
Chapter 9
A Note on Disjunction and Existence
Properties in Predicate Extensions of
Intuitionistic Logic—An Application of
Jankov Formulas to Predicate Logics

Nobu-Yuki Suzuki

Abstract Predicate extensions of intuitionistic logic (PEI’s) are intermediate pred-
icate logics having the same propositional part as intuitionistic logic. Intuitively,
PEI’s must resemble intuitionistic logic. We discuss PEI’s from the viewpoint of
disjunction property (DP) and existence property (EP). Note that DP and EP are
regarded as “hallmarks” of constructivity of intuitionistic logic. There are, however,
uncountably many PEI’s having both of DP and EP.Moreover, there are two continua
of PEI’s: (1) each of which lacks both of DP and EP, and (2) each of which has EP
but lacks DP. Now, a natural question arises: Do there exist uncountably many PEI’s
each of which has DP and lacks EP? We answer this question affirmatively. Specifi-
cally, we construct uncountably many such PEI’s by making use of modified Jankov
formulas. This result suggests that although PEI’s are living near to intuitionistic
logic, the diversity of their nature seems rich. In other words, logics among PEI’s are
fascinating from the logical point of view and yet to be explored.

Keywords Disjunction property · Existence property · Intermediate logics ·
Jankov formula
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9.1 Introduction

Predicate extensions of intuitionistic logic (PEI’s) are intermediate predicate logics
having the same propositional part as intuitionistic logic. Intuitively, PEI’s must
resemble intuitionistic logic. We discuss PEI’s from the viewpoint of disjunction
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property (DP) and existence property (EP). Note that DP and EP are regarded as
distinguishing characteristics and features of constructivity of intuitionistic logic.
However, Suzuki (1999) constructed a continuum of PEI’s having both of EP and
DP. There exits a continuum of PEI’s without both of EP and DP as well. In 1983,
Minari (1986) and Nakamura (1983) independently proved that some well-known
PEI’s have DP and fail to have EP. Recently, in Suzuki (2021), a continuum of PEI’s
having EP and lacking DP was constructed.1

Now, a natural question arises: Do there exist uncountably many PEI’s each of
which has DP and lacks EP? We answer this question affirmatively. Specifically, we
construct uncountablymany such PEI’s by giving a recursively enumerable sequence
of concrete predicate axiom schemata. These axiom schemata are obtained by mod-
ifying the Jankov formulas (Jankov 1963, 1968, 1969).

Jankov created an invaluable research tool for the study of non-classical proposi-
tional logics2; the Jankov formulas provide us with a connection between algebraic
property of Heyting algebras and inclusion relation among propositional logics. In
this paper, we give an application of Jankov’s tool to non-classical predicate logics.
Since Jankov’s method deals with propositional logics, its straightforward appli-
cation to predicate logics inevitably yields logics having their propositional parts
differing from intuitionistic logic. We introduce our formulas with an appropriate
modification of Jankov’s to keep them having intuitionistic propositional part.

Accordingly, to show our main result, we prove three Lemmata9.2, 9.6, and
9.9; Lemma9.2 states that our modified Jankov formulas yield PEI’s lacking EP;
Lemma9.6 states that they yield PEI’s having DP; from Lemma9.9, it holds that
we can generate uncountably many PEI’s by using them. We show Lemma9.2 by
making use of algebraic semantics. Our idea for the proof of Lemma9.6 comes
from the above-mentioned idea of Minari (1986) and Nakamura (1983) based on
Kripke frame semantics. Lemma9.9 is proved by algebraic Kripke sheaf semantics
introduced in Suzuki (1999).

We assume readers’ some familiarity with Heyting algebras and Kripke frames.
To make this paper rather self-contained, we briefly explain some notions and def-
initions on these semantical tools needed in this paper. Algebraic Kripke sheaves
are semantical framework obtained from integrating algebraic semantics into Kripke
semantics. Since general algebraic Kripke sheaves are (as of now) not so simple to
handle, we introduce restricted algebraic Kripke sheaves, called �-brooms, and use
them with a result in Suzuki (1999) for the proof of our main result.

In Sect. 9.2, brief explanation of intermediate (propositional and predicate) logics
and some related definitions aswell asDP andEP are given. In Sect. 9.3, we introduce
Jankov formulas and modified Jankov formulas. Here, we prove that modified ones
as axiom schemata yield PEI’s without EP (Lemma9.2) . In Sects. 9.4 and 9.5, we
prove that these axiom schemata enjoy DP (Lemma9.6), and that they generate a

1 Thus, DP and EP in intermediate predicate logics were proved to be independent. This result
contrasts with Friedman (1975) and Friedman and Sheard (1989).
2 His tool have been, and is being, extended to many propositional logics variously. See e.g., Citkin
(2018). The reader will find recent development there.
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continuum of PEI’s (Lemma9.9), and we complete the proof of the main result
(Theorem9.4). In Sect. 9.6, we make some concluding remarks.

9.2 Preliminaries

Intermediate logics are logics falling intermediate between intuitionistic and classical
logics. There are two types of intermediate logics: intermediate propositional logics
and intermediate predicate logics. We refer readers to Ono (1987) for an information
source.

We use a pure first-order language L. Logical symbols of L are propositional
connectives: ∨, ∧, ⊃, and ¬ (disjunction, conjunction, implication, and negation,
respectively), and quantifiers: ∃ and ∀ (existential and universal quantifiers, respec-
tively). L has a denumerable list of individual variables and a denumerable list of
m-ary predicate variables for each m < ω. All 0-ary predicate variables are iden-
tified with propositional variables; thus, the propositional language Lproposi tion is
contained in L. Note that L contains neither individual constants nor function sym-
bols.

The idea of introducing intermediate logics is the identification of each logic and
the set of formulas provable in it. For example, intuitionistic propositional logic H
and intuitionistic predicate logic H∗ are identified with the sets of formulas provable
in H and H∗, respectively. Also, classical propositional and predicate logics, C and
C∗, are treated in the same way.

Definition 9.1 A set J of formulas of propositional language Lproposi tion is said to
be an intermediate propositional logic, if J satisfies the conditions: (P1) H ⊆ J ⊆ C
and (P2) J is closed under the rule of modus ponens (from A and A ⊃ B, infer B)
and uniform substitution for propositional variable.

A set J of formulas ofLproposi tion is said to be a super-intuitionistic propositional
logic, if J satisfies (P1’) H ⊆ J and (P2). Let �0 be the set of all propositional
formulas. The �0 is the only super-intuitionistic propositional logic that is not an
intermediate propositional logic.

Definition 9.2 A setL of formulas ofL is said to be an intermediate predicate logic,
if L satisfies the three conditions: (Q1) H∗ ⊆ L ⊆ C∗ and (Q2) L is closed under the
rule of modus ponens, the rule of generalization (from A, infer ∀x A), and uniform
substitution3 for predicate variable.

A set L of formulas of L is said to be a super-intuitionistic predicate logic, if
L satisfies (Q1’) H∗ ⊆ L and (Q2). There are uncountably many superintuitionistic
predicate logics that are not intermediate predicate logics.

When A ∈ L, we sometimeswriteL 
 A, and say “A is provable inL.” For a logic
L and a set � of formulas, the smallest logic containing L and � (as sets) is denoted

3 Cf. the operator Š in Church (1956).



224 N.-Y. Suzuki

by L + �. Let L be a predicate logic. Then, π(L) = L ∩ �0 is a propositional logic.
It is called the propositional part of L.

For each propositional logic J, a predicate logicL is called a predicate extension of
J, if π(L) = J. A predicate logic L is said to be a predicate extension of intuitionistic
logic (a PEI), if π(L) = H.

Definition 9.3 (cf.Church 1956; Sect. 32) To each predicate variable p, we associate
a unique propositional variable π(p). For a given formula A of L, we define the
associated formula of the propositional calculus (afp) by (1) deleting all quantifiers
∀x and ∃x in A and (2) substituting π(p) to p(v1, . . . , vn) in A for each predicate
variable4 p occurring in A. The afp of A is denoted by π(A).

