorem 2). The same argument can be used
to show that unless P = NP, no polynomial time algorithm can approximate the
size of -a- smallest tree within -a factor of −2

1
2−ε for any ε > 0 (Theorem 1). This

result significantly strengthens the hardness of approximation within a factor of 2
in Hendel et al. [15].

However, can the smallest size be approximated, if polynomial time in the
size of the instance is spent for every node of the smallest tree? This is captured
by the notion of automatizability of proof systems, i.e., a proof can be pro-
duced in polynomial time in the size of the instance and of a shortest proof. In
Sect. 4, we transfer hardness results from the literature to show that branch-and-
bound with variable branching is not automatizable under reasonable hardness
assumptions. However, it is quasi-automatizable, i.e., a proof can be produced
in quasi-polynomial time in the size of the instance and smallest proof.

In Sect. 5, we prove that computing the size of a smallest branch-and-bound
tree is #P-hard (Theorem 6). To the best of our knowledge, such a hardness
result is novel, even across all commonly considered proof systems. Furthermore,
for a binary program it is #P-hard to compute the size of the tree produced by
many branching rules from practice (e.g., the most-infeasible branching rule),
given suitable tie-breaking. Since one can construct a SAT-formula for which
satisfying assignments correspond to leaves of the resulting tree [18,22], this task
is actually in #P (when solving LPs with a polynomial time algorithm). Due to
the famous theorem of Toda [23], neither of the two aforementioned estimation
problems can be solved in polynomial time, even when given access to an oracle
from the polynomial hierarchy, unless the polynomial hierarchy collapses.

Note that Valiant and Vazirani [26] show that every problem in #P has a
polynomial-time randomized approximation scheme, assuming access to an NP-
oracle, making a result by Sipser [21] and Stockmeyer [22] explicit. However, we
do not have a reason to believe that computing the size of a smallest branch-and-
bound tree lies in #P. We note that Le Bodic and Nemhauser [20] consider an
abstract model in which branching on a particular variable improves the value of
the LP-bound for the two children by a fixed amount and show that computing
the size of a shortest tree in their model is (weakly) NP-hard.

Branch-and-bound algorithms in practice almost always cut off the optimal
LP solution of the currently considered node by branching on a fractional vari-
able. Thus, our results also hold for LP-based branch-and-bound trees.

Note that pure branch-and-bound described above produces mixed results:
On the one hand, it solves random binary programs (with a fixed number of con-
straints) in polynomial time [12], on the other hand, it takes exponential time to
prove infeasibility of matching polytopes with an objective cut [6, Theorem 2.2],
even though matching is solvable in polynomial time.
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2 Preliminaries

2.1 Binary Programs and Branch-and-Bound Proofs

We consider binary programs (BP) of the following form

max {c�x : Ax ≤ b, x ∈ {0, 1}n},

where n ∈ N, A ∈ Qm×n, b ∈ Qm, c ∈ Qn. We define [n] := {1, . . . , n}.
To concentrate the investigation on the ability of branch-and-bound to prove

optimality (or infeasibility), we assume that the problems are bounded and we
know the optimal values of feasible instances, which are integrated by an objec-
tive cut into the problem. As a consequence, we are aiming for proving infeasi-
bility of the system

Ax ≤ b, x ∈ {0, 1}n. (P )

To fix notation, we formalize bound-and-bound proofs. A (variable disjunc-
tion) branch-and-bound proof (of infeasibility) of (P ) or branch-and-bound refu-
tation of (P ) is a rooted binary directed tree T with the following properties:

– Every non-leaf node N is labeled with some variable xi (the branching variable
for N), one of the outgoing edges from N is labeled by the variable fixing
xi = 0 and is called the left child (or xi = 0-child) of N and the other
outgoing edge from N is labeled by xi = 1 and is called the right child (or
xi = 1-child) of N .

– To each node N there corresponds a linear program (PN ), which is the LP-
relaxation of (P ) strengthened by all the variable fixings which occur as labels
on the path from the root to N and (PN ) is infeasible if and only if N is a
leaf. We say N is (in)feasible, if (PN ) is.

The xi = a-branch at a node N , a ∈ {0, 1}, is the directed subtree rooted at the
xi = a-child of N . Without loss of generality, we assume every variable occurs
at most once as a label of a node on any root-leaf path in T .

We are then interested in T (I), which for an infeasible instance I of prob-
lem (P ) is the size of a shortest branch-and-bound proof; the size of a proof is
the number of its nodes.

2.2 Boolean Formulas and the Exponential Time Hypothesis

A literal is a Boolean variable or its negation. A clause C is a disjunction of
literals. A Boolean formula ϕ in conjunctive normal form (CNF) is a conjunction
of clauses. Let C denote the set of clauses in ϕ. For a clause C ∈ C denote by P(C)
the set of unnegated variables in C and by N (C) the set of negated variables
in C. A CNF ϕ is a k-CNF, if every clause of ϕ contains at most k literals.
Without loss of generality, every k-CNF contains at most

(
n
k

)
2k clauses.
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For some results we will rely on the (strong) exponential time hypothesis
formulated by Impagliazzo and Paturi [16] as a hardness assumption:
Let (k-)SAT denote the problem of deciding whether a (k-)CNF is satisfiable
and

sk := inf{s ∈ R+ : k − SAT can be decided in time O(2sn)}.

The exponential time hypothesis (ETH) states s3 > 0 and the strong exponential
time hypothesis (SETH) states s∞ := limk→∞ sk = 1.

3 Hardness of Approximation

We first prove that the size T of a smallest branch-and-bound proof cannot be
approximated within any exponential factor within subexponential time, unless
ETH fails.

Consider Jn = {x ∈ [0, 1]2n :
∑2n

i=1 2xi = 2n + 1}, a classical example by
Jeroslow [17]. Note that Jn ∩ Z2n is empty, but Jn is not. It is easy to see that
one needs to fix at least n variables before attaining LP-infeasibility. Thus, any
proof of Jn ∩ Z2n = ∅ must contain at least 2n+1 − 1 nodes.

Furthermore, for a given CNF ϕ with variables x1, . . . , xn and clauses C,
consider the following binary problem:

∑

xi∈P(C)

xi +
∑

xi∈N (C)

(1 − xi) ≥ 1
2 ∀C ∈ C, x1, . . . , xn ∈ {0, 1}. (Qϕ)

Satisfying assignments of ϕ correspond to integer points in (Qϕ).
Given a set of instances I and α ≥ 1, an α-approximation algorithm for a

function f : I �→ N is an algorithm A which satisfies A(I)/α ≤ f(I) ≤ A(I) · α
for all I ∈ I. Our first result is

Theorem 1. There is no polynomial time α-approximation algorithm for T with
α < 2(

1
2−ε)n for any ε > 0, unless P = NP.

The proof is analogous to that of the next result:

Theorem 2. For any parameter λ ∈ N with λ > 1, there is no α-approximation
algorithm for T with α < 2(

1
2− 1.5

2λ+1 )n running in time O(2δn) with δ < 1
1+2λ ,

unless SETH fails. Furthermore, for every ε > 0, there is some δ > 0 such that
there is no α-approximation algorithm for T with α < 2(

1
2−ε)n running in time

O(2δn), unless ETH fails.

In particular, for λ = 2, we obtain that it is not possible to approximate T
within a factor of 2

1
5n in time 2δn with δ < 1

5 , unless SETH fails. Moreover,
Theorem 1 corresponds to λ → ∞.

Proof. We prove the theorem by contraposition: Assume such an algorithm exists
for some λ. We will show that we can then give a family of algorithms for SAT
falsifying (S)ETH. Let a CNF ϕ with variables y1, . . . , ym and clauses C be given,
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and let � := λm. Consider the following binary program (J) with n = 2� + m
variables:

2�∑

i=1

2xi = 2� + 1, (Ja)

∑

yi∈P(C)

yi +
∑

yi∈N (C)

1 − yi ≥ 1
2 ∀C ∈ C, (Jb)

xi, yj , ∈ {0, 1} ∀i ∈ [2�], j ∈ [m].

Assume that ϕ has no satisfying assignment. Then exhaustively branching
on all yi yields infeasibility due to (Jb) and thus a proof of size at most 2m+1−1.

Conversely, assume there is an assignment satisfying ϕ and we are given a
branch-and-bound proof T of (J). It is easy to see that we can obtain a proof T ′

for J� ∩ Z2� = ∅ with |T ′| ≤ |T | from T and thus we must have |T | ≥ 2�+1 − 1.
Since � ≥ m, we have

2�+1 − 1
2m+1 − 1

≥ 2�+1

2m+1
= 2�−m = 2(λ−1)m = 2

λ−1
2λ+1 (2�+m) = 2

λ−1
2λ+1n.

Therefore, approximating the size of a shortest branch-and-bound proof for
(J) within factor 2

λ−1
2λ+1n decides whether ϕ is satisfiable. Further, an O(2δn)-

time algorithm with δ < 1
2λ+1 for this task is an O(2(2λ+1)δm)-time algorithm

for k-SAT for arbitrary k with (2λ + 1)δ < 1 and thus contradicts SETH.
Furthermore, choose λ with 1.5

2λ+1 < ε for any fixed ε > 0. Then an O(2δn)-
time algorithm approximating T within factor 2(

1
2−ε)n, yields an O(2δ′m)-time

algorithm for 3-SAT for δ′ := (2λ + 1)δ. If such an algorithm exists for every
δ > 0 (and therefore every δ′), this violates ETH, which yields the second part
of the statement. 
�

Remark 3. In the above proof, we can always branch on a fractional variable,
i.e., Theorem 1 and 2 hold for LP-based branch-and-bound trees.

Remark 4. Note that for BPs with an exponential number of constraints, we
can replace Jn by Pn := {x ∈ [0, 1]n :

∑
i∈R xi +

∑
i�∈R(1 − xi) ≥ 1

2 ∀R ⊆ [n]},
for which any branch-and-bound proof with variable disjunctions must be a
complete binary tree of depth n. We can then strengthen the factor 1

2 − 2
2λ+1

in the exponent of the approximation ratio in the first part of Theorem 2 to
1 − 2

λ+1 and the factor of 1
2 − ε in the second part to 1− ε. Note Pn is separable

in polynomial time: Given a point x̂ ∈ [0, 1]n, the set R̂ := {i ∈ [n] : x̂i ≤ 1
2}

minimizes the left hand side. Thus, x̂ ∈ Pn if and only if x̂ satisfies
∑

i∈R̂ x̂i +∑
i�∈R̂(1 − x̂i) ≥ 1

2 .
Cook et al. [10] showed that there is no cutting plane proof of Pn ∩ Zn = ∅ of
size at most 2n/n, even if we replace 1

2 on the right hand side by 1. Dadush and
Tiwari [11] showed that there also does not exist a branch-and-bound proof of
size 2n/n even if we allow branching on general disjunctions.
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4 (Non-)Automatizability of Branch-and-Bound

In this section we sketch how results about automatizing finding shortest so-
called treelike resolution refutations transfer to the case of branch-and-bound
proofs.

Treelike resolution is a proof system which certifies the infeasibility of
Boolean formulas in CNF. Treelike resolution can be seen as a branch-and-bound
procedure, where we branch by fixing a variable to either 1 (true) or 0 (false)
and prune only nodes in which the already fixed variables falsify a clause, i.e.,
we prune a node N , if there is a clause C with fixings x = 0 for all x ∈ P(C) and
x = 1 for all x ∈ N (C) in the subproblem associated with N [19, Section 5.2]. A
treelike resolution proof or refutation is a tree produced by this procedure.

Automatizability. It is easy to see that not all infeasible instances of an NP-
complete problem can have proofs of size bounded by some polynomial, unless
NP = coNP. Therefore the reason for the inability of polynomial-time algorithms
to find shortest proofs might be the size of these proofs instead of the computa-
tional difficulty of finding them. To investigate this possibility, Bonet et al. [9]
introduced the concept of automatization. A proof system is called automatizable
(quasi-automatizable), if given an infeasible instance I, an infeasibility proof in
this system can be produced in time polynomial (quasipolynomial) in |I| and L,
where |I| is the encoding length of I and L is the size of a shortest proof of I.

Beame and Pitassi [7] proved the positive result that branch-and-bound using
variable disjunctions is quasi-automatizable for binary programs, for which we
reproduce the proof for completeness:

Consider the following recursive procedure R(S, n), which generates a branch-
and-bound proof for a given binary program (P ) with n variables, if there is a
proof of size at most S. Among the 2n possible fixings of a variable in (P ), find
a fixing xi = a ∈ {0, 1}, such that R(S/2, n − 1) succeeds on (P ∩ {xi = a}) by
trial-and-error. This works if there exists a proof T of size at most S, because
one of the branches at the root node of T has size at most S/2. Then apply
R(S, n − 1) to (P ∩ {xi = 1 − a}), which succeeds if there exists a proof of size
at most S and because T is non-increasing with respect to fixing variables. The
resulting running time recursion t(S, n) = 2n · t(S/2, n − 1) + t(S, n − 1) solves
to roughly nlog S . We can then try R(S, n) for increasing values of S until it
succeeds. 
�

We now observe that the treelike resolution refutations of ϕ are the branch-
and-bound proofs using variable disjunctions of (Qϕ). Indeed, in both cases a
node is infeasible if and only if the already fixed variables falsify a clause.

Thus, we can replace “treelike resolution” by “branch-and-bound using vari-
able disjunctions” in a result by Alekhnovich and Razborov [3], which has been
strengthened by Eickmeyer et al. [14] to obtain: Branch-and-bound using vari-
able disjunctions is not automatizable unless FPT = W[P]. Here, FPT ⊆ W[P]
may be seen as an analogue of the question whether NP ⊆ P in the world of
parameterized problems.
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Notably, the recent breakthrough of Atserias and Müller [5], showing non-
automatizability of general resolution under the weaker and optimal assumption
P = NP, likely does not transfer to branch-and-bound using variable disjunctions
(or treelike resolution). In fact, their approach – to show that it is NP-hard to
distinguish between instances with a refutation of size bounded by some polyno-
mial and instances with refutations of at least exponential size – likely does not
transfer; otherwise, quasi-automatizability of branch-and-bound using variable
disjunction would cause the exponential time hypothesis to fail [3,5].

5 #P-Hardness of Exact Computation

We first review #P-hardness as introduced by Valiant [24,25], which we will use
to bound the hardness of finding a shortest branch-and-bound proof from below:

Definition 5. A function g : {0, 1}∗ → N is in #P if there exists a polynomial
p : N → N and a polynomial time Turing machine M such that for every x ∈
{0, 1}∗ we have

g(x) = |{y ∈ {0, 1}p(|x|) : M accepts on input (x, y)}|.

So #P is the class of functions which count certificates of some NP-problem. For
example, #SAT is the function that on input of a Boolean formula returns the
number of satisfying assignments.

We will identify natural numbers with their binary representation and let FPf

denote the class of functions g : {0, 1}∗ → N which are computable in polynomial
time by a Turing machine with access to an oracle computing f . A function f is
#P-hard, if #P ⊆ FPf . Because the Cook-Levin reduction preserves the number
of certificates, #SAT is #P-complete, see, e.g., [4, Theorem 17.10].

Our main result is the following:

Theorem 6. Computing T for binary programs is #P-hard.

Our proof is based on a highly symmetrical problem with additional con-
straints on a subset of variables, ensuring that a Boolean formula ϕ is satisfied.
Due to the symmetry without additional constraints, it is optimal to first branch
on variables occuring in additional constraints. Then the number of surviving
branches after fixing all the variables subject to additional constraints – i.e. the
number of assignments satisfying ϕ – is roughly proportional to the length of a
smallest branch-and-bound proof.

Let a formula ϕ in CNF with variables x1 . . . , xn be given. We then intro-
duce additional variables xn+1, . . . , x3n, y1, . . . , y3n, z1, . . . , z3n and consider the
following BP (Pϕ):
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∑

xi∈P(C)

xi +
∑

xi∈N (C)

(1 − xi) ≥ 1
2 ∀C ∈ C, (Pϕa)

3n∑

i=1

(yi + zi) ≥ 3n + 1
2 , (Pϕb)

yi ≤ 3
2 − xi, zi ≤ 1

2 + xi ∀i ∈ [3n], (Pϕc)

(x, y, z) ∈ {0, 1}3·3n.

In particular, none of the variables xn+1, . . . , x3n are contained in a constraint
of type (Pϕa). Note that because of (Pϕb) and (Pϕc), this problem is always
infeasible, even when ignoring the constraints (Pϕa). The following Lemmas 7
and 8 will give sufficiently tight bounds on #SAT(ϕ) depending on T (Pϕ) to
see that knowledge of T (Pϕ) suffices to compute #SAT(ϕ) in polynomial time.
This then proves Theorem 6.

Lemma 7. T (Pϕ) ≤ 6 · 22n · #SAT(ϕ) − 5 + 6(2n − #SAT(ϕ))

Proof. Construct a branch-and-bound proof T by choosing the branching vari-
able in every node N as follows:

1. If N is a xi = 0 child, choose zi and if N is a xi = 1-branch choose yi,
2. otherwise choose an unbranched xi with smallest index.

We say a node is at depth �, if its distance from the root is �. By construction,
each node at even depth is labeled with some xi, whereas nodes at odd depth
are labeled with either some yi or zi.

Since we are proving an upper bound, we can assume that constraint (Pϕa)
is only added at depth 2n. Therefore, the problem never becomes infeasible after
fixing a variable xi. Thus, all nodes at odd depths are feasible. At even depths
except for 2n and 6n, exactly half of the nodes are feasible, namely the yi = 0
and zi = 0 nodes.

Together, this yields 2i+1 nodes at odd depth 2i + 1 for i = 0, . . . , n − 1 and
2·#SAT(ϕ) nodes at depth 2n+1. For odd depth 2(n+i)+1 for i = 0, . . . , 2n−1,
we have 2i+1 nodes for each solution of ϕ. Moreover, assigning to every node at
odd depth the set consisting of its two children and itself, yields a partition of
the node set without the root. This yields:

T (Pϕ) ≤ 3 · |{nodes labeled with y or z before level 2n}|
+ 3 · |{nodes labeled with y or z after level 2n}| + 1

= 3

(

2
n−1∑

i=0

2i + 2 · #SAT(ϕ) ·
2n−1∑

i=0

2i

)

+ 1

= 6(2n − 1) + 6 · #SAT(ϕ) · (22n − 1) + 1,

which shows the claim. 
�

Lemma 8. T (Pϕ) ≥ 6 · 22n · #SAT(ϕ) − 5.
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Proof. Let S denote the set of points (x, y, z) ∈ {0, 1}3·3n such that

1. x1, . . . , xn satisfy ϕ,
2. xn+1, . . . , x3n can have any value and
3. zi = xi and yi = 1−xi for all i ∈ [3n] (i.e. yi and zi have the maximal binary

value which is consistent with xi with respect to (Pϕc)).

Evidently, |S| = #SAT(ϕ) · 22n.
Let T denote a smallest branch-and-bound proof of (Pϕ) using variable dis-

junctions. We will show that every point s ∈ S must correspond to a unique leaf
of T (Claim 2) and that the problems associated to these leaves must contain
many variable fixings of y and z variables (Claim 1). This allows us to lower-
bound the number of nodes of T labeled with these variables in terms of |S|
(Claim 3). Together with the fact that T can be chosen exhibiting certain struc-
ture (Claim 4), this will allow us to isolate sufficiently many nodes of T for our
desired bound.

We say that a 0/1-point p = (x, y, z) ∈ {0, 1}3·3n is ruled out by a leaf N
of T , if p satisfies all variable fixings labeling the edges on the path from the root
to N . Such a leaf N certifies that p is not feasible for (Pϕ). Every p ∈ {0, 1}3·3n

is ruled out by some leaf.

Claim 1. The subproblem Pϕ(N) associated to a leaf N ruling out s =
(x, y, z) ∈ S must contain one of the variable fixings yi = 0 or zi = 0 for
every i = 1, . . . , 3n.

Proof of claim. Assume there is i = 1, . . . 3n, such that Pϕ(N) neither contains
yi = 0 nor zi = 0. Thus, if we define for j = 1, . . . , 3n,

x̂j = xj , ŷj =

⎧
⎪⎨

⎪⎩

1
2 , if j = i and xj = 1,

1, if j = i and xj = 0,

yj , otherwise,
ẑj =

⎧
⎪⎨

⎪⎩

1, if j = i and xj = 1,
1
2 , if j = i and xj = 0,

zj , otherwise,

then (x̂, ŷ, ẑ) is a feasible solution to Pϕ(N), contradicting infeasibility of N . �
Claim 2. A leaf can rule out at most one point from S.

Proof of claim. Assume (x̃, ỹ, z̃), (x′, y′, z′) ∈ S with x̃ = x′ are both ruled out
by a leaf N . (Note that differences in y and z imply differences in x.) Thus, there
is i ∈ [3n] such that x̃i = x′

i and the subproblem Pϕ(N) associated to N does
not contain variable fixings on xi, yi or zi. This is impossible by Claim 1. �
Claim 3. There are at least 2(|S| − 1) nodes in T labeled either with some yi

or zi, which have a descendant ruling out a point from S.

Proof of claim. Let X denote the set of inner nodes N in T for which both
branches contain a node ruling out a point from S. By Claim 2, we have |X| =
|S| − 1. For every N ∈ X, we will choose a set HN of two descendants labeled
with either yi or zi, which have a descendant ruling out a point from S. To this
end, we emphasize that both branches in T starting at N contain a leaf ruling
out a point from S and consider the following cases:
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1. If N is labeled by some xi, then no node on the path from the root to N
can be labeled with yi or zi, since otherwise not both the xi = 1- and the
xi = 0-branch can contain a leaf ruling (since only one is consistent with the
earlier branching decision). Since both branches at N contain a leaf ruling
out a point from S, both of these branches must contain a node labeled with
either yi or zi by Claim 1. Choose HN to be any two such nodes.

2. Otherwise, N is labeled with some yi or zi, say yi. Once again, no node on the
path from the root to N can be labeled with xi or zi. Furthermore, the yi = 1-
branch must contain a node ruling out a point from S. Again by Claim 1, a
node U in this branch must be labeled with zi. Choose HN = {N,U}.

We claim that HN ∩ HM = ∅ for distinct nodes N , M ∈ X. For the sake of
contradiction assume HN ∩ HM = ∅. By construction, the labels of N and M
must be distinct elements of {xi, yi, zi} for some index i. Furthermore, since HN

and HM contain only descendants of N and M , there must be a ancestor rela-
tionship between N and M in T , say N is a descendant of M . But then not
both branches at N can contain a leaf ruling out a point from S, as only for one
of these branches the branching decision at N is consistent with the branching
decision at M , contradicting our choice of X. Thus, the set H =

⋃
N∈X HN is a

collection of 2(|S|−1) nodes labeled with either yi or zi, which have a descendant
ruling out a point from S, as desired. �

Claim 4. T can be chosen to satisfy the following properties:

1. Let be N be a node labeled with some yi, then N either has an ancestor A
labeled with xi and is in the xi = 1-branch at A or a descendant in the yi = 1-
branch at N is labeled with xi. Analogously, if N is labeled with some zi,
then N either has an ancestor A labeled with xi and is in the xi = 0-branch
at A or a descendant in the zi = 1-branch at N is labeled with xi.

2. If a variable yi or zi is branched after xi, then it is branched immediately
after, i.e., if there is a node N labeled with some yi or zi which is a descendant
of some A labeled with xi then N is A’s child.

Proof of claim. 1. Assume there is a node N labeled with yi that is neither in
the xi = 1 branch of an ancestor labeled with xi nor has a descendant in the
yi = 1-branch labeled with xi. We claim that the subtree S rooted at N can
be replaced by the yi = 1-branch S′ at N as shown in Figure 1, removing the
branching on yi. Since S′ is a subtree of S, every node of S′ corresponds to
a node of S in the obvious way. Let T ′ denote the tree obtained by cutting
off S from T and attaching S′ to T at N instead. It remains to show that all
of the problems Pϕ(L′) for a leaf L′ of S′ are infeasible, where Pϕ(L′) is taken
with respect to T ′. Let L be the node corresponding to L′ in S and Pϕ(L)
be the associated subproblem (with respect to T ). Then Pϕ(L) is Pϕ(L′)
strengthened by the variable fixing yi = 1, but does not contain the variable
fixing xi = 1. It is obvious that if Pϕ(L′) has a feasible solution, then it has
a feasible solution with yi = 1 (and xi = 1

2 ) and therefore the infeasibility of
Pϕ(L) implies the infeasibility of Pϕ(L′). The case where N is labeled with
some zi is analogous.
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yi = 0 yi = 1

N

S′

N

S′

Fig. 1. The modifications to T to prove part 1 of Claim 4. We see the case where N
is labeled with yi, the other case is analogous. The fixing of yi does not contribute to
the infeasibility of the leaves in the yi = 1-branch and therefore can be removed.

xi = 0 xi = 1

zi = 0 zi = 1

xi = 0 xi = 1

zi = 0 zi = 1

A

N

B

B

Fig. 2. The modifications to T to prove part 2 of Claim 4. We see the case where N is
labeled with zi, the other case is analogous. The gray triangle is the xi = 0-branch at A
without the subtree rooted at N . The node B is infeasible because of the incompatible
choices of zi and xi. The only leaf where fixed variables become free is B, thus all
leaves remain infeasible.

2. Assume a node N which is labeled with some yi or zi is a descendant, but
not a child, of a node A labeled with xi. Then by Part 1, either N is labeled
with yi and in the xi = 1-branch at A, or N is labeled with zi and in the
xi = 0-branch at A. In either case, we can find another branch-and-bound
proof T ′ of the same size, in which the number of times a variable yi or zi is
branched after, but not immediately after xi is reduced by one, which suffices
by induction. This can be achieved by reattaching certain subtrees of T as
shown in Fig. 2 and verifying that the leaves remain infeasible. �

Finally, we assign to every node N labeled with yi which has a descendant
ruling out a point from S the following nodes:

1. If N ’s parent M is labeled with xi:
– Half of M and
– N ’s infeasible child O, in which the branching decisions for xi in M and

for yi in N contradict.
2. Otherwise, by Claim 4, there is a node M in the yi = 1-branch at N which

is labeled with xi and we assign to N :
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– Half of M and
– M ’s infeasible child O, in which the branching decisions for xi in M and

for yi in N contradict.
We assign nodes to nodes labeled with some zi with a descendant ruling out a
point from S analogously. Note that in both cases, O cannot rule out a point
from S. We have assigned 3

2 nodes to every N labeled with yi or zi, none of
which are labeled with yi or zi and none of which can rule out a point from S.
Moreover, every node is assigned at most once: The only case in which a node
could be assigned more than once appears if a node N labeled with xi is assigned
with 1

2 to its two children and an ancestor each. Assume N is in the yi = 1 branch
of that ancestor. Then no node in its xi = 1 branch rules out a node from S
and N is not assigned to both of its children. All other cases are analogous.

In total, T contains at least
(a) |S| nodes ruling out a point from S by Claim 2,
(b) 2(|S| − 1) nodes labeled with either yi or zi and have a descendant ruling

out a point from S by Claim 3,
(c) and 3

2 · 2(|S| − 1) nodes assigned to the nodes from (b).

Therefore T contains at least 6 |S| − 5 = 6 · 22n · #SAT(ϕ) − 5 nodes. 
�
We note that Dey and Shah [13] independently from our work use a similar

technique: They show exponential lower bounds on the length of branch-and-
bound proofs for the lot-sizing problem by giving a large set S for which only a
unique point can be ruled out by any leaf.

Finally, we can prove Theorem 6:

Proof (of Theorem 6). The intervals for T (Pϕ) given by the bounds from Lemmas
7 and 8

[6 · 22n · #SAT(ϕ) − 5, 6 · 22n · #SAT(ϕ) − 5 + 6(2n − #SAT(ϕ))]

are disjoint for different values of #SAT(ϕ). Therefore, we can use T (Pϕ) to
infer #SAT(ϕ). Since (Pϕ) can be constructed in polynomial time and #SAT
is #P-hard, T is #P-hard as well. 
�

If we use the left hand side of constraint (Pϕb) as an objective function, the
branch-and-bound proof constructed in Lemma 7 always branches on a variable
which is fractional in the current unique LP-optimum. Thus, finding the length of
a shortest proof which eliminates the current LP-optimum with each branching
decision is also #P-hard.

Furthermore, the branching rule described in Lemma 7 is most-infeasible
branching with the tie-breaking rule x1 > y1 > z1 > · · · > x3n > y3n > z3n,
because all fractional values of the unique optimum solution are 1

2 . Thus, if M(I)
denotes the size of the branch-and-bound proof produced by variable branching
using most-infeasible branching with the above tie-breaking rule, we have:

Corollary 9. Computing M for binary programs is #P-hard.

Using Theorem 6, it is not hard to derive hardness results similar to Theo-
rems 1 and 2 for M. To this end, note that the number of variables of (Pϕ) is
nine times the number of variables of ϕ.
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6 Outlook

Firstly, we currently know P#SAT ⊆ P T ⊆ PSPACE. It remains to determine
the exact complexity of T . Secondly, when trying to adapt Theorem 6 for the
case of treelike resolution in the straightforward way, the analogous formula for
(Pϕ) suffers from exponential blow-up. It would be interesting to know if this
can be remedied.
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Abstract. We show how to round any half-integral solution to the
subtour-elimination relaxation for the TSP, while losing a less-than-1.5
factor. Such a rounding algorithm was recently given by Karlin, Klein,
and Oveis Gharan based on sampling from max-entropy distributions.
We build on an approach of Haddadan and Newman to show how sam-
pling from the matroid intersection polytope, and a new use of max-
entropy sampling, can give better guarantees.

1 Introduction

The (symmetric) traveling salesman problem asks: given an graph G = (V,E)
with edge-lengths ce ≥ 0, find the shortest tour that visits all vertices at least
once. The Christofides-Serdyukov algorithm [1,10] gives a 3/2-approximation to
this APX-hard problem; this was recently improved to a (3/2−ε)-approximation
by the breakthrough work of Karlin, Klein, and Oveis Gharan, where ε > 0 [7]. A
related question is: what is the integrality gap of the subtour-elimination polytope
relaxation for the TSP? Wolsey had adapted the Christofides-Serdyukov analysis
to show an upper bound of 3/2 [12] (also [11]), and there exists a lower bound of
4/3. Building on their above-mentioned work, Karlin, Klein, and Oveis Gharan
gave an integrality gap of 1.5 − ε′ for another small constant ε′ > 0 [5], thereby
making the first progress towards the conjectured optimal value of 4/3 in nearly
half a century.

Both these recent results are based on a randomized version of the
Christofides-Serdyukov algorithm proposed by Oveis Gharan, Saberi, and
Singh [8]. This algorithm first samples a spanning tree (plus perhaps one edge)
from the max-entropy distribution with marginals matching the LP solution, and
adds an O-join on the odd-degree vertices O in it, thereby getting an Eulerian
spanning subgraph. Since the first step has expected cost equal to that of the LP
solution, these works then bound the cost of this O-join by strictly less than half
the optimal value, or the LP value. The proof uses a cactus-like decomposition
of the min-cuts of the graph with respect to the values xe, like in [8].
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Given the 3/2 barrier has been broken, we can ask: what other techniques can
be effective here? How can we make further progress? These questions are interest-
ing even for cases where the LP has additional structure. The half-integral cases
(i.e., points for which xe ∈ {0, 1/2, 1} for all e) are particularly interesting due
to the Schalekamp, Williamson, and van Zuylen conjecture, which says that the
integrality gap is achieved on instances where the LP has optimal half-integral
solutions [9]. The team of Karlin, Klein, and Oveis Gharan first used their max-
entropy approach to get an integrality gap of 1.49993 for half-integral LP solu-
tions [6], before they moved on to the general case in [7] and obtained an inte-
grality gap of 1.5 − ε; the latter improvement is considerably smaller than in the
half-integral case. It is natural to ask: can we do better for half-integral instances?

In this paper, we answer this question affirmatively. We show how to get tours
of expected cost of ≈ 1.499 times the linear program value using an algorithm
based just on matroid intersection techniques. Moreover, some of these ideas
can also strengthen the max-entropy sampling approach in the half-integral case.
While the matroid intersection approach and the strengthened max-entropy app-
roach each separately yield improvements over the bound in [6], the improvement
obtained by combining these two approaches is slightly better:

Theorem 1.1. Let x be a half-integral solution to the subtour elimination poly-
tope with cost c(x). There is a randomized algorithm that rounds x to an integral
solution whose cost is at most (1.5 − ε) · c(x), where ε = 0.001695.

We view our work as showing a proof-of-concept of the efficacy of combi-
natorial techniques (matroid intersection, and flow-based charging arguments)
in getting an improvement for the half-integral case. We hope that these tech-
niques, ideally combined with max-entropy sampling techniques, can give further
progress on this central problem.

Our Techniques. The algorithm is again in the Christofides-Serdyukov frame-
work. It is easiest to explain for the case where the graph (a) has an even number
of vertices, and (b) has no (non-trivial) proper min-cuts with respect to the LP
solution values xe—specifically, the only sets for which x(∂S) = 2 correspond to
the singleton cuts. Here, our goal is that each edge is “even” with some prob-
ability: i.e., both of its endpoints have even degree with probability p > 0. In
this case we use an idea due to Haddadan and Newman [3]: we shift and get
a {1/3, 1}-valued solution y to the subtour elimination polytope KTSP . Specifi-
cally, we find a random perfect matching M in the support of x, and set ye = 1
for e ∈ M , and 1/3 otherwise, thereby ensuring E[y] = x. To pick a random tree
from this shifted distribution y, we do one of the following:
1. We pick a random “independent” set M ′ of matching edges (so that no edge

in E is incident to two edges of M ′). For each e′ ∈ M ′, we place parti-
tion matroid constraints enforcing that exactly one edge is picked at each
endpoint—which, along with e′ itself, gives degree 2 and thereby makes the
edge even as desired. Finding spanning trees subject to another matroid con-
straint can be implemented using matroid intersection.

2. Or, instead we sample a random spanning tree from the max-entropy distri-
bution, with marginals being the shifted value y. (In contrast, [6] sample trees
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from x itself; our shifting allows us to get stronger notions of evenness than
they do: e.g., we can show that every edge is “even-at-last” with constant
probability, as opposed to having at least one even-at-last edge in each tight
cut with some probabiltiy.)

(Our algorithm randomizes between the two samplers to achieve the best guar-
antees.) For the O-join step, it suffices to give fractional values ze to edges so that
for every odd cut in T , the z-mass leaving the cut is at least 1. In the special case
we consider, each edge only participates in two min-cuts—those corresponding
to its two endpoints. So set ze = xe/3 if e is even, and xe/2 if not; the only cuts
with z(∂S) < 1 are minimum cuts, and these cuts will not show up as O-join
constraints, due to evenness. For this setting, if an edge is even with probability
p, we get a (3/2 − p/6)-approximation!

It remains to get rid of the two simplifying assumptions. To sample trees
when |V | is odd (an open question from [3]), we add a new vertex to fix the
parity, and perform local surgery on the solution to get a new TSP solution and
reduce to the even case. The challenge here is to show that the losses incurred
are small, and hence each edge is still even with constant probability.

Finally, what if there are proper tight sets S, i.e., where x(∂S) = 2? We use
the cactus decomposition of a graph (also used in [6,8]) to sample spanning trees
from pieces of G with no proper min-cuts, and stitch these trees together. These
pieces are formed by contracting sets of vertices in G, and have a hierachical
structure. Moreover, each such piece is either of the form above (a graph with
no proper min-cuts) for which we have already seen samplers, or else it is a
double-edged cycle (which is easily sampled from). Since each edge may now lie
in many min-cuts, we no longer just want an edge to have both endpoints be
even. Instead, we use an idea from [6] that uses the hierarchical structure on
the pieces considered above. Every edge of the graph is “settled” at exactly one
of these pieces, and we ask for both of its endpoints to have even degree in the
piece at which it is settled. The ze value of such an edge may be lowered from
an initial value of xe/2 in the O-join without affecting constraints corresponding
to cuts in the piece at which it is settled.

Since cuts at other levels of the hierarchy may now be deficient because of the
lower values of ze, we may need to increase the zf values for other “lower” edges
f to satisfy these deficient cuts. This last part requires a charging argument,
showing that each edge e has ze that is strictly smaller than xe/2 in expectation.
For our samplers, the näıve approach of distributing charge uniformly as in [6]
does not work, so we instead formulate this charging as a flow problem.

Due to lack of space we present the simpler samplers and the main algorithm
here, and defer many of the proofs and the details to the full version.

2 Notation and Preliminaries

Given a multigraph G = (V,E), and a set S ⊆ V , let ∂S denote the cut consisting
of the edges connecting S to V \ S; S and S̄ := V \ S are called shores of the
cut. A subset S ⊆ V is proper if 1 < |S| < |V | − 1; a cut ∂S is called proper
if the set S is a proper subset. A set S is tight if |∂S| equals the size of the
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minimum edge-cut in G. Two sets S and S′ are crossing if S ∩ S′, S \ S′, S′ \ S,
and V \ (S ∪ S′) are all non-empty.

Define the subtour elimination polytope KTSP (G) ⊆ R
|E|:

{x ≥ 0 | x(∂v) = 2 ∀v ∈ V, x(∂S) ≥ 2 ∀ proper S}. (1)

Let x be half-integral and feasible for (1). W.l.o.g. we can focus on solutions
with xe = 1/2 for each e ∈ E, doubling edges if necessary. The support graph G
is then a 4-regular 4-edge-connected (henceforth 4EC) multigraph.

Fact 2.1. If x ∈ KTSP (G), then x|E(V (G)\{r}) is in the spanning tree poly-
tope KspT (G[V (G) \ {r}]) for any r ∈ V , and x/2 is in the perfect matching
polytope KPM (G) (when |V (G)| is even) and in the O-join dominator polytope
Kjoin(G,O), O ⊆ V (G), |O| even, given by:

{z ≥ 0 | z(∂S) ≥ 1 ∀S ⊆ V, |S ∩ O| odd.}.

Lemma 2.1. Consider a sub-partition P = {P1, P2, . . . , Pt} of the edge set of G.
Let x be a fractional solution to the spanning tree polytope that satisfies x(Pi) ≤ 1
for all i ∈ [t]. The integrality of the matroid intersection polytope implies that we
can efficiently sample from a probability distribution D over spanning trees which
contain at most one edge from each of the parts Pi, such that PT←D[e ∈ T ] = xe.

Let z be in the relative interior of the spanning tree polytope. The max-
entropy distribution is a distribution μ of spanning trees that maximizes the
entropy of μ subject to P(e ∈ T ) = ze [8]. It is a λ-uniform spanning tree
distribution and thus is strongly Rayleigh (SR).

Theorem 2.2 (Negative Correlation [8]). Let μ be an SR distribution on
spanning trees.

1. Let S be a set of edges and XS = |S ∩T |, where T ∼ μ. Then, XS ∼ ∑|S|
i=1 Yi,

where the Yi are independent Bernoulli random variables with success proba-
bilities pi and

∑
i pi = E[XS ] .

2. For any set of edges S and e �∈ S,
(i) Eμ[XS ] ≤ Eμ[XS | Xe = 0] ≤ Eμ[XS ] + Pμ(e ∈ T ), and
(ii) Eμ[XS ] − 1 + Pμ(e ∈ T ) ≤ Eμ[XS | Xe = 1] ≤ Eμ[XS ].

Theorem 2.3 ([4], Corollary 2.1). Let g : {1, . . . , m} → R and 0 ≤ p ≤ m.
Let B1, . . . , Bm be Bernoulli r.v.s with probabilities p∗

1, . . . , p
∗
m that maximize (or

minimize) E[g(B1 + . . . + Bm)] over all possible success probabilities pi for Bi

for which p1 + · · · + pm = p. Then {p∗
1, . . . , p

∗
m} ∈ {0, x, 1} for some x ∈ (0, 1).

3 Samplers

We now describe the MaxEnt and MatInt samplers for graphs that contain no
proper min-cuts, and give bounds on certain correlations between edges that will
be used in Sect. 5 to prove that every edge is “even” with constant probability.
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For lack of space, we focus on the case where |V | is even; the case of |V | being
odd is slightly more technical; please see the full version of the paper.

Suppose the graph H = (V,E) is 4-regular and 4EC, contains at least four
vertices, and has no proper min-cuts. H is a simple graph, because parallel edges
between u, v would mean that ∂({u, v}) is a proper min-cut. Also, all proper cuts
have six or more edges. We are given a dedicated external vertex r ∈ V (H); the
vertices I := V \ {r} are called internal. (In future sections, r will be given by a
cut hierarchy.) Call the edges in ∂r external edges; all other edges are internal.
An internal vertex is called a boundary vertex if it is adjacent to r. An edge is
said to be special if both of its endpoints are non-boundary vertices.

We show two ways to sample a spanning tree on H[I], the graph induced on
the internal vertices, being faithful to the marginals xe, i.e., PT (e ∈ T ) = xe for
all e ∈ E(H) \ ∂r. Moreover, we want that for each internal edge, both its end-
points have even degree in T with constant probability. This property will allow
us to lower the cost of the O-join in Sect. 6. While both samplers will satisfy this
property, each will do better in certain cases. The MatInt sampler targets spe-
cial edges; it allows us to randomly “hand-pick” edges of this form and enforce
that both of its endpoints have degree 2 in the tree. The MaxEnt sampler, on
the other hand, relies on maximizing the randomness of the spanning tree sam-
pled (subject to being faithful to the marginals); negative correlation properties
allow us to obtain the evenness property, specifically, better probabilities than
MatInt for non-special edges, and a worse one for the special edges.

Our samplers will depend on the parity of |V |: when |V | is even, the MatInt
sampler in Sect. 3.1 was given by [3, Theorem 13]. They left the case of odd |V |
as an open problem, which we solve.

3.1 Samplers for Even |V (H)|
Since H is 4-regular and 4EC and |V (H)| is even, setting a value of 1/4 = xe/2
on each edge gives a solution to KPM (H) by Fact 2.1.

1. Sample a perfect matching M s.t. P(e ∈ M) = 1/4 = xe/2 for all e ∈ E(H).
2. Define a new fractional solution y (that depends on M): set ye = 1 for e ∈ M ,

and ye = 1/3 otherwise. We have y ∈ KTSP (H) (and hence y|I ∈ KspT (H[I])
by Fact 2.1): indeed, each vertex has y(∂v) = 1 + 3 · 1/3 = 2 because M is a
perfect matching. Moreover, every proper cut U in H has at least six edges,
so y(∂U) ≥ |∂U | · 1/3 ≥ 2. Furthermore,

EM [ye] = 1/4 · 1 + 3/4 · 1/3 = 1/2 = xe. (2)

3. Sample a spanning tree faithful to the marginals y, using one of two samplers:
(a) MaxEnt Sampler: Sample from the max-entropy distribution on span-

ning trees with marginals y. (Since y may not be in the relative interior
of the spanning tree polytope, contract the 1-valued edges to obtain
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Fig. 1. The matching M consists of the green and brown edges; one possible choice of
M ′ has edges {a, c} in brown, and the constraints are placed on the edges adjacent to
those in M ′ (marked in gray).

a 6-regular, 1/3-uniform solution. This may have nontrivial min-cuts, so
once again use a cactus hierarchy to decompose the graph into pieces (see
Sect. 4.1); the induced solution on each piece is in the relative interior of
the spanning tree polytope. For each piece, sample a λ-uniform spanning
tree that preserves marginals, and then stitch these trees together.)

(b) MatInt Sampler:
i. Color the edges of M using 7 colors such that no edge of H is adjacent

to two edges of M having the same color; e.g., greedily 7-color the
6-regular graph H/M . Let M ′ be one of these color classes picked
uniformly at random. So P(e ∈ M ′) = 1/28, and P(∂v∩M ′ �= ∅) = 1/7
see Fig. 1.

ii. For each edge e = uv ∈ M ′, let Luv and Ruv be the sets of edges
incident at u and v other than e. Note that |Luv| = |Ruv| = 3. Place
partition matroid constraints y(Luv) ≤ 1 and y(Ruv) ≤ 1 on each of
these sets. Finally, restrict the partition constraints to the internal
edges of H; this means some of these constraints are no longer tight
for the solution y.

(c) Given the sub-matching M ′ ⊆ M , and the partition matroid M on the
internal edges defined using M ′, use Lemma 2.1 to sample a tree on
H[V \ {r}] (i.e., on the internal vertices and edges of H) with marginals
ye, subject to this partition matroid M.

Conditioned on the matching M , we have P(e ∈ T | M) = ye; now using (2), we
have P(e ∈ T ) = xe for all e ∈ (E \ ∂r).

The main idea for the odd case is to duplicate the external vertex with a
pair of parallel edges between these copies. Since this gives a graph with proper
min-cuts, we cannot apply shifting naively. Instead we perform “local surgery”
on the LP solution to get a feasible fractional spanning tree. Showing that these
changes still give us a tree with good evenness properties requires some care,
and the ideas are deferred to the full version for lack of space.
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3.2 Correlation Properties of Samplers

Let T be a tree sampled using either the MatInt or the MaxEnt sampler.
The following claims will be used to prove the evenness property in Sect. 5. Each
table gives lower bounds on the corresponding probabilities for each sampler.

