
Chapter 8
An Application of the Yankov
Characteristic Formulas

Valery Plisko

Abstract Adetailed exposition of one of the author’s old results concerning the rela-
tionship between the propositional logic of realizability and the logic of Medvedev
is given. The characteristic formulas introduced by Yankov play a decisive role in
the proof. Along the way, a brief overview of Yankov’s contribution to the study of
propositional logic of realizability is given.
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8.1 Introduction

It is a great honor and pleasure for me to publish an article in a volume dedicated to
V. A. Yankov. I don’t know him personally, but his work in the field of mathematical
logic has had a strong influence on my research. As a student, I carefully studied his
articles. We can say that Vadim Anatolyevich was my correspondence teacher.

V. A. Yankov’s works are devoted to non-classical logics. In this article we con-
sider his contribution to the study of the propositional logic of realizability and one
application of his ideas to the study of the relationship between the propositional
logic of realizability and Medvedev’s logic of finite problems.

8.2 Intuitionistic Propositional Logic

From the intuitionistic point of view, a proposition is true if it is proved. Thus the
truth of a proposition is connected with its proof. In order to avoid any confusion
with formal proofs, we shall use the term ‘a verification’ instead of ‘a proof’. This
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understanding of the meaning of propositions leads to an original interpretation of
logical connectives and quantifiers stated by L. E. J. Brouwer, A. N. Kolmogorov,
and A. Heyting. Namely for every true proposition A we can consider its verification
as a text justifying A. Now, if A and B are propositions, then

• a verification of a conjunction A& B is a text containing a verification of A and a
verification of B;

• a verification of a disjunction A ∨ B is a text containing a verification of A or a
verification of B and indicating which of them is verified;

• a verification of an implication A → B is a text describing a general effective
operation for obtaining a verification of B from every verification of A;

• a verification of a negative proposition ¬A is a verification of the proposition
A → ⊥, where ⊥ is a proposition having no verification.

If A(x) is a predicate with a parameter x over a domain M given in an appropriate
way, then

• a verification of an universal proposition ∀x A(x) is a text describing a general
effective operation which allows to obtain a verification of A(m) for every given
m ∈ M ;

• a verification of an existential proposition ∃x A(x) is a text indicating a concrete
m ∈ M and containing a verification of the proposition A(m).

Of course, this semantics is very informal and is not precise from themathematical
point of view. Nevertheless it is enough for formulating intuitionistically valid logical
principles. We shall consider the principles of intuitionistic propositional logic, i.e.,
those expressible by propositional formulas.

Propositional formulas are constructed in the usual way from a countable set
of propositional variables p, q, r, . . . (possibly with subscripts) and connectives &,
∨,→,¬. A(p1, . . . , pn)will denote a propositional formula containing no variables
other than p1, . . . , pn . The formula (A → B) & (B → A)will be denoted as A ≡ B.

A propositional formula A(p1, . . . , pn) is called intuitionistically valid if every
proposition of the form A(A1, . . . , An), where A1, . . . , An are arbitrary proposi-
tions, is intuitionistically true. Thus intuitionistically valid formulas can be con-
sidered as principles of intuitionistic propositional logic. The first axiomatization
of intuitionistic propositional logic was proposed by A. N. Kolmogorov (1925).
Another more wide axiom system of intuitionistic propositional calculus IPC was
later proposed by A. Heyting (1930). If A1, . . . , An are propositional formulas, let
IPC + A1 + · · · + An be the calculus obtained by adding the formulas A1, . . . , An as
axiom schemes to IPC. Formulas A and B are deductively equivalent if IPC + A 	 B
and IPC + B 	 A.

The problem of completeness of the calculus IPC can not be stated in a precise
mathematical form because intuitionistic semantics is very informal. It can be made
more precise if we define in a mathematical mode two key notions used in the
above description of the informal semantics, namely the notions of a verification
and a general effective operation. We consider some interpretations of intuitionistic
propositional logic.
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8.3 Heyting Algebras and Yankov’s Characteristic
Formulas

We start with an abstract algebraic interpretation. A logical matrixM is a non-empty
set M with a distinguished element 1 equipped with an unary operation¬ and binary
operations&,∨, and→ such that for any elements x, y ∈ M the following conditions
hold:

• if 1 → x = 1, then x = 1;
• if x → y = y → x = 1, then x = y.

