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Abstract We discuss the importance of sensing technology in enabling intelligence
of future automotive vehicles. We briefly overview efforts of leading technology
companies such as Waymo and Tesla which resulted in impressive progress toward
highest levels of driving automation.We then describe our efforts in the areas of future
radars and lidars, specifically, those which go beyond 2D and mechanical scanning
emphasizing importance of AI in improving sensor performance at marginal added
cost. We then discuss trends in optical computing with its promise of substantially
reducing energy consumption while enhancing edge computing.

1 Introduction

Intelligent vehicles are making serious in-roads in our daily lives. Of primary impor-
tance are tech that promises to make the vehicles safer and more convenient. Twenty
years ago the state of art in autonomous vehicles was illustrated by the results of the
DARPAGrandChallenge 2004: none of themany vehicles competing in a desert race
were able to come close at completing the mission of driving over 100 miles in an
off-road setting (the top-scoring vehicle traveled only 7.5 miles). Clearly, technology
was not ready [1].

Just three short years later the DARPA Urban Challenge showed that a specially
designed and built vehicle could be driving autonomously in a relatively simple
setting (mock-up town with no vulnerable road users present). Several vehicles
completed the mission, and they did so without incidents [2, 3].

Emboldened by DUC 2007 success, Google decided to develop their own
autonomous vehicles. Google hired talented researchers from different Universities,
such as Stanford and CMU, under the leadership of Prof. Thrun and challenged them
to produce a robot capable of driving autonomously on public roads in traffic [4].
Google’s example is illustrative of a popular approach undertaken by many research
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groups throughout the world: if you want an autonomous vehicle, then you need a
vehicle with a variety of sensors, each of which complements the others to allow the
vehicle to build a more accurate picture of the world around it so that its motion can
be both swift and accurate while navigating in changing and often uncertain driving
environment.

Another popular feature of the original Google approach later improved and
enhanced by its spin-offWaymo is the use of high-definition maps to ease the vehicle
localization and navigation [5]. Suchmaps have not only detailed elements of the road
structure, e.g., the location of curbs and lanes, but also road infrastructure elements,
e.g., traffic lights, signs and adjacent buildings. The availability of these elements in
the maps recorded as point clouds allows the vehicle to simplify significantly the task
of driving, as anything which is not on the map could confidently be called obstacles,
static or dynamic objects, even if only a few points of lidar beam returns have been
registered for some of them.

Researchers at Tesla are pursuing arguably a more challenging path toward
autonomous vehicles: relying on cameras as the primary perception sensor, and
sometimes radar but absolutely no lidar! [6] Moreover, Tesla does not use pre-
recorded high-fidelity maps to navigate its vehicles. They argue that human drivers
use their eyes andmay not needmaps to drive safely in all kinds of driving conditions,
including during the day and at night [7, 8].

Whether one belongs to theGoogle campor theTesla camp, the following question
looms large: why can’t we yet do what humans do so readily? Humans not just have
two eyes (no camera can yet match capabilities of an eye, and that is why equating
an eye with a camera should only be done metaphorically). They have a natural
computer tuned by millions of years of evolution which computes according to
yet-to-be-understood algorithms [9], and moreover can adapt existing algorithms to
solving new tasks, learning new skills, often with little effort and remarkable ease.

In autonomous driving, a significant problem for decisionmaking is a great variety
of driving scenarios. Driving scenarios are classes of situations which may happen
in the real world. Urban, suburban and rural settings are numerous and can come in
very different shapes and forms. However, classes of such settings are limited and
manageable by a suitably designed decision making system. Indeed, staying on the
road in whatever lane is chosen, performing primitive maneuvers like moving left or
right—and doing so without collisions, is basically all it takes to be a safe driver! Of
course, the complexity of driving and associated expansion of driving situations may
quickly grow once we have to include other objects on the road, signs, and traffic
lights, but the basic primitives of driving remain the same. Thus, it may be argued
that safe driving is a relatively easy human skill to acquire compared to, e.g., playing
chess well, and this fact must have something to do not only with human excellent
ability to recognize all kinds of contexts and generalize to driving accordingly but
also with the simple nature of driving as a sequential perception-action problem; if it
were not the case, then few people would have been able to start driving so quickly,
after just a few hours of practicing [10].