Proposition 9.1 Let L be a predicate logic. It holds that π(H∗ + �) = H + {π(A) ;
A ∈ �}.
Definition 9.4 A logic L is said to have the disjunction property (DP), if for every
A and every B, L 
 A ∨ B implies either L 
 A or L 
 B.

A formula A is said to be congruent to a formula B, if A is obtained from B by
alphabetic change of bound variables which does not turn any free occurrences of
variables newly bound (cf. Kleene 1952; p. 153). A predicate logic L is said to have
the existence property (EP), if for every ∃x A(x), L 
 ∃x A(x) implies that there exist
a formula ˜A(x) which is congruent to A(x) and an individual variable v such that v
is free for x in ˜A(x) and L 
 ˜A(v) (cf. Kleene 1962).

Formulas congruent to a formula A(x) are intuitionistically equivalent to each
other. They are usually written by the same symbol A(x) for the sake of simplicity
(cf. Gabbay et al. 2009; Sect. 2.3).

Definition 9.5 (cf. Jankov 1968) A sequence {Li }i<ω of logics is said to be strongly
independent, if Li �

⋃

j �=i L j for each i < ω, where
⋃

j �=i L j is the smallest logic
containing all L j ( j �= i).

Proposition 9.2 Let {Li }i<ω be a strongly independent sequence of logics.
(1) For every I, J ⊆ ω, I = J if and only if

⋃

i∈I Li = ⋃

i∈J Li .
(2) The set {⋃i∈I Li ; I < ω} has the cardinality 2ω.

Proof It suffices to show that I �= J implies
⋃

i∈I Li �= ⋃

i∈J Li . Suppose I �= J .
Without loss of generality, we may assume that there exists a k ∈ I \ J . It is obvious
that

⋃

i∈J Li ⊆ ⋃

i �=k Li . By the assumption, we have Lk �
⋃

i �=k Li . Thus, Lk �
⋃

i∈J Li . Therefore, we have
⋃

i∈I Li �= ⋃

i∈J Li . �

For a sequence {Xi }i<ω of formulas, we can define a sequence {H∗ + Xi }i<ω of
logics. If {H∗ + Xi }i<ω is strongly independent, we say that {Xi }i<ω is strongly
independent .

4 In Church (1956), predicate variables are called functional variables.
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9.3 Modified Jankov Formulas—Learning Jankov’s
Technique

In this section, we briefly explain Jankov formulas of finite subdirectly irreducible
Heyting algebras. Then, we introduce a variant of Jankov formulas modified to
achieve our aim. We show that these modified Jankov formulas as axiom schemata
generate PEI’s without EP.

9.3.1 Heyting Algebras and Jankov Formulas

Let A be a Heyting algebra. In what follows, we denote basic operations of A by:
∪A (join), ∩A (meet), ¬A (pseudo-complementation), and →A (relative pseudo-
complementation). We use the same letter A to denote its underlying set. The partial
order determined by the lattice structure of A is denoted by ≤A. Also, 1A and 0A

are the greatest and least element of A. We sometimes omit the subscript A. The
two-element Boolean algebra is denoted by 2 (= {12, 02}).
Definition 9.6 AHeyting algebra A is said to be subdirectly irreducible, if A \ {1A}
has the greatest element. This element is denoted by �A.

Example 9.1 Anon-empty partially ordered setM = (M,≤M) is said to be aKripke
base, if it has the least element 0M. A subset S ⊆ M is said to be open, if S is upward-
closed (i.e., for every x ∈ S and every y ∈ M, x ≤M y implies y ∈ S). Then the set
O(M) of all open subsets of M is a subdirectly irreducible Heyting algebra with
respect to the set-inclusion as its partial ordering. The second greatest element of
O(M) is M \ {0M}.

Let A be a Heyting algebra, PV the set of all propositional variables. A mapping
v : PV → A is said to be an assignment on A. By the usual induction, we extend
the v to the mapping v : �0 → A. A propositional formula C is said to be valid in
A, if v(C) = 1A for every assignment v on A. The set of all propositional formulas
valid in A is denoted by E(A).

Proposition 9.3 For every non-degenerate Heyting algebra A, the set E(A) is an
intermediate propositional logic.

Let A be a finite subdirectly irreducible Heyting algebra. For each a ∈ A, we can
attach a unique propositional variable pa ∈ PV . The diagram δ(A) of A is the finite
set of propositional formulas defined by:
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δ(A) = {pa∪Ab ⊃ (pa ∨ pb), (pa ∨ pb) ⊃ pa∪Ab ; a, b ∈ A}
⋃

{pa∩Ab ⊃ (pa ∧ pb), (pa ∧ pb) ⊃ pa∩Ab ; a, b ∈ A}
⋃

{pa→Ab ⊃ (pa ⊃ pb), (pa ⊃ pb) ⊃ pa→Ab ; a, b ∈ A}
⋃

{pa→A0A ⊃ (¬pa), (¬pa) ⊃ pa→A0A ; a ∈ A} .

The Jankov formula J (A) of A is the propositional formula defined by:

J (A) : (
∧

δ(A)
) ⊃ p�A ,

where
∧

δ(A) is the conjunction of all formulas in δ(A). Then it is easy to see
that J (A) is not valid in A by taking the assignment vA: pa �→ a for each a ∈ A.
Since vA(

∧

δ(A)) = 1A, we have J (A) /∈ E(A). Moreover, we have the following
prominent result due to Jankov (1963), which provide us with a connection between
validity of Jankov formula and algebraic property.

Lemma 9.1 (cf. Jankov 1963; 1968; 1969) Let A be a finite subdirectly irreducible
Heyting algebra. If J (A) is not valid in a Heyting algebra B, then there exists a
quotient algebra B′ of B such that A is embeddable into B′.

For further discussion, we need a denumerable sequence {Ai }i<ω satisfying;

(A1) for each i < ω, Ai is a finite subdirectly irreducible Heyting algebra;
(A2) for every i , j < ω, if i �= j , thenAi is not embeddable into any quotient algebra

of A j .

In fact, Jankov (1968) andWroński (1974) constructed concrete sequences ofHeyting
algebras with the above properties. Let us fix one of these sequence. By the virtue of
their construction, we have the following by Lemma9.1.

Corollary 9.1 (cf. Jankov 1968 andWroński 1974) {J (Ai )}i<ω is strongly indepen-
dent.

Proof Define Li = H∗ + J (Ai ) for each i < ω. Pick an arbitrary i0 ∈ ω. Then, for
every j �= i0, A j is not embeddable into any quotient algebra of Ai0 . Thus, it holds
that J (A j ) ∈ E(Ai0) for every j �= i0. Therefore, we have

⋃

j �=i0
L j ⊆ E(Ai0) ��

J (Ai0) ∈ Li0 . Hence, Li0 �
⋃

j �=i0
L j . �

Thus, by putting J(I ) = ⋃

i∈I Li for each I ⊂ ω, we have a continuum {J(I ) ;
J ⊂ ω} of logics by Proposition9.2. Note that no logic in this continuum has the
propositional part being identical to intuitionistic logic. We must modify the original
J (A) so as to achieve our aim of this paper.
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9.3.2 Modified Jankov Formulas for PEI’s Without EP

In this subsection, we introduce modified Jankov formulas. The idea of our mod-
ification comes from observation of behavior of the sentence the sentence F :
∃x(p(x) ⊃ ∀yp(y)), where p is a unary predicate variable. Clearly, F is provable in
classical predicate logic C∗, but p(v) ⊃ ∀yp(y) is not so for every individual vari-
able v. Thus, this F is a typical counterexample to EP of C∗. Note that the afp π(F)

of F is p ⊃ p, and hence the propositional part π(H∗ + F) of H∗ + F equals H by
Proposition9.1. This F also gives a counterexample to EP of H∗ + F that is a PEI.
Moreover, Minari (1986) and Nakamura (1983) independently proved that H∗ + F
has DP, and hence they showed that H∗ + F is a PEI having DP and lacking EP. Our
modified Jankov formulas play the same role as F and have a property similar to that
of the original Jankov formula shown in Lemma9.1 (see Lemma9.12).