A valuation onM is a function f assigning to each propositional variable p some
element f (p) ∈ M . Any valuation is extended to all propositional formulas in a
natural way. We say that a formula A is valid in M and write M |= A if f (A) = 1
for each valuation f on M. If f (A) 
= 1, we say that f refutes A on M. A formula
A is refutable on a logical matrix M iff there is a valuation refuting A on M.

A logical matrixM is called amodel of a propositional calculus if all the formulas
deducible in the calculus are valid inM. Models of IPC are called Heyting algebras
or pseudo-Boolean algebras. IfM is a Heyting algebra, then one can define a partial
order ≤ on M in the following way: if a, b ∈ M, then a ≤ b iff a → b = 1. A
detailed exposition of pseudo-Boolean algebras can be found in the book Rasiowa
and Sikorski (1963). By Completeness Theorem (see e.g. Jaśkowski 1936), if a
propositional formula A is not deducible in IPC, then there exists a finite Heyting
algebra M such that A is not valid inM.

Consider some notions introduced by V. A. Yankov (1963b). A finite logical
matrixM is called a finite implicative structure iffM is a model of the calculus IPC.
Thus, by Completeness Theorem, finite implicative structures are exactly the finite
Heyting algebras. We reformulate other Yankov’s definitions replacing the term ‘a
finite implicative structure’by ‘a finite Heyting algebra’.

There are two importantways of constructingHeyting algebras.Cartesian product
of algebras M1, . . . ,Mn is a Heyting algebra defined as the set M1 × · · · × Mn

equipped with the component-wise operations. Another operation � for any Heyting
algebra M gives an algebra �(M) obtained by adding to M a new element ω with
the property: x ≤ ω for each x 
= 1 inM and ω ≤ 1.

A finite Heyting algebraM is calledGödelean iff for any its elements a, b, when-
ever a ∨ b = 1, we have either a = 1 or b = 1. If a finite Heyting algebraM contains
more than one element, then it is easy to prove that M is Gödelean iff there is an
element ω which is the greatest among the elements different from 1. This element
is called a Gödelean element of the algebraM. Note that in Completeness Theorem,
one can do only with finite Gödelean algebras. Moreover, every algebra of the form
�(M) is Gödelean.

Let M be a finite Gödelean algebra, ω be its Gödelean element. To each ele-
ment a ∈ M assign in a one-to-one way a propositional variable pa . Let K be the
conjunction of all the formulas pa◦b ≡ pa ◦ pb (◦ ∈ { &,∨,→}) and p¬a ≡ ¬pa for
a, b ∈ M. Thus the formula K simulates the tables defining the operations & ,∨,→,
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and¬. The formula K → pω is called a characteristic formula forM and is denoted
by XM. It is obvious that the evaluation f (pa) = a refutes XM on M. Yankov has
proved the following theorem (see Jankov 1963b, Theorem 2).

Theorem 8.1 For any finite Gödelean algebraM and any propositional formula A,
the following conditions are equivalent:

(1) IPC + A 	 XM;
(2) M 
|= A.

A property S of propositional formulas is called intuitionistic if the fact that a
formula A has the property S implies that every formula deducible in the calculus
IPC + A has this property too. The following theorem (Jankov 1963b, Theorem 3)
is a consequence of Theorem8.1.

Theorem 8.2 For any finite Gödelean algebraM and any intuitionistic property S,
the following conditions are equivalent:

(1) each formula having the property S is valid inM;
(2) the formula XM does not have the property S.

This theorem is important in studying various semantics for intuitionistic propo-
sitional logic. Let an interpretation (a semantics) of propositional formulas be given.
Suppose that IPC is sound with respect to this semantics and we are interested in
completeness of IPC. If there exists a formula A valid in this semantics and nond-
educible in IPC, then A is refuted on a finite Gödelean algebra M. In this case, the
formula XM is also valid and nondeducible. Thus we can look for an example of this
kind among the characteristic formulas.

We say that elements a1, . . . , an of a finite Gödelean algebra M form a base if
every element inM can be obtained from a1, . . . , an by means of ¬, & , ∨, and →.
The following theorem proved by Yankov (see Jankov 1963b, Theorem 4) is useful
for applications.