Lemma 3.1. If f, g are internal edges incident to a vertex v, then

Probability Statement MatInt MaxEnt

P(|T ∩ {f, g}| = 2) 1/9 1/9

P(T ∩ {f, g} = {f}) 1/9 12/72

Lemma 3.2. If edges e, f, g, h incident to a vertex v are all internal, then

Probability Statement MatInt MaxEnt

P(|T ∩ {e, f, g, h}| = 2) 2/21 8/27

Lemma 3.3. For an internal edge e = uv:

(a) if both endpoints are non-boundary vertices, then

Probability Statement MatInt MaxEnt

P(|∂T (u)| = |∂T (v)| = 2) 1/36 128/6561

(b) if both u, v are boundary vertices, then

Probability Statement MatInt MaxEnt

P(exactly one of u, v has odd degree in T ) 1/9 5/18

To give a sense of the techniques, we give the proof for the last statement
above when |V (H)| is even. The other proofs are similar in flavor, please see the
full version.

Proof (Lemma 3.3a, Even Case). The MatInt claims: The event happens when
e ∈ M ′, which happens w.p. 1/28, which is at least 1/36.
The MaxEnt claims: Condition on e ∈ M . Let S1 = ∂(u) \ e and S2 = ∂(v) \ e.
Denote S1 = {a, b, c}. Lower bound P(|S1 ∩ T | = 1) using Theorem 2.3: E[|S1 ∩
T |] = 3 · 1/3 = 1, so P(|S1 ∩ T | = 1) ≥ 3 · 1/3 · (2/3)2/3 = 4/9. Consider the
distribution over the edges in S2 conditioned on a ∈ T ; this distribution is also
SR. By Theorem 2.2, 1/3 ≤ E[XS2 | Xa = 1] ≤ 1. Applying Theorem 2.2 twice
more,

1/3 ≤ E[XS2 | Xa = 1,Xb,c = 0] ≤ 1 + 1/3 + 1/3 = 5/3.

By Theorem 2.3, P(XS2 = 1 | Xa = 1,Xb,c = 0) ≥ 3 · 1/9 · (8/9)2 = 64/243. Using
symmetry, we obtain P(XS2 = 1 ∧ XS1 = 1 ∧ e ∈ M) ≥ 64/243 · 4/9 · 1/4 ≥ 128/6561.
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4 Sampling Algorithm for General Solutions

Now that we can sample a spanning tree from a graph with no proper min-cuts,
we introduce the algorithm to sample a spanning tree plus one edge (an r0 tree)
from a 4-regular, 4EC graph, perhaps with proper min-cuts.

W.l.o.g., assume that the graph G = (V,E) has a set of three special vertices
{r0, u0, v0}, with each pair r0, u0 and r0, v0 having a pair of edges between them
(used in line 18).(We can introduce dummy nodes to ensure this property, which
is for simplicity—it guarantees that the top set in the cut hierarchy is a cycle
set.) Define a double cycle to be a cycle graph in which each edge is replaced by
a pair of parallel edges, and call each such pair partner edges.

Algorithm 1. Sampling Algorithm for a Half-Integral Solution
1: let G be the support graph of a half-integral solution x.
2: let T = ∅.
3: while ∃ a proper tight set of G not crossed by another proper tight set do
4: let S be a minimal such set (and choose S such that r0 �∈ S).
5: Define G′ = G/(V \ S).
6: if G′ is a double cycle then
7: Label S a cycle set.
8: sample a random edge from each set of partner edges in G[S]; add

these edges to T .
9: else // G′ has no proper min-cuts (Lemma 4.1).

10: Label S a degree set.
11: if G′ = K5 then
12: sample a random path on G[S]
13: else
14: W.p. λ, let μ be the MaxEnt distribution over E(S)
15: W.p. 1 − λ, let μ be the MatInt distribution.
16: sample a spanning tree on G[S] from μ and add its edges to T .
17: let G = G/S

18: Due to r0, u0, v0, at this point G is a double cycle (Lemma 4.1). Sample one
edge between each pair of adjacent vertices in G.

As in [6], we refer to the sets in line 4 as critical sets. The algorithm sam-
ples from the same pieces as in [6], with the key differences being randomizing
between the MatInt and MaxEnt samplers as well as a critical optimization
for K5’s (the latter will become clear later and in the full version of the paper).

Lemma 4.1. Algorithm 1 is well-defined: In every iteration of Algorithm 1, G′

is either a double cycle or a graph with no proper min-cuts, and graph remaining
at the end of the algorithm (line 18) is a double cycle.

We will prove the following theorem in Sect. 6. This in turn gives Theorem
1.1.
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Theorem 4.1. Let T be the r0-tree chosen from Algorithm 1, and O be the set
of odd degree vertices in T . The expected cost of the minimum cost O-join for T
is at most (1/2 − ε) · c(x).

4.1 The Cut Hierarchy

To lower the cost of the O-join, we need a complete description of the min-cuts of
G, which will be achieved by the implicit hierarchy of sets Algorithm 1 induces.
This hierarchical decomposition is the same as the one used in [6]; however, here
we give an explicit way to construct the hierarchy of tight cuts. The hierarchy is
given by a rooted tree T = (VT , ET ).1 The node set VT corresponds to all critical
sets found by the algorithm, along with a root node and leaf nodes labelled the
vertices in VG \ {r0}. If S is a critical set, we label the node in VT with S, where
we view S ⊆ VG and not VG′ . The root node is labelled VG \ {r0}. A node S
is a child of S′ if S ⊂ S′ and S′ is the first superset of S contracted after S
in the algorithm. Also, the root node is a parent of all nodes corresponding to
critical sets that are not strictly contained in any other critical set. Each leaf
node is a child of the smallest critical set that contains it. Observe that vertex
sets labelling the children of a node are a partition of the vertex set labelling
that node. A node in VT is a cycle or degree node if the corresponding critical
set labelling it is a cycle or degree set. (We take the root node as a cycle node.
The leaf nodes are not labelled as degree or cycle nodes see Fig. 2.)

Fig. 2. A portion of the cut hierarchy T and the local multigraph G〈〈S〉〉.

Let S ⊆ VG be a set labelling a node in T . Define the local multigraph G〈〈S〉〉
to be the following graph: take G and contract the subsets of VG labelling the
children of S in T down to single vertices and contract S̄ to a single vertex
vS̄ . Remove any self-loops. The vertex vS̄ is called the external vertex ; all other
vertices are called internal vertices. An internal vertex is called a boundary vertex
if it is adjacent to the external vertex. The edges in G〈〈S〉〉\vS̄ are called internal
edges. Observe G〈〈S〉〉 is precisely the graph G′ in line 5 of Algorithm 1 when S
is a critical set, and is a double cycle when S = VG \ {r0}.
1 Since there are several graphs under consideration, the vertex set of G is called VG.

Moreover, for clarity, we refer to elements of VG as vertices, and elements of VT as
nodes.
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Properties of T
1. Let S ⊆ VG be a set labelling a node in T . If S is a degree node in T , then

G〈〈S〉〉 has at least five vertices and no proper min-cuts. If S is a cycle node
in T , then G〈〈S〉〉 is exactly a double cycle. These are by Lemma 4.1.

2. Algorithm 1 can be restated: For each non-leaf node S in T , sample a random
path on G〈〈S〉〉 \ vS̄ if it is a double cycle or K5; otherwise use the MaxEnt
or MatInt samplers w.p. λ and 1 − λ, respectively, on G〈〈S〉〉 \ vS̄ .

3. For a degree set S, the graph G〈〈S〉〉 having no proper min-cuts implies that
it has no parallel edges. In particular, no vertex has parallel edges to the
external vertex in G〈〈S〉〉. Hence we get the following:

Corollary 4.1. For a set S labeling a non-leaf node in T and any internal
vertex v ∈ G〈〈S〉〉: if S is a cycle set then |∂v ∩ ∂S| ∈ {0, 2}, and if S is a degree
set then |∂v ∩ ∂S| ∈ {0, 1}.

The cactus representation of min-cuts [2] translates to the following complete
characterization of the min-cuts of G in terms of local multigraphs.

Lemma 4.2. Any min-cut in G is either (a) ∂S for some node S in T , or
(b) ∂X where X is obtained as follows: for some cycle set S in T , X is the
union of vertices corresponding to some contiguous segment of the cycle G〈〈S〉〉.

5 Analysis Part I: The Even-at-Last Property

We now define a notion of evenness for every edge in G that will allow us to
reduce the cost of the O-join in Sect. 6. In the case where G has no proper
min-cuts, we called an edge even if both of its endpoints were even in T . The
general definition of evenness extends this idea, but now depends on where an
edge belongs in the hierarchy T . Specifically, we say an edge e ∈ E(G) is settled
at S if S is the (unique) set such that e is an internal edge of G〈〈S〉〉; call S the
last set of e. If S is a degree or cycle set, we call e a degree edge or cycle edge.

Let S be the last set of e, and T 〈〈S〉〉 be the restriction of T to G〈〈S〉〉.

1. A degree edge e is called even-at-last (EAL) if both its endpoints have even
degree in T 〈〈S〉〉.

2. For a cycle edge e = uv, the graph G〈〈S〉〉 \ {vS̄} is a chain of vertices
v�, . . . , u, v, . . . , vr, with consecutive vertices connected by two parallel edges.
Let C := {v�, . . . , u}, and C ′ := {v, . . . , vr} be a partition of this chain. The
cuts ∂C and ∂C ′ are called the canonical cuts for e. Cycle edge e is called
even-at-last (EAL) if both canonical cuts are crossed an even number of times
by T 〈〈S〉〉; in other words, if there is exactly one edge in T 〈〈S〉〉 from each of
the two pairs of external partner edges leaving v� and vr.

Informally, a degree edge is EAL in the general case if it is even in the tree
at the level at which it is settled. Let e be settled at a degree set S. We say
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that e is special if both of its endpoints are non-boundary vertices in G〈〈S〉〉 and
half-special if exactly one of its endpoints is a boundary vertex in G〈〈S〉〉. The
key property used in Sect. 6 to reduce each ze in the fractional O-join is:

Theorem 5.1 (The Even-at-Last Property). The table below gives lower
bounds on the probability that special, half-special, and all other types of degree
edges are EAL in each of the two samplers.

special half-special other degree edges
MatInt 1/36 1/21 1/18

MaxEnt 128/6561 4/27 12/144

Moreover, a cycle edge is EAL w.p. at least λ · 12/144 + (1 − λ) · 1/18.
Proof. Let e be settled at S. Let TS be the spanning tree sampled on the internal
vertices of G〈〈S〉〉 (in Algorithm 1, the spanning tree sampled on G[S]). We show
the proof when S is a degree set.

1. If e is special, then Lemma 3.3(a) gives the bounds in the table.
2. Suppose one of the endpoints of e = uv (say u) is a boundary vertex in S, with

edge f incident to u leaving S. By Lemma 3.2, the other endpoint v is even
in TS w.p. 2/21 for the MatInt sampler and 8/27 for the MaxEnt sampler.
Moreover, the edge f is chosen at a higher level than S and is therefore
independent of TS , and hence can make the degree of u even w.p. 1/2. Thus e
is EAL w.p. 1/21 for the MatInt sampler and 4/27 for the MaxEnt sampler.

3. Suppose both endpoints of e are boundary vertices of S, with edges f, g
leaving S. Let q= be the probability that the degrees of vertices u, v in the
tree TS chosen within S have the same parity, and q �= = 1 − q=. Now, when
S is contracted and we choose a r0-tree T ′ on the graph G/S consistent with
the marginals, let p= be the probability that either both or neither of f, g are
chosen in T ′, and p �= = 1 − p=. Hence

P(e EAL) = qoop11 + qoep10 + qeop01 + qeep00 = 1/2(p=q= + p �=q �=), (3)

where qoo, qoe, qeo and qee correspond to different parity combinations of u
and v in TS and p00, p01, p10, p11 correspond to whether f and g are chosen
in T ′. The second equality follows from symmetry.
(a) If f, g are settled at different levels, then they are independent. This gives

p= = p �= = 1/2, and hence P(e EAL) = 1/4 regardless of the sampler.
(b) If f, g have the same last set which is a degree set, then by Lemma 3.1

p11, p01, p10 ≥ 1/9. By symmetry, p00 ≥ 1/9. So (3) gives P(e EAL) ≥ 1/9.
(c) If f, g have the same last set which is a cycle set, consider the case

where f, g are partners, in which case p�= = 1. Now (3) implies that
P(e EAL) = q�=/2, which by Lemma 3.3(b) is ≥ 1/2 · 1/9 = 1/18 in the
MatInt sampler, and 1/2 · 5/18 = 5/36 in the MaxEnt sampler. If f, g
are not partners, then they are chosen independently, in which case again
p= = p �= = 1/2, and hence P(e EAL) = 1/4.

The proof for cycle sets follows similar lines, and is in the full version.
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6 Analysis Part II: The O-Join and Charging

To prove Theorem 4.1, we construct an O-join for the random tree T , and bound
its expected cost via a charging argument. The structure of here is similar to
[6]; however, we use a flow-based approach to perform the charging instead of
the naive one, and also use our stronger property that every edge is EAL with
constant probability (versus the weaker property obtained in [6] that every tight
cut contains an EAL edge with constant probability).

Let O denote the (random set of) odd-degree vertices in T . The dominant of
the O-join polytope Kjoin(G,O) is given by

{x(∂S) ≥ 1 | ∀S ⊆ V, |∂S ∩ T | odd.}.

This polytope is integral, so it suffices to show the existence of a fractional O-
join solution z ∈ Kjoin(G,O) with low expected cost. (The expectation is taken
over O.)

To construct the fractional O-join z, we begin with z = x/2. Notice that
z(∂S) ≥ 1 is a tight constraint when S is a min-cut. For any e that is EAL in T ,
we first flip a biased coin to know whether to reduce ze: the purpose of the coin
flips is to “flatten” the probability of reducing ze to the bound given by Theorem
5.1 on the probability that e is EAL. Now the amount of the reduction in ze

depends on whether e is a degree or cycle edge; the amount is later optimized
by the solution to a linear program. In the case of the cycle edge, we are able to
reduce an edge by the full 1/12; degree edges cannot be reduced as drastically.

However, these reductions may make z infeasible, and we need to fix that.
Indeed, suppose f is EAL and that we reduce zf . Say f is settled at S. If S is
a degree set, then the only min-cuts of G〈〈S〉〉 are the degree cuts. So the only
min-cuts that the edge f is part of in G〈〈S〉〉 are the degree cuts of its endpoints;
call them U, V , in G〈〈S〉〉 (U and V are vertices in G〈〈S〉〉 representing sets U
and V in G). But since |∂U ∩ T | and |∂V ∩ T | are both even by definition of
EAL, we need not worry that reducing zf causes z(∂U) ≥ 1 and z(∂V ) ≥ 1 to
be violated. Likewise, if S is a cycle set, then by definition of EAL all min-cuts
S′ in G〈〈S〉〉 containing e have |∂S′ ∩ T | even, so again we need not worry.

Since f is only an internal edge for its last set S, the only cuts S′ for which
the constraint z(∂S′) ≥ 1, |∂S′ ∩T | odd, may be violated as a result of reducing
zf are cuts represented in lower levels of the hierarchy. Specifically, lef f be an
external edge for some G〈〈X〉〉 (meaning X is lower in the hierarchy T than S)
and S′ be a min-cut of G〈〈X〉〉 (either a degree cut or a canonical cut). By Lemma
4.2, cuts of the form S′ are the only cuts that may be deficient as a result of
reducing zf . Call the internal edges of ∂S′ lower edges. When zf is reduced and
|∂S′ ∩ T | is odd, we must distribute an increase (charge) over the lower edges
totalling the amount by which zf is reduced, so that z(∂S′) = 1.

Fix edge e, say with last set S. We need to show that in expectation the
charge it receives from external edges in G〈〈S〉〉 is strictly less than the initial
expected reduction to ze. External edges bring in charge to internal edges and
Corollary 4.1 says that every vertex in a critical set can have at 0, 1, or 2 external
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edges (and there are 4 external edges). When e is a cycle edge, we distribute
charge from an external edge evenly between e and its partner. When e is a
degree edge, charge will be optimally distributed according to a maximum-flow
solution. Specifically, in order to minimize the maximum charge given on any
edge, we bipartize G〈〈S〉〉 into H = (L,R): the vertices in L and R represent
external and internal edges, respectively, and the edges of H are those pairs of
edges in G〈〈S〉〉 which are adjacent. Each vertex in L releases a unit of charge
and each vertex in R absorbs at most c units of charge.

The problem of optimally distributing charge reduces to finding the smallest
constant c such that there exists a flow with capacity at most c. An argument
based on Hall’s condition characterizes precisely when a flow distributing c units
of charge to internal edges exists. In order to optimize the constant c (found
to be 1/2), the case where G〈〈S〉〉 = K5 happens to be a bottleneck; hence, we
treat the K5 case separately in order to gain from the max-flow formulation,
by choosing a very natural sampling method for it, and then reducing its edges
differently from those of other degree sets.
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Abstract. The symmetric circulant TSP is a special case of the travel-
ing salesman problem in which edge costs are symmetric and obey circu-
lant symmetry. Despite the substantial symmetry of the input, remark-
ably little is known about the symmetric circulant TSP, and the complex-
ity of the problem has been an often-cited open question. Considerable
effort has been made to understand the case in which only edges of two
lengths are allowed to have finite cost: the two-stripe symmetric circu-
lant TSP (see Greco and Gerace [8] and Gerace and Greco [6]). In this
paper, we resolve the complexity of the two-stripe symmetric circulant
TSP. To do so, we reduce two-stripe symmetric circulant TSP to the
problem of finding certain minimum-cost Hamiltonian paths on cylindri-
cal graphs. We then solve this Hamiltonian path problem. Our results
show that the two-stripe symmetric circulant TSP is in P. Note that
the input of a two-stripe symmetric circulant TSP instance consists of
a constant number of inputs (including n, the number of cities), so that
a polynomial-time algorithm for the decision problem must run in time
polylogarithmic in n, and a polynomial-time algorithm for the optimiza-
tion problem cannot output the tour. We address this latter difficulty by
showing that the optimal tour must fall into one of two parameterized
classes of tours, and that we can output the class and the parameters
in polynomial time. Thus we make a substantial contribution to the set
of polynomial-time solvable special cases of the TSP [7,10], and take an
important step towards resolving the complexity of the general symmet-
ric circulant TSP.

1 Introduction

The traveling salesman problem (TSP) is one of the most famous problems in
combinatorial optimization. An input to the TSP consists of a set of n cities
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[n] := {1, 2, ..., n} and edge costs cij for each pair of distinct i, j ∈ [n], represent-
ing the cost of traveling from city i to city j. Given this information, the TSP
is to find a minimum-cost tour visiting every city exactly once. Throughout this
paper, we assume that the edge costs are symmetric (so that cij = cji for all dis-
tinct i, j ∈ [n]) and interpret the n cities as vertices of the complete undirected
graph Kn with edge costs ce = cij for edge e = {i, j}. In this setting, the TSP
is to find a minimum-cost Hamiltonian cycle on Kn.

With just this set-up, the TSP is well known to be NP-hard. An algorithm
that could approximate TSP solutions in polynomial time to within any factor
α > 1 would imply P=NP (see, e.g., Theorem 2.9 in Williamson and Shmoys
[14]). Thus it is common to consider special cases, such as requiring costs to obey
the triangle inequality (i.e. requiring costs to be metric, so that cij+cjk ≥ cik for
all i, j, k ∈ [n]), or costs that are distances between points in Euclidean space.

In this paper, we consider a different class of instances: circulant TSP. In
circulant TSP, the matrix of edge costs C = (cij)ni,j=1 is circulant; the cost of
edge {i, j} only depends on i− j mod n. Our assumption that the edge costs are
symmetric and that Kn is a simple graph implies that, for symmetric circulant
TSP instances, we can write our cost matrix in terms of �n

2 � parameters:

C = (c(j−i) mod n)ni,j=1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 c1 c2 c3 · · · c1
c1 0 c1 c2 · · · c2

c2 c1 0 c1
. . . c3

...
...

...
...

. . .
...

c1 c2 c3 c4 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

with c0 = 0 and ci = cn−i for i = 1, ..., �n
2 �. Importantly, in circulant TSP we

do not assume that the edge costs satisfy the triangle inequality.
Circulant TSP is a compelling open problem because of the intriguing struc-

ture which circulant symmetry broadly provides to combinatorial optimization
problems. It is unclear whether a given combinatorial optimization problem
should remain hard or become easy when restricted to circulant instances. Some
classic combinatorial optimization problems are easy when restricted to circu-
lant instances. For example, in the late 80’s, Burkard and Sandholzer [3] showed
that the decision problem for whether or not a symmetric circulant graph (i.e.
a graph whose adjacency matrix is circulant) is Hamiltonian can be solved in
polynomial time and showed that bottleneck TSP is polynomial-time solvable
on symmetric circulant graphs. Bach, Luby, and Goldwasser (cited in Gilmore,
Lawler, and Shmoys [7]) showed that one could find minimum-cost Hamilto-
nian paths in (not-necessarily-symmetric) circulant graphs in polynomial time.
In contrast, Codenotti, Gerace, and Vigna [4] show that Max Clique and Graph
Coloring remain NP-hard when restricted to circulant graphs and do not admit
constant-factor approximation algorithms unless P=NP.

Because of this ambiguity, the complexity of circulant TSP has often been
cited as an open problem (see, e.g., Burkhard [1], Burkhard, Dĕıneko, Van Dal,
Van der Veen, and Woeginger [2], and Lawler, Lenstra, Rinnooy Kan, and
Shmoys [11]). It is not known if the circulant TSP is solvable in polynomial-
time or is NP-hard. Prior to this work, the complexity of circulant TSP was not
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understood even when restricted to instances where only two of the edge costs
c1, ...., c� n

2 � are finite: the symmetric two-stripe circulant TSP (which we will
henceforth abbreviate as two-stripe TSP ) (see Greco and Gerace [8] and Gerace
and Greco [6]). Yang, Burkard, Çela, and Woeginger [15] provide a polynomial-
time algorithm for asymmetric TSP in circulant graphs with only two stripes
having finite edge costs. The symmetric two-stripe circulant TSP is not, however,
a special case of the asymmetric two-stripe version.1

Despite substantial structure and symmetry, the complexity of two-stripe
circulant TSP had previously remained elusive. General upper- and lower-bounds
for circulant TSP stem from Van der Veen, Van Dal, and Sierksma [13]; Greco
and Gerace [8] and Gerace and Greco [6] focus specifically on the two-stripe
TSP, and prove sufficient (but not necessary) conditions for these upper- and
lower-bounds to apply. Van der Veen, Van Dal, and Sierksma [13] and Gerace
and Greco [5] give a general heuristic for circulant TSP that provides a tour
within a factor of two of the optimal solution; no improvements to this general
heuristic have been made when constrained to the two-stripe version.

In this paper, we take the first step toward resolving the polynomial-time
solvability of circulant TSP by showing that symmetric two-stripe circulant TSP
is solvable in polynomial time. We need to be clear on what we mean by “solvable
in polynomial time” for this problem. The input is the number n (represented
in binary by O(log n) bits), the indices of the two finite cost edges, and the
corresponding costs. So to run in polynomial time in this case, we should run in
time polylogarithmic in n. We will show how to compute the cost of the optimal
tour in O(log2 n) time, and thus the decision problem of whether the cost of the
optimal tour is at most a bound given as input is solvable in polynomial time; this
places the decision version of the problem in the class P . Notice, however, time
polynomial in the input size is not sufficient to output the complete sequence of
n vertices to visit in the tour. Nevertheless, given two parameterized classes of
tours that we will later describe, we are able to compute in polynomial time to
which class the optimal tour belongs, as well as the values of the parameters.

Thus our main contribution is to make a substantial addition to the set of
polynomial-time solvable special cases of the TSP [7,10], and to take an impor-
tant step towards resolving the complexity of the symmetric circulant TSP.

In Sect. 2, we begin by providing background on the structure of circulant
graphs, and previous work on the two-stripe TSP. We then state our main result,
Theorem 1, which characterizes the cost of an optimal tour. In Sect. 3, we reduce
the two-stripe TSP to the problem of finding certain minimum-cost Hamiltonian
paths on cylinder graphs. In Sect. 4 we prove Theorem 1 assuming a characteri-
zation theorem for Hamiltonian paths between the first and last column in cylin-
der graphs. We formally state our algorithm in Sect. 5, and show that it runs
in polynomial time. In Sect. 6, we present a proof sketch of the aforementioned
characterization theorem. We conclude in Sect. 7.

1 In the symmetric case, edges {v, v + i} and {v, v − i} of cost ci connect v to both
v+ i and v− i; in the asymmetric case, there are edge costs c1, . . . , cn−1 and an edge
(v, v + i) of cost ci only connects from v to v + i. To encode two general symmetric
circulant edges would require four asymmetric circulant edges.
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Because of space limitations, many results in the body of the paper are stated
without proofs, and many figures are suppressed. A full version of the paper can
be accessed at http://people.orie.cornell.edu/dpw/2stripe.pdf.

2 Background and Notation

In this section, we formalize our notation for the two-stripe TSP, and describe
pertinent background results we will use. Throughout this paper, we use ≡n to
denote equivalence mod n. All calculations are implicitly mod n, unless indicated
otherwise. For example, we use v + a1 to denote the vertex reachable from v by
following an edge of length a1; the label v + a1 is implicitly taken mod n.

2.1 Circulant Graphs

Recall that a circulant graph is a simple graph whose adjacency matrix is
circulant. In symmetric circulant TSP, all edges {i, j} such that i − j ≡n k or
i− j ≡n (n− k) have the same cost ck. Such edges are typically referred to as in
the k-th stripe, or as of length k. In the two-stripe TSP, only two of the edge
costs c1, c2, ..., c� n

2 � are finite. We refer to those two edge lengths as a1 and a2,
so that 0 ≤ ca1 ≤ ca2 < ∞, and for i /∈ {a1, a2}, ci = ∞.

We use the following definition to describe circulant graphs including exactly
the edges associated with some set of stripes S. In the two-stripe TSP, we are
generally interested in subsets S of size 1 or 2.

Definition 1. Let S ⊂ {1, ..., �n
2 �}. The circulant graph C〈S〉 is the (simple,

undirected, unweighted) graph including exactly the edges associated with the
stripes S. I.e., the graph with adjacency matrix A = (aij)ni,j=1, with aij = 1 if
(i − j) mod n ∈ S or (j − i) mod n ∈ S and 0 otherwise.

Provided that C〈{a1, a2}〉 is Hamiltonian, the two-stripe TSP is to find a
minimum-cost Hamiltonian cycle in the graph C〈{a1, a2}〉. Since ca1 ≤ ca2 , the
problem is to find a Hamiltonian cycle in C〈{a1, a2}〉 using as few edges of length
a2 as possible.

Early work from Burkard and Sandholzer [3] provides necessary and sufficient
conditions for C〈{a1, a2}〉 to be Hamiltonian: gcd(n, a1, a2) must equal 1. That
this condition is necessary follows directly: If gcd(n, a1, a2) := g2 > 1, then for
any n,m ∈ Z, na1 + ma2 ≡g2 0. Thus any combination of edges of length a1

and a2 will remain within the vertices {v ∈ [n] : v ≡g2 0}, which is a strict
subset of [n]. We will constructively show tours demonstrating sufficiency for
the two-stripe case. Throughout this paper, we let g1 := gcd(n, a1) and g2 :=
gcd(n, a1, a2). As argued above, an instance to the two-stripe TSP has a solution
with finite cost if and only if g2 = 1.

Circulant graphs have a rich structure that allows us to understand
C〈{a1, a2}〉 in terms of C〈{a1}〉. From a more general result of Burkard and
Sandholzer [3], the graph C〈{a1}〉 consists of g1 components. Each component
is a cycle of size n/g1: Start at some vertex i for 0 ≤ i < g1, and continue

http://people.orie.cornell.edu/dpw/2stripe.pdf


The Two-Stripe Symmetric Circulant TSP is in P 323

0

3

6

9

1

4

7

10

2

5

8

11

0

3

6

9

2

5

8

11

4

7

10

1

0

3

6

9

4

7

10

1

8

11

2

5

Fig. 1. Three drawings of two-stripe instances on n = 12 vertices with a1 = 3. In
the left instance a2 = 1, in the middle instance a2 = 2, and on the right instance
a2 = 4. Black edges are of length a1 and red edges are of length a2. Arrows denote
horizontal/vertical “wrapping around,” and same-colored arrows with the same number
of arrowheads wrap to each other. In all instances, e.g., an edge of length a1 wraps
around vertically, connecting 0 (top-left) to 9 (bottom-left).

following edges of length a1 until reaching i +
(

n
g1

− 1
)

a1. Taking one more
length-a1 edge wraps back to vertex i, since i + n

g1
a1 = i + na1

g1
≡n i (where the

final equivalence follows because g1 divides a1 by definition)2.
Provided g2 = 1, the result of Burkard and Sandholzer indicates C〈{a1, a2}〉

is Hamiltonian (and therefore connected). Thus edges of length a2 connect the
components of C〈{a1}〉. They do so, moreover, in an extremely structured man-
ner. Consider, e.g., Fig. 1, which shows C〈{a1, a2}〉 for three different two-stripe
instances on n = 12 vertices. In all cases, a1 = 3. Since g1 = GCD(12, 3) = 3,
there are three components of C〈{a1}〉 in all instances. The instances are drawn
so that each component is in its own column. While the columns are drawn in
slightly different orders for each instance, and while the specific red length-a2

edges connect different pairs of vertices, all three instances are extremely struc-
tured. For example, let v be any vertex in the first column. Regardless of the
instance or which vertex v is within the first column, v + a2 is always in the
second column. Similarly, if v is in the second column, v + a2 is always in the
third; if v is in the third column, v + a2 is always in the first.

The following claim from Gutekunst and Williamson [9] makes this structure
precise: Consider the graph C〈{a1, a2}〉, contract each component of C〈{a1}〉
into a single vertex, and remove extra copies of parallel edges. Then, provided
g2 = 1, the resulting graph is a cycle.

This structure suggests a convention for drawing two-stripe circulant graphs
(used in Fig. 1), where each column corresponds to a component of C〈{a1}〉. We
further arrange the columns (and the ordering of vertices within each column)
so that edges of a2 can be generally drawn horizontally. Specifically, we take the
convention that 0 is the top-left vertex. The first column will proceed vertically-
down as 0, a1, 2a1, 3a1, ....,

(
n
g1

− 1
)

a1. Our second column “translates” the first

2 In the special case that n is even and a1 = n/2, we think of each of the g1 =
GCD(n, n/2) = n/2 components of C〈{a1}〉 as a cycle on a pair of vertices.
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column by a2, so that the top vertex is a2, the second vertex is a1 +a2, the third
vertex is 2a1 + a2, and so on. Our third column translates by another a2, and so
on.

Returning to Fig. 1, recall that the three instances have n = 12 and a1 = 3. In
the left instance a2 = 1, in the middle instance a2 = 2, and in the right instance
a2 = 4. Up to a re-labelling of vertices, the only structural change occurs in how
the right-most column is connected to the left-most column: the edges that wrap
around horizontally, connecting the last column back to the first. On the left,
taking an edge of length a2 from a vertex in the last column wraps around to
the first column, but one row lower (2 in the top row connects to 3 in the second
row, 5 in the second row connects to 6 in the third row, etc.). In the middle,
wrapping around shifts down two rows (4 in the top row connects to 6 in the
third row, etc.). On the right, edges wrap back to the same row.

2.2 Cylinder Graphs

Part of the challenge of two-stripe TSP is the differing ways that horizontal
edges wrap around between the first and last column. Our first result, in Sect. 3,
removes this difficulty, and allows us to work on “cylinder graphs”: graphs that
are similar to those in Fig. 1, but without any horizontal edges wrapping around
between the last and first column.

Definition 2. Let n = r× c. A r× c cylinder graph is a graph with n vertices
arranged into an r × c grid. For 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ c− 1, a vertex in row
i and column j is adjacent to:

– The vertex in row i and column j + 1, provided j < c − 1,
– The vertex in row i and column j − 1, provided j > 0,
– The vertex in row i − 1 mod r and column j, and the vertex in row i + 1

mod r and column j.

It will often be helpful to refer to a vertex in row x and column y as (x, y),
indexed by its column and row, starting from 0. We take the convention that
the top-left vertex is (0, 0). Hence, the bottom-right vertex is (r − 1, c − 1). In
general, a vertex v = xa1 + ya2 will have cylindrical coordinates (x, y).

2.3 Trivial Cases

We note several cases where the two-stripe TSP is trivial:

– If g2 > 1, then G〈{a1, a2}〉 is not Hamiltonian.
– If g1 = 1, then the graph G〈{a1}〉 is Hamiltonian. Hence, since ca1 ≤ ca2 ,

a cheapest Hamiltonian cycle costs nca1 and consists of a Hamiltonian cycle
on G〈{a1}〉. Note that any time n is prime, g1 = 1, so that two-stripe (and
indeed, general circulant) TSP is trivial any time n is prime.

– If ca1 = ca2 and g2 = 1, then G〈{a1, a2}〉 is Hamiltonian and any Hamiltonian
cycle costs nca1 = nca2 .

These observations are also made in [8] and [6].
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Following the example of Fig. 1, we think of the “expensive” length-a2 edges
as “horizontal edges.” The “cheap” length-a1 edges are analogously considered
“vertical edges.” Then the goal is to minimize the total number of expensive
(horizontal) edges. From here on we assume without loss of generality that ca1 =
0 and ca2 = 1, so every vertical edge has cost 0 and every horizontal edge has
cost 1.

2.4 Main Result

The main result of our paper, stated below, is a characterization of the optimal
tour in any non-trivial two-stripe circulant TSP instance. Section 4 contains its
proof, and Sect. 5 shows how this result naturally leads to a polynomial-time
algorithm for two-stripe TSP.

Theorem 1. Let r = n
g1

and c = g1. Suppose the cylindrical coordinates of −a2

are (x, c − 1). Let m∗ be the smallest integer value of m such that m ≥ − c
2 , and

x ∈ {2m + c,−(2m + c)} mod r. Then:

– If m∗ ≤ 0, the cost of the optimal tour is c.
– If 0 < 2m∗ < c − 2, the cost of the optimal tour is c + 2m∗.
– If 2m∗ ≥ c − 2 or m∗ does not exist, the cost of the optimal tour is 2c − 2.

2.5 Previous Results on Two-Stripe TSP

Despite the restrictive structure of two-stripe TSP, many of the main previ-
ous results for it are inherited from the more-general circulant TSP. From an
approximation algorithms perspective, the state-of-the-art remains a heuristic
from Van der Veen, Van Dal, and Sierksma [13]; on any two-stripe instance, this
heuristic provides a tour of cost within a factor of two of the optimal cost (see
also Gerace and Greco [5], for a more general 2-approximation algorithm). The
performance guarantee uses a combinatorial lower bound of Van der Veen, Van
Dal, and Sierksma [13], which when specialized to the two-stripe case states that
any Hamiltonian cycle must cost at least g1; this is clear, since there must be at
least c = g1 edges to join the c columns in a cycle. If a tour of cost g1 exists, we
will refer to it as a “lower bound tour.”

We can exhibit an upper bound of 2(g1 − 1) on the optimal solution to any
two-stripe instance by providing a feasible tour (as usual, provided that g2 = 1);
such tours are illustrated in Fig. 2. Henceforth, we will refer to these tours as
“upper bound tours”. Such tours immediately give a 2-approximation algorithm:
they provides a feasible solution costing at most 2(g1 − 1) < 2g1, while g1 is a
lower bound on the optimal cost.

More specific results on the two-stripe TSP come from Greco and Gerace
[8] and Gerace and Greco [6]. They provide an algebraic test that can identify
certain instances where the upper- or lower-bounds occur, but leave as open fully
characterizing either extreme, as well as determining the optimal solution to any
instance where the optimal value is between those bounds. They further propose
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Fig. 2. Feasible Hamiltonian cycles of cost 2(g1 − 1) when g1 is even (left) and odd
(right).

Fig. 3. Two examples of GG paths, both using 3 horizontal edges between the first
and second column. Because GG paths use exactly one edge between each pair of
consecutive columns from the second onward, they are extremely structured.

a particular construction of a tour (described in the next section), and conjecture
that it is the optimal tour in any case where the lower- or upper-bound is not
optimal. Our resolution of the two-stripe TSP confirms this conjecture.

3 GG Paths and a Reduction to Hamiltonian Paths
on Cylinder Graphs

In this section, we reduce the two-stripe TSP to the problem of finding a
minimum-cost Hamiltonian path from 0 to −a2 on an associated cylinder graph.
We then introduce specific Hamiltonian paths on cylinder graphs, which we will
call GG paths, and characterize the set of vertices that they can reach. We name
these paths after Gerace and Greco ([6], [8]), who conjectured that they are
sufficient to describe an optimal tour in settings where the upper bound is not
optimal.

3.1 Reduction of 2-Stripe Problem to Cylinder Graph Problem

We first reduce two-stripe TSP instances to Hamiltonian paths on cylinder
graphs that start in the first column and end in the last column. As previ-
ously stated, we can always attain a tour of cost 2(g1 − 1). Theorem 2 says that
we can find a cheaper tour costing k < 2(g1 − 1) if and only if there there is
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a corresponding Hamiltonian path on a cylinder graph using k − 1 horizontal
edges.

Theorem 2. Consider a 2-stripe instance with n vertices and edges of length
a1 and a2. There exists a Hamiltonian cycle costing k < 2(g1 − 1) if and only if
there is a Hamiltonian path on an r × c cylinder graph with c = g1 and r = n

g1

using k − 1 horizontal edges, starting at (0, 0), and ending at (x, c − 1), where x
is the unique solution to xa1 ≡n −g1a2 in {0, 1, ..., n

g1
− 1}.

The idea of the proof is that a tour of cost less than 2(g1 − 1) = 2(c − 1)
must have some pair of consecutive columns such that only one horizontal edge
of the tour crosses between the two columns. We can “shift” the tour so that
this edge wraps around from column c − 1 to 0, and so that this edge passes
through (0, 0). Removing the wraparound edge leaves a Hamiltonian path from
(0,0) to (x, c − 1), where the endpoint is equivalent to the vertex −a2.

3.2 GG Paths

Theorem 2 reduces two-stripe TSP to the problem of finding a minimum-cost
Hamiltonian path between 0 and −a2 in a cylinder graph. Next, we introduce a
specific class of Hamiltonian paths: GG paths. We will later show (in Theorem
3), that there is always a minimum-cost Hamiltonian path that is a GG path.

Definition 3. A GG path with 2k + 1 + (c − 2) horizontal edges in a cylinder
graph is a Hamiltonian path that

1. Starts at (0, 0) and ends in the last column,
2. Uses 2k + 1 horizontal edges between the first pair of columns, and
3. Uses 1 horizontal edge between each of the c − 2 remaining pairs of columns.

See Fig. 3 for two examples of GG paths. Because GG paths only use one
horizontal edge between consecutive columns starting from the second column
onward, they are extremely structured. Moreover, when moving to a new column
(starting at the third column), a GG path has exactly two options: the first edge
in that column vertically is either vertically “up” (going from (i, j) to (i − 1, j))
or vertically “down” (going from (i, j) to (i + 1, j)). The net effect is that, if the
last vertex visited in the second column is (i, j −1), the last vertex visited in the
third column will be (i + 1, j) or (i − 1, j).

This structure of GG paths applies inductively. Starting in the third column,
each time a GG path enters a new column, it has the exact same two options.
Tracing out this process allows us to quickly determine where a GG path can
end, based on its path through the first two columns.

In Theorem 3, we will show that when solving the minimum-cost Hamiltonian
path problem on a cylinder graph between (0, 0) and a vertex in the last column,
it suffices to consider GG paths: If a minimum-cost Hamiltonian path between
(0, 0) and (i, c− 1) requires k horizontal edges, there is a GG path from (0, 0) to
(i, c − 1) using k horizontal edges. Hence, we characterize exactly where a GG
path, with some fixed number of horizontal edges, can end up. We define this
set below.



328 S. C. Gutekunst et al.

Definition 4. Let Ar,c,m denote the set of row indices of vertices in the last
column reachable on a GG path in an r × c cylinder graph using at most 2m +
(c − 1) total horizontal edges.

In the definition of Ar,c,m, it is useful to think of the m as the number of
extra “expensive pairs” of horizontal edges used between the first and second
column. Note also that a GG path can have at most � r−1

2 � extra horizontal pairs,
because the extra horizontal edges are all between the first two columns.

Proposition 1. Let m ≤ � r−1
2 �. Then Ar,c,m = {c + 2m − 2i mod r : 0 ≤ i ≤

c + 2m}.

Our proof follows the structure of GG paths discussed above: we need only
identify the vertices reachable when c = 2. Then we follow the “triangular
growth” of the reachable vertices, where a GG path ending in some row k of
column c corresponds to a GG path ending in column c+1 in row k − 1 or k +1
(taken mod r).

4 Proof of Main Result

In this section, we prove our main result, Theorem 1, which characterizes the cost
of an optimal tour for the two-stripe TSP. In what follows, we will sometimes
use the notation {a1, a2, . . . , ak} mod r as a shorthand for {a1 mod r, a2 mod
r, . . . , ak mod r}.

Our proof of Theorem 1 relies on Theorem 3. This is one of the main technical
results of the paper. We give a sketch of its proof in Sect. 6.

Theorem 3. Consider a cylinder graph on n = r × c vertices, with r rows and
c columns. Suppose we have a Hamiltonian path, starting at 0 and ending in the
last column, and suppose it uses at most (c − 1) + 2m horizontal edges. Then it
must end at a row in Ar,c,m.

Proof (of Theorem 1). Suppose m∗ ≤ 0. This implies x ∈ {−c,−c+2, . . . , c−2, c}
mod r. Note that this set is equal to Ar,c,0 by Proposition 1. By definition of
Ar,c,0, there exists a GG path, using exactly c − 1 horizontal edges, from 0 to
−a2. Appending the edge from −a2 to 0 gives a Hamiltonian cycle with cost c.
This cycle is optimal, since c is a lower bound on the cost of any tour.

Next, suppose 0 < 2m∗ < c − 2. By Proposition 1, we have that x ∈ Ar,c,m∗ .
Moreover, the minimality of m∗ implies that m∗ is the smallest value of m for
which x ∈ Ar,c,m. By definition of Ar,c,m∗ , there is a GG path from 0 to −a2 with
cost (c−1)+2m∗, and appending the wraparound edge from −a2 to 0 gives a tour
of cost c + 2m∗. To show that this is optimal, note first that since 2m∗ < c − 2,
we have c+2m∗ < 2(c−1). Therefore by Theorem 2, the optimal tour consists of
a cheapest Hamiltonian path P from 0 to −a2, plus the wraparound edge from
−a2 to 0. Now, Theorem 3 says that we can always take P to be a GG path.
Since m∗ is the smallest value of m for which x ∈ Ar,c,m, it follows that the cost
of P is (c − 1) + 2m∗, so we are done.
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Finally, suppose that 2m∗ ≥ c − 2 or m∗ does not exist. By Proposition 1,
this implies that x �∈ Ar,c,m for any m with 0 ≤ 2m < c − 2. This, together with
Theorems 2 and 3, implies that the upper bound tour is optimal, the cost of
which is 2c − 2.

5 The Algorithm

In this section, we show how Theorem 1 naturally leads to an algorithm for two-
stripe circulant TSP. We will describe the algorithm formally and prove that
it runs in polynomial time. As mentioned in the introduction and Sect. 2, it is
possible to represent the input to the two-stripe TSP with 3 numbers: n, the
number of nodes, and a1 and a2, the lengths of the edges with finite cost. (Recall
that we assume without loss of generality that ca1 = 0 and ca1 = 1.)

It is important to recall what we mean by “polynomial time”. We take “poly-
nomial time” to mean polynomial time in the bit size of the input, which in our
case is polylogarithmic in n. Note then that we cannot, strictly speaking, out-
put the entire tour as a sequence of vertices, because this would require listing
n numbers, taking Ω(n) time. Instead, we will show a guarantee on our algo-
rithm that is similar in spirit to the statement of Theorem 1: There are two
parametrized classes of tours to which the optimal tour can belong, and we can
determine the class as well as output a set of parameters that describe the tour
in polynomial time. In particular, we are able to compute the cost of the optimal
tour in polynomial time.

Below is the algorithm. It mimics the statement of Theorem 1. Throughout
the remainder of this section, we will let r := n

g1
and c := g1.

1. Calculate the row index of −a2. That is, calculate the value of x ∈
{0, 1, . . . , r − 1} such that the cylindrical coordinates of −a2 are (x, c − 1).
(We will explain how to do this step in O(log2 n) time.)

2. Compute m∗, the smallest integer value of m such that m ≥ − c
2 and x ∈

{c+2m,−(c+2m)} mod r. (We will explain how to do this step in O(log2 n)
time.)

3. If 2m∗ < c − 2, the cost of the optimal tour is c + max{0, 2m∗}. It is
achieved by taking a cheapest GG path from 0 to −a2 (which will use exactly
2max{m∗, 0}+(c−1) horizontal edges), and appending the wraparound edge
from −a2 to 0.