Perception problems continue to be the greatest challenge of driving automation;
see, e.g., [11–13]. Populating the obstacle map and maintaining reliable and easily
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computer-interpretable picture of the environment in the vicinity of the vehicle are the
key features of a perception systemof current and future intelligent vehicles including
partially autonomous, active driver assistance systems such as, e.g., Toyota Safety
Sense [14] or Toyota Guarding [15]. We believe that, in a foreseeable future, the
intelligent vehicles will need a variety of sensors in order to be able to gradually
approach the competency of an attentive human driver, whether the vehicle still
relies on a pre-recorded high-fidelity map of the driving environment or not. A rich
sensor suite becomes the necessary condition of sorts, while a sufficient condition
is still expected to come from the relentless pace of advances of the autonomous
driving algorithms for perception and decision making in terms of better processing
of sensor information andmaking effective driving decisions. The algorithm analysis
is beyond the scope of this chapter since we focus on sensing, specifically on the
latest developments in radar, lidar and optical computing to enable smart sensing.

This chapter is arranged as follows. Section 2 discusses the advancements in radars
and lidars. Section 3 describes our take on edge computing and photonic information
process, followed by Conclusion.

2 Advancements in Radar and Lidar Sensing

In this section, characteristics of three typical sensors and their future trends are
discussed.A sensor, by definition, detects the surrounding environment and translates
it into different forms of information such as electric and mechanical signals. In the
vehicle’s perspective, sensors are subsystems detecting other objects such as vehicles,
pedestrians or other vulnerable road users, elements of road infrastructure, and any
other obstacles around the vehicle.

Camera is the essential among sensors because it is capable of identifying two-
dimensional information, color, and texture of targets easily. For understanding traffic
signs and signals, lane markings, roadside furniture, which are imperative informa-
tion for autonomous driving, a camera can offer the most cost-efficient solution.
Moreover, it is widely available across many industries. However, drawbacks are its
inability of direct range estimation, susceptibility of dynamic range to illumination
andweather impact, and the need of processing excessive amounts of data. The future
of camera in a broad area of mobility depends on how to manage the combination of
sensors and their data with the support of AI andmachine learning [6]. Smart sensing
emerges as an attractive proposition since much of the data is expected to be prepro-
cessed at an individual sensor end before the central computation unit for increased
overall efficiency of computation and energy. As discussed in Sect. 3, metasurface
based special image processing technology is also drawing attention from the same
perspective [16].

Ever since the commercial debut in heavy-duty trucks in the late 1990s by Eaton
Corporation, automotive radar technology has undergone several generations of
evolution in parallel with its commercial proliferation. In the early era of automotive
radar, the quality and quantity of speed and range information was extremely limited
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so that its application was feasible for vehicles in well-defined highway condition.
For many years radar was the enabling sensor for features such as Active Cruise
Control (ACC). For this application absolute positioning of detections is not neces-
sary, assigning the detection to a lane and computing the time-to-collision is sufficient
for the system to actuate the accelerator and the brake so that a safety buffer to vehi-
cles in front is maintained. As long as some simplifying assumptions are made such
as other vehicles being on the road surface, simple motion models, and fixed widths
of the lanes on a highway, the radar sensor only needs to determine the location of
detections in range and azimuthal bearing. Therefore, the ability to scan in elevation
is removed entirely which simplifies the system considerably by requiring only a
single linear antenna array.