Theorem 8.3 If a finite Gödelean algebra M has a base consisting of k elements,
then there is a formula A with k propositional variables such that A and XM are
deductively equivalent.

8.4 Medvedev Logic

Heyting algebras give a rather formal characterization of intuitionistic propositional
logic. An interesting although informal interpretation of that logic was proposed by
Kolmogorov (1932). He considers propositional formulas as schemes of problems.
Let A and B be arbitrary problems.Then A & B is the problem ‘To solve theproblems
A and B’, A ∨ B is the problem ‘To solve the problem A or to solve the problem B’,
A → B is the problem ‘To reduce the problem B to the problem A’, i.e., ‘To solve the
problem B assuming that a solution of the problem A is given’, the problem¬A is the
problem A → ⊥, where ⊥ is a problem having no solution. A propositional formula
A(p1, . . . , pn) is considered as a principle of the logic of problems if there exists a
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uniform solution for all the problems of the form A(A1, . . . , An), where A1, . . . , An

are arbitrary problems.Kolmogorov shows that the calculus IPC is soundwith respect
to this interpretation: all the formulas deducible in IPC are principles of the logic of
problems.

In order to state the problem of completeness of IPC relative to the interpretation
by means of problems, we have to make the notion of a problem more precise from
the mathematical point of view. This was done by Yu. T. Medvedev (1962). A finite
problem is a pair 〈F, X〉, where F is a finite non-empty set, X is its subset (possibly
empty). Intuitively, F is the set of possible solutions of the problem, X is the set
of its actual solutions. Let ⊥ be a fixed problem without any actual solutions, for
example, ⊥ = 〈{0},∅〉. For a finite problem A = 〈F, X〉 we denote F by ϕ(A) and
X by χ(A). Logical operations on finite problems are defined in the following way:

ϕ(A&B) = ϕ(A) × ϕ(B), χ(A&B) = χ(A) × χ(B),

where X × Y means Cartesian product;

ϕ(A ∨ B) = ϕ(A) ⊕ ϕ(B), χ(A ∨ B) = χ(A) ⊕ χ(B),

where X ⊕ Y = (X × {0}) ∪ (Y × {1});

ϕ(A → B) = ϕ(B)ϕ(A), χ(A → B) = { f ∈ ϕ(B)ϕ(A) | f (χ(A)) ⊆ χ(B)},

where Y X means the set of maps f : X → Y ;

¬A = A → ⊥.

Let A(p1, . . . , pn) be a propositional formula, A1, . . . ,An be finite problems.
Then A(A1, . . . ,An) is a finite problem obtained by substituting A1, . . . ,An for
p1, . . . , pn in A(p1, . . . , pn).

LetF be a system of non-empty finite sets F1, . . . , Fn .We say that a propositional
formula A(p1, . . . , pn) is valid overF if there exists an uniformactual solution for all
the problems of the form A(A, . . . ,An), where A, . . . ,An are finite problems such
that ϕ(Ai ) = Fi (i = 1, . . . , n). A propositional formula A(p1, . . . , pn) is called
finitely valid if it is valid over every system F1, . . . , Fn . The set of finitely valid
formulas is called Medvedev Logic; we denote it by ML.

Every formula deducible in IPC is finitely valid, but IPC is not complete relative
to Medvedev’s interpretation. For example, the formulas

(¬p → q ∨ r) → ((¬p → q) ∨ (¬p → r)) (8.1)

and
((¬¬p → p) → (¬p ∨ ¬¬p)) → (¬p ∨ ¬¬p) (8.2)

are finitely valid but are not deducible in IPC.
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No axiomatization of ML is known, but it is proved that it can not be axiomatized
by any system of axiom schemes with bounded number of variables (seeMaksimova
et al. 1979). In particular, this logic is not finitely axiomatizable.

