
Chapter 6
The Invariance Modality

Silvio Ghilardi

Abstract In Gerla (1987), G. Gerla introduced the so-called transformational
semantics for predicate modal logic and considered in particular semantic frame-
works given by a classical model endowed with a group of automorphisms, where
a boxed formula is true iff it holds invariantly (i.e. it remains true whenever an
automorphism is applied to the individuals it is talking about). With this interpreta-
tion, de dictomodalities collapse, but de remodalities remain quite informative. We
handle the axiomatization problem of such modal structures, by employing classic
model-theoretic tools (iterated ultrapowers and double chains).

Keywords Quantified modal logic · Presheaf semantics · Invariance modality ·
Ultrapowers

6.1 Introduction

The distinction between de re and de dicto modalities is a classical topic in the
philosophical investigations concerning modal predicate logic. We recall that de
dicto modalities are represented by formulae of the kind �φ where φ is a sentence;
in case φ has free variables, the modality �φ is called a de re modality. Whereas
de dicto modalities can be interpreted without referring to some kind of “essential”
properties of individuals, the same does not apply to de re modalities: that’s why de
re modalities appear to be compromised with some sort of essentialist metaphysics.

However, looking at mathematical contexts, as pointed out in Gerla (1987), de
re modalities assume a rather natural interpretation: �φ(x) means that x enjoys the
property φ in a way that is invariant with respect to transformations that might be
applied to x . In particular, when transformations are applied inside a given domain,
only de remodalities survive and de dictomodalities collapse (i.e. it happens exactly
the contrary of what anti-essentialist philosophy would consider to be desirable).
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To this aim, in Gerla (1987) a suitable invariance logic is introduced and shown
to be recursively axiomatizable (via a reduction to two-sorted predicate logic). In
this paper, we show that the axiomatization implicitly suggested in Gerla (1987)
is complete: we consider both the case where transformations are assumed to be
functions and the casewhere transformations are assumed to be bijections (we use the
name of ‘transformation semantics’ for the former case and of ‘invariance semantics’
for the latter).1

Themain results of this paperwere already contained inGhilardi (1990); theywere
listed in Ghilardi and Meloni (1991) (together with other results in modal predicate
logic), but never published. The proofs presented here are a deep revisitation and
clarification of the original proofs in Ghilardi (1990). The completeness results in
Sect. 6.4 can be obtained also via the saturated/special models technique of Ghilardi
(1992); however the technique presented here does not depend on cardinal arithmetics
and has the merit of reinterpreting classical model theoretic methods in the specific
context of modal logic.

6.2 Preliminaries

We consider a first order modal language L with identity: terms are restricted to
be only variables, whereas formulae are built up from atoms using the connectives
¬,⊥,∨,� and the quantifier ∃ (further connectives ∧,→,♦ and the quantifier ∀
are defined in the standard way).

We shall use languages expanded with constants (called parameters) to introduce
our semantic notions; parameters are taken from a set specified in the context. If
we are given a function μ acting on the set of parameters, we use the notation φ[μ]
to mean the formula obtained from φ by replacing every parameter a occurring in
it by μ(a). When we speak of L-sentences, L-formulae, etc. we mean sentences,
formulae, etc. without parameters; on the contrary, when we speak of sentences,
formulae, etc. parameters are allowed to occur.

Wefix for thewhole paper anL − theory T , i.e. a set ofL-sentences. Our calculus
has modus ponens (from φ and φ → ψ inferψ) and necessitation (from φ infer�φ)
as rules; as axioms we take an axiomatic base for first order classical logic with
identity, the L-sentences from T , the S4-axiom schemata

�(φ → ψ) → (�φ → �ψ), �φ → φ, �φ → ��φ (6.1)

and the further schema
φ → �φ (dDC)

1 Thus our use of the name of ‘transformation semantics’ does not fully agree with Gerla (1987),
whereas our ‘invariance semantics’ is the same as the semantics for ‘invariance logic’ of Gerla
(1987). In this paper, for simplicity, we completely leave apart the question of the interpretation
of constants and function symbols (if they are not rigid, they need to be handled via the approach
of Ghilardi and Meloni 1988, see also Braüner and Ghilardi 2007).
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restricted to L-sentences. Such a schema is called the de dicto collapse schema. We
write �T φ or T � φ to mean that φ has a derivation in this calculus. We assume that
our T is consistent, i.e. that T � ⊥.