LetA be a finite subdirectly irreducible Heyting algebra, J (A) the Jankov formula
of A. Pick a fresh individual variable v. Let 	(A) be the finite set of sentences
obtained from δ(A) by replacing all occurrences of p�A by F . Define a formula
P J (A)(v) and a sentence Q J (A) by:

P J (A)(v) :
∧

	(A) ⊃ (p(v) ⊃ ∀yp(y)) ,

Q J (A) : ∃vP J (A)(v) .

Jankov (1968) and Wroński (1974) constructed a concrete sequence {Hi }i<ω of
finite subdirectly irreducible Heyting algebras satisfying the conditions (A1) and
(A2) in Sect. 9.3.1 together with the following (A3):

(A3) for each i < ω, there are exactly three elements in Hi having no incomparable
element (i.e., 0, 1 and �).

Let us fix one of their sequences. Then, we can construct Q J (Hi ) (i < ω) one by
one concretely and in a recursively enumerable manner. To achieve our main aim,
we use this sequence of Heyting algebras and show that {Q J (Hi )}i<ω satisfies the
following three conditions:

• (cf. Lemma9.2) for every I ⊆ ω, H∗ + {Q J (Hi ) ; i ∈ I } is a PEI lacking EP,
• (cf. Lemma9.6) for every I ⊆ ω, H∗ + {Q J (Hi ) ; i ∈ I } has DP.
• (Lemma9.9) {Q J (Hi )}i<ω is strongly independent.

In the rest of this subsection, we show that modified Jankov formulas axiomatize
PEI’s lacking EP. Specifically, we show the

Lemma 9.2 Let S be a set of finite non-degenerate subdirectly irreducible Heyting
algebras having at least three elements. Then, H∗ + {Q J (A) ; A ∈ S} is a PEI
lacking EP.

Note that Q J (A) is provable in C∗. It is clear that π(Q J (A)) = π(
∧

	(A)) ⊃
(p ⊃ p) is provable in intuitionistic logic H. Hence, for every set S of finite subdi-
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rectly irreducible Heyting algebras, the intermediate predicate logic H∗ + {Q J (A) ;
A ∈ S} is a PEI. It suffices to show the

Lemma 9.3 Let A be a finite subdirectly irreducible Heyting algebra having at least
three elements. Then, P J (A)(v) is not provable in C∗.

We introduce algebraic semantics for predicate logics, and some definitions and
propositions on Heyting algebras without proofs, and show this Lemma.

Definition 9.7 For each non-empty set U , the language obtained from L by adding
the name u for each u ∈ U is denoted by L[U ]. In what follows, we use the same
letter u for the name u of u, when no confusion can arise. We sometimes identify
L[U ] with the set of all sentences of L[U ].

A Heyting algebra A is said to be κ-complete for some cardinal κ , if both of the
supremum

⋃

S and the infimum
⋂

S exist in A for every subset S of A having the
cardinality at most κ . A pairA = (A, U ) of a non-degenerate |U |-complete Heyting
algebra A and a non-empty set U is said to be an algebraic frame, where |U | is the
cardinality of U .

A mapping V of the set of all atomic sentences of L[U ] to A is said to be an
assignment on A. We extend V to a mapping of L[U ] to A inductively as follows:

• V (A ∧ B) = V (A) ∩ V (B),
• V (A ∨ B) = V (A) ∪ V (B),
• V (A ⊃ B) = V (A) → V (B),
• V (¬A) = V (A) → 0,
• V (∀x A(x)) = ⋂

u∈U V (A(u)),
• V (∃x A(x)) = ⋃

u∈U V (A(u)).

SinceA is κ-complete, the right hand sides of the last two equalities are well-defined.
A pair (A, V ) of an algebraic frameA and an assignment V is said to be an algebraic
model. A formula A ofL is said to be true in an algebraicmodel (A, V ), if V (A) = 1,
where A is the universal closure of A. A formula ofL is said to be valid in an algebraic
frameA, if it is true in (A, V ) for every assignment V onA. The set of formulas of
L valid inA is denoted by L(A) or L(A, U ).

Proposition 9.4 For each algebraic frame A, the set L(A) is a super-intuitionistic
predicate logic.

It is well-known that C∗ ⊆ L(2, {0, 1}). To show Lemma9.3, we construct an
appropriate assignment V on (2, U ) for each finite subdirectly irreducible Heyting
algebra A having at least three elements, and show that V (P J (A)(v)) �= 12.

Lemma 9.4 Let A be a finite subdirectly irreducible Heyting algebra having at
least three elements. There exists a propositional assignment μ on 2 such that
μ(

∧

δ(A)) = μ(p�A) = 12.
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Proof Take an assignment v such that v(pa) = a for every a ∈ A. Then,
v(

∧

δ(A)) = 1 and v(p�A) = �A. The set {a ∈ A ; a = ¬A¬Aa} forms a Boolean
algebra with respect to the restriction of ≤A to this set. We denote this Boolean
algebra by A¬¬. Since A is non-degenerate, A¬¬ is non-degenerate. Let ¬¬ be the
mapping of A to A¬¬ defined by ¬¬(a) = ¬A¬Aa for every a ∈ A. Then, ¬¬ is a
Heyting homomorphism. We have: ¬¬ ◦ v(

∧

δ(A)) = ¬¬ ◦ v(p�A) = 1A¬¬ . Since,
A¬¬ is non-degenerate, there exists an ultrafilter U on this Boolean algebra such
that A¬¬/U � 2. Let ρ be the canonical projection of A¬¬ onto 2. Then, we have:
ρ ◦ ¬¬ ◦ v(

∧

δ(A)) = ρ ◦ ¬¬ ◦ v(p�A) = 12. Puttingμ = ρ ◦ ¬¬ ◦ v,wehave the
conclusion. �

Taking the assignment μ in Lemma9.4, we define an assignment V on (2, {0, 1})
by:

V (A) =
⎧

⎨

⎩

μ(a) if A is pa for some a ∈ A,

12 if A is p(1),
02 otherwise.,

for each atomic sentence A of L[U ]. It is easy to check that V (F) = 12. Then, we
have the

Lemma 9.5 Let X be a propositional formula having no propositional variable
other than {pa ; a ∈ A}. By X ′, we denote the formula obtained from X by replacing
all occurrences of p�A by the sentence F. Then, we have V (X ′) = μ(X).

Proof We can show this Lemma by induction on the length of X . Since ρ ◦ ¬¬ is a
Heyting-homomorphism, it suffices to check the Basis-part. But it is obvious by the
fact that V (F) = μ(p�A) = 12. �

Note that a = vA(pa) for each a ∈ A. Now, we show Lemma9.3. By Lemma9.5,
we have V (

∧

	(A)) = μ(
∧

δ(A)) = 12. Thus we have V (P J (A)(1)) =
V (

∧

	(A)) →2 (V (p(1)) →2 V (∀yp(y))) = 12 →2 (12 →2 02) = 02. There-
fore, we have V (P J (A)(v)) = 02 �= 12, i.e., P J (A)(v) /∈ L(2, {0, 1, }) ⊇ C∗. This
completes the proofs of Lemmas9.3 and 9.2.

9.4 Modified Jankov Formulas Preserve DP—Learning
Minari’s and Nakamura’s Idea

In this section, we show that the modified Jankov formulas as axiom schemata pre-
serve DP. More specifically, we show the

Lemma 9.6 Let S be a set of finite non-degenerate subdirectly irreducible Heyting
algebras. Then, H∗ + {Q J (A) ; A ∈ S} has DP.

We show this Lemma by making use of Kripke frame semantics. In Sect. 9.4.1,
we introduce Kripke frame semantics for predicate logics. Next, in Sect. 9.4.2, a
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technique is given in a simplified form . A part of the result in Minari (1986) and
Nakamura (1983) is presented to illustrate this technique.

9.4.1 Kripke Frame Semantics

Recall that a partially ordered set M = (M,≤M) with the least element 0M is said to
be a Kripke base. For example,

Example 9.2 The set P(A) of all prime filters of a subdirectly irreducible Heyting
algebra A together with its set-inclusion relation forms a Kripke base with the least
element {1A}.
Definition 9.8 Let S be a non-empty set. A mapping D of a Kripke base M to 2S is
called a domain over M, if ∅ �= D(a) ⊆ D(b) for all a, b ∈ M with a ≤ b. A pair
K = 〈M, D〉 of a Kripke base M and a domain D over M is called a Kripke frame.