It was proved Medvedev (1966) that ML has a finite model property: there exists
a sequence of finite Heyting algebras �n (n = 1, 2, . . . ) such that a propositional
formula A is in Medvedev Logic iff ∀n [�n |= A]. The sequence �n is defined as
follows. Let In = {1, 2, . . . , n} (n ≥ 1), σ n be the family of its non-empty subsets,
i.e., σ n = {E | E ⊆ In and E 
= ∅}. For σ ⊆ σ n , its closure is defined as the family
σ ∗ = {E ∈ σ n | ∃E0 [E0 ∈ σ and E0 ⊆ E]}. A family σ is called closed if σ ∗ = σ .
In other words, σ is closed iff E ∈ σ implies that all supersets of E are in σ . The
operation ∗ has the following properties: (1) ∅∗ = ∅; (2) σ ∗ ⊇ σ ; (3) σ ∗∗ = σ ∗;
(4) (σ1 ∪ σ2)

∗ = σ ∗
1 ∪ σ ∗

2 ; (5) if σ1 and σ2 are closed, then σ1 ∩ σ2 is closed.
Let �n be the set of all closed families, i.e., �n = {σ ⊆ σ n | σ ∗ = σ }. Define

operations& ,∨,→, and¬ on�n as follows: σ1 & σ2 = σ1 ∪ σ2; σ1 ∨ σ2 = σ1 ∩ σ2;
σ1 → σ2 = (σ1 ∩ σ2)

∗; ¬σ1 = (σ1)
∗, where σ1 = σ n \ σ1. The set �n with these

operations and a partial order ≤ defined as a ≤ b � a ⊇ b, is a Heyting algebra. Its
greatest element relative to ≤ is ∅ and the least element is σ n .

The following theorem was proved by Medvedev (1966, Theorem 1).

Theorem 8.4 A propositional formula F is finitely valid iff �n |= F for any n ≥ 1.

Note that �n is a Gödelean algebra. Namely ωn = {In} is its Gödelean element.
Thus for each algebra �n , we can construct its characteristic formula Xn . For exam-
ple, consider the case n = 3. We have that I3 = {1, 2, 3} and σ 3 consists of the
following 7 elements: ai = {i}, where i = 1, 2, 3, ai j = {i, j}, where i, j = 1, 2, 3,
i 
= j , and a123 = I3. There are 18 closed subfamilies of σ 3. Let us find all of them.
Evidently, the closed 7-element family a0 = σ 3 is the greatest element relative to ⊆
(and the least element relative to ≤). Removing from it one of the minimal elements
a1, a2, a3, we obtain the closed 6-element families a1 = σ 3 \ {a1}, a2 = σ 3 \ {a2},
a3 = σ 3 \ {a3}. Note that in this case, a0 = a1 ∪ a2 = a1 & a2. After removing from
a0 a pair of minimal elements, we obtain the following closed 5-element fami-
lies a4 = a1 ∩ a2 = a1 ∨ a2, a5 = a1 ∩ a3 = a1 ∨ a3, a6 = a2 ∩ a3 = a2 ∨ a3. Fur-
ther, removing from a0 all the minimal elements a1, a2, a3, we obtain the closed
4-element family a7 = a1 ∩ a2 ∩ a3 = a1 ∨ a2 ∨ a3. Removing from a0 the ele-
ment a12, in order to obtain a closed family, we must remove also the elements
a1 and a2. Thus we obtain the closed 4-element family a8 = {a3, a13, a23, a123}.
Note that a8 = ¬a3. Indeed, a3 is the family {a3} and a8 is its closure. In the
same manner, we obtain the closed 4-element families a9 = ¬a2 and a10 = ¬a1.
Removing from a7 the minimal element a12, we obtain the closed 3-element family
a11 = {a13, a23, a123} = a7 ∩ a8 = a7 ∨ a8. In the same way, we obtain the closed 3-
element families a12 = a7 ∩ a9 = a7 ∨ a9, a13 = a7 ∩ a10 = a7 ∨ a10. Other closed
2-element families are a14 = a11 ∩ a12 = a11 ∨ a12, a15 = a11 ∩ a13 = a11 ∨ a13,
a16 = a12 ∩ a13 = a12 ∨ a13. Finally, we have the Gödelean element of the algebra
�3, namely a17 = {I3} = a8 ∩ a9 ∩ a10 = a8 ∨ a9 ∨ a10, and the greatest relative to
≤ element a18 = ∅ = ¬a0. A visual diagram of the algebra �3 is provided in Citkin
(1978, Fig. 2).
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We see that the elements a1, a2, a3 form a base for the algebra �3. By Yankov’s
Theorem8.3, there is a propositional formula L with three variables such that L is
deductively equivalent to the characteristic formula X3. In order to obtain a formula
L , we assign the variables p1, p2, p3 to the elements a1, a2, a3 and simulate the tables
defining the operations of the algebra �3 by propositional formulas bearing in mind
that all the elements are obtained from the basic ones by means of ¬,&,∨,→. It
turned out that the elements a8, a9, a10, i.e., ¬a1,¬a2,¬a3, form a base as well. For
example, the Gödelean element a17 can be presented as ¬a1 ∨ ¬a2 ∨ ¬a3. Thus we
can construct the formula L from ¬p1,¬p2,¬p3. A general method of constructing
such a formula is described in Jankov (1969). In our case, we obtain the following
formula:

