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Abstract I give an exposition of the papers by Yankov published in the 1960s in
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developed a technique that has successfully been used ever since.
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2.1 Introduction

V. Yankov started his scientific career in early 1960s while writing his Ph.D. thesis
under A. A. Markov’s supervision. Yankov defended thesis “Finite implicative lat-
tices and realizability of the formulas of propositional logic” in 1964. In 1963, he
published three short papers Jankov (1963a, b, c) and later, in Jankov (1968a, b, c, d,
1969), he provided detailed proofs together with new results. All these papers are
primarily concerned with studying super-intuitionistic (or super-constructive, as he
called them) propositional logics, that is, logics extending the intuitionistic proposi-
tional logic Int. Throughout the present paper, the formulas are propositional formu-
las in the signature →,∧,∨, f, and as usual, ¬p denotes p → f and p ↔ q denotes
(p → q) ∧ (q → p); the logics are the sets of formulas closed under the rulesModus
Ponens and substitution.
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8 A. Citkin

To put Yankov’s achievements in a historical context, we need to recall that Int
was introduced by Heyting (cf. Heyting 19301), who defined it by a calculus denoted
by IPC as an attempt to construct a propositional logic addressing Brouwer’s critique
of the law of excluded middle and complying with intuitionistic requirements. Soon
after, Gödel (cf. Gödel 1932) observed that Int cannot be defined by any finite set
of finite logical matrices and that there is a strongly descending (relative to set-
inclusion) set of super-intuitionistic logics (si-logics for short); thus, the set of si-
logics is infinite. Gödel also noted that IPC possesses the following property: for
any formulas A, B, if IPC � (A ∨ B), then IPC � A, or IPC � B—the disjunction
property, which was later proved by Gentzen.

Even though Int cannot be defined by any finite set of finite matrices, it turned
out that it can be defined by an infinite set of finite matrices (cf. Jaśkowski 1936),
in other words, Int enjoys the finite model property (f.m.p. for short). This led to a
conjecture that every si-logic enjoys the f.m.p., which entails that every si-calculus
is decidable.

At the time when Yankov started his research, there were three objectives in the
area of si-logics: (a) to find a logic that has semantics suitable from the intuitionistic
point of view, (b) to study the class of si-logics in more details, and (c) to construct
a convenient algebraic semantics.

By the early 1960s the original conjecture that Int is the only si-logic enjoying
the disjunction property and that the realizability semantics introduced by Kleene is
adequate for Int were refuted: in Kreisel and Putnam (1957), it was shown that the
logic of IPC endowed with axiom (¬p → (q ∨ r)) → ((¬p → q) ∨ (¬p → r))

is strictly larger than Int, and in Rose (1953), a formula that is realizable but not
derivable in IPC was given. Using the technique developed by Yankov, Wroński
proved that in fact, there are continuum many si-logics enjoying the disjunction
property (cf. Wroński 1973).

In Heyting (1941), Heyting suggested an algebraic semantics, and in 1940s,McK-
insey and Tarski introduced an algebraic semantics based on topology. In his Ph.D.
(Rieger 1949), which is not widely known even nowadays, Rieger essentially intro-
duced what is called a “Heyting algebra,” and in Rieger (1957), he constructed an
infinite set of formulas on one variable that are mutually non-equivalent in IPC. It
turned out (cf. Nishimura 1960) that every formula on one variable is equivalent in
IPC to one of Rieger’s formulas.We need to keep inmind that the book (Rasiowa and
Sikorski 1963) was published only in 1963. In 1972, this book had been translated
into Russian by Yankov, and it greatly influenced the studies in the area of si-logics.

By the 1960s, it also became apparent that the structure of the lattice of the si-
logics is more complex than expected: in Umezawa (1959) it has was observed that
the class of si-logics contains subsets of the order type of ωω; in addition, it contains
infinite subsets consisting of incomparable relative to set-inclusion logics.

Generally speaking, there are twoways of defining a logic: semantically by logical
matrices or algebras, and syntactically, by calculus. In any case, it is natural to ask
whether two given logical matrices, or two given calculi define the same logic. More

1 The first part was translated in Heyting (1998).
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precisely, is there an algorithm that, given two finite logical matrices decides whether
their logics coincide, and is there an algorithm that given two formulas A and B
decides whether calculi IPC + A and IPC + B define the same logic? The positive
answer to the first problem was given in Łoś (1949). But in Kuznetsov (1963), it was
established that in a general case (in the case when one of the logics can be not s.i.),
the problem of equivalence of two calculi is unsolvable. Note that if every si-logic
enjoys the f.m.p., then every si-calculus would be decidable and consequently, the
problem of equivalence of two calculi would be decidable as well.

In Jankov (1963a), Yankov considers four calculi:

(a) CPC = IPC + (¬¬p → p)—the classical propositional calculus;
(b) KC = IPC + (¬p ∨ ¬¬p)—the calculus of the weak law of excluded middle

(nowadays the logic of KC is referred to as Yankov’s logic);
(c) BD2 = IPC + ((¬¬p ∧ (p → q) ∧ ((q → p) → p)) → q);
(d) SmC = IPC + (¬p ∨ ¬¬p) + ((¬¬p ∧ (p → q) ∧ ((q → p) → p)) → q)—the

logic of SmC is referred to as Smetanich’s logic and it can be also defined
by IPC + ((p → q) ∨ (q → r) ∨ (r → s))

and he gives a criterion for a given formula to define it relative to IPC (cf. Sect. 2.7). In
Jankov (1968a), Yankov studied the logic of KC, and he proved that it is the largest
si-logic having the same positive fragment as Int. Moreover, in Jankov (1968d),
Yankov showed that the positive logic, which is closely related to the logic of KC,
contains infinite sets of mutually non-equivalent, strongly descending, and strongly
ascending chains of formulas (cf. Sect. 2.6).

Independently, a criterion that determines by a given formula A whether Int + A
defines Clwas found in Troelstra (1965). In Jankov (1968c), Yankov gave a proof of
thiscriterionaswell asaproofofasimilarcriterionfor Johansson’s logic (cf.Sect. 2.5).

In Jankov (1963b), Yankov constructed infinite sets of realizable formulas that
are not derivable in IPC and that are not derivable from each other. Moreover, he
presented the seven-element Heyting algebra in which all realizable formulas are
valid (cf. Sect. 2.8).

Jankov (1963c) is perhaps the best-known Yankov’s paper, and it is one of the
most quoted papers even today. In this paper, Yankov established a close relation
between syntax and algebraic semantics: with every finite subdirectly irreducible
Heyting algebra A he associates a formula XA—a characteristic formula of A, such
that for every formula B, the refutability of B in A (i.e. A �|= B) is equivalent to
IPC + B � XA. Jankov (1963c) is a short paper and does not contain proofs. The
proofs and further results in this direction are given in Jankov (1969), and we discuss
them in Sect. 2.3. Let us point out that characteristic formulas in a slightly different
form were independently discovered in de Jongh (1968).

Applying the developed machinery of characteristic formulas, Yankov proved (cf.
Jankov 1968b) that there are continuummany distinct si-logics, and that among them
there are logics lacking the f.m.p. Because the logic without the f.m.p. presented by
Yankov was not finitely axiomatizable, it left a hope that perhaps all si-calculi enjoy
the f.m.p. (this conjecture was refuted in Kuznetsov and Gerčiu 1970.)

Let us start with the basic definitions used in Yankov’s papers.
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2.2 Classes of Logics and Their Respective Algebraic
Semantics

2.2.1 Calculi and Their Logics

Propositional formulas are formulas built in a regular way from a denumerable set
of propositional variables V ar and connectives.

Consider the following six propositional calculi with axioms from the following
formulas:

p → (q → p); (p → (q → r)) → ((p → q) → (p → r)); (I)
(p ∧ q) → p; (p ∧ q) → q; p → (q → (p ∧ q)); (C)
p → (p ∨ q); q → (p ∨ q); (p → r) → ((q → r) → ((p ∨ q) → r)); (D)
f → p. (N)

they have inference rules Modus Ponens and substitution:

Calculus Connectives Axioms Description Logic
IPC →,∧,∨, f I,C,D,N intuitionistic Int
MPC →,∧,∨, f I,C,D minimal or Johansson’s Min
PPC →,∧,∨ I,C,D positive Pos
IPC− →,∧, f I,C,N {→,∧, f} − fragment of IPC Int−

MPC− →,∧, f I,C {→,∧, f} − fragment of MPC Min−

PPC− →,∧ I,C {→,∧, } − fragment of PPC Pos−

If � ⊆ {→,∧,∨, f}, by a �-formula we understand a formula containing con-
nectives only from� and in virtue of the Separation Theorem (cf., e.g., Kleene 1952,
Theorem 49): for every � ∈ {{→,∧,∨}, {→,∧, f}, {→,∧}}, if A is a C-formula
{→,∧}-formula, IPC � A if and only if PPC � A or IPC− � A, or PPC− � A.

By a C-calculus we understand one of the six calculi under consideration, and a
C-logic is a logic of the C-calculus. Accordingly, C-formulas are formulas in the

signature of the C-calculus. For C-formulas A and B, by A
C� B we denote that

formula B is derivable in the respective C-calculus extended by axiom B; that is,

C + A
C� B.

The relation between PPC and MPC (or between PPC− and MPC−) is a bit
more complex: for any formula {→,∧,∨, f}-formula A (or any {→,∧, f}-formula
A),MPC � A (orMPC− � A) if and only if PPC � A′ (or PPC− � A′), where A′
is a formula obtained from A by replacing all occurrences of f with a propositional
variable not occurring in A (cf., e.g., Odintsov 2008, Chap. 2). In virtue of the
Separation Theorem, in the previous statement, PPC or PPC− can be replaced with
IPC or IPC−, respectively.

Figure2.1 shows the relations between the introduced logics: a double edgedepicts
an extension of the logic without any extension of the language (e.g., Min ⊂ Int),
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Fig. 2.1 Logics

while a single edge depicts an extension of the language but not of the class of
theorems (e.g., if A is a {→,∧,¬}-formula, then A ∈ Int if and only if A ∈ Int−).

Let us observe that ((p → ¬q) → (q → ¬p)) ∈ Min− ⊆ Min. Indeed, formula
(p → (q → r)) → (q → (p → r)) can be derived from the axioms (I). Hence,
formula (p → (q → f)) → (q → (p → f)) is derivable too, that is, (p → ¬q) →
(q → ¬p) is derivable inMPC−.

We use ExtInt, ExtMin, ExtPos, ExtInt−, ExtMin−
, ExtPos− to denote classes

of logics extending, respectively, Int,Min,Pos, Int−,Min−, andPos−. Thus,ExtInt
is a class of all si-logics.

2.2.2 Algebraic Semantics

As pointed out in the Introduction, the first Yankov papers were written before the
book by Rasiowa and Sikorski (1963) was published, and the terminology used by
Yankov in his early papers was, as he himself admitted in Jankov (1968b), mis-
leading. What he then called an “implicative lattice”2 he later called a “Brouwerian
algebra,” and then he finally settled with the term “pseudo-Boolean algebra”. We use
a commonly accepted terminology, which we clarify below.

2.2.2.1 Correspondences Between Logics and Classes of Algebras.

In a meet-semilattice A = (A; ∧) an element c is a complement of element a relative
to element b if c is the greatest element of A such that a ∧ c ≤ b (e.g. Rasiowa
1974a). If a semilattice A for any elements a and b contains a complement of a
relative to b, we say that A is a semilattice with relative pseudocomplementation,
and we denote the relative pseudocomplementation by →.

2 In some translations of the Yankov paper, this term was translated as “implicative structure” (e.g.
Jankov 1963a).
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Proposition 2.1 Suppose that A is a meet-semilattice and a,b, c ∈ A. If a → b and
a → c are defined in A, then a → (b ∧ c) is defined as well and

a → (b ∧ c) = (a → b) ∧ (a → c).

Proof Suppose that A is a meet-semilattice in which a → b and a → c are defined.
We need to show that (a → b) ∧ (a → c) is the greatest element of A′ := {d ∈ A |
a ∧ d ≤ b ∧ c}.

First, we observe that (a → b) ∧ (a → c) ∈ A′:

(a → b) ∧ (a → c) ∧ a = (a ∧ (a → b)) ∧ (a ∧ (a → c)) ≤ b ∧ c,

because by the assumption, a ∧ (a → b) ≤ b and a ∧ (a → c) ≤ c.
Next, we show that (a → b) ∧ (a → c) is the greatest element of A′. Indeed,

suppose that d ∈ A′. Then, a ∧ d ≤ b ∧ c and consequently,

a ∧ d ≤ b and a ∧ d ≤ c.

Hence, by the definition of relative pseudocomplementation,

d ≤ a → b and d ≤ a → c,

which means that d ≤ (a → b) ∧ (a → c).

By an implicative semilattice we understand an algebra (A;→,∧, 1), where
(A; ∧) is a meet-semilattice with the greatest element 1 and → is a relative pseu-
docomplementation and accordingly, an algebra (A;→,∧,∨, 1) is an implicative
lattice if (A; ∧∨, 1) is a lattice and (A;→,∧, 1) is an implicative semilattice (cf.
Rasiowa 1974a). In implicative lattices, 0 denotes a constant (0-ary operation) that
is the smallest element.

