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Preface

Throughout the past decade, we have witnessed tremendous advances in automobile
andmobility technologies as a result of the rapid proliferation of electric vehicles, the
introduction of automated/autonomous vehicles (self-driving cars), and increasing
vehicle connectivity enabled by vehicle-to-vehicle (V2V) and vehicle-to-everything
(V2X) wireless communications. A major technology enabling these revolutionary
changes in the automotive industry is artificial intelligence (AI), which is being
applied to a rapidly growing and diverse number of automotive and ground vehicle-
related applications. While AI-enabled autonomous vehicles have received the most
attention from the public, this represents only one of many uses of AI in the auto-
motive industry. This book aims to provide a comprehensive exposure to the state-
of-the-art technologies and ongoing research in intelligent vehicle systems (IVS),
i.e., AI-enabled systems developed to address a broad range of important automo-
tive engineering challenges in the twenty-first century. The book includes chapters
addressing numerous topics in this domain, including automated driving systems,
connected vehicles, driver state detection and monitoring, optimal vehicle control
through advanced machine learning, advanced driver assistance systems (ADAS),
mobility solutions, in-vehicle infotainment, vehicle energy optimization to improve
energy efficiency and reduce harmful emissions, and others. The book is benefi-
cial to graduate students and researchers in the areas of AI, control, optimization,
data analytics, and automotive engineering. The book also serves as a resource to
practitioners in the automotive industry and policymakers in related government
agencies.
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Advances, Opportunities and Challenges
in AI-enabled Technologies
for Autonomous and Connected Vehicles

Yi Lu Murphey, Ilya Kolmanovsky, and Paul Watta

Abstract Like many industries, the automotive industry is experiencing a revo-
lutionary change driven by the convergence of connectivity, electrification and
changing customer needs. This book explores the state-of-the-art of such transfor-
mative technologies, including artificial intelligence-based systems for the sensing
and control of autonomous vehicles, vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications, and Internet of Things (IOT) and cloud-
based services relevant to the automotive industry. By integrating vehicle autonomy
with connectivity, significant improvements in safety, performance, environmental
impact, and comfort/convenience can be achieved. This chapter addresses these
advanced technologies and the nexus among them, and gives a brief introduction
of the chapters in the book.

1 Introduction

The automotive industry is experiencing a revolutionary change in technologies,
products, and perceived values stemming from innovation in hardware, software,
and electronics. The following four areas are on the verge of disruptive technology
innovation, as they will change the way people behave daily and the way cities and
towns are organized:

• Autonomous driving
• Shared mobility

Y. L. Murphey (B) · P. Watta
University of Michigan—Dearborn, Dearborn, MI, USA
e-mail: yilu@umich.edu

P. Watta
e-mail: watta@umich.edu

I. Kolmanovsky
University of Michigan, Ann Arbor, MI, USA
e-mail: ilya@umich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. L. Murphey et al. (eds.), AI-enabled Technologies for Autonomous and Connected
Vehicles, Lecture Notes in Intelligent Transportation and Infrastructure,
https://doi.org/10.1007/978-3-031-06780-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06780-8_1&domain=pdf
mailto:yilu@umich.edu
mailto:watta@umich.edu
mailto:ilya@umich.edu
https://doi.org/10.1007/978-3-031-06780-8_1


2 Y. L. Murphey et al.

• Connectivity
• Electrification.

These four trends are mutually reinforcing and show signs of following the so-
called Kurzweil’s law of accelerating returns, characterized by simultaneous expo-
nential growth and price reduction. The development of autonomous vehicles is also
a significant enabler of future intelligent transportation system design. Autonomous
vehicles provide the following distinctive benefits:

• Increased safety: Autonomous vehicles offer the promise of increased safety for
human drivers, passengers, and pedestrians. An important technology in modern
vehicles is Advanced Driver Assistance Systems (ADAS) that assists drivers in
avoiding accidents. ADAS contributes not only to increased safety but also to
improved traffic management.

• Increased lane capacity: Autonomous vehicles can operate at higher speeds and
shorter intra-vehicle spacingdistances leading to greater lane capacity/throughput.
By affecting traffic patterns, they also are able to mitigate traffic congestion.

• Real-time path planning and route optimization: Vehicles connect with other
nearby vehicles to exchange information so that efficient and safe paths can be
planned and executed. In addition, vehicles can interact with traffic manage-
ment infrastructure to incorporate real-time information, such as road conditions,
traffic levels, and weather events. Such information can be used to optimize route
selection to reduce travel time and maintain safety.

• Reduced energy consumption: By being able to plan and follow a route and a
vehicle speed trajectory (eco-driving) and through intelligent thermal manage-
ment, autonomous vehicles can reduce fuel/energy consumption as well as pollu-
tant emissions. For instance, ARPA-E’s program—Next-Generation Energy Tech-
nologies for Connected and Automated On-Road Vehicles (NEXTCAR) [1] has
successfully demonstrated that the use of automated and connected vehicle
technologies has the potential to reduce fuel/energy consumption by 20% or
more. Notably, the reduction of energy consumption due to a high level of
onboard computing/processing power in autonomous vehicles will be impor-
tant in providing these energy efficiency benefits. At high levels of prolifera-
tion of autonomous driving technologies, vehicle collisions could become fully
preventable; since vehicle mass is driven by crash safety requirements, this opens
up a possibility of making vehicles lighter and further reducing fuel/energy
consumption.

• Shared vehicles: In the last few years, a number of level-4 autonomous vehicles
have been developed specifically for e-hailing services—that is, cars designed for
high utilization, robustness, extended lifetime andmileage, and passenger comfort
[2]. If the cost of these services can be made sufficiently low, people would not
need to own a vehicle; rather, they can just dial a ride up when needed. As noted
in [3], in the private ownership of vehicles model, the car sits idle up to 95% of the
time, representing a large inefficiency. As this example illustrates, autonomous
vehicles can enable significant improvements in mobility and transportation.
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In addition to technological breakthroughs, the design of future vehicles will
be influenced by changing consumer values and preferences, societal trends, and
tightening government regulation, leading to changes of products. Based on recent
reports, in 2030, the share of electrified vehicles could range from 40 to 50% of
new-vehicle sales [4–6], up to 15% of new cars sold could be fully autonomous, and
10% of the new cars sold may likely be a shared vehicle [2].

The design and development of a safe and cost-effective autonomous vehicle is
an enormous technological challenge, and AI technologies are being used to meet
these challenges. The book [7] by Alex Davies gives a colorful account of the chal-
lenges faced by the teams participating in DARPAs autonomous vehicle challenges,
and the quest to develop driverless cars by tech companies such as Google, Uber
and automotive OEM companies such as Ford, GM and many others. Over the last
decade, artificial intelligence has firmly established itself as one of the enabling tech-
nologies in the automotive engineering field. AI has been used in new and innovative
ways for autonomous-vehicle testing and development, vehicle control, and energy
optimization. Modern vehicles are composed of complex networks of subsystems
capable of sensing, wide-area connectivity, inference, and actuation actions. Such a
vehicle system typically consists of up to 70 electronic control units (ECUs) capturing
2500 signals from the chassis, powertrain, user interfaces, and safety networks [8].
Many experts consider deep learning to be the most significant technology of AI
behind autonomous-driving. Deep learning, which loosely mimics human neuron
activity, has been shown to offer state-of-the-art performance for a surprisingly wide
range of problems, such as voice and speech recognition and search, object recog-
nition and scene understanding/processing, motion detection and prediction, and
data analysis, as well as natural language processing. In the context of autonomous
vehicle design, deep learning has been used for processing images captured by the
on-board cameras, vehicle and pedestrian detection and trajectory prediction, and
path and route planning, all in real time. Working together, these functions help
vehicles recognize pedestrian traffic, other vehicles on the road, and traffic signals
throughout previously mapped routes. These and complementary advances in opti-
mization and control theory support the rapidly growing field of vehicle autonomy
and intelligence.

This book focuses on autonomous driving, connectivity, andmobility. Research of
the state-of-the-art technologies in these three areas are presented. In particular, the
chapters that followdiscuss the need for various types of vehicle data and applications
thereof, enabling technologies, challenges, and identified opportunities. Connectivity
and autonomous technologies will increasingly allow the car to become a platform
for drivers and passengers to use their time in transit to consume various forms of
media and services or to dedicate the freed-up time to other personal activities.
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2 Autonomous Vehicles: Current Technologies
and Challenges

This section presents an overview of the state-of-the-art technologies used in
autonomous vehicle design, as well as the near-term challenges that remain.

2.1 Levels of Autonomy

In the terminology of the Society of Automotive Engineers (SAE), the task of
operating a vehicle on the road is called the dynamic driving task. The SAE
has defined 6 levels of driving automation ranging from 0 (fully manual) to 5
(fully autonomous) [9]. These levels have been adopted by the U.S. Department
of Transportation, the automotive industry, and the research community [10].

Level 0: No Driving Automation. Most vehicles on the road today are Level 0,
which require the human driver to control the vehicle manually. Although the human
completes the dynamic driving task, there may be systems in place to help the driver.
An example would be an emergency braking system—since it technically does not
drive the vehicle, it does not qualify as automation.

Level 1:DriverAssistance. This level is considered as the lowest level of automa-
tion. Vehicles at this level have some form of automated driver assistance functions.
An example here would be a vehicle with adaptive cruise control, which automati-
cally controls the vehicle and maintains a safe distance behind another vehicle. The
human driver monitors other aspects of driving, such as steering and braking.

Level 2: Partial Driving Automation. Vehicles at Level 2 involve automatic
controls for both steering and accelerating/decelerating when ADAS is activated.
Here the automation falls short of self-driving because the human driver must be
able to take control of the car at any time. Tesla Autopilot and Cadillac (General
Motors) Super Cruise systems, and ARGO AI (a Ford startup company startup) all
qualify as Level 2.

Level 3: Conditional Driving Automation. Vehicles at this level have features
of conditional driving automation, which provide environmental detection and have
the capabilities of making competent driving task decisions, such as passing a slow-
moving vehicle. However, autonomous systems at this level still require human over-
ride, and the human driver must, at all times, be ready to resume control of the vehicle
when the system is unable to carry out the driving task. In terms of the underlying
technology required, the jump from Level 2 to Level 3 is substantial. However, from
the driver’s point of view, there is not much change at all since their focused attention
is still required. Some authors [11] are critical of this level of autonomy, as the atten-
tion of human drivers naturally tends to drift when not in full control of the vehicle;
that is, humans are not able to uphold their end of the responsibilities. Honda [12],
Mercedes [13], and Audi [14] all have introduced level 3 vehicles in recent years.
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Level 4: High Driving Automation. Vehicles at this level can operate in self-
driving mode, and in most cases do not require human interaction. However, a
human still has the option to override the automated system and take full control
of the vehicle. One example where the driver is required to assume full control is
in areas where autonomous driving is restricted by law. For example, a munici-
pality may forbid autonomous control on high-speed urban roads, a concept known
as geofencing. Most Level 4 vehicles currently are geared toward ridesharing. The
French company Navya has built and sold Level 4 shuttles and cabs that run fully on
electric power and can reach a top speed of 55 mph [15]. Navya vehicles have been
designed for last mile travel, i.e., the final leg of a trip. This is typically between a
transport hub and the final destination; for examples, between a train station and a
rider’s home or between an airport and an airport hotel. One service already up and
running is between the Charles de Gaulle Airport and Réseau Express Régional train
station in Paris, France [15].

Waymo, which shares a parent company with Google, has built self-driving taxi
cars at Level 4. Waymo has 600 fully driverless cars operating with geofencing in
the suburbs outside Phoenix, Arizona, and ordinary people (non-experts) can ride
in these Waymo vehicles. In October 2021, Waymo received permission to launch
its taxi service (with a human monitor behind the wheel) in a second city—San
Francisco—where hills, weather, and traffic complicate the task [16]. The company
plans to eventually launch in other cities and license its automated driver technology
to car manufacturers.

We expect to soon see more vehicles with Level 4 capabilities. Volvo has
announced that it will equip its XC90 model with an intelligent system called
Highway Pilot, which is a technology capable of controlling the vehicle on high-
ways without the need for driver monitoring. However, it will not work on all high-
ways. The feature will be activated only when it is verified to be safe for designated
highways and conditions [10]. GM’s Cruise is progressing with its efforts to launch
robotaxis and has already received permits to offer robotaxi rides to public passengers
in California [17]. Argo AI, Lyft, and Ford Motor Company are working together to
commercialize autonomous ride hailing at scale. Ford self-driving cars, with safety
drivers, on the Lyft network, and with passenger rides have been operating inMiami,
Florida since late 2021 and plan to expand to other areas. This initial deployment
phase will lay the groundwork for scaling operations aiming to deploy at least 1000
autonomous vehicles on the Lyft network across multiple markets over the next five
years [18]. The Canadian automotive supplier Magna has taken a different approach.
They are working with Lyft to supply high-tech kits (MAX4) that turn conventional
vehicles into self-driving cars with Level 4 capabilities driving in both urban and
highway environments [19].

Level 5: Full Driving Automation. Vehicles at this level do not require human
attention and the dynamic driving task is completely automated. Level 5 vehicles will
not even need a steering wheel or acceleration/braking pedals. They will perform at
such a high level of safety and efficiency that geofencing will not be needed. Ford,
GM, Tesla, Google Inc., BMW AG, and many other car makers are all racing to
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develop fully driverless cars. Fully autonomous cars are undergoing testing in several
pockets of the world, but none are yet available to the general public.

Fully automated cars and trucks that drive us, instead of us driving them, will
become a reality, though there is debate about how soon this might happen. These
self-driving vehicles ultimately will integrate onto U.S. roadways by progressing
through these six levels of driver assistance technology advancements in the coming
years [19, 20].

2.2 AI Technologies in Autonomous Vehicles

As illustrated in Fig. 1, a computational framework of autonomous vehicles (also
see Chapter “Robust AI Driving Strategy for Autonomous Vehicles”) can be broadly
categorized into the following core technical components:

• Sensing
• Perception
• Motion control
• Path planning
• Operation.
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In the first stage of processing, autonomous vehicles rely on sensors to provide
information about the environment surrounding the vehicle. Commonly used sensors
include cameras, radar, lidar, andultrasound.The information from individual sensors
can be leveraged and combined by a process called sensor fusion. The perception
component analyzes the sensory data to achieve situational awareness; that is, an
accurate understanding of both the state of the vehicle and its place and context in the
surrounding environment. Here, localization techniques are used to generate a map
of the environment, as well as to recognize scenes, objects, such as traffic vehicles,
pedestrians and other road users. The planning component provides a navigation and
motion plan for the vehicle, and involves a decision-making process that incorporates
information about the route, the state of theAV, the current traffic, and the surrounding
environment into an operation and motion plan, including control of vehicle speed,
lane changing, path planning and following, merging, aborting the current maneuver,
etc. These decisions are then carried out by vehicle-level control systems, which
actuate vehicle propulsion, braking, and steering.AI is themajor enabling technology
used in the perception, planning, and decision-making processes in vehicle path and
motion planning.

The following challenges and topics are addressed by the chapters in this book.

2.2.1 Sensors and Environmental Perception

Sensor systems, including radar, lidar, and cameras are rapidly evolving to meet the
stringent demands of autonomous vehicles operations.

An example of a low-cost sensor system that does not rely on cameras or
lidar is given in Chapter “Semi-autonomous Truck Platooning with a Lean Sensor
Package”. The authors propose a low-cost sensor package for the application to semi-
autonomous truck platooning, whereby one lead truck is controlled by a human driver
and one or more trucks follow the leader autonomously in convoy fashion. The
proposed system is called cooperative-adaptive cruise control and utilizes radar,
GPS, and dedicated short-range communication (DSRC)-based radios for vehicle-
to-vehicle communication. The system was tested on a convoy of four class-8 semi-
trucks on a 1.7-mile test track in Opelika, Alabama. After demonstrating that the
convoy can be successfullymaintainedwith the proposed sensor package, the authors
study how robust the system is to various types of environmental factors, such as
occlusions, antenna position, RF and GPS interference, and road curvature and road
grade.

Environmental perception for autonomous vehicles generally focuses on the
awareness and understanding of the driving environment based on various vehicle
sensor data. Machine learning (ML) algorithms, especially deep neural networks
(DNN), with applications to environmental perception have exploded in popularity
during the last decade. In 2012, Krizhevsky et al. [21] proposed a DNN architec-
ture, AlexNet, that achieved state-of-the-art accuracy higher than that of the second
best architecture by more than 10% on the ImageNet dataset. It was a significant
milestone in the field of deep learning and started a convolutional neural network
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(CNN) renaissance. In the following years, while other neural networks similar to
AlexNet offered improved accuracy, Simonyan et al. [22] proposed a different CNN
configuration, known as Visual Geometry Group (VGG) Net, with 3 × 3 receptive
fields throughout the network. They demonstrated that state-of-the-art performance
on the ImageNet data could be achieved using the conventional ConvNet architec-
ture with substantially increased network depth. That same year, Christian Szegedy
et al. [23] presented GoogLeNet, which introduced a new level of organization in
the form of inception. This book contains three chapters that discuss deep learning
technologies used in environmental perception in autonomous vehicles.

The Chapter “Environmental Perception for Intelligent Vehicles” presents a
detailed overview of core technologies used in the perception system in an
autonomous vehicle. The chapter begins with an introduction to state-of-the-art
sensor technologies used to capture multimodal environmental information, such
as cameras, lidars, and radars. The chapter contains a thorough analysis of the core
techniques used for interpreting the data obtained from these sensors, including
sensor data restoration and denoising, semantic segmentation of vehicle environ-
mental scenes, 2D and 3D object detection and tracking, vehicle localization and
mapping, and multi-sensor fusion. The chapter also reviews deep learning algo-
rithms that are effective for both qualitative and quantitative analyses of the sensor
data.

Object detection and classification are core technologies in a vehicle environ-
mental perception system because they can be used to provide precise range and
size information of objects. The Chapter “3D Object Detection for Autonomous
Driving” provides a broad overview of the recent advances in 3D object detection
using 3D point cloud-based and camera-based information. In particular, the authors
present a deep learning algorithm they developed for multi-class 3D object detec-
tion using the binocular image as input and a comparative study of its performance
versus other well-known 3D object detection algorithms.

The recent development of deep neural learning achieved a remarkable break-
through in object classification and detection with applications in advanced vehicle
systems.Deep learning has the capability of learning features automatically fromdata
using general-purpose learning procedures. However, because deep neural networks
require large amounts of data to train the parameters in the network, it is challenging
to develop object classification or detection systems with a relatively small dataset.
Transfer learning is an important machine learning technique that learns represen-
tative low-level features in the lower layers of the model from large datasets that
share similar object features. Those learned features can be transferred to a new
system with a different application domain with a smaller dataset. Research has
shown that a good transfer learning algorithm can offer an efficient training process
and achieve improved system performance. The Chapter “Comparative Study on
Transfer Learning for Object Classification andDetection” presents a comprehensive
review of the state-of-art CNNmodels and extensive discussion on their architectures
and learning algorithms, as well as a comparative study of transfer learning using
six state-of-the-art CNN models.
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The Chapter “Future Technology and Research Trends in Automotive Sensing”
presents a comprehensive review of the progress that has been made in autonomous
vehicles over the last two decades and articulates the importance of sensing tech-
nology in enabling intelligent autonomous vehicles. The focus is on radar- and lidar-
based technologies, especially those that gobeyond2Dandmechanical scanning.The
importance of AI in improving sensor performance at marginal added cost is empha-
sized, and trends in optical computing, with their promise of substantial reduction
of energy consumption while enhancing edge computing, are highlighted.

2.2.2 Learning to Drive Autonomous Vehicles as a Human Expert
Driver

The interaction between an autonomous vehicle and the environment can bemodeled
as a stochasticMarkov decision process (MDP),where an expert human driver is used
as the target to be learned. A number of demonstrations from an expert driver can be
collected, and reinforcement learning can be used to learn optimal driving strategies
based on the collected training data. The unknown reward function of the expert
driver can be approximated using a deep neural-network (DNN) [24]. The Chapter
“Robust AI Driving Strategy for Automated Vehicles” provides an overview of rein-
forcement learning technologies used in decision making and control processes, and
their own research in developing robust reinforcement learning solutions to support
the design of real-world driving strategies for autonomous vehicles. The focus is on
autonomous highway driving and the integration of reinforcement learning, vehicle
motion control, and the control barrier function, leading to a robustAI driving strategy
that can learn and adapt safely.

The Chapter “Artificially Intelligent Active Safety Systems” provides a compre-
hensive review of the state-of-the-art opportunities and challenges for applications
of AI technologies to active safety systems in vehicles. An example of reinforcement
learning applied to automatic emergency braking is elaborated and demonstrates
that reinforcement learning agents can learn policies that are effective in avoiding
collisions. This chapter concludes that AI technologies will play a critical role in the
future of automotive safety systems.

2.2.3 Motion Planning and Control in AVs

In order to fully deploy highly automated driving technologies, vehicles need to
be able not only to reliably sense their surrounding environment, but also to safely
interact with it. Several chapters in this book address this issue.

The Chapter “Model Predictive Control for Safe Autonomous Driving Appli-
cations” is dedicated to model predictive control (MPC) and its application to
autonomous vehicles. MPC has recently been introduced into automotive mass
production [25–27], and the authors of this Chapter address issues that are crit-
ical in successfully employing MPC in such applications; in particular, for the issues
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of closed-loop stability in the case of user-provided arbitrary and possibly infea-
sible reference commands; and provide approaches to satisfying collision-avoidance
requirements in the presence of pop-up or moving obstacles, such as human-driven
vehicles, cyclists, pedestrians, animals, etc.

The Chapter “Energy-Efficient Autonomous Driving Using Cognitive Driver
Behavioral Models and Reinforcement Learning” develops an eco-driving approach
that accounts for the interactive nature of vehicles and human behavior in traffic.
The contribution of this chapter is in connecting eco-driving (which historically has
been focused primarily on longitudinal driving) with the contemporary advances in
autonomous driving that enable autonomous intelligent vehicles to operate safely
in traffic consisting of both automated and human-operated vehicles. The proposed
approach is based on exploiting and fusing ideas in hierarchical game theory, rein-
forcement learning, and electric vehicle powertrainmodeling and control. The results
suggest significant opportunities for energy efficiency improvements with such
approaches.

TheChapter “Self-learningDecision andControl forHighlyAutomatedVehicles”
presents a comprehensive analysis of reinforcement learning (RL) and self-learning
more broadly as a principled framework to generate decision and control policies for
autonomous driving through interaction with the environment. RL can be success-
fully employed in autonomous driving system design if critical issues are addressed,
including scalability, performance, interpretability, mixed modeling (model-free and
model-based) and emergency handling. Many examples and illustrations are given,
and opportunities and challenges in the application of learning to autonomous driving
are discussed.

2.2.4 ADAS Systems

Through the last three decades,ADASsystemshavebeendeveloped in the automotive
industry to deliver improved safety and automated driving systems (ADS) that one
day may handle the entire dynamic driving task. Many of the basic ADAS-system
building blocks, such as automatic cruise control, automatic emergency braking,
and lane-departure warning, are directly applicable to driverless cars. Some auto
companies take the approach of incremental development toward full autonomy,
where these ADAS systems are used as building blocks for a more capable system.
A central control unit has the responsibility for managing the subsystems and ulti-
mately driving the vehicle. The gradual introduction of autonomous drivingwill come
about through the tempered deployment of self-driving capabilities. Many compa-
nies take the approach of deploying increasing levels of capabilities in progressive
stages, starting from driver assistance to eventually fully autonomous, as the markets
warm up to autonomous capabilities, the price points drop, and the technologies
mature [27].

Modern ADAS systems follow complex rules governing when and where a given
ADAS feature is activated. In cases where the path planning stage is found to have
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low confidence, for example from noisy sensor data or when the vehicle is oper-
ating in a region known to be problematic for the given ADAS feature, the feature
will disengage and revert back to expecting human control of the vehicle. In the
course of a drive, then, there is continuous human–computer interaction between
the driver and the ADAS, as there may be several times when the ADAS feature
is available and several other times when it is not. Like all areas of automotive
design, ADAS designers are keenly interested in assessing the customer experi-
ence and satisfaction with using the technology. In the past, the typical approach to
assessing customer experience was by surveying the customer. However, utilizing
various vehicle andmap data, this process can be automated, yielding amore accurate
assessment of the customer experience. The Chapter “MAGMA:Mobility Analytics
Generated from Metrics on ADAS” provides an analysis of how to automatically
measure customer experience with various ADAS features. The chapter introduced
several quality metrics that characterize and quantify customer experience, using
data collected from both real trips and simulated trips. These measures can be used
to evaluate ADAS system design and help optimize the experience of the customer.

The Chapter “Driver Assistance Systems and Safety—Assessment and Chal-
lenges” addresses challenges and opportunities in the testing of automated vehicles.
As argued in this chapter, on-road testing alone is infeasible for validation of auto-
mated driving systems, due to the excessive time and effort required, and needs to be
complemented by virtual testing, which is performed by simulation. However, virtual
testing presents its own set of complexity and scalability challenges. To address these
challenges, methods of choosing scenarios for testing and approaches to modeling to
represent these scenarios are described. In particular, the scenarios for virtual testing
can be generated or learned from measurements of the real-world environment. For
the latter, the chapter provides an outlook on the application of importance sampling-
and design of experiments-based approaches. Methods to represent the surrounding
traffic and to determine the risk functions are also described as needed for the design
and validation of safety-oriented systems.

Although the expectation is that technology will advance to a state where
autonomous vehicles will be readily available to drive us safely and efficiently to
whatever destination we choose, that eventuality will not happen in the near future,
and even when such technology is available, the transition to level 5 autonomy will
not happen overnight. In the meantime, we have to deal with human drivers in the
loop, subject to making human types of driving mistakes.

One approach to ADAS development involves monitoring the driver as they drive
the vehicle in order to understand and assess the driver’s behavior. Real-time assess-
ment and understanding of driver behavior is a challenging task as there are multiple
factors that can influence the driver, such as inattention, fatigue, psychological state,
ergonomic posture, traffic and weather conditions, and the behavior of the vehicle
itself. Under certain conditions, each of these factors, or a combination thereof, can
affect the driver to such an extent that the result is a traffic accident, or worse, a
fatality. The Chapter “Human Factors Influencing Driver Behavior and Advances
in Monitoring Methods” provides a comprehensive analysis of the factors affecting
driver behavior and performance, as well as a survey of effective tools and methods
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for monitoring the driver in real time. The chapter also presents an unsupervised deep
learning neural network for classifying driving style (aggressive, moderate, passive)
using vehicle parameters as input.

3 Connectivity and Mobility

In order to coordinate the various systems involved in an autonomous vehicle, infor-
mation must be shared among the subsystems, especially between the subsystems
and the overall control unit. One way to share the data is using network communi-
cation. Rapid and consistent connectivity between autonomous vehicles and outside
sources such as the cloud infrastructure ensures that signals get to and from the vehi-
cles more quickly. The emergence of 5G wireless technology, which promises high-
speed connections and data downloads, is expected to improve connectivity to these
vehicles. V2X is an emerging vehicle communication technology that encompasses
Vehicle-to-Vehicle (V2V) connectivity, Vehicle-to-Infrastructure (V2I), Vehicle-to-
Pedestrians (V2P) and Vehicle-to-Network (V2N). The information can be used to
improve fuel economy and prevent collisions. V2X is a very effective way to provide
drivers or AVs with information about on-road hazards which they otherwise would
be unable to see, allows for data exchange with the surrounding infrastructure to
operate within the bounds of speed limits, traffic lights, and signage. V2X commu-
nication permits safe operation within traffic situations and is effective in preventing
collisions or even near misses. By warning about vehicles or pedestrians, which are
out of sight (for example obstructed by other vehicles, or just around the corner),
V2X can considerably help drivers or vehicles avoid accidents.

When AVs are equipped with communication technologies, they are referred to
as connected and automated vehicles, or CAVs, which are important enabling tech-
nologies in mobility related research. In order to ensure that CAVs operate safely
at all times, advanced security technologies are needed to prevent malicious actors
from eavesdropping or corrupting (hacking) the electronic components or networks
used in the self-driving vehicle.

3.1 Mobility Research

CAVs can be used to build mobility systems that solve common problems associated
with urban transportation, such as congestion and traffic jams, by providing more
accessible, safe, and efficient transportation.CAVs aremobile and situationally aware
and can adapt to and communicate with their environment. CAVs will transform
today’s urban transportation system and revolutionize mobility [28].

The Chapter “Towards Learning-based Control of Connected and Automated
Vehicles” presents a study on the challenges and perspectives of modeling
and optimization-based control techniques for the safe coordination of multiple
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connected agents in various traffic scenarios, such as intersections, lane-
changing and lane-merging maneuvers. The chapter is predominantly devoted to
optimization-based control schemes, particularly to MPC, which explicitly accom-
modates constraints and exploits future trajectories of connected agents. The
Chapter describes a general design of a controller thatwas developed to servemultiple
use cases simultaneously with machine learning-based techniques to handle model
uncertainties and mixed-traffic scenarios.

The Chapter “Virtual Rings on Highways: Traffic Control by Connected Auto-
matedVehicles” is dedicated to traffic-flowdynamics and control in the case ofCAVs.
The benefits of vehicle connectivity in avoiding traffic congestion/jams, ensuring
traffic smoothness, and reducing travel time and energy consumption are highlighted
through modeling, theoretical derivations of traffic-flow control schemes, stability
analysis, and numerical simulations. Dynamics and control of traffic flow involving
rings and virtual rings are addressed.

Indeed, most research in CAV has principally been in engineering areas, with
contributions from computer science, AI, biology, neuroscience, and psychology.
However, it is also important to study the social and economic impacts of emerging
mobility technologies [29]. InChapter “Socioeconomic Impact ofEmergingMobility
Markets and Implementation Strategies”, the authors propose a mobility market that
models the economic interactions of travelers in a smart city network with roads
and public transit infrastructure. They show that the proposed mobility market is
both incentive compatible and individually rational, the two properties that ensure
that all selfish travelers are truthful in their communication with the social planner
and voluntarily participate in the mobility market. The authors also show that the
proposed market is economically sustainable, i.e., it generates revenue from each
traveler and ensures that the operating costs of each mobility service are covered.
It is through the appropriate design of monetary incentives that they successfully
incentivize all travelers to truthfully report their travel preferences and voluntarily
participate in the market. Thus, it is guaranteed a socially efficient mobility solution.
The proposed mobility market also provides an incentive to central authorities to
implement it, since the market ensures that there are minimum acceptable payments
to cover the operating costs of the mobility services.

3.2 Prediction Model for V2X Communications

The prospect of V2X communication will involve transmitting and receiving
messages among many vehicles and many infrastructure devices, and all at the
same time. At the hardware level, V2X communication systems require antennas
and protocols that maximize bandwidth (how much and how fast information is
transmitted) and maximize range (distance over which vehicles can reliably transmit
and receive data), while simultaneously minimizing transmitted power and interfer-
ence. For the past several years, DSRC (dedicated short-range communication) has
been the only V2X technology available. Cellular vehicle-to-everything (C-V2X)
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is a more recent technology that has the same purpose of direct communication
link between vehicles as DSRC. Initial tests of C-V2X show that it may have 20–
30% more range than DSRC as well as significant improvement in performance
with obstructions [30]. The Chapter “A Real-Time Seq2Seq Beamforming Predic-
tion Model for C-V2X Links” presents a concise introduction of C-V2X technology,
and discusses the challenges in C-V2X, in particular, the critically needed capability
of long-haul communication without sacrificing congestion factor. To address this
problem, the authors propose a deep learning-based real-time sequence-to-sequence
(Seq2Seq) beamforming prediction model to forecast optimum beams within each
beacon interval (BI).

3.3 Big Data Research in Transportation

Advances in sensor and computing technologies used in modern vehicles and road
networks have enabled an explosion of big data sources in transportation andmobility
research. These new data sources have opened up whole new areas of research in
mobility and enabled new insights. The recent developments in machine learning
and artificial intelligence technologies have made prediction models substantially
more accurate, robust, and flexible. The combination of the two has a great poten-
tial to enable researchers to find solutions to many challenging problems related
to autonomous and connected vehicles, transportation, and mobility. The Chapter
“Big Data in Road Transport and Mobility Research” introduces the reader to a vast
scope of useful big data sources for autonomous vehicles and transportation, as well
as to the key technologies of ML/AI effective for learning from big data for trans-
portation research. The chapter presents rich sources of data collected through in-
vehicle sensors and road infrastructure-based data acquisition devices and describes
the contents of these datasets. In order to familiarize the reader with the applications
of these cutting-edge datasets, the chapter includes detailed discussions of theML/AI
methods used in analyzing big data, and examples of research topics focused on the
applications of these data sets in transportation research.

3.4 Automotive Cybersecurity

In order for AVs to share information and operate cooperatively and efficiently, they
are typically networked via various in-vehicle networks (IVNs). These connected
autonomous vehicles can be viewed as a cyber-physical system that contains a
large number of minicomputers called electronic control units (ECUs) networked
through the IVNs. These IVNs are used to connect safety–critical components of
the vehicle, including brakes, airbags, engine control, active safety devices, the elec-
tronic stability program and adaptive cruise control. Just like the internet, malicious
actors can exploit vulnerabilities in these IVNs. Driving is a high-stakes real-time
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experience, and any potential data corruption and/or component malfunction pose a
serious security threat. In order to ensure CAVs operate safely at all times, advanced
security technologies are needed to prevent malicious actors from eavesdropping or
corrupting (hacking) the electronic components of CAVs through IVNs. The Chapter
“Machine Learning for Automotive Cybersecurity: Challenges, Opportunities and
Future Directions” first gives an overview of the CAVs, an in-depth discussion of the
types of cyberattacks that are possible in both in-vehicle networks andV2Vnetworks,
and an extensive discussion and security analysis of automotive networking proto-
cols. Then the authors give a comprehensive presentation of amachine learning (ML)
framework designed to defend against existing and emerging cyberattacks on IVNs.
Significant challenges of using machine learning in IVN research are identified, and
future directions of using the proposed machine learning approach are outlined in
order to protect the next generation of vehicles from cyberattacks.
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Semi-autonomous Truck Platooning
with a Lean Sensor Package

Sridhar Lakshmanan, Cristian Adam, Timothy Kleinow, Paul Richardson,
Jacob Ward, Evan Stegner, David Bevly, and Mark Hoffman

Abstract This chapter describes one method of approaching fuel-efficient truck
platooning using a system called Cooperative Adaptive Cruise Control (CACC).
The principal innovation in the system is its lean sensor package, including factory-
ready standard ACC system utilizing a dual-beam radar, precision Global Posi-
tioning System (GPS), and a Vehicle-to-Vehicle (V2V) communication system. In
other words, no imaging sensors such as camera or lidar, and no associated high-
performance computing hardware such as Graphics Processing Units (GPU). Exten-
sive test track and public road testing on class-8 semi-trucks, including edge case
testing, reveals the efficacy and robustness of this system despite its leanness. Quan-
titative results are included in this chapter that trace cause and effect through the
CACC system.

1 Overview

Semi-trucks, specifically class-8 (heavy duty, commercial) trucks, have recently
become a platform of interest for autonomy systems. Platooning involves multiple
trucks following each other in close proximity, with only the lead truck being manu-
ally driven and the rest being controlled autonomously. This approach to semi-truck
autonomy is easily integrated on existing platforms, reduces delivery times, and
reduces greenhouse gas emissions via energy efficiency benefits, with the associated
reduction in fuel costs. Level 1 SAE fuel studies were performed on class-8 trucks
operating with the Auburn Cooperative Adaptive Cruise Control (CACC) system,
and fuel savings up to 10–12% were seen. Enabling platooning autonomy required
the use of radar, global positioning systems (GPS), and wireless vehicle-to-vehicle
(V2V) communication. Poor measurements and state estimates can lead to incorrect
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or missing positioning data, which can lead to unnecessary maneuvers and finally
wasted fuel. This is especially an issue if deceleration (braking) is applied in response
to a bad measurement. In this study, a faulty radar was shown to cause a greater than
5% increase in fuel consumption. The mechanism of this fuel consumption increase
is investigated and applied to other types of sensor failures to indicate their potential
effects on fuel economy. This analysis indicates that poor GPS signals over short
time can be largely filtered out, with no real gain or loss of fuel economy. V2V
communications were intentionally limited by causing interference, which resulted
in dropped communication packets over a small physical area, but this did not lead
to an appreciable impact on fuel economy.

This chapter is organized as follows. We begin with a review, including some
rationale for the implementation of a CACC system, a broad overview of the tech-
nology, and a collection of relevant publications in the area of CACC. Next, the
Auburn platooning system is introduced, including descriptions of the major sensor
systems and their combined functionality in the platooning system. Subsequently,
the main parameters for the test vehicle fleet and test track are provided. The impacts
of sub-optimal sensor performance on the vehicle control, platoon dynamics, and
fuel economy are then presented in the results section. Finally, the main takeaways
are compiled in the conclusion.

2 Literature Survey

Class-8 vehicles typically travel up to six times as far as the average passenger car
every year [1]. Furthermore, these class-8 vehicles account for approximately 71%
by value of all freight shipped domestically in the United States [2]. Due to the fact
that class-8 trucks account for such a large portion of the freight shipped domes-
tically, small improvements in the efficiency of these vehicles result in substantial
monetary savings for freight companies. Energy efficiency of these trucks is even
more impactful because fuel-cost, up until 2015, was the highest cost-per-hour to
operate these vehicles, even over driver-wages [3].

While some companies are pursuing standalone autonomy with full computer
perception and deep-learning-based decision making, many other companies
are pursuing a lower-level SAE autonomy, namely platooning. In this concept,
autonomous vehicles follow a manually driven lead truck in close enough prox-
imity to obtain fuel economy benefits from reduced aerodynamic drag, with far
less upfront cost of system development and testing, deployment cost of vision
sensors and high-performance computing, and operating cost in terms of power to
said high-performance computing platforms.

Platooning systems critically rely on information from several sensors: radar,
radio communication, and positioning either from GPS coordinates or base station
infrastructure. The performance of these sensors and communications can impact
measurements and coordination and as such are critical for platooning, and as a
result, impact the platoon fuel economy. While a Kalman Filter is introduced to
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help mitigate poor measurements from sensors, not all bad measurements can be
adequately filtered out. This chapter analyzes the platoon fuel economy in scenarios
where the sensors perform sub-optimally. There is active research on identifying
sensor faults in real-time utilizing complex algorithms such as in [4].

Prior work in this area is quite well established. A collection of selected works in
this research area are provided here with respect to their interesting contributions:

• A rear mounted antenna appears to offer more reliable V2V communications [5].
• The usage of aModel Predictive Control (MPC) controller and message buffering

appear to improve the reliability of a CACC system [6].
• V2V communications jamming attacks can be detected in real-time using an

algorithm with a 90% chance of detection and no significant false-positive rate
[7].

• LTE-V may not be able to support the strict specifications of ultra-reliable low-
latency V2V communications [8].

• Amathematical framework may be constructed for optimizing the operations of a
platoon based on the network delay and the stability of the vehicle control system
[9].

• General conclusions may be made as to the effects of vehicle speed, antenna
position, and track on packet error rate and therefore V2V performance in a truck
platoon [10].

• A distributed consensus system can be used in a CACC which takes into account
the characteristics associated with individual vehicles such as antenna placement
and braking distance for improved safety and performance [11].

• CACC systems can be configured to explicitly take Information Flow Topology
(IFT) dynamics into account for enhanced performance [12].

• A review of collected works on CACC architectures, controllers, and applications
can be found in [13].

• An adaptive control scheme using leader information offers better performance
than semi-autonomy and can be improved through the use of redundant wireless
communication channels [14].

• Leader-based V2V-communications message scheduling can help to increase the
Packet Reception Ratio (PRR) leading to increased stability and tighter platoons
[15].

• Market penetration of CACC equipped vehicles has a significant effect on the
performance of these systems, particularly after exceeding a critical point around
40% of vehicles equipped. The best strategy for performing CACC is dependent
on the market penetration and will need to change over time [16].

• Dedicated Short Range Communication (DSRC) standards operating at 5.9 GHz
and a 10 Hz update rate is sufficient in practice to maintain platooning. Dual
antennas are needed to maintain direct line-of-sight between trucks even around
curves or with intermediate vehicles between them [17].

• Theuse ofCACCas an alternative to traditionalACCoffers better performance but
may incur a less comfortable driving experience for passengers due to increased
jerk [18].
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• CACCoffers significantly increased fuel economyacross a comprehensive sample
of realistic scenarios including differing truck models, loads, road surfaces and
curvature, speeds, following distances, and non-platoon vehicle interruptions [19].

• Evaluation of driver assisted platooning technology led to no significant concerns
with regard to safety or traffic interactions, leading the research team to
recommend a permissive stance on platooning to Florida state agencies [20].

• Two-truck platooning offers an alternative to higher levels of autonomy with
still-significant fuel savings and reduced driver stresses [21].

• Dynamic frequency band allocation can be used to improve the wireless V2V link
leading to improved platoon performance [22].

• 5G NR-V2X communication can support the requirements of truck platooning
even with an unoptimized prototype implementation [23].

• C-V2X can be enhanced for operation with platoons and offers benefits over other
V2V communication technologies [24].

These results represent some of the most interesting developments in this field
and show a lot of promise for this emerging technology both in terms of present
applicability and future developments and optimizations.

3 Auburn Platooning System

Since 2015, Auburn University has been developing a platooning system that is
referred to as Cooperative-Adaptive Cruise Control (CACC). This CACC system has
been validated up to SAE Level 2 autonomy, which means lateral and longitudinal
control is operational, but human supervision is required [25].

TheAuburn test platforms are fairly unique in the way their autonomy is achieved.
Rather than have an actuator physically command an acceleration through a throttle
angle, theAuburn system acts as the vehicles automated cruise control (ACC) system.
As a result, as long as the Auburn platooning system has access to the vehicles
Controller Area Network (CAN), it can control the vehicle.

The Auburn platooning system also has a fallback method in the case of unex-
pected behavior. All the CAN traffic being commanded by the Auburn system must
go through the CAN gateway, which has an internal physical disconnect switch that
will stop all CAN traffic from the Auburn computer. The Auburn hardware setup is
shown in Fig. 1. The CACC system relies on several sensors: a Delphi Electronic
Scanning Radar (ESR), Novatel ProPak GPS receivers, Memsense (3020) IMUs and
Cohda MK5 OBU Wireless radios for Vehicle-to-Vehicle (V2V) communication.
The MK5 radio, Delphi RADAR and Novatel GPS receiver will all be touched on
further in the following sections.
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Fig. 1 Hardware overview of the Auburn platooning system

3.1 Dynamic Base Real-Time Kinematic Positioning (DRTK)

GPS is the core measurement used in the Auburn platooning system. GPS allows
for radar measurement initialization, provides centimeter to sub-centimeter accuracy
range measurements, and allows for time-differenced carrier phase measurements to
be used for accurate odometry measurements. While GPS alone does not provide
an inter-vehicle range measurement, the use of V2V communication allows for raw
GPS observables to be combined into a range measurement.

WhileGPS is a highly reliablemeasurement, it can suffer from atmospheric errors,
receiver clock biases, multipath errors, and more. To help reduce these errors, there
are static GPS receivers on earth, called base stations, which broadcast GPS correc-
tions to atmospheric errors. These corrections are referred to as real-time kinematic
(RTK) positioning.

DRTK operates on the same principle as RTK. AGPS pseudo-rangemeasurement
for vehicle ‘a’, denoted ρa , can be formulated as

ρa = ‖ra‖ + c(δta − δt) + λ(T + I ) + Mρ + ερ

where ‖ra‖ is the true range from vehicle a’s receiver to the satellite, c is the speed of
light, δt and δta are the satellite and receiver clock errors, T and I are the tropospheric
and ionospheric effects, respectively, λ is the carrier frequency, Mρ is multipath
error, and ερ is measurement error. An important note is that atmospheric effects are
considered constant within a certain region, usually within a few kilometers.

The details of the DRTK algorithm are beyond the scope of this chapter, but a
concise summary is included herein for thoroughness. If two vehicles, a and b, are
platooning with V2V communication, and the pseudo-ranges are passed from leader
to follower, the following vehicle can take the difference of the two pseudo-range
values, ρa and ρb, at which point the atmospheric errors will be cancelled, and a
relative position vector (RPV) between vehicles a and b, denoted ⇀

ρa/b, is returned.



24 S. Lakshmanan et al.

Fig. 2 Accuracy of RPV
versus range estimate
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This RPV solution can be anywhere between decimeter to centimeter level accurate.
This means the DRTK solution has an extremely low variance and can be used as a
“truth”measurement for inter-vehicle distances. Figure 2 presents theDRTKsolution
overlaid on the best estimate of the inter-vehicle distance, or headway.

The GPS measurement is extrinsic and not inertial, so it is unaffected by engine,
powertrain, and road vibrations. Therefore, static data fromAuburn’sNationalCenter
for Asphalt Technology (NCAT) test track allowed for a statistical categorization
of the measurement. The noise characteristics for the GPS measurement are σ =
0.125m and μ = 0 m.

3.2 Delphi Electronically Scanning Radar (ESR)

TheDelphi radar is another critical sensor for theCACCsystem.DelphiESRsprovide
a measurement of range, range rate, and an estimated bearing between the radar and
target object. Delphi ESRs have 64 channels, which means 64 separate radar data
points are retuned. Each point has a unique radar track ID between 1 and 64, with
each track having an associated range, range-rate and bearing. Selecting the correct
radar track is done by using the DRTK measurements to create a “bounding box” on
the trailer of the lead vehicle. Each radar track is then sequentially checked to see if
it falls within the bounding box.

Figure 3a depicts range returns that were used by the platooning system at the
NCAT test track, as well as a subplot of the track ID that was used for the range
update. While the measurement may seem “noisy”, this is really just a result of a
long timescale and the frequently changing radar track ID selected for the range
measurement. Figure 3b provides a look at the data at a smaller timescale and at
a time where the track ID only changes between two tracks (track 15 and 18, in
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Fig. 3 a High-level radar
range versus time; b Selected
radar range versus time
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this example) to show that the range measurement variance falls within the expected
range.

While vibrations can cause reductions in the Probability of Detection (PD) for a
target due to shifts in the radar echo phase [26], the actual measurement is relatively
unaffected. This allows for a mean and standard deviation value to be established for
the sensor. According to the Delphi datasheet, the noise characteristics on the range
measurement are σ = 0.25m and |μ| < 0.0125m.
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Fig. 4 DSRC Cohda MK5 OBU radios

3.3 Dedicated Short Range Communications

The DSRC protocol is used for communication in the 5.9 GHz frequency range, at a
varied power level of up to 23 dBm [27]. CohdaMK5OBU (on-board units) are used
as the backbone RF interface via a custom (non-standard) wave service message that
includes a payload of GPS constellation data, vehicle acceleration or deceleration
(braking) status, and current velocity. These messages are broadcast such that any
other truck convoywithin range receives these communications, which are interfaced
to the rest of the system via a UDP socket connection (Fig. 4).

3.4 Sensor Fusion

For many of the cases investigated herein, a sensor that is performing sub-optimally
will be compared against an estimated range value. This estimated range is a combi-
nation of all available range and range-rate measurements on the platooning vehicle.
These measurements are DRTK range, RADAR range and range-rate, and relative
wheel speeds. The combination of these measurements is commonly referred to as
sensor fusion, and, in this instance, is achieved through the use of a Kalman Filter
(KF).

AKalmanFilter is a probabilistic filter that usesmeasurement noise characteristics
as well as the process model uncertainty to optimally estimate the system states. The

system states estimated in the Auburn CACC are x̂ = [
r ṙ β

]T
which are the inter-

vehicle range, range rate, and bearing, respectively. These states are outlined by
Fig. 5.

While the full derivation of theKalman Filter is beyond the scope of this chapter, it
is important to note two design decisions. First, in the case that theAuburn platooning
system loses radar line-of-sight and also loses radio communication, the Kalman
Filter will assume a constant range-rate and continue to predict the states. The second
design decision was the sensor selection, which is critically important because the
Kalman Filter weighs sensor noise variance versus the process uncertainty and the
covariance of the estimated states. Because the platooning system has slow dynamics
and a largely linear driveline model, the process uncertainty remains small. However,
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Fig. 5 Estimated vehicle states

the Delphi RADAR and Novatel GPS receiver were specifically chosen because of
their measurement stability and accuracy, which allows for accurate centimeter level
ranging.

4 Testing Campaign

The current study utilizes four Class-8 semi-trucks operating with the Auburn CACC
system, as shown in Fig. 6. Table 1 summarizes their basic parameters.

The results of this study were collected at the National Center for Asphalt Tech-
nology (NCAT), a 1.7-mile oval test track in Opelika, Alabama, which is shown in
Fig. 7. All tests were performed with the four-truck platoon operating at 45 mph and
circling the track in a counterclockwise direction, resulting in a lap time of approxi-
mately 136 s. When possible, multiple runs were performed to reduce variance from
results. All tests were conducted after a one hour warm up period, mitigating the
influence of varying tire pressures, engine coolant temperatures, driveline losses,
etc.

Fig. 6 The vehicle fleet during platoon operation at the American Center for Mobility. The vehicle
order displayed is A1, T14, T13, and then A2
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Table 1 Vehicle parameters of the test fleet

Truck A1 T14 T13 A2

Manufacturer Peterbilt Freightliner Freightliner Peterbilt

Model 579 M915A5 M915A5 579

Model year 2015 2009 2009 2015

Engine Paccar MX-13 Detroit Diesel IV
S60

Detroit Diesel IV
S60

Cummins
ISX15-415ST2

Peak torque (ft lbs
@ rpm)

1750 @ 1000 1650 @ 1200 1650 @ 1200 1650 @ 1000

Rated horsepower
(bhp)

430 500 500 415

Truck and trailer
gross weight (lbs.)

35,660 37,996 46,947 38,020

Fig. 7 National Center for
Asphalt Technology (NCAT)
test track

5 Results of Sensor Impairment

The system so far specified works quite well. It approaches a 12% savings of fuel
with very little overhead in terms of expensive-to-integrate sensors and computing
power. This section covers what happens when elements of this lean system drop
out or fail to function correctly. We will look at failures of each of the three major
components of the system and what effect the failures had on the control system,
vehicle dynamics, and fuel economy.
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5.1 Effect of a Faulty Radar on Platooning

As discussed in the Delphi radar section, the radar is tracking many different points
during operation. If the radar fails to track the correct points, then the range measure-
mentmay be affected. To investigate the effect of such a scenario, a radarwas installed
backwards on one of the platooning trucks in the four-truck platoon, T13 from Table
1. This caused the radar to track incorrectly during the curves at the NCAT test track,
as shown Fig. 8. Only several laps are shown, rather than the full span of 26 laps (an
hour of operation). Filled data points represent time steps where the radar received
a tracking update.

Figure 9 shows what the lap position in the subsequent figures translates to on the
NCAT test track.

5.1.1 Control Effects

The lack of radar updates creates an erroneous headway estimate, as shown in
Fig. 10a. The headway is the estimated range of the system (distance to the truck
ahead), an output of the Kalman filter. As the radar updates sporadically, the range
estimate chatters, leading to poor control and overshooting. The presence of a hill
likely exacerbates the issue.

Fig. 8 Radar updates with
an incorrectly mounted radar.
Filled points represent when
radar updates were occurring

Fig. 9 Demonstrating what
lap position corresponds to
on the NCAT test track
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Fig. 10 a Headway
perceived by the CACC
system for valid and faulty
radar; b Range estimate in
region of interest for truck
T13 in a 4 T 100′ platoon
with and without radar faults

5.1.2 Dynamic Effects

Figure 10 shows a region of interest just before the curve, highlighting a particularly
incorrect range estimate. All further figures in this section will be focused on that
region. Figure 11a shows the wheel-speed sensor data for T13 for both valid and
faulty radar operation.

Figure 11b shows velocity for both the preceding truck and T13 during a single lap
with the radar installed backwards. Due to the incorrect headway estimate from faulty
radar, the truck brakes aggressively, and subsequently must accelerate aggressively
once true headway is realized again. A pattern of braking and accelerating is clear
in the faulty radar traces. The braking event takes the truck nearly 9% under the set
velocity, and the subsequent acceleration takes it nearly 10% over the set speed.
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Fig. 11 a Velocity trace for
truck T13 in a 4 T 100′
platoon with and without
radar faults; b Velocity
profile for truck T13 in 4 T
100′ platoon and its
immediate leader during one
lap, showing aggressive
correction

5.1.3 Fuel Effects

Aggressive acceleration events induced by the reversed radar and subsequently
erroneous headway measurements force the truck to waste energy on:

1. Over-acceleration, especially in the event of a transmission downshift.
2. The braking event itself. Any time a truck in platoon actively decelerates, energy

is wasted. Braking is herein generalized to mean both the retarder and the air
brakes

Both effects can be seen in the CAN fuel rate data for the truck with faulty radar
measurements in Fig. 12.

When the fuel rate data shown in Fig. 12 is integrated, fuel consumption over the
course of faulty radar operation was 5.68% greater. The standard deviation over the
section shown in Fig. 12 is much higher for the faulty radar, at σ f aulty = 21.2 L/h
versus σvalid = 12.6 L/h.
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Fig. 12 CAN Fuel rate for
truck T13 with both valid
and faulty radar

5.2 Effect of a Degraded GPS on Platooning

While GPS is always available in this testing regimen, the number of satellites visible
to a GPS receiver is constantly changing. A GPS receiver needs a minimum of four
satellites to fix its position because the XYZ receiver position and the receiver clock
biasmust be estimated.While someGPS receivers have clocks stable enough to allow
for positioning with three satellites, the Auburn system requires four. Additionally,
visibility of four satellites does not guarantee quality estimates. Several factors can
impact the measurement quality such as signal to noise ratio and elevation angle in
addition to all the other error sources stated in the DRTK section.

Figure 13 presents a scenario in which the Auburn vehicles were platooning on
an overcast night in a tree-lined area. While DRTK is able to maintain a position
solution when five satellites are visible, the accuracy greatly drops when the number
of visible satellites reduces to four. While this chatter remains relatively small, some
GPS solutions can degrade to the point of returning RPVs of up to a mile.

Figure 13a provides a larger time scale for context and is generated from the same
data as Fig. 13b. A scenario in which the same truck is platooning on the same terrain
but has better GPS data is also shown for comparison.

5.2.1 Control Effects

While bad radar measurements were impactful enough to cause serious deviations
in vehicle headway and CAN fuel rate, the sub-optimal GPS performance created
almost no impact. This is primarily due to three key factors:

1. The headway controller on the vehicle penalizes range-rate errors 5Xmore than
it penalizes range errors.

2. Radar is the dominant measurement in sensor fusion algorithm for range-rate
updates.
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Fig. 13 a RPVs in poor
versus good GPS conditions;
b RPV solution versus
available satellites

3. DRTK measurements employ fault rejection.

While the reduced satellite GPS does create very poor range estimation on its own,
the CACC headway controller successfully mitigated these disturbances. Figure 14a
provides the range estimate vs normalized track position for both the “good” GPS
versus “poor” GPS scenarios. Each of these runs contains 26 laps of NCAT test
track operation. The scenario shows no clear signs of sub-optimal control perfor-
mance except for one deviation in the 0.55–0.65 lap position range of the good GPS
scenario. This deviation was due to the lead truck driver tapping the brakes at the
end of the run and is thus not a control issue. The rejection of noise from the GPS
signal is primarily accomplished through two methods. The first is the fusion of all
available measurements as described in the sensor fusion section. The second is due
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Fig. 14 a Estimated range
with poor GPS versus good
GPS (all laps are shown); b
Vehicle velocity results for
good versus sub-optimal
GPS

to performing a 3-sigma test. Namely, if the range measurement exceeds 3σ of the
expected range, the measurement is rejected by the headway controller.

5.2.2 Dynamic Effects

Because the range estimate was largely unaffected, it was suspected that the velocity
profile for the vehicle should also be largely unaffected. Figure 14b displays the
velocity profile between the same good GPS and poor GPS runs. With the exception
of one velocity perturbation on the good GPS run due to human error, the overall
trends are almost identical between the two scenarios.
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5.2.3 Fuel Effects

As a result of the sensor fusion algorithm being able to reject the sub-optimal GPS
points, the fuel rate data shows almost no changes on a lap-to-lap basis through the
run with only one exception. The good-GPS run consumed 0.255% more fuel over
an hour of operation. While the human error does slightly confuse the issue, the
amount of additional fuel wasted is not enough to substantively affect the overall
fuel consumption. There is no clear negative platooning effects caused by the GPS
as the tiny difference in fuel consumption is within the realm of random variation,
see Fig. 15.

5.3 Effect of Radio Interference

In order to test the effects of radio frequency (RF) interference, a 5.8 GHz video
transmitter system was obtained. An RF channel close to the 5.9 GHz on which
DSRC operates was selected and the transmitter was placed near the southeast testing
loop corner, as shown in Fig. 16. The 5.8 GHz frequency is an industry, scientific, and
medical (ISM) band as defined by the Federal Communications Commission (FCC),
allowing for unregulated power levels up to 1 W (30 dBm), which is commonly
used for Wi-Fi and other applications [28], making such a device a realistic enough
threat to real-world applications. This RF interference source was set to transmit at
27.5 dBm, and using the standard COTS antenna, the sideband radiation was enough
to generate noticeable interference in the 5.9 GHz range.

For clarity, Fig. 16a depicts a single lap of operation with interference. As a
comparison, a lap of normal operation without interference is shown in Fig. 16b. In
both tests, the data displayed are the packets received by truckT13 from the preceding
vehicle, T14, while platooning at a 100′ headway gap distance and a platoon order of

Fig. 15 Fuel results for
good versus sub-optimal
GPS
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Fig. 16 a Received packet
signal strength in RSSI with
the interference source
active; b Received packet
signal strength in RSSI by
location during nominal
operation

A1, T14, T13, and A2. Truck T13 was chosen so the impacts of the dropped packets
caused by the RF interference on vehicles both ahead and behind the selected truck
can be deciphered.

Because the interference device effectively increased the noise floor relative to the
receiver, the effect on received signal strength indicator (RSSI) is small and does not
reduce the signal power to a level that approaches the receiver’s minimum sensitivity
level, but does degrade the signal to noise ratio, leading to dropped packets.

5.3.1 Control Effect

Figure 17 presents headway and RSSI versus lap position for both normal operation
and operation during RF interference, respectively. The interference device is located
near lap position 0.7 (see Fig. 9). No appreciable performance degradation from the
RF interference is noted in this region of the laps. It is plausible that the impacts of RF
interference are being outweighed by other factors impacting the following distance.
Namely, greater signal strength was observed in the curved area of the track, see
Fig. 18 and the impact of elevation changes.
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Fig. 17 a Range versus
RSSI versus lap position
with no RF interference; b
Range versus RSSI versus
lap position with RF
interference

5.3.2 Dynamic Effect

Because the range estimate was essentially unaffected, the velocity trace of a truck
through a corner with radio interference was also unaffected relative to its velocity
without radio interference. As an example, Fig. 18a shows the velocity of the second
truck in platoon from the four-truck platoon, T14, during operation with and without
radio interference at 100′ headway distance.

5.3.3 Fuel Effect

Because the velocity trace was unaffected by the interference, it follows that the fuel
consumption was also unaffected. Figure 18b confirms that this interference strategy
had no discernable impact on fuel consumption. The small differences between the
with-interference and without-interference fuel rates could certainly be due to the
influence of some other factor, such as wind, but no further effort was made to isolate
this.
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Fig. 18 a Velocity of
second truck in platoon
through a corner where radio
interference is present; b T14
CAN fuel rate throughout the
jammed SE corner

5.4 Summary

The CACC system outlined herein critically depends on GPS, radar, and V2V
communications. As such, this study investigated three potential mechanisms in
which sensor performance degradation could lead to degraded convoy platooning
performance. The study was conducted in a controlled environment on a closed test
track with minimal grade changes.

Installing a radar in reverse orientation led to missing radar updates and allowed
erroneous range estimation in the short term, resulting in unnecessary vehicle tran-
sience. Due to aggressive acceleration events, operation with faulty radar led to a
5.68% increase in fuel consumption. However, the missing radar updates occurred
during a relatively tight curve, an unlikely scenario for a real-world platooning
application.
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Additional scenarios where a lack of satellites caused poor GPS performance and
where RF interference was intentionally created did not produce fuel consumption
impacts. During these tests, the CACC range estimate was sufficiently accurate to
maintain intended platooning performance. However, the RF interference should be
expanded over longer durations and to stronger intensities before broader conclusions
are reached.

It isworth noting that the results herein are specific to the control systemand sensor
suite of these trucks, and that other commercial or research-grade platooning systems
may experience different results. Still, the mechanism of disturbance remains the
same in all cases: sensor degradation leading to poor dynamic performance, leading
to increased fuel consumption. Additionally, harsher environment such as rain or
snow could pose unresolved challenges for the current sensors and merit further
investigations.

The sensors used were standard and well-documented for this application, and
there is a research opportunity in applying more novel sensors such as ultra-wide-
band radar, lidar, and camera to platooning. These additional sensors could address
some of the challenges identified here, particularly if paired with more advanced
computer vision and deep-learned decision making. While the introduction of these
features represents additional cost as previously noted, it is certainly possible for
these costs to be offset by better optimization of fuel usage and increased safety and
reliability through redundant data sources.

6 Conditional Effects

The performance and reliability of the existing V2V radio network have been inves-
tigated further under a variety of conditions, some of which are adversarial. The
radio network performance was surprisingly robust and only degraded gradually.
Data recorded on precision-instrumented trucks at both ACM and NCAT test tracks
is used to provide an understanding of various effects on V2V network performance,
including:

• Occlusions—non-line-of-sight (NLOS)between theTxandRxantennamaycause
network signal loss.

• Rain—water droplets in the air may cause network signal degradation.
• Antenna position—antennas at higher elevation may have less ground clutter to

deal with.
• RF interference—interference may cause network packet loss.
• GPS outage—outages caused by tree cover, tunnels, etc. may result in degraded

performance.
• Road curvature—curves may affect antenna diversity.
• Road grade—antenna may have limited vertical coverage.

The data presentation and analysis build on those reported by others [29–37]
and could be of interest to researchers, practitioners, and end-users in the broader
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autonomous-connected vehicle community. The work herein centers on conclusions
drawn from processing sensor data acquired over several days of extensive testing.
Antennas and sensors were mounted on our four class-8 trucks operating over a pair
of test tracks. The first test track is a roughly circular loop at the American Center for
Mobility (ACM) in Ypsilanti, Michigan. The track includes an overpass and tunnel
and is about 2.3 miles in length. A satellite view is shown in Fig. 19.

The NCAT test track is capsule shaped and is about 1.7 miles in length with no
special considerations such as bridges or tunnels. Figure 7 gives the aerial view of
this test track.

The trucks operated as a linear convoy and maintained the same following order
throughout each test. As test conditions were varied, external/environmental factors
were monitored, providing a wide variety of interesting samples for processing. For
example, the gap distance between each pair of subsequent trucks was set to 50′,
100′, and 150′ gap distances, as shown in Fig. 20, and data was collected during dry
and wet operation. These variations enabled the elucidation of some key network
performance indicators, allowing direct conclusions to be drawn about the effects of
some of these scenarios on received signal integrity.

Fig. 19 ACM test track (Ref: Google Maps). Semi-truck platoon testing was performed on the
2.3-mile outer (highway) loop

Fig. 20 Class-8 trucks at varying platooning/following distances (to-scale)
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Table 2 Convoy details

Truck Leader (L) Follower 1 Follower 2 Follower 3

Manufacturer Peterbilt Freightliner Freightliner Peterbilt

Model 579 M915A5 M915A5 579

Year 2015 2009 2009 2015

All testing used two Peterbilts fromAuburnUniversity and two Freightliners from
theUSArmyGVSC, each hauling a 53′ trailer. Following order was consistent across
for all tests, allowing convoy vehicles to be referenced descriptively as L (Leader),
F1 (Follower immediately behind L), F2 (behind F1) and F3 (behind F2). Table 2
provides more specific details on the individual trucks.

Unfortunately, F2 did not capture the logs as required for some tests. While
less than optimal, more than enough data was successfully gathered to reach useful
conclusions in all test cases.

Cohda Wireless MK5 OBUs were utilized for the DSRC network. Each radio
was connected to a pair of antennas mounted left and right on the truck cab for
diversity. The antennas used were the ECOM6-5900 s from MobileMark, 5.9 GHz
dipole antennas with 6 dBi of gain and the antenna pattern shown in Fig. 21.

While dipole antennas were utilized for availability reasons, it is worth noting
that there are several interesting attempts at designing DSRC-specific antennas such
as [38–40].

Fig. 21 ECOM6-5900
antenna pattern over
elevation angle. 0° points up
from the antenna pole.
Azimuthal pattern is
isotropic
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6.1 Occlusions

In order to examine the effects of an occluding obstacle in the line-of-sight (LOS)
between a pair of communicating vehicles, the baseline communication effectiveness
between L and F1 was documented at NCAT with a following distance of 150′ and
truck speed of 45 mph, as shown in Fig. 22a. The baseline RSSI was −52.8 dBm
along the curves and −67.7 along the straightaways.

This baseline performance was compared with the communication effectiveness
between L and F2 with a 50′ following distance at the same speed, which results in
close to the same total gap distance, but with the addition of F1 driving in between
them, acting as a large metal obstacle and hindering a direct line-of-sight. These
results are shown in Fig. 22b. RSSI was−52.7 dBm along the curves and−69.1 dBm
along the straightaways.

These results indicate that the presence of an additional obstructing truck between
the two communicating trucks adds ~1.4 dB in additional path loss in the straight
portions of the track. However, this loss becomes negligible (~0.13 dB) on the track’s
sharp curves because there is a direct LOS between L and F2 that is not occluded by
F1 around the curves.

Fig. 22 a Received Signal Strength Indicator (RSSI) of packets received by F1 from L at 150′
separation with no obstruction of the LOS between them; b RSSI of packets received by F2 from
L at 150′ separation with F1 obstructing the LOS between L and F2
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Fig. 23 a RSSI of packets received by F3 from F2 at 150′ separation with no obstructions; b RSSI
of packets received by F3 from F1 at 150′ separation with F2 obstructing the LOS between F1 and
F3

The results were cross-verified by performing similar analysis on other vehicle
pairs from the available convoy.The conclusions are analogous. For example, Fig. 23a
shows the communication effectiveness between F3 and F2 at a following distance
of 150′ and 45 mph producing RSSI of −73.8 dBm in the curves and −70.9 dBm on
the straights.

Figure 23b shows the performance between F3 and F1 at the following distance
of 50′, where F2 sits between them as the occluder. The resulting RSSI values are −
74.4 dBm in the curves and -78.1 dBm on the straights.

The path loss due to occlusion ismuchmore pronounced on F3—about ~7.2 dB on
the straightaways, and ~0.6 dB on the curves—possibly due to the fact that occluding
vehicle F2 is an armored truck and blocks the propagation of RF waves more than a
normal truck such as F1.

The effects of an occluding truck hindering LOS are considered in [41, 42],
and [43]. The latter of which showed a little over 5 dB loss caused by a vehicular
obstruction in a 50 m gap.
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6.2 Rain

Received signal strength was compared for laps over the ACM test track on two
different days, both of which were overcast but only one of which had rain. Figure 24
shows the RSSI at each position on the ACM track, as well as the lap average RSSI
for the dry and rainy testing. Units are dBm and meters from the center of the track.

There is a very slight increase in path loss (0.16 dB) due to the rain. There is
generally some attenuation due to rain is expected because the water droplets absorb
and scatter the signal, reducing how much signal reaches the receiving radio [44,
45]. Table 3 gives the statistical analysis of the dry and rainy days, respectively.

Histogram plots of every received packet’s RSSI for both the dry and rainy days
of testing can be seen in Fig. 25.

Rain does not appear to have an impact on the radio network’s performance,
although a more controlled test of network performance as a function of a precise
measurement of the amount of rain is needed before drawing broader conclusions.

Fig. 24 RSSI for the platoon in dry versus rainy weather

Table 3 Statistics for dry test loops

RSSI (dBm)
Dry

RSSI (dBm) Rain Latency (ms)
Dry

Latency (ms)
Rain

Mean −61.053 −61.445 2.548 2.594

St. dev. 4.422 4.605 0.828 0.936

Min −76.000 −77.000 1.713 1.666

25% −64.000 −65.000 2.156 2.174

50% −61.000 −62.000 2.264 2.276

75% −57.000 −57.000 2.496 2.496

Max −48.000 −50.000 16.772 15.227
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Fig. 25 a RSSI histogram
for received packets in dry
weather; b RSSI histogram
for received packets in rainy
weather

6.3 Antenna Position

In order to test the effects of the vertical antenna positioning on received signal
integrity, antennas were mounted to the left and right sides of the cab at 8′ above
ground level. The vehicles operated on the ACM track with the convoy continuously
transmitting and receiving packets at 100′ gap distance. The GPS location of the
trucks as well as the RSSI of all incoming packets for all vehicles were monitored.
The test was repeated with the antennas raised to 13′ above the ground. Figure 26a
illustrates the antenna mounting position for both of the Peterbilt trucks.

Figure 26b puts into perspective the entire length of the truck shown on a Peterbilt
with attached trailer. Figure 27 shows the mounting on the top of the other two trucks
used, whichwere FreightlinerM915A5s. They used the same standard dry-van trailer
as the Peterbilts and had the low (8′) antenna position mounted on top of the side
view mirrors. As shown in the figure, the high (13′) position was instead mounted
on a brace across the roof of the cab.

The overall RSSI averages for each truck with the antennas in both the low and
high positions was considered. The higher antenna offered significant improvements
of about 3 dB in RSSI for L and F1, with a very slight 0.2 dB loss on F3 at the very
rear of the convoy. This is shown graphically in Fig. 28a, where the GPS loops have
been colored according to the RSSI in dBm, as indicated by the color bar. The other
axes once again give meters from the geometric center of the ACM highway loop.
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Fig. 26 a Antenna mounting positions on the cab of a Peterbilt truck; b Overall Peterbilt truck cab
with attached trailer dimensions

Fig. 27 Antenna mounting on the Freightliner trucks
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Fig. 28 aOverall averageRSSI per truck for the 8′ (low) and 13′ or 13′6′′ (high) antenna elevations;
b Average RSSI between neighboring trucks in the convoy
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Subsequently, the scope was limited to only neighboring trucks, that is, only
packets sent by the truck immediately in front of or behind the receiver were consid-
ered. Figure 28b displays the results.Once again, the higher antenna position provides
significant improvement for the L and F1 (about 5 dB), but this time the loss with F3
is more substantial at 4.18 dB.

Average RSSI when only considering packets from trucks not adjacent to the
receiverwas also analyzed.The results as shown inFig. 29a indicate an approximately
uniform 2 dB of gain on all trucks.

Reducing the data to consider only packets transmitted by the truck of the same
kind as the receiver, Peterbilt (L) to Peterbilt (F3) and M915 (F1) to M915 (F2)
is shown in Fig. 29b. Here, L and F3 received the least benefit from switching to
higher antennas, likely because of their significant distance from each other, and F1
improved by about 4.5 dB (recall that F2 did not provide logs).

Performing the complementary analysis and considering only packets transmitted
by trucks of the type different from the receiver is shown in Fig. 30a. Once again, L
and F1 show significant improvement with the high antenna, about 3.5 dB, while F3
suffers marginally.

Based on these varied analyses, it appears that F2 brings down the average RSSI of
any truck that receives packets from it. Thus, RSSI averages were with F2 excluded
entirely in Fig. 30b. Here we see noticeable improvement across the board with the
high antenna. It is possible that F2 had some unintentionally significant cabling loss
or insertion loss in the high antenna configuration, which caused it to transmit at a
lower signal strength. Fortunately, this was the only test affected by these problems
with the F2 setup.

Overall, even a minor increase in antenna height of 3–5′ offers significant benefits
for received power, allowing networks to have better reliability and range. This is as
expected, as greater antenna height is typically associated with better performance
[46]. The effects of antenna positioning are considered further in [47] and [48].

Future work in this area may include additional consideration of front and rear
mounted antennas as opposed to the current left and right mountings. The current
methodwas the result of discussions with automotivemanufacturers who determined
that side mountings were more desirable for consumers, partially due to concerns
stemming from changing the connected trailer from the cab.

6.4 RF Interference

In order to test the effects of RF interference, a variable frequency noise transmitter
was placed near the testing loop while operating on an RF channel close to the
5.9 GHz of the vehicles’ DSRC communication channel (Fig. 31).

This interference devicewas transmitting constant noise at 28 dBmandwas placed
at the southeast corner of the NCAT test loop. Figure 32 shows the RSSI and packet
reception density for loops with the interference in place.
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Fig. 29 a Average RSSI between non-neighboring trucks in the convoy; b Average RSSI between
trucks of the same type
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Fig. 30 a Average RSSI between trucks of different types; b Average RSSI between trucks not
including F2



Semi-autonomous Truck Platooning with a Lean Sensor Package 51

Fig. 31 Interference source (28 dBm) placed adjacent to the test track at NCAT

Fig. 32 RSSI and received packet reception density graphs. Interference source marked with a red
cross

Figure 33 shows the baseline loops, where no interference was present and far
fewer packets were lost in the southeast corner. Average RSSI does not appear to be
affected, which makes sense as the interference device only adds additional noise,
not any additional path loss—meaning it affects the signal-to-noise ratio (SNR) but
not the received signal strength.

Fig. 33 RSSI and received packets—Baseline (no interference)
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The effects of interference on DSRC communications are explored more fully
in [49] and [50]. Without either the interference device or the DSRC radio network
turned on, the noise floor was measured at approximately −90 dBm using a spec-
trum analyzer. Given this, there were very few dropped packets while transmitting
at 23 dBm and receiving at upwards of −80 dBm. However, with a 28 dBm inter-
ference device located southeast corner of the track, there is complete denial of
communications in the surrounding portion of the track.

6.5 GPS Outage

To analyze the effects of GPS outage, two similar paths were compared on the ACM
test track:

• Passing through a tunnel with no GPS coverage.
• Bypassing the tunnel with a parallel route which maintains GPS connection.

Table 4 gives a statistical analysis of both scenarios.
The data for determining the comparative results of GPS presence or absence was

recorded over two separate days of testing. Both days had rain, although the rain’s
severity and the fact that the tunnel would be dry inside may have caused some of
the observed result variations.