Notice that our calculus does not give rise to a logic, according to the standard
definition of a modal predicate logic Gabbay et al. (2009), Braüner and Ghilardi
(2007), because it is not closed under uniform substitution: in fact, the schema (dDC)

is not assumed to hold in case φ contains free variables. In addition, notice also that
when we expand the language with parameters, the schema (dDC) does not apply
to sentences containing parameters, but only to sentences in the original language
L.2

An immediate consequence of the de dicto collapse schema is that the standard
form of the deduction theorem holds:

Proposition 6.1 Let ψ be an L-sentence and φ be an arbitrary formula; we have
that T ∪ {ψ} � φ holds iff T � ψ → φ holds.

As a corollary, we can prove a Lindenbaum Lemma (T is said to be maximal iff
either T � ψ or T � ¬ψ holds for every L-sentence ψ):

Lemma 6.1 Our consistent L-theory T can be extended to a maximal consistent
L-theory in the same language L.

6.2.1 Transformational and Invariance Models

A modal transformational model (or just a transformational model) for L is a triple
M = (M,I, E), where (M,I) is a Tarski structure for the first-order languageL and
E is a set of functions from M into M closed under composition and containing the
identity function; amodal invariance model (or just an invariance model) is a modal
transformation model M = (M,I, E) such that all functions in E are bijective.

Sentences in the expanded language L ∪ M (containing a parameter name for
each element of M) are evaluated inductively in a modal transformation modelM =
(M,I, E) as follows:

(i) M |= P(a1, . . . , an) iff (a1, . . . , an) ∈ I(P) (for everyn-ary predicate symbol
P from L);

(ii) M |= a1 = a2 iff a1 is equal to a2;
(iii) M �|= ⊥;
(iv) M |= ¬φ iffM �|= φ;
(v) M |= φ1 ∨ φ2 iff (M |= φ1 or M |= φ2);
(vi) M |= ∃xφ iff there is some a ∈ M s.t.M |= φ(a/x).
(vii) M |= �φ iff for all μ ∈ E , M |= φ[μ].

2 Obviously, the addition of parameters is conservative: if an L-formula has a proof in a language
with parameters, it also has a proof inL (just replace parameters with free variables in such a proof).
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M is said to be a modal transformation model of the L-theory T iff we have

(o) M |= φ for every L-sentence φ ∈ T .

The following soundness property is easily established by induction on the proof
witnessing �T φ:

Proposition 6.2 Take an L-formula φ(x1, . . . , xn) whose free variables are among
x1, . . . , xn and suppose that �T φ; then for every modal transformational model
M = (M,I, E) of T , for every a1, . . . , an ∈ M we have that M |= φ(a1 . . . , an).

Notice that we use the notation φ(x1, . . . , xn) to express that φ contains free
variables among x1, . . . , xn and the notation φ(a1, . . . , an) for the formula obtained
from φ by replacing xi by ai (for i = 1, . . . , n). When we use such notation, the
x1, . . . , xn are assumed to be distinct, whereas the a1, . . . , an may not be distinct. To
have amore compact notation, wemay use underlined letters for tuples of unspecified
length: then φ(a) means the sentence obtained from φ(x) by replacing componen-
twise the tuple of variables x by the tuple of parameters a (the latter is supposed to
be of equal length as x).

In the definition of a modal transformation model, we took E to be just a set of
endofunctions. One may wonder whether we can ask more for them: the answer is
‘yes’ in case we suitably enrich out theory T . In fact, if we take as further axioms
for T the universal closure of the L-formulae

A → �A (6.2)

where A is atomic, then because of (o) and (vii), all functions in E are forced to be
homomorphisms; to force them to be embeddings (in the standard model-theoretic
sense Chang and Keisler 1990), it is sufficient to put in T the universal closure of all
the L-formulae of the kind

L → �L (6.3)

where L is a literal (i.e. an atom or the negation of an atom).
We did not consider function symbols in our language L for simplicity; however,

an n-ary function symbol h can be represented via an n + 1-ary predicate symbol Ph
via existence and uniqueness axioms; assuming (6.2) for atoms rooted at Ph , restricts
all f ∈ E to be h-homomorphisms in the algebraic sense.