The logics described in the previous section have the following algebraic seman-
tics:

Logic Signature Algebraic semantic Denotation
Pos− {→,∧, 1} implicative semilattices BS
Pos {→,∧,∨, 1} implicative lattices BA
Min− {→,∧, f, 1} implicative semilattices with constant JS
Min {→,∧,∨, f, 1} implicative semilattices with constant JA
Int− {→,∧, 0, 1} bounded implicative semilattices HS
Int {→,∧,∨, 0, 1} bounded implicative lattices HA

Asusual, in JS and JA, we let¬a = a → f, while inHS andHA,¬a = a → 0. Also,
we use the following denotations: L := {Pos−

,Pos,Min−
,Min, Int−, Int} and

A := {BS, BA, JS, JA, HS, HA}. For each L ∈ L, Mod(L) denotes the respective
class of algebras. By a C-algebra we shell understand an algebra in the signature
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� ∪ {1}, and we assume that � is always a signature of one of the six classes of
logics under consideration.

Every class from A forms a variety. Moreover, HS and HA are subvarieties of,
respectively, JS and JA defined by the identity f → x = 1.

Remark 2.1 Let us observe thatBS is a variety of all Brouwerian semilattices, and it
was studied in detail in (cf. Köhler 1981); BA is a variety of all Brouwerian algebras
(cf. Galatos et al. 2007); JA is a variety of all Johansson’s algebras (j-algebras; cf.
Odintsov 2008); and HA is a variety of all Heyting or pseudo-Boolean algebras (cf.
Rasiowa and Sikorski 1963).

Let us recall the following properties of C-algebras.

Proposition 2.2 The following holds:

(a) every Brouwerian algebra forms a distributive lattice;
(b) every finite distributive lattice forms a Brouwerian algebra, and because it

always contains the least element, it forms a Heyting algebra as well;
(c) every finite BS-algebra forms a Brouwerian algebra.

(a) and (b) were observed in Rasiowa and Sikorski (1963) and Birkhoff (1948). (c)
follows from the observation that in any finite BS-algebra A, for any two elements
a,b ∈ A, a ∨ b can be defined as a meet of {c ∈ A | a ≤ c,b ≤ c}.

As usual, given a formula A and a C-algebra, a map ν : V ar −→ A is called
a valuation in A, and ν allows us to calculate a value of A in A by treating the
connectives as operations of A. If ν(A) = 1 for all valuations, we say that A is valid
in A, in symbols, A |= A. If for some valuation ν, ν(A) �= 1, we say that A is refuted
in A, in symbols, A �|= A, in which case ν is called a refuting valuation. For a class
of algebras K, K |= A means that A is valid in every member of K. Given a class of
C-algebras K, K f in is a subclass of all finite members of K.

For every logicL ∈ L, a respective class fromA is denoted byMod(L). A class of
models M of logic L forms an adequate algebraic semantics of L if for each formula
A, A ∈ L if and only if A is valid in all algebras from M.

Proposition 2.3 For everyL ∈ L classMod(L) forms an adequate algebraic seman-
tics. Moreover, each logic L ∈ L enjoys the f.m.p.; that is, A ∈ L if and only if
Mod(L) f in |= A.

Proof The proofs of adequacy can be found in Rasiowa (1974a). The f.m.p. for Int
follows from Jaśkowski (1936). The f.m.p. for Int−,Pos,Pos− follows from the
f.m.p. for Int and the Separation Theorem.

Aswementioned earlier, for any formula A, A ∈ Min (or A ∈ Min−) if and only if
A f ∈ Int (or A ∈ I nt−), where A f is a formula obtained from A by replacing every
occurrence of f with a new variable p. Because Int (and Int−) enjoys the f.m.p., if
A /∈ Min (or A /∈ Min−), there is a finite Heyting algebra A refuting A f (finite HS-
algebra refuting A f ). If ν is a refuting valuation, we can convert A into a JA-algebra
(or into a JS-algebra) by regarding A as a Brouwerian algebra (or a Brouwerian
semilattice) with f being ν(A). It is clear that A is refuted in such a JA-algebra
(JS-algebra).
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2.2.2.2 Meet-Irreducible Elements

Let A = (A; ∧) be a meet-semilattice and a ∈ A. Element a is called meet-
irreducible, if for every pair of elements b, c, a = b ∧ c entails that a = b or a = c.
And a is called meet-prime if a ≤ b ∧ c entails that a = b or a = c. For formu-
las where ∧ is a conjunction, instead of meet-irreducible or meet-prime we say
conjunctively-irreducible or conjunctively-prime.

If A is a semilattice, then elements a,b of A are comparable if a ≤ b or b ≤ a,
otherwise these elements are incomparable. A set ofmutually incomparable elements
is called an antichain. It is not hard to see that a meet of any finite set of elements is
equal to a meet of a finite subset of mutually incomparable elements.

It is clear that every meet-prime element is meet-irreducible. In the distributive
lattices, the converse holds as well.

The meet-irreducible elements play a role similar to that of prime numbers: every
positive natural number is a product of primes. As usual, if a is an element of a
semilattice, the representation a = a1 ∧ · · · ∧ an of a as a meet of finitely many
meet-prime elements ai , i ∈ [1, n] is called a finite decomposition of a. This finite
decomposition is irredundant if no factor can be omitted.

It is not hard to see that because the factors in a finite decomposition are meet-
irreducible, the decomposition is irredundant if and only if the elements of its factors
are mutually incomparable.

Proposition 2.4 In any semilattice, if element a has a finite decomposition, a has
a unique (up to an order of factors) irredundant finite decomposition. Thus, in finite
semilattices, every element has a unique irredundant finite decomposition.

Proof Indeed, if element a has two finite irredundant decompositions a = a1 ∧
· · · ∧ an and a = a′

1 ∧ · · · ∧ a′
m , then a1 ∧ · · · ∧ an = a′

1 ∧ · · · ∧ a′
m and

(a1 ∧ · · · ∧ an) → (a′
1 ∧ · · · ∧ a′

m) = 1.

Hence, for each j ∈ [1, m],

(a1 ∧ · · · ∧ an) → a′
j = 1; that is, (a1 ∧ · · · ∧ an) ≤ a′

j .

Because a′
j is meet-prime, a′

j ∈ {a1, . . . ,an} and thus, {a′
1, . . . ,a

′
m} ⊆ {a1, . . . ,an}.

By the same reason, {a1, . . . ,an} ⊆ {a′
1, . . . ,a

′
m} and therefore,

{a1, . . . ,an} = {a′
1, . . . ,a

′
m}.

Proposition 2.5 (Jankov 1969). If a meet-semilattice A has a top element and all
its elements have a finite irredundant decomposition, then A forms a Brouwerian
semilattice.

Proof We need to define on semilattice A a relative pseudocomplement→. Because
every element of A has a finite irredundant decomposition, for any two elements
a,b ∈ A one can consider their finite irredundant decompositions a = a1 ∧ · · · ∧ an
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andb = b1 ∧ · · · ∧ bm . Now,we can definea → c, where c is ameet-prime element,
and then extend this definition by letting

a → (b1 ∧ · · · ∧ bm) = (a → b1) ∧ · · · ∧ (a → bm). (2.1)

Proposition2.1 ensures the correctness of such an extension.
Supposec ∈ A ismeet-prime anda = a1 ∧ · · · ∧ an is a finite irredundant decom-

position of a. Then we let

a → c =
{

1, if ai ≤ c for some i ∈ [1, n];
c, otherwise.

Let us show that a → c is a pseudocomplement of a relative to c, that is, we need
to show that a → c is the greatest element of A′ := {d ∈ A | a ∧ d ≤ b}.

Indeed, if ai ≤ c for some i ∈ [1, n], then

1 ∧ a = a = a1 ∧ · · · ∧ an ≤ ai ≤ c,

and obviously, 1 is the greatest of A′.
Suppose now that ai � c for all i ∈ [1, n]. In this case, a → c = c, it is clear that

a ∧ c ≤ c (i.e., a ∈ A′), and we only need to verify that d ≤ c for every d ∈ A′.
Indeed, suppose that a ∧ d ≤ c; that is, a1 ∧ · · · ∧ an ∧ d ≤ c. Then, d ≤ c

because c is meet prime and ai � c for all i ∈ [1, n].
Immediately from Propositions2.5 and 2.2(c), we obtain the following statement.

Corollary 2.1 Every finite meet-semilattice A with a top element in which every
element has an irredundant finite decomposition forms a Brouwerian algebra. And
because A is finite and has a bottom element, A is a Heyting algebra.

2.2.3 Lattices DedC and Lind(C,k)

On the set of all C-formulas, relation
C� is a quasiorder and hence, the relation

A
C≈ B

def⇐⇒ A
C� B and B

C� A

is an equivalence relation. Moreover, the set of all C-formulas forms a semilattice

relative to connecting formulas with ∧. It is not hard to see that equivalence
C≈ is a

congruence and therefore, we can consider a quotient semilattice which is denoted
by DedC .
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For each k > 0, we consider the set of all formulas on variables p1, . . . , pk . This
set formulas a semilattice relative to connecting two given formulas with ∧. It is not
hard to see that relation

A
C∼ B

def⇐⇒ C� A ↔ B

is a congruence, and by Lind(C,k) we denote a quotient semilattice.

Theorem 2.1 (Jankov 1969) For any C and k > 0, semilattices Lind(C,k) and DedC

are distributive lattices.

Proof ForC ∈ {PPC,MPC, IPC}, it was observed in Rasiowa and Sikorski (1963).
If C ∈ {PPC−

,MPC−
, IPC−}, by the Diego theorem (cf., e.g., Köhler 1981), lattice

Lind(C,k) is a finite implicative semilattice and, hence, a distributive lattice.
To convert DedC into a lattice we need to define a meet. Given two formulas A

and B, we let
A ∨′ B = (A → p) ∧ ((B ′ → p) → p),

where formula B ′ is obtained from B by replacing the variables in such a way that
formulas A and B have no variables in common, and p is a variable not occurring
in formulas A and B ′. If C ∈ {PPC,MPC, IPC}, one can take

A ∨′ B = A ∨ B ′.

A proof that DedC is indeed a distributive lattice can be found in Jankov (1969).

Meet-prime and meet-irreducible elements in Lind(C,k) and DedC are called con-
junctively prime and conjunctively irreducible, and because these lattices are dis-
tributive, every conjunctively irreducible formula is conjunctively prime and vice
versa.

2.2.3.1 Congruences, Filters, Homomorphisms

Let us observe that every C-algebra A has a {→,∧, 1}-reduct that is a Brouwerian
semilattice, and therefore, any congruence on A is at the same time a congruence on
its {→,∧, 1}-reduct. It is remarkable that the converse is true too: every congruence
on a {→,∧, 1}-reduct can be lifted to the algebra.

Any congruence on aC-algebraA is uniquely defined by the set 1/θ := {a ∈ A |
(a, 1) ∈ θ}: indeed, it is not hard to see that (b, c) ∈ θ if and only if (b ↔ c, 1) ∈ θ

(cf. Rasiowa 1974a). A set 1/θ forms a filter of A: a subset F ⊆ A is a filter if 1 ∈ F
and a,a → b ∈ F yields b ∈ F. The set of all filters of C-algebra A is denoted by
Flt(A). It is not hard to see that a meet of an arbitrary system of filters is a filter and
hence, Flt(A) forms a complete lattice. A set-join of two filters does not need to be
a filter, but a join of any ascending chain of filters is a filter.

As we saw, every congruence is defined by a filter. The converse is true too: any
filter F of a C-algebra A defines a congruence
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(a,b) ∈ θF ⇐⇒ (a ↔ b) ∈ F.

Moreover, the map F −→ θF is an isomorphism between complete lattices of filters
and complete lattice of congruences (cf. Rasiowa 1974a). It is clear that any nontrivial
C-algebra has at least two filters: {1} and the set of all elements of the algebra. The
filter {1} is called trivial, and the filters that do not contain all the elements of the
algebra are called proper. In what follows, by A/F and a/F we understand A/θF
and c/θF.

If A is a C-algebra and B ⊆ A is a subset of elements, there is the least filter
[B) of A containing B: [B) = ⋂{F ∈ Flt(A) | B ⊆ F}, and we write [a) instead
of [{a}). The reader can easily verify that for any element a of a C-algebra A,
[a) = {b ∈ A | a ≤ b}.

Immediately from the definitions of a filter and a homomorphism, the following
holds.

Proposition 2.6 Suppose that A and B are C-algebras and ϕ : A −→ B is a homo-
morphism of A onto B. Then

(a) If F is a filter of A, then ϕ(F) is a filter of B;
(b) If F is a filter of B, then ϕ−1(F) is a filter of A.

A nontrivial algebra A is called subdirectly irreducible (s.i. for short) if the meet
of all nontrivial filters is a nontrivial filter; or, in terms of congruences, the meet
of all congruences that are distinct from the identity is distinct from the identity
congruence.