The data was geofenced, so only radio reception events within an area slightly
larger than the length of the tunnel were extracted and processed. Figure 34 shows
the RSSI along the path through and around the 700′ tunnel.

One thing to note is that the packets received inside the tunnel cannot be geo-
located and all such packets were assigned to the last known geo-location of the
receiver, which is at the entrance of the tunnel. The data inside the tunnel is otherwise
perfectly valid and packetswere sent and receivedwithout any problems. The tunnel’s
inside walls are made of metal, creating a GPS denied environment and causing
internal reflections and wave-guiding effects.

Table 4 RSSI and latency statistics for the path with GPS

RSSI (dBm) with GPS RSSI (dBm)
No GPS

Latency (ms)
With GPS

Latency (ms)
No GPS

Mean −58.528 −65.813 2.598 2.401

St. dev. 3.546 3.681 0.896 0.307

Min −73.000 −79.000 1.717 1.816

25% −60.000 −68.333 2.182 2.245

50% −57.000 −66.375 2.286 2.335

75% −56.000 −62.857 2.530 2.476

Max −52.000 −56.000 14.187 18.153
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Fig. 34 Visual depiction of the tunnel and bypass RSSI data. The lower path is the bypass, and the
GPS-interrupted top path is through the tunnel

The RSSI data is also given as a histogram, shown in Fig. 35. The packet RSSI
for the tunnel runs is bimodal, likely because of the difference between the tunnel
and open-air conditions. From the open-air portion, it is clear that the larger mode
in the tunnel shown in Fig. 35a is the RSSI state inside the tunnel. The entire tunnel
graph is shifted slightly lower in RSSI, but this might be because of road curvature
effects resulting from the shape of the path inside and outside the tunnel.

Fig. 35 a Tunnel RSSI data.
It is bimodal, likely
representing the change in
conditions between the
tunnel (where the most time
is spent) and outside; b
Tunnel Bypass RSSI data.
Here, the data has one mode,
representing the signal
strength outside of the tunnel
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Table 5 RSSI and latency statistics for the curved sections of the NCAT test track

RSSI (dBm)
Curved

RSSI (dBm)
Straight

Latency (ms)
Curved

Latency (ms)
Straight

Mean −73.349 −88.553 18.283 15.107

St. dev. 4.318 2.472 93.654 73.182

Min −90 −98 1.675 1.736

25% −76 −89 2.296 2.386

50% −72 −88 2.528 2.834

75% −70 −87 3.415 4.5665

Max −68 −73 1299.465 992.392

6.6 Road Curvature

To analyze for road curvature, the NCAT data was filtered by splitting off the curved
and straight sections of the track by GPS and analyzing both sections separately.
Table 5 shows the results for both the straight and the curved sections of the NCAT
loop.

A significant RSSI improvement exists when the trucks operate over a bend in
the track. This is apparent when viewing, for example, Fig. 22. This is most likely
related to the occlusion results, as the curve allows for line-of-sight between any pair
of vehicles without the obstruction of the vehicles in between, or their own trailers.

6.7 Grade

To analyze the impact of grade, or elevation changes, on RSSI a couple ACM track
portions were selected. The vehicles operated over these sections at 45 mph tests
with antennas mounted at 8′. Running a correlation coefficient matrix on the selected
stretches produced no significant correlation (< 0.2). Figure 36 is a sample of the
two track sections on the east side of the test loop, one with a relatively large grade
change, and one without. The color bar shows the height of the track in meters.

As can be seen in Fig. 36, the RSSI in blue does not appear to be correlated to the
elevation shown in red, which is obtained via GPS. This data was collected on the
lead truck L and has an averaged sample RSSI of received packets from all the other
trucks F1, F2, and F3 in the convoy.
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Fig. 36 RSSI versus elevation in slope (above) and flat (below), 8′ antenna height

7 Conclusion

In this chapter we looked at a method for performing semi-autonomous leader–
follower platooning using CACC and DSRC V2V communications and how it can
be applied to commercial truck transport for the purpose of fuel savings and reduced
driver workload. We gave a directory of some of the most important advances in
the field for more of an in-depth consideration of the finer details of the technology.
We gave a broad, high-level explanation of the major components of the system and
their purposes, and then followed that with a discussion of tests showing just what
happens when the sensor modules aren’t working properly and how the system as
a whole can be resilient to component failures. Finally, we discussed the impact of
selected conditions that we believed could make a difference to the operation of the
system including occluded line-of-sight between antennas, rain, antenna mounting
height, additive RF interference, GPS denial, track curvature, and road slope. These
tests gave us measurements ranging from not noticeable to significant differences in
radio network performance; however, the physical real-world environment frequently
includes multiple confounding factors and the more impactful considerations such as
road curvature can overwhelm smaller subtleties when not isolated even on a closed
test track.

The lean sensor suite and accompanying control architecture outlined herein
has successfully provided energy efficiency benefits during on-road testing over
stretches of I-85 and US 280 in Alabama, I-69 in Michigan, and logging roads in
Canada. On-road implementation exposes the platoon to a host of exogenous distur-
bances not present in the track environment: interactions with non-platoon vehicles,
traffic conditions forcing deviations from the desired speed set point, and a variety of
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weather conditions (snow or heavy rain). Ongoing research has sought to optimize
the CACC system response to non-platooning vehicles that cut in and out of the
platoon formation as well as CACC energy optimization in the presence of various
traffic disturbances. However, these studies are beyond the scope of this chapter.

Overall, this technology offers significant benefits with very sparse requirements
in terms of technology and integration expenses. By utilizing a leader–follower archi-
tecture for our vehicle AI we were able to perform the autonomy tasks required for
traffic interactions with a high degree of trust in our system’s safety and using less
fuel than a human driver typically would.
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Definitions/Abbreviations

ACM American Center for Mobility
CACC Connected Adaptive Cruise Control
DSRC Dedicated Short-Range Communication
GAVLAB GPS and Vehicle Dynamics Laboratory
GPS Global Positioning System
GVSC Ground Vehicle Systems Center
NCAT National Center for Asphalt Technology
NLOS Non-Line-of-Sight
RF Radio Frequency
RSSI Received Signal Strength Indicator
SNR Signal to Noise Ratio
V2V Vehicle to Vehicle
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Environmental Perception for Intelligent
Vehicles

Xiaoliang Tang, Yuanxiang Li, and Xian Wei

Abstract Environmental Perception for Intelligent Vehicles (EPIV) generally
focuses on the awareness and understanding of the driving environment around intel-
ligent vehicles by various vehicle sensors. In recent years, a lot of excellent research
has been conducted on developing novel methods and technologies for EPIV. This
chapter overviews some of the main research topics in the field of EPIV. First, this
chapter reviews various types of vehicle sensors which capture multimodal environ-
mental information around intelligent vehicles and form the foundation for environ-
mental perception. Second, this chapter focuses on data restoration and denoising
technologies on camera and LiDAR sensors, which guarantees the quality of the
data captured by the vehicle. Third, this chapter deals with methods on semantic seg-
mentation, object detection and tracking with camera and LiDAR data, which play
a central role in environmental understanding. Fourth, this chapter introduces tech-
nologies on location and mapping with multimodal sensor data, which is essential
for the local path planning of intelligent vehicles. Finally, this chapter discusses the
research technologies on fusing multimodal environmental data, which represents
the frontier of EPIV development.
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1 Sensors

Sensors make the vehicle capable of perceiving objects on the street and accumulat-
ing information for safe driving. Furthermore, the information captured by sensors is
processed and analyzed to build the path from the start point to the end point and to
send the appropriate instructions to the control system of the vehicle, such as accel-
erating, steering, and braking. In addition, the information captured by autonomous
vehicle sensors, such as traffic jams and various kinds of obstacles on the road, can
be shared with other vehicles if these vehicles are connecting through vehicle-to-
everything equipments. This chapter mainly investigates three kinds of key sensors
in intelligent autonomous vehicles: cameras, LiDARs, and radars.

1.1 Development of Sensors in Intelligent Autonomous
Vehicles

Autonomous vehicles require high-performance vehicle sensors with rigorous speci-
fications for sensitivity, reliability, and data richness. In order tomeasure the autopilot
level, the Society ofAutomotive Engineers (SAE) has defined 6 levels of autonomous
driving, as shown in Fig. 1, from L0 (level 0, fully manual) to L5 (level 5, fully auto-
matic). Higher levels of autopilot require not just more sensors and better sensors.
For instance, the number of L2 autonomous driving sensors is about 6, that of L3
autonomous driving is about 13, and the number of L5 autonomous driving sensors
will exceed 30 in the future. In the early stages of self-driving development, vehicles
rely merely on cameras to achieve autonomous driving on structured roads. Similar
to the human eye, the camera receives surrounding light information, yet its percep-
tion of the environment is highly vulnerable to bad conditions, such as glaring light,
rain, fog, and snow.

With the development of LiDAR technology, LiDAR and millimeter-wave radar
have gradually transferred from military to civilian use. Due to the characteristics
of light travelling in a straight line, LiDAR has been used for ranging for a long

Fig. 1 Levels of driving automation
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time, such as for the guidance of aerial bombs. LiDAR began to be widely used
in many civilian markets because of the emergence of vacuum cleaning robots. In
2010, Neato introduced a LiDAR on the sweeping robot and launched the Neato
XV-11. This revolutionary breakthrough raised the popularization of the utilization
of sweeping robots. Since then, LiDAR applications have become more widespread
in commercial applications. Radar sensors followed a similar transformational path
from military to civilian uses. Cameras, LiDAR, and radar are now poised to bring
the arrival of the age of autonomous driving. More details about these three types of
sensors are given in the sections below.

1.2 Camera

Cameras are widely used in self-driving vehicles because they are well understood
and relatively cheap. The mechanism of a camera can be formulated as follows:
first, the camera captures the optimal image generated by the object and projects it
onto the image sensor. Second, an electronic circuit transforms the optical informa-
tion into an electrical signal; Third, Analog-to-Digital (A/D) conversion is used to
transform the electrical signal into a digital one, amenable to computer processing.
Finally, a Digital Signal Processing chip (DSP) processes the signal into a specific
format image and can be displayed on a screen, as shown in Fig. 2. In the context of
autonomous vehicles, cameras are commonly used for three types of applications:
driving assistance, parking assistance, and in-vehicle driver monitoring. Each type
of application may require a different type of camera.

Typically, monocular cameras and binocular cameras are employed for the detec-
tion of traffic lane lines, dynamic objects, traffic signs, etc. Comparedwithmonocular
cameras, binocular cameras provide better estimation for the distance of the target.
Cameras with a fished-eyed lens are used in intelligent vehicles because they offer
a broader field of vision, and hence helpful in monitoring dynamic targets in the
driver’s blind spot areas.

The workflow of the classification of the monocular camera involves 5 steps:
image input, preprocessing, feature extraction, classification and matching, and out-
put results. The range finding problem is to estimate the distance from the camera to
an object according to the size in the image. The ranging principle of a monocular
camera is shown in Fig. 3. The distance of the object to the image plane can be
calculated according to

D = (W × F)/P (1)

Fig. 2 The working principle of the camera
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Fig. 3 The principle of ranging for a monocular camera. In the figure, F is the focal length of the
camera, C is the optical center of the lens, D is the distance from the target to the camera, H is the
object height, W is the image size, and P is the size of the object in the image

Fig. 4 Ranging steps of a binocular camera

However, a monocular camera has many disadvantages: (1) monocular camera
strictly requires object sizes (large objects may not be captured completely); (2)
monocular camera usually leads to image distortion.

The ranging principle of the binocular camera is similar to the mechanism in
human eyes. A system for computing object distance and depth using binocular
cameras is given in Fig. 4. The first step is camera calibration, which calibrates each
camera’s internal parameters and measures the relative position between the two
cameras. Next, the binocular correction step eliminates the distortion and the line
alignment between the right and the left camera views. Then, corresponding pixels
of the same scene on the left and the right camera views are matched in the Binocular
matching phase. Lastly, the depth information is calculated at the end of the process.

The principle of binocular ranging is shown in Fig. 5, which illustrates the sim-
ilarity relationship between triangles �PPL PR and �POLOR . The ratio of the
distance between the left and the right camera imaging points PL and PR to the dis-
tance between the camera center points OL and OR equals the ratio of the distance Z
from the object to the baseline of the camera to the distance Z − f from the object
to the camera lens. The ratio relationship is given by:
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Fig. 5 The principle of
binocular camera ranging. P
is the object, which forms the
target points on the left and
right cameras respectively, as
PL and PR ; OR and OL are
the optical centers of the two
cameras; f is the camera’s
focal length, B is the center
distance between the two
cameras, Z denotes the depth
information

B − (XR − XT )

B
= Z − f

Z
(2)

Except for the variable Z , all other parameters are constants after the camera is
calibrated. Solving for Z , then gives:

Z = f · B
XR − XT

(3)

Car cameras have more stringent performance requirements than consumer cam-
eras. For example, car cameras should function properly over the temperature range
of −40 ∼ 85 ◦C and be robust to drastic changes of temperature. Vehicles produce
strong vibrations when driving on uneven roads, so the car camera must resist vibra-
tions of various intensities. When the vehicle starts, it produces an extremely high
electromagnetic pulse, so the car camera needs to satisfy a highly antimagnetic per-
formance. Moreover, because of the high speed of the vehicle and the frequently
changing light environment, the camera electronics need to possess a high dynamic
characteristic.

1.3 LiDAR

LiDAR uses an electromagnetic wave system (laser beam) to detect objects. Depend-
ing on the reflected or scattered signal parameter, such as arrival time and intensity,
the LiDAR can determine the distance, azimuth, motion state, and surface optical
characteristics of objects in its field of view. Compared with cameras, LiDAR has a
higher angular resolution, higher range resolution, stronger anti-interference ability,
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Fig. 6 The working
principle of mechanical
LiDAR

and the capacity to obtain multiple types of image information of the target. LiDAR
consists of four modules: transmitting module, receiving module, scanning module
and control module. The transmission module is composed of a laser and an opti-
cal emission system. The receiving module includes an optical receiving system,
optical filter device and photodetector. The scanning module consists of a motor, a
miniature resonator mirror, and a phased array. The function of the scanning module
is to change the spatial projection direction of the laser beam. The control module
completes the control of the laser emission module, the receiving module, and the
scanning module. Furthermore, the control module also processes the LiDAR data
with the help of an external system.

There are 3 main types of LiDAR differentiated by the structure of its rotating
parts: mechanical LiDAR, hybrid LiDAR and solid-state LiDAR. A schematic dia-
gram of a mechanical LiDAR is shown in Fig. 6. The laser emitting components
are arranged in a line array of laser light sources in the vertical direction and can
generate laser beams of different directions in the vertical plane through the lens.
Driven by the motor, the line array of the laser light source is rotating. As a result, the
laser beam transforms from “line” into “plane” in the horizontal plane. Multiple laser
“planes” are formed by rotating the laser light source around the roll axis. Therefore,
producing a 3D scan of the environment.

For example,VelodyneLiDAR is a standardmechanical LiDAR.The performance
parameters of Velodyne HDL-32E LiDAR are shown in Table 1. The number of laser
beams of this LiDAR is 32, the scanning frequency is 20 Hz, the detection accuracy
can reach centimeter-level, and the detection range is 0–70 m. Although mechanical
LiDAR has a 360◦ viewing and high measurement accuracy, it has a large size,
expensive cost, and low reliability of rotating parts.

Hybrid LiDAR utilizes a stepping motor rather than rotating parts. The hybrid
LiDAR combines the Micro-Electro-Mechanical System (MEMS) with a vibrator to
form a MEMS vibrator. The vibrator rotates to complete the laser scanning. Figure 7
shows the structure of the hybrid LiDAR. The control circuit drives the laser to
generate laser pulses while driving the MEMS galvanometer to rotate, and the laser
is reflected by the rotating galvanometer to realize scanning. Compared with the
mechanical LiDAR, the hybrid LiDAR technology is more matured, and has a lower
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Table 1 Some important parameters of Velodyne HDL-32E LiDARa

Parameter Value

Wavelength of electromagnetic waves 905 nm

Detection range 1m 70 m

Horizontal field of view 360◦

Vertical field of view +10.67◦ ∼ −30.67◦

Distance accuracy Vertical ∼1.33◦, horizontal ∼0.16◦

Scanning frequency 20 Hz
aRefer to https://velodynelidar.com/products/hdl-32e/

Fig. 7 The working
principle of hybrid LiDAR

cost. However, the receiving end of a hybrid laser radar has a complicated optical
path, and a small scanning range.

The solid-state LiDAR completely eliminates the mechanical scanning structure,
and achieves scanning rotation in both the vertical and horizontal directions. Unlike
the introduced hybrid LiDAR and mechanical LiDAR, the solid-state LiDAR only
retains themicro-movement, which reduces the loss caused by themechanical move-
ment like other kinds of LiDAR and which gives a longer working life for the solid-
state LiDAR.

1.4 Radar

Millimeter-wave radar (MWR) refers to a long-wave radar that emits electromagnetic
waves with a wavelength range of 1–10 mm and a frequency range of 30–300 GHz.
Vehicle-mountedMWRiswidely used inmanykey tasks, such as adaptive cruise con-
trol, lane change assistance, and collisionwarning systems.MWRhas the advantages
of small size, easy integration, and high spatial resolution. Compared with LiDAR,
MWR has a lower cost and a stronger anti-interference ability.

The working principle of MWR is shown in Fig. 8. Firstly, MWR uses a voltage-
controlled oscillator to generate electromagnetic waves with a specific modulation
frequency. Secondly, the received signal is sent through the power amplifier module
and the voltage-controlled oscillator module. Finally, the signal is transformed into

https://velodynelidar.com/products/hdl-32e/
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Fig. 8 Schematic diagram of the basic working principle of MWR

data by the analog-to-digital module, and the data are collected and calculated in the
arithmetic unit, the processing results are sent to the Electronic Control Unit (ECU).

MWR can simultaneously measure the azimuth angle of multiple targets. The
speed measurement relies on the Doppler effect of electromagnetic waves, and the
azimuth angle measurement is based on the antenna array of the MWR. As an intel-
ligent sensor, most of the existing MWRs automatically process electromagnetic
waves to obtain clustered millimeter-wave points. For example, the ARS408 MWR
produced by Continental is a widely used intelligent MWR. The MWR data after
intelligent processing is shown in Fig. 9. Each point represents a possible location
of the target.

The detection range of ARS408MWR is shown in Fig. 10. The long-range detec-
tion of ARS408 MWR can achieve 170 m, and the short-range detection can achieve
70m.

Each point output by the ARS MWR contains 18-dimensional information. As
shown in Table 2, in addition to the basic three-dimensional space coordinates, the
output includes radar point dynamic characteristics, such as target relative velocity,
cluster false alarm probability, the Doppler state solution, point validity and other
information.

1.5 Future of Sensors in Intelligent Vehicles

In order to identify and detect objects more accurately, there are several future
research opportunities involving vehicle cameras and LiDAR. The development of
vehicle camera technology has the following trends:

1. Higher dynamic range (HDR). The camera can successfully function in difficult
lighting environments, such as the high contrast of bright and dark details in and
approaching a tunnel under strong light. There are many such instances of high
contrast in the environment. Therefore, the improvement of HDR is a critical
factor in increasing the level of autonomous driving.
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Fig. 9 The target point after ARS408 radar clustering

Fig. 10 ARS408 MWR detection range. The blue area is the short-range beam detection range.
The red area is the long-range beam detection range
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Table 2 Channel description of MWR dataa

Filter criterion Index Description

Coordinate 0,1,2 Point space coordinates (x, y, z)

Dyn_prop 3 0: Moving, 1: Stationary, 2: Oncoming, 3: Stationary
candidate, 4: Unknown, 5: Crossing stationary, 6:
Crossing moving, 7: Stopped

ID 4 125 Radar point ID

RCS 5 Radar reflection cross-sectional area

Velocities 6, 7 Speed in the x direction and y direction (m/s)

Compensation velocities 8, 9 The velocities in m/s compensated by the ego motion

Ambig_state 11 0: Invalid, 1: Ambiguous, 2: Staggered ramp, 3:
Unambiguous, 4: Stationary candidates

x_rms, y_rms 12, 13 x-direction and y-direction position variance

Invalid_state 14 0: Valid, 1: Invalid due to low RCS, 2: Invalid due to
near-field artefact, 3: Invalid far range cluster because
not confirmed in near range, 4: Valid cluster with low
RCS, 5: Reserved, 6: Invalid cluster due to high mirror
probability, 7: Invalid cluster because outside sensor
field of view, 8: Valid cluster with azimuth correction
due to elevation, 9: Valid cluster with high child
probability, 10: Valid cluster with high multi-target
probability, 11: Valid cluster with suspicious angle, 12:
Valid cluster with high probability of being a 50 deg
artefact, 13: Valid cluster but no local maximum,14:
Valid cluster with high artefact probability, 15:
Reserved, 16: Invalid cluster because it is a harmonics,
17: Valid cluster with above 95 m in near range

aRefer to https://velodynelidar.com/products/hdl-32e/

2. Eliminate LED flicker (LEF). Due to the popularity of LEDs, they are widely
used in traffic lights, car lights and other fields. However, vehicle cameras can
easily be affected by LED light, which blurs the captured image. Therefore, the
car cameramust ensure stable and high-fidelity output in the presence ofmultiple
LEF sources.

3. Cyber security. In order to ensure that they cannot be attacked by hackers, the
car cameras are typically transmitted data over a secure network.

The 4D MWR gradually forms the competition with LiDAR. D MWR technol-
ogy can extend the function of radar from measuring distance, speed, and horizontal
azimuth to distance, horizontal location, vertical location, and speed under any light-
ing or weather conditions. Therefore, 4D millimeter-wave radar has the ability to
combine the advantages of LiDAR and MWR to achieve accurate all-weather detec-
tion.

Therefore, 4D millimeter-wave radar has the ability to combine the advantages
of LiDAR and MWR to achieve accurate all-weather detection.

https://velodynelidar.com/products/hdl-32e/
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2 Data Restoration

Data collected by sensors in self-driving systems suffer from a variety of noise
sources, increasing the vulnerability of downstream tasks. This section explains the
mechanism of deep neural networks for mitigating the effect of noise from both
cameras and LiDARs.

2.1 RGB Image Restoration

Images captured by AV vehicle cameras typically contain pedestrians, traffic signs,
other vehicles, etc. Important image processing tasks include lane detection, and
object tracking and segmentation. However, harsh weather such as rain, fog and
snow can distort the images, making the above image processing tasks much more
difficult. In addition, the process of image capture itself introduces noise which can
also negatively affect the tasks. Image restoration, being an important step of image
preprocessing, improves the performance of computer vision tasks for vehicles. This
section introduces current rain and fog removal methods for RGB images applicable
to autonomous driving.

Based on the deep learning algorithms, the system could restore the noise-affected
image by recovering real-world noises. However, the challenge remains to be the
quantitative demand for training image pairs. The utilization of synthesized rainy
or foggy datasets is a part of data enhancement for training artificial models. Hence
we can adopt artificially synthesized rainy or foggy datasets for training while the
trainedmodelwould be tested on real-world noise. In detail, we randomly select 1000
images from the large traffic dataset Bdd100K [67] to artificially synthesize the rainy
traffic scenarios, dubbed Bdd1000, and some examples are shown in Fig. 11.

Traditional image restoration methods tend to use physical priors, and dictionary
learning is proper for representing priors effectively. These algorithms pay more
attention to rain streaks themselves rather than probing into the formation of rain. A
general formula for the physical prior which could be easily optimized [66] is given
by:

B̂ = argmin
B

‖I − B − S‖22 + γ (B) + ψ(S) + �(B, S) (4)

Fig. 11 Image samples of Bdd1000 with rain
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where B denotes the background layer, S denotes the rain streak layer, I denotes the
identity matrix, γ (B) represents priors on the non-rain layer,ψ(S) denotes priors on
the rain layer, and �(B, S) indicates a certain relationship between non-rain layer
and rain layer.

Most of the traditional methods applied to rain removal, such as support vec-
tor machines [22], are computationally expensive and time-consuming, which are
unsuitable for autonomous drivingwith high real-time requirements. Recently, owing
to the powerful feature extraction capability, DNN has been widely used in computer
vision tasks, such as image denoising, image de-raining, and image de-hazing. Espe-
cially, data-driven rain removal methods have been rapidly developing since 2017,
which generally outperform traditional approaches. These methods usually use deep
networks to automatically extract the features of images, and learn how to recover
the original (undistorted) image. Deep learning-based models have more difficulties
compared to traditional ones since the regularizers in Eq. (4) are not easy to fine-tune
in huge parameter space. For deep learning methods, the most frequently used model
is a relatively simpler one, a composite model:

O = B + S (5)

where B denotes background image as a non-rain layer, S denotes rain streaks as
rain layer, and O is an original rainy image. The model is built upon the assumption
that the rain image can be assumed as the superposition of background image and
the rain streaks. Specifically, the background image is on the bottom, and the rain
streaks are on the top and linearly superimposed on the background (as shown in
Fig. 12). Thus, Eq. (5) can be rewritten as:

B = O − S (6)

There are several popular deep learning-based rain removal methods, among
which, using CNN to extract features occupies the mainstream and there are a great
many variations. For instance, Fig. 13 shows the structure of PRENet [47], which
consists of several residual modules, recurrent layers and progressive structures. The
simple network structure results in less computational cost and guarantees real-time
performance, evenwhen they are combinedwith auxiliary tasks such as segmentation
and classification.

Fig. 12 Superimposed composite model
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The computational efficiency of PRENet makes it competitive for self-driving
systems. Some results on image removal and segmentation tasks provided byPRENet
are shown in Fig. 14, where the restored images yield better segmentation results
than rainy images.

There exist models jointly removing rain and fog within a simple-structured net-
work [18]where PRENet is used for data preparation [18], YOLOv3 for object detec-
tion and PSPNet for image segmentation [55]. Figures 15 and 16 show the results
of these two combinations respectively. Clearly, the images restored by PRENet
demonstrate significant improvement for object detection and image segmentation
tasks.

As for fog removal tasks, the haze formation model could be given by color
attenuation prior:

I f (x) = Rd(x) × tr (x) + A(1 − tr (x)) (7)

where I f (x), Rd(x), and A denote the intensity of the foggy image, the scene radiance
of the recovered image (clear image), and the depth of the scene respectively, tr (x) =

Fig. 13 The architecture of PRENet. The circle C means concatenation operator for tensors

Fig. 14 Image removal and segmentation performance using PRENet
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Fig. 15 Object detection results generated by the combination of Yolov3 and JDDNet

Fig. 16 Segmentation results generated by the combination of PSPNet and JDDNet

e−β·d(x) indicates the refined medium transmission function. Then the aim becomes
to restore scene radiance by recovering the unknown parameters A and tr (x), which
can be estimated with certain assumptions in traditional models [73]. Deep learning
comes to an aid with better feature extraction power to estimate the transmission
map, which could be refined with multi-scale architecture [1, 49].

For autonomous vehicles, the response speed is themost important for emergency.
Therefore, the primary requirement of autonomous vehicles is efficiency, and it is
reasonable to recover the unknown parameters with more robust assumptions, such
as the HSI cue [7, 56, 57, 74, 76]. After converting the input hazy image into HSI
mode, through the Patch extraction and nonlinear mapping, and the feature map is
refined iteratively by finely scaled feed-forward filters network, with the final output
given by local extremums and reconstruction of feature maps.

2.2 LiDAR Point Cloud Restoration

LiDAR also plays an important role among autonomous driving sensors. Denoising
for 3D point cloud mainly focuses on noise removal and 3D point clouds recovery,
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Fig. 17 The denoising process on 3D point cloud

Fig. 18 3D point cloud denoising process using graph Laplacian regularizer [21]

which is essential for automated vehicle systems. Specifically, the denoising process
on 3D point cloud is shown in Fig. 17 (refer to [9]).

Generally, point cloud restorationmethods are built upon smoothness prior imple-
mented by the regularizer J (X̂):

min
X̂

∥
∥
∥X̂ − Xε

∥
∥
∥

2

F
+ λJ (X̂) (8)

where X̂ indicates the recovered point cloud and Xε the point cloud with noise.
There are several choices for J (X̂), such as graph Laplacian regularization [69]
which has been widely used to regularize the vertex and non-vertex terms of Maha-
lanobis distance matrix. A common pipeline of the method [21] on 3D point clouds
is demonstrated in Fig. 18.

The DNN basedmodels for denoising 3D point cloud data have gradually become
the mainstream, such as neural projection denoising (NPD [13]). After projecting
noise points onto an estimated rough reference plane, multi-projecting is imple-
mented due to inevitable noise in the estimated rough reference plane NPD utilizes
a neural network to estimate a reference plane so that to denoise 3D point cloud,
which is shown in Fig. 19.

3 Semantic Segmentation

Semantic segmentation is one of the most important tasks in the computer vision,
because it provides complex scene understanding. Semantic segmentation is the task
of clustering parts of an image together which belong to the same object class [33].
It is a form of pixel-level prediction because each pixel in an image is classified
according to a category. For example, the left of Fig. 20 is an original photograph,
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Fig. 19 The work flow of neural projection denoising (NPD)

Fig. 20 An instance of semantic segmentation

and after semantic segmentation, an image such as the one on the right is produced,
where each color represents the class of a corresponding object. Nowadays, semantic
segmentation is widely used in various fields, such as intelligent vehicle driving,
geographic information systems, medical image analysis, and robotics.

Many types of methods have been proposed for semantic segmentation. Tradi-
tional algorithms divide an image into different parts by some region and edge detec-
tion techniques, and then gather similar pixels with clustering methods. Traditional
algorithms of semantic segmentation are usually specific to the problem, and the
universal algorithm of segmentation for all images does not exist. But deep learning
approaches can solve this problem. With the advancement of computing power and
the development of deep learning theory, convolutional neural networks are intro-
duced to the field of semantic segmentation [68]. Different semantic segmentation
methods for different data types are described in the following sections, respectively.
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Fig. 21 A skip architecture that combines outputs from low layers and high layers

3.1 Semantic Segmentation for RGB Images

An RGB image is a color pixel group of M × N × 3 size, where each color pixel
corresponds to a three-value group, and the three values correspond to the red, green,
and blue components of the RGB image at a specific spatial position, respectively.

There are a lot of RGB image datasets for training and testing semantic segmen-
tation models. Pascal Visual Object Classes (VOC) 2012 dataset [14] consists of
common objects in daily life, such as animals, vehicles, and electrical appliances.
The Microsoft Common Objects in Context1 (COCO) [30] dataset provides images
of common objects in complex daily scenes for the broader scene understanding via
semantic segmentation. The Cityscapes dataset [11] is suitable for training models
for the control of autonomous vehicles, and it includes thousands of urban street
scenes with fine annotations and coarse annotations.2

For RGB images, a classical model is Fully Convolutional Networks (FCN) [32]
which is an end-to-end semantic segmentation method and achieves satisfied seg-
mentation performance in PASCAL VOC. FCN is not sensitive to the size of input
image, it can restore the images with various sizes to the same size as the input
image by upsampling that is a learnable deconvolution. In addition, FCN adds a skip
architecture (shown in Fig. 21) that upsamples the outputs of the high layer to make
the output size keep the same as those of lower layers. Depending upon these special
architectures, FCN performs more outstanding than contemporary deep networks in
semantic segmentation.

Based on FCN, SegNet [2] introduces pooling indices that indicate the relative
locations after pooling to reduce the computational cost and increase the accuracy.

1 https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-
context/.
2 https://www.cityscapes-dataset.com/.

https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/
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The architecture of SegNet consists of an encoder module, a decoder module and
a softmax classifier for pixel-level classification that predicts the labels of pixels as
outputs with the same resolution as inputs [2]. Different from FCN and SegNet [2],
Deeplab [8] uses atrous convolution which controls the resolution of feature map and
represents a larger context without increasing the structure and computational costs.
Furthermore, Deeplab introduces Conditional Random Field (CRF) to deal with fine
information of edges [8, 15].

3.2 Semantic Segmentation for RGB-D Images

The RGB-D image is composed by a RGB image and its corresponding depth image.
A depth image is an image channel in which each pixel relates to a distance between
the image plane and the corresponding object in the RGB image. RGB-D images
contain not only 2D plane information but also spatial distance and geometric rela-
tionships.

NYU-Depth V2 dataset,3 captured by the Microsoft Kinect, contains plenty of
indoor scenes caught from video sequences [52]. SUN RGB-D dataset4 is large-
scale, similar to Pascal VOC in size, and contains tens of thousands of RGB-D
images captured by four different sensors, which benefits training algorithms for
scene understanding [53].

Images with distance information cannot directly input the models that only deal
with RGB images. Instead, the depth data of RGB-D images are encoded as three
channels on each pixel just like RGB images. In this way, the RGB-D images are
transformed into RGB images, which is suitable for models designed for RGB data.
Long Short-Term Memorized Context Fusion (LSTM-CF) model [28] takes advan-
tage of some convolutional layers and a memory layer that encodes the short-range
and long-range spatial relationships in the image to get the context in the depth
channel. Besides, Zeng et al. [69] used the fully CNN to segment images and label
every pixel from all viewpoints of RGB-D data, which utilizes multi-view data to
improve the performance of current single-view approaches. Ma et al. [34] proposed
a novel DNN model to perform semantic segmentation in RGB-D images. The deep
neural network [34] can predict consistent semantic information from multiple per-
spectives and perform more consistently in semantic prediction than that trained by
single-view images. Unlike those applying 2D semantic segmentation methods to
RGB-D images directly, several works try to use 3D neural networks to treat data
with color and geometric information. 3D Graph Neural Network (3DGNN), pro-
posed by Qi et al. [43], leverages 3D point cloud data to generate k-nearest neighbors
and trains themodel by the time back-propagation algorithm so that each node finally
outputs the predicted semantic labels of the corresponding pixel.

3 https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html.
4 https://rgbd.cs.princeton.edu/.

https://cs.nyu.edu/protect unhbox voidb@x penalty @M  {}silberman/datasets/nyuprotect LY1	extunderscore depthprotect LY1	extunderscore v2.html
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://rgbd.cs.princeton.edu/
https://rgbd.cs.princeton.edu/
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Fig. 22 Sample of LiDAR point cloud

3.3 Semantic Segmentation for LiDAR Point Cloud

Light Detection and Ranging (LiDAR) point cloud data are captured and analyzed by
LiDAR sensor that detects and produces precise x, y, z coordinates of target objects
by laser light. Figure 22 demonstrates the sample of LiDAR point cloud data.

There are many point cloud datasets. Stanford 2D-3D-S5 is an indoor spa-
tial dataset with multiple modals includes more than 70,000 images with global
XYZ measures and point clouds with semantic annotations. Sydney Urban Objects
Dataset6 contains various common urban road objects in Sydney, Australia and
includes different categories of vehicles, pedestrians, signs, and trees independently
scanned multiple times under non-ideal sensing conditions that represent actual
urban sensing situation. Large-Scale Point Cloud Classification Benchmark7 pro-
vides hand-labeled 3D point clouds of natural and urban scenes with the scale of
about four billion labelled points.

3DGNN [43], introduced in Sect. 3.2 for processing RGB-D images, can also
handle LiDAR point cloud. 3DGNN selects and analyzes the point cloud through a
dense three-dimensional grid, and then employs a three-dimensional CNN to gener-
ate labels corresponding to each voxel. Finally, 3DGNN maps the labels back to the
point cloud [43]. PointNet [40] deals with LiDAR point cloud data directly without
transforming it to regular voxel grids, which reduces computational consumption.
PointNet can solve the problem of spatial disorder of point cloud data through the

5 http://buildingparser.stanford.edu/dataset.html.
6 http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml.
7 http://www.semantic3d.net/.

http://buildingparser.stanford.edu/dataset.html
http://buildingparser.stanford.edu/dataset.html
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml
http://www.semantic3d.net/
http://www.semantic3d.net/
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maximum pooling layer. PointNet learns discrete key points in the point cloud data
that exactly represent the outlines of the object. PointNet has performed good robust-
ness against missing data or small perturbations.

4 Object Detection

Object detection is the process of finding object instances of a certain class, such as
bikes, persons, traffic lights, in videos or images. Different from classification tasks,
object detection is able to detect multiple objects and their locations in the image.
Generally speaking, the methods of 2D object detection can be divided into twomain
types. First, to generate the fixed number predictions on the grid (i.e., one-stage
method); second, to make use of a proposal network to detect objects and utilize
a second network to fine-tune the proposals and output the final predictions (i.e.,
two-stage method). Furthermore, 3D object detection methods are essential for point
cloud data of intelligent vehicles. This chapter will introduce the application of object
detection methods in intelligent vehicles, and then describe two types of 2D object
detection methods; finally, the methods for 3D object detection are summarized.

4.1 2D Object Detection

Object detection aims at recognizing instances of a predefined object class set (e.g.
motorcycle, dog) and describing the locations of detected objects in the image with
a bounding box. One example is shown in Fig. 23.

2D object detection methods can be divided into two categories, i.e., one-stage
object detection methods and two-stage ones [33]. One-stage object detection meth-
ods usually employ a straightforward fully convolutional architecture whose outputs
are classification probabilities and box offsets (w.r.t. pre-defined anchor box) at each
spatial position. On the other hand, the workflow of two-stage object detection meth-
ods is more complicated than one-stage ones. Two-stage object detection methods
first adopt the region proposal network (RPN) to filter out the regions with the high
probability of containing an object from the entire image. Then the selected regions
(named proposals) are fed into the region convolutional network (R-CNN) to get
their classification scores and spatial offsets. One-stage detection methods are more
efficient and elegant in design, while the two-stage detectionmethods usually achieve
better accuracy than one-stage ones [77]. The discussions on these two kinds of object
detection methods are provided as follows.
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Fig. 23 The example of object detection

4.1.1 One-Stage Object Detection

One-stage object detectionmethods usually involve a simpler and faster model archi-
tecture than two-stage ones. YOLO and its variants [44–46] compose the represen-
tative model family for one-stage object detection. YOLO v3 is the well-known
representative one-stage object detection method. YOLO v3 utilizes a variant model
of Darknet, which is composed by a 53-layer network that is trained via ImageNet
dataset. For detecting objects, 53 more layers are stacked onto it, which composites a
106-layer fully convolutional underlying architecture for YOLO v3. Figure 24 shows
YOLO v3’s architecture.

The architecture of YOLO v3 is characterized by residual skip connections and
upsampling operations. The most salient feature of YOLO v3 is the multi-scale
detection that the detections are achieved at three different scales.YOLO is composed
by a fully convolutional networkwhoseoutput ismadeby a1 × 1kernel on the feature
maps. In YOLO v3, the detection is implemented bymultiple 1 × 1 detection kernels
on feature maps of three different sizes at three different positions in the network.

The detection kernel is of size 1 × 1 × B × (5 + C), where B denotes the number
of bounding boxes a cell on the featuremap can predict, ‘5’ represents the 4 bounding
box attributes and one object confidence, and C denotes the number of classes. The
feature map generated by the kernel has identical height and width with the previous
feature map, and involves detection attributes along with the depth. The cell (on the
input image) that contains the center of the ground truth box for an object is chosen
to be the one responsible for predicting the object. The working flow of the detection
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Fig. 24 The architecture of YOLO v3 network

kernel in YOLO v3 is shown in Fig. 25 where the ground truth box is marked yellow
whose center is contained in the cell marked green.

The predictions generated by YOLO v3 are at three scales, which are precisely
produced by downsampling the input image dimensions 32, 16 and 8, respectively.
The first detection is made by the 82nd layer (as shown in Fig. 24). For the first 81
layers, the image is down-sampled by the network, which guarantees that the 81st
layer has a stride of 32. For example, given an image of 416 × 416, the resultant
feature map is of size 13 × 13. The 1 × 1 detection kernel implements a detection
operation and generates a detection feature map of size 13 × 13 × 255, where the
channel of the 1 × 1 kernel is 255. Then, the featuremap from layer 79 is subjected to
a few convolutional layers before being up sampled by 2× (two times up-sampling)
to dimensions of 26 × 26. The feature map is then concatenated with the feature
map from layer 61. The combined feature maps are again subjected a few 1 × 1
convolutional layers to fuse the features from the earlier layer (layer 61). Then,
the layer 94 makes the second detection and generates a detection feature map of
26 × 26 × 255. A similar procedure is followed again, where the feature map from
layer 91 is subjected to some convolutional layers before being depth concatenated
with the feature map from layer 36.

YOLOv3 can achieve satisfied performance on small object detection tasks which
is benefited from the multiscale detections (different scale detections generated by
different layers). The concatenation of different scale feature maps helps preserve
the fine-grained features and improve the accuracy of detecting small objects.
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Fig. 25 The working flow of
the detection kernel in
YOLO v3

YOLO v3 uses 9 anchor boxes. Three for each scale. Usually, the k-means algo-
rithm needs to produce 9 anchors from customized data sets for training the YOLO
v3 model in each scale. Then the anchors are arranged following the descending
order of one dimension. The three biggest anchors of each scale are retained (three
anchors are retained for each scale).

4.1.2 Two-Stage Object Detection

Compared with one-stage object detection methods, the two-stage methods have
several superiorities:

• Two-stage object detection methods can filter out most negative proposals via
sparse sampling of region proposals. On the contrary, one-stage object detection
methods handle all the regions on the image and suffer from the risk of class
imbalance.

• Depending upon the ROIAlign [19] operation, two-stage object detection methods
can extract more representative features compared with one-stage ones.

• The object location can be regressed twice by two-stage detectors (once on each
stage), the refinement of bounding boxes is better than that in one-stage methods.

Faster R-CNN [48] is a well-known two-stage object detection method that sig-
nificantly outperforms its predecessor Fast R-CNN [17]. Fast R-CNN [17] uses a
selective search algorithm to propose the regions where an object could be found.
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Fig. 26 The workflow of
faster R-CNN

Fig. 27 The architecture of faster R-CNN

However, the proposals are generated as part of the convolution operation in Faster R-
CNN, which improves both efficiency and speed. The workflow and the architecture
of Faster R-CNN are shown in Figs. 26 and 27, respectively.

Faster R-CNN is characterized by themodule of Region ProposalNetwork (RPN).
The RPN works by taking the output of a pre-trained deep CNN, such as VGG-16,
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and passing a small network over the feature map and generating multiple region
proposals and a class prediction for each. Region proposals are bounding boxes that
are based on so-called anchor boxes or pre-defined shapes. The class prediction is
binary which indicates the presence of an object in the proposal region. A procedure
of alternating training is used where both sub-networks are trained at the same time.
This allows the parameters in the feature detector deep CNN to be fine-tuned for
both tasks at the same time. The outputs of RPN (a bunch of boxes/proposals) are
sent to a classifier and a regressor to check the occurrence of objects. RPN predicts
the possibility of an anchor being background or foreground, and refines the anchor.

4.2 2D Object Detection of Fisheye Camera

Amongall the visible light image sensors, fisheye cameras are popular for self-driving
systems owning to the wide range of views it captures at one time. More specifically,
a camera equipped with a canonical fisheye lens provides a rectangular projection up
to 180◦ field of view but the objects around the lens are seriously distorted, rendering
the detection task more difficult [38].

Object Detection of fisheye camera also needs a detection framework, yet fisheye
images require further processing on coordinate conversion, and during the burden-
some and repeating calculation, great importance should be attached to computation
reduction. The detection framework could adopt object detection models taking a
2D perspective image Ip as mentioned in Sect. 4.1, and we denote it as Np. Then
the problem could be formulated as fine-tuning Np to approximate N f to carry out
object detection on fisheye dataset.

For coordinate conversion, a spherical image Is is defined in a spherical coor-
dinate system (θ, φ), and image I f ∈ I W f ×Hf ×3 captured by a fisheye camera on
the image coordinate (u, v) can be generated from Is by equirectangular projection
ρe : (u, v) → (θ, φ), as shown in Fig. 28. While for redundant computation reduc-
tion, images are partitioned into multiple non-overlapping domains and equivariance
is assumed across domains thus the problem can be further simplified:

N f (ρe(Is, Li, j (θi , ϕi ))) ≈ Li, j N f ρe(Is, (θi , ϕi )), i �= j (9)

For instance, Ren et al. [44] adopt YOLO architecture as Np. Supposing the input
image to be devided into S × S grid, each cell would correspond if the object center
falls into the cell and then the cells become the basic units to generate distortions by
comparing distortion levels defined as:

rd = 1

θ
tan−1(2ru) tan

θ

2
(10)

where ru, rd and θ are demonstrated in Fig. 28.
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Fig. 28 Relationship between image coordinates of fisheye image and the hemisphere coordinates
of camera

Another difficulty to process on fisheye images comes from the imbalance of
objects among data samples caused by severe distortion, as shown in Fig. 29. Cater-
ing to the imbalance in distortions, which directly results in the imbalance of object
samples across a fisheye image, ∝-balanced cross-entropy (CE) loss rigorously cat-
egorizes samples positive and negative for each cell, for ground truth p̂ ∈ −1, 1, a
piecewise function for any sample takes value as:

pt =
{

p, if p̂ = 1

1 − p, otherwise
(11)

Then, focal loss (FL) differs all the samples by calling them easy or hard:

FL pt = −(1 − pt )
γ log(pt ) (12)

where γ ≥ 0 is a tunable parameter and CE becomes a particular case of FL. Ren et
al. [44] formulates the problem with ideas in transfer learning, where domains are
defined by the likelihood of image distortion.

To extract the domain-invariant features, the easy and hard cases are reformulated
as two pseudo-domains and the goal becomes to better balance the easy and hard
cases with information as much as possible. Therefore, the domains in one fisheye
image are defined along the distance from the image center, and the spatial focal loss
replaces per-sample weights with domain-based weights:

SFL(pi,ct ) = − log(pi,ct )
1

ni

ni∑

j=1
(1 − pi, jt )γ (13)

Applying SFL to YOLO v2, the loss function becomes:
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Fig. 29 Distortion imbalance among pedestrians of fisheye dataset

Loss = Llocation + LSF + Lobjclass (14)

where Llocation regularizes the bounding box for location estimation and Lobjclass

penalizes classification result, where the bounding boxes are shown in red in Fig. 30.

4.3 3D Object Detection

3D object detection is essential for intelligent vehicles. The faithful representation
of the 3D space around intelligent vehicles are usually required by various tasks
of autonomous vehicles, such as scene understanding, planning, motion control.
Recently, researchers have been leveraging the high precision LiDAR point cloud
for accurate 3D object detection.

Monocular 3D object detection [35] predicts 3D bounding boxes with a single
monocular, typically RGB images. 3D object detection from RGB images is fun-
damentally ill-posed because the critical information of depth is lacking in RGB
images. Usually, intelligent vehicles are rigid bodies with known fixed shapes and
sizes. It is possible to leverage the strong priors for intelligent vehicles to infer 3D
bounding boxes based on 2D object detection.

2D object detection methods yield four degrees of freedom (DoF) axis-aligned
bounding boxes with center (x, y) and 2D size (w, h). In contrast, the 3D bound-
ing boxes in autonomous driving context generally have 7 DoF: 3D physical size
(w, h, l), 3D center location (x, y, z) and yaw. The key problem is to recover the
7-DoF object from the 4-DoF one.

Deep3DBox [35] is proposed to regress the observation angle and 3D object
size (w, h, l) from the image patch enclosed by the 2D bounding box. The 7-DoF
can be recovered by inferring the 3D location with three unknown center locations
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Fig. 30 Object detection results on fisheye pedestrian image (FPI) dataset

(x, y, z). Theworkflow that infers the 3D position based on 2D bound boxes is shown
in Fig. 31.

Many recently proposed methods [31, 37, 75] on Deep3DBox introduce different
forms of second-stage for fine-tuning the generated 3D cuboid. However, there exist
two drawbacks for this kind of 3D object detection method. First, it depends upon the
detection accuracy of 2D bounding box. If there existmoderate errors in 2D bounding
box, the accuracy could be significantly hurt for 3Dbounding box estimation. Second,
the optimization relies on the size and position of bounding boxes but not the image
appearance cue.Hence, it can hardly benefit from the large number of labeled training
data.

The intelligent vehicles usually involvemultiple sensors such as cameras, LiDAR.
It is an attractive issue to fuseRGB images andLiDARpoint cloud data for improving
3D detection performance. VoxelNet [75] is an end-to-end network that combines
feature extraction and bounding box prediction, it is designed for object detection on
the 3D point cloud. Frustum PointNets [39] significantly reduces the search space
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Fig. 31 The pipeline inferring 3D position from 2D bounding box

via mature 2D object detection methods; it extracts the 3D bounding frustum of an
object by extruding 2D bounding boxes from image detectors and then performs 3D
object instance segmentation in the 3D space trimmed by the 3D frustums.

5 Object Tracking

Object tracking can be defined as the problem of estimating the trajectory of an object
in the image plane as it moves around the scene [62]. Object detection performed by
intelligent vehicles is a crucial operation that comes ahead of various autonomous
driving tasks [59], such as object tracking, trajectories estimation, and collision avoid-
ance. Object tracking methods vary with respect to different data types, e.g., RGB
images and point cloud data. This chapter will introduce object tracking from two
aspects, i.e., object tracking for RGB images and that for point cloud, respectively.

5.1 Object Tracking for RGB Images

Object tracking aims to estimate the specified object position in subsequent frames
based on its position in the first frame of the video. Similar to object detection,
object tracking enhances the accuracy of subsequent object detection and grasping the
object’s subsequent position. In order to classify themethods of object tracking, there
are several ways to categorize them, including the object acquisition and inference
method.
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Fig. 32 Detection-based tracking and detection-free tracking

According to the type of object acquisition, Object tracking methods can be
divided into two categories. One relies on object detection results, called Detection-
Based Tracking (DBT). The other is independent of object detection results, named
Detection-Free Tracking (DFT). Figure 32 shows the difference between Detection-
Based Tracking and Detection-Free Tracking.

In DBT, the object detector is pre-trained, which gives the DBT a powerful ability
to capture objects, such as pedestrians and vehicles. Thus, the performance of DBT
relies on the object detector to a large degree.Different fromDBT,DFTneeds toman-
ually initialize the object position instead of the assistance of the target detector. Due
to the capacity of automatically determining the object location, DBT is the main-
streammethod right now. For example, Wang et al. [63] proposed the DBT approach
employed the RGB and Thermal (RGBT) image. Similarly, RGB and Depth(RGBD)
images are usually used in the DBT tracking method owing their it valuable depth
information [60, 61].

Toward different data processing approaches, the inference methods are different.
The inference methods are divided into two categories: probabilistic inference and
deterministic optimization. In detail, most of online tracking leverages probabilistic
inference, and offline tracking tends to apply deterministic optimization. About the
probabilistic inference, object trackingmethods adopt several probabilistic inference
models, which estimate object location in the future frames based on present obser-
vations. Hence, Markov property is assumed for estimation. Specifically, Markov
property can be expressed as:

P(St | S1:t−1) = P(St | St−1) (15)

where St denotes state of the t-th frame. S1:t−1 = S1, S2, · · · , St−1 represents the state
from the first frame to the t − 1 th frame. The state of the object and its observations
are interrelated. The observations of the object can be described as:
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P(O1:t | S1:t ) =
t∏

i=1
P(Ot | St ) (16)

where Ot denotes observations of the t-th frame. O1:t = O1, O2, · · · , Ot represents
observations from the first frame to the t-th frame. The algorithm establishes state
models and observation models based on the above equations, which are employed
to estimate and update the state. For instance, Kalman filter and particle filter-based
method are prevalent probabilistic inference models.

Different fromprobabilistic inference-basedmethods, deterministic optimization-
basedmethods tend to adopt maximum a posteriori to optimize the state of the object.
Deterministic optimization is popular for offline tracking. There are several methods
based on deterministic optimization, such as bipartite graph matching, conditional
random field, and dynamic programming.

5.2 Object Tracking for Point Cloud

Compared to 2D tracking, 3D multi-object tracking is a more challenging job and
more applicable for autonomous driving. The tracking objects in 3D multi-object
tracking are three-dimensional and have the depth information which is not provided
in RGB images. The drawback of 2D tracking algorithms is the limitation imposed
by the camera. Because of the sensitivity to light and weather conditions, the cam-
era affects the performance of the algorithm. In contrast, point cloud generated by
LiDAR, which typically not be affected by light and weather conditions. In addition,
point cloud data have more accurate information on the distance and the shape of
objects, which is helpful in real time tracking. Thus, point cloud-based 3D object
tracking algorithm attracted many experts and companies invest in this field.

Generally, 3D multi-object tracking can be regarded as a deeper task of 3D object
detection. In a 3D multi-object tracking task, it needs to detect important objects
in first frame as much as possible, and track them in the following frames with
their unique IDs attained at the detection stage. There are mainly three components
in 3D tracking, including 3D object detection, 3D Kalman filter and point cloud
re-identification, as shown in Fig. 33.

Normally, it can be described as follow. Firstly, with the help of an existing
3D object detector, objects in the point cloud will be enveloped by 3D bounding
boxes. The detection result D often owns the following format: D = (x, y, z, w, l, h,

θ, score)where (x, y, z) represents the x, y, z coordinates of the object respectively,
(w, l, h) represents the width, length and height of the 3D bounding box respectively,
θ means the orientation angle of the object and score is the detection score. Nor-
mally,many point cloud-based tracking algorithms adapt existing 3Dobject detection
architecture, such as the Sparsely Embedding Convolutional Detection (SECOND).
Secondly, the system needs to predict the state of the object in next frame, and shows
its moving state with 3D Kalman filter. The current frame position is predicted based
on the information of historical frames. In this stage, it needs to satisfy two equa-
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Fig. 33 The workflow of object tracking for point cloud

tions: state equation and observation equation. At last, it is necessary to match the
IDs of objects in the current frame and historical frames according to the similarity
of features in different frames. In some cases, a certain object would be occluded by
obstacles in some frames, which may cause the ID of this object to jump to the other
objects. Therefore, the target of re-identification is to find the original trajectory by
comparing the features of the tracked object.

However, there are several difficulties in point cloud-based tracking listed below:

1. Object occlusion. Like that in 3D object detection, the point cloud data of the
occluded object is truncated, which will change the feature of object and hinder
the algorithm from tracking the object. In tracking, the occlusion problem will
cause the un-matching of features about the object between the current frame
and historical frames.

2. Scale variance of shape. Owing to the property of LiDAR, objects near LiDAR
have more points, while that far away from LiDAR have fewer points, which
will make the same object have a different shape feature in different frames even
though no occlusion. This problem will affect the performance of the tracking
algorithm greatly.

3. Background disturbing.When a pedestrian, a dynamic object, is near a treewhich
is a static object, the points of pedestrians sometimes will be clustered together
with the points of tree. And after the pedestrian walks away from the trees, the
features of pedestrian will greatly change.

4. Computation burden.Due to the property of point cloud, like sparsity, the image’s
tracking algorithms can’t be used directly. So, researchers tried to project 3D
point cloud into different views. After that, fusion schemes can also be in
3D object recognition, e.g., multi-view convolutional Neural Network for 3D
shape recognition [54]. However, projecting point cloud into different views
will greatly increase the computation because each frame of point clouds will be
projected. Reducing the number of point cloud frames need projected can help
to lower the cost, but it will cause the lack of information, which will decrease
the accuracy of the tracking algorithm.
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Despite existing several difficulties in point cloud-based tracking, it still has many
successful approaches proposed by researchers. P2B proposed in [42] is a point-to-
boxmethod for 3Dobject tracking. Thismethod based on PointNet++ [41], which is a
famousPointNet-based 3Dobject detectionmethod.Thismethoddivides the tracking
task into two parts. One is target-specific feature augmentation with a PointNet++
backbone. The second part is the target proposal and verification.

Because of the great success of Siamese networks in the 2D image object tracking
task, some experts want to extend it into 3D tracking [16]. Giancola et al. [16]
proposed the first 3D Siamese tracer. In this method, object candidates are generated
by a Kalmen filter firstly, and then they will be passed into an encoding model for
a representation. And then a cosine measurement function is used to measure the
similarity with detected objects.

6 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is the standard technique for
autonomous navigation of intelligent vehicles in an unknown environment. SLAM
consists of localization and mapping. SLAM is usually applied in the tasks of out-
door and indoor navigation in environments that have sufficient landmarks, navigable
terrain and distinct features. This chapter will introduce the concept of SLAM and
describe 2D and 3D visual location and mapping.

6.1 SLAM Overview

According to different positioning realization technologies, the location system of
autonomous vehicles is usually summarized into three kinds: (1) Signal positioning
based system. It utilizes the Global navigation satellite system (GNSS) to locate the
position of vehicles. (2) Inertial measurement unit (IMU) based system. The location
system employs an internal measurement unit to estimate the vehicle position and
orientation. (3) Environmental characteristics based system. Leveraging the feature
captured by the LiDAR or camera, the location system could obtain the current
position and attitude of the vehicle by matching the feature stored in the database.

The current mainstream solutions for high-precision positioning of autonomous
vehicles generally adopt a fusion method. It can be roughly divided into three cat-
egories: (1) GPS and IMU sensors fusion method, which integrates navigation and
position function. (2) LiDAR and high-precision environment map fusion method,
which matches the point could feature captured by LiDAR with the stored envi-
ronmental characteristic feature. (3) GNSS, IMU, and environmental feature fusion
method,which combines all the location approachmentioned above. The global posi-
tioning system belongs to absolute positioning. However, the GPS single-point posi-
tioning method is affected by the ionosphere, troposphere, signal propagation error,
satellite clock error, orbit error, and signal propagation error. The positioning error
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Fig. 34 Schematic diagram
of RTK principle

is at the meter level, which cannot meet the use of smart cars demand [3]. The RTK
carrier phase differential positioning principle is shown in Fig. 34, which consists
of satellites, reference stations, mobile stations and communication equipment. The
base station and the mobile station receive satellite information at the same time, and
then the base station sends the received information to themobile station in real-time.
Themobile station compares the satellite information received by itselfwith the satel-
lite information from the base station to find the difference and solve the coordinates.

However, the RTK carrier phase differential positioning technology in practical
applications is restricted by the use environment. For example, when a smart car is
driving, it is inevitable to pass overpasses, high-rise buildings, continuous shades of
trees, and other signal obstructions. Due to those obstructions, the location system
generally loses the signal and is unable to output positioning information. Therefore,
there are two positioning methods adopted. Firstly, an inertial navigation system
based on the fusion of GPS and IMU is applied. IMU can output heading, attitude,
position, and other information. When GPS signals are lost for a short time, the
Kalman filter algorithm is used to fuse the IMU data set to obtain stable positioning
information [27].

Another type of positioningmethod is to use high-precision maps. High-precision
maps gradually change from simple to complex. SLAM can be divided into two
categories: In order to meet the needs of autonomous vehicles, we need SLAM
technology. SLAM is based on 2D vision or 3D vision. SLAM can use the image
sensor to calculate the image information around the autonomous driving system,
draw the map in real-time and give the vehicle’s location at the same time. As shown
in Fig. 35, visual SLAM is a SLAM method that uses a camera as a sensor [36].
According to the different camera sensors, it can be divided into monocular cameras,
binocular cameras, and RGB-D cameras. 3D SLAM mainly refers to the location
solution using LiDAR as the sensor. According to the difference of the LiDAR beam,
it can be divided into 2D LiDAR SLAM based on single-line LiDAR and 3D LiDAR
SLAM based on multi-line LiDAR.
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Fig. 35 3D point cloud
mapping. This figure
describes the 3D cloud data
with different colors in a
bird’s view and denotes
points of different elevations

6.2 2D Visual Location and Mapping

Similar to the human eyes, the camera could obtain wealthy scene information.
Due to the same reason, visual SLAM has become the hottest research direction in
the SLAM field. In 2007, MonoSLAM [12] was the world’s first monocular vision
SLAM solution that meets real-time requirements. MonoSLAM is a SLAM method
based on estimation theory to extend Kalman to track very sparse feature points.
MonoSLAM solves the problem that visual SLAM could only rely on the camera to
collect data in advance and then locate and build maps offline.

In 2007, Klein proposed the PTAM (Parallel Tracking and Mapping) method
[23], which realized the parallel optimization of the tracking and mapping process.
This method effectively reduces the amount of calculation by increasing the key
frame mechanism and selecting images that meet the requirements for processing.
Tracking process is mainly divided into 5 steps: (1) FAST [58] feature extraction. (2)
Map initialization. (3) Tracking and location. (4) Select key frame. (5) Relocation.
Mapping process is mainly divided into 4 steps: (1) Local bundle adjustment. (2)
Global bundle adjustment. (3) Extract key frame to map. (4) Polar search and add
points to the map.

The key frame-based monocular vision SLAM algorithm needs to extract image
features at first. The FAST algorithm compares a pixel with enough pixels in its
surrounding neighborhood to determine whether it is a corner point. Then, the corner
points are filtered by non-maximum suppression. As shown in Fig. 36, the FAST
algorithm selects a total of 16 pixels for pixel difference calculation. The probability
that the center pixel is a corner point is determined by themagnitude of the difference.
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Fig. 36 FAST-9 feature point detection, 9 represents a circle with a radius of 3 centered on the
pixel p

After selecting the candidate corner points of the image, the second frame of
images is selected through the block matching of the Single Shot Detector (SSD).
According to the matching of the feature points between the two frames of images,
the homography matrix between the two frames of images is calculated. Then, the
corresponding rotation matrix and translation matrix are decomposed as the initial
pose of the camera. According to the obtained rotation matrix, translation matrix
and feature point pixel coordinates, the linear triangulation depth estimation method
is used to estimate the world 3D coordinate system in the first frame of coordinate
system. Finally, the world coordinate system of the feature points and the initial pose
of the camera are optimized by the Bundle Adjustment method [64].

According to the camera pose of the previous frame, the camera pose of the current
frame is predicted by using themotionmodel and the visual tracking algorithmnamed
ESM. The PTAM method does not need to process each image finely, but string
together several key images, and then optimize its trajectory and map. However, the
positioning method of the camera’s mapping is not suitable for large scenes, and the
tracking is easier to lose.

6.3 3D Visual Location and Mapping

Compared with camera sensors, LiDAR attracts much more attention. It is because
of its highmeasurement accuracy, long-range ranging, and independency on external
light.

Early research on 3D laser SLAM often remained on the 3D reconstruction tech-
nology of static objects. In 1992, Besl et al. [4] proposed the Iterative Closest Point
(ICP), which is a high-level registration method based on free-form surfaces. This
method uses the distance between the two point sets as the error function, and iter-
atively calculates the rotation and translation of the point sets to optimize the cor-
respondence between the points in the two point sets. And it minimizes the error
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Fig. 37 Plane point
matching

Fig. 38 Edge point
matching

function at last. Currently, the ICP method is the most widely used method in 3D
point cloud matching.

Then in 2003, Biber et al. [5] proposed a method based on Normal Distributions
Transform (NDT). Based on the assumption that the point cloud satisfies the normal
distribution, thismethod achieves the inter-framematching by calculating each grid’s
probability density function on the cloud network grid. The registration point cloud
is transformed to the reference point cloud. Then, the probability of each point falling
in the corresponding grid is calculated based on the normal distribution parameters.
Finally, the sum of probabilities is taken as the objective function, and the transfor-
mation parameters are searched through iteration to achieve the minimum sum of
probabilities.

In 2014, Zhang and Singh [70] proposed a 3D laser SLAM method suitable
for large environments-LOAM. LOAM obtains radar odometer information through
high-frequencymotion estimation and low-frequency environmentmapping to obtain
point cloud map information. Firstly, an inertial measurement unit (IMU) is used
to correct the point cloud distortion. Then, point-to-line and point-to-surface ICP
registration is performed by extracting the line feature and surface feature of the
adjacent point cloud as shown in Figs. 37 and 38 so as to obtain the odometer
information.

Finally, the local map is established by selecting key frames, and the point-to-line
and point-to-surface ICP algorithm is also adopted to realize the registration of key
frames and local maps. In this way, the pose transformation relationship between
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the key frames is obtained, and a global map is established based on the key frames
and the pose transformation relationship. In 2015, Zhang and Singh [71] merged
vision sensor data to propose V-LOAM, and discussed the non-convergence of the
optimization process. However, the V-LOAM method lacks loop closure detection
module making cumulative errors inevitably appear under long-term work. In 2018,
Zhang and Singh [72] proposed a data processing scheme LVIO, which is suitable
for self-motion estimation andmapping. This scheme performsmodules sequentially
and recurrently for self-emotion estimation with 3D LiDAR, camera and IMU.

In 2018, Shan and Englot [50] improved the LOAMmethod and proposed LeGO-
LOAM. On the basis of LOAM, light weight and ground optimization are realized.
First, the point-to-surface ICP algorithm is improved by fusing the radar odometer.
This improved method extracts ground points from each frame of the point cloud as
a plane point set, and then based on the freedom of the plane, completes the solution
of roll, pitch, and translation along the z-axis. In the same way, the remaining point
cloud is used as the edge point to complete the solution of yaw, translation along the
x-axis and translation along the y-axis. The LeGO-LOAM method also implements
a loop detection module based on odometer information, and realizes loop detection
by establishing a pose graph, which solves the LOAM’s disadvantage about lacking
back-end optimization. In 2020, Shan et al. [51] proposedLIO-SAMbased onLeGO-
LOAM, which adds IMU pre-integration, GPS information, and removes the inter-
frame matching module. The flow chart of the LIO-SAM algorithm is shown in
Fig. 39. The inputs are IMU, point cloud and GPS. The LIO-SAM method obtains
the IMU pre-integration factor through IMU measurement between adjacent key
frames. Then, the laser odometer factor is obtained by matching the key frame with
the local map. When a new pose node is inserted into the factor graph, the GPS
factor is added to the pose node. Finally, the loop factor is obtained by matching the
key frame and the candidate loop key frame, and the overall map is optimized and
constructed based on the optimization of the factor graph.

7 Multi-sensor Fusion

Human being makes decisions by combining multiple sensory data, such as auditory
sense, visual sense. Similarly, the multi-sensor fusion is essentially important for
autonomous vehicle. In addition, the multi-sensor fusion is widely applied in the
fields of robotic systems, defense systems and transportation systems.

7.1 Multi-sensor Fusion Overview

RGB image captured by camera has rich texture information and semantic informa-
tion which are helpful to classification. But it lacks depth information. Point cloud
from LiDAR contains detailed and accurate localization information, which is good
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Fig. 39 LIO-SAM framework

for estimating distance and position. While, it doesn’t offer semantic information.
Radar has advantages in velocity measurement. In a word, combining multiple sen-
sors can supplement information needed in 3Dobject detection and improve detection
accuracy and robustness. As shown in Table 3, a single type of sensor brings disad-
vantages if used independently. Thereby, to increase the overall performance, more
andmore studies attempt to adopt various sensors with different strategies and fusion
schemes.

In general, the solution to multi-sensor fusion can be divided according to their
pipeline into three types, i.e., early fusion, late fusion and deep fusion, as shown in
Fig. 40. For the type of early fusion and the fusion operation is just concatenating data
obtained by different sensors. The concatenated data are then fed into the detection
network. The type of early fusion can be considered as data-level fusion which tends

Table 3 Advantages and disadvantages of the three sensors

Sensor Range (m) Advantage Disadvantage

LiDAR 100 High accuracy and resolution,
strong anti-interference ability and
wide detection range

Expensive and easily affected by
severe weather

Radar 250 24 h-work, stable performance,
precise velocity measurement and
high resolution

Sensitive in some environment,
cannot detect object’s attribute and
low accuracy

Camera 50 Low cost, rich image information,
can capture object’s attribute

Severely sensitive to lighting and
weather condition, hard to detect
distance
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Fig. 40 Three types of fusion schemes

to generate data with a new format before detection. The type of late fusion focuses
on concatenating features extracted from different sensor data. The type of late fusion
can be considered as feature-level fusion. For the type of deep fusion, the fusion of
features extracted from different sensors are implemented by several different layers,
the fusion operation can explore the interaction relationships among features. The
type of deep fusion can be considered as the hierarchical fusion for features.

7.2 LiDAR and Camera Fusion

The fusion of LiDAR and Camera is widely used in the field of autonomous vehicles,
because it not only utilizes the rich semantic information obtained from camera but
also explores the location information from LiDAR point cloud.

MV3D [10] is one of the most famous methods in this category. MV3D [10] pre-
dicts 3D object based on bird-view image and front view image projected from point
cloud and front-facing image from camera. Figure 41 shows its framework. Three
images will be fed into VGG-based CNNs for feature extraction individually. After
feature extraction, region candidates, generated based on the feature map extracted
from the bird-view image, are projected to each view’s feature map. A RoI pooling
layer extracts the feature corresponding to each view’s branch. At last, three feature
maps fuse together.

Compared to MV3D [10], AVOD [25] accepts RGB image and bird-view image
from the point cloud as input. Similarly, individual featuremaps are extracted through
extraction network. After cropping and resizing, feature maps are fused together for
generating candidate boxes. Candidate boxes with high scores after Non-maximum
Suppression (NMS) are projected back into the corresponding views’ feature maps.
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Fig. 41 The framework of MV3D

7.3 LiDAR and Radar Fusion

Because images have rich texture information, more works focus on LiDAR and
camera fusion. However, neither LiDAR nor camera is friendly to detect occluded
objects and measure velocity. Hence, a lot of works try to fuse LiDAR and Radar for
detecting the occluded object. For example, Hollinger et al. [20] found LiDAR and
Radar fusion is helpful for detecting object occluded by vegetation through exploiting
the different properties of frequency spectra between LiDAR and Radar. Kwon et
al. [26] proposed a detection scheme for partially occluded pedestrians based on
LiDAR and Radar fusion. The authors introduce the new concept of occluded depth
and occlusion RoI in order to determine whether an occluded object exists or not.

Radar has a great advantage in velocity measurement and is not sensitive to
weather conditions. RadarNet [65] utilizes geometrical data and dynamic data from
radar and adopts attention scheme in late fusion, which gains a good performance in
nuScenes dataset [6]. Its overview is shown in Fig. 42. RadarNet is divided into three
parts: voxel-based early fusion, detection network and attention-based late fusion.
In voxel-based early fusion, data from LiDAR and Radar will be presented to the
bird-view image and fused together after voxelization. In attention-based late fusion,
outputs from the detection network and data from radar are fused together for precise
velocity estimation based on the attention mechanism. RadarNet shows robustness
for perceiving dynamic objects.

7.4 Radar and Camera Fusion

The research works on Radar and camera fusion are relatively rare. Lim et al. [29]
proposed FusionNet for Radar and camera fusion. A generalized architecture of
FusionNet is shown in Fig. 43. Experiments have demonstrated that this structure can
improve detection accuracy and model robustness. And the complementary nature of
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Fig. 42 The overview of RadarNet

Fig. 43 A generalized architecture of fusion network for multi-sensor fusion

radar and camera can be utilized to reduce the lateral error. In this structure, data from
each sensor will be fed into a feature extraction branch individually. In the fusion
stage, feature maps from different sensors will be concatenated a unified feature map
with a double number of channels.
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Recently, a newmethod namedYOdar [24]was proposed,which is an uncertainty-
based camera and Radar sensors fusion detection method. In this work, image and
radar data will be fed into a YOLOv3 network and a FCN-8-network [32] for object
detection respectively. Outputs from each branch will be aggregated and passed to a
post-processing classifier for final vehicle detection.

In summary, for object detection, information of various sorts got from surround-
ings is helpful to improve the detection performance. Especially, the value of sur-
rounding information become more important in the complicated task, such as 3D
scenario. Single modality is not only unable to offer a variety of information, but
also own its disadvantages. Thus, it is undoubted that combining multiple sensors
is the wise way to achieve better performance. Besides, applying multiple sensors
facilitates the accuracy and robustness of the model, which is critical to the stability
of the intelligent application. It is reasonable for us to imagine that the fusion-based
method will achieve better performance with the development of sensors.
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3D Object Detection for Autonomous
Driving

Yihua Tan, Siwei Chen, and Pei Yan

Abstract As an important application of Artificial Intelligence (AI), autonomous
driving has developed rapidly in recent years. 3D object detection in autonomous
driving has attracted more and more attention because it provides precise range and
size information of an object. Some of the detection algorithms rely on point cloud
data acquired from LiDAR. Compared with LiDAR, the optical image solution for
autonomous driving is cheaper, so that image-based detection approaches are also
popular. The chapter overview the recent advance on 3D object detection using 3D
point cloud or image directly. For the computing simplicity, the approaches which
detect 3D object from the input images without 3D point reconstruction benefit
the vehicle computational platform. However, the object location accuracy of such
approaches is limited. Therefore, a proposed method named as Descriptor Enhanced
Stereo R-CNN (DESR-CNN) is specified in detail. Several 3D object detection
algorithms are tested on KITTI dataset. The experimental results demonstrate that
DESR-CNN outperforms most of the existing 3D object detection methods based on
binocular images.

1 Introduction

In recent years, object detection has received more and more attention in computer
vision because it is the key to environmental perception for autonomous driving [1].
It is essential to locate and identify cars, pedestrians, and other targets in autonomous
driving tasks. Since 3D object gives more indicative information for intelligent
driving, 3D box surrounding an object is the appropriate output from perception
model, which can better assist automatic obstacle avoidance and emergency braking
operation.

Y. Tan (B) · S. Chen · P. Yan
School of Artificial Intelligence and Automation, Huazhong University of Science and
Technology, Wuhan 430074, China
e-mail: yhtan@hust.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. L. Murphey et al. (eds.), AI-enabled Technologies for Autonomous and Connected
Vehicles, Lecture Notes in Intelligent Transportation and Infrastructure,
https://doi.org/10.1007/978-3-031-06780-8_4

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06780-8_4&domain=pdf
mailto:yhtan@hust.edu.cn
https://doi.org/10.1007/978-3-031-06780-8_4


108 Y. Tan et al.

The recent 3D object recognition methods are mainly divided into two categories:
cloud point-based method [2–7] and image-based method [8–14]. Cloud point-based
method can provide accurate 3D object location because cloud point can provide
dense 3D samples of the environment. However, cloud point acquired from LiDAR
has the disadvantage of expensive cost and complex calculation. On the other hand,
image-based method can fully exploit the enriched texture information at low cost.
Current image-based methods suffer from the inaccuracy of 3D object location.
Meanwhile, most of image-based methods only focus on one type of target, which
cannot meet the requirement of multiple kinds of target detection on complex road
conditions.