In general, a modal collapse axiom

θ → �θ (6.4)

expresses the fact that θ is an invariant with respect to the class of endomorphisms
considered in E .More information on connections between the collapse ofmodalities
and model-theoretic notions is available in Gerla and Vaccaro (1984).
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6.3 Classical Models and Ultrapowers

A classical model is a pair M = (M, |=M), where M is a set and |=M is a set
of sentences in the expanded language L ∪ M satisfying the condition (o) and the
conditions (ii)-(vi) above (we usually write |=M φ as M |= φ).

Thus a classical model is in fact nothing but a model (in the classical sense) for
our calculus rewritten in (non modal) first-order logic as follows. We let Lext be
the first order language obtained by expanding L by an extra predicate symbol P�φ

for every boxed L-formula �φ (the arity of P�φ is the number of free variables
occurring in φ); similarly, we let Text be the first-order theory having as axioms all
the Lext -formulae θ such that, replacing in θ the subformulae of the kind P�φ(t)
by �φ(t), one obtains an L-formula provable in T (here t is a tuple of variables
matching the length of the tuple of free variables of φ). Then a classical model in
the above sense is just a first-orderLext -structure which is a model of Text according
to Tarski semantics. Once we view classical models in this sense, it is clear that we
can apply to them standard model-theoretic constructions (we shall be interested in
particular into ultrapowers and chain limits).

Given two classical models M = (M, |=M) and N = (N , |=N ), an elementary
morphism among them is a map μ : M −→ N among the support sets satisfying the
condition

M |= φ ⇒ N |= φ[μ] (6.5)

for all L ∪ M-sentences φ.
A modal morphism among M = (M, |=M) and N = (M, |=M) is a map μ :

M −→ N among the support sets satisfying the condition

M |= �φ ⇒ N |= φ[μ] (6.6)

for allL ∪ M-sentencesφ. Notice thatmodalmorphisms need not be injective, unlike
elementary morphisms.3

It is useful to extend the notion of a modal morphisms to subsets of classical mod-
els. Suppose that we are given two classical modelsM = (M, |=M),N = (N , |=N )

and a subset A ⊆ M ; a partial modal morphism of domain A is a map μ : A −→ N
satisfying (6.6) for allL ∪ A-sentences φ (a partial modal morphism is usually indi-
cated as μ : A −→ N , leaving M as understood). Modal (partial) morphisms are
coloured in red in the diagrams below in the digital version of the book.

Given an ultrafilter D (on any set of indices) and a classical model M, we can
form the ultrapower �DM of M (as an Lext -structure) in the standard way Chang
and Keisler (1990); we recall also that we have a canonical elementary morphism
ιD : M −→ �DM.

We shall make extensive use of �-ultrafilters, which are defined as follows. Take
a classical model M and consider the set IM formed by the L ∪ M-sentences φ

3 However, amodalmorphismmust be an h-homomorphism for every operation hwhich is definable
in T via a predicate Ph , in case (6.2) is assumed for all atoms rooted at Ph , as above explained.
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such that M |= �φ. A �-ultrafilter over M is any ultrafilter extending the finite
intersections closed family given by the subsets of IM of the kind ↓ φ = {ψ ∈ IM |
T � ψ → φ}, varying φ in IM.

The following Lemma explains a typical use of �-ultrafilters:

Lemma 6.2 LetM = (M, |=M),N = (N , |=N ) be classical models and let A ⊆ M
be a subset of M. Suppose we are given a partial modal morphism ν : A −→ N and
a �-ultrafilter D over M. Then ν can be extended to a full modal morphism into
�DN , in the sense that there exists a modal morphism ν̄ : M −→ �DN such that
ν̄(a) = ιD(ν(a)) holds for all a ∈ A.