4. Otherwise, if 2m∗ ≥ c − 2 or m∗ does not exist, the cost of the optimal tour
is 2c − 2. In this case, the upper bound tour is optimal.

Theorem 4 (Correctness of the Algorithm). The algorithm correctly
determines a min-cost tour.

Theorem 5. The algorithm calculates the cost of the optimal tour in O(log2 n)
time. Moreover, it can output a set of parameters that describe an optimal tour
in an additional O(log2 n) time, and it can return the sequence of n vertices in
the tour in O(n) time.
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Proof. To implement the algorithm, we need to first describe how to find the
row index x of −a2. We will show how to do this in O(log2 n) time. By Theorem
2, we know that 0 ≤ x < n

g1
is the unique solution to a1x ≡ −g1a2 mod n.

Since g1 = gcd(a1, n), we can divide both sides of the above relation by g1 to
obtain the equivalent relation

(
a1
g1

)
x ≡ −a2 mod n

g1
. Since gcd(a1

g1
, n
g1

) = 1 this
congruence has a unique solution x ∈ {0, 1, . . . , n

g1
}, and it can be found using

the extended Euclidean algorithm in O(log2 n) time. (See, for example, Theorem
44 in [12].)

In the second step of the algorithm, we need to compute m∗, the smallest
integer value of m such that m ≥ − c

2 and x ∈ {c + 2m,−(c + 2m)} mod r.
Doing this essentially involves solving two congruences, each of which can be
solved with the extended Euclidean algorithm in O(log2 n) time. We omit the
argument for space reasons.

In the interest of space, we have omitted the remaining part of the proof
(which shows how to output a small number of parameters which uniquely
describe the optimal tour in O(log2 n) time, and how to output the entire tour
in O(n) time). Essentially, the argument observes that the optimal tour is either
an upper bound tour, or a GG path from 0 to −a2 plus the wraparound edge
from −a2 to 0. The former tour is easy to describe. For the latter tour, one needs
to reason about the GG path P which forms a part of the optimal tour. Since
GG paths are extremely structured, we can show that there is a natural, com-
pact way to describe P , and that this description can be computed in O(log2 n)
time. Again, this running time comes from solving linear congruences using the
extended Euclidean algorithm.

6 Proof Sketch of Theorem 3

Proof (Sketch). Our proof involves a minimal counterexample argument. Specif-
ically, we will consider a counterexample to Theorem 3 that is minimal in two
senses. Suppose that there exists an r×c cylinder graph with a Hamiltonian path
P from (0, 0) to a vertex v in last column. Suppose further that P uses at most
(c − 1) + 2m horizontal edges, but the row index of v is not in Ar,c,m. Among
all such cylinder graphs and corresponding Hamiltonian paths, we specifically
consider an instantiation where:

1. r and c are minimal with respect to first r + c, then r, then c.
2. Among all counterexamples with r rows and c columns, consider a counterex-

ample path P that is minimal with respect to the reverse-lexicographic
ordering of horizontal edges: That is, the lexicographic ordering of (hc−2,
hc−3, . . . , h1, h0), where hi is the number of horizontal edges used in P
between the ith and (i + 1)st columns.

The intuition for considering a counterexample that is minimal with respect
to the reverse-lexicographic ordering is as follows: Among all Hamiltonian paths
that use (c−1)+2m horizontal edges, GG paths are minimal with respect to this
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ordering. Our strategy for arriving at a contradiction builds on this intuition.
At a high level, the idea of the proof is to devise a sequence of transformations
that are applied to P , with the intent of creating a Hamiltonian path P ′ with
cost(P ′) ≤ cost(P ), and such that the reverse lexicographic order of P ′ is smaller
than that of P .

Our transformations will generate a sequence of subgraphs P =
H0,H1, . . . , Hk, such that Hi+1 is obtained by applying a transformation on
Hi. By properties of the transformations, we will be able to show that Hi satis-
fies the following three invariants: (1) Hi uses at most (c − 1) + 2m horizontal
edges, (2) Hi is either a 0-v Hamiltonian path or the disjoint union of a 0-v path
and a cycle, and (3) Hi has a smaller reverse-lexicographic order than that of P .

Observe that if any Hi is a 0-v Hamiltonian path, then this immediately
contradicts the minimality of P . Hence, we may assume that after applying
these transformations, each Hi is the disjoint union of a 0-v path Pi and a cycle
Ci.

Let (P1, C1), . . . , (Pk, Ck) be the sequence of path/cycle pairs generated by
the sequence of transformations. The next part of the proof shows that each Ci

must be a doubled vertical edge (i.e. a 2-cycle). We do this via a “backward
induction” argument: We first show that Ck is a 2-cycle. Then, we show induc-
tively that assuming Ck, Ck−1, . . . , Ci+1 are 2-cycles, Ci must also be a 2-cycle.
This inductive step is itself a mini proof by contradiction: Assuming Ci is not a
2-cycle, we show that the structure of the minimal counterexample implies that
that many edges in the graph of (Pi, Ci) are forced. We then use the presence of
these forced edges to derive a contradiction.

Finally, the last step of the proof completes the argument by showing that
in a minimal counterexample, it is not possible for C1, . . . , Ck to all be 2-cycles.
This is the place where we use the assumption that r+ c is minimal: By deleting
two specific rows in the cylinder graph, we reduce to a graph with two fewer
rows. Then, the fact that Theorem 3 holds on this smaller instance will enable
us to show that, in fact the row index of v is in Ar,c,m after all.

7 Conclusion

The natural next question is to consider general symmetric circulant TSP, where
all the edge lengths can potentially have finite cost. For that problem, a 2-
approximation algorithm is known, but it is open whether it is polynomial-
time solvable. As an intermediate step, one might consider a variant with some
constant number of edge lengths having finite costs. One might wonder, for
example, if there is a dynamic programming approach that extends work from
this paper to the constant-stripe case.
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Abstract. Branch-and-cut is the dominant paradigm for solving a wide
range of mathematical programming problems—linear or nonlinear—
combining intelligent search (via branch-and-bound) and relaxation-
tightening procedures (via cutting planes, or cuts). While there is a
wealth of computational experience behind existing cutting strategies,
there is simultaneously a relative lack of theoretical explanations for
these choices, and for the tradeoffs involved therein. Recent papers have
explored abstract models for branching and for comparing cuts with
branch-and-bound. However, to model practice, it is crucial to under-
stand the impact of jointly considering branching and cutting decisions.
In this paper, we provide a framework for analyzing how cuts affect the
size of branch-and-cut trees, as well as their impact on solution time.
Our abstract model captures some of the key characteristics of real-
world phenomena in branch-and-cut experiments, regarding whether to
generate cuts only at the root or throughout the tree, how many rounds
of cuts to add before starting to branch, and why cuts seem to exhibit
nonmonotonic effects on the solution process.

Keywords: Integer programming · Branch-and-bound · Cutting
planes

1 Introduction

The branch-and-cut (B&C) paradigm is a hybrid of the branch-and-bound
(B&B) [20] and cutting plane methods [12–14]. It is central to a wide range
of modern global optimization approaches [2,6], particularly mixed-integer lin-
ear and nonlinear programming solvers [1]. Cutting planes, or cuts, tighten the
relaxation of a given optimization problem and are experimentally known to
significantly improve a B&B process [1], but determining which cuts to add is
currently based on highly-engineered criteria and computational insights. An
outstanding open problem is a rigorous underpinning for the choices involved in
branch-and-cut. While there has been active exploration of the theory of branch-
ing [3,8–10,21] and comparing cutting and branching [4,22], the interaction of
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the two together remains poorly understood. Most recently, Basu et al. [5] showed
that using B&C can outperform either branching or cutting alone.

This paper introduces a theoretical framework for analyzing the practical
challenges involved in making B&C decisions. We build on recent work by Le
Bodic and Nemhauser [21], which provides an abstract model of B&B, based on
how much bound improvement is gained by branching on a variable at a node of
the B&B tree. This model not only is theoretically useful, but also can improve
branching decisions in solvers [3].

Specifically, we add a cuts component to the abstract B&B model from Le
Bodic and Nemhauser [21]. We apply this enhanced model to account for both
the utility of the cuts in proving bounds, as well as the additional time taken to
solve the nodes of a B&C tree after adding cuts.

In this abstract model, given the relative strengths of cuts, branching, and
the rate at which node-processing time grows with additional cuts, we quantify
(i) the number of cuts, and (ii) cut positioning (at the root or deeper in the tree)
to minimize both the tree size and the solution time of an instance. This thereby
captures some of the main tradeoffs between cutting and branching, in that cuts
can improve the bound or even the size of a B&C tree, but meanwhile slow down
the solution time overall. We use a single-variable abstract B&C model, where
every branching variable has identical effect on the bound, and we only address
the dual side of the problem, i.e., we are only interested in proving a good bound
on the optimal value, as opposed to generating better integer-feasible solutions.

We emphasize that our motivation is to advance a theoretical understanding
of empirically-observed phenomena in solving optimization problems, and our
results show that some of the same challenges that solvers encounter in applying
cuts do arise in theory. While we also state some prescriptive recommendations
in our abstract model, these are not intended to be immediately computation-
ally viable. Instead, the intent of the prescriptive results is to see whether our
abstraction affords enough simplicity to make precise theoretical statements.

Summary of contributions and paper structure. We provide a generic view of
B&C in Sect. 2. Section 3 introduces our abstract B&C model, in which the
quality of cuts and branching remains fixed throughout the tree. In Sect. 4, we
analyze the effect of cuts on tree size; we prove that in this case it is never
necessary to add cuts after the root node, and we provide a lower bound on the
optimal number of cutting plane rounds that will minimize the B&C tree size.

We then study how cuts affect solving time for a tree. In Sect. 5.1, we show
that cuts are guaranteed to be helpful for sufficiently hard instances. In contrast
to the case of tree size, in this more general setting, adding cuts after the root
node may be better. However, one of our main results is Theorem 13, which
shows that if the solution time for nodes in a B&C tree grows linearly with
the number of added cuts and branching yields the same bound improvement
in both children, then it is optimal to add all cuts at the root. The proof of
this theorem makes use of independently-interesting conditions, presented in
Sect. 5.2, on optimally applying a fixed number of cuts. We conclude in Sect. 6
with a discussion of open problems and potential directions for future work.

All missing proofs can be found in the publicly-accessible full paper [17].
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2 Preliminaries

We are given a generic optimization problem (OP)—linear or nonlinear, with or
without integers—which is to be solved using a B&C algorithm. For convenience,
we assume that the OP is a minimization problem. We also assume that we
already have a feasible solution to the OP, so that our only goal is to efficiently
certify the optimality or quality of that solution.

The B&C approach involves creating a computationally tractable relaxation
of the original problem, which we call the root of the B&C tree and assume is
provided to us. For example, when the OP is a mixed-integer linear program, we
usually start with its linear programming relaxation. The value of the solution
to this relaxation provides a lower bound on the optimal value to the OP. B&C
proceeds by either (1) tightening the relaxation through adding valid cuts, which
will remove parts of the current relaxation but no OP-feasible points, or (2)
splitting the feasible region, creating two subproblems, which we call the children
of the original (parent) relaxation. Both of these operations improve the lower
bound with respect to the original relaxation. The B&C procedure repeats on
the new relaxation with cuts added in the case of (1), and recursively on the
children in the case of (2); we assume that tractability is maintained in either
case. Moreover, we assume that all children remain OP-feasible. We now formally
define a B&C tree as used in this paper.

Definition 1 (B&C tree). A B&C tree T is a rooted binary tree with node
set VT that is node-labeled by a function gT : VT → R≥0, indicating the bound
improvement at each node with respect to the bound at the root node, such that

1. The root v0 has label gT (v0) = 0.
2. A node v with exactly one child v′ is a cut node, and we say that a cut or

round of cuts is added at node v. The bound at v′ is gT (v′) = gT (v) + cv,
where cv is the nonnegative value associated with the round of cuts at v.

3. A node v with exactly two children v1 and v2 is a branch node, and we say that
we branch at node v. The bounds at the children of v are gT (v1) = gT (v)+ �v

and gT (v2) = gT (v) + rv, where (�v, rv) is the pair of bound improvement
values associated with branching at v.

We say that T proves a bound of G if gT (v) ≥ G for all leaves v ∈ VT .

While Definition 1 is generic, the abstraction we study is restricted to the
single-variable version in which �v and rv is the same for every branch node
v ∈ VT , and cv is constant for each cut node v ∈ VT , so we drop the subscript v.

3 The Abstract Branch-and-Cut Model

This section introduces the Single Variable Branch-and-Cut (SVBC) model, an
abstraction of a B&C tree as presented in Definition 1. First, we define a formal
notion of the time taken to process a B&C tree as the sum of the node processing
times, which in turn depends on the following definition of a time-function.



336 A. M. Kazachkov et al.

Definition 2 (Time-function). A function w : Z≥0 → [1,∞) is a time-
function if it is nondecreasing and w(0) = 1.

Definition 3 (Node time and tree time). Given a B&C tree T , a node
v ∈ VT , and a time-function w,

(i) the (node) time of v, representing the time taken to process node v, is w(z),
where z is the number of cut nodes in the path from the root of T to v.

(ii) the (tree) time of T , denoted by τw(T ), is the sum of the node times of all
the nodes in the tree.

We simply say τ(T ) when the time-function w is clear from context.

Definition 3 models the observation that cuts generally make the relaxation
harder to solve, and hence applying more cuts increases node processing time.
Note that (i) if w = 1, i.e., w(z) = 1 for all z ∈ Z≥0, we obtain the regular notion
of size of a tree, which counts the number of nodes in the tree, and (ii) the time
of a pure cutting tree with t cuts (i.e., t + 1 nodes) is

∑t
i=0 w(i).

Finally, we state the SVBC model in Definition 4. In this model, the relative
bound improvement at every cut node is always the same constant c, and every
branch node is associated to the same (�, r) pair of bound improvement values.
We also assume that the time to solve a node depends on the number of cuts
added to the relaxation up to that node.

Definition 4 (Single Variable Branch-and-Cut (SVBC)). A B&C tree is
a Single Variable Branch-and-Cut (SVBC) tree with parameters (�, r; c,w) if the
bound improvement value associated with each branch node is (�, r), the bound
improvement by each cut node is c, and the time-function is w. We say such a
tree is an SVBC(�, r; c,w) tree.

Without loss of generality, we assume 0 ≤ � ≤ r.

Definition 5 (τ-minimality). Given a function w : Z≥0 → [1,∞), we say that
a B&C tree T that proves bound G is τ -minimal if, for any other B&C tree T ′

that also proves bound G with the same (�, r; c,w), it holds that τ(T ′) ≥ τ(T ).

It is often the case that applying a round of cuts at a node may not improve
the bound as much as branching at that node, but the advantage is that cutting
adds only one node to the tree, while branching creates two subproblems. A first
question is whether there always exists a minimal-size tree with only branch
nodes or only cut nodes. We address this in Example 6, which illustrates our
notation, shows that cut nodes can help reduce the size of a B&C tree despite
improving the bound less than branch nodes, and highlights the fact that finding
a minimum-sized B&C tree proving a particular bound G involves strategically
using both branching and cutting.

Example 6 (Branch-and-cut can outperform pure branching or pure cutting).
Figure 1 shows three B&C trees that prove the bound G = 6. The tree in
panel (a) only has branch nodes, (b) only has cut nodes, and (c) has both branch
and cut nodes. As seen in the figure, branching and cutting together can strictly
outperform pure branching or pure cutting methods, in terms of tree size. �
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(a) Pure branching: 7 nodes
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(b) Pure cutting: 7 nodes
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6 6

(c) Branch-and-cut: 6 nodes

Fig. 1. Three B&C trees proving G = 6, with � = r = 3, c = 1, and w = 1.

4 Optimizing Tree Size

In this section, we examine the number of cuts that minimize the size |VT | of
a B&C tree T , i.e., optimizing τ(T ) when w = 1. In Lemma 7, we first address
the location of these cuts—should they be at the root or deeper in the tree?

Lemma 7. For any target bound G > 0 to prove and a fixed set of parameters
(�, r; c,1), for any minimal SVBC(�, r; c,1) tree T with k ≥ 1 cut nodes, there
exists a minimal SVBC(�, r; c,1) tree T ′ such that there are exactly k cut nodes
in T ′ that form a path starting at the root of T ′.

The proof follows from observing that if a cut node is moved from deeper in
the tree to the root, then the bound at every leaf node weakly improves.

Next, we present Theorem 8, which provides the optimal number of rounds
of cuts for an SVBC(�, r; c,1) tree when c ≤ � = r, as a function of the tree
parameters and the target bound. The theorem also implies that the bound
proved by branching is at most r log2 �r/c�, and the rest is proved by cutting.

Theorem 8. Let δ∗ ..= 	log2 �r/c�
. When 0 < c ≤ � = r, the number of rounds
of cuts at the root to minimize the size of an SVBC(�, r; c,1) tree proving bound
G is precisely enough to make the remaining bound before branching at most

G∗ ..=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(δ∗ − 1) if G ≥ rδ∗ and �(G − c �(G − rδ∗)/c� − r(δ∗ − 1))/c� < 2δ∗

rδ∗ if G ≥ rδ∗ and �(G − c �(G − rδ∗)/c� − r(δ∗ − 1))/c� ≥ 2δ∗

r 	G/r
 if G < rδ∗ and �(G − r 	G/r
)/c� < 2r�G/r�

G otherwise,

achieved with k∗ ..= �(G − G∗)/c� cut rounds. Moreover, the size of any minimal
SVBC(�, r; c,1) tree that proves bound G is at least 2G∗/r+1 − 1 + k∗.

Although Theorem 8 prescribes an optimal number k∗ of cut nodes when
� = r, it is not true that tree size monotonically decreases as the number of cuts
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goes from 0 to k∗. For example, if G = G∗+2c, using one cut node would increase
the overall tree size, while two cut rounds would reduce tree size by 21+G∗/r −2.
This phenomenon, present even when w = 1, might indicate one of the practical
challenges in determining whether a cut family benefits an instance.

In Theorem 9, we show that even in general, for � �= r, it is always optimal
to add at least one cut round for sufficiently large target bounds.

Theorem 9. If 0 < c ≤ � ≤ r and G > r 	log2 �r/c�
, then the minimal
SVBC(�, r; c,1) tree proving a bound G has at least one cut node.

Proof. Consider a pure branching tree that proves G. The number of leaf nodes
of this tree is at least 2�G/r�, since � ≤ r, and all the parents of each of these leaf
nodes have a remaining bound in (0, r] that needs to be proved. Now suppose we
add �r/c� rounds of cuts. All of the leaf nodes of the pure branch-and-bound tree
would then be pruned, since the parent nodes would already prove the desired
target bound of G. As a result, there is benefit to cutting when 2�G/r� > �r/c�,
which holds when G > r 	log2 �r/c�
. �
Corollary 10. If 0 < c ≤ � ≤ r, then every minimal SVBC(�, r; c,1) tree
proving a bound G > G ..= r 	log2 �r/c�
 has at least

⌈
(G − G)/c

⌉
cut nodes,

which can always be repositioned next to the root node due to Lemma 7.

Example 11. The following example, from Basu et al. [5], shows that SVBC trees
with constant c ≤ � = r have been studied in the literature, and that cuts not
only decrease the size of a branch-and-bound tree, but in fact can lead to an
exponential improvement.

Consider the independent set problem, defined on a graph G with vertices
V and edge set E, in which G consists of m disjoint triangles (cliques of size
three): maxx{∑

v∈V xv : x ∈ {0, 1}|V |; xu + xv ≤ 1, ∀ {u, v} ∈ E}. The optimal
value is m, using xv = 1 for exactly one vertex of every clique, while the linear
relaxation has optimal value 3m/2, obtained by setting xv = 1/2 for all v ∈ V .

Suppose we branch on xv, v ∈ V , where v belongs to a clique with vertices
u and w. One can verify that the objective value of the relaxation decreases
by exactly � = 1/2 with respect to the parent for the left (xv ≤ 0) branch,
and similarly, by r = 1/2 for the right (xv ≥ 1/2) branch. Notice that once we
branch on xv, the remaining problem can be seen as fixing the values of the
three variables corresponding to vertices in the triangle that v belongs to, while
keeping the remaining variables unchanged. In other words, it is a subproblem
with exactly the same structure as the original one, except removing the decision
variables for the vertices of a single clique.

Finally, we look at families of cutting planes that we can derive. By adding
up the three constraints corresponding to the edges of any triangle {u, v, w},
we obtain the implication 2(xu + xv + xw) ≤ 3. Since all variables are integer-
restricted, we can infer that xu + xv + xw ≤ 	3/2
 = 1 for every clique. Each
such cut corresponds to a change of c = 1/2 in the objective, and there exists
one such cut for every clique of three vertices.
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Hence, by Theorem 8, we have that, not counting cut nodes, the optimal
depth of the SVBC(�, r; c,1) tree that proves the bound G = m/2 is δ∗ =
	log2 �r/c�
 = 0. This implies that the optimal number of cut rounds is k∗ =
�G/c� = �(m/2)/(1/2)� = m, with a corresponding tree with m total nodes,
compared to a pure branching tree, which would have depth �G/r� = m and
thus 2m+1 − 1 nodes—exponentially many more than if cut nodes are used. �

5 Optimizing Tree Time

Although the previous section’s focus on decreasing the size of a branch-and-cut
tree is useful, in practice the quantity of interest is the time it takes to solve
an instance. The two notions do not intersect: it can be that one tree is smaller
than another, but because the relaxations at each node solve more slowly in the
smaller tree, the smaller tree ultimately solves in more time than the larger one.
This plays prominently into cut selection criteria, as strong cuts can be dense,
and adding such cuts to the relaxation slows down the solver.

5.1 Time-Functions Bounded by a Polynomial

We first show that if the time-function is bounded above by a polynomial, then
for sufficiently large G, it is optimal to use at least one cut node.

Theorem 12. Suppose we have an SVBC(�, r; c,w) tree T and the values of w
are bounded above by a polynomial. Then, there exists G > 0 such that every
τ -minimal SVBC tree proves a bound of G > G has at least one cut node.

Proof. Let w(z) ≤ αzd + 1 for some α, d > 0 be the polynomial upper bound
for each z ∈ Z≥0. A pure branching tree TB proving a bound G has at least
2�G/r�+1 − 1 nodes. The same lower bound holds for τ(TB).

Now consider a pure cutting tree TC proving bound G. Such a tree has
exactly k = �G/c� + 1 nodes. The tree time for TC is τ(TC) =

∑t−1
i=0 w(i) ≤

t + α
∑k−1

i=1 id ≤ k + α(k − 1)d+1 < p(k), where p is some polynomial. For
sufficiently large values of G, 2�G/r�+1 − 1 > p

(⌈
G
c

⌉)
for any polynomial p,

implying that a τ -minimal tree has at least one cut node. �
Next, we observe that an analogue of Lemma 7 does not hold for τ -

minimality. Figure 2 provides an example where the unique τ -minimal B&C tree
has no cuts at the root. Despite that, for the special case where � = r and w is
a linear time-function, we prove in Theorem 13 that there is a τ -minimal tree
having only root cuts. We emphasize that the result may not hold if either of
these assumptions is relaxed. For instance, with a general time-function, one can
construct an example of a unique τ -minimal symmetric tree in which not all cuts
are at the root.

Theorem 13. If c ≤ � = r and the time-function is linear, then there is a
τ -minimal tree with all cuts at the root.
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0 layer time = 1

3

5 layer time = 1.5

7 layer time = 2

7 layer time = 2

0 layer time = 1

2 layer time = 1.5

4 layer time = 2

7 11 layer time = 4

Fig. 2. Consider the SVBC tree that must prove a bound G = 7, with parameters
� = 3, r = 7, c = 2, and w(k) = k/2 + 1. The time of the first tree is 6.5 and of the
second tree is 8.5. Thus, cutting at the root node is strictly inferior to cutting at the
leaf. One can also check that the pure branching tree has a time of 7 and the pure
cutting tree has a time of 10, showing that the unique τ -minimal B&C tree is the tree
in the left panel.

We prove Theorem 13 in Sect. 5.3. On the way, we present several intermedi-
ate results of independent interest in Sect. 5.2, which relate properties of general
time-functions to the optimal number and location of cuts in the tree.

5.2 Adding k Cuts Along Every Root-to-Leaf Path

We first analyze adding k cuts to a generic SVBC(�, r; c,w) tree and prescribe
how many should be placed before the first branch node.

Lemma 14. Consider a B&C tree in which each root-to-leaf path has exactly
k cut nodes, and each cut node can only be located either before or immediately
after the first branching node. Then the time of the tree is minimized by adding

t� ∈ arg min
0≤t≤k

{

w(t) −
t−1∑

i=0

w(i)

}

cut nodes before the first branch node, and k − t� cut nodes in a path starting at
each child of the first branch node.

Next we provide a technical condition that is sufficient to allow all cut nodes
to be added to the root of the tree.

Lemma 15. For any c ≤ � = r, among all SVBC(�, r; c,w) trees in which there
are exactly k� cut nodes along the path from the root to every leaf node, if the
time-function w satisfies w(z + 1) ≤ 2w(z) for all z ∈ Z≥0, then there is a
τ -minimal SVBC tree in which all cuts are at the root node.

Proof. Let T denote the tree in which all k� cuts are attached to the root node.
Let T ′ be the tree in which k� −1 cuts are at the root, and one cut node is added
after the first branch node. Both of these trees are shown in Fig. 3.
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layer time = w(0)

...

layer time = w(k� − 1)

layer time = w(k�)

layer time = 2w(k�)

layer time = w(0)

...

layer time = w(k� − 1)

layer time = 2w(k� − 1)

layer time = 2w(k�)

Fig. 3. The effect of moving the last cut at the root down one level is splitting one
node with node time w(k�) into two nodes that each have node time w(k� − 1).

The time of T is no greater than that of T ′ if and only if w(k�) ≤ 2w(k� −1).
Recursively applying the same principle shows that tree T is weakly better than
a tree with an arbitrary number of the k� cut nodes moved to the second level.
Similarly, it does not help to add cuts deeper in the tree either, as the same logic
applies to each subtree rooted at a node at higher depth. �

Lemma 15 assumes a fixed number of cuts are added along every root-to-leaf
path. In contrast, the next set of results gives conditions under which a given
number of cuts can (or cannot) be τ -minimal.

Lemma 16. If c ≤ � = r and the time-function satisfies w(1) > 2, then a τ -
minimal SVBC(�, r; c,w) tree proving bound G cannot have exactly one cut along
each root-to-leaf path.

Proof. We show that the pure branching tree has strictly lower tree time than
a tree that also proves bound G and has exactly one cut along every path from
the root node to every leaf node. We refer to the latter as the “one-cut tree”,
which we assume without loss of generality is a τ -minimal one-cut tree and has
all cuts at the same depth (by symmetry, due to � = r).

Denote by T0 the size, and by δ the depth, of the pure branching tree. Suppose
we place a single cut at δ1 along every root-to-leaf path for the one-cut tree. Let
T ′
0 denote the nodes of the one-cut tree up to depth δ1; these nodes all have

time w(0) = 1. Let T ′
1 denote the subtree rooted after the cut node and let δ2

be the depth of tree T ′
1; there are 2δ1 of these trees—one for each leaf of tree

T ′
0—and each node of these trees has time w(1). See Fig. 4 for reference. Note

that if the addition of a cut does not reduce the total number of nodes with
respect to T0, then the lemma statement is trivially true; hence, we can assume
that δ1 + δ2 = δ − 1.

The tree time of the one-cut tree is

w(0) · (2δ1+1 − 1) + w(1) · 2δ1 · (2δ2+1 − 1) = (2δ1+1 − 1) + w(1)(2δ1+δ2+1 − 2δ1).

The tree time of the pure branching tree is 2δ+1 − 1, which is less than that of
the one-cut tree if and only if

w(1) >
2δ+1 − 2δ1+1

2δ1+δ2+1 − 2δ1
=

2δ+1 − 2δ1+1

2δ − 2δ1
= 2.
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Observe that this holds regardless of the choice of δ1. �
The above result can be recursively applied to give a necessary condition for

a larger number of cuts to be optimal, as we prove in Lemma 17.

Lemma 17. If c ≤ � = r and the time-function satisfies w(k) > 2w(k − 1) for
a given integer k ≥ 1, then a τ -minimal SVBC(�, r; c,w) tree proving bound G
cannot have exactly k cuts along every root-to-leaf path.

Proof. Define the “k-cut tree” as a τ -minimal tree in which every root-to-leaf
path has exactly k cuts. Since � = r and we are minimizing tree time, we can
assume without loss of generality that the k-cut tree is symmetric. For a given
k-cut tree, let δ1 denote the depth at which the penultimate—(k − 1)st—cut
occurs along every root-to-leaf path. Let T ′

0 be the subtree of the k-cut tree
consisting of nodes up to and including those at depth δ1. For any cut node at
depth δ1, let T ′

1 be the subtree rooted at that cut node’s child, and let G′ be
the remaining bound that needs to be proved after T ′

0. The tree T ′
1 has exactly

one cut along every root-to-leaf path, and its root has time w(k − 1). Define
w(z) ..= w(z+k−1)/w(k−1) for all z ∈ Z≥0, which satisfies the requirements of
a time-function from Definiton 2. Observe that the tree time of T ′

1 with respect
to w is precisely 1/w(k − 1) multiplied by the tree time of T ′

1 in the k-cut tree.
We have w(1) = w(k)/w(k − 1) > 2 by assumption. By Lemma 16, there

does not exist a τ -minimal tree with respect to w that has exactly one cut along
every root-to-leaf path. It follows that there exists a one-cut tree proving bound
G with less tree time than the k-cut tree, by replacing T ′

1 with a tree that proves
the same bound G′ without any cut nodes. �

Lemma 17 states that a tree with k cuts along every root-to-leaf path is τ -
minimal only if the tree with k − 1 cuts does not have lower tree time. For the
special case of k = 2, in Lemma 19, we provide another necessary condition for
two cuts to be optimal, by comparing the two-cut tree with a pure branching

T ′
0

cut nodes at depth δ1

T ′
1

Fig. 4. A tree with a single cut located at depth δ1 along every root-leaf path.
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tree. We will apply the following lemma, which asserts that if adding two cuts
is optimal, then those cuts can be adjacent.

Lemma 18. If c ≤ � = r and there exists a τ -minimal tree proving bound G
with exactly two cuts along every root-to-leaf path, then there is a τ -minimal
SVBC(�, r; c,w) tree in which the two cuts are adjacent along every path.

Proof. Consider a symmetric (without loss of generality, because � = r) tree T
with two cuts along every root-to-leaf path, in which the second cut node is
not adjacent to the first. Now let T ′ be nearly identical to T , except that the
second cut nodes are “shifted up” one level in the tree (this operation can be
seen in Fig. 3, where the first panel corresponds to shifting up cuts compared to
the second panel). This is equivalent to merging every pair of these second cut
nodes, each with time w(1), into a single node with time w(2). By Lemma 17
with k = 2, it must hold that w(2) ≤ 2w(1). Hence, T ′ weighs no more than T .
The shifting up operation can be repeated, without increasing tree time, until
the second cut node is adjacent to the first. �
Lemma 19. If c ≤ � = r and the time-function satisfies w(2) > 2 + w(1), then
a τ -minimal SVBC(�, r; c,w) tree proving bound G cannot have exactly two cuts
along each root-to-leaf path.

Proof. Assume for the sake of contradiction that w(2) > 2 + w(1) but there
exists a symmetric (without loss of generality, as � = r) τ -minimal tree with two
cuts along every root-to-leaf path. By Lemma 18, we can assume the two cut
nodes are adjacent along every root-to-leaf path.

For a given root-to-leaf path, let T be the subtree rooted at the first cut
node along that path, and observe that T must also be τ -minimal. Define T ′ by
“shifting” the two cut nodes down one “level” with respect to T , as illustrated
in Fig. 5, with the following modification in the case that the cut nodes in T are
already at the lowest level of the tree, i.e., when T is a path. When T is a path,
to prove bound G, the second cut node is not necessary, so the last layer of T ′

can be removed; that is, T ′ consists of one branch node whose two children are
cut nodes, and the children of the cut nodes are the leaf nodes of T ′.

Thus, T ′ is the same as T except that the second cut node and first branch
node in T , with time w(1) + w(2), are replaced by four nodes, with total time
2(w(0)+w(1)) = 2+2w(1) < w(1)+w(2). This shows that τ(T ′) < τ(T ), which
contradicts the assumption that T is τ -minimal. �

5.3 Proof of Theorem 13

Proof (Proof of Theorem 13). Since � = r, there exists a τ -minimal tree that is
symmetric, in which every root-to-leaf path has the same number of cut nodes,
and if there is a cut at a certain depth for one path, every other path has a cut at
the same depth. Let k� denote the number of cuts added along every root-to-leaf
path in a τ -minimal B&C tree.
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. .
.

time = w(0)

time = w(2)

total time = w(1) + w(2)

. .
.

time = w(0)

time = w(2)

total time = 2(w(0) + w(1))

Fig. 5. Illustration of shifting two cuts down in the tree. The boxed nodes cause the
only difference in times between the two subtrees.

We assume w(z) = αz + 1 for some α > 0. It follows that
∑t−1

i=0 w(i) =
αt(t−1)/2+t. As a result, w(t)−∑t−1

i=0 w(i) turns out to be a concave quadratic.
Thus, its minimum over an interval is achieved at the extreme points.

Thus, by Theorem 14, to decide if cuts should be placed at the root or
immediately after the first branch node, we only need to check which one of
t = 0 (all cuts after the root) or t = k� (only root cuts) minimizes

w(t) −
t−1∑

i=0

w(i) = (αt + 1) − αt(t − 1)
2

− t = αt

(

1 − t − 1
2

)

− t + 1.

For t = 0, this expression is equal to 1. Picking t = k� > 0 is no worse if and
only if

αk�

(

1 − k� − 1
2

)

−k�+1 ≤ 1 ⇐⇒ 1− k� − 1
2

≤ 1
α

⇐⇒ k� ≥ 3− 2
α

. (1)

If k� = 1, then inequality (1) holds if and only if α ≤ 1. By Lemma 16, if k� = 1
is optimal, then w(1) ≤ 2, which holds if and only if α ≤ 1. For k� = 2, (1) holds
if and only if α ≤ 2. By Lemma 19, if k� = 2 is optimal, then w(2) ≤ 2 + w(1),
which holds if and only if α ≤ 2. If k� ≥ 3, then (1) is true for all α > 0. �

6 Conclusion and Potential Extensions

We analyze a framework capturing several crucial tradeoffs in jointly making
branching and cutting decisions for optimization problems. For example, we show
that adding cuts can yield nonmonotonic changes in tree size, which can make
it difficult to evaluate the effect of cuts computationally. Our results highlight
challenges for improving cut selection schemes, in terms of their effect on branch-
and-cut tree size and solution time, albeit for a simplified setting in which the
strength of cuts and branching is assumed constant and known. There do exist
contexts in which the relative strength of cuts compared to branching decisions
can be approximated, such as by inferring properties for a family of instances,
an idea that has seen recent success with machine learning methods applied to
integer programming problems [11,15,18,19,23]. This lends hope to apply our
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results to improve cut selection criteria for such families of instances and this
warrants future computational study, though it is far from straightforward.

This paper focuses on the single-variable version of the abstract branch-and-
cut model. Some results extend directly to bounds for a generalization of the
model permitting different possible branching variables, by assuming the “single
branching variable” corresponds to the best possible branching variable at every
node, but an in-depth treatment of the general case remains open. Further,
an appealing extension of the general time-functions considered in Sect. 5 is
to investigate branching on general disjunctions [7,16,22], which has been the
subject of recent computational study [24].

One important aspect left as future work is accounting for diminishing cut
strength over rounds. This could be analyzed within our model by assuming
an exponentially-increasing time-function, as many more cuts would be needed
each round to achieve a constant bound improvement; these extra cuts would
take more time to generate, and the impact on the node solving time would
be progressively worse. An alternative is to expand our model to allow cuts to
worsen (in bound improvement) with each round.

Finally, most of the results we present in Sect. 5 for general time-functions
assumes that branching on a variable leads to the same bound improvement
for both children. The general situation of unequal and/or nonconstant bound
improvements remains open, both regarding the best location of cut nodes and
the optimal number of cuts to be added, and merits future theoretical and exper-
imental investigation.
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Abstract. In this article we present new results on neural networks with
linear threshold activation functions x �→ 1{x>0}. We precisely character-
ize the class of functions that are representable by such neural networks
and show that 2 hidden layers are necessary and sufficient to represent
any function representable in the class. This is a surprising result in
the light of recent exact representability investigations for neural net-
works using other popular activation functions like rectified linear units
(ReLU). We also give precise bounds on the sizes of the neural networks
required to represent any function in the class. Finally, we design an algo-
rithm to solve the empirical risk minimization (ERM) problem to global
optimality for these neural networks with a fixed architecture. The algo-
rithm’s running time is polynomial in the size of the data sample, if the
input dimension and the size of the network architecture are considered
fixed constants. The algorithm is unique in the sense that it works for
any architecture with any number of layers, whereas previous polyno-
mial time globally optimal algorithms work only for restricted classes of
architectures.

1 Introduction

A basic question in a rigorous study of neural networks is a precise characteri-
zation of the class of functions representable by neural networks with a certain
activation function. The question is of fundamental importance because neural
network functions are a popular hypothesis class in machine learning and artifi-
cial intelligence. Every aspect of learning using neural networks benefits from a
better understanding of the function class: from the statistical aspect of under-
standing the bias introduced in the learning procedure by using a particular
neural hypothesis class, to the algorithmic question of training, i.e., finding the
“best” function in the class that extrapolates the given sample of data points.

It may seem that the universal approximation theorems for neural networks
render this question less relevant, especially since these results apply to a broad
class of activation functions [1,5,15]. We wish to argue otherwise. Knowledge
of the finer structure of the function class obtained by using a particular acti-
vation function can be exploited advantageously. For example, the choice of a
certain activation function may lead to much smaller networks that achieve the
c© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 347–360, 2022.
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same bias compared to the hypothesis class given by another activation function,
even though the universal approximation theorems guarantee that asymptoti-
cally both activation functions achieve arbitrarily small bias. As another example,
one can design targeted training algorithms for neural networks with a particular
activation function if the structure of the function class is better understood, as
opposed to using a generic algorithm like some variant of (stochastic) gradient
descent. This has recently led to globally optimal empirical risk minimization
algorithms for rectified linear units (ReLU) neural networks with specific archi-
tecture [2,4,6] that are very different in nature from conventional approaches
like (stochastic) gradient descent; see also [7–12,16].

Recent results of this nature have been obtained with ReLU neural networks.
Any neural network with ReLU activations clearly gives a piecewise linear func-
tion. Conversely, any piecewise linear function Rn → R can be exactly repre-
sented with at most �log2(n+1)� hidden layers [2], thus characterizing the func-
tion class representable using ReLU activations. However, it remains an open
question if �log2(n + 1)� are indeed needed. It is conceivable that all piecewise
linear functions can be represented by 2 or 3 hidden layers. It is believed this is
not the case and there is a strict hierarchy starting from 1 hidden layer, all the
way to �log2(n + 1)� hidden layers. It is known that there are functions repre-
sentable using 2 hidden layers that cannot be represented with a single hidden
layer, but even the 2 versus 3 hidden layer question remains open. Some partial
progress on this question can be found in [13].

In this paper, we study the class of functions representable using threshold
activations (also known as the Heaviside activation, unit step activation, and
McCulloch-Pitts neurons). It is easy to see that any function represented by such
a neural network is a piecewise constant function. We show that any piecewise
constant function can be represented by such a neural network, and surprisingly
– contrary to what is believed to be true for ReLU activations – there is always a
neural network with at most 2 hidden layers that does the job. We also establish
that there are functions that cannot be represented by a single hidden layer and
thus one cannot do better than 2 hidden layers in general. Our constructions
also show that the size of the neural network is at most linear in the number
of “pieces” of the function, giving a relatively efficient encoding compared to
recent results for ReLU activations which give a polynomial size network only
in the case of fixed input dimension [13]. Finally, we use these insights to design
an algorithm to solve the empirical risk minimization (training) problem for
these neural networks to global optimality whose running time is polynomial
in the size of the data sample, assuming the input dimension and the network
architecture are fixed. To the best of our knowledge, this is the first globally
optimal training algorithm for any family of neural networks that works for
arbitrary architectures and has computational complexity that is polynomial in
the number of data points, that does not involve a discretization of parameter
space or the input space. A very interesting result by Bienstock, Munoz and
Pokutta [3] formulates the training problem as a linear programming problem
which solves the problem to ε-accuracy in time that is linear in the number of
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data points and polynomial in 1
ε , assuming the input dimension and the network

architecture are fixed. This is done via a discretization of the neural network
parameter space and input space. For a general convex loss, our algorithm will
also have to be content with ε-approximate solutions, since this is the best one
can do for minimizing general convex functions. However, our running time is
polynomial in log(1/ε), in contrast to 1

ε . Moreover, for certain loss functions like
the �1 or �∞, our algorithm will indeed be exact, because the convex optimization
problem becomes a linear programming problem, but the algorithm in [3] will
still need to rely on discretizations, leading to an approximation. On the other
hand, the linear dependence of the algorithm in [3] on the number of data points
is much better than our algorithm, although it should be noted that under its
current form, their analysis does not formally extend for the linear threshold
activation functions, since x �→ 1{x>0} is not Lipschitz continuous.

We next introduce necessary definitions and notation, followed by a formal
statement of our results.

Definitions and Notation. A polyhedral complex P is a collection of convex
polyhedra having the following properties:

(A) For every P, P ′ ∈ P, P ∩ P ′ is a face of P and P ′.
(B) every face of a polyhedron in P belongs to P.

We denote by dim(P ) the dimension of a polyhedron and by P̊ the relative
interior of P . |P| will denote the number of polyehedra in a polyhedral complex
P and is called the size of P.

Definition 1 (Piecewise constant function). We say that a function f :
Rn → R is piecewise constant if there exists a finite polyhedral complex that
covers Rn and f is constant in the relative interior of each polyhedron in the
complex. We use PWCn as a shorthand for the piecewise constant function from
Rn to R.

Note that there may be multiple polyhedral complexes that correspond to
a given piecewise constant function, with possibly different sizes. For example,
the indicator function of the nonnegative orthant Rn

+ is a piecewise constant
function but there are many different ways to break up the complement of the
nonnegative orthant into polyhedral regions. We say that a polyhedral complex
P is compatible with a piecewise constant function f if f is constant in the
relative interior of every polyedron in P.

The threshold activation function is a map from R to {0, 1} given by the indi-
cator of the positive reals, i.e., x > 0. By extending this to apply coordinatewise,
we get a function σ : Rd → {0, 1}d for any d ≥ 1, i.e., σ(x)i is 1 if and only
if xi > 0 for i = 1, . . . , d. For any subset X ⊆ Rn, 1X wil denote its indicator
function, i.e., 1X(y) = 1 if y ∈ X and 0 otherwise.

Definition 2 (Linear threshold deep neural network (DNN)). For any
number of hidden layers k ∈ N, input and output dimensions w0, wk+1 ∈ N,
a Rw0 → Rwk+1 linear threshold DNN is given by specifying a sequence of k



350 S. Khalife and A. Basu

natural numbers w1, w2, · · · , wk representing widths of the hidden layers, a set
of k+1 affine transformations Ti : Rwi−1 → Rwi , i = 1, . . . , k + 1. Such a linear
threshold DNN is called a (k+1)-layer DNN, and is said to have k hidden layers.
The function f : Rw0 → Rwk+1 computed or represented by this DNN is:

f = Tk+1 ◦ σ ◦ Tk ◦ · · · T2 ◦ σ ◦ T1.

The size of the DNN, or the number of neurons in the DNN, is w1 + . . . +
wk. For natural numbers n, k and a tuple w = (w1, . . . , wk), we use H w

n (k) to
denote the family of all possible linear threshold DNNs with input dimension
w0 = n, k hidden layers with widths w1, . . . , wk and output dimension wk+1 =
1. Hn(k) :=

⋃
w=(w1,...,wk)

H w
n (k) will denote the family of all linear threshold

activation neural networks with k hidden layers. We say that a neuron or a
neural network computes a subset X ⊆ Rn if and only if its output is the indicator
function 1X of that subset.

Our Contributions

Any function expressed by a linear threshold neural network is a constant piece-
wise function (i.e. Hn(k) ⊆ PWCn for all natural numbers k), because a com-
position of piecewise constant functions is piecewise constant. In this work we
show that linear threshold neural networks with 2 hidden layers can compute
any constant piecewise function, i.e. Hn(2) = PWCn. We also prove that this is
optimal. More formally,

Theorem 1. For all natural numbers k ≥ 2,

Hn(1) � Hn(2) = Hn(k) = PWCn.

Equivalently, any piecewise constant function f : Rn → R can be computed with
linear threshold DNN with at most 2 hidden layers. Moreover, the DNN needs at
most 3|P| neurons, where P is any polyhedral complex compatible with f .

Next, we show that the bound on the size of the neural network in Theorem 1
is in a sense best possible, up to constant factors.

