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Abstract. Secure protocols are built on cryptographic algorithms,
which provide a variety of secure services to realize secure communi-
cations in a network environment. To improve the quality of security
protocols and ensure their reliability, sufficient verification and testing
are required. ProVerif is a classic formal verification tool for security
protocols, and we describe its working mechanism and verification pro-
cess in detail. In this paper, we focus on ProVerif and extensions in
the verification of security protocols. We introduce some representative
solutions to illustrate verification with ProVerif. And we also introduce
its extension tools for protocols with stateful properties, protocols with
algebraic properties, and protocol implementations, then summarize the
general method of ProVerif extension tools. Finally, we discuss possible
future research points, including the extension of ProVerif for protocols
that combined stateful and algebraic properties, verification of security
applications in SDN networks, and building models from protocol imple-
mentations without source code.
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Verification · Pi calculus

1 Introduction

The security protocol [2] is a message exchange protocol based on cryptography,
which aims to provide various security services in the network environment. It is
an important part of network security, we need to use security protocol to authen-
ticate among entities, securely key distribution or other secrets among entities.
Vulnerabilities in security protocols may cause malicious attacks or information
disclosure. To improve the service performance of security protocols, sufficient
verification and testing for security protocols are required before deployment.
Formal methods are an important method for discovering design defects of secu-
rity protocols. Formal methods in security protocols have been made a lot of
progress [7,9,13–15,17,29] in the field of protocol verification and testing.

To verify security protocols, researchers propose many verification methods
and develop verification tools, such as ProVerif [8,10]. ProVerif is a formal tool for
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automatically analyzing security protocols, which supports vulnerability detec-
tion and security verification. It can handle many different cryptographic primi-
tives defined by rewrite rules or equations. ProVerif has made great achievements
in the verification of security protocols using formal methods.

In this paper, we mainly focus on two areas of works: security protocols
verification with ProVerif and extensions of ProVerif for more security protocols.
In recent years, works that directly use ProVerif verification protocol can be
roughly divided into two categories: communication protocol verification [7,9,13,
14,29] and Web application verification [15,17,24]. The communication protocol
refers to the rules and agreements that must be followed by two entities to
complete the communications and realize services. Web applications are pro-
grams that are stored on a remote server and delivered over the Internet through
a browser interface. In these cases, the general process of verification is: (1)
building the security model and determining the security properties, (2) then
writing ProVerif input format code, such as applied pi calculus, (3) verifying the
security protocol with ProVerif.

For extensions of ProVerif, we mainly introduce three aspects: protocols with
stateful properties [3,11,25,26], protocols with algebraic properties [21–23,27],
and protocol implementations [1,4–6,16,20]. Although ProVerif can handle a
wide range of primitives and complex protocols, ProVerif still suffers from some
shortcomings. For example, when considering verifying stateful protocols, the
mechanism of ProVerif does not take into account the state reachable set, which
leads to false attacks when verifying protocols. Moreover, there have been prob-
lems with Horn’s theory in dealing with the algebraic properties of operators,
leading to the inability of ProVerif to effectively analyze such type protocols.
To solve these problems, researchers have extended ProVerif to efficiently verify
these properties.

The protocol developers hope that the model can be automatically con-
structed through source codes of protocol implementations. While some protocol
implementations in programming languages like Java are far from the input lan-
guage of ProVerif, some researchers propose automatic model transformation
tools. These tools translate protocol implementations into verifiable languages
of ProVerif and subsequently invoke ProVerif to verify the security properties of
the protocol.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
architecture of ProVerif and some basic security properties. In Sect. 3, we present
several representative solutions that use ProVerif to verify security protocols.
In Sect. 4, we present extension tools based on ProVerif to verify protocols. In
Sect. 5, we present the future work. And finally, we conclude the paper in Sect. 6.

2 Overview of ProVerif

ProVerif is a protocol verifier developed in 2001, which was designed to automat-
ically analyze the security of cryptographic protocols. ProVerif was modeled on
functions or equations to verify security protocols, which was based on the Dolev-
Yao mode [12]. ProVerif supports a variety of cryptographic primitives defined
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by rewriting rules or by equations, and attackers can only use these primitives
for computation. In the field of computer security, these features are particularly
important which allow the analysis of security properties. This section introduces
the architecture of ProVerif and its main properties.