Intuitively, each D(a) is the individual domain of the world a ∈ M. For each
a ∈ M and each b ∈ M with a ≤ b, every sentence of L[D(a)] is also a sentence
of L[D(b)]. A binary relation |= between each a ∈ M and each atomic sentence of
L[D(a)] is said to be a valuation on K = 〈M, D〉, if for every a, b ∈ M and every
atomic sentence A ofL[D(a)], a |= A and a ≤ b imply b |= A. We extend |= to the
relation between each a ∈ M and each sentence of L[D(a)] inductively as follows:

• a |= A ∧ B if and only if a |= A and a |= B,
• a |= A ∨ B if and only if a |= A or a |= B,
• a |= A ⊃ B if and only if for every b ∈ M with a ≤ b, either b �|= A or b |= B,
• a |= ¬A if and only if for every b ∈ M with a ≤ b, b �|= A,
• a |= ∀x A(x) if and only if for every b ∈ M with a ≤ b and every u ∈ D(b),

b |= A(u),
• a |= ∃x A(x) if and only if there exists u ∈ D(a) such that a |= A(u).

A pair (K, |=) of a Kripke frame K and a valuation |= on K is said to be a Kripke-
frame model. A formula A of L is said to be true in a Kripke-frame model (K, |=),
if 0M |= A . A formula of L is said to be valid in a Kripke frame K , if it is true in
(K, |=) for every valuation |= on K . The set of formulas of L that are valid in K is
denoted by L(K). The following propositions are fundamental properties of Kripke
semantics.

Proposition 9.5 For every Kripke-frame model (〈M, D〉, |=), every a, b ∈ M, and
every sentence A ∈ L[D(a)], if a |= A and a ≤ b, then b |= A.

Proposition 9.6 For each Kripke frame K , the set L(K) is a super-intuitionistic
predicate logic.

It is well-known thatH∗ is strongly complete with respect to Kripke frame seman-
tics. That is,
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Theorem 9.1 Let � be a set of sentences ofL. If a formula A(v1, . . . , vn) ofL having
no free variables other than v1, . . . , vn is not provable from � in H∗, then there exist
a Kripke-frame model (〈M, D〉, |=) and elements d1, . . . , dn ∈ D(0), where 0 is the
least element of M, such that (1) 0 |= S for every S ∈ � and (2) 0 � A(d1, . . . , dn).

9.4.2 Pointed Joins of Kripke-Frame Models

LetU andV be non-empty sets, f : U → V amapping. The f induces the translation
· f from L[U ] to L[V ]; for each sentence A of L[U ], the symbol A f denotes the
sentence of L[V ] obtained from A by replacing occurrences of u (u ∈ U ) by the
name f (u) of f (u).

Definition 9.9 Let K1 = 〈M1, D1〉 and K2 = 〈M2, D2〉 be Kripke frames with the
least elements 01 and 02, respectively. Take a fresh element 0 and define a Kripke
base {0} ↑ (M1 ⊕ M2) as the partially ordered set obtained from the disjoint union
M1 ⊕ M2 of M1 and M2 by adding 0 as the new least element. Then, we define a
Kripke frame 0 ↑ (K1 ⊕ K2) on {0} ↑ (M1 ⊕ M2) by associating the domain D↑:

D↑(a) =
⎧

⎨

⎩

D1(01) × D2(02) if a = 0,
D1(a) × D2(02) if a ∈ M1,

D1(01) × D2(a) if a ∈ M2,

where U × V denotes the Cartesian product of U and V . The Kripke frame 0 ↑
(K1 ⊕ K2) = ({0} ↑ (M1 ⊕ M2), D↑) is called the pointed join5 of K1 and K2.

Let πi := {(πi )a : D↑(a) → Di (a) ; a ∈ {0} ∪ Mi } (i = 1, 2) be families of
mappings defined by:

(πi )a((d1, d2)) = di for (d1, d2) ∈ D↑(a) and a ∈ {0} ∪ Mi .

Observe that πi induces translations of L[D↑(a)] to L[Di (a)] (a ∈ M) or of
L[D↑(0)] to L[Di (0i )]; for every sentence A ∈ L[D↑(a)] (or A ∈ L[D↑(0)]), the
sentence translated by πi is denoted simply by Aπi .

Let |=1 and |=2 be valuations on Kripke frames K1 = 〈M1, D1〉 and K2 =
〈M2, D2〉, respectively. A Kripke-frame model (0 ↑ (K1 ⊕ K2), |=) is said to be
the pointed join model of (K1, |=1) and (K2, |=2), if for each a ∈ {0} ∪ M1 ⊕ M2

and each atomic sentence p((d1
1 , d1

2 ), . . . , (d
n
1 , dn

2 )) ∈ L[D↑(a)],

5 In Suzuki (2017), a more general definition of pointed joins was introduced for Kripke sheaf
models.
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a |= p((d1
1 , d1

2 ), . . . , (d
n
1 , dn

2 ))

if and only if

⎧

⎨

⎩

a ∈ M1 and a |=1 p(d1
1 , . . . , dn

1 ),

or
a ∈ M2 and a |=2 p(d1

2 , . . . , dn
2 ).

Then, the following Lemma clearly holds.

Lemma 9.7 Let (0 ↑ (K1 ⊕ K2), |=) be the pointed join model of (K1, |=1) and
(K2, |=2). For each i = 1, 2 and each a ∈ Mi , it holds that

for every A ∈ L[D↑(a)], a |= A if and only if a |=i Aπi .

Definition 9.10 A formula A is said to be axiomatically true in a Kripke-frame
model (K, |=), if all of the substitution instances of A in the language L are true in
(K, |=).

A formula A is said to be pointed-join robust, if A is true in Kripke-frame models
(K1, |=1) and (K2, |=2), then A is true in the pointed join model of them.

If the axiomatic truth of a formula A is preserved under the pointed-join construc-
tion of two Kripke models, then H∗ + A has DP. More precisely,

Theorem 9.2 (cf. Minari 1986 and Nakamura 1983) Let A be a formula of L satis-
fying:

(∗) every substitution instance of A is pointed-join robust.

Then H∗ + A has DP.

Proof Suppose that H∗ + A � B1 and H∗ + A � B2. We show H∗ + A � B1 ∨ B2.
Without loss of generality, we may assume that B1 and B2 contain no free vari-
ables other than v1, . . . , vm , and we write Bi as Bi (v1, . . . , vm) (i = 1, 2). By the
strong completeness theorem of H∗ with respect to Kripke-frame models (i.e., The-
orem9.1), we have two Kripke-frame models (〈M1, D1〉, |=1) and (〈M2, D2〉, |=2),
and elements d1

i , . . . , dm
i ∈ Di (0i ), where 0i is the least element of Mi (i = 1, 2),

such that A is axiomatically true in both of themand0i �|=i Bi (d1
i , . . . , dm

i ) (i = 1, 2).
Take the pointed join model (K, |=) of them. By (∗), we have that A is axiomat-
ically true in (K, |=). By Lemma9.7, we have 0i �|= Bi ((d1

1 , d1
2 ), . . . , (d

m
1 , dm

2 ))

(i = 1, 2), and hence 0 �|= Bi ((d1
1 , d1

2 ), . . . , (d
m
1 , dm

2 )) (i = 1, 2), where 0 is the least
element of K . Therefore, 0 �|= (B1 ∨ B2)((d1

1 , d1
2 ), . . . , (d

m
1 , dm

2 )). Thus we have
H∗ + A � B1 ∨ B2. �

We can show the following in the same way as the above.

Corollary 9.2 Let � be a set of formulas satisfying the condition (∗) in Theorem9.2.
Then H∗ + � has DP.