Proposition 1. There is a family of piecewise constant functions such that for
any function f in the family, any linear threshold DNN representing f has size
at least the size of the smallest polyhedral complex compatible with f .

Finally, we present a new algorithm to perform exact empirical risk min-
imization (ERM) for linear threshold neural networks with fixed architecture,
i.e., fixed k and w = (w1, . . . , wk). Given D data points (xi, yi) ∈ Rn × R, {i =
1 · · · ,D}, the ERM problem with hypothesis class Hw

n (k) is

min
f∈Hw

n (k)

1
D

D∑

i=1

�(f(xi), yi) (1)

where � is a convex loss function.
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Theorem 2. For natural numbers n, k and tuple w = (w1, . . . , wk), there exists
an algorithm that computes the global optimum (1) with running time O(Dw1n ·
2

∑k−1
i=1 w2

i wi+1 ·poly(D,w1, . . . , wk)). Thus, the algorithm is polynomial in the size
of the data sample, if n, k, w1, . . . , wk are considered fixed constants.

The rest of the article is organized as follows. In Sect. 2 we present our repre-
sentability results for the class of linear threshold neural networks, including a
proof of Theorem 1. In Sect. 3 we prove the lower bound stated in Proposition 1
using the structure of breakpoints of piecewise constant functions. Our ERM
algorithm and the proof of Theorem 2 are presented in Sect. 4 with intermediate
results. We conclude with a short discussion and open problems in Sect. 5.

2 Representability Results

The following lemma is clear from the definitions.

Lemma 1. Let f ∈ PWCn and let P be a compatible polyhedral complex. Then,
there exists a unique sequence (α1, · · · , α|P|) ∈ R|P| such that

f =
∑

P∈P
αP 1P̊

Proposition 2. H1(1) = PWC1, i.e., linear threshold neural networks with a
single hidden layer can compute any piecewise constant function R → R. More-
over, if f ∈ PWC1 and P is a polyhedral complex of f , then f can be computed
with 3|P| + 1 neurons.

Proof. Let f : R → R a piecewise constant function. Then using Lemma 1 there
exists a polyhedral complex whose union is R and such that f is constant on
the relative interior of each of the polyhedra. In R, non empty polyhedra are
either reduced to a point, or they are the intervals of the form [a, b], ] − ∞, a],
[a,+∞[ with a ≤ b ∈ R, or R itself. We first show that we can compute the
indicator function on each of the interior of those intervals with at most two
neurons. The interior of [a,+∞[, ] −∞, b] or R can obviously be computed by
one neuron (e.g. x �→ 1{ax<0} with a = 0 for R). The last cases (singletons
and polyhedron of the form [a, b]) requires a more elaborate construction. To
compute the function 1{x∈]a,b[}, it is sufficient to implement a Dirac function,
since 1{x∈]a,b[} = 1{b<x} − 1{a<x} − δa(x) where δa is the Dirac in a ∈ R, i.e.,
δa : R → R, x �→ 1{x=a}. δa can be computed by a linear combination of three
neurons, since ga : R → R, x �→ 1R − (1{x<a} + 1{x>a}) is equal to δa. Using a
linear combination of the basis functions (polyhedra and faces), we can compute
exactly f . To show that 3|P|+1 neurons suffice, 1R is computed with one shared
neuron, and then 3 other neurons are needed at most for one polyhedron using
our construction. �

We next show that starting with two dimensions, linear threshold DNNs with
a single hidden layer cannot compute every possible piecewise constant function.
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Proposition 3. Let C2 := {(x1, x2) ∈ R2 | 0 ≤ x1, x2 ≤ 1}. Then 1C2 cannot
be represented by any linear threshold neural network with one hidden layer.

Proof. Consider any piecewise constant function on R2 represented by a single
hidden layer neural network, say g := x �→ ∑m

i=1 αi1{x∈R2 : 〈ai,x〉+bi<0} with
α1, · · · , αm ∈ R, a1, . . . , am ∈ R2 and b1, . . . , bm ∈ R. For the sake of clarity,
we may suppose that for all i �= j, either ai �= aj or bi �= bj to avoid possible
compensations. This implies that the set of nondifferentiable points of g is a
union of lines in R2. However, the set of nondifferentiable points of 1C2 are the
sides of the cube, which is a union of finite length line segments. This shows that
1C2 cannot be represented by a single hidden layer linear threshold DNN. �

We will now build towards a proof of Theorem 1 which states that 2 hidden
layers actually suffice to represent any piecewise constant function in PWCn.

Lemma 2. Let P be a polyhedron in Rn given by the intersection of m halfspaces.
Then, 1P can be computed with a two hidden layer neural network and m + 1
neurons in total.

Proof. Let P a polyhedron, i.e. P = {x ∈ Rn |Ax ≤ b} with A =
(a1, · · · , am)T ∈ Rm×n and b = (b1, · · · , bm) ∈ Rm. Let us consider the m
neurons (φi : x �→ 1{x∈Rn: 〈ai,x〉>bi})1≤i≤m, and φ : x �→ ∑

i φi(x). Then for
all x ∈ Rn, φ(x) < 1 if and only if x ∈ P . Now, defining ψ : y �→ 1{y∈R: y<1}
yields ψ ◦ φ = 1P . ψ can obviously be computed with a neuron. Therefore, one
can compute 1P with m neurons in the first hidden layer and one neuron in the
second, which proves the result. �
Lemma 3. Let P be a polyhedron in Rn. Then the indicator function of its
relative interior can be computed with a two hidden layer neural network, using
the indicator of P and the indicators of its faces.

Proof. Let P be a polyhedron. First, we always have 1P̊ = 1P −1Union of facets of P.
Therefore it is sufficient to prove that we can implement 1Union of facets of P for
any P . Using the inclusion exclusion principle on indicator functions, suppose
that the facets of P are f1, · · · , fl, then:

1⋃l
j=1 fk

=
l∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤l

1fi1∩···∩fij

It should be noted that for any j ∈ {1, · · · , l}, F = fi1 ∩ · · · ∩ fij is either
empty, or a face of P , hence a polyhedron of dimension lower or equal to dim(P )−
1. Therefore, using Lemma 2, we can implement F with a two hidden neural
network with at most m+1 neurons, where m is the number of halfspaces in an
inequality description of P . If s is the number of faces of P , then there are at
most s polyhedra to compute. �

Combining these results, we can now provide a:
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Proof of Theorem 1. Thanks to Lemma 1, in order to represent f ∈ PWCn, it
is sufficient to compute the indicator function of the relative interior of each
polyhedron in one of its polyhedral complex P. This can be achieved with just
two hidden layers using Lemma 3. This establishes the equalities in the statement
of the theorem. The strict containment Hn(1) � Hn(2) is given by Proposition 3.

Let m be the total number of halfspaces used in an inequality description of
all the polyhedra in the polyhedral complex P. Since all faces are included in the
polyhedral complex, there exists an inequality description with m ≤ 2|P|. The
factor 2 appears because for each facet of a full dimensional polyhedron in P,
one may need both directions of the inequality that describes this facet. Then
the construction in the proofs of Lemmas 2 and 3 show that one needs at most
m ≤ 2|P| neurons in the first hidden layer and at most |P| neurons in the second
hidden layer. �

3 Proof of Proposition 1

Even though it is possible to represent any piecewise constant function using
only two hidden layers, one may wonder if there is some advantage of using
more hidden layers, for instance to decrease the number of neurons to compute
a target function. We are unable to settle this question in general. However, we
show that the linear bound in Theorem 1 cannot be improved in general. More
precisely, we prove Proposition 1 in this section.

We first introduce the notion of breakpoint for piecewise constant functions.

Definition 3. Let f ∈ PWCn. We say that x ∈ Rn is a breakpoint of f if and
only if for all ε > 0 the ball centered in x and radius ε contains a point y such
that f(y) �= f(x).

Lemma 4. For any piecewise constant function f : Rn → R, the breakpoints of
1{x∈Rn : f(x)>0} are breakpoints of f .

Proof. Let f : Rn → R be a piecewise constant function and x a breakpoint of
1{x∈Rn : f(x)>0}. Then for any ε > 0, there exists y ∈ B(x, ε) such that either
f(x) ≤ 0 and f(y) > 0, or f(x) > 0 and f(y) ≤ 0. In both cases, f(x) �= f(y) so
by definition x is a breakpoint of f . �

For any single neuron with a linear threshold activation with k inputs, the
output is the indicator of an open halfspace, i.e., 1{x∈Rk:〈a,x〉+b>0} for some
a ∈ Rk and b ∈ R. We say that {x ∈ Rk : 〈a, x〉 + b = 0} is the hyperplane
associated with this neuron. This concept is needed in the next proposition.

Proposition 4. The set of breakpoints of a function represented by a linear
threshold DNN with any number of hidden layers is included in the union of
hyperplanes associated with the neurons in the first hidden layer.
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Proof. We give a proof by induction on the number k of hidden layers. We remind
that if αi ∈ Rn and βi ∈ R are the weights and bias of a neuron in the first layer,
the corresponding hyperplane is {x ∈ Rn : αix + βi = 0}.

Base case: For k = 1, let φ be a one hidden layer DNN with w1 neurons, i.e.
there exists γ1, · · · , γw1 ∈ R and closed half-spaces H1, · · · ,Hw1 such that:

φ =
w1∑

i=1

γi1Hc
i

Let P1, · · · , Pw1 be the hyperplanes associated to each H1, · · · ,Hw1 . Then we
claim that φ does not have any breakpoint in Rn − ⋃w1

i=1 Pi where P1, · · · , Pw1

are the hyperplanes associated to H1, · · · ,Hw1 . To formally prove it, let x be a
point of Rn − ⋃w1

i=1 Pi. Then for each i, x is either in H̊i or Hc
i . This means that

x belongs to a intersection of open sets, say E = ∩w1
i=1Oi where ∀i, Oi = H̊i or

Oi = Hc
i . First, E is an open set so there exists ε > 0 such that the ball B(x, ε)

centered in x and with radius ε is included in E. Furthermore, by definition, φ
is constant on E, hence φ is constant on B(x, ε) and x cannot be a breakpoint.
We proved that the breakpoints of φ are in

⋃w1
i=1 Pi.

Induction step: Let us suppose the statement is true for all neural networks with
k hidden layers, and consider a neural network φ with k + 1 hidden layers. It
should be noted that the output of a neuron in the last hidden layer is of the
form

1{x∈Rn : a1ψ1(x)+···awk
ψwk

(x)+β>0} = 1{x∈Rn : Ψ(x)>0}

where Ψ : x �→ a1ψ1(x) + · · · awk
ψwk

(x) + β is the piecewise function repre-
sented by a neural network of depth k. Lemma 4 states that the breakpoints of
1{x∈Rn : Ψ(x)>0} are breakpoints of Ψ , a DNN of depth k. Using the induction
assumption, the breakpoints of Ψ belong to the hyperplanes introduced in the
first layer. Hence the breakpoints of φ, which is a linear combination of such
neurons, are included in the hyperplanes of the first layer. �
Proof of Proposition 1. Let us construct a family of functions in Rn. Let us
consider the sets P1 := {x ∈ Rn : x1 ≤ 0}, Pi := {x ∈ Rn : (i − 2) < x1 ≤
i − 1} for i ∈ {2, · · · , N − 1}, and PN := {x ∈ Rn : x1 > N − 2}. Note that
⋃N

i=1 Pi = Rn. Let f ∈ PWCn such that such that f(x ∈ Pi) = i. It is easy to
see that f is a piecewise constant function and that the breakpoints of f is a set
of N − 1 hyperplanes, with empty pairwise intersections. By Proposition 4, any
linear threshold neural network must have these hyperplanes associated with
neurons in the first hidden layer, and therefore we must have at least N neurons
in the first hidden layer. �

4 Globally Optimal Empirical Risk Minimization

In this section we present a algorithm to train a linear threshold DNN with
fixed architecture to optimality. Let us recall the corresponding optimization
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problem. Given D data points (xi, yi) ∈ Rn×R, {i = 1 · · · ,D}, find the function
f ∈ Hw

n (k) represented by a k-hidden layer Rn → R DNN with widths w =
(w1, · · · , wk) that solves:

min
f∈Hw

n (k)

1
D

D∑

i=1

�(f(xi), yi) (2)

where � is a convex loss function. We first present the idea with 2 hidden layers
and then adapt the method for an arbitrary number of layers.

4.1 Preliminaries

Definition 4. Let m ≥ 1 be any natural number. We say a collection A of
subsets of {1, . . . , m} is linearly separable if there exist α1, . . . , αm, β ∈ R such
that any subset A ⊆ {1, . . . , m} is in A if and only if

∑
s∈A αs + β > 0. Define

Lm := {A : A is a linearly separable collection of subsets of {1, . . . , m}},

i.e., Lm denotes the set of all linearly separable collections of subsets of
{1, . . . , m}.
Remark 1. We note that given a collection A of subsets of {1, · · · ,m} one can
test if A is linearly separable by checking if the optimum value of the following
linear program is strictly positive:

max
t∈R,α∈Rn,β∈R

t

s.t.
∑

s∈A

αs + β ≥ t ∀A ∈ A and
∑

s∈A

αs + β ≤ 0 ∀A /∈ A

In Algorithm 1 below, we will enumerate through all possible collections in Lm

(for different values of m). We assume this has been done a priori using the
linear programs above and this enumeration can be done in time |Lm| during
the execution of Algorithm 1.

Remark 2. In R2, A = {∅, {1}, {2}} is linearly separable, but {∅, {1, 2}} is not
linearly separable because the set of inequalities β > 0, α1 + α2 > 0, α1 + β ≤ 0
and α2 + β ≤ 0 have no solution. Two examples of linearly separable collections
in R3 are given in Fig. 1.

Proposition 5. Let k ≥ 2 and w = (w1, . . . , wk), and consider a DNN of
Hw

n (k). Any neuron of this neural network computes some subset of Rn. Sup-
pose we fix the weights of the neural network up to the (k − 1)-th hidden layer.
This fixes the sets Y1, . . . , Ywk−1 ⊆ Rn computed by the wk−1 neurons in this
layer.
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x2

x1

x3

A = {∅, {1}, {1, 3}, {3}}

x2

x1

x3

A = {{1, 2}, {1, 2, 3}}

Fig. 1. Two linearly separable collections of 2{1,2,3} in R3. The subsets of {1, 2, 3} are
represented by the vertices of {0, 1}3. The blue hyperplanes represent a possible sepa-
ration of the corresponding vertices, giving two different linearly separable collections.

Then a neuron in the k-th layer computes X ⊆ Rn (by adjusting the weights
and bias of this neuron) if and only if there exists a linearly separable collection
A of subsets of {1, . . . , wk−1} such that:

X =
⋃

A∈A

⋂

s∈A

Ys

Proof. Let α ∈ Rwk−1 , β ∈ R be the weights and bias of the neuron in the k-th
layer. By definition, the set represented by this neuron is

Sα,β = {x ∈ Rn : α11Y1(x) + · · · + αwk−11Ywk−1
(x) + β > 0}

We define the collection A = {A ⊆ {1, · · · , wk−1} :
∑

i∈A αi + β > 0}. By
definition, A is a linearly separable collection. Now let us consider the set:

O =
⋃

A∈A

⋂

s∈A

Ys

Let x ∈ O. Then there exists A ⊆ {1, · · · , wk−1} such that x ∈ ⋂
s∈A Ys and

therefore,
∑

s∈A αs1Ys
(x) + β > 0. This means that x ∈ Sα,β , hence O ⊆ Sα,β .

Now, let x ∈ Sα,β . Then α11Y1(x) + · · · + αwk−11Ywk−1
(x) + β > 0. Let A = {s :

x ∈ Ys} then
∑

s∈A αs +β > 0 and x ∈ ⋂
s∈A Ys, hence Sα,β ⊆ O, and Sα,β = O.

Conversely, let A be a linearly separable collection of subsets of {1, · · · , wk−1}.
By definition there exists α ∈ Rn and β ∈ R such that A ∈ A ⇐⇒ ∑

s∈A αs +
β > 0. These are then taken as the weights of the neuron in the k-th hidden
layer and its output is the function 1{x∈Rn :

∑wk−1
i=1 αi1Yi

(x)+β>0}. �

4.2 Proof of Theorem 2

Consider a neural network with k hidden layers and widths w = (w1, . . . , wk)
that implements a function in Hw

n (k). The output of any neuron on these data
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points is in {0, 1} and thus each neuron can be thought of as picking out a subset
of the set X := {x1, . . . , xD}. Proposition 5 provides a way to enumerate these
subsets of X in a systematic manner.

Definition 5. For any finite subset F ⊆ Rn, a subset F ′ of F is said to be
linearly separable if there exists a ∈ Rn, b ∈ R such that F ′ = {x ∈ F :
〈a, x〉 + b > 0}.

The following is a well-known result in combinatorial geometry [17].

Theorem 3. For any finite subset F ⊆ Rn, there are at most 2
(|F |

n

)
linearly

separable subsets.

By considering the natural mapping between subsets of {1, . . . ,m} and
{0, 1}m, we also obtain the following corollary.

Corollary 1. For any m ≥ 1, there are at most 2
(
2m

m

)
linearly separable collec-

tions of subsets of {1, . . . , m}. In other words, |Lm| ≤ 2
(
2m

m

)
.

Algorithm 1. Algorithm to solve (2) for linear threshold DNNs with n inputs,
k hidden layers and widths w = (w1, . . . , wk).
1: Input Dimension n, Dataset (xi, yi)

D
i=1, Integers w1, . . . , wk

2: Output Solution of Problem 2
3: Define X = (x1, . . . , xD) ⊆ Rn. Let H be the collection of linearly separable subsets

of X.
4: Initialize OPT = +∞, SOL = ∅.
5: for each choice of H1, . . . , Hw1 ∈ H, Ai

1, . . . , Ai
wi

∈ Lwi−1 for i = 2, . . . , k do
6: Define Y 1

j = Hj for j = 1, . . . , w1.
7: Set the weights of the neurons in the first layer to compute Y 1

j for j = 1, . . . , w1.
8: for i = 2 to k do
9: for j=1 to wi do

10: Define Y i
j =

⋃
A∈Ai

j

⋂
s∈A Y i−1

s .

11: Set the weights of neuron j of layer i in accordance with Ai
j to compute

Y i
j .

12: end for
13: end for
14: For each i = 1, . . . , D and j = 1, . . . , wk, compute δij ← 1Y k

j
(xi), using the

neural network constructed so far.
15: Solve the convex minimization problem in the decision variables γ1, . . . , γwk ∈ R:

temp = min
γ∈R

wk

D∑

i=1

�

(
wk∑

j=1

γjδij , yi

)

16: If temp < OPT , then update OPT = temp and SOL to be the current neural
network with weights computed in the previous steps.

17: end for
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Proof of Theorem 2. Algorithm 1 solves (2). The correctness comes from the
observation that a recursive application of Proposition 5 shows that the sets
Y k
1 , . . . , Y k

wk
computed by the algorithm are all possible subsets of X computed

by the neurons in the last hidden layer. The γ1, . . . , γwk
are simply the weights

of the last layer that combine the indicator functions of these subsets to yield
the function value of the neural network on each data point. The convex mini-
mization problem in line 13 finds the optimal γj values, for this particular choice
of subsets Y k

1 , . . . , Y k
wk

. Selecting the minimum over all these choices solves the
problem.

The outermost for loop iterates at most O(Dw1n · 2
∑k−1

i=1 w2
i wi+1) times using

Theorem 3 and Corollary 1. The computation of the δij values in Step 14 can
be done in time poly(D,w1, . . . , wk). The convex minimization problem in wk

variables and D terms in the sum can be solved in poly(D,wk) time. Putting
these together gives the overall running time.

We now show that the exponential dependence on the dimension n in Theo-
rem 2 is actually necessary unless P = NP. We consider the version of (2) with
single neuron and show that it is NP-hard with a direct reduction.

Theorem 4 (NP-hardness). The One-Node-Linear-Threshold problem is NP-
hard when the dimension n is considered part of the input. This implies in par-
ticular that Problem 2 is NP-hard when n is part of the input.

Proof. We here use a result of [14, Theorem 3.1], which showed that the following
decision problem is NP-complete.

MinDis(Halfspaces): Given disjoint sets of positive and negative examples of Zn

and a bound k ≥ 1, does there exist a separating hyperplane which leads to at
most k misclassifications?

MinDis(Halfspaces) is a special case of (2) with a single neuron: given data
points x1, · · · , xD ∈ Rn and y1, · · · , yD ∈ {0, 1}, compute α ∈ Rn, β ∈ R that
minimizes 1

D

∑D
i=1(1{〈α,xi〉+β>0} − yi)2. �

5 Open Questions

We showed that neural networks with linear threshold activations can represent
any piecewise constant function f using at most two hidden layers and a linear
number of neurons with respect to the size of any polyhedral complex compatible
with f . Furthermore, we provided a family of functions for which this linear
dependence cannot be improved. However, it is possible that there are other
families of functions where the behaviour is different: by increasing depth, one
could possibly represent these functions using an exponentially smaller number
of neurons, compared to what is needed with two layers. For instance, in the case
of ReLU activations, there exist functions for which depth brings an exponential
gain in the size of the neural network [2,18]. We think it is a very interesting
open question to determine if such families of functions exist for linear threshold
networks.
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On the algorithmic side, we solve the empirical risk minimization problem to
global optimality with running time that is polynomial in the size of the data
sample, assuming that the input dimension and the architecture size are fixed
constants. The running time is exponential in terms of these parameters (see
Theorem 2). While the exponential dependence on the input dimension cannot be
avoided unless P = NP (see Theorem 4), another very interesting open question
is to determine if the exponential dependence on the architectural parameters is
really needed, or if an algorithm can be designed that has complexity which is
polynomial in both the data sample and the architecture parameters. A similar
question is also open in the case of ReLU neural networks [2].
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Abstract. We study rectangle stabbing problems in which we are given
n axis-aligned rectangles in the plane that we want to stab, i.e., we want
to select line segments such that for each given rectangle there is a line
segment that intersects two opposite edges of it. In the horizontal rectan-
gle stabbing problem (Stabbing), the goal is to find a set of horizontal line
segments of minimum total length such that all rectangles are stabbed.
In general rectangle stabbing problem, also known as horizontal-vertical
stabbing problem (HV-Stabbing), the goal is to find a set of rectilin-
ear (i.e., either vertical or horizontal) line segments of minimum total
length such that all rectangles are stabbed. Both variants are NP-hard.
Chan, van Dijk, Fleszar, Spoerhase, and Wolff [5] initiated the study of
these problems by providing O(1)-approximation algorithms. Recently,
Eisenbrand, Gallato, Svensson, and Venzin [11] have presented a QPTAS
and a polynomial-time 8-approximation algorithm for Stabbing but it
is open whether the problem admits a PTAS.

In this paper, we obtain a PTAS for Stabbing, settling this question.
For HV-Stabbing, we obtain a (2 + ε)-approximation. We also obtain
PTASes for special cases of HV-Stabbing: (i) when all rectangles are
squares, (ii) when each rectangle’s width is at most its height, and (iii)
when all rectangles are δ-large, i.e., have at least one edge whose length
is at least δ, while all edge lengths are at most 1. Our result also implies
improved approximations for other problems such as generalized mini-
mum Manhattan network.

Keywords: Geometric optimization · Approximation algorithms ·
Line stabbing · Rectangles

1 Introduction

Rectangle stabbing problems are natural geometric optimization problems. Here,
we are given a set of n axis-parallel rectangles R in the two-dimensional plane.
For each rectangle Ri ∈ R, we are given points (x(i)

1 , y
(i)
1 ), (x(i)

2 , y
(i)
2 ) ∈ R

2 that
denote its bottom-left and top-right corners, respectively. Also, we denote its
width and height by wi := x

(i)
2 − x

(i)
1 and hi := y

(i)
2 − y

(i)
1 , respectively. Our goal
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is to compute a set of line segments L that stab all input rectangles. We call a
rectangle stabbed if a segment � ∈ L intersects both of its horizontal or both of
its vertical edges. We study several variants. In the horizontal rectangle stabbing
problem (Stabbing) we want to find a set of horizontal segments of minimum
total length such that each rectangle is stabbed. The general rectangle stabbing
(HV-Stabbing) problem generalizes Stabbing and involves finding a set of
axis-parallel segments of minimum total length such that each rectangle in R is
stabbed. The general square stabbing (Square-Stabbing) problem is a special
case of HV-Stabbing where all rectangles in the input instance are squares.
These problems have applications in bandwidth allocation, message scheduling
with time-windows on a direct path, and geometric network design [3,5,10].

Note that Stabbing and HV-Stabbing are special cases of weighted geomet-
ric set cover problem, where the rectangles correspond to elements and potential
line segments correspond to sets, and the weight of a set equals the length of
the corresponding segment. A set contains an element if the corresponding line
segment stabs the corresponding rectangle. This already implies an O(log n)-
approximation algorithm [9] for HV-Stabbing and Stabbing.

Chan, van Dijk, Fleszar, Spoerhase, and Wolff [5] initiated the study of
Stabbing. They proved Stabbing to be NP-hard via a reduction from pla-
nar vertex cover. Also, they presented a constant1 factor approximation algo-
rithm using decomposition techniques and the quasi-uniform sampling method
[19] for weighted geometric set cover. In particular, they showed that Stab-
bing instances can be decomposed into two disjoint laminar set cover instances
of small shallow cell complexity for which the quasi-uniform sampling yields an
O(1)-approximation using techniques from [8].

Recently, Eisenbrand, Gallato, Svensson, and Venzin [11] presented a quasi-
polynomial time approximation scheme (QPTAS) for Stabbing. This shows that
Stabbing is not APX-hard unless NP ⊆ DTIME(2poly log n). The QPTAS relies
on the shifting technique by Hochbaum and Maass [14], applied to a grid, con-
sisting of randomly shifted vertical grid lines that are equally spaced. With this
approach, the plane is partitioned into narrow disjoint vertical strips which they
then process further. Then, this routine is applied recursively. They also gave a
polynomial time dynamic programming based exact algorithm for Stabbing for
laminar instances (in which the projections of the rectangles to the x-axis yield
a laminar family of intervals). Then they provided a simple polynomial-time 8-
approximation algorithm by reducing any given instance to a laminar instance.
It remains open whether there is a PTAS for the problem.

1.1 Our Results

In this paper, we give a PTAS for Stabbing and thus resolve this open question.
Also, we extend our techniques to HV-Stabbing for which we present a polyno-
mial time (2 + ε)-approximation and PTASes for several special cases: when all

1 The constant is not explicitly stated, and it depends on a not explicitly stated
constant in [7].
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Fig. 1. A solution for an instance of Stabbing and HV-Stabbing.

input rectangles are squares, more generally when for each rectangle its width
is at most its height, and finally for δ-large rectangles, i.e., when each rectangle
has one edge whose length is within [δ, 1] and 1 is the maximum length of each
edge of any input rectangle (in each dimension).

Our algorithm for Stabbing is in fact quite easy to state: it is a dynamic
program (DP) that recursively subdivides the plane into smaller and smaller rect-
angular regions. In the process, it guesses line segments from OPT. However, its
analysis is intricate. We show that there is a sequence of recursive decomposi-
tions that yields a solution whose overall cost is (1 + ε)OPT. Instead of using a
set of equally spaced grid lines as in [11], we use a hierarchical grid with several
levels for the decomposition. In each level of our decomposition, we subdivide
the given rectangular region into strips of narrow width and guess Oε(1) line
segments from OPT inside them which correspond to the current level. One cru-
cial ingredient is that we slightly extend the segments, such that the guessed
horizontal line segments are aligned with our grid. The key consequence is that
it will no longer be necessary to remember these line segments once we have
advances three levels further in the decomposition. Also, for the guessed vertical
line segments of the current level we introduce additional (very short) horizon-
tal line segments, such that we do not need to remember them either, once we
advanced three levels more in the decomposition. Therefore, the DP needs to
remember previously guessed line segments from only the last three previous
levels and afterwards these line segments vanish. This allows us to bound the
number of arising subproblems (and hence of the DP-cells) by a polynomial.

Our techniques easily generalize to a PTAS for Square-Stabbing and to
a PTAS for HV-Stabbing if for each input rectangle its width is at most its
height, whereas the QPTAS in [11] worked only for Stabbing. We use the latter
PTAS as a subroutine in order to obtain a polynomial time (2+ε)-approximation
for HV-Stabbing – which improves on the result in [5].

Then, we extend our techniques above to the setting of δ-large rectangles of
HV-Stabbing. This is an important subclass of rectangles and are well-studied
for other geometric problems [1,15]. To this end, we first reduce the problem to
the setting in which all input rectangles are contained in a rectangular box that
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admits a solution of cost O(1/ε3). Then we guess the relatively long line seg-
ments in OPT in polynomial time. The key argument is that then the remaining
problem splits into two independent subproblems, one for the horizontal and one
for the vertical line segments in OPT. For each of those, we then apply our PTAS
for Stabbing which then yields a PTAS for HV-Stabbing if all rectangles are
δ-large.

Finally, our PTAS for Stabbing implies improved approximation ratios
for the Generalized Minimum Manhattan Network (GMMN) and x-
separated 2D-GMMN problems, of (4+ε) log n and 4+ε, respectively, by improv-
ing certain subroutines of the algorithm in [10].

Due to space limitations, many proofs had to be omitted, and we refer the
reader to the full version of this paper [16].

1.2 Further Related Work

Finke et al. [12] gave a polynomial time exact algorithm for a special case of
Stabbing where all input rectangles have their left edges lying on the y-axis.
Das et al. [10] studied a related variant in the context of the Generalized
Minimum Manhattan Network (GMMN) problem. In GMMN, we are given
a set of n terminal-pairs and the goal is to find a minimum-length rectilinear
network such that each pair is connected by a Manhattan path. They obtained
a 4-approximation for a variant of Stabbing where all rectangles intersect a
vertical line. Then they used it to obtain a (6+ε)-approximation algorithm for the
x-separated 2D-GMMN problem, a special case of 2D-GMMN, and (6+ε)(log n)-
approximation for 2-D GMMN.

Gaur et al. [13] studied the problem of stabbing rectangles by a minimum
number of axis-aligned lines and gave an LP-based 2-approximation algorithm.
Kovaleva and Spieksma [17] considered a weighted generalization of this problem
and gave an O(1)-approximation algorithm.

Stabbing and HV-Stabbing are related to geometric set cover which is a
fundamental geometric optimization problem. Brönnimann and Goodrich [4] in
a seminal paper gave an O(d log(dOPT))-approximation for unweighted geo-
metric set cover where d is the dual VC-dimension of the set system and
OPT is the value of the optimal solution. Using ε-nets, Aronov et al. [2] gave
an O(log log OPT )-approximation for hitting set for axis-parallel rectangles.
Later, Varadarajan [19] developed quasi-uniform sampling and provided sub-
logarithmic approximation for weighted set cover where sets are weighted fat
triangles or weighted disks. Chan et al. [8] generalized this to any set system
with low shallow cell complexity. Afterward, Chan and Grant [6] and Mustafa et
al. [18] have settled the APX-hardness statuses of all natural weighted geometric
set cover problems.

2 Dynamic Program

We present a dynamic program that computes a (1 + ε)-approximation to HV-
Stabbing for the case where hi ≥ wi for each rectangle Ri ∈ R. This implies
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directly a PTAS for the setting of squares for the same problem, and we will argue
that it also yields a PTAS for Stabbing. Later, we will use it as a subroutine to
obtain a (2 + ε)-approximation for HV-Stabbing and a PTAS for the setting
of δ-large rectangles of HV-Stabbing.

For a line segment �, we use the notation |�| to represent its length, and
for a set of segments L, we use notation c(L) to represent the cost of the set,
which is also the total length of the segments contained in it. We use the term
OPT interchangeably to refer to the optimal solution to the problem and also
to c(OPT), i.e., the cost of the optimal solution.

2.1 Preprocessing Step

First, we show that by some simple scaling and discretization steps we can
ensure some simple properties that we will use later. Without loss of generality
we assume that (1/ε) ∈ N and we say that a value x ∈ R is discretized if x is an
integral multiple of ε/n.

Lemma 1. For any positive constant ε < 1/3, by losing a factor (1 + O(ε)) in
the approximation ratio, we can assume for each Ri ∈ R the following properties
hold:

– ε/n ≤ wi ≤ 1,
– x

(i)
1 , x

(i)
2 are discretized and within [0, n],

– y
(i)
1 , y

(i)
2 are discretized and within [0, 4n2], and

– each horizontal line segment in the optimal solution has width at most 1/ε.

Henceforth in this paper when we refer to the set of input rectangles R, we are
referring to a set R′ that has been obtained after applying the preprocessing from
Lemma 1 to the input set R, and when we refer to OPT, we are referring to the
optimal solution to the set of rectangles R′, which is a (1+O(ε)) approximation
of the optimal solution of the input instance.

2.2 Description of the Dynamic Program

Our algorithm is based on a dynamic program (DP). It has a cell DP(S,L) for
each combination of

– a rectangular region S ⊆ [0, n] × [0, 4n2] with discretized coordinates (that is
not necessarily equal to an input rectangle in R).

– a set L of at most 3(1/ε)3 line segments, each of them horizontal or vertical,
such that for each � ∈ L we have that � ⊆ S, and all coordinates of � are
discretized.

This DP-cell corresponds to the subproblem of stabbing all rectangles in R that
are contained in S and that are not already stabbed by the line segments in
L. Therefore, the DP stores solution SOL(S,L) in the cell DP(S,L) such that
SOL(S,L) ∪ L stabs all rectangles in R that are contained in S.
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Given a DP-cell DP(S,L), our DP computes a solution for it as follows. If
L already stabs each rectangle from R that is contained in S, then we simply
define a solution SOL(S,L) := ∅ for the cell DP(S,L) and do not compute
anything further. Another simple case is when there is a line segment � ∈ L
such that S \ � is divided into two rectangular regions S1, S2 (these regions
are henceforth referred to as connected components). In this case we define
SOL(S,L) := SOL(S1,L ∩ S1) ∪ SOL(S2,L ∩ S2) ∪ {�}, where for any set of line
segments L′ and any rectangle S′ we define L′∩S′ := {�′∩S′|�′ ∈ L′∧�′∩S′ 
= ∅}.
In case that there is more than one such line segment � ∈ L then we pick one
according to some arbitrary but fixed global tie-breaking rule. We will later refer
to this as trivial operation.

Otherwise, we do each of the following operations which produces a set of
candidate solutions:

1. Add operation: Consider each set L′ of line segments with discretized coordi-
nates such that |L|∪|L′| ≤ 3ε−3 and each � ∈ L′ is contained in S and horizon-
tal or vertical. For each such set L′ we define the solution L′ ∪SOL(S,L∪L′)
as a candidate solution.

2. Line operation: Consider each vertical/horizontal line � with a discretized
vertical/horizontal coordinate such that S \ � has two connected components
S1 and S2. Let R� denote the rectangles from R that are contained in S and
that are stabbed by �. For the line � we do the following:
(a) compute an O(1)-approximate solution L(R�) for the rectangles in R�

using the polynomial time algorithm in [5].
(b) produce the candidate solution L(R�)∪SOL(S1,L∩S1)∪SOL(S2,L∩S2).

Note that in the line operation we consider entire lines, not just line segments.
We define SOL(S,L) to be the solution of minimum cost among all the candidate
solutions produced above and store it in DP(S,L).

We do the operation above for each DP-cell DP(S,L). Finally, we output
the solution SOL([0, n] × [0, 4n2], ∅), i.e., the solution corresponding to the cell
DP([0, n] × [0, 4n2], ∅).

We remark that instead of using the O(1)-approximation algorithm in [5]
for stabbing the rectangles in R�, one could design an algorithm with a better
approximation guarantee, using the fact that all rectangles in R� are stabbed
by the line �. However, for our purposes an O(1)-approximate solution is good
enough.

2.3 Definition of DP-Decision Tree

We want to show that the DP above computes a (1 + ε)-approximate solution.
For this, we define a tree T in which each node corresponds to a cell DP(S,L)
of the DP and a corresponding solution SOL(S,L) to this cell. The root node
of T corresponds to the cell DP([0, n] × [0, 4n2], ∅). Intuitively, this tree repre-
sents doing one of the possible operations above, of the DP in the root problem
DP([0, n] × [0, 4n2], ∅) and recursively one of the possible operations in each
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resulting DP-cell. The corresponding solutions in the nodes are the solutions
obtained by choosing exactly these operations in each DP-cell. Since the DP
always picks the solution of minimum total cost this implies that the computed
solution has a cost that is at most the cost of the root, c(SOL([0, n]×[0, 4n2], ∅)).

Formally, we require T to satisfy the following properties. We require that
a node v is a leaf if and only if for the corresponding DP-cell DP(S,L) the
DP directly defined that DP(S,L) = ∅ because all rectangles in R that are
contained in S are already stabbed by the segments in L. If a node v for a
DP-cell DP(S,L) has one child then we require that we reduce the problem
for DP(S,L) to the child by applying the add operation, i.e., there is a set
L′ of horizontal/vertical line segments with discretized coordinates such that
|L| ∪ |L′| ≤ 3(1/ε)3, the child node of v corresponds to the cell DP(S,L ∪ L′),
and SOL(S,L) = SOL(S,L ∪ L′) ∪ L′.

Similarly, if a node v has two children then we require that we can reduce
the problem of DP(S,L) to these two children by applying the trivial operation
or the line operation. Formally, assume that the child nodes correspond to the
subproblems DP(S1,L1) and DP(S2,L2). If there is a segment � ∈ L such that
S1∪S2∪� = S, then the applied operation was a trivial operation, and it must also
be true that L1∪L2∪{�} = L and SOL(S,L) = SOL(S1, S1∩L)∪SOL(S2, S2∩L).
If no such segment exists, then the applied operation was a line operation on
a line along the segment �, such that S1 ∪ S2 ∪ � = S, L1 ∪ L2 = L, and
SOL(S,L) = SOL(S1, S1 ∩ L) ∪ SOL(S2, S2 ∩ L) ∪ L(R�); where L(R�) is a
O(1)-approximate solution for the set of segments stabbing the set of rectangles
intersected by �.

We call a tree T with these properties a DP-decision-tree. If there exists a
DP-decision-tree with cost (1+ε)OPT, then our DP computes a solution with at
most this cost since the choices in each node of the DP-decision-tree are possible
choices of the DP in each node, and in each node the DP makes the choice that
minimizes the overall costs.

Lemma 2. If there is a DP-decision-tree T ′ for which c(SOL([0, n] ×
[0, 4n2], ∅)) ≤ (1 + ε)OPT then the DP is a (1 + ε)-approximation algorithm
with a running time of (n/ε)O(1/ε3).

We define now a DP-decision-tree for which c(SOL(S,L)) ≤ (1+ε)OPT. Assume
w.l.o.g. that 1/ε ∈ N. We start by defining a hierarchical grid of vertical lines.
Let a ∈ N0 be a random offset to be defined later. The grid lines have levels. For
each level j ∈ N0, there is a grid line {a + k · εj−2} × R for each k ∈ N. Note
that for each j ∈ N0 each grid line of level j is also a grid line of level j +1. Also
note that any two consecutive lines of some level j are exactly εj−2 units apart.

We say that a line segment � ∈ OPT is of level j if the length of � is in
(εj , εj−1] (Note that we can have vertical segments which are longer than 1/ε,
we consider these also to be of level 0). We say that a horizontal line segment of
some level j is well-aligned if both its left and its right x-coordinates lie on a grid
line of level j +3, i.e., if both of its x-coordinates are of the form a+k ·εj+1. We
say that a vertical line segment of some level j is well-aligned if both its top and
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bottom y-coordinates are integral multiples of εj+1. This would be similar to the
segment’s end points lying on an (imaginary) horizontal grid line of level j + 3.
In order to make a line segment from OPT well-aligned, it suffices to extend it
by a factor 1 + O(ε), which hence increases the cost by at most this factor.

Lemma 3. By losing a factor 1 + O(ε), we can assume that each line segment
� ∈ OPT is well-aligned.

We define the tree T by defining recursively one of the possible operations
(trivial operation, add operation, line operation) for each node v of the tree.
After applying an operation, we always add children to the processed node v
that corresponds to the subproblems that we reduce to, i.e., for a node v corre-
sponding to the subproblem DP(S,L), if we are applying the trivial (resp. line)
operation along a segment (resp. line) �, then we add children corresponding to
the DP subproblems DP(S1, S1 ∩ L) and DP(S2, S2 ∩ L), where S1 and S2 are
the connected components of S\�. Similarly if we apply the add operation on
v with the set of segments L′ then we add the child node corresponding to the
subproblem DP(S,L ∪ L′).

First level. We start with the root DP([0, n] × [0, 4n2], ∅). We apply the line
operation for each vertical line that corresponds to a (vertical) grid line of level
0. Consider one of the resulting subproblems DP(S, ∅). Suppose that there are
more than ε−3 line segments (horizontal or vertical) from OPT of level 0 inside
S. We want to partition S into smaller rectangles, such that within each of these
rectangles S′ at most O(ε−3) of these level 0 line segments start or end. This will
make it possible for us to guess them. To this end, we consider the line segments
from OPT of level 0 inside S, take their endpoints and order these endpoints
non-decreasingly by their y-coordinates. Let p1, p2, ..., pk be these points in this
order. For each k′ ∈ N with k′/ε3 ≤ k, we consider the point pk′/ε3 . Let �′ be
the horizontal line that contains pk′/ε3 . We apply the line operation to �′.

Lemma 4. Let DP(S′, ∅) be one of the subproblems after applying the operations
above. There are at most ε−3 line segments L′ (horizontal or vertical) from OPT
of level 0 that have an endpoint inside S′.

In each resulting subproblem DP(S′, ∅), for each vertical line segment � ∈ OPT
that crosses S′, i.e., such that S′ \ � has two connected components, we apply
the line operation for the line that contains �. In each subproblem DP(S′′, ∅)
obtained after this step, we apply the add operation to the line segments from
OPT of level 0 that intersects S′′ (or to be more precise, their intersection with
S′′), i.e., to the set L′ := {� ∩ S′′ | � ∈ OPT ∧ � ∩ S′′ 
= ∅ ∧ � is of level 0}.
Claim 4 implies that |L′| ≤ ε−3. In each obtained subproblem, we apply the
trivial operation until it is no longer applicable. We say that all these operations
correspond to level 0.

Subsequent levels. Next, we do a sequence of operations that correspond to levels
j = 1, 2, 3, .... Assume by induction that for some j each leaf in the current tree
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T corresponds to a subproblem DP(S,L) such that � ∩ S ∈ L for each line
segment � ∈ OPT of each level j′ < j for which � ∩ S 
= ∅. Take one of these
leaves and assume that it corresponds to a subproblem DP(S,L). We apply the
line operation for each vertical line that corresponds to a (vertical) grid line of
level j.

Consider a corresponding subproblem DP(S′,L). Suppose that there more
than ε−3 line segments (horizontal or vertical) from OPT of level j that have
an endpoint inside S′. Like above, we consider these endpoints and we order
them non-decreasingly by their y-coordinates. Let p1, p2, ..., pk be these points
in this order. For each k′ ∈ N with k′/ε3 ≤ k, we consider the point pk′/ε3 and
apply the line operation for the horizontal line �′ that contains pk′/ε3 . If for a
resulting subproblem DP(S′′,L) there is a vertical line segment � ∈ L of some
level j′ < j − 2 with an endpoint p inside S′′, then we apply the line operation
for the horizontal line that contains p.

Fig. 2. Horizontal line operations

Lemma 5. Let DP(S′,L) be one of the subproblems after applying the opera-
tions above. There are at most ε−3 line segments L′ (horizontal or vertical) from
OPT of level j that have an endpoint inside S′.

Consider a resulting subproblem DP(S′′,L). For each line segment � ∈ OPT
such that � crosses S′′, i.e., S′′ \ � has two connected components, we apply the
line operation to the line that contains �. We apply the trivial operation until it
is no longer applicable. In each subproblem DP(S′′′,L) obtained after this step,
we apply the add operation to the line segments of level j that have an endpoint
in S′′′, i.e., to the set L′ := {� ∩ S′′′ | � ∈ OPT ∧ � ∩ S′′′ 
= ∅ ∧ � is of level j}.

As an example, look at Fig. 2, with ε = 1/3. The solid lines in it are of level
0, the dashed lines of level 1, and dotted lines of level 2. Also the black lines
are vertical grid lines, the blue lines are (well-aligned) lines in OPT and the red
lines are lines along which horizontal line operations are applied. It can be seen
from this example that a segment of level j, by virtue of it being well-aligned,
will get removed by a trivial operation of level less than j + 3.
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2.4 Analysis of DP-Decision Tree

We want to prove that the resulting tree T is indeed a DP-decision-tree corre-
sponding to a solution of cost at most (1 + ε)OPT. To this end, first we need to
show that whenever we apply the add operation to a subproblem DP(S,L) for a
set L′ then |L| + |L′| ≤ 3ε−3. The key insight for this is that if we added a line
segment � ∈ OPT of some level j, then it will not be included in the respective
set L of later subproblems of level j + 3 or higher since � is well-aligned. More
precisely, if � is horizontal then its x-coordinates are aligned with the grid lines
of level j+3. Hence, if � or a part of � is contained in a set L of some subproblem
DP(S,L) for some level j +3, then we applied the trivial operation to � and thus
� “disappeared” from L (note that here by disappear we mean that the segment
does not need to be considered in L anymore, and gets added to the solution
of the DP subproblem). If � is vertical and it appears in a DP(S,L) for some
level j +3 then we applied the line operation to the horizontal lines that contain
the two endpoints of �. Afterwards, we applied the trivial operation to � until �
“disappeared” from L.