Because every element a of a C-algebra A defines a filter [a), the meet of all
nontrivial filters of A coincides with

⋂{[a),a ∈ A | a �= 1} and consequently, A
is s.i. if and only if the set {a ∈ A | a �= 1} contains the greatest element which is
referred to as a pretop element or an opremum and is denoted bymA.

Let us observe that immediately from the definition of a pretop element, ifmA is
a pretop element of a C-algebra A and F is a filter of A, then,mA ∈ F if and only if
F is nontrivial. In terms of homomorphism, this can be stated in the following way.

Proposition 2.7 Suppose that A is an s.i. C-algebra and ϕ : A −→ B is a homomor-
phism of A into C-algebra B. Then ϕ is an isomorphism if and only if ϕ(mA) �= 1B.

The following simple proposition was observed in Jankov (1969) and it is very
important in what follows.

Proposition 2.8 Let A be a nontrivial C-algebra, a,b ∈ A and a � b. Then, there
is a maximal (relative to ⊆) filter F of A such that a ∈ F and b /∈ F. Furthermore,
A/F is an s.i. C-algebra with b/F being the pretop element.

Proof First, let us observe that the condition a � b is equivalent to b /∈ [a). Thus,
F := {F ∈ Flt(A) | a ∈ F,b /∈ F} �= ∅.

Next, we recall that the joins of ascending chains of filters are filters and therefore,
F enjoys the ascending chain condition. Thus, by the Zorn Lemma, F contains a
maximal element.
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Let F be a maximal element of F . We need to show that b/F is a pretop element
of A/F.

Because b /∈ F (cf. the definition of F ), we know that b/F �= 1A/F.
Let ϕ : A −→ A/F be a natural homomorphism. By Proposition2.6, for every

filter F′ of A/F, the preimage ϕ−1(F′) is a filter of A. Because 1A/F ∈ F′,

F = ϕ−1(1A/F) ⊆ ϕ−1(F′).

Hence, if F′
� 1A/F, then b ∈ ϕ−1(F′) (because F is a maximal filter not containing

b), and consequently, b/F ∈ F′. Thus, b/F is in every nontrivial filter of A/F, which
means that A/F is s.i. and that b/F is a pretop element of A/F.

Corollary 2.2 Suppose that A → B is a C-formula refuted in a C-algebra A. Then
there is an s.i. homomorphic image B of algebra A and a valuation ν in B such that

ν(A) = 1B and ν(B) = mB.

Proof Suppose that ξ is a refuting valuation in A; that is, ξ(A → B) �= 1A. Let
ξ(A) = a and ξ(B) = b. Then, a � b and by Proposition2.8, there is a filter F of A
such that a ∈ F, b /∈ F and A/F is subdirectly irreducible with b/F being a pretop
element of A/F. Thus, one can take a natural homomorphism η : A −→ A/F and
let ν = η ◦ ξ .

pi

ai ai/F

ξ

η

ν

It is not hard to see that ν is a desired refuting valuation.

Suppose that L is an extension of one of the logics from L and A is a formula in
the signature of L. We say that a C-algebra A in the signature of L separates A from
L if all formulas from L are valid in A (i.e., A ∈ Mod(L)), while formula A is not
valid in A, that is, if A |= L and A �|= A.

Corollary 2.3 Suppose that L is a C-logic and A is a C-formula. If a C-algebra A
separates formula A from L, then there is an s.i. homomorphic image B of A and a
valuation ν in B such that ν(A) = mB.

Proof If formula A is invalid in A, then there is a refuting valuation ξ in A such
that ξ(A) = a < 1. By Proposition2.8, there is a maximal filter F of A such that
a /∈ F. Then, B := A/F is an s.i. algebra, and ν = η ◦ ξ , where ν is a natural
homomorphism, is a desired refuting valuation.

Let us note that becauseB is a homomorphic image ofA, the finiteness ofA yields
the finiteness of B.
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Remark 2.2 In Jankov (1969), Corollary2.3 (the Descent Theorem) is proved only
for finite algebras. Yankov, being a disciple of Markov and sharing the constructivist
view onmathematics, avoided using the Zorn Lemmawhich is necessary for proving
Proposition2.8 for infinite algebras.

2.3 Yankov’s Characteristic Formulas

One of the biggest achievements of Yankov, apart from the particular results about
si-logics, is the machinery that he had developed and used to establish these results.
This machinery rests on the notion of a characteristic formula that he introduced in
Jankov (1963c) and studied in detail in Jankov (1969).

2.3.1 Formulas and Homomorphisms

With each finite C-algebra A in the signature � we associate a formula DA on
variables {pa,a ∈ A} in the following way: let �2 ⊆ � be a subset of all binary
operation and �0 ⊆ � be a subset of nullary operations (constants); then

DA =
∧
◦∈�2

(pa ◦ pb ↔ pa◦b) ∧
∧
c∈�0

(c ↔ pc).

Example 2.1 Let 3 = ({a,b, 1};→,∧, 1) be a Brouwerian semilattice, a ≤ b ≤ 1,
and the operations are defined by the Cayley tables:

→ a b 1
a 1 1 1
b a 1 1
1 a b 1

∧ a b 1
a a a a
b a b b
1 a b 1

Then, in the Cayley tables, we replace the elements with the respective variables:

→ pa pb p1

pa p1 p1 p1

pb pa p1 p1

p1 pa pb p1

∧ pa pb p1

pa pa pa pa

pb pa pb pb

p1 pa pb p1

and we express the above tables in the form of a formula:
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D3 = (pa → pa) ↔ p1 ∧ (pa → pb) ↔ p1 ∧ (pa → p1) ↔ p1 ∧
(pb → pa) ↔ pa ∧ (pb → pb) ↔ p1 ∧ (pb → p1) ↔ p1 ∧
(p1 → pa) ↔ pa ∧ (p1 → pb) ↔ pb ∧ (p1 → p1) ↔ p1 ∧
(pa ∧ pa) ↔ pa ∧ (pa ∧ pb) ↔ pa ∧ (pa ∧ p1) ↔ pa ∧
(pb ∧ pa) ↔ pa ∧ (pb ∧ pb) ↔ pb ∧ (pb ∧ p1) ↔ pb ∧
(p1 ∧ pa) ↔ pa ∧ (p1 ∧ pb) ↔ pb ∧ (p1 ∧ p1) ↔ p1 ∧
1 ↔ p1.

Let us note that formula D3 is equivalent in Pos
− to a much simpler formula,

D′ = ((pb → pa) → pb) ∧ p1.

The importance of formula DA rests on the following observation.

Proposition 2.9 Suppose that A and B are C-algebras. If for valuation ν in B,
ν(DA) = 1B, then the map

η : a �→ ν(pa)

is a homomorphism.

Proof Indeed, for any a,b ∈ A and any operation ◦, formula pa ◦ pb ↔ pa◦b is a
conjunct of DA and hence, ν(pa ◦ pb) = ν(pa◦b), because ν(DA) = 1b. Thus,

η(a ◦ b) = ν(pa◦b) = ν(pa ◦ pb) = ν(pa) ◦ ν(pb) = η(pa) ◦ η(pb).

It is not hard to see that η preserves the operations and therefore, η is a homomor-
phism.

Let us note that using any set of generators of a finite C-algebra A, one can con-
struct a formula having properties similar to DA. Suppose that elements g1, . . . ,gn

generate algebra A. Then, each element a ∈ A can be expressed via generators, that
is, there is a formula Ba(pg1 , . . . , pgn ) such that a = Ba(g1, . . . ,gn). If we substitute
in DA each variable pa with formula Ba, we obtain a new formula D′

A(pg1 , . . . , pgn ),
and this formula will posses the same property as formula DA. Because D′

A depends
on the selection of formulas Ba, we use the notation DA[Ba1 , . . . , Bam ], provided
that a1, . . . ,am are all elements of A.

Proposition 2.10 Suppose that A and B are C-algebras. If ν is a valuation in B and
ν(DA[Ba1 , . . . , Bam ]) = 1B, then the map

η : a �→ ν(Ba)

is a homomorphism.

Example 2.2 Let 3 be a three-element Heyting algebra with elements 0,a, 1. It is
clear that A is generated by element a:
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B0(pa) = pa ∧ (pa → 0), Ba = pa, B1 = (pa → pa).

Formula D3[B0(pa), Ba(pa), B1(pa)] is equivalent in Int to the formula (pa →
0) → 0. It is not hard to verify that in any Heyting algebra B, if element b ∈ B
satisfies condition ((b → 0) → 0) = 1 (i.e., ¬¬b = 1), then the map

03 �→ b ∧ (b → 0B), a �→ b, 13 �→ (b → b),

that is, the map
03 �→ 0B, a �→ b, 13 �→ 1B,

is a homomorphism.

2.3.2 Characteristic Formulas

Now, we are in a position to define the Yankov characteristic formulas. These for-
mulas are instrumental in studying different classes of logics. It also turned out that
characteristic formulas, and only these formulas, are conjunctively indecomposable.

Definition 2.1 Suppose that A is a finite s.i. C-algebra (finite s.i. algebra, for short).
Then the formula

XA := DA → pmA

is a Yankov (or characteristic) formula of A.

Let us observe that the valuationη : pa �→ a refutes XA, because clearly,η(DA) =
1, while η(pmA) = mA �= 1. That is,

A �|= XA. (2.2)

Proposition 2.11 Suppose that A is a finite s.i. C-algebra and ν is a refuting valu-
ation of XA in a C-algebra B such that ν(DA) = 1B. Then, the map

ϕ : a �→ ν(pa)

is an isomorphism.

Proof Because ν(DA) = 1B, by Proposition2.9, ϕ ia a homomorphism. Because ν

refutes XA, that is, ν refutes DA → pmA , we know that ν(pmA) �= 1B and conse-
quently,

ϕ(mA) = ν(pmA) �= 1B.

Thus, by Proposition2.7, ϕ is an isomorphism.
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Corollary 2.4 If a characteristic formula of a finite s.i. C-algebra A is refuted in a
C-algebra B, then algebra A is embedded in a homomorphic image of algebra B.

The proof immediately follows from Corollary2.2 and Proposition2.11.
One of the most important properties of characteristic formula of C-algebra A is

that XA is the weakest formula refutable in A. More precisely, the following holds.

Theorem 2.2 (Jankov 1969, Characteristic formula theorem) A C-formula A is

refutable in a finite s.i. C-algebra A if and only if A
C� XA.

Proof It is clear that if A
C� XA, then A is refuted in A, because XA is refuted in A.

To prove the converse statement, we will do the following:

(a) using a refuting valuation of A in A, we will introduce a substitution σ such that
formula A′ := σ(A) has the same variables as XA;

(b) we will prove that
C� A′ → XA by showing that formula A′ → XA cannot be

refuted in any C-algebra.

Indeed, because clearly A
C� A′, (b) entails that A

C� XA

(a) Assume that A is a k-element C-algebra, ai , i ∈ [1, k] are all its elements,
and that q1, . . . , qn are all variables occurring in A. Suppose that ξ : qi �→ a ji is a
refuting valuation of A in A; that is,

ξ(A(q1, . . . , qn)) = A(ξ(q1), . . . , ξ(qn)) = A(a j1 , . . . ,a jn ) �= 1A. (2.3)

Let us consider formula A′ obtained from A by a substitution σ : qi �→ pa ji
and

a valuation ξ ′ : pa ji
�→ a ji , i ∈ [1, n], in A:

qi pa ji

a ji

σ

ξ
ξ ′

Let us note that A′ contains variables only from {pai , i ∈ [1, k]} but not necessarily
all of them. To simplify notation and without losing generality, we can assume that
A′ is a formula in variables {pai , i ∈ [1, k]} (if pai does not occur in A′, one simply
can take A′ ∧ (pai → pai ) instead of A′ and let ξ ′ : pai �→ 1A).

Now, if we apply ξ ′ to A′ and take into consideration (2.3), we get

A′(a j1 , . . . ,a jk ) = A(ξ ′(p1), . . . , ξ
′(pn)) = A(a j1 , . . . ,a jn ) �= 1A. (2.4)

(b) For contradiction, assume that
C

� A′ → XA. Thus,
C

� A′ → (DA → pmA)

and therefore,
C

� (A′ ∧ DA) → pmA Then, there is a C-algebra in which formula
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(A′ ∧ DA) → pmA is refuted, and by Corollary2.2, there is an s.i. C-algebra B and
a valuation ν in B such that ν((A′ ∧ DA)) = 1B and ν(pmA) = mB �= 1B; that is,

A′(b1, . . . ,bk) = 1B and D(b1, . . . ,bk) = 1B, (2.5)

where bi = ν(p ji ), i ∈ [1, k]. Let η : ai �→ bi :

pi

ai bi

ξ

η

ν

Then, because D(b1, . . . ,bn) = 1B, η is a homomorphism and we can apply Propo-
sition2.9. Moreover, η is an isomorphism, because η(mA) = ν(pmA) = mB �= 1B,
and we can apply Proposition2.7.

