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Abstract Autonomous driving technologies are expected to not only improve
mobility and road safety but also bring energy efficiency benefits. In the foresee-
able future, autonomous vehicles (AVs) will operate on roads shared with human-
driven vehicles. To maintain safety and liveness while simultaneously minimizing
energy consumption, the AV planning and decision-making process should account
for interactions between the autonomous ego vehicle and surrounding human-driven
vehicles. In this chapter, we describe a framework for developing energy-efficient
autonomous driving policies on shared roads by exploiting human-driver behavior
modeling based on cognitive hierarchy theory and reinforcement learning.

1 Introduction

With recent advances in sensing technologies and artificial intelligence, there has
been a rapidly growing interest in connected and autonomous vehicles (CAVs) [12,
43]. Such vehicles are expected to improve the safety and mobility of transportation
and to alleviate traffic congestion.

Another expected benefit of CAVs is a reduction in fuel/energy consumption
[38, 41]. Since 2016, the U.S. Department of Energy has awarded more than $50
million in funding for studies by the Advanced Research Projects Agency-Energy’s
(ARPA-E)Next-Generation Energy Technologies for Connected andAutomatedOn-
Road Vehicles (NEXTCAR) program for which the goal is to reduce the energy
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Table 1 Summary of selected literature on using CAV technologies to improve energy efficiency

References Energy consumption
reduction by (%)

Methods Traffic conditions

[1] 5.4 Thermal management
(air conditioning)

Driving cycles

[42] 3.1 Thermal management (battery) Driving cycles

[8] 41 Thermal management
(air conditioning and engine)

Driving cycles

[32] 50 Eco-driving Intersections

[14] 12 Eco-routing City

[20] 57.8 Platooning,
cooperative merging

Ramps on highway

[2] 8.5 Anticipative lane change City and highway

[4] (Up to) 59 Cooperative lane change Highway

[30] 47 Cooperative driving Intersections and
roundabouts

consumption of vehicles in all classes by more than 20% via CAV technologies
[40]. Table1 shows selected results by this program. This is not intended to be
a comprehensive review, but the collection illustrates the variety of methods and
traffic conditions being explored in some of the most recent studies to achieve energy
efficiency improvements using CAV technologies.

To realize this encouraging potential in real-world driving circumstances, we
observe that at least the following two problems remain to be studied. Firstly, inter-
actions of the ego vehicle with surrounding vehicles in traffic need to be considered.
In the foreseeable future, autonomous vehicles will operate together with human-
driven vehicles in traffic. Thus, it is necessary to consider the different vehicle actions
and reactions caused by different types of human driving styles. In [18, 26, 28, 39],
level-k game theory is used to model the interactions with the focus on different
driving scenarios. Researchers such as of [10, 35, 36] have utilized traffic-in-the-
loop models and closed-loop control to achieve simultaneous optimization for safety
and fuel economy. However, only longitudinal control is considered in these studies.
Indeed, the vast majority of recent studies on improving energy efficiency using CAV
technologies assume that the ego vehicle is driven in single-lane traffic. Thus, the sec-
ond problem worth investigating is the simultaneous longitudinal control and lateral
control (such as lane changes) of AVs, which increases the dimension of the problem
but provides additional possibilities to save energy. A more detailed discussion on
lane changes for better energy efficiency is given in Sect. 2.

There has been a rich set of research on machine learning (ML) methods for auto-
motive applications to improve energy efficiency and emissions by modeling and
control of the powertrain system (see, e.g., [15, 22, 25, 29, 34, 46]). In particular, to
meet increasingly stringent fuel economy and emissions regulations, the powertrain
systems of hybrid electric vehicles (HEVs) have become more and more complex.
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Consequently, commonly studied model-based control methods for the energy man-
agement system (EMS), such as dynamic programming (DP) and model predictive
control (MPC) [13], are facing growing difficulties, as they rely on models with
good accuracy and many control-oriented models are physics-based. In comparison,
machine learning methods can handle this challenge well. For example, for HEVs
with small electrical energy storage, there is a significant potential to utilize recur-
rent neural networks to learn driving patterns and improve energy efficiency [9]. In
the CAV domain, example applications of ML include perception and localization,
route/path planning/optimization, and motion control, despite challenges such as
computation, safety, and adaptability/generalizability that are actively being studied
[11, 19, 21]. Studies such as [6, 45] use ML to inform energy-efficient accelera-
tion/braking of electric vehicles. The authors previously developed a level-k game
theory-based traffic simulator in [26] (following the methodology originally pro-
posed in [47]). The simulator is based on cognitive driver behavioral models trained
by reinforcement learning (RL).

In this chapter, we describe a novel framework for developing energy-efficient
AV control policies, including both longitudinal (speed) and lateral (lane change)
controls, through RL. We focus our attention on highway driving and autonomous
battery electric vehicles (BEVs), as BEVs are getting increasingly popular due to
their environmental benefits [50]. A BEV powertrain model is developed to calculate
the energy consumption over trips. To enable the AV control policy to properly
respond to the interactions with human-driven vehicles on shared roads, the game-
theoretic traffic model developed in [26, 28] is used as the RL training environment.
Reference [23] is a preliminary conference version of this chapter. Extensions to
other powertrain types and traffic environments are possible [27, 39] but are left to
future work.