Lemma 9.8 Let p be a unary predicate variable, S a sentence. Then, ∃x(S ∧ p(x) ⊃
∀yp(y)) satisfies the condition (∗) in Theorem9.2.
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Proof Suppose otherwise. Then, there exist a substitution instance I of ∃x(S ∧
p(x) ⊃ ∀yp(y)) and Kripke-frame models (〈M1, D1〉, |=1) and (〈M2, D2〉, |=2)

such that I is true in both of them but I is not true in the pointed join model
(0 ↑ (〈M1, D1〉 ⊕ 〈M2, D2〉), |=). We may assume that the I contains no free vari-
ables other than v1, . . . , vn , and these variables are distinct from x and y. There
exist two formulas B(v1, . . . , vn) and C(w, v1, . . . , vn) of L having no free vari-
ables other than v1, . . . , vn and w, v1, . . . , vn , respectively, such that I is obtained
from ∃x(S ∧ p(x) ⊃ ∀yp(y)) by substituting C(w, v1, . . . , vn) to all occurrences of
p(w) (here w is a fresh variable) and replacing S by B(v1, . . . , vn). Thus, I is of the
form:

∃x(B(v1, . . . , vn) ∧ C(x, v1, . . . , vn) ⊃ ∀yC(y, v1, . . . , vn)).

For the sake of simplicity, we assume n = 1. Since I is not true in the pointed
join model, there exist an element a ∈ {0} ↑ M1 ⊕ M2 and a d ∈ D↑(a) such
that a � ∃x(B(d) ∧ C(x, d) ⊃ ∀yC(y, d)). Suppose a ∈ M1. Then, by Lemma9.7,
it holds that a �1 ∃x(B(π1(d)) ∧ C(x, π1(d)) ⊃ ∀yC(y, π1(d))). This contradicts
the assumption that I is true in (〈M1, D1〉, |=1). Therefore, a /∈ M1. Similarly,
we have a /∈ M2, and hence a = 0. Since 0i |=i ∃x(B(πi (d)) ∧ C(x, πi (d)) ⊃
∀yC(y, πi (d))) for i = 1, 2, there exist s1 ∈ D1(01) and s2 ∈ D2(02) such that 0i |=i

B(πi (d)) ∧ C(si , πi (d)) ⊃ ∀yC(y, πi (d)) (i = 1, 2). Therefore, by Lemma9.7, we
have 0i |= B(d) ∧ C((s1, s2), d) ⊃ ∀yC(y, d) (i = 1, 2).

Now we have two cases: 0 �|= B(d) ∧ C((s1, s2), d) and 0 |= B(d) ∧
C((s1, s2), d). The former case implies 0 |= B(d) ∧ C((s1, s2), d) ⊃ ∀yC(y, d).
That is, 0 |= ∃x(B(d) ∧ C(x, d) ⊃ ∀yC(y, d)). Next, we assume the latter case
where 0 |= B(d) ∧ C((s1, s2), d). Then, we have 0i |= B(d) ∧ C((s1, s2), d), and
hence 0i |= ∀yC(y, d) (i = 1, 2). If it holds that 0 |= C(t, d) for every t ∈
D↑(0), then we have that 0 |= ∀yC(y, d), and hence we trivially have 0 |=
B(d) ∧ C((s1, s2), d) ⊃ ∀yC(y, d). That is, we have 0 |= ∃x(B(d) ∧ C(x, d) ⊃
∀yC(y, d)). Thus we have that there exists t ∈ D↑(0) such that 0 �|= C(t, d).
Consider the sentence B(d) ∧ C(t, d) ⊃ ∀yC(y, d). We have that 0 �|= B(d) ∧
C(t, d), and that m |= ∀yC(y, d) for every m �= 0. Hence, we have that 0 |=
B(d) ∧ C(t, d) ⊃ ∀yC(y, d). Therefore, it holds that 0 |= ∃x(B(d) ∧ C(x, d) ⊃
∀yC(y, d)). This contradicts the assumption. �

We give here a proof of a result of Minari (1986) and Nakamura (1983) in this
setting.

Corollary 9.3 (cf.Minari 1986 andNakamura 1983)H∗ + ∃x(p(x) ⊃ ∀yp(y)) has
DP but lacks EP.

Proof Take a fresh propositional variable q. Then, ∃x(p(x) ⊃ ∀yp(y)) is equiva-
lent to ∃x((q ⊃ q) ∧ p(x) ⊃ ∀yp(y)) in H∗. By Lemma9.8, ∃x(p(x) ⊃ ∀yp(y))

satisfies the condition (∗) in Theorem9.2, and hence we have the conclusion. �

Now, we prove Lemma9.6. Let S be a set of finite non-degenerate subdirectly
irreducible Heyting algebras. Recall that Q J (A) (A ∈ S) is of the form ∃v(S ⊃
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(p(v) ⊃ ∀yp(y))) with S being a sentence. Then, Q J (A) is equivalent to ∃v(S ∧
p(v) ⊃ ∀yp(y)). From Lemma9.8, it follows that Q J (A) satisfies the condition (∗)

in Theorem9.2. By Corollary9.2, it holds that H∗ + {Q J (A) ; A ∈ S} has DP. This
completes the proof of Lemma9.6.

9.5 Strongly Independent Sequence of Modified Jankov
Formulas—Jankov’s Method for Predicate Logics

In this section, we show the following Lemma9.9, and then the main Theorem
(Theorem9.4). Recall that {Hi }i<ω is the sequence of finite subdirectly irreducible
Heyting algebras introduced in Sect. 9.3.2 and that {Hi }i<ω satisfies three conditions
(A1), (A2) (in Sect. 9.3.1), and (A3) (in Sect. 9.3.2).

Lemma 9.9 {Q J (Hi )}i<ω is strongly independent.

For the proof, we use algebraic Kripke sheaf semantics for super-intuitionistic
predicate logics. The algebraic Kripke sheaf is a framework for extended semantics
obtained from a Kripke base equipped with a domain-sheaf and a truth-value-sheaf .
A domain-sheaf is a covariant functor which integrates interpretations of equality
into Kripke semantics for predicate logics.6 A truth-value-sheaf is a contravariant
functor which provides each possible world with an algebraic structure of “truth
values” at the world.7 In this paper, we use a simplified version of algebraic Kripke
sheaves, called �-brooms, and apply a result in Suzuki (1999).

In Sect. 9.5.1, our simplified algebraic Kripke sheaf semantics is introduced. In
Sect. 9.5.2, toolkit (a definition, lemmata, and notation) needed later is presented. In
Sect. 9.5.3, we prove Lemma9.9 and then Theorem9.4.

9.5.1 Special Algebraic Kripke Sheaves

Definition 9.11 (cf. Suzuki 1999) A Kripke base M can be regarded as a category
in the usual way. A covariant functor D from a Kripke base M to the category of all
non-empty sets is called a domain-sheaf over M, if D(0M) is non-empty. That is,

6 Dragalin (1988) and Gabbay (1981) introduced Kripke frames with the equality, each of which is a
Kripke frame equipped with a family of appropriate equivalence relations on the individual domains
as the interpretation of equality. A pairK = 〈M, D〉 of a Kripke base M and a domain-sheaf D over
M is called a Kripke sheaf (for super-intuitionistic predicate logics). Each Kripke sheaf is obtained
from a Kripke frame with the equality as the quotient sets of domains by the equivalence relations
together with the family of canonical projections.
7 In the original Kripke semantics, each possible world has two possibilities for each formula: true
or not-true. In this setting, from a viewpoint of algebraic semantics, each possible world has 2 as
the set of truth values. Instead of 2, we take an algebra P(a) for each a (∈ M) as the set of truth
values at a (cf. Suzuki 1999).
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(DS1) D(0M) is a non-empty set,
(DS2) for every a, b ∈ M with a ≤M b, there exists a mapping Dab : D(a) →

D(b),
(DS3) Daa is the identity mapping of D(a) for every a ∈ M,
(DS4) Dac = Dbc ◦ Dab for every a, b, c ∈ M with a ≤M b ≤M c.

Intuitively, D(a) is the set of individuals at the world a ∈ M. For each d ∈ D(a) and
each b ∈ M with a ≤M b, the element Dab(d) ∈ D(b) is said to be the inheritor of
d at b. According to this intuition, each A (∈ L[D(a)]) with a ≤M b has its unique
inheritor ADab (∈ L[D(b)]). The ADab is denoted simply by Aa,b. In this paper, we
deal only with domain-sheaves with the following additional condition:

(DS5) for every a ∈ M, D(a) =
{

ω (= {0, 1, . . . }) if a = 0M,

{0} otherwise.