In this chapter, after introducing some classical point cloud or image based
approaches, we pay attention to overcome the limitations of the image-based method
because of its application potential. More specifically, we aims to design a multi-
class 3D object detection method with only the binocular image as input. Current
methods achieve coarse location by recovering the 3D object bounding box only
from the 2D boxes in left and right images. Li et al. designed 3D box alignment
approach to improve the accuracy of object detection, which rectifies the coarse
depth of objects by aligning the pixel RGB values between the left and right images
[14]. Nevertheless, the representation of a pixel is not characterized enough onlywith
RGB. Furthermore, not all the pixels in the object area are beneficial to 3D object
alignment since some pixels possibly cause disturbance.

Focusing on the above problems, we also design a 3D Object Detection model
named propose Descriptor Enhanced Stereo R-CNN (DESR-CNN). This model inte-
grates an unsupervised local descriptor into the process of 3D box alignment to
improve the accuracy of depth estimation. The idea of DESR-CNN is to use the
description vectors rather than only the RGB values of pixels to compute the distance
metric in the process of 3D box alignment. The benefit is twofold. First, the descrip-
tion vector is more robust as a distance metric compared with the pixel RGB value.
Second, the responses of interest points corresponding to the descriptor can be used
to determine the contributions of different pixels, which is more flexible than the
original configuration that weights different pixels equally. Finally, the compared
classical approaches and the proposed DESR-CNN are tested on KITTI dataset.

2 Recent Advance in 3D Object Detection

The task of 3Dobject detection is to find all Region of Interests (ROI) in the image and
determine their categories and bounding box. Due to the object occlusion, truncation,
as well as robustness of the surrounding dynamic environment, 3D object detection
has continuously been a challenging problem in the field of computer vision.

We briefly review recent works of 3D object detection based on cloud point and
image respectively.
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2.1 Cloud Point-Based Method

With the rapid development of 3D acquisition technologies, there are more and more
3D sensors, including various types of 3D scanners, LiDAR, and RGB-D cameras.
The 3D data acquired by these sensors can provide a wealth of geometric, shape
and scale information. 3D data and 2D images complement each other, providing
an opportunity to better understand the environment for the machine. 3D data can
usually be represented with different formats, including depth images, point clouds,
meshes, andvolumetric grids.As a commonlyused format, point cloud representation
preserves the original geometric information in 3Dspace.Therefore, it is the preferred
representation for autonomous driving [7].

Cloud point-based methods directly take raw point clouds as inputs to construct
deep neural network. Single stage object detector (SSD) is extended to 3DSSD [2].
In the algorithm, all upsampling layers and refinement are abandoned to reduce the
computation cost, and an anchor-free regression head with a 3D centerness assign-
ment strategy is adopted. Yang et al. first generate an accurate proposal by seeding
new spherical anchors for each point, then implement a parallel intersection and
merge branch to improve position accuracy [3]. Shi et al. combine part location infor-
mation and foreground segmentation information to generate proposals, then utilize
the proposed ROI-aware pooling to refine the proposal [4]. Wang et al. propose a
novel method termed FrustumConvNet (F-ConvNet) for amodal 3D object detection
from point clouds, in which F-ConvNet aggregates point-wise features as frustum
level feature vectors to be passed to fully convolutional network [15]. Additionally,
several other classical algorithms [1, 5, 16] are introduced in detail, which are tested
in experiment in Sect. 4.

Multi-view 3D Object Detection Network [1] Shown as Fig. 1, the inputs to the
network are the bird’s eye view, front view of LiDAR point cloud and image. It first
generates 3D object proposals from bird’s eye view map and project them to three
views. A deep fusion network is used to combine region-wise features obtained via

Fig. 1 The overview of Multi-View 3D object detection network (MV3D)
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Fig. 2 The network structure of Frustum PointNets (F-PointNet)

ROI pooling for each view. The fused features are then exploited to jointly predict
object class and conduct 3D box regression.

Frustum PointNet [5] According to the network structure is shown in Fig. 2, it
mainly consists of three modules: frustum proposal, 3D instance segmentation and
amodal 3D box estimation. In frustum proposal module, 2D CNN object detector to
propose and classify 2D regions, which are combined with point cloud to produce
frustum. 3D instance segmentation module is a point net to group the instance point
together, where the object instance is segmented by binary classification of each
point based on intensity etc. Then, the segmented object point cloud is fed into a
light-weight regression PointNet which tries to align points by translation such that
their centroid is close to amodal box center. At last the box estimation net estimates
the amodal 3D bounding box for the object.

StructureAware Single-StageDetector (SA-SSD) [16] The single-stage 3Dobject
detector is constructed as Fig. 3. The network contains three sub-networks, a back-
bone network to extract the multi-stage features from point cloud, a back-end detec-
tion network to predict 3D bounding box and an auxiliary network to exploit point-
wise supervisions. Specifically, the auxiliary network first converts the features from
the backbone network back to point-wise representations, and then performs two
auxiliary tasks: foreground segmentation andpoint-wise center estimation.The auxil-
iary network is jointly optimized with the backbone network in training stage and is
removed after training, introducing no extra computational cost at inference stage.
SA-SSD ranked at the top of KITTI 3D/BEV detection leaderboards when it was
first published.

2.2 Image-Based Method

The image-based methods can fully exploit the shape and texture information, which
generally reduce equipment and time costs. On the other hand, it also suffer the
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Fig. 3 The framework of Structure Aware Single-Stage Detector (SA-SSD)

problem of depth information loss. Therefore, the location accuracy of thesemethods
is generally lower than that of point cloud-based methods. Recently, the image-based
methods also improve the location accuracy by keep better detection performance.

Some algorithms are monocular-based. Mousavian et al. first use a deep convo-
lutional neural network to regress relatively stable 3D object attributes, and then
combine these estimates with the geometric constraints provided by the 2D bounding
box to generate a complete 3D bounding box [10]. Chen et al. utilize CNN to extract
high-quality 3D object detection frames, then use several features to describe the
object frame and make a preliminary score, finally regress the highest scored candi-
date [13]. Zia et al. solve the problem of scene understanding from the perspective of
3D shape modeling, and design a 3D scene representation of multi-object 3D shapes
[11]. Xu et al. propose an end-to-end multi-level fusion approach to detect 3D object
[12]. However, monocular-based methods rely on the input of prior information and
each method is only suitable for some special situations.

Using binocular images for 3D object detection is also popular. Li et al. propose
an easy-to-label 2D detection and discrete viewpoint classification to obtain coarse
3D measurements of objects through a lightweight semantic inference method [9].
Combined with the proposed BA approach, the temporal sparse feature correspon-
dences and semantic 3D measurement model are merged into a unified optimization
framework. Shi et al. [17] encode thepoints efficiently in afixed radius near-neighbors
graph and design a graph neural network to predict the category and shape of the
object.

In the following paragaphs, some classical image-methods [8, 12, 14, 18] are
introduced in detailed. All of them are also tested on KITTI dataset for comparison.

3D Object Proposals [8] The network structure is shown in Fig. 4. The conv layers
make use of a stereo image pair to extract 3D information which is further passed to
next two branches. One branch estimates the 3D box proposals by placing ground
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Fig. 4 The overall structure of 3D Object Proposals (3DOP)

Fig. 5 The overview of mulfusion

plane constraint. The other branch extract the contextual information for proposals.
3D object proposals and contextual information are exploited to predict accurate 3D
bounding boxes and object orientation by defining multi-task loss.

Multi-level Fusion (Mulfusion) [12] As can be seen in Fig. 5, Xu et al. present an
end-to-end multi-level fusion based framework for 3D object detection from a single
monocular image. The whole network is composed of two parts: one for 2D region
proposal generation and the other for simultaneously predictions of objects’ 2D
locations, orientations, dimensions, and 3D locations. With the help of a stand-alone
module to estimate the disparity and compute the 3D point cloud, they introduce the
multi-level fusion scheme. First, they encode the disparity information with a front
view feature representation and fuse it with the RGB image to enhance the input.
Second, features extracted from the original input and the point cloud are combined
to boost the object detection. For 3D localization, the method introduces an extra
stream to predict the location information from point cloud directly which is added
to the aforementioned location prediction.

Guidance and Surface Feature 3D Object Detection (GS3D) [18] The overview
of the proposed 3D object detection paradigm is shown in Fig. 6. The algorithm
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Fig. 6 The overview of Guidance and Surface Feature 3D Object Detection (GS3D)

first utilizes a CNN based model (2D+ Orientation subnet) to obtain a 2D bounding
box and observation orientation of the object. The guidance is then generated using
the obtained 2D box and orientation with the projection matrix. Finally, the features
extracted from visible surfaces as well as the 2D bounding box of the projected guid-
ance are fed into the 3D box refinement model. Evaluated on the KITTI benchmark,
the approach outperforms the most methods for single RGB image-based 3D object
detection.

Stereo RCNN (SRCNN) [14] The network structure is shown in Fig. 7. Li et al.
extend Faster R-CNN for stereo inputs to simultaneously detect and associate object
in left and right images. They add extra branches after stereo Region Proposal
Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions,
which are combinedwith 2D left–right boxes to calculate a coarse 3Dobject bounding
box. They then recover the accurate 3D bounding box by a region-based photometric
alignment using left and right RoIs (Fig. 7).

Fig. 7 The overall flowchart of Stereo RCNN (SRCNN)
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Fig. 8 The overview of the proposed DESR-CNN. The coarse 3D boxes are first estimated with
the baseline Stereo R-CNN model, and then the rectified 3D boxes are obtained by the proposed
descriptor-enhanced alignment module

3 Descriptor Enhanced Stereo R-CNN

3.1 Overview

Figure 8 shows an overview of the proposed Descriptor Enhanced Stereo R-CNN
(DESR-CNN). Taking Stereo R-CNN [14] as the baseline model, DESR-CNN
designs the descriptor-enhanced alignment module to further improve the accuracy
of 3D box estimation. This framework takes two RGB images as input and consists
of the following steps:

1. The Stereo R-CNN model [14] is leveraged to predict the object classes, 2D
bounding boxes, 3D bounding boxes sizes, key point and viewpoint angle, and
then the coarse 3D boxes are obtained with its estimation approach (Sect. 3.2).

2. The local descriptor is finetuned onKITTI dataset with an unsupervised learning
method. In this work, the recent POP descriptor [19] is selected (Sect. 3.3).

3. With the finetuned descriptor, the description vector of every pixel in object
region is extracted from left image and right image respectively. Then the recti-
fied 3D boxes are obtained by minimizing the distances between the description
vectors of the corresponding pixel points (Sect. 3.4).

3.2 Coarse 3D Box Estimation

The 3D coordinate system is adopted from KITTI data set. The origin of the coor-
dinate is on the camera center; x axis points to right on the 2D image plane; y axis
points down and z axis points to the inner direction orthogonal to the image plane
and stands for depth. 3D bounding box is represented as B = (w, h, l, x, y, z, θ , ϕ, ψ).
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Here w, h, l are the sizes of the box (width, height, and length respectively) and x, y,
z are the coordinates of the bottom center, following the KITTI annotation. The size
and center coordinate are measured in meter. θ , ϕ, ψ are the rotation around y axis,
x axis and z axis respectively. Since the concerned objects are all on the ground, we
only consider the θ rotation like the existing work [14] does.

For 2D detection, wemodify the Faster-RCNN [20] framework by simultaneously
detect and associate 2D bounding boxes for left and right images. The details are
illustrated in Fig. 9. We use weight-share ResNet-101 [21] and FPN [22] as our
backbone network to extract consistent features on left and right images.After feature
extraction, we use Region Proposal Network (RPN) [20] to classify objects and
regress box offsets for each input location. The boxes in the left and right images are
detected and associated simultaneously with the approach in [14]. Then the objective
function of multi-class classification is implemented as the cross-entropy loss.

After the above process of RPN, we have corresponding left–right proposal pairs.
Then we use three branches of size, orientation and key point prediction.

For size prediction, we simply regress the offset between the ground-truth dimen-
sion with a pre-set dimension prior. As is standard, for each size we estimate the
residual relative to the mean parameter value computed over the training dataset.

Fig. 9 Details of the stereo RPN with FPN
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Fig. 10 Top view of
observation angle α and
global rotation angle θ. The
blue arrows represent the
observation axes and the red
arrow indicates the heading
of the car. Since it is a
right-handed coordinate
system, the positive direction
of rotation is clockwise

The orientation estimated in the subnet is the observation angle of the object which
is directly related to the appearance of the object. We denote the observation angle
as α in order to distinguish it from the global rotation, θ. Both α and θ are annotated
in the KITTI data set and their geometry relationship is shown in Fig. 10.

Through the estimation from the network, we obtain the left–right 2D boxes,
key points, and regressed sizes. The above variables are represented as z ={
ul , vt , ur , vb, u

′
l , u

′
r , u p

}
, which indicate the left, top, right, bottom edges of the

left 2D box, left, right edges of the right 2D box, and the u coordinate of the key
point. Then the 3D coordinate {x, y, z} and the global rotation angle θ of every object
can be solved with the estimation approach in [14]. Considering the size {w, h, l} of
every object has been predicted by the branch of size regression, the coarse 3D box
{x, y, z, θ , w, h, l} of every object is obtained with the above process.

3.3 Unsupervised Learning of the Local Descriptor

As introduced in Sect. 1, DESR-CNN integrates an unsupervised local descriptor
into the process of 3D box alignment to improve the accuracy of 3D box estimation.
This work selects the recent Properties Optimization Point (POP) descriptor [19] as
the local descriptor.

POP is an unsupervised learning method jointly training interest point detector
and descriptor. The detector and descriptor are instantiated with learnable models
whose parameters are denoted as γF and γD respectively, as shown in Fig. 11. The
learning method aims to optimize the parameters γF and γD in unsupervised way.
The learning framework consists of three steps.

First, the training images without labels of interest points are fed into the detector
and descriptor. The detector outputs a score for every pixel point which represents
how likely it becomes an interest point, while the descriptor produces a description
vector for every pixel point. Multiple images corresponding to the same scene is used
as a batch to compute the properties.

Second, the probabilities that interest points satisfy the required properties are
computed. By introducing a latent variable to indicate interest point set, the proba-
bility for every property can be computed with the score and description of interest
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Fig. 11 The overview of the Properties Optimization Point (POP) model [19]. γF represents the
learnable parameter of the detector containing the backbone and detection head, and γD represents
that of the descriptor containing the backbone and description head. The training process consists
of three steps: (1) detector and descriptor are fed with multiple images corresponding to the same
scene, and produce score and description of interest point, (2) joint probability of properties are
computed with latent interest point set, (3) joint probability are optimized with approximate EM
algorithm

point. In this paper, the required properties are concretized as sparsity, repeatability,
invariability, discriminability and informativeness.

Third, the joint probability of requiredproperties ismaximizedbyour approximate
ExpectationMaximization (EM) algorithm, inwhich γF and γD are optimized jointly.

With the optimization algorithm detailed in [19], the POP detector and descriptor
are first pre-trained on the large-scale MS COCO dataset, and then finetuned on the
KITTI dataset. The entire optimization process is unsupervised without any human
annotation. With the finetuned POP detector and descriptor, the response score map
S and description map F can be obtained for the input image patch of the object. The
S(ui , vi ) indicates the response score of the i th pixel whose normalized coordinate
is (ui , vi ), while the F(ui , vi ) represents the description vector of the i th pixel. The
S and F will be applied in the descriptor-enhanced 3D box alignment module, which
is introduced in Sect. 3.4.

3.4 Descriptor-Enhanced 3D Box Alignment

As discussed in the existing work [14], the 3D box regressed by the above process
is relatively coarse because it mainly relies on the low-resolution RoI maps. The
existing work [14] proposes a 3D box alignment module to improve the 3D box
precision by aligning the RGB values between the left and right images. Although
this module is verified to be effective, it faces the problem that the RGB values are
likely to be confused across different positions, which leads to the bottleneck of the
alignment precision. Tomitigate this problem, the descriptor-enhanced 3D box align-
ment module is designed in this work, which can be considered as a generalization
of the existing 3D box alignment module in [14].

The idea of the descriptor-enhanced 3D box alignment is that the depth z should
be able to derive the correct pixel correspondences between the left and right images.
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For a pixel located at the normalized coordinate (ui , vi ) in the left image, the corre-

sponding pixel should be located at
(
ui − b

(z+�zi )
, vi

)
considering both the left and

right images are rectified. Here b is the baseline length of the stereo camera, and
�zi can be estimated by intersecting the ray of point (ui , vi ) and the coarse 3D box.
Then the error of dense matching of description vectors can be formulated as:

E =
N∑

i=0

(
Sl(ui , vi ) ·

∥∥∥∥Fl(ui , vi ) − Fr

(
ui − b

z + �zi
, vi

)∥∥∥∥

)
. (1)

In Eq. (1), Fl and Fr denote the dense description map of the left and right images
respectively, and Fl(ui , vi ) represents the description vector at the normalized coor-
dinate (ui , vi ) in the left image. Sl(ui , vi ) indicates the response score of every pixel
which is outputted by the interest point detector. In this work, the dense description
map is obtained by combining the RGBvector and robust visual description extracted
by the finetuned POP descriptor in Sect. 3.3. The RGB vector is the normalized RGB
pixel value which is a 3-channels vector. And the robust visual description is a 64-
channels vector. Therefore, the final description is the concatenation of the above two
vectors which has 67 channels. Here only z is the variable required to be optimized in
Eq. (1), which can be solved with the searching-based algorithm introduced in [14].
This descriptor-enhanced alignment module is effective to improve the precision of
3D box, which is verified by the experiments in Sect. 4.4.

4 Experiments

We evaluate our framework on KITTI object detection benchmark [23]. The dataset
contains 7481 training samples and 7518 testing samples. We further divide the
training data into a training set with 3712 samples and a validation set with 3769
samples following the common protocol. We conduct experiments on the most
commonly used car category and use average precision (AP) with an (IoU) threshold
0.5 and 0.7 as evaluationmetric.However, in order to further verify the effect ofmulti-
classification, we follow the samemethod to extend [10] to multi-classification. Only
the image is also taken as the input in [10]. Following [16], the benchmark considers
three levels of difficulties: easy,moderate, and hard based on the object size, occlusion
state, and truncation level.

4.1 Implementation Details

We flip and exchange the left and right image, meanwhile mirror the viewpoint angle
and key point respectively to form a new stereo imagery. The origin dataset is thereby
doubled with different training targets. During training, we keep 1 stereo pair and
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512 sampled RoIs in each mini-batch.We train the network using SGDwith a weight
decay of 0.0005 and a momentum of 0.9. The learning rate is initially set to 0.001
and reduced by 0.1 for every 5 epochs. We train 12 epochs in total.

4.2 Comparison with State-of-the-Art

We compare our method with other state-of-the-art approaches in the car category
by submitting the detection results to the KITTI server for evaluation. As shown in
Table 1, our approach achieves the best performance among the approacheswhich use
images as input only, and the performance among these approaches is very low with
IoU threshold 0.7. Then we compare these approaches mentioned before deliberately
with IoU threshold 0.5. Details are in Table 2. It can be clearly seen that our method is

Table 1 Performance comparison with previous methods on KITTI test server

Method Input Bev 3D

Easy Moderate Hard Easy Moderate Hard

MV3D [1] LiDAR + RGB 86.49 78.98 72.23 74.97 63.63 54.01

F-PointNet [5] LiDAR + RGB 91.17 84.67 74.77 82.19 69.79 60.59

AVOD [6] LiDAR + RGB 89.75 84.95 78.32 76.39 66.47 60.23

F-ConvNet [15] LiDAR + RGB 91.51 85.84 76.11 87.36 76.39 66.69

ContFuse [24] LiDAR + RGB 94.07 85.35 75.88 83.68 68.78 61.67

MulFusion [12] RGB – 19.54 – – 9.8 –

GSD [18] RGB – – – 2.75 1.99 1.86

3DOP [8] RGB 12.63 9.49 7.59 6.55 5.07 4.1

SROD [14] RGB 68.50 48.30 41.47 54.11 36.69 31.07

DESR-CNN RGB 69.36 50.80 43.61 56.26 39.62 33.54

BEV and 3D object detection metric are used, reported by the Average Precision (AP) with IoU
threshold 0.7

Table 2 Performance comparison with previous methods on KITTI test server

Method Input Bev 3D

Easy Moderate Hard Easy Moderate Hard

MulFusion[12] RGB – 53.56 – – 47.42 –

3DOP [8] RGB 55.04 41.25 34.55 46.04 34.63 30.39

SROD [14] RGB 87.13 74.11 58.93 83.82 66.28 57.24

GSD [18] RGB – – – 21.66 15.47 14.75

DESR-CNN RGB 87.16 76.44 66.95 86.49 74.29 59.14

BEV and 3D object detection metric are used, reported by the Average Precision (AP) with IoU
threshold 0.5
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Table 3 Performance comparison with 3DBBX, reported by the Average Precision (AP) and mean
Average Precision with IoU threshold 0.5

Method Car Van Truck Pedestrian Cyclist mAP

3DBBX 45.32 43.12 45.36 10.91 15.39 32.02

Ours 86.49 82.13 83.26 27.56 19.12 59.71

better than other methods that only use image input, whether it is with IoU threshold
0.5 or IoU threshold 0.7.

As Table 1 shows, there is still a gap between our method with methods adding
LiDAR.The reason should be that LiDARcan providemore accurate 3D information.
In the other hand, our method’s AP outperform other methods relying on only the
image input. It shows that our method can improve accuracy without introducing
expensive LiDAR equipment. The increase in accuracy is mainly due to the addition
of Descriptor-enhanced 3D Box Alignment module. We make full use of the point
correspondences between two input images. The results with IoU threshold 0.5 are
shown in Table 2, where our method also outperforms state-of-the-art monocular-
based methods [8, 12, 18] and stereo-method [14].

4.3 Multi-class Comparison with 3DBBX

We expand [10] to multi-class object detection. There are 7 types of objects in
KITTI: Car, Van, Truck, Pedestrian, Person_sitting, Cyclist and Tram. The class of
Person_sitting in KITTI is less in quantity and the class is similar to pedestrian or
cyclist, so we ignore this category.

As shown in Table 3, our approach performs better than 3DBBX [10] in all the
classes with IoU threshold 0.5.

The result of Pedestrian, Cyclist, and Tram (hard class) is significantly worse than
vehicle and there are three reasons for it. First of all, the perspective key point of the
hard classes will be lost or not in the middle of the 2D box. Second, the sizes of hard
classes are quite different so that size has no property of low-variance and unimodal.
Finally, the orientation of hard class is hard to estimate.

4.4 Ablation Study

In this work, the descriptor-enhanced 3D box alignment is designed to improve the
precision of 3D box estimation. Therefore, we conduct experiments with twomodels
and evaluate the performance to validate the contribution of the descriptor-enhanced
alignment module. As shown in Table 4, the model with descriptor-enhanced 3D box
alignment achieves significant improvement, which verifies its effectiveness.
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Table 4 Improvements of using descriptor-enhanced alignment, reported by the Average Precision
(AP)

Config Bev 3D

Easy Moderate Hard Easy Moderate Hard

No alignment with 0.5 IoU 45.59 33.82 28.96 41.88 27.99 22.80

RGB alignment with 0.5 IoU [14] 87.13 74.11 58.93 85.84 66.28 57.24

Descriptor-enhanced alignment with 0.5
IoU

87.16 76.44 66.95 86.49 74.29 59.14

No alignment with 0.7 IoU 16.87 10.40 10.03 11.37 7.75 5.74

RGB alignment with 0.7 IoU [14] 68.50 48.30 41.47 54.11 33.39 31.07

Descriptor-enhanced alignment with 0.7
IoU

69.36 50.80 43.61 56.26 39.62 33.54

The method without alignment performs worst because the method mainly uses
the high-level features learned by the network to predict. The completemodel utilizes
the more refined information of the matching relationship between the points of the
same pixel in the binocular image to correct the bounding box. There is a similar
module in SROD [14]. However, SROD [14] only uses gray difference as a measure
of point matching with the same pixel. This method is affected by the confusion of
similar regions, which leads to poor reliability. The local feature description used
in our model is a more reliable metric for point matching, so more accurate three-
dimensional point information can be estimated, which effectively improves the 3D
positioning accuracy of the bounding box.

4.5 Runtime

We evaluate the runtime of DESR-CNN on the KITTI dataset with a single Intel i9-
9820X CPU and GeForce RTX 2080 Ti GPU. The total computational time to finish
the 3D box detection on an image is 221 ms, which is suitable for some real-time
applications. Compared with the baseline Stereo R-CNN, the extra computational
time of DESR-CNN is 11 ms per image, which demonstrates that our descriptor-
enhanced approach is efficient.

5 Conclusion and Future Work

In this chapter, we discuss 3D object detection for autonomous driving. The existing
methods can be divided into cloud point-based and image-based types according to
different input information. Both of the two kind of methods take convolution neural
network to extract characteristic information. Even though cloud point based method
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can provide accurate object location, image-based method is still adopted in many
practical solution in autonomous driving because it achieves better object classifica-
tion performance with low cost. Recently, image-based methods are focusing on the
more accurate 3D bounding box. Following the direction we present a new method
named Descriptor Enhanced Stereo R-CNN (DESR-CNN) to improve 3D bounding
box. The comparison experiments on KITTI dataset show that DESR-CNN outper-
forms most of the existing 3D object detection methods based on binocular images.
For image-based 3D object detection, the challenges still exist, such as occlusion,
small target, and computing efficiency.
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Comparative Study on Transfer Learning
for Object Classification and Detection

Jungme Park, Wenchang Yu, Pawan Aryal, and Viktor Ciroski

Abstract The recent development of deep neural learning achieved remarkable
breakthroughs in object classification and detection. Deep learning has the capa-
bility of learning features automatically from data using general-purpose learning
procedures. However, because deep neural networks require large amounts of data
to train the parameters in the network, it is challenging to develop any object clas-
sification or detection system with a relatively small dataset. Transfer learning is an
important machine learning technique that transfers the learned features in a pre-
trained Convolution Neural Network (CNN) model into a new system. In this study,
current state-of-the-art CNN models are reviewed in their architectures and char-
acteristics. For the comparative study of transfer learning, the object classification
and the detection systems are implemented using transfer learning with six state-of-
the-art CNN models. The object classification model has achieved an accuracy of
97.01% for the three-class classification task using transfer learning. Furthermore,
six different Faster R-CNN architectures are implemented for object detection. The
performances of the different transferred models are compared in terms of the accu-
racy and the deploying speed of the new model. Experiments show that transfer
learning saves training time and achieves accurate performance by fine-tuning the
pre-existing deep learning model.

1 Introduction

The tasks for object classification and detection are core parts of environmental
perception systems. The environmental perception system is an essential module for
many automated intelligent systems such as Autonomous Driving (AD), Advanced
Driver Assist System (ADAS), robotic vision, and surveillance camera, etc. Machine
Learning (ML) is a common way to implement those environmental perception
systems. ML finds the patterns existing in the data through the learning procedure
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called ‘training’. During the training step in ML, a huge amount of the data in the
field is feed into the ML algorithm, and the ML algorithm is iterated until the system
performance is satisfied.

Since LeCun et al. [1] presented a Convolutional Neural Network (CNN), called
LeNet-5, for handwritten digit recognition in 1998, deep convolution neural learning
has become a popular Deep Neural Network (DNN) architecture, and it has achieved
remarkable breakthroughs in object classification and detection for several decades.
In the traditional ML methods for object classification and detection, the ML system
needs the input features carefully designed by human developers [2–4]. On the other
hand, deep CNN methods contain the automated feature extraction layers, called
‘Convolution Layer’. These convolution layers automatically extract input features
from the huge data samples used in training. There are many reasons that deep-
learning based object detection methods achieved state-of-the-art performances.
First, massive sets of labeled data such as PASCAL-VOC [5, 6], ImageNet [7],
MS-COCO [8], and Caltech [9, 10] are publically available for training on many
different types of objects. In addition, the computing power has been increased with
high-performance Graphic Processing Unit (GPU) computers.

In this book chapter, the authors researched transfer learning using various pre-
existing deep CNN models with different datasets. The chapter is organized as
follows. Section 2 presents a detailed literature review in deep CNNs and transfer
learning. In Sect. 3, detailed architectures and characteristics of the state-of-the-
art CNN models are discussed. In Sect. 4, transfer learning methodologies and
experimental results are presented. Finally, the chapter is concluded in Sect. 5.

2 State-of-the-Art Review in DNNs and Transfer Learning

ML algorithms and applications have exploded in popularity during the last decade,
especially in deep learning. In 2012, Krizhevsky et al. [11] proposed a DNN architec-
ture ‘AlexNet’ that achieved the state-of-the-art accuracy higher than the second best
architecture by more than 10% on the ImageNet dataset. It was a significant mile-
stone in the field of deep learning and started a CNN renaissance. Following years,
while other neural networks similar to AlexNet like ZFNet improved the accuracy,
Simonyan et al. [12] proposed a different CNN configuration also known as ‘Visual
Geometry Group (VGG) Net’ with 3 × 3 receptive fields throughout the network
in 2014. They demonstrated that the state-of-the-art performance on the ImageNet
data could be achieved using the conventional ConvNet architecture with substan-
tially increased depth. Same year Szegedy et al. [13] presented ‘GoogLeNet’ that
introduced a new level of organization in the form of inception.

After observing the success of AlexNet, VGG Net, and GoogLeNet, it seems that
as the network goes deeper, the performance grows better. However, unexpectedly,
when the network became deeper, the performance plateaued. In other words, it is
also called the “vanishing gradient” problem. Batch normalization [14] is a tech-
nique for solving this problem. It calculates the mean, and standard deviation of
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a mini-batch then performs the normalization process. Batch normalization could
stable the learning process and make the model converge faster. Residual Network
(ResNet) [15] is another remarkable solution to the “vanishing gradient” problem.
By introducing the residual block concept, the model’s accuracy will not be degraded
as the dimension goes deeper.

While development in deep learning frameworks was gaining attraction, object
detection performance had plateaued during 2012–14 [16]. However, Grisch et al.
[16] broke that deadlock by proposing Regions with CNN features (R-CNN) network
by applying high capacity CNNs to the bottom-up region proposal to localize and
segment objects. Later, Faster R-CNN was proposed by Ren et al. [17] that was the
first end-to-end and the near real-timedeep learning detector. Since then, several other
significant frameworks have been proposed, including Feature Pyramid Networks
[18] and CNN based one-stage detectors like You Only Look Once (YOLO) [19],
Single Shot multi-box Detector (SSD) [20], and RetinaNet [21].

The computational resources and time required to train deep learning models
from scratch are vast. Recent successful deep learning architectures for object detec-
tion [17, 19–22] have already been trained using the large dataset. It would save
plenty of resources if the knowledge from the pre-trained DNN models can be reuti-
lized to develop a new related task. This can be achieved using the ML technique
called ‘Transfer Learning’ that enhances the learning of a new task by channeling
the knowledge through a related task that has formerly been learned [23]. Early in
1995, the research on transfer learning started attracting a lot of attention. In [24],
transfer learning was named with several different names such as “knowledge trans-
fer”, “multi-task learning”, or “knowledge consolidation”. Later, Pan and Yang [25]
presented knowledge transfer to improve learning performance and reduce the effort
to recollect the data.Moreover,Mengying [26] utilized transfer learning for the image
classification system on a minimal dataset. The author showed that transfer learning
saved training time and achieved accurate performance by fine-tuning the pre-exist
deep learning model and data augmentation.

In [27], the authors conducted an intensive survey on transfer learning. Transfer
learning was classified into four categories, which are instance-based deep transfer
learning, mapping-based deep transfer learning, network-based deep transfer
learning, and adversarial-baseddeep transfer learning.Xiao et al. [28] used anetwork-
based deep transfer learning strategy and compared ultrasonic breast mass discrim-
ination performances with traditional neural networks. Kim et al. [29] proposed an
approach for a deep learning road lanes tracking systemusing transfer learning.While
the transfer learning approach can be computationally efficient, it can also suffer
from the negative transfer, which happens when the pre-training data contributes to
negative learning on the target application [30].
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3 Architecture and Characteristics of CNN Models

When image data samples are fed into a CNN model, there are two major steps
for object classification. The first step is feature extraction. The feature extraction
process identifies features that generally represent each class and discriminate each
class from other classes. The second step is to conduct the classification task. The
classification task predicts the object class among all given classes. In the CNN
models, feature extraction is conducted by several convolutional layers, combined
with activation functions and pooling layers. After the feature extraction step, the last
convolutional layer outputs are fed to fully connected layers as input. Then the final
fully connected layer generates the probabilities that belong to the corresponding
classes.

Based on different tasks and objectives, the existing CNNmodels can be grouped
into object classification and object detection. Classification refers to predicting the
identity for a set of categories the observation belongs to. Object detection attempts
to break up an image into smaller regions and identify the locations and the types of
objects. The popular CNN models for object classification are, Alexnet [11], VGG-
16 [12], VGG-19 [12], GoogLeNet [13], and ResNet [15]. The CNN Models for
object detection have one additional procedure for localization to find the object’s
location in the image. The CNN models designed for object detection can be further
summarized into two classes. One is implementing the two-stage method, like R-
CNN [16], Fast R-CNN [31], and Faster R-CNN [17]. The other is utilizing the one-
stage method like YOLO [19]. The two-stage method generates region proposals
based on the input image, then based on the region to determine the object using the
CNN’s object classification feature. The one-stage method skips the region proposal
step. It obtains the object class and location directly from the input image.

3.1 CNN Models for Object Classification

Due to advancements in GPU computing power, a bigger and deeper network can be
designed and trained. Because of the groundbreaking work and success of AlexNet
[11], it gathers much attention from AI researchers. AlexNet has 8 layers with 5
convolutional layers and 3 fully connected layers, as shown in Fig. 1. The visualized
features in Fig. 2a–c presented the partial features learned on convolution layers in
AlexNet. Edges and color filters are mainly learned in the first convolution layer, as
presented in Fig. 2a, where the first 64 features are displayed. In Fig. 2b, c, more

Fig. 1 Architecture of AlexNet [11]
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(a) (b)                               (c)                              (d) 

Fig. 2 Features on convolution layers in AlexNet: a the first 64 features learned in the 1st convo-
lution layer, b, c, patterns extracted in the 2nd and 4th convolution layers respectively, d patterns at
the last fully connected layer

complicated patterns are extracted in the 2nd and 4th convolution layers, respectively.
The deeper the layer, the more complicated patterns and textures are extracted. The
feature images shown in Fig. 2d are generated from the last fully connected layer.
Starting from the top to bottom and left to right, each feature image corresponds to
the class for goldfish, minivan, cab, gorilla, tricycle, and strawberry, respectively.

Before AlexNet, the Rectified Linear Units (ReLU) activation function was not
widely used. In the training stage, the amount of computation for the ReLU function
is much lesser than the Sigmoid or the Tanh function so that the model can converge
much faster. Further, the overlap poolingmethod is introduced inAlexNet. Compared
to non-overlap pooling, overlap pooling can reduce errors and prevent themodel from
overfitting. In addition, the dropout technique is utilized in AlexNet. The dropout
method disconnects certain neurons between two convolutional layers based on a
predefined probability while maintaining the same number of neurons in the input
and output layers.

Learning from the successful experience of AlexNet, the VGG network model
[12] continues the effort to make the net deeper. The VGG architecture has two
variations, VGG16 and VGG19. The VGG16 model has 13 convolutional layers and
3 fully connected layers, as shown in Fig. 3. On the other hand, VGG19 has three
more convolutional layers than the VGG16 model. Although VGG has similarities
with AlexNet, both use the convolutional layer structure followed by the ReLU
activation function, the VGG model uses a small receptive field with a 3 × 3 kernel
size compared to AlexNet. Further, a simple principle is used to design the VGG
architecture, and the entire network uses the same 3 × 3 kernel size and the same 2
× 2 max pool size, making the model very concise. Moreover, the small kernel size
brings more non-linearity to the model, and the amount of computation is controlled

Fig. 3 VGG16 architecture [12]
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(a) (b)

Fig. 4 a Inception in GoogLeNet, b the architecture of GoogLeNet

when making the model deeper and wider. Because of its innovations, VGG is one
of the most commonly used feature extractors.

GoogLeNet [13] implements 9 inception modules in its architecture. The incep-
tion module is presented in Fig. 4a. Combined with 3 other convolutional layers and
1 fully connected layer, the network model has a depth of 22, as presented in Fig. 4b.
Although GoogLeNet has more layers than VGG, it contributes to strengthening the
convolutional module. Adopted the methodology from [32], the inception modules
are piled together to increase the network’s width and depth while bringing limited
performance punishment. The naïve version of the inception module combines 3
convolutional layers and 1 pooling layer, but the number of parameters is not opti-
mized. For dimension reduction, another inception module is proposed by adding 3
additional 1 × 1 convolutional layers to the naïve version inception module, around
half of the parameters can be reduced. The dimension reduction allows for a gain
of computational efficiency and ensures a deeper and wider network capability. The
inception module in GoogLeNet reduces the number of parameters to be learned up
to 6.79M, which is dramatically reduced compared to 144M parameters in VGG19.

The ResNet model [15] has 152 layers, containing 151 convolutional layers and 1
fully connected layer.When the CNNmodel becomes deeper and deeper, themodel’s
performance does not increase linearly with the number of layers. To solve this
problem, the original gated shortcut connection method from Highway Networks
[33] has been modified, and the residual block has been proposed along with the
shortcut connection method. In traditional CNN, a layer N can only learn from the
output of layer N − 1. In traditional CNN, a layer N can only learn from the output
of layer N − 1. With shortcut connections, the Nth layer can learn from the output
from the N− 2 layer or the N− 3 layer by adding the result from the previous layers.
The goal is to learn the residue between previous layers and the Nth layer. These
layers with a shortcut connection form a residual block. For ResNet, its architecture
has several residual blocks stacked on top of each other.
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3.2 NN Models for Object Detection

Object detection is considered one of the most important challenges in computer
vision and the backbone of many deep learning applications. In general, object
detection algorithms attempt to segment an image into smaller, more manageable
regions to locate and classify areas of interest. The two most common approaches
for localization are sliding windows and anchor boxes.

Sliding windows are one way to segment and localize objects within an image.
The sliding window approach defines a rectangular region (a window) that “slides”
across an image. Each area this window overlaps with is applied to an image classifier
to localize the object. While sliding windows may be easy to implement, the most
significant disadvantage is the computational cost. However, this sliding window
becomes the backbone of the convolutional layer in many CNN architectures. The
computational cost in CNNs can be reduced by applying a convolutional operation
by sliding the filters over an image because the features are shared with neighboring
pixels.

Anchor boxes can be considered simply a set of predefined bounding boxes,
representing the scale, s∈ (0,1], and aspect ratio, r > 0, of the training dataset.Multiple
anchor boxes are defined using all ground truth labels in the training data. Unlike the
slidingwindowmethod, anchor boxes avoid repeated feature calculations by utilizing
the feature map of the convolutional network. Thus, anchor boxes improve both the
model’s speed and accuracy. However, only several representative anchor boxes are
selected due to the computational cost of including all anchor boxes in the training
set [34]. As a result, it is possible to make errors on the unusual ratio bounding boxes.
In addition, the detection performance is affected by selecting the size, aspect ratio,
and the number of anchor boxes. Thus, tuning the parameters related to anchors
is vital for overall performance. There are alternative approaches to anchor boxes,
called anchor-free detectors [35–38]. Anchor-free detectors will attempt to find an
object without the presents of anchors either using center-based methods [35, 36]
or key point-based methods [37, 38]. Unlike anchor boxes, anchor-free detectors do
not require hyper-parameters allowing them to be more generalized; however, this
degrades the accuracy in comparison.

The Faster R-CNN [17] and YOLO [19] architectures utilize anchor boxes in
different ways. The Faster R-CNN architecture [17] presented in Fig. 5a, evolved
from R-CNN and Fast R-CNN, can be divided into four major parts: Convolutional
layers as feature networks,RegionProposalNetwork (RPN),Region of Interest (ROI)
pooling, and Classification. The major contribution of Faster R-CNN is to propose
the RPN method. The goal of the RPN is to predict the best location for each anchor
box. The RPN itself is a CNN that takes the feature map generated by the backbone
CNN, such as VGG, as input. The RPN uses sliding windows over the feature map
to generate region proposals, as shown in Fig. 5b. Several anchors are generated for
each pixel on the feature map.
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(a) (b)

Fig. 5 The faster R-CNN architecture: a faster R-CNN architecture, b anchor boxes

By default, the Faster R-CNN architecture defines 3 scales and 3 aspect ratios
resulting in 9 total anchors. Then utilizing the softmax function, each anchor is deter-
mined to either foreground or background. To generate the final object detections,
anchor boxes that belong to the background class are removed. For the remaining
ones, their confidence scores are generated. The ROI pooling gathers the feature
map and region proposals to extract the proposal feature maps and sending to the
classifier. The classifier finishes the final step, determining the object class.

Unlike the Faster R-CNN network, the YOLO [19] architecture does not depend
on a secondary network to determine anchor boxes. Instead, YOLO has done the
pioneering work of a one-stage detection method. In [19], the input image is divided
into S × S grids, as shown in Fig. 6. Each grid is responsible for detecting the
object whose center is falling in that grid. Further, each grid predicts B bounding
boxes, and each bounding box requires information about the center of the bounding
box (x, y), the width and height of the bounding box (w, h), and the confidence
score. The confidence score of the box, C(object), represents the probability that the
box contains the object. YOLO generates K-class probability values for each grid.
As presented in Fig. 6, the cuboidal output has the size of S× S× (5B+K). In [19],
the grid size, S= 7, number of the bounding box in each grid, B= 2, and probability
values of class within the grid, K = 20, are used.

YOLO uses a single bounding box regression to predict the height, width, center
coordinate, and class of objects. The YOLO model uses sum-squared error loss
function, SQE, which contains the localization loss for bounding box prediction,

Fig. 6 The YOLO architecture
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loss from the box confidence score, and the classification loss for conditional class
probabilities in Eq. 1–4 [19].

SQE = SQElocali zation + SQEcon f idence + SQEclassi f ication, (1)
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where I obji j = 1 if the jth bounding box in grid cl i is responsible for detecting the

object, otherwise 0; I noobji j is the complement of I obji j ; λ1 and λ2 are the parameters

to control the penalties from the localization and confidence loss, respectively; I obji= 1 if object appears in grid cell i, otherwise 0; p̂i (k) is the conditional probability
for class k in the grid cell i. The final inferences of the given input are generated
by applying the non-maximal suppression algorithm. YOLO is fast at the test time
because it uses only a single CNN architecture to detect objects in the input image.
However, YOLO [19] is not good at detecting small objects and its biggest drawback
is not accurate compared to other object detection systems at that time.

4 Transfer Learning for Object Classification and Detection

In the state-of-the-art CNN architectures, representative low-level features are
extracted in the lower layers of themodel as presented inFig. 2a, b.By extracting these
lower-level features that are shared across similar datasets provides many benefits.
Transfer learning is one of the most exciting fields in artificial intelligence. Transfer
learning takes knowledge gained from one setting and exploits it to improve the
performance of another task. If the existing trained model is defined as the source
domain and the new task that needs to be trained as a target domain, mathemati-
cally, transfer learning can be defined as follows. The domain space, D, contains the
feature space, X, and the probability distribution of the feature space, P(X): D = {X,
P(X)}. The learning task, L, is defined by the label, Y, and the predictive function to
be learned, f(.): L = {Y, f(.)}. Two domain spaces, Ds and Dt are considered to be
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different if the feature spaces Xt and Xs are different or if the probability distribu-
tions P(Xt) does not equal P(Xs). Two learning tasks, Ls and Lt are different if the
label space are not equal or if the conditional probability distributions are not equal,
P(Yt|Xt) �= P(Ys|Xs). The goal of transfer learning for the target domain, Dt , is to
learn the conditional probability for P(Yt|Xt) using the features in Ds = {Xs, P(Xs)}
and Ls = {Ys, fs(.)} [39].

When applying transfer learning, it is important to understand the initial data
it was trained on. These shared lower-level features can affect the performance of
the new task. For example, a CNN model learns the image’s shapes, edges, and
lighting with visual image data in its convolution layers. Because these features are
generalized across most types of images, utilizing those learned features from big
data in the existing CNN model to a new CNN model with relatively small data
samples provides better accuracy than training the new model from scratch.

It is challenging to develop an object detection system with a small dataset.
However, by utilizing the CNN models trained with a large amount of data, those
learned features can be transferred to a new system with a smaller dataset. Transfer
learning comes with a variety of benefits, other than just helping improve the perfor-
mance of a small dataset. It also saves time during training. Because less data is
required and low-level features are already learned, only a few weights need to be
updated during the training process. In this study, two different transfer learning
settings are implemented for object classification and detection.

4.1 Transfer Learning for Object Classification

In many sensor fused ADASs, it is possible to find the ROI of a potential object
location in an image using automotive sensors such as radar or LiDAR. Then the
identified ROI is fed into the CNN model to classify the object type, whether it is
a car, bike, or pedestrian, etc. The object type classification is an important task to
generate appropriate control signals. The Rear Cross-Traffic (RCT) detection system
is an application of ADAS. Using automotive radar and camera sensors, the RCT
detection system detects obstacles at the rear-end while the car is backing [40].
The object classification system is a sub-module inside the RCT detection system
that classifies three different object types, ‘car’, ‘bike’, and ‘pedestrian’. For the
comparative study of transfer learning on the image classification task, six state-of-
the-art CNN models are selected: AlexNet, VGG-16, VGG-19, Darknet19, Resnet-
50, and GoogLeNet. Those selected CNN models were originally trained with 1.2M
ImageNet data to classify 1000 classes.

To develop the object classification module in the RCT detection system, cropped
image samples in the public data sets [41–44] are used to train the classification
system. Total 8044 training samples are selected, including 2651 image patches for
the bike class, 3381 for the car class, and 2012 samples for the pedestrian class.
The sample image patches used in the training process are presented in Fig. 7. For
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Fig. 7 Sample image patches [41–44] used to train the object classification task in the RCT
detection system

training of transfer learning, 90% of the collected data is used to retrain the CNN
model, and 10% of the data is used for validation during training.

Figure 8 presents how the learned features in the pre-trained CNN models are
transferred to the newmodel. First, three figures in Fig. 8a–c are the original features
learned by GoogLeNet. In Fig. 8a, the first 64 low-level features such as edges, lines,
and colors learned at the network’s beginning are displayed. Figure 8b is the first 16
features learned in the first inception module of the network. Figure 8c shows the
first three-channel outputs by the fully connected layer at the network’s end for the
class, ‘tench’, ‘goldfish’, and ‘great white shark’.

On the other hand, the features learned by transfer learning are presented in
Fig. 8d–f. Figure 8d shows that the features transferred in the low level of the network
are very close to Fig. 8a. It means most of the original features are reused in the
transferred system. Figure 8e is the first inception module features in the transferred
system. By comparing Fig. 8e with Fig. 8b, the features are similar, but they have

(d)  (e)                          (f)                               

(a)  (b)                          (c)                               

Fig. 8 Features on convolution layers in GoogLeNet: a–c, features learned in the original
GoogLeNet to classify 1000 classes, d–f, features learned through transfer learning to classify
three classes
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slightly changed. In Fig. 8f, the three-channel outputs by the fully connected layer
at the end of the transferred network are displayed. The channel output images in
Fig. 8f represent the selected classes such that the channel image for the ‘bike’ class
contains distinct wheels of the bike, the channel image for the ‘car’ class contains
the shape of vehicles, and the pedestrian shape is represented in the channel output
for the pedestrian class.

The six transferred CNN models are evaluated with the new dataset recorded for
the RCT detection system. The new dataset contains a total of 12,807 image samples,
including 4796 samples for the ‘bike’ class, 3332 samples for the ‘car’ class, and
4679 for the ‘pedestrian’ class. Figure 9 displays the sample images for the testing
of the transferred CNN models. In Fig. 9, the classification results on the testing
images are depicted with the yellow bounding boxes and the classified class name.
The overall classification performances are summarized in Table 1. According to the
validation results during the training, VGG19, GoogLeNet, and VGG 16 have the
top three accuracies of 97.01%, 96.89%, and 96.52%, respectively with the learning
rate, α = 0.0001. For the testing results on the dataset for the RCT detection system,
the average accuracies of the top three models, VGG-19, GoogLeNet, and VGG-16,

Fig. 9 Object classification results by the transferred VGG-19 CNN model

Table 1 Transfer learning results for object classification

CNN models Validation accuracy (%) Testing accuracy (%) per
class

Overall testing accuracy
(%)

Bike Car Pedestrian

AlexNet 93.28 92.91 87.48 99.17 93.78

VGG-16 96.52 92.47 97.72 95.77 95.04

VGG-19 97.01 96.96 94.60 97.16 96.42

Darknet-19 87.81 88.05 78.72 90.55 86.54

Resnet-50 93.28 95.23 93.91 78.31 88.70

GoogLeNet 96.89 94.83 95.77 97.82 96.17
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are 96.42%, 96.17%, and 95.04%, respectively. The validation results and the testing
results are very similar. The experimental results prove that transfer learning for the
object classification system in the RCT detection system is conducted successfully.

4.2 Transfer Learning for Object Detection

The recent CNN models such as Faster R-CNN or YOLO can conduct the local-
ization and classification tasks in one system. To evaluate transfer learning for the
object detection task with various CNNmodels, a vehicle detection system is imple-
mented by transferring the knowledge in the pre-trained CNN models. As presented
in Fig. 5a, the Faster R-CNN architecture contains the convolutional layers as the
feature extraction network. Six different Faster R-CNN architectures are imple-
mented by changing the feature extraction network inside the Faster R-CNN model.
The selected CNN modules as the feature extraction network are Alexnet, VGG-
16, VGG-19, GoogLeNet, Resnet50, and MobilNet. The transferred knowledge is
mainly the features learned by those CNN models. In addition, the Faster R-CNN
contains RPN to find the object’s location using anchor boxes. Those anchor boxes
that locate the objects in the image used by RPN are redefined using the new training
data set.

The vehicle detection system’s training data is the Udacity vehicle dataset [45]
that contains 8738 images with the labeled data. The sample images are displayed in
Fig. 10. The training of each architecture was conducted using the Dell Desktop PC
with NVIDIA GPU GeForce RTX™ 2080. Figure 11 presents the vehicle detection

Fig. 10 Udacity vehicle data set [45] to train the vehicle detection system

Fig. 11 The validation results of the vehicle detection system on the Udacity vehicle data set
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Table 2 Transfer learning results for the vehicle detection system

CNN models Training time Testing

Time/frame (s) Precision *100 Recall *100

AlexNet-faster R-CNN 6 h 39 m 0.03 99.83 69.28

VGG16-faster R-CNN 9 h 26 m 0.09 98.34 86.39

VGG19-faster R-CNN 9 h 47 m 0.12 96.28 84.35

MobilNet-faster R-CNN 31 h 50 m 0.31 80.34 90.58

ResNet50-faster R-CNN 49 h 10 m 0.63 98.00 79.81

GoogLeNet-faster R-CNN 44 h 7 m 0.42 96.23 83.19

system’s validation results by the transferredCNNmodel, VGG16-Faster R-CNN, on
theUdacity datasets. The training time for each architecture is summarized inTable 2.
The training time for transfer learningdepends on the number of layers in the network:
The deeper the architecture, the longer the training time. The two architectures,
AlexNet-Faster R-CNN and VGG16-Faster R-CNN have a quick training time of
about 6 h and 9 h, respectively.

The evaluation of the transfer learning for the vehicle detection system is
conducted on the new dataset collected in the RCT detection system. The testing
image dataset contains 6233 image frames, and the example images are presented
in Fig. 12. The testing is conducted using the laptop computer, Dell G7 with the
processor, 8thGen Intel® Core™i7.Theprocessing timeper one image frameby each
architecture is presented inTable 2. The testing performances for the vehicle detection
system are measured with two metrics, precision and recall. The two metrics, preci-
sion and recall, are defined as follows: precision = TP/(TP + FP), recall = TP/(TP
+ FN), where TP = True Positive, FP = False Positive, FN = False Negative.

By considering precision and recall, the top three Faster-R-CNN architectures
are VGG16-Faster R-CNN, VGG19-Faster R-CNN, and GoogLeNet-Faster R-CNN
with the precision 98.34%, 96.28%, and 96.23% respectively. In addition, those
models have the recall 86.39%, 84.35%, and 83.19%, respectively.Most of themissed
detection cases have happened when either object size is too small or the whole shape
of the object is not shown in the image, as shown inFig. 13. Thosemissed cases are not
critical in theRCTdetection systembecause themissed objects are in the distance. By
utilizing transfer learning, the training of the vehicle detection is completed within
few days. However, deploying the trained DNN models for real-time application is
still challenging. It requires more research to improve the computing power either
in the AI inferencing hardware system or optimized DNN architectures.

5 Conclusion

Recently, deep CNNs have achieved remarkable breakthroughs in object classifica-
tion and detection tasks. The state-of-the-art CNN models were trained with more
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Fig. 12 Vehicle detection results with VGG16-faster R-CNN

Fig. 13 Missed detection cases: the cyan rectangular boxes are the labeled data

than a million data samples and learned rich features generalized across most types
of images. Because DNNs require large amounts of data to train the parameters in the
network, it is challenging to develop any object classification or detection systems
with a relatively small dataset. Transfer learning is an important machine learning
technique that transfers the learned features in a pre-existing deep CNNmodel into a
new system with a relatively smaller dataset. In this study, transfer learning settings
for object classification and detection are implemented.
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The object classification system is developed for the RCT detection system using
transfer learning to classify three different object types, ‘car’, ‘bike’, and ‘pedestrian’.
The dataset used to develop the new classification system is a relatively small dataset,
and a total of 12,807 image samples are used to train the system. Six different CNN
models are used for transfer learning. The top three models are VGG19, GoogLeNet,
and VGG 16 and have an accuracy of 97.01%, 96.89%, and 96.52%, respectively.
Using transfer learning, the classification system with a relatively small dataset
generates good performances around 97–96%.

The vehicle detection system is implemented on the Udacity vehicle dataset using
transfer learning for the object detection system. Inside the Faster R-CNN architec-
ture, six pre-trained CNN modules trained on 1.2M ImageNet data to classify 1000
classes are inserted as the feature generation network. Six different Faster R-CNN
architectures are retrained with the Udacity data to detect vehicles in the images. The
top three Faster R-CNN architectures are VGG16-Faster R-CNN, VGG19-Faster
R-CNN, and GoogLeNet-Faster R-CNN with the precision 98.34%, 96.28%, and
96.23%, respectively.

In transfer learning, the low-level features learned in the pre-existing CNNmodels
did not change much, and only a few weights need to be updated during training.
Because of that reason, the overall training time is saved. Experiments show that
transfer learning saves training time and achieves accurate performance by fine-
tuning the pre-existing deep learning model. However, when deploying the trained
object detection system on real-time applications, the processing time per image
must be improved. The computational cost is still high due to the object localization
and a huge number of parameters inside the DNN architecture. Future research
must improve the computing power either in the AI inferencing hardware system or
optimized DNN architectures.
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Future Technology and Research Trends
in Automotive Sensing

Paul Schmalenberg, Jae S. Lee, Sean P. Rodrigues, and Danil Prokhorov

Abstract We discuss the importance of sensing technology in enabling intelligence
of future automotive vehicles. We briefly overview efforts of leading technology
companies such as Waymo and Tesla which resulted in impressive progress toward
highest levels of driving automation.We then describe our efforts in the areas of future
radars and lidars, specifically, those which go beyond 2D and mechanical scanning
emphasizing importance of AI in improving sensor performance at marginal added
cost. We then discuss trends in optical computing with its promise of substantially
reducing energy consumption while enhancing edge computing.

1 Introduction

Intelligent vehicles are making serious in-roads in our daily lives. Of primary impor-
tance are tech that promises to make the vehicles safer and more convenient. Twenty
years ago the state of art in autonomous vehicles was illustrated by the results of the
DARPAGrandChallenge 2004: none of themany vehicles competing in a desert race
were able to come close at completing the mission of driving over 100 miles in an
off-road setting (the top-scoring vehicle traveled only 7.5 miles). Clearly, technology
was not ready [1].

Just three short years later the DARPA Urban Challenge showed that a specially
designed and built vehicle could be driving autonomously in a relatively simple
setting (mock-up town with no vulnerable road users present). Several vehicles
completed the mission, and they did so without incidents [2, 3].

Emboldened by DUC 2007 success, Google decided to develop their own
autonomous vehicles. Google hired talented researchers from different Universities,
such as Stanford and CMU, under the leadership of Prof. Thrun and challenged them
to produce a robot capable of driving autonomously on public roads in traffic [4].
Google’s example is illustrative of a popular approach undertaken by many research
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groups throughout the world: if you want an autonomous vehicle, then you need a
vehicle with a variety of sensors, each of which complements the others to allow the
vehicle to build a more accurate picture of the world around it so that its motion can
be both swift and accurate while navigating in changing and often uncertain driving
environment.

Another popular feature of the original Google approach later improved and
enhanced by its spin-offWaymo is the use of high-definition maps to ease the vehicle
localization and navigation [5]. Suchmaps have not only detailed elements of the road
structure, e.g., the location of curbs and lanes, but also road infrastructure elements,
e.g., traffic lights, signs and adjacent buildings. The availability of these elements in
the maps recorded as point clouds allows the vehicle to simplify significantly the task
of driving, as anything which is not on the map could confidently be called obstacles,
static or dynamic objects, even if only a few points of lidar beam returns have been
registered for some of them.

Researchers at Tesla are pursuing arguably a more challenging path toward
autonomous vehicles: relying on cameras as the primary perception sensor, and
sometimes radar but absolutely no lidar! [6] Moreover, Tesla does not use pre-
recorded high-fidelity maps to navigate its vehicles. They argue that human drivers
use their eyes andmay not needmaps to drive safely in all kinds of driving conditions,
including during the day and at night [7, 8].

Whether one belongs to theGoogle campor theTesla camp, the following question
looms large: why can’t we yet do what humans do so readily? Humans not just have
two eyes (no camera can yet match capabilities of an eye, and that is why equating
an eye with a camera should only be done metaphorically). They have a natural
computer tuned by millions of years of evolution which computes according to
yet-to-be-understood algorithms [9], and moreover can adapt existing algorithms to
solving new tasks, learning new skills, often with little effort and remarkable ease.

In autonomous driving, a significant problem for decisionmaking is a great variety
of driving scenarios. Driving scenarios are classes of situations which may happen
in the real world. Urban, suburban and rural settings are numerous and can come in
very different shapes and forms. However, classes of such settings are limited and
manageable by a suitably designed decision making system. Indeed, staying on the
road in whatever lane is chosen, performing primitive maneuvers like moving left or
right—and doing so without collisions, is basically all it takes to be a safe driver! Of
course, the complexity of driving and associated expansion of driving situations may
quickly grow once we have to include other objects on the road, signs, and traffic
lights, but the basic primitives of driving remain the same. Thus, it may be argued
that safe driving is a relatively easy human skill to acquire compared to, e.g., playing
chess well, and this fact must have something to do not only with human excellent
ability to recognize all kinds of contexts and generalize to driving accordingly but
also with the simple nature of driving as a sequential perception-action problem; if it
were not the case, then few people would have been able to start driving so quickly,
after just a few hours of practicing [10].

Perception problems continue to be the greatest challenge of driving automation;
see, e.g., [11–13]. Populating the obstacle map and maintaining reliable and easily
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computer-interpretable picture of the environment in the vicinity of the vehicle are the
key features of a perception systemof current and future intelligent vehicles including
partially autonomous, active driver assistance systems such as, e.g., Toyota Safety
Sense [14] or Toyota Guarding [15]. We believe that, in a foreseeable future, the
intelligent vehicles will need a variety of sensors in order to be able to gradually
approach the competency of an attentive human driver, whether the vehicle still
relies on a pre-recorded high-fidelity map of the driving environment or not. A rich
sensor suite becomes the necessary condition of sorts, while a sufficient condition
is still expected to come from the relentless pace of advances of the autonomous
driving algorithms for perception and decision making in terms of better processing
of sensor information andmaking effective driving decisions. The algorithm analysis
is beyond the scope of this chapter since we focus on sensing, specifically on the
latest developments in radar, lidar and optical computing to enable smart sensing.

This chapter is arranged as follows. Section 2 discusses the advancements in radars
and lidars. Section 3 describes our take on edge computing and photonic information
process, followed by Conclusion.

2 Advancements in Radar and Lidar Sensing

In this section, characteristics of three typical sensors and their future trends are
discussed.A sensor, by definition, detects the surrounding environment and translates
it into different forms of information such as electric and mechanical signals. In the
vehicle’s perspective, sensors are subsystems detecting other objects such as vehicles,
pedestrians or other vulnerable road users, elements of road infrastructure, and any
other obstacles around the vehicle.

Camera is the essential among sensors because it is capable of identifying two-
dimensional information, color, and texture of targets easily. For understanding traffic
signs and signals, lane markings, roadside furniture, which are imperative informa-
tion for autonomous driving, a camera can offer the most cost-efficient solution.
Moreover, it is widely available across many industries. However, drawbacks are its
inability of direct range estimation, susceptibility of dynamic range to illumination
andweather impact, and the need of processing excessive amounts of data. The future
of camera in a broad area of mobility depends on how to manage the combination of
sensors and their data with the support of AI andmachine learning [6]. Smart sensing
emerges as an attractive proposition since much of the data is expected to be prepro-
cessed at an individual sensor end before the central computation unit for increased
overall efficiency of computation and energy. As discussed in Sect. 3, metasurface
based special image processing technology is also drawing attention from the same
perspective [16].

Ever since the commercial debut in heavy-duty trucks in the late 1990s by Eaton
Corporation, automotive radar technology has undergone several generations of
evolution in parallel with its commercial proliferation. In the early era of automotive
radar, the quality and quantity of speed and range information was extremely limited
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so that its application was feasible for vehicles in well-defined highway condition.
For many years radar was the enabling sensor for features such as Active Cruise
Control (ACC). For this application absolute positioning of detections is not neces-
sary, assigning the detection to a lane and computing the time-to-collision is sufficient
for the system to actuate the accelerator and the brake so that a safety buffer to vehi-
cles in front is maintained. As long as some simplifying assumptions are made such
as other vehicles being on the road surface, simple motion models, and fixed widths
of the lanes on a highway, the radar sensor only needs to determine the location of
detections in range and azimuthal bearing. Therefore, the ability to scan in elevation
is removed entirely which simplifies the system considerably by requiring only a
single linear antenna array.

As more automated control features are developed for consumer vehicles, these
radars originally designed for ACC applications are pressed into wider service.
Radar’s superior performance in all-weather conditions and detection of metal
objects hundreds of meters away meant that they could not just be excluded from
advanced driving sensor suites. However, the highly filtered output of the radar
sensors left something lacking for the teams developing the algorithms operating on
the raw sensor data. In fact, modern radars are demanded to provide multitudes of
advanced features to accommodate other applications: from parking assistance to
fully autonomous driving. Preferentially higher detection resolution in both azimuth
and range, wider field of view, larger number of targets to be tracked and addi-
tional detection dimension in elevation have become requirements. Provisions have
been offered by adding more channels of active or virtual elements in conjunction
with widening usable bandwidth. Because of the strict regulation against spatially
combined electromagnetic energy density, the number of channels or power per
channel cannot be increased arbitrarily.

Locating detections in 3D space and determination of object shape would allow
the radar to contribute useful data to advanced autonomous driving systems. A single
scan direction is insufficient to accomplish 3D localization, so automotive radars will
need to be expanded to two scan directions plus ranging. To determine object shape,
improvement in resolution is necessary which corresponds to adding more elements
to the antenna arrays. Measuring object shape especially when partially obscured
through shallow angle multi-path and waveform processing techniques would fill a
gap in current sensor suites. Figure 1 demonstrates an early example of target behind
target detection [17]. Essentially, a high-resolution 3D imaging radar is required
for future driving functions. To implement imaging function, antenna array should
be scaled from one dimension to two dimensions; a simple and intuitive method is
to extend the ‘N array’ of antenna into ‘N x M array’. Alternatively, in most used
antenna architectures a series of N gain elements is connected per channel and could
be stacked up resulting in ‘multi-N x M array’. In this case, the end-fire architecture
may be preferred because of its feasible feed line connectivity [18].

Steering of high-resolution beams in 3D space at RF wavelengths have been
commercialized for 5G applications. Automotive radar systems could adopt these
technologies in a low-cost manner. One is multiple-input multiple-output (MIMO)
2Dantenna technologies for base station communication in 5Gnetworks [19].MIMO
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Fig. 1 One of the authors walking in front of a vehicle (on the left) does not disturb the return from
the vehicle, shown in a bird’s eye view in center, in a phased array automotive radar prototype. This
example is driven by a 16-channel RF phase shifter chip produced by one of our collaborators, on
the right

technique can use non-uniform array spacing plus orthogonal waveforms to create
virtual channels and reap the benefit of a fully populated array while minimizing
physical channels [20], thus reducing cost. This is one way to achieve high resolution
radar without the cost of a fully populated phased array. MIMO antennas have even
been miniaturized for the use in cell phones, demonstrating that the concept is not
limited to a fixed base station use [21]. On the receiver side, MIMO boosts the
signal of several cellphone users simultaneously by localizing them and increasing
the apparent gain through the MIMO technique. For radar applications, we simply
consider the returns from multiple target reflections as the cell phone users when
implementing MIMO.

Expanding the capability of the radar system comes with some drawbacks, mainly
cost. A 2D MIMO array requires far more down-conversion mixers than current
radars and computing the MIMO-related algorithms in an extra-dimension requires
more on-board processing power. Both of these points clash with the expectation that
radar sensors for vehicular applications should be less than $100 per unit. However,
advancements in the area of RF-CMOS may allow us to overcome this challenge.

From the onset of automotive radar transition from radar’s original military
purpose, high frequency semiconductor industry played an important role by minia-
turizingmicrowave component in integrated circuits. In the early 2000s, the RF semi-
conductor used for vehicle radar, especially for millimeter wave radar, was Gallium
Arsenide (GaAs). At that time, the RF circuitry wasmade up of several discrete GaAs
chips. With multiple chips and a high-priced fabrication process, the radar cost was
exorbitant and such sensors could only be found in luxury vehicles. Heavy investment
in cheaper RF-SiGe (Silicon–Germanium) technology pushed the maximum oper-
ating frequency beyond 100 GHz, enabling use for millimeter wave radar systems
[22]. From the economic perspective, the number of operating channels per chip
should be reduced as much as possible, in tune with integrating other functions. The
advantage of SiGe technology is that many RF components can be integrated onto
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a single die due to larger wafer sizes. Recently, RF-CMOS has emerged competing
with SiGe for the obvious benefit of cost attractiveness in mass production and its
capability of integration with signal processing units. RF-CMOS is compatible with
digital CMOS, and both can be integrated into the same die which means that digital
processing will be on the same die as the millimeter wave circuitry, reducing costs
further. This type of integration also lends itself well to increasing the number of
unique down converting mixers in the system, which enables techniques such as
2D MIMO or a fusion hardware platform combining radar with camera. This is to
be contrasted with software-focused efforts at using different sensing modalities to
improve the overall performance; see, e.g., [23–26]. Furthermore, the optimizing
active channel numbers in massive MIMO with innovative array distributions is
expected to be challenging but attractive solutions [27].

Lidar is a useful sensor for automated driving applications as it can generate a
high definition 3D point cloud of the surrounding area. Within the point cloud is
information about all surrounding obstacles, and the features of fixed geometry such
as ground and buildings can be matched to map data to improve self-localization.
Short wavelengths of lasers are used to create focused beams which enable the
high-resolution point clouds.

Off the back of the DARPA Challenges mentioned in Introduction prominent
scanning lidars became a hallmark of vehicles fitted with automated driving systems
[28]. These lidars contained an array of discrete lasers and detectors. Pulsed time-of-
flight (ToF) methods determined the range to targets, mechanical scanning covered
the azimuth scan plane and the array of lasers and detectors behind lenses covered
the elevation scan plane. These bulky, heavy, and costly sensors meant that they were
confined to research grade vehicles. Mechanical scanning of the whole sensor head
with extreme precision meant that a robust brushless AC motor—a substantial cost,
was a necessity. ToF methods accurately determine the range to a target but can
be subject to interference from the sun or other light sources. These methods can
only return a single target within a beam, which causes problems when aerosols or
other small particulates are suspended in air, such as rain, snow, or dust. Recently,
large strides have been made in silicon photonic integrated circuits (PICs). PICs
allow processing of laser light signals in silicon chips. Investment in PICs has been
bolstered by its importance in optical data communication, and one massive national
collaborative effort is the American Institute for Manufacturing Integrated Photonics
(AIM Photonics). AIM Photonics is a US National initiative targeting deployment of
silicon photonicmassmanufacturingmethods throughout industrywith funding from
federal agencies, such as DARPA, state level, and private interests [29]. With silicon
photonics technology an all-solid-state lidar has been demonstrated, and complex
waveform encoding can be applied to the lidar signal.

Solid-state techniques utilizing silicon photonics have been demonstrated in two
ways. One way is electronic beam steering by optical phased arrays (OPAs). Due
to short wavelengths of the lasers used in near-infrared lidar, thousands of array
elements can be packed into a single chip to enable high resolution, thin beam forma-
tion.OneOPA[30] demonstrates a sub9 cm2 chipwithmore than8000 array elements
producing a half-power beamwidth of 0.01°× 0.04° and scannable in two directions,
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with a scan angle of 100° by phase shifters and a scan angle of 17° in the second
direction bywavelengthmodulation. Co-packaged CMOSdies demonstrate amazing
miniaturization over classic mechanical beam scanning systems. One challenge of
this type of beam steering due to the high resolution beam is covering all scan points
in a reasonable amount of time. Wavelength division multiplex (WDM) techniques
can naturally and easily be applied in silicon photonics to allow wavelength unique
signals to co-exist in the same PIC. Lidar with 100+ comb generated signals being
transformed into simultaneously scanned laser beams have been demonstrated [31],
which would overcome the time crunch of scanning thin pencil beams.

Another way to realize solid-state lidar is utilizing integrated focal plane arrays,
similar to digital cameras. These so-called flash lidars—due to the scene filling
transmission of a laser pulse similar to a camera flash, are among the first solid-
state lidars to be developed. Large scale flash lidar have been demonstrated [32] and
are already on the market for OEM vehicle use [33]. In a flash lidar, the detector
array is exposed to free space similar to mechanical lidar which meant they were
limited toToF ranging techniques. Recently, per-pixel integrated heterodyne circuitry
though a hybrid CMOS-silicon photonics process offered by GlobalFoundries has
been demonstrated [34]. This allows for the simplicity of flash type lidar while
opening the door for complex encoding on the laser signal. Still, flash lidar suffers
from a tradeoff between resolution and wide-angle field of view that does not exist
in beam steering lidar, as a lens must be chosen to transform the focal plane array to
angular detection.

One of the benefits in solid-state lidar using silicon photonics is the introduction
of advanced encoding of the transmitted signal. Modulating the signal is natural in
silicon photonics through ring resonators, Mach Zehnder interferometers or other
similar active structures. Frequency Modulated Continuous Waveform (FMCW)
method found often in vehicular radar sensors, is a simple modulation which gener-
ates a continuous ramp signal in frequency. Thismethod allows determination of both
range and velocity instantaneously (instead of estimating velocity by piecing together
several detections). Moreover, multiple targets can be detected within a single beam,
which is especially useful in poor weather conditions. Rain and snow clutter can be
filtered out [35]. If the system has a sufficient number of unique heterodyne detec-
tors, more advanced encoding could be imagined such as CDMA [36] where scene
scanning is essentially done in the digital domain.

Before fully solid-state-scan lidar is introduced, Micro-Electro-Mechanical
Systems (MEMS) based mirror architecture will be popular in the near future. The
priority for solid-state lidar’s success inmarket penetration is cost competitiveminia-
turization of essential components in IC. As learned from the precedent growth of
radar market, it is important for semiconductor IC providers, tier-1 suppliers and
OEMs to form a virtuous ecosystem.

With the betterment of all types of sensors mentioned above, i.e., higher detection
resolution in all directions with more precise Doppler signature, it is now possible
to predict even the rotation of a moving target. Not only the increased number of
voxels but also innovative ways of their association can significantly improve overall
data processing. For example, optimized data size and advanced waveforms can
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enhance refresh time while maintaining the detection accuracy. With advancement
in sensor data processing byAI andmachine learning algorithms, sensors can provide
much more distinctive characteristics of targets, e.g., [37–39]. Algorithmic advances
focused on embedded software will continue to drive sensor information processing
because of its marginal added cost.

3 Toward Energy Efficient Edge Computing via Optical
Advances

In the coming years the amount of data acquired from added sensors of intelligent
vehicles is expected to increase significantly, and so will the amount of processing
required to utilize this data. This leaves two options in terms of data processing:
either to operate on edge computing systems in the vehicle or to partially rely on
mobile networks in order to make timely transportation decisions.

Figure 2 provides a breakdown of connected computing technologies and where
they process data. The role of this figure serves to elucidate technologies in the
connected infrastructure of the automotive sector, rather than the broader IoT domain.
Sensors lie at the base of the figure. These are broken into passive, active and smart

Fig. 2 A schematic of layers at which processing may occur for the automotive sector: the cloud,
fog, edge, or sensor level computing. The left of the figure designates the type of connections
that might be activated between these compute layers. The right-hand side of the figure displays
the type of vehicle communications that might occur, based on the computing structure on the
left. For instance, V2X communications require fog or cloud computing, meanwhile internal
communications within the vehicle rely on a slew of cabled connections
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sensors. Passive sensors include items like RFID tags where no energy needs to be
supplied to the sensor (more on passive optical sensors below). Active sensors are
those that require power to sense. Smart sensors are those that can provide processed
data using only the sensor signal; an example might be how a radar sensor can not
only provide position information but also velocity information without the need to
convert the signal to another domain. Additionally, we define edge computing as
any system that can process data at the point of collection, as opposed to shuttling
data via a network. While sensors and edge computing are separated in Fig. 2, to
clarify their differences, any sensor that can actively process data can be included
under the broader umbrella of edge computing; it is not required that the sensor
have a microprocessor attached in order to be considered edge computing. Instead,
edge computing is the existence of processing without the need to communicate
information to a server or cloud network. Traditionally, edge computing included
processing of sensor data on a programable controller, however this description has
expanded to include systems with graphic processing units, tensor processing units
and other more advanced computing infrastructure that was previously only found
at data centers. For this reason, we define edge computing as computation through
any system that does not rely on the access to fog or cloud computing services. Fog
computing relies on the local area network architecture. Cloud computing relies on
an internet access point that allows information to travel from the sensor to a globally
accessible server.