As more automated control features are developed for consumer vehicles, these
radars originally designed for ACC applications are pressed into wider service.
Radar’s superior performance in all-weather conditions and detection of metal
objects hundreds of meters away meant that they could not just be excluded from
advanced driving sensor suites. However, the highly filtered output of the radar
sensors left something lacking for the teams developing the algorithms operating on
the raw sensor data. In fact, modern radars are demanded to provide multitudes of
advanced features to accommodate other applications: from parking assistance to
fully autonomous driving. Preferentially higher detection resolution in both azimuth
and range, wider field of view, larger number of targets to be tracked and addi-
tional detection dimension in elevation have become requirements. Provisions have
been offered by adding more channels of active or virtual elements in conjunction
with widening usable bandwidth. Because of the strict regulation against spatially
combined electromagnetic energy density, the number of channels or power per
channel cannot be increased arbitrarily.

Locating detections in 3D space and determination of object shape would allow
the radar to contribute useful data to advanced autonomous driving systems. A single
scan direction is insufficient to accomplish 3D localization, so automotive radars will
need to be expanded to two scan directions plus ranging. To determine object shape,
improvement in resolution is necessary which corresponds to adding more elements
to the antenna arrays. Measuring object shape especially when partially obscured
through shallow angle multi-path and waveform processing techniques would fill a
gap in current sensor suites. Figure 1 demonstrates an early example of target behind
target detection [17]. Essentially, a high-resolution 3D imaging radar is required
for future driving functions. To implement imaging function, antenna array should
be scaled from one dimension to two dimensions; a simple and intuitive method is
to extend the ‘N array’ of antenna into ‘N x M array’. Alternatively, in most used
antenna architectures a series of N gain elements is connected per channel and could
be stacked up resulting in ‘multi-N x M array’. In this case, the end-fire architecture
may be preferred because of its feasible feed line connectivity [18].

Steering of high-resolution beams in 3D space at RF wavelengths have been
commercialized for 5G applications. Automotive radar systems could adopt these
technologies in a low-cost manner. One is multiple-input multiple-output (MIMO)
2Dantenna technologies for base station communication in 5Gnetworks [19].MIMO
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Fig. 1 One of the authors walking in front of a vehicle (on the left) does not disturb the return from
the vehicle, shown in a bird’s eye view in center, in a phased array automotive radar prototype. This
example is driven by a 16-channel RF phase shifter chip produced by one of our collaborators, on
the right

technique can use non-uniform array spacing plus orthogonal waveforms to create
virtual channels and reap the benefit of a fully populated array while minimizing
physical channels [20], thus reducing cost. This is one way to achieve high resolution
radar without the cost of a fully populated phased array. MIMO antennas have even
been miniaturized for the use in cell phones, demonstrating that the concept is not
limited to a fixed base station use [21]. On the receiver side, MIMO boosts the
signal of several cellphone users simultaneously by localizing them and increasing
the apparent gain through the MIMO technique. For radar applications, we simply
consider the returns from multiple target reflections as the cell phone users when
implementing MIMO.

Expanding the capability of the radar system comes with some drawbacks, mainly
cost. A 2D MIMO array requires far more down-conversion mixers than current
radars and computing the MIMO-related algorithms in an extra-dimension requires
more on-board processing power. Both of these points clash with the expectation that
radar sensors for vehicular applications should be less than $100 per unit. However,
advancements in the area of RF-CMOS may allow us to overcome this challenge.