(¬¬p1 ≡ (¬p2 &¬p3))& (¬¬p2 ≡ (¬p3 &¬p1))& (¬¬p3 ≡ (¬p1 &¬p2))&
& ((¬p1 → (¬p1 ∨ ¬p3)) → (¬p2 ∨ ¬p3))&
& ((¬p2 → (¬p3 ∨ ¬p1)) → (¬p3 ∨ ¬p1))&
& ((¬p3 → (¬p1 ∨ ¬p2)) → (¬p1 ∨ ¬p2)) → (¬p1 ∨ ¬p2 ∨ ¬p3).

(8.3)

8.5 Propositional Logic of Realizability

Another way of a specification of the informal intuitionistic semantics is to define
a mathematically precise notion of a general effective operation. There is such a
notion in mathematics, namely the notion of an algorithm. A variant of intuitionistic
semantics based on interpreting effective operations as algorithms was proposed by
S. C. Kleene. He introduced (see Kleene 1945) the notion of recursive realizability
for the sentences of first-order arithmetic. The main idea was to consider natural
numbers as the codes of verifications and partial recursive functions as effective
operations. Partial recursive functions are coded by their Gödel numbers. A code of
a verification of a sentence is called a realization of the sentence.

The unary partial recursive function with the Gödel number x will be denoted by
{x}. The relation ‘a natural number e realizes an arithmetic sentence A’ (e r A) is
defined by induction on the number of logical connectives and quantifiers in A.

• If A is an atomic sentence t1 = t2, then e r A means that e = 0 and A is true.
• e r (A& B) iff e is of the form 2a · 3b and a r A, b r B.
• e r (A ∨ B) means that either e is of the form 20 · 3a and a r A or e is of the form
21 · 3b and b r B.

• e r (A → B) means that for any a, if a r A, then {e}(a) r B.
• e r¬A means that e r (A → 0 = 1).
• e r ∀x A(x) means that for any n, {e}(n) r A(n).
• e r ∃x A(x) means that e is of the form 2n · 3a and a r A(n).

The following theorem is proved by D. Nelson (1947).

Theorem 8.5 Every formula deducible in intuitionistic arithmeticHA is realizable.
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There are various variants of the notion of realizability for propositional formulas.
Let A(p1, . . . , pn) be a propositional formula, A1, . . . , An be arithmetical sentences.
Then A(A1, . . . , An) is an arithmetical sentence obtained by substituting A1, . . . , An

for p1, . . . , pn in A(p1, . . . , pn). It follows from the proof of Nelson Theorem that
for any propositional formula A deducible in IPC, there exists a number a such that
a r A(A1, . . . , An) for any arithmetical sentences A1, . . . , An . In this sense, deducible
formulas are uniformly realizable.

The incompleteness of IPCwith respect to recursive realizability was discovered
by G. F. Rose (1953), who has found a propositional formula which is uniformly
realizable but is not deducible in IPC. Later other examples of this kindwere proposed
by various authors. Deductive interrelations between them are completely studied
by D. P. Skvortsov (1995). He found a list of four realizable propositional formulas
which are deductively independent in IPC and any other known realizable formula
is deducible from these four formulas.