2.1 Architecture

The architecture of ProVerif is shown in Fig. 1. ProVerif takes a protocol model
and the security properties as input, and output results of verification. The
protocol model describes a protocol by an extended language of pi calculus,
which is converted automatically into a set of Horn clauses in ProVerif. For
these clauses, the security properties to be proven are converted into derivability
queries. There are three possible results of the verification: the properties are
true, false, or cannot be proved. The security property is true unless the existence
of an attack can be deduced from the Horn clauses. The security property is false
when there is an attack deduced from the Horn clauses and where is an attack
path can be reconstructed from pi calculus. In the above case, if the attack
path cannot be reconstructed from pi calculus, the security property is cannot
be proven. This is a false attack, which is inevitable because of the protocol
abstraction of the Horn clause.

2.2 Basic Properties

We summarize several basic security properties from the user manual of
ProVerif [10], including reachability property, correspondence assertion, injec-
tive correspondence, authentication, and observational equivalence.

Reachability property: items or properties that are available to the attacker,
which is the most basic feature of ProVerif.

Correspondence assertion: it is used to capture relationships between events,
such that if an event is executed, another event must be executed before it.

Injective correspondence: it is used to capture authentication in the case of
a one-to-one relationship between the number of protocols that each partici-
pant needs to perform, which is used to make up for the lack of correspondence
assertions.

Authentication: it is used to convert the authentication target into the corre-
sponding relationship between events. For example, if a client triggers an event,
the server must trigger a matching event.

Observational equivalence: two processes are observational equivalent unless
the attacker can tell difference between them.

These properties are provable by ProVerif, and verification of these proper-
ties may often be involved in common security protocols. Therefore, ProVerif is
widely used in the verification of security protocols and is very useful in the field
of computer security.
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Fig. 1. The architecture of ProVerif [8].

3 Verification in ProVerif

ProVerif covers a wide range of cryptographic primitives and various protocol
structures, which supports the analysis of various encoding formats and security
properties of protocols. We take the tool to verify various types of security proto-
cols, such as transport layer security (TLS), fast identity online (FIDO). We will
describe two types of protocols that use ProVerif to verify security properties in
the following.

3.1 Verification of Communication Protocols

A communication protocol refers to the rules and agreements that the two enti-
ties must follow to complete the communication or service. A communication
protocol is mainly composed of syntax, semantics, and timing rules, which is
hierarchical, reliable, and effective, as that in TCP/IP, TLS, etc. We will describe
several communication protocols that have been verified by ProVerif in recent
years.

Bruno Blanchet verifies the public-key and shared-key protocols [9] of the
ARINC823 Avionic Protocols by ProVerif and CryptoVerif which relies on the
computational model instead of the Dolev-Yao model. Some security flaws were
also identified as that there is a computational replay attack in the shared-key
protocol which breaks confidentiality. ProVerif finds most of the attacks easily,
while it cannot find the secrecy attack in the shared-key protocol. The secrecy
attack is discovered by a verification failure in CryptoVerif, which shows that
ProVerif has some shortcomings in analyzing the protocol.
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Karthikeyan Bhargavan [7] proposes an approach used to develop a symbolic
and computational model for TLS 1.3. The authors model and analyze the draft
protocol version 18 of TLS 1.3 by ProVerif and CryptoVerif respectively, which
reveals some vulnerabilities in the draft protocol and proposes a reference imple-
mentation RefTLS for TLS 1.3. The authors develop models for different versions
of TLS 1.3 and evaluate them to reconstruct known and previously undisclosed
vulnerabilities.

To solve problems of security connection between the end user and user equip-
ments (UEs) and sharing issues between Device-to-Device (D2D) users in the 5G
network, Ed Kamya Kiyemba Edris et al. [13] propose a D2D level security solu-
tion that comprises the DDSec and DDACap protocol, which provides security
for access, caching and sharing data in D2D communications. The authors model
the proposed protocols and then verify the model by ProVerif. The authors firstly
model and verify the DDSec protocol, and then found some security flaws. The
DDACap protocol is formed by modifying the security flaws in the previous pro-
tocol. The DDACap protocol is verified by ProVerif, where the results show that
all the security properties are true.

EAP-TLS is a standard defined in 5G communication technology, which is
particularly important to ensure the security of the EAP-TLS protocol. Jingjing
Zhang et al. [29] constructe a symbolic model about EAP-TLS, and then they
use ProVerif to verify the model formally. Several weaknesses and design defects
in the current protocol are obtained by analyzing the verification results.