From the onset of automotive radar transition from radar’s original military
purpose, high frequency semiconductor industry played an important role by minia-
turizingmicrowave component in integrated circuits. In the early 2000s, the RF semi-
conductor used for vehicle radar, especially for millimeter wave radar, was Gallium
Arsenide (GaAs). At that time, the RF circuitry wasmade up of several discrete GaAs
chips. With multiple chips and a high-priced fabrication process, the radar cost was
exorbitant and such sensors could only be found in luxury vehicles. Heavy investment
in cheaper RF-SiGe (Silicon–Germanium) technology pushed the maximum oper-
ating frequency beyond 100 GHz, enabling use for millimeter wave radar systems
[22]. From the economic perspective, the number of operating channels per chip
should be reduced as much as possible, in tune with integrating other functions. The
advantage of SiGe technology is that many RF components can be integrated onto
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a single die due to larger wafer sizes. Recently, RF-CMOS has emerged competing
with SiGe for the obvious benefit of cost attractiveness in mass production and its
capability of integration with signal processing units. RF-CMOS is compatible with
digital CMOS, and both can be integrated into the same die which means that digital
processing will be on the same die as the millimeter wave circuitry, reducing costs
further. This type of integration also lends itself well to increasing the number of
unique down converting mixers in the system, which enables techniques such as
2D MIMO or a fusion hardware platform combining radar with camera. This is to
be contrasted with software-focused efforts at using different sensing modalities to
improve the overall performance; see, e.g., [23–26]. Furthermore, the optimizing
active channel numbers in massive MIMO with innovative array distributions is
expected to be challenging but attractive solutions [27].

Lidar is a useful sensor for automated driving applications as it can generate a
high definition 3D point cloud of the surrounding area. Within the point cloud is
information about all surrounding obstacles, and the features of fixed geometry such
as ground and buildings can be matched to map data to improve self-localization.
Short wavelengths of lasers are used to create focused beams which enable the
high-resolution point clouds.

Off the back of the DARPA Challenges mentioned in Introduction prominent
scanning lidars became a hallmark of vehicles fitted with automated driving systems
[28]. These lidars contained an array of discrete lasers and detectors. Pulsed time-of-
flight (ToF) methods determined the range to targets, mechanical scanning covered
the azimuth scan plane and the array of lasers and detectors behind lenses covered
the elevation scan plane. These bulky, heavy, and costly sensors meant that they were
confined to research grade vehicles. Mechanical scanning of the whole sensor head
with extreme precision meant that a robust brushless AC motor—a substantial cost,
was a necessity. ToF methods accurately determine the range to a target but can
be subject to interference from the sun or other light sources. These methods can
only return a single target within a beam, which causes problems when aerosols or
other small particulates are suspended in air, such as rain, snow, or dust. Recently,
large strides have been made in silicon photonic integrated circuits (PICs). PICs
allow processing of laser light signals in silicon chips. Investment in PICs has been
bolstered by its importance in optical data communication, and one massive national
collaborative effort is the American Institute for Manufacturing Integrated Photonics
(AIM Photonics). AIM Photonics is a US National initiative targeting deployment of
silicon photonicmassmanufacturingmethods throughout industrywith funding from
federal agencies, such as DARPA, state level, and private interests [29]. With silicon
photonics technology an all-solid-state lidar has been demonstrated, and complex
waveform encoding can be applied to the lidar signal.

Solid-state techniques utilizing silicon photonics have been demonstrated in two
ways. One way is electronic beam steering by optical phased arrays (OPAs). Due
to short wavelengths of the lasers used in near-infrared lidar, thousands of array
elements can be packed into a single chip to enable high resolution, thin beam forma-
tion.OneOPA[30] demonstrates a sub9 cm2 chipwithmore than8000 array elements
producing a half-power beamwidth of 0.01°× 0.04° and scannable in two directions,
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with a scan angle of 100° by phase shifters and a scan angle of 17° in the second
direction bywavelengthmodulation. Co-packaged CMOSdies demonstrate amazing
miniaturization over classic mechanical beam scanning systems. One challenge of
this type of beam steering due to the high resolution beam is covering all scan points
in a reasonable amount of time. Wavelength division multiplex (WDM) techniques
can naturally and easily be applied in silicon photonics to allow wavelength unique
signals to co-exist in the same PIC. Lidar with 100+ comb generated signals being
transformed into simultaneously scanned laser beams have been demonstrated [31],
which would overcome the time crunch of scanning thin pencil beams.