Figure 2 also describes how these different processing locations impact specific
vehicle communication functions. For instance, fog computing allows for vehicle-
to-infrastructure processing; this may include data being transmitted wirelessly via
Bluetooth or WiFi to local access points that are allowed to make decisions. For
instance, one could imagine an intersection with traffic lights replaced via a local
network server. The vehicles that enter the intersection would be sent wireless
commands from the server that are based on immediate information gathered at
the intersection.

With these definitions in mind, we can better understand how the modern and
future vehicle may depend on each of these computing levels. For example, relying
on the cloud has the potential for high latency due to large volumes of data and trans-
mission rates, network congestion, and frequently occurring deadzones or urban
canyons. However, traditional computer architectures remain energy intensive when
running neural network algorithms in any intelligent vehicle—whether a car, a drone,
or a remote sensor in IoT. The vehicles of today are even being recognized as
cloud accessible hubs to be leased for bitcoin mining or algorithm training, as such
datacenters-on-wheels sit idly in their garages.

As vehicles become more intelligent, the on-board power requirements of the
vehicle must not only take on the most vital roles like safety and convenience but
also play an increasing part in attending to diverse needs of vehicle’s occupants.
With the growth of autonomous functions, there will be a higher expectation for the
vehicle to provide more in-vehicle services (entertainment, shopping, etc.). While
power has always been a priority in the design of the vehicle, it will become an even
more critical issue as electric vehicles become more autonomous. In our opinion,
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new hardware systems are required to achieve increasingly intensive computations
at various edge interfaces without straining the power source of the vehicle [40].

While the decision to operate partially in the cloud, over mobile networks, or to
operate solely on amobile computing system of the vehicle are verymuch the subject
of a transportation system design, any opportunity to unburden the power system
from sensor processing and related computational costs is a universally welcomed
proposition. For this reason, a new trend in intelligent vehicles is to off-load some of
the needs of edge computing onto passive hardware. In this section, we review some
opportunities to utilize passive optical systems for pre-processing prior to reaching
the optical-electrical transduction interface [41].

One of themost immediatemethods to relieve computational burden is to reformat
the data of the sensors on the vehicle. For example, consider the image shown in
Fig. 3a. This image can be described by a camera using a set of values from 1 to
256, however, the image conveys a range of information features such as depth cues,
color, and lighting. In order to computationally process this image, feature extraction
is applied across the data matrix.

The most common image kernel that is first applied to an image for feature extrac-
tion or image segmentation is a differentiator. Here we consider how adding a passive
optical filter could be used to achieve arbitrary algorithmic computations of a scene.

Fig. 3 Methods for passive optical image differentiation. a Grayscale image of a flower. b Image
shown in a passed through a numerically applied Laplacian image kernel. cMetasurface composed
of an array of silicon pillars for image differentiation. The white horizontal bar represents 1 micron.
d Optical train needed for coherent optical differentiation utilizing a spatial filter
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One of the most obvious implementations of a passive optical filter for vehicle
applications is image differentiation. While the technology is still at its early stage,
researchers have demonstrated the ability to differentiate coherent light passed
through an optical metasurface [42]. In this reference, a metasurface is composed of
two sets of arrays of nanobeams that compute first- or second-order spatial differ-
entiation in the x-direction. Rather than rely on digital software for processing, the
image is passed via a passive, analog, optical filter. Figure 3d demonstrates how a
metasurface like the one described in [42] can be utilized in a 4F optical system in
order to implement image differentiation at the Fourier plane.

In fact, the concept of optical differentiation has been around since the 1960s, with
the idea of utilizing spatial filters as a tool to alter the structure of a beam of light. The
concept of spatial filtering plays off the unique Fourier optical transformation after
an image passes through a lens. The unique direction of the light due to diffraction
causes the sources of light to focus on different portions of the focal plane. By
applying a spatial filter at the focal plane, a variety of analogue operations can be
applied to an image. The example shown in Fig. 3d, utilizes this approach to spatial
filtering, however, advances in the field have enabled researchers to utilize bound
states in a continuum in order to achieve differentiation at any location along the
propagation direction of the image [43, 44].

The advantage to utilize metasurfaces for analogue processing has gained signifi-
cant momentum. Not only are the custom-made optical elements just several hundred
nanometers thick, but they can also be applied at any location in the optical train.
It should also be noted that metamaterials can often be designed to have high trans-
parency.However, there still remains a serious disadvantage before the systems canbe
perfected for in-vehicle optical analogue processing.Most metasurface systems have
an optical response that is limited to a narrow band of wavelengths, and the existing
technologies are not capable of implementing this differentiation on incoherent light.
This implies that a standard optical image cannot be differentiated optically. Inco-
herent optical processing is a hot topic of research and while some progress has been
made [45], there still remain several hurdles toward implementing this technology
in vehicles.

The ability of an optical system to apply image differentiation or edge determi-
nation is not only a useful technique in image processing, but it is typically one of
the layers in convolutional neural networks. Thus, applying passive optical filters
to sensing could enable reduced convolutional processing needed on these large
matrix transformations for edge computing, thereby reducing one of the steps in the
computationally intensive task of image segmentation.

Beyond image differentiation, optical filtering has a potential to apply other
passive optical elements in order to achieve a variety of algorithms, e.g., integra-
tion [46, 47]. Algorithm specific metasurfaces can also be employed as convolu-
tional elements for a variety of other image kernels including box blur, sharpen,
or unsharpen masking. The size of the kernel will depend on the resolution of
the metasurface relative to the image size. With the help of inverse design and
machine learning to create metasurfaces, new and unique methods to achieve these
computational systems are rapidly evolving [48].
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The current trend for communication systems in vehicles is a demand to shuttle
higher loads of data which is often due to the integration of higher resolution sensors
(see Sect. 2). The need to transmit data at Gbs speeds, from sensors to their controllers
(e.g., those for future automated driver assistance systems (ADAS)) is becoming a
considerable communication hurdle. To comprehend the significance of this transi-
tion point from the traditional data communication approach to that of future auto-
motive vehicles, we should first review the electronic ecosystem of the present-day
vehicle. At present, most traditional OEMs continue to rely on the electronic control
unit (ECU), which through a single module controls a set of processes such as
those in the radar, cameras, powertrain, transmission, suspension and other systems.
The ECU may simply process the raw data and transmit it to another hub or it may
act as a subsystem for sensor fusion, processing and controlling data from a multi-
tude of other ECUs. In 2021, there are vehicles with upwards of 150 ECUs; each
ECU contains a microcontroller, memory, embedded software, and communication
ports for the systems, power, and data communications. With so many control units,
each with their own protocols, the OEMs have garnished the burden of driving the
performance of these processors while extricating excess cabling and redundancy.
This has been particularly difficult given the low bandwidth communication channels
that most standard ECUs maintain; these are typically handled via automotive bus
systems like LIN (Local Interconnect Network), CAN (Controller area Network),
MOST (Media oriented system transport) and FlexRay. However, given the tran-
sition to more data heavy sensors like ADAS, higher bandwidths have become a
requisite, which has led to the adoption of SerDes (Serializer-Deserializer), Auto-
motive Ethernet, and HDBaseT Automotive. In particular, HDBaseT has allowed for
communication over 15 m in length, with limited requirements for shielding for both
point-to-point and daisy-chain connectivity [49]. It should be noted that while these
technologies have enabled several Gbs transfer rates, there are signs that the future
vehicle ecosystemwill soon need to shuttle information in the form of bits structured
as vectors.

Moreover, trends in machine learning are leaning towards understanding the data
structure of an entire tensor, rather than operating a convolution on a single matrix
of the tensor at a time. In order to achieve this in our current state, the data would
need to be stored locally on RAM hardware after being shuttled bit by bit. In order to
accelerate this process, PeripheralComponent InterconnectExpress (PCIe) cables are
finding themselves as a greater necessity. A PCIe cable is a computer expansion bus
that traditionally allowed for direct, short connections (on the order of cm) between
a motherboard, graphics card, or solid-state drive. As of 2018, PCIe has found a
means to integrate onto HDBaseT technology permitting signals such as audio and
video, power, and controls to be transmitted over a single cable. Today PCIe is on
its 6th generation with versions doubling roughly every few years. However, the
future bus communication standard may be to move to fiber optic communications
either via PCIe over fiber or standard fiber optical cabling [50, 51]. Given that many
sensors utilize optical inputs and the growing desire to process optical inputs in the
optical domain, the shuttling of information from sensors to hardware without the
transduction to electronic sensors could prove fruitful. It is possible that OEMs will
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continue to try and process data at the point of occurrence thus declining the need
for high bandwidth shuttling; however, the question that remains is for how long can
this trend be managed successfully.

With the future of communication systems being heavily reliant on optical
networking, there exists an opportunity for analogue processing pre-emptive to trans-
duction to an electrical signal, where informationwould be traditionally processed on
a standard CMOS chip. One possible application of this would be to utilize not only
sensing processing but also other functions such as control in an optical architecture.
The architecture would utilize a lidar or other light-based sensor with outputs to be
fed into an optical neural network with model predictive control (MPC). The concept
of using an MPC with a neuromorphic photonics processor for general non-linear
programming was demonstrated in [52]. In this reference, nonlinear processing was
demonstrated for the high-speed control application of tracking a moving target,
e.g., in the case of missile targeting. A similar case could be envisioned for driving
automation applications, such as path planning at an on-ramp, a traffic circle, or
a parking lot. The light perception device—a sensing solution, directly informs a
vehicle computer implemented as optical neural network (ONN) of the positions and
the velocities of surrounding agents for the purpose of respecting their trajectories
and avoiding collisions while the vehicle’s computer plans to maneuver around on
the road [53].

4 Conclusion

We overviewed the state of art and promising developments in the field of automo-
tive sensing focusing on radar, lidar and optical processing for driving environment
sensing exemplified by driving automation. Since the DARPA Challenges of the
beginning of this century various enabling technologies have advanced by leaps and
bounds. Phased-array radars and solid-state lidars are taking places of mechanically
scanning devices, enabling more precise temporal snapshot of the data and deliv-
eringmore accurate range and angular measurements for the ever growing number of
mobility features.Advances inRF-CMOSand similarly silicon photonics IC for lidar,
which is compatible with digital CMOS—the wide-spread technology for cameras,
will pave theway for integration of sensingmodalities at the level of hardware simpli-
fying sensor fusion. In terms of optical processing, computational metasurfaces, i.e.,
devices specially designed to implement image differentiation, convolution and other
functions of essence to AI algorithms, are on the rise. Similar to artificial neural
network software years ago, we expect to live through another Renaissance in the
field of optical processing focused on integrated photonics driven by the needs for
smart sensing and ultra-low power consumption. The sensor advances described here
will help developing the next generation of intelligent vehicles.
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1 Introduction

Reinforcement learning (RL) is a key branch of Artificial Intelligence (AI) at the
intersection of machine learning, decision making and control. It is a method of
learning from interaction with the environment and it is inspired by the human learn-
ing process. RL gained success in the last few years as the right approach to learn how
to make decisions in tasks that are too complex to explain or to learn from supervised
examples.1 In 2015 DeepMind pioneered a new approach to RL, Deep Q-Network
(DQN) that approximates the Q-function [45] with a deep neural network [26, 32,
33, 43]. The key idea of the DQN algorithm is to store the agent’s experiences in
a replay buffer and then randomly sample and replay these experiences to provide
diverse and decorrelated training data for learning the Q-function. The DQN con-
cept was further extended to the other RL methods, e.g. Deep Deterministic Policy
Gradient (DDPG) and Proximal Policy Optimization (PPO), resulting in a new sub-
field aptly termed as Deep Reinforcement Learning (DRL). Following the success
of the DQN methodology, DRL has become one of the most used AI methods in the
development of autonomous vehicles (AV).

DRL can be an essential part of the prototypical AV technology stack (Sensing,
Perception, Localization, Driving Policy and Actuation) as a method for decision
making in the hierarchical driving policy workstream Fig. 1.

The role of the decision making and motion planning module is to transform the
information about the route and the state of the AV and surrounded traffic and envi-
ronment into a high-level strategy—modulation of the speed set-point, merging, lane
changing, car following, aborting the current maneuver, etc.—that is further imple-
mented by the motion control system encompassing path planning, path following,
and actuator control modules. Early AV research and prototypes utilized motion
planning concepts derived from classical control techniques—finite state machines,
rules, heuristic strategies and Model Predictive Control (MPC) [5, 6, 11, 21, 62].
Following the massive introduction of AI methods in AV development in the last
years, we can observe a considerable growth in the share of the DRL based methods
for motion planning [4]. The rationale behind this trend is the ability of the DRL
to handle complex and ill-defined situations and environments that often occur in
autonomous driving setting. Presently, alternative versions and implementations of
the DRL are at the core of the AV motion planning methods (e.g., detailed surveys
of the DRL applications to AV can be found in [4, 61]).

One of the challenging problems of the DRL based decision making and motion
planning for AV is improving the robustness of the algorithms and preventing the
possibility of unsafe actions and accidents. The essence of this problem is the prob-
abilistic nature of the RL concept, which does not generally imply that the max-
imization of the reward function can guarantee the safety and repeatability of the
solution.

One common approach to improving DRL robustness, we call it the probabilistic
robustness, is focused on enhancing the exploration strategy during the training of the

1 *Selected portions reprinted, with permission, from [34], ©2019 IEEE.
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Fig. 1 AI for AV: a
prototypical technology
stack

DRL algorithms. The final goal is enriching the training set by introducing, through
adversarial disturbances and non-reward based exploration, unexpected scenarios
and situations well beyond the space defined by the simulation model/distribution
and the handcrafted reward function. The methods of this group include model-
based exploration [38, 54, 63], adversarial perturbations of the state observations
[27], infusing disturbances that are modulated by the capability of the control policy
[28], generating socially acceptable perturbations [64], maximization of the rewards
associated with the high risk trajectories [46], etc. In general, the outcome of these
techniques is improved robustness of the algorithms and consequentially reducing
the level of risk, but without providing deterministic guaranties for solution.

An alternative methodology proposed by Alshiekh et al. [2] introduces the idea
of constraining (‘shielding’) the output of the RL algorithm within a safety envelope
that is defined by a deterministic decision-making strategy. Human crafted rules
improving the safety of the DRL algorithm are applied in [34, 35] and [31] in order
to eliminate the unsafe actions produced by theDRL algorithm.On one side, the rules
have the advantage of introducing human knowledge and experience in conjunction
with the machine learning approach of developing the DRL. On the other side, the
deterministic envelope defined by the rules might be too conservative and limited
only to the specific situations considered by the designers.
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In this chapter we are extending the ‘shielding’ concept by combining the DRL
decision making and motion planning algorithm with a generic deterministic algo-
rithm that is aimed to define a safety boundary, called the ‘safety filter’ at the output of
the DRL algorithm. Our work started with a rule-based safety filter [35] with simple
motion actuation, described in Sect. 2, continued with representative vehicle motion
control (Sect. 3), and extended to safety filter for wide-ranging situations (Sects. 4
and 5). The wide-ranging safety filter design is inspired by the recent progress in the
theory of Control Barrier Functions (CBF) as a generic and reliable methodology for
object avoidance in robotic and automotive applications.

2 Decision Making: DRL Driving Strategy for Changing
Lanes

To ensure automated driving is capable of operating in diverse environment including
varying traffic density, different driving style and norms, we develop a novel Deep
Reinforcement Learning framework. In this section we first provide a basic introduc-
tion to RL and Q-learning. Following this we elaborate on our hybrid approach to
solve decision-making and control problems. We introduce essential modifications
to classical Q-learning and show the necessity in incorporating basic safety rules.
We demonstrate the effectiveness of our approach using a comparative simulation
study for the highway driving problem. Our novel hybrid architecture can effectively
handle complex and possibly ill-defined situations and environments.

2.1 Reinforcement Learning and Deep Reinforcement
Learning an Introduction

In this section we will provide a brief theoretical background on decision making
using deep reinforcement learning.Additionally,we elaborate on themainmotivation
for using the hybrid control architecture presented in this chapter.

2.1.1 Reinforcement Learning

In reinforcement learning (RL), an Agent learns an optimal policy for a given cost
function by directly interacting with the environment. Broadly RL constitutes a set
of algorithms that efficiently solve the sequential decision making problem for an
underlying Markov decision process (MDP) [45]. An MDP is formally defined by
a tuple 〈S,A, T ,R〉. Where S ∈ R

n is the state-space, A is the action space, T :
S × A → S is the state transformation function, and R : S × A × S → R is the
reward function. At each discrete time step t the learning Agent selects an action at
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according to some policy π for a given system state st , i.e., at = π(st ) ∈ A, where
A is a set of feasible actions. On applying this action the system transitions to a
new state st+1 ∈ S, and provides a scalar reward rt+1. This process is repeated till
the policy converges. It must be noted, both state transition T and policy π can be
stochastic.

The goal of an RL algorithm is to learn a policy π so as to maximize the total
cumulative reward termed as return Rt = ∑∞

k=0 γ krt+k where the scalar constant
γ ∈ (0, 1] is the discount factor. For discrete action space the optimal policy is
obtained by solving for the optimal Q function, termed as the action-value function.
An optimal Q function satisfies the Bellman equation:

Qπopt (st , at ) = Q∗(st , at ) = Est+1

[

rt + γ max
at+1

Q∗(st+1, at+1)|(st , at )
]

. (1)

For a given state st any action at that satisfies (1) is the optimal action.

2.1.2 Decision Making and Low-Level Actuation

Inspired by an example from [45] (see Sect. 1.2), we elaborate on the difference
between decision making (D’s) and low level actuation (C’s) :
• Phil wants to have breakfast, he may chose between having cereal or a bagel (D1),
after deciding he will either walk to cupboard or to the counter (C1).

• He will then either pick a choice of cereal (D2) and then walk to the fridge (C2) to
get milk or chose a bagel (D3) and walk to the toaster (C3), etc.

This entire process involves a series of decision making followed by low-level actua-
tion. High-level decisions (i.e.,D’s) are decided by reward function such as pleasure
or getting enough nutrition etc.

Any RL methodology that tries to solve both decision making and actuation
simultaneously may require a large amount of training data. In this work we simplify
this process by having a clear hierarchy between high-level decision making and
low level actuation. RL is used to solve the high-level decision making problem,
while the classical feedback control methods are used for low-level actuation. Our
approach has considerable overlapwith hierarchical RL, where both decisionmaking
and control are learned simultaneously [12]. To learn optimal high-level decisions
we use a modified Double DQN (DDQN) algorithm from [53].

2.1.3 Need for Robustness and Safety

The trade-off between exploration and exploitation is a key characteristic that dis-
tinguish RL from other forms of machine learning algorithms [45]. In an unknown
situation an agent needs to be curious and explore new action. Hence during the
initial learning phase the Agent will invariably explore all viable actions as the

http://dx.doi.org/10.1007/978-3-031-06780-8_1
http://dx.doi.org/10.1007/978-3-031-06780-8_1
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(a) Highway with barricaded right lane. (b) A three lane highway scenario.

Fig. 2 An example for common sense road rule along with the ego vehicle perspective considered
in this work (©2019 IEEE)

entire environment is unknown. Unfortunately this curiosity can be fatal and poten-
tially expensive [13]. For example, during training, using unguided exploration could
potentially lead to frequent collisions resulting in slow the training process. Addi-
tionally in the inference stage, due to perception noise, function approximation etc.
a trained agent may still potentially recommend a non-safe maneuver. In order to
address these issues, we augment the DDQN decision maker with an explicit short-
horizon safety check that is used both during training as well as in the inference
phase. Safe exploration or safe-RL is an active research topic, for a detailed survey
see [14].

A standard DRL approach such as DDQN, may require a lot of samples before
learning that certain action to be potentially dangerous in certain states. For example,
consider a highwaywhere one of the lane has been barricaded, see Fig. 2a. A standard
epsilon-greedy algorithm may need to collide multiple times before learning that
in certain situations going to the left-most lane, for e.g. when it is blocked, to be
catastrophic. This may result in significant waste of learning effort as the Agent will
spend considerable amount of time exploring irrelevant regions of the state and action
space. Additionally due to function approximation there is a small probability where
the trained DDQN Agent may still chose unsafe actions leading to a catastrophic
outcome. This can be avoided by including an explicit short-horizon safety check
that evaluates the action choice by the learning Agent and provides an alternative
safe action whenever it is feasible [2].

Our first solution to this problem called the Rule Based Safety Filter [34] (see
Sect. 2.2) uses a simple safety check based on the common sense road rules. This
forces the Agent to avoid non-safe actions in dangerous situations resulting in a faster
training. Our approach is similar to a teacher who provides corrective action when it
is necessary [47]. Note that the safety filter may not be optimal, i.e., an expert in the
task under consideration. Additionally, due to explicit safety check, new data can be
obtained even in the inference phase which can then be used for continuous adaption
of the learned network, this is further elaborated in Sect. 2.4.3.
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Fig. 3 DRL agent control architecture

2.2 DRL for Autonomous Driving

The DRL architecture used in this work is given in Fig. 3.
Unlike the mediated perception method that relies on complete reconstruction of

scene prior [16, 60], we use the concept of affordance indicators, i.e., state variables
based on the direct perception approach from [7]. For a three lane highway scenario,
the ego vehicle (EV) can be surrounded by up to six traffic vehicles (TV), see Fig. 2b.

2.2.1 Affordance Indicators

For Autonomous driving, the Agent uses information about its location within the
road coordinate system and surrounding vehicles to select an action. This information
is collectively termed as affordance indicators. The action taken by the Agent is then
rewarded or penalized based on transitioned state. Cumulative reward is used by the
Agent to learn safe and effective driving behavior. In this work, we use affordance
indicators from 6 target vehicles in the vicinity of the ego vehicle. The 6 target
vehicles are designated as Front Left, Front Center, Front Right, Rear Left, Rear
Center and Rear Right.

To define the traffic vehicle’s variable we use the following notation

StateLaneLocation&Direction (2)

where State can be distance d or velocity v, Lane is either right r , center c, or left
lane l. Location is either front f or rear r and Direction is either longitudinal x or
lateral y.

In total the following 24 indicators are used to represent the spatio-temporal
information of the six nearest traffic vehicles (see Fig. 2b), they are formulated from
the ego vehicle’s perspective. Here the lane occupancy of a TV and the closest car to
EV are obtained using the methodology presented in Zhang et al. [62]. In addition to
the 24 traffic vehicle states we use longitudinal velocity vex , lateral position dey , and
lateral velocity vey of the ego vehicle e. Since the affordance indicators are formulated
w.r.t. ego vehicle we do not need a state corresponding to longitudinal position of the
ego vehicle. These variables are minimal requirement for highway driving, however
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they are not sufficient for all highway driving tasks such as use of restricted lane,
on-ramp to enter the highway, off-ramp to exit, etc.

2.2.2 High Level Decision and Feedback Control

A total of 27 affordance indicators, i.e., st ∈ R
27 is used as an input to the deep

Q-network. The Q-network is trained by using a modified double deep Q-learning
algorithm from [53], see Algorithm 1. For highway driving decision making, we
consider four longitudinal action choices:

1. maintain
2. accelerate
3. brake
4. hard brake

and three lateral action choices:

1. keep lane
2. change lane to right
3. change lane to left.

The combination results in set of 12 unique actions. For each of these action choice a
numerical value can be assigned [25], for example for longitudinal acceleration four
different discrete choices {a1, 0,−a1,−a2} may be considered. Alternatively, one
can obtain the reference for the throttle or brake controller either using the intelligent
driver model (IDM) [50] or adaptive cruise control [41, 52]. The reference for the
steering controller is self-evident, it is either stay in lane or change lane to right or
left. To obtain the front wheel angle we use a simple feedback controller (see Sect. 3.2
for details)

κcmd = f (kroad , eyof f , eψ, TLC , vex ) (3)

where kroad is the road curvature, eψ is the heading angle offset, TLC is the desired time
to complete a lane change, and the reference eyof f is the lateral offset to the desired
position. When the DDQN Agent decides to perform a lane change, the absolute
value of the lane offset eyof f will be set to the lane width. The inputs to the steering
feedback controller (3) can be considered as additional affordance indicators which
can be obtained from the perception module.
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Algorithm 1 A DRL based safe decision maker for autonomous highway driving

1: Initialize: BufS, BufC, Q(θ) and target network Q̂(θ̂) with θ̂ = θ

2: for episode =1,· · · ,Ne, do
3: Initialize: {1, · · · , NT} cars randomly, obtain affordance indicator s0
4: for samples t =1,· · · ,NS, or Collision, do
5: With ε select random action at , else at = argmaxa Q ((st , a, θt ))

6: For ego car: If at is not safe Then store (st , at , ∗, rcol) in BufC and replace at by safe action
as

7: Apply action, observe st+1 and obtain rt+1 = ρ(st , st+1, at )
8: if Collision then
9: Store transition (st , at , ∗, rcol) in collision buffer BufC
10: else
11: Store transition (st , at , st+1, rt+1) in safe buffer BufS
12: end if
13: Sample random minibatch

(
s j , a j , s j+1, r j+1

)
from BufS and BufC

14: Set

y j =
{
r j+1 if sample is from BufC

r j+1 + γ Q̂
(
s j+1, argmaxa Q

(
s j+1, a, θt

)
, θ̂t

)
if sample is from BufS

15: Perform gradient descent on ‖y j − Q(s j , a j , θt )‖2 w.r.t. θ
16: Every NC episodes set Q̂ = Q
17: end for
18: end for

2.2.3 Rule Based Safety Filter

As elaborated in Sect. 2.1.3, we use an explicit short-horizon safety check to validate
the action choice by DDQN. For the current action choice, the safety filter verifies
common sense but well known rules of the road such as ensuring a minimum relative
gap to a TV based on relative velocity

dTV − Tmin × vT V > dTVmin (4)

where dTV , vT V are the relative distance and velocity to a given traffic vehicle, Tmin

is the minimum time to collision, dTVmin is the minimum gap which must be ensured
before executing the action choice by the Agent. If this condition is not satisfied and
when feasible, an alternate safe action will be provided by the short-horizon safety
filter. In this example we use a simple variant of the intelligent driver model (IDM)
[50] to provide safe alternative longitudinal action, it is formulated as

as =

⎧
⎪⎨

⎪⎩

Hard brake if TC ≤ THB
Brake if THB < TC ≤ TB
Maintain if TB < TC

(5)

where as is the safe action, TC is the calculated time to collision. It is defined as
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TC = dTV
vTV

(6)

[30], THB and TB are the thresholds above which the decision made by the DDQN
Agent is considered to be safe.

In particular we use the following safety check prior to performing an action given
by DDQN:

1. Instead of the in-lane longitudinal action by DDQN, chose a safe action using (5)
if (4) is not satisfied and the ego vehicle is faster than the preceding vehicle.

2. If the ego vehicle is in left most lane then change lane to left is not valid, similarly
for the right lane.

3. For change lane to left continuously monitor (4) for center-front car and to the
left-front and the left-rear car in the target lane. If condition (4) fails then lane
change is either not initiated or aborted, similarly for the change lane to right.

After training, generally the trained Agent is frozen and used only in inference mode.
However, in reality the Agent may encounter new information, additionally there
can be a considerable variation between the training environment and the real-world
experience. Also due of function approximation there can be a small probability of
choosing an unsafe action even by the trained Agent, this can happen even after
convergence and in the absence of any explicit exploration. In order to address these
issues, in the implementation phase we augment the trained DDQN Agent with the
short-horizon safety check that was used during learning. Any new safety violation
data will be added to the collision buffer BufC, by using the training part of the
Algorithm 1 (line 13 to 15) the learned Agent can be re-trained or adapted in a
continuous manner. In the following section we apply the developed DRL based
decision making Algorithm 1 for autonomous highway driving.

2.3 Vehicle Dynamics

Throughout this chapter, we use different vehicle dynamics models based on the
modeling requirements. In this section, we present the 3 models that are used in
subsequent sections.

2.3.1 Point Mass Model

When using this model, each vehicle is modeled as a computationally efficient point-
mass in discrete time. For longitudinal equations of motion we use a discrete-time
double integrator, and for lateral motion we use a simple kinematic model.
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x(t + 1) = x(t) + vx (t)	t,

y(t + 1) = y(t) + vy(t)	t, (7)

vx (t + 1) = vx (t) + ax(t)	t,

where t is the time index,	t is the sampling time, x ∈ R is the longitudinal position,
y ∈ R is the lateral position of the car, and vx ∈ R is the longitudinal velocity of the
vehicle. In (7), the external control inputs ax(t) and vy(t) represents the longitudinal
acceleration and lateral velocity of the vehicle, respectively.

We assume ax(t) to vary from nominal acceleration, to hard brake and is dis-
cretized into four values, i.e., ax = {a1, 0,−a1,−a2}, with a1 = 2m/s2 and a2 =
4m/s2. Only in case of emergency hard braking of ax = −a2 is applied. The lateral
velocity vy(t) provides a reference lane for the vehicle, we assume 5s to complete
a lane change action [48], with an option to abort at any sampling instance. In this
work we use 1 Hz sampling for the driving policy.

2.3.2 Dynamic Bicycle Model

In subsequent sections, we also use a continuous dynamic bicycle model for vehicle
dynamics [41]. This model is required when simulating vehicle dynamics at higher
frequencies.

ẋ = v cos(φ + β),

ẏ = v sin(φ + β),

v̇lon = gα − Faero − mg sin(θr )

v̇lat = Ff + Fr

m
− vlonφ̇

φ̈ = FfL f − FrL r

Iz
,

(8)

where v is the velocity, φ is the heading angle, β is the slip angle, L f is the distance
of the front wheel to the center of mass, L r is the distance of the rear wheel to the
center of mass, δ is the front wheel angle, vlon is the longitudinal velocity, vlat is the
lateral velocity, g is the acceleration due to gravity, α is the longitudinal acceleration
request in g’s, Faero is the aerodynamic drag, m is the mass of the vehicle, θr is the
road grade, Ff is the lateral tire force on the front tire, Ff is the lateral tire force on
the rear tire, and Iz is the yaw moment of inertia of vehicle. The lateral tire forces
are calculated as follows
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Ff = 2Cf(δ − θvf),

Fr = 2Cr(−θvr),

θvf = arctan
(vlat + L f φ̇

vlon

)
,

θvr = arctan
(vlat − L rφ̇

vlon

)
,

(9)

where Cf is the cornering stiffness of each front tire, Cr is the cornering stiffness of
each rear tire, θvf is the front tire velocity angle and θvr is the rear tire velocity angle.
In all simulations in Sect. 4, this model is used.

2.3.3 Simplified Bicycle Model

To aid in calculating the barrier dynamics in Sects. 4 and 5, we use the simplified
decoupled system dynamics shown below.

ẋT = vT cos(φT) − vH cos(φH),

v̇H = gα

ẏT = vT sin(φT) − vH sin(φH),

φ̇H = vH

LH
δ,

(10)

where xT and yT are the relative x and y positions of the target center with respect to
the ego center in road coordinates, φT and φH are the heading angles of the target and
ego vehicles w.r.t. the road coordinate system, vT and vH are the absolute velocities
of the target and ego respectively, LH is the wheelbase of the ego vehicle, and δ is
the front wheel angle of the ego vehicle.

2.4 Simulation Results

In this section we will show the applicability of our DRL based decision making
Algorithm 1 for autonomous highway driving. First, we will elaborate on the training
environment and evaluate the learned policy.

2.4.1 Training Environment

A schematic of the simulation environment used for training is given in Fig. 4. It is
a three lane circular loop and is used to approximate an infinite stretch of straight
highway. At the beginning of an episode, anywhere between {1, . . . , NT} number
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Fig. 4 A schematic of the simulation environment used for training

of cars are placed randomly within a distance of 250 m from the ego car. In this
example we chose NT to be 30.

During learning stage the ego car (for e.g., white Fusion in Fig. 4) uses an ε-
greedy RL policy tomake decisions, whereas for the traffic vehicles a combination of
controllers from [25, 62] are used alongwith an IDMcontroller [50]. Additionally the
traffic vehicles can randomly chose to perform lane change. For the traffic vehicles,
the system parameters such as maximum velocity are randomly chosen. This is
to ensure a diverse traffic scenario in training and evaluation. We assume that all
the traffic vehicles take into account the relative distance and velocity to preceding
vehicle before making a decision, i.e., they will not rear end the preceding car in the
same lane. We use Algorithm 1 to train an Agent for decision making.

2.4.2 Reward Components for DRL Training

In order to train the policy π we use a reward function ρ that consists of a set driving
goals for the ego car. It is formulated as a function of

• Desired traveling speed subject to traffic condition (11),
• Desired lane and lane offset subject to traffic condition (12),
• Relative distance to the preceding car based on relative velocity (13),
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rv = e− (vex−vdes)
2

10 − 1, (11)

ry = e− (dey−ydes)
2

10 − 1, (12)

rx =
⎧
⎨

⎩
e− (dlead−dsafe)

2

10dsafe − 1 if ex < dsafe
0 otherwise,

(13)

where vex , dey , and dlead are the ego velocity, lateral position, and the longitudinal
distance to the lead vehicle respectively. Similarly, vdes, ydes, and dsafe are the desired
speed, lane position, and safe longitudinal distance to the lead vehicle respectively.

Figure5 gives an indicative plot of the reward functions (11)–(13), it is formulated
assuming vdes = 30 m/s which can be achieved in the center lane i.e., ydes = 3.8m
with a minimum safe distance dsafe = 40m. The desired values are based on the
traffic condition and can change depending on the scenario. For slow/fast moving
traffic the peak in Fig. 5c will be adjusted based on the traffic condition. In this work
we penalize the ego vehicle if it cannot maintain a minimum time headway of at least
1.3 s.

During learning, we evaluate the (partially) trained DRL controller every 100th
episode. Figure6 shows the average reward per decision during the training phase.
It takes nearly 2000 episodes for the Agent to converge. We train the DRL Agent for
a total of 10,000 episodes. Where each episode lasts until 200 samples or collision,
whichever is earlier. Exploration is continuously annealed from 1 to 0.2 over first
7000 episodes and then kept constant for the remaining duration of learning. The
Q-network is a deep neural network with 2 hidden layers each having 100 fully
connected leaky ReLU’s [29]. We train the network using Adam optimizer [22] with
a fixed learning rate of 1e − 4.

(a) Reward for desired relative distance. (b) Reward for desired lateral position.

(c) Reward for desired ego speed.

Fig. 5 Reward for the ego car based on traffic condition, sub goals are weighted equally when
calculating the final reward
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Fig. 6 Average learning curve with confidence bound for with and without short horizon safety
check in Algorithm 1

For the highway driving task, the safety filter was found to be a key component
for learning a meaningful policy. Figure6 shows the mean and confidence bound for
training with and without safety filter over 200 training iterations of Algorithm 1.
Training a standard DDQN Agent without explicit safety check could not learn a
decent policy and always resulted in collision. Whereas DDQN with explicit safety
check was able to converge to an optimal policy. Based on (11)–(13), the maximum
reward an Agent can receive is zero per decision, the average reward per decision
obtained by our trained DDQN Agent with safety check is around −0.025.

In Fig. 7 We evaluate our trained DDQN Agent to obtain average velocity with
increase in traffic density.We compare this against modified safety filter from (5), the
modification provides an acceleration commandwhen the calculated time to collision
TC is higher than TA. This is referred as IDM in Fig. 7. Itmust be noted IDMcontroller
from (5) cannot initiate lane change, in order to address this we integrate IDM with
SUMO lane change decision making from [10, 20]. Figure7, clearly demonstrates
advantage of RL for high level decision making when compared to model-based
approaches.With the increase in traffic density both the trainedDDQNAgent and the
model-based lane change controller converges to IDM controller. This is anticipated
since lane change is neither safe nor advantageous in higher traffic density.

Use of two explicit buffers namely BufS and BufC in Algorithm 1 to store safe and
non-safe transitions is simplified version of prioritized experience replay (PER) from
[42]. Figure8 shows themean and confidence bound for trainingwith two buffers and
PER over 200 training iterations of Algorithm 1. For the highway driving example
using two explicit buffers provides marginally better policy when compared to PER.
This can be due to clear bifurcation of safe and non-safe transitions.



176 S. Nageshrao et al.

Fig. 7 Average speed for simple IDM controller, with lane change, and trained RL Agent

Fig. 8 Mean learning curve with confidence bound for Algorithm 1 and prioritized experience
replay [42]. In this work we used the PER implementation from [17]
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Fig. 9 Comparison of number of safety trigger after learning with and without continuous adapta-
tion

2.4.3 Continuous Adaptation

During the implementation phase, we replace the ε-greedy policy, i.e., πε in Algo-
rithm 1 line 5 by the learned policy π . Whenever the control decision by DDQN fails
the short-horizon safety check, buffer BufC is updated with additional data. Using
a lower learning rate than the one used for training, Q-network can be retrained
(line 13 until 16). Figure9 shows the continuous adaptation result over 30K episodes
and is obtained by averaging the data over 10k episodes using a moving average
filter. Because of filtering, the mean number of safety trigger increases over first
10k episodes and stays constant for no adaptation scenario whereas it monotonically
decreases to a smaller value thanks to continuous adaptation. Even with continuous
adaptation the mean number safety trigger never converges to zero, this may be due
to

1. Use of function approximation where a trained NN can potentially chose a non-
safe action,

2. Use of rigid and static safety rules.

2.5 Summary

In this section we provided an introduction to basics of RL, introduced our hybrid
decision making—control architecture. We explained the need for including a safety
filter during RL training and inference, we also showed its effectiveness in learning
a driving policy. Although the rule-based safety filter is handcrafted and predeter-
mined it significantly improved the learning speed. Additionally the number of safety
interventions reduces as the agent learns to perform optimal actions.



178 S. Nageshrao et al.

3 Executing DRL Decision with Motion Control Algorithm

While the previous section illustrated the design methodology of Deep Reinforce-
ment Learning (DRL) for a generic driving environment, it is best to train DRL
with representative motion control that executes the DRL decision. This will ensure
a higher fidelity of the vehicle—environment transition probability distribution for
the DRL training. In this section, we discuss longitudinal and lateral motion control
algorithms and their integration aimed at executing designated actions from AI DRL
strategy.

3.1 Longitudinal Motion Control

Longitudinal motion control systems need to provide tracking of the desired vehicle
speed while maintaining a safety gap/range relative to the selected target vehicle.
This functionality is provided by modern adaptive cruise control (ACC) systems
which compute the longitudinal acceleration command based on the actual and set
vehicle speed (Vx and Vx .set ), the actual and set range2 (R and Rset ), and range rate3

(Ṙ)
ax .ACC.cmd = f ACC(Vx .set , Rset , Vx , R, Ṙ) (14)

The commanded acceleration is delivered by the actuation layer through modulating
propulsion or brake torque. The ACCmapping function f ACC can be implemented in
various ways. For example, [41] described an ACC mapping function that includes
both car-following mode regulating steady state range/gap and speed-control mode
responding to transient situations such as target vehicle cut-in or loss of its lead
vehicle. The two modes were integrated through a calibrated range-range rate (R −
Ṙ) transition diagram.Treiber andKesting [49] proposed the IntelligentDriverModel
(IDM) which has been widely used in traffic simulation environments and represents
human car-following behavior observed on freeway and urban traffic. Jin et al. [19]
implemented state ([R, Ṙ]) feedback controller imitating human driving behavior
and experimented on connected automated vehicle. Treiber and Kesting [49] further
developed Improved IDM (IIDM) and the ACC Model to avoid unrealistically large
deceleration when desired speed suddenly changes, e.g., when entering a reduced
speed zone or when a vehicle cuts in. For more variety of ACC a reader is referred
to the survey [58] and references therein.

To execute DRL’s lane change decision, we leverage our production ACC design.
Thiswill avoid the needof complicated spatial-temporal optimization [24].By adding
scenario dependent smart ‘target selection’ to existing ACC design, the vehicle speed
will change during the lane change maneuvers for a smooth transition into a new

2 Range R is defined as the distance or gap between the ego and target vehicle, i.e., distance between
the ego vehicle’s front bumper and target vehicle’s rear bumper.
3 Range rate Ṙ is defined as relative speed between the ego and target vehicle.
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gap and a new lane speed. The elements considered in the scenarios include the lane
change decision, the range and range rate of surrounding vehicles, target lane speed,
and the status/prediction of lateral motion. The ‘target selection’ refers to the selected
lead vehiclewhose range and range-rate of theACCmapping function (Eq. 14)will be
based on. For example, in case of staying in lane decision, which represents the base
ACC functionality, the target vehicle selected is the lead vehicle of the current lane.
In case of lane changing decision, the target selection is considered in two phases:
before and after merging into target lane. In the first phase, both the lead vehicles
in current lane and target lane will be fed into the ACC mapping function, with a
calibratable desired range, and the commanded acceleration will take the minimum
values of the two, thus ensuring safety. In the second phase (after merging into the
target lane), the algorithm reverts to the base ACC functionality, i.e., selecting the
lead vehicle of the current (new) lane as the target.

Therefore, with the scenario-based ACC always aware of the status of the lateral
motion control (to be described next), smooth and human-driver-like motion control
can be expected for lane change and lane keep decisions.

3.2 Lateral Motion Control

For lane centering and lane changing maneuvers, we first introduce the relevant
vehicle-road kinematics. Figure10 shows the definition of coordinate frames and
variables for vehicle road/lane level localization. The vehicle motion dynamics is
consideredwith respect to the curvilinear Frenet-Serret coordinate frame (xr -yr ). The
states of the vehicle-road kinematics include the travel distance along the curvilinear
coordinate s, the path offset ey , and the heading offset eψ , while the curvature of
the road is considered as an exogenous input, denoted by κroad . Vehicle motion—
the longitudinal velocity Vx , lateral velocity Vy , and yaw rate r—are described in
the Cartesian coordinate vehicle body frame (x − y). Vehicle motion curvature κ is
defined as κ = r/Vx .4

Figure11 shows the system block diagram. The lateral motion controller per-
forms lane localization and computes vehicle motion curvature command. The plant
includes actuator and vehicle dynamics, aswell as vehicle-road kinematics/geometry.

Vehicle-Roadkinematics in theFrenet-Serret coordinate frame is givenbyWerling
et al. [56]

4 Alternatively, the curvature can be computed based on the front wheel angle δ as κ = δ/(L +
KuVx ) where L is the vehicle wheelbase, and Ku is the vehicle understeer gradient in units of
rad-s2/m. The understeer gradient is defined as: Ku = m f /C f − mr/Cr where m f and mr are the
front and rear axle mass, C f and Cr are the front and rear axle cornering coefficients.
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Fig. 10 Coordinate frames and vehicle motion dynamics variables. Legend: (xr − yr ) is the curvi-
linear coordinate road frame, (x − y) is the Cartesian coordinate vehicle body frame, κroad is road
curvature, ey is path offset, eψ is heading offset, s is curvilinear coordinate, r is vehicle yaw rate

Fig. 11 Block diagramof lateralmotion control and plant. Legend: κcmd is vehiclemotion curvature
command, Vx and Vy are vehicle longitudinal and lateral velocity, κ is vehicle motion curvature,
κroad is road curvature

ėy = Vx sin eψ − Vy cos eψ (15a)

ėψ = κroad ṡ − r (15b)

ṡ = 1

1 − κroadey
(Vx cos eψ − Vy sin eψ). (15c)

Since the value of heading offset, road curvature, and lateral velocity are relatively
small during the lane centering and lane changemaneuvers on highways, the vehicle-
road kinematics can be further simplified to the following

ėy = Vxeψ (16a)

ėψ = Vx (κroad − κ) (16b)

ṡ = Vx . (16c)

The path offset (ey) dynamics from (κroad − κ) are represented by a double integrator
with crossover frequency of |Vx |. The vehicle motion curvature κ is the system input,
whereas the road curvature κroad is considered as a system disturbance.
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In typical applications, the system states ey and eψ and road curvature κroad
are obtained through image processing of video frames taken from a front view
camera and by fitting the lane markers to a 3rd order polynomial [55]. Coefficients
of these lane marker polynomials are then fused to obtain the coefficients of the lane
center polynomial with respect to vehicle coordinate (x-y), referred to as the path
polynomial, where

ypath = a0 + a1x + a2x
2 + a3x

3. (17)

In this format, coefficients a0 and a1 are equivalent to the path offset (ey) and heading
offset respectively (eψ ) (see Fig. 10). Coefficients a2 and a3 are related to the road
curvature κroad and curvature rate κ ′

road = dκroad/dx . Based on vector differential
calculus, curvature of a parametric curve y = y(x) in the x − y plane is given by
Kreyszig [23]

κ(x) = |y′′|/(1 + y′2)3/2 (18)

where y′ = dy/dx . Computing y′
path and y′′

path from Eq. (17) and replacing with y′
and y′′ in (18) gives

κ(x) = 2a2 + 6a3x

[1 + (a1 + 2a2x + 3a3x2)2]3/2 . (19)

Assuming small heading offset a1,5 the curvature and curvature rate of the path (road)
at the origin (x = 0) are equal to

κroad = 2a2 (20a)

κ ′
road = 6a3 (20b)

3.2.1 Lane Centering Control

Vehicle-Road kinematics for lane centering applications is given by Eqs. (16a) and
(16b) where the road curvature is considered as an exogenous disturbance which can
be measured. The proposed curvature command (Eq. 21) represent a generic lane
centering algorithmwhich includes both a feedforward term of the road curvature and
the feedback terms. As such, with different coefficient design, it can represent various
well-known path following algorithms/approaches including Pure Pursuit [8], Bezier
curves based planning [15], or lookahead point design [51]. Our contribution is
to introduce a novel and heuristic calibration approach for any of the above path
following approaches to achieve desired closed-loop system response. The generic
control law is given by

5 For highway driving nominal value of a1 ≤ 5 ◦ hence the error introduce by the small heading
offset assumption is ≤ 1%.
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κcmd = K f f (κroad + VxTprevκ
′
road)︸ ︷︷ ︸

feedforward

+ Kyey + Kψeψ
︸ ︷︷ ︸

feedback

(21)

where K f f is the feedforward gain, Tprev is the preview time that can be effectively
utilized to compensate for actuation delays, Ky is the path offset gain, and Kψ is the
heading offset gain. Substituting κ in (16b) with κcmd from (21) and combining with
(16a) gives the closed-loop dynamics

[
ėy
ėψ

]

= Vx

[
0 1

−Ky −Kψ

] [
ey
eψ

]

+ Vx (1 − K f f )

[
0 0
1 VxTprev

] [
κroad
κ ′
road

]

. (22)

Eigenvalues of this 2nd order system are

λ1,2 = Vx Kψ

2
± Vx

√
Ky

√
K 2

ψ

4Ky
− 1. (23)

To design the state feedback gains in terms of desired closed-loop metrics such as the
natural frequency and damping ratio, we compare eigenvalues (23) with eigenvalues
of the 2nd order system expressed in terms of the natural frequency ωn and damping
ratio ζ

λ∗
1,2 = −ωnζ ± ωn

√
ζ 2 − 1 (24)

Derived feedback gains are given by

Ky = ω2
n

V 2
x

(25a)

Kψ = 2ζωn

Vx
. (25b)

Instead of the natural frequency as the tuning parameter, for lane centering appli-
cations it is convenient to use alternative time response metrics such as the transient
time to reach 95% of the target value or 5% of the initial value. This time is referred to
as the response time and denoted by Tr . For practical damping ratios in range between
0.7 and 0.9, relation between the transient time, closed-loop frequency and damping
ratio can be obtained by numerical optimization (with coefficient of determination
R2 = 0.99) and is given by

Tr ≈ 4.3ζ

ωn
. (26)

Solving (26) for ωn by using (25a) and (25b) gives the feedback gains in terms of
the transient time as
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Fig. 12 Initial condition
response Lane change
control for various damping
ratios ζ and response times
Tr . The initial conditions are:
ey.0 = 0.5m and eψ.0 = 0 ◦.
Actuation dynamics is
approximated by 2nd order
term with ωn.act = 5ωn and
ζact = 0.6

Ky = 18.5ζ 2

T 2
r V

2
x

(27a)

Kψ = 8.6ζ 2

TrVx
. (27b)

Figure12 illustrates vehicle response with non-zero initial conditions using the
proposed controller for different choice of the design parameters.

3.2.2 Lane Change Control

Lane change control systems need to provide a smooth lateral shift of a vehicle
from current to target lane within specified time and with small or zero overshoot.
Typical duration of lane changes6 is in the range of 5 and 7s with lateral accelerations
amplitudes in the range of 0.4 and 0.8 m/s2 (for making a lane change on straight
roads). One can divide the problem into explicit path planning and path following, or

6 Duration is defined as time required to reach path offset relative to the target lane center that is
withing the range of nominal lane centering oscillations in range of 0.1–0.2m. For nominal lane
width of 3.4m, this corresponds to approximately 5% of the lane width or the path offset at the lane
change start.
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alternatively integrate both components from the perspective of smooth transitioning
into a new lane center. The latter eliminates the need of specifying way points and
enables the designer to reuse the lane centering control methodology described in
the previous section. In the case of integrated controller, the path is switched from
the current to the target lane which introduces a step change in the path offset ey . The
lane centering controller will follow the new set point by driving the vehicle towards
the target lane. In order to achieve the desired transient time and damping ratio, the
controller gains are scheduled by using (26)–(27b), where Tr corresponds to the lane
change duration. Benefits of this controller are in the ease of tuning, adaptation to
initial conditions or changing conditions which may arise from lane change aborts
or driver interactions.

Since this controller is linear, the initial curvature command in response to a step
change in set point is large (see Fig. 12) creating a pronounced lateral acceleration
and jerk. Although the actual acceleration and jerk will be partially filtered out by
the actuation and vehicle dynamics, a systematic solution is proposed below.

The pronounced initial acceleration and jerk can be overcomeby adding amplitude
and rate limits to the state feedback part of the control input. The limits need to be
sufficiently large in order not to affect the performance, e.g., not to cause oscillations
or even limit cycle. Methods such as describing function analysis [1, 9, 44] can be
applied to ensure stability at the presence of calibrated rate and amplitude limits. We
propose to utilize limits obtained fromwell-known quintic polynomial path planning
(see, e.g., [37]).

Path in time domain described by the quintic polynomial is given by: y(t) =
a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5. For given initial and final conditions (t f is
final time): y(0) = 0, ẏ(0) = 0, ÿ(0) = 0, y(t f ) = y f , ẏ(t f ) = 0, ÿ(t f ) = 0, the
coefficients are equal to:a0 = 0, a1 = 0, a2 = 0, a3 = 10y f /t3f , a4 = −15y f /t4f ,
and a5 = 6y f /t5f . From the second derivative of the polynomial, time instances

at which lateral acceleration peaks occur are t1,2 = (3 ± √
3)/6t f ⇒ t1 ≈ 0.21t f ,

t2 ≈ 0.79t f . Accordingly, the acceleration maximum is

ay.max = 5.77y f

t2f
(28)

Maximum jerk occurs at the beginning and end with magnitude are equal to

jmax = 60y f

t3f
(29)

Obtained lateral acceleration and jerk limits7 provide comfortable maneuver yet are
high enough to prevent oscillations or limit cycles which can be proved by nonlinear
simulations or describing function analysis. Figure13 shows simulation results with

7 For lane width of 3.4m and lane change duration of 6 s, the limits are ay.max = 0.54m/s2 and
jmax = 0.94m/s3.
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Fig. 13 Lane change control
with control input amplitude
and rate limiting. Actuation
dynamics is approximated by
2nd order term with
ωn.act = 5ωn and ζact = 0.6

amplitude and rate limiting of the curvature command. We see that although there
is a major effect on the initial transient response, the target metrics in terms of the
duration and damping ratio are preserved.

3.3 Summary

In this section, we presented longitudinal and lateral motion control, and how they
work together to execute the decision made by higher level AI (DRL). For the longi-
tudinal control, we introduced a smart ‘target’ selection logic to leverage production
ACCdesign, and to facilitate the integrationwith lateral motion control for delivering
smooth and human-driver-like lane change maneuvers. For the lateral control, we
introduced a unified lane centering and lane changing algorithm with a general con-
trol algorithm formula that can be calibrated to represent various well-known path
following design methodologies. We further introduced a new calibration approach
that can automatically adjust the state feedback gains to achieve desired systemdamp-
ing, closed loop bandwidth, or 0–95% set point response time. In addition, for lane
change maneuvers, we integrated both path planning and path following aspects.
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Since the integrated control does not try to regulate the vehicle to specific way-
points, no explicit waypoints designation is required. It provides implicit, smooth,
and seamless re-planning in case of unexpected vehicle motionwhichmay arise from
unintended steering movement, and in case of abrupt path offset change (set point)
change in the event of lane change abort (to return to the original lane). We further
recommended a way to analyze and calibrate the limit of lateral acceleration and
jerk—the nonlinearities purposely added to the controller for comfort and actuation
constraints—for assuring both subjective and objective performance.

4 Generic Safety Filter Design with Control Barrier
Functions

In this section we develop a more generic safety filter than the heuristic handcrafted
rules utilized in Sect. 2, because the latter may not be sufficient for avoid all types
of collisions. The performance of an Agent depends on what it sees during training.
Since the handcrafted heuristic rules are designed with certain imminent collision
threats in mind, they could miss corner cases in the real-world, and even in a sim-
ulation world with long tail distribution where simulated target vehicles behaving
beyond the engineers’ imagination. For this reason, the rule-based safety filter can
be ‘brittle’. Hence a collision-avoidance intervention mechanism that is not specific
to certain ego-target vehicle poses/situations is developed here to serve as a generic
safety filter.

Control Barrier Functions (CBF) have been used as a method to compute
minimally-invasive feedback control that satisfy various prescribed system con-
straints. For AVs, CBFs can provide a computationally efficient approach to avoid
collision by correcting ego vehicle motion based on its relative position and velocity
compared with surrounding road users. The CBF framework used here assumes that
a nominal control signal u0 is computed by the autonomous driver, in this case an
Agent. That signal is then evaluated by the CBF for safety. If u0 is safe, the CBF
safety filter does not modify it. If it is deemed unsafe, the safety filter overrides
the nominal control and calculates a minimally invasive safe control that can avoid
collision. The advantage of using a CBF based collision avoidance system is that it
provides a safe steering and longitudinal acceleration command that is as close as
possible (in the Euclidean sense) to the nominal control. This results in a much less
intrusive safety filter compared to the rule based safety filter from Sect. 2.

However, it is not straightforward to decide if the actuation of braking or steering
should be used, (or how the actuation should be combined/split) to best correct vehicle
motionwhenCBF intervenes to avoid a collision. To arbitrate between steering and/or
braking, we use Contextual Selection of Decoupled CBF. This algorithm addresses
the above issue by taking advantage of the structure and rules of the road, as well as
the knowledge of steering/braking efficacy for different situations based on physics.
Therefore, the proposed logic and resulted methodology, will determine steering and
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braking action required to effectively and decisively impose decoupled longitudinal
and lateral CBFs in order to avoid collisions. The algorithm is designed to use the
same input structure, i.e. affordance indicators as the DRL Agent. In addition to the
affordance indicators used by the Agent, the CBF safety filter also uses the heading
with respect to the road of the six surrounding traffic vehicles. The algorithm has
been verified in extensive simulation with varying traffic and road users.

4.1 Control Barrier Functions

Barrier Functions have been used to enhance system robustness [39], while Control
Barrier Functions (CBFs) have been used as a method to provide minimally-invasive
feedback control that satisfies various constraints prescribed on that system [3, 18, 57,
59]. Here we mix the two concepts because we would like to apply them to systems
with control inputs that are outside of the ego (the entity doing the calculations)
control. Consider a control affine system

ẋ = f (x) + g(x)u, (30)

where x ∈ R
n and u ∈ R

m is the control input. We assume that a control input u0 is
computed by a driver (or an Agent/controller) to achieve some objective, and it is
known. Let us also assume that an additional control objective is to keep the state of
the system in a closed admissible set C ⊂ R

n defined as

C �= {x ∈ R
n : h(x) ≥ 0},

∂C �= x ∈ R
n : h(x) = 0,

Int(C)
�= x ∈ R

n : h(x) > 0,

(31)

where h : Rn → R is a twice continuously differentiable function. In addition, we
assume that Int(C) �= ∅, where Int(C). Figure14 shows an example Barrier Function
h(x), the admissible set C and the boundary ∂C. h(x) is relative degree 1 with respect
to the control inputs if hx · g(x) �= ∅, where hx = ∂h(x)

∂x . For the system (30) with a
given control input ū a function h(x) is a Barrier Function [3] with respect to the
admissible set C if h(x) is relative degree 1 with respect to the control inputs and

ḣ(x, ū) + l0h(x) ≥ 0, (32)

where ḣ(x, ū) = hx · f (x) + hx · g(x)ū. If aBarrier Function is relative degree 2with
respect to the control inputs (i.e. hx · g(x) ≡ 0, as is the case later in this chapter)
we can—motivated by [36]—consider the second order barrier constraint: ḧ(x) +
l1ḣ(x) + l0h(x) ≥ 0. The parameters l1, l0 are selected such that the roots of the
polynomial s2 + l1s + l0 are negative real. The forward invariant set is {x : h >
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Fig. 14 Example barrier function

0 and hx · f (x) > −λi h}, where λi is either one of the two roots of s2 + l1s + l0 =
0. A barrier function h(x) is a CBF with respect to the admissible set C if h is
differentiable in Int(C), h(x) → 0 as x → ∂C, and for x ∈ Int(C)

hx · g(x)ū = 0 =⇒ hx · f (x) + l0h(x) ≥ 0 (33)

if h(x) is relative degree 1 with respect to the control inputs and

∂(hx · f (x))
∂x

· g(x)ū = 0 =⇒ ∂(hx · f (x))
∂x

· f (x) + l1(hx · f (x)) + l0h(x) ≥ 0

(34)

if h(x) is relative degree 2 with respect to the control inputs.

4.1.1 Decoupled Barrier Functions for Autonomous Driving

We define the longitudinal collision avoidance barrier functions as

hx,F = xT − kvvH − dx,min − LH

2
− LT

2
,

hx,R = −xT − kvvT − dx,min − LH

2
− LT

2
,

(35)

where the subscript F is for the forward barrier and the subscript R is for the rearward
barrier. Similarly, we define the lateral collision avoidance barrier functions as
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Fig. 15 Longitudinal and lateral barriers

hy,L = −yT − dy,min + cbx
2
T, hy,R = yT − dy,min + cbx

2
T, (36)

where the subscript L is for the barrier to the left of the ego, the subscript R is for the
barrier to the right of the ego vehicle, LT is the length of the target vehicle, dx,min is
the minimum longitudinal distance allowed between vehicle bumpers, dy,min is the
minimum lateral distance allowed between vehicle centers, and cb is a coefficient
that determines the amount of bowing in the lateral barrier. The bowing is meant to
reduce the steering effort required to satisfy the collision avoidance constraint when
the target is far away from the ego. The minimum lateral distance of the barrier dy,min

is only enforced when the ego is driving alongside the ego (i.e. xT = 0). The possible
longitudinal and lateral barriers are illustrated in Fig. 15. The dotted red line shows
the position which the front/rear/left/right side of the ego vehicle must maintain in
order to satisfy the barrier constraint.

4.2 Calculation of Barrier Constraints

4.2.1 Longitudinal Barrier

We use the simplified bicycle model (10) to compute ḣx,F , ḣx,R , ḧx,R , which are used
to compute the constraints for the longitudinal barrier. Since hx,F is relative degree 1
with respect to the control input α, only ḣx,F is required to calculate the constraints
for vehicles ahead of the ego vehicle.

hx,F = xT − kvvH − dx,min − LH

2
− LT

2
,

ḣx,F(α) = −gkvα +
(
vTcos(φT) − vHcos(φH)

)

hx,R = −xT − kvvT − dx,min − LH

2
− LT

2
,

ḣx,R =
(
vTcos(φT) − vHcos(φH)

)

ḧx,R(α) = gcos(φH)α

(37)
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4.2.2 Lateral Barriers

We use (10) to compute ḣL, ḧL, ḣR, and ḧR which are used to compute the constraints
for the lateral barriers. We treat the nominal acceleration α0 as a disturbance into the
system.

hy,L(cb) = −yT − dy,min + cbx
2
T,

ḣ y,L(cb) = vHsin(φH) − vTsin(φT) + 2cbxT(vTcos(φT) − vHcos(φH))

ḧ y,L(α0, δ, cb) =
(
cos(φH) + 2cbxTsin(φH)

)v2Hδ

LH
+

(
sin(φH) − 2cbxTcos(φH)

)
gα0

+ 2cb
(
vTcos(φT) − vHcos(φH)

)2
,

(38)
and

hy,R(cb) = yT − dy,min + cbx
2
T,

ḣ y,R(cb) = vTsin(φT) − vHsin(φH) + 2cbxT(vTcos(φT) − vHcos(φH)),

ḧ y,R(α0, δ, cb) =
(
2cbxTsin(φH) − cos(φH)

)v2Hδ

LH
+

(
− sin(φH) − 2cbxTcos(φH)

)
gα0

+ 2cb
(
vTcos(φT) − vHcos(φH)

)2

(39)

4.2.3 Road Keeping Barriers

We also use road keeping barriers that prevent the vehicle from veering off the drivable area
while avoiding a collision whenever possible

hRK =
[
3wl − WH

2 − yH
yH − WH

2

]

, ḣRK =
[ −vHφH

vHφH

]

, ḧRK(δ) =
⎡

⎣
−v2Hcos(φH)δ

LH
v2Hcos(φH)δ

LH

⎤

⎦ (40)

where yH is the y-coordinate of the ego vehicle w.r.t. a lane attached frame where the y-
coordinate of the right most lane line is 0, LH is the length of the ego vehicle, and wl is the
lane width.

4.3 Contextual Selection of Decoupled CBF

In this section, we describe a method that takes advantage of the structure and rules of the
road and knowledge of steering/braking efficacy for different situations to select which barrier
constraints to enforce. We assume αS = α0 + αCBF where α0 is the nominal longitudinal
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acceleration that control provided by the virtual driver and αCBF is the correction computed
by the collision avoidance algorithm. Similarly δS = δ0 + δCBF where δ0 is the nominal front
wheel angle and δCBF is the correction computed by the collision avoidance algorithm. The
goal is then to calculate αCBF and δCBF given α0 and δ0 so that the constraints are not violated.

4.3.1 Provisional Selection of Decoupled CBF

The algorithm has two primary mechanisms for determining whether to use CBF constraints
for a target vehicle. The first mechanism is to use the below constraints to determine whether
a target vehicle is a threat to ego when only using the nominal acceleration and front wheel
angle proposed by the DRL Agent

Cx =
{
ḣx,F(α0) + l0,x hx,F ≥ 0, if xT ≥ 0

ḧx,R(α0) + l1,x ḣx,R + l0,x hx,R ≥ 0, otherwise

Cy = ḧ y(α0, δ0, 0) + l1,y ḣ y(0) + l0,yhy(0) ≥ 0.

(41)

These constraints arise out of the longitudinal and lateral CBF. We use the first order longi-
tudinal barrier constraint if xT ≥ 0 and the second order barrier constraint if xT < 0 because
hx,F is relative degree 1 with respect to α and hx,R is relative degree 2. In (41), the threat
assessment is performed with α0, δ0, and cb = 0.

Once a vehicle has been determined as a threat, the next step is to determine whether to
brake, steer, or to do both. This is determined by the relative distance and velocity of the
obstacle as shown in Fig. 16. The x-axis shows the relative velocity and the y-axis shows the
distance from the target. To arbitrate between steering and braking to avoid a collision, we
use the the physical limits of the vehicle to determine whether to steer around and obstacle or
to brake ahead of it. The minimum distances at which the ego vehicle can brake ahead of a
target db and at which the ego vehicle can steer around a target ds are given by

db = − v2R
2decmax

, ds =
√
2dy,min

ay,max
vR,

where vR = vH − vT, decmax is themaximumdeceleration and ay,max is themaximum lateral
acceleration of the ego vehicle. We define vcrit as the relative velocity where db = ds. In the
green shaded area we choose to brake, in the blue shaded area we choose to steer, and in the
red shaded area we choose to do both. The boundary between the green and blue regions is
determined by vcrit. The second mechanism that determines whether to use CBF constraints is
based on whether target vehicle is in a lane adjacent to the ego vehicle and within a predefined
longitudinal threshold distance. For vehicles that are in either:
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Fig. 16 Initial selection of decoupled CBF

Fig. 17 Geometric interpretation of preemptive lateral barriers

• the ego lane
• the lane immediately adjacent to the ego lane and within 3 car lengths from the center of

the ego vehicle
• the lane two lanes adjacent to the ego lane and within 2 car lengths from the center of the

ego vehicle.

We preemptively apply the lateral barriers. Figure17 shows a geometric interpretation of the
logic. If the center of a target vehicle falls within the shaded area, the appropriate lateral barrier
is enforced.
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Fig. 18 Initial selection of decoupled CBF

Using these two mechanisms, the barriers to be enforced are provisionally selected, as
shown in Fig. 18. The process shown in Fig. 18 is performed for the closest front and rear targets
in each lane. By considering all the vehicles nearby the ego, the collision avoidance algorithm
can prevent a broad range of collisions and is not limited to forward collision avoidance.
This barrier selection is provisional because in the case the selection cannot be enforced
due to conflicting constraints, the algorithm systematically replaces lateral constraints with
longitudinal constraints until a feasible solution is found.

Once the barriers have been provisionally selected, we designate the threat (i.e. barrier
enforced through the threat assessment mechanism) with the minimum longitudinal distance
as the primary obstacle iPO. For the primary obstacle, we provisionally activate both the left
and right lateral barriers. This results in 2 distinct options, going to the right or the left of the
primary obstacle. For all other lateral barriers, we choose the left or right barrier based on the
location of the target w.r.t. the ego vehicle.
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4.3.2 Computing αCBF and δCBF with Quadratic Programs

We calculate the safe longitudinal acceleration αS = αCBF + α0 and the safe front wheel
angle δS = δCBF + δ0 using 3 quadratic programs, QPyL, QPyR and QPx . QPyL and QP yR:
We define QPyL as

argmin
δCBF,L,sRK,ssaT

[
δCBF,L sRK ssaT

]
Qy

⎡

⎣
δCBF,L
sRK
ssaT

⎤

⎦ , (42)

subject to:

ḧ y,L,iPO (α0, δ0 + δCBF,L) + l1,y ḣ y,L,iPO + l0,yhy,L,iPO ≥ 0,

ḧ y,i (α0, δ0 + δCBF,L) + l1,y ḣ y,i + l0,yhy,i ≥ 0, ∀i ∈ Y, (43)

ḧRK(δ0 + δCBF,L) + l1,RKḣRK + l0,RKhRK +
[
1
1

]

sRK ≥ 0,

δmin − δ0 ≤ δCBF,L + ssaT,

δCBF,L − ssaT ≤ δmax − δ0,

whereY is the set of target ID’s for which the lateral barrier is enforced excluding the primary
obstacle, and l1,y , l0,y , l1,RK, and l0,RK are tunable parameters that determine the sensitivity
of the barriers. We define JyL as the optimal quadratic cost of QPyL. Similarly, we define
QPyR as

argmin
δCBF,R,sRK,ssaT

= [
δCBF,R sRK ssaT

]
Qy

⎡

⎣
δCBF,R
sRK
ssaT

⎤

⎦ , (44)

subject to:

ḧ y,R,iPO(α0, δ0 + δCBF,R) + l1,y ḣ y,R,iPO + l0,yhy,R,iPO ≥ 0,

ḧ y,i (α0, δ0 + δCBF,R) + l1,y ḣ y,i + l0,yhy,i ≥ 0, ∀i ∈ Y, (45)

ḧRK(δ0 + δCBF,R) + l1,RKḣRK + l0,RKhRK +
[
1
1

]

sRK ≥ 0,

δmin − δ0 ≤ δCBF,R + ssaT,

δCBF,R − ssaT ≤ δmax − δ0,

and we define JyR as the optimal quadratic cost of QPyR. The distinction between QPyL and
QPyR is that in QPyL, the left barrier is enforced for the primary obstacle and in QPyR the
right barrier is enforced for the primary obstacle. The slack variable sRK allows the algorithm
to momentarily leave the road surface if such an action is necessary to avoid a collision and
return when it is safe to do so. Similarly, ssaT allows the algorithm to find a solution to the
QPs even in the event of actuator saturation.
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Final Selection of Lateral CBF
The procedure used for the final selection of the CBFs is shown in Fig. 19. After the provisional
selection of the CBFs, we attempt to solve QPyL and QPyR. We define one or both QPyL and
QPyR as infeasible if any of the lateral constraints conflict (one lateral constraint requires δ > 0
and another requires δ < 0). If either QPyL or QPyR is infeasible, we replace the provisional
hy,i of the target with the lowest value of Cx,i with the longitudinal CBF hx,i , and resolve.
This procedure is repeated until either a solution is found or all the provisional lateral barriers
have been replaced by a longitudinal barrier. Note that both QPyL and QPyR may still be
infeasible after all provisional lateral barriers have been replaced. Once QPyL and QPyR have
either been solved or deemed infeasible, we select δCBF based on the following criteria.

• If QPyL is infeasible, δCBF = δCBF,R
• If QPyR is infeasible, δCBF = δCBF,L
• If QPyL and QPyR are both feasible,

– if |JyL − JyR| < 1e − 5, δCBF = δCBF,L,

– else if JyL < JyR AND (δCBF,R was NOT selected in the last step OR JyL <
JyR
2 ), δCBF

= δCBF,L,

– else if JyR < JyL AND (δCBF,L was NOT selected in the last step OR JyR <
JyL
2 ), δCBF

= δCBF,R,
– else if δCBF,L was selected in the last step, δCBF = δCBF,L,
– else if δCBF,R was selected in the last step, δCBF = δCBF,R,

• If QPyL and QPyR are both infeasible, δCBF is infeasible. Skip 4.3.2 and perform max
braking.

The logic above chooses the cheaper option and also prevents switching between choosing
left or right in sequential steps. δCBF is saturated after its computation by the dual QPs.

QPx : We solve QPx defined below, and saturate αCBF based on the actuation limits of the
ego vehicle.

αCBF = argmin
αCBF

α2
CBF, (46)

subject to:

ḣx,i (α0 + αCBF) + l0,x hx,i , ≥ 0 ∀i ∈ X , (47)

where X is the set of target ID’s for which the longitudinal barrier is enforced and l0,x is a
tunable parameter that determine the sensitivity of the barriers. For each target i , we use hx,F
if xT >= 0 and hx,R if xT < 0. If QPx is infeasible due to conflicting constraints, we remove
the conflicting rear constraints and resolve.

4.4 Examples

In all examples shown in this section, the parameters are set to the values shown in Table1.
In the position plots shown in (Figs. 20, 23 and 26), the green vehicle is the ego with

the collision avoidance activated and the dotted pink is the ego vehicle without the collision
avoidance algorithm. All target vehicles are shown in blue. The dotted red lines show the
active constraints at that time step.
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Fig. 19 Final selection of decoupled CBF. The steps in the shaded area are performed for both
QPyL and QPyR

Table 1 Tuning parameters

Parameter kv(s) dx,min(m) dy,min(m) cb l1,y l1,y l1,RK l0,RK l0,x

Value 1 6 3.15 0.0025 7 10 7 10 2
√

0.4g
|xT |
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(a) t = 0 sec

(b) t = 0.5 sec

(c) t = 1 sec

(d) t = 1.5 sec

(e) t = 2 sec

(f) t = 2.5 sec

(g) t = 3 sec

Fig. 20 Illustration of Example 4.4.1—position of the ego vehicle and the target vehicles at 0.5 s
intervals

4.4.1 Aggressive/Erratic Ego Cut-in Prevention

In this example, the ego vehicle attempts to change lanes while a vehicle is in its blind spot.
Figure20 shows the position of the ego vehicle and the target vehicles at 0.5 s intervals.
Figure21a, b show the front wheel angle and acceleration of the ego vehicle and Fig. 22 shows
the minimum Euclidean distance between the ego and the critical target vehicle (i.e. the one
threatening to collide with the ego vehicle) edges. The CBF safety filter corrected the nominal
steering actuation and prevented a potentially erratic right lane change—which is shown by the
dashed-red rectangle in Fig. 20d–g.Similarly, it also prevented the ego vehicle from making a
left lane change (shown by the dotted red line constraint).
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(a) Front Wheel Angle. (b) Longitudinal Acceleration.

Fig. 21 Illustration of Example 4.4.1—front wheel angle and longitudinal acceleration

Fig. 22 Illustration of
Example 4.4.1—minimum
Euclidean distance between
ego and target vehicles

4.4.2 Target Cut-in Evasion

In this example, the ego vehicle evades a target vehicle that cuts-in ahead. Figure23 shows
the position of the ego vehicle and the target vehicles at 0.5 s intervals. Figure24a, b show
the front wheel angle and acceleration of the ego vehicle and Figure 25 shows the minimum
Euclidean distance between the ego and the critical target vehicle edges. The safety filter
avoids the vehicle cutting in by changing lanes, and also prevents the ego vehicle from driving
off the highway due to the road keeping barriers.

4.4.3 Avoiding a Stationary Vehicle Ahead

In this example, the ego vehicle evades a potential collision with an obstacle that is stationary
ahead. Figure26 shows the position of the ego vehicle and the target vehicles (including the
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(a) t = 0 sec

(b) t = 0.5 sec

(c) t = 1 sec

(d) t = 1.5 sec

(e) t = 2 sec

(f) t = 2.5 sec

(g) t = 3 sec

Fig. 23 Illustration of Example 4.4.2—position of the ego vehicle and the target vehicles at 0.5 s
intervals

(a) Front Wheel Angle. (b) Longitudinal Acceleration.

Fig. 24 Illustration of Example 4.4.2—front wheel angleand longitudinal acceleration
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Fig. 25 Illustration of
Example 4.4.2—minimum
Euclidean distance between
ego and target vehicles

stationary obstacle/vehicle on the left-most lane) at 0.5 s intervals. Figures28a, b show the front
wheel angle and acceleration of the ego vehicle and Fig. 28 shows the minimum Euclidean
distance between the ego and the critical target vehicle edges. The CBF safety filter changes
lane to avoid the stationary car ahead, while slowing down to avoid colliding with the slow
travelling lead car in the center lane. (Note that it further prevents erratic cut-in into the right
most lane (Fig. 27))

4.5 Summary

In this section, we introduced decoupled longitudinal and lateral Control Barrier Functions for
collision avoidance, and a safety filter that utilizes contextual knowledge of steering/braking
efficacy in different situations to arbitrate between the two options to avoid collisions. We also
present road keeping barrier functions that are used to prevent driving off the roadway when
attempting to avoid collisions. The safety filter checks if the nominal steering and throttle/brake
commands are safe by evaluating for CBF constraint violation. If the nominal control is safe,
the safety filter does not modify them. If they are unsafe the algorithm overrides the nominal
control with a minimally intrusive safe control that prevents the constraint violation. This
safe control is calculated by solving constrained quadratic optimization problems for the
front wheel angle and the longitudinal acceleration. Several examples demonstrating collision
avoidance in common highway situations were presented including prevention of erratic cut
in, evasion upon target cut in, and avoidance of stationary obstacles.
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(a) t = 0 sec

(b) t = 0.5 sec

(c) t = 1 sec

(d) t = 1.5 sec

(e) t = 2 sec

(f) t = 2.5 sec

(g) t = 3 sec

Fig. 26 Example 4.4.3—position of the ego vehicle and the target vehicles at 0.5 s intervals

(a) Front Wheel Angle. (b) Longitudinal Acceleration.