Eman Elemam et al. [14] propose a security protocol PMQTT to protect
message queue telemetry transport, which is derived from the message queue
telemetry transport (MQTT) protocol. PMQTT adds cryptographic primitives
from the MQTT, which is verified by ProVerif to check whether the proposed
protocol satisfies the expected security properties.

This section briefly describes the application of ProVerif in several communi-
cation protocols. These researches show that ProVerif can effectively find some
defects in the verification, while there are still some attacks that cannot be found.
For example, ProVerif cannot detect the attack mentioned in [9] in ARINC823,
because the attacks are not at the symbol level. This shows that ProVerif still
has some deficiencies which need to be expanded. We will introduce some specific
aspects of ProVerif extensions in Sect. 4.

3.2 Verification of Web Application

This section describes verification of web application, where protocols used by
Web applications include OAuth, Web Authentication, FIDO [15], and so on.

Iness Ben Guirat and Harry Halpin [17] use ProVerif to analyze W3C Web
Authentication API. They model W3C Web Authentication with the formal
methods, which is proved security by analyzing the security properties of the
protocol.

FIDO is a public key encryption-based authentication framework that allows
users to log in to remote online services and websites by verifying their identity in
a local trusted authenticator, e.g., a fingerprint scanner on a smartphone. Haonan
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Feng et al. [15] analysis of the FIDO protocol suite of the universal authentication
framework (UAF). By constructing protocol models for different scenarios, such
as malicious entity modeling, unlinkable scenarios modeling, authors analytically
determine the minimum-security assumptions required in each security objective
and identify flaws of the UAF protocol.

Michael J. May and Kevin D. Lux [24] design a set of Web services to improve
WSEmail. The architecture of WSEmail can be extended in a variety of ways
to provide flexibility. While the increased flexibility often reduces security and
performance. So they take security performance issues into consideration and
verify the security of the protocol formally by TulaFale and ProVerif.

This section mainly presents several solutions of verification in the web appli-
cation by ProVerif, and the researches show that ProVerif can effectively verify
web applications and can detect some attacks.

3.3 Summary

In this section, we mainly present the related work of verification by ProVerif in
recent years, which are mainly divided into two categories. One is the verification
of communication protocols and the other is the verification of the protocol on
the web application. In the verification of two categories, ProVerif can effectively
detect a certain part of attacks and verify the security of protocols. However,
ProVerif fails to verify some specific security properties or attacks, which indi-
cates that ProVerif has some shortcomings needed to be further expanded. We
will present the extension of ProVerif in the next section.

4 Extensions of ProVerif

Although ProVerif can handle a wide range of primitives and complex protocols,
ProVerif still suffers from some shortcomings. There are possible false attacks
because of the abstraction of protocols, and there are specific protocols without
result in verification. As mentioned above, there are still some defects where
researchers made corresponding extensions to solve them. We will present the
extension of ProVerif in the three aspects as follows.

4.1 Extensions for Stateful Protocol

ProVerif builds models with pi calculus by the abstraction of protocols and con-
verts them to Horn clauses. ProVerif approximates the behavior of each protocol
by a set of first-order Horn clauses, which can be applied without limited num-
ber of times. In the analysis of protocols with global states, there may be some
false attacks. Although ProVerif provides some built-in features like tables and
phases, which provides a limited approach to model the state. To address the
challenge of the deficiency of ProVerif in verification, several methods have been
proposed to verify stateful protocols effectively.
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StatVerif [3] is an extension of ProVerif with explicit state constructs, which
can analyse protocols with the global state. StatVerif extends the compiler of
ProVerif by extending the applied pi calculus, where the proposed compiler can
avoid many false attacks. Protocol of small hardware security devices and pro-
tocol of contract signing agreements are used to verify the correctness of the
compiler in the paper. StatVerif extends applied pi calculus to global cells that
can be accessed and modified by processes. The extension language contains
locked content to correctly write sequences of state operations. Due to the finite
number of cells in the model, the number of states that can be represented is
limited.

Vincent Cheval proposes a universal state converter, which is implemented
as GSVerif [11]. GSVerif solves the problem of that ProVerif cannot verify global
state and natural numbers, which is realized by converting the query the state
and natural number properties into verifiable properties. For certain security
properties, GSVerif cannot directly and automatically verify the protocol. In
the case, one can design some formulas suitable for the protocol and manually
verify the formulas to verify the security properties indirectly. This approach
provides a method to improve tools that can handle global states, which also adds
interactivity to ProVerif. Compared with StatVerif, GSVerif does not change the
input language, but there are significant improvements in efficiency and coverage
of protocols. However, GSVerif suffers from the deficiency that the ARINC823
avionics protocol cannot be properly verified.