Yankov made some contributions to the study of propositional realizability logic.
His paper Jankov (1963a) is dedicated to this topic. In particular, Yankov proposed
new examples of realizable propositional formulas which are not deducible in IPC.
These formulas are:

(1) (¬(p& q)&¬(¬p&¬q)& ((¬¬p → p) → (p ∨ ¬p))&
& ((¬¬q → q) → (q ∨ ¬q))) → (¬p ∨ ¬q);
(2) a series of formulas In (n ≥ 3), where In is the formula

&1≤i< j≤n¬(pi & p j ) & & 1≤i<n (( &1≤ j<n, j 
=i¬p j ) → (pi ∨ pn)) → (pn ∨ ¬pn);
(3) a series of formulas Kn (n ≥ 3), where Kn is the formula

&1≤i< j≤n(¬(pi & p j )&(( &1≤k≤n.k 
=i,k 
= j¬pk) → (pi ∨ p j )) → ∨1≤i≤n pi .
Note that the first formula is included in Skvortsov’s list.
Yankov showsdeductive relationships between his formulas and theRose formula.

Besides, he considers the 7-element Heyting algebraM = �(�(I0) × I0), where I0
is the classical two-element algebra {0, 1}. Yankov proves that all realizable proposi-
tional formulas are valid inM. In this case, simulating the algebraM in the language
of arithmetic is used. Namely, an arithmetical formula Fa(x) is assigned to every ele-
ment a ∈ M in such a way that operations inM correspond to the logical operations
over formulas in the realizability semantics. For example, if a → b = c in M, then
the formula ∀x ((Fa(x) → Fb(x)) ≡ Fc(x)) is realizable. At the same time, the for-
mula ∀x Fa(x) is realizable only in the case a = 1. This method was later used by the
author in the proof of the completeness of the disjunction-free part of IPC relative
to realizability (see Plisko 1973).

It turns out that the formula (8.2) is refuted on the algebra M. In fact, this for-
mula is deductively equivalent to the characteristic formula of the algebraM. Since
realizability is an intuitionistic property of propositional formulas, it follows from
Yankov’s Theorem8.2 that the formula (8.2) is not realizable. This formula is of
interest because the Rose formula is a substitutional instance of (8.2). Namely, the
Rose formula is obtained by substituting ¬q ∨ ¬r for p in (8.2).

A comprehensive survey of propositional realizability logic can be found in Plisko
(2009).
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8.6 Realizability and Medvedev Logic

We consider relations between propositional logic of realizability and Medvedev
Logic. First of all, note that there are propositional formulas in Medvedev Logic
which are not realizable, for example, the formulas (8.1) and (8.2). Consider the
converse inclusion. Imagine that we are looking for a propositional formula F that is
realizable but is not finitely valid. We know that such a formula should be refuted on
the algebra�n for an appropriate n. On the other hand, realizability is an intuitionistic
property. Thus by Yankov’s Theorem8.2, if the formula F is realizable and is refuted
on �n , then the characteristic formula Xn of the algebra �n is realizable. Moreover,
the formula Xn is not finitely valid. Thus we can consider only the formulas Xn . It
turned out that X3 is already the formula we are looking for. Of course, any formula
which is deductively equivalent to X3 has the desired property. We have constructed
above such a formula, namely (8.3). Denote it by L(p1, p2, p3).

Theorem 8.6 The formula L(p1, p2, p3) is uniformly realizable.

Proof We prove that there exists a natural number e such that for any arithmetical
sentences A1,A2,A3, e realizes the arithmetical sentence L(A1,A2,A3), i.e., the
sentence

(¬¬A1 ≡ (¬A2 &¬A3))& (¬¬A2 ≡ (¬A3 &¬A1))& (¬¬A3 ≡ (¬A1 &¬A2))&
& ((¬A1 → (¬A1 ∨ ¬A3)) → (¬A2 ∨ ¬A3))&
& ((¬A2 → (¬A3 ∨ ¬A1)) → (¬A3 ∨ ¬A1))&
& ((¬A3 → (¬A1 ∨ ¬A2)) → (¬A1 ∨ ¬A2)) → (¬A1 ∨ ¬A2 ∨ ¬A3)

(8.4)
Begin with some auxiliary statements. Let π0, π1, π2, . . . be sequential prime

numbers, and (a)i be the exponent with which the prime number πi appears in the
decomposition of the number a into prime factors.

Lemma 8.1 Let f be a total recursive function with values 0 and 1. Then there
exists a number x such that either ({x}(x))0 = 0 and f (x) = 1 or ({x}(x))0 = 1 and
f (x) = 0.