Fig. 27 Example 4.4.3—front wheel angleand longitudinal acceleration
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Fig. 28 Example
4.4.3—minimum Euclidean
distance between ego and
target vehicles

5 Integrated Driving Policy with DRL, Motion Control,
and CBF Safety Filter

In this section we replace the rule-based safety filter from Sect. 2 with the CBF based colli-
sion avoidance algorithm from Sect. 4. Using the CBF safety filter has two primary advan-
tages. First, it can be used to provide continuous feedback to the Agent, as opposed to binary
safe/unsafe feedback by rule-based safety filter. This helps the Agent to assess the severity
of its mistake and prevents it from repeating the same. Secondly, with a CBF safety filter the
Agent can adapt to different environments after its initial training without endangering the
occupants of the AV or nearby motorists.

5.1 Training Architecture with CBF Safety Filter

The high level decisions made by the Agent are executed by a low level motion controller
algorithm (Sect. 3). These nominal controls and the positions and velocities of surrounding
vehicles are fed to the CBF based collision avoidance system. If the control action given the
situation is deemed safe, it is passed through without modification. However, if the control
action is unsafe, it is overridden with a safe control calculated by the CBF safety filter. The
combination of the RL Agent and the CBF based collision avoidance system is referred to as
the Autonomous Driver. Figure29 shows the system used for training the Agent. Similar to
Sect. 2, sensors provide affordance indicators to the Agent, which then makes a decision in
the form of a high level action. The high level action is then translated to a front wheel angle,
throttle and brake command by a motion controller algorithm. These low level commands and
affordance indicators are then provided to the CBF Safety Filter. The safety filter computes
the safe front wheel angle and throttle/brake commands. If the original path is safe, these
commands are unchanged. The safe front wheel angle and throttle/brake commands are then
applied to the ego vehicle. The Action Translator block translates the safe low level commands
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Fig. 29 Training architecture

back into a safe high level action. This is used to provide feedback to theAgent about the action
it has taken. If the safe action differs from the action selected by the Agent, it is penalized.
In this work, the Agent makes a decision every second, and the motion controller and CBF
updates the front wheel angle and throttle/brake every 10th of a second.

5.1.1 Action Translation and Penalizing Unsafe Actions

To provide effective feedback to the DRL Agent, the continuous safe front wheel angle and
longitudinal acceleration signals must be translated back into the high level action space. For
the longitudinal acceleration, this is straightforward, since both the high level action and the
continuous signal have the same units (acceleration in g’s). For the front wheel angle δ, we
use a Barrier Function based intent prediction [40] to determine if the steering action is trying
to prevent a lane change or triggering one.

We use the same reward function components (11)–(13) as in Sect. 2, with an additional
component. The addition is a safety component that determines how safe the action is by
comparing it to the safe action output by the CBF

rs = fx (ax , āx ) + fy(ay, āy), (48)

where ax is the longitudinal action selected by the Agent, āx is the safe longitudinal action
by the CBF filter, ay is the lateral action selected by the Agent, āy is the safe lateral action by
the CBF filter, and fx and fy are functions that determine the size of the penalty for unsafe
longitudinal and lateral actions respectively. The size penalty on unsafe actions depends on
how different the unsafe action is compared to the safe action, and also how long the decision
chosen by the Agent was deemed unsafe. Figures30 and 31 show qualitatively how the size
of the penalty is determined. In Fig. 30a, the RL action is to accelerate at 0.2g, but the safe
(determined by CBF Safety filter) action is to brake hard for nearly the entire duration of the
RL Action. Such a case incurs a large penalty. In Fig. 30b, the RL action is again to accelerate
at 0.2g. In this case, the safe action is to brake near the end of the RL Action, and so this
decision incurs a smaller penalty. Similarly, in Fig. 31a, the RL action is to maintain the lane.
However, at the 6th time step, the safety filter must perform a left lane change in order to avoid
a collision. The time duration at which RL action becomes unsafe determines how large the
penalty is.
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(a) Example large longitudinal penalty. (b) Example small longitudinal penalty.

Fig. 30 Determination of penalty for unsafe longitudinal actions

5.1.2 Training Results

To train the Agent, we use episodes consisting of 200s of highway driving. In each episode,
the surrounding environment, i.e. the density, speed, location of the traffic is randomized.
Figure32 shows the training performance with and without CBF, and also using only the rule
based safety filter from Sect. 2. Whilst learning how to drive without any safety filter, the
Agent has many collisions initially, and does not learn how to drive safely. With the CBF, the
time taken to learn to drive acceptable driving behavior is reduced significantly, the driving
behavior is better as shown by the higher reward, and the driving behavior is safer, since CBF
prevents collisions in case the Agent makes an unsafe decision. Without a safety filter, it is
difficult to structure the reward function in a way that guides the Agent to drive safely and in
a manner that is not exceedingly conservative.

Figure33 shows the mean over 100 episodes of the number of safe Agent actions in each
episode. In each episode, 20 actions are random exploration, so the maximum number of safe
actions selected by the Agent is 180. The also shows that the Agent learns to drive safer as
time progresses.
Comparison of CBF Safety Filter Intervention with Rule-Based Safety Filter
Figures34 and 35 show the longitudinal and lateral interventions of the CBF and RB safety
filters as the agent is trained. For both safety filters, the number of interventions and the severity
of those interventions decrease over time, implying that the Agent is learning to be a safer
driver, and since the reward is higher with the safety filter, this implies that the addition of
the safety filter does not cause the Agent to become too conservative. The plots show that
the longitudinal safety filter is more intrusive with its intervention, but this does not have an
adverse effect on the reward. An advantage of using the CBF safety filter over the rule-based
safety filter from Sect. 2 is that the CBF can be tuned to a desired degree of conservative
behavior, whereas the rule-based safety filter can only choose between several predefined
actions that may be either insufficient or unnecessarily excessive, which can reduce passenger
confidence and also result in an uncomfortable ride.
Collision avoidance with CBF Safety Filter Intervention with Rule-Based Safety Filter
In this example, we show an use case where the intervention by the RB safety filter is insuffi-
cient. The AV and a target vehicle are driving at 70 mph. The RL policy initiates a lane change
at t = 0 s. At t = 2 s, the black target vehicle decelerates at 0.35g for 3 s. Figure36 shows the
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Fig. 32 Training with and without the CBF filter

Fig. 33 Number of safe agent actions in each episode

response of the RB safety filter and the CBF Safety Filter. The green vehicle is the AV with
the CBF safety filter and the red vehicle is the AV with the RB safety filter. The RB safety
filter reacts later to the decelerating target vehicle and is unable to avoid a collision.
Retraining
One of the key advantages of the proposed approach is that it can allow an already trained
Agent to continue to adapt its driving policy once on the road. For example, acceptable driving
behavior in different areas of a country are often slightly different. An Agent can potentially
adapt in the field and optimize to its local conditions by retraining itself. The actual adaptation
algorithm is a subject of ongoing research and is not discussed in this paper. However, without a
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Fig. 34 Comparison of CBF longitudinal intervention with RB safety filter

Fig. 35 Comparison of CBF lateral intervention with RB safety filter
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(a) t = 0 sec

(b) t = 1 sec

(c) t = 2 sec

(d) t = 3 sec

(e) t = 4 sec

(f) t = 5 sec

(g) t = 6 sec

(h) t = 7 sec

Fig. 36 Position of the ego vehicle and the target vehicles at 1 s intervals

safety filter, an Agent making exploratory decisionsmay get itself into an unsafe situation. The
benefit of the safety filter is twofold. If the Agent makes an unsafe decision during retraining,
the decision is overridden and the safety of the AV is not compromised. Secondly, the Agent
is provided immediate feedback that the decision was unsafe, therefore making it unlikely to
make the same mistake again.
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5.2 Summary

In this section we replaced the rule-based safety filter from Sect. 2 with the CBF based safety
filter from Sect. 4. The amount of time taken for the Agent to learn a safe driving behavior is
significantly reduced thanks to the efficient use of the Safety Filter. It overrides the agent’s
unsafe action and provides a safe alternative which acts as an additional feedback to the agent.
To this end we modified the reward function from Sect. 2 to include an additional penalty
based on the difference between the agent’s nominal action and the safe action by the CBF.
Training results show that the agent learns to drive safely and that the number of unsafe
decisions reduces with training. The severity of the safety filter interventions also decrease as
the training proceeds. The addition of the CBF safety filter helps to make the Autonomous
Driver more robust to unsafe high level decisions and to aggressive traffic vehicles. In addition,
the Autonomous Driver can adapt to new environments by learning online without forgoing
on safety and comfort.

6 Summary and Conclusion

In this chapter we provide a practical approach to the design of RL-based driving policy for
highway autonomous driving. Proposed driving policy system integrates a high level DRL-
driven decision-makingmodule with a path planning and path following strategy transforming
the discrete DRL action space into a sequence ofmotion control commands. The benefits of the
hierarchical decoupling of the RL decision logic from the algorithms for path formation and
execution are the simplification of the RL algorithm design and training, and the opportunity to
use versatile motion control algorithms. The latter facilitates the incorporation of engineering
knowledge and experience in designing smooth human-like driving and safe lane change
maneuvering. The engineers’ field experience and knowledge includes the selection of lead
target vehicle for longitudinal speed profile, the calibration of lateral acceleration profile and
corresponding feedback control gains, the compliance of actuation constraints during lane
change maneuvers, and the time required to perform a lane change. The chapter elaborates on
the practical aspects of the design of the DRL decision-making strategy and motion control as
critical components for real-world implementation ofAI based decision policy for autonomous
driving.

The chapter further focuses on addressing the overall robustness and safety of the output
produced by the decision-making and motion control layers of the driving policy. We discuss
the concept of a safety filter as an important means in autonomous driving applications of RL.
The safety filter overrides the nominal front wheel angle and throttle/brake commands in case
of imminent/unexpected threats while allowing the RL optimizer to focus on longer term goal.
Two alternative safety filters defining the safety boundary of the produced control output are
discussed. The first one uses handcrafted rules to constrain the DRL/motion control output
within a predefined safety boundary. It accepts or rejects the RL decisions by enforcing traffic
regulations and handcrafted rules for time headway and gap size requirement. The second
solution introduces a CBF-based filter that provides a dynamic safety envelope safeguarding
the control output along the vehicle trajectory. It adjusts the control actuation corresponding to
RL decisions by leveraging the concept of invariant set to assess imminent threats and calculate
minimal required adjustment (in steering/braking) for collision avoidance. The design and
vehicle implementation of CBFs as a tool for collision avoidance and following road geometry
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constraints are discussed. The chapter concludes with a discussion on the pros and cons of both
safety filters and their impact on the training and overall performance of the DRL algorithm,
and the open opportunity of DRL—integrated with motion control and a safety filter—to adapt
to new environments by learning online with corresponding safety and comfort assurance.

References

1. Ackermann J, Bünte T (1999) Robust prevention of limit cycles for robustly decoupled car
steering dynamics. Kybernetika 35(1):105–116

2. AlshiekhM, Bloem R, Ehlers R, Könighofer B, Niekum S, Topcu U (2017) Safe reinforcement
learning via shielding. arXiv preprint arXiv:170808611

3. Ames AD, Xu X, Grizzle JW, Tabuada P (2016) Control barrier function based quadratic
programs for safety critical systems. IEEE Trans Autom Control 62(8):3861–3876

4. Aradi S (2020) Survey of deep reinforcement learning for motion planning of autonomous
vehicles. IEEE Trans Intell Transp Syst

5. Buehler M, Iagnemma K, Singh S (2007) The 2005 DARPA grand challenge: the great robot
race, vol 36. Springer, Berlin

6. Buehler M, Iagnemma K, Singh S (2009) The DARPA urban challenge: autonomous vehicles
in city traffic, vol 56. Springer, Berlin

7. Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: Learning affordance for direct
perception in autonomous driving. In: 2015 IEEE international conference on computer vision
(ICCV). IEEE, pp 2722–2730

8. Coulter RC (1992) Implementation of the pure pursuit path tracking algorithm. Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST, Tech. rep

9. Duda H (1998) Flight control system design considering rate saturation. Aerosp Sci Technol
2(4):265–275

10. Erdmann J (2014) Lane-changingmodel in sumo. In: Proceedings of the SUMO2014modeling
mobility with open data, vol 24, pp 77–88

11. Falcone P, TufoM,Borrelli F, Asgari J, TsengHE (2007)A linear time varyingmodel predictive
control approach to the integrated vehicle dynamics control problem in autonomous systems.
In: 2007 46th IEEE conference on decision and control. IEEE, pp 2980–2985

12. Frans K, Ho J, Chen X, Abbeel P, Schulman J (2017) Meta learning shared hierarchies. arXiv
preprint arXiv:171009767

13. Garcia J, Fernández F (2012) Safe exploration of state and action spaces in reinforcement
learning. J Artif Intell Res 45:515–564

14. Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach
Learn Res 16(1):1437–1480

15. Giersiefer A, Dornhege J, Klein P, Klein C (2019) Driver assistance system. US Patent
20190071126A

16. Hecker S, Dai D, VanGool L (2018) End-to-end learning of drivingmodels with surround-view
cameras and route planners. In: European conference on computer vision (ECCV)

17. Hill A, Raffin A, Ernestus M, Traore R, Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert
M, Radford A, Schulman J, Sidor S, Wu Y (2018) Stable baselines. https://github.com/hill-a/
stable-baselines

18. Jankovic M (2018) Robust control barrier functions for constrained stabilization of nonlinear
systems. Automatica 96:359–367

19. Jin IG, Avedisov SS, He CR, QinWB, SadeghpourM, Orosz G (2018) Experimental validation
of connected automated vehicle design among human-driven vehicles. TranspRes Part CEmerg
Technol 91:335–352

20. Kesting A, Treiber M (1999) Helbing D (2007) General lane-changing model mobil for car-
following models. Transp Res Rec 1:86–94

http://arxiv.org/abs/170808611
http://arxiv.org/abs/170808611
http://arxiv.org/abs/171009767
http://arxiv.org/abs/171009767
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines


Robust AI Driving Strategy for Autonomous Vehicles 211

21. Kim E, Kim J, SunwooM (2014) Model predictive control strategy for smooth path tracking of
autonomous vehicles with steering actuator dynamics. Int J Automot Technol 15(7):1155–1164

22. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint
arXiv:14126980

23. Kreyszig E (1993) Advanced engineering mathematics. Wiley, New York, pp 482–488
24. Lee S, Tseng HE (2018) Trajectory planning with shadow trolleys for an autonomous vehicle

on bending roads and switchbacks. In: 2018 IEEE intelligent vehicles symposium (IV). IEEE,
pp 484–489

25. Li N, Oyler DW, Zhang M, Yildiz Y, Kolmanovsky I, Girard AR (2017) Game theoretic mod-
eling of driver and vehicle interactions for verification and validation of autonomous vehicle
control systems. IEEE Trans Control Syst Technol

26. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Con-
tinuous control with deep reinforcement learning. arXiv preprint arXiv:150902971

27. Lin YC, Hong ZW, Liao YH, Shih ML, Liu MY, Sun M (2017) Tactics of adversarial attack
on deep reinforcement learning agents. arXiv preprint arXiv:170306748

28. Ma X, Driggs-Campbell K, Kochenderfer MJ (2018) Improved robustness and safety for
autonomous vehicle control with adversarial reinforcement learning. In: 2018 IEEE intelli-
gent vehicles symposium (IV). IEEE, pp 1665–1671

29. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic
models. In: Proceedings of ICML, vol 30, p 3

30. Minderhoud MM, Bovy PH (2001) Extended time-to-collision measures for road traffic safety
assessment. Accid Anal Prev 33(1):89–97

31. Mirchevska B, Pek C, Werling M, Althoff M, Boedecker J (2018) High-level decision making
for safe and reasonable autonomous lane changing using reinforcement learning. In: 2018 21st
international conference on intelligent transportation systems (ITSC). IEEE, pp 2156–2162

32. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller
M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529

33. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K
(2016) Asynchronous methods for deep reinforcement learning. In: International conference
on machine learning, pp 1928–1937

34. Nageshrao S, Tseng HE, Filev D (2019) Autonomous highway driving using deep reinforce-
ment learning. In: 2019 IEEE international conference on systemsman and cybernetics (SMC).
IEEE, pp 2326–2331

35. Nageshrao S, Tseng HE, Filev DP, Baker RL, Cruise C, Daehler L, Mohan S, Kusari A (2020)
Vehicle adaptive learning. US Patent 10733510

36. Ngyuen Q, Sreenath K (2016) Exponential control barrier functions for enforcing high relative-
degree safety-critical constraints. In: American control conference, pp 322–328

37. Papadimitriou I, Tomizuka M (2003) Fast lane changing computations using polynomials. In:
Proceedings of the 2003 American control conference. IEEE, vol 1, pp 48–53

38. Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-driven exploration by self-
supervised prediction. In: International conference onmachine learning, PMLR, pp 2778–2787

39. Prajna S, Jadbabaie A, Pappas GJ (2007) A framework for worst-case and stochastic safety
verification using barrier certificates. Trans Autom Control 52(8):1415–1428

40. Rahman Y, Jankovic M, Santillo MA (2021) Driver intent prediction with barrier functions.
In: American control conference

41. Rajamani R (2011) Vehicle dynamics and control. Springer Science & Business Media
42. Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. arXiv preprint

arXiv:151105952
43. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L,

Lai M, Bolton A et al (2017) Mastering the game of go without human knowledge. Nature
550(7676):354

44. Slotine JJE, Li W et al (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood
Cliffs

http://arxiv.org/abs/14126980
http://arxiv.org/abs/14126980
http://arxiv.org/abs/150902971
http://arxiv.org/abs/150902971
http://arxiv.org/abs/170306748
http://arxiv.org/abs/170306748
http://arxiv.org/abs/151105952
http://arxiv.org/abs/151105952


212 S. Nageshrao et al.

45. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction, vol 1. MIT Press, Cam-
bridge

46. Tamar A, Glassner Y, Mannor S (2015) Optimizing the cvar via sampling. In: Twenty-ninth
AAAI conference on artificial intelligence

47. Thomaz AL, Breazeal C (2008) Teachable robots: understanding human teaching behavior to
build more effective robot learners. Artif Intell 172(6–7):716–737

48. Toledo T, Zohar D (2007) Modeling duration of lane changes. Transp Res Rec J Transp Res
Board 1999:71–78

49. Treiber M, Kesting A (2013) Traffic flow dynamics. Data, models and simulation. Springer,
Berlin

50. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations
and microscopic simulations. Phys Rev E 62(2):1805

51. Tseng HE, Asgari J, Hrovat D, van Der Jagt P, Cherry A, Neads S (2002) Steering robot for
evasive maneuvers-experiment and analysis. IFAC Proc 35(2):79–86

52. Vahidi A, Eskandarian A (2003) Research advances in intelligent collision avoidance and
adaptive cruise control. IEEE Trans Intell Transp Syst 4(3):143–153

53. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning.
AAAI 16:2094–2100

54. VezzaniG,GuptaA,Natale L,Abbeel P (2019)Learning latent state representation for speeding
up exploration. arXiv preprint arXiv:190512621

55. Wang Y, Shen D, Teoh EK (2000) Lane detection using spline model. Pattern Recogn Lett
21(8):677–689

56. Werling M, Ziegler J, Kammel S, Thrun S (2010) Optimal trajectory generation for dynamic
street scenarios in a frenet frame. In: 2010 IEEE international conference on robotics and
automation. IEEE, pp 987–993

57. Wieland P, Allgöwer F (2007) Constructive safety using control barrier functions. IFAC Proc
40(12):462–467

58. Xiao L, Gao F (2010) A comprehensive review of the development of adaptive cruise control
systems. Veh Syst Dyn 48(10):1167–1192

59. Xiao W, Belta C (2019) Control barrier functions for systems with high relative degree. In:
IEEE 58th conference on decision and control (CDC), pp 474–479

60. Xu H, Gao Y, Yu F, Darrell T (2017) End-to-end learning of driving models from large-
scale video datasets. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 2174–2182

61. Ye F, Zhang S, Wang P, Chan CY (2021) A survey of deep reinforcement learning algorithms
for motion planning and control of autonomous vehicles. arXiv preprint arXiv:210514218

62. Zhang M, Li N, Girard A, Kolmanovsky I (2017) A finite state machine based automated
driving controller and its stochastic optimization. In: ASME 2017 dynamic systems and control
conference, American Society of Mechanical Engineers, pp V002T07A002–V002T07A002

63. Zhang S, Peng H, Nageshrao S, Tseng E (2019) Discretionary lane change decision making
using reinforcement learning with model-based exploration. In: 2019 18th IEEE international
conference on machine learning and applications (ICMLA). IEEE, pp 844–850

64. Zhang S, Peng H, Nageshrao S, Tseng HE (2020) Generating socially acceptable perturbations
for efficient evaluation of autonomous vehicles. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops, pp 330–331

http://arxiv.org/abs/190512621
http://arxiv.org/abs/190512621
http://arxiv.org/abs/210514218
http://arxiv.org/abs/210514218


Artificially Intelligent Active Safety
Systems

Trevor Vidano, Francis Assadian, and Nihal Gulati

Abstract To better connect the Artificial Intelligence and Vehicle Control Com-
munities, the SAE set of terms and definitions for Active Safety Systems is used
to discuss modern applications of artificial intelligence to Active Safety Systems.
This chapter begins with an introduction to the technology enabling Active Safety
Systems and its impact on improving on-road safety. A new dataset is introduced
that captures the prevalence of Active Safety Systems in the United States (U.S.)
automotive industry for the model year 2021. Three different analyses are performed
on this dataset to demonstrate its potential value in studying the offered Active Safety
Systems in the U.S. automotive industry. Finally, promising Artificial Intelligence
applications to the automotive industry are presented from the fields of deep learn-
ing, reinforcement learning, and imitation learning. An example of reinforcement
learning applied to Automatic Emergency Braking is provided and demonstrates
that reinforcement learning agents can learn policies that are effective in avoiding a
collision. This chapter concludes that Artificial Intelligence will play a critical role
in the future of automotive safety systems.

1 Introduction

The United States (U.S.) automotive industry has seen enormous change in the last
decade. Electrification is one major trend that is sweeping across nearly all vehicle
manufacturers and brands. Some manufacturers have even promised to change their
lineup of gasoline-powered passenger vehicles to use a fully electric powertrain in
the next several decades. While this trend has gained momentum, a second and
more immediately rewarding trend is taking place: the push for zero on-road vehicle
collisions. This goal, generally shared by all automotive companies, is still decades,
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if not centuries, in the future. Despite this distant goal, nearly all vehicle brands now
offer some form of advanced safety system beyond the minimum safety systems
imposed by the FederalMotor Vehicle Safety Standards (FMVSS). A secondary goal
of these advanced safety systems is to reduce the damage of unavoidable collisions.
New startup companies have entered the automotivemarket by striving to achieve this
goal of zero collisions by developing Automated Driving Systems (ADS). This new
section of the automotive market grew significantly following the Defense Advanced
Research Projects Agency (DARPA) Grand Challenge in 2004.

Older original equipment manufacturers sometimes referred to as legacy man-
ufacturers, have been acquiring or investing in some of these startup companies.
Legacy automotive manufacturers and competing startups are approaching the same
goal of zero collisions from different directions. The former seeks to achieve the
goal with driver assistance, and the latter seeks the goal with ADS. However, the
differences between the most sophisticated, advanced safety systems and ADS will
eventually become negligible. These technologies will converge, and the industry
may be very close to achieving its safety goal. However, the industry has not yet
reached this point.

This chapter focuses on advanced safety systems, defined as Active Safety Sys-
tems, instead of on ADS. While ADS is discussed briefly at times, the scope of
discussing Active Safety Systems in sufficient detail is substantial enough to fill
this chapter. This chapter also emphasizes the forms of safety systems that directly
influence the vehicle dynamics over those that augment the driver’s perception of
the surrounding environment. Finally, this chapter will not emphasize the current
technologies for sensing, perception, or motion planning topics of ADS. Instead, it
will focus on the underlying technologies of the control systems in Active Safety
Systems.

This chapter intends to introduce Artificial Intelligence researchers to some cur-
rent applications in Active Safety Systems. It also will introduce current Intelligent
Vehicle researchers to new tools coming from the field of Artificial Intelligence.
These tools present possible solutions to some of the most challenging problems in
the field.

The remaining part of this section presents a unifying set of definitions that will
facilitate clear and focused communication for the remainder of this chapter. Section2
introduces these Active Safety Systems and their enabling technologies. Discussion
of their safety benefits is reserved for Sect. 3, where the warning and intervention
systems are the primary focus. Section4 introduces a new data set that is collected
directly from brand websites. This data set provides a snapshot of the Active Safety
Systems on vehicles in the model year 2021.

The first three sections introduce the Active Safety Systems and supply enough
background for Sect. 5. This background is a prerequisite to discussing applications
of Artificial Intelligence (AI) to Active Safety Systems. Section5 focuses on Deep
Learning, Reinforcement Learning, and other AI applications. Finally, Sect. 6 closes
this chapter with thoughts on the gaps and shortcomings of current safety systems
and how these problems might be addressed in the future.
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1.1 SAE Definitions

Before discussing advanced technologies in the automotive field, this section intro-
duces the Society of Automotive Engineers (SAE)’s cohesive set of terms and defi-
nitions [1, 2]. This chapter uses this internationally recognized terminology to con-
strain this chapter’s scope and to facilitate a discussion that is understandable to both
automotive and AI researchers.

1.1.1 SAE’s Driving Automation Systems

The SAE provides a Taxonomy and Definitions for driving automation technology
[2] that this chapter follows as best as possible. This section only introduces a subset
of definitions, but if the reader wishes to know more, refer to [2].

Committee [2] defines 6 levels (beginning with 0) of automation for ground vehi-
cles. No detailed definitions are provided for these as the names of each level are
sufficiently self-describing. Important differenceswill be explained as specific imple-
mentations of these levels are introduced.

SAE Level 0 No Driving Automation
SAE Level 1 Driver Assistance
SAE Level 2 Partial Driving Automation
SAE Level 3 Conditional Driving Assistance
SAE Level 4 High Driving Automation
SAE Level 5 Full Driving Automation

The following definitions are abbreviated: (for full definitions refer to [2]):

Active Safety System Systems that sense the inside and outside conditions of a
vehicle, and can either issue a warning to the driver or actuate vehicle subsystems
that modify vehicle dynamical responses for a limited time. This encompasses
SAE Levels 0–2.

Dynamic Driving Task (DDT) The real-time functions required to operate a vehi-
cle such as lateral and longitudinal motion control, perception, and planning.
Think of all the functions a driver in the 1950s would perform when operating a
vehicle.

Automated Driving System (ADS) The vehicle itself and the software required
to perform the full DDT on a sustained basis. This encompasses SAE Levels
3–5. This term excludes Active Safety Systems because Active Safety Systems
perform on a momentary basis, where ADS perform on a sustained basis.

Operational Design Domain (ODD) The set of environmental and situational
conditions in which a feature belonging to SAE Levels 1–5 is designed to operate.
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1.1.2 SAE’s Active Safety Systems

As the field of Driver Assistance is rapidly evolving and growing both in academic
and industry communities, it is increasingly important to use a cohesive set of terms
to discuss these technologies. The development of new technologies is inevitable.
The customer, researcher, regulator, and Original Equipment Manufacturer (OEM)
must be specific when discussing these new systems. These various stakeholders
have different values when defining terms. These values can disagree in a way that
can unintentionally confuse the other stakeholders.

Example: Conflicting Definitions
Ford offers a system called BlueCruise, which performs similar functions to Mer-
cedes Benz’s Distronic Plus with Steering Assist and Tesla’s Autopilot. A problem
occurs when these OEMs do not consider their competing systems equivalent in
performance and market them differently. Without a cohesive set of definitions, the
consumer will struggle to compare each technology. Furthermore, these technolo-
gies must be categorized based on some functional classifications so that regulators
can ensure these systems meet a base level of safety. Adopting the SAE categories
solves these problems. The SAE categorizes BlueCruise, Distronic Plus with Steer-
ing Assist, and Autopilot into Active Driving Assistance [1]. Using a united set of
definitions, consumers can compare performances between products, regulators can
enforce safety standards, and researchers can better improve the performance and
robustness of these systems.

This chapter considers the industry and literature term Advanced Driver Assis-
tance Systems (ADAS) to refer to the same systems as defined by Active Safety
Systems. Note that this consideration implies that ADAS is not included in ADS.
This chapter prefers the term Active Safety Systems over ADAS because it is part of
the specific, internally consistent SAE terms and definitions.

Section2 discusses in detail the technology that enables each system type in these
subcategories. However, before proceeding, it should be pointed out that the problem
of terminology is not entirely solved by using the SAE definitions. This is because of
the accelerating development of these technologies. The industry is seeing an accel-
erating pace towards the adoption and development of new systems that improve the
safety and control of ground vehicles.

Example: Quickly Evolving Systems
Tesla’sAutopilot can be considered anActiveDrivingAssistance systemaccording to
the SAE’s definition of the term [1]. However, its recent upgrade to include Tesla’s
Active Lane Change Assist arguably exceeds the SAE’s definition. This upgrade
extends beyond Active Driving Assistance systems because not only is the system
maintaining a safe distance from surrounding vehicles (laterally and longitudinally),
but it is also planning and deciding on maneuvers that seek to achieve the driver’s set
speed. While this additional functionality may not be substantial enough to consider
this new feature an example of SAE Level 3, it is unfortunate that there is not a
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separate SAE definition to include this unique functionality. There are several other
examples of similar conflicts from competing brands. In the interest of choosing
a single set of Terms and Definitions, Tesla’s newest upgrade of Autopilot is still
considered an Active Driving Assistance system in this chapter.

There is no doubt that in the future, the SAE’s definitions must be modified and
new definitions are added. This is important to both reduce any friction to innovation
and to support focused discussion on safety systems.

2 Active Safety Technology

This section does not paraphrase the SAE Terms and Definitions of Active Safety
Systems. For the full definitions, the reader is referred to [1]. Instead, this section
introduces the technology that enables these Active Safety Systems. The six cate-
gories of Active Safety Systems are CollisionWarning, Collision Intervention, Driv-
ing Control Assistance, Parking Assistance, and Other Driving Assistance Systems.

2.1 Collision Warning

Active Safety Systems categorized as Collision Warning are systems that do not
directly control the dynamic response of the vehicle. Instead, they act through warn-
ings that the driver can quickly interpret and respond accordingly. The SAE defines
five subcategories of Collision Warning systems: Forward Collision Warning, Blind
Spot Warning, Lane Departure Warning, Parking CollisionWarning, and Rear Cross
Traffic Warning [1]. These subcategories are discussed in this order.

Most warning systems must:

1. Measure the environment outside the host vehicle
2. Identify objects
3. Track objects
4. Assess the threat of collision with objects
5. Efficiently inform the driver

Forward Collision Warning
Forward Collision Warning (FCW) systems measure objects directly in front of the
vehicle and issue warnings when the vehicle has a high chance of colliding with one
or more objects.

In some implementations, the systemwill also infer the driver’s intention based on
the driving commands. This method projects the host vehicle’s predicted trajectory
and then assesses the location of objects relative to that trajectory.
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FCW systems commonly use radar to identify objects. Radar can distinguishmost
objects in adverse weather conditions but often struggles to differentiate between two
close objects on a curved road if the radar does not have sufficient angular resolution
[3]. This shortcoming can result in false positives. After several false positives, the
driver might grow to distrust the system and disable it, ending any potential safety
benefits.

Laser-based sensors show great promise as an alternative to radar. Raster-scanned
laser rangefinders provide high performance for low-cost [3].

An increasingly common sensor used in detecting forward objects is the forward-
facing optical camera. These cameras are easy to spot in parking lots because they
typically are found between the rear-view mirror and the windshield. This location
makes it easy to keep the field of view clear of debris without obstructing the driver’s
point of view.

The most promising methods are redundant sensors that can provide two or more
different estimations of the same states. This redundancy helps reduce false alarm
rates. Therefore, it is likely that many FCW systems use two radars and a forward-
facing camera to detect forward objects [4]. An additional sensor that helps reduce
collisions is a rear-facing radar. This radar can provide feedback on the location of
vehicles behind the host vehicle. The braking torque can then be adapted to reduce
the chance of being rear-ended [4].

The threat of collision is commonly assessed by two types of algorithms [3]:

1. time-based, which computes the time to collision
2. distance-based, which computes the distance to stop

Both methods are susceptible to false alarm rates, and the timing of the alarm is
critical. If the alert is issued too early, the driver may ignore it, or worse, become
irritated and turn off the system entirely. If the alarm is issued too late, then the driver
is unable to avoid or mitigate the collision.

Finding a warning system that gets the driver’s attention without annoying the
driver is a heavily researched area. Some methods tested in research are:

• visual icons
• visual text
• digitized speech
• earcons and tones
• tactile (seat vibration, steering wheel vibration, or belt tension).

Zador et al. [3] investigates many combinations of these. The method that is most
effective at getting the driver’s attention is auditory warnings. This finding is the
outcome of human trials. However, this is also the most annoying warning method.
Instead, the most preferred alert among test participants is yellow icons displayed
on a Heads Up Display.

Further complicating the issue of designing an appropriate warning system is the
finding that drivers are inaccurate at estimating their temporal headway [5]. They are
also highly sensitive to false positives. This combination of driver behavior can be
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very challenging to overcome. One promising finding suggests that a training period
in which the FCW system trains the driver to maintain a safe headway improves the
driver’s performance in the short term and long term (6 months after training) [5].
Training may also help encourage the driver to be more tolerant of the FCW system’s
false positives.

FCW stacks, meaning the hardware and software components that compose the
system, vary widely between brands. Not all FCW systems are equal in performance,
but they all must meet a base level of performance. Improvements beyond this base
level performance include the ability to [3]:

1. detect objects at long range on rolling terrain
2. reduce the rate of false alarms on roadside objects
3. reduce the rate of false alarms at long range when near cargo trucks.

To achieve these future improvements, the tools in machine vision, sensing, and
planning must improve. All three of these areas can benefit from the quickly advanc-
ing area of Artificial Intelligence.

Blind Spot Warning
Blind SpotWarning (BSW) is very similar, in terms of system requirements, to FCW
systems. The fundamental roles: sensing, object detection, and warning, must be
performed. The difference is the location of the sensors and the preferred location of
the alerts.

Radars used to detect vehicles in the host vehicle’s blind spot are typically located
towards the vehicle’s rear and face radially outward of the vehicle center. Cameras,
which replace radars, are placed either on the side view mirrors or on the beam that
supports the car’s roof and separates the front and rear side doors.

Almost all warning systems on vehicles are icons colored red or yellow and appear
on the side-view mirrors. Some systems also deliver an audible warning, and some
only issue this audible warning when the turn signal is on and when there is a vehicle
in the driver’s blind spot.

The decision of when to issue a warning is often made with less complexity than
the forward collision warning. This simplicity is because the system does not need
to compute the distance or time to collision with that object. Instead, it only needs to
detect the presence of an object in a bounded area. This detection is done differently
depending on the type of sensor.

Lane Departure Warning
Lane departure warning (LDW) systems have almost an identical stack compared
to FCW systems. LDW systems typically prefer a forward-facing camera instead
of radar or laser-based sensors. Some additional components in the stack are lane
modeling, lane detection, and lane tracking [6].
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Machine vision is one of the crucial technologies to developing a successful LDW
system. A drawback to using cameras is their inability to detect the lane in adverse
conditions. To mitigate this shortcoming, LDW systems leverage lane models to
improve detection. The model and sensor measurements are fused in a variant of
a Kalman filter or particle filter. These techniques are the most common ways to
combine model information and sensor measurements [6, 7].

The development of the lane model has numerous trade-offs that are typical in
model-based solutions. The most basic models, linear models, assume the system is
linear, thereby constraining the system’sOperationalDesignDomain (ODD).As lane
models increase in complexity, they improve in prediction accuracy but becomemore
susceptible to sensor inaccuracies and misclassifications [6]. Lane model robustness
is an ongoing research pursuit, one that deep learning has shown to be increasingly
dominant. It is also common for these models to misclassify lane-like objects, such
as traffic signs and guard rails, as lane markers. A step called Lane Verification is
therefore commonly used to remove these falsely classified objects [6].

Many camera-based sensors use grey visuals to reduce both computational load
and sensor costs. The black and white contrast between the road and lane marker is
typically sufficient to detect the lane. However, color cameras are becoming increas-
ingly common [7]. Laser-based systems offer a more accurate sensor alternative. The
laser-based systems are composed of several sensors that are underneath the front
bumper and look directly down. However, due to the low latency imposed by this
sensor array’s field of view, these types of systems cannot be used for assistance, only
for warning the driver [7]. As a result, these systems are fairly uncommon. Some
other alternatives use special infrastructures, such asmagnetic nails and underground
cables that emit radio-frequency to mark lanes. While these are not expected to scale
widely, they are promising in areas with heavy snow and ice. Finally, Global Posi-
tioning Systems (GPS) can be used, but are currently limited by position and map
accuracy [7].

The greatest challenges to the LDW system’s ability to identify lanes are [6]:

1. lane marker variations
2. road surface material
3. shadows (especially long linear shadows from trees and building)
4. lighting conditions
5. night conditions
6. rain
7. fog.

A final challenge to LDW systems is when there are no lanes or the lanes are
obstructed from view [6]. Naturally, these issues are nearly impossible to overcome,
and as a result, most LDW systems deactivate themselves in these scenarios.

The challenges for LDW systems to get the driver’s attention are similar to the
other Collision Warning Systems. [8] found that LDW systems that used steering
wheel vibrations were more likely to be turned on than those that used only auditory
warning. Other systems use visual alerts on the host vehicle’s digital dashboard.
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Parking Collision Warning

Parking Collision Warning (PCW) systems are less complex than the previously dis-
cussed CollisionWarning Systems. These systems use sonar sensors typically placed
on the rear bumper to measure the distance between the host vehicle and an object.
Most of these systems only activate when the vehicle is in reverse gear. They also
issue an audible warning. Some systems issue different warnings that correspond to
the distance between the host vehicle and an object. For example, slow repetitive
beeps correspond to a large distance. Fast repetitive beeps correspond to short dis-
tances.

Rear Cross Traffic Warning
Rear Cross Traffic Warning (RCTW) systems are very similar to parking collision
warning systems. They typically use sonar sensors placed on the rear corners of the
vehicle to detect vehicles that are in the blind spot of the host vehicle. If the host
vehicle has blind-spot warning systems, the existing sensors that enable blind-spot
warning systems are used instead of the corner sonar sensors. The warning methods
are similar to Parking Collision Warning. However, they typically issue a single,
urgent beep instead of repetitive beeps.

2.2 Collision Intervention

The natural evolution of Collision Warning systems is to go beyond warning the
driver and issue actuator commands on behalf of the driver. After this extension,
they are called Collision Intervention systems. The SAE defines 4 subcategories for
Collision Intervention systems: Automatic Emergency Braking, Automatic Emer-
gency Steering, Reverse Automatic Emergency Braking, and Blind Spot Collision
Intervention [1]. Nearly every Collision Warning system is extended to become a
Collision Intervention system. Forward Collision Warning extends to Automatic
Emergency Braking and Automatic Emergency Steering. Parking CollisionWarning
systems and Rear Cross Traffic Warning combine and extend to Reverse Automatic
Emergency Braking systems, and Blind Spot Warning systems extend to Blind Spot
Collision Intervention. The requirements imposed on Collision Warning systems
are insufficient for Collision Intervention systems because the acceptance of false
positives and false negatives is far more stringent. All intervention systems issue
commands to actuators to reduce the potential damage of collisions. The actions
that the actuators take can eliminate the potential damage by avoiding the collision.
However, avoiding a crash is not always possible. The SAE definitions make this
distinction very clear [1].

The tires are the only contact between the vehicle and the road. Therefore all
actuators that change the vehicle motion must act through the tires. Steering actu-
ators modify the direction of tires to primarily generate more or less lateral forces,
thereby changing the vehicle’s heading (yaw angle). Brakes and motors change the
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torque on the wheels to control the longitudinal tire forces. Taking this perspec-
tive exposes the limitations of every ground-vehicle control: tire friction limits. All
Collision Intervention systems should make careful considerations of these limits.
Saturating tire forces (demanding a tire force beyond the current tire friction limits)
can lead to dangerous instabilities. For instance, saturating the front tires on a typical
passenger vehicle results in the inability to steer. Furthermore, these friction limits
change drastically with the environmental conditions. Road-tire limits are one of
many challenges for Collision Intervention systems.

There are two actions that forward Collision Intervention systems can take on
behalf of the driver: steer away from the collision or stop the vehicle. These two
actions are realized in Automatic Emergency Steering (AES) and Automatic Emer-
gency Braking (AEB), respectively. It is important to note that these systems do
not control both steering and braking simultaneously. Therefore, AES and AEB are
Level 1: Driver Assistance systems.

BothAEBandAEShave great safety potential. In 2014, 32%of all police-reported
crashes were rear-ending collisions. From analyzing data, AEB appears to be most
effective at preventing the host vehicle from rear-ending another vehicle at speeds of
40–45 mph [9]. These collisions can have substantial energy and therefore increase
the likelihood of severe or fatal injuries.

The only actuator used to extend Parking Collision Warning (PCW) and Reverse
Cross TrafficWarning (RCTW) to performCollision Intervention is the brake system.
AReverseAutomatic EmergencyBraking (RAEB) systemuses brakes as the actuator
to avoid or lessen the severity of a collisionwhen the host vehicle is backingup.RAEB
controls longitudinal vehicle dynamics intermittently and therefore is classified as
SAE Level 1.

Blind Spot Warning (BSW) is extended to Blind Spot Collision Intervention
(BSCI) by actuating brakes and steering to avoid or mitigate a collision. However,
not all implementations of BSCI systems control both longitudinal and lateral actu-
ators. Despite some forms of this system using brakes and steering, all Collision
Intervention systems are SAE Level 1. By definition, Collision Intervention systems
do not perform their task on a sustained basis. BSCI activates to aid in avoiding a
collision with a vehicle in the driver’s blind spot and only remains active while there
exists a threat of collision.

These Collision Intervention systems must have a lower rate of false positives
and false negatives than their Collision Warning counterparts. The risks created by
actuating the vehicle on behalf of the driver are far more severe than simply issuing
a warning. If a warning is issued when there is no probable collision, the driver will
likely not change their behavior. With more false alarms, the driver will lose trust
in the system and will turn it off. Besides the driver acting dangerously in response
to a false alarm, this is the worst-case scenario for warning systems. While this is
not preferred, it is far better than the risk of the vehicle, for instance, braking for a
non-existent imminent collision. Such a maneuver may increase the likelihood of a
crash. Therefore, most systems are tuned to be conservative in identifying potential
collisions.
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Example: AEB False Negative
If an AEB system acts on a false positive, at best, the driver will be shocked. At worst,
the driver will react irrationally and create a collision. A third alternative is that the
driver does not act to counter the emergency braking, and the vehicle following the
host vehicle must react in time to avoid a collision. If the following driver does not,
they will collide with the host vehicle. Though not legally at fault, the AEB system
created the potential for a crash that otherwise would not have occurred.

The consequences of a false negative are obvious. These consequences demand
more stringent requirements imposed on Collision Intervention systems. This lower
tolerance typically drives up the cost, development time, and imposed regulation
of these systems. Furthermore, improvements in reducing false positive and false
negative rates could have significant impacts on increasing safety. This is further
discussed in Sect. 3.

2.3 Driving Control Assistance

Collision Intervention systems are properly named because they only intervene until
the threat of collision is gone. A system that provides longer momentary support
and replaces a portion of the Dynamic Driving Task (DDT) is classified as Driving
Control Assistance. Driving Control Assistance still requires the human driver to
continually supervise the active system. This is why Driving Control Assistance is
not yet considered ADS (SAE levels 3–5). In ADS the human driver does not need to
be continually supervising, but is required to be ready to take over the DDT should
some system failure occur. A typical example of a system failure that would trigger
such a fallback is the mechanical failure of some vehicle subsystem, such as the
suspension system [2]. At this level of support, the lines between Level 1 and Level
2 blur because a vehicle may be equipped with two or more Level 1 systems that,
when working together, appear to be providing Level 2 functionality. The difference
is in which part of the DDT each system performs. Level 1 systems perform only
longitudinal or lateral control on a sustained basis, while Level 2 systems provide
both longitudinal and lateral control on a sustained basis. The SAE defines three
subcategories within Driving Control Assistance: Adaptive Cruise Control, Lane
Keeping Assistance, and Active Driving Assistance [1].

Adaptive Cruise Control
Adaptive Cruise Control (ACC) is a Level 1: Driving Assistance system. ACC sys-
tems typically use forward-facing radar placed on the vehicle’s nose (commonly
placed behind the brand’s logo). A common alternative to using radar is to use stereo
cameras. A single-camera system is uncommon because of the difficulty in esti-
mating distances. Stereo cameras use two cameras, typically grey-scale to reduce
computational load, spaced a known distance apart. Knowing this distance allows
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the software to compare both images and compute the distances to objects. However,
this is only possible in the overlapping field of views of each camera.

These sensor configurations have to compensate for the road’s curvature in both the
horizontal plane and the vertical plane. Additional challenges to achieving accurate
estimates are the variable vehicle speed and external object density. Cameras must
have a high frame rate, which requires a large amount of processing to detect objects
at highway speeds. Control systems are also challenging to design in the full range
of the vehicle’s velocity. Some ACC systems are automatically disengaged below a
set speed to ensure the validity of their design assumptions. Almost all systems are
designed to operate in highwayODDs,which provide driverswith significant comfort
and safety benefits. Object density, such as the number of vehicles surrounding the
host vehicle,mostly limits the sensing capabilities. However, a high density of objects
can also force tighter requirements on controller performance.

A high-level challenge posed to the designers of ACC systems is striking the right
balance between providing some comfort to the driver and providing too much com-
fort. In other words, ACCmust not replace too much of the driver’s mental workload
of performing the DDT. Doing so might create a more distracted or a more tired
driver [4].

Lane Keeping Assistance
While ACC controls longitudinal dynamics, Lane Keeping Assistance (LKA) sys-
tems control lateral dynamics. These systems typically use the same sensors as LDW
systems since the sensing requirements are similar. There are several different tech-
niques to assisting the driver [7]:

1. Loose Guidance: Torque is applied only when the vehicle is within a close tol-
erance of the lane border. This performs like an intervention system, acting only
at elevated risk.

2. TightGuidance: Torque is applied based on a linear scale, starting with no torque
in the lane center and maximum torque at the lane border.

3. Comfort Oriented Guidance: A piece-wise or non-linear function is used to
provide no torque at the lane center, low amounts of torque until a set tolerance
around the lane border, and maximum torque at the lane border.

It is important to note that all three guidance techniques stop applying torque to
the steering wheel when the host vehicle has crossed the lane border as defined by
some tolerance around the lane border. The tolerance is necessary because it helps
make the system robust against sensor noise. If the function were to stop applying
torque immediately after crossing the lane border, then the entire system would be
highly dependent on the estimation of the lane border. Stopping the application of
torque after entering a new lane is also necessary because if the system does not
recognize the driver’s intention to change lanes, it may try to steer the vehicle back
to the previous lane.

Most systems use the lane change indicator, colloquially called a “blinker”, to
determine the driver’s intent to change lanes. However, the driver is still capable of
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changing lanes without the blinker by overcoming the assisted torque. As a safety
measure, all systems do not apply more force than the typical human can counter.
The human must always be capable of performing the DDT should the LKA system
malfunction or disengage.

LKA systems are often complex in deciding when to deactivate. For instance,
many systems have capacitor-based sensors that detect when the driver is hold-
ing the steering wheel. After issuing a warning, these systems will deactivate. This
detection is critical to ensuring that the driver is attentive and closely monitoring the
outside environment. Many LKA systems also detect quick avoidance maneuvers
and deactivate to minimize the steering resistance in performing such a maneuver
[7].

While most systems use electric power steering, hydraulic power steering is com-
mon in larger vehicles. In addition to power steering, the brakes can also be used,
similar to how they are used in electronic stability control systems, to create a yaw
moment [7].

The overall system must have tighter requirements than those for LDW systems.
It is common to use Kalman Filter variants and particle filters to smooth out lane
detection measurements. Smoothing out these measurements prevents oscillating
between engagements and disengagements [7]. Such behavior may be considered a
nuisance by the driver.

Active Driving Assistance
Active Driving Assistance (ADA) systems combine both ACC and LKA. These
systems rely on the same sensor and actuator types that ACC and LKA use, except
that ADA can control longitudinal and lateral vehicle dynamics. Some brands have a
single system classified as ADA, while others offer separate ACC and LKA systems
that, when engaged together, perform the same functions as an ADA system.

2.4 Parking Assistance

Parking assistance is the subcategory of active safety systems that aid the driver
in the task of parking. This aid can be provided as different visualizations of the
environment directly behind and surrounding the vehicle. These visualizations are
provided to the driver byBackupCamera systems and SurroundViewCameras. They
mostly require moderately-high definition cameras and displays. They also employ
some image processing technologies. In these systems, the driver is in full control
of the vehicle and is only aided visually or through audible alerts.

More complex systems can take control of the vehicle to automatically parallel
park or perpendicular park. These systems are calledActive ParkingAssistance. They
mostly rely on short-range sensors such as sonar proximity sensors and cameras.
Some systems control steering, throttle, and braking, while others control only one
or more of these actuators. Additionally, the driver may be relied upon to change
gears. These systems have looser requirements than ADA systems, but some are



226 T. Vidano et al.

considered Level 2: Partial Driving Automation since they control longitudinal and
lateral dynamics in a limited ODD.

More sophisticated systems completely remove the driver’s physical interactions,
allowing the vehicle to operate without a passenger. These systems are considered
Remote Parking Assistance systems. This operation is controlled and monitored
remotely by the driver. For instance, in some versions of this system, the driver uses
a controller attached to the car keys to command the vehicle forward or backward.
Some systemsparallel park or perpendicularly parkwithout the need for remote driver
input. Other systems require all actuator commands to be communicated remotely
from the driver. Some systems that operate at Level 2: Partial Driving Automation
can pull out of a parking space and navigate a parking lot to arrive at the driver’s
location. This system usually operates in a parking lot or driveway. The driver hails
the vehicle from outside, and the car navigates from its parking space to the driver.

The last type of Parking Assistance system, Trailer Assistance, aids the driver
in attaching a trailer to the hitch of a vehicle. These systems are similar to Backup
Cameras, except the camera is oriented to provide visualization of the host vehicle’s
hitch and the trailer being approached. Some systems aid in steering control, and
some systems supply visualizations to the driver while driving with a trailer. The
enabling technologies are very similar to Surround View Cameras.

2.5 Other Driving Assistance

The SAE captures miscellaneous Active Safety Systems in the subcategory Other
Driving Assistance. This chapter ignores the technology behind these systems to
better focus on vehicle control. Nevertheless, they are listed here for completeness,
and they have self-explanatory titles:

• Automatic High Beams
• Driver Monitoring
• Head-Up Display
• Night Vision
• Speed Warning.

2.6 Beyond Assistance

This chapter does not try to provide comprehensive coverage of the technology that
enables each Active Safety System. Entire books have been written to cover this
topic. If the reader wants deeper coverage of these systems they are referred to [10,
11].

Active Safety Systems attempt to aid the driver in avoiding collisions, and when
avoidance is not possible, reduce the potential damage. The primary problem of
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avoiding collisions in all possible driving scenarios is not yet solved. The secondary
problem of mitigating the damage of such a collision in all possible driving scenarios
is a more general problem, and therefore also unsolved. Due to the difficulty of
solving the second problem, it is likely the case that the behavior of Active Safety
Systems does not change with respect to whether or not the collision is avoidable. For
instance, it is likely that an Automatic Emergency Brake (AEB) system will apply
maximal brake force to both avoid a collision and to reduce the potential damage of
the collision. However, suppose that the host vehicle can avoid rear-ending the car in
front, but doing so will require the host vehicle to brake so quickly that the vehicle
behind the host vehicle will rear-end the host vehicle. Some AEB systems may not
consider the probability of being rear-ended. To consider this probability requires the
ability to sense approaching vehicles behind the host vehicle as well as the ability to
determine which type of collision is preferable: the host vehicle rear-ending or the
host vehicle being rear-ended.

The literature that studies Automated Driving Systems (ADS)s has begun to pro-
pose frameworks and other strategies to help formulate and evaluate solutions to this
type of dilemma. One common approach is to avoid having to solve the problem alto-
gether by only generating trajectories for the ADS that prevent possible collisions.
The concept of Inevitable Collision States, proposed in [12], is one example of such
an approach. Inevitable Collision States are a formal definition of conditions inwhich
a robot cannot avoid a collision with a static or dynamic obstacle. This concept helps
to generate plans that will avoid collisions with objects that are known a priori as
well as objects that suddenly appear. Despite this example of a theoretical solution, it
is likely that ADS will encounter a situation in which a collision is inevitable and the
system will have to choose between different types of collisions. This is where the
fields of philosophy and ethics enter into the study of ADS. Some ethical concerns
that are raised by challenging situations that an ADS might end up in are analyzed
by [13]. One example of an ethical framework is the one proposed by [14], which
attempts tominimize a cost function that quantifies risk and attempts to achieve equal
treatment of people. The intersection of ethics and ADS is critical to study because
even if an ethical framework is not used in the design of planning algorithms, ethical
choices are being programmed into the ADS. For instance, consider an ADS that
has to decide whether to brake and be rear-ended or to collide with some obstacle
in front. If the system is designed to always brake without considering the ethics of
that choice, then despite the lack of consideration, an ethical decision is being made:
the choice to favor being rear-ended over rear-ending.

3 Active Safety Potential

The first brand to introduce an FCW system in the United States wasMercedes-Benz
in the model year 2000. Soon after, other brands offered FCW and AEB. By 2016,
54% of U.S. vehicles offered either FCW or AEB. Twenty automakers, 99% of the
U.S. automotive market, have committed to making FCW and AEB standard on
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almost all passenger vehicles by 2022 [9]. With these promising trends, it is natural
to expect Active Safety Systems to have significant potential in preventing collisions
and reducing the damage resulting from collisions. This inclination is accurate for
FCW and AEB.

Ananalysis of insurance claims shows that vehicleswithFCWalone are associated
with 7–22% reductions in property damage and 4–25% reductions in bodily injury.
When FCW couples with AEB, the number improves to a 10–16% reduction in
property damage and 14–32% reductions in bodily injury. Based on collision data,
vehicles with FCW and AEB were 50% less likely to strike a vehicle in front of the
host vehicle [9].

However, this successful result of FCWandAEB is offset slightly by the increased
probability of being rear-ended. [9] found that vehicles with both FCW and AEB
were 20% more likely to be struck in a rear-end collision than vehicles without this
technology. The consumer may interpret this as a net improvement because they
receive a decrease in collisions in which they are likely to be considered at-fault
while suffering an increase in collisions in which they are not likely to be considered
at-fault. The regulator and brands, however, might view this as more of a problem.
The solution may come with time because if the automakers fulfill their promise,
after 2022 almost all new vehicles will have FCW and AEB standards. This will
gradually reduce the rear-end collisions and consequently the chances of being rear-
ended. Unfortunately, it is expected that it will take 35 years or more for 95% of all
vehicles on roads in the U.S. (not just new vehicles) to have AEB [15]. AEB systems
should therefore improve their ability to reduce the chances of not only rear-ending
a vehicle but also of being rear-ended. This improvement should be made instead of
waiting for all vehicles on the road to have AEB.

Benefits from Active Safety Systems are not only confined to FCW and AEB.
If all vehicles had been equipped with BSW in 2015, about 50,000 collisions could
have been prevented in that year [16].

Furthermore, [17] showed that all warning systems provide an overall decrease in
insurance “collision” (property damage of at-fault vehicles). Systems that use park-
ing sensors showed a reduction in insurance “collisions”, property damage liability,
medical payment, and personal injury protection [17]. According to [17], RAEB is
the most effective in reducing property damage liability when compared to FCW,
AEB, and many other Active Safety Systems.

These safety improvements also extend to pedestrians and cyclists. In 2019, two
out of three AEB systems in the U.S. included pedestrian detection, and the EuroN-
CAP has been rating pedestrian detection since 2016 [15].

4 Systems on the Road Today

The Insurance Institute for Highway Safety (IIHS) collected data from numerous
brands by asking them to report how their customers used and liked the Active
Safety Systems installed on their cars. [8] found that 49% of vehicles had systems
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relating to lane maintenance (LKA and LDW) turned off. The researchers also found
that if the lane maintenance system can be disabled easily, it is more likely to be
disabled than those versions that are more difficult to be disabled. [8] also found that
93% of systems that helped avoid front collisions, AEB and FCW, were turned on.
Consumers also preferred these systems over the lane maintenance systems.

These findings indicate the amount of usage of the Active Safety Systems. Unfor-
tunately, they do not show how many Active Safety Systems are available to con-
sumers. There is a lack of publicly available data that records the level of the automo-
tive industry’s offering of Active Safety Systems. This section presents a new data
set1 that captures the level of adoption of automotive brands. The data set records
the Active Safety Systems offered on each brand’s non-commercial vehicles in 2020
(not the model year). The data set covers the top six brands based on total vehicle
sales, by volume, in the United States. Subaru, which is not in the top six, is also
included in this list. The data set also contains the top three luxury vehicle brands,
based on total vehicle sales, to capture the luxury vehicle market’s adoption of Active
Safety Systems. In total, this covers 67% of all new passenger vehicle transactions
in the year 2020.

The intended purpose of this data set is to capture the state of the industry adoption
of Active Safety Systems. This data is rich with information, and this section does not
fully explore all the possible analyses. Future efforts can perform new analyses and
extend this data set to include more features and all vehicle brands. However, these
additional efforts diverge too far from the intended scope of this chapter. Therefore
the reader is encouraged to explore the raw data and to use it to test their hypotheses.

After introducing this data set, this section investigates trends relating to the
Manufacturers Suggested Retail Price (MSRP) and the number of Active Safety
Systems on both specific vehicle trims and the industry as covered by this data
set. This data set may not encompass enough of the U.S. passenger vehicle market
to comprehensively study market-wide trends. Conclusions drawn from this data
set about the market as a whole are preliminary investigations. The reader is also
cautioned against interpreting this data as evidence that one vehicle is better than
another based on MSRP, safety, and or any other features included in this data.
Quantifying the number of safety features may mislead the reader to assume that
more Active Safety Systems cause the vehicle to be safer or more valuable than its
competition. These sorts of arguments are outside the scope of this chapter and this
data set.

4.1 Methods

The collection of this data began as a very preliminary investigation of the most
efficient method to collect this data. Initially, this study selected a comprehensive

1 The Google Sheet as a *.ods file and the web scraper are available on The Future Mobility Lab’s
GitHub at https://github.com/FutureMobilityLab/ADASVehicleScraper3000.

https://github.com/FutureMobilityLab/ADASVehicleScraper3000
https://github.com/FutureMobilityLab/ADASVehicleScraper3000
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Table 1 Top 6 vehicle brandsa

Brand name % of U.S. vehicle sales by volume

Ford 13.13

Toyota 12.50

Chevrolet 11.77

Honda 8.16

Nissan 5.70

Jeep 5.41
aBrands whose cheapest model and trim level is less than $30,000

Table 2 Top 3 luxury vehicle brandsa

Brand name % of U.S. Vehicle sales by volume

Mercedes-Benz 2.21

Tesla 1.99

BMW 1.91
aBrands whose cheapest model and trim level is more than $30,000

list of vehicle brands in the U.S. The study then began collecting data randomly.
Subaru was one of the first vehicle brands to be studied before it became clear that
the scope of this data collection was too vast for the allocated resources. The list of
brands was subsequently constrained to include a subset of all vehicle brands that
sold passenger vehicles in the U.S. in 2020. This subset is the current list of vehicle
brands (Tables1, 2).

Subaru, which covers about 4.16% of U.S. passenger vehicle sales by volume,
is included to avoid throwing out already collected data. In total, these ten vehicle
brands account for 66.95% of all vehicle sales by volume in the U.S. Furthermore,
most new cars sold in 2020 were either the 2020 model or the 2021 model. This
study focuses on the 2021 model year to capture the most recent models.

As previously discussed in Sect. 1.1, there is an inconsistency between most vehi-
cle brands and the terminology used for Active Safety Systems. A dictionary that
maps the brand packages and features names to the SAEActive Safety Systems helps
overcome this problem. This dictionary is defined manually and reviewed several
times to ensure accuracy and consistency. Despite this, there is still an opportunity
for arguments over which brand terms should correspond to specific SAE terms.

A web scraper extracts the data from the brand websites, and then this dictionary
translates the brand packages and terms assigned to each trim level of each model.
The data collected is in a binary format except for the features that describe the
Vehicle Information:

1. Brand
2. Model Name
3. Trim Level
4. Model Year
5. Base MSRP for the 95616 zip code.
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The fuel type available for each trim level is also collected, but not analyzed
in this chapter. Finally, the raw data contains some additional safety and comfort
features such as Active Driving Assistance with Lane Change and Cruise Control,
respectively. The result is a data array of 713 rows (one for each trim level of each
model) long and 35 columns (including the extra features previously discussed)wide.
However, in this chapter, only the Active Safety Systems are analyzed.

Aggregating the data into vectors that capture industry-wide data is done in two
calculations. The first calculation is summing the number of SAE Active Safety
Features installed on each trim of each model. The second calculation counts the
number of trims of each vehicle with each SAE Active Safety Feature.

This data set covers all SAE Active Safety Features except for Lane Departure
Warning. This feature is excluded because of the difficulty to differentiate it from
Lane Keeping Assist for each brand. Future work may revise the dictionary used to
collect this data set to include Lane Departure Warning separate from Lane Keeping
Assist.

4.2 Results

This section uses three different methods to extract results that convey the current
state of the industry’s adoption of Active Safety Systems. These methods intend to
present a preliminary view of the industry from three different perspectives. Together
they are more holistic, but should not be considered comprehensive. The ultimate
goal is to show how this data can be used in further research.

4.2.1 Aggregating Data per Brand

This first analysis shows if a relationship exists between Models and the number of
Active Safety Systems available in those Models. It also provides aggregated data
enabling the formation of a hypothesis about the formof this relationship. The process
begins by computing the number of Active Safety Systems per Trim level for every
model. The Trim Levels that offer the lowest number of Active Safety Systems for
each Model can then be identified. These Trim Levels are given the name Minimum
Safety Trim Levels (MSTL)s. These MSTLs are used to represent each Model. The
data is reduced further by identifying the MSTL with the lowest number of Active
Safety Systems for that brand. This information is used to compare the Vehicle Type
or the Base MSRP to the remaining MSTLs. To clarify this process, it is performed
for Ford below:
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Example: Ford Data Reduction Beginning with the Ford Escape, the following is
found: the S, SE, and SEL Trim Levels have 9 Active Safety Systems, the Titanium
trim level has 11 Active Safety Systems. Since the S, SE, and SEL Trim Levels have
the lowest number of Active Safety Systems for the Ford Escape, they are theMSTLs
for the Ford Escape. In this situation either all three can remain, or the cheapest Trim
can be considered the MSTL. Repeating this for the Ford Ecosport, the S Trim Level
is found to be the MSTL because it has only one Active Safety System. The MSTLs
can be found for the remaining Fordmodels by repeating this process for eachmodel.
A comparison of all the MSTLs for Ford reveals that the Ecosport S has the lowest
number of Active Safety Systems. Having found this, the other information for this
Trim Level can be used to make other observations. For example, this is also the
cheapest Trim Level and Model offered by Ford.

Carrying out this process for all brands identifies the following Models and Trim
Levels with the lowest amount of Active Safety Systems of all the MSTLs for each
brand:

• Ford Ecosport S
• BMW i3
• Chevrolet Spark LS Manual
• Toyota GR Supra 2
• Honda Civic Type R
• Nissan GT-R Premium and NISMO
• Jeep Wrangler 4xe Sahara and Rubicon
• Subaru BRZ Limited and tS
• Mercedes-Benz C-Class Cabriolet and Coupe, and A-Class, and CLA
• Tesla Model S Long Range and Plaid.

By looking at the MSRP, and the style of advertising of each of these models,
they all fall into three categories: the most affordable model offered by the brand, an
all-terrain model, or a high-performance model.

4.2.2 Active Safety System Prevalence

A second analysis is performed to identify the least and the most prevalent Active
Safety Systems across all of the vehicle Trim Levels collected. This is done by
comparing the total number of the Trim Levels that contain the specific Active Safety
Systems. The results are shown in Tables3 and 4.
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Table 3 Top 5 most prevalent active safety features on all brands

Active safety system Number of trims with system

Backup camera 711

Automatic emergency braking 552

Parking collision warning 474

Blind spot collision warning 459

Forward collision warning 452

Table 4 Top 5 least prevalent active safety features on all brands

Active safety system Number of trims with system

Night vision 4

Remote parking assist 17

Automatic emergency steering 18

Blind spot collision intervention 27

Trailer assist 48

Fig. 1 Active safety systems for each trim versus the MSRP of that trim with vertical line for
average US transaction cost

4.2.3 Scatter Plot Analysis

A third analysis is performed to investigate the relationship between MSRP and the
number of safety features for each Trim Level. The average U.S. transaction cost
[18] is also included as the red vertical line in Fig. 1.

The cluster of data points in Fig. 1, although quite scattered, appear to show an up
and right-ward trend.However, this is a qualitative observation and statistical analysis
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should be performed to determine its significance. Furthermore, by grouping Coupe,
Sedan, and Convertible Vehicle Types into “CP+SD+CN” and groupingMinivan and
Station Wagon Vehicle Types into “MV+SW” the reader is also able to view Vehicle
Types as a third variable.

4.3 Discussion

These three analyses hardly span the possible methods of extracting meaningful
results from this data. More related to the scope of this chapter, the first analysis
helps show that not all models offered by vehicle brands use the same amount of
Active Safety Systems.

The second analysis is important when put in the context of the previous safety
and technology discussions of Sects. 2 and 3. It can be hypothesized that the most
prevalent systems are either the systems most proven to be effective in improving
safety or the cheapest systems to offer convenience to the driver. BackupCameras and
Parking Collision Warning fall in the second category, while the rest fall in the first
category. A deeper analysis is needed though to prove or disprove this hypothesis.

The final analysis is in a way the broadest of the three because one can imagine
numerous types of statistical analyses to be carried out on these results. Figure1
shows a scattered cluster of data points with an upward trend. This suggests that the
relationship between MSRP and the number of Active Safety Systems is positively
correlated. Statistical analysis and data from the remaining brands in the United
States are needed to confirm this suggestion. Figure1 is also significant because it
shows that given a budget up to the average cost of an automotive transaction in the
U.S. in the year 2020, a huge variety of several Active Safety Features is available to
the consumer. Essentially, with the state of the industry like this, the consumer does
not need to sacrifice much in the way of cost for a high number of Active Safety
Systems.

4.4 Conclusion

This newly collected data and three preliminary analyses capture most of the current
state of the automotive industry’s adoption of Active Safety Systems. It does not,
however, capture the success of individual brands’ technology, their implementations
of the technology, the past trends, or the future projections of the industry. Despite
this limited scope, the reader is encouraged to investigate this data and perform their
analysis or to extend the scope of the data set. Through this collaboration a better
understanding of where research efforts should be targeted is achievable. In this way,
the potential of Active Safety Systems can be fully realized in a shorter time and
more efficiently.
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5 Promising AI Applications

Artificial Intelligence (AI) has proven to be an effective tool in many applications
ranging from biology to machine vision. The ability to make computer systems iden-
tify patterns and interpret meaning at a proficiency approaching that of humans will
only improve over time. For this reason, it is crucial to learn to apply AI techniques
and technology to the automotive industry.

5.1 Deep Learning

Deep learning is one of the most promising fields in AI. Deep learning refers to
learning amapping between inputs and outputswith a deepArtificial Neural Network
(ANN).AnANNis considered “deep”when it has a large number of layers in between
the first (known as the input layer) and last (known as the output) layers. The layers
between the input and output layers are referred to as hidden layers. The number of
hidden layers is called the depth of the network, giving rise to the popular term deep
to refer to networks that have many hidden layers. A layer is composed of nodes, or
perceptrons, that perform simple computations. The number of perceptrons in a layer
is called the width. A perceptron performs two linear operations before passing the
output through a nonlinear function. The two linear operations are (1) multiplication
of the input with a weighted value and (2) addition of that product with a bias term.
The sum is then passed to a nonlinear function, called an activation function. This
architecture is shown in Fig. 2 which shows a shallow ANN with 2 input nodes, 1
output node, two hidden layers, and each hidden layer’s width is 3 nodes. Figure2
also zooms in on a node to show the perceptron in a block diagram representation.
On its own, a perceptron is very simple. However, organizing perceptrons into layers
and then fully connecting those layers (where the outputs of the first layer are the
inputs to the second layer and so on) gives the network the ability to approximate
continuous functions. Informally, the universal approximation theorem states that
an ANN with one or more hidden layers and an unlimited number of perceptrons
in those hidden layers can approximate any continuous function with any desired
amount of accuracy [19]. This is the power behind ANNs. Most research in deep
learning has been spent studyingmethods that most efficiently, in terms of computing
time and memory size, approximate a given function to some desired accuracy. Two
excellent resources to learn this topic, both theoretically and practically, are [20] and
[21].

The automotive research literature is starting to show the promise of deep learning
in vehicle applications. Nearly all problems in vehicle applications that are solved
are being revisited in a new perspective. Furthermore, some of the most difficult
unsolved problems in the automotive field are being approached with deep learning.

A guideline in modeling is to develop the simplest model that can explain the
dynamic phenomenon under study. Vehicle dynamic researchers rely on the funda-
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Fig. 2 A fully connected artificial neural network with an expansion showing the perceptron in the
network

mental technique of constructing ordinary differential equations (ODE)s to capture
dynamic phenomena exhibited by various vehicle types. The bicycle model, also
known as a single-track model, is one such model and is covered in nearly every
vehicle dynamics textbook.

Recent applications of ANNs to model vehicle dynamics suggest that control
systems that leverage the approximating power of ANNs can outperform controllers
that rely on physics-based models. [22] compares the performance of a control sys-
tem designed using traditional methods and using an ANN. The control system is
a feedforward-feedback steering controller. The traditional design method uses a
bicycle-car model, and the machine learning method uses an ANN. The ANN is
trained on simulated data and real data collected from vehicle measurements. Their
results show that the control system designedwith the ANNoutperforms the physics-
based control system. Furthermore, they show that the ANN vehicle model predicts
the vehicle’s response more accurately than the bicycle car model when the simula-
tion runs on different road conditions. However, the ANN model must be properly
trained with diverse data [22].

A common complaint aboutANNs is their black-box nature, which is an important
concern that must be addressed by further research. Control design typically employs
models developed from physics-based first principles because they are reasonably
interpretable and can be studied analytically. For most vehicle models analytical
methods are used to understand the different properties of the model. For instance,
analytical equations can be derived from the bicycle car model to define the speed at
which a vehicle transitions from understeer to oversteer. Attempting such an analyti-
cal study on an ANN vehicle model is impractical. However, this does not mean that
designing models and controllers with ANNs requires blind trust. Instead, experi-
mentation can be used to study ANN models of dynamical systems. This is a topic
that requires significant progress before ANNs become a commonly used tool of
control engineers.
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James et al. [23] suggests that using ANNs as data-driven models can be bet-
ter than a physics-derived model in studying longitudinal vehicle dynamics. They
demonstrate that greater model accuracy is achieved by using a data-driven ANN
model over both a nonlinear, physics-derived model and a linear state-space model.
Although not emphasized as much as themodel accuracy, they also propose that their
ANN model leads to better model interpretation than physics-derived models. This
is because the typical process of fitting a physics-derived model (such as a linearized
bicycle model) may result in one or more specific model parameters that are unrea-
sonably large or small. These unreasonable parameters lead to doubt in the model’s
accuracy and reliability. These unreasonable values can occur when the data exhibits
non-linear behavior, and the fitting procedure converges on a less-than-reasonable
value for some model parameters. For instance, a vehicle that weighs 2000kg may
be fit to data such that a mass value of 1500kg results in the closest fit to the collected
data. This may be the result of the unmodeled or nonlinear kinematics or dynamics of
the vehicle, the data collection methods, noise in sensor measurements, or numerous
other sources of error. Linear models are more susceptible to this issue than non-
linear models. The ANN model constructed in this paper provides more reasonable
model parameter values than the linear physics-based model [23].

More closely related to Active Safety Systems is the application of Machine
Learning algorithms such as Support Vector Machines and Hidden Markov Models
to capture driving styles and driver behavior. These methods, and many more, have
shown significant promise in their ability to identify drivers, detect drowsiness, aid
warning systems, and monitor road condition and vehicle aging [24].

More cutting-edge control algorithms such as model-reference adaptive control,
model predictive control, and nonlinear internal model control are finding benefits
from applications of ANNs [25]. Learning-based model predictive control appears to
be one of these control algorithmswith great promise for robustness and performance
[26].

5.1.1 Datasets

The challenge any deep learning researcher faces is always data. If using supervised
learning techniques, the amount of labeled data is crucial. The quality of those labels
is also crucial. This subsection briefly mentions some datasets to let readers know
that extensive datasets exist.

• KITTI Vision Benchmark Suite [27, 28]
• Caltech Lanes Dataset [29]
• EuroCity Persons Dataset [30]
• The UAH-DriverSet [31]
• Berkeley BDD100k [32].