In particular, for each subproblem DP(S,L) constructed by operations of
level j, the set L can contain line segments of levels j − 2, j − 1, and j; but no
line segments of a level j′ with j′ < j − 2. Using this, we prove the following
lemma.

Lemma 6. The constructed tree T is a DP-decision-tree.

We want to show that the cost of the solution corresponding to T is at most
(1+O(ε))OPT. In fact, depending on the offset a this might or might not be true.
However, we show that there is a choice for a such that this is true (in fact, we
will show that for a random choice for a the cost will be at most (1+O(ε))OPT
in expectation). Intuitively, when we apply the line operation to a vertical grid
line � of some level j then the incurred cost is at most O(1) times the cost of
the line segments from OPT of level j or larger that stab at least one rectangle
intersected by �. A line segment �′ ∈ OPT of level j stabs such a rectangle only
if �′ is intersected by � (if �′ is horizontal) or the x-coordinate of �′ is close to �
(if �′ is vertical). Here we use that hi ≥ wi for each rectangle Ri ∈ OPT.

Thus, we want to bound the total cost over all levels j of the line segments
from OPT that are in level j and that are intersected or close to grid lines of
level j or smaller. We will show that if we choose a randomly then the total cost
of such grid lines is at most ε ·OPT in expectation. Hence, by using the constant
approximation algorithm from [5] in expectation the total cost due to all line
operations for vertical line segments is at most O(ε) · OPT.

When we apply the line operation for a horizontal line, then the cost of
stabbing the corresponding rectangles is at most the width of the rectangle S of
the current subproblem DP(S,L). We will charge this cost to the line segments
of OPT inside S of the current level or higher levels. We will argue that we can
charge each such line operation to line segments from OPT whose total width is
at least 1/ε times the width of S. This costs another O(ε) · OPT in total due to
all applications of line operations for horizontal segments.
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The add operation yields a cost of exactly OPT and the trivial operation
does not cost anything. This yields a total cost of (1 + O(ε))OPT.

Lemma 7. There is a choice for the offset a such that the solution SOL([0, n]×
[0, 4n2], ∅) in T has a cost of at most (1 + O(ε))OPT.

Proof. In the tree as defined above, the add operations are only applied on
segments from OPT, and hence the cost across all such add operations is at
most c(OPT). Similarly, the trivial operations are applied on segments which
were ‘added’ before, and hence their cost is also already accounted for. So we
are left with analyzing the cost of stabbing the rectangles which are intersected
by the lines along which we apply the line operations. We claim that for a random
offset a, this cost is O(ε · OPT), which gives us the required result.

Let us first consider any line operation of level j that is applied to a horizontal
line �. This operation would create 2 cells of width at most εj−2, one of which
either contains ε−3 endpoints of segments (horizontal or vertical) from OPT of
level j; or contains at least one vertical segment from OPT of level j′ < j − 2,
i.e., the cost of the segments from OPT with at least one endpoint in this cell is
at least ε−3 ·εj = εj−3. Since a segment of width εj−2 (width of cell) is sufficient
to stab all rectangles stabbed by �, we see that this horizontal line takes only
ε times the cost of the segments in OPT with at least one endpoint in the cell.
We charge the cost of this horizontal segment to these corresponding endpoints.
Since each such segment in OPT of level j can be charged at most twice, by
summing over all horizontal line operations over all levels we get that the cost
of such line operations is at most 2ε · OPT.

Now, let us consider the line operations applied to vertical grid lines. We wish
to bound the cost of stabbing all the rectangles intersected or close to grid lines
(will be formally defined shortly), over all levels j. This can also be stated as
bounding the cost, over all levels j, of line segments in level j of OPT (call this
set OPTj) intersected or close to grid lines of level j or smaller. For a horizontal
segment � ∈ OPTj , let I� be the indicator variable representing the event that
a grid line of level j or smaller intersects � (I� = 0 for vertical segments). Since
|�| ≤ εj−1, if we take a random offset a, we obtain that E[I�] ≤ εj−1/εj−2 = ε.
For a vertical segment � ∈ OPTj , let J� be the indicator variable representing
the event that a grid line of level j or smaller intersect the rectangle stabbed
by � (J� = 0 for horizontal segments). Since for j > 0, |�| ≤ εj−1, we know
that for the rectangle stabbed by �, the dimensions satisfy wi ≤ hi ≤ εj−1. This
means that to stab such a rectangle, � has to lie close to, i.e., within ±εj−1 of
the vertical grid line. So for a random offset a and level j > 0 we obtain that
E[J�] ≤ 2εj−1/εj−2 = 2ε. For level 0, we note that even though the vertical
segments can be very long, the maximum width of a rectangle is at most 1. So
� has to lie within ±1 of the grid line, giving us: E[J�] ≤ 2/ε−2 = 2ε2 ≤ 2ε.
With the expectations computed above, we can upper bound the expected cost
of segments in OPT intersected by vertical line operations as:
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E

⎡
⎣∑

j

∑
�∈OPTj

(I� + J�) · |�|
⎤
⎦ =

∑
j

∑
�∈OPTj

|�| · (E[I�] + E[J�])

≤
∑

j

∑
�∈OPTj

|�| · (ε + 2ε) = 3ε · OPT

Now, by using the α-approximation algorithm for stabbing from [5], where α is
a constant, the solution returned by our algorithm takes an additional cost of
3α · ε · OPT. ��

This gives our main theorem.

Theorem 1. There is a (1+ε)-approximation algorithm for the general rectan-
gle stabbing problem with a running time of (n/ε)O(1/ε3), assuming that hi ≥ wi

for each rectangle Ri ∈ R.

Theorem 1 has some direct implications. First, it yields a PTAS for the general
square stabbing problem.

Corollary 1. There is a PTAS for the general square stabbing problem.

Also, it yields a (2 + ε)-approximation algorithm for the general rectangle stab-
bing problem for arbitrary rectangles: we can simply split the input into rectan-
gles Ri for which hi ≥ wi holds, and those for which hi < wi holds, and output
the union of these two solutions.

Corollary 2. There is a (2 + ε)-approximation algorithm for the general rect-
angle stabbing problem with a running time of (n/ε)O(1/ε3).

Finally, it yields a PTAS for the horizontal rectangle stabbing problem: we can
take the input of that problem and stretch all input rectangles vertically such
that it is always very costly to stab any rectangle vertically (so in particular our
(1+ ε)-approximate solution would never do this). Then we apply the algorithm
due to Theorem 1.

Corollary 3. There is a (1+ε)-approximation algorithm for the horizontal rect-
angle stabbing problem with a running time of (n/ε)O(1/ε3).

3 δ-Large Rectangles

We now consider the case of δ-large rectangles for some given constant δ, i.e.,
where for each input rectangle Ri we assume that wi ≤ 1 and hi ≤ 1 and
additionally wi ≥ δ or hi ≥ δ. For this case we again give a PTAS in which we
use our algorithm due to Theorem 1 as a subroutine.

First, by losing only a factor of 1+ε, we divide the instance into independent
subproblems which are disjoint rectangular cells. For each cell Ci, we denote by
OPT(Ci) the cells from OPT that are contained in Ci and our routine ensures
that c(OPT(Ci)) ≤ O(1/ε3). Then for each cell Ci, the number of segments in
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OPT(Ci) with length longer than δ is bounded by O(1/δε3). We guess them in
polynomial time. Now, the remaining segments in OPT are all of length smaller
than δ, and hence they can stab a rectangle only along its shorter dimension.
Hence, we can divide the remaining rectangles into two disjoint sets, one with
hi ≥ wi and the other with wi > hi, and use Theorem 1 to get a 1 + ε approxi-
mation of the remaining problem.

Theorem 2. For HV-Stabbing with δ-large rectangles, there is a (1 + ε)-
approximation algorithm with a running time of (n/ε)O(1/δε3).

4 Conclusion

In this paper, we have settled the Stabbing problem by giving a PTAS for it,
and also give a (2+ ε)-approximate solution for the HV-Stabbing problem and
PTASs for some related special cases of these problems. It is not immediately
clear whether these techniques could be extended to obtain a PTAS for the HV-
Stabbing problem, or even if such a PTAS exists or not, since the question of
the APX-hardness of HV-Stabbing is still open.
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Abstract. The Flatness theorem states that the maximum lattice width
Flt(d) of a d-dimensional lattice-free convex set is finite. It is the key
ingredient for Lenstra’s algorithm for integer programming in fixed
dimension, and much work has been done to obtain bounds on Flt(d).
While most results have been concerned with upper bounds, only few
techniques are known to obtain lower bounds. In fact, the previously
best known lower bound Flt(d) ≥ 1.138d arises from direct sums of a
3-dimensional lattice-free simplex.

In this work, we establish the lower bound Flt(d) ≥ 2d − O(
√
d),

attained by a family of lattice-free simplices. Our construction is based
on a differential equation that naturally appears in this context.

Additionally, we provide the first local maximizers of the lattice width
of 4- and 5-dimensional lattice-free convex bodies.

Keywords: Flatness theorem · Lattice-free · Simplices

1 Introduction

A convex body in R
d is called lattice-free if it does not contain any integer points

in its interior. Lattice-free convex bodies appear in many important works con-
cerning the theory of integer programming. They are central objects in cutting
plane theory [1,5,8,11,15] and can been used as certificates of optimality in con-
vex integer optimization [4,7,9,10,22,25,26]. Moreover they play a crucial role
in Lenstra’s algorithm [21] for integer programming in fixed dimension.

A fundamental property of lattice-free convex bodies is that they are “flat”
with respect to the integer lattice. The lattice width of a convex body K ⊆ R

d

is

lw(K) := min
{

max
x∈K

〈x, y〉 − min
x∈K

〈x, y〉 : y ∈ Z
d \ {0}

}
,

where 〈·, ·〉 denotes the standard scalar product. The famous Flatness theorem,
first proved by Khinchine [20], states that the maximum lattice width Flt(d) of
a d-dimensional lattice-free convex body is finite. It has been applied in several
results in mixed-integer programming (e.g., [2,12,14,17,21]) and much work has
been done to obtain bounds on Flt(d). Combining the work of Banaszczyk,
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Litvak, Pajor, Szarek [6] and Rudelson [23], the currently best upper bound is
Flt(d) = O(d4/3 polylog(d)), and it is conjectured that Flt(d) = Θ(d) holds [6].

While most results have been concerned with upper bounds, only few tech-
niques are known to obtain lower bounds. It is easy to see that Flt(d) ≥ d
holds by observing that Δ := conv{0, d ·e1, . . . , d ·ed} is lattice-free and satisfies
lw(Δ) = d. This bound has been improved for small dimensions: For d = 2,
Hurkens [19] proved that

Flt(2) = 1 + 2/
√

3 ≈ 1.08d

holds, and this is already the last dimension for which Flt(d) is known. For
d = 3, Codenotti & Santos [13] recently constructed a 3-dimensional lattice-free
simplex of lattice width 2 +

√
2, showing that

Flt(3) ≥ 2 +
√

2 ≈ 1.14d

holds. Averkov, Codenotti, Macchia & Santos [3] showed that this simplex is
a local maximizer of the lattice width among 3-dimensional lattice-free convex
bodies. In fact, Codenotti & Santos conjectured that it is actually a global max-
imizer, i.e., that the above bound is tight.

It is possible to lift these examples to higher dimensions: Using the notion
of a direct sum, one can show that Flt(d1 + d2) ≥ Flt(d1) + Flt(d2) holds for
all positive integers d1, d2, see [13, Prop. 1.4]. However, prior to this work, d-
dimensional lattice-free convex bodies with lattice width strictly larger than
1.14d were not known.

In this work, we establish new lower bounds on Flt(d). In terms of small
dimensions, we obtain the first local maximizers of the lattice width among
d-dimensional lattice-free convex bodies for d = 4 and d = 5, implying

Flt(4) ≥ 2 + 2
√

1 + 2/
√

5 ≈ 1.19d and Flt(5) ≥ 5 +
2√
3

≈ 1.23d.

Unfortunately, it becomes inherently more difficult to obtain local maximizers
of the lattice width in larger dimensions. However, we show that for each d, it
is still possible to construct lattice-free simplices with strictly increasing ratios
of lattice width to dimension. Our main result is the following:

Theorem 1. There exist d-dimensional lattice-free simplices (Δd)d≥2 with lat-
tice width 2d − O(

√
d).

In particular, we see that

Flt(d) ≥ 2d − O(
√

d)

holds.
In contrast to the previously mentioned lower bounds, Theorem 1 is not

based on lifting small-dimensional examples to higher dimensions, but yields
explicit constructions of lattice-free simplices for all dimensions. An interesting
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aspect of our construction is that it arises by considering the problem from an
infinite-dimensional point of view. In fact, the facet-defining normal vectors of
our simplices are discretizations of the solution to a differential equation that
naturally appears within our approach (see Sect. 3).

Our paper is organized as follows. In Sect. 2, we describe the simplices men-
tioned in Theorem 1, prove that they are lattice-free, and determine their lattice
widths. The background on how our construction was obtained is provided in
Sect. 3. In Sect. 4, we present the local maximizers of the lattice width in dimen-
sions 4 and 5. We conclude with some open questions in Sect. 5 and comment
on difficulties for obtaining local maximizers in dimensions d ≥ 6.

2 Lattice-Free Simplices of Large Lattice Width

In this part, we will present d-dimensional lattice-free simplices with lattice width
2d − O(

√
d). Our construction yields highly symmetric simplices, at least when

viewed as subsets of
H := {x ∈ R

d+1 : 〈1, x〉 = 1}.

In fact, we will consider a simplex Δ ⊆ H and see that its projection π(Δ) ⊆ R
d

onto the first d coordinates has the desired properties. The simplex is given by

Δ :=
{

x ∈ H : 〈−→a i
, x〉 ≤ ad+1 for i = 0, 1, . . . , d

}
,

where a ∈ R
d+1 is defined via

ai := δi−1 − 1

for every i ∈ [d + 1] := {1, . . . , d + 1} with

δ :=

(
1 −

√
2

d + 1

)−1

,

and −→a i arises from a by cyclically shifting all entries i positions to the right.
During this section, we will prove the following statements.

(A) Δ is a d-dimensional simplex.
(B) Δ does not contain an integer point in its relative interior.
(C) For every c ∈ Z

d+1 \ {λ · 1 : λ ∈ R} we have

max
x∈Δ

〈c, x〉 − min
x∈Δ

〈c, x〉 ≥ d · δd+2 − δd+1 − (d + 1) · δd + δ + 1
(δ − 1) · (δd+1 − 1)

. (1)

Let us first show that these claims indeed imply our main result.
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Proof of Theorem 1. Since Δ is a d-dimensional simplex by (A), the same holds
for π(Δ). Suppose that π(Δ) is not lattice-free, i.e., there exists a point x′ ∈ Z

d

in the interior of π(Δ). The integer point x = (x′
1, . . . , x

′
d, 1 − x′

1 − · · · − x′
d) is

then contained in the relative interior of Δ, a contradiction to (B).
To obtain a lower bound on the lattice width of π(Δ), let α denote the right-

hand side of (1). Consider any c′ ∈ Z
d \ {0} and note that c := (c′

1, . . . , c
′
d, 0)

satisfies c ∈ Z
d+1 \ {λ · 1 : λ ∈ R}. Thus, by (C) we obtain

max
x∈π(Δ)

〈c′, x〉 − min
x∈π(Δ)

〈c′, x〉 = max
x∈Δ

〈c, x〉 − min
x∈Δ

〈c, x〉 ≥ α.

In particular, we see that lw(π(Δ)) ≥ α holds. Note that

α >
d · δd+2 − δd+1 − (d + 1) · δd

(δ − 1) · δd+1
=

d · δ2 − δ − (d + 1)
(δ − 1) · δ

holds, where the inequality follows from δ > 1. Substituting k =
√

(d + 1)/2, we
get d = 2k2 − 1 and δ = k

k−1 , and hence

α >
(2k2 − 1) ·

(
k

k−1

)2

− k
k−1 − 2k2

1
k−1 · k

k−1

= 2(2k2 − 1) − 4k + 3 = 2d − 4k + 3 = 2d − √
8d + 8 + 3.

��
In the proofs of (A) and (B) we will make use of the following auxiliary facts.

Lemma 1. For every x ∈ R
d+1 with 〈1, x〉 ≥ 0 there exists some � such that

−→x �
1 + · · · + −→x �

j ≤ 〈1, x〉 holds for all j ∈ [d]. Moreover, if 〈1, x〉 > 0, then each
of these inequalities is strict.

Proof. For each j ∈ [d+1] we define Sj = x1 + · · ·+xj . Note that Sd+1 = 〈1, x〉.
Let k ∈ [d + 1] denote the smallest index such that Sk = max{S1, . . . , Sd+1}
holds. We will show that � := d + 1 − k satisfies the claim.

Recall that −→x � = (xk+1, xk+2, . . . , xd+1, x1, . . . , xk) and let j ∈ [d]. If j ≤
d + 1 − k, then we have

−→x �
1 + · · · + −→x �

j = xk+1 + · · · + xk+j = Sk+j − Sk ≤ 0 ≤ 〈1, x〉,

where the inequality Sk+j −Sk ≤ 0 holds due to the choice of k. If j ≥ d+2−k,
then

−→x �
1 + · · · + −→x �

j = xk+1 + · · · + xd+1 + x1 + · · · + xj+k−(d+1)

= Sd+1 − Sk + Sj+k−(d+1).

Since j ≤ d, we have j + k − (d + 1) < k and hence by the choice of k we see
that Sj+k−(d+1) < Sk holds, which yields −→x �

1 + · · · + −→x �
j < Sd+1 = 〈1, x〉. ��
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Lemma 2. For every x ∈ R
d+1 \ {0} with 〈1, x〉 = 0 there exists some i such

that 〈−→a i
, x〉 > 0.

Proof. Let � be as in Lemma 1. Defining y := −→x � we have that Sj := y1 + · · · +
yj ≤ 0 holds for all j ∈ [d]. Recall that Sd+1 := y1 + · · · + yd+1 = 0 and that
y = 0. Thus, we must have Sj∗ < 0 for some j∗ ∈ [d]. We obtain

〈a, y〉 = a1y1 + a2y2 + a3y3 + · · · + ad+1yd+1

= a1S1 + a2(S2 − S1) + a3(S3 − S2) + · · · + ad+1(Sd+1 − Sd)
= S1(a1 − a2) + S2(a2 − a3) + · · · + Sd(ad − ad+1) + ad+1Sd+1

≥ Sj∗(aj∗ − aj∗+1) + ad+1Sd+1

= Sj∗(aj∗ − aj∗+1)
> 0,

where we used the fact that aj < aj+1 holds for every j ∈ [d]. The claim follows
since 〈−→a d+1−�

, x〉 = 〈a,−→x �〉 = 〈a, y〉. ��
Lemma 3. For every x ∈ H∩Zd+1 there exists some i such that 〈−→a i

, x〉 ≥ ad+1.
In particular, this implies that Δ does not contain an integer point in its relative
interior.

Proof. We proceed similarly to the proof of Lemma 2. We pick � as in Lemma 1
and define y := −→x �. Note that Sj := y1+ · · ·+yj < 1 holds for all j ∈ [d]. Since y
is integer, we even have Sj ≤ 0 for all j ∈ [d]. Setting Sd+1 := y1+ · · ·+yd+1 = 1
we hence obtain

〈a, y〉 = a1y1 + a2y2 + a3y3 + · · · + ad+1yd+1

= a1S1 + a2(S2 − S1) + a3(S3 − S2) + · · · + ad+1(Sd+1 − Sd)
= S1(a1 − a2) + S2(a2 − a3) + · · · + Sd(ad − ad+1) + ad+1Sd+1

≥ ad+1Sd+1 = ad+1,

where the inequality holds since we have aj ≤ aj+1 for every j ∈ [d] and Sd+1 =
1. Again, the claim follows since 〈−→a d+1−�

, x〉 = 〈a,−→x �〉 = 〈a, y〉. ��
Lemma 4. Δ is a d-dimensional simplex.

Proof. The point p := 1
d+11 is contained in H and satisfies

〈−→a i
, p〉 =

a1 + · · · + ad+1

d + 1
< ad+1

for all i. In particular, we see that Δ contains a ball within H around p, and
hence Δ is d-dimensional.

Since Δ is defined by d + 1 linear inequalities, it suffices to show that Δ is
bounded in order to prove that it is a simplex. The recession cone of Δ is given
by

recc(Δ) =
{

x ∈ R
d+1 : 〈1, x〉 = 0, 〈−→a i

, x〉 ≤ 0 for i = 0, 1, . . . , d
}

.



380 L. Mayrhofer et al.

From Lemma 2, it follows directly that recc(Δ) = {0}, proving that Δ is indeed
bounded. ��

For the proof of (C), let us first determine the vertices of Δ. To this end,
define the vector v ∈ R

d+1 via

v1 =
1 − d · δd + (d − 2) · δd+1 + δd+2

(δ − 1) · (δd+1 − 1)
,

v2 = · · · = vd =
(δ − 1) · δd

δd+1 − 1
,

vd+1 =
−δ + δd + (d − 1) · δd+1 − (d − 1) · δd+2

(δ − 1) · (δd+1 − 1)
.

Lemma 5. Δ = conv
({−→v 0

,−→v 1
, . . . ,−→v d+1

})
.

Proof. For every i, we will show that −→v i is contained in H, satisfies all linear
inequalities defining Δ, and all but one even with equality. This shows that each
−→v i is a vertex of Δ. Since Δ is a simplex and all −→v i are distinct, we obtain
the claim. To this end, due to the circulant structure of Δ, we may assume that
−→v i = v holds. First, observe that

(δ − 1) · (δd+1 − 1) · 〈1, v〉 = (δ − 1) · (δd+1 − 1) · (v1 + (d − 1) · v2 + vd+1)

= δd+2 − δd+1 − δ + 1 = (δ − 1) · (δd+1 − 1)

holds, which shows that v is contained in H. Next, note that we have

〈−→a 0, v〉 = v2 ·
d+1∑
k=1

ai + (v1 − v2) · a1 + (vd+1 − v2) · ad+1

and

〈−→a i, v〉 = v2 ·
d+1∑
k=1

ai + (v1 − v2) · ad+2−i + (vd+1 − v2) · ad+1−i

for i ∈ [d]. To evaluate these expressions, observe that we have

(δ − 1) · (δd+1 − 1) · v2 ·
d+1∑
k=1

ai = (δ − 1)2 · δd ·
d∑

k=0

(δk − 1)

= (δ − 1)2 · δd ·
(

δd+1 − 1
δ − 1

− (d + 1)
)

= δd · (δ − 1) · ((δd+1 − 1) − (d + 1) · (δ − 1)
)
,

as well as

(δ − 1) · (δd+1 − 1) · (v1 − v2) = 1 − (d + 1) · δd + d · δd+1
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and

(δ − 1) · (δd+1 − 1) · (vd+1 − v2) = −δ + (d + 1) · δd+1 − d · δd+2.

Thus, for i = 0 we obtain

(δ − 1) · (δd+1 − 1)︸ ︷︷ ︸
>0

·〈−→a 0, v〉 = (1 − δd+1) · δ · ((d − 1) · δd − d · δd−1 + 1
)

= (1 − δd+1) · δ · (δ − 1) ·
(

(d − 1) · δd−1 −
d−2∑
k=0

δk

)

= (1 − δd+1)︸ ︷︷ ︸
<0

· δ · (δ − 1) ·
d−2∑
k=0

(δd−1 − δk)

︸ ︷︷ ︸
>0

,

which implies 〈−→a 0, v〉 < 0 < ad+1. For i ∈ [d] we see that

(δ − 1) · (δd+1 − 1) · 〈−→a i, v〉 = (δd − 1) · (δ − 1) · (δd+1 − 1)

= (δ − 1) · (δd+1 − 1) · ad+1

holds, and hence 〈−→a i, v〉 = ad+1. ��
Note that, in order to prove (C), it remains to show the following:

Lemma 6. For every c ∈ Z
d+1 \ {λ · 1 : λ ∈ R} we have

max
x∈Δ

〈c, x〉 − min
x∈Δ

〈c, x〉 ≥ v1 − vd+1. (2)

Proof. Since not all entries of c are equal, there exists some i such that −→c i
1 ≥ −→c i

j

for all j ∈ [d] and −→c i
1 > −→c i

d+1. Due to the circulant symmetry of Δ, we may
replace c by −→c i without changing the left-hand side in (2). Thus, we may assume
that c = −→c i holds. Let j ∈ [d] denote the smallest index such that cj > cj+1

holds. Since c1 is a maximal entry of c, it is clear that cj = c1 holds. Moreover,
since c is an integer vector, we see that

c1 = cj ≥ cj+1 + 1 and cj = c1 ≥ cd+1 + 1 (3)

hold. We obtain

max
x∈Δ

〈c, x〉 − min
x∈Δ

〈c, x〉

≥ 〈c, v〉 − 〈c,−→v j〉 = 〈c, v − −→v j〉
= c1(v1 − v2) + cj(v2 − vd+1) + cj+1(v2 − v1) + cd+1(vd+1 − v2)
= (c1 − cj+1)(v1 − v2) + (cj − cd+1)(v2 − vd+1).
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We claim that v1 ≥ v2 and v2 ≥ vd+1, which, together with (3), implies

max
x∈Δ

〈c, x〉 − min
x∈Δ

〈c, x〉 ≥ (c1 − cj+1)(v1 − v2) + (cj − cd+1)(v2 − vd+1)

≥ (v1 − v2) + (v2 − vd+1) = v1 − vd+1,

in which case we are done. To see that v1 ≥ v2 and v2 ≥ vd+1 hold, we use

(δ − 1) · (δd+1 − 1)︸ ︷︷ ︸
>0

·(v1 − v2) = 1 − d · δd + (d − 2) · δd+1 + δd+2 − (δ − 1)2 · δd

= (δ − 1)︸ ︷︷ ︸
>0

·
d−1∑
k=0

(δd − δk)

︸ ︷︷ ︸
>0

and v2 − vd+1 = δ(v1 − v2). ��

3 An Infinite-Dimensional View

In this section, we would like to provide some background on the construction of
the simplices in the previous section. It is inspired by the lattice-free simplices
in [19] and [13], which attain the largest (known) lattice widths in dimensions 2
and 3, respectively. In fact, they can be also described in the form

{
x ∈ H : 〈−→a i

, x〉 ≤ ad+1 for i = 0, 1, . . . , d
}

, (4)

for some vector a ∈ R
d+1.

Such sets were also used by Doolittle, Katthän, Nill, Santos [16] in the context
of simplices whose integer points coincide with their vertices. Within this setting,
constructions of Sebő [24] were already based on highly-symmetric simplices.
Herr, Rehn, Schürmann [18] provide some more background on how symmetry
interacts with lattice-freeness.

A convenient property of a set as in (4) is that it is lattice-free whenever the
entries of a are non-decreasing, see the proof of Lemma 3. Since we are limited
to the hyperplane H, we may assume that a1 = 0 and ad+1 = 1. Every vertex
of the above set is the cyclic shift of some vector v ∈ R

d+1 satisfying
⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
a2 a3 · · · ad+1 a1

a3 a4 · · · a1 a2

...
...

...
...

ad+1 a1 · · · ad−1 ad

⎤
⎥⎥⎥⎥⎥⎦

v = 1. (5)

In the examples from [13,19], the lattice width is equal to v1 − vd+1, which is
why we particularly focus on λ = v1−vd+1

2d in what follows. (Note that we obtain
simplices with λ close to 1.) Let C arise from the above matrix by deleting the
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first row as well as the first and last columns, and set w = (v2, . . . , vd). The
above system is equivalent to

v1

⎡
⎢⎢⎢⎣

a2

a3

...
ad+1

⎤
⎥⎥⎥⎦ + Cw + vd+1

⎡
⎢⎢⎢⎣

a1

a2

...
ad

⎤
⎥⎥⎥⎦ = 1, v1 + 〈1, w〉 + vd+1 = 1.

Substituting v1 = 1
2 (1−〈1, w〉)+dλ and vd+1 = 1

2 (1−〈1, w〉)−dλ, this leads to

λ · d

⎛
⎝
⎡
⎣

a2
a3

...
ad+1

⎤
⎦−

⎡
⎣

a1
a2

...
ad

⎤
⎦
⎞
⎠ = 1 − Cw − (1 − 〈1, w〉) 1

2

⎛
⎝
⎡
⎣

a1
a2

...
ad

⎤
⎦ +

⎡
⎣

a2
a3

...
ad+1

⎤
⎦
⎞
⎠ .

In order to understand which vectors a lead to a large value λ, it is convenient
to think of a as (the discretization of) a function y : [0, 1] → R, w as a function
ω : [0, 1] → R, and regard d to be large. We consider the continuous analogue

λ · y′ = 1 − C ω −
(

1 −
∫ 1

0

ω(s) ds

)
· y. (6)

The matrix C is replaced by the convolution operator C given by

(C ω)(t) :=
∫ 1

0

y(t + s)ω(s) ds,

where we set y(t) = y(t − 1) whenever 1 < t ≤ 2. The boundary conditions
a1 = 0 and ad+1 = 1 are represented by y(0) = 0 and y(1) = 1. Applying

∫ 1

0
·dt

to both sides of (6) yields

λ = 1 −
∫ 1

0

y(t) dt ≤ 1,

which suggests that the general approach will not yield simplices of lattice width
larger than 2d. Luckily, choosing ω to be a constant function already yields
solutions close to that bound: If ω is constant, taking the derivative of both
sides in (6), we see that y′′ = γ · y′ holds for some γ ∈ R, and hence y has to
be an exponential function. In the previous section we have seen that, choosing
the vector a to be a discretization of an exponential function, we indeed obtain
simplices of the desired lattice widths.

4 Local Maximizers in Dimensions 4 and 5

Let us mention that it is possible to construct lattice-free simplices with slightly
larger lattice widths than the simplices presented in the Sect. 2. In fact, by opti-
mizing the choice of a1, . . . , ad+1 to maximize v1 −vd+1 in the construction from
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Sect. 3 in dimensions 4 and 5, we obtain the following simplices. For dimension
d = 4, we define the simplex Δ4 := conv{−→v 1

, . . . ,−→v 5}, where v ∈ R
5 with

v1 =
1
5

(
7 − 2

√
5 + 2

√
10 + 2

√
5
)

v4 = v2

v2 =
1
5

(
−3 + 4

√
5 − 4

√
5 − 2

√
5
)

v5 =
1
5

(
−3 − 2

√
5 − 2

√
5 + 2

√
5
)

.

v3 =
1
5

(
7 − 4

√
5 + 6

√
5 − 2

√
5
)

For dimension d = 5, we define Δ5 := conv{−→v 1
, . . . ,−→v 6}, where v ∈ R

6 with

v1 =
1
18

(
57 − 7

√
3
)

v4 = v3

v2 =
1
3

(
4
√

3 − 5
)

v5 = v2

v3 =
1
18

(
27 − 11

√
3
)

v6 =
1
18

(
−33 − 19

√
3
)

.

We can prove the following.

Theorem 2. Let πd : Rd+1 → R
d denote the projection onto the first d coordi-

nates. Then, π4(Δ4) and π5(Δ5) are lattice-free simplices with

lw(π4(Δ4)) = 2 + 2

√
1 +

2√
5

and lw(π5(Δ5)) = 5 +
2√
3
.

Both of them are local maximizers of lattice width among lattice-free convex
bodies in the respective dimensions.

A precise version of the latter statement is the following: For d = 4 and d = 5
there is some ε > 0 such that every lattice-free convex body K ⊆ R

d whose
Hausdorff distance to πd(Δd) is at most ε satisfies lw(K) ≤ lw(πd(Δd)).

The fact that π4(Δ4) and π5(Δ5) are lattice-free can be easily confirmed by
calculating their inequality descriptions and using Lemma 3. The lattice widths
can be determined using a strategy similar to the proof of Lemma 6. Showing
that both simplices are local maximizers can be conducted by directly following
all steps used by Averkov, Codenotti, Macchia & Santos in [3] for the three-
dimensional case. As in [3], the necessary computations are rather complex but
can be verified using a computer algebra system in a straightforward way.

5 Open Questions

We conclude our paper by posing some questions that naturally arise from our
result, starting with the following.
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Problem 1. Are there any d-dimensional lattice-free convex bodies with lattice
width greater than 2d?

Actually, we do not even know a d-dimensional lattice-free convex body with
lattice width equal to 2d. As indicated in Sect. 3, we cannot exceed this bound
with our approach.

Following the previous section, all known (local) maximizers of the lattice
width among lattice-free convex bodies for d ≤ 5 are obtained by maximizing
v1 − vd+1 over all vectors a ∈ R

d+1, where v is the unique solution of (5).
The question directly arises whether this approach can be used to obtain local
maximizers in dimensions d ≥ 6. Unfortunately, this does not work: While the
maximizing vectors a are non-decreasing for d ≤ 5, and hence result in lattice-
free simplices, this is not true anymore for d ≥ 6.

Problem 2. Determine local maximizers of the lattice width among all lattice-
free convex bodies in dimensions d ≥ 6.

Recall that the known constructions in dimensions 3, 4, 5 are only known to
be local maximizers. We still do not know whether any of these simplices is
actually a global maximizer.

Problem 3. Do there exist any d-dimensional lattice-free convex bodies whose
lattice widths exceed the lattice widths of the known local maximizers for d =
3, 4, 5?
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Abstract. This paper considers the interplay between semidefinite pro-
gramming, matrix rank, and graph coloring. Karger, Motwani, and
Sudan [10] give a vector program for which a coloring of the graph can be
encoded as a semidefinite matrix of low rank. By complementary slack-
ness conditions of semidefinite programming, if an optimal dual solution
has sufficiently high rank, any optimal primal solution must have low
rank. We attempt to characterize graphs for which we can show that the
corresponding dual optimal solution must have sufficiently high rank. In
the case of the original Karger, Motwani, and Sudan vector program, we
show that any graph which is a k-tree has sufficiently high dual rank,
and we can extract the coloring from the corresponding low-rank primal
solution. We can also show that if the graph is not uniquely colorable,
then no sufficiently high rank dual optimal solution can exist. This allows
us to completely characterize the planar graphs for which dual optimal
solutions have sufficiently high dual rank, since it is known that the
uniquely colorable planar graphs are precisely the planar 3-trees.

We then modify the semidefinite program to have an objective func-
tion with costs, and explore when we can create a cost function whose
optimal dual solution has sufficiently high rank. We show that it is always
possible to construct such a cost function given the graph coloring. The
construction of the cost function gives rise to a heuristic for graph color-
ing which we show works well in the case of planar graphs; we enumerated
all maximal planar graphs with a K4 of up to 14 vertices, and the heuris-
tics successfully colored 99.75% of them.

Our research was motivated by the Colin de Verdière graph invari-
ant [5] (and a corresponding conjecture of Colin de Verdière), in which
matrices that have some similarities to the dual feasible matrices must
have high rank in the case that graphs are of a certain type; for instance,
planar graphs have rank that would imply the 4-colorability of the pri-
mal solution. We explore the connection between the conjecture and the
rank of the dual solutions.

1 Introduction

Given an undirected graph G = (V,E), a coloring of G is an assignment of
colors to the vertices V such that for each edge (i, j) ∈ E, i and j receive
different colors. The chromatic number of G, denoted χ(G), is the minimum
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K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 387–401, 2022.
https://doi.org/10.1007/978-3-031-06901-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06901-7_29&domain=pdf
https://doi.org/10.1007/978-3-031-06901-7_29


388 R. Mirka et al.

number of colors used such that a coloring of G exists. The clique number of
a graph G, denoted ω(G), is the size of the largest clique in the graph; a set
S ⊆ V of vertices is a clique if for every distinct pair i, j ∈ S, (i, j) ∈ E. It is
easy to see that ω(G) ≤ χ(G). Graph colorings have been intensively studied
for over a century. One of the most well-known theorems of graph theory, the
four-color theorem, states that four colors suffice to color any planar graph G;
the problem of four-coloring a planar graph can be traced back to the 1850 s, and
the computer-assisted proof of the four-color theorem by Appel and Haken [2,3]
is considered a landmark in graph theory. See Jensen and Toft [9] and Molloy
and Reed [13] for book-length treatments of graph coloring in general. Fritsch
and Fritsch [7], Ore [14], and Wilson [17] provide book-length treatments of the
four-color theorem in particular, and Robertson, Sanders, Seymour, and Thomas
[15] give a simplified computer-assisted proof of the four-color theorem.

This paper considers the use of semidefinite programming in graph coloring.
The connection between semidefinite programming and graph coloring was ini-
tiated by Lovász [12], who introduced the Lovász theta function, θ(Ḡ), which
is computable via semidefinite programming; Ḡ is the complement of graph G,
in which all edges of G are replaced by nonedges and vice versa. Lovász showed
that ω(G) ≤ θ(Ḡ) ≤ χ(G); Knuth [11] gives a helpful overview of this result.

Another use of semidefinite programming for graph coloring was introduced
by Karger, Motwani, and Sudan [10] (KMS), who showed how to color k-colorable
graphs with O(n1−3/(k+1) log1/2 n) colors in polynomial time using semidefinite
programming, where n is the number of vertices in the graph. A starting point
of the algorithm of KMS is the following vector program, which KMS called the
strict vector chromatic number; the vector program can be solved via semidefinite
programming:

minimize α
subject to vi · vj = α, ∀(i, j) ∈ E,
(SV CN -P ) vi · vi = 1, ∀i ∈ V,

vi ∈ Rn, ∀i ∈ V.

KMS observe that any k-colorable graph has a feasible solution to the vector
program with α = −1/(k − 1): let v1 = (1, 0, . . . , 0) ∈ �k−1 and inductively find
vi ∈ �k−1 for 1 < i ≤ k − 1 by setting vi(j) = 0 for j > i and otherwise solving
the system of equations given by vl·vi = −1/(k−1) for 1 ≤ l ≤ i−1 and vi·vi = 1.
Finally, let vk = −∑k−1

j=1 vj , then assign one color to each of the vectors vi. This
guarantees that each vector vi has unit length (so vi · vi = 1) and that for any
edge (i, j) ∈ E, vi ·vj = −1/(k−1). It is important for the following discussion to
observe that this solution lies in a (k − 1)-dimensional space. KMS also observe
that there is a natural connection between the strict vector chromatic number
and the Lovász theta function. In particular, for the solution α to the vector
program above, it is possible to show that α = 1/(1 − θ(Ḡ)) (see [10, Theorem
8.2]). If the graph G has a k-clique Kk and is k-colorable, then by Lovász’s
theorem, θ(Ḡ) = k, and so the feasible solution with α = −1/(k − 1) is an
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optimal solution. It is also possible to argue directly that a graph with a Kk

must have α ≥ −1/(k − 1), again proving that the feasible solution given above
is an optimal one. We will call the feasible solution above (in which the vectors
are recursively constructed) the reference solution.

The goal of this paper is to explore situations in which the reference solution
is the unique optimal solution of a semidefinite program (SDP), either the SDP
corresponding to the strict vector chromatic number given above, or another that
we will give shortly. To do this, we will use complementary slackness conditions
for semidefinite programs. Consider the primal and dual SDPs shown in standard
form below, where the constraint that X is a positive semidefinite matrix is
represented by X � 0, and we take the outer product of matrices, so that C •X,
for instance, denotes

∑�
i=1

∑�
j=1 cijxij .

minimize C • X maximize bT y
subject to Ai • X = bi for i = 1, . . . , m, subject to S = C − ∑m

i=1 yiAi,
(P ) X � 0, (D) S � 0,

X ∈ ��×�, S ∈ ��×�.

Duality theory for semidefinite programs (e.g. Alizadeh [1]) shows that for any
feasible primal solution X and any feasible dual solution y, C • X ≥ bT y. Fur-
thermore if C • X = bT y, so that the solutions are optimal, then it must be
the case that rank(X) + rank(S) ≤ �, and XS = 0, where we refer to rank(X)
and rank(S) as the primal rank and dual rank, respectively. Thus if we want to
show that any optimal primal solution has rank at most r, it suffices to show the
existence of an optimal dual solution of rank at least � − r. Turning back to the
strict vector chromatic number vector program, the corresponding dual vector
program is

maximize −∑
i ui · ui

subject to
∑

i�=j ui · uj ≥ 1,

(SV CN -D) ui · uj = 0, ∀(i, j) /∈ E, i 	= j
ui ∈ Rn, ∀i ∈ V.

Thus, given a k-colorable graph G with a Kk, if we can show a dual feasible
solution of value −1/(k − 1) and rank n − k + 1, then we know that the primal
solution must have rank at most k − 1; in the cases we can show this, we can
also show that the reference solution is the unique primal optimal solution. We
will for shorthand say that there is an optimal dual solution of sufficiently high
rank.

Our first result is to partially characterize the set of graphs for which the
optimal solution to the strict vector chromatic number vector program is the
reference solution. In particular, we can show that if the graph is a (k − 1)-tree,
then the reference solution is the unique optimal solution to the SDP. In the
opposite direction, if the graph is not uniquely colorable, then the dual does not
have sufficiently high rank, and there exist optimal primal solutions that are not
the reference solution and are at least k-dimensional. A (k − 1)-tree is a graph
constructed by starting with a complete graph on k vertices. We then iteratively
add vertices v; for each new vertex v, we add k − 1 edges from v to previously
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added vertices such that v together with these k − 1 neighbors form a clique.
A k-colorable graph is uniquely colorable if it has only one possible coloring
up to a permutation of the colors. The k-tree graphs are easily shown to be
uniquely colorable. In the case of planar graphs with a K4, these results imply
a complete characterization of the graphs for which the optimal solution is the
reference solution, since it is known that the uniquely 4-colorable planar graphs
are exactly the planar 3-trees, also known as the Apollonian networks [6]. We
argue that it is not surprising that graphs are not uniquely k-colorable do not
have the reference solution as the sole optimal solution; we show that one can
find a convex combination of the two different reference solutions corresponding
to the two different colorings that gives an optimal SDP solution of rank higher
than k − 1, and clearly the convex combination is also feasible for the SDP.

To get around the issue of unique colorability, we instead look for minimum-
cost feasible solutions to the SDP above. That is, given a cost matrix C, we look
to find optimal solutions to the primal SDP

minimize C • X
subject to Xij = −1/(k − 1), ∀(i, j) ∈ E,
(CP ) Xii = 1, ∀i ∈ V,

X � 0.

The corresponding dual SDP is

maximize
∑n

i=1 yi − 2
k−1

∑
e∈E ze

subject to S = C − ∑n
i=1 yiEii − ∑

e∈E zeEe,
(CD) S � 0,

where Eii is the matrix with a 1 at position ii and 0 elsewhere and for e = (i, j),
Ee is the matrix with 1 at positions ij and ji and 0 elsewhere. Once again, the
reference solution is a feasible solution to the primal SDP. The goal now is to
find a cost function C such that there is an optimal dual solution of sufficiently
high rank (here rank n − k + 1), so that the reference solution is the unique
optimal solution to the primal SDP. We show that it is always possible to find a
cost function C such that the dual has sufficiently high rank. Our construction
of C depends on the coloring of the graph; however, we do show that such a C
exists.

Furthermore, the construction of C suggests a heuristic for finding a coloring
of the graph, and we show that the heuristic works well. We enumerated all
maximal planar graphs of up to 14 vertices containing a K4. The heuristics suc-
cessfully colored all graphs of up to 11 vertices, and at least 99.75% of all graphs
on 12, 13, and 14 vertices. The heuristics involve repeatedly solving semidefinite
programs, and thus are not practical for large graphs (although they still run in
polynomial time). However, we view them as a proof of concept that it might be
possible to use our framework to reliably 4-color planar graphs.

Our interest in this direction of research was prompted by the Colin de
Verdière invariant [5] (see also [16] for a useful survey of the invariant). A gen-
eralized Laplacian L = (�ij) of graph G is a matrix such that the entries �ij < 0
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when (i, j) ∈ E, and �ij = 0 when (i, j) /∈ E. The Colin de Verdiére invariant,
μ(G), is defined as follows.

Definition 1. The Colin de Verdière invariant μ(G) is the largest corank of a
generalized Laplacian L of G such that:

1. L has exactly one negative eigenvalue of multiplicity one;
2. there is no nonzero matrix X = (xij) such that LX = 0 and such that xij = 0

whenever i = j or �ij 	= 0.