Another way to realize solid-state lidar is utilizing integrated focal plane arrays,
similar to digital cameras. These so-called flash lidars—due to the scene filling
transmission of a laser pulse similar to a camera flash, are among the first solid-
state lidars to be developed. Large scale flash lidar have been demonstrated [32] and
are already on the market for OEM vehicle use [33]. In a flash lidar, the detector
array is exposed to free space similar to mechanical lidar which meant they were
limited toToF ranging techniques. Recently, per-pixel integrated heterodyne circuitry
though a hybrid CMOS-silicon photonics process offered by GlobalFoundries has
been demonstrated [34]. This allows for the simplicity of flash type lidar while
opening the door for complex encoding on the laser signal. Still, flash lidar suffers
from a tradeoff between resolution and wide-angle field of view that does not exist
in beam steering lidar, as a lens must be chosen to transform the focal plane array to
angular detection.

One of the benefits in solid-state lidar using silicon photonics is the introduction
of advanced encoding of the transmitted signal. Modulating the signal is natural in
silicon photonics through ring resonators, Mach Zehnder interferometers or other
similar active structures. Frequency Modulated Continuous Waveform (FMCW)
method found often in vehicular radar sensors, is a simple modulation which gener-
ates a continuous ramp signal in frequency. Thismethod allows determination of both
range and velocity instantaneously (instead of estimating velocity by piecing together
several detections). Moreover, multiple targets can be detected within a single beam,
which is especially useful in poor weather conditions. Rain and snow clutter can be
filtered out [35]. If the system has a sufficient number of unique heterodyne detec-
tors, more advanced encoding could be imagined such as CDMA [36] where scene
scanning is essentially done in the digital domain.

Before fully solid-state-scan lidar is introduced, Micro-Electro-Mechanical
Systems (MEMS) based mirror architecture will be popular in the near future. The
priority for solid-state lidar’s success inmarket penetration is cost competitiveminia-
turization of essential components in IC. As learned from the precedent growth of
radar market, it is important for semiconductor IC providers, tier-1 suppliers and
OEMs to form a virtuous ecosystem.

With the betterment of all types of sensors mentioned above, i.e., higher detection
resolution in all directions with more precise Doppler signature, it is now possible
to predict even the rotation of a moving target. Not only the increased number of
voxels but also innovative ways of their association can significantly improve overall
data processing. For example, optimized data size and advanced waveforms can
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enhance refresh time while maintaining the detection accuracy. With advancement
in sensor data processing byAI andmachine learning algorithms, sensors can provide
much more distinctive characteristics of targets, e.g., [37–39]. Algorithmic advances
focused on embedded software will continue to drive sensor information processing
because of its marginal added cost.

3 Toward Energy Efficient Edge Computing via Optical
Advances

In the coming years the amount of data acquired from added sensors of intelligent
vehicles is expected to increase significantly, and so will the amount of processing
required to utilize this data. This leaves two options in terms of data processing:
either to operate on edge computing systems in the vehicle or to partially rely on
mobile networks in order to make timely transportation decisions.

Figure 2 provides a breakdown of connected computing technologies and where
they process data. The role of this figure serves to elucidate technologies in the
connected infrastructure of the automotive sector, rather than the broader IoT domain.
Sensors lie at the base of the figure. These are broken into passive, active and smart

Fig. 2 A schematic of layers at which processing may occur for the automotive sector: the cloud,
fog, edge, or sensor level computing. The left of the figure designates the type of connections
that might be activated between these compute layers. The right-hand side of the figure displays
the type of vehicle communications that might occur, based on the computing structure on the
left. For instance, V2X communications require fog or cloud computing, meanwhile internal
communications within the vehicle rely on a slew of cabled connections