There are many more datasets available for aiding the task of training and test-
ing a machine vision algorithm. Fairly up-to-date and comprehensive coverage of
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datasets for Machine Learning in ADS can be found in the fourth chapter of [33].
Most datasets used for deep learning are images and videos. There are no known
audio datasets, such as recording audio outside the vehicle, or numerical datasets
designed to improve Active Safety Systems or Automated Driving Systems (ADS).

Example: Audio Dataset Uses One of the more obvious uses of an audio dataset
for ADS would be to help identify approaching emergency vehicles. However, a
less obvious use would be to record the host vehicle’s road noise, which enables
the computer systems to estimate road-tire conditions. Conditions such as road-tire
coefficient of friction and low tire pressure are useful in estimating the physical limits
of the tire forces. An example of a machine learning method applied to some of this
is [34]. A third audio dataset example might be to collect data in the cabin of the car
for monitoring driver distractions. Loud music, shouting, or soft sleepy music might
indicate driver distraction levels.

Example: Numerical Dataset UsesThere is one numerical dataset that does not exist
yet: vehicle dynamics input-output data. There is no known open-source dataset
that provides a vehicle’s actuator inputs (gas pedal displacement, steering wheel
angle, and brake pedal pressure) and dynamic response (longitudinal and lateral).
In other words, there is no open-source dataset that provides plant input-output data
for a vehicle on the road, much less on various road conditions performing various
maneuvers. Such data is typically closely held by brands for vehiclemodel validation.
This secrecy is most likely due to the high cost of data collection. Obtaining this
data may provide a brand an advantage over a competitor because it could improve
virtual sensing technology, vehicle modeling methods, and control system design.
It could also help improve predictions of how other vehicles will act. For instance,
several generic vehicles representing most of the vehicles encountered on-road can
be created in simulation. Then, deep learning models can be trained on each vehicle.
While detecting these other vehicles, they can be classified as being one of these
several modeled, generic vehicles. This would allow the prediction algorithm to
assign a dynamics model to each vehicle in its vicinity and more accurately predict
the future trajectories of those vehicles. More generally, this theoretical dataset will
aid the development of deep learning methods applied to the Active Safety Systems
discussed in this chapter.

There are many other gaps in publicly available data sets that can aid Active
Safety Systems. Future studies are needed to identify automotive areas that can
collect large amounts of data at a low cost. Labeling this data will most likely be
costly. For instance, a new data set that allows ANNs to model tire dynamics will
need to be experimentally collected using accurate measurement devices. Because
this proposed data set needs to be experimentally collected, it will be expensive to
obtain. The cost of high-quality data is a great challenge to applyDeepLearning to the
automotive industry. However, this is a common challenge that has been approached
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in many ways, and in many applications. For instance, the fields of biology and
medicine have benefited greatly from collecting large datasets and applying Deep
Learning models to model that data. There may be techniques that mitigate the cost
of data collection that can be applied to the automotive field. The goal must be to
create large, accurate data sets at a low cost.

5.1.2 Computer Vision

The most prevalent and successful application of AI to ADS is in the field of Com-
puter Vision. The intersection of Computer Vision and ADS includes many problems
that the community is actively working to solve. In this brief overview of Computer
Vision, only a subset of these problems is discussed: Object Detection, Object Track-
ing, and Ego-motion estimation.

Object Detection

The need to detect objects around the ego vehicle (the vehicle with the Active Safety
System) is an obvious requirement. In addition to just locating the presence of obsta-
cles, this problem typically includes classifying those objects. This is important
because the vehicle’s reaction to a collision with a paper box should be very different
from its reaction to a collision with a pedestrian.

This problem is very challenging because of the variety of objects that the ego
vehicle may encounter. The variety of ways in which the ego vehicle may encounter
those objects further complicates this problem. For instance, an object may be par-
tially hidden from the ego vehicle’s sensors, making detection and classification
challenging.

Cameras are common in object detection and classification. The visible light
spectrum is the most popular in daylight and night-time scenarios, but the infrared
spectrum is also rising in popularity for night-time applications. Both sensors are
typically passive and therefore require low power and are not cost-prohibitive to
many passenger vehicles. Laser scanning systems are also used, but they are active
systems and require more power and typically cost significantly more than cameras
[33].

At somepoint in the detection pipeline (the series ofmachine learning techniques),
modern solutions to object detection and classification employ a Convolutional Neu-
ral Network (CNN). A CNN is a variant of an ANN that has shown significantly
better performance on image processing than ANNs. Surprisingly, these deep and
often very complex CNN-based pipelines can classify objects in real-time onmodern
computing systems. These computers are also small enough to be installed in passen-
ger vehicles. The latency of classification is short enough to make object detection
and classification feasible in Active Safety Systems and Automated Driving Systems
(ADS)s [33].
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Object Tracking

Once an object has been detected and most likely classified, the state of that object is
of significant importance. Nearly all Active Safety Systems can benefit from object
tracking, even though it is not necessary. This is because knowing the state of an
object and the predictions of where that object will be in the future can inform the
decision-making of Active Safety Systems and ADSs.

Tracking an object typically utilizes an object’s temporal data to predict where
that object will move to in the future. The previous states help inform the possible
future trajectories of that object. Extended Kalman and particle filters are the tradi-
tional techniques used to solve this problem. However, now deep learning methods
have begun to propose new and more accurate solutions to this problem [33].

Ego-vehicle Estimation

Ego-vehicle position and orientation estimation is a critical aspect of both driver
assistance systems and ADSs. This technology locates the ego vehicle in space and
time. Traditionally, estimators use GPS, wheel-encoders, and steering wheel angle
sensors to estimate the position and orientation of the ego vehicle. However, these
often require corrections for nonlinearities (wheel slip, uneven roads, suspension
travel) and sensor errors. A more robust method now is to use visual odometry and
laser scanning odometry. Extracting information from the visual and laser scanning
sensors typically uses deep learning methods. This technique requires referencing
this extracted information to a map of the surrounding environment. Obtaining such
a map is a significant undertaking. It is likely that many driver assistance systems do
not make use of these new estimation methods because of this challenge. However,
many ADSs, which are produced by companies willing to overcome this challenge,
make use of this new method because of its increased robustness and accuracy [33].

Suggested Reading

The intersection ofComputerVision andActive Safety Systems is vast and advancing
every day. It is challenging to enter this space as a beginner because of the recent
and substantial changes from the traditional methods. These newmethods came with
the rise of deep learning and breakthroughs in the cost of computation. An excellent
source to get started in this intersection is [33]. It covers nearly every major research
problem being studied currently in this intersection of two fields. The book also
provides an excellent starting point for findingmore specific research literature.Most
importantly, it is recent enough to contain state-of-the-art methods and algorithms.

5.2 Reinforcement Learning

Reinforcement Learning (RL) is another AI field that has been increasingly used to
solve classical control problems. Reinforcement learning is fundamentally a method
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that maximizes a reward signal through trial-and-error search. RL frameworks con-
sist of an agent that is able to observe, either partially or entirely, some environment
and then interact with that environment through actions. For each action the agent
takes, the environment presents new situations. The environment also provides the
agent with some reward, which is typically a function defined by the AI researcher
that captures the desired behavior of the agent. The agent learns a policy, a mapping
between observed states and actions, to maximize the reward the agent receives from
the reward signal throughout the whole episode. An episode is the set of actions,
observations, and rewards between the initialization time of the environment and the
time at which some end state is reached. Sometimes the agent also learns a model
of the environment and leverages it to better explore the environment and tune its
policy. A long-term concept of rewards is the value function, which defines the value
of each state. The value of a state is the total expected reward that the agent can
receive when starting at that state. This value function is the most important aspect
of reinforcement learning because this function is not directly accessible to the agent.
Instead, it must be explored and approximated. This estimated value function is what
should be used by the agent to maximize rewards throughout an entire episode [35].
For a deeper and more holistic introduction to reinforcement learning the reader is
referred to the popular book: [35].

Example: Training a Dog Consider a dog and its owner. The owner wishes to train
the dog, the agent, to sit. The dog can see that the owner is holding their hand just
above the dog’s nose. It can also hear the owner say, “sit.” These are the agent’s
observations. The dog begins exploring its environment randomly. It sits, it lays
down, and it walks away. These are the agent’s actions. When the dog sits, the owner
gives the dog a treat, which is a reward. After several repetitions, the dog comes to
realize that when the owner holds their hand up and says “sit,” and the dog sits, it
receives a reward. If the dog lays down or walks away when the owner issues the sit
command, it does not receive a reward. The agent is estimating the value function
by mapping the observation of the sit command and the action of sitting to receive
maximal rewards. This is one of many biological examples of training formulated as
an RL problem.

The communities supporting RL have made the technology open-source friendly.
Numerous RL environments simulate autonomous vehicles, robotics, and classical
control problems. One Application Programming Interface (API) that is particularly
useful for learning RL, as well as sharing new environments with the research com-
munity, is Open AI Gym [36]. An open-source simulator that works well with Open
AI Gym is CARLA, which enables RL agents to control a passenger vehicle in a
photo-realistic simulation [37]. An alternative open-source simulator is Microsoft’s
Airsim, which supports ground-vehicle simulation despite it being mostly oriented
toward drone RL research [38].

One particular simulation project that is well-suited for testing RL algorithms
on highway driving scenarios is the Highway-Env [39]. This project uses Open-AI
Gym,making benchmarking and comparing RL algorithms on this environment easy
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and repeatable. The Highway-Env is a set of scenarios oriented towards allowing RL
algorithms to perform high-level control of Automated Driving Systems (ADS). In
each scenario, RL algorithms control one ormore automobiles, allowing for the study
of a single ADS or a fleet of ADS. Existing scenes in this package include straight
and continuous stretches of highways, on-rampmerging scenarios, roundabouts, and
parking lots. However, the environment, and therefore all the scenarios previously
mentioned, use low-fidelity vehicle models. The lateral motion is modeled with a
kinematic bicycle model, and the longitudinal motion is modeled as a point particle.

5.2.1 Reinforcement Learning for Automatic Emergency Braking

The goal of this subsection is to present an example of how Artificial Intelligence
provides an alternative method of developing an Active Safety System. This section
introduces a new scenario in the Highway-Env to show that RL can learn a policy
that performs similar functions to an Automatic Emergency Braking (AEB) system.
This new environment models a continuous straight stretch of a three-lane highway.
The simulation approximates realistic highway driving within fixed proximity to the
host vehicle. This can be conceptualized as a control volume drawn around the host
vehicle and placed in the host vehicle’s inertial reference frame. This control volume
is shown in Fig. 3, where the orange vehicle is the host vehicle or ego vehicle. This
method reduces computational load by lowering the number of vehicles other than
the ego vehicle (uncontrolled vehicles).

This environment simulates 20 uncontrolled vehicles to make the road similar
to moderate traffic levels on a highway. While the ego vehicle is initialized at the
same highway velocity for each episode, the uncontrolled vehicles are initialized
at randomly selected highway velocities. This ensures that the relative velocities at
initialization time between the ego vehicle and the uncontrolled vehicles are different
for each episode. The uncontrolled vehicles are randomly spaced in front of and
behind the ego vehicle. The ego vehicle also starts on a randomly selected lane. This
randomization significantly increases the likelihood that each episode is unique, and
therefore each imminent collision is also unique. The uniqueness allows the RL agent
to train on diverse episodes.

These uncontrolled vehicles can also enter and leave the control volume. The
control volume encompasses less than 100m and all three lanes of the highway. It is
also important to note that the uncontrolled vehicles exhibit behaviors approximately
similar to human-driving behavior on the highway. The uncontrolled vehicles’ lon-
gitudinal behavior is determined by the Intelligent Driver Model (IDM), which is
developed for time-continuous microscopic studies of traffic on the highway [40].
The Minimizing Overall Braking Induced by Lane change (MOBIL) model, which
governs when the uncontrolled vehicle changes lanes, determines the lateral behav-
ior [41]. Both the IDM and MOBIL models control the uncontrolled vehicles by
commanding discrete meta-actions to the low-level controllers. These meta-actions
are defined as (1) change to the left lane, (2) do not change lanes or change velocity,
(3) change to the right lane, (4) accelerate, and (5) decelerate.
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Fig. 3 Rendering of the automatic emergency braking scenario control volume

A significant gap exists between the intended usage of the Highway-Env and the
goal of this new scenario. The Highway-Env is designed for continuous control of
the ego vehicle. However, AEB systems are not always controlling the vehicle for
the driver. Instead, the AEB system always passively monitors both the environment
and the driver’s actions to determine if a collision is imminent. When a collision
is determined as imminent, the AEB system activates and supplies sufficient brake
torque to either stop the ego vehicle or to reduce the velocity of the ego vehicle. To
bridge this gap, the environment is modified such that the agent is more likely to
collide with other uncontrolled vehicles. This is done by randomly selecting uncon-
trolled vehicles and commanding them to brake as hard as possible to come to a
stop. This behavior increases the chances that an uncontrolled vehicle in front of
the host vehicle will suddenly stop, forcing the intervention system, in this case, the
RL agent, to execute a collision-avoidance maneuver. A state machine models the
intervention system’s passive and active states. This state machine constrains the RL
agent to either be inactive, active, or transitioning from active to inactive. When the
agent is inactive, it cannot act, observe, or receive rewards. The agent is inactive
when a collision is not imminent, as determined by a computed time-to-collision.
The time-to-collision is computed in Eq.1. When the agent is active, it can provide
actions and receive rewards in response to observations. The agent is active when a
collision is imminent. The agent is transitioning when the previous state was active,
but there is no current imminent collision. The transitioning state keeps the agent
active until the end of the episode, which is defined by either a collision or a set time
duration.

tcollision =
{

∞, if vrel ≥ 0
(drel+lveh)

vrel
, otherwise

(1)

where vrel is the relative velocity between the controlled vehicle and the vehicle
immediately in front, drel , is the relative distance between the controlled vehicle and
the vehicle immediately in front, and lveh is the length of the host vehicle.
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This environment created to induce collisions is also highly tunable with the
following tuning parameters:

Duration The length of time of each episode
Road friction The road-tire coefficient of friction
Time to intervene The set time-to-collision threshold in which the RL agent

becomes active
Vehicle density The average space between each vehicle when first initialized on

the highway
Vehicles count The number of uncontrolled vehicles on the highway
Stopping vehicles count The number of uncontrolled vehicles that will suddenly brake

The host vehicle offers the agent discrete actions that directly influence the vehicle
actuators: steeringwheel and brakes. The possible actions are (0) do nothing, (1) 50%
maximum braking, (2) 100% maximum braking, (3) 15 ◦ (ground-wheel) steering to
the left, and (4) 15 ◦ (ground-wheel) steering to the right. It is important to provide
multiple actions to ensure that the action space allows the agent to sufficiently explore
the environment. Steering is allowed to be commanded by the agent because the agent
may learn to steer away from a potential collision instead of just applying the brakes.
The host vehicle can observe the world around it with measurements of its current (1)
longitudinal velocity, (2) distance to the vehicle in front, (3) distance to the vehicle
behind, and (4) the current lane number. These observations are reasonably realistic
for a vehicle with Active Driving Assistance. The first observation can be captured
with wheel speed sensors, sensors that measure the output of the motor, or GPS. The
second and third observations can be measured with forward-facing radar and rear-
facing radar, respectively. The fourth observation can be thought of as the vehicle
pose in the world, which can come from GPS or even forward-facing cameras that
can detect which lane the current vehicle occupies. With three lanes, the options for
the current lane are lane zero, lane one, or lane two.

The environment is made more realistic by modeling the controlled vehicle’s
lateral dynamicswith a nonlinear, dynamic bicyclemodel. The longitudinal dynamics
are modeled as a single wheel with a single mass on top. The tires are modeled
using the magic formula, presented in Eq.2 with constant tire parameters. While the
coupled vehicle dynamics are decoupled, the coupled tire forces are limited by Eq.3.
The specific characteristic curves for this tire model used on the host vehicle are
shown in Fig. 4.

Fx,y(i) = Fz × μ × sin(C × atan(B × i − E × (B × i − atan(B × i)))) (2)

where Fx,y is either the tire longitudinal force or lateral force, Fz is the tire normal
force, μ is the tire-road coefficient of friction, i is either the tire longitudinal slip or
lateral slip, and B,C , and E are parameters that control the shape of the tire force
curve. Because the lateral and longitudinal tire forces are treated separately and as
decoupled, it is helpful to define a simple method of limiting the tire force so that tire
saturation is more realistic. Geometrically, this can be thought of as all the possible
tire forces of Fx and Fy spanning a rectangle in 2D space. In reality, they should span
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an ellipse that fits within that rectangle because there is some amount of coupling
between longitudinal and lateral forces. Idealizing a little to simplify computation,
they can be limited to a circle with Eq.3, where Fmax is the radius of this circle.

if F2
y + F2

x > F2
max, then:

Fx = Fx

||F || × Fmax

Fy = Fy

||F || × Fmax

(3)

where Fy is the lateral tire force, Fmax is the maximum tire force (defined arbitrarily
to create realistic coupling effects), Fx is the longitudinal tire force, and F is the force
vector consisting of both the longitudinal and lateral tire forces. This equation is only
active when the magnitude of the coupled tire forces, normalized by Fmax, exceeds
1. This creates realistic tire saturation effects when the vehicle is both steering and
braking.

A single-wheel model is used to capture the phenomenon of longitudinal vehicle
dynamics. The tiremodel inEq.2 allows amaximum longitudinal force to be achieved
at a specific slip value. The single-wheelmodel approximates the vehicle as onewheel
with rotational inertia and a motor or brake torque applied at the wheel center. This
wheel is connected to the chassis, which ismodeledwith a singlemass. The equations
of motion are given in Eq.4.

v̇x = Fx − Fdrag

m

ω̇ = T − rt × Fx

J

(4)

where vx is longitudinal velocity, Fx is the longitudinal tire force, Fdrag is the vehicle
drag force, m is the chassis mass, T is brake and motor torque applied to the wheel,
rt is the tire radius, and J is the wheel rotational inertia.

The result of these modeling efforts is a host vehicle that has longitudinal and
lateral dynamics that capture the important dynamical phenomenon of ground vehi-
cles. To ensure that the uncontrolled vehicles behave reasonably when μ varies, the
uncontrolled vehicles are limited in deceleration and acceleration. This limit is in
the form of a simple linear equation fit to the deceleration of the host vehicle. To
keep the model simple, there is no Anti-Lock Braking System modeled and so the
host vehicle locks its wheel when braking with full brake torque. This results in the
vehicle decelerating at approximately 0.16g’s when μ = 0.2 and at 0.6g’s when
μ = 1.0, representing icy and dry asphalt road conditions respectively.

TheDeepQLearning algorithm provided by the package StableBaselines 3 [42] is
used to reduce the development timeof anRLagent that can perform similar functions
to an Automatic Emergency Braking (AEB) system. This scenario is designed to
be extensible to Automatic Emergency Steering functionalities as well, but these
functions were not the target of this example. Instead, AEB is the goal functionality.
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Fig. 4 Tire characteristic curves when normal force is 1500N N and μ is 1.0

The challenge in training an RL agent in a new, unproven environment is defining
a reward function that encourages the desired behavior without allowing the agent
to exploit unintended options. For example, when a reward is given at the end of an
episode to the agent for not ending in a collision, then the agent learns to drive the
vehicle off the road. By driving off the road, the vehicle cannot collide with another
vehicle since the uncontrolled vehicles are constrained to the road. This is unintended
behavior that comes out of poorly defined reward functions and environment con-
straints. For this reason, when the vehicle leaves the road, it is considered a collision
and ends the episode.

Another challenge is deciding whether to provide positive rewards or negative
rewards (penalties). Penalties for colliding with another vehicle might encourage the
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vehicle to end the episode as soon as possible. By ending the episode as soon as
possible, the agent reduces the chance of receiving a penalty. Positive rewards might
encourage the vehicle to extend the duration of an episode as long as possible. This
is a desirable outcome because the best way to extend the duration of an episode is
to avoid a collision.

Defining positive rewards is challenging though. A first attempt provides a reward
every time an action does not result in a collision. This proved too challenging
for the Deep Q Learning algorithm to learn in a reasonable amount of timesteps,
approximately 20,000. The agent was unable to perform significantly better than
randomactions. This reward function comes from interpreting the reward engineering
problem as giving a treat to a dog. The poor performance of the agent suggests this
is the wrong interpretation of the reward engineering problem.

A second interpretation considers the problem of designing a reward function as
being similar to the natural tendency of all things to be in a lower energy state. In
terms of positive rewards, it is the inverse of this: the reward function should resemble
a maximal energy state. Interpreting the problem like this inspires the need for the
reward function to be continuous and differentiable. Applying this interpretation to
the AEB scenario, the reward function should provide rewards based on the current
host vehicle velocity. Since the goal of AEB is typically to bring the vehicle to a
full stop, the target velocity of this reward function is zero. The function is therefore
defined as reward = 1 − Vcurrent/Vinitial . When the current velocity is zero, the
maximum reward per action is 1, and when the current velocity has not reduced from
the initial velocity, no reward is provided.

The results of training for 20,000 timesteps with this reward are shown in Fig. 5.
Training is performed for 180 episodes, and each timestep is 1

15 of a second in
simulation time. The average reward per episode is computed by averaging the reward
received per step over each episode. The average length of the reward is computed
by averaging the number of steps taken in each episode. Because both plots look
similar in shape, the positive reward appears to encourage the agent to extend the
episode as long as possible.

When evaluating this agent over 50 episodes for more granular assessments of
the agent’s performance, and using the same random number generator seed as the
one used when training the agent, there were a total of 39 collisions. This startlingly
high number of collisions initially indicates that there is a significant amount of
development work left. However, looking deeper it is found that only 13 of those
collisions occurred because the ego vehicle rear-ended another vehicle in front. In
other words, the RL agent caused 13 out of the 39 collisions. Lookingmore closely at
not-at-fault collisions reveals that nearly all of the collisions occur because another
vehicle rear-ends the ego-vehicle. The smart driver models are not tuned to avoid
collisions. Instead, they are tuned to provide reasonable approximations to human
highway driving behavior. Collision avoidance requires more aggressive behavior,
which is not captured with the non-aggressive smart vehicle models. A result is
a high number of uncontrolled vehicles rear-ending the host vehicle because the
uncontrolled vehicle cannot appropriately behave in emergencies.
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Fig. 5 Deep Q learning training over training timesteps

Over those 50 evaluation episodes, all actions taken were action 2: 100% max-
imum braking. It was believed that by not modeling Anti-Lock Braking systems,
the RL agent would learn to maximize the brake force by using a combination of
50% maximum braking and 100% maximum braking. By using a combination of
these two actions it might be possible to control the slip such that it stays close to a
value that maximizes longitudinal tire forces. Referring to Fig. 4, the magnitude of
the optimal slip value is approximately 0.2. Unfortunately, the agent did not learn
this policy. One possible reason why this RL agent does not achieve this hoped-for
behavior is that it is provided with only two brake torque actions: 100 and 50%.
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This limited number of options makes it difficult to finely tune a control signal that
can maintain the optimal brake torque. Furthermore, Fig. 4 shows a fairly shallow
drop off after the maximal longitudinal braking force. This means that the maximal
brake torque generates a longitudinal brake force that is not significantly less than
the optimal longitudinal brake force. It is possible that this insignificant change in
longitudinal brake force when using 100% brake torque may explain why the agent
does not attempt to oscillate between both possible brake actions. It should also be
noted that the RL agent is able to steer. This ability is given to test the agent’s ability
to converge on a braking maneuver. If the agent were only allowed to brake, then
random actions would achieve very good performance. However, since the agent can
steer, random actions can create more collisions than a braking policy.

Further Work
Of course, numerous other traditional controllers can be used to deliver a brake
torque command to the vehicle. A comprehensive comparison of the most promising
traditional controllers for this and this RL agent is beyond the scope of this chapter.
In general, these types of comparisons have not been investigated fully. The reason is
the immense variety of control applications, RL algorithms, and traditional control
architectures and algorithms.

This RL scenario is highly extensible. Further research with this scenario might
apply this trained agent to all uncontrolled vehicles to investigate the question of
what happens when all vehicles on the road have AEB. A possible reward function
to do this might be to connect the reward to the tire longitudinal force. The ability to
change the road coefficient of friction could also help train agents that are robust to
environmental conditions. Another possible use of this environment to design a new
type of control system is to create an RL agent that performs continuous Anti-lock
Braking. Modern Anti-lock Braking Systems often scare drivers because the brake
pressure is being released in a discrete fashion. If there could be brake systems that
could deliver continuous control to each wheel, an RL agent might be able to learn to
control these actuators continuously to achieve maximum brake force. Finally, this
scenario should allow the training of an agent that can both steer and brake to avoid a
collision. This agent would combine Automatic Emergency Steering and Automatic
Emergency Braking. Defining a proper reward function for this will be challenging,
but worth the effort.

Furthermore, AEB systems are not only designed for highway driving. Significant
work is required to design a new scenario in the Highway-Env to allow for the
design of an RL agent that operates in low-speed environments. Furthermore, an
additional environment might be desirable to combine both low-speed and high-
speed environments. Listing the requirements of these two environments exposes
the problem of selecting the intervention system’s operational design domains. This
is an important problem that must be considered carefully before designing any
Active Safety System because it imposes critical assumptions and constraints on the
system design.

Using a state machine is also not the only way to design an RL agent to perform an
AEB function. Instead, the ego vehicle can be given the same human driver models
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as the uncontrolled vehicles. The agent’s observations can then be extended so that
the agent can observe the driver. The agent is then tasked with deciding when to
act and how to act with the driver to avoid a collision. In this new scenario, the RL
agent should only be given the ability to brake, since an AEB system is the intended
functionality. The challengewith this new setup is the design of an appropriate reward
function. This is because the RL agent must decide when and how to act while the
driver is also acting. An ideal RL agent should not override the driver’s demands
unless a collision is imminent. Also if the driver’s demands are not going to avoid or
optimally reduce the damage of that collision the agent should also step in and act
on the driver’s behalf. Such an ideal behavior might be challenging to achieve with
an RL algorithm.

These considerably large extensions of this work are just a sample of the possible
extensions of RL to AEB systems. One can further imagine a set of applications of
RL to other intervention systems such as Automatic Emergency Steering. Further-
more, it might be possible to use RL algorithms to design highly robust and adaptive
control systems for more generic vehicle applications. This brief discussion of future
work indicates the vast amount of research opportunities in the application of RL to
Active Safety Systems.

Other AI Applications

Autonomous Driving Systems appear to be an increasing interest in research appli-
cations of Artificial Intelligence. [43] showed that not only can Imitation Learning
control a vehicle end-to-end, but it also can do so with cheaper onboard sensors
than a vehicle that uses Model Predictive Control. The authors trained an Imitation
Learning algorithm using an off-road vehicle controlled by high-quality sensors and
Model Predictive Control. When given control of the vehicle, the Imitation Learning
algorithm was able to perform similarly with lower-cost sensors than the original
vehicle that used model predictive control.

6 Final Thoughts

One great challenge that is not discussed in this chapter is the verification and vali-
dation of these Active Safety Systems. While it is true that several standards exist to
guide engineers in this process such as ISO 26262, ISO 21448, IEC 61508, andmany
others, this challenge is unique to every OEM and perhaps unique to each model and
trim. To integrate AI applications into vehicles, verification and validation must be
done. Currently, there are many efforts to do this efficiently and cost-effectively.

The common way to verify the safety of Automated Driving Systems (ADS) is to
collect huge amounts of data. The general idea is that if the ADS can achieve a lower
statistical likelihood of causing a collision than a human in the desired Operational
Design Domain (ODD), then the ADS is valid to operate in that ODD. As Active
Safety Systems become more complex and assume more of the Dynamic Driving
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Task (DDT), verification and validation challenges grow larger and more difficult
to overcome. The solution to this will probably become similar to the solution used
for ADS: lots of data. In addition to collecting all this data for collisions, most
companies also collect sensor data from their extensive sensor arrays. This data is
used to improve different parts of the autonomous software stack, such as machine
vision components and decision-making components. One area that is not using this
vast amount of data is vehicle dynamic modeling and control.

Never before in the history of the automotive industry has there been the oppor-
tunity to collect data from every vehicle with Active Safety Systems, which is a
significant portion of all vehicles on the road as Sect. 4 indicates. As a result of this
newly available data, there must be ways to leverage its information to revisit current
solutions and improve on them and solve new, unsolved problems.

Example: Self-Learning Vehicles Suppose a new vehicle manufacturer enters the
market and immediately can put thousands of vehicles on the road, driven by con-
sumers. These vehicles have all the Driving Control Assistance systems covered in
Sect. 2. However, these vehicles have an additional technology on-board: machine
learning models, controllers, and estimators. Huge amounts of data are collected
nearly every mile from these vehicles. Now consider that each of these thousands
of vehicles is manufactured with tolerances. No two vehicles are the same. Future
work might be training deep learning models that can capture this vehicle-specific
uncertainty. If the data collected from measurements and estimators can be used to
train a deep learning model of the vehicle, this model can be improved as more data
is collected. Imagine controllers that leverage this continually collected data. These
controllers could improve the performance and safety of the vehicle the longer the
vehicle is operating. As the vehicle changes over time, (such as wear and tear, tire
replacements, or new batteries) these data-driven models, controllers, and estimators
also adapt. It is therefore conceivable that there are many applications of these mod-
els, such as alerting drivers towhen systemsmight fail in the future due tomechanical
wear or system faults. These data-driven models and controllers can also overcome
the challenge of variation between the same model of car, as each car builds and
trains separate models, controllers, and estimators. In a sense, the vehicle learns how
to better observe itself, better predict how it will behave, and better control itself over
time.

While verification and validation are some of the many topics not covered in
this chapter, AI and its sub-fields may help solve new challenges or improve on
existing solutions. Not only this, but the safety benefits of leveraging the available
data from these Active Safety Systems are too great to ignore. The industry and the
research communities must learn to collect and use this data in anonymous, secure,
and beneficial ways.

AI is not the only technology that offers huge improvements to Active Safety
Systems and Autonomous Driving Systems. Connected vehicles, that is vehicles
that can wirelessly communicate to one another, are the next natural step for the
automotive industry. However, AI is not separate from this newfield of study. Instead,
it too is offering huge gains to connected vehicles.
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The future of the automotive industry can be unlocked by applying AI to improve
existing solutions and find solutions to new problems. The goal of having zero colli-
sions on the road is a worthy goal to orient the research and development of Active
Safety Systems and ADS. This chapter shows that integrating AI technology and
data-driven components, where possible, is helping the industry approach this goal.
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Model Predictive Control for Safe
Autonomous Driving Applications

Ivo Batkovic, Mario Zanon, and Paolo Falcone

Abstract AlthoughModel Predictive Control is widely used inmotion planning and
control for autonomous driving applications, accommodating closed-loop stability
with respect to an arbitrary reference trajectory and avoidance of pop-up or moving
obstacles is still an open problem.While it is well-known how to design a closed-loop
stable MPC with respect to a reference trajectory that satisfies the system dynamics,
this chapter discusses how to guarantee stability of a vehicle motion planner and
controller when a user-provided arbitrary reference is used. Furthermore, the pro-
posed MPC scheme enables recursive collision-avoidance constraint satisfaction in
the presence of pop-up or moving obstacles (e.g., pedestrians, cyclists, human-driven
vehicles), provided that their predicted future motion trajectory is available together
with some uncertainty bound and satisfies some mild requirement. The proposed
motion planner and controller is demonstrated through simulations.

1 Introduction

In order to fully deploy highly automated driving technologies, vehicles need to
be able not only to reliably sense their surrounding environment, but also to safely
interact with it. To that end, challenging problems need to be solved that span from
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robust and reliable sensors design (e.g., cameras, lidars, radars, GPS, HD-maps) to
the development of robust perception and motion planning and control algorithms.
While safe autonomous driving in complex environments still remains an open prob-
lem, research is progressing in the fields of localization [1, 2], object detection and
tracking [3–5], and planning [6–8], to move beyond the current state of the art.

In this chapter, we focus on the vehicle motion planning and control problems
for autonomous driving applications. We build our results on the Model Predictive
Control (MPC) technique, as it has been proven to be a convenient design tool
for self-driving applications including, e.g., optimal coordination [9–11], energy
consumption minimization [12–14], and planning [15–22]. The theory of MPC is
equipped with well-known, well-established tools to enforce closed-loop stability
w.r.t. a reference trajectory, while ensuring constraint satisfaction [23, 24]. However,
these results build upon assumptions that can be challenging, or impossible, to satisfy
in practical autonomous driving applications.

Such challenges include: (a) enforcing closed-loop stability w.r.t. reference trajec-
tories that do not satisfy the system dynamics; and (b) providing recursive feasibility
guarantees in uncertain environments (e.g., in presence of pop-up or moving obsta-
cles). Indeed, if the MPC controller is provided with a reference trajectory that does
not satisfy the system dynamics, then the well-known results for asymptotic stability
of the closed-loop system do no longer hold. Furthermore, in an autonomous driving
setting, the vehicle needs to interact with other road users that may appear almost
anywhere and at any point in time within the sensor range. Ensuring that the vehicle
motion planner can persistently be able to avoid collisions with other road users at
all future times in such uncertain settings still remains an open problem. To address
a) we resort to Input-to-State Stability (ISS) analysis to prove closed-loop stability
also when infeasible (in the sense that they do not satisfy the system dynamics)
references are used; and to address (b) we provide a scheme which enables recur-
sive collision-avoidance constraint satisfaction in the presence of pop-up or moving
obstacles, provided that the uncertainty on their predicted motion is not growing as
new information is available about the environment and the road users therein.

This chapter is structured as follows. In Sect. 2 we introduce the problem of
safely planning and controlling the vehicle within an uncertain environment, while
Sect. 3 outlines the Model Predictive Flexible trajectory Tracking Control (MPFTC)
framework. In Sect. 4 we show how stability can be ensured when an infeasible
reference trajectory is used, and in Sect. 5 we provide recursive feasibility guarantees
for uncertain settings with suddenly appearing (pop-up) obstacles. Finally, in Sect. 6
we provide clarifying examples that illustrate the results derived in Sects. 4 and 5.

1.1 Notation

We denote a discrete-time nonlinear system by

xk+1 = f (xk,uk), (1)
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where xk ∈ R
nx and uk ∈ R

nu are the state and input vectors at time k, respectively.
The state and inputs are subject to two categories of constraints: a-priori known
constraints h(x,u) : R

nx × R
nu → R

nh ; and a-priori unknown constraints g(x,u) :
R

nx × R
nu → R

ng , i.e., the state and inputsmust satisfy h(x,u) ≤ 0 and g(x,u) ≤ 0,
where the inequalities are defined element-wise.

We use the notation gn|k(x,u) to denote function g at time n, given the information
available at time k.Moreover, wewill denote by gn(x,u) := gn|∞(x,u) = gn|k(x,u),
∀ k ≥ n the actual constraint, while in general gn|k(x,u) �= gn(x,u), ∀ k < n. Note
that for a-priori known constraints hn|k(x,u) := hn(x,u) holds ∀ k by definition. We
apply the same notation to state and inputs, e.g., xn|k and un|k denote the predicted
state and input at time n given the information available at the current time k. In
addition, to denote a set of integers, we use I

b
a := {a, a + 1, ..., b}.

2 Problem Description

In this section we formulate the problem of safely planning and controlling the
motion of a vehicle within an environment with static and moving obstacles, as a
Model Predictive Control Problem.

The dynamicalmodel of the vehicle, and the state and input constraints it is subject
to, are denoted as in Sect. 1.1. Function h includes actuator limitations, design and
safety (e.g., distance from the lane boundaries) constraints and is known beforehand.
Function g models a-priori unknown constraints such as, e.g., pop-up (suddenly
appearing) ormoving obstacles, whose exact futuremotion trajectories are unknown.
Our aim is then to control the vehicle motion described by (1) such that both known
constraints hk(x,u) ≤ 0 and a-priori unknown constraints gk(x,u) ≤ 0 are satisfied
at all times k.

Our first and essential objective is to guarantee safety of (1), which we define
formally as follows.

Definition 1 (Safety) A controller is said to be safe in a given set S ⊆ R
nx if ∀ x ∈

S it generates control inputs U = {u0, ...,u∞} and corresponding state trajectories
X = {x0, x1, ..., x∞} such that hk(xk,uk) ≤ 0 and gk(xk,uk) ≤ 0, ∀ k ≥ 0.

Our secondobjective is to control the system such that the state and inputxk,uk track a
parameterized reference trajectory r(τ ) := (rx(τ ), ru(τ )) as closely as safety allows.
If the reference parameter τ is selected to be time, its natural dynamics are given by

τk+1 = τk + ts, (2)

where ts is the sampling time for sampled-data systems and ts = 1 in the discrete-time
framework. Given the presence of nonlinear dynamics and constraints, we frame the
problem in the context of MPC. Note that if τ is forced to follow its natural dynam-
ics (2), then the reference tracking problem in the absence of a-priori unknown
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constraints g is a standard MPC problem and, therefore, inherits all stability guar-
antees, but also a possibly aggressive behavior when the initial state is far from the
reference. In order to tackle that issue and be able to deal with a-priori unknown con-
straints, we adopt next the concept ofModel Predictive Flexible Trajectory Tracking
Control introduced in [25].

3 Model Predictive Flexible Trajectory Tracking Control

The main idea in Model Predictive Flexible trajectory Tracking Control (MPFTC) is
to avoid aggressive behaviors by adapting the dynamics of the reference trajectory
by means of the parameter τ , which acts as a fictitious time for the reference, through
relaxed dynamics given by

τk+1 = τk + ts + vk, (3)

where v is an additional auxiliary control input and τ becomes an auxiliary state.
Note that the system dynamics are unchanged and the fictitious time τ makes only
the reference dynamics deviate from the natural ones.

We formulate the MPFTC problem as the following MPC problem

V (xk, τk) :=min
x,
τ,
u
v

k+N−1∑

n=k

qr(xn|k,un|k, τn|k) + wvn|k2

+ pr(xk+N |k, τk+N |k)

(4a)

s.t. xk|k = xk, τn|k = τk , (4b)

xn+1|k = f (xn|k,un|k), n ∈ I
k+N−1
k , (4c)

τn+1|k = τn|k + ts + vn|k, n ∈ I
k+N−1
k , (4d)

hn(xn|k,un|k) ≤ 0, n ∈ I
k+N−1
k , (4e)

gn|k(xn|k,un|k) ≤ 0, n ∈ I
k+N−1
k , (4f)

xk+N |k ∈ X f
r (τk+N |k), (4g)

where k is the current time, N is the prediction horizon, and w > 0 is the weight
defining the cost associated with the auxiliary input vn|k . In tracking MPC, typical
choices for the stage and terminal costs are

qr(xn|k,un|k, τn|k) =
[

�xn|k
�un|k

]

W

[
�xn|k
�un|k

]
, (5)

pr(xk+N |k,τk+N ) = �x

k+N |k P�xk+N |k, (6)

�xn|k := xn|k − rx(τn|k), �un|k := un|k − ru(τn|k),
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where the matrices W ∈ R
(nx+nu)×(nx+nu) and P ∈ R

nx×nx are symmetric positive-
definite and r(τn|k) = (rx(τn|k), ru(τn|k)) is a user-provided reference trajectory.Note
that the cost functions qr and pr depend on τn|k only through the reference trajectory
and that the cost is built with convex quadratic forms just for simplicity, while the
proposed framework can accommodate more general cost definitions. The predicted
state and controls are defined as xn|k , τn|k , and un|k , vn|k respectively, and are subject
to constraints (4b)–(4f). Constraint (4b) initializes the state prediction to the current
system state xk , (4c)–(4d) impose that the predicted states generated from the system
dynamics and the controls un|k , (4e) enforces constraints stemming from, e.g., actua-
tor physical limitations and reference trajectory bounds, while constraint (4f) forces
the predicted state and controls to satisfy constraints imposed to avoid the collision
with obstacles detected by a perception layer, hence, not known a-priori. Finally, (4g)
is a terminal set constraint, which, differently from standard formulations, depends
on the auxiliary state τk+N relative to the reference parameter. Note that, while the
introduction of one additional state and control results in an increased computational
complexity, such increase is typically small, since these variables have decoupled
linear dynamics.

The stability proof for MPFTC has been provided in [25]. However, in Sect. 4 we
will recall the necessary assumptions and state the stability theorem for completeness.
We ought to stress that, in the absence of a-priori unknown constraints, the necessary
assumptions for stability reduce to those commonly used to prove stability in standard
MPC schemes. In the presence of a-priori unknown constraints, these assumptions
may become too restrictive leading to the lack of recursive feasibility. Hence, in [25]
we proposed to relax the standard assumptions while introducing new ones which
can be summarized as follows. We first require one to “be able to predict a (possibly
conservative) worst-case scenario” for the a-priori unknown constraints. Since the
uncertainty typically becomes too large in rather short times, we need a second
assumption which postulates the existence of a safe set, consisting of states for which
the a-priori unknown constraints can be neglected. We will provide a more detailed
discussion on this aspect in Sect. 5, where we will also discuss how to enforce these
assumptions for autonomous driving.

4 Tracking an Infeasible Reference

We recall that our objective is to control the system (1), such that the state xk tracks a
user-provided parameterized reference trajectory r(τ ) = (rx(τ ), ru(τ )) as closely as
possible. For the remainder of the chapter, we assume that the reference trajectory is
parameterized with the time parameter t , and that it follows the natural dynamics (2).
Furthermore, wewill refer to any time dependence of the reference using the notation
(rxk , r

u
k ) := (rx(τk), ru(τk)), where τ is the fictitious time introduced in (3).

In order to prove stability, we recall the following standard assumptions, see,
e.g., [24, 26].
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Assumption 1 (System and cost regularity) The system model f is continuous,
and the stage cost qr : R

nx × R
nu × R → R≥0, and terminal cost pr : R

nx × R →
R≥0, are continuous at the origin and satisfy qr(rxk , r

u
k , τk) = 0, and pr(rxk , τk) = 0.

Additionally, qr(xk,uk, τk) ≥ α1(‖xk − rxk‖) for all feasible xk , uk , and pr(xk, τk) ≤
α2(‖xk − rxk‖), where α1 and α2 are K∞-functions.

This assumption is common in MPC [24, 26] and can be relaxed in case one wants
to account for so-called “economic” costs, see, e.g., [27–34] for a generic theory
and [12, 31] for applications to autonomous driving. The MPFTC framework can
be extended to yield an approximate economic MPC, similar to the one proposed
in [35–38].

Assumptions 2, 3 are introduced as for standardMPC formulations, where no dif-
ference is made between a-priori known h and unknown constraints g. Nevertheless,
we distinguish the case where the assumption is required to hold for h only from
the case where the assumptions hold for both constraints, which is too restrictive in
practice.

Assumption 2 (Reference feasibility) The reference is feasible for the system
dynamics, i.e., rx(t + ts) = f (rx(t), ru(t)), and:

(a) the reference satisfies the known constraints (4e), i.e., hn(rx(tn), ru(tn)) ≤ 0, for
all n ∈ I

∞
0 ;

(b) the reference satisfies the unknown constraints (4f), i.e., gn|k(rx(tn), ru(tn)) ≤ 0,
for all n, k ∈ I

∞
0 .

Assumption 2b is a strong assumption since it assumes that the reference is feasible
for the unknown constraints for all future times, i.e., at time k the constraint gn|k+1

is also assumed to be satisfied. This is clearly unrealistic for autonomous driving,
since pedestrians and other vehicles may at some time cross the road and make the
reference infeasible. Therefore, Assumption 2a serves as a relaxed version which is
more realistic and will be used later, while dropping Assumption 2b.

Assumption 3 (Stabilizing Terminal Conditions) There exists a parametric stabi-
lizing terminal set X f

r (t) and a terminal control law κ f
r(x, t) yielding:

xκ
+ = f (x, κ f

r(x, t)), t+ = t + ts,

such that pr(xκ+, t+) − pr(x, t) ≤ − qr(x, κ f
r(x, t), t), and

(a) x ∈ X f
r (t) ⇒ xκ+ ∈ X f

r (t+), and hn(x, κ f
r(x, t)) ≤ 0, for all n, k ∈ I

∞
0 ;

(b) x ∈ X f
r (t) ⇒ gn|k(x, κ f

r(x, t)) ≤ 0, for all n, k ∈ I
∞
0 .

Similarly to Assumption 2b, Assumption 3b is also difficult to verify due to the
unknown constraints. Hence, the milder Assumption 3a, which is standard in MPC
settings, will be used later on whereas Assumption 3b will be dropped.
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In order to track the reference (rxk , r
u
k ), we temporarily consider the following

tracking MPC Problem

V (xk, τk) :=min
x,u

k+N−1∑

n=k

qr(xn|k,un|k, τn) + pr(xk+N |k, τk+N ) (7a)

s.t. xk|k = xk, (7b)

xn+1|k = f (xn|k,un|k), n ∈ I
k+N−1
k , (7c)

h(xn|k,un|k) ≤ 0, n ∈ I
k+N−1
k , (7d)

xk+N |k ∈ X f
r (τk+N ). (7e)

where, as opposed to Problem (4), τ follows the natural dynamics (2) instead of (3)
and gn|k is removed, i.e., we consider a setting where there are no pop-up or other
moving obstacles, or wemake the restrictive assumption that these constraints cannot
become active.

Assumptions 1–3 make it possible to derive the following standard (i.e., for fea-
sible references) stability result.

Proposition 1 (Nominal Asymptotic Stability [39]) Suppose that the constraints
gn|k are inactive, the Assumptions 1, 2a, and 3a hold, and that the initial state (xk, τk)
at time k belongs to the feasible set of Problem (7). Then the system (1) in closed
loop with the solution of (7) applied in receding horizon is an asymptotically stable
system.

Proof Since constraints gn|k are inactive by assumption, disregarding them in Prob-
lem (7) does not jeopardize feasibility. The rest of the proof follows from standard
arguments, see, e.g., [23, 24]. �

Proposition 1 recalls the known stability results from the existing literature, which
apply to tracking MPC schemes. We emphasize that, the design procedure resulting
from Proposition 1 requires precomputing a feasible reference trajectory (rxk , r

u
k ) that

satisfies Assumption 2. However, in practice, it may be convenient to use a reference
trajectory that is infeasible w.r.t. the system dynamics, yet simpler to define. For
example, in the design of a motion planner and controller for an autonomous vehicle
driving on public roads, it would be convenient to just use as a reference trajectory an
easily available lane centerline, which in general would not be feasible for kinematic
or dynamic vehicle models.

While in standard MPC settings the stability with respect to an unreachable set
point has been studied in [40], the approach therein applies to time-invariant infea-
sible references. In order to overcome such a limitation, we consider a setting where
the reference can be time-varying and does not need to satisfy Assumption 2, and
the terminal conditions (7e) do not need to hold at the reference trajectory, but in a
neighborhood. To lay down the main result of this section (Theorem 2), we need to
first introduce a few preliminary results.
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Consider the optimal state and input trajectories obtained as the solution of the
optimal control problem (OCP)

(xr,ur) := lim
M→∞ argmin

ξ ,ν

M−1∑

n=0

qr(ξ n, νn, τn) + pr(ξM , τn) (8a)

s.t. ξ 0 = x0, (8b)

ξ n+1 = f (ξ n, νn), n ∈ I
M−1
0 , (8c)

h(ξ n, νn) ≤ 0, n ∈ I
M−1
0 . (8d)

Note that, since constraints gn|k are considered to be inactive in this section, we do
not include them in the OCP formulation in order to simplify the following analysis.
Let yr := (xr,ur) denote the solution of (8) and its optimal multipliers as λr,μr.
Hereafter, we will refer to the reference yr as the feasible reference, as it satisfies
Assumption 2.

The result in Theorem 2 builds upon the stability theory for economic MPC
schemes, where the cost is not of the tracking type. While the interested reader is
referred to [27, 32, 41, 42] for an in-depth understanding of the stability analysis tools
for economic MPC schemes, in this chapter we just recall that the main difference
between economic and trackingMPC schemes is in the cost function, which satisfies

qr(xrk,u
r
k, τk) = 0, qr(xk,uk, τk) > 0, ∀ xk �= xrk, uk �= ur

k, (9)

in tracking schemes but not in economic ones. While the MPC scheme built on
a reference trajectory satisfying Assumption 2 is of a tracking type, an infeasible
reference trajectory yields an economic scheme. Hence, in order to retrieve a tracking
cost from the economic one, we introduce the following rotated costs

q̄r(xn|k,un|k, τn) := qr(xn|k,un|k, τn) − qr(xrn,u
r
n, τn)

+ λr

n (xn|k − xrn) − λr


n+1( fn(xn|k,un|k) − fn(xrn,u
r
n)),

(10)

p̄r(xn|k, τn) := pr(xn|k, τn) − pr(xrn, τn) + λr

n (xn|k − xrn), (11)

which are commonly used in economic MPC. The rotated cost essentially shifts the
stage and terminal costs qr and pr, so that the minimum is attained at the feasi-
ble reference (xr,ur), i.e., q̄r(xrk,u

r
k, τk) = 0, p̄r(xrk, τk) = 0. However, in order to

ensure that the rotated costs remain positive definite, we must assume that the system
dynamics are linear time-varying, i.e., that Assumption 4 (which we introduce next)
must hold.

The issue of tracking an infeasible time-varying reference has been studied in [39],
under the additional assumption of linear time-varying (LTV) system dynamics. This
assumption is technical and in practice we expect that the results can be extended to
the fully nonlinear case, which will be the subject of future research.
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Assumption 4 The system dynamics f are linear time-varying, i.e.,

xk+1 = fk(xk,uk) = Akxk + Bkuk . (12)

In order to construct a problem that tracks the feasible reference obtained from (8),
we formulate the following ideal formulation

V i(xk, τk) = min
x,u

k+N−1∑

n=k

qr(xn|k,un|k, τn) + pỹr (xk+N |k, τk+N ) (13a)

s.t. (4b) − (4e), xk+N |k ∈ X f
yr (τk+N ), (13b)

where

ỹrk := argmin
x

pyr (x, τk) − λr

k (x − xrk). (14)

We refer to this formulation as being ideal since the terminal conditions are in general
not known, unless one solves OCP (8).

Theorem 1 Suppose that

1. Assumption 1 holds,
2. Problem (8) is feasible,
3. Assumption 3 holds for q̄r and p̄ỹr , with terminal set Xyr ,
4. Assumption 4 holds for the system dynamics.

Then, the system (1) in closed-loop with the ideal MPC (13) is asymptotically stabi-
lized to the optimal trajectory xr. �

Theorem 1 establishes that an MPC problem can be formulated using an infea-
sible reference, which stabilizes system (1) to the feasible reference obtained from
Problem (8), provided that appropriate terminal conditions are used. The remaining
issue, however, is to express the terminal constraint set as a positive invariant set
containing xr , and a terminal control law that stabilizes the system to xr . To that end,
one needs to have prior knowledge of the feasible reference, i.e., Problem (8) needs
to be solved. Instead, we consider expressing terminal conditions that are based on
an approximately feasible reference. In that case, asymptotic stability in the sense
of Proposition 1 cannot be proven. We will therefore resort to input-to-state stability
for the closed-loop system, where the input will be a terminal reference yf satisfying
the following assumption.

Assumption 5 (Approximate feasibility of the reference) The reference yf satisfies
the constraints (4e), i.e., h(xfn,u

f
n) ≤ 0, n ∈ I

k+N−1
k , for all k ∈ N+. Additionally,

recursive feasibility holds for both Problem (7) and (13)when the system is controlled
in closed-loop using the feedback from Problem (7).
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Assumption 5 sets a rather mild requirement from a practical standpoint. Using an
infeasible reference for simplicity, or approximating system dynamics to capture
the most relevant dynamics of the system (‖xfn+1 − fn(xfn,u

f
n)‖ ≤ ε, for some small

ε) is not uncommon in practice. In particular, in a practical setting we can select
yf = r(tk+N ), or in an ideal settingyf = yr(tk+N ). To that end,wedefine the following
closed-loop dynamics

xk+1(yf) = fk(xk,uMPC(xk, yf)) = f̄k(xk, yf), (15)

where uMPC is obtained as u�
k|k solving Problem (7) in case yf = r; and as ui

k|k solving
the ideal Problem (13) in case yf = yr .

We are now ready to state the main results of this section.

Theorem 2 Suppose that

1. Problem (8) is feasible,
2. Assumptions 1 and 3 hold for the reference yr with costs q̄r and p̄yr and terminal

set Xyr ,
3. Problem (7) and Problem (13) are feasible at time k with initial state (xk, tk),
4. the reference yf , with terminal set X f

yf , satisfies Assumption 5.

Then, system (15) obtained from (1) in closed-loop with MPC formulation (7) is ISS.
�

This theorem proves that if an infeasible reference is used, system (1) does not
converge exactly to the (unknown) optimal trajectory from OCP (8), but to a neigh-
borhood around it which depends on how inaccurate the terminal reference is. We
note, however, that the effect of the terminal condition on the closed-loop trajectory
decreases as the prediction horizon N increases [32, 42].

This section has so far considered the a-priori unknown constraint gn|k to be
inactive, i.e., no road users or other obstacles are present, in order to simplify the
analysis. In the next section, we consider settings where gn|k may not be ignored,
e.g., one has to ensure collision-avoidance w.r.t other road users.

5 Safety-Enforcing MPC

The aim of this section is to tackle the issues posed by the presence of the a-priori
unknown constraints (4f), which in Sect. 4 have been assumed to always remain
inactive. While we cast the problem in the framework of MPFTC, we stress that the
developments proposed to enforce safety are independent of the specific tracking
scenario, i.e., flexible trajectory, path, setpoint, etc., and can also be deployed in the
context of Model Predictive Path Following Control (MPFC) proposed in [43, 44].

We introduce the following assumption, imposing some structure on g that is
needed in order to ensure that the feasibility of a solution is preserved between
consecutive time instances.
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Fig. 1 The top panel shows an initial prediction for a pedestrian at time k, while the middle and
bottom panels show different predictions at time k + 1. The middle panel illustrates a model that
satisfies (18), i.e., satisfying Assumption 6, while the bottom panel does not satisfy (18), hence,
Assumption 6 is also not satisfied

Assumption 6 (Unknown constraint dynamics) The a-priori unknown constraints
satisfy gn|k+1(xn|k,un|k) ≤ gn|k(xn|k,un|k), for all n ≥ k.

While Fig. 1 gives a visual interpretation of the requirement in Assumption 6, at
this stage it is natural to wonder how function g should be constructed such that
Assumption 6 is satisfied. In order to answer this question, we will first provide a
formal description of how g can be constructed, and then provide some examples
which are relevant to autonomous driving to provide more intuition on the meaning
of Assumption 6.

We introduce the function γ (x,u,w) : R
nx × R

nu × R
nw → R

ng and the uncer-
tain variable wn|k ∈ Wn|k ⊆ R

nw whose bounded support is a subset of set Wn|k ,
lumping all the uncertainty related to the a-priori unknown constraints. Note that we
only require knowledge on a superset of the support of wn|k , which can in principle
even be deterministic, in which case its probability distribution is a Dirac and the
superset Wn|k can be any set of measure 1.
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Then we define

gn|k(xn|k,un|k) := max
wn|k∈Wn|k

γn|k(xn|k,un|k,wn|k). (16)

This formulation implies robust constraint satisfaction, i.e.,

gn|k(xn|k,un|k) ≤ 0 ⇔
{

γn|k(xn|k,un|k,wn|k) ≤ 0,
∀ wn|k ∈ Wn|k .

In a general setting, wn|k is the state of the dynamical system

wn+1|k = ω(wn|k, ξn|k, xn|k,un|k), (17)

with associated control variable ξn|k ∈ � ⊆ R
mξ , acting as a source of (bounded)

noise. The function ω describes the dynamics, and the explicit dependence on xn|k ,
un|k models possible interactions between the uncertainty and system (1). This can
be the case, for example, of a pedestrian, a bicycle or a human-driven car which
interacts with the vehicle whose motion needs to be planned and controlled. With
model (17) reachability analysis tools can be used to predict the future evolution of
the outer-approximations of the sets Wn|k .

Wn+1|k(xn|k,un|k) :⊇ { ω(wn|k, ξn, xn|k,un|k) | wn|k ∈ Wn|k, ∀ ξn ∈ � }, (18)

for some initialWk|k = wk|k .
The introduction of the uncertainty sets (18) allows one tomodel road users which

(a) are detectable by the sensors, and (b) are either beyond the onboard sensors range
or hidden by other obstacles, as depicted in Fig. 2. For type (a), the model (16), (17)
does not underestimate the set of future states that can be reached by the road users.
For type (b), the uncertainty model must predict the possibility that a road user
appears at any time either at the boundary of the sensor range or from behind an
obstacle.

We can now state the following result.

Lemma 1 Suppose that gn|k is defined according to (16) with Wn|k satisfying (18).
Then, Assumption 6 holds.

Note that this lemma amounts to assuming that the uncertainty in gn|k cannot
increase as additional information becomes available (from either the onboard sen-
sors or through communication links). Furthermore, a direct consequence ofAssump-
tion 6 is gn|k(rx(tn), ru(tn)) ≤ 0 =⇒ gn|k+1(rx(tn), ru(tn)) ≤ 0. We provide the fol-
lowing clarifying illustrations in order to better understand Lemma 1 and Assump-
tion 6.

Figure1 shows the difference between having a model that satisfies Lemma 1, and
one that does not. The middle panel shows that the predictions made at time k + 1
belong to a subset of the previous predictions made at time k, i.e., Wn|k+1 ⊆ Wn|k ,
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Fig. 2 Due to limited sensing capabilities, it is not possible to directly measure all road users in
the environment. Therefore, one must assume that hidden road users may appear outside the sensor
range at all times

which satisfies Lemma 1. The bottom panel on the other hand illustrates predictions
made at time k + 1, where Lemma 1 does not hold. Figure2 illustrates the fact that
road users in the environment may be occluded due to limited sensing capabilities.
In that case, in order to satisfy Assumption 6 at all times, one needs to model the
possibility that a road user might appear at the boundary of the sensor range.

We recall that, in the context of autonomous driving, the constraints gn|k could
enforce avoiding collisions with obstacles (e.g., other road users) detected by the sen-
sors, whose behavior can just be predicted to some limited extent. Hence, Assump-
tion 6 amounts to assuming that the uncertainty on, e.g., position and velocity esti-
mates of the detected objects at a specific time instance cannot increase as additional
information becomes available. We note however that limited sensor range makes
it impossible to detect obstacles which are too far away. To ensure satisfaction of
Assumption 6 one can adopt a worst-case approach which ensures that the predicted
trajectory xn|k may never leave the sensor range, and by also assuming that new
obstacles appear at the boundary of the sensor range at all times. A visual example
of this shown in Fig. 3, where the planned trajectory is forced to remain within the
sensor range at all times.

Enforcing safety of the controller (4) according to Definition 1 requires the con-
troller to be recursively feasible. Hence, the terminal constraint (4g) needs to be
designed in order to guarantee its satisfaction despite of the presence of the con-
straints (4f), which can grow unbounded in time, such that no state is safe, see Fig. 4.
We therefore design the terminal conditions by assuming the existence of a safe set,
where the constraints (4f) are guaranteed to be satisfied regardless. This will allow us
to rely on standard approaches in MPC [23, 45, 46] which are based on the existence
of a robust invariant set.
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Fig. 3 Since it is impossible to know what lies ahead of the sensing range, the planned trajectory
{xk|k , xk+1|k , . . . , xk+N |k} must be forced to remain within the sensor range

Fig. 4 As the uncertainty of the pedestrian predictions grow in time, the collision-free region of
the vehicle drastically shrinks. Hence, after some time, any model will predict that a pedestrian can
be anywhere, such that no state is safe

Assumption 7 There exists a robust invariant set denoted Xsafe(τn|k) ⊆ R
nx such

that for all xn|k ∈ Xsafe(τn|k) there exists a safe control set Usafe(xn|k, τn|k) ⊆ R
nu+1

entailing that f (xn|k,usafe) ∈ Xsafe(τn|k + ts + vsafe), and hn(xn|k,usafe) ≤ 0, for all
(usafe, vsafe) ∈ Usafe(xn|k, τn|k) and for all n ≥ k. Moreover, for all xn|k ∈ Xsafe(τn|k)
the a-priori unknown constraints can never be violated, i.e., by construction
gn|k(xn|k,usafe) ≤ 0 for all xn|k ∈ Xsafe(τn|k) and (usafe, vsafe) ∈ Usafe(xn|k, τn|k).

While this assumptionmight seem strong, it only postulates the existence of known
safe configurations for system (1). However, if no such configurations exist, then the
controller based on Problem (4) is intrinsically unsafe. On the other hand, if such
configurations do exist for (1), then the safe set Xsafe is non-empty and invariant.
Note that the safe configuration depends on system (1), the problem setting, and
must be known a-priori.
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Example 1 Many practical settings where safety is emphasized consider a system
to be safe at steady state, in which case the safety set Xsafe can be formulated as

Xsafe(τk) := { x | x = f (x,u), hk(x,u) ≤ 0, mk(x,u) ≤ 0 }, (19)

where function mk defines additional constraints which might be needed in the set
definition. A notable example for automotive settings is that a vehicle parked in a
safe configuration, e.g., a parking lot, emergency lane or any other safe environment
that can be modeled by mk , is not responsible for collisions with other road users.
This reasoning can be applied to the setting illustrated in Fig. 4, where the uncertainty
grows such that the only safe thing to do is to force the vehicle to a complete stop.

The introduction ofAssumption 7, allows us to dropAssumption 3b, so thatwe can
build our approach based on standard strategies in MPC [23, 45, 46], i.e., we rely on
stabilizing terminal control laws κs

r(x, t) and setsX s
r (t) satisfying Assumption 3a. In

order to obtain recursive feasibility also with respect to a-priori unknown constraints,
we rely on the safe set Xsafe to introduce the following terminal set

X f
r (τk+N |k) := {xk+N |k | ∃ un|k, vn|k, (20a)

τn+1|k = τn|k + ts + vn|k, (20b)

xn+1|k = f (xn|k,un|k), (20c)

hn(xn|k,un|k) ≤ 0, (20d)

gn|k(xn|k,un|k) ≤ 0, (20e)

xn|k ∈ X s
r (τn|k), (20f)

xk+M |k ∈ Xsafe(τk+M |k) ⊆ X s
r (τk+M |k), (20g)

(20a) − (20 f ), ∀n ∈ I
k+M−1
k+N }, (20h)

where M ≥ N is a degree of freedom. Note that the construction of (20) implies that
Xsafe(τ ) ⊆ X s

r (τ ), ∀τ ≥ 0. If (20) is a non-empty set we are guaranteed that for all
x ∈ X f

r (τ ) a terminal control law exists, which steers the states to the safe set.
In order to provide a practical approach to design the terminal control law, we

propose to first design a control law κs
r as one would do in standard MPC formula-

tions, i.e., by ignoring a-priori unknown constraints g and by forcing the time in the
reference to evolve according to its true dynamics. We can then define the terminal
control law (κ f

r(xk+N |k, τk+N |k), νf
r(xk+N |k, τk+N |k)) by using κs

r , as the solution of

min
u,ν

‖u − κs
r (xk+N |k, τk+N |k)‖2 + ν2 (21a)

s.t. f (xk+N |k,u) ∈ X f
r (τk+N |k + ts + ν), (21b)

hk+N (xk+N |k,u) ≤ 0, (21c)

gk+N |k(xk+N |k,u) ≤ 0. (21d)
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The idea behind the terminal set (20) is to ensure safety by forcing the system to
be able to reach a safe set Xsafe in a finite amount of time M − N ≥ 0, while always
remaining inside a stabilizing setX s

r (t) around the reference. Note thatM is a param-
eter which can be used to tune the stabilizing terminal safe set and, consequently,
the NMPC scheme (4). If M = N , then the terminal set coincides with the safe set,
possibly limiting the capabilities of the terminal control law, i.e., κ f

r(x, τ ) �= κs
r(x, τ )

and νf
r(x, τ ) �= 0. On the other hand, if M � N , the computational complexity of

X f
r can become excessive.

Theorem 3 (Recursive Feasibility) Suppose that Assumptions 1, 2a, 3a, 6, and 7
hold, and that Problem (4) is feasible for the initial state (xk, τk), with terminal set
and terminal controllers given by (20) and (21), respectively. Then, system (1)-(3) in
closed loop with the solution of (4) applied in receding horizon is safe (recursively
feasible) at all times.

While Theorem 3 only proves recursive feasibility, the presence of obstacles
makes it more difficult to discuss closed-loop stability. We note, however, that if the
a-priori unknown constraints become inactive, then the proposed formulation yields
nominal asymptotic stability.

Next we consider two simulation examples to illustrate the theory from Sects. 4
and 5.

6 Simulations

In this section we present two simulations related to autonomous driving settings
in order to illustrate the theory from Sects. 4 and 5. In Sect. 6.1 we first show how
the closed-loop behavior is affected when an infeasible reference is used. Then, in
Sect. 6.2we introducemoving and pop-up obstacles to show how recursive feasibility
is ensured through Theorem 3.

For both simulations we consider the single-track vehicle model with kinematics

⎡

⎢⎢⎢⎢⎣

ẋ
ẏ
ψ̇

δ̇

v̇

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

v cos(ψ)

v sin(ψ)
v
l tan(δ)

ω

a

⎤

⎥⎥⎥⎥⎦
, (22)

where x, y are the position coordinates in a global frame, v is the velocity, ψ is the
orientation angle, l is the wheelbase length, δ is the steering wheel angle, and a and
ω denote the acceleration and steering wheel angle rate, respectively. Since one of
the objectives is to track a user-defined reference r, it is possible to geometrically
derive the following vehicle kinematics in the frame of the reference path [47]



Model Predictive Control for Safe Autonomous Driving Applications 271

⎡

⎢⎢⎢⎢⎣

ṡ
ėy
ėψ

δ

v̇

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

v cos(eψ)(1 − κ r(s)ey)−1

v sin(eψ)

vl−1(tan(δ) − tan(δr(s)))
ω

a

⎤

⎥⎥⎥⎥⎦
, x =

⎡

⎢⎢⎣

ey
eψ

δ

v

⎤

⎥⎥⎦ , u =
[
a
ω

]
(23)

where s is the longitudinal position along the path, κ r is the path curvature, ey is the
lateral displacement error, eψ is the yaw error with respect to the reference r and
δr is the reference steering angle. Note that we consider s to be an auxiliary state
since we are only interested in tracking the velocity and not the longitudinal position.
For both simulations, we assume that system (23) is subject to the following known
constraints

‖ey‖ ≤ 0.4, ‖eψ‖ ≤ 0.16, ‖δ‖ ≤ 0.53,

0 ≤ v ≤ 50/3.6, −5 ≤ a ≤ 3, ‖ω‖ ≤ 0.35,

while the stage cost matrices in (5) are

W = blockdiag(Q, R), Q = diag(1, 10, 1, 1), R = diag(1, 1). (24)

In order to compute the stabilizing terminal set X f
s (t), we decouple the longitudinal

and lateral kinematics. Using an an LQR controller with costs Qlon = 1, Rlon = 50
one can then obtain the feedback gain K = 0.14 a terminal cost P long = 72.63 with
corresponding terminal set

X lon
s (τ ) := {v | − 5 ≤ − K (v − rxv (τ )) ≤ 3 }. (25)

For the terminal set of the lateral kinematics, we consider the velocity to be an
uncertain parameter and linearize the system (23) on the reference to obtain theLinear
Parameter Varying (LPV) system (A(v), B(v)) ∈ R

3×3 × R
3. Then, by considering

a nominal velocity vnom = 28/3.6 m/s, we use the feedback gain K , obtained from
an LQR controller with tuning Qlat = blockdiag(1, 100, 2) and Rblockdiag = 1, to
stabilize the LPV system by considering the following polytopic system

� := {(A, B) ∈ R
3×3 × R

3 : A = A(v), B = B(v), v ∈ [1, 50/3.6] }, (26)

for velocities v ∈ [1, 50/3.6] m/s. We then use the MPT toolbox [48] to compute
the terminal set [49] for the polytopic system (26) and obtain that

X lat
r (τ ) := {H([ey, eψ, δ]
 − [0, 0, δref(τ )]
) ≤ b}. (27)

We note that, while we compute the terminal set for the polytopic system (26), one
can also use the methods presented in [50, 51] to compute low-complexity invariant
sets for linear parameter-varying models. By solving the linear matrix inequalities
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that satisfy the Lyapunov equations for the polytopic system, we also obtain the
terminal cost

P lat =
⎡

⎣
402.37 839.90 323.00
839.90 7272.88 2781.57
323.00 2781.57 2556.74

⎤

⎦ (28)

Finally, the terminal set X f
s (τ ) can then be constructed as

X f
s (τ ) := {x | [ey, eψ, δ] ∈ X lat

r (τ ), v ∈ X long
r (τ )}, (29)

with terminal cost P = blockdiag(P lat, P lon).
The following simulations were implemented in Matlab and interfaced with Aca-

dos [52] and CasADi [53], together with solvers IPOPT [54] and HPIPM [55].

6.1 ISS: Stability with Infeasible Reference

In this section we show the closed-loop behavior of Problem (7) when using an infea-
sible reference. To that end, we consider a reference with a discontinuous curvature,
i.e., the steering angle reference is discontinuous,

rx(τ ) = [0, 0, δr(τ ), 50/3.6]
, ru(τ ) = [0, 0]
, (30)

where

κ(τ) =
{
0.0452 if 7.5 ≤ τ < 12.5,

0 otherwise.
(31)

In order to obtain the feasible reference yr = (xr,ur), we linearize model (23)
to obtain an LTV system and approximate the infinite horizon Problem (8) with a
prediction horizon of M = 600 and sampling time ts = 0.05 s. For the closed-loop
simulations, we use the control input obtained from formulations (7) and (13) with
horizon N = 10 and sampling time ts = 0.05 s.

Figure5 shows the closed-loop trajectories for the initial condition t0 = 0 and
x0 = [0.1, 0.02, 0, 50/3.6]
, where the gray lines denote the infeasible reference
r, and the black lines denote the optimal reference yr from (8). The blue lines show
the closed-loop evolution of each state for ideal MPC formulation (13), i.e., when
the terminal conditions are based on the feasible reference yf = yr . The orange
lines, on the other hand, show the closed-loop trajectories for the practical MPC
formulation (7), which has the terminal conditions based on the infeasible reference,
i.e., yf = r. The bottom right plot of Fig. 5 shows the closed-loop error with respect
to yr for the two MPC formulations. It is visible that for times t ≤ 5 s, the reference
trajectory is feasible and both formulations manage to stabilize towards the optimal
trajectory. For 5 s ≤ t ≤ 15 s, the discontinuity of the reference r affects how the two
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Fig. 5 Closed-loop simulationwith initial conditions x0 = [0.1, 0.02, 0, 50/3.6]
 and initial time
t0 = 0. The gray trajectories show the infeasible reference r = (rx, ru), while the black trajectories
show the optimal trajectory yr = (xr,ur) obtained from Problem (8). The orange trajectories show
the closed-loop behavior for the practical MPC Problem (7), while the blue trajectories show the
closed-loop behavior for the ideal MPC Problem (13)

formulations behave. The ideal formulationmanages to track the optimal reference yr

(black trajectory) since it is formulatedwith proper terminal conditions. The practical
formulation (orange trajectory) on the other hand tries to track the infeasible reference
r, and therefore deviates from the optimal trajectory and ideal formulation. After the
discontinuity, the rest of the reference trajectory is feasible, and both formulations
are asymptotically stabilizing.

In order to verify in simulation the theoretical result of [32, 42] stating that the
effect of the terminal condition on the closed-loop trajectory decreases as the pre-
diction horizon N increases, we ran the same simulation with N = 60 and observed
that the closed-loop trajectory obtained with the infeasible reference becomes indis-
tinguishable from the optimal one by eye inspection.

Whilewehave shownhowan infeasible reference affects the closed-loop system in
section, we consider next a setting where the reference trajectory becomes infeasible
due to pop-up obstacles in the environment. To that end, in the next section we show
recursive feasibility guarantees from Theorem 3 are enforced.
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Fig. 6 The simulation setting includes a vehicle driving down a road with a crosswalk where
pedestrians might cross

6.2 MPFTC: Ensuring Safety of the Controller

In this sectionwe illustrate the benefits of the safe terminal set by considering anurban
driving environment. In particular, we consider the setting shown in Fig. 6, where the
vehicle needs to safely navigate the road and avoid collisions with pedestrians that
may be occluded by the environment. To that end, we will show next that when the
conditions required our safe framework, i.e., Theorem 3, are satisfied, we are able to
avoid collisions with suddenly appearing road users.

For simplicity and ease of illustration, we consider the following reference tra-
jectory

rx(τ ) = [vrefτ, 0, 0, 0, vref ]
, ru(τ ) = [0, 0]
, (32)

which models a constant velocity trajectory with no turning, i.e., the road center line
fromFig. 6. In order show constraint satisfaction of our frameworkwhile tracking this
reference, we need to introduce a model that predicts the future motion of other road
users. Hence, to simplify the analysis and presentation of the results, we consider
only pedestrians that may appear from the bottom side of the crosswalk in Fig. 6.
Therefore, we model the pedestrian dynamics as following the red straight line in
Fig. 6. By defining the uncertain variable related to the pedestrian position as wk :=
[spedk , npedk ], we formulate the pedestrian kinematics as two single integrators

wk+1 = ω(wk, ζ ) =
[
1 0
0 K

]
wk +

[
1.3
0

]
ts + tsζ , (33)
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where the lateral statesnpedk are stabilized if K < 1, and ζ ∈ Z ,withZ = {ζ |‖ζ‖∞ ≤
0.75}, relates to some bounded uncertainty in the pedestrian movement. We stress
that we use this model for simplicity, and for real autonomous driving scenarios,
model (33) is far from realistic and one should instead consider more advanced
pedestrian models like the ones proposed in, e.g., [56–59].