Colin de Verdiére shows that μ(G) ≤ 3 if and only if G is planar; in other
words, if G is planar any generalized Laplacian of G with exactly one negative
eigenvalue of multiplicity 1 will have rank at least n − 3 (modulo the second
condition on the invariant, which we will ignore for the moment). Other results
show that G is outerplanar if and only if μ(G) ≤ 2, and G is a collection of paths
if and only if μ(G) ≤ 1. Colin de Verdière [5] conjectures that χ(G) ≤ μ(G) + 1;
this result is known to hold for μ(G) ≤ 4. We note that the part of the dual
matrix −∑n

i=1 yiEii−
∑

e∈E zeEe is indeed a generalized Laplacian L of a planar
graph when the ze ≥ 0 for all e ∈ E, and that if G is connected, then the yi can
be adjusted so that this matrix has a single negative eigenvalue of multiplicity
one. Thus this part of the matrix, under these conditions, must have sufficiently
high rank, as desired to verify that the optimal primal solution is the reference
solution. This would show that if the graph G has a clique on μ(G) + 1 vertices,
then indeed χ(G) = μ(G)+1. So, for example, this would prove that any planar
graph with a K4 can be four-colored, leading to a non-computer assisted proof of
the four-color theorem. However, we do not know how to find the corresponding
cost matrix C or show that the dual S we find is optimal. Still, we view our
heuristics as a step towards finding a way to construct the cost matrix C without
knowledge of the coloring, and without using the proofs of the four-color theorem
that have been developed thus far.

The rest of this paper is structured as follows. In Sect. 2, we give some pre-
liminary results on semidefinite programming. In Sect. 3, we show our results for
the strict vector chromatic number SDP, and show that (k − 1)-trees imply dual
solutions of sufficiently high rank, while graphs that are not uniquely colorable
imply that such dual solutions cannot exist. In Sect. 4, we turn to the SDP with
cost matrix C, and show that for any k-colorable graph with a k-clique, a cost
matrix C exists that gives rise to a dual of sufficiently high rank. In Sect. 5, we
give two heuristics for coloring planar graphs based on our construction of the
cost matrix C, and show a case where the heuristic fails to find a 4-coloring of a
planar graph. We give some open questions in Sect. 6. For space reasons, many
proofs are omitted.

2 Preliminaries

In this section, we recall some basic facts about semidefinite matrices and
semidefinite programs that we will use in subsequent sections.
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Recall the primal and dual semidefinite programs (P ) and (D) from the
introduction. We always have weak duality for semidefinite programs, so that
the following holds.

Fact 1. Given any feasible X for (P ) and y for (D), C • X ≥ bT y.

Thus if we can produce a feasible X for (P ) and a feasible y for (D) such that
C • X = bT y, then X must be optimal for (P ) and y optimal for (D).

The following is also known, and is the semidefinite programming version of
complementary slackness conditions for linear programming.

Fact 2. [1, Theorem 2.10, Corollary 2.11] For optimal X for (P ) and y for
(D), XS = 0 and rank(X) + rank(S) ≤ �.

Semidefinite programs and vector programs (such as the strict vector chro-
matic vector program) are equivalent because a symmetric X ∈ �n×n is positive
semidefinite if and only if X = QDQT for a real matrix Q ∈ �n×n and diagonal
matrix D in which the entries of D are the eigenvalues of X, and the eigen-
values are all nonnegative. We can then consider D1/2, the diagonal matrix in
which each diagonal entry is the square root of the corresponding entry of D.
Then X = (QD1/2)(QD1/2)T . If we let vi ∈ �n be the ith row of QD1/2, then
xij = vi · vj , and similarly, given the vectors vi, we can construct a semidefinite
matrix X with xij = vi · vj . We also make the following observation based on
this decomposition.

Observation 1. Given a semidefinite matrix X = QDQT ∈ �n×n, rank(X) =
d if and only if the vectors vi ∈ �n with vi the ith row of QD1/2 are supported
on just d coordinates.

3 The Strict Vector Chromatic Number SDP

Recall the strict vector chromatic SDP given in the introduction, labeled (SVCN-
P). In what follows we will let the matrix X = (Xij) be the SDP matrix such
that Xij = vi · vj and S = (Sij) be the SDP matrix related to the dual solution
(SVCN-D) such that Sij = ui · uj .

Lemma 1. Given an optimal primal solution X to (SVCN-P) and optimal dual
solution S to (SVCN-D), we have that rank(X) + rank(S) ≤ n.

Our main result for this section is about graphs that are (k − 1)-trees.

Definition 2. A (k − 1)-tree with n vertices is an undirected graph constructed
by beginning with the complete graph on k vertices and repeatedly adding vertices
in such a way that each new vertex, v, has k − 1 neighbors that, together with v,
form a k-clique.
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An easy inductive argument shows that these graphs are k-colorable. Also,
(k − 1)-trees are known to be uniquely k-colorable, where uniquely colorable
means every coloring produces that same vertex partitioning. Once k colors are
assigned to the initial complete graph with k vertices, the color of each new
vertex is uniquely determined by its k − 1 neighbors. This partitioning into
color classes is unique up to permuting the colors. Note that by construction, a
(k − 1)-tree contains a Kk. By discussion in the introduction, the optimal value
of (SVCN-P) for a (k − 1)-tree will be exactly −1/(k − 1).

Our goal is to show there is a feasible solution to the dual (SVCN-D) with
high rank. In particular, given a (k−1)-tree with n vertices, we show the existence
of a dual solution with rank at least n − k + 1. This ensures that any primal
solution has rank at most k−1; we show that the reference solution is the unique
optimal primal solution. This is formalized in the following theorem.

Theorem 1. Given a (k − 1)-tree G with n vertices, there is an optimal dual
solution S to (SVCN-D) with rank at least n−k+1, and thus any optimal primal
solution X to (SVCN-P) has rank at most k − 1.

We subsequently prove that the reference solution is indeed the unique opti-
mal solution in this case.

Theorem 2. The reference solution is the unique optimal primal solution (up
to rotation) for a (k − 1)-tree G = (V,E).

To prove Theorem 1, we need a number of supporting lemmas. We begin
with the following.

Lemma 2. Let tri(G) denote the number of triangles in a (k−1)-tree, G. Then,
for a (k − 1)-tree G with n vertices,

|E(G)| = (2n − k)
k − 1

2
(1)

tri(G) =
(3n − 2k)(k − 1)(k − 2)

6
. (2)

Consider a (k − 1)-tree G with n vertices. For v ∈ V we denote the neigh-
borhood of v by N(v) = {u : (u, v) ∈ E}. We define the following matrix S(G)
which may be referred to as S if G is clear from context.

S(G)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|N(i)| − (k − 2)

k(k − 1)(n − k + 1)
i = j

|N(i) ∩ N(j)| − (k − 3)

k(k − 1)(n − k + 1)
(i, j) ∈ E

0 (i, j) /∈ E, i �= j.

We will show that S(G) is an optimal dual solution with rank n − k + 1. First,
we show S(G) is a feasible solution with help from the following lemma.
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Lemma 3. For a (k − 1)-tree G with n vertices, S(G) is positive semidefinite.

Proof. Observe that it suffices to show S′(G) = k(k − 1)(n − k + 1)S(G) is
positive semidefinite (PSD) since k(k−1)(n−k+1) > 0 for n ≥ k. We proceed by
induction. First consider (k−1)-trees with k vertices. There is only one, G = Kk.
Furthermore, S′(Kk) is equal to the all-ones matrix which has eigenvalues k and
0 with multiplicity k − 1 and thus is PSD.

Now assume there is some integer n such that for every (k − 1)-tree, G, with
at most n vertices, S′(G) is PSD. Consider a (k − 1)-tree G with n + 1 vertices.
Since it is a (k −1)-tree, it can be constructed from some smaller (k −1)-tree G′

with n vertices by adding a vertex v and (k − 1) edges that form a k clique with
the k − 1 neighbors. By assumption, S′(G′) is PSD. Let I be the set of indices
of the k − 1 neighbors of v. Then we observe that S′(G) = T + vn+1v

T
n+1 where

T =

⎡

⎢
⎢
⎢
⎣

0

S′(G′)
...
0

0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

and

vn+1(i) =

{
1 i ∈ I ∪ {n + 1}
0 otherwise

.

Then xT S′(G)x = xT Tx+xT vn+1v
T
n+1x ≥ xT vn+1v

T
n+1x = (vT

n+1x)2 ≥ 0 where
the first inequality is due to T being PSD since S′(G′) is PSD. ��
Lemma 4. For a (k − 1)-tree G with n vertices, S(G) is a feasible dual slack
matrix.

Proof. Lemma 3 shows that S(G) is PSD. To complete this claim, we must show
that the dual constraints are satisfied. That S(G)ij = 0 for (i, j) /∈ E is clear
by construction. The other constraint requires

∑
i�=j sij ≥ 1. Using (1) and (2)

from Lemma 2 we can prove that the inequality holds; the algebra is omitted for
space reasons. ��

We can now show that S(G) is an optimal dual solution.

Theorem 3. For a (k − 1)-tree G with n vertices, S(G) is an optimal dual
solution.

Proof. We remarked earlier that the optimal primal value for a (k − 1)-tree is
−1/(k − 1). Thus for S(G) to be an optimal dual solution, it suffices to show
that −∑

i Sii = −1/(k − 1). Again using (1) from Lemma 2, we have
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−
n∑

i=1

Sii = −
n∑

i=1

|N(i)| − (k − 2)
k(k − 1)(n − k + 1)

= − 1
k(k − 1)(n − k + 1)

[

−(k − 2)n +
n∑

i=1

|N(i)|
]

= − −(k − 2)n + 2|E|
k(k − 1)(n − k + 1)

= −−(k − 2)n + ((2n − k)(k − 1))
k(k − 1)(n − k + 1)

= −−nk + 2n + 2nk − 2n − k2 + k

k(k − 1)(n − k + 1)
= −1/(k − 1).

��
Finally, we want to show that for a (k − 1)-tree G with n vertices, S(G) has

rank at least n − k + 1. This guarantees that any primal solution has rank at
most k − 1.

Theorem 4. For a (k−1)-tree G with n vertices, S(G) has rank at least n−k+1.

Proof. It again suffices to show the claim is true for S′(G) = k(k − 1)(n −
k + 1)S(G). Proceeding by induction, for n = k we have rank(S′(G)) =
rank(S′(Kk)) = 1 = k − (k − 1) with S′(Kk) equal to the all-ones matrix.
Assuming the claim is true for all (k − 1)-trees with at most n vertices, we
consider a (k − 1)-tree G with n + 1 vertices. We again use the decomposition
S′(G) = T + vn+1v

T
n+1 where

T =

⎡

⎢
⎢
⎢
⎣

0

S′(G′)
...
0

0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

, vn+1(i) =

{
1 i ∈ I ∪ {n + 1}
0 otherwise

,

and G′ is a (k − 1)-tree with n vertices acquired by removing vertex n + 1 with
exactly k − 1 neighbors, i ∈ I, from G. Note dim(ker(T )) = dim(ker(S′(G′)) +
1 ≤ k by assumption. Now assume x ∈ ker(S′(G)). Then

0 = xT S′(G)x = xT Tx + xT vn+1v
T
n+1x.

Since T and vn+1v
T
n+1 are both PSD, this implies xT Tx = 0 and xT vn+1v

T
n+1x =

0. Therefore ker(S′(G)) = ker(T ) ∩ ker(vn+1v
T
n+1). However, note that x =

(0, · · · , 0, 1) ∈ ker(T ), but x /∈ ker(vn+1v
T
n+1). Then

ker(S′(G)) = ker(T ) ∩ ker(vn+1v
T
n+1) � ker(T ).

This implies dim(ker(S′(G)) < dim(ker(T )) ≤ k, so rank(S′(G)) ≥ (n + 1) −
k + 1. ��
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Theorem 1. Given a (k − 1)-tree G with n vertices, there is an optimal dual
solution S to (SVCN-D) with rank at least n−k+1, and thus any optimal primal
solution Xto (SVCN-P) has rank at most k − 1.

Proof. Theorem 1 follows as an immediate consequence of Lemma 4, Theorem
3, and Theorem 4.

We now turn to showing that the reference solution is indeed the optimal
solution in the case of (k − 1)-trees.

Theorem 2. The reference solution is the unique optimal primal solution (up
to rotation) for a (k − 1)-tree G = (V,E).

Theorem 2 shows that we can partition the vertices of a (k − 1)-tree into k
sets with each set associated to a different vector assigned in the low rank primal
solution. Since vertices u, v are only in the same set in the partition if they were
assigned the same vector in the primal solution, it is not possible for neighbors
to be in the same set. We can then produce a valid coloring of the vertices by
associating one color to each set in the partition.

We now turn to characterizing cases in which we cannot find dual solutions
of sufficiently high rank by looking at potential solutions of vector colorings
for graphs without unique colorings. In particular, we restrict our attention to
graphs that have multiple distinct k-colorings and contain a k-clique. These
assumptions provide information about the optimal objective function values.

Theorem 5. Let G be a graph with n vertices, multiple distinct k-colorings, and
a k-clique. There exists a primal solution to the strict vector chromatic number
program for G with rank greater than k − 1, and thus by Fact 2 the rank of any
optimal dual solution must be less than n − k + 1.

While we have shown that (k−1)-trees have sufficiently high dual rank for the
standard vector chromatic number SDP, it would be nice if we could completely
characterize which graphs have high dual rank. A reasonable guess would be
that a k-colorable graph G containing a k-clique has high dual rank if and only
if it is uniquely colorable. This assertion is true for the important special case
of planar graphs.

Corollary 1. A planar graph with n vertices has dual rank at least n − 3 if and
only if it is uniquely colorable.

Proof. Fowler [6] shows that uniquely-colorable planar graphs are exactly the set
of planar 3-trees. By Theorem 1 we know such graphs have dual rank at least
n − 3. Furthermore, Theorem 5 shows that graphs with multiple colorings have
primal solutions with rank more than 3 and therefore do not have dual solutions
with rank n − 3. ��

Unfortunately, the following example shows unique colorability is not suffi-
cient in general for a sufficiently high dual rank. Modifying a uniquely 3-colorable
example of Hillar and Windfeldt [8] and computing the primal and dual SDPs
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of this graph returns solutions with objective value −0.5, primal rank of 24, and
dual rank of 1. If the claim were true, we would expect all dual solutions to have
rank at least 23.

Thus it remains an interesting open question to characterize in general cases
in which graphs have sufficiently high dual rank and have the reference solution
as the optimal primal solution.

4 A Semidefinite Program with Costs

Unfortunately, Theorem 5 seems to indicate that this method of looking for
graphs that have high dual rank with the standard vector chromatic number
SDP cannot be generalized to graphs with multiple colorings. To extend this
method, we consider a modified SDP described next. The new program utilizes
a new objective function. Here, we introduce the notion of a cost matrix C(G).
The goal is to identify a C(G) such that minimizing C(G) • X forces X to
have our desired rank. In particular, we consider the SDP given by (CP) in the
introduction, along with its dual (CD).

To demonstrate how this cost matrix influences the behavior of rank(X),
assume that G = (V,E) is a k-colorable graph containing a k-clique, but is not
a (k − 1)-tree. We still know there is a solution to the strict vector chromatic
number program with α = −1/(k − 1), and thus it is possible to find an X
feasible for (CP). Now fix c : V → [k] to be a valid k-coloring of G. With this
coloring, we can define an associated matrix C(G) in the following way:

C(G)ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 i < j, c(i) = c(j), ∀� such that i < � < j, c(i) �= c(�)

−1 i > j, c(i) = c(j), ∀� such that i > � > j, c(i) �= c(�)

0 otherwise.

Intuitively, the reference solution corresponding to the coloring given by c is
the solution that will minimize total cost since we’ll look for a solution X with
Xij = 1 exactly when C(G)ij = −1; for such entries, we’ll have the same vectors
corresponding to vertices i and j. But we can show additionally that there is a
dual optimal solution for cost function C(G) that has sufficiently high rank.

Theorem 6. For G and C(G) as described, there is an optimal dual solution
with rank at least n−k+1, so that any optimal primal solution has rank at most
k − 1.

Let K be a k-clique in our k-colorable graph G. Let si denote the sum of
entries in column i of C(G). Consider the assignment of dual variables given by
yi = si for i /∈ K, yi = si − 1 for i ∈ K, ze = −1 for e = (i, j), i, j ∈ K, i 	= j,
and ze = 0 otherwise. We denote this assignment by (y, z).

Lemma 5. The dual matrix S constructed with (y, z) is positive semidefinite.
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Table 1. This table depicts the number of times the heuristic algorithms failed on
maximally planar graphs with between 5 and 14 vertices.

# nodes # maximally planar
graphs with K4

# heuristic 1
failures

# heuristic 2
failures

5 1 0 0

6 1 0 0

7 4 0 0

8 12 0 0

9 45 0 0

10 222 0 0

11 1219 0 0

12 7485 18 (∼ .24%) 18 (∼ .24%)

13 49149 108 (∼ .22%) 116 (∼ .24%)

14 337849 619 (∼ .18%) 811 (∼ .24%)

Theorem 7. The assignment (y, z) is an optimal dual solution, and the refer-
ence solution is an optimal primal solution.

Theorem 8. For G and C(G) as described, the reference solution is the unique
optimal primal solution.

5 Experimental Results

Two heuristics have been implemented and experimentally demonstrated suc-
cess returning low-rank primal solutions for planar graphs. Neither algorithm
assumes knowledge of a graph coloring. We tested these heuristics on all max-
imal planar graphs of up to 14 vertices that contain a K4. These graphs were
generated via the planar graph generator plantri due to Brinkmann and McKay
[4] found at https://users.cecs.anu.edu.au/∼bdm/plantri/. The ‘-a’ switch was
used to produce graphs written in ascii format. The code was implemented in
Python using the MOSEK Optimizer as the SDP solver. Both the graph data
files and algorithm implementation can be found at https://github.com/rmirka/
four-coloring.git. Our results are shown in Table 1. The heuristics successfully
colored all graphs with up to 11 vertices, and successfully colored 99.75% of the
graphs of 12–14 vertices. We do not record the running time of the heuristics;
because the heuristics involve repeatedly solving semidefinite programs, they are
not competitive with other greedy or local search style heuristics. Our primary
reason for studying these heuristics was to find whether we could reliably find a
cost matrix C giving rise to a four-coloring for planar graphs.

For space reasons, we only describe the first heuristic. It is based on the
coloring-dependent cost matrix discussed in Sect. 4. The algorithm first identifies
a K4 = {k1, k2, k3, k4} and finds an initial solution with C = 0. If the primal

https://users.cecs.anu.edu.au/~bdm/plantri/
https://github.com/rmirka/four-coloring.git
https://github.com/rmirka/four-coloring.git
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solution does not have low enough rank, the returned solution is used to update
the cost matrix. Let Si = {v ∈ V : Xvki

= 1} for i = 1, 2, 3, 4. Let v be a vertex
in V \ (∪4

i=1Si). Then there must exist i∗ ∈ {1, 2, 3, 4} such that Xvki∗ 	= 1 and
Xvki∗ 	= −1/3; we update this Si∗ by adding v to it. Now, C is constructed
based on the Sj , j = 1, 2, 3, 4. In particular, for i = 1, 2, 3, 4, if ni denotes the
number of vertices in Si, then for j = 1, . . . , ni − 1, we set Crs = Csr = −1
where r and s are the jth and j + 1st vertices in Si. This new cost matrix
C is used to compute an updated solution X̂. If X̂ is of the desired rank, the
algorithm terminates. If not, we first check to see if X̂vki∗ = 1, i.e. if our selected
vertex from the previous iteration was successfully colored. If yes, we repeat
the process beginning with our solution X̂ and selecting a currently uncolored
vertex. If v was not successfully colored, we remove the entry in the cost matrix
corresponding to this assignment from the previous iteration and resolve the
SDP while adding ki∗ to a list of ‘bad’ colors for v. We now repeat the process
by selecting a new feasible color class for v (following the same rules as previously
in addition to requiring it not be in the list of ‘bad’ colors for v) and constructing
Si, i = 1, 2, 3, 4 and C accordingly.

In both heuristics, the termination condition is that the primal rank is equal
to 3, but this doesn’t necessarily guarantee that the dual rank is n−3. If instead
one wanted to guarantee high dual rank, one could run the algorithm one more
time, i.e. once the low-rank primal solution is achieved, extract the coloring and
construct the corresponding C matrix as previously described in Theorem 6.

The example in Fig. 1 causes both heuristics to fail without coloring the
graph. First we note the K4 = {2, 5, 6, 7}. In the first iteration of the heuristic,
these are the only four vertices that are assigned colors. In the second iteration,
both heuristics successfully color vertex 1 to match vertex 6. However, afterwards
each heuristic is unable to color any more vertices (it tries and fails on all other
possible colors for the remaining vertices).

6 Open Questions

We close with several open questions. We were unable to give a complete char-
acterization of the k-colorable graphs with a Kk for which the strict vector chro-
matic number (SVCN-P) has a unique primal solution of the reference solution.
Such graphs must be uniquely colorable, but clearly some further restriction is
needed.

When we know the coloring, we can produce a cost matrix C for the semidefi-
nite program (CP) such that the reference solution is the unique optimal solution
and it must have rank k−1. We wondered whether one could use (CP) in a greedy
coloring scheme, by incrementally constructing the matrix C; the graph in Fig. 1
shows that our desired scheme does not work in a straightforward manner. Pos-
sibly one could consider an algorithm with a limited amount of backtracking, as
long as one could show that the algorithm continued to make progress against
some metric.
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Fig. 1. Algorithm Obstacle: K4 = {2, 5, 6, 7}

Another open question is whether one can somehow directly produce a cost
matrix C leading to a dual solution of sufficiently high rank that does not need
knowledge of the coloring. And we conclude with the open question that first
motivated this work: is it possible to use the Colin de Verdière parameter to
produce this matrix C?
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Abstract. This paper considers the basic problem of scheduling jobs
online with preemption to maximize the number of jobs completed by
their deadline on m identical machines. The main result is an O(1) com-
petitive deterministic algorithm for any number of machines m > 1.

Keywords: Scheduling · Competitive analysis · Online algorithm

1 Introduction

We consider the basic problem of preemptively scheduling jobs that arrive online
with sizes and deadlines on m identical machines so as to maximize the number
of jobs that complete by their deadline.

Definition 1 (Throughput Maximization). Let J be a collection of jobs
such that each j ∈ J has a release time rj, a processing time (or size) xj, and a
deadline dj. The jobs arrive online at their release times, at which the scheduler
becomes aware of job j and its xj and dj.

At each moment of time, the scheduler can specify up to m released jobs to
run, and the remaining processing time of the jobs that are run is decreased
at a unit rate (so we assume that the online scheduler is allowed to produce a
migratory schedule.) A job is completed if its remaining processing time drops
to zero by the deadline of that job. The objective is to maximize the number of
completed jobs.
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A key concept is the laxity of a job j, which is �j = (dj − rj) − xj , that is,
the maximum amount of time we can not run job j and still possibly complete
it.

We measure the performance of our algorithm by the competitive ratio, which
is the maximum over all instances of the ratio of the objective value of our
algorithm to the objective value of the optimal offline schedule (Opt) that is
aware of all jobs in advance.

This problem is well understood for the m = 1 machine case. No O(1)-
competitive deterministic algorithm is possible [2], but there is a randomized
algorithm that is O(1)-competitive against an oblivious adversary [9], and there
is a scalable (O(1 + ε)-speed O(1/ε)-competitive) deterministic algorithm [7].
The scalability result in [7] was extended to the case of m > 1 machines in [11].

Whether an O(1)-competitive algorithm exists for m > 1 machines has been
open for twenty years. Previous results for the multiple machines setting require
resource augmentation or assume that all jobs have high laxity [5,11].

The main issue issue in removing these assumptions is determining which
machine to assign a job to. If an online algorithm could determine which machine
each job was assigned to in Opt, we could obtain an O(1)-competitive algorithm
for m > 1 machines by a relatively straight-forward adaptation of the results
from [9]. However, if the online algorithm ends up assigning some jobs to different
machines than Opt, then comparing the number of completed jobs is challenging.
Further, if jobs have small laxity, then the algorithm can be severely penalized
for small mistakes in this assignment. One way to view the speed augmentation
(or high laxity assumption) analyses in [5,11] is that the speed augmentation
assumption allows one to avoid having to address this issue in the analyses.

1.1 Our Results

Our main result is an O(1)-competitive deterministic algorithm for Throughput
Maximization on m > 1 machines.

Theorem 1. For all m > 1, there exists a deterministic O(1)-competitive algo-
rithm for Throughput Maximization on m machines.

We summarize our results and prior work in Table 1. Interestingly, on a single
machine there is no constant competitive deterministic algorithm, yet a random-
ized algorithm exists with constant competitive ratio. Our work shows that once
more than one machine is considered, then determinism is sufficient to get a
O(1)-competitive online algorithm.

1.2 Scheduling Policies

We give some basic definitions and notations about scheduling policies.
A job j is feasible at time t (with respect to some schedule) if it can still be

feasibly completed, so xj(t) > 0 and t+xj(t) ≤ dj , where xj(t) is the remaining
processing time of job j at time t (with respect to the same schedule.)
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Table 1. Competitiveness results

Deterministic Randomized Speed Augmentation

m = 1 [2] ω(1) [9] O(1) O(1 + ε)-speed O(1/ε)-competitive [7]

m > 1 O(1) [This paper] O(1) [This paper] O(1 + ε)-speed O(1/ε)-competitive [11]

A schedule S of jobs J is defined by a map from time/machine pairs (t, i) to
a feasible job j that is run on machine i at time t, with the constraint that no
job can be run one two different machines at the same time. We conflate S with
the scheduling policy as well as the set of jobs completed by the schedule. Thus,
the objective value achieved by this schedule is |S|.

A schedule is non-migratory if for every job j there exists a machine i such
that if j is run at time t then j is run on machine i. Otherwise the schedule is
migratory.

If S is a scheduling algorithm, then S(J,m) denotes the schedule that results
from running S on instance J on m machines. Similarly, Opt(J,m) denotes
the optimal schedule on instance J on m machines. We will sometimes omit
the J and/or the m if they are clear from context. Sometimes we will abuse
notation and let Opt denote a nearly-optimal schedule that additionally has
some desirable structural property.

1.3 Algorithms and Technical Overview

A simple consequence of the results in [8] and [9] is an O(1)-competitive ran-
domized algorithm in the case that m = O(1). Thus we concentrate on the case
that m is large. We also observe that since there is an O(1)-approximate non-
migratory schedule [8], changing the number of machines by an O(1) factor does
not change the optimal objective value by more than an O(1) factor. This is
because we can always take an optimal non-migratory schedule on m machines
and create a new schedule on m/c machines whose objective value decreases by
at most a factor of c, by keeping the m/c machines that complete the most jobs.

These observations about the structure of near-optimal schedules allow us
to design a O(1)-competitive algorithm that is a combination of various deter-
ministic algorithms. In particular, on an instance J , our algorithm, FinalAlg,
will run a deterministic algorithm, LMNY, on m/3 machines on the subinstance
Jhi = {j ∈ J | �j > xj} of high laxity jobs, a deterministic algorithm SRPT
on m/3 machines on the subinstance Jlo = {j ∈ J | �j ≤ xj} of low laxity jobs,
and a deterministic algorithm MLax on m/3 machines on the subinstance Jlo

of low laxity jobs. Note that we run SRPT and MLax on the same jobs. To
achieve this, if both algorithms decide to run the same job j, then the algorithm
in which j has shorter remaining processing time actually runs job j, and the
other simulates running j.

We will eventually show that for all instances, at least one of these three
algorithms is O(1)-competitive, from which our main result will follow. Roughly,
each of the three algorithms is responsible for a different part of Opt.
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Our main theorem about FinalAlg is the following:

Theorem 2. For any m ≥ 48, FinalAlg is a O(1)-competitive deterministic
algorithm for Throughput Maximization on m machines.

We now discuss these three component algorithms of FinalAlg.

LMNY. The algorithm LMNY is the algorithm from [11] with the following
guarantee.

Lemma 3. [11] For any number of machines m, and any job instance J ,
LMNY is an O(1)-competitive deterministic algorithm on the instance Jhi.

SRPT. The algorithm SRPT is the standard shortest remaining processing
time algorithm, modified to only run jobs that are feasible.

Definition 2 (SRPT). At each time, run the m feasible jobs with shortest
remaining processing time. If there are less than m feasible jobs, then all feasible
jobs are run.

We will show that SRPT is competitive with the low laxity jobs completed
in Opt that are not preempted in Opt.

MLax. The final, most challenging, component algorithm of FinalAlg is
MLax, which intuitively we want to be competitive on low-laxity jobs in Opt
that are preempted.

To better understand the challenge of achieving this goal, consider m = 1
and an instance of disagreeable jobs. A set of jobs is disagreeable if, for any two
jobs j and k, if j has an earlier release date than k, it also has a later deadline
than k. Further, suppose all but one job in Opt is preempted and completed at
a later time.

To be competitive, MLax must preempt almost all the jobs that it completes,
but cannot afford to abandon too many jobs that it preempts. Because the jobs
have low laxity, this can be challenging as it can only preempt each job for a
small amount of time, and its hard to know which of the many options is the
“right” job to preempt for. This issue was resolved in [9] for the case of m = 1
machine, but the issue gets more challenging when m > 1, because we also have
to choose the “right” machine for each job.

We now describe the algorithm MLax. Let α be a sufficiently large constant
(chosen later.) MLax maintains m stacks (last-in-first-out data structures) of
jobs (one per machine), H1, . . . , Hm. The stacks are initially empty. At all times,
MLax runs the top job of stack Hi on machine i. We define the frontier F to
be the set consisting of the top job of each stack (i.e. all currently running jobs.)
It remains to describe how the Hi’s are updated.

There are two types of events that cause MLax to update the Hi’s: reaching
a job’s pseudo-release time (defined below) or completing a job.
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Definition 3 (Viable Jobs and Pseudo-Release Time). The pseudo-
release time (if it exists) r̃j of job j is the earliest time in [rj , rj + �j

2 ] such
that there are at least 7

8m jobs j′ on the frontier satisfying αxj′ ≥ �j.
We say a job j is viable if r̃j exists and non-viable otherwise.

At job j’s pseudo-release time (note r̃j can be determined online by MLax),
MLax does the following:

a) If there exists a stack whose top job j′ satisfies αxj ≤ �j′ , then push j onto
any such stack.

b) Else if there exist at least 3
4m stacks whose second-top job j′′ satisfies αxj ≤

�j′′ and further some such stack has top job j′ satisfying �j > �j′ , then on
such a stack with minimum �j′ , replace its top job j′ by j.

While the replacement operation in step b can be implemented as a pop and
then push, we view it as a separate operation for analysis purposes. To handle
corner cases in these descriptions, one can assume that there is a job with infinite
size/laxity on the bottom of each Hi.

When MLax completes a job j that was on stack Hi, MLax does the fol-
lowing:

c) Pop j off of stack Hi.
d) Keep popping Hi until the top job of Hi is feasible.

Analysis Sketch. There are three main steps in proving Theorem 2 to show
FinalAlg is O(1)-competitive:

– In Sect. 2, we show how to modify the optimal schedule to obtain certain
structural properties that facilitate the comparison with SRPT and MLax.

– In Sect. 3, we show that SRPT is competitive with the low-laxity, non-viable
jobs. Intuitively, the jobs that MLax is running that prevent a job j from
becoming viable are so much smaller than job j, and they provide a witness
that SRPT must also be working on jobs much smaller than j.

– In Sect. 4, we show that SRPT and MLax together are competitive with the
low-laxity, viable jobs. First, we show that SRPT is competitive with the
number of non-preempted jobs in Opt. We then essentially show that MLax
is competitive with the number of preempted jobs in Opt. The key component
in the design of MLax is the condition that a job j won’t replace a job on
the frontier unless at there are at least 3

4m stacks whose second-top job j′′

satisfies αxj ≤ �j′′ . This condition most differentiates MLax from m copies
of the Lax algorithm in [9]. This condition also allows us to surmount the
issue of potentially assigning a job to a “wrong” processor, as jobs that satisfy
this condition are highly flexible about where they can go on the frontier.

We combine these results in Sect. 5 to complete the analysis of FinalAlg.
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1.4 Related Work

There is a line of papers that consider a dual version of the problem, where
there is a constraint that all jobs must be completed by their deadline, and the
objective is to minimize the number of machines used [1,4,6,12]. The current best
known bound on the competitive ratio for this version is O(log log m) from [6].

The speed augmentation results in [7,11] for throughput can be generalized
to weighted throughput, where there a profit for each job, and the objective
is to maximize the aggregate profit of jobs completed by their deadline. But
without speed augmentation, O(1)-approximation is not possible for weighted
throughput for any m, even allowing randomization [10].

There is also a line of papers that consider variations on online throughput
scheduling in which the online scheduler has to commit to completing jobs at
some point in time, with there being different variations of when commitment
is required [3,5,11]. For example, [5] showed that there is a scalable algorithm
for online throughput maximization that commits to finishing every job that it
begins executing.

2 Structure of Optimal Schedule

The goal of this section is to introduce the key properties of (near-)optimal
scheduling policies that we will use in our analysis.

By losing a constant factor in the competitive ratio, we can use a constant
factor fewer machines than Opt, which justifies FinalAlg running each of three
algorithms on m

3 machines. The proof, which is an extension of results in [8], is
omitted in this extended abstract.

Lemma 4. For any collection of jobs J , number of machines m, and c > 1, we
have |Opt(J, m

c )| = Ω(1c |Opt(J,m)|).
A non-migratory schedule on m machines can be expressed as m schedules,

each on a single machine and on a separate set of jobs. To characterize these
single machine schedules, we introduce the concept of forest schedules. Let S be
any schedule. For any job j, we let fj(S) and cj(S) denote the first and last times
that S runs the job j, respectively. Note that S does not necessarily complete j
at time cj(S).

Definition 4 (Forest Schedule). We say a single-machine schedule S is a
forest schedule if for all jobs j, j′ such that fj(S) < fj′(S), S does not run j
during the time interval (fj′(S), cj′(S)) (so the (fj(S), cj(S))-intervals form a
laminar family.) Then S naturally defines a forest (in the graph-theoretic sense),
where the nodes are jobs run by S and the descendants of a job j are the the jobs
that are first run in the time interval (fj(S), cj(S)).

A non-migratory m-machine schedule is a forest schedule if all of its single-
machine schedules are forest schedules.
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With these definitions, we are ready to construct the near-optimal policies
to which we will compare SRPT and MLax. We omit the proof, which follows
from results in [9], in this extended abstract.

Lemma 5. Let J be a set of jobs satisfying �j ≤ xj for all j ∈ J . Then for
any times r̂j ∈ [rj , rj + �j

2 ] and constant α ≥ 1, there exist non-migratory forest
schedules S and S ′ on the jobs J such that:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = r̂j.
4. If job j′ is a descendant of job j in S, then αxj′ ≤ �j

5. |{leaves of S ′}| + |S| = Ω(|Opt(J)|).
Intuitively, the schedule S captures the jobs in Opt that are preempted and

S ′ captures the jobs in Opt that are not preempted (i.e. the leaves in the forest
schedule.)

3 SRPT is Competitive with Non-viable Jobs

The main result of this section is that SRPT is competitive with the number of
non-viable, low-laxity jobs of the optimal schedule (Theorem 6). We recall that
a job j is non-viable if for every time in [rj , rj + �j

2 ], there are at least 1
8m jobs

j′ on the frontier of MLax satisfying αxj′ < �j .

Theorem 6. Let J be a set of jobs satisfying �j ≤ xj for all j ∈ J . Then for α =
O(1) sufficiently large and number of machines m ≥ 16, we have |SRPT(J)| =
Ω(|Opt(Jnv)|), where Jnv is the set of non-viable jobs with respect to MLax(J).

We omit the proof of Theorem 6 in this extended abstract. The main idea
of the proof is that for any non-viable job j, MLax is running many jobs that
are much smaller than j (by at least an α-factor.) These jobs give a witness
that SRPT must be working on these jobs or even smaller ones. The following
technical lemma is needed in the proof as well as in Sect. 4.

Lemma 7. Let J be any set of jobs and S be any forest schedule on m machines
and jobs J ′ ⊂ J that only runs feasible jobs. Let L be the set of leaves of S. Then
|SRPT(J)| ≥ 1

2 |L|.

4 SRPT and MLax Are Competitive with Viable Jobs

We have shown that SRPT is competitive with the non-viable, low-laxity jobs.
Thus, it remains to account for the viable, low-laxity jobs. We recall that a job j
is viable if there exists a time in [rj , rj + �j

2 ] such that there are at least 7
8m jobs

j′ on the frontier satisfying αxj′ ≥ �j . The first such time is the pseudo-release
time, r̃j of job j. For these jobs, we show that SRPT and MLax together are
competitive with the viable, low-laxity jobs of the optimal schedule.
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Theorem 8. Let J be a set of jobs satisfying �j ≤ xj for all j ∈ J . Then for α =
O(1) sufficiently large and number of machines m ≥ 8, we have |SRPT(J)| +
|MLax(J)| = Ω(|Opt(Jv)|), where Jv is the set of viable jobs with respect to
MLax(J).

Proof of Theorem 8. Let S,S ′ be the schedules guaranteed by Lemma 5 on the
set of jobs Jv with r̂j = r̃j for all j ∈ Jv. We re-state the properties of these
schedules for convenience:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = r̃j .
4. If job j′ is a descendant of job j in S, then αxj′ ≤ �j

5. |{leaves of S ′}| + |S| = Ω(|Opt(Jv)|).
By Lemma 7, we have |SRPT(J)| = Ω(|{leaves of S ′}|). Thus, it suffices to show
that |SRPT(J)| + |MLax(J)| = Ω(|S|). We do this with two lemmas, whose
proofs we defer until later. First, we show that MLax pushes (not necessarily
completes) many jobs. In particular, we show:

Lemma 9. |SRPT(J)| + #(pushes of MLax(J)) = Ω(|S|)
The main idea to prove Lemma 9 is to consider sequences of preemptions in

Opt. In particular, suppose Opt preempts job a for b and then b for c. Roughly,
we use viability to show that the only way MLax doesn’t push any of these jobs
is if in between their pseudo-release times, MLax pushes Ω(m) jobs.

Second, we show that the pushes of MLax give a witness that SRPT and
MLax together actually complete many jobs.

Lemma 10. |SRPT(J)| + |MLax(J)| = Ω(#(pushes of MLax(J))).

The main idea to prove Lemma 10 is to upper-bound the number of jobs
that MLax pops because they are infeasible (all other pushes lead to completed
jobs.) The reason MLax pops a job j for being infeasible is because while j was
on a stack, MLax spent at least �j

2 units of time running jobs higher than j on
j’s stack. Either those jobs are completed by MLax, or MLax must have have
done many pushes or replacements instead. We show that the replacements give
a witness that SRPT must complete many jobs.

Combining these two lemmas completes the proof of Theorem 8. ��
Now we go back and prove Lemma 9 and Lemma 10.

4.1 Proof of Lemma 9

Recall that S is a forest schedule. We say the first child of a job j is the child
j′ of j with the earliest starting time fj′(S). In other words, if j is not a leaf,
then its first child is the first job that pre-empts j. We first focus on a sequence
of first children in S.
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Lemma 11. Let a, b, c ∈ S be jobs such that b is the first child of a and c is
the first child of b. Then MLax(J) does at least one of the following during the
time interval [r̃a, r̃c]:

– Push at least m
8 jobs,

– Push job b,
– Push a job on top of b when b is on the frontier,
– Push c.

Proof. Because S is a forest schedule, we have r̃a < r̃b < r̃c. It suffices to show
that if during [r̃a, r̃c], MLax(J) pushes strictly fewer than m

8 jobs, MLax(J)
does not push b, and if MLax(J) does not push any job on top of b when b is
on the frontier, then MLax(J) pushes c.

First, because MLax(J) pushes strictly fewer than m
8 jobs during [r̃a, r̃c],

there exists at least 7
8m stacks that receive no push during this interval. We

call such stacks stable. The key property of stable stacks is that the laxities of
their top- and second-top jobs never decrease during this interval, because these
stacks are only changed by replacements and pops.

Now consider time r̃a. By definition of pseudo-release time, at this time, there
exist at least 7

8m stacks whose top job j′ satisfies αxj′ ≥ �j . Further, for any
such stack, let j′′ be its second-top job. Then because b is a descendant of a in
S, we have:

αxb ≤ �a ≤ αxj′ ≤ �j′′ .

It follows that there exist at least 3
4m stable stacks whose second-top job j′′

satisfies αxb ≤ �j′′ for the entirety of [r̃a, r̃c]. We say such stacks are b-stable.
Now consider time r̃b. We may assume b is not pushed at this time. However,

there exist at least 3
4m that are b-stable. Thus, if we do not replace the top of

some stack with b, it must be the case that the top job j′ of every b-stable stack
satisfies �′

j ≥ �b. Because these stacks are stable, their laxities only increase by
time r̃c, so MLax(J) will push c on some stack at that time.

Otherwise, suppose we replace the top job of some stack with b. Then b is
on the frontier at r̃b. We may assume that no job is pushed directly on top of
b. If b remains on the frontier by time r̃c, then MLax(J) will push c, because
αxc ≤ �b. The remaining case is if b leaves the frontier in some time in [r̃b, r̃c].
We claim that it cannot be the case that b is popped, because by (2), S could
not complete b by time r̃c, so MLax(J) cannot as well. Thus, it must be the
case that b is replaced by some job, say d at time r̃d. At this time, there exist
at least 3

4m stacks whose second-top job j′′ satisfies αxd ≤ �j′′ . It follows, there
exist at least m

2 b-stable stacks whose second-top job j′′ satisfies αxd ≤ �j′′ at
time r̃d. Note that because m ≥ 8, there exists at least one such stack, say i,
that is not b’s stack. In particular, because b’s stack has minimum laxity, it must
be the case that the top job j′ of stack i satisfies �j′ ≥ �b. Finally, because stack
i is stable, at time r̃c we will push c. ��

Now using the above lemma, we give a charging scheme to prove Lemma 9.
First note that by Lemma 7, we have |SRPT(J)| = Ω(#(leaves of S)). Thus, it
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suffices to give a charging scheme such that each job a ∈ S begins with 1 credit,
and charges it to leaves of S and completions of MLax(J) so that each job is
charged O(1) credits. Each job a ∈ S distributes its 1 credit as follows:

– (Leaf Transfer) If a is a leaf or parent of a leaf of S, say �, then a charges �
for 1 credit.

Else let b be the first child of a and c the first child of b in S
– (Push Transfer) If MLax(J) pushes b or c, then a charges 1 unit to b or c,

respectively.
– (Interior Transfer) Else if job b is on the frontier, but another job, say d, is

pushed on top of b, then a charges 1 unit to d.
– (m-Push Transfer) Otherwise, by Lemma 11, MLax(J) must push at least

m
8 jobs during [r̃a, r̃c]. In this case, a charges 8

m units to each of these m
8 such

jobs.

This completes the description of the charging scheme. It remains to show that
each job is charged O(1) credits. Each job receives at most 2 credits due to Leaf
Transfers and at most 2 credits due to Push Transfers and Interior Transfers. As
each job is in at most 3m intervals of the form [r̃a, r̃c], each job is charged O(1)
from m-Push Transfers.

4.2 Proof of Lemma 10

Recall in MLax, there are two types of pops: a job is popped if it is com-
pleted, and then we continue popping until the top job of that stack is fea-
sible. We call the former completion pops and the later infeasible pops. Note
that it suffices to prove the next lemma, which bounds the infeasible pops.
This is because #(pushes of MLax(J)) = #(completions pops of MLax(J)) +
#(infeasible pops of MLax(J)). To see this, note that every stack is empty at
the beginning and end of the algorithm, and the stack size only changes due to
pushes and pops.

Lemma 12. For α = O(1) sufficiently large, we have:

|SRPT(J)|+|MLax(J)|+#(pushes of MLax(J)) ≥ 2·#(infeasible pops of MLax(J)).

Proof. We define a charging scheme such that the completions of SRPT(J) and
MLax(J) and the pushes executed by MLax(J) pay for the infeasible pops.
Each completion of SRPT(J) is given 2 credits, each completion of MLax(J) is
given 1 credit, and each job that MLax(J) pushes is given 1 credit. Thus each
job begins with at most 4 credits. For any z ≥ 0, we say job j′ is z-below j (at
time t) if j′ and j are on the same stack in MLax(J) and j′ is z positions below
j on that stack at time t. We define z-above analogously. A job j distributes
these initial credits as follows:
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– (SRPT-transfer) If SRPT(J) completes job j and MLax also ran j at
some point, then j gives 1

2z+1 credits to the job that is z-below j at time
fj(MLax(J)) for all z ≥ 0.

– (m-SRPT-transfer) If SRPT(J) completes job j at time t, then j gives 1
2z+1

1
m

credits to the job that is z-below the top of each stack in MLax(J) at time
t for all z ≥ 0.

– (MLax-transfer) If MLax(J) completes a job j, then j gives 1
2z+1 credits to

the job that is z-below j at the time j is completed for all z ≥ 0.
– (Push-transfer) If MLax(J) pushes a job j, then j gives 1

2z+1 credits to the
job that is z-below j at the time j is pushed for all z ≥ 0.

It remains to show that for α = O(1) sufficiently large, every infeasible
pop gets at least 4 credits. We consider any job j that is an infeasible pop of
MLax(J). At time r̃j when j joins some stack in MLax(J), say H, j’s remaining
laxity was at least �j

2 . However, as j later became an infeasible pop, it must be
the case that while j was on stack H, MLax(J) was running jobs that are higher
than j on stack H for at least �j

2 units of time.
Let I be the union of intervals of times that MLax(J) runs a job higher than

j on stack H (so j is on the stack for the entirety of I.) Then we have |I| ≥ �j
2 .