The remainder of this chapter is organized as follows. Firstly, further background
on lane changes for energy-efficient AV driving is discussed in Sect. 2. Then, we
begin the development by building a BEV model and validating it in Sect. 3. In
Sect. 4, the control development is detailed, and another control policy trained by
RL and the finite-state-machine (FSM) controller from [28] are introduced to be
subsequently used for comparison. Section5 presents results on RL convergence and
on performance of the developed control policy in simulations. Finally, concluding
remarks are made in Sect. 6.

2 Lane Changes for Energy-Efficient AV Driving

Including lateral actions such as lane changes may further improve the energy effi-
ciency [31], though the survey results of [41] show that this is still an emerging area
that remains to be studied. Anticipating lane selection has been proposed, such as
in [17, 37]. Furthermore, instead of focusing on an individual vehicle, cooperative
lane change [3] is expected to benefit the neighboring vehicles and harmonize the
surrounding traffic. However, these studies assume having connected vehicle tech-
nologies, such as vehicle-to-vehicle and vehicle-to-infrastructure communications.
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A general observation is that the energy efficiency can be improved by reducing
the change of speed and acceleration. In contrast, our work uses the position and
velocity information of the immediate neighboring vehicles detected by the sensors
of the ego vehicle, and a powertrain model is used to accurately predict the energy
consumption.

There are two major challenges in combining longitudinal and lateral actions for
safe energy-efficient driving. Firstly, considering both longitudinal and lateral actions
increases the problem complexity. In particular, there are subtle trade-offs between
safety and energy efficiency. For instance, in scenarios such as a sudden cut-in by a
slow vehicle, changing lanes rather than hard braking preserves vehicle momentum
and avoids energy loss, but if the traffic density is high, performing a lane change
may not be safe or feasible.

Another challenge is that, unlike safety constraint violation scenarios (e.g., col-
lisions) where events typically occur within seconds, energy efficiency evaluation
requires longer time horizons of several hundreds of seconds. Hence, optimization-
based control algorithms that simultaneously address driving safety and energy effi-
ciency requirements need to account for both short-term and long-term objectives.
One approach is to define a terminal cost function for the short horizon optimiza-
tion reflective of long-term rewards. However, how to practically determine such a
terminal cost function is often a priori unclear. In special cases, the problem can be
reformulated to focus on maintaining component operation in more efficient regions
[7] for which short-horizon optimization is sufficient. However, such reformulations
are not always feasible and the performance with such an approach could be sub-
optimal. In particular, Stackelberg policies and the decision tree policies considered
in [5, 48, 49] rely on rewards being evaluated short-term. It may not be straight-
forward to extend these to account for energy efficiency requirements. For our AV
control policy, since the RL algorithm updates the value functions with not only the
one-step/instantaneous reward but also the average reward over time, it is able to
handle multiple optimization objectives that need to be evaluated over different time
horizons.

3 Powertrain Modeling for Battery Electric Vehicles

3.1 Model Description

Accounting for energy efficiency in the AV controller design requires a longitudinal
powertrain model. As an RL process is generally computationally intensive, a pow-
ertrain model used in RL should have low computational footprint but sufficiently
high accuracy.

Figure1 shows the layout of the BEV model considered in this work. The power-
train system consists of a battery pack, a motor/generator (MG), a drivetrain with a
single-speed final drive, the wheels and tires, and the powertrain control unit (PCU).
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Fig. 1 Battery electric
vehicle powertrain system
layout

The powertrain model is of the backward type [13, 33, 44]. (See Remark 1 below
for details.) It has two states, state of charge (SOC) and total energy consumption.
High-fidelity dynamics, such as transient responses of theMG and drivetrain, are not
considered. Maps (i.e., look-up tables) are used to represent component operating
characteristics as described below. A benefit of using a map-based approach is that
it can facilitate the change of component specifications so that potential extensions,
such as component sizing or fleet energy efficiency studies, are possible.

Remark 1 A backward powertrain model assumes that the actual vehicle speed
is always equal to the reference speed command. Rotational speeds of components
are coupled/scaled by the gear ratios and wheel radius based on this command. The
torque required at the wheels to meet the acceleration demand is first calculated and
then translated component by component to the actuators such as the motor and the
brakes. Backward models typically entail low computational costs and are suitable
for (approximate) energy consumption evaluations. In comparison, forward models
involve a driver model, typically modeled as a PID controller, that commands the
motor/brake torque in order to track the vehicle speed reference. The torque is then
translated to the wheels through drivetrain components. The speed of each compo-
nent, as well as the actual vehicle speed, is calculated by integrating the acceleration
produced by the torque. Consequently, forward models can better capture the com-
ponent dynamics, at the cost of higher computational complexity than backward
models. They are typically used for more detailed (e.g., componentwise) energy
efficiency analysis as well as drivability-related simulations [13, 33, 44]. Also, the
forward model is not as suitable as the backward model in our case considering safe
driving since there is a tracking error between the commanded and actual vehicle
speed the value of which depends on the tuning of the control parameters.