A N

M �DN

ν

ιD

ν̄

Proof For every φ ∈ IM, we define amap hφ : M −→ N in the followingway. Let b
be the parameters from M occurring in φ: suppose that we have b = a, b′, where the
b′ are the (distinct) elements from b not belonging to A. We have M |= �φ(a, b′)
by definition of IM; it follows that M |= ∃y�φ(a, y). Since T � ∃y�φ(a, y) →
�∃yφ(a, y),4 we get thatM |= �∃yφ(a, y) and also that there exist c in N such that
N |= φ(ν(a), c), because ν is modal. We take hφ : M −→ N to be any extension of
the partial map sending d to ν(d) (for all d ∈ A) and the b′ to the c. As a consequence
of this definition we have

N |= φ[hφ], for all φ ∈ IM . (6.7)

Let us now define ν̄ : M −→ �DN as the map sending d ∈ M to the equivalence
class of the IM-indexed tuple 〈hφ(d)〉φ . We need to prove that for every ψ with
parameters inM, we have

M |= �ψ ⇒ �DN |= ψ[ν̄] .

If M |= �ψ , then ψ ∈ IM and so, since ↓ ψ ∈ D, it is sufficient to check that for
every φ ∈↓ ψ we have N |= ψ[hφ]. Now φ ∈↓ ψ means that we have M |= �φ

(i.e. φ ∈ IM) and T � φ → ψ . Since N is a classical model of T and (6.7) holds,
we get N |= ψ[hφ], as wanted. �
Corollary 6.1 Let M0,M,N be classical models; suppose we are given an ele-
mentary morphism μ : M0 −→ M, a modal morphism ν : M0 −→ N and a �-
ultrafilter D over M. Then there exists a modal morphism ν̄ : M −→ �DN such
that ν̄ ◦ μ = ιD ◦ ν.

4 This is provable in all quantified normal modal systems (Hughes and Cresswell 1968).



6 The Invariance Modality 171

M0 N

M �DN

ν

μ ιD

ν̄

Proof This is easily reduced to the previous lemma, considering that, up to an iso-
morphism, μ is an inclusion (because it is injective). �

Recall the symmetry axiom schemata

♦�φ → φ (6.8)

which axiomatizes the modal logic S5, once added to the S4 axiom schemata (6.1).
If our T is an extension of S5 (i.e. if it contains all the examples of the above
schema (6.8)), a variant of Lemma6.2 holds:

Lemma 6.3 Suppose that T is an extension of S5. Let M, N be classical models
and A ⊆ N be a subset of N . Suppose we are given a partial modal morphism
μ : A −→ M and a �-ultrafilter D over M. Then there exists a modal morphism
θ : M −→ �DN such that θ(μ(a)) = ιD(a) for all a ∈ A.

A N

M �DN
μ ιD

θ

Proof Let us preliminarily check that the implication

M |= ∃y�φ(μ(a), y) ⇒ N |= ∃yφ(a, y) (6.9)

holds for all φ(a, y) with parameters a from A. To show this, assume that M |=
∃y�φ(μ(a), y); then (since μ is modal—by contraposition of the partial modal
morphism definition) we haveN |= ♦∃y�φ(a, y) and alsoN |= ♦�∃yφ(a, y). By
the symmetry axiom (6.8), N |= ∃yφ(a, y) follows.

As a second observation, we notice that μ is injective: this is because T is an
extension of S5 and the necessity of the difference is a theorem in quantified S5
(see Hughes and Cresswell 1968).

Now we can proceed similarly as in the proof of Lemma6.2. For every φ ∈ IM,
we define a map hφ : M −→ N in the following way. Let b be the parameters from
M occurring inφ; we can decompose b as b = μ(a), b′, where the b′ are the (distinct)
elements from b not belonging toμ(A).We haveM |= �φ(μ(a), b′) by definition of
IM; it follows thatM |= ∃y�φ(μ(a), y) and consequentlyN |= ∃yφ(a, y) by (6.9),
so there are c ∈ N such thatN |= φ(a, c).We take hφ : M −→ N to be any extension
of the partial map sendingμ(d) to d (for all d ∈ A) and the b′ to the c: this is possible
because, as noticed above,μ is injective. As a consequence of this definition we have
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N |= φ[hφ], for all φ ∈ IM . (6.10)