Further, we partition I based on the height of the job on H that MLax(J) is
currently running. In particular, we partition I =

⋃
z≥1 Iz, where Iz is the union

of intervals of times that MLax(J) runs a job on H that is exactly z-above j.
By averaging, there exists a z ≥ 1 such that |Iz| ≥ �j

2z+1 . Fix such a z. We
can write Iz as the union of disjoint intervals, say Iz =

⋃s
u=1[au, bu]. Because

during each sub-interval, MLax(J) is running jobs on H that are much smaller
than j itself, these jobs give a witness that SRPT(J) completes many jobs as
long as these sub-intervals are long enough. We formalize this in the following
proposition, whose proof is omitted in this extended abstract.

Proposition 13. In each sub-interval [au, bu] of length at least 4 �j
αz , job j earns

at least 1
2z+3

bu−au

�j/αz credits from SRPT-transfers and m-SRPT-transfers.

On the other hand, even if the sub-intervals are too short, the job j still gets
credits from MLax-transfers and Push-transfers when the height of the stack
changes. We formalize this statement in the following proposition, whose proof
is omitted in this extended abstract.

Proposition 14. For every sub-interval [au, bu], job j earns at least 1
2z+2 credits

from MLax-transfers and Push-transfers at time bu.

Now we combine the above two propositions to complete the proof of Lemma
12. We say a sub-interval [au, bu] is long if it has length at least 4 �j

αz (i.e. we can
apply Proposition 13 to it) and short otherwise. First, suppose the aggregate
length of all long intervals it at least 4 · 2z+3 �j

αz . Then by Proposition 13, job j
gets at least 4 credits from the long intervals. Otherwise, the aggregate length
of all long intervals is less than 4 · 2z+3 �j

αz . In this case, recall that the long
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and short intervals partition Iz, which has length at least �j
2z+1 . It follows, the

aggregate length of the short intervals is at least �j
2z+1 −4 ·2z+3 �j

αz . For α = O(1)
large enough, we may assume the aggregate length of the short intervals is at
least 4 · 2z+2 4�j

αz . Because each short interval has length at most 4 �j
αz , there are

at least 4 · 2z+2 short intervals. We conclude, by Proposition 14, job j gets at
least 4 credits from the short intervals. We conclude, in either case job j gets at
least 4 credits. ��

5 Putting it all Together

In this section, we prove our main result, Theorem 1, which follows from the
next meta-theorem:

Theorem 15. Let J be any set of jobs. Then for number of machines m ≥
16, we have |LMNY(Jhi)| + |SRPT(Jlo)| + |MLax(Jlo)| = Ω(|Opt(J)|), where
Jhi = {j ∈ J | �j > xj} and Jlo = {j ∈ J | �j ≤ xj} partition J into high- and
low-laxity jobs.

Proof. We have |LMNY(Jhi)| = Ω(|Opt(Jhi)| by Lemma 3. Also, we further
partition Jlo = Jv ∪ Jnv into the viable and non-viable jobs with respect to
MLax(Jlo). Then Theorem 6 and Theorem 8 together give |SRPT(Jlo)| +
|MLax(Jlo)| = Ω(|Opt(Jv)| + |Opt(Jnv)|). To complete the proof, we observe
that J = Jhi ∪ Jv ∪ Jnv partitions J , so |Opt(Jhi)| + |Opt(Jv)| + |Opt(Jnv)| =
Ω(|Opt(J)|). ��

The proof of Theorem 2, which gives our performance guarantee for
FinalAlg is immediate:

Proof of Theorem 2. By combining Theorem 15 and Lemma 4, the objective
value achieved by FinalAlg is:

Ω(|LMNY(Jhi,
m

3
)| + |SRPT(Jlo,

m

3
)| + |MLax(Jlo,

m

3
)|) = Ω(|Opt(J,

m

3
)|)

= Ω(|Opt(J,m)|).

��
Finally, we obtain our O(1)-competitive deterministic algorithm for all m >

1 (recall FinalAlg is O(1)-competitive only when m ≥ 48) by using a two-
machine algorithm when m is too small:

Proof of Theorem 1. Our algorithm is the following: If 1 < m < 48, then we
run the deterministic two-machine algorithm from [9] which is O(1)-competitive
with the optimal single-machine schedule. Thus by Lemma 4, this algorithm is
also O(m) = O(1)-competitive for all m < 48. Otherwise, m ≥ 48, so we run
FinalAlg. ��
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Abstract. We consider the weighted k-Set Packing Problem, where,
given a collection S of sets, each of cardinality at most k, and a posi-
tive weight function w : S → R>0, the task is to find a sub-collection
of S consisting of pairwise disjoint sets of maximum total weight. As
this problem does not permit a polynomial-time o( k

log k
)-approximation

unless P = NP [11], most previous approaches rely on local search.
For twenty years, Berman’s algorithm SquareImp [2], which yields a
polynomial-time k+1

2
+ε-approximation for any fixed ε > 0, has remained

unchallenged. Only recently, it could be improved to k+1
2

− 1
63,700,992

+ ε
by Neuwohner [16]. In her paper, she showed that instances for which the
analysis of SquareImp is almost tight are “close to unweighted” in a cer-
tain sense. But for the unit weight variant, the best known approximation
guarantee is k+1

3
+ ε. Using this observation as a starting point, we con-

duct a more in-depth analysis of close-to-tight instances of SquareImp.
This finally allows us to generalize techniques used in the unweighted
case to the weighted setting. In doing so, we obtain approximation guar-
antees of k+εk

2
, where limk→∞ εk = 0. On the other hand, we prove that

this is asymptotically best possible in that searching for local improve-
ments of logarithmically bounded size cannot produce an approximation
ratio below k

2
.

Keywords: Weighted k-Set Packing · Local search · d-Claw free
graphs · Independent set

1 Introduction

For a positive integer k, the weighted k-Set Packing Problem is defined as follows:
Given a family S of sets each of size at most k together with a positive weight
function w : S → R>0, the task is to find a sub-collection A of S of maximum
weight such that the sets in A are pairwise disjoint. For k ≤ 2, the weighted k-
Set Packing Problem reduces to the maximum weight matching problem, which
can be solved in polynomial time [7]. However, as soon as k ≥ 3, weighted k-Set
Packing becomes NP -hard since it generalizes the optimization variant of the
NP -complete 3-dimensional-matching problem [13]. Even more, Hazan, Safra
and Schwartz [11] have shown that there cannot be a polynomial-time o

(
k

log k

)
-

approximation for weighted k-Set Packing unless P = NP .
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On the positive side, a simple greedy algorithm yields an approximation
guarantee of k. In order to improve on this, the technique that has proven most
successful so far is local search. The basic idea is to start with an arbitrary
solution (e.g. the empty one) and to iteratively improve the current solution
by applying some sort of local modifications until no more of these exist. More
precisely, given a feasible solution A to the weighted k-Set Packing problem, we
call a collection X ⊆ S\A consisting of pairwise disjoint sets a local improvement
of A of size |X| if w(X) > w({a ∈ A : ∃x ∈ X : a ∩ x 	= ∅}), that is, if replacing
the collection of sets in A that intersect sets in X by the sets in X increases
the weight of the solution. Note that whenever A is sub-optimum and A∗ is
a solution of maximum weight, then A∗ \ A defines a local improvement of A.
However, if one aims at designing a polynomial-time algorithm, it is of course
infeasible to check subsets of S of arbitrarily large size.

1.1 The Unit Weight Case

For the special case of unit weights, Hurkens and Schrijver [12] showed that
searching for local improvements of arbitrary large, but constant size results
in approximation guarantees arbitrarily close to k

2 . Their paper also provides
matching lower bound examples proving their result to be tight. Since then, a
lot of progress has been made regarding the special case where w ≡ 1, which we
will also refer to as the unweighted k-Set Packing Problem. In 1995, at the cost
of a quasi-polynomial running time, Halldórsson [10] achieved an approximation
factor of k+2

3 by applying local improvements of size logarithmic in the total
number of sets. Cygan, Grandoni and Mastrolilli [6] managed to get down to an
approximation factor of k+1

3 + ε, still with a quasi-polynomial running time.
The first polynomial-time algorithm improving on the result by Hurkens and

Schrijver [12] was obtained by Sviridenko and Ward [19] in 2013. By combining
means of color coding with the algorithm presented in [10], they achieved an
approximation ratio of k+2

3 . This result was further improved to k+1
3 + ε for

any fixed ε > 0 by Cygan [5], obtaining a polynomial running time doubly
exponential in 1

ε . The best approximation algorithm for the unweighted k-Set
Packing Problem in terms of performance ratio and running time is due to
Fürer and Yu [9] from 2014. They achieve the same approximation guarantee as
Cygan [5], but a running time only singly exponential in 1

ε2 . Moreover, they show
that their result is best possible in that there exist arbitrarily large instances
that feature solutions that do not permit any local improvement of size o(|S| 1

5 ),
but that are by a factor of k+1

3 smaller than the optimum.

1.2 General Weights and the MWIS in d-Claw Free Graphs

In the weighted setting, much less is known. Arkin and Hassin [1] have shown
that unlike the unit weight case, searching for local improvements of constant
size cannot produce an approximation ratio better than k−1 for general weights.
Both papers improving on this deal with a more general problem, the Maximum
Weight Independent Set Problem (MWIS) in k + 1-claw free graphs [2,4]:
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v0
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v2

v3

center node
d talons
� TC

Fig. 1. A d-claw C for d = 3.

For d ≥ 1, a d-claw C [2] is defined to be a star consisting of one center
node and a set TC of d talons connected to it (see Fig. 1). An undirected graph
G = (V,E) is said to be d-claw free if none of its induced sub-graphs forms a d-
claw. For d ≤ 3, the MWIS in d-claw free graphs can be solved in polynomial time
(see [14,18] for the unweighted, [15] for the weighted variant), while for d ≥ 4,
again no o( d

log d )-approximation algorithm is possible unless P = NP [11].
If we define an independent set X ⊆ V \ A to be a local improvement of

A if the weight of X exceeds the weight of its neighborhood in A, then most
of the previous results for the (weighted or unweighted) k-Set Packing Problem
also apply to the more general context of the MWIS in k + 1-claw free graphs.
However, it is not known how to get down to a polynomial (instead of quasi-
polynomial) running time for the algorithms in [5,19] and [9] since there is no
obvious equivalent to coloring the underlying universe.

By considering the conflict graph GS associated with an instance of weighted
k-Set Packing, one obtains a weight preserving one-to-one correspondence
between feasible solutions to the k-Set Packing Problem and independent sets
in GS . The vertices of GS are given by the sets in S and the edges represent
non-empty set intersections. It is not hard to see that GS is k + 1-claw free.

The first significant improvement over the approximation guarantee of d − 1
achieved by the greedy approach for the MWIS in d-claw free graphs was made
by Chandra and Halldórsson [4]. In each iteration, their algorithm BestImp picks
a certain type of local improvement that maximizes the ratio between the total
weight of the vertices added to and removed from the current solution. By further
scaling and truncating the weight function to ensure a polynomial number of
iterations, Chandra and Halldórsson [4] obtain a 2d

3 +ε-approximation algorithm
for the MWIS in d-claw free graphs.

1.3 Berman’s Algorithm SquareImp

For 20 years, Berman’s algorithm SquareImp [2] has been the state-of-the-art for
both the MWIS in d-claw free graphs and weighted k-Set Packing. SquareImp
proceeds by iteratively applying local improvements of the squared weight func-
tion that arise as sets of talons of claws in G, until no more exist. In doing so,
SquareImp achieves an approximation ratio of d

2 , leading to a polynomial-time
d
2 + ε-approximation algorithm for the MWIS in d-claw free graphs for any fixed
ε > 0 (and a k+1

2 + ε-approximation for weighted k-Set Packing).
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Berman [2] also provides an example for w ≡ 1 showing that his analysis is
tight. As the example uses unit weights, he concludes that applying the same
type of local improvement algorithm for a different power of the weight function
does not provide further improvements. However, as also implied by the result
in [12], while no small improvements forming the set of talons of a claw in the
input graph exist in the tight example given by Berman [2], once this additional
condition is dropped, improvements of small constant size can be found quite
easily. This observation is the basis of a recent paper by Neuwohner [16], who
managed to obtain an approximation guarantee slightly below d

2 by taking into
account a broader class of local improvements, namely all improvements of the
squared weight function of size at most (d − 1)2 + (d − 1).

2 Our Contribution

In this paper, we revisit the analysis of the algorithm SquareImp proposed by
Berman [2]. Following [16], we show that whenever the analysis is close to being
tight, the instance is locally unweighted in the sense that almost every time
when a vertex from the solution chosen by SquareImp and a vertex from any
optimum solution share an edge, their weights must be very similar. While [16]
merely focuses on one of the two major steps in Berman’s analysis, we con-
sider both of them, allowing us to derive much stronger statements concerning
the structure of instances where SquareImp does not do much better than a
d
2 -approximation. In particular, we are able to transfer techniques that are used
in the state-of-the-art works on the unweighted k-Set Packing Problem [5,9] to
a setting where vertex weights are locally similar. This is the main ingredient
for our algorithm LogImp. In addition to the type of improvements considered
by SquareImp, LogImp searches for a certain type of local improvement of log-
arithmic size. In doing so, it obtains an approximation guarantee of d−1+εd

2 for
the MWIS in d-claw free graphs for d ≥ 3, where 0 ≤ εd ≤ 1 and limd→∞ εd = 0.
While we can only guarantee a quasi-polynomial running time for the MWIS, we
manage to obtain a polynomial-time k+εk+1

2 -approximation for our main focus,
the weighted k-Set Packing Problem, by means of color coding.

We further prove this result to be asymptotically tight by providing exam-
ples which show that any local improvement algorithm that, for an arbitrarily
chosen, but fixed parameter α ∈ R, searches for local improvements of wα of size
O(log(|S|)), cannot produce an approximation guarantee better than k

2 for the
weighted k-Set Packing Problem with k ≥ 3.

The latter significantly extends the state of knowledge in terms of lower
bound examples. Even more importantly, we can finally (at least asymptotically)
answer the long-standing question of how far one can get by using pure local
search in the weighted setting. In doing so, we are also the first ones to port the
idea of searching for local improvements of logarithmic size, which has proven
very successful for unit weights [5,6,9,10,19], to the weighted setting.

The rest of this paper is organized as follows: Sect. 3 recaps some of the
definitions and main results from [2] that we will employ in the analysis of our
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local improvement algorithm LogImp in Sect. 4. Section 5 then sketches our lower
bound construction and Sect. 6 provides a brief conclusion.

3 Preliminaries

Definition 1 (Neighborhood [2]). Given an undirected graph G = (V,E) and
subsets U,W ⊆ V of its vertices, we define the neighborhood N(U,W ) of U in
W as N(U,W ) := {w ∈ W : ∃u ∈ U : {u,w} ∈ E ∨ u = w}. For u ∈ V and
W ⊆ V , we write N(u,W ) instead of N({u},W ).

Notation. Given w : V → R and U ⊆ V , we write w2(U) :=
∑

u∈U w2(u).

Definition 2 ([2]). Given an undirected graph G = (V,E), a weight function
w : V → R≥0 and an independent set A ⊆ V , we say that a vertex set B ⊆ V
improves w2(A) if B is independent in G and w2((A \ N(B,A)) ∪ B) > w2(A)
holds. For a claw C in G, we say that C improves w2(A) if TC does and call TC

a claw-shaped improvement in this case. We further define a 0-claw to consist
of a single talon and an empty center.

Note that in contrast to the introduction, we do not require a local improve-
ment B to be disjoint from A anymore. Further observe that an independent set
B improves A if and only if we have w2(B) > w2(N(B,A)).

Using the notation introduced above, Berman’s algorithm SquareImp [2] can
now be formulated as in Algorithm 1. As all weights are positive, every v 	∈ A
such that A ∪ {v} is independent constitutes the talon of a 0-claw improving
w2(A), so the algorithm returns a maximal independent set.

The main idea of the analysis of SquareImp presented in [2] is to charge the
vertices in A for preventing adjacent vertices in an optimum solution A∗ from
being included into A. The latter is done by spreading the weight of the vertices
in A∗ among their neighbors in the maximal independent set A in such a way
that no vertex in A receives more than d

2 times its own weight. The suggested
distribution of weights proceeds in two steps:

First, each vertex u ∈ A∗ invokes costs of w(v)
2 at each v ∈ N(u,A). As G

is d-claw free, no vertex v ∈ A can have more than d − 1 neighbors in A∗. This
implies that the total amount of weight v receives in this step is bounded by
|N(v,A∗)| · w(v)

2 ≤ (d − 1) · w(v)
2 .

In a second step, each vertex u ∈ A∗ sends an amount of w(u)− w(N(u,A))
2 to a

heaviest neighbor it possesses in A, which is captured by the following definition
of charges:

Definition 3 (Charges [2]). For each u ∈ A∗, pick a vertex v ∈ N(u,A) of
maximum weight and call it n(u) (recall that A is maximal).
For u ∈ A∗ and v ∈ A, define

charge(u, v) :=

{
w(u) − w(N(u,A))

2 , if v = n(u)
0 , otherwise

.
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Algorithm 1: SquareImp [2]
Input: an undirected d-claw free graph G = (V, E), w : V → R>0

Output: an independent set A ⊆ V
1 A ← ∅
2 while there exists a claw C in G that improves w2(A) do
3 A ← (A \ N(TC , A)) ∪ TC

4 return A

Algorithm 2: LogImp
Input: an undirected d-claw free graph G = (V, E), w : V → R>0

Output: an independent set A ⊆ V
1 A ← ∅
2 while there exists a claw-shaped or circular local improvement X of w2(A) do
3 A ← (A \ N(X, A)) ∪ X

4 return A

As we have already seen that each vertex v ∈ A receives at most d−1
2 · w(v)

during the first step of the weight distribution, it suffices to show that the total
amount of positive charges it has to pay is bounded by w(v)

2 . In order to prove
this, we want to exploit the fact that when SquareImp terminates, there is no
improving claw centered at v. To this end, suppose that we want to construct an
improving claw C centered at v and consider adding u ∈ N(v,A∗) to its set TC

of talons. On the one hand, this increases w2(TC) by w2(u). On the other hand,
w2(N(TC , A)) may also increase by up to w2(N(u,A)\{v}) (if our claw should be
centered at v, we have to pay for v anyways). In case w2(u) > w2(N(u,A)\{v}),
we surely want to add u to our claw, otherwise, we may choose not to. This is
captured by the definition of the contribution:

Definition 4 (Contribution [16]). Define a contribution map

contr : A∗ × A → R≥0 by setting

contr(u, v) :=

{
max

{
0, w2(u)−w2(N(u,A)\{v})

w(v)

}
, if v ∈ N(u,A)

0 , else
.

The fact that there is no improving claw directly implies that the total contri-
bution to v ∈ A is bounded by w(v). Moreover, a simple calculation shows that
2 · charge(u, v) ≤ contr(u, v) for all u ∈ N(v,A∗) [16]. This finishes the analysis
of SquareImp.

4 Our Algorithm LogImp

Our algorithm LogImp (Algorithm 2) starts with the empty solution, and then
iteratively checks for the existence of improving claws as in Berman’s algorithm
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SquareImp and another type of local improvement, which we call circular. It cor-
responds to a cycle of logarithmically bounded size in a certain auxiliary graph.
In particular, when LogImp terminates, there cannot be any further improving
claw, so we can apply the analysis of SquareImp presented in Sect. 3 to our algo-
rithm. Similar to [16], the key idea in analyzing LogImp is the following: Either
the analysis of SquareImp is far enough from being tight to achieve the desired
approximation ratio, or the instance at hand bears a certain structure that allows
us to derive the existence of a circular improvement. But this contradicts the
termination criterion of LogImp. Our main result is the following:

Theorem 5. There is a sequence (εd)d≥3 ∈ [0, 1]N≥3 with limd→∞ εd = 0 such
that LogImp yields a d−1+εd

2 -approximation for the MWIS in d-claw free graphs.

As applying the analysis of SquareImp to LogImp proves that the approximation
guarantee of LogImp is no larger than d

2 , it suffices to show that for every δ > 0,
there is d0 ≥ 3 such that for any d ≥ d0, LogImp is a d−1+δ

2 -approximation for
the MWIS in d-claw free graphs.

Fix δ > 0, denote the solution returned by LogImp by A, and let A∗ be an
optimum solution. Moreover, fix two maps n and n2 mapping each vertex in
V \ A to a heaviest neighbor in A, and each vertex in V \ A with at least two
neighbors in A to a second heaviest neighbor in A, respectively.

4.1 Classification of Vertices from A∗

We now provide a classification of the vertices in A∗ that helps us to understand
the structural properties of near-tight instances. For this purpose, we fix two
constants 0 < ε′ � √

ε′ � ε̃ < δ < 1 subject to certain inequalities (see [17]).

Lemma 6. Each u ∈ A∗ with charge(u, n(u)) > 0 is of one of the following
three types:
single: w(u)

w(n(u)) ∈ [1 − √
ε′, 1 +

√
ε′] and w(N(u,A)) ≤ (1 +

√
ε′) · w(n(u))

double: |N(u,A)| ≥ 2, w(u)
w(n(u)) ∈ [1 − √

ε′, 1 +
√

ε′], w(n2(u))
w(n(u)) ∈ [1 − √

ε′, 1] and

(2 − √
ε′) · w(n(u)) ≤ w(N(u,A)) < 2 · w(u)

contributive: contr(u, n(u)) ≥ 2 · charge(u, n(u)) + ε′
2 · w(u)

For a single vertex u, the heaviest neighbor n(u) of u in A has almost the same
weight as u and makes up almost all of N(u,A) in terms of weight. Single vertices
correspond to vertices of degree 1 to A in the unit weight case.

For a double vertex u, its two heaviest neighbors in A, n(u) and n2(u), have
roughly the same weight as u and make up most of N(u,A). Double vertices can
be thought of as having degree 2 to A.

For a contributive vertex u, we gain a constant fraction of w(u) in the analysis.

Lemma 7. Each u ∈ A∗ with charge(u, n(u)) ≤ 0 is of one of the following
three types:
payback: w(N(u,A)) ≥ (2 + ε′) · w(u)
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good: |N(u,A)| ≥ 2, w(u)
w(n(u)) ∈

[
1 − √

2ε′, 1
1−√

2ε′

]
, w(n2(u))

w(n(u)) ∈ [1 − √
2ε′, 1] and

2 · w(u) ≤ w(N(u,A)) < (2 + ε′) · w(u)
contributive: contr(u, n(u)) ≥ ε′

2 ·w(u) = max{0, 2 · charge(u, n(u))}+ ε′
2 ·w(u)

The weight of a payback vertex u is overestimated in the first step of the weight
distribution, so u can pay back ε′

2 · w(u), improving our bound on w(A∗).
For a good vertex u ∈ A∗, n(u) and n2(u) have almost the same weight as u and
make up most of N(u,A) in terms of weight. Like double vertices, good vertices
can be thought of as having degree 2 to A.

4.2 Missing, Profitable and Helpful Vertices

We now discuss the role the different types of vertices in A∗ play in our analysis.
We start by recalling that in the first step of the weight distribution in the
analysis of SquareImp, each v ∈ A pays |N(v,A∗)| · w(v)

2 , which we bound by
(d − 1) · w(v)

2 . In particular, if the number of neighbors of v in A∗ happens to be
less than d − 1 (we say that v has d − 1 − |N(v,A∗)| missing neighbors in this
case), we gain w(v)

2 for each missing neighbor of v (cf. Lemma 8).
We partition the neighbors a vertex v ∈ A has in A∗ into those that are help-

ful for v, and those that are profitable for v. While helpful vertices are those ver-
tices that would be considered neighbors of v in an unweighted approximation
of our instance, and that help us to construct local improvements of logarithmic
size, profitable vertices are the remaining neighbors that in some sense keep the
instance from being close to unweighted and hence, tight. Therefore, they improve
the analysis (i.e. our bound on w(A∗) profits from these). Formally speaking, we
say that u ∈ N(v,A∗) is helpful for v if u is single and v = n(u), or if u is double
or good and v ∈ {n(u), n2(u)}. Otherwise, we call u profitable for v.

One can show that for each profitable neighbor that a vertex v ∈ A pos-
sesses in A∗, we gain a constant fraction of w(v) in bounding w(A∗). Intu-
itively, this is because for every profitable neighbor u of v, v makes the estimate
2 · charge(u, n(u)) ≤ contr(u, n(u)) less tight. Lemma 8 formalizes the way miss-
ing and profitable neighbors improve our bound on w(A∗).

Lemma 8.

w(A∗) ≤ d

2
· w(A) −

∑
v∈A

(d − 1 − |N(v,A∗)|) · w(v)
2

−
∑
v∈A

ε′

10
· w(v) · # profitable neighbors of v.

This implies that if the total weight of vertices v ∈ A with more than d−1
4

neighbors that are not helpful, and, hence, missing or profitable for v, is at least
20

ε′·(d−1) · w(A), we obtain w(A∗) ≤ d−1
2 · w(A) and are therefore done. As a

consequence, we can assume that in terms of weight, all but a fraction of 20
ε′·(d−1)

of the vertices in A have at least 3
4 · (d − 1) helpful neighbors.
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We can further bound the number of these neighbors that are single: If we
choose ε′ small enough, each single helpful neighbor u of v contributes a large
constant fraction of w(u) and, hence, also w(v), to v = n(u). For d large enough,
no v ∈ A can therefore have more than d−1

4 neighbors that are single and helpful
for v, as this would result in an improving claw. This allows us to conclude that
the total weight of all vertices from A with at least d−1

2 neighbors in A∗ that are
helpful for them and either good or double (i.e. correspond to vertices of degree
2 to A in the unweighted setting) is at least

(
1 − 20

ε′·(d−1)

)
· w(A).

4.3 Local Improvements of Logarithmic Size

Our goal is to use these neighbors towards a local improvement of logarithmic
size. In order to get a better idea of what we are aiming at, we take a brief
detour and recapitulate how these vertices are handled in the unit weight case.
In [9], an auxiliary graph GA is constructed, the vertices of which correspond
to the vertices in the current solution A. Each vertex from an optimum solution
A∗ with exactly one neighbor in A creates a loop on that neighbor, while every
u ∈ A∗ with exactly two neighbors in A results in an edge connecting these.
Now, it is not hard to see that there is a one-to-one correspondence between
local improvements only featuring vertices from A∗ with degree one or two to A,
and sub-graphs of GA with more edges than vertices. A minimal such sub-graph
is called a binocular [3]. Now, a result by Berman and Fürer [3] comes into play:

Lemma 9 ([3]). For any s ∈ N>0, any graph G = (V,E) with |E| ≥ s+1
s · |V |

contains a binocular of size at most 4 · s · log(|V |).
In particular, Lemma 9 implies the existence of a cycle of the given size. More-
over, if the number of vertices of degree 1 or 2 to A exceeds (1 + ε) · |A|, one can
find local improvements of size O( 1ε ·log(|A|)), which is one of the key ingredients
of the result in [9].

We would like to port this approach to our weighted setting where vertex
weights are locally similar. If we could ensure that for each good or double
vertex u, its squared weight is at least as large as the average squared weight
of its neighbors n(u) and n2(u), plus the squared weight of neighbors of u in A
other than n(u) and n2(u), then we would be done since in a binocular, every
vertex has degree at least two, and there is at least one vertex of degree more
than two. However, this need not be the case in general, and even if we only
lose an ε′ fraction of the weight of each vertex involved, the total loss might
be arbitrarily large if we consider improvements of logarithmic size. In order to
overcome this issue, we have to make sure that locally, we have some additional
vertices with a positive contribution to the endpoints of the edges that we can
add to guarantee that we can make up for the slight inaccuracies caused by the
weight differences.

To this end, for v ∈ A, we consider the set of vertices Tv sending positive
charges to v (in particular, v = n(u) for all u ∈ Tv), and define B̄ to consist of
all v ∈ A for which the total contribution of Tv to v exceeds ε̃ ·w(v). (Recall that
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0 < ε′ � √
ε′ � ε̃ < δ < 1.) Then all vertices v ∈ A \ B̄ receive charges of at

most ε̃
2 · w(v). Hence, if w(B̄) ≤ 40

ε′·(d−1) · w(A), we can bound the total weight
the vertices in A receive in the second step of the weight distribution by

ε̃

2
· w(A \ B̄) +

1
2

· w(B̄) ≤
(

ε̃ +
40

ε′ · (d − 1)

)
· w(A)

2
.

For d large enough, this is at most δ · w(A)
2 , yielding the desired statement.

This means that we can assume w(B̄) > 40
ε′·(d−1) · w(A) in the following. In

particular, this means that the set B consisting of all vertices in B̄ that have
at least d−1

2 helpful neighbors that are good or double is of weight at least
w(B) ≥ w(B̄) − 20

ε′·(d−1) · w(A) > 20
ε′·(d−1) · w(A).

Our goal for the rest of the analysis is to lead this assumption to a contradic-
tion, implying that we have to be in one of the previously handled cases where
we obtain the desired approximation guarantee of d−1+δ

2 . To this end, we want
to show that the current setting implies the existence of a circular improvement.
We call a local improvement X ⊆ V \ A circular if

– ∃U ⊆ X s.t. |U | ≤ 4 · log(|V |), each u ∈ U has at least two neighbors in A
and C := (

⋃
u∈U{n(u), n2(u)}, {eu = {n(u), n2(u)}, u ∈ U}) is a cycle.

– If we let Yv := {x ∈ X \ U : n(x) = v}, then X = U ∪ ⋃
v∈V (C) Yv.

– w2(u) + 1
2

·
( ∑

z∈Yn(u)

contr(z, n(u)) · w(n(u)) +
∑

z∈Yn2(u)

contr(z, n2(u)) · w(n2(u))

)

> 1
2 · (w2(n(u)) + w2(n2(u))) + w2(N(u,A) \ {n(u), n2(u)}) for all u ∈ U .

The intuition behind this definition is the following: Similar to the unweighted
case, we build up an auxiliary graph H on the vertex set A, where each
vertex u ∈ V \ A with at least two neighbors in A induces an edge between
its two heaviest ones n(u) and n2(u). For the analysis, we will only consider
edges induced by double or good vertices from A∗, i.e. those corresponding to
vertices of degree two in the unweighted setting. The backbone of our circular
improvement is given by a cycle C of logarithmic size in H. Additionally, for
each v ∈ V (C), we can add some additional vertices u with n(u) = v that con-
tribute a positive amount to v. Now, we want to cover for the weight of each
v ∈ V (C) ⊆ N(X,A) by using the vertices corresponding to the two incident
edges in C as well as the contributions from the vertices in Yv. This means that
for each edge induced by u ∈ U , we would like w2(u), together with half of the
contributions to n(u) and n2(u), to be able to pay for all neighbors of u in A
other than n(u) and n2(u), as well as half of n(u) and n2(u), which is precisely
the last constraint.

Now, in order to find such circular improvements when w(B) > 20
ε′·(d−1) ·w(A),

we consider the auxiliary graph H ′ with vertex set A, where each double or good
vertex u induces an edge between n(u) and n2(u), provided at least one of them
is contained in B. For v ∈ B, the total contribution of Tv to v is at least ε̃ ·w(v),
whereas each good or double vertex contributes at most O(

√
ε′) · w(v) with
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√
ε′ � ε̃. Hence, each cycle C in H ′ of logarithmic size gives rise to a circular

improvement by choosing Yv to contain all of Tv except for the at most two
vertices inducing edges incident to v if v ∈ V (C) ∩ B, and setting Yv := ∅
otherwise.

To finally see that H ′ contains a cycle of logarithmic size, we use the facts that
the weighted average degree 1

w(A) ·
∑

v∈A w(v)·|δH′(v)| is at least d−1
2 · w(B)

w(A) > 10
ε′ ,

together with the fact that the weights of the endpoints of each edge only differ
by a factor close to 1, to conclude that there has to be a sub-graph of H ′ that is
dense enough to apply Lemma 9. (Note that if we had unit weights, this would
follow immediately since the average degree would be at least 10

ε′ > 2.) This
implies the existence of a circular improvement, contradicting the termination
criterion of LogImp and finishing the proof. See [17] for a more detailed analysis.

4.4 A Polynomial Running Time

To achieve a polynomial number of iterations of LogImp, we scale and truncate
the weight function as in [4] and [2]. This only results in an arbitrarily small
additive error in the approximation guarantee.

In order to search for circular improvements in polynomial time, we employ
the color coding technique in a similar fashion as in [9]. Note that this is the
only point where we need the additional structural properties of a k-Set Packing
instance (as opposed to an instance of the MWIS in k + 1-claw free graphs).
Detailed descriptions and proofs can be found in [17].

5 The Lower Bound

In this section, we show that our result is asymptotically best possible in the
sense of Theorem 10.

Theorem 10. Letk ≥ 3,α ∈ R,0 < ε < 1andC > 0.ThenforeachN0 ∈ N, there
exist an instance (S, w) of the weighted k-Set Packing Problem with |S| ≥ N0

and feasible solutions A,A∗ ⊆ S, such that for A, there is no local improvement
of size at most C · log(|S|) with respect to wα, but w(A∗) ≥ k−ε

2 · w(A).

Proof. For k ≤ 2, there is nothing to show and for α ≤ 0, we can just choose
the weights in A to be arbitrarily small. Hence, we can assume k ≥ 3 and
α > 0. Now, there is a result by Erdős and Sachs [8] telling us that for every
N0 ∈ N, there is a k-regular graph H on |V (H)| ≥ N0 vertices such that the
girth of H, i.e. the minimum length of a cycle in H, is at least log(|V (H)|)

log(k−1) − 1.
Consider the graph G with vertex set V (G) := V (H) ∪ E(H) and edge set
E(G) := {{v, e} : v ∈ e ∈ E(H)}, i.e. each edge of H is connected via edges in
G to both of its endpoints. We define S := {δG(x), x ∈ V (G)}, where δG(x) is
the set of incident edges of x in G. By k-regularity of H, |δG(v)| = k ≥ 3 for
v ∈ V (H) and |δG(e)| = 2 for e ∈ E(H), so each element of S has cardinality
at most k. By definition, G is simple, so no two vertices share more than one
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edge. As all degrees are at least two, the sets δG(x), x ∈ V (G) are pairwise
distinct. Finally, V (H) and E(H) constitute independent sets in G, implying
that A := {δG(v), v ∈ V (H)} and A∗ := {δG(e), e ∈ E(H)} each consist of
pairwise disjoint sets. We define positive weights on S by setting w(δG(v)) := 1
for v ∈ V (H) and w(δG(e)) := (1 − ε̄)

1
α , where ε̄ > 0 is chosen such that 1

ε̄ ∈ N

and (1− ε̄)
1
α ≥ 1− ε

k . By k-regularity of H, |A∗| = |E(H)| = k
2 · |V (H)| = k

2 · |A|,
so w(A∗) ≥ k−ε

2 · w(A). To see that there is no local improvement X of wα(A)
with |X| ≤ C · log(|V (G)|) = C · log(k+2

2 · |V (H)|), first note that we can w.l.o.g.
assume X ⊆ S \ A = A∗ (otherwise, consider X \ A). Then, X being a local
improvement implies that |X| > 1

1−ε̄ · |{y ∈ A : ∃x ∈ X : y ∩ x 	= ∅}| by our
choice of weights. But the sets from A that X intersects are precisely the sets
δG(v) for those vertices v ∈ V (H) that are endpoints of edges e ∈ E(H) with
δG(e) ∈ X. Hence, we have found as sub-graph J of H with

C · log
(

k + 2
2

· |V (H)|
)

≥ |X| = |E(J)| >
1

1 − ε̄
· |V (J)| ≥ (1 + ε̄) · |V (J)|,

which implies the existence of a cycle of length 4
ε̄ · log(C · log(k+2

2 · |V (H)|)) by
Lemma 9. But as a function of |V (H)|, this grows asymptotically slower than
our lower bound of log(|V (H)|)

log(k−1) − 1 on the girth, resulting in a contradiction for
N0 and, hence, |V (H)| chosen large enough. For a more detailed proof, see [17].

6 Conclusion

In this paper, we have seen how to use local search to approximate the weighted
k-Set Packing Problem with an approximation ratio that gets arbitrarily close to
k
2 as k approaches infinity. At the cost of a quasi-polynomial running time, this
result applies to the more general setting of the Maximum Weight Independent
Set Problem in d-claw free graphs, yielding approximation ratios arbitrarily close
to d−1

2 . Moreover, we have seen that this result is asymptotically best possible in
the sense that for no α ∈ R, a local improvement algorithm for the weighted k-
Set Packing Problem that considers local improvements of wα of logarithmically
bounded size can produce an approximation guarantee better than k

2 .
As a consequence, our paper seems to conclude the story of (pure) local

improvement algorithms for both the MWIS in d-claw free graphs and the
weighted k-Set Packing Problem. Hence, the search for new techniques beat-
ing the threshold of d−1

2 , respectively k
2 , is one of the next goals for research in

this area.
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Abstract. In the secretary problem, we are presented with n numbers,
adversarially chosen and then randomly ordered, in a sequential fashion.
After each observation, we have to make an irrevocable decision about
whether we would like to accept a number or not, with the goal of picking
the largest number with the highest probability. The secretary problem
is a fundamental online selection problem with a long history.

A natural variant of the problem is to assume that the n numbers
come from n independent distributions known to us. Esfandiari et al.
[AISTATS 2020] studied this problem, found the optimal probability
under a restrictive “no-superstars” assumption on the distributions, and
conjectured that this assumption could be dropped. In this paper, we
prove that this is indeed the case while significantly simplifying both the
optimal algorithm and its analysis. We then extend this result in two
directions. First, we are able to relax the assumption of independence
to a kind of negative dependence, demonstrating the robustness of our
algorithm. Second, we are able to replace knowledge of the distributions
with a (more realistic) knowledge of samples from the distributions.

Keywords: Online algorithms · Secretary problem · Negative
dependence · Incomplete information

1 Introduction

In the classical secretary problem, we are presented with n numbers, adver-
sarially chosen and then randomly ordered, in a sequential fashion. After each
observation, we have to make an irrevocable decision about whether we would
like to accept a number or not, with the goal of picking the largest number with
the highest probability. It is well known that this goal can be achieved with a
probability of 1

e .
In this paper, we are interested in how access to more information about how

the n numbers are chosen affects the optimal probability of success. Most relevant
to our results is the work of Gilbert and Mosteller [1] who studied the case where
the n numbers, instead of being adversarially chosen, are n independent draws
from a single distribution known to us, and found the optimal probability of
success to be γ ≈ 0.5801.

A natural extension of the work of Gilbert and Mosteller is to assume that
the n numbers come from n different independent distributions which are known
c© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 429–439, 2022.
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to us. As in the classical secretary problem, the numbers are randomly ordered
before we observe them.

Esfandiari et al. [13] studied this problem (which they call the “best-choice
prophet secretary problem”) under a restrictive “no-superstars” assumption on
the distributions and showed that the optimal probability of success is γ ≈
0.5801, the same as in the work of Gilbert and Mosteller. Distributions are said
to satisfy a no-superstars assumption if none of the distributions are (a priori)
particularly likely to yield the largest draw. Esfandiari et al. conjectured that
this assumption could be dropped, and asked for a simpler proof of their result.

1.1 Our Contributions

In this paper, we prove the conjecture of Esfandiari et al. [13] and significantly
simplify the optimal algorithm and its analysis.

Our proof shows that this optimal probability γ can be attained by using
“threshold-based” algorithms, i.e., algorithms of the following form: accept the
ith number if it is the largest seen so far, and is greater than a threshold τi. The
most important piece of our analysis is a lemma regarding the distribution of
the maximum of n random variables which plays a vital role in allowing us to
generalize the work of Gilbert and Mosteller.

We then investigate our result in two further directions. First, we are able to
relax the assumption of independence to a kind of negative dependence, demon-
strating the robustness of our algorithm. A crucial tool in this analysis is the use
of Han’s inequality for submodular set functions. Our method of applying Han’s
inequality together with this particular negative dependence criterion is flexible,
and can also be used to generalize other results about secretary problems beyond
the case of independent distributions. The number of balls in each bin when m
balls are dropped randomly and independently into n bins satisfy our negative
dependence criterion.

Second, we are able to replace knowledge of the distributions with a (more
realistic) knowledge of samples from the distributions. Specifically, we are able
to show that given enough samples from each distribution, we can approximate
the thresholds in our optimal algorithm so well that we can succeed with a
probability as close to γ ≈ 0.5801 as we please. It is critical to note that the
number of samples needed from each distribution does not depend on n.

1.2 Related Literature

Over the years, many variations on the secretary problem in which the numbers
come from independent distributions have been explored. We discuss here some
work different from our own along four particular dimensions.

The first dimension concerns the objective. In the secretary problem with
distributions (or the “best-choice prophet secretary problem”), the goal is to
maximize the probability of picking the largest number (the “secretary objec-
tive”). Alternatively, one’s goal might be to maximize the expected value of the
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picked number. This problem was introduced in [6] by Esfandiari et al., and
their results were improved in [7]. The optimal answer remains unknown, but
the work of Correa et al. [9] provides the best known bounds.

The second dimension considers whether the distributions are identical or
not. In this paper, we show that the distributions being non-identical does not
decrease the probability of success; it remains the same as the IID (identical
distribution) setting of Gilbert and Mosteller. However, the situation with the
expected value objective is different, and the distributions being non-identical
does decrease the optimal reward (see [5] and [9] for further discussion).

The third dimension considers the order in which the distributions are
observed. In our paper, the numbers are observed in random order. Instead, the
distributions may be adversarially ordered. When considered with the expected
value objective, this is the the classical prophet inequality (see [8] for a recent
survey). The same problem with the secretary objective is addressed in [13].
Recent work has also considered the possibility of other orderings (the so-called
“constrained-order” prophet inequalities [10]).

The fourth dimension concerns how much information about the distributions
is known. Some recent papers have focused on exploring which of the results
from the full-knowledge-of-distributions setting discussed above can be replicated
under access to samples from the distributions (see, for example, [11,12,14,15]).
The most surprising of these results is perhaps the work of Rubinstein et al. [14],
which demonstrates that the reward of the classical prophet inequality can be
obtained with access to just a single sample from each distribution.

1.3 Organization

In Sect. 2, we present a statement and proof of the conjecture of Esfandiari et
al. In Sect. 3, we discuss how the independence assumption can be relaxed to a
kind of negative dependence. In Sect. 4, we describe how knowledge of samples
from the distributions suffices to obtain a success probability arbitrarily close to
γ ≈ 0.5801.

2 The Secretary Problem with Distributions

An adversary chooses independent continuous distributions D1, . . . ,Dn and gen-
erates draws X1, . . . , Xn from these distributions. We are told what the dis-
tributions D1, . . . ,Dn are. Next, the draws are randomly ordered and we are
sequentially presented with them. We have to make an irrevocable decision about
whether we would like to accept a draw or not, with the goal of selecting the
largest number. What is the probability with which we can succeed?

Theorem 1. The probability of success in the secretary problem with distribu-
tions is at least γ ≈ 0.5801, the probability of success when the distributions are
all identical.
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Proof. Fix parameters {di}n
i=1 (to be picked later) and let us choose τi, which

will be our thresholds, such that Pr[maxn
k=1 Xk ≤ τi] = dn

i (all superscripts are
exponents). Assume these parameters are monotonically decreasing in i. (If the
Xi were IID, and uniform on [0, 1], then τi = di.)

We have the following simple, but vital lemma:

Lemma 1. Suppose that X1,X2, . . . , Xn are independent. If r of the Xk are
randomly chosen, say, Xj1 ,Xj2 , · · · ,Xjr

, then, Pr[maxr
k=1 Xjk

≤ τi] ≥ dr
i .

Proof. Fix a constant T , and suppose Pr[Xk ≤ T ] = ak. Then,

Pr[
n

max
k=1

Xk ≤ T ] =
n∏

k=1

ak

If r of the Xk are randomly chosen, say, Xj1 ,Xj2 , · · · ,Xjr
then

Pr[
r

max
k=1

Xjk
≤ T ] =

∑
(i1,i2,...,ir)

∏r
k=1 aik(

n
r

)

By the AM-GM inequality (which tells us that the arithmetic mean of a set
of numbers is at least as large as its geometric mean), this is at least

(
n∏

k=1

a
(n−1

r−1)
k

) 1

(n
r)

=

(
n∏

k=1

ak

) r
n

In particular, we can let T = τi, and the desired result follows. ��
Shortly, we shall be applying the lemma to the situation where

Xj1 ,Xj2 , · · · ,Xjr
are the first r draws we are presented with (which indeed

constitute a randomly chosen subset of the Xi of size r).
Consider a strategy in which we accept the ith number if and only if it is the

largest seen so far, and is more than its threshold τi (Correa et al. [9] call such
strategies blind). We analyze the probability of succeeding with this strategy,
following the proof of Gilbert and Mosteller [1].