In the BEV model, the MG speed and traction torque at the wheels are first
calculated based on the vehicle speed command according to

ωmg = V · g
r

, (1)

Ta = V̇ · M · r, (2)
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Tl = a + b · V + c · V 2, (3)

Twhl = Ta + Tl, (4)

where ωmg is the MG speed, V is the vehicle speed, g is the final drive gear ratio, r
is the effective wheel radius, Ta is the acceleration torque,M is the effective vehicle
mass involving powertrain component inertia, Tl represents lumped external loads
including rolling and aerodynamic resistance (while the grade is assumed to be zero)
approximated by a quadratic function with coefficients a, b, and c, and Twhl is the
traction torque at wheels.

The PCU then checks whether the traction torque demand exceeds the battery or
MG limits and distributes the torque command to the MG and the friction brake,
using the following logic,

TmgPos =

⎧
⎪⎨

⎪⎩

0, if Twhl < 0,

Twhl · 1
g , if 0 ≤ Twhl ≤ TmgMax · g,

TmgMax, if Twhl > TmgMax · g,
(5)

TwhlBrk =

⎧
⎪⎨

⎪⎩

0, if − Twhl < 0,

−Twhl, if 0 ≤ −Twhl ≤ TbrkMax,

TbrkMax, if − Twhl > TbrkMax,

(6)

TmgReg =
{
Freg · TwhlBrk · 1

g , if TwhlBrk ≤ TmgRegLim · g,
Freg · TmgRegLim, if TwhlBrk > TmgRegLim · g, (7)

Tmg =
{
TmgPos, if Twhl > 0,

−TmgReg, if Twhl ≤ 0,
(8)

TmechBrk = −(TwhlBrk − TmgReg), (9)

where TmgMax is the maximum MG torque limit, TmgPos is the positive portion of the
MG torque limited by TmgMax, TwhlBrk is the negative portion of the traction torque at
wheels limited by a constant brake torque limit denoted by TbrkMax, TmgRegLim is the
MG regeneration torque limit, Freg is the regeneration factor, TmgReg is the negative
portion of the MG torque limited by TmgRegLim, Tmg is the MG torque, and TmechBrk is
the torque demand assigned to the friction brakes. We obtain the values of TmgMax,
TmgRegLim, and Freg through maps, where both TmgMax and TmgRegLim depend on ωmg ,
and Freg is a function of V (to reduce the regenerative braking at low vehicle speeds)
and the battery SOC (to reduce the regenerative braking at high SOC).

The power drawn by the MG is then obtained from

Pmg =
{
Tmgωmg/η, if Tmgωmg ≥ 0,

Tmgωmg · η, if Tmgωmg < 0,
(10)
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wherePmg is theMG electric power, and η ∈ (0, 1) is theMG efficiency as a function
of the MG torque and speed, as given by a map.

To calculate the SOC and cumulative energy consumption, the battery is modeled
as follows:

Pmg = (Voc − 1

Np
· I · R) · Ns · I

= Ns · Voc · I − Ns

Np
· R · I2, (11)

which can be re-arranged as

Ns

Np
· R · I2 − Ns · Voc · I + Pmg = 0, (12)

where Voc and R are, respectively, the open circuit voltage and the resistance of a
single battery cell, I is the battery pack current, Ns is the number of battery cells in
series, and Np is the number of battery cells in parallel. Here, Voc and R are acquired
through maps, and both variables depend on SOC, with the assumption that the
battery temperature is constant. Then, we can solve for the battery current as

I =
Ns · Voc −

√
(Ns · Voc)2 − 4 Ns

Np
· R · Pmg

2 Ns
Np

· R , (13)

and the battery dynamics are given by

˙SOC = −I

Cmax · Np · 3600 · 100, (14)

where Cmax is the maximum battery capacity.
The total discharged electric energy Ebatt is computed by integrating the battery

power Pbatt based on
Ėbatt = Pbatt = Ns · I · Voc, (15)

and the energy consumption can be determined from

MPGe = x

Ebatt
· γ, (16)

where MPGe stands for miles per gallon equivalent, x is the total distance traveled,
and γ represents the unit conversion coefficient.
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3.2 Model Calibration and Validation

The BEV powertrain model described above is calibrated using the BEV reference
model in the Powertrain Blockset Toolbox (PTBS) version 1.5 developed by Math-
Works. The PTBS reference model is a forward model and includes more detailed
component controls and dynamics than our model. Our model uses some maps and
parameter values from the PTBS reference model, and the other model parameters
are hand-tuned to reduce errors between the two models.