With model (33), it is straightforward to follow the steps from (18) in Sect. 5 and
propagate the future uncertainty from an initial measurement wk as

Wn+1|k = {ω(wn|k, ζ ) | wn|k ∈ Wn|k,∀ζ ∈ Z}, (34)

with Wk|k = wk . However, we note that even though prediction model (34) ensures
that the predicted sets satisfyWn|k+1 ⊆ Wn|k , we are still faced with the problem of
accounting for pedestrians that are outside of our sensing range, e.g., occluded by
buildings or other vehicles. To that end, the sensor-suite must provide information, or
have an understanding, where pedestrians might appear. This becomes a crucial part
in satisfying Assumption 6, which is needed in Theorem 3 for recursive feasibility.
We therefore assume for this simple example, that the sensor-suite has access to
information on locations where pedestrians might appear, e.g., from a map. With the
information of each such “hidden” location, we expect that a pedestrian might be
hidden, and as such, propagate the uncertaintymodel of (34) for the hidden pedestrian
as well. To that end, we must propagate the uncertainty for all measured pedestrians,
and potentially “hidden” pedestrians. Hence, if we can measure i pedestrians, and
have j hidden locations, we predict the sets wi

n|k ∈ W z
n|k , ∀z ∈ I

i+ j
1 , and construct

gn|k as

g
(xn|k ,un|k )
n|k = max

wn|k i∈W i
n|k , ∀i∈Ii+ j

1

{
sn|k + nped,in|k + s inter + r if ‖sped,in|k ‖ ≤ �

0 otherwise
≤ 0,

where s inter is the intersecting point of the reference trajectory and the walkable path,
i.e., (s, n) = (s inter, 0) and (sped, nped) = (0, 0) map to the same point in the global
frame, r is an additional safety distance, and � denotes the distance threshold when
the pedestrian should be considered for collision avoidance.

Having formulated the collision-avoidance constraints, we now turn to formulat-
ing the safe terminal set. In a similar light to Example 1 in Sect. 5, we consider the
safe set to be given when the vehicle is fully stopped, i.e.,

Xsafe(τ ) = {x |v = 0}. (35)

We note that this may not be a suitable safe set for general autonomous driving
settings, and that it in general can vary for different cases. However, in order to avoid
further technicalities, we consider this safe set to be sufficient for the simplified
setting that we use for illustration.

For the simulations we use the terminal set defined in (20), using the sets (35)
and (29), with N = 40 and M = 80. We use the MPFTC formulation (4) with sam-
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Fig. 7 Four different time
instances of the simulation
environment. The two top
panels show that the sensors
(shaded region) cannot see
behind a wall, and that the
vehicle as such plans a
trajectory within the sensing
range. The two last panels
show that a pedestrian, who
was not visible for the
sensors, shows up and forces
the vehicle to perform an
emergency braking

pling time ts = 0.05 s and nonlinear system model (23). In order to illustrate the
benefits of our proposed safe framework, we implement two controllers: one that
satisfies Theorem 3; and one where Assumption 6 is not satisfied.

Figure7 shows four time instances of the MPC controller which only reacts to
what it can sense directly, i.e., the controller does not satisfy Assumption 6. It is
visible that the vehicle believes that it can safely cross the intersection in the first two
frames. In the last two frames the vehicle has moved close enough to the intersection,
such that the sensors can now detect the pedestrian. However, in this case the vehicle
velocity is too high, so that it causes a collision with the pedestrian. The closed-
loop trajectories are shown in Fig, 8. Here it is visible that the vehicle sees the
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Fig. 8 Closed-loop evolution of the unsafe MPC controller shown in Fig. 7. Just before t ≤ 2 s, a
pedestrian appears and forces the vehicle to perform an emergency braking

Fig. 9 Constraint evolution for the unsafe MPC controller. The left-hand side shows the constraint
gk|k , while the right-hand side shows the time evolution of the predicted constraint gn|k

pedestrian just before t < 2 s, and applies full braking. From the lateral error, and
orientation error, we realize that the MPC controller in fact tries to avoid a collision,
by marginally maximizing the traveled distance by actively steering. Figure9 shows
that Assumption 6 is not satisfied since constraint gn|k+1 � gn|k for all n > k, which
indeed is needed for safety, i.e., guaranteeing that Theorem 3 holds. The left-hand
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Fig. 10 Four different time
instances of the simulation
environment. The two top
panels show that the sensors
(shaded region) cannot see
behind a wall, however, the
vehicle plans a trajectory as
if there were a pedestrian
behind the corner. The two
last panels show that a
pedestrian, who was not
visible for the sensors, shows
up. Since the vehicle was
already prepared for this
situation, it manages safely
adjust it speed and yield to
the pedestrian

side shows the constraints at each time k in closed-loop, where it is visible that just
before t < 2 s the constraint shrinks, which causes the vehicle to collide with the
pedestrian.

Figure10 shows how the safe MPC controller behaves when Assumption 6 is
satisfied. As opposed to the unsafe controller shown in Fig. 7, the safe controller
approaches the intersection more cautiously, as any rational human driver would
do. By adjusting the speed, it anticipates that a moving obstacle may appear behind
the wall. This can be seen in the two last frames. As time moves on, the pedes-
trian can safely pass, and the vehicle moves close enough to see that there are no
more remaining pedestrians, so that it can safely accelerate to pass the intersection.
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Fig. 11 Closed-loop evolution of the safeMPC controller shown in Fig. 10. The vehicle approaches
the intersection by reducing its velocity. After t = 6 s the pedestrian passes, and the vehicle is free
to accelerate again

Fig. 12 Constraint evolution for the safe MPC controller in Fig. 10. The left-hand side shows the
constraint gk|k , while the right-hand side shows the time evolution of the predicted constraint gn|k

Figure11 shows the closed-loop velocity and acceleration trajectories. It is worth
noting how the vehicle slows down earlier than the unsafe controller in Fig. 8, since
it anticipates that a pedestrian might appear behind the corner. Note that, the states
(ey, eψ, δ) have been omitted since their dynamics essentially remain unchanged.
Finally, Fig. 12 shows that the constraint g is monotonic, and hence, Assumption 6 is
satisfied. The “jump” in the right plot illustrates the point in time when the pedestrian
is no longer predicted to block the intersection, and the vehicle is free to accelerate
again.

7 Conclusions

The possibility of using infeasible reference trajectories is of great interest in MPC-
basedmotion planning and control algorithms, due to the convenience and simplicity
they offer. In this chapter, we have discussed how such reference trajectories affect the
closed-loop behavior of the system, and proposed conditions sufficient for stability
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to hold. While these results are currently limited to LTV systems, future research
will investigate the possibility to also include general nonlinear systems.

Furthermore, we have discussed safety for autonomous driving in a general sense
and presented a new safeMPC framework that enables recursive collision-avoidance
constraint satisfaction at all times, while relying on assumptions that can be verified
in practice on the perception system. Ongoing research is focusing on the practical
real-time implementation of the framework in a full-scale test vehicle.

References

1. Stenborg E (2020) Long term localization for self driving cars. Doktorsavhandlingar vid
Chalmers tekniska högskola. Ny serie: 4844. Chalmers University of Technology

2. Stenborg E, Hammarstrand L (2016) Using a single band GNSS receiver to improve relative
positioning in autonomous cars. In: 2016 IEEE intelligent vehicles symposium (IV). IEEE, pp
921–926

3. Braso G, Leal-Taixe L (2020) Learning a neural solver for multiple object tracking. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)

4. Danelljan M, Gool LV, Timofte R (2020) Probabilistic regression for visual tracking. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)

5. Johnander J, Danelljan M, Brissman E, Khan FS, Felsberg M (2019) A generative appearance
model for end-to-end video object segmentation. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR)

6. González D, Pérez J, Milanés V, Nashashibi F (2015) A review of motion planning techniques
for automated vehicles. IEEE Trans Intell Transp Syst 17(4):1135–1145
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Energy-Efficient Autonomous Driving
Using Cognitive Driver Behavioral
Models and Reinforcement Learning

Huayi Li, Nan Li, Ilya Kolmanovsky, and Anouck Girard

Abstract Autonomous driving technologies are expected to not only improve
mobility and road safety but also bring energy efficiency benefits. In the foresee-
able future, autonomous vehicles (AVs) will operate on roads shared with human-
driven vehicles. To maintain safety and liveness while simultaneously minimizing
energy consumption, the AV planning and decision-making process should account
for interactions between the autonomous ego vehicle and surrounding human-driven
vehicles. In this chapter, we describe a framework for developing energy-efficient
autonomous driving policies on shared roads by exploiting human-driver behavior
modeling based on cognitive hierarchy theory and reinforcement learning.

1 Introduction

With recent advances in sensing technologies and artificial intelligence, there has
been a rapidly growing interest in connected and autonomous vehicles (CAVs) [12,
43]. Such vehicles are expected to improve the safety and mobility of transportation
and to alleviate traffic congestion.

Another expected benefit of CAVs is a reduction in fuel/energy consumption
[38, 41]. Since 2016, the U.S. Department of Energy has awarded more than $50
million in funding for studies by the Advanced Research Projects Agency-Energy’s
(ARPA-E)Next-Generation Energy Technologies for Connected andAutomatedOn-
Road Vehicles (NEXTCAR) program for which the goal is to reduce the energy

H. Li (B) · N. Li · I. Kolmanovsky · A. Girard
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
e-mail: huayil@umich.edu

N. Li
e-mail: nanli@umich.edu

I. Kolmanovsky
e-mail: ilya@umich.edu

A. Girard
e-mail: anouck@umich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. L. Murphey et al. (eds.), AI-enabled Technologies for Autonomous and Connected
Vehicles, Lecture Notes in Intelligent Transportation and Infrastructure,
https://doi.org/10.1007/978-3-031-06780-8_10

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06780-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06780-8_10&domain=pdf
mailto:huayil@umich.edu
mailto:huayil@umich.edu
mailto:nanli@umich.edu
mailto:nanli@umich.edu
mailto:ilya@umich.edu
mailto:ilya@umich.edu
mailto:anouck@umich.edu
mailto:anouck@umich.edu
https://doi.org/10.1007/978-3-031-06780-8protect LY1	extunderscore 10
https://doi.org/10.1007/978-3-031-06780-8_10


284 H. Li et al.

Table 1 Summary of selected literature on using CAV technologies to improve energy efficiency

References Energy consumption
reduction by (%)

Methods Traffic conditions

[1] 5.4 Thermal management
(air conditioning)

Driving cycles

[42] 3.1 Thermal management (battery) Driving cycles

[8] 41 Thermal management
(air conditioning and engine)

Driving cycles

[32] 50 Eco-driving Intersections

[14] 12 Eco-routing City

[20] 57.8 Platooning,
cooperative merging

Ramps on highway

[2] 8.5 Anticipative lane change City and highway

[4] (Up to) 59 Cooperative lane change Highway

[30] 47 Cooperative driving Intersections and
roundabouts

consumption of vehicles in all classes by more than 20% via CAV technologies
[40]. Table1 shows selected results by this program. This is not intended to be
a comprehensive review, but the collection illustrates the variety of methods and
traffic conditions being explored in some of the most recent studies to achieve energy
efficiency improvements using CAV technologies.

To realize this encouraging potential in real-world driving circumstances, we
observe that at least the following two problems remain to be studied. Firstly, inter-
actions of the ego vehicle with surrounding vehicles in traffic need to be considered.
In the foreseeable future, autonomous vehicles will operate together with human-
driven vehicles in traffic. Thus, it is necessary to consider the different vehicle actions
and reactions caused by different types of human driving styles. In [18, 26, 28, 39],
level-k game theory is used to model the interactions with the focus on different
driving scenarios. Researchers such as of [10, 35, 36] have utilized traffic-in-the-
loop models and closed-loop control to achieve simultaneous optimization for safety
and fuel economy. However, only longitudinal control is considered in these studies.
Indeed, the vast majority of recent studies on improving energy efficiency using CAV
technologies assume that the ego vehicle is driven in single-lane traffic. Thus, the sec-
ond problem worth investigating is the simultaneous longitudinal control and lateral
control (such as lane changes) of AVs, which increases the dimension of the problem
but provides additional possibilities to save energy. A more detailed discussion on
lane changes for better energy efficiency is given in Sect. 2.

There has been a rich set of research on machine learning (ML) methods for auto-
motive applications to improve energy efficiency and emissions by modeling and
control of the powertrain system (see, e.g., [15, 22, 25, 29, 34, 46]). In particular, to
meet increasingly stringent fuel economy and emissions regulations, the powertrain
systems of hybrid electric vehicles (HEVs) have become more and more complex.
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Consequently, commonly studied model-based control methods for the energy man-
agement system (EMS), such as dynamic programming (DP) and model predictive
control (MPC) [13], are facing growing difficulties, as they rely on models with
good accuracy and many control-oriented models are physics-based. In comparison,
machine learning methods can handle this challenge well. For example, for HEVs
with small electrical energy storage, there is a significant potential to utilize recur-
rent neural networks to learn driving patterns and improve energy efficiency [9]. In
the CAV domain, example applications of ML include perception and localization,
route/path planning/optimization, and motion control, despite challenges such as
computation, safety, and adaptability/generalizability that are actively being studied
[11, 19, 21]. Studies such as [6, 45] use ML to inform energy-efficient accelera-
tion/braking of electric vehicles. The authors previously developed a level-k game
theory-based traffic simulator in [26] (following the methodology originally pro-
posed in [47]). The simulator is based on cognitive driver behavioral models trained
by reinforcement learning (RL).

In this chapter, we describe a novel framework for developing energy-efficient
AV control policies, including both longitudinal (speed) and lateral (lane change)
controls, through RL. We focus our attention on highway driving and autonomous
battery electric vehicles (BEVs), as BEVs are getting increasingly popular due to
their environmental benefits [50]. A BEV powertrain model is developed to calculate
the energy consumption over trips. To enable the AV control policy to properly
respond to the interactions with human-driven vehicles on shared roads, the game-
theoretic traffic model developed in [26, 28] is used as the RL training environment.
Reference [23] is a preliminary conference version of this chapter. Extensions to
other powertrain types and traffic environments are possible [27, 39] but are left to
future work.

The remainder of this chapter is organized as follows. Firstly, further background
on lane changes for energy-efficient AV driving is discussed in Sect. 2. Then, we
begin the development by building a BEV model and validating it in Sect. 3. In
Sect. 4, the control development is detailed, and another control policy trained by
RL and the finite-state-machine (FSM) controller from [28] are introduced to be
subsequently used for comparison. Section5 presents results on RL convergence and
on performance of the developed control policy in simulations. Finally, concluding
remarks are made in Sect. 6.

2 Lane Changes for Energy-Efficient AV Driving

Including lateral actions such as lane changes may further improve the energy effi-
ciency [31], though the survey results of [41] show that this is still an emerging area
that remains to be studied. Anticipating lane selection has been proposed, such as
in [17, 37]. Furthermore, instead of focusing on an individual vehicle, cooperative
lane change [3] is expected to benefit the neighboring vehicles and harmonize the
surrounding traffic. However, these studies assume having connected vehicle tech-
nologies, such as vehicle-to-vehicle and vehicle-to-infrastructure communications.
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A general observation is that the energy efficiency can be improved by reducing
the change of speed and acceleration. In contrast, our work uses the position and
velocity information of the immediate neighboring vehicles detected by the sensors
of the ego vehicle, and a powertrain model is used to accurately predict the energy
consumption.

There are two major challenges in combining longitudinal and lateral actions for
safe energy-efficient driving. Firstly, considering both longitudinal and lateral actions
increases the problem complexity. In particular, there are subtle trade-offs between
safety and energy efficiency. For instance, in scenarios such as a sudden cut-in by a
slow vehicle, changing lanes rather than hard braking preserves vehicle momentum
and avoids energy loss, but if the traffic density is high, performing a lane change
may not be safe or feasible.

Another challenge is that, unlike safety constraint violation scenarios (e.g., col-
lisions) where events typically occur within seconds, energy efficiency evaluation
requires longer time horizons of several hundreds of seconds. Hence, optimization-
based control algorithms that simultaneously address driving safety and energy effi-
ciency requirements need to account for both short-term and long-term objectives.
One approach is to define a terminal cost function for the short horizon optimiza-
tion reflective of long-term rewards. However, how to practically determine such a
terminal cost function is often a priori unclear. In special cases, the problem can be
reformulated to focus on maintaining component operation in more efficient regions
[7] for which short-horizon optimization is sufficient. However, such reformulations
are not always feasible and the performance with such an approach could be sub-
optimal. In particular, Stackelberg policies and the decision tree policies considered
in [5, 48, 49] rely on rewards being evaluated short-term. It may not be straight-
forward to extend these to account for energy efficiency requirements. For our AV
control policy, since the RL algorithm updates the value functions with not only the
one-step/instantaneous reward but also the average reward over time, it is able to
handle multiple optimization objectives that need to be evaluated over different time
horizons.

3 Powertrain Modeling for Battery Electric Vehicles

3.1 Model Description

Accounting for energy efficiency in the AV controller design requires a longitudinal
powertrain model. As an RL process is generally computationally intensive, a pow-
ertrain model used in RL should have low computational footprint but sufficiently
high accuracy.

Figure1 shows the layout of the BEV model considered in this work. The power-
train system consists of a battery pack, a motor/generator (MG), a drivetrain with a
single-speed final drive, the wheels and tires, and the powertrain control unit (PCU).
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Fig. 1 Battery electric
vehicle powertrain system
layout

The powertrain model is of the backward type [13, 33, 44]. (See Remark 1 below
for details.) It has two states, state of charge (SOC) and total energy consumption.
High-fidelity dynamics, such as transient responses of theMG and drivetrain, are not
considered. Maps (i.e., look-up tables) are used to represent component operating
characteristics as described below. A benefit of using a map-based approach is that
it can facilitate the change of component specifications so that potential extensions,
such as component sizing or fleet energy efficiency studies, are possible.

Remark 1 A backward powertrain model assumes that the actual vehicle speed
is always equal to the reference speed command. Rotational speeds of components
are coupled/scaled by the gear ratios and wheel radius based on this command. The
torque required at the wheels to meet the acceleration demand is first calculated and
then translated component by component to the actuators such as the motor and the
brakes. Backward models typically entail low computational costs and are suitable
for (approximate) energy consumption evaluations. In comparison, forward models
involve a driver model, typically modeled as a PID controller, that commands the
motor/brake torque in order to track the vehicle speed reference. The torque is then
translated to the wheels through drivetrain components. The speed of each compo-
nent, as well as the actual vehicle speed, is calculated by integrating the acceleration
produced by the torque. Consequently, forward models can better capture the com-
ponent dynamics, at the cost of higher computational complexity than backward
models. They are typically used for more detailed (e.g., componentwise) energy
efficiency analysis as well as drivability-related simulations [13, 33, 44]. Also, the
forward model is not as suitable as the backward model in our case considering safe
driving since there is a tracking error between the commanded and actual vehicle
speed the value of which depends on the tuning of the control parameters.

In the BEV model, the MG speed and traction torque at the wheels are first
calculated based on the vehicle speed command according to

ωmg = V · g
r

, (1)

Ta = V̇ · M · r, (2)
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Tl = a + b · V + c · V 2, (3)

Twhl = Ta + Tl, (4)

where ωmg is the MG speed, V is the vehicle speed, g is the final drive gear ratio, r
is the effective wheel radius, Ta is the acceleration torque,M is the effective vehicle
mass involving powertrain component inertia, Tl represents lumped external loads
including rolling and aerodynamic resistance (while the grade is assumed to be zero)
approximated by a quadratic function with coefficients a, b, and c, and Twhl is the
traction torque at wheels.

The PCU then checks whether the traction torque demand exceeds the battery or
MG limits and distributes the torque command to the MG and the friction brake,
using the following logic,

TmgPos =

⎧
⎪⎨

⎪⎩

0, if Twhl < 0,

Twhl · 1
g , if 0 ≤ Twhl ≤ TmgMax · g,

TmgMax, if Twhl > TmgMax · g,
(5)

TwhlBrk =

⎧
⎪⎨

⎪⎩

0, if − Twhl < 0,

−Twhl, if 0 ≤ −Twhl ≤ TbrkMax,

TbrkMax, if − Twhl > TbrkMax,

(6)

TmgReg =
{
Freg · TwhlBrk · 1

g , if TwhlBrk ≤ TmgRegLim · g,
Freg · TmgRegLim, if TwhlBrk > TmgRegLim · g, (7)

Tmg =
{
TmgPos, if Twhl > 0,

−TmgReg, if Twhl ≤ 0,
(8)

TmechBrk = −(TwhlBrk − TmgReg), (9)

where TmgMax is the maximum MG torque limit, TmgPos is the positive portion of the
MG torque limited by TmgMax, TwhlBrk is the negative portion of the traction torque at
wheels limited by a constant brake torque limit denoted by TbrkMax, TmgRegLim is the
MG regeneration torque limit, Freg is the regeneration factor, TmgReg is the negative
portion of the MG torque limited by TmgRegLim, Tmg is the MG torque, and TmechBrk is
the torque demand assigned to the friction brakes. We obtain the values of TmgMax,
TmgRegLim, and Freg through maps, where both TmgMax and TmgRegLim depend on ωmg ,
and Freg is a function of V (to reduce the regenerative braking at low vehicle speeds)
and the battery SOC (to reduce the regenerative braking at high SOC).

The power drawn by the MG is then obtained from

Pmg =
{
Tmgωmg/η, if Tmgωmg ≥ 0,

Tmgωmg · η, if Tmgωmg < 0,
(10)
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wherePmg is theMG electric power, and η ∈ (0, 1) is theMG efficiency as a function
of the MG torque and speed, as given by a map.

To calculate the SOC and cumulative energy consumption, the battery is modeled
as follows:

Pmg = (Voc − 1

Np
· I · R) · Ns · I

= Ns · Voc · I − Ns

Np
· R · I2, (11)

which can be re-arranged as

Ns

Np
· R · I2 − Ns · Voc · I + Pmg = 0, (12)

where Voc and R are, respectively, the open circuit voltage and the resistance of a
single battery cell, I is the battery pack current, Ns is the number of battery cells in
series, and Np is the number of battery cells in parallel. Here, Voc and R are acquired
through maps, and both variables depend on SOC, with the assumption that the
battery temperature is constant. Then, we can solve for the battery current as

I =
Ns · Voc −

√
(Ns · Voc)2 − 4 Ns

Np
· R · Pmg

2 Ns
Np

· R , (13)

and the battery dynamics are given by

˙SOC = −I

Cmax · Np · 3600 · 100, (14)

where Cmax is the maximum battery capacity.
The total discharged electric energy Ebatt is computed by integrating the battery

power Pbatt based on
Ėbatt = Pbatt = Ns · I · Voc, (15)

and the energy consumption can be determined from

MPGe = x

Ebatt
· γ, (16)

where MPGe stands for miles per gallon equivalent, x is the total distance traveled,
and γ represents the unit conversion coefficient.
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3.2 Model Calibration and Validation

The BEV powertrain model described above is calibrated using the BEV reference
model in the Powertrain Blockset Toolbox (PTBS) version 1.5 developed by Math-
Works. The PTBS reference model is a forward model and includes more detailed
component controls and dynamics than our model. Our model uses some maps and
parameter values from the PTBS reference model, and the other model parameters
are hand-tuned to reduce errors between the two models.

After calibration, we validate our model by testing and comparing the MPGe of
our model and that of the PTBS reference model for different driving cycles. The
MPGe mismatches between the two models for the Urban Dynamometer Driving
Schedule (UDDS), theHighwayFuel EconomyTest (HWFET), and theUS06driving
cycles are 5.94%, 5.90%, and 7.95%, respectively. Figure2 shows the time histories
of powertrain signals for the BEV driving through the UDDS cycle, where the blue
curves correspond to our model after calibration and the red curves correspond to the
PTBS referencemodel. It can be observed that the signals of ourmodel closelymatch
those of the PTBS reference model. These results validate that our model (1)–(16)
after calibration can be used to produce sufficiently accurate energy consumption
estimates (accurate in terms of matching the estimates produced by the high-fidelity
PTBS reference model). Note that our model entails much lower computational
footprint than the PTBS reference model, and is thus suitable for RL purposes.

Fig. 2 Time histories of
powertrain signals for the
UDDS cycle
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The BEV powertrain model (1)–(16) is then converted to discrete-time, assuming
a 1-s sampling period, and integrated with the traffic simulator of [26, 28], used for
the RL-based development of energy-efficient autonomous vehicle control policy.

4 Controller Design

4.1 Game-Theoretic Traffic Environment

In order to train an autonomous vehicle control policy offline, we use an interactive
traffic simulator, following the approach described in Li et al. [26], as the training
environment. This level-k game-theory based simulator assumes that the traffic con-
sists of human-driven vehicles that can be modeled by cognitive behavioral models
with k levels. Studies such as [39] show that human reasoning process rarely exceeds
three steps, so k = 0, 1, 2 is used in this work. The level-0 vehicles use a hand-crafted
policy that commands one of the three actions, “maintain speed”, “decelerate”, or
“hard decelerate”, based on the range and range rate with the vehicle in its front to
represent vehicle behavior under minimal rationality; level-1 and level-2 vehicles
use policies trained by RL assuming that the surrounding vehicles are all level-0 and
level-1, respectively. Moreover, the level-1 and 2 vehicles have a larger action space
consisting of seven actions, including acceleration, deceleration, and lane change.
Overall, the results of [26] indicate that the level-0 drivers/vehicles have the most
conservative behaviors, while level-1 vehicles behave the most aggressively such as
driving faster and frequently making lane changes, and the aggressiveness of level-2
vehicles falls between level-0 and level-1.

Remark 2 Similarities and differences between the setup considered in this work
and that in [26] are highlighted in Table2, in terms of models, reward functions,
surrounding traffic, observation space and action space, RL algorithm, and training
process. Details are given in the subsequent subsections.

Table 2 Comparison summary on control development for the level-k (k = 1, 2) policies and the
autonomous vehicle policy considered in this work (AV)

Level-k for k = 1, 2 AV

BEV model Not included Included

Reward function R1 R1 + R2

Surrounding traffic during RL Level-(k − 1) A mixture of level-0, level-1, and
level-2 with a certain ratio

Observation space 11 observations 11 observations plus V and SOC

Action space 7 actions Same as level-k

RL algorithm Jaakkola RL algorithm Same as level-k

After training, assign level-0
policy to states visited fewer than n
times

n = 20 n = 40
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4.2 Observation and Action Spaces

The observation space, i.e., input space, for our autonomous vehicle control policy is
extended from the observation space for the level-k driver policies. The observation
space for the level-k policies has 11 observations, including the range and range rate
of the ego vehicle to the vehicles in its front, front right, front left, rear right, and
rear left, as well as the lane index of the ego vehicle. The range is categorized by
“far”, “nominal”, or “close”, and the range rate is categorized by “moving away”,
“stable”, and “approaching”. The simulator is configured for a three-lane highway.
As a result, the total number of possible states in the level-k policy is 311. Here, a
state means a unique combination of observations.

To incorporate considerations of energy efficiency, it is necessary to enlarge the
observation space by including additional observations. Since vehicle speed and
battery SOC are critical factors that affect the PCU decision for the regenerative
power distribution, as well as the component efficiencies of the battery and the MG,
they are added to the observation space, each being categorized by “high”, “medium”,
and “low”. Consequently, the total number of possible states for our autonomous
vehicle control policy increases to 313.

The action space, i.e., output space, for the proposed control design is the same as
that for the level-k driver policies. It includes the following seven actions: (1)maintain
speed, (2) accelerate, (3) decelerate, (4) hard accelerate, (5) hard decelerate, (6) move
left (if the vehicle is not in the left-most lane) and (7) move right (if the vehicle is
not in the right-most lane).

The exact definitions of the observation and action spaces for the level-k driver
policies are given based on the parameters including the relative longitudinal position
and speed thresholds, acceleration rates, deceleration rates, and lane change rates,
whose values are the same as in [26], so they are not repeated here. For the two addi-
tional observations of the autonomous vehicle control policy, i.e., the vehicle speed
and battery SOC, the thresholds that divide the three categories are, respectively,
17.22 m/s and 22.22 m/s, and 70% and 80%, chosen by trial and error.

4.3 Reward Function

The reward function used for RL training is as follows,

R = R1 + R2, (17)

where

R1 = w1 · c + w2 · v + w3 · h + w4 · u, (18)

R2 = w5 · e. (19)
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Here, wi > 0, i = 1, . . . , 5 are weights, and c, v, h, u, and e are reward features. In
particular, the reward function consists of two parts: The first part R1 with the terms
c, v, h, and u accounts for the safety, performance, and comfort requirements and
shares the same setup as for the level-k policies. The second part R2 is an additional
term that accounts for energy efficiency.

The reward features and their corresponding weights are chosen based on engi-
neering insight and tuning by simulation as follows:

• c accounts for constraint violations,

c =
{

−1, if a collision occurs to the ego vehicle,

0, otherwise,
(20)

with w1 = 10,000.

• v accounts for travel speed,

v = V − vn
a

, (21)

where V is the speed of the ego vehicle in the longitudinal direction, and the
constants vn, a nominal speed, and a, a nominal acceleration rate, are used to scale
this term to the same order of magnitude of the other terms, with w2 = 5.

• h accounts for headway, encouraging the ego vehicle to keep a reasonable distance
from preceding vehicles,

h =

⎧
⎪⎨

⎪⎩

1, if headway ∈ “far”,

0, if headway ∈ “nominal”,

−1, if headway ∈ “close”,

(22)

with w3 = 1. Here, “headway” means the range of the ego vehicle to the vehicle
in its immediate front.

• u accounts for control effort,

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if action = “maintain speed”,

−1, if action = “accelerate” or “decelerate”,

−3, if action = “move left” or “move right”,

−5, if action = “hard accelerate” or “hard decelerate”,

(23)

with w4 = 1.
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• e is for energy efficiency, defined by the time derivative ofMPGe as

e = dMPGe

dt
= V · Ebatt − x · Pbatt

E2
batt

· γ, (24)

with w5 = 5.

4.4 Training Algorithm

The goal of training is to find a control policy that maximizes the reward averaged
over an infinite horizon. Using the settings described above, we formulate this prob-
lem as a partially observableMarkov decision process (POMDP) problem since only
certain observations are available to the ego vehicle. For example, if there aremultiple
vehicles in front of the ego vehicle in the same lane, the ego vehicle can only observe
the relative range and range rate of the vehicle immediately in front of it. Thus, the
algorithm used for training the control policy should guarantee convergence of the
average reward with respect to POMDP problems.We choose to use the Jaakkola RL
algorithm [16] since, under suitable assumptions, this algorithm guarantees conver-
gence of the average reward to a local maximum for POMDP problems. The proof
of such a convergence guarantee can be found in Appendix A of [24].

A summary of the Jaakkola RL algorithm is given in [26] and Sect. 1.2.7 of
[24]. The key variables and equations are reviewed here. The algorithm iterates with
two steps at every simulation time step t. First, the one-step reward Rt is evaluated
based on the results of the simulation following the current policy πt . Then, for each
observation state o ∈ O, and state and action pair (o, a) ∈ O × A, the state-value
functions V (o|πt) and the action-value functions Q(o, a|πt), also called Q-values,
are updated based on the difference of Rt − R̄(πt) where R̄(πt) is the average reward
for an infinite duration with the policy πt . The state-value V (o|πt) represents the
expected cumulative reward starting at state o following policy πt , while the Q-
valueQ(o, a|πt) represents the expected cumulative reward if the state starts at o, we
take action a first, and then follow policy πt afterward. Specifically, the state-value
functions and Q-values are updated with equations given as

βo
t (o) =

(

1 − χo
t (o)

Ko
t (o)

)

γtβ
o
t−1(o) + χo

t (o)

Ko
t (o)

, (25)

V (o|πt) =
(

1 − χo
t (o)

Ko
t (o)

)

V (o|πt−1) + βo
t (o)

(
Rt − R̄(πt)

)
, (26)

βa
t (o, a) =

(

1 − χa
t (o, a)

Ka
t (o, a)

)

γtβ
a
t−1(o, a) + χa

t (o, a)

Ka
t (o, a)

, (27)

Q(o, a|πt) =
(

1 − χa
t (o, a)

Ka
t (o, a)

)

Q(o, a|πt−1) + βa
t (o, a)

(
Rt − R̄(πt)

)
, (28)
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where χ represents a binary (0 or 1) indicator function that equals to one if o or (o, a)
is visited at the current time step, K is a function that counts how many times o or
(o, a) has been visited, and γt is a time-dependent discount factor that takes a value
between zero and one and converges to one as t goes to infinity. In the second step,
the policy is updated by the following equation

πt+1(o, a) = (1 − ε)πt(o, a) + επ̂t(o, a), ∀(o, a) ∈ O × A, (29)

where ε ∈ (0, 1) is the learning rate and π̂t is the greedy policy that maximizes

Jt(π, o) =
∑

a∈A
π(o, a)

(
Q(o, a|πt) − V (o|πt)

)
, ∀o ∈ O. (30)

The process then moves on to the next time step and the iteration of the above two
steps continues.

Note that the Jaakkola RL algorithm updates the value functions and Q-values at
each time step using both the immediate one-step reward Rt and the infinite-horizon
average reward R̄. The one-step reward can make the policy update respond instantly
to the large penalty of a safety constraint violation. The average reward, which in
actual implementation is estimated by averaging all past instant rewards, eventually
contains the weighted energy efficiency MPGe computed over a long horizon. In
this way, objectives with different time horizons are handled simultaneously.

4.5 Training Process

The level-k policies with k = 1 and 2 are obtained following Algorithms 1 and 2 of
[26] (similar to Algorithm 1 below) with the reward function R1 described above,
and thus, they do not account for energy efficiency. We then use vehicles operating
with level-k policies to provide the traffic environment for the RL training of our
autonomous vehicle controller that considers energy efficiency.

The training process for the proposed autonomous vehicle control policy is sum-
marized by the pseudo-code in Algorithm 1. Each training episode corresponds to a
simulation trajectory with a duration of 200s. This RL training process is similar to
the process described by Algorithms 1 and 2 of [26] with the following major differ-
ences: (1) When initializing a training episode, we initialize the ego vehicle battery
SOC randomly according to a uniform distribution in the interval [15%, 90%]. For
Algorithm 2 of [26], however, since SOC is not a state of the level-k models, this
initialization step does not exist; (2) A traffic environment consisting of a mixture
of level-0, 1, and 2 vehicles with a ratio of 15%, 55%, and 30% is used to train our
autonomous vehicle control policy, while when training a level-k policy, by defini-
tion, vehicles in the environment are all level-(k − 1); (3) Due to the increase of the
size of the observation space, the total number of possible observation combinations
is 9 times greater than for the level-k policies of [26]. With the same number of
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training episodes (i.e., 50,000, determined/limited by the affordable computational
resources such as training time duration), it is more likely that some states are not
sufficiently visited during the training. Thus, an increased value of the parameter n is
used in the last step for the autonomous vehicle policy training, where n represents
the number of times a state has to be visited during training, lest it be assigned the
level-0 policy.

Algorithm 1: Training process

1 Initialize the ego car’s policy with equal action probabilities for every state.
2 episode ← 0.
3 while episode ≤ 50, 000 do
4 Randomly select the number of surrounding cars, nc ∈ [21, 30].
5 Initialize surrounding cars with level-k policies with probabilities corresponding to 15%,

55% and 30% for k = 0, 1 and 2.
6 Initialize the ego car with SOC ∈ [15%, 90%].
7 while t ≤ 200 do
8 Run simulation and evaluate the ego car’s policy with the reward function R.
9 Update the ego car’s policy.

10 if a collision occurs to the ego vehicle then
11 Terminate the current episode.
12 end if
13 end while
14 episode ← episode + 1.
15 Assign the level-0 policy to states visited less than n = 40 times.
16 end while

4.6 Autonomous Vehicle Control Policy for Benchmarking

For comparison purposes, a second RL-based policy is trained in the mixed traffic
environment described above. This benchmark policy uses onlyR1, as defined in (18),
as its reward function, and allows one to study the differences between considering
the fuel economy or not, in similar traffic conditions.

In addition to policies trained by RL, the FSM-based policy described in [28] is
adopted for comparison. The FSM-based policy is a rule-based controller with three
modes including cruise control, adaptive cruise control, and lane change control.
Switches between modes are triggered when certain traffic conditions are satisfied.
The FSM-based policy is calibrated to optimize safety and performance, while the
energy efficiency is not being considered.
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5 Results

5.1 Training for RL-Based Policies

As discussed above, each RL-based policy is trained for 50,000 episodes. Figure3
shows the values of the average reward as the training progresses for the level-
1 policy, level-2 policy, the proposed autonomous vehicle control policy with the
energy efficiency consideration (AV w/ e), and the benchmark policy that does not
account for the energy efficiency (AV w/o e). It can be observed that the average
rewards all converge smoothly, suggesting the success of the RL procedures.

The value of the converged average reward of each policy is a combined result
of the different reward features inR. For example, the converged average reward of
the level-2 policy is higher than those of the other policies. This is because, among
the level-0, 1, and 2 policies, the level-1 policy is the most aggressive as concluded
in [26], tending to make many lane changes to pursue higher travel speeds. Since
the traffic environment for training the level-2 policy is composed of purely level-1
vehicles, the level-2 policy is relatively conservative and collisions are less likely.
Moreover, the overall faster traffic flowallows a higher travel speed of the ego vehicle.
Thus, the coupled effect of these factors leads to a higher converged average reward
for the level-2 policy.

5.2 Control Performance

5.2.1 Evaluation Process

The control policies are evaluated based on simulations using the process described
by the pseudo-code in Algorithm 2. In particular, for each policy and each traffic
density (represented by the number of surrounding vehicles in traffic, ranging from
0 to 30), 10,000 simulation episodes are run, each with a duration of 200s. Then,
the policy is evaluated with respect to four evaluation metrics, including:

Fig. 3 Average reward
evolution during RL
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• Constraint violation rate, defined as the percentage of simulation episodes where
a collision occurs to the ego vehicle;

• Average number of lane changes per simulation episode;
• Average MPGe;
• Average travel speed.

Algorithm 2: Evaluation process

1 for nc = 0 : 30 do
2 episode ← 0.
3 while episode ≤ 10, 000 do
4 Initialize the ego car with SOC ∈ [15%, 90%] and the control policy to be evaluated.
5 Initialize surrounding cars with level-k policies randomly with probabilities of 15%,

55% and 30% for k = 0, 1 and 2.
6 Simulate and record variables relevant to the evaluation metrics.
7 episode ← episode + 1.
8 end while
9 Compute and output the evaluation metric values.

10 end for

5.2.2 Simulation Result Analysis

Proposed AV control policy
Figures4, 5 and 6 show the results of different policies in regards to the four

aforementioned evaluation metrics as functions of the traffic density. Figures4a and
5 show the constraint violation rate, and Figs. 4b and 6a show the average number of
lane changes. It can be observed that, when driving in the mixed traffic environment
(vs. Mix), the proposed policy (AV w/ e) has the lowest constraint violation rate
among all policies that can perform lane changes.

Figure4c compares the averageMPGe among the three AV control policies, i.e.,
the proposed policy (AV w/ e), the RL-based benchmark policy (AV w/o e), and
the FSM-based policy. It shows that the proposed policy with the energy efficiency
consideration is more energy-efficient than the other two policies, verifying that the
additional observations (vehicle speed and SOC) and the energy efficiency term R2

in the reward function R promote the improvement of energy efficiency.
The average travel speed of each policy is shown in Figs. 4d and 6b. It can be

observed that at low traffic density, the autonomous vehicle controlled by the pro-
posed AV policy drives at a higher average speed, close to that of level-2 vehicles;
but when the traffic gets denser, the autonomous vehicle slows down to an average
speed close to that of a level-0 vehicle. This can be explained with the help of Fig. 4b:
The average number of lane changes of the proposed policy varies only slightly for
different traffic densities, since when the traffic density is low, there is not much need
to change lanes, while when the traffic density gets high, it may be neither safe nor
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Fig. 4 Evaluation results forAVcontrol policies in traffic environments of different traffic densities:
a constraint violation rate, b average number of lane changes per simulation episode, c average
MPGe, d average travel speed

energy-efficient to perform lane changes. This feature distinguishes the behavior of
the proposed policy from the level-1 policy and the FSM-based policy that prefer
higher travel speeds and thus make many lane changes to achieve them.

Miscellaneous Observations
The results indicate that the effects of the different evaluation aspects, that are closely
related to the five features in the reward function, are not decoupled. For example,
for the level-k policies, although the level-0 policy has the lowest constraint violation
rate, it is a very conservative policy that does not allow lane changes (as illustrated
in Fig. 6a) and has the lowest average vehicle speed (as shown in Fig. 6b). When
driving in the level-0 environment (vs. level-0), consequently, the level-1 policy also
has a very low constraint violation rate. However, when driving in the mixed traffic
environment, where there are other level-1 cars and level-2 cars, the level-1 policy
has the highest constraint violation rate.

It is worth highlighting some additional observations in the simulation results.
Firstly, for policies trained by RL, the averageMPGe increases as the average travel
speed decreases in denser traffic. This is attributed to the fact that for highway
driving, the energy efficiency at the vehicle level is affected largely by energy losses
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Fig. 5 Constraint violation
rates for level-k and the
proposed AV control policies
in traffic environments of
different traffic densities
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from rolling and aerodynamic resistance that increase as the vehicle travel speed
increases. To see the significant impact of rolling and aerodynamic resistance on
energy consumption, let us consider and compare two cases: In the first case, the
vehicle is driving at a constant speed of 20.5 m/s. In the second case, the vehicle
is driving at 24.5 m/s. These two cases roughly represent, respectively, the average
longitudinal behavior of the proposed AV policy and that of the FSM-based policy
with 30 surrounding vehicles, shown in Fig. 4d. Here, we ignore the differences in
the MG efficiency by assuming a constant value of η0. Then, we have that the MG
power consumed by the rolling and aerodynamic resistance can be calculated as

Pl = (Tl · 1
g
) ωmg/η0

= (a + b · V + c · V 2)V / (rη0), (31)

depending cubically on the vehicle speed V . Without considering the discrepancy in
the battery and MG efficiency, we then use (31) to estimate the difference in the MG
power used to counteract the rolling and aerodynamic resistance. We obtain that the
discrepancy between the two cases is about 33%. This contributes to the difference in
theMPGe shown in Fig. 4b, where the change is about 64%. It is within a reasonable
range according to Table1 (e.g., [4, 20]).

Note, however, that the proposed policy does not always operate the autonomous
vehicle at a low speed, as the reward function represents several different objec-
tives besides energy efficiency. In general, energy efficiency depends on the traffic
scenario, the powertrain type, as well as the component specifications. This fact high-
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Fig. 6 Average number of lane changes per simulation episode and average travel speed for level-k
and the proposed AV control policies in traffic environments of different traffic densities

lights the benefit of modeling the powertrain system using maps, so that components
can be easily sized or swapped.

Secondly, it is observed in Fig. 4b that when there is no other vehicle in traffic
(“zero-traffic”), the autonomous vehicle controlled by the proposed policy makes on
average one lane change. This is because the policy by RL converges to a solution
where when there is no other vehicle in the immediate vicinity of the ego vehicle,
the ego vehicle tends to change to and stay in the right-most lane to reduce the
possibility of having interactions/conflicts with other vehicles that may degrade its
safety and energy efficiency in the future. Note also that such a solution may only
be locally optimal (i.e., not globally optimal), as the Jaakkola RL algorithm used to
train the policy guarantees only convergence to a local optimum (and not necessarily
the global optimum) [16].

Intuitively speaking, vehicles need not change lanes when there are no slower
vehicles in their front blocking their ways. This is the case for most policies shown
in Figs. 4b and 6a except for the proposed policy for which the average number of
lane changes in the zero-traffic environment is close to but slightly less than one. For
most cases, when initialized in the middle lane, the autonomous vehicle controlled
by the proposed policy immediately makes a lane change to the right, as explained
above. However, for some states with high SOC that were not visited enough during
RL training, the policy was overridden by the level-0 policy that does not perform
lane changes (see the last line of Algorithm 1). This caused the average number of
lane changes to be slightly less than one. Note also that the training is conducted
only for traffic environments with 21–30 surrounding vehicles, i.e., not covering the
zero-traffic environment. Such sub-optimal behavior in the zero-traffic environment
of the trained policy indicates that it might be beneficial to conduct training for a
wider range of traffic environments if computational resources allow.
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Thirdly, one of the major contributors to the high constraint violation rate of the
level-1 policywhen operating in themixed traffic environment is its high frequency of
lane changes. Two problematic scenarios related to lane changes have been identified
in [26]. The first case involves a scenario where the ego vehicle originally driving
in the right (or left) lane and another vehicle originally driving in the left (or right)
lane in an almost parallel longitudinal position with the ego vehicle simultaneously
start to perform lane changes to the middle and lead to a side collision between
them. The second case involves a scenario where the ego vehicle starts to change
lanes trying to overtake a vehicle in its front, but at the same time, the preceding
vehicle also starts to change lanes in the same direction (e.g., trying to overtake
another vehicle) and blocks the ego vehicle’s overtaking. Since the level-1 policy is
trained using an environment consisting of only level-0 vehicles that do not change
lanes, these two “unrare-in-reality” scenarios have never occurred during the RL
training. Consequently, the level-1 policy fails to learn to avoid such scenarios. We
have identified all constraint violation cases in the Level-1 vs. Mix data that belong
to these two scenarios and computed the constraint violation rate after filtering out
these cases. The result is plotted in Fig. 5, called Level-1 versus Mix w/ filter. It can
be seen that the constraint violation rate of the level-1 policy after this filtering is
significantly reduced.

If such an issue happenswhen developing autonomous vehicle control algorithms,
where problematic scenarios can be clearly identified, they can be handled by specific
add-on mechanisms. For example, the autonomous vehicle may be commanded to
go back to its original lane when either of the above two cases is detected.

6 Conclusions

In this chapter, an autonomous vehicle control policy is developed focusing on energy
efficiency optimization while safety, performance, and comfort are balanced. We
first discuss the potential of autonomous vehicle (AV) controls for energy-efficient
driving and the major challenges to develop such control policies. Then, we show the
powertrainmodel built to capture the energy consumption of a battery electric vehicle
(BEV), integrated with the highway traffic simulator consisting of cognitive driver
behavioral models based on level-k game theory. An AV control policy is trained
by reinforcement learning (RL) for this BEV and compared with two benchmark
policies as well as the level-k policies from different evaluation perspectives.

Analysis of the results indicates that the addition of the energy efficiency term
in the RL reward function, in addition to the expanded observation space to include
the vehicle speed and SOC, is effective in improving the energy efficiency while
maintaining low collision rates. Through analysis of the BEV powertrain model,
the increase of the energy efficiency represented by MPGe is likely dominated by
the reduction of the average vehicle speed that lowers the rolling and aerodynamic
resistance. However, this does not make the vehicle always travel at the lower speed
limit, which highlights the capability of the RL-based approach that does a good job
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in balancing travel speeds, safety, and efficiency. The results also imply the potential
to further extend and explore the control design in terms of higher computational
efficiency and advanced RL algorithms for control performance improvement. In the
future, our AV policy may serve as a baseline control strategy for more advanced
autonomous driving control development.
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Self-learning Decision and Control
for Highly Automated Vehicles

Jianyu Chen, Jingliang Duan, Yang Guan, Qi Sun, Yuming Yin,
and Shengbo Eben Li

Abstract The decision and control module plays a key role for autonomous driving,
which is responsible for generating appropriate control commands that navigate the
autonomous vehicles safely and efficiently. Existing decision and control modules
for automated vehicles are mainly using a rule-based hand-engineered approach.
Although working well in a number of specialized scenarios, such method shows
its limitation when dealing with highly automated driving tasks such as dense urban
scenarios. Recent advances in artificial intelligence have inspired a line of works
about self-learning based decision and control, which enable self-reinforcement of
the control policy to potentially super-human performance. In this chapter, we will
introduce how to appropriately apply such techniques to automated vehicles. The
chapter will begin with the motivations and basics, followed by the key challenges
and recent achievements of self-learning decision and control for automated vehi-
cles, focusing on the following key aspects: scalability, performance, interpretability,
mixed-model, and emergency handling.

1 Introduction

Most of today’s autonomous driving decision and control systems are using a rule-
based modularized hand-engineered approach [43]. Even though working well in a
few driving tasks, this rule-based framework starts to touch its performance limita-
tion in urban driving scenarios because (1) too much human heuristics can lead to
conservative driving policies; (2) it is hard to generalize as wemight need to redesign
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Fig. 1 RL with
agent-interaction
environment

the heuristics for each new scenario and task; (3) the computation time is relatively
high, and (4) these modules are strongly entangled with each other, and the whole
system becomes expensive to scale and maintain.

Those limitationsmight be avoidedwith self-learning approaches, where a driving
policy can be learned and generalized to new tasks without much hand-engineered
involvement. Reinforcement learning (RL) [12] provides a principled framework
to obtain self-learning decision and control policies by trial-and-error interaction
with the environments. In general, the essence of RL relies on the following three
elements: (1) state-action samples from the environment and the agent outputs, (2)
a policy mapping states to actions, (3) reward signals defining how well the policy
behaves in the environment. The concept of RL is illustrated in Fig. 1, in which an
agent interacts with the environment to generate state, action, and reward signals, and
its policy is then adjusted for another round of interaction to achieve better reward.
Approaches for solving RL problems can be mainly divided into two categories:
(1) Indirect RL based on dynamic programming, and (2) direct RL based on policy
gradient [12]. More details can be found in RL textbooks such as [31].

Combined with deep learning techniques, RL already shows its power on tackling
complex decision making and control problems, bringing a series of breakthroughs
in recent years. Agents trained with deep RL techniques achieve super-human-level
performance in game playing [34] and robotics [19]. Related deep RL algorithms
range fromvalue basedmethods such asDQN[34], actor-critic basedmethods such as
DDPG [32] and TD3 [10], policy optimization based methods such as TRPO [40],
and maximum entropy RL methods such as SAC and DSAC [5, 19]. With RL, a
policy can be learned automatically without any hand-engineering or expert data. It
can explore various kinds of possible cases including some dangerous ones, and then
learn useful skills. It also has the potential to achieve superhuman performance.

Researchers have been trying to apply deep RL to the domain of autonomous
driving. Lillicrap et al. [32] proposed a continuous control deep RL algorithm which
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learned a deep neural network policy that was able to drive the autonomous car on a
simulated racing track. Chen et al. [3] proposed a hierarchical deep RL framework to
solve driving scenarios with complex decision making such as traffic light passing.
There are also some other relatedworks notmentioned here. However, existingworks
are still unsatisfying in terms of the following important properties when applying
RL to autonomous driving:

1. Scalability: There are various scenarios and tasks for autonomous driving, such
as intersections, roundabouts, ramps, lane changing, overtaking, etc. Standard
RL requires designing different reward functions and retraining for each of the
scenarios, which largely limits the scalability.

2. Performance: Although existing RL algorithms have achieved successes in a
variety of challenging domains from games to robotic control, autonomous driv-
ing puts forward much higher requirements for policy performance due to its
high degree of dynamics, randomness and sophistication.

3. Interpretability: For safety-critical autonomous driving applications, good
interpretability is necessary as we need to understand how the driving system is
reasoning and making decisions. Existing RL algorithms often learn an end-to-
end deep neural network policy, making it hard to figure out how it understands
the scenarios and makes decisions.

4. Mixed Model: Standard model-free RL methods suffer from low sample effi-
ciency with slow convergence. For autonomous driving, some parts of the model
such as the ego vehicle’s dynamics can be easily obtained. By appropriately mix-
ing such prior models with the data, RL can yield high sample efficiency while
maintaining high training performance.

5. EmergencyHandling: The improvement of traffic efficiency and economy gen-
erally implies maintaining a relatively high vehicle speed, which would increase
the potential of causing severe traffic collision accidents, especially in emergent
and extreme scenarios when the tire-road contact condition is near the road adhe-
sion limit. Therefore, when applied to autonomous driving, it is crucial that the
RL algorithm should be able to handle such emergent scenarios.

In this chapter, we will introduce how to address the above properties with
extended RL techniques for applying to autonomous driving.

2 Scalability

Decision and control are core functionalities of high-level automated vehicles. Cur-
rent rule-based methods split the decision and control functionality into several
submodules [41], such as scene understanding [16], prediction [22, 29], behavior
selection [43], trajectory planning [45] and control [30]. The modularized design
is interpretable, and is relatively easy to generalize to different driving scenarios.
However, it yields several disadvantages as described in the above introduction part.

In contrast, reinforcement learning (RL) learns a control policy, usually carried
out by neural networks (NNs), from trial-and-error in real-world or a high-fidelity
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Fig. 2 Illustration of the integrated decision and control framework

simulator [12]. This policy can be used to realize the decision and control functional-
ity in an end-to-end manner, i.e., computing the expected control commands directly
from inputs given by perception module. Such method has been applied in certain
driving scenarios, such as highway [6, 13], intersection [14], roundabout [4] and
ramp [25], etc. But nevertheless, they are mostly task-specific and in each task, a set
of complicated reward functions is required to provide guidance for policy optimiza-
tion (e.g., distance traveled towards a destination, collisions with other road users
or scene objects, maintaining comfort and stability while avoiding extreme accel-
eration, braking or steering). This is non-trivial and needs a lot of human efforts,
causing poor scalability among various driving scenarios and tasks. Although meta-
RL is considered to be an effective means to help agents adapt to a new task from
just a few examples, it requires similarities between old and new tasks, which is not
suitable for diverse driving tasks and environments [9].

To tackle the above challenges, Guan et al. [15] proposed an integrated decision
and control framework (IDC) for automated vehicles, which combines common road
and traffic rules with RL-based methods to significantly improve scalability among
different driving scenarios and tasks. The framework is illustrated in Fig. 2, which
consists of two layers: static path planning and dynamic optimal tracking. Different
from existing schemes, the upper layer aims to generate multiple candidate paths
only considering static information such as road structure, speed limit, traffic signs
and lights. Note that these paths do not include time-related information, though each
is attached with an expected velocity determined by traffic rules.

The lower layer considers the dynamic information such as surrounding vehicles,
pedestrians and bicycles. For each candidate path specified by the upper layer, a
constrained optimal control problem (OCP) is formulated and solved, where the cost
function is tominimize the accumulative future tracking errors within a finite horizon
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while satisfying the constraints characterizing safety requirements. In each time step,
the optimal trajectory is chosen as the one with the lowest cost and thereafter tracked
by a low-level controller. Such scheme allows replacing all the expensive online com-
putationmoduleswith two light-weightNNs trained offline byRL. To do that, instead
of solving theseOCPswith online optimization, amulti-taskRLproblem considering
all the candidate paths is formulated. Then, amodel-based RL algorithm is developed
to solve this problem to obtain a policy network that is capable of tracking different
target paths efficiently and safely.Meanwhile, a value network is obtainedwhich esti-
mates the optimal cost of choosing each path, which is used for online path selection.

This framework has several advantages over conventional methods. First, it has
high online computing efficiency. The upper layer only needs to deal with static path
information and compare the outputs given by the value network. On the other hand,
the lower layer utilizes trained networks to compute the optimal path and control
command, which is also time saving since online inference of NNs is very efficient.
Second, it can be easily transferred among different driving scenarios without a lot
of human design. The only thing we need to do is to generate different static paths in
the upper layer, defined by the road topology of various scenes such as intersections,
roundabouts and ramps. Besides, the lower layer always formulates the same tracking
problemwith safety constraints nomatter which path it chooses, which can be solved
by the same model-based RL solver, avoiding designing separate reward functions
for different tasks.

As shown in Fig. 3, the IDC framework is verified in an intersection of two-
way streets, where the east-west street has an eight-lane dual carriageway from
both directions, while the north-south street has an only four-lane dual carriageway.
The experiment vehicle is Chang’an CS55 equipped with RTK GPS, which enables
precise localization of the ego vehicle. In each time step, the ego states gathered from
the CAN bus and the RTK are mapped into the SUMO traffic simulation to obtain
the current virtual traffic information including the states of surrounding vehicles
and traffic signals. Then they both are sent to the on-board computer, where the
trained policy and value networks are stored. The computer is a KMDA-3211 with a
2.6GHz Intel Core I5-6200U CPU. The computed final control commands including
the steering angle and the expected acceleration are then delivered from the CAN
bus to the real vehicle.

A demo is visualized by snapshotting its featured time steps shown in Fig. 4. The
key parameters are shown in Fig. 5. At the beginning, the ego pulls up before the stop
line, waiting for the traffic light (t=0).When the light turns green, the ego accelerates
into the intersection area (t=28s). In the center of the intersection, it encounters a
straight-going vehicle with high speed from the opposite direction. In order to avoid
collision, the ego slows down and switches to the adjacent path, with which it is able
to bypass the vehicle from back (t=34s). However, another straight-going vehicle
comes over after the previous one passes through with a relatively low speed. This
time, the ego chooses to accelerate to pass the vehicle. As the vehicle approaches, the
optimal path is also automatically adjusted to minimize the tracking errors (t=34s
and t=36s) and the ego finally passes the intersection successfully. The computation
time for each step is within 15ms.
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Fig. 3 Illustration of the real-world road test

Fig. 4 Featured time steps in real world test

3 Performance

The above section provides an IDC framework that is scalable to diverse driving sce-
narios; however, an RL algorithm is still required to learn a driving policy. The opti-
mality of RL algorithms directly determines the performance of the learned policy.
Although existing RL algorithms have achieved successes in a variety of challenging
domains ranging from games to robotic control, autonomous driving puts forward
much higher requirements for policy performance due to its high degree of dynamic,
randomness and sophistication [6]. The performance of RL algorithms, especially
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Fig. 5 Key parameters in real world test

for Deep RL, may be damaged by many difficulties, such as non-iid sequential data,
easy divergence, overestimation, sample and exploration inefficiency.

The first successful attempt to improve RL performance attributes to DQN [34],
which introduces two critical techniques, i.e., experience replay and target network,
to provide nearly iid training samples and stabilize the learning process, achieving
human-level performance in almost half of Atari games. However, it can only handle
discrete action spaces. Inspired by DQN, Lillicrap et al. proposed an off-policy RL
algorithm for continuous control settings, called DDPG, by concurrently learning a
Q-function and a deterministic policy using samples from the replay buffer [32]. A
common failure mode for DDPG is that the learned Q-function still overestimates,
which leads to a brittle policy. To address this issue, Fujimoto et al. (2018) pro-
posed the TD3 algorithm by updating the Q-network in a clipped double Q-learning
way [10]. SAC embeds such technique in the maximum entropy RL framework to
simultaneously mitigate overestimations and improve exploration efficiency [19].
Duan et al. (2020) proposed Distributional SAC (DSAC) to further improve the
value estimation accuracy by learning a return distribution instead of the standard
Q-value [5, 39]. Besides, DSAC incorporates the off-policy and experience replay
to improve sample efficiency and nearly iid training samples, and the maximum
entropy framework to encourage exploration, resulting in state-of-the-art perfor-
mance. Therefore, in the following, we will give a brief introduction to the DSAC
algorithm and its applications to autonomous driving.

The autonomous driving problem can be modeled as a Markov Decision Process
(MDP), defined by the tuple (S,A ,R, p). At each time step t , the vehicle receives
a state st∈ S and selects an action at∈ A according to the policy π(at |st ). In return,
the vehicle receives the next state st+1∈ S and a scalar reward rt ∼ R(st , at ). The
unknown state transition probability p(st+1|st , at ) : S × A → P(st+1)maps a given
(st , at ) to the probability distribution over st+1. For the sake of simplicity, the current
and next state-action pairs are also denoted as (s, a) and (s ′, a′), respectively. This
section will use ρπ(s) and ρπ(s, a) to denote the state and state-action distribution
induced by policy π .
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The goal of standard RL is to learn a policy which maximizes the expected accu-
mulated return,E(s,a)∼ρπ

{∑+∞
i=0 γ i rt+i |st = s

}
, where γ ∈ [0, 1) is the discount fac-

tor. DSAC considers a more general entropy-augmented objective, which augments
the reward with a policy entropy termH,

Jπ = Eπ

{+∞∑

i=0

γ i
[
rt+i + H(π(·|si ))

]
}

(1)

whereH(π (·|s)) is the policy entropy. Defining the soft returnGt = ∑∞
i=t γ

i−t [ri −
αlogπ(ai |si )] with the balance parameter α, the soft Q-value of policy π can be
expressed as

Qπ
so f t (st , at ) = rt + Eπ {Gt+1} (2)

which describes the expected soft return for selecting at in state st and thereafter
following policy π . Given the Q-estimate Qπ

so f t , DSAC improves Jπ by directly
maximizing

πnew = argmax
π

Es∼ρπ ,a∼π

{
Qπ

so f t (s, a) − αlogπ(a|s)} (3)

Compared with most RL algorithms that directly learn the expected return
Qπ

so f t (st , at ), DSAC chooses to learn the return distribution to reduce the overes-
timation. To learn the distribution, Duan et al. first defines the soft state-action return
of policy π from (st , at ) as

Zπ (st , at ) = rt + γGt+1, (4)

which is usually a random variable due to the randomness of the system and policy.
Then, they define Zπ (Zπ (s, a)|s, a) : S × A → P(Zπ (s, a)) as a mapping from
(s, a) to a distribution over soft state-action returns, and call it the soft state-action
return distribution whose expectation is Q-value. The distributional variant of the
Bellman operator in the maximum entropy framework can be derived as

T π
D Zπ (s, a)

D= r + γ (Zπ (s ′, a′) − α logπ(a′|s ′)) (5)

where s ′ ∼ p, a′ ∼ π , and A
D= B denotes that random variables A and B have

equal probability laws. Let T π
DZ(·|s, a) denote the distribution of T π

D Zπ (s, a), i.e.,
T π
D Zπ (s, a) ∼ T π

DZ(·|s, a). To implement (5), DSAC directly updates the return
distribution by

Znew = argmin
Z

Es∼ρπ ,a∼π

{
d

(T π
DZ(·|s, a),Z(·|s, a)

)}
(6)
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Fig. 6 DSAC diagram

where d is some metric to measure the distance between two distributions. It has
been proved that DSAC which alternates between (6) and (3) also leads to policy
improvement with respect to the maximum entropy objective (1).

For practical applications, both the return distribution and policy can be repre-
sented by any parameterized functions, such as neural networks. Figure6 shows the
diagram of the DSAC algorithm. DSAC first updates the distributional value network
based on the samples collected from the buffer, then the output of the value network
is used to guide the update of the policy network.

Before applying to autonomous driving, the performance of DSAC is first evalu-
ated on five MuJoCo continuous control tasks. The learning curves of DSAC and 9
baselines, including DDPG, TRPO, PPO, D4PG, TD3, SAC, TD4, Double-Q SAC
and Single-Q SAC, are shown in Fig. 7. Results show that the DSAC algorithm out-
performs or matches all other baselines across all benchmark tasks in terms of the
final performance. For example, compared with famous RL algorithms such as SAC,
TD3, PPO, and DDPG, DSAC gains 20.0%, 63.8%, 39.8%, 97.6% improvements on
the most complex Humanoid-v2 task, respectively. This indicates that the final per-
formance of DSAC on these benchmarks exceeds the state-of-the-art. Therefore, the
results demonstrate that the return distribution learning can greatly improve policy
performance by mitigating overestimations.

A DSAC-based self-driving policy learning system is then constructed to learn a
policy for autonomous driving on multi-lane roads [5, 7, 25]. To verify the learned
policy, the autonomous driving decision-making experiment is carried out based on
Chang’an CS55 and two-lane park road. Figure8 shows the experimental framework
and results. Results show that the learned policy can smoothly complete maneuvers
such as lane-keeping, lane-changing and overtaking, so as to realize autonomous
driving in response to different surrounding vehicles.
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Fig. 7 Training curves on continuous control benchmarks. The solid lines correspond to the mean
and the shaded regions correspond to 95% confidence interval over 5 runs

Fig. 8 Experimental framework and results

4 Interpretability

Interpretability is one of the most important properties for RL when applied to
autonomous driving. For such safety-critical applications, good interpretability is
necessary as we need to understand how the driving system is reasoning and makes
decisions. Thus, we can debug when things go wrong and prevent future failures.
However, existing learning-based approaches for autonomous driving are lacking of
interpretability. Although RL algorithms, such as DSAC, enable us to learn a policy
with good performance, the learned end-to-end deep neural network policy is like a
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black box. This indicates that we can never know whether or how it understands the
environments and makes decisions.

Some works have made efforts in augmenting the interpretability of learning-
based autonomous driving. Bojarski et al. [1] visualized NVIDIA’s deep neural
network based driving system by extracting the convolutional layer feature maps
and highlighting the salient objects. Kim et al. [24] used a visual attention model
with a causal filter to visualize the attention heatmap. However, the interpretable
information they provide—mostly just which part of the observed image is within
attention—is rather weak.

The traditional modularized approach for autonomous driving, on the other hand,
is interpretable in its nature. This is because they have well-defined module struc-
tures as well as their interfaces. However, if we use end-to-end learning with a
black-box neural network policy, we would lose those structures and well-defined
interfaces, resulting in a lack of interpretability. Nevertheless, as illustrated in the
introduction section, the modular approach lacks adaptivity, since these modules
are strongly entangled with each other. Therefore, how to find a balance between
the interpretability of modular approach and the adaptivity of end-to-end learning
approach is essential but quite challenging.

Probabilistic graphical model (PGM) is a generic and powerful tool to formulate
many machine learning problems. One of its most attractive properties is that it is
flexible to impose desired structures, while preserving the end-to-end learningmech-
anism. Recently, the sequential latentmodel [27] is one of the extensions of PGM that
is very relevant to sequential decision making problems such as autonomous driving.
Some recent works also propose to integrate sequential latent model learning and
reinforcement learning [21]. Such methods show great potential in building struc-
tural learning frameworks which preserves both structural modular and end-to-end
learning style.

Inspired by the PGM based methods, Chen et al. [2] introduce the latent rein-
forcement learning method to build an interpretable end-to-end autonomous driving
system. The latent space is employed to encode the complex urban driving envi-
ronment, which is learned jointly with the maximum entropy reinforcement learning
process. The introduced latent space resembles the interface betweenmodules, which
enables an interpretable explanation of how the policy reasons about the environment
by decoding the latent state to a semantic birdeye mask. Meanwhile, the latent space
provides a much more compact state representation, which significantly reduces the
sample complexity of learning the driving policy.

The latent reinforcement learning approach for interpretable end-to-end driving
framework is shown in Fig. 9. The agent takes multi-modal sensor inputs from the
driving environment, and then outputs control commands to drive the car in urban
scenarios. In the meantime, the agent generates a semantic mask to interpret how it
understands the current driving situation. To learn this interpretable end-to-end driv-
ing agent, a probabilistic graphical model (PGM) is designed as shown in Fig. 10,
where zt represents for the latent state, at for action, Ot for the optimality variable,
xt for the sensor inputs, and mt for the birdeye semantic mask. Edges in this PGM
are represented using deep neural networks, including the policy p(at |zt ), the latent
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Fig. 9 The interpretable end-to-end autonomous driving agent

Fig. 10 The probabilistic graphical model for interpretable end-to-end autonomous driving

dynamics p(zt+1|zt , at ), the filtermodel p(zt+1|xt+1, at , zt ), and the generativemod-
els p(xt |zt), p(mt |zt ). The whole PGM can be learned by maximizing the following
log likelihood:

log
∏

(−→x ,
−→m ,

−→a ,
−→r )∈D

p(−→x ,
−→m ,

−→
O |−→a ) (7)

whereD is the dataset and −→x = x1:τ+1,
−→m = m1:τ+1,

−→a = a1:τ+1,
−→r = r1:τ ,

−→
O =

Oτ+1:τ+H . With variational inference, an evidence lower bound (ELBO) can be
derived to be optimized. Furthermore, the ELBO can be decoupled into two parts,
a sequential latent environment model [20, 26, 27] part and a maximum entropy
reinforcement learning [17, 18, 28] part. Details of the derivations can be found
in [2].
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Fig. 11 a Simulation view of autonomous driving experiments. b Training learning curves of
average returns for different methods

Themodel is trained and evaluated on theCARLA simulator, as shown in Fig. 11a,
which includes various urban driving scenarios such as intersections and round-
abouts. 100 vehicles are running autonomously in the virtual town to simulate a
multi-agent environment. The vehicles will randomly choose a direction at inter-
sections, then follow the route, while slowing down for front vehicles and stopping
when the front traffic light becomes red.

The ego vehicle is asked to learn from scratch to drive through this virtual city
following a predefined route. It is spawned at a random feasible point in the city at
the start of each episode. Several variations of the interpretable end-to-end driving
method, as well as the state-of-the-art baseline RL algorithms including DQN [34],
DDPG [32], TD3 [10] and SAC [18] are implemented and compared. The perfor-
mance (Average return vs environment steps) comparison is shown in Fig. 11b. We
can see that all variants of the interpretable end-to-end driving (“Proposed”, “Sen-
sor Inputs”, and “Mask Input”) are significantly better than the baselines (“DQN”,
“DDPG”, “TD3”, and “SAC”).

Besides the performance, the interpretable end-to-end driving method also has
a significant advantage in terms of interpretability by decoding a semantic mask
from the latent state. By doing so, the interpretable explanations about how the agent
reasons about the environments can be provided. Figure12 shows random sampled
frames of the sensor inputs, ground truth masks, and reconstructions during running
with the learned model and policy. For each sample, the first row contains the raw
sensor inputs and ground truth mask (left to right: camera, lidar, bird-view mask).
The second row contains the corresponding reconstructed images from the latent
state. Note here only the raw sensor inputs are observed, the ground truth bird-view
image is displayed only for comparison. From the reconstructed bird-view mask, we
can see that it can accurately locate the ego car and decode the map information (e.g.,
drivable areas and road markings), even though there is no direct information from
the raw sensor inputs indicating the ego car is in an intersection. We can also see that
the model can accurately detect the surrounding vehicles (green boxes) given raw
camera and lidar observations.
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Fig. 12 Interpretability by reconstructing surrounding objects and road conditions from the latent
state

5 Mixed Model

Besides the performance and interpretability, how to improve sample efficiency is
also very important for RL-based autonomous driving. Model-free RL methods are
known to be sample inefficient since it has no prior knowledge and thus requires
extensive trial-and-error experiences. Actually, human beings can learn the optimal
policy and achieve goals in a complex environment without much interaction since
they can abstract prior knowledge from the physical world to construct a model. This
mechanism is similar to the principle of model-based RL, which searches for the
optimal policy with a known environmental model. Prior works can be divided into
Dyna-like algorithms [42], back-propagation through model [37, 38], and sampling-
based planning [21]. Although the model-based approaches have achieved signifi-
cant progress over the past few years, their performance inevitably suffers from the
inherent modeling errors and the time-varying characteristics. Such inaccuracy issue
usually results in a locally optimal and causes an unstable training process, severely
limiting the applicability of model-based RL approaches.

To overcome these challenges, Mixed Actor-Critic (MAC) [35, 36] utilizes the
dual representations of the environmental dynamics to improve both the learning
accuracy and the training speed. Briefly speaking, the empirical model is used as the
prior information to reduce the difficulty of model learning and avoid overfitting,
while the model inaccuracy is iteratively compensated by the interaction data using
Bayesian estimation.

Consider a discrete-time environment with additive stochastic uncertainty:

xt+1 = f (xt , ut ) + ξt , ξt ∼ N (μ,K) (8)

where xt is the state, ut is the action, f (xt , ut ) is the deterministic part of environ-
mental dynamics, ξt is the additive stochastic uncertainty with unknown meanμ and
covariance K. Assume that the additive stochastic uncertainty follows the Gaussian
distribution.

The objective of MAC is to minimize the expectation of cumulative cost under
the distribution of additive stochastic uncertainty ξ :
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min
π

V (xt ) = Eξ

[ ∞∑

k=0

γ kl(xt+k+1, ut+k)

]

, ∀xt∈ X (9)

where π is policy, V (·) is the state value function, l(·, ·) is the utility function, and
Eξ (·) is the expectation with respect to the additive stochastic uncertainty ξ . The
policy is a deterministic mapping: ut = π (xt ).

Like other indirect RL problems, MAC aims to find the optimal policy by min-
imizing cost (9) subject to the environmental dynamics model constraint (8). Such
a problem can be solved by iteratively applying the Bellman equation. The perfor-
mance of the trained policy depends on the accuracy of the environmental model.
Either an analytical model or state-action samples can be a useful representation,
which corresponds to the so-called model-based RL and model-free RL, respec-
tively. In fact, the analytical model in model-based RL is usually inaccurate due to
environmental uncertainties, which impairs the optimality of the generated policy.
The state-action samples in model-free RL, on the other hand, have low sampling
efficiency which slows down the training process by a wide margin.

In MAC, the environmental dynamics model is dually represented by combining
an analytical model M with the state-action data D. The former represents the
empirical knowledge about the environmental dynamics. The latter directly collect
the data of state-action pairs during training. This dual representation is generally
more accurate thanM by estimating the uncertain part in the analytical model. As a
consequence, it benefits from the accelerated training compared to purely model-free
RL while achieving better policy satisfaction than purely model-based approaches.

The Bayesian estimator is adopted to fuse the distribution information of the addi-
tive stochastic uncertainty ξM

t from both model M and data D, by maximizing the
posterior probability p(μ,K|D). In general, p(μ) and p(K) are the prior distribution
of μ and K. The maximum likelihood problem becomes

max
μ,K

{p (μ,K|D)} ⇔ max
μ,K

{p (D|μ,K) p (μ) p (K)} (10)

Under the assumption that data D is i.i.d., (10) can be rewritten into iterative form:

max
μ,K

{p(ξD
k |μ,K)p (Dk−1|μ,K) p (μ) p (K)}, Dk−1 = ξD

1 , . . . , ξD
k−1 (11)

Therefore, an iterative Bayesian estimator I BE(·) can be derived,

[
μk

Kk

]
= I BE(μk−1,Kk, ξ

D
k ) (12)

Existing indirect RL algorithms find the optimal policy via the Bellman equation,
including Policy Evaluation (PEV) and Policy Improvement (PIM) steps. While
MAC consists of three alternating steps, IBE, PEV and PIM, as shown in Fig. 13. IBE
estimates the mean and covariance of the additive stochastic uncertainty iteratively.
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Fig. 13 The framework of MAC

PEV seeks to numerically solve a group of algebraic equations governed by the
self-consistency condition under the current policy, and PIM is to search for a better
policy by minimizing a “weak” Bellman equation.