We have arrived at a contradiction: on the one hand, by (2.5), A′(b1, . . . ,bn) =
1B, while on the other hand, by (2.4), A′(a1, . . . ,ak) �= 1A, and because η is an
isomorphism,

η(A′(a1, . . . 3,ak)) = A′(η(a1), . . . , η(an)) = A′(b1, . . . ,bk) �= 1B.

Example 2.3 Consider three-element Heyting algebra 3 from Example2.2. Then,
X3 = D(A) → pmA . It is clear that m3 = a, and from Example2.2 we know that
D(3) is equivalent to (pa → 0) → 0. Therefore,

X3 is equivalent in Int to ((pa → 0) → 0) → pa or to ¬¬pa → pa.

2.3.3 Splitting

Suppose that A is a finite s.i. C-algebra and XA is its characteristic formula. We
already know from (2.2) that A �|= XA. But XA possesses a much stronger property.

Proposition 2.12 Suppose that A is a finite s.i. C-algebra and B is a C-algebra.
Then,

B �|= XA ⇐⇒ A is embedded in a homomorphic image of B.

Proof If A is embedded in a homomorphic image of B, then B �|= XA, because by
(2.2), A �|= XA.

Conversely, suppose that B �|= XA; that is, B �|= (DA → pmA). Then, we can use
the same argument as in the proof of Theorem2.2(b) and conclude thatA is embedded
in a homomorphic image of B.

Let A be a class of finite s.i. C-algebras. We take A to be a class of all finite s.i.
C-algebras not belonging toA. Denote by L(A) a logic of all formulas valid in each
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Fig. 2.2 Algebras

algebra from A, and denote by L(A) a logic defined by characteristic formulas of
algebras fromA as additional axioms, that is, the logic definedbyC + {XA | A ∈ A}.
If A consists of a single algebra A, we omit the curly brackets and write L(A) and
L(A).

Let us observe that if a two-element algebra is not inA, logic L(A) is not trivial:
no algebra A having more than two elements can be a subalgebra of a two-element
algebra or its homomorphic image and hence, formula XA is valid in a two-element
algebra.

Corollary 2.5 Suppose that A is a class of finite s.i. C-algebras. Then, logic L(A)

is the smallest extension of C such that algebras from A are not its models.

Proof We need to prove that for every C-logic L′ for which L � L′ is a proper
extension of L′, there is an algebra A ∈ A that is a model for L′; that is, A |= A for
every A ∈ L′.

For contradiction, assume that L � L′ and for each algebra A ∈ A there is a for-

mula AA ∈ L′ such that A �|= AA. Then, by Theorem2.2, AA

C� XA. Hence, because
AA ∈ L′ and L′ is closed under Modus Ponens, XA ∈ L′, and subsequently, L ⊆ L′,
because L is defined by C + {XA | A ∈ A}. Thus, we have arrived at a contradiction
with the assumption that L is a proper extension of L′.

Example 2.4 IfA consists of two algebras Z5 and Z′
5 the Hasse diagrams of which

are depicted in Fig. 2.2, then L(A) is Dummett’s logic (cf. Idziak and Idziak 1988.)

If L is a C-logic, denote by Lf a class of all finite models of L, and by Lfsi—a class
of all finite s.i. models ofL. It should be clear that for anyC-logicsL andL′,Lf = L′

f if
and only ifLfsi = L′

fsi.We say that twoC-logicsL andL′ are finitely indistinguishable
if Lf = L′

f (in symbols, L ≈f L′). Obviously, ≈f is an equivalence relation on the
lattice ExtC . Let us note that each ≈f -equivalence class [L] f contains the largest
element, namely a logic of all formulas valid in Lf. Moreover, by Corollary2.5, [L] f

contains the smallest element, namely L(A)—the logic defined relative to C by the
characteristic formulas of all algebras fromA, whereA = Lfsi Thus, ifL is aC-logic
and A = Lfsi, then ≈f -equivalence class [L] f forms a segment

[L] f = [L(A),L(A)].
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Let us point out that each ≈f -equivalence class, contains a unique logic enjoying the
f.m.p., namely, its largest logic, which is a logic defined by all finite models. Thus,
if the cardinality of an ≈f -equivalence class is distinct from one, this class contains
logics lacking the f.m.p. (cf. Sect. 2.4 for examples). In fact (cf. Tomaszewski 2003,
Theorem 4.8), there is an ≈f -equivalent class of si-logics having continuum many
members. Therefore, there are continuum many si-logics lacking the f.m.p.

The case in which class A consists of a single algebra plays a very special role.

Corollary 2.6 Suppose that A is a finite s.i. C-algebra and XA is its characteristic
formula. Then, the logicL defined by C + XA is the smallest extension of C for which
A is not a model.

Corollary2.6 yields that for any logic L ∈ ExtC ,

either L ⊆ L(A), or L ⊇ L(A).

Indeed, if A is a model of L, then L ⊆ L(A); otherwise, A is not a model of L and
by Corollary2.5, L ⊇ L(A).

Let us recall (cf., e.g., Kracht 1999; Galatos et al. 2007) that if L is a logic, a pair
of its extension (L1,L2) is a splitting pair of ExtL if

L1 � L2, and for each L′ ∈ ExtL, either L1 ⊆ L′ or L′ ⊆ L2,

and A is a splitting algebra, while XA is a splitting formula.

Example 2.5 Consider Heyting algebra 3 from Example2.3. Algebra 3 defines a
splitting: for each logic L ∈ ExtInt,

either L ⊆ L(3) or L ⊇ L(3),

and L(3) is defined by IPC + X3. From Example2.3, we know that formula X3 is
equivalent to formula ¬¬pa → pa; that is, L(3) is defined by IPC + ¬¬pa → pa

and therefore, L(3) = Cl. Thus, for any formula A refuted in 3, Int + A defines a
logic extending Cl; that is, Int + A is Cl or a trivial logic.

Example 2.6 Let n denote a linearly ordered n-element Heyting algebra. Then, each
nontrivial algebra n is s.i. and defines a splitting pair: for logic L ∈ ExtInt,

either L ⊆ L(n) or L ⊇ L(n),

and L(n) is defined by IPC + Xn. Logic L(n) is the smallest logic of the n − 2 slice
introduced in Hosoi (1967).
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2.3.4 Quasiorder

On the class of all finite s.i. C-algebras we introduce the following quasiorder: for
any C-algebras A and B,

A ≤ B def⇐⇒ XA

C� XB.

The following theorem establishes the main properties of the introduced qua-
siorder.

Theorem 2.3 (Jankov 1963c, 1969) Let A and B be finite s.i. C-algebras. The
following conditions are equivalent:

(a) A ≤ B;
(b) XA is refutable in B;
(c) every formula refutable in A is refutable in B;
(d) A is embedded in a homomorphic image of B.

Proof (a) ⇒ (b), because by (2.2), B �|= XB and by the definition of quasiorder,

XA

C� XB.

(b) ⇒ (c). If a formula A is refutable in A, then by Theorem2.2, A
C� XA. By

(b), XA is refutable in B and then, by Theorem2.2, XA

C� XB. Hence, A
C� XB and

consequently, A is refutable in B, because XB is refutable in B.
(c) ⇒ (d). Characteristic formula XA is refutable in A and hence, by (c), formula

XA is refutable in B. By Corollary2.4, A is embedded in a homomorphic image of
algebra B.

(d) ⇒ (a). Characteristic formula XA is refutable in A. Hence, if A is embedded
in a homomorphic image B, formula XA is refutable in this homomorphic image and

consequently, it is refutable in B. Then, by Theorem2.2, XA

C� XB, which means that
A ≤ B.

Corollary 2.7 Let A and B be finite s.i. C-algebras such that A ≤ B and B ≤ A.
Then, algebras A and B are isomorphic.

Proof Indeed, by Theorem2.3, A ≤ B entails that A is a subalgebra of a homomor-
phic image of B and hence, card(A) ≤ card(B). Likewise, card(B) ≤ card(A).
Therefore, card(A) = card(B) and because A and B are homomorphic images of
each other, their finiteness ensures that they are isomorphic.

The following corollaries are the immediate consequences of Theorem2.3(d).

Corollary 2.8 For any finite s.i. C-algebras A and B, if A ≤ B and card(A) =
card(B), then A ∼= B.
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Let us observe that Corollary2.7 entails that≤ is a partial order and that by Corol-
lary2.8, any classA of finite s.i. C-algebras enjoys the descending chain condition.
Hence, the following holds.

Corollary 2.9 Let A be a class of finite s.i. C-algebras. Then A contains a subclass
A(m) ⊆ A of pairwise nonisomorphic algebras that are minimal relative to ≤ such
that

for any algbera A ∈ A, there is an algebra A′ ∈ A(m) and A′ ≤ A. (2.6)

Proposition 2.13 For any class of finite s.i. C-algebras A,

L(A) = L(A(m)). (2.7)

Proof Indeed, A(m) ⊆ A entails {XA | A ∈ A(m)} ⊆ {XA | A ∈ A} and subse-
quently, L(A(m)) ⊆ L(A).

On the other hand, suppose that A ∈ A. Then, by (2.6), there is an algebra A′ ∈
A(m) such that A′ ≤ A and by definition, XA′

C� XA. Thus, XA ∈ L(A(m)) for all
A ∈ A, that is, L(A) ⊆ L(A(m)).

2.4 Applications of Characteristic Formulas

In Jankov (1968b), the characteristic formulas were instrumental in proving that the
cardinality of ExtInt is continuum and that there is an si.-logic lacking the f.m.p.

2.4.1 Antichains

Suppose that A is a class of finite s.i. C-algebras. We say that class A forms an
antichain if for any A, B ∈ A, algebras A and B are incomparable; that is, A � B
and B � A.

Let us observe that for any nonempty class of algebrasA, the subclassA(m) forms
an antichain.

Let C be a C-calculus and C be a set of formulas in the signature of C . Then C is

said to be strongly independent relative to C if C \ {A} C

� A for each formula A ∈ C .
In other words, C is strongly independent relative to C if no formula from C can be
derived in C from the rest of the formulas of C .

Let us observe that if C is a strongly independent set of C-formulas, then for
any distinct subsets C1, C2 ⊆ C , the logics defined by C1 and C2 as sets of axioms,
are distinct. Hence, if there is a countably infinite set C of strongly independent
C-formulas, then the set of all extensions of the C-calculus is uncountable. This
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property of strongly independent sets was used in Jankov (1968b) for proving that
the set of si-logics is not countable (cf. Sect. 2.5).

Antichains of finite s.i. C-algebras posses the following very important property.

Proposition 2.14 Suppose that A is an antichain of finite s.i. C-algebras. Then the
set {XA | A ∈ A} is strongly independent.

Proof For contradiction, suppose that for some A ∈ A,

{XB | B ∈ A \ {A}} �C XA.

Recall that by (2.2), A �|= A and hence, there is a B ∈ A \ {A} such that A �|= XB.
Then, by Theorem2.3, B ≤ A, and we have arrived at a contradiction.

Corollary 2.10 If there is an infinite antichain of finite s.i. C-algebras which are
models of a given C-logic L, then

(a) the set of extensions of L is uncountable;
(b) there is an extension of L that cannot be defined by any C-calculus; that is,

it cannot be defined by a finite set of axioms and the rules of substitution and
Modus Ponens;

(c) there is a strongly ascending chain of C-logics.

In fact, if A = {Ai | i ≥ 0} is an infinite antichain of finite s.i. C-algebras, then
logics Lk defined by {XAi | i ∈ [1, k]} form a strongly ascending chain, and conse-
quently, logic L(A) defined by {XA | A ∈ A} cannot be defined by any C-calculus.

2.5 Extensions of C-Logics

In Jankov (1968b), it was observed that ExtInt is uncountable. To prove this claim,
it is sufficient to present a countably infinite antichain of finite s.i. Heyting algebras.

Let A be a class of all finite s.i. Heyting algebras, generated by elements a,b, c
and satisfying the following conditions:

¬(a ∧ b) = ¬(b ∧ c) = ¬(c ∧ a) = ¬¬a → a = ¬¬b → b = ¬¬(a ∨ b ∨ c) = 1
(2.8)

¬a ∨ ¬b ∨ (¬¬c → c) = d, (2.9)

where d is a pretop element. Class A is not empty; moreover, it contains infinitely
many members (cf. Fig. 2.3).

Conditions (2.8) and (2.9) yield that algebra is generated by three elements a,b,
and c that are distinct from 0 such that elements a and b are regular, that is,¬¬a = a
and ¬¬b = b, while element c is neither regular nor dense; that is ¬c �= 0.

The goal of this section is to prove the following theorem.
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Fig. 2.3 Yankov’s antichain

Theorem 2.4 Logic L(A) does not enjoy the finite model property.

To show that L(A) lacks the f.m.p., we will take the following formula:

A =¬(p ∧ q) ∧ ¬(q ∧ r) ∧ ¬(p ∧ r) ∧ (¬¬p → p) ∧ (¬¬q → q) ∧ ¬¬(p ∨ q ∨ r) →
¬p ∨ ¬q ∨ (¬¬r → r),

and we will prove the following two lemmas.

Lemma 2.1 A /∈ L(A).

Lemma 2.2 A is valid in all finite models of L(A).