After calibration, we validate our model by testing and comparing the MPGe of
our model and that of the PTBS reference model for different driving cycles. The
MPGe mismatches between the two models for the Urban Dynamometer Driving
Schedule (UDDS), theHighwayFuel EconomyTest (HWFET), and theUS06driving
cycles are 5.94%, 5.90%, and 7.95%, respectively. Figure2 shows the time histories
of powertrain signals for the BEV driving through the UDDS cycle, where the blue
curves correspond to our model after calibration and the red curves correspond to the
PTBS referencemodel. It can be observed that the signals of ourmodel closelymatch
those of the PTBS reference model. These results validate that our model (1)–(16)
after calibration can be used to produce sufficiently accurate energy consumption
estimates (accurate in terms of matching the estimates produced by the high-fidelity
PTBS reference model). Note that our model entails much lower computational
footprint than the PTBS reference model, and is thus suitable for RL purposes.

Fig. 2 Time histories of
powertrain signals for the
UDDS cycle
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The BEV powertrain model (1)–(16) is then converted to discrete-time, assuming
a 1-s sampling period, and integrated with the traffic simulator of [26, 28], used for
the RL-based development of energy-efficient autonomous vehicle control policy.

4 Controller Design

4.1 Game-Theoretic Traffic Environment

In order to train an autonomous vehicle control policy offline, we use an interactive
traffic simulator, following the approach described in Li et al. [26], as the training
environment. This level-k game-theory based simulator assumes that the traffic con-
sists of human-driven vehicles that can be modeled by cognitive behavioral models
with k levels. Studies such as [39] show that human reasoning process rarely exceeds
three steps, so k = 0, 1, 2 is used in this work. The level-0 vehicles use a hand-crafted
policy that commands one of the three actions, “maintain speed”, “decelerate”, or
“hard decelerate”, based on the range and range rate with the vehicle in its front to
represent vehicle behavior under minimal rationality; level-1 and level-2 vehicles
use policies trained by RL assuming that the surrounding vehicles are all level-0 and
level-1, respectively. Moreover, the level-1 and 2 vehicles have a larger action space
consisting of seven actions, including acceleration, deceleration, and lane change.
Overall, the results of [26] indicate that the level-0 drivers/vehicles have the most
conservative behaviors, while level-1 vehicles behave the most aggressively such as
driving faster and frequently making lane changes, and the aggressiveness of level-2
vehicles falls between level-0 and level-1.

Remark 2 Similarities and differences between the setup considered in this work
and that in [26] are highlighted in Table2, in terms of models, reward functions,
surrounding traffic, observation space and action space, RL algorithm, and training
process. Details are given in the subsequent subsections.

Table 2 Comparison summary on control development for the level-k (k = 1, 2) policies and the
autonomous vehicle policy considered in this work (AV)

Level-k for k = 1, 2 AV

BEV model Not included Included

Reward function R1 R1 + R2

Surrounding traffic during RL Level-(k − 1) A mixture of level-0, level-1, and
level-2 with a certain ratio

Observation space 11 observations 11 observations plus V and SOC

Action space 7 actions Same as level-k

RL algorithm Jaakkola RL algorithm Same as level-k

After training, assign level-0
policy to states visited fewer than n
times

n = 20 n = 40
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4.2 Observation and Action Spaces

The observation space, i.e., input space, for our autonomous vehicle control policy is
extended from the observation space for the level-k driver policies. The observation
space for the level-k policies has 11 observations, including the range and range rate
of the ego vehicle to the vehicles in its front, front right, front left, rear right, and
rear left, as well as the lane index of the ego vehicle. The range is categorized by
“far”, “nominal”, or “close”, and the range rate is categorized by “moving away”,
“stable”, and “approaching”. The simulator is configured for a three-lane highway.
As a result, the total number of possible states in the level-k policy is 311. Here, a
state means a unique combination of observations.

To incorporate considerations of energy efficiency, it is necessary to enlarge the
observation space by including additional observations. Since vehicle speed and
battery SOC are critical factors that affect the PCU decision for the regenerative
power distribution, as well as the component efficiencies of the battery and the MG,
they are added to the observation space, each being categorized by “high”, “medium”,
and “low”. Consequently, the total number of possible states for our autonomous
vehicle control policy increases to 313.

The action space, i.e., output space, for the proposed control design is the same as
that for the level-k driver policies. It includes the following seven actions: (1)maintain
speed, (2) accelerate, (3) decelerate, (4) hard accelerate, (5) hard decelerate, (6) move
left (if the vehicle is not in the left-most lane) and (7) move right (if the vehicle is
not in the right-most lane).

The exact definitions of the observation and action spaces for the level-k driver
policies are given based on the parameters including the relative longitudinal position
and speed thresholds, acceleration rates, deceleration rates, and lane change rates,
whose values are the same as in [26], so they are not repeated here. For the two addi-
tional observations of the autonomous vehicle control policy, i.e., the vehicle speed
and battery SOC, the thresholds that divide the three categories are, respectively,
17.22 m/s and 22.22 m/s, and 70% and 80%, chosen by trial and error.