Note that for any i ≤ r, the probability that the ith number is largest amongst
the first r, but is less than its threshold is just

Pr[maxr
k=1 Xjk

≤ τi]
r

≥ dr
i

r

since this happens if (and only if!) all the first r numbers are less than τi and
they’re ordered so that the ith number is largest.

Next, note that the probability the ith number is less than its threshold, is
largest amongst the first r, but is not largest amongst all numbers is at least

dr
i

r
− Pr[maxn

k=1 Xk ≤ τi]
n

=
dr

i

r
− dn

i

n
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since the second term simply represents the probability that the ith number is
largest amongst the first n and is less than its threshold.

Now, note that the probability that the ith number is less than its threshold,
is largest amongst the first r, but the r + 1th number is largest amongst all
numbers is at least

dr
i

r − dn
i

n

n − r

since it’s equally likely that each of the last n − r numbers turns out to be the
largest amongst them.

Furthermore, note that the above is also actually the probability no number
before the r + 1th is chosen, the ith number is largest amongst the first r, but
the r + 1th number is largest amongst all numbers. This is because if the largest
number amongst the first r is less than its threshold, it cannot be chosen; cer-
tainly, no number after it (amongst the first r) can be chosen; no number before
it can be chosen either since it wouldn’t have been able to meet its threshold
(since the τi are decreasing).

Thus we conclude that the the probability no number before the r + 1th is
chosen, and the r + 1th number is largest amongst all numbers is at least

r∑

i=1

dr
i

r − dn
i

n

n − r

The probability that the r + 1th number is largest amongst all numbers but
is less than its threshold is just

Pr[maxn
k=1 Xk ≤ τr+1]

n
=

dn
r+1

n

We conclude, that the probability of succeeding by picking the r+1th number
is at least

(
r∑

i=1

dr
i

r − dn
i

n

n − r

)
− dn

r+1

n

The probability of succeeding by picking the first number is

1 − dn
1

n

The overall probability of succeeding is the sum of the probabilities of suc-
ceeding by picking any particular number, so our arguments thus far demonstrate
that the probability of success for our threshold-based algorithm is at least

1 − dn
1

n
+

n−1∑

r=1

((
r∑

i=1

dr
i

r − dn
i

n

n − r

)
− dn

r+1

n

)
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In the IID setting, we actually have Pr[maxr
k=1 Xjk

≤ τi] = dr
i . Therefore,

the above formula is in fact exact in the IID setting! This demonstrates that
for any threshold-based algorithm in the IID setting, there is a threshold-based
algorithm in our more general setting that does at least as well.

Since it is known that a threshold algorithm of this sort is in fact optimal
when the distributions are identical (this claim is proved in Sect. 2 of [2]), we
conclude that we can always do at least as well as we do in the IID setting and
to achieve a probability of success of at least γ, we just need to choose the di

which are optimal when the distributions are identical.
Note of course that it is impossible to do better than γ in general, because

γ is the optimal answer when the distributions are identical.
We now briefly discuss how the optimal probability of success is calculated

in the IID setting (see [2] for details of these calculations).
Our computation above immediately yields that the optimal probability of

success in the IID setting is decreasing in n, since if Z is a random variable
deterministically equal to 0 and X1,X2, . . . , Xn+1 are IID uniform [0, 1], then

Pr[succeeding with draws X1,X2, . . . , Xn]
= Pr[succeeding with draws X1,X2, . . . , Xn, Z]
≥ Pr[succeeding with draws X1,X2, . . . , Xn+1]

where the equality in the first line follows from the fact that the optimal algo-
rithm with draws X1,X2, . . . , Xn, Z is to just act as if the Z never appeared,
and the inequality from the second line is just our claim that we can always do
at least as well in the IID setting.

In particular, this means that the worst case for the IID setting arises when
we take the limit as n → ∞. (This is proved slightly differently in Sect. 3 of [2].)

The optimal value of dn−i turns out to not depend on n. Explicit expressions
for the optimal values of dn−i can be found (dn−i = 1− c

i +O
(

1
i2

)
,
∫ c

0
ex−1

x dx =
1) [1].

We can then evaluate the success probability in the limit as n → ∞ by
plugging in the optimal value of di into our formula for the success probability
of a threshold algorithm. The success probability turns out to equal (ec − c −
1)

∫ ∞
c

e−x

x dx + e−c ≈ 0.5801 (see Sect. 4 of [2]). ��
We should note that the assumption that the distributions are continuous

was not important. We can achieve the same result when the distributions are
possibly discrete. To do this, we employ the same trick used in [14]. Replace Di

with a bivariate distribution, where the first coordinate is from Di and the second
coordinate is a value drawn independently and uniformly from [0, 1]. Impose
the lexicographic order on R

2, and then, there is no difficulty in determining
the value of τi from di. While implementing the algorithm, we can generate a
random value from [0, 1] for every draw presented to us to decide whether it is
large enough to accept, and the guarantee on the success probability remains
the same.
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3 Extension to Negative Dependence

In this section, we shall drop the assumption that the draws, Xi, are independent.
Let us write Yi = 1Xi≤T , and assume instead that the Yi are conditionally
negatively associated for every T . What does this mean?

We say that random variables Y1, Y2, . . . , Yn are negatively associated if for
any non-intersecting I, J ⊂ [n], and any pair of non-decreasing functions f and g,

E[f(YI)g(YJ )] ≤ E[f(YI)]E[g(YJ )]

Furthermore, the random variables Y1, Y2, . . . , Yn are said to be conditionally
negatively associated if they remain negatively associated even after conditioning
upon the values of some subset of the random variables Y1, Y2, . . . , Yn.

A full discussion of this particular negative dependence criterion is outside the
scope of this paper (see [3] for an introduction to various negative dependence
criteria). One reason to consider this criterion is that there is a very natural
example of distributions that satisfy it: Suppose Xi is a draw from distribu-
tion Di, the number of balls in the ith bin when m balls are dropped randomly
and independently into n bins. Then, the Yi are conditionally negatively associ-
ated [4].

The following result recovers the lemma from Sect. 2 under the assumption
that the Yi are conditionally negatively associated:

Lemma 2. Suppose that Yi = 1Xi≤T , and the Yi are conditionally negatively
associated. If r of the Xk are randomly chosen, say, Xj1 ,Xj2 , · · · ,Xjr

, then,
Pr[maxr

k=1 Xjk
≤ T ] ≥ Pr[maxn

k=1 Xk ≤ T ]
r
n .

Proof. Since the Yi are conditionally negatively associated, we know that after
conditioning on S = {∏i∈A∩B Yi = 1}, we have

E

⎡

⎣
∏

i∈A\B

Yi

∣∣∣S

⎤

⎦ · E
⎡

⎣
∏

i∈B\A

Yi

∣∣∣S

⎤

⎦ ≥ E

⎡

⎣
∏

i∈A\B∪B\A

Yi

∣∣∣S

⎤

⎦

which implies (with no conditioning!) that

E

[∏
i∈(A\B)∪(A∩B) Yi

]

E
[∏

i∈A∩B Yi

] ·
E

[∏
i∈(B\A)∪(A∩B) Yi

]

E
[∏

i∈A∩B Yi

] ≥
E

[∏
i∈A\B∪B\A∪(A∩B) Yi

]

E
[∏

i∈A∩B Yi

]

or in other words,

E

[
∏

i∈A

Yi

]
· E

[
∏

i∈B

Yi

]
≥ E

[
∏

i∈A∪B

Yi

]
· E

[
∏

i∈A∩B

Yi

]

So it follows that if we define g(A) = logE
[∏

i∈A Yi

]
= log Pr[maxk∈A Xk ≤

T ], then g is a submodular set function.
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Therefore, it follows by Han’s inequality for submodular set functions (see
pages 16–18 in [16] for a statement and proof of Han’s inequality),

r

n
· g([n]) ≤

∑
|A|=r g(A)

(
n
r

)

Hence, we must have

r

n
· logE

[
∏

i

Yi

]
≤

∑
|A|=r logE

[∏
i∈A Yi

]
(
n
r

)

This means that

Pr[
n

max
k=1

Xk ≤ T ]
r
n ≤

∏

|A|=r

E

[
∏

i∈A

Yi

] 1

(n
r)

By the AM-GM inequality, we know that

∏

|A|=r

E

[
∏

i∈A

Yi

] 1

(n
r) ≤

∑
|A|=r E

[∏
i∈A Yi

]
(
n
r

)

But, if r of the Xk are randomly chosen, say, Xj1 ,Xj2 , · · · ,Xjr
then

Pr[
r

max
k=1

Xjk
≤ T ] =

∑
|A|=r E

[∏
i∈A Yi

]
(
n
r

)

The desired result follows. ��
Now, the only place in which the results of Sect. 2 depended on the inde-

pendence of the Xi was in the proof of the lemma. It follows that the results of
Sect. 2 also apply to the Xi when the Yi are conditionally negatively associated.

In particular, this means, in the secretary problem with balls and bins, in
which we observe a sequence of n bins (into which m balls have been randomly
and independently dropped) and we have to select the bin with the most balls,
we can succeed with a probability of at least γ.

Our method of applying Han’s inequality together with this particular neg-
ative dependence criterion is flexible, and can also be used to generalize other
results about secretary problems beyond the case of independent distributions
(for example, Theorem 1 in [13] which is similar to the question that this paper
addresses, but with an adversarial ordering of distributions).

4 Limited Knowledge: Samples from Distributions

In this section, we aim to show that with sufficiently many samples, we can
find thresholds Ti amongst numbers in the samples which estimate the “real”
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thresholds we would’ve used with full knowledge of the distributions. We have
not attempted to optimize any of the arising constants.

Suppose we have a distribution D, and independent of D, probabilities pi,
with pi > δ. Fix a parameter ε < 1

10 . Let X be a random variable with distri-
bution D and suppose we draw m samples independently from D. Essential to
the discussion in this section is the following lemma (quite similar to Lemma 8
in [14]):

Lemma 3. If m is sufficiently large (as a function of only ε and δ), with prob-
ability arbitrarily close to 1 we can find numbers Ti amongst the m samples so
that pi

(1+ε)2 ≤ Pr[X ≤ Ti] ≤ pi(1 + ε) for every i simultaneously.

Proof. We need to find numbers Ti amongst the samples so that Pr[X ≤ Ti] ≈ pi.
To do this, we only need to find numbers Mk such that Pr[X ≤ Mk] ≈ 1

(1+ε)k for

k such that 1
(1+ε)k > δ

1+ε , because then, if pi ∈
[

1
(1+ε)k , 1

(1+ε)k−1

)
, Pr[X ≤ Mk]

is also approximately pi, so we can let Ti = Mk.
Accordingly, let us define for k ∈ N, mk = m

(1+ε)k , Mk = mth
k smallest

sample, and Ak is such that Pr[X ≤ Ak] = 1
(1+ε)k . We know that the expected

number of samples ≤ Ak is mk, and the number of samples ≤ Ak is a sum
of independent Bernoulli random variables, so by the multiplicative Chernoff
bound, the probability that the number of samples is not between mk−1 and
mk+1 is bounded by 2 exp(−ε2mk

3 ).
By the union bound, we conclude that the number of samples ≤ Ak is between

mk−1 and mk+1 simultaneously for every k such that 1
(1+ε)k > δ

(1+ε)2 with

probability at least 1−2
(

− log δ
log(1+ε) + 2

)
exp( −ε2δm

3(1+ε)2 ). Note that if m is sufficiently
large, this probability is arbitrarily close to 1.

It follows that Mk−1 ≥ Ak ≥ Mk+1 (for k = 1, 2, . . . , − log δ
log(1+ε) + 2)

with probability close to 1, and so, we have Ak+1 ≤ Mk ≤ Ak−1 (for
k = 1, 2, . . . , − log δ

log(1+ε) + 1) with probability close to 1. Hence, we conclude that
1

(1+ε)k+1 ≤ Pr[X ≤ Mk] ≤ 1
(1+ε)k−1 with probability close to 1.

So if pi ∈
[

1
(1+ε)k , 1

(1+ε)k−1

)
, then pi

(1+ε)2 ≤ Pr[X ≤ Mk] ≤ pi(1 + ε), as
required. ��

We can now prove the main theorem of this section:

Theorem 2. There is a function N so that with just N(ε) (independent of n)
samples from each distribution Di (but without knowledge of the distributions
themselves), we can succeed with a probability of γ − ε in the secretary problem
with distributions Di.

Proof. In the following, f1(ε), f2(ε), and f3(ε) are functions which tend to 0 as
ε → 0 which we have not attempted to optimize (but we can think for the
purpose of the proof that f1(ε) ≈ f2(ε) ≈ ε

10 , f3(ε) ≈ − ε
100 log ε ).
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Note that we can safely ignore the last f1(ε) fraction of draws, and never
choose them, and this will effect our success probability by at most f1(ε). Fur-
thermore, as long as i ≤ (1 − f1(ε))n, for di = 1 − c

n−i + O( 1
(n−i)2 ) (the optimal

value), dn
i is at least ≈ e

−c
f1(ε) .

Applying the lemma while letting D be the distribution of maxn
k=1 Xk, pi =

dn
i , δ ≈ e

−c
f1(ε) and ε ≈ f3(ε)

4 , we conclude that we can find Ti such that with
probability 1 − f2(ε), we have that Pr[maxn

k=1 Xk ≤ Ti] is within a factor of
1 + f3(ε) of dn

i for every i simultaneously (where Xi are the draws we must
choose from).

Now, if Pr[maxn
k=1 Xk ≤ Ti] is within a factor of 1 + f3(ε) of dn

i , then
we must have that the lower bound we have used for Pr[maxr

k=1 Xjk
≤ Ti],

Pr[maxn
k=1 Xk ≤ Ti]

r
n is within a factor of 1 + f3(ε) of dr

i as well (where
Pr[maxr

k=1 Xjk
≤ Ti] is the probability that r randomly chosen draws are all

less than Ti).
From the expression for the success probability derived in Sect. 2 (remember-

ing that we only need to consider this for r ≤ (1 − f1(ε)n)), we see that using
the estimated thresholds (which are good with a probability of (1 − f2(ε))), we
succeed with probability γ − ε, as long as f1(ε) f2(ε), and f3(ε) are sufficiently
small (which can all be achieved with sufficiently many samples). ��
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Abstract. We show that a constant factor approximation of the short-
est and closest lattice vector problem in any norm can be computed
in time 20.802 n. This contrasts the corresponding 2n time, (gap)-SETH
based lower bounds for these problems that even apply for small constant
approximation.

For both problems, SVP and CVP, we reduce to the case of the
Euclidean norm. A key technical ingredient in that reduction is a twist of
Milman’s construction of an M -ellipsoid which approximates any sym-
metric convex body K with an ellipsoid E so that 2εn translates of a
constant scaling of E can cover K and vice versa.

Keywords: Lattice algorithms · Sieving · Integer programming

1 Introduction

For some basis B ∈ R
d×n, the d dimensional lattice L of rank n is a discrete

subgroup of Rd given by

L (B) = {Bx : x ∈ Z
n}.

In this work, we will consider the shortest vector problem (SVP) and the closest
vector problem (CVP), the two most important computational problems on lat-
tices. Given some lattice, the shortest vector problem is to compute a shortest
non-zero lattice vector. When in addition some target t ∈ R

d is given, the closest
vector problem is to compute a lattice vector closest to t.

Here, “short” and “close” are defined in terms of a given norm ‖·‖K , induced
by some symmetric convex body K ⊆ R

d with 0 in its interior. Specifically,
‖x‖K = min{s ∈ R≥0 | x ∈ s · K}. When we care to specify what norm
we are working with, we denote these problems by SVPK and CVPK respec-
tively and by SVPp and CVPp respectively for the important case of �p norms.
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Fig. 1. The shortest and the closest vector problem.

It is important to note that the dimension, rank and span of the lattice have a
considerable effect on the norm ‖ · ‖K that is induced on L . For the shortest
vector problem, the norm induced on L corresponds to K intersected with the
span of L , see Fig. 1 for an illustration. For different n and different rotations of
the lattice, these resulting convex bodies vary considerably. However, when the
convex body K is centered in the span of the lattice, these sections of K still
satisfy the required properties to define a norm. In particular, up to changing
the norm, any (α-approximation of the) shortest vector problem in dimension d
can be directly reduced to (α-approximate) SVP with d = n (from the defini-
tion of L , we can assume that d ≥ n to begin with). The situation is slightly
more delicate for CVP. Whenever t /∈ span(L ), the function measuring the dis-
tance to t, i.e. ‖t − · ‖K , can be asymmetrical on span(L ), meaning it does not
define a norm on span(L ). This can be seen by lifting t and the cross-polytope
with it in Fig. 1. However, up to a loss in the approximation guarantee, we can
always take the target to lie in span(L ) and consider the norm induced by
K intersected with span(L ). More precisely, we can always reduce (2 · α + 1)-
approximate CVP to α-approximate CVP in any norm with d = n. This loss in
the approximation factor is not surprising, seeing that exact CVP under general
norms is extremely versatile. In fact, Integer Programming with n variables and
m constraints reduces to CVP∞ on a m-dimensional lattice of rank n.

Both SVP and CVP and their respective (approximation) algorithms have
found considerable applications. These include Integer Programming [31,34],
factoring polynomials over the rationals [33] and cryptanalysis [42]. On the
other hand, the security of recent cryptographic schemes are based on the worst-
case hardness of (approximations of) these problems [10,25,45]. In view of their
importance, much attention has been devoted to understand the complexity of
SVP and CVP. In [11,14,21,24,28,32,36,46], both SVP and CVP were shown
to be hard to approximate to within almost polynomial factors under reason-
able complexity assumptions. However, the best polynomial-time approximation
algorithms only achieve exponential approximation factors [15,33,47]. This huge
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gap is further highlighted by the fact that these problems are in co-NP and
co-AM for small polynomial factors,

√
n and

√
n/ log(n) respectively, [9,27,43].

The first algorithm to solve SVP and CVP in any norm and even the more
general integer programming problem with an exponential running time in the
rank only was given by Lenstra [34]. Kannan [31] improved this to nO(n) time
and polynomial space1. To this date, the running time of order nO(n) remains
best for algorithms only using polynomial space. It took almost 15 years until
Ajtai, Kumar and Sivakumar presented a randomized algorithm for SVP2 with
time and space 2O(n) and a 2O(1+1/ε)n time and space algorithm for (1+ε)-CVP2

[12,13]. Here, c-CVP is the problem of finding a lattice vector, whose distance
to the target is at most c times the minimal distance. Blömer and Naewe [17]
extended the randomized sieving algorithm of Ajtai et al. to solve SVPp and
CVPp respectively in 2O(d) time and space and O(1 + 1/ε)2d time and space
respectively. For CVP∞, using a geometric covering technique, Eisenbrand et
al. [22] improved this to O(log(2+1/ε))d time. This covering idea was adapted in
[41] to all (sections of) �p norms. Their algorithm for (1+ε)-CVPp requires time
2O(p·n)(1 + 1/ε)n/min(2,p) and is based on the current state-of-the-art, 2O(n)(1 +
1/ε)n deterministic time CVP solver for general (even asymmetric) norms from
Dadush and Kun [19].

Currently, exact and singly-exponential time algorithms for CVP are only
known for the �2 norm. The first such algorithm was developed by [37] and is
deterministic. In fact, this algorithm was also the first to solve SVP2 in deter-
ministic time (as there is an efficient reduction from SVP to CVP, [26]) and has
been instrumental to give deterministic algorithms for SVP and (1 + ε)-CVP,
[19,20]. Currently, the fastest exact algorithms for SVP2 and CVP2 run in time
and space 2n and are based on Discrete Gaussian Sampling [1,4,7].

Recently there has been exciting progress in understanding the fine-grained
complexity of exact and constant approximation algorithms for SVP and CVP [2,
6,16]. Under the assumption of the strong exponential time hypothesis (SETH)
and for p �= 0 (mod 2), exact CVPp and SVP∞ cannot be solved in time 2(1−ε)n.
For a fixed ε > 0, the dimension of the lattice can be taken linear in n, i.e.
d = Oε(n). Under the assumption of a gap-version of the strong exponential
time hypothesis (gap-SETH) these lower bounds also hold for the approximate
versions of CVPp and SVP∞. More precisely, in our setting these results read as
follows. For each ε > 0 and for some norm ‖ · ‖K there exists a constant γε > 1
such that there exists no 2(1−ε)n algorithm that computes a γε-approximation
of SVPK and CVPK (where the corresponding target lies in the span of the
lattice).

Until very recently, the fastest approximation algorithms for SVPp and CVPp

did not match these lower bounds by a large margin, even for large approximation
factors [5,18,39]. The only exception was SVP2 (where no strong, fine-grained
lower bound is known) where a constant factor approximation is possible in time
20.802n and space 20.401n, see [8,35,38,44]. Last year, Eisenbrand and Venzin

1 For the sake of readability we omit polynomials in the encoding length of the matrix
B and the target vector t when stating running times and space requirements.
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presented a 20.802n+εd algorithm for SVPp and CVPp for all �p norms [23]. Their
algorithm exploits a specific covering of the Euclidean (�2) norm-ball by �p norm-
balls and uses the fastest (sieving) algorithm for SVP2 as a subroutine. This
approach was then further extended to yield generic, 2εd time reductions from
SVPq to SVPp, q ≥ p ≥ 2 and CVPp to CVPq, q ≥ p, see [3]. While this improved
previous algorithms for SVPp and CVPp (and even constant factor approximate
CVP2), these techniques only apply to the very specific case of �p norms with
the added restriction that the dimension d is small, further accentuating the
issue of rank versus dimension. For any other norm and even for �p norms with,
say, d = Ω(n · log(n)), their approach yields no improvement.

In this work, we close this gap. Specifically, for any d-dimensional lattice of rank
n and for any norm, we show how to solve constant factor approximate CVP
and SVP in time 20.802n.

Theorem 1. For any lattice L ⊆ R
d of rank n, any norm ‖ · ‖K on R

d and
for each ε > 0, there exists a constant γε such that a γε-approximate CVPK and
SVPK can be solved in (randomized) time 2(0.802+ε)n and space 2(0.401+ε)n.

We note that the constant 0.802 in the exponent can be replaced by a slightly
smaller number, [30]. Thus, we indeed get the running time as advertised in the
title. We use γε throughout this paper. It can be assumed to be of order 1/ε5.
For the shortest vector problem, we can significantly generalize this result.

Theorem 2. For any lattice L ⊆ R
d of rank n, any norm ‖ · ‖K on R

d and for
each ε > 0, there exists a constant γε such that there is a 2εn time, randomized
reduction from (α ·γε)-approximate SVPK to an oracle for α-approximate CVP2

(or even α-approximate CVP in any norm).

Our main idea is to cover K by a special class of ellipsoids to obtain the
approximate closest vector by using an approximate closest vector algorithm
with respect to �2. This covering idea draws from [23] and is also similar to the
approach of Dadush et al. in [19,20]. Specifically, for any ε > 0, one can compute
some ellipsoid E , so that K can be covered by 2εn translates of E , and, conversely,
E can be covered by 2εn translates of cε · K. Here, cε is a constant that only
depends on ε. Such a covering will be sufficient to reduce approximate SVPK to
2εn calls to an oracle for (approximate) CVP2. Specifically, using an oracle for
α-CVP2, we will obtain a O(α ·cε)-approximation to the shortest vector problem
with respect to ‖ · ‖K . Similarly, using these covering ideas twice, it is straight-
forward to extend this approach to reduce O(α · cε)-approximate SVPK to 2εn

calls to an oracle for α-approximate CVPQ, for any two norms ‖ · ‖K , ‖ · ‖Q.
For space reasons, we defer this proof to the full version of the paper.2 These
reductions are randomized and use lattice sparsification. This covering idea can
be used to solve constant factor approximate CVPK as well. However, we can no
longer assume to only have access to an oracle for the approximate closest vector
problem. Instead, we will have to use one very specific property of the currently
2 Available at https://arxiv.org/abs/2110.02387.

https://arxiv.org/abs/2110.02387
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fastest, 20.802n time and randomized approximate algorithm for SVP2 that is
based on Ajtai et al.’s sieving approach [12]. In fact, this property is inherent
in any sieving algorithm with respect to any norm. Our geometric ideas then
also carry over to this general setting. Any sieving algorithm for (approximate)
SVPQ that runs in time 2βn can be used to compute a γε-approximate solution
to CVPK in 2(β+ε)n time. This generalization is also discussed in the full version.

2 Approximate SVP in 20.802n Time

In this section, we describe our main geometric observation and how it leads to an
algorithm for the approximate shortest and closest vector problem respectively.
In a first part, we state the main geometric theorem and informally present how
it leads to a reduction from approximate SVPK to an oracle for approximate
CVP2. In the second part, we make this formal using lattice sparsification and
some further geometric considerations.

2.1 Covering K with Few Ellipsoids and Vice Versa

The (approximate) shortest vector problem in the norm ‖ · ‖K can be rephrased
as follows.

Does K contain a lattice point different from 0?

This follows by guessing the length � of the shortest non-zero lattice vector,
scaling the lattice by 1/� and then confirm the right guess by finding this lattice
vector in K. By guessing we mean to try out all possibilities for � of the form
(1+1/poly(n))k, this can be limited to a polynomial in the relevant parameters.
Imagine now that one can cover K using a collection of (Euclidean) balls Bi of
any radii such that

K ⊆
N⋃

i=1

(xi + Bi) ⊆ c · K.

To then find a c-approximation to the shortest vector, one could use a solver for
CVP2 using targets x1 · · · , xN . However, this näıve approach is already doomed
for K = Bn

∞. To achieve a constant factor approximation, N = nO(n) translates
of (any scaling of) the Euclidean ball Bn

2 := {x ∈ R
n | ‖x‖2 ≤ 1} are required

and can only be brought down to N = 2O(n) if one is willing to settle for
c = O(

√
n) [29].

However, if we impose a second condition on these balls (and even relax the
above condition), this idea will work. Specifically, if we can cover K = −K ⊆ R

n

by N translates of c1 · Bn
2 and Bn

2 by N translates of c2 · K,

K ⊆
N⋃

i=1

(xi + c1 · Bn
2 ) and Bn

2 ⊆
N⋃

i=1

(yi + c2 · K),

we can solve (α · c1 · c2)-approximate SVPK using (essentially) N calls to a
solver for α-CVP2. It turns out that such a covering is always possible for any
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symmetric and convex K, and, in particular, the number of translates N can be
made smaller than 2εn for any ε > 0. To be precise, the covering is by ellipsoids
(affine transformations of balls), but we can always apply a linear transformation
to restrict to Euclidean unit norm-balls, i.e. we may take c1 = 1. The precise
properties of the covering are now stated in the following theorem, where we
denote by N(T,L) the translative covering number of T by L, i.e. the least
number of translates of L required to cover T .

Theorem 3. For any symmetric and convex body K ⊆ R
n (given by a weak

separation oracle) and for any ε > 0, there exists an (invertible) linear transfor-
mation Tε : Rn → R

n and a constant cε ∈ R>0 such that

1. N(Tε(K), Bn
2 ) ≤ 2εn (even Vol(Tε(K) + Bn

2 ) ≤ 2εn · Vol(Bn
2 )) and

2. N(Bn
2 , cε · Tε(K)) ≤ 2εn (even Vol(Bn

2 + cε · Tε(K)) ≤ 2εn · Vol(cε · Tε(K))).

The linear transformation Tε can be computed in (randomized) nO(log(n)) time.

The volume estimate Vol(Tε(K) + Bn
2 ) ≤ 2εn · Vol(Bn

2 ) in (1) is stronger
than N(Tε(K), Bn

2 ) ≤ 2εn, similar in (2). It makes the covering of Tε(K) by
translates of Bn

2 constructive. Indeed, any point inside Tε(K) will be covered
with probability at least 2−εn if we sample a random point within Tε(K) + Bn

2

and place a copy of Bn
2 around it. Repeating this for O(n · log(n) ·2εn) iterations

yields, with high probability, a full covering of Tε(K) by translates of Bn
2 . See

[40] for details.
We defer the proof of Theorem 3 to the full version of the paper. We now

discuss how we intend to use it to solve the shortest vector problem in arbitrary
norms. To do so, we first fix some notations and do some simplifications. We will
denote by s a shortest, non-zero lattice vector of the given lattice L ⊆ R

n with
respect to ‖ · ‖K , the norm under consideration. We will assume that 1 − 1/n ≤
‖s‖K ≤ 1, i.e. s ∈ K \ (1−1/n) ·K. We fix ε > 0, and denote by Tε be the linear
transformation that is guaranteed by Theorem 3. Up to replacing L by T−1

ε (L )
and K by T−1

ε (K), we can also assume that Tε = Id (‖ · ‖K = ‖T−1
ε (·)‖T−1

ε (K)).
We can now describe how we will use the covering guaranteed by Theorem 3.
Since K is covered by translates of Bn

2 , there is some translate that holds s. We
denote it by t + Bn

2 . Now, suppose there is a procedure that either returns s or
generates at least 2εn +1 distinct lattice vectors lying in t+α ·Bn

2 . For the latter
case, while these vectors may all have very large norm with respect to ‖ · ‖K or
may even equal the zero vector, by taking pairwise differences, we are still able
to find a O(α · cε)-approximation to the shortest vector. Indeed, by property (2)
of Theorem 3, t+α ·Bn

2 can be covered by fewer than 2εn translates of (α ·cε) ·K.
Thus, one translate of (α · cε) · K must hold two distinct lattice vectors. Their
pairwise difference is then a (2 ·(1−1/n)−1 ·α ·cε)-approximation to the shortest
vector s. This is depicted in Fig. 2.

To finish the argument, it remains to argue that such a procedure can be
simulated with an oracle for α-approximate CVP2 at hand. This will be achieved
through the use of lattice sparsification. This technique will allow us to delete
lattice points in an almost uniform manner. Specifically, when the oracle has
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Fig. 2. The covering of K by translates of the Euclidean norm ball. One translate of
(α · cε) · K covering t + α · Bn

2 holds two lattice vectors u and v. Their difference u − v
is a (2 · (1 − 1/n)−1 · α · cε)-approximation to the shortest vector problem.

already returned lattice vectors v1, · · · , vN , sparsifying the lattice ensures that
with sufficiently high probability, s is retained and v1, · · · , vN are deleted. This
then forces the α-approximate CVP2 oracle to return a lattice vector vN+1

distinct from v1, · · · , vN with ‖t − vN+1‖K ≤ α · ‖t − s‖K .

2.2 Approximate SVPK Using an Oracle for Approximate CVP2

In this subsection we are going to formalize the exponential time reduction from
approximate SVP to an oracle for (approximate) CVP2 as outlined in the previ-
ous section. We are going to make use of the following theorem from [48], slightly
rephrased for our purpose.

Theorem 4. For any prime p, any lattice L ⊆ R
d of rank n and lattice vectors

w, v1, v2, · · · , vN ∈ L with vi /∈ w + p · L \ {0}, one can, in polynomial time,
sample a shifted sub-lattice u + L ′ with L ′ ⊆ L and u ∈ L such that:

Pr
[
w ∈ u + L ′ and v1, · · · , vN /∈ u + L ′] ≥ 1

p
− N

p2
− N

pn
.

The condition vi /∈ w + p · L \ {0} is slightly inconvenient. We will deal with
these type of vectors by showing that, for large enough p, they will be too large
and will not be considered by our α-approximate CVP2 oracle. This is done by
the following lemma.

Lemma 1. Let L be a lattice, let K be a symmetric and convex body containing
no lattice vector other than 0 in its interior and suppose that N(K,Bn

2 ), N(Bn
2 , β·

K) ≤ 2εn. Then, the following three properties hold:

1. ∀v ∈ p · L \ {0} (p ∈ N) : ‖v‖2 ≥ (2−εn/β) · p.
2. K ⊆ 2εn · Bn

2

3. (2−εn/β) · Bn
2 ⊆ K
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Proof. We first show the last two properties by using the translative covering
numbers. Since N(K,Bn

2 ) ≤ 2εn, we must have K ⊆ 2εn · Bn
2 . To see this, we

note that otherwise, the largest segment contained in K cannot be covered using
2εn translates of Bn

2 . Conversely, since N(Bn
2 , β · K) ≤ 2εn and the convexity of

K = −K, the smallest inradius of K cannot be smaller than 2−εn/β. It follows
that (2−εn/β) · Bn

2 ⊆ K.
We can now show the first property. Let v ∈ p · L \ {0}. By assumption

v
p /∈ int(K) and so v

p /∈ (2−εn/β) · int(Bn
2 ), where int(K) denotes the interior of

the body K. This means that ‖v‖2 ≥ (2−εn/β) · p.

We now state our randomized reduction. We rotate the lattice and K so that
span(L ) = R

n×{0}d−n. Up to replacing K by K∩span(L ) and deleting the last
d − n zeros, we may assume that d = n. For details, we refer to the second part
of the proof of Lemma 2. We fix some ε > 0 and compute the invertible linear
transformation Tε guaranteed by Theorem 3. Up to applying the inverse of Tε and
scaling the lattice, we may assume that Tε = Id and 1 − 1/n ≤ ‖s‖K ≤ 1, where
s is a shortest lattice vector with respect to the norm ‖ · ‖K . One iteration of the
reduction consists of the following steps and succeeds with probability 2−O(ε)n.

(1) Fix a prime number p between 23εn and 2 · 23εn.
(2) Sample a random point t ∈ K + Bn

2 .
(3) Using the number p, sparsify the lattice as in Theorem 4. Denote the result-

ing lattice by u + L ′.
(4) Run the oracle for α-approximate CVP2 for L ′ with target t − u, add u to

the vector returned and store it.
(5) Repeat steps (3) and (4) n2 · 25εn times. Among the resulting lattice vectors

and their pairwise differences, output the shortest (non-zero) with respect
to ‖ · ‖K .

Theorem 5. Let L ⊆ R
d be any lattice of rank n. For any ε > 0, there

is a constant γε, such that there is a randomized, 2εn time reduction from
(α · γε)-approximate SVPK for L to an oracle for α-approximate CVP2 for
n-dimensional lattices.

Proof. Let us already condition on the event that the sampled point t verifies
s ∈ t + Bn

2 . This happens with probability at least 2−εn by property (1) of
Theorem 3. This probability can be boosted to 1 − 2−n by repeating steps (2)
to (5) O(n · 2εn) times and outputting the shortest non-zero vector with respect
to ‖ · ‖K .
We are now going to show that, with high probability, s is going to be retained
in the shifted sub-lattice and the lattice vector that is returned in that iteration
is different from the ones returned from a previous iteration (where also s was
retained). To this end, denote by L := {v1, · · · , vj} the (possibly empty) list
of lattice vectors that were obtained in an iteration where s belonged in the
corresponding (shifted) sub-lattice. This implies that ‖t−vi‖2 ≤ α ·‖t−s‖2, and,
by the triangle inequality and Lemma 1, ‖vi‖2 ≤ (2 ·α) ·2εn for all i ∈ {1, · · · , j}.
On the other hand, by slightly rescaling K in Lemma 1, the triangle inequality



448 T. Rothvoss and M. Venzin

and our choice of p, any vector in s + p · L \ {0} is larger than 22εn/cε in the
Euclidean norm. It follows that

v1, · · · , vj /∈ s + p · L

(We are assuming that α = 2o(n), this is without loss of generality. For α =
2n log log(n)/ log(n), Babai’s algorithm runs in polynomial time, [15].)

Thus, provided j ≤ 2εn and by Theorem 4, in any iteration of the algorithm
and with probability at least 2−3εn/2, we add a lattice vector to the list L that
is either distinct from all other vectors in L or that equals s. In other words, the
number of distinct lattice vectors in our list follows a binomial distribution with
parameter 2−3εn/2. Since we repeat this n2 · 25εn times, by Chernov’s inequality
and with probability at least 1− 2−n, after the final iteration the list L contains
at least 2εn + 1 distinct lattice vectors lying within t + α · Bn

2 or contains s. In
the latter case we are done. In the former case, since N(α ·Bn

2 , (α ·cε) ·K) ≤ 2εn,
by checking all 210εn pairwise differences, we will find a non-zero lattice vector
with ‖ · ‖K-norm at most α · (2 · cε). Since ‖s‖K ≥ 1 − 1/n and setting γε :=
(1 − 1/n)−1 · 2 · cε, this vector is a (α · γε)-approximation to s.

Remark 1. We can bring down the space requirement of this reduction to poly-
nomial space. Secretly sample two numbers i, j from {1, 2, · · · , n2 ·25εn} and only
store the lattice vectors returned from the ith and jth iteration of step (4). Since
this is independent from the success of the reduction, the overall probability of
success is still 2−Ω(ε)n. The reason for this complication is that we must assume
that the CVP2 oracle is malicious and returns lattice vectors that, dependent
on previous inquiries, help us the least.

3 Approximate CVP in Time 20.802n

In this section we are going to describe a 20.802n time algorithm for a constant
factor approximation to the closest vector problem in any norm. Specifically, for
any d-dimensional lattice L of rank n, target t, any norm ‖ · ‖K and any ε > 0,
we show how to approximate the closest vector problem to within a constant
factor γε in time 2(0.802+ε)n. The space requirement is of order 2(0.401+ε)n.

To achieve this, we will adapt the geometric ideas as outlined in the previous
subsection to the setting of the closest vector problem. To do so, we are first
going to describe how to restrict to the full-dimensional case.

Lemma 2. Consider an instance of the closest vector problem, CVPK(L , t),
L ⊆ R

d of rank n. In polynomial time, we can find a lattice L̃ ⊆ R
n of rank and

dimension n, target t̃ ∈ R
n and norm ‖·‖K̃ so that an α-approximation to CVPK̃

on L̃ with target t̃ can be efficiently transformed in a (2α + 1)-approximation
to CVPK(L , t). Whenever t ∈ span(L ), the latter is a α-approximation to
CVPK(L , t).
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Proof. Let us define t′ := argmin{‖t − x‖K , x ∈ span(L )}. Such a point may
not be unique, for instance for K = Bn

1 or K = Bn
∞, but it suffices to consider

any point t′ realizing this minimum or an approximation thereof. Given a (weak)
separation oracle for K, this can be computed in polynomial time. We now show
that an α-approximation to CVPK(L , t′) yields a (2 · α + 1) approximation to
CVPK(L , t). Indeed, since ‖t − t′‖K is smaller than distK(t,L ), the distance
of t to the closest lattice vector, we have that

distK(t′,L ) ≤ 2 · distK(t,L ).

Denote by cα ∈ L an α-approximation to the closest lattice vector to t′. By the
triangle inequality,

‖t− cα‖K ≤ ‖t− t′‖K +‖t′ − cα‖K ≤ dist(t,L )+α ·dist(t′,L ) ≤ (2 ·α+1) ·dist(t,L ).

This means that an α-approximation to the closest vector to t′ is a (2 · α + 1)
approximation to the closest vector to t. Now that t′ ∈ span(L ), we can restrict
to the case d = n.

Let On be a linear transformation that first applies a rotation sending
span(L ) to R

n×{0}d−n and then restricts onto its first n coordinates. The trans-
formation On : span(L ) → R

n is invertible. The n-dimensional instance of the
closest vector problem is then obtained by setting L̃ ← On(L ), t̃ ← On(t′) and
‖ · ‖K̃ where K̃ ← On(K). Whenever cα is an α-approximation to CVPK̃(L̃ , t̃),
O−1

n (cα) is a (2 · α + 1)-approximation to CVPK(L , t) (or an α-approximation
to CVPK(L , t), if t ∈ span(L )).

In our algorithm, we are going to make use of the main subroutine of [23]. We
note that their subroutine is implicit in all sieving algorithms for SVP2 and was
first described by [38,44]. For convenience, we slightly restate it in the following
form.

Theorem 6. Given ε > 0, R > 0, N ∈ N and a lattice L ⊆ R
d of rank n, there

is a randomized procedure that produces independent samples v1, · · · , vN ∼ D,
where the distribution D satisfies the following two properties:

1. Every sample v ∼ D has v ∈ L and ‖v‖2 ≤ aε · R, where aε is a constant
only depending on ε.

2. For any s ∈ L with ‖s‖2 ≤ R, there are distributions Ds
0 and Ds

1 and some
parameter ρs with 2−εn ≤ ρs ≤ 1 such that the distribution D is equivalent to
the following process:
(a) With probability ρs, sample u ∼ Ds

0. Then, flip a fair coin and with
probability 1/2, return u, otherwise return u + s.

(b) With probability 1 − ρs, sample u ∼ Ds
1.

This procedure takes time 2(0.802+ε)n+N ·2(0.401+ε)n and requires N +2(0.401+ε)n

space and succeeds with probability at least 1/2.

With this randomized procedure, we obtain our main result.
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Theorem 7. For any ε > 0 and lattice L of rank n, we can solve the γε-
approximate closest vector problem for any norm ‖ · ‖K in (randomized) time
2(0.802+ε)n and space 2(0.401+ε)n.

Proof. Using the reduction given by Lemma 2, we may assume that L is of full
rank, i.e. L ⊆ R

n. We denote by c the closest lattice vector with respect to
‖ · ‖K to t. Up to scaling and applying the inverse of the linear transformation
given by Theorem 3 to L , K and t, we may assume that 1−1/n ≤ ‖c−t‖K ≤ 1,
Vol(K + Bn

2 ) ≤ 2εn · Vol(Bn
2 ) and N(Bn

2 , cε · K) ≤ 2εn for the constant cε > 0.
We now sample a uniformly random point t̃ within t + K + Bn

2 . With proba-
bility at least 2−εn, c ∈ t̃ + Bn

2 . For the remainder of the proof, we condition on
c ∈ t̃ + Bn

2 .
We now use Kannan’s embedding technique [31] and define a new lattice

L ′ ⊆ R
n+1 of rank n + 1 with the following basis:

B̃ =
(

B t̃
0 1/n

)
∈ Q

(n+1)×(n+1).

Finding a (α-approximate) closest lattice vector to t̃ in L is equivalent to finding
a (α-approximate) shortest lattice vector in L ′ ∩{x ∈ R

n+1 | xn+1 = 1/n}. The
vector s := (t̃ − c, 1/n) is such a vector (although not necessarily shortest), its
Euclidean length is at most 1 + 1/n.

Now, consider the n + 1-dimensional scaled Euclidean ball ((1 + 1/n) · aε) ·
Bn+1

2 . Here, aε is the constant from Theorem 6. Each of its n-dimensional layers
of the form ((1 + 1/n) · aε) · Bn+1

2 ∩ {x ∈ R
n+1 | xn+1 = k/n} for k ∈ Z can be

covered by at most 2εn translates of ((1 + 1/n) · aε · cε) · K × {0}. It follows that
all lattice vectors inside aε · (1 + 1/n) · Bn+1

2 ∩ L ′ can be covered by at most
(2 · n · aε + 1) · 2εn translates of ((1 + 1/n) · aε · cε) · K × {0}.

We now use the procedure from Theorem 6 with R := 1 + 1/n and sample
N := 2 lattice vectors from aε ·R ·Bn+1

2 ∩L ′. With probability at least 1
2 · ρ2s ≥

1
2 · 2−2εn this succeeds and both lattice vectors are generated according to (2a).
Let us condition on this event. That means the sampled lattice vectors are of
the form v1 +σ1s and v2 +σ2s where v1, v2, σ1, σ2 are independently distributed
with v1, v2 ∼ Ds

0 and σ1, σ2 ∼ {0, 1} uniformly. Since v1 and v2 are i.i.d., with
probability at least (2 · n · aε + 1)−2 · 2−2εn, there must be one translate of
((1 + 1/n) · aε · cε) · K × {0} that contains both v1 and v2. Put differently and
using K = −K,

v1 − v2 ∈ (2 · (1 + 1/n) · aε · cε) · K × {0}.

Next, we decide the independent coin flips and with probability of 1/4 we have
σ1 = 1 and σ2 = 0. We condition on this event. Then the difference of the
sampled lattice vectors is

(v1 + s) − v2 ∈ (2 · (1 + 1/n) · aε · cε) · K × {0} + s.

We can rewrite it as

(v1 + s) − v2 =
(

u
0

)
+ s =

(
u − c

0

)
+

(
t̃

1/n

)
,
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where u ∈ L and ‖u‖K ≤ (2 · (1 + 1/n) · aε · cε). The vector u − c can be found
by adding −t̃ to the first n coordinates of (v1 + s) − v2. Then c − u will be our
approximation to the closest lattice vector. Indeed, by the triangle inequality,

‖t − (c − u)‖K ≤ ‖t − c‖K + ‖u‖K ≤ 1 + (2 · (1 + 1/n) · cε · aε) := βε.

We set γε := (1 − 1/n)−1 · (2 · βε + 1); recall that we have used Lemma 2 and
scaled the lattice so that ‖t − c‖K ≥ 1 − 1/n. The lattice vector c − u is a
γε-approximation to the closest lattice vector to t.

To boost the probability of success from 2−Ω(ε)n to 1 − 2−n, we can repeat
the steps starting from where we defined L ′ 2−Ω(ε)n times and only store the
currently closest lattice vector to t. Finally, to ensure that a t̃ with c ∈ t̃+Bn

2 is
found, we repeat the whole procedure starting from (2) O(n · 2εn) many times.
This boosts the overall success probability to 1 − 2−n and yields a total running
time of 2(0.802+O(ε))n and space 2(0.401+O(ε))n.
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