Thus, Dab’s are trivially determined as follows:

Dab(i) =
{

i if a = b = 0M,

0 otherwise,

for every i ∈ D(a). Then, for every a �= 0M, the inheritor Aa,b of A ∈ L[D(a)] at b
is identical to A.

The category H of all non-degenerate complete Heyting algebras with arrows
being complete monomorphisms between complete Heyting algebras. A contravari-
ant functor P from a Kripke base M to the category H is called a truth-value-sheaf
over M. That is,

(TVS1) Pa is a non-degenerate complete Heyting algebra: P(a) =
(P(a),∩a,∪a,→a, 0a, 1a),

(TVS2) for every a, b ∈ M with a ≤M b, there exists a complete monomorphism
Pab : P(b) → P(a),

(TVS3) Paa is the identity mapping of P(a) for every a ∈ M,
(TVS4) Pac = Pab ◦ Pbc for every a, b, c ∈ M with a ≤M b ≤M c.

A triple K = 〈M, D, P〉 of a Kripke base M, a domain-sheaf D over M, and a
truth-value-sheaf P over M is called an algebraic Kripke sheaf . Intuitively, P(a) is
the set of truth values at a. If a ≤M b (i.e., b is accessible from a), the Pab sends
computations of truth values in P(b) into P(a).

Let � be {1/n ; n = 1, 2, . . . } ∪ {0}. With the natural ordering, � is a complete
Heyting algebra having the greatest element 1 and the least element 0. The lattice
order on � is denoted by ≤� or simply ≤. In this paper, we deal only with algebraic
Kripke sheaves with the following condition:

(TVS5) for every a ∈ M, P(a) =
{

� if a = 0M,

2 otherwise.
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Thus, Pab’s are essentially set-inclusions up to the identification: 12 = 1 = 1� and
02 = 0 = 0�. Then, our algebraic Kripke sheaves are characterized by the Kripke
base M. Moreover, by (DS5), we may regard our algebraic Kripke sheaf as a Kripke
frame for propositional logics, except at the least element 0M of its Kripke base. To
make the difference clear, we will call an algebraic Kripke sheaf satisfying (DS5)
and (TV5) an �-broom. An �-broom having M as its Kripke base is denoted by
B(M).

A mapping V which assigns each pair (a, A) of an a ∈ M and an atomic sentence
A ∈ L[D(a)] to an element V (a, A) of P(a) is said to be a valuation on 〈M, D, P〉,
if a ≤M b implies V (a, A) ≤a Pab(V (b, Aa,b)), where ≤a is the lattice order of
P(a). In our setting, P(a)’s are all trivial subalgebras of � = P(0M), and Pab’s
are set-inclusions. Thus, this condition can be written simply as: a ≤M b implies
V (a, A) ≤� V (b, Aa,b). We extend V to the mapping which assigns to each pair
(a, A) of an a ∈ M and a sentence A ∈ L[D(a)] an element V (a, A) of P(a) as
follows:

• V (a, A ∧ B) = V (a, A) ∩ V (a, B),
• V (a, A ∨ B) = V (a, A) ∪ V (a, B),
• V (a, A ⊃ B) = ⋂

b:a≤Mb(V (b, Aa,b) → V (b, Ba,b)),
• V (a,¬A) = ⋂

b:a≤Mb(V (b, Aa,b) → 0),
• V (a,∀x A(x)) = ⋂

b:a≤Mb

⋂

u∈D(b) V (b, Aa,b(u)),
• V (a, ∃x A(x)) = ⋃

u∈D(a) V (a, A(u)).

Note that operations of Heyting algebra in the right hand sides are those of �. In the
original definition in Suzuki (1999), these induction steps, especially of⊃, ¬, and ∀,
are slightly more complicated. However, by the virtue of (TV5), these simple steps
work well.8

A pair (B, V ) of an �-broom B and a valuation V on it is said to be an �-broom
model (in the general case, an algebraic Kripke-sheaf model). A formula A of L is
said to be true in an�-broommodel (B, V ), if V (0M, A) = 1. A formula ofL is said
to be valid in an�-broomB, if it is true in (B, V ) for every valuation V onB. The set
of formulas ofL that are valid in B is denoted by L(B) . The following propositions
are fundamental properties of algebraic Kripke sheaf semantics (cf. Suzuki 1999).

Proposition 9.7 (cf. Proposition9.5) For every �-broom model (B(M), V ), every
a, b ∈ M, and every sentence A ∈ L[D(a)], if a ≤M b, then V (a, A) ≤� V (b, Aa,b).

Proposition 9.8 (cf. Propositions9.4 and 9.6) For each �-broom B, the set L(B) is
a super-intuitionistic predicate logic.

8 In Suzuki (1999), the ∩, ∪, →, 0 must have appropriate superscripts ·a and ·b, and appropriate
Pab’s in front of V ’s in the right-hand sides.
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9.5.2 Toolkit for �-Brooms

Definition 9.12 (cf. Suzuki 1999) Let M be a finite Kripke base. Take the Jankov
formula J (O(M)) and replace all occurrences of p�O(M)

in J (O(M)) by F (i.e.,
∃x(p(x) ⊃ ∀yp(y))). Then, we denote the resulting sentence by J (M; F).

The following Lemma gives the relationship between Q J (O(M)) and J (M; F)

in �-brooms.

Lemma 9.10 In every �-broom, the sentence (q ⊃ ∃xr(x)) ⊃ ∃x(q ⊃ r(x)) is
valid, where q and r are a propositional variable and a unary predicate variable,
respectively.

Proof Let C and D be q ⊃ ∃xr(x) and ∃x(q ⊃ r(x)), respectively. Let V be an
arbitrary valuation on an �-broom B(M) = 〈M, D, P〉. Note that for each b �= 0M,
we have that V (b, ∃xr(x)) = V (b, r(0)) and that the inheritor r(i)0M,b of r(i) at b
is r(0) for every i ∈ ω = D(0M). Then, for every b �= 0M, we have

V (b, C) =
⋂

{V (c, q) → V (c, ∃xr(x)) ; c ≥ b}
=

⋂

{V (c, q) → V (c, r(0)) ; c ≥ b}
= V (b, q ⊃ r(0))

= V (b, ∃x(q ⊃ r(x)))

= V (b, D) .

Hence, it holds thatV (0M, C ⊃ D) = ⋂ [{V (0M, C) → V (0M, D)} ∪ {V (b, C) →
V (b, D) ; b �= 0M}] = V (0M, C) → V (0M, D). Therefore, it suffices to show that
V (0M, C) ≤ V (0M, D). Let us check the value V (0M, C):

V (0M, C)

= V (0M, q ⊃ ∃xr(x))

=
⋂

{V (a, q) → V (a, ∃xr(x)) ; a ∈ M}
=

⋂
[{V (0M, q) → V (0M, ∃xr(x))} ∪ {V (b, q) → V (b, ∃xr(x)) ; b �= 0M}]

=
⋂

[{V (0M, q) → V (0M, ∃xr(x)) ∪ {V (b, q) → V (b, r(0)) ; b �= 0M}] .

We have two cases: (1) V (b, q) → V (b, r(0)) = 0 for some b �= 0M, and (2)
V (b, q) → V (q, r(0)) = 1 for every b �= 0M.

Suppose that (1) holds. Since 0 belongs to {V (b, q) → V (b, r(0)) ; b �= 0M}, we
have V (0M, C) = 0 ≤ V (0M, D). Next, suppose that (2) holds. Since {V (b, q) →
V (b, r(0)) ; b �= 0M} = {1}, we have V (0M, C) = V (0M, q) → V (0M, ∃xr(x)).
Since V (0M, ∃xr(x)) = maxi∈ω{V (0M, r(i))}, there exists an i0 ∈ ω such that
V (0M, ∃xr(x)) = V (0M, r(i0)). Hence, it holds that
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V (0M, C) =
{

V (0M, r(i0)) if V (0M, r(i0)) < V (0M, q),

1 if V (0M, q) ≤ V (0M, r(i0)).