4.3 Reward Function

The reward function used for RL training is as follows,

R = R1 + R2, (17)

where

R1 = w1 · c + w2 · v + w3 · h + w4 · u, (18)

R2 = w5 · e. (19)
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Here, wi > 0, i = 1, . . . , 5 are weights, and c, v, h, u, and e are reward features. In
particular, the reward function consists of two parts: The first part R1 with the terms
c, v, h, and u accounts for the safety, performance, and comfort requirements and
shares the same setup as for the level-k policies. The second part R2 is an additional
term that accounts for energy efficiency.

The reward features and their corresponding weights are chosen based on engi-
neering insight and tuning by simulation as follows:

• c accounts for constraint violations,

c =
{

−1, if a collision occurs to the ego vehicle,

0, otherwise,
(20)

with w1 = 10,000.

• v accounts for travel speed,

v = V − vn
a

, (21)

where V is the speed of the ego vehicle in the longitudinal direction, and the
constants vn, a nominal speed, and a, a nominal acceleration rate, are used to scale
this term to the same order of magnitude of the other terms, with w2 = 5.

• h accounts for headway, encouraging the ego vehicle to keep a reasonable distance
from preceding vehicles,

h =

⎧
⎪⎨

⎪⎩

1, if headway ∈ “far”,

0, if headway ∈ “nominal”,

−1, if headway ∈ “close”,

(22)

with w3 = 1. Here, “headway” means the range of the ego vehicle to the vehicle
in its immediate front.

• u accounts for control effort,

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if action = “maintain speed”,

−1, if action = “accelerate” or “decelerate”,

−3, if action = “move left” or “move right”,

−5, if action = “hard accelerate” or “hard decelerate”,

(23)

with w4 = 1.
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• e is for energy efficiency, defined by the time derivative ofMPGe as

e = dMPGe

dt
= V · Ebatt − x · Pbatt

E2
batt

· γ, (24)

with w5 = 5.

4.4 Training Algorithm

The goal of training is to find a control policy that maximizes the reward averaged
over an infinite horizon. Using the settings described above, we formulate this prob-
lem as a partially observableMarkov decision process (POMDP) problem since only
certain observations are available to the ego vehicle. For example, if there aremultiple
vehicles in front of the ego vehicle in the same lane, the ego vehicle can only observe
the relative range and range rate of the vehicle immediately in front of it. Thus, the
algorithm used for training the control policy should guarantee convergence of the
average reward with respect to POMDP problems.We choose to use the Jaakkola RL
algorithm [16] since, under suitable assumptions, this algorithm guarantees conver-
gence of the average reward to a local maximum for POMDP problems. The proof
of such a convergence guarantee can be found in Appendix A of [24].

A summary of the Jaakkola RL algorithm is given in [26] and Sect. 1.2.7 of
[24]. The key variables and equations are reviewed here. The algorithm iterates with
two steps at every simulation time step t. First, the one-step reward Rt is evaluated
based on the results of the simulation following the current policy πt . Then, for each
observation state o ∈ O, and state and action pair (o, a) ∈ O × A, the state-value
functions V (o|πt) and the action-value functions Q(o, a|πt), also called Q-values,
are updated based on the difference of Rt − R̄(πt) where R̄(πt) is the average reward
for an infinite duration with the policy πt . The state-value V (o|πt) represents the
expected cumulative reward starting at state o following policy πt , while the Q-
valueQ(o, a|πt) represents the expected cumulative reward if the state starts at o, we
take action a first, and then follow policy πt afterward. Specifically, the state-value
functions and Q-values are updated with equations given as

βo
t (o) =

(

1 − χo
t (o)

Ko
t (o)

)

γtβ
o
t−1(o) + χo

t (o)

Ko
t (o)

, (25)

V (o|πt) =
(

1 − χo
t (o)

Ko
t (o)

)

V (o|πt−1) + βo
t (o)

(
Rt − R̄(πt)

)
, (26)

βa
t (o, a) =

(

1 − χa
t (o, a)

Ka
t (o, a)

)

γtβ
a
t−1(o, a) + χa

t (o, a)

Ka
t (o, a)

, (27)

Q(o, a|πt) =
(

1 − χa
t (o, a)

Ka
t (o, a)

)

Q(o, a|πt−1) + βa
t (o, a)

(
Rt − R̄(πt)

)
, (28)
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where χ represents a binary (0 or 1) indicator function that equals to one if o or (o, a)
is visited at the current time step, K is a function that counts how many times o or
(o, a) has been visited, and γt is a time-dependent discount factor that takes a value
between zero and one and converges to one as t goes to infinity. In the second step,
the policy is updated by the following equation

πt+1(o, a) = (1 − ε)πt(o, a) + επ̂t(o, a), ∀(o, a) ∈ O × A, (29)

where ε ∈ (0, 1) is the learning rate and π̂t is the greedy policy that maximizes

Jt(π, o) =
∑

a∈A
π(o, a)

(
Q(o, a|πt) − V (o|πt)

)
, ∀o ∈ O. (30)

The process then moves on to the next time step and the iteration of the above two
steps continues.