The proofs of Lemmas2.1 and 2.2 can be found in Sect. 2.5.2.2, but first, we need
to establish some properties of the algebras fromA (cf. Sect. 2.5.1). In particular, we
will prove (cf. Sect. 2.5.2.1) the following proposition, which has a very important
corollaries on its own.

Proposition 2.15 Algebras {Ai | i = 1, 2, . . .} are minimal (relative to ≤) elements
of A.

Corollary 2.11 The class {Ai | i = 1, 2, . . .} forms an antichain.

Corollary2.11 has three immediate corollaries,which at the timeof the publication
of Jankov (1968b) changed the view on the structure of ExtInt.

Corollary 2.12 There are continuum many si-logics.

Corollary 2.13 There are si-logics that cannot be defined by an si-calculus.

Corollary 2.14 There exists a strictly ascending sequence Li , i > 0, of si-logics
defined by si-calculi.

Corollaries2.12 and 2.13 follow immediately from Proposition2.15 and Corol-
lary2.10. To prove Corollary2.14, consider logics Li defined by axioms XA j , j ∈
[1, i].

The rest of this section is dedicated to a proof of Proposition2.15 andTheorem2.4.
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2.5.1 Properties of Algebras Ai

In this section, Ai are algebras the diagrams of which are depicted in Fig. 2.3.

Proposition 2.16 Each algebra Ai , i ∈ [1, ω], contains precisely one set of three
elements, namely {a,b, c}, satisfying the following conditions:

¬(a ∧ b) = ¬(b ∧ c) = ¬(c ∧ a) = ¬¬a → a = ¬¬b → b = 1 (2.10)

¬a �= 1, ¬b �= 1, ¬¬c → c �= 1. (2.11)

Proof It is not hard to see that in each Ai , elements {a,b, c} satisfy conditions
(2.10) and (2.11). Let us now show that there are no other elements satisfying these
conditions.

It is clear that (2.11) yields that all elements a,b, c are distinct from 0, and
c �= 1. Moreover, by (2.10), ¬(a ∧ c) = ¬(b ∧ c) = 1. Hence, a ∧ c = b ∧ c = 0
and therefore, c ∧ (a ∨ b) = 0. Hence, a ∨ b ≤ ¬c and consequently, ¬c �= 0.

Let us observe that in each algebra Ai there are precisely 8 elements for which
¬¬x = x holds:

A(r)
i := {0,a,b,a ∨ b,¬a,¬b,¬(a ∨ b), 1}.

Let us show that only elements a and b can potentially satisfy (2.10) and (2.11).
Indeed, we already know that we cannot use 0 and 1. In addition, we cannot

use elements ¬a,¬b,¬(a ∨ b), because for each a′ ∈ {¬a,¬b,¬(a ∨ b)} and for
any c ∈ Ai , if a′ ∧ c = 0, then c ≤ ¬a′, that is, c ≤ a ∨ b, while in algebra Ai all
elements smaller then a ∨ b satisfy condition ¬¬c = c .

This leaves us with elements a,b and a ∨ b. But we cannot use element a ∨ b,
because neither (a ∨ b) ∧ a nor (a ∨ b) ∧ b is 0.

Next, we observe that in Ai , there are just two elements c and ¬a whose inter-
section with a and b gives 0, but we cannot select ¬a, because ¬¬¬a → ¬a = 1,
and this element would not satisfy (2.11). Thus, only elements a,b, and c satisfy
conditions (2.10) and (2.11), and this observation completes the proof.

Next, we prove that in the homomorphic images of algebras Ai , only images of
elements a,b, and c may satisfy conditions (2.10) and (2.11).

Proposition 2.17 Let algebra Ai , i ∈ [1, ω], and ϕ : Ai −→ B be a homomorphism
onto algebra B. If for some elements a′,b′, c′ ∈ Ai , their images a,b, c satisfy
conditions (2.10) and (2.11), then elements a = ¬¬a′,b = ¬¬b′, and c = c′ ∧
¬a′ ∧ ¬b′ satisfy (2.10) and (2.11).

Proof First, let us observe that ϕ−1(0) = {0}; that is, 0 is the only element of Ai

which ϕ sends to 0.
Indeed, assume for contradiction that there is an element d′ ∈ Ai such that 0 <

d′ and ϕ(d′) = 0. Elements a,b, and c are the only atoms of Ai and therefore,
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a ≤ d′, b ≤ d′, or c ≤ d′. Hence, ϕ(a) = 0, ϕ(b) = 0, or ϕ(c) = 0 and therefore,
ϕ(¬a) = 1, ϕ(¬b) = 1, or ϕ(¬c) = 1. Recall that ϕ(¬a) = ¬ϕ(a) = ¬a and by
(2.11), ¬a �= 1. Likewise, ¬b = ϕ(¬b) �= 1. And if ϕ(¬c) = 1, then ¬c = 1 and
consequently ¬¬c → c = 1, which contradicts (2.11). Thus, ϕ−1(0) = {0}.

Next, let us show that a ∧ b = 0 and hence, ¬(a ∧ b) = 1. Indeed,

ϕ(a ∧ b) = ϕ(¬¬a′ ∧ ¬¬b′) = ¬¬ϕ(a′) ∧ ¬¬ϕ(b′) = ϕ(a′) ∧ ϕ(b′) = 0.

Hence, a ∧ b ∈ ϕ−1(0) and therefore, a ∧ b = 0.
In addition, a ∧ c = ¬¬a′ ∧ (c ∧ ¬a′ ∧ ¬b′) = 0. Likewise, b ∧ c = 0.

a ∧ c = ¬¬a′ ∧ (c ∧ ¬a′ ∧ ¬b′) = 0, b ∧ c = 0,

¬¬a → a = ¬¬¬¬a′ → ¬¬a′ = 1, ¬¬b → b = 1.

Thus, elements a,b, and c satisfy (2.10).
Next, we observe that by (2.11), ¬a �= 1 and ¬b �= 1, that is, a > 0 and b > 0.

Hence,
ϕ(a) = ϕ(¬¬a′) = ¬¬ϕ(a′) = ¬¬a ≥ a > 0

and by the same reason, b �= 0. Thus, ¬a �= 1 and ¬b �= 1.
Now, let us show that ¬¬c → c �= 1. That is, we need to demonstrate that

¬¬(c′ ∧ ¬a′ ∧ ¬b′) → (c′ ∧ ¬a′ ∧ ¬b′) �= 1.

To that end, we will show that

ϕ(¬¬(c′ ∧ ¬a′ ∧ ¬b′) → (c′ ∧ ¬a′ ∧ ¬b) = ¬¬(c ∧ ¬a ∧ ¬b) → (c ∧ ¬a ∧ ¬b) �= 1.

Indeed, recall that by (2.11), a ∧ c = 0 and hence, c ≤ ¬a. Likewise, c ≤ ¬b
and hence,

c ≤ ¬a ∧ ¬b and consequently, c ∧ ¬a ∧ ¬b = c.

Hence,

¬¬(c ∧ ¬a ∧ ¬b) → (c ∧ ¬a ∧ ¬b) = ¬¬c → c,

and by (2.11), ¬¬c → c �= 1. This observation completes the proof.

Corollary 2.15 Any homomorphic image of any algebra Ai , i ∈ [1, ω], contains at
most one set of elements satisfying conditions (2.10) and (2.11).

Corollary 2.16 None of the proper homomorphic images of algebras Ai , i ∈ [1, ω],
has elements satisfying conditions (2.8) and (2.9).



32 A. Citkin

Proof Suppose that Ai is an algebra the diagram of which is depicted in Fig. 2.3 and
that a,b, c ∈ Ai are elements satisfying conditions (2.8) and (2.9).

For contradiction, assume that ϕ : Ai −→ B is a proper homomorphism of Ai

onto B and that elements a,b, c ∈ B satisfy conditions (2.8) and (2.9). Then, these
elements satisfy the weaker conditions (2.10) and (2.11). By Proposition2.17, ele-
ments a,b, c are images of some elements a′,b′, c′ ∈ Ai also satisfying condition
(2.10) and (2.11). By Proposition2.16, the set of elements of Ai satisfying (2.10) and
(2.11) is unique; namely, it is {a,b, c}. By (2.9), ¬a ∨ ¬b ∨ (¬¬c → c) is a pretop
element of A and hence, because ϕ is a proper homomorphism,

ϕ(¬a ∨ ¬b ∨ (¬¬c → c)) = ¬a ∨ ¬b ∨ (¬¬c → c) = 1,

and we have arrived at a contradiction: elements a,b, and c do not satisfy (2.9).

2.5.2 Proofs of Lemmas

2.5.2.1 Proof of Proposition 2.15

To prove Proposition2.15, we need to show that no algebra B ∈ A can be embedded
in any homomorphic image of algebra Ai , i = 1, 2, . . . , as long as B � Ai .

From Corollary2.16, we already know that none of the proper homomorphic
images of algebras Ai contains elements satisfying conditions (2.8) and (2.9). Thus,
no algebra fromA can be embedded in a proper homomorphic image of any algebra
Ai .

Now, assume that B ∈ A and ϕ : B −→ Ai is an embedding. By the definition
of A, B is generated by some elements a,b, c satisfying conditions (2.8) and (2.9).
Hence, because ϕ is an isomorphism, elements ϕ(a), ϕ(b), ϕ(c) satisfy (2.8) and
(2.9). By Proposition2.16, there is a unique set of three elements that satisfy (2.10)
and (2.11) and therefore, there is a unique set of three elements satisfying (2.8) and
(2.9). By the definition ofA, this set generates algebra Ai ; that is, ϕ maps B onto A
and thus ϕ is an isomorphism between B and A.

2.5.2.2 Proof of Lemma 2.1

Syntactic proof (cf. Jankov 1968b). For contradiction, assume that A ∈ L(A).
Recall that by Proposition2.13, A ∈ L(A(m)) and hence, for some minimal alge-
bras Bi , i ∈ [1, n],

XB1 , . . . , XBn � A.

On the other hand, by Proposition2.5.2.1, {Ai | i = 1, 2. . . .} ⊆ L(A(m)). Class {Ai |
i = 1, 2. . . .} is infinite and thus, there is anAk /∈ {Bi , i ∈ [1, n]}. Observe thatAk �|=
A: it is not hard to see that valuation p �→ a, q �→ b, r �→ c refutes A in every Ak .
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Hence, by Theorem2.2, A � XAk and therefore,

XB1 , . . . , XBn � XAk .

This contradicts Proposition2.14, which states that the characteristic formulas of any
antichain form a strongly independent set, and the subclass of all minimal algebras
always forms an antichain.

Semantic proof. Observe that formula A is invalid in algebra Aω, and let us prove
that Aω is a model of L(A). To that end, we prove that neither an algebra fromA or
its homomorphic image can be embedded intoAω and therefore, by Proposition2.12,
all formulas XA, A ∈ A, are valid in Aω.

Indeed, by Proposition2.17, not any algebra fromA can be embedded in a proper
homomorphic image ofAω. In addition, by Proposition2.16,Aω contains a unique set
of three elements satisfying conditions (2.8) and (2.9), and these elements generate
algebra Aω. Thus, if algebra A ∈ A was embedded in Aω, its embedding would be
a map onto Aω, which is impossible, because A is finite, while Aω is infinite.

2.5.2.3 Proof of Lemma 2.2

We need to show that formula A is valid in all finite models of logic L(A). To that
end, we will show that every finite Heyting algebra A refuting A is not a model of
L(A), because there is a homomorphic image B of A in which one of the algebras
fromA is embedded. Because L(A) is defined by characteristic formulas of algebras
fromA, none of the members ofA is a model of L(A). Hence, if A′ ∈ A and A′ is
embedded in B, algebra B and, consequently, algebra A are not models of L(A).

Suppose that finite algebra A refutes formula

A =¬(p ∧ q) ∧ ¬(q ∧ r) ∧ ¬(p ∧ r) ∧ (¬¬p → p) ∧ (¬¬q → q) ∧ ¬¬(p ∨ q ∨ r) →
¬p ∨ ¬q ∨ (¬¬r → r).

Then, by Corollary2.2, there is a homomorphic imageB of algebraA and a valuation
ν in B such that

ν(¬(p ∧ q) ∧ ¬(q ∧ r) ∧ ¬(p ∧ r) ∧ (¬¬p → p) ∧ (¬¬q → q) ∧ ¬¬(p ∨ q ∨ r)) = 1B

ν(¬p ∨ ¬q ∨ (¬¬r → r)) = mB.

Let a = ν(p),b = ν(q), and c = ν(r). Then, elements a,b, and c satisfy conditions
(2.8) and (2.9) and therefore, these elements generate a subalgebra of B belonging
toA, and this observation completes the proof.



34 A. Citkin

2.6 Calculus of the Weak Law of Excluded Middle

In Jankov (1968a), Yankov studied the logic of calculus KC := IPC + ¬p ∨ ¬¬p
which nowadays bears his name. Let us denote this logic by Yn.

A formula A is said to be positive if it contains only connectives ∧,∨ and →.
If L is an si-logic, L+ denotes a positive fragment of L—the subset of all positive
formulas from L. We say that an si-logic L is a p-conservative extension of Int when
L+ = Int+.