To calculate V (0M, D), we put

vi = V (0M, q ⊃ r(i))

for each i ∈ ω, and we have V (0M, D) = maxi∈ω vi . Let us check the value vi :

vi = V (0M, q ⊃ r(i))

=
⋂

{V (a, q) → V (a, r(i)0M,a) ; a ∈ M}
=

⋂
[{V (0M, q) → V (0M, r(i))} ∪ {V (b, q) → V (b, r(0)) ; b �= 0M}] .

By the assumption (2), it holds that {V (b, q) → V (b, r(0)) ; b �= 0M} = {1}.
Therefore, we have vi = V (0M, q) → V (0M, r(i)). If V (0M, r(i0)) < V (0M, q),
we have V (0M, C) = V (0M, r(i0)) = vi0 ≤ maxi∈ω vi = V (0M, D). If V (0M, q) ≤
V (0M, r(i0)), we have vi0 = 1 = V (0M, D) ≥ V (0M, C). �

From this Lemma and Proposition9.8, it follows that (A ⊃ ∃x B(x)) ⊃ ∃x(A ⊃
B(x)) is valid in every�-broommodel, where A does not contain x as a free variable.
Thus, we have the9

Lemma 9.11 In every �-broom model, J (M; F) ⊃ Q J (O(M)) is valid.

Next we recall a Lemma in Suzuki (1999). We describe the Lemma in the setting
of the present paper.10 This Lemma asserts that Q J (O(M)) and J (M; F) have a
property similar to that of the original Jankov formula shown in Lemma9.1.

Lemma 9.12 (cf. Lemma9.1 and Suzuki 1999; Lemma 4.10) Let M be a finite
Kripke base such that O(M) satisfies the condition (A3) in Sect.9.3.2. For each �-
broom B(N) with N having at least two elements, if Q J (O(M)) /∈ L(B(N)), then
O(M) is embeddable into a quotient algebra of O(N).

Proof (Sketch) Suppose that Q J (O(M)) /∈ L(B(N)). Then, by Lemma9.11, we
have J (M; F) /∈ L(B(N)). Since J (M; F) is obtained from J (O(M)) by replacing
p�M by the sentence F , the original Jankov formula J (O(M)) is not valid in B(N).
This implies that J (O(M)) is not valid in the Heyting algebra11

(O(M)/ �
) ⊕ �.

9 Since ∃x(q ⊃ r(x)) ⊃ (q ⊃ ∃xr(x)) is provable in H∗, it follows that (q ⊃ ∃xr(x)) and ∃x(q ⊃
r(x)) are equivalent in every �-broom model. Thus, J (M; F) is equivalent to Q J (O(M)) in every
�-broom.
10 The condition (A3) is denoted by (#) in Suzuki (1999). In Lemma 4.10 of Suzuki (1999), F is
replaced by an arbitrary sentence.
11 The algebra

(O(M)/ �
) ⊕ � is the sum of O(M)/� and �. Here, O(M)/� is the quotient algebra

of O(M) modulo � = [�O(M)), where [�O(M)) is the filter generated by the second greatest element
�O(M) of O(M)). Note that

(O(M)/ �
) ⊕ � is denoted by O(M) � � in Suzuki (1999).
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From Lemma9.1, it follows that O(M) is embeddable into a quotient algebra of
(O(M)/ �

) ⊕ �. By (A3), we have thatO(M) is embeddable into a quotient algebra
of O(N). �

Lemma 9.13 Let M be a finite Kripke base. Then Q J (O(M)) is not valid in B(M).

Proof Let B(M) be 〈M, D, P〉. Define a valuation V by

V (a, pO) =
{

1 if a ∈ O,

0 if a /∈ O,

for every a ∈ M and every O ∈ O(M), and

V (a, p(i)) =
{

1 if a �= 0M,

1/(i + 1) if a = 0M,

for every a ∈ M and every i ∈ D(a). Take an a �= 0M. Since V (a,∀yp(y)) =
⋂

b≥a V (b, p(0)) = 1, we have that V (a, F) = V (a, p(0) ⊃ ∀yp(y)) =
⋂

b≥a(1 → V (b,∀yp(y)) ) = ⋂

b≥a V (b,∀yp(y)) = 1. Thus, it holds that
V (a, p(0) ⊃ ∀yp(y)) = V (a, F) = 1 for every a �= 0M. Next, check that
V (0M,∀yp(y)) ≤ ⋂

i∈ω V (0M, p(i)) = 0. For a fixed i ∈ ω, we have
that V (0M, p(i) ⊃ ∀yp(y)) = ⋂

a∈M{V (a, p(i)0M,a) → V (a,∀yp(y))} ≤
V (0M, p(i)) → V (0M,∀yp(y)) = 1/(i + 1) → 0 = 0. Thus, we have V (0M, F) =
0.

Consider an assignment v on O(M) defined by

v(pO) =
{ {a ; V (a, pO) = 1} if O �= M \ {0M},

{a ; V (a, F) = 1} if O = M \ {0M},

for every O ∈ O(M). Then, v is nothing but the assignment vO(M) that makes the
Jankov formula not true in O(M).

Claim. Let X be a propositional formula having no propositional variable other
than {pO ; O ∈ O(M)}. By X ′, we denote the formula obtained from X by replacing
all occurrences of p�O(M)

by the sentence F. Then, we have V (a, X ′) ∈ {0, 1} for
every a ∈ M and that v(X) = {a ; V (a, X ′) = 1}.

This Claim can be proved by induction on the length of X . The Basis-part is
already clear by the discussion just after the definition of V . We check the Induction
Steps. Suppose that X is of the form Y ⊃ Z . Take an arbitrary a ∈ v(Y ⊃ Z). Then
for every b ≥ a, either b /∈ v(Y ) or b ∈ v(Z). By the induction hypothesis, we have
that {V (b, Y ′), V (b, Z ′)} ⊆ {0, 1} for every b ∈ M, and v(Y ) = {c ; V (c, Y ′) = 1}
and v(Z) = {c ; V (c, Z ′) = 1}. Thus, for every b ≥ a, either V (b, Y ′) = 0 or
V (b, Z ′) = 1. Therefore, we have V (b, Y ′) → V (b, Z ′) = 1 for every b ≥ a, and
hence V (a, Y ′ ⊃ Z ′) = 1. Next take an arbitrary b /∈ v(Y ⊃ Z). There exists b ≥ a
such that b ∈ v(Y ) and b /∈ v(Z). By the induction hypothesis, we have V (b, Y ′) = 1
and V (b, Z ′) = 0. Thus, V (a, Y ′ ⊃ Z ′) = 0. Therefore, for every a ∈ M, we have
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V (a, Y ′ ⊃ Z ′) ∈ {0, 1} and v(Y ⊃ Z) = {a ; V (a, Y ′ ⊃ Z ′) = 1}. Other cases can
be proved similarly. This completes the proof of the Claim.

From this Claim, it follows that M = 1O(M) = v(
∧

δ(O(M))) = {a ;
V (a,

∧

	(O(M))) = 1}. That is, we have V (a,
∧

	(O(M))) = 1 for every a ∈ M.
Note that V (0M, Q J (O(M)) = maxi∈ω{V (0M,

∧

	(O(M)) ⊃ (p(i) ⊃ ∀yp(y)))}.
Let us check for an i ∈ ω:

V (0M,
∧

	(O(M)) ⊃ (p(i) ⊃ ∀yp(y)))

=
⋂

{V (a,
∧

	(O(M))) → V (a, (p(i) ⊃ ∀yp(y))0M,a) ; a ∈ M}
=

⋂

{V (a, (p(i) ⊃ ∀yp(y))0M,a) ; a ∈ M}
≤ V (0M, p(i) ⊃ ∀yp(y))

= 0

Therefore, we have V (0M, Q J (O(M)) = 0. �
As we already mentioned in Examples9.1 and 9.2, we have the correspondence

between subdirectly irreducible Heyting algebras and Kripke bases. When they are
finite, we have more exact correspondence:

Fact 9.3 (1) For each finite subdirectly irreducible Heyting algebra A, the OP(A)

is isomorphic to A.
(2) For each finite Kripke base M, the PO(M) is isomorphic to M.