Note that the Jaakkola RL algorithm updates the value functions and Q-values at
each time step using both the immediate one-step reward Rt and the infinite-horizon
average reward R̄. The one-step reward can make the policy update respond instantly
to the large penalty of a safety constraint violation. The average reward, which in
actual implementation is estimated by averaging all past instant rewards, eventually
contains the weighted energy efficiency MPGe computed over a long horizon. In
this way, objectives with different time horizons are handled simultaneously.

4.5 Training Process

The level-k policies with k = 1 and 2 are obtained following Algorithms 1 and 2 of
[26] (similar to Algorithm 1 below) with the reward function R1 described above,
and thus, they do not account for energy efficiency. We then use vehicles operating
with level-k policies to provide the traffic environment for the RL training of our
autonomous vehicle controller that considers energy efficiency.

The training process for the proposed autonomous vehicle control policy is sum-
marized by the pseudo-code in Algorithm 1. Each training episode corresponds to a
simulation trajectory with a duration of 200s. This RL training process is similar to
the process described by Algorithms 1 and 2 of [26] with the following major differ-
ences: (1) When initializing a training episode, we initialize the ego vehicle battery
SOC randomly according to a uniform distribution in the interval [15%, 90%]. For
Algorithm 2 of [26], however, since SOC is not a state of the level-k models, this
initialization step does not exist; (2) A traffic environment consisting of a mixture
of level-0, 1, and 2 vehicles with a ratio of 15%, 55%, and 30% is used to train our
autonomous vehicle control policy, while when training a level-k policy, by defini-
tion, vehicles in the environment are all level-(k − 1); (3) Due to the increase of the
size of the observation space, the total number of possible observation combinations
is 9 times greater than for the level-k policies of [26]. With the same number of
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training episodes (i.e., 50,000, determined/limited by the affordable computational
resources such as training time duration), it is more likely that some states are not
sufficiently visited during the training. Thus, an increased value of the parameter n is
used in the last step for the autonomous vehicle policy training, where n represents
the number of times a state has to be visited during training, lest it be assigned the
level-0 policy.

Algorithm 1: Training process

1 Initialize the ego car’s policy with equal action probabilities for every state.
2 episode ← 0.
3 while episode ≤ 50, 000 do
4 Randomly select the number of surrounding cars, nc ∈ [21, 30].
5 Initialize surrounding cars with level-k policies with probabilities corresponding to 15%,

55% and 30% for k = 0, 1 and 2.
6 Initialize the ego car with SOC ∈ [15%, 90%].
7 while t ≤ 200 do
8 Run simulation and evaluate the ego car’s policy with the reward function R.
9 Update the ego car’s policy.

10 if a collision occurs to the ego vehicle then
11 Terminate the current episode.
12 end if
13 end while
14 episode ← episode + 1.
15 Assign the level-0 policy to states visited less than n = 40 times.
16 end while

4.6 Autonomous Vehicle Control Policy for Benchmarking

For comparison purposes, a second RL-based policy is trained in the mixed traffic
environment described above. This benchmark policy uses onlyR1, as defined in (18),
as its reward function, and allows one to study the differences between considering
the fuel economy or not, in similar traffic conditions.

In addition to policies trained by RL, the FSM-based policy described in [28] is
adopted for comparison. The FSM-based policy is a rule-based controller with three
modes including cruise control, adaptive cruise control, and lane change control.
Switches between modes are triggered when certain traffic conditions are satisfied.
The FSM-based policy is calibrated to optimize safety and performance, while the
energy efficiency is not being considered.
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5 Results

5.1 Training for RL-Based Policies

As discussed above, each RL-based policy is trained for 50,000 episodes. Figure3
shows the values of the average reward as the training progresses for the level-
1 policy, level-2 policy, the proposed autonomous vehicle control policy with the
energy efficiency consideration (AV w/ e), and the benchmark policy that does not
account for the energy efficiency (AV w/o e). It can be observed that the average
rewards all converge smoothly, suggesting the success of the RL procedures.

The value of the converged average reward of each policy is a combined result
of the different reward features inR. For example, the converged average reward of
the level-2 policy is higher than those of the other policies. This is because, among
the level-0, 1, and 2 policies, the level-1 policy is the most aggressive as concluded
in [26], tending to make many lane changes to pursue higher travel speeds. Since
the traffic environment for training the level-2 policy is composed of purely level-1
vehicles, the level-2 policy is relatively conservative and collisions are less likely.
Moreover, the overall faster traffic flowallows a higher travel speed of the ego vehicle.
Thus, the coupled effect of these factors leads to a higher converged average reward
for the level-2 policy.