The abstraction method is very effective in protocol verification, which suffers
from shortcomings in dealing with stateful protocols. AIF generates a set of Horn
clauses, where ProVerif or SPASS are used to verify these clauses. Although AIF
adopts an infinite state approach, it can only analyze a fixed number of sets. To
address this problem, Mödersheim et al. [25] proposes a new abstraction method
based on a subset to verify protocols with non-monotonic and stateful properties.
The authors develop AIF-ω which is an extension of AIF, where the protocol
model composes with infinite sets.

To varying degrees, the above tools provide methods for verification of state-
ful protocols. StatVerif extends the applied pi calculus with global states, while it
supports a limited number of sessions and cannot automatically verify complex
protocols. GSVerif supports multiple protocols of infinite session which enriches
proof strategy of ProVerif. The AIF-ω extends AIF and then invokes ProVerif to
verify stateful protocols. As shown in Fig. 2, the above tools are extended from
two aspects. StatVerif belong to the first situation, which build the model by
extending the pi calculus. AIF-ω and GSVerif belong to other situations, where
the security properties that cannot be verified in ProVerif are transformed into
security properties that can be verified.

4.2 Extensions for Protocols with Algebraic Properties

ProVerif usually relies on Dolev-Yao model to verify security protocols, which
ignores protocol attacks with algebraic properties in the protocol. Therefore,
ProVerif cannot verify attacks that contains algebraic properties such as that
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Fig. 2. Two types of extensions for stateful protocols.

in Diffie-Hellman and Exclusive-Or (XOR). To solve the problem, researchers
extend ProVerif to verify protocols with algebraic properties effectively.

Dilong Li [27] proposes a new tool, ProVerif-ATP, which is a combination of
ProVerif and the first-order automatic theorem prover ATP. The integrated tool
allows the user to specify algebraic property in the model as an equation theory.
The authors evaluate the effectiveness of ProVerif-ATP on many protocols, such
as protocols with XOR, and the evaluation shows that ProVerif-ATP can discover
some attacks that ProVerif cannot discover.

The security analysis of protocols by ProVerif essentially boils down to deriva-
tion of Horn theory, i.e., whether a given fact can be deduced from Horn the-
ory. Following this essence, Ralf Küsters and Tomasz Truderung [21,22] pro-
pose two new tools, XOR-ProVerif and DH-ProVerif to verify protocols with
the Exclusive-Or and Diffie-Hellma algebraic properties, respectively. For pro-
tocols with Exclusive-Or, Ralf Küsters et al. reduce the problem of deriving
Horn theory with XOR to a syntactic derivation problem, where the algebraic
properties of Exclusive-Or can be ignored. For protocols with Diffie-Hellman,
DH-ProVerif takes the similar simplification operation, with different reduction
operations and completeness of XOR-ProVerif. The technique is more effective
in the reduction of Diffie-Hellman indices than XOR.

Pascal Lafourcade [23] compared the time spent by XOR-ProVerif and
DH-ProVerif to verify different cryptographic protocols with Exclusive-Or and
Diffie-Hellman, respectively. In [23], the authors point out that the number of
Exclusive-Or affects the verification time and XOR-ProVerif cannot verify the
protocols with the sufficiently large number of Exclusive-Or. In terms of com-
plexity, it is exponential in Exclusive-Or, and it is lower in Diffie-Hellman than
Exclusive-Or.
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In terms of the verification of algebraic properties, the above tool extends
ProVerif in two ways as shown in Fig. 3. On the one hand, ProVerif is inade-
quate in analyzing algebraic properties. Researchers integrate other tools to ver-
ify protocols with algebraic properties. On the other hand, security analysis of
the protocols in ProVerif boils down to the derivation of Horn theory. Therefore,
the derivation of Horn theory with algebra is simplified into the case without
algebra, as the second case in Fig. 3, which reduces the unverifiable properties
to verifiable properties in extension tools.

Fig. 3. Two types of extensions for protocols with algebraic properties.