Future Technology and Research Trends in Automotive Sensing 151

sensors. Passive sensors include items like RFID tags where no energy needs to be
supplied to the sensor (more on passive optical sensors below). Active sensors are
those that require power to sense. Smart sensors are those that can provide processed
data using only the sensor signal; an example might be how a radar sensor can not
only provide position information but also velocity information without the need to
convert the signal to another domain. Additionally, we define edge computing as
any system that can process data at the point of collection, as opposed to shuttling
data via a network. While sensors and edge computing are separated in Fig. 2, to
clarify their differences, any sensor that can actively process data can be included
under the broader umbrella of edge computing; it is not required that the sensor
have a microprocessor attached in order to be considered edge computing. Instead,
edge computing is the existence of processing without the need to communicate
information to a server or cloud network. Traditionally, edge computing included
processing of sensor data on a programable controller, however this description has
expanded to include systems with graphic processing units, tensor processing units
and other more advanced computing infrastructure that was previously only found
at data centers. For this reason, we define edge computing as computation through
any system that does not rely on the access to fog or cloud computing services. Fog
computing relies on the local area network architecture. Cloud computing relies on
an internet access point that allows information to travel from the sensor to a globally
accessible server.

Figure 2 also describes how these different processing locations impact specific
vehicle communication functions. For instance, fog computing allows for vehicle-
to-infrastructure processing; this may include data being transmitted wirelessly via
Bluetooth or WiFi to local access points that are allowed to make decisions. For
instance, one could imagine an intersection with traffic lights replaced via a local
network server. The vehicles that enter the intersection would be sent wireless
commands from the server that are based on immediate information gathered at
the intersection.

With these definitions in mind, we can better understand how the modern and
future vehicle may depend on each of these computing levels. For example, relying
on the cloud has the potential for high latency due to large volumes of data and trans-
mission rates, network congestion, and frequently occurring deadzones or urban
canyons. However, traditional computer architectures remain energy intensive when
running neural network algorithms in any intelligent vehicle—whether a car, a drone,
or a remote sensor in IoT. The vehicles of today are even being recognized as
cloud accessible hubs to be leased for bitcoin mining or algorithm training, as such
datacenters-on-wheels sit idly in their garages.

As vehicles become more intelligent, the on-board power requirements of the
vehicle must not only take on the most vital roles like safety and convenience but
also play an increasing part in attending to diverse needs of vehicle’s occupants.
With the growth of autonomous functions, there will be a higher expectation for the
vehicle to provide more in-vehicle services (entertainment, shopping, etc.). While
power has always been a priority in the design of the vehicle, it will become an even
more critical issue as electric vehicles become more autonomous. In our opinion,
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new hardware systems are required to achieve increasingly intensive computations
at various edge interfaces without straining the power source of the vehicle [40].

While the decision to operate partially in the cloud, over mobile networks, or to
operate solely on amobile computing system of the vehicle are verymuch the subject
of a transportation system design, any opportunity to unburden the power system
from sensor processing and related computational costs is a universally welcomed
proposition. For this reason, a new trend in intelligent vehicles is to off-load some of
the needs of edge computing onto passive hardware. In this section, we review some
opportunities to utilize passive optical systems for pre-processing prior to reaching
the optical-electrical transduction interface [41].

One of themost immediatemethods to relieve computational burden is to reformat
the data of the sensors on the vehicle. For example, consider the image shown in
Fig. 3a. This image can be described by a camera using a set of values from 1 to
256, however, the image conveys a range of information features such as depth cues,
color, and lighting. In order to computationally process this image, feature extraction
is applied across the data matrix.

The most common image kernel that is first applied to an image for feature extrac-
tion or image segmentation is a differentiator. Here we consider how adding a passive
optical filter could be used to achieve arbitrary algorithmic computations of a scene.

Fig. 3 Methods for passive optical image differentiation. a Grayscale image of a flower. b Image
shown in a passed through a numerically applied Laplacian image kernel. cMetasurface composed
of an array of silicon pillars for image differentiation. The white horizontal bar represents 1 micron.
d Optical train needed for coherent optical differentiation utilizing a spatial filter
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One of the most obvious implementations of a passive optical filter for vehicle
applications is image differentiation. While the technology is still at its early stage,
researchers have demonstrated the ability to differentiate coherent light passed
through an optical metasurface [42]. In this reference, a metasurface is composed of
two sets of arrays of nanobeams that compute first- or second-order spatial differ-
entiation in the x-direction. Rather than rely on digital software for processing, the
image is passed via a passive, analog, optical filter. Figure 3d demonstrates how a
metasurface like the one described in [42] can be utilized in a 4F optical system in
order to implement image differentiation at the Fourier plane.