5.2 Control Performance

5.2.1 Evaluation Process

The control policies are evaluated based on simulations using the process described
by the pseudo-code in Algorithm 2. In particular, for each policy and each traffic
density (represented by the number of surrounding vehicles in traffic, ranging from
0 to 30), 10,000 simulation episodes are run, each with a duration of 200s. Then,
the policy is evaluated with respect to four evaluation metrics, including:

Fig. 3 Average reward
evolution during RL

100 101 102 103 104 105

Training Episodes

-150

-100

-50

0

A
ve

ra
ge

 R
ew

ar
d



298 H. Li et al.

• Constraint violation rate, defined as the percentage of simulation episodes where
a collision occurs to the ego vehicle;

• Average number of lane changes per simulation episode;
• Average MPGe;
• Average travel speed.

Algorithm 2: Evaluation process

1 for nc = 0 : 30 do
2 episode ← 0.
3 while episode ≤ 10, 000 do
4 Initialize the ego car with SOC ∈ [15%, 90%] and the control policy to be evaluated.
5 Initialize surrounding cars with level-k policies randomly with probabilities of 15%,

55% and 30% for k = 0, 1 and 2.
6 Simulate and record variables relevant to the evaluation metrics.
7 episode ← episode + 1.
8 end while
9 Compute and output the evaluation metric values.

10 end for

5.2.2 Simulation Result Analysis

Proposed AV control policy
Figures4, 5 and 6 show the results of different policies in regards to the four

aforementioned evaluation metrics as functions of the traffic density. Figures4a and
5 show the constraint violation rate, and Figs. 4b and 6a show the average number of
lane changes. It can be observed that, when driving in the mixed traffic environment
(vs. Mix), the proposed policy (AV w/ e) has the lowest constraint violation rate
among all policies that can perform lane changes.

Figure4c compares the averageMPGe among the three AV control policies, i.e.,
the proposed policy (AV w/ e), the RL-based benchmark policy (AV w/o e), and
the FSM-based policy. It shows that the proposed policy with the energy efficiency
consideration is more energy-efficient than the other two policies, verifying that the
additional observations (vehicle speed and SOC) and the energy efficiency term R2

in the reward function R promote the improvement of energy efficiency.
The average travel speed of each policy is shown in Figs. 4d and 6b. It can be

observed that at low traffic density, the autonomous vehicle controlled by the pro-
posed AV policy drives at a higher average speed, close to that of level-2 vehicles;
but when the traffic gets denser, the autonomous vehicle slows down to an average
speed close to that of a level-0 vehicle. This can be explained with the help of Fig. 4b:
The average number of lane changes of the proposed policy varies only slightly for
different traffic densities, since when the traffic density is low, there is not much need
to change lanes, while when the traffic density gets high, it may be neither safe nor
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Fig. 4 Evaluation results forAVcontrol policies in traffic environments of different traffic densities:
a constraint violation rate, b average number of lane changes per simulation episode, c average
MPGe, d average travel speed

energy-efficient to perform lane changes. This feature distinguishes the behavior of
the proposed policy from the level-1 policy and the FSM-based policy that prefer
higher travel speeds and thus make many lane changes to achieve them.

Miscellaneous Observations
The results indicate that the effects of the different evaluation aspects, that are closely
related to the five features in the reward function, are not decoupled. For example,
for the level-k policies, although the level-0 policy has the lowest constraint violation
rate, it is a very conservative policy that does not allow lane changes (as illustrated
in Fig. 6a) and has the lowest average vehicle speed (as shown in Fig. 6b). When
driving in the level-0 environment (vs. level-0), consequently, the level-1 policy also
has a very low constraint violation rate. However, when driving in the mixed traffic
environment, where there are other level-1 cars and level-2 cars, the level-1 policy
has the highest constraint violation rate.

It is worth highlighting some additional observations in the simulation results.
Firstly, for policies trained by RL, the averageMPGe increases as the average travel
speed decreases in denser traffic. This is attributed to the fact that for highway
driving, the energy efficiency at the vehicle level is affected largely by energy losses
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Fig. 5 Constraint violation
rates for level-k and the
proposed AV control policies
in traffic environments of
different traffic densities
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from rolling and aerodynamic resistance that increase as the vehicle travel speed
increases. To see the significant impact of rolling and aerodynamic resistance on
energy consumption, let us consider and compare two cases: In the first case, the
vehicle is driving at a constant speed of 20.5 m/s. In the second case, the vehicle
is driving at 24.5 m/s. These two cases roughly represent, respectively, the average
longitudinal behavior of the proposed AV policy and that of the FSM-based policy
with 30 surrounding vehicles, shown in Fig. 4d. Here, we ignore the differences in
the MG efficiency by assuming a constant value of η0. Then, we have that the MG
power consumed by the rolling and aerodynamic resistance can be calculated as

Pl = (Tl · 1
g
) ωmg/η0

= (a + b · V + c · V 2)V / (rη0), (31)

depending cubically on the vehicle speed V . Without considering the discrepancy in
the battery and MG efficiency, we then use (31) to estimate the difference in the MG
power used to counteract the rolling and aerodynamic resistance. We obtain that the
discrepancy between the two cases is about 33%. This contributes to the difference in
theMPGe shown in Fig. 4b, where the change is about 64%. It is within a reasonable
range according to Table1 (e.g., [4, 20]).