Proof This is an easy exercise in the theory of recursive functions.

Lemma 8.2 Suppose that the formula

(¬¬A1 ≡ (¬A2 &¬A3))&(¬¬A2 ≡ (¬A3 &¬A1))&(¬¬A3 ≡ (¬A1 &¬A2))

(8.5)
is realizable and numbers a1, a2, a3 are such that



218 V. Plisko

a1 r ((¬A1 → (¬A2 ∨ ¬A3)) → (¬A2 ∨ ¬A3)),

a2 r ((¬A2 → (¬A3 ∨ ¬A1)) → (¬A3 ∨ ¬A1)),

a3 r ((¬A3 → (¬A1 ∨ ¬A2)) → (¬A1 ∨ ¬A2)).

For any x and i = 1, 2, 3, let fi (x) = ({ai }(x))0 and α(x) be the Gödel number of
the constant function g(y) = 2({x}(x))0 · 30. Then there exist x and i ∈ {1, 2, 3} such
that either ({x}(x))0 = 0 and fi (α(x)) = 1 or ({x}(x))0 = 1 and fi (α(x)) = 0.

Proof It follows from realizability of the formula (8.5) that exactly two of the for-
mulas ¬A1,¬A2,¬A3 are realizable. As the situation is absolutely symmetric, let
us consider the case when ¬A1 and ¬A2 are realizable and ¬A3 is not. Then the
formula¬A3 → (¬A1 ∨ ¬A2) is realized by every number, thus {a3} is a total recur-
sive function. The function α is also total and recursive. Therefore the function
f (x) = f3(α(x)) is total, and we obtain the proposition under the proof as an imme-
diate consequence of Lemma8.1.

Let a realization of the premise of the formula (8.4) be given. It follows that the
formula (8.5) is realizable and numbers a1, a2, a3 as in Lemma8.2 can be found
effectively. Then, by Lemma8.2, there exist x and i ∈ {1, 2, 3} such that either
({x}(x))0 = 0 and fi (α(x)) = 1 or ({x}(x))0 = 1 and fi (α(x)) = 0, where fi and
α are the same functions as in Lemma8.2. Note that the number x can be found
effectively. Now we can describe an algorithm which allows to find a realization of
the conclusion of the formula (8.4). Obviously, it is enough to indicate a realizable
member in the disjunction ¬A1 ∨ ¬A2 ∨ ¬A3. We state that:

• if i = 1 and f1(α(x)) = 0, then ¬A2 is realizable;
• if i = 1 and f1(α(x)) = 1, then ¬A3 is realizable;
• if i = 2 and f2(α(x)) = 0, then ¬A3 is realizable;
• if i = 2 and f2(α(x)) = 1, then ¬A1 is realizable;
• if i = 3 and f3(α(x)) = 0, then ¬A1 is realizable;
• if i = 3 and f3(α(x)) = 1, then ¬A2 is realizable.

Consider the first case, namely f1(α(x)) = 0 for some x such that ({x}(x))0 = 1.
Note that {x}(x) is defined and α(x) is the Gödel number of the constant function
whose only value is 2({x}(x))0 · 30.Wehave to prove that¬A2 is realizable.Assume that
¬A2 is not realizable. Then¬A1 and¬A3 are realizable. In this case, the numberα(x)
is a realization of the formula¬A1 → (¬A2 ∨ ¬A3). Indeed, every numbera realizes
¬A1. Note that {α(x)}(a) = 2({x}(x))0 · 30 = 21 · 30 and in fact, this number realizes
the formula¬A2 ∨ ¬A3. Therefore {a1}(α(x)) realizes the formula¬A2 ∨ ¬A3 and
({a1}(α(x))0 = 1, that is f1(α(x)) = 0. But this is not the case. The contradiction
means that the formula ¬A2 is realizable. Other cases are considered in the same
way.

Thus we have an algorithm for finding a realizable member in the disjunction
¬A1 ∨ ¬A2 ∨ ¬A3 if a realization of the premise of the formula (8.4) is given. This
means that the formula (8.4) is realizable. As the realization does not depend on the
sentences A1,A2,A3, the formula L is uniformly realizable.
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