An s.i. calculus K admits the derivable elimination of negation if for any formula

A there is a positive formula A∗ such that A
K� K� A∗. If L is a logic of K, we say

that L admits derivable elimination of negation. Given an si-logic L, its extension
L′ ∈ ExtL is said to be positively axiomatizable relative to L just in case L′ can be
axiomatized relative to L by positive axioms.

The following simple proposition provides some different perspectives on the
notion of derivable elimination of negation introduced in Jankov (1968a).

Proposition 2.18 Suppose that L is an si-logic. Then, the following are equivalent:

(a) L admits derivable elimination of negation;
(b) every extension of L is positively axiomatizable relative to to L;
(c) any two distinct extensions of L have distinct positive fragments.

Proof (a) =⇒ (b) =⇒ (c) is straightforward.
(b) =⇒ (a). Suppose that L is defined by an s.i. calculus K. Then, for every

formula A, consider logic L′ defined by K + A. If L′ = L, that is, A ∈ L, we have

A
K� K� (p → p). If L � L′, by assumption, there are positive formulas Bi , i ∈ I ,

such that L′ is a logic of K + {Bi , i ∈ I }. Thus, on the one hand, for every i ∈ I ,

A
K� Bi . On the other hand, Bi , i ∈ I

K� K� A, and consequently, there is a finite subset

of formulas from {Bi , i ∈ I }, say, B1, . . . , Bn , such that B1, . . . , Bn

K� A. It is not
hard to see that

A
K� K�

n∧
i=1

Bi .

(c) =⇒ (b). Indeed, ifL1 ⊇ L, thenL1 is a logic ofK + L+
1 : the logics ofK + L+

1
and L1 cannot be distinct, because they have the same positive fragments and by (c)
they must coincide.

Remark 2.3 Derivable elimination of negation is not the same as expressibility of
negation. For instance, in IPC, ¬p �� p → q, because � ¬p → (p → q) and a
formula equivalent to ¬p can be derived from p → q by substituting p ∧ ¬p for q.
At the same time, obviously, � ¬p ↔ (p → q). Similarly, p ∨ ¬p �� p ∨ (p →
q), and Cl can be defined by IPC + p ∨ (p → q).

The goal of this section is to prove the following theorem.
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Theorem 2.5 The following holds:

(a) Yn is the greatest p-conservative extension of Int;
(b) Yn is a minimal logic admitting derivable elimination of negation.

Corollary 2.17 Logic Yn is a unique s.i. p-conservative extension of Int admitting
derivable elimination of negation.

Remark 2.4 Yn is a minimal logic admitting derivable elimination of negation, but
it is not the smallest such logic: it was observed in Hosoi and Ono (1970) that all
logics of the second slice are axiomatizable by implicative formulas. Hence, the
smallest logic of the second slice has derivable elimination of negation. It is not hard
to see that this logic is not an extension of Yn.

In Jankov (1968a), Yankov gave a syntactic proof of Theorem2.5; we offer an
alternative, semantic proof, and we start with studying the algebraic semantics of
KC.

2.6.1 Semantics of KC

Let us start with a simple observation that any s.i. Heyting algebra A is a model for
KC (that is, A |= (¬p ∨ ¬¬p) if and only if each distinct from 0 element a ∈ A is
dense; that is, ¬¬a = 1 (or equivalently, ¬a = 0). Thus, a class of all such algebras
forms an adequate semantics for the Yankov logic, and we call these algebras the
Yankovean algebras.

Let us recall someproperties of dense elements thatwe need in the sequel. Suppose
that A is a Heyting algebra and a,b ∈ A. Then, it is clear that if a ≤ b and a is a
dense element, then b is a dense element: a ≤ b implies¬b ≤ ¬a = 0. Moreover, if
a and b are dense, so is a ∧ b: by Glivenko’s Theorem¬¬(a ∧ b) = ¬(¬a ∨ ¬b) =
¬(0 ∨ 0) = 1.

Theorem 2.6 (Jankov 1968a) The class of all finite Yankovean algebras forms an
adequate semantics for KC.

Remark 2.5 In Jankov (1968a), Yankov offered a syntactic proof.We offer a seman-
tic proof based on an idea used in McKinsey (1941).

Proof It is clear that 0 ⊕ A |= ¬p ∨ ¬¬p for all Heyting algebras A, and we need
to prove that for any formula A such thatKC � A, there is a finite Yankovean algebra
B in which A is refuted.

Suppose thatKC � A. Then, there is a Yankovean algebraA in which A is refuted.
Let ν be a refuting valuation and A1, . . . , An, 1 be all the subformulas of A.

Consider a distributive sublattice B of A generated (as sublattice) by elements
0, ν(A1), . . . , ν(An), 1. Every finitely generated distributive lattice is finite (cf., e.g.,
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Grätzer 2003), and any finite distributive lattice can be regarded as a Heyting algebra.
Let us prove that (a) B is a Yankovean algebra, and (b) ν is a refuting valuation in B.

(a) First, let us note that the meets, the joins, and the partial orders in algebras A
and B are the same. Hence, B has a pretop element: the join of all elements from
B that are distinct from 1, and therefore, it is an s.i. algebra. In addition, because
algebra A is Yankovean, all its elements that are distinct from 0 are dense. Hence, as
B is finite, the meet of all elements from B that are distinct from 0 is again a dense
element and therefore, it is distinct from 0. Thus, this meet is the smallest distinct
from 0 element of B and therefore, all elements that are distinct from 0 are dense
and B is a Yankovean algebra.

(b) Let us observe that if elements a,b ∈ B, then a ∧ b,a ∨ b ∈ B, and ¬a ∈ B,
because ¬a = 1 if g = 0 and ¬a = 0 otherwise. In addition, if a → b ∈ B and →′
is an implication defined in B, then a →′ b = a → b: by definition, a → b is the
greatest element in {c ∈ A | a ∧ c ≤ b}, and because a → b ∈ B and A and B have
the same partial order, a → b is the greatest element in {c ∈ B | a ∧ c ≤ b}. Thus,
because all elements are 0, ν(A1), . . . , ν(An), 1, all values of ν(A1), . . . , ν(An)

when ν is regarded as a valuation in B remain the same and therefore, ν refutes
A in B.

Given a Heyting algebra A, one can adjoin a new bottom element and, in such
a way, obtain a new Heyting algebra denoted by 0 ⊕ A. For instance (cf. Fig. 2.2),
3 = 0 ⊕ 2. It is not hard to see that 0 ⊕ A is a Yankovean algebra. On the other hand,
any finite Yankovean algebra has the form 0 ⊕ A, where A is a finite s.i. Heyting
algebra.

Corollary 2.18 The class of finite Yankovean algebras forms an adequate semantic
for KC.

Let us construct more adequate semantics for KC.
Observe that in any Heyting algebra A, the elements {0} ∪ {a ∈ A | ¬¬a = 1}

form a Heyting subalgebra of A denoted by A(d). It is clear that if A is an s.i. algebra,
then Ad is Yankovean. In the sequel, we use the following property of A(d).

Proposition 2.19 If ϕ : A −→ B is a homomorphism of Heyting algebra A onto
Heyting algebra B, then the restriction ϕ̂ of ϕ to A(d) is a homomorphism of A(d)

onto B(d).

Proof It is clear that ϕ̂(A(d)) is a subalgebra ofB. Moreover, because for any element
of A(d) that is distinct from 0, ¬¬a = 1, it is clear that ϕ̂(¬¬a) = ¬¬ϕ̂(a) = 1 and
hence, ϕ̂(a) ∈ B(d); that is, ϕ(A(d)) ⊆ B(d). Thus, we only need to show that ϕ̂ maps
A(d) onto B(d).

Indeed, let us show that for any b ∈ B(d), the preimage ϕ̂−1(b) contains an element
from A(d).

Suppose that b ∈ B(d). If b = 0, then trivially, 0 ∈ ϕ̂−1(b). If b �= 0, then by
the definition of B(d), ¬¬b = 1, that is, ¬b = 0, and consequently b ∨ ¬b = b.
Hence, for any element a ∈ ϕ̂−1(b), a ∨ ¬a ∈ ϕ̂−1(b), and it is not hard to see that
a ∨ ¬a ∈ A(d).
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Theorem 2.7 Suppose that Heyting algebras {Ai , i ∈ I } form an adequate seman-
tics for IPC. Then algebras {A(d), i ∈ I } form an adequate semantics for KC.

Proof It is clear that algebras A(d)
i are models forKC, and we only need to prove that

for any formula A not derivable in KC, there is an algebra A(d)
i in which A is refuted.

We already know that all finite Yankovean algebras form an adequate semantics for
KC. Hence, it suffices to show that each Yankovean algebra can be embedded in a
homomorphic image of some algebra A(d)

i , i ∈ I .
Let B be a finite Yankovean algebra and XB be its characteristic formula. Then,

by (2.2), B �|= XB and consequently, IPC � XB, because algebras A,i ∈ I , form an
adequate semantics for IPC. For some i ∈ I , Ai � XB and by Proposition2.12, B is
embedded in a homomorphic image Âi of algebra Ai . Recall that B is Yankovean
and all its elements that are distinct from 0 are dense. Clearly, embedding preserves
density and hence, B is embedded in Â(d)

i . The observation that by Proposition2.19
Â(d)

i is a homomorphic image of A(d)
i completes the proof.

Each Heyting algebra A can be adjoined with a new top element to obtain a new
Heyting algebra that is denoted by A ⊕ 1. For instance, 3 = 2 ⊕ 1, 4 = 3 ⊕ 1, and
Z5 = 22 ⊕ 1 (cf. Fig. 2.2).

The following Heyting algebras are called Jaśkowski matrices, and they form an
adequate semantics for IPC:

J0 = 2, Jk+1 = Jk ⊕ 1.

Corollary 2.19 Algebras J(d)
k , k > 0, form an adequate semantics for KC.

2.6.2 KC from the Splitting Standpoint

In what follows, algebra Z5, the Hasse diagram of which is depicted in Fig. 2.4, plays
a very important role.

Proposition 2.20 Suppose that A is a Heyting algebra. Then A �|= ¬p ∨ ¬¬p if
and only if algebra Z5 is a subalgebra of A.

Proof It should be clear that Z5 �|= ¬p ∨ ¬¬p (consider valuation ν(p) = a) and
hence, any algebra A containing a subalgebra isomorphic to Z5 refutes ¬p ∨ ¬¬p.

Conversely, suppose that A �|= ¬p ∨ ¬¬p. Then, for some a ∈ A, ¬a ∨ ¬¬a �=
1. It is not hard to verify that subset 0,¬a,¬¬a,¬a ∨ ¬¬a, 1 is closed under fun-
damental operations and, therefore, forms a subalgebra of A. In addition, because
¬a ∨ ¬¬a �= 1, all five elements of this subalgebra are distinct and thus, the subal-
gebra is isomorphic to Z5.

Proposition2.20 entails that formula ¬p ∨ ¬¬p is interderivable in IPC with
characteristic formula XZ5 . Indeed, because Z5 �|= ¬p ∨ ¬¬p, by Theorem2.2,
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A � XZ5 . On the other hand, for any algebra A, if A �|= ¬p ∨ ¬¬p, then by Propo-
sition2.20, A has a subalgebra that is isomorphic to Z5 and by (2.2), A �|= XZ5 .

Corollary 2.20 Yn coincides with L(Z5).

Thus Yn is the greatest logic for which Z5 is not a model.

2.6.3 Proof of Theorem2.5

Proof of (a). BecauseYn coincides with L(Z5), for any si-logic L, either L ⊆ L(Z5),
or L(Z5) ⊆ L. Thus, to prove that Yn is the greatest p-conservative extension of Int,
it suffices to show (i) that L(Z5) is a p-conservative of extension of Int and (ii) that
L(Z5) (and hence all it extensions) is not a p-conservative extension of Int.

(i) It is clear that any formula A and hence, any positive formula derivable in Int
is derivable in KC. We need to show the converse: if a positive formula A is not
derivable in Int, it is not derivable in KC.

Suppose that positive formula A is not derivable in Int. Then, it is refutable in
a finite s.i. Heyting algebra A. Consider algebra 0 ⊕ A. Observe that operations
∧,∨, and → on elements of algebra 0 ⊕ A that are distinct from 0 coincide with the
respective operations on A. Hence, because A is a positive formula, the valuation
refuting A in A, refutes A in 0 ⊕ A. Algebra 0 ⊕ A is Yankovean and, thus, it is a
model for KC. Hence, formula A is not derivable in KC.

(ii) To prove lack of conservativity, let us observe that the following formula A,

((r → (p ∧ q)) ∧ (((p ∧ q) → r) → r) ∧ ((p → q) → q) ∧ ((q → p) → p)) → (p ∨ q),

is valid in Z5 but refuted in 0 + Z5 (cf. Fig. 2.4) by valuation ν(p) = a, ν(q) =
b, ν(r) = c.