Note, however, that the proposed policy does not always operate the autonomous
vehicle at a low speed, as the reward function represents several different objec-
tives besides energy efficiency. In general, energy efficiency depends on the traffic
scenario, the powertrain type, as well as the component specifications. This fact high-
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Fig. 6 Average number of lane changes per simulation episode and average travel speed for level-k
and the proposed AV control policies in traffic environments of different traffic densities

lights the benefit of modeling the powertrain system using maps, so that components
can be easily sized or swapped.

Secondly, it is observed in Fig. 4b that when there is no other vehicle in traffic
(“zero-traffic”), the autonomous vehicle controlled by the proposed policy makes on
average one lane change. This is because the policy by RL converges to a solution
where when there is no other vehicle in the immediate vicinity of the ego vehicle,
the ego vehicle tends to change to and stay in the right-most lane to reduce the
possibility of having interactions/conflicts with other vehicles that may degrade its
safety and energy efficiency in the future. Note also that such a solution may only
be locally optimal (i.e., not globally optimal), as the Jaakkola RL algorithm used to
train the policy guarantees only convergence to a local optimum (and not necessarily
the global optimum) [16].

Intuitively speaking, vehicles need not change lanes when there are no slower
vehicles in their front blocking their ways. This is the case for most policies shown
in Figs. 4b and 6a except for the proposed policy for which the average number of
lane changes in the zero-traffic environment is close to but slightly less than one. For
most cases, when initialized in the middle lane, the autonomous vehicle controlled
by the proposed policy immediately makes a lane change to the right, as explained
above. However, for some states with high SOC that were not visited enough during
RL training, the policy was overridden by the level-0 policy that does not perform
lane changes (see the last line of Algorithm 1). This caused the average number of
lane changes to be slightly less than one. Note also that the training is conducted
only for traffic environments with 21–30 surrounding vehicles, i.e., not covering the
zero-traffic environment. Such sub-optimal behavior in the zero-traffic environment
of the trained policy indicates that it might be beneficial to conduct training for a
wider range of traffic environments if computational resources allow.
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Thirdly, one of the major contributors to the high constraint violation rate of the
level-1 policywhen operating in themixed traffic environment is its high frequency of
lane changes. Two problematic scenarios related to lane changes have been identified
in [26]. The first case involves a scenario where the ego vehicle originally driving
in the right (or left) lane and another vehicle originally driving in the left (or right)
lane in an almost parallel longitudinal position with the ego vehicle simultaneously
start to perform lane changes to the middle and lead to a side collision between
them. The second case involves a scenario where the ego vehicle starts to change
lanes trying to overtake a vehicle in its front, but at the same time, the preceding
vehicle also starts to change lanes in the same direction (e.g., trying to overtake
another vehicle) and blocks the ego vehicle’s overtaking. Since the level-1 policy is
trained using an environment consisting of only level-0 vehicles that do not change
lanes, these two “unrare-in-reality” scenarios have never occurred during the RL
training. Consequently, the level-1 policy fails to learn to avoid such scenarios. We
have identified all constraint violation cases in the Level-1 vs. Mix data that belong
to these two scenarios and computed the constraint violation rate after filtering out
these cases. The result is plotted in Fig. 5, called Level-1 versus Mix w/ filter. It can
be seen that the constraint violation rate of the level-1 policy after this filtering is
significantly reduced.

If such an issue happenswhen developing autonomous vehicle control algorithms,
where problematic scenarios can be clearly identified, they can be handled by specific
add-on mechanisms. For example, the autonomous vehicle may be commanded to
go back to its original lane when either of the above two cases is detected.

6 Conclusions

In this chapter, an autonomous vehicle control policy is developed focusing on energy
efficiency optimization while safety, performance, and comfort are balanced. We
first discuss the potential of autonomous vehicle (AV) controls for energy-efficient
driving and the major challenges to develop such control policies. Then, we show the
powertrainmodel built to capture the energy consumption of a battery electric vehicle
(BEV), integrated with the highway traffic simulator consisting of cognitive driver
behavioral models based on level-k game theory. An AV control policy is trained
by reinforcement learning (RL) for this BEV and compared with two benchmark
policies as well as the level-k policies from different evaluation perspectives.

Analysis of the results indicates that the addition of the energy efficiency term
in the RL reward function, in addition to the expanded observation space to include
the vehicle speed and SOC, is effective in improving the energy efficiency while
maintaining low collision rates. Through analysis of the BEV powertrain model,
the increase of the energy efficiency represented by MPGe is likely dominated by
the reduction of the average vehicle speed that lowers the rolling and aerodynamic
resistance. However, this does not make the vehicle always travel at the lower speed
limit, which highlights the capability of the RL-based approach that does a good job
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in balancing travel speeds, safety, and efficiency. The results also imply the potential
to further extend and explore the control design in terms of higher computational
efficiency and advanced RL algorithms for control performance improvement. In the
future, our AV policy may serve as a baseline control strategy for more advanced
autonomous driving control development.
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