We finally define ν̄ : M −→ �DN as the map sending d ∈ M to the equivalence
class of the IM-indexed tuple 〈hφ(d)〉φ : the proof now continues as in Lemma6.2. �
Corollary 6.2 Suppose that T is an extension of S5. Let M0, M, N be classical
models. Suppose we are given a modal morphism μ : M0 −→ M, an elementary
morphism ν : M0 −→ N and a �-ultrafilter D over M. Then there exists a modal
morphism θ : M −→ �DN such that θ ◦ μ = ιD ◦ ν.

M0 N

M �DN

ν

μ ιD

θ

6.4 Strong Completeness Theorems

In this section, we prove our main results, namely that our transformational seman-
tics is axiomatized by the de dicto collapse schema (together with S4 axiom
schemata (6.1)) and that the addition of the symmetry axiom schema (6.8) axioma-
tizes modal invariance models.

Theorem 6.1 For a given sentence φ, we have that if T � φ then there is a trans-
formational model M of T such that M �|= φ.

Proof We prove the theorem in the following equivalent form (the equivalence is
guaranteed by Proposition6.1 and by the Lindenbaum Lemma6.1): if T is maximal
consistent, then there is a transformational model for T .

Notice that to show the claim it is sufficient to produce a classical model
M = (M, |=M) for T satisfying the following additional condition for everyL ∪ M-
sentence φ:

(*) if M �|= �φ, then there exists a modal endomorphism ν : M −→ M such that
M �|= φ[ν].

In fact, once such a classical model is found, we can turn it into the transformational
model M = (M,I, E), where E is the set of modal endomorphisms of M and I
is the interpretation function mapping an n-ary predicate symbol P into the set of
n-tuples (a1, . . . , an) ∈ Mn such that M |= P(a1, . . . , an): an easy induction then
proves a standard ’truth lemma’, namely thatM |= φ holds iffM |= φ holds for all
L ∪ M-sentences φ.

Thus we are left to the task of finding a classical model satisfying (∗) above for
our maximal consistent T . We shall buildM as a chain limit of ultrapowers.

We start with a classical model M0 having some saturation properties. In fact,
we need a weaker variant of ω-saturation, which we are going to explain. An n -ary
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type for T is a set of formulae τ(x) having at most the x as free variables (here x =
x1, . . . , xn) such that for every finite subset τ0 ⊆ τ , we have that T ∪ {∃x ∧

τ0(x)}
is consistent. An n-ary type τ(x) is realized in a classical modelM = (M, |=M) iff
there is a tuple a ∈ Mn such that we have M |= θ(a) for every θ(x) ∈ τ(x). Since
T is maximal consistent, by a simple compactness argument, it is possible to show
that there is a classical model M0 for T realizing all n-ary types for T (for all n).
This M0 is the starting model of our chain.

Having already defined the classical model Mi , we let Mi+1 be �DiMi , where
Di is a �-ultrafilter ofMi . Now let us take the limitM of the chain given by theMi

and the elementary embeddings ιDi

M0
ιD0−→ · · · ιDi−1−→ Mi

ιDi−→ · · · (6.11)

We prove that M satisfies condition (∗). Let φ be a sentence with parameters from
M such thatM �|= �φ. Let the parameters occurring in φ be a and let all of them be
from a certainMi . We claim that the set of formulae

{¬φ(x)} ∪ {θ(x) |M |= �θ(a)} (6.12)

is a type.Otherwise there are formulae θ1(x), . . . , θm(x) such thatwe have bothM |=∧m
k=1 �θk(a) and T ∪ {∃x(¬φ(x) ∧ ∧m

k=1 θk(x)} � ⊥. By the deduction theorem
(Proposition6.1), classical validities, necessitation rule, the converse of the Barcan
formula (available in quantified normal systems Hughes and Cresswell 1968) and
the distribution axiom (6.1), we get T � ∀x(∧m

k=1 �θk(x) → �φ(x)), contradicting
M |= ∧m

k=1 �θk(a) and M �|= �φ(a).
Let the type (6.12) be realized by some tuple b from Mi (actually, there is such

a tuple already in M0 by the above weak saturation property of M0). We let A =
{a} and ν be the partial modal morphism ν : A −→ Mi mapping the a to the b.
By Lemma6.2, there is a modal morphism νi : Mi −→ Mi+1 such that νi (a) =
ιDi (ν(a)) = ιDi (b).