Remark 2.6 It is observed in Jankov (1968a) that formula A used in the proof of
(ii) and formula

(((p → q) → q) ∧ ((q → p) → p)) → (p ∨ q)

Fig. 2.4 Refuting algebras
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are not equivalent in KC, but they are interderivable in KC. That is, even though the
logic of KC is a p-conservative extension of Int, the relation of derivability in KC is
stronger than that in IPC even for positive formulas.

Proof of (b). To prove (b) we need to show that (i) Yn admits the derivable
elimination of negation and that (ii) if L � Yn, then L does not admit the deriv-
able elimination of negation. The latter follows immediately from Theorem2.5 and
Proposition2.18: L and Yn are p-conservative extensions of Int and thus, they have
the same positive fragments.

Let A and B be Heyting algebras. We say that B is a p-subalgebra of A when B
is an implicative sublattice of A. Let us note that if A is a model of some logic L and
B is a p-subalgebra of A, then B needs not to be a model of L. For instance, consider
algebras Z5 and 0 ⊕ Z5 from Fig. 2.4: Z5 is a p-subalgebra of 0 ⊕ Z5 (take elements
a,b,a ∧ b,a ∨ b, 1), formula ¬p ∨ ¬¬p is valid in 0 ⊕ Z5, while it is not valid in
Z5, because ¬a ∨ ¬¬a < 1.

Let us demonstrate that every extension L of Yn is positively axiomatizable rela-
tive to Yn.

For contradiction, assume that Yn ⊆ L and that L is not positively axiomatizable
relative to KC. Then, the logic L′ defined relative to Yn by all positive formulas
from L is distinct from L; that is, Yn ⊆ L′

� L. Let A ∈ L \ L′. Then, there is an s.i.
Heyting algebra A ∈ Mod(L′) \ Mod(L) in which A is refuted by some valuation ν.
We will construct a positive formula X (A, A, ν) similar to a characteristic formula,
and we will prove the following lemmas.

Lemma 2.3 Formula X (A, A, ν) is refuted in A.

Lemma 2.4 Formula X (A, A, ν) is valid in all algebras from Mod(L).

Indeed, if X (A, A, ν) is refuted in A, and A ∈ Mod(L′), then X (A, A, ν) /∈ L′.
On the other hand, if formula X (A, A, ν) is valid in all algebras from Mod(L),

then X (A) ∈ L. Recall that by definition, L and L′ have the same positive formulas,
and formula X (A, A, ν) is positive. Hence, X (A) ∈ L′ and we have arrived at a
contradiction and completed the proof.

Let us construct formula X (A, A, ν).
Suppose A is a Heyting algebra, A is a formula, and valuation ν refutes A in A.

Then, we take Aν to denote a formula obtained from A by substituting every variable
q occurring in A with variable pν(q). It is clear that valuation ν ′ : pν(q) −→ ν(q)

refutes Aν . Let us also observe that because Aν was obtained from A by substitution,
A is refuted in every algebra in which Aν is refuted.

If A is a Heyting algebra, and B ⊆ A is a finite set of elements, by A+[B] we
denote an implicative sublattice of A generated by elements B. Because B is finite,
A+[B] contains the smallest element, namely

∧
B and therefore, A+[B] forms a

Heyting algebra, which is denoted by A[B]. Note that A[B] does not need to be a
subalgebra of A, because the bottom element of A+[B] may not coincide with the
bottom element of A.
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Let A be a Heyting algebra and A be a formula refuted in A by valuation ν.
Suppose that {A1, . . . , An} is a set of all subformulas of A and suppose thatA(A,ν) :=
{0, 1} ∪ {ν(Ai ) | i ∈ [1, n]}. Let us observe that A(A,ν) contains all elements of A
needed to compute the value of ν(A). It is not hard to see that A(A,ν) = A(Aν ,ν ′).
Clearly,A(A,ν) does not need to be closed under fundamental operations, butA[A(A,ν)]
is a Heyting algebra, and the value of ν(A), or the value of ν ′(Aν) for that matter, can
be computed in the very same way as in A. To simplify notation, we write A[A, ν]
instead of A[A(A,ν)]. Thus, ν refutes A in A[A, ν] as long as it refutes A in A.

If ◦ ∈ {∧,∨,→}, by A◦
(A,ν) we denote a set of all ordered pairs of elements of

A(A,ν) for which ◦ is defined:

A◦
(A,ν) = {(a,b) | a,b,a ◦ b ∈ A(A,ν)}.

Consider formulas

D+(A, A, ν) :=
( ∧

◦∈{∧,∨→}

∧
(a,b)∈A◦

(A,ν)

(pa ◦ pb ↔ pa◦b)
)
,

and
X+(A, A, ν) := D+(A, A, ν) →

∨
a,b∈A(A,ν),a �=b

(pa ↔ pb).

Proof of Lemma2.3.

Proof We will show that if A is an s.i. algebra, then X (A, A, ν) is refuted in A by
valuation ν ′. Indeed,

ν ′(pa ◦ pb) = ν ′(pa) ◦ ν ′(pb) = a ◦ b = ν ′(pa◦b)

for all (a,b) ∈ A◦
(A,ν) and all ◦ ∈ {∧∨,→} and therefore, ν ′(D+(A, A, ν)) = 1.

On the other hand, ν ′(pa) = a �= b = ν ′(pb); that is, ν ′ refutes every disjunct
on the right-hand side of X (A, A, ν), and therefore, ν ′ refutes whole disjunction,
because A is s.i. and disjunction of two elements that are distinct of 1 is distinct from
1. Thus, ν ′ refutes X (A, A, ν).

To prove Lemma2.4, we will need the following property of X (A, A, ν).

Proposition 2.21 Let A be a Heyting algebra, and ν be a valuation refuting formula
A in A. Suppose that B is a Heyting algebra and η is a valuation refuting formula
X+(A, A, ν) in B such that

η(D+(A, A, ν)) = 1B.

Then, η refutes Aν in B[X+, η] and therefore, A is refuted in B[X+, η].



2 V. Yankov’s Contributions to Propositional Logic 41

Proof Indeed, define a map ξ : A(A,ν) −→ B(X+,η) by letting ξ(a) = η(pa). Let a =
η(pa) for every a ∈ A(A,ν).

pa a

a

ν ′

η
ξ

First, let us observe that η(p1) = 1B. Indeed, by definition, 1 ∈ A(A,ν), and (1, 1) ∈
A◦

(A,ν), because1 → 1 = 1 ∈ A(A,ν). Hence, (p1 → p1) ↔ p1 is one of the conjuncts
in D+(A, A, ν) and because η(D+(A, A, ν)) = 1B, we have η((p1 → p1) ↔ p1) =
1B; that is, η(p1) → η(p1) = η(p1) and η(p1) = 1B.

Next, we observe that if a,b ∈ A(A,ν) and a �= b, then a �= b. Indeed, because η

refutes X+(A, A, ν) and η(D+(A, A, ν)) = 1B,

η(
∨

a,b∈A(A,ν),a �=b

(pa ↔ pb)) �= 1B,

and in particular, η(pa ↔ pb) �= 1B. Thus, η(pa) �= η(pb); that is, a �= b.
Lastly, we observe that if B, C and B ◦ C are subformulas of A and ν(B) = b

and ν(C) = c, then b, c,b ◦ c ∈ A(A,ν). Moreover, (b, c) ∈ A◦
(A,ν) and consequently,

(pb ◦ pc) ↔ p(b◦c) is one of the conjuncts of D+(A, A, ν) and by assumption,

η((pb ◦ pc) ↔ p(b◦c)) = 1B.

Thus, η(pb) ◦ η(pc) = η(pb◦c) and therefore, if ν(A) = a, then,

η(Aν) = η(pa) = a.

Recall that ν ′ refutes Aν ; that is ν ′(Aν) �= 1 and hence, η(Aν) �= η(1) = 1B.

Now, we can prove Lemma2.4 and complete the proof of the theorem.

Proof of Lemma2.4

Proof For contradiction, assume that formula X (A, A, ν) is refuted in Heyting alge-
bra B ∈ Mod(L). By Corollary2.2, we can assume that B is s.i. and that the refuting
valuation η is such that

η(D+(A, A, ν)) = 1 and η(
∨

a,b∈A(A,ν),a �=b

(pa ↔ pb)) �= 1B.

Thus, the condition of Proposition2.21 is satisfied and hence, A is refuted in
B[X+, η]. If we show that B[X+, η] ∈ Mod(L), we will arrive at a contradiction,
because A was selected from L \ L′ and thus, A is valid in all models of L.
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Indeed, because A ∈ Mod(L) and KC ⊆ L, A is a Yankovean algebra. Hence,
for each element a ∈ A that is distinct from 0, a → 0 = 0 and 0 → a = 1. There-
fore, for each a ∈ A(A,ν) that is distinct from 0, a → 0 = 0 and 0 → a = 1.
Hence, (pa → p0) ↔ p0 and (p0 → pa) ↔ p1 are conjuncts of D+(A, A, ν). By
assumption, η(D+(A, A, ν)) = 1 and subsequently, η(pa) → η(p0) = η(p0) and
η(p0) → η(pa) = η(p1). The latter means that η(p0) is the smallest element of
B[X+, η]. Let c = η(p0). Then, for each distinct from c element b ∈ B[X+, η],
b ∧ c = c,b ∨ c = b,b → c = c and c → b = 1.

Recall that B is also a Yankovean algebra and therefore, for each element b ∈ B
that is distinct from 0,b → 0B = 0B and 0B → b = 1B. Hence, the set of all elements
of B[X+, η] that are distinct from c together with 0B is closed under all fundamental
operations and hence, it forms a subalgebra of B. It is not hard to see that this
subalgebra is isomorphic toB+[X+, η], and this entails thatB+[X+, η] is isomorphic
to a subalgebra of a model of L and therefore, B+[X+, η] is a model of Mod(L).

Remark 2.7 Formula X (A, A, ν) is a characteristic formula of partial Heyting alge-
bra. The reader can findmore details about characteristic formulas of partial algebras
in Tomaszewski (2003) and Citkin (2013).

2.7 Some Si-Calculi

Let us consider the following calculi.

(a) CPC = IPC + (¬¬p → p)—the classical propositional calculus;

(b) KC = IPC + (¬p ∨ ¬¬p)—the calculus of theweak lawof excludedmiddle;

(c) BD2 = IPC + ((¬¬p ∧ (p → q) ∧ ((q → p) → p)) → q);

(d) SmC = IPC + (¬p ∨ ¬¬p) + ((¬¬p ∧ (p → q) ∧ ((q → p) → p)) → q).

Let us consider the algebras, whose Hasse diagrams are depicted in Fig. 2.2 and
the following series of C-algebras defined inductively:

B0 = 2, Bk+1 = 2k ⊕ 1;
J0 = 2, Jk+1 = Jk ⊕ 1.

Algebras Jk are referred to as Jaśkowski matrices. They were considered by
S. Jaśkowski (cf. Jaśkowski 1975) and they form an adequate algebraic semantics
for Int in the following sense:

Int � A ⇐⇒ Jk |= A for all k > 0.

In Jankov (1963a), it was observed that algebras J(d)
k , k > 1, form an adequate seman-

tics for KC:
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KC � A ⇐⇒ J(d)
k |= A for all k > 0.

If C1 and C2 are two C-calculi, we write C1 = C2 to denote that C1 and C2 define
the same logic. For instance, Int + (¬¬p → p) = Int + (p ∨ ¬p), because both
calculi define Cl.

As usual, if A is a class of C-algebras and C is a class of C-formulas, A |= C
means that all formulas fromC are valid in each algebra fromA, andA �|= C denotes
that at least one formula from C is invalid in some algebra fromA.

Theorem 2.8 (Jankov 1963a, Theorem 1) Suppose that C is a set of formulas in the
signature →,∧,∨,¬. Then the following hold:

(a) IPC + C = L(2) if and only if 2 |= C and 3 �|= C;
(b) IPC + C = L({J(d)

k , k ≥ 0}) if and only if {J(d)
k , k ≥ 0} |= C and Z5 �|= C;

(c) IPC + C = L({Bk, k ≥ 0}) if and only if {Bk, k ≥ 0} |= C and 4 �|= C;
(d) IPC + C = L(3) if and only if 3 |= C and 4 �|= C and Z5 �|= C.

Proof In terms of splitting, we need to prove the following:

(a’) L(2) = L(3);
(b’) L({J(d)

k , k ≥ 0}) = L(Z5);
(c’) L({Bk, k ≥ 0}) = L(4);
(d’) L(3) = L(4, Z5)).

(a’) is trivial: the only s.i. Heyting algebra that does not contain 3 as a subalgebra
is 2.

(b’) was proven as Corollary2.19.
(c’) It is not hard to see that neither algebra Bk nor its homomorphic images or

subalgebras contain a four-element chain subalgebra. On the other hand, if B is a
finitely generated s.i. Heyting algebra such that 4 is not its subalgebra, then B ∼=
B′ ⊕ 1. Elements 0, 1, and the pretop element form a three-element chain algebra;
hence, B′ contains at most a two-element chain algebra and by (a’), B′ is a Boolean
algebra. Clearly, B′ is a homomorphic image of B and hence, B′ is finitely generated.
Every finitely generated Boolean algebra is finite and therefore, B is isomorphic to
one of the algebras Bk .