Thus, we may identify finite subdirectly irreducible Heyting algebras and finite
Kripke bases. In the rest of this paper, we denote byNi theKripke base corresponding
to Hi (i < ω). That is, Ni = P(Hi ) and Hi = O(Ni ) for each i < ω.

9.5.3 Proofs of Lemma9.9 and the Main Theorem

The proof of Lemma9.9 proceeds similarly to the proof of Corollary9.1 by the virtue
of the discussion of the previous subsection. Define Li = H∗ + Q J (Hi ) for each
i < ω. We show that {Li }i<ω is strongly independent. Pick an arbitrary i0 ∈ ω. Then,
for every j �= i0, the H j is not embeddable into any quotient algebra of Hi0 . Thus,
by Lemma9.12, it holds that Q J (H j ) ∈ L(B(Ni0)) for every j �= i0. Therefore,
⋃

j �=i0
L j ⊆ L(B(Ni0)). By Lemma9.13, we have Q J (Ni0) /∈ L(B(Ni0)). Hence,

Li0 �
⋃

j �=i0
L j . This completes the proof of Lemma9.9.

Theorem 9.4 (Main Theorem) There exits a continuum of PEI’s having disjunction
property but lacking existence property.

Proof By Lemma9.2, for every I ⊆ ω, the logic H∗ + {Q J (Hi ) ; i ∈ I } is a PEI
lacking EP. By Lemma9.6, for every I ⊆ ω, this logic has DP. By Lemma9.9,
{Q J (Hi )}i<ω is strongly independent. Thus, we have the conclusion. �
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By examining the definition of {Q J (Hi ) ; i < ω}, we have shown that {Q J (Hi ) ;
i < ω} is a recursively enumerable sequence of concrete predicate axioms schemata.

Corollary 9.4 There exits a continuum of PEI’s having none of DP and EP.

Let Lin∗ be (q(x) ⊃ q(y)) ∨ (q(y) ⊃ q(x)), where q is a fresh unary predicate
variable. Then, it is obvious that H∗ + Lin∗ is a PEI without DP. We have the

Lemma 9.14 Lin∗ is valid in every �-broom B.

Proof Let V be a valuation on B(M). If a ∈ M and a �= 0M, the inheritors
of ∀y((p(i) ⊃ p(y)) ∨ (p(y) ⊃ p(i)), (p(i) ⊃ p( j)) ∨ (p( j) ⊃ p(i)), and p(i) ⊃
p( j) ∈ L[D(0M)] at a are ∀y((p(0) ⊃ p(y)) ∨ (p(y) ⊃ p(0)), (p(0) ⊃ p(0)) ∨
(p(0) ⊃ p(0)), and p(0) ⊃ p(0), respectively. Clearly, V (a, p(0) ⊃ p(0)) = 1, and
hence for a �= 0M,

V (a,∀y((p(0) ⊃ p(y)) ∨ (p(y) ⊃ p(0))))

=
⋂

{V (b, (p(0) ⊃ p(0)) ∨ (p(0) ⊃ p(0))) ; b ≥ a}
= 1.

And also,

V (0M, p(i) ⊃ p( j))

=
⋂

[{V (b, p(0)) → V (b, p(0))) ; b �= 0M} ∪ {V (0M, p(i)) → V (0M, p( j))}]
= V (0M, p(i)) → V (0M, p( j)).

Therefore,

V (0M, Lin∗) = V (0M, (p(i) ⊃ p( j)) ∨ (p( j) ⊃ p(i)))

= V (0M, p(i) ⊃ p( j)) ∪ V (0M, p( j) ⊃ p(i))

= (V (0M, p(i)) → V (0M, p( j))) ∪ (V (0M, p( j)) → V (0M, p(i)))

= 1.

Thus, Lin∗ is valid in B(M). �
Let us consider the sequence {Lin∗ ∧ Q J (Hi )}i<ω of sentences. Then, by putting

Ki = H∗ + Lin∗ ∧ Q J (Hi ) (i < ω), we can show that {Ki }i<ω is strongly indepen-
dent. It is clear that for every non-empty subset S of {Ki ; i < ω}, the logic

⋃S
fails to have DP and EP. This completes the proof of Corollary9.4.12

Note that the sequence {Lin∗ ∧ Q J (Hi )}i<ω is recursively generated.

12 In fact, Corollary9.4 can be shown as a corollary to the proof in Suzuki (1995; p. 184). Let ˜F
and ˜W2 be ∃x∃y(p(x) ∧ p(y) ⊃ ∀zp(z)) and

∨3
i=1(q(xi ) ⊃ ∨

j �=i q(x j )), respectively. By putting

H∗ + ˜F + ˜W2 as L in Suzuki (1995; p. 184), we can show that there exists a continuum of logics
between H∗ + ˜F + ˜W2 and H∗ + (∃xp(x) ⊃ ∀xp(x)) ∨ (r ∨ ¬r). Since H∗ + ˜F + ˜W2 fails to
have DP and EP, all of these logics lack EP andDP. Note thatH∗ + (∃xp(x) ⊃ ∀xp(x)) ∨ (q ∨ ¬q)

is the greatest PEI.
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9.6 Concluding Remarks

We constructed a recursively enumerable set of concrete predicate axiom schemata.
By adding these schemata to H∗, we obtained a strongly independent sequence of
predicate extensions of intuitionistic; and this sequence yields a continuum of pred-
icate extensions of intuitionistic logic each of which has DP but lacks EP.

This result suggests that although PEI’s are living near to intuitionistic logic, the
diversity of their nature seems rich. In otherwords, logics amongPEI’s are fascinating
from the logical point of view and yet to be explored.

We have four types of continua of logics: “with EP and DP,” “without EP and DP,”
“with DP but without EP,” and “with EP but without DP.” Other than the last one,
three of them can be obtained by recursively enumerable construction of concrete
axiomschemata.Recall thatDPadEPare regarded as “hallmarks” of constructivity of
intuitionistic logic. It seems interesting that continuaof logicswith/without properties
closely related to constructivity are constructively generated by sequences of axiom
schemata. However, for the continuum: “with EP but without DP,” we do not have
such a sequence of axiom schemata. So we pose a

Problem. Does there exist a recursively enumerable and strongly independent
sequence of axiom schemata such that all the logics yield by this sequence are PEI’s,
have EP, and fail to have DP?

We make two Remarks on the consideration of the Problem.

Remark 9.1 As shown in Suzuki (2021), if an intermediate logic L has EP, then L
has DP, provided that L has a very weak DP: L 
 A ∨ (p(x) ⊃ p(y)) implies L 
 A
whenever A contains no occurrence of the symbols: p, x , and y. Note that this weak
DP seems natural for reasonable logics such as logics complete with respect to a
class of Kripke bases or to a class of complete Heyting algebras. (Even classical
logic possesses it.) Thus, it is not straightforward to create semantically a logic that
has EP and does not have DP

Remark 9.2 In Suzuki (2021), we gave amethod to create a PEIwith EP but without
DP from a given logic with EP. Let H∗ be the superintuitionistic predicate logic H +
∃xp(x) ⊃ ∀xp(x), where p is a unary predicate variable. Then, H∗ is the greatest
superintuitionistic predicate logic having the same propositional part as H. If L is an
intermediate predicate logic having EP, then L ∩ H∗ has EP but lacks DP, provided
that L is NOT a PEI.

If we try to use this method to solve the problem affirmatively, we need appro-
priate logics with EP. Ferrari and Miglioli (1993) gave a continuum of intermediate
predicate logics having both of EP and DP. These logics are all not PEI’s. However,
their logics are non-recursively generated. Hence, the resulting logics by this method
are not recursively generated. We cannot use their logics to solve the Problem. On
the other hand, (Suzuki 1999)’s strongly independent sequence are recursively gen-
erated, but we cannot apply the method to them, because these logics are PEI’s (they
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are fixed points of the 	-operation. cf. Suzuki 1996). Hence, we cannot use these
logics neither.
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