A Mi

Mi Mi+1

ν

ιDi
νi

If we now apply repeatedly Corollary6.1, for all j ≥ i , we can findmodalmorphisms
ν j+1 such that ν j+1 ◦ ιDj = ιDj+1 ◦ ν j .

M j M j+1

M j+1 M j+2

ν j

ιD j ιD j+1
ν j+1

Putting all these ν j together in the chain limit, we get a modal morphism ν : M −→
M which maps (the colimit equivalence class of) a into (the colimit equivalence
class of) b, so that we have M �|= φ[ν], as required. �
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6.4.1 Invariance Models

We now consider strong completeness for invariance models:

Theorem 6.2 Suppose that T is an extension of S5. For a given sentence φ, we have
that if T � φ then there is an invariance model M of T such that M �|= φ.

Proof Again, we can freely suppose that T is maximal consistent and the theorem
is proved if we find a classical modelM = (M, |=M) for T satisfying the following
condition for every L ∪ M-sentence φ:

(**) if M �|= �φ, then there exists a bijective modal endomorphism ν : M −→ M
such that M �|= φ[ν].

Notice in fact that, if T is an extension of S5, the inverse of a bijective modal
morphism is also a modal morphism. Thus, if (∗∗) holds, then we can turn the
classical model M into the invariance model M = (M,I, E) by taking as E the
set of bijective modal endomorphisms of M and by defining I as in the proof of
Theorem6.1.

To find a classical model satisfying (∗∗), we proceed as in the proof of Theo-
rem6.1: we first build the sufficiently saturatedmodelM0, the chain ofmodels (6.11)
and its chain colimitM. Also, given φ with parameters inMi such thatMi �|= �φ,
we build a modal morphism νi : Mi −→ Mi+1 such thatMi+1 �|= φ[νi ]. The ques-
tion is now how to extend this modal morphism to a bijective modal morphism
M −→ M. To this aim we shall use Corollary6.2 and a double chain argument.
Because of Corollary6.2 we can in fact inductively define for every j ≥ i a modal
morphism ν j+1 : M j+1 → M j+2 so that we have ν j+1 ◦ ν j = ιDj+1 ◦ ιDj .

M j M j+1

M j+1 M j+2

ιD j

ν j ιD j+1
ν j+1

This equality holds for all j ≥ i ; thus, applying it to k and k + 1, we get (for every
k ≥ i)

ιDk+2 ◦ ιDk+1 ◦ νk = νk+2 ◦ νk+1 ◦ νk = νk+2 ◦ ιDk+1 ◦ ιDk

Mk Mk+1 Mk+2

Mk+1 Mk+2 Mk+3

ιDk

νk

ιDk+1

νk+2

ιDk+1

νk+1

ιDk+2

This means that the family of modal morphisms {νi+2s}s≥0 determines the required
modal morphism M −→ M extending νi : this morphism is bijective because its
inverse is the modal morphism determined by the family of modal morphisms
{νi+2s+1}s≥0. �
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6.5 Conclusions

We proved strong completeness theorems for transformational and invariance mod-
els. Such models are special cases of presheaf models, where the domain category
of presheaves is a monoid (resp. a group). Presheaf models have been shown to be
quite effective in proving the weakness of Kripke semantics in quantified modal
logic (Ghilardi 1989, 1991), however a systematic semantic investigation on them
(covering e.g. crucial topics like correspondence theory) still waits for substantial
development.

Another potentially interesting (although difficult) research direction would be
that of identifying classes of monoids and groups whose associated transformational
and invariance models are sensible to a transparent modal axiomatization. Invariance
theory is at the heart of mathematics in various areas and it would be nice if modal
logic could contribute to it in some respect.
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