In fact, the concept of optical differentiation has been around since the 1960s, with
the idea of utilizing spatial filters as a tool to alter the structure of a beam of light. The
concept of spatial filtering plays off the unique Fourier optical transformation after
an image passes through a lens. The unique direction of the light due to diffraction
causes the sources of light to focus on different portions of the focal plane. By
applying a spatial filter at the focal plane, a variety of analogue operations can be
applied to an image. The example shown in Fig. 3d, utilizes this approach to spatial
filtering, however, advances in the field have enabled researchers to utilize bound
states in a continuum in order to achieve differentiation at any location along the
propagation direction of the image [43, 44].

The advantage to utilize metasurfaces for analogue processing has gained signifi-
cant momentum. Not only are the custom-made optical elements just several hundred
nanometers thick, but they can also be applied at any location in the optical train.
It should also be noted that metamaterials can often be designed to have high trans-
parency.However, there still remains a serious disadvantage before the systems canbe
perfected for in-vehicle optical analogue processing.Most metasurface systems have
an optical response that is limited to a narrow band of wavelengths, and the existing
technologies are not capable of implementing this differentiation on incoherent light.
This implies that a standard optical image cannot be differentiated optically. Inco-
herent optical processing is a hot topic of research and while some progress has been
made [45], there still remain several hurdles toward implementing this technology
in vehicles.

The ability of an optical system to apply image differentiation or edge determi-
nation is not only a useful technique in image processing, but it is typically one of
the layers in convolutional neural networks. Thus, applying passive optical filters
to sensing could enable reduced convolutional processing needed on these large
matrix transformations for edge computing, thereby reducing one of the steps in the
computationally intensive task of image segmentation.

Beyond image differentiation, optical filtering has a potential to apply other
passive optical elements in order to achieve a variety of algorithms, e.g., integra-
tion [46, 47]. Algorithm specific metasurfaces can also be employed as convolu-
tional elements for a variety of other image kernels including box blur, sharpen,
or unsharpen masking. The size of the kernel will depend on the resolution of
the metasurface relative to the image size. With the help of inverse design and
machine learning to create metasurfaces, new and unique methods to achieve these
computational systems are rapidly evolving [48].
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The current trend for communication systems in vehicles is a demand to shuttle
higher loads of data which is often due to the integration of higher resolution sensors
(see Sect. 2). The need to transmit data at Gbs speeds, from sensors to their controllers
(e.g., those for future automated driver assistance systems (ADAS)) is becoming a
considerable communication hurdle. To comprehend the significance of this transi-
tion point from the traditional data communication approach to that of future auto-
motive vehicles, we should first review the electronic ecosystem of the present-day
vehicle. At present, most traditional OEMs continue to rely on the electronic control
unit (ECU), which through a single module controls a set of processes such as
those in the radar, cameras, powertrain, transmission, suspension and other systems.
The ECU may simply process the raw data and transmit it to another hub or it may
act as a subsystem for sensor fusion, processing and controlling data from a multi-
tude of other ECUs. In 2021, there are vehicles with upwards of 150 ECUs; each
ECU contains a microcontroller, memory, embedded software, and communication
ports for the systems, power, and data communications. With so many control units,
each with their own protocols, the OEMs have garnished the burden of driving the
performance of these processors while extricating excess cabling and redundancy.
This has been particularly difficult given the low bandwidth communication channels
that most standard ECUs maintain; these are typically handled via automotive bus
systems like LIN (Local Interconnect Network), CAN (Controller area Network),
MOST (Media oriented system transport) and FlexRay. However, given the tran-
sition to more data heavy sensors like ADAS, higher bandwidths have become a
requisite, which has led to the adoption of SerDes (Serializer-Deserializer), Auto-
motive Ethernet, and HDBaseT Automotive. In particular, HDBaseT has allowed for
communication over 15 m in length, with limited requirements for shielding for both
point-to-point and daisy-chain connectivity [49]. It should be noted that while these
technologies have enabled several Gbs transfer rates, there are signs that the future
vehicle ecosystemwill soon need to shuttle information in the form of bits structured
as vectors.