(d’) Let A be a finitely generated s.i. Heyting algebra that has no subalgebras
isomorphic to Z5 and 4. Then by (b’), A is an s.i. Yankovean algebra and hence,
A ∼= 0 ⊕ A′ ⊕ 1. By (c’), 0 ⊕ A′ is a Boolean algebra and therefore, 0 ⊕ A′ ∼= 2.
Thus, A ∼= 2 ⊕ 1 ∼= 3.

The above theorem can be rephrased as follows.

Theorem 2.9 (Jankov 1963a, Theorem 3) Suppose that C is a set of formulas in the
signature →,∧,∨,¬. Then the following hold:

(a) IPC + C = CPC if and only if 2 |= C and 3 �|= C;
(b) IPC + C = KC if and only if {J(d)

k , k ≥ 0} |= C and Z5 �|= C;
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Fig. 2.5 Algebra refuting A

(c) IPC + C = BD2 if and only if {Bk, k ≥ 0} |= C and 4 �|= C;
(d) IPC + C = Sm if and only if 3 |= C and 4 �|= C and Z5 �|= C.

Remark 2.8 It is noted in Jankov (1963a) that logic Sm can be defined by IPC +
((p → q) ∨ (q → r) ∨ (r → s)).

2.8 Realizable Formulas

In 1945, S. Kleene introduced a notion of realizability of intuitionistic formulas (cf.
Kleene 1952). Formula A is said to be realizable when there is an algorithm that by
each substitution of logical-arithmetical formulas gives a realization of the result.
It was observed in Nelson (1947) that all formulas derivable in IPC are realizable;
moreover, all formulas derivable in IPC from realizable formulas are realizable,
while many classically valid formulas, ¬¬p → p, for instance, are not realizable.
This observation gave the hope that the semantics of realizability is adequate for
IPC. It turned out that this is not the case: in Rose (1953), it was proven that formula

C = ((¬¬A → A) → (¬A ∨ ¬¬A)) → (¬A ∨ ¬¬A), where A = (¬p ∨ ¬q)

is realizable not derivable in IPC. Indeed, formula C is refutable in the Heyting
algebra whose Hasse diagram is depicted in Fig. 2.5 by substitution ν : p �→ b, ν :
q �→ c, which entails ν : A �→ a.

In Jankov (1963b), Yankov constructed the following sequences of formulas: for
each n ≥ 3 and i ∈ [1, n], let π i

n := ¬p1 ∧ · · · ∧ ¬pi−1 ∧ ¬pi+1 ∧ · · · ∧ ¬pn and

An :=
∧

1≤k<m≤n

¬(pk ∧ pm) ∧
n−1∧
i=1

(π i
n−1 → (pi ∨ pn)) → (pn ∨ ¬pn)
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and

Bn :=
∧

1≤i< j≤n

¬(pi ∧ p j ) ∧
n−1∧
i=1

(π i
n−1 → (pi ∨ p j )) →

n∨
i=1

pi .

In addition, let

ρ := ((¬¬p → (p ∨ ¬p)) ∧ ((¬¬q → q) → (q ∨ ¬q)) ∧ ¬(p ∧ q)) → (p ∨ ¬q).

Theorem 2.10 (Jankov 1963b, Theorem 1) The following hold:

(a) formulas A3 and ρ are realizable and cannot be derived in IPC from each other;
thus, they are not derivable in IPC;

(b) in IPC, A3 � C and C � A3;
(c) for any n ≥ 3, formulas An and Bn are not derivable in IPC; nevertheless,

A3 � An and An � Bn and hence, formulas An and Bn are realizable.

Theorem 2.11 (Jankov 1963b, Theorem 2) Every realizable formula is valid in
algebra Z7 whose Hasse diagram is depicted in Fig.2.4.

Let us observe that formula C ′ := ((¬¬p → p) → (¬p ∨ ¬¬p)) → (¬p ∨
¬¬p) (the skeleton of the Rose formula) is refuted in algebra Z7 by valuation
ν : p �→ a. Hence, Theorem2.11 entails that the skeleton C ′ := ((¬¬p → p) →
(¬p ∨ ¬¬p)) → (¬p ∨ ¬¬p) of the Rose formula is not realizable.

On the other hand, formula C ′ is interderivable in Int with the characteristic
formula XZ7 of algebra Z7. Hence, if C ′ is not realizable, all realizable formulas are
valid in Z7. Indeed, assume for contradiction that A is a realizable formula and is
invalid in Z7. Then, by Theorem2.2, in IPC, A � C ′ and therefore, C ′ should be
realizable.

More information on the realizability of propositional formulas can be found in
Plisko (2009).

2.9 Some Properties of Positive Logic

If A and B are positive formulas, let A ≤ B
def⇐⇒ � A → B in PPC. A set of

formulas is independent if any two distinct formulas of this set are incomparable
relative to ≤. In Jankov (1968d), Yankov constructed three infinite sequences of
positive formulas on two variables: (a) independent, (b) strongly descending, and (c)
strongly ascending. For the duration of this section, � means derivability in PPC
(unless otherwise indicated).
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2.9.1 Infinite Sequence of Independent Formulas

Consider the following sequence of positive formulas (cf. Jankov 1968d):

A1 := p, B1 := q, Ak+1 := Bk ∨ (Bk → Ak), Bk+1 := Ak ∨ (Ak → Bk).

(2.12)
Let

Ck := (((Ak → Bk) → Bk) ∧ ((Bk → Ak) → Ak)) → (Ak ∨ Bk). (2.13)

In the proofs, we use algebras Ai , the Hasse diagrams of which are depicted in
Fig. 2.6, and we use valuation

ν : p �→ a1 ν : q �→ b1. (2.14)

Let us observe that for all 1 ≤ k ≤ i ,

ν(Ak) = ak, ν(Bk) = bk, and ν(Ci ) = ci .

Proposition 2.22 Formulas Ck, k > 0, are independent in PPC; that is, for any
i �= j , Ci � C j and C j � Ci .

Proof First, let us observe that� C j → Ci for any i > j , because valuation ν defined
by (2.14) refutes formula C j → Ci .

Next, let us show that � C j → Ci for any i < j . To this end, we will show that
� (C j → Ci ) ↔ Ci and consequently, � (C j → Ci ), because � Ci : it is refuted in
Ai by valuation ν.

Let us prove � (C j → Ci ) ↔ Ci . By definition,

C j → Ci = C j → ((((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) → (Ai ∨ Bi )),

and hence,

� (C j → Ci ) ↔ ((C j ∧ ((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) → (Ai ∨ Bi )).

(2.15)
Thus, by showing that

� (((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) → C j , (2.16)

we will prove that (2.15) yields

� (C j → Ci ) ↔ ((((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) → (Ai ∨ Bi )),

that is, that � (C j → Ci ) ↔ Ci .
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Fig. 2.6 Refuting algebra

To prove (2.16), we consider two cases: (a) j = i + 1 and (b) j ≥ i + 2.
Case (a). Recall that Bi � Ai → Bi and hence,

Bi , (Ai → Bi ) → Bi , (Bi → Ai ) → Ai � (Ai ∨ (Ai → Bi )). (2.17)

In addition, Bi → Ai , (Bi → Ai ) → Ai � Ai and hence,

Bi → Ai , (Ai → Bi ) → Bi , (Bi → Ai ) → Ai � (Ai ∨ (Ai → Bi )). (2.18)

From (2.17) and (2.18),
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Bi ∨ (Bi → Ai ), (Ai → Bi ) → Bi , (Bi → Ai ) → Ai � (Ai ∨ (Ai → Bi )),

(2.19)
and by the Deduction Theorem,

(Ai → Bi ) → Bi , (Bi → Ai ) → Ai � (Bi ∨ (Bi → Ai )) → (Ai ∨ (Ai → Bi ));
(2.20)

that is,
(Ai → Bi ) → Bi , (Bi → Ai ) → Ai � Ai+1 → Bi+1. (2.21)

Immediately from (2.21),

(Ai → Bi ) → Bi , (Bi → Ai ) → Ai � ((Ai+1 → Bi+1) → Bi+1) → Bi+1

(2.22)
and consequently,

(Ai → Bi ) → Bi , (Bi → Ai ) → Ai � ((Ai+1 → Bi+1) → Bi+1) → (Ai+1 ∨ Bi+1).

(2.23)
Hence,

(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) �
((((Ai+1 → Bi+1) → Bi+1) ∧ ((Bi+1 → Ai+1) → Ai+1)) → (Ai+1 ∨ Bi+1));

(2.24)
that is,

(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) � Ci+1. (2.25)

Case (b). From (2.21),

(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) � Ai+1 ∨ (Ai+1 → Bi+1);

that is,
(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) � Bi+2. (2.26)

Using the definition of formulas A j and B j , by simple induction one can show that
for any j ≥ i + 2,

(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) � B j (2.27)

and subsequently,

(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) �
(((A j → B j ) → B j ) ∧ ((B j → A j ) → A j )) → (A j ∨ B j ).

Hence, by the definition of formula C j ,
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(((Ai → Bi ) → Bi ) ∧ ((Bi → Ai ) → Ai )) � C j .

2.9.2 Strongly Descending Infinite Sequence of Formulas

Consider the following sequence of formulas: for each k > 0,

Dk :=
∧
i≤k

Ci .

Let us prove that formulas Di form a strongly descending (relative to ≤) sequence;
that is, for any 0 < j < i , � Di → D j , while � D j → Di .

Proposition 2.23 Formulas Dk, k = 1, 2, . . . form a strongly descending sequence.

Proof Let 0 < j < i . Then � Di → D j trivially follows from the definition of Dk ,
and we only need to show that � D j → Di .

Indeed, by the definition of formula D j ,

� (D j → Di ) ↔
∧
k≤i

(D j → Ck),

and we will demonstrate that � D j → Ci by showing that formula Di → C j is
refuted in algebra Ai whose diagram is depicted in Fig. 2.6.

Let us consider valuation ν : p �→ a and ν : q �→ b. Then, for all j < i , ν(C j ) =
1 and hence, ν(δ j ) = 1, while ν(Ci ) = ci < 1 and hence, valuation ν refutes formula
D j → Ci .

2.9.3 Strongly Ascending Infinite Sequence of Formulas

To construct a strongly ascending sequence of formulas of positive logic, one can
use an observation from Wajsberg (1931) that a formula A is derivable in IPC if
and only if a formula A+ obtained from A by replacing any subformula of the
form ¬B with formula B → (p1 ∧ · · · ∧ pn ∧ pn+1), where p1, . . . , pn is a list of
all variables occurring in A, is derivable in PPC. Thus, if one takes any sequence
A1, A2, A3, . . . that is strongly ascending in IPC , the sequence A+

1 , A+
2 , A+

3 , . . .

is strongly ascending in PPC. In particular, one can take sequence of formulas that
are a strongly ascending in IPC on one variable constructed in Nishimura (1960)
and obtain a desired sequence of formulas that is strongly ascending in PPC on two
variables.

A proof that Int � A if and only ifPPC � A+ can be done by simple induction. It
appears that Yankov was not familiar with Wajsberg (1977) and his proof in Jankov
(1968d) uses the same argument as the proof from Wajsberg (1931).
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Let us also observe that the sequence A1, A2, . . . defined by (2.12) is strongly
ascending. Indeed, it is clear that � Ak → (Bk ∨ (Bk → Ak)); that is , � Ak →
Ak+1. On the other hand, � Ak+1 → Ak : the valuation ν refutes this formula.

By the SeparationTheorem, all three sequences remain, respectively, independent,
strongly ascending and strongly descending in IPC. Moreover, because IPC and
KC have the same sets of derivable positive formulas, these three sequences retain
their properties. And, if we replace q with ¬(p → p), we obtain three sequences of
formulas that are independent, strongly descending, and strongly ascending inMPC.

2.10 Conclusions

In conclusion, let us point out that Yankov’s results in intermediate logics not only
changed the views on the lattice of intermediate logics but also instigated further
research in this area. In 1971, in Kuznetsov (1971), it was observed that for any
intermediate logic L distinct from Int, the segment [Int,L] contains a continuum of
logics. In the same year, using notion of a pre-true formula, which is a generalization
of the notion of characteristic formula, Kuznetsov and Gerčiu presented a finitely
axiomatizable intermediate logic without the f.m.p. (Kuznetsov and Gerčiu 1970).
Using ideas from Jankov (1968b), Wroński proved that there are continuum many
intermediate logics enjoying the disjunction property, among which are the logics
lacking the f.m.p. (cf. Wroński 1973).

In Fine (1974), Fine introduced—for modal logics—formulas similar to Yankov’s
formulas, and he constructed a strongly ascending chain of logics extending S4.

In his Ph.D. Blok (1976), Blok linked the characteristic formulas with splitting,
and studied the lattice of varieties of interior algebras. This line of research was
continued by Routenberg in Rautenberg (1977, 1980), and his disciples (cf. Wolter
1993; Kracht 1999). Ever since, the splitting technique pioneered by Yankov is one
of the main tools in the research of different classes on logics.
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