4.3 Extensions for Protocol Implementations

In recent years, a large progress has been made in the area of formal verification
for cryptographic protocols with powerful tools like ProVerif, where a large num-
ber of researchers choose ProVerif to verify security protocol. However, there is
still a great gap between formal description languages of models and existing
protocol implementation languages, as that between applied pi calculus and C,
Java, f#, etc. Therefore, researchers propose some improved methods to bridge
this gap. In these methods, ProVerif is used as a back-end to verify security
properties by transforming the protocol implementation into an input format of
ProVerif.

Bhargavan [6] propose an architecture to verify security protocol implemen-
tations. In this architecture, a prototype model extractor fs2pv is used to extract
implementations of protocols, which is written in f# to obtain a subset of f#
that can represent security protocols. Then the subset is compiled to specifica-
tion of ProVerif, which is used to verify the security properties of the protocols
finally.
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Avalle [4] proposes a model-driven framework JavaSPI to develop security
protocols. The framework provides the Java-ProVerif, which translates the model
into the corresponding ProVerif model, and then the framework uses ProVerif
to verify the security properties of the protocol. Different with [6], the ProVerif
translates the model represented in Java syntax into ProVerif syntax instead of
extracting it from Java code.

Bansal et al. [5] build the WebSpi library, which defines the basic components
that are needed to model web applications and their security policies. This library
can be used to model on standard web browsers, servers, and HTTP protocols,
and it can analyze implementations of security protocols. To simplify the task
of writing formal models, the authors propose a model extraction tool. The tool
automatically extracts programs written in subsets of PHP and JavaScript into
pi calculus model, and verifies them by ProVerif.

To verify the security properties of protocol implementation encoded in C,
Aizatulinet et al. [1] extract the model of ProVerif from the implementation.
However, the shortcoming of this technique is that it can only analyze code
on a single execution path. Goubault-Larrecq [16] propose another method to
analyze the protocol implementation in C. The difference is that they translate
the protocol into clauses of the H1 class, and use the H1 prover instead of
ProVerif to verify the secrecy of the protocol.

Nadim Kobeissi [20] propose a formal method for translating Noise Hand-
shake Patterns to the processes of pi calculus. This transformation is imple-
mented in a new tool Noise Explorer, which takes the Noise Handshake Patterns
as input, and generates ProVerif scripts as output. The tool can encode the
security targets in the specification of Noise Protocol Framework as security
queries in the ProVerif syntax. Finally, the protocol is verified by ProVerif as
the back-end.

The above multiple methods and tools share a common feature as shown in
Fig. 4. By designing a translation method, the pre-existing protocol implementa-
tions are translated into an input format of ProVerif, and then ProVerif is used
to verify the security properties of protocol. These methods expand the scope of
application of ProVerif.

Fig. 4. General translation architecture for protocol implementations.
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4.4 Summary

In this section, we describe three aspects of ProVerif extension, including pro-
tocols with stateful properties, protocols with algebraic properties, and protocol
implementations. We analyze each extension tool and give the general structure
diagram for each aspect of the extension.

5 Future Work

This article describes two types of extensions for protocols with stateful property
and protocols with algebraic property. For a protocol with both properties, it
is an interesting research point to verify the security properties. Protocols with
the combination of stateful and algebraic properties can be verified by extending
ProVerif or ProVerif integrated other verification tools, which is an indication of
our future research direction.

The verification of network protocol has been a great success in traditional
networks, while it is less involved in SDN networks. In addition, the protocols are
often open-source in SDN networks, which is far from pi calculus. By translating
the format of SDN code into an input format that ProVerif can recognize, we
can to verify the protocols of SDN in ProVerif. In addition, security protocols
need to consider issues such as logging [18], and we can combine logging with
protocol verification. This is one of our future research directions.

As a third-party tester, if the source code is not obtained, or the protocol
implementation is not publicly available, we can build a security model through
protocol specifications and capture packet to obtain network traffic, which is
refer to traffic in data center [19,28], and then we can use ProVerif to verify the
corresponding security properties. This is also a significant research direction.

6 Conclusion

In this paper, we focus on ProVerif and extensions in the verification of security
protocols. To illustrate verification with ProVerif, we describe some represen-
tative solutions in communication protocols and web applications. In addition,
we present three aspects of ProVerif extensions, such as protocols with stateful
properties, protocols with algebraic properties, and protocol implementations,
and then summarize the general method of each extension tools. Finally, we
discuss some possible research points for ProVerif extensions in the future.
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