Moreover, trends in machine learning are leaning towards understanding the data
structure of an entire tensor, rather than operating a convolution on a single matrix
of the tensor at a time. In order to achieve this in our current state, the data would
need to be stored locally on RAM hardware after being shuttled bit by bit. In order to
accelerate this process, PeripheralComponent InterconnectExpress (PCIe) cables are
finding themselves as a greater necessity. A PCIe cable is a computer expansion bus
that traditionally allowed for direct, short connections (on the order of cm) between
a motherboard, graphics card, or solid-state drive. As of 2018, PCIe has found a
means to integrate onto HDBaseT technology permitting signals such as audio and
video, power, and controls to be transmitted over a single cable. Today PCIe is on
its 6th generation with versions doubling roughly every few years. However, the
future bus communication standard may be to move to fiber optic communications
either via PCIe over fiber or standard fiber optical cabling [50, 51]. Given that many
sensors utilize optical inputs and the growing desire to process optical inputs in the
optical domain, the shuttling of information from sensors to hardware without the
transduction to electronic sensors could prove fruitful. It is possible that OEMs will
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continue to try and process data at the point of occurrence thus declining the need
for high bandwidth shuttling; however, the question that remains is for how long can
this trend be managed successfully.

With the future of communication systems being heavily reliant on optical
networking, there exists an opportunity for analogue processing pre-emptive to trans-
duction to an electrical signal, where informationwould be traditionally processed on
a standard CMOS chip. One possible application of this would be to utilize not only
sensing processing but also other functions such as control in an optical architecture.
The architecture would utilize a lidar or other light-based sensor with outputs to be
fed into an optical neural network with model predictive control (MPC). The concept
of using an MPC with a neuromorphic photonics processor for general non-linear
programming was demonstrated in [52]. In this reference, nonlinear processing was
demonstrated for the high-speed control application of tracking a moving target,
e.g., in the case of missile targeting. A similar case could be envisioned for driving
automation applications, such as path planning at an on-ramp, a traffic circle, or
a parking lot. The light perception device—a sensing solution, directly informs a
vehicle computer implemented as optical neural network (ONN) of the positions and
the velocities of surrounding agents for the purpose of respecting their trajectories
and avoiding collisions while the vehicle’s computer plans to maneuver around on
the road [53].

4 Conclusion

We overviewed the state of art and promising developments in the field of automo-
tive sensing focusing on radar, lidar and optical processing for driving environment
sensing exemplified by driving automation. Since the DARPA Challenges of the
beginning of this century various enabling technologies have advanced by leaps and
bounds. Phased-array radars and solid-state lidars are taking places of mechanically
scanning devices, enabling more precise temporal snapshot of the data and deliv-
eringmore accurate range and angular measurements for the ever growing number of
mobility features.Advances inRF-CMOSand similarly silicon photonics IC for lidar,
which is compatible with digital CMOS—the wide-spread technology for cameras,
will pave theway for integration of sensingmodalities at the level of hardware simpli-
fying sensor fusion. In terms of optical processing, computational metasurfaces, i.e.,
devices specially designed to implement image differentiation, convolution and other
functions of essence to AI algorithms, are on the rise. Similar to artificial neural
network software years ago, we expect to live through another Renaissance in the
field of optical processing focused on integrated photonics driven by the needs for
smart sensing and ultra-low power consumption. The sensor advances described here
will help developing the next generation of intelligent vehicles.
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