MAC is applied to a lateral and longitudinal control task of an automated vehicle
with stochastic disturbance. The vehicle is subjected to random longitudinal inter-
ference force Fdis in the tracking process and the vehicle dynamics is:

ẋ =

⎡

⎢⎢⎢⎢⎢
⎣

Fy f cosδ+Fyr

m − vxr
aFy f cosδ−bFyr

Iz

ax + vyr − Fy f sinδ

m + Fdis
m

r
vx sinφ + vycosφ

⎤

⎥⎥⎥⎥⎥
⎦

(13)

where the state x = [vy r vx φ y]T includes the lateral speed, the yaw rate, the lon-
gitudinal speed difference, the yaw angle and the distance between vehicle’s centroid
and the target trajectory. The control input u = [δ ax ]T is the front wheel angle and
the longitudinal acceleration. A double-lane change scenario is established to com-
pare different RL algorithms. The task is to track the desired trajectory in the lateral
direction while maintaining the desired longitudinal velocity under the longitudinal
interference Fdis . The optimal control problem with discretized stochastic system
equation is given by:
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Fig. 14 Convergence rate
comparison between MAC,
model-driven RL, and
data-driven RL

min
u

∞∑

t=0

γ t
(
45v2

x + 60y2 + uT

[
800 0
0 1

]
u
)

(14)

s.t. xt+1 = f (xt , ut ) + ξt (15)

ξt = FdisT/m (16)

To demonstrate the effectiveness of MAC, its performance is compared with the
widely used model-based RL methods, including dyna algorithm with the learned
model (Dyna-LM), dyna algorithm with the mixed model (Dyna-MM), adaptive
dynamic programming with the learned model (ADP-LM) and adaptive dynamic
programming with the empirical model (ADP-EM). As shown in Fig. 14, The MAC
and adaptive dynamic programming methods (i.e., MAC, ADP-EM and ADP-LM)
converge faster than the Dyna-like algorithms (i.e., Dyna-LM, Dyna-EM), which
demonstrates the advantage of analytical gradient given by the dynamic model.
Moreover, MAC converges almost twice faster than ADP-LMwithout oscillation. In
ADP-LM the mismatch of the data distributions between two adjacent iterations and
the switching characteristics of the system leads to difficulties to learn an accurate
model purely from data. ADP-EM achieves a similar convergence rate as the MAC.
The above results confirm the effectiveness of the designer’s knowledge embedded
in MAC.

However, the control performance of ADP-EM is impaired by the model inaccu-
racy. As shown in Fig. 15,MAC has theminimum longitudinal speed error and lateral
position error. In contrast, because of the model inaccuracy, the policies generated by
ADP-EM have the highest speed error. MAC outperforms the other five benchmark
methods.

In summary, MAC exhibits the fastest convergence speed during the training
process and superior control performance in the given double-lane change task. The
ADP-EM has a similar convergence speed as the MAC, but has a higher tracking
error due to the model mismatch. Although the ADP-LM compensates the model
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Fig. 15 Lateral and longitudinal error during 20 tests

inaccuracy by iteratively updating the dynamic model, it converges slower than the
MAC and ADP-EM due to the difficulties to learn an accurate enough model purely
from data. The Dyna-like algorithms have a slower convergence rate than the MAC,
due to the difficulties in finding the optimal policy only by state-action data.

6 Emergency Handling

The improvement of traffic efficiency and economy generally implies maintaining a
relatively high vehicle speed, which would increase the potential of causing severe
traffic collision accidents, especially in emergent and extreme scenarios when the
tire-road contact condition is near the road adhesion limit. Therefore, when applied
to autonomous driving, it is crucial that the RL algorithm should be able to handle
such emergent scenarios.

Most of the existing literature on autonomous driving emergency handling are
using model-based control. Lu et al. [33] proposed a centralized control strategy
for multiple vehicles to minimize the impact of multiple-vehicle collision based
on vehicle-to-vehicle communication techniques. Model predictive control (MPC)
framework is used to formulate and solve the problem. Zhang et al. [47] proposed
a path planning and motion control framework to plan and track a reference drift
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Fig. 16 Emergent collision avoidance scenarios

trajectory along a sharp bend in a track. The path planner divides the path horizon
into three regions to generate the reference trajectory. However, model-based control
is usually limited by its heavy calculation burden, especially for nonlinear systems
with a long planning horizon, and it requires accurate modeling.

Recently, RL-based methods have been applied to obstacle avoidance control of
vehicles. Kahn et al. [23] proposed a model-based learning algorithm using camera
image as input, which could enable a prototype vehicle to avoid obstacles with
uncertainty. Emuna et al. [8] proposed a data-driven learning algorithm in order to
imitate human driver’s collision avoidance behaviors. These learning-based methods
could adapt to various environment uncertainties and extreme scenarios [46], even
for different vehicle configurations of steering, driving and braking systems.

In this section, the considered emergent collision avoidance scenario for three
vehicle configurations is demonstrated in Fig. 16. The selected vehicle configurations
are typical light pickup with 2 axles, single unit truck with 3 axles, and heavy semi-
trailer with 2 vehicle units and 6 axles. These three can cover the commonly used
vehicle types for passenger and cargo transportation. An obstacle vehicle in the
front of the ego vehicle is making emergent braking, which has an initial speed of
100km/h and a constant deceleration of 4.5m/s2. The selected three ego vehicles are
set to travel with an initial high speed of 120km/h. On all the three roads, lane 1 is
free without obstacle vehicles. In this emergent scenario, the ego vehicle will collide
with the obstacle vehicle in lane 2, if only emergent braking is applied since their
distance is too close. Alternatively, the ego vehicle can change to the nearby empty
lane 1, so as to avoid the accident. The involved lane-change decision and collision
avoidance path-following control is still challenging and requires optimization of
nonlinear/continuous vehicle dynamics and discrete lane selection.

The decision and control process is integrated into a mix-integer constrained
optimization problem, which can be expressed in the form of:
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max
j,a

{
Jj =

∫ t+T

t
r
(
s (τ ) , s j

re f (τ ) , a(τ )
)
dτ

}
(17)

s.t.ṡ = f (s, a), h (s(τ )) ≤ 0 (18)

where Jj is the objective function of lane j , j = 1, 2 in this study; t , τ and T are
the initial time, current time and collision avoidance time horizon, respectively; s, a
and r (·) are the ego-vehicle’s state, decision and control action, and reward function,
respectively; s j

re f (τ ) is the reference state when selecting lane j , which is the lateral
position of lane center in this study; f (·) and h (·) are the nonlinear environment
dynamics and constraints functions, respectively. The environment dynamics include
nonlinear vehicle dynamics with various configurations. The constraints in this study
include the safety distance constraint with the obstacle vehicle and the road curbs of
lane 1 and lane 2.

Although the vehicle dynamic responses of different configurations are signifi-
cantly different, they are combined as a single dynamics function. The state, action
and reward function of the ego vehicles are considered as:

s = [
x y ϕ ẋ ẏ ϕ̇ xobs yobs

]
(19)

a = [
jre f δs T hr Pb

]
(20)

r = −ws

∣∣∣s − s j
re f

∣∣∣ − wa |a| − Pobs (21)

where x , y, ϕ, ẋ , ẏ, ϕ̇ are the longitudinal position, lateral position, yaw angle,
longitudinal speed, lateral speed, yaw rate of ego-vehicle, respectively; xobs and yobs
are the longitudinal and lateral position of obstacle vehicle; jre f is the reference
lane threshold; δs is the steering wheel angle; Thr is the throttle position; Pb is the
braking pressure;ws andwa are weighting matrix of state and action; |·| indicates the
absolute value; and Pobs is the designed penalty function for the collision avoidance
constraints.

The mix-integer constrained optimal decision and control problem described
above is solved using deep reinforcement learning. The objective function is reformed
and discretized as the accumulative return Gt = ∑T−1

i=t γ i−t ri , which needs to be
maximized at each time t , where γ is the discounting factor, i is discretized time
step, ri is instant reward at ith time step, and T is the total time steps of an RL
training episode. The training curve of RL for this emergency collision avoidance
task is shown in Fig. 17. The total return tends to converge after about 2500 episode
iterations.

In order to verify the effectiveness of the method, the learned neural network
policy at convergence is then deployed on the ego vehicles. A test scenario similar
to the demonstration in Fig. 16 is used. The trajectories of obstacle vehicles and
the three ego-vehicles during the emergent collision avoidance test are shown in
Fig. 18(a) and the variations in vehicle speed are shown in Fig. 18(b). Note that the
centerline’s lateral positions of lane 1 and 2 are 2m and -2m, respectively. We can
see that the obstacle vehicle is braking until fully stopped on lane 2 as designed. All
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Fig. 17 Episode total return during RL training

Fig. 18 Emergent collision avoidance test demonstration: a vehicle trajectory and b speed

the trajectories of the three ego-vehicles change to lane 1 to avoid colliding with the
obstacle. While the ego-vehicle trajectories are still close between different types of
vehicles, the speed profiles are significantly different, as seen in Fig. 18(b). This is
because the target vehicle speed is not considered in the reward function and thus
different vehicle configurations yield different speeds.

7 Conclusion

Althoughwidely used in existing automated vehicle systems, rule-based decision and
control methods have limitations because of the lack of adaptability and extensive
need for human-engineered heuristics. Self-learning based methods, mainly inspired
by the recent advances in reinforcement learning, have become a new trend for
designing the decision and control systems for highly automated vehicles. Such
method enables the driving policy to self-adapt by interacting with the environment,
and potentially results in super-human level performance. Minimum human efforts
are required through the development process, and the online computation time can
easily meet real time requirements.
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However, it is unsatisfying to directly apply existing RL techniques from the AI
community to autonomous driving. Several important challenges need to be solved,
which are introduced in this chapter, as well as some recent solutions. The first is
the scalability to different scenarios and tasks, where an integrated decision and
control (IDC) framework is introduced to handle various road conditions using an
interconnected two-layer scheme. The second is the learning performance under
high degree of dynamic and randomness, where the distributional soft actor-critic
(DSAC) algorithm is introduced and a distributional maximum entropy RL method
is proposed to address the value overestimation issue. The third is the interpretability
of how the system reasons about the environment, where a latent deep reinforcement
learning method is introduced to obtain an interpretable environment model while
learning the optimal driving policy. The fourth is mix model, where the mixed actor-
critic (MAC) algorithm is introduced to combine the vehicle model information with
interaction data. The last is emergency handling, where RL is applied to learn driving
policies that can safely perform emergent collision avoidance under various vehicle
configurations.

Besides the above important aspects, there are many other issues that still await
to be addressed. For example, existing RL methods are mainly to only optimize the
objective function. However, some safety constraints should also be considered, and
even guaranteed during the learning process. This requires developing reliable con-
strained optimization approaches based on the standard RL algorithms [44]. On the
other hand, the driving environment is usually partially observable due to occlusions
and incomplete sensor inputs. Extensions of existing RL algorithms to model histori-
cal information should be designed to handle the partial observability [11].Moreover,
interactions with human drivers under unknown intentions, and connected control of
networked automated vehicles are also important topics.
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MAGMA: Mobility Analytics Generated
from Metrics on ADAS
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Abstract Modern Advanced Driver Assistance Systems (ADAS) have complex
logic for determining when and where feature use is appropriate, generally based on
geolocation and the vehicle’s sensor suite. This variability can lead to a problem of
how to meaningfully measure customer experience from ADAS feature usage data.
To provide a broad understanding of customer experience and where the feature
should have been active but was not, the data must be viewed relative to the feature
availability map. The feature activation and availability experienced by a driver is
dependent on numerous design decisions (such as the map and map previewing
logic), which may affect the process of understanding the raw data. Therefore, it is
critical to compare customer ADAS feature usage data to what the vehicle could
have previewed in the best-case customer experience scenario by simulating the
feature availability based just on the feature design logic, the vehicle’s location,
and the map. This enhanced understanding of customer experience allows for the
discovery of corner cases and enables improved feature design. In short, customer
ADAS feature usage data can be better understood in the appropriate context, where
offline simulations of the designed feature logic provide an appropriate normalization
factor.
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Definitions/Abbreviations

ADAS Advanced driver assistance systems assume some
level of control over the driving task, assisting the
driver in the driving task

ODD Operational Design Domain (ODD) defines the
domainoverwhich the automatedvehicle canoperate

Expected feature experience Quantitative metrics that predict the ultimate
customer’s interaction with a feature

Actual feature experience Quantitative metrics that measure the customer’s
interaction with a feature

Map matching Offline determination of a vehicle’s position on amap
based on a full route’s reported GNSS coordinates

Localization Real-time determination of a vehicle’s position on a
map based on current and past GNSS coordinates

Map The virtual representation of the geospatial features
(e.g. lane markings and traffic sign positions) that
can be used for autonomous driving applications to
localize a vehicle or control ADAS feature avail-
ability

GNSS Global Navigation Satellite System

1 Introduction

Advanced Driver Assistance Systems (ADAS) features are designed to automate
portions of the driving task. The SAE definitions of the six levels of vehicle autonomy
are generally well-known in the automotive industry. Levels 0, 1, and 2, commonly
known as ADAS, assist the driver but the driver must remain aware of the vehicle
and its surroundings. Examples of ADAS technologies include automatic emergency
braking, automatic lane centering, and adaptive cruise control. Whereas for Levels
3, 4, and 5, the driver may be required to resume control (for Levels 3 and 4) but the
vehicle autonomously handles the driving task and understands its limitations well
enough to request that the driver resume control when necessary [1]. All levels of
autonomy include some form of object detection based on the vehicle’s sensing suite
and may involve path planning and localizing to a map as well [2].

One of the fundamental problems of vehicle automation is that the system is
exposed to numerous edge-cases, which a rule-based approach cannot account for.
Machine learning models can learn from these edge cases and generalize them for
overall operational improvement. There are two major steps in machine learning:
learning and inference. Many machine learning applications that run on vehicles
are only capable of inference on the embedded hardware. For example, embedded
computer vision and/or signal processing models utilizing cameras and other sensors
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(e.g. LiDAR) allow vehicles to perceive and make inferences about their environ-
ments based on pre-trained models [3]. To improve the performance of machine
learning models, one must collect sizable datasets and retrain the model frequently.
There are federated learning approaches that involve training a machine learning
model on each vehicle and combining the results (rather than the raw data) into a
single model [4]. The learning or retraining step typically involves collecting these
sizeable datasets from a fleet of connected vehicles. In this chapter, one of the main
goals is to introduce measurable properties from complex ADAS time series data
that can be utilized by supervised or unsupervised machine learning algorithms [5].

Questionnaires are currently the most common method of assessing customer
experience with ADAS features on mass scale [6]. Here, we will address quantifying
customer experience with ADAS features in an automated manner. Data collected
from connected vehicles running ADAS features can be utilized to estimate the
customer experience for more vehicles and on a more consistent basis than question-
naires. Below, we will introduce metrics that are intended to track driver satisfaction
with ADAS features as well as the operation of those features relative to a known
feature availability.

An ADAS system may or may not have a defined Operational Design Domain
(ODD) which can be dependent on geolocation. Typically, the real-time determina-
tion of feature availability is based primarily on a computer vision system. Many
vision systems rely on convolutional neural networks to create a model of the road
to enable ADAS features [7]. The result and confidence of these machine learning
models generally dictates the real-time availability of the ADAS feature.

In this chapter, a map shall be defined as the virtual representation of physical
geospatial features (e.g. lanemarkings and traffic sign positions) used for autonomous
driving applications to localize a vehicle and/or control ADAS feature availability
[8, 9]. When ADAS features are available in pre-mapped locations on a feature
availability map [10], the vehicle’s local sensing suite may still not allow for feature
activation (e.g. due to poor visibility of lane markings). In addition, vehicles localize
to roadways based on real-time geolocation, whichmay have significant noise factors
and limited accuracy.Map-indicated feature availability is necessary but not sufficient
for ADAS operation. The real-time vehicle sensing ultimately determines if ADAS
features are available or not and may request that the driver resume the driving task,
which impacts driver experience.

If the data is evaluated in the cloud (to enable centralized analysis of fleet data),
the data that reaches the cloud may not be in a usable format (perhaps due to poor
cellular connectivity). In a hypothetical scenario, a particular signal used locally on
the vehicle may have a native frequency of 50 Hz, and the data transmitted from
connected vehicles occurs at 1 Hz. In effect, all the signal state changes may not
be captured in the data received by a remote server and therefore that data may
be incomplete. Additionally, signals on the vehicle may be overridden with higher
priority signals for specific vehicle events (e.g. on a Controller Area Network bus)
so some events or full datasets may be unavailable for data collection [11].

Utilizing ADAS data in an offline simulation of feature availability allows for
deeper understanding of feature operation. Simulating individual vehicle operation
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can assist in validation of the vehicle design [5, 12]. Here, we focus on macro-
scale simulation to predict and understand vehicle operation for an entire fleet. This
simulation can create the best-case customer experience scenario that the ADAS
feature availability map could have provided based on an offline recreation of the
feature’s expected behavior. This simulationmethodology can further take advantage
of advanced offline map matching algorithms that utilize the entire set of GNSS
coordinates to effectively determine the route taken by a vehicle [13].

For example, feature usage data may show that a driver had 20miles of hands-free
activation on their route, but this must be normalized relative to the total availability
provided by the map. If the total availability was close to 20 miles, the feature
performed almost exactly as expected by the map, but if the total availability was
significantly greater than 20 miles, then the ability to use the feature was not well
aligned with the pre-mapped availability. Similarly, continuous feature usage is a
strong indicator of customer experience. For example, for a route with 90 miles of
feature availability, the customer could have experienced continuous availability for
90 miles or unavailability for one out of every ten miles.

Further, in correlating the feature activation to the map, anomalous roads and
vehicles can be detected by low feature utilization. For example, if one vehicle
out of many does not activate hands-free driving where the map indicates hands-
free availability, there may be a sensor fault, but if many vehicles do not activate
hands-free driving on a roadway, that road may represent types of corner cases to be
assessed. There may be road layouts that cause vehicles to occasionally localize to
the incorrect roadway and therefore preview the incorrect ADAS feature availability.
These locations could be discovered in the mismatch between the vehicle-created
ADAS availability data and that of the simulation.

2 Constraints

Many fields have experienced an explosion of available labeled and unlabeled data
and have been utilizing machine learning at ever-increasing scale to enable advanced
applications. However, while the automotive industry is generally doing this at
scale, there are many obstacles to overcome due to legacy components that were
not designed for data collection. The challenge in retrofitting these legacy systems
for data collection is the need for contextual information from the vehicle. Obtaining
this contextual information is complex and the methods required can differ with
each platform and model year. Most modern technology companies have been able
to design their products with data collection at the forefront of the design process,
while automotive OEMs have long legacies and long lead time for incorporating
new features in vehicles. While vehicles can be specially configured to record a great
deal of the data, it is not yet practical nor generally necessary to capture the massive
volume of data generated in each vehicle on each drive [2].
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2.1 Data Collection Costs

Data collection from large fleets of connected vehicles has a non-trivial cost compo-
nent [2]. Most connected vehicles can connect to Wi-Fi networks, but so few drivers
complete this setup, thatmost connected vehicle datamust be offloaded over a cellular
network. Therefore, it is pertinent to estimate and design for the cellular costs when
planning connected vehicle data collection. In an upcoming work, the authors intro-
duce the Leveraging Aggregated Vehicles Analytics (LAVA) methodology, which
uses historical connected vehicle data to rigorously estimate performance metrics
with various simulated parameters [14]. The LAVAmethodology is particularly rele-
vant in this context in estimating the volume of cellular data that would be transmitted
from connected vehicles when data collection is dependent on specific parameters,
such as collecting data only while the vehicle is on the highway.

2.1.1 Determining Trip Routes from Fleet Data

As existing connected vehicle data collection may be triggered only by specific
events (e.g. key-on and key-off events), the complete routes of connected vehicles
may not be obvious to an OEM analyzing the data. Therefore, when only origin and
destination pairs are collected, a routing engine can be used to create full routes.
Routing engines typically return multiple options for routes, so the ground truth data
for the trip can be used to probabilistically determine the true route. That is, the route
that minimizes the following objective function is the most likely to be the true route
taken by the vehicle:

f (droute, troute) = w1
|dtrue − droute|

dtrue
+ w2

|ttrue − troute|
ttrue

wherew1 ≥ 0 andw2 ≥ 0 are weights for this multi-objective optimization problem,
dtrue is the odometer change of the route, ttrue is the time change from the start to
the end of the trip, droute is the length of a proposed route, and troute is the estimated
duration of the proposed route.

Additionally, depending on the trigger for data collection, some routes may be
fundamentally undiscoverable. For example, if a driver makes a stop without turning
their vehicle off prior to arriving at the final destination, the detour will result in a
greater than expected odometer change (based on just the origin and destination). To
avoid improbable route matches, routes whose length is a certain percentage over the
odometer change are excluded as possibilities. In other words, the odometer change
can be significantly larger than the route length, but not vice versa.

Using this methodology on 341,792 connected vehicle origin–destination pairs,
we were able to match 324,916 (95.01%) trips to routes, where only 9198 (2.69%)
trips had a trip length greater than the odometer change (average length over odometer
change for those trips was 2.29 km, and average percentage over odometer change
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was 2.43%). Therefore, we have sufficiently high confidence in the accuracy of these
routes and are certainly comfortable using them in aggregate to discover overall
trends (where the accuracy of individual routes is not critical).

Note that additional connected vehicle data can be utilized in the routing process.
For example, fuel usage provides valuable information about the route. The average
fuel usage per road type (per vehicle type) could be estimated from higher frequency
connected vehicle data to validate routes chosen based on an expected fuel consump-
tion for an entire route. The expected fuel usage could be summed over the roads
included in a route and compared against the actual fuel usage which can be deter-
minedwith only collecting data at the origin and destination. Expected fuel usage can
be determined based on crowdsourcing connected vehicles fuel usage at relatively
high frequency (e.g. when entering and exiting each road edge) and using the fuel
usage, weather information, and road information (e.g. slope) as labelled training
data for a machine learning model to predict fuel usage for any road type in various
weather conditions [15].

Other considerations could include vehicle weight distribution, vehicle closure
status at origin and destination, seat occupancy detection, passenger identities [16],
and trailer status. Routed trips can be sanity checked against this data. For example, if
the trailer status (i.e. towing a trailer or not), cabin occupancy, or weight distribution
have changed from origin to destination, there must have been a stop in between
them which will make extrapolating the full route nearly impossible.

However, a thorough examination of a vehicle’s location history may provide
waypoints that explain such trips. That is, waypoints whose addition into the route
makes themost sense of the ground truth vehicle data can be chosen from the vehicle’s
location history based on distance from the origin and destination. For example, as in
Fig. 1, if the origin is point A, the destination is point C, and the odometer change is
10 km, then the distance fromA toC does not explain the odometer change. However,
if the vehicle has frequently visited point B before or after point A or point C and
the length from point A to point C via point B is 10 km, then the trip likely included
point B as a waypoint.

A machine learning model can utilize known routes to more accurately determine
a true trip route from origin and destination information. These known routes can
be created from higher frequency data collection from connected vehicles, as data

Fig. 1 Example routing
options with associated
distances between three
points of interest
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Fig. 2 Map Data ©2021 Google. Set of 128,682 routes from 303 vehicles over 6 months

collection efforts scale up. For example, a long short-term memory recurrent neural
network can be used to determine the order that road edges were used. Essentially,
the label would be the order of road edges actually taken and the input data would
be ground truth data such as origin and destination GNSS location, trip length (i.e.
odometer change), trip duration, total fuel used for the entire trip, etc. Then for trips
where only origin and destination information is known, data from other connected
vehicles can help fill in the entire route [17].

2.1.2 Data Collection Cost Estimation

Figure 2 shows a dataset of all 128,682 trips taken by 303 unique vehicles over
six months. Note that we have narrowed the scope from all 324,916 available routes
(over 15 months) to avoid excessive data processing times. This subset of data can be
used to estimate the total number of miles driven by a large set of vehicles on various
road types and create data-driven estimates for the volume and cost of cellular data
transmission.

When these routes are created and map matched to a road network, the total
number of highway miles can be summed. Most data collection (and native signal
behavior) occurs at a time-driven frequency, so the total number of highway miles
can be converted to the time dimension based on the roadways’ speed limits or even
a global estimate for highway speeds (e.g. 65 miles per hour). Figure 3 shows a
histogram of an estimated data volume collected by connected vehicles over six
months, where the total data volume would be 4203.54 Megabytes. This assumes
that 0.1 kB are generated every one second and the vehicles are travelling at 65 miles
per hour on average.

Given a cost permegabyte and by assuming this subset of vehicles is representative
of the wider fleet’s behavior, this analysis can be used to estimate the aggregate data
cost. Let us assume cellular data transmission costs $x permegabyte, which results in
a total cost of $x∗4203.54 for this fleet of 303 vehicles over the course of 6months. If
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Fig. 3 Histogram of estimated collected data volume from highway driving

we assume that the fleet fromwhich data will be collected contains 100,000 vehicles,
then the cost for 12 months of data transmission is given by:

$x∗4203.54
303vehicles×6 months * 12 months * 100,000 = $x * 2,774,613.90, or roughly $x ∗

13.87 per vehicle per year for an extremely small sample of data (0.1 kB per second).
The cost of data collection will also likely continue for the life of the vehicle.

Therefore, the cost of data collection must be considered when designing central-
ized data analyses, and the solution is generally not to collect all signals at the native
frequency. It is important to collect the appropriate signals in an intelligent manner
(e.g. a signal indicating the ADAS feature’s status), but it may be prohibitively diffi-
cult to design large-scale in-vehicle data aggregation and is demonstrably expensive
to transmit over a cellular network.

2.2 Data Generation and Collection Issues

Significant work is required to ensure collected data is representative of vehicle oper-
ation, but current vehicle architecture rightfully prioritizes in-vehicle performance
over data collection efforts.Reusing the hypothetical situationmentioned above,most
signals on vehicles refresh at a relatively high frequency (e.g. 50 Hz) and are not
coordinated to occur at the same time. The frequency at which signals are captured,
and, if not captured at native frequency, how signals are aggregated has a drastic
impact on the ability to process the data in the cloud. Figure 4 shows sample vehicle
data where the signals at native frequency are shown as blue dots, downsampled
signals (to 1 Hz) are shown as green stars, and times where native frequency signal
state changes are missed in the downsampled data are shown as red triangles.

In this example, signal_1 carries information regarding causes of state changes in
signal_2. For a roughly 2.5 h drive, there are 52 state changes in signal_1 that would
not be captured by a low frequency down-sampling (in this case 1 Hz subsample
with no aggregation). Since the data was not originally designed to be understood
outside of the in-vehicle context, a downsampled data collection scheme would miss
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Fig. 4 Sample missed states in high frequency data

important signal states and would be insufficient to understand the state changes in
signal_2.

Figure 5 shows a zoomed-in view of the data in Fig. 4 where it is visually obvious
that the state change in signal_2 (from state 2 to 1) occurs in timewith the state change
in signal_1 from 2 to 4 to 1. Without appropriate aggregation or higher frequency
data sampling, the state change in signal_1 would not be captured by a downsampled
data collection process. Therefore, if an algorithm were designed to automatically
process data coming from connected vehicles, then the state changes in signal_1 that
is expected and explains the state change in signal_2 would not be captured. Other
collected signals whose state values persist longer may be useful in piecing together
the information in signal_1, but the in-vehicle evaluation would be lost without the
appropriate data aggregation design.

3 Determination of Actual Feature Experience

In order to quantify the actual feature experience, we will use a single signal that
indicates the status of an in-development ADAS feature, which automates some
portions of the driving task. Figure 6 shows a development drive (with non-production
map and software) color-coded by the ADAS feature status only. This data represents
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Fig. 5 Zoomed in sample missed states in high frequency data

Fig. 6 Map Data ©2021
Google. Actual feature
experience for a
development drive
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Fig. 7 Minimum length of
feature activation

3294.055miles of total driving, where the featurewas active for 1845.921miles. This
gives a high-level view into the usage of the ADAS feature but is not normalized
properly. That is, the total length of the drive is not indicative of the total length
of feature availability. The route could include unsupported road types and could
include situations where the feature is not available by design.

To answer the question of where the feature was available but was not active and
to give an appropriate normalization factor to the total number of miles the feature
was used, the vehicle-generated signals can be utilized directly (assuming there is a
properly collected signal that indicates the availability of the feature).

Many ADAS features have complex logic regarding how ADAS feature avail-
ability maps are previewed and used in-vehicle [8, 10]. Therefore, it is key that any
analysis of the vehicle data is done in that context. For example, someADAS features
may disallow activation in otherwise acceptable conditions due to an upcoming
roadway that does not allow for feature usage (perhaps that roadway will be encoun-
tered in the next y miles). Figure 7 shows an example of this situation where the map
has a 0.5-mile section of feature availability (blue) surrounded by feature unavail-
ability (red).Due to the example 0.5-mile area of feature availability being sufficiently
short, the vehicle may not practically allow for the feature to be used there as feature
usage in this location would result in an interrupted customer experience. While the
map and the vehicle both reflect that the current roadway is technically available for
ADAS feature usage, the vehicle nonetheless inhibits activation.

Figure 8 shows the same data as in Fig. 6 but now evaluated relative to the vehicle’s
previewof the feature availabilitymap. That is, the feature status and the classification
of the road on the feature availability map are considered in the color-coding and
evaluating the vehicle data. Note that there are several possible reasons for the feature
to be inactive on roads where themap indicates it is available, such as how the vehicle
localizes to the map in real-time, vehicle-sensed concerns with the roadway (e.g.
lane lines are not visible), or driver preference. These categories can and should be
separated, but that can be difficult based on the downsampled vehicle data mentioned
above. Therefore, the production data collection strategy must ensure that the data
collected is able to differentiate between these types of events.

This view into the ADAS feature usage data now contains a normalization factor.
We can calculate the percentage of available roads where the feature determined it
could have been available but was not active. This leads to the Utilization of ADAS
features, which is given by

Utilization = Feature Active

Feature Available
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Fig. 8 Map Data ©2021
Google. Actual feature
experience for a development
drive relative to the ADAS
feature availability map

where the numerator and denominator can be in units of length or time. Utilization
ranges between zero and one, where larger values indicate better customer experi-
ence. Note that the locations where the feature was available but was not active can
be separated into two distinct groups: one where the driver decides to not activate the
feature even though it is available and two, where the vehicle’s local sensing suite
determines that the feature should not be active even though the map indicates that
the feature should be available. The latter group is of more interest in understanding
the feature operation and capabilities, while the former reflects individual choice.

In the case of the development drive in Figs. 6 and 8, the utilization is 1845.921 mi
2694.981mi =

0.685, because the ADAS feature was active for 1845.921 miles and the vehicle
previewed feature availability for 2694.981 miles (where the total trip length was
3294.055 miles). That is, the feature was utilized (i.e. active) about 68.5% of the
total length that it was available.

4 Determination of Expected Feature Experience

Using the vehicle-generated signals relies on the data generation and collection
process fully capturing the nuances in the determination of feature availability.While
this may capture feature availability and usage sufficiently well, it may be difficult to
analyze the granular reasons for the feature not being active. For example, based on
downsampled data, it may be impossible to determine whether the feature was not
active due to real-time road conditions as determined by the vision system [7], due
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to the driver’s condition (e.g. eyes off the road for a Level 2 SAE ADAS feature),
whether the driver cancelled voluntarily, or due to the vehicle’s location on the map.

Given the above concerns with vehicle-created data, it can be beneficial to vali-
date the vehicle-determined feature availability in the best-case customer experience
scenario with an offline simulation [12]. That is, the GNSS coordinates (paired with
the feature status) of a route are map matched to the feature availability map and the
feature availability logic is simulated offline. This firstly allows for more advanced
methods of map matching [13] that utilize the entire set of GNSS points in a route,
ensuring more accurate map matching to the road network. Secondly, this process
provides a sanity check against the vehicle-generated signals.

The purpose of a feature availability map could be to maximize the warning time
given to a driver prior to an area incompatiblewithADAS feature usage.However, the
in-vehicle sensor suite would generally be the most reliable source of real-time road
information, so the map may indicate feature availability while the vehicle disallows
feature activation. Significant discrepancies between the map-based expectation of
feature availability and actual feature usage are cause for examination of the logic
behind the feature availability map. Therefore, it is prudent to examine how the
purported feature availability (provided by the map) directly compares to the actual
feature usage by a customer. It is also important to examine the discrepancy between
the vehicle-determined feature availability and an offline simulation to determine
how accurately the vehicle can localize to the road in real-time, whether the vehicle
is previewing the upcoming roadways in the correct manner, and whether the vehicle
data is capturing all the relevant information for analysis. This further opens the door
to simulating what the customer experience would have been with changes in the
design of the map and map previewing logic.

Further, it can be important to understand the feature’s ideal capabilities without
consideration to transitory issues. For example, a driver may have attempted to use
an ADAS feature in a downpour and be told it was unavailable. It would be relevant
to know that the map indicated that the feature should have been available as well
as the reason why the feature was not allowed to be activated. A driver could also
deactivate the feature despite it being available. An offline simulation can indicate
where the feature could have been active but was deactivated. This would provide
concrete metrics regarding the total usage relative to the total availability, aggregated
by different reasons for non-usage when the feature should have been available.

Figure 9 shows the result of the offline simulation of the best-case customer
experience scenario on the development drive data given in Figs. 6 and 8. That
is, Fig. 9 utilizes offline map-matching and provides a simulation of the feature
availability indicated by the map as it should be previewed by the vehicle. These
results show what the logic behind the ADAS feature availability map and the in-
vehicle process previewing the map determined to be the maximum feature offering
for customers.
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Fig. 9 Map Data ©2021
Google. Expected feature
experience for a development
drive relative to the ADAS
feature availability map

5 ADAS Feature Customer Experience Metrics

Utilization can still be defined as above, however, we can now slightly alter the
definition of “Feature Available” to include the availability as given by the ADAS
feature availability map, rather than only the in-vehicle determination of availability.
Using the offline simulation as the normalization factor can expose areas where
the map indicates that the feature should be available but the vehicles travelling
there frequently encounter a situation that is not conducive for feature activation,
for example the lane lines may not be detectable by the vision system. It is also
important to exclude areas where the driver voluntarily cancels the ADAS feature
(or consider these events separately). If the driver simply does not want the feature
to be active (perhaps they are about to exit an available roadway and are preparing
to resume control) then the feature is behaving as expected by the map and by the
feature design logic.

Further, utilization can be calculated for a subset of vehicles or roads. That is,
certain sets of vehicles may have unexpectedly low feature utilization wherever they
drive, perhaps due to improperly calibrated sensors. Figure 10 shows an example
roadway where localization errors could cause most vehicles to determine that the
feature is unavailable, when an offline map match determines that it should have in
fact been available. The discrepancy between the vehicle-created data showing that
the feature is unavailable and the offline simulation showing availability would be
an important flag for discovering roadways where localization errors are common.
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Fig. 10 Map Data ©2021
Google. Example feature
utilization at the road level

Further, the effectiveness of the re-engagement strategy used before and after
unavailability can be evaluated through Re-Engagement Experience, as in

Re - Engagement Experience

= Feature Inactive − Feature Unavailable

Feature Inactive
,

where the denominator only includes roadways where the feature is unavailable
and immediately precedes and/or follows a roadway where the feature is avail-
able. Re-Engagement Experience ranges between zero and one where smaller values
indicate better customer experience. In Fig. 11, where blue indicates feature usage
and availability, red indicates feature unavailability, and orange indicates that the
feature is available but not in use, then the Re-Engagement Experience would be
450−350

400 = 100
400 = 0.25. That is, the interruption to feature usage was 25% longer

than the interruption to feature availability. This view of customer experience should
be considered both in designing the feature availability map and how it is used
by the vehicle to capture the ultimate impact of feature unavailability on feature
usage. That is, when the map indicates that features are unavailable, there will be
an extended effect on the ability of a driver to utilize the feature, in that it will
take time for the feature to re-engage manually or automatically before and/or after

Fig. 11 Visualization of
feature re-engagement
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the period of unavailability. The re-engagement experience captures this expanded
impact of feature unavailability to ensure that the full impact on customer experience
is quantified.

5.1 Binary Feature Availability

Mean Continuous Utilization is another important metric in determining ADAS
feature customer experience and is given by

Mean Continuous Utilization

= Mean Continuous Feature Active

Mean Continuous Feature Available

where again the numerator and denominator can be in units of length or time. Mean
Continuous Utilization ranges between zero and one, where larger values indicate
better customer experience. This metric gives an important view into how interrupted
the feature usage was relative to the optimal continuous feature offering. It is impor-
tant to note that the mean length that the feature was continuously active and the
mean length that the feature was available are themselves important metrics, where
larger values indicate better customer experience. The mean continuous utilization
compares the feature usage to the best-case customer experience scenario given by
an offline simulation using the feature availability map and feature design logic. This
best-case customer experience scenario is an important method to evaluate feature
availability maps, but it is critical to quantify howwell it truly represents the feature’s
capabilities.

Another relevant metric is the comparison between the number of continuous
feature activation usage events and the number of continuous feature availability
roadways, which we call the Interruptedness, as in

Interruptedness

= Count of Feature Active − Count of Feature Available

Count of Feature Active
.

This metric tracks how frequently the feature activation was interrupted relative to
the best-case customer experience scenario (given by feature availability). Interrupt-
edness ranges between zero and one, where smaller values indicate better customer
experience. This can be understood as the percentage increase in the number of
segments of continuous feature usage relative to the number of segments the feature
is available.

A sample route’s feature usage and availability are given by Fig. 12, where red
shows where the feature is unavailable, orange shows where the feature should be
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Fig. 12 Example feature
usage versus availability

available but was not active, and blue shows where the feature was active on the top
and available on the bottom. For this route, the mean continuous feature usage is
6+3+12

3 = 7 miles and the mean continuous feature availability is 6+16
2 = 11 miles.

Therefore, for the feature usage and feature availability given by Fig. 12, the mean
continuous utilization is 7

11 ≈ 0.636. Further, the utilization is 6+3+12
6+16 = 21

22 ≈ 0.955.
Lastly, the interruptedness would be given by 3−2

3 ≈ 0.333, as the 16-mile-long
portion of the route that was available was broken into two segments of feature
usage.

5.2 Nuanced Feature Availability

When ADAS feature availability is extended outside of current implementations,
measuring the customer experience becomes more subtle. This is due to an expec-
tation of differentiated feature operation in new road situations. In cases where the
feature availability map has multiple options for feature availability (e.g. Feature
Mode 1, Feature Mode 2, etc.), then the continuous usage of a single feature mode
may not be a good indicator of customer experience. If the feature usage is aligned
with the map’s availability, then the feature is performing as expected, so the Mean
Continuous Operation could be given by

Mean Continuous Operation

= Mean Continuous Feature Usage as Expected by Map

Mean Continuous Feature Availability
,

where the feature availability would essentially distill the entire nuanced availability
map into available or not, and the continuous spans of feature usage would not be
broken up by changes in the feature mode of operation changes. Mean Continuous
Operation ranges between 0 and 1, where larger values indicate better customer expe-
rience. For example, in Fig. 13, for Route A, the Mean Continuous Operation would
be ((5+3)+(14))/2

(5+3+1+14)/1 = (22)/2
(5+3+15)/1 = 11

23 ≈ 0.478. The denominator is divided by one
because the entire roadway in Fig. 13 is a single span of feature availability, where
part is available for Feature Mode 1 and part is available for Feature Mode 2. The
numerator is divided by two to reflect the two distinct spans of feature usage inter-
rupted by a one-mile span of feature inactivity. For Route B, the Mean Continuous
Operation would be 1.00, as the feature was behaving according to the map provided
availability for the entire route.
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Fig. 13 Example nuanced
feature usage and availability

Fig. 14 Map Data ©2021
Google. Example nuanced
feature usage

This metric could optionally be modified for adjustments in feature operation. For
example, as shown in Fig. 14, theremay a noticeable distancewhere the featuremode
is transitioning and neither mode is active. Such transitions may require input from
the driver and exist by design. Therefore, if these transitions are sufficiently short, it
may be appropriate to count these sections as feature usage as expected by the map
(without breaking up the Feature Mode 1 and Feature Mode 2 active sections). These
may, for example, occur due to a required driver re-engagement (e.g. transitioning
from Level II to Level I SAE ADAS feature).

5.3 Clustering for Outlier Discovery

Unsupervised machine learning can also be employed with a subset of the above
metrics to identify anomalous roads, drivers, or vehicles [18, 19]. Road edges (from
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node to node, where intersections, exits, and entranceswould be considered nodes) or
longer portions of roadways (e.g. 10mile stretches of highways) could be considered.

For example, the input features to a clustering algorithm for discovering outlier
portions of highways could include (a) the mean continuous feature operation vehi-
cles experience while on a road, (b) the percentage of vehicles utilizing the feature
when it is available on a road, (c) the percentage of drivers who manually deacti-
vate the feature on a road, (d) the percentage of trips where the feature deactivates
the feature on a road due to the vehicle’s sensing, (e) interruptedness for trips that
include a road, and (f) re-engagement experience when a road has some feature
unavailability. The portion of highway could be determined by junctions with other
highways. Urban and rural highways would likely end up in two separate clusters,
and anomalous roadways in terms of feature capabilities should be outliers. The
time of day may also play a role in the formation of clusters, as the behavior and
availability of ADAS features may vary significantly between heavy and light traffic
situations.

Anomalous vehicles (or drivers) can also be identified based on a similar set of
features to find clusters of vehicles that have been unable to sustain feature usage.
These clusters would likely be broken up along the lines of driver versus feature
deactivation and non-use. Sets of vehicles that do not utilize the feature (especially
if the cause for deactivation was due to the feature and not driver preference) can be
found and, for certain problems such as camera calibration issues, potential software
fixes can be delivered via over-the-air updates.

6 Conclusion

Connected vehicle data can be utilized to determine customer experience with ADAS
features. Typically, these features utilize a combination of the host vehicle’s sensor
suite and pre-mapped information about roadways in the form an ADAS feature
availability map. This map is used to ensure that the feature is used only in appro-
priate areas. In this work, we have proposed several metrics for grounding the vehicle
data to improve understanding of customer experience. Specifically, there must be
a normalizing factor to understand total customer usage of the feature, which can
be based on the vehicle data as well as on offline simulation of the expected feature
experience. By simulating the design of feature availability and allowance of acti-
vation, the vehicle’s performance can be checked against a ground truth. That is,
the total ADAS feature usage can only be properly understood within the context
of where it could have been active. The simulation results can also take advantage
of advanced map matching algorithms (that utilize the entire route) to discover and
diagnose real-time localization issues on vehicles. In this manner, customer expe-
rience with ADAS features can be concretely measured and potential over-the-air
updates to ADAS feature offerings meaningfully compared.

Effective use of large scale connected vehicle data enables a powerful new feed-
back loop in the iterative vehicle design process. As discussed in this chapter,
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customer experience with ADAS features can be measured to drive post-production
improvements to ADAS technology via over-the-air updates to connected vehi-
cles. We have introduced several measurable properties (also called features in the
machine learning community) of ADAS feature usage data. These properties utilize
data from connected vehicle fleets to optimize the data-driven engineering process.
Now that customer experience can be measured directly and objectively, machine
learning algorithms can be utilized to discover anomalies and variations in customer
experience.
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Driver Assistance Systems
and Safety—Assessment and Challenges

Jinwei Zhou, Pavlo Tkachenko, Daniel Adelberger, and Luigi del Re

Abstract Safety assessment of Highly Automated Vehicles, including Advanced
Driver Assistance Systems and Advanced Driving Functions, is of paramount impor-
tance for the acceptance and diffusion of these technologies. On-road testing alone
is no option due to the enormous time requirements, so virtual testing is generally
considered to be a necessary complement. While more time efficient than on road
testing, also virtual testing cannot be performed for all possible situations. Moreover,
virtual testing can be even misleading if the considered scenarios are not realistic
or do not include the critical situations which can occur in the intended real traffic
use. Against this background, we discuss different options and challenges as well as
outlooks.

1 Introduction

HighlyAutomatedVehicle (HAV) technologies have advanced dramatically in recent
years and offer an impressive potential to transform ground mobility in the future.
Over the past few decades, considerable efforts have beenmade to develop automated
transportation technology and have manifested tremendous technological advances
in numerous areas. The advancement ofHAVs can bringmassive social and economic
benefits in terms of time saving [1], fuel economy and reduction of harmful emissions
and greenhouse gas [2], traffic capacity [3] etc.
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A major interest is related to the expected increase of safety. Safety hazards can
have many causes, like sensor or actuator faults, but also by faults in the software
which plays an increasingly important role in transportation. Accidents can arise
from a wrong decision based on correct detection—as in the Arizona Uber case—or
even be induced by hackers [4]. Still, according to The National Motor Vehicle Crash
Causation Survey (NMVCCS) [5], up to 94 % of crashes are due to drivers’ errors.
In view of this, a vision of delegating driving to computers is appealing. Indeed, this
has been happening to some extent for long in the background, for instance by active
safety systems, like Anti-lock Braking System (ABS), Electronic Stability Program
(ESP), collision warning/avoidance or intelligent speed adaptation. However, all
these systems are not meant to replace but to “enhance” the driver.

Moving up in terms of automation1 implies that the HAV should take over deci-
sions traditionally reserved to the driver. Even so, some errors are bound to happen,
and this is strongly affecting the attitude of potential buyers, in spite of the fact that
the accident rates are very low, lower than conventional vehicles, and improving. For
instance, the National Highway Traffic Safety Administration (NHTSA)’s report on
Tesla, has pointed out that crash rates involving Tesla cars have dropped by almost
40 percent since the wide introduction of Autopilot system [7], which can be classi-
fied as somewhere between levels 2 and 3 under Society of Automotive Engineers
(SAE)’s automation level definitions [6].

Accordingly, it is important both for commercial but also for regulatory reason to
be able to assess the safety of the automated driving functions (ADFs), separately or
jointly, which make up the HAV and finally the fully automated vehicle (AV), level
6 in the SAE scaling. Safety will never be absolute, so it boils down to estimate the
real probability of accidents due to a wrong behavior of ADF.

The standard approach of the automotive industry—road testing—is not viable,
due to the much higher complexity and the resulting requirements. For instance, [8]
has predicted that more than 100 Mio km of road driving would be required for the
thorough validation of an automated vehicle. Only if these extensive tests have been
done, it can be shown—within an acceptable confidence interval—that the automated
vehicle is at least as safe as a manually driven car.

Against this background, virtual testing, by simulation, has become a necessity.
Virtual testing encompasses two aspects: the modeling of the vehicle so that the
results are representative, and the choice of the test conditions.

In the following we shall concentrate on the evaluation procedure. Of course
simulation programs and vehicle models are needed as well, but there are several
commercially available options (like PTV VISSIM,2 IPG Carmaker3 and others), so
that we shall not discuss them.

1 There is no unique definition of level of automation in vehicles, the most common used one being
the SAE [6], where level 0 stands for not automated and level 5 stand for fully automated vehicle.
2 https://www.ptvgroup.com/en/solutions/products/ptv-vissim/.
3 https://ipg-automotive.com/products-services/simulation-software/carmaker/.
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2 The Scenario Approach

2.1 The Idea

In general terms, a safety assessment could follow a grid approach, i.e. defining all
possible situations, then picking out a number of combinations chosen in order to
cover approximately the whole test space and then performing a very large num-
ber of simulations for “all” these possible conditions. In practice, this would be as
impossible as finding the right book in the Library of Babel [9]. With a very coarse
discretization, an exhaustive search might become feasible, but still very inefficient,
as its combinatorial process would generate many candidates that are not relevant or
of little interest.

The sensible alternative consists in fixing a limited number of traffic situations, the
so called scenarios, which are considered especially representative for the average
traffic conditions. Indeed, in UN Regulation of Automated Lane Keeping Systems
(ALKS) [10], known also as UNECE R157, 3 scenarios are defined for the perfor-
mance and safety assessment of an Automated Lane Keeping System. For example,
looking in the accident database of [7], it turns out that 96% of the highway accidents
occurred in 23 specific situations, so that evaluating safety for these cases is a good
indicator of the general safety.

2.2 Elements of a Scenario Based Evaluation

In order for the results of the scenario based method to be representative, some
elements need to be chosen carefully:

1. The definition of the scenarios
2. Their parametrization
3. The way the surrounding traffic is represented
4. The measure of safety.

Definition of scenarios

Basically, two main lines can be followed: scenarios can be constructed or extracted
from data. The first line offers the possibility of being more general, but the sce-
narios could be unrealistic or hardly ever occur in real life. In the second case, the
scenarios are definitely realistic, but they will represent only the conditions for which
they were measured—e.g. if only data from freeways were used, the safety evalu-
ationwill probably bewrong for country roads. Of course, combinations are possible.

Parametrization of scenarios

The purpose of the evaluation defines also the parametrization. There are (at least)
two different situations. If the aim of the assessment is to evaluate an average accident
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probability, it will be sensible to use a parametrization corresponding to the expected
situation, albeit with some strategy to reduce computational effort. If the aim is to
assess a comparative advantage, it will be sensible to look for a limit boundary, which
leads to accidents for one option and not for the other.

Surrounding traffic

It is well known that many accidents are prevented by a correcting reaction of other
traffic participants. Some situations, likemerging, frequently are associated to a good
informal cooperation—when it fails, traffic becomes more difficult—and dangerous.

So to have a realistic assessment of safety, the reactions of other participants should
be considered as well, at least as long as we consider mixed traffic with automated
and not automated vehicles. Unfortunately, the reactions of a human drivers are not
deterministic, so we should consider a full set of possibilities, which would make
the evaluation very difficult–with an unknown advantage in terms of quality of the
assessment. For example, modeling the human driver’s reaction to cut-in maneuvers
to validate safety of the automated lane change function in terms of crash probability
need large amount of measurements of not only normal (safe and proper) reaction
but (unsafe) reactions that result in near-crash or crashes as well. Moreover, it is still
unknown if the cut-in maneuver of automated driving function identical with human
driver. And thus, it still unknown if the human reaction model, derived from the mea-
sured reaction to other human drivers, applicable for ADAS/ADF. In practice, most
evaluations are donewithout considering changes in the trajectories of other vehicles.

Safety metrics

The most simple way to measure safety would be through the boolean indicator
crash/non-crash. However, such indicator is similar to using black and white colors
to describe the world. So, it is sensible to look for metrics that are able to describe
the “shades” of safety. Unfortunately, there is no single metric reflecting the safety
of a HAV under all conditions. Combined metrics have been proposed.

In the following, we discuss these topics more in detail.

3 Scenario Generation and Selection

The first step consists in fixing the so called Operational Design Domain (ODD).
Thus reducing the set of the test cases to a manageable size and thus enable the
so-called scenario based engineering.

The ODD defines the environmental condition of ADAS/ADF. SAEJ3016:2021
provides the taxonomy to define the ODD as “operating conditions under which a
given driving automation systemor feature thereof is specifically designed to function
including, but not limited to, environmental, geographical, and time-of-day restric-
tions, and/or the requisite presence or absence of certain traffic or roadway charac-
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teristics.” AV Safety Consortium has published best practice for defining the ODD
[11]. Thus, fixing ODD can put limits on road environment, behavioral specification
of ADAS/ADF, and the state of the vehicle. Thus reducing the set of the test cases to a
manageable size and thus enable the so-called scenario based engineering. For exam-
ple, the research project PEGASUS has worked on the ODD of a highway chauffeur
function to define the validation process and scenarios of the L3 autonomous driving
function [12]. The latest UN Regulation of ALKS [10] defines that the maximum
operational velocity of the ALKS is vmax = 60 km/h and road environment is high-
way so that the total test cases are limited to 4 logic scenarios [13]. An alternativeway
to specify the ODD is introduced [14], where the risks are assessed so that the ODD
of ADAS/ADF is limited in a low risk area. In [15], describes the relationship among
ODD, scenarios, and crashes/near-crashes.Once the environmental condition is fixed,
ODD relevant scenarios can be generated for testing and validation.Up to very special
cases, testing is done on the basis of a scenario catalogue, not of single scenarios.

3.1 Scenario Generation

As already stated, there are different phylosophies: scenarios can be constructed
(or generated) or extracted from measured data. Following the first line, stochastic
modeling and similar methods are usually applied for massive generation of test
scenarios. In [16, 17], the authors build up stochasticmodels using realmeasurements
and produce various test scenarios through randomized sampling, searching for the
situations with fault behavior, such as a crash. Nevertheless, they are usually applied
to some simple traffic situations, e.g. emergency braking in a car-following situation.
In the case of complex situations, e.g. modeling the large scale traffic [18], it is
normally time-consuming, due to the low occurrence of critical events, e.g. cases in
which the specified test scenarios result in a crash.

To overcome these limitations, [19–21] have proposed amethodology for scenario
generation in a deterministic way, through the combination of various components,
e.g. the weather, road type, driving maneuver, etc. In [22–24] the surrounding area
of the ego-vehicle is divided into various observation cell according to the possible
relative position of other vehicles to the ego. Depending on the cell occupancy and
vehicle location, the static combination of possible behavior of the ego and/or sur-
rounding vehicles form the concrete scenarios. However, this method greatly relies
on engineers’ expertise knowledge to single out the realistic scenario and to test the
critical situations.

3.2 Scenarios from Crash Databases

It is worthy mention that within this work the terminology of scenarios introduced
in [13] is applied, namely three levels of abstraction for scenarios: functional sce-
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Table 1 Assignment of critical causes of NMVCCS crashes

Critical cause attributed to Estimated percentage± standard deviationa

Drivers 94% ± 2.2%

Vehicles 2% ± 0.7%

Environment 2% ± 1.3%

Unknown Critical Causes 2% ± 1.4%

Total 100%
a ±95% confident limits
Source Singh [26]

narios, logical scenarios, and concrete scenarios. Functional scenarios depict the
most abstract level of scenario representations, which are represented by language
to ensure that human experts can easily understand existing scenarios, e.g. Tables2,
4. Logical scenarios depict a detailed representation of functional scenarios with the
help of state space variables and the value ranges of the state space variables via a
formal notation, see Fig. 8 panel (1). Every logical scenario can be converted to a
concrete scenario by selection of a concrete value from a parameter range.

Manual driving is the main cause of road traffic accidents. As mentioned in a
study conducted by NMVCCS4 from 2005 to 2007 [25], it is estimated that 94% of
the direct causes of NMVCCS collision events can be attributed to driver action, and
the vehicle and driving environment are estimated to contribute only by 4% of direct
causes. Relevant statistics on key causes are detailed in Table1. Thus, by analyzing
the accident data, we can find out the challenging driving situations that the system
under test (SUT) can encounter in real traffic, as it is expected to have a mixed traffic
in the next decade, consisting of autonomous driving and human drivers.

It is worth noting that crashes due to human errors as those summarized in [25]
result from the pre-crash actions. They usually belong to the same set of actions
(e.g. accelerating) which are perfectly safe in the utmost majority of cases. So the
key question is: what made a specific action dangerous? If we can systematically
describe these situations through a limited number of scenarios, we can limit the
overall cases and make the test feasible.

To make the distinction more clear between accident cause and pre-crash action,
let us consider as an example the non-performance error “sleep” in [25]. Figure1
panel (1) shows the actions resulting from a sleeping driver that leads to collision
with another vehicle, whereas in panel (2) it leads to crash with road barrier. In the
case of panel (1), the HAV is required to react appropriately to avoid the crash. If we
switch both vehicles, as in panel (2), the HAV does not need to react. Technically, as
we consider only accidents of the HAV, only the pre-crash action of the red vehicle
in panel (1) represents a relevant scenario for safety testing of HAV. Analyzing the
accident data in a similar way, we can find out the relevant test scenarios. Table2
shows some exemplary scenarios derived from analysis of SHRP2ND crash data,5

in which the collision threat is identified when surrounding vehicle execute various

4 National Motor Vehicle Crash Causation Survey (NMVCCS).
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Fig. 1 Relevance of the
crashes in terms of testing of
HAVs
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(1) Relevant: (2) Irrelevant:
Crash with an other vehicle Crash with road barrier
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maneuvers. For example, in Table2 rear-end collision between EGO and vehicle 1
may happen if EGO does not react to braking maneuver (No.1) or cut-in maneuver
(No.2) of the vehicle 1 in time and behavior as expected. It is worthy to mention
that the abstraction level of such kind of scenarios, according to the terminology of
scenarios in [13], is functional scenario, which are represented by language to ensure
that human experts can easily understand existing scenarios. The functional scenario
needs further parametrization to form the logic scenario with the help of state space
variables and their value ranges via a formal notation, e.g. Figure8 panel (1), and
converted to thousands of concrete scenarios by selection of various concrete values
from a parameter range of logic scenario [13, 27]. Further (functional) scenarios are
provided in Appendix.7.2.

3.3 Automated Scenario Catalogue Learning

As it was mentioned before, the scenarios for virtual testing can be generated or
learned from measurements of the real-world environment. The generation of sce-
narios has the advantages of high flexibility as well as a low initial investment.
Complex traffic situations can thus be created precisely. Unfortunately, with increas-
ing functionalities and the continuous operation ofmodernADAS, an a priori defined
set of relevant scenarios within this approach can be hardly found. In this context,
an alternative validation methodology consists in combining real drivings for data
acquisition and further extraction of the scenarios from collected data.

The overall architecture of such methods is represented by Fig. 2. In the Data
Collection step the data is recorded and the generation of additional information
relevant to the use-case is performed. Here, the data can be enrichedwith information

5 The Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study(NDS),
known to be the largest study of naturalistic driving behaviors available to date [26].
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Table 2 Basic scenarios: the ego is in the free-driving state

that is commonly not directly found in the recorded data like the TTC [28]. Then,
the processed data is transferred to a Data Clustering block responsible for finding
similarities between collected signals and grouping then into potential scenarios. The
resulting clusters are then seen as scenarios and are saved into a scenario database.
Finally, when new data come it is compared to the already learned catalogue of
scenarios to decide whether these data belongs to already known case or should
extend the database by a new scenario. If the new data can be assigned to an already
learned scenario, then the meta-information of this scenario (appearance frequency,
parameter values, ranges or distributions etc.) is updatedwithout creating a new entry
in the catalogue. The latter one allows keeping the catalogue compact.

The choice of the clustering and classification algorithms then defines the concrete
approach. For example, in [29] the authors use the extended (Modified) Unsuper-
vised Random Forest (MURF) for clustering and Random Forest (RF) algorithm for
classification. In [30], the clustering is done using the variant of on-line k-means
approach and the classification part is delegated to the nearest centroid method.

To show how the approach can be used in practice, we illustrate it through the
experiments from [30]. In the experiments the highway driving and the vehicles in
front of the ego car (150m ahead at most) were considered. Further restriction to
maneuvers in lateral direction is assumed. The goal will be to learn the scenarios of
5.5 s duration.
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Data Collection Data Clustering
(Unsupervised Learning)

Classification
(Supervised Learning)

Scenarios

Fig. 2 Architecture of automated scenario learning approaches

Fig. 3 The experiment vehicle equipped with 2 radars and a screenshot of the replayed data from
IPG CarMaker

To collect the sensor data, a production standard BMW 320d equipped with 2
Radar sensors (front, back) and2Stereo cameras (front, back)wasused.The sampling
time of the sensors is ts = 0.5 s. A trip from Spittal an der Drau via Villach (AT)
to Malborghetto (IT) has been recorded, out of which 50min highway driving were
extracted and post processed in order to obtain lateral displacements between the ego
car and other vehicles, see Fig. 3. Only the radar signals were used for the purpose
of testing, whereas the camera recordings were used to label the detected objects.
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Fig. 5 The 5 learned clusters, corresponding to 5 subfigures, the time series assigned to them (grey
lines) and the centroids for each class (colored lines)

In our experiment we test the approach over the limit case—an empty catalogue
at the beginning of testing.We run the learning algorithm on the sensor data replayed
on-line.

For illustration purposes, we plot the start dXstart and end dXend positions (rela-
tive lateral distances of the cars with respect to ego) of the learnedmaneuvers in Fig. 4
as well as each of the learned clusters together with its cluster centroid (in terms of
DynamicTimeWarping (DTW)average) inmoredetails inFig. 5.Moreover, the algo-
rithm detected some outliers as well, in our set-up the clusters with less than 5 cases.
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Fig. 6 Schematic representation of the learned scenarios

The results show that the algorithm was able to learn 5 scenarios. Figure5 illus-
trates that they clearly distinguish from each other, even though some misclassi-
fication is present, in particular in the first and second cluster. For the presented
example, the scenarios are: transition phase between two scenarios corresponding
to in-between lane driving, the following case, cut-out maneuver, cut-in maneuver,
and a scenario when during the cut-out the preceding vehicle changes 2 lanes fast on
a 3-lane highway. The schematic representation of these scenarios corresponding to
learned clusters is shown in Fig. 6.

It should be commented that the first cluster contains somewhat unclear cases,
including the above mentioned transitions, but also very noisy data as well as cases
which are not detectable by the radar. To the latter ones we can include the changes in
the highway topology resulting in changing the relative distances between vehicles,
e.g. highway narrowing before tunnels.

Depending on the use case, different outcomes of the learning process can be used.
For example, for safety testing not the clusters themselves are of interests, since they
provide common driving models from data, but the outliers (see Fig. 4) that represent
in some sense rare scenarios that are usally safety critical more likely. On the other
hand, for evaluating whether the simulation environment is realistic or not, one may
analyze the clusters of typical driving behaviors by comparing the learning outcomes
from real data against the simulated ones.

4 Scenario Parametrization

4.1 Numerical Assessment Methods

The parametrization of the scenario is one of the key steps towards the scenario-based
validation. Both experts knowledge based and real measurement based approaches
are applicable. Specifically, using Field-Operational-Test (FOT) measurements to
determine the suitable mathematical description (model) with corresponding param-
eter set of a scenarios so that the resulting mathematical model (parametrization of a



366 J. Zhou et al.

scenario) represents the real traffic situation, is widely applied. It allows parametriza-
tion to effectively reduce the complexity of parameters and to cover traffic situations
in the real world with a rather narrow interval between parameter values, so to say
only relevant and realistc situations are considered and included in the parametrized
scenario. The parameter set and its corresponding value ranges form a parameter
space. Thus, through variation of parameter’ values within the parameter space, we
can obtain various specified testing scenarios. All these specified testing scenarios
together describe the most relevant operation of SUT in actual traffic. Thus, the SUT
can be tested with these concrete scenarios in the simulation or HiL, or even real
driving test on proving ground, to assess the safety.

Figure7 illustrates a exemplary workflow of FOT-based parametrization and vir-
tuall testing of safety.

Because the parameter space of a parameterized scenario is continuous, is can
result again infinite many concrete scenarios by varying the parameter values. It
is necessary to apply various sampling methods to generate concrete scenario for
testing and evaluation, which result in various safety outcome

Depending on sampling method, various descriptions in terms of safety can be
obtained. It can be obtained as the final outcome in terms of the safety, a boundary
in the parameter space separating the safe or unsafe state or a statistic indicator like
crash rate.

4.1.1 Grid Search

As alreadymentioned, grid search is a traditional way of performing the space explo-
ration, which is simply an exhaustive searching. The parameter space is normally
discreted evenly. Each grid point (a set of parameter values) will sampled to generate
the concrete scenario to test the safety of SUT. Finally, a map can be obtained that
indicates the safety and unsafety region of the SUT in the parameter space for the
testing scenario. Grid search is simply to implement but it suffers from the curse of
dimensionality. The resulting total samples depends on the numbers of the parameters
and discretization accuracy.

The resulting safe and unsafe regions are normally refers to boundary that exactly
separate the safe state from unsafe. This boundary represents the safety limit of the
SUT. We can evaluate the SUT in certain scenario by comparing its safety limit with
human’s.

Figure8 shows the virtual tests results for an ACC function, obtained through a
full scale grid searching for a cut-in scenario. The scenario is parametrized through
initial longitudinal distance �y0 ∈ [2, 45]m between EGO and vehicle 1 (cut-in
vehicle), initial velocity difference �v0 ∈ [−6.5,−1.5]m/s between them, and the
lane change duration T ∈ [1, 15]s of the vehicle 1. The lane change duration char-
acterized the aggressiveness of the cut-in maneuver, which is modeled through the
sigmoid function, see [31, 32].

Three different simulation results, that is, collision and two safe situations, are
identified and shown in Fig. 8 panel (2). The red crosses represent the parameter
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Fig. 7 Exemplary workflow of FOT measurements-based parametrization of scenario and numer-
ical methods based assessment

combinations that leads to front-end collision or sideswipe between the ego-vehicle
and the cut-in vehicle. The green circles represent the parameter combinations that the
ACC controller reacts to the cut-in vehicle properly and avoids the crash successfully
[(see panel (3) variant (1)]. The blue dots represent the situation that the cut-in vehicle
successfully changes the lane without cutting in between the ego-vehicle and the
preceding vehicle but behind the ego-vehicle, see panel (3) variant (2). The light
blue hull that envelops the safe situations in panel (3) is the collision-free boundary.
That indicates the safety performance limit of theHAV in terms of the cut-in situation.
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Fig. 8 Exemplary three dimensional parametrization and simulation results

4.1.2 Sampling, Importance Sampling

Random sampling is another widely used method to generate parameter values from
a parameter space. It is assumed that the distribution of each parameter is known.
By applying Monta-Carlo test, various massive concrete scenarios will be generated
and evaluated for the SUT. This results at the end a failure probability, or say crash
rate (collision as unsafe indicator). Based on the crash rate, people can evaluate the
safety of SUT by comparing the crash rate with the statistic of human drivers.

However, Random sampling may face a problem that in the FOT data (the param-
eter distribution), the critical situations or unsafe situations of the SUT belong to
rare situations, and a reliable evaluation of the probability of crash requires a large
number of tests. To reduce the efforts put on testing of safe situations, importance
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sampling techniques are usually applied to reduce the number of tests and obtain a
reliable test result.

The basic idea of applying importance sampling in test amount reduction is to
replace the original distribution density function f (x) by a newone f ∗(x) to generate
critical situation x , which leads to a higher probability of occurrence of high-risk
events. And then the risk calculation function is modified to obtain the safety benefits
of ADAS/ADF/HAVs [33].

4.1.3 DOE Based Approaches

Another method widely investigated method for space exploration is Design-of-
Experiment DOE based approach or learning based method [34]. DOE methods
are developed to speed up the process of boundary searching. The most common
approaches are the methods based on convex hull or minimizing the parameters’
variance [35, 36]. However, for the parametrization of a scenario, the collision free
boundary can be non-convex. A Gaussian Process Classifier (GPC) and a Support
Vector Machine (SVM) based DOE strategy, proposed in [37] and [38], respectively,
can find and describe the non-convex boundaries iteratively. In [32], the Gaussian
Process is extended to accelerate theboundary searching inADAS/ADF/HAVtesting.
A criteria is proposed to evaluate the approximation quality of the resulted boundary
during the iteration and thus, to stop and exit the iteration.

Figure9 panel (1) describes the work-flow of the accelerated boundary searching
using GPC based DOE strategy, taking an exemplary parametrization of the cut-
in scenario with 3 dimensional inputs θ = [�v0,�y0, T ]T and binary outputs y ∈
{+1,−1} as the example, as shown in panel (2). The blue circles are tested safe states
whereas the red crosses are tested crash states. The green surface is the resulting safe
boundary separating the safe from unsafe states. As we can find that most tested
states are cumulated close to the boundary and only limited samples are in the areas
that are apart from boundary.

It is worthymention that the proposedDOEmethods normallyworks for scenario-
based testing and validation of ADAS/ADFwithout stochastic characters. To includ-
ing stochastic characters further adaption is necessary.

5 Representation of the Surrounding Traffic

Safety in its own is a static concept—did a crash occur? In practice, a crash analysis
will be done only after a crash. However, such a black/white classification delivers
a limited information, and is also difficult to analyze, because most data records do
not include crashes, even though they include situations which could have easily
led to a crash. Against this background it may be more appropriate to evaluate
risk, additionally to crashes, and this requires estimating the future trajectories of
the involved vehicles. While for virtual testing the ground truth of all surroundings
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Fig. 9 The workflow of a GPC based DOE and testing example

needs to be known, the respective tested system typically has no access to said ground
truth. Based on this fact, the topic of prediction and, subsequently, threat assessment
(from an ADAS perspective) will be briefly presented in the following subchapters.

5.1 Trajectory Prediction

The prediction of other traffic participants’ behavior represents a discipline in its
own, as a huge variety of different facets and approaches exist [39–41]. The key
challenge is, that there is not only a high inter-group variability between different
types of traffic participants (i.e. a car will have a completely different behavior than
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bca

Fig. 10 Exemplary visualization of different prediction methods. a first principles based b maneu-
ver based c interaction based.eps

a bicycle), but also a notable intra-group variability which is intuitive, as one cannot
for example expect drivers to react similar and also in all other groups there is a huge
variation. The behavior is again depending highly on the environment, as the same
driver will act different when comparing the behavior on highways to the behavior in
urban areas, especially due to the fact that the respective environment allows only a
limited number of maneuvers [42]. The fewer maneuvers are possible and the more
clearly they can be assigned, the easier it is tomake a predictionwhich is also a reason
why the first autonomous driving functions are being used primarily on highways.

Prediction methods for cars can be mainly split into approaches that are based
on first principles (usually used for short prediction horizons), maneuver based pre-
diction methods (usually used for longer prediction horizons), as well as hybrid
approaches combining these methods—as exemplarily shown in Fig. 10 [40].

However, in mixed traffic, a focus on the vehicle to be predicted is not sufficient as
the interaction with other traffic participants plays a significant role. For this reason,
methods from the field of game theory, such as the Level-k theory [18], or probability-
based approaches, such as Markov decision processes [43], are often used. The more
realistic the behavior should be modeled, the more challenging and complex the
problem gets. The result of a prediction can also be given in different ways, either as
a single trajectory, a possible area of occupancy, or a probabilistic estimation where
the object might be most likely. Such predictions may also incorporate the response
to legal restrictions, such as speed limits or sources of danger in the surrounding area,
such as tight curves or roads that merge and also common behavior like not changing
lanes without a reason. A physically reachable set based on the vehicle model often
defines the outer limits here [44], but is usually of no direct practical significance
since the result is typically too conservative for direct use in regular road traffic.

5.2 Threat Assessment

Based on the prediction of other traffic participants’ behavior possible threats (or
possibly occupied areas—see [44], which can also be used for tactical decision
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making [45]) around a controlled vehicle can be identified for a close future. But this
is only one component required to guarantee safety, the topology of the environment,
restrictions in view, or in general the observable area for built in sensors, as well as
weather conditions also play a relevant role [46–48].

Threats which are intuitively handled by human drivers are often not trivial to
model for ADAS as this often happens based on former experiences of a driver.
Learning based methods can be used to mimic these behavior but lead to other
problematic aspects, like unpredictable behavior in situations that have never been
experienced before which can be very critical. As previously mentioned, a techni-
cally safe handling of a situation can provoke other traffic participants to dangerous
maneuvers like cutting in in front of the ego-vehicle if the gap to the preceding vehi-
cle (which is just safe from a physical perspective) appears too big for a human driver
who may have incorrectly assessed the situation. This way, a cautious handling of an
unsafe situation might lead to an even more critical situation, which is quite common
in mixed traffic.

Before autonomous vehicles are on the road in large numbers, it would therefore
seem to make sense to tackle those kind of misperceptions—which are often due to
people’s wrong assessment of situations—in road traffic to increase safety in mixed
traffic. The idea is, that the behavior of a human driver is only observed and the system
intervenes if it becomes apparent that a situation would lead to an accident without
intervention. Thereby, it is necessary tomodel the environment and potential changes
as precise as possible, but also themodeling of the ego-vehicle itself, especially when
it comes to physical restrictions, like maximum possible lateral forces or velocity
depending acceleration [43, 49].

6 Metrics of Risk

For the design of a safety system, the determination of the risk function plays a
central role since it influences a variety of performance indicators. As elaborated in
[50], on the one hand, large inter-vehicle distances or headways improve safety in
terms of avoiding rear end collisions. On the other hand, traffic capacity decreases as
shown in [51]. In addition, large inter-vehicle distances may pursue vehicles on the
adjacent lane to merge which might decrease the acceptance. Hence the choice of the
headway policy is crucial for ADAS development and is closely linked with safety
and comfort. To guarantee acceptance of ADAS, the risk function should reflect to
some extent the driver’s risk perception.

Risk perception by human drivers and the consequences on driving behavior is an
extensively studied field [52–54]. It was shown, that the main factors are the gender
(there is a difference between men and women in evaluating the risk), age, driving
experience (an experienced driver has in general a better risk appreciation compared
to a young driver), and cultural aspects (e.g. risk evaluation of Indian drivers can be
very different fromGerman ones). For autonomous driving, however, the driver is not
responsible anymore, meaning that the risk assessment is shifted to a vehicle. For the
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Table 3 Risk functions for vehicle following scenarios

Name Meaning Formula and nomenclature

Distance A minimum inter-vehicle
distance

–

Time headway (TH) The time that passes when the
controlled vehicle reaches the
position of the obstacle on the
path

t (n)
h (t) = �x (n)(t)

v(t)

�x (n)(t) – relative distance

v(t)—absolute speed of the
ego

Time to collision (TTC) The time required for two
vehicles to collide if they
continue at their present
speeds and the same path

t (n)
c (t) = �x (n)(t)

�v(n)(t)
, v(t) >

v
(n)
x (t)

�v(n)(t)—relative velocity

Modified TTC (MTTC) TTC with current accelerations
to predict the collision timeif
both vehicles continue with the
status quo

t (n)
mc (t) =
−�v(n)(t)±

√
v(n)2+2�a�x (n)(t)
�a

�a—relative acceleration

Deceleration rate to avoid a
crash (DRAC)

The minimum required
deceleration rate which a
vehicle has to apply to avoid a
crash with a leading vehicle

t (n)
d (t) = �v(n)2(t)

�x (n)(t)−L

L—length of the front vehicle

Modified DRAC (MDRAC) DRAC and taking into account
perception reaction time (PRT)

t (n)
md (t) = �v(n)(t)

2(t (n)
c −R)

R is the PRT

latter, the examined risk functions are typically defined for longitudinal control in a
vehicle following scenario.However, the choice of a suitable risk function that defines
the minimum headway is not trivial. For a human driver, the choice of the headway
might be related to its risk perception and some authors describe the driving process
as a result of risk homeostasis [55], although the definition of a the risk function is
not clear. In this context, often the inverse of the headway indicator is considered to
represent a drivers risk perception, see e.g. [56].

Some of the most popular (longitudinal) headway policies and risk functions are
listed in Table3 and briefly explained in the latter.

Basically, by imposing a minimum inter-vehicle distance as constraint of an auto-
mated driving algorithm, collisions could be avoided in car following situations.
However, human drivers, as well as automated driving applications have a reaction
time (where no action can be expected) which is greater than zero. This can become
dangerous e.g.when it comes to a heavy brakingmaneuver of a preceding vehicle. For
higher velocities, the driven distance during the reaction time could be large enough
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to lead to a violation of the minimum headway or to a collision. Imposing constraints
on distances are most extensively applied for maneuvering with low velocity as for
instance trajectory planning for automated parking control [57]. For higher veloc-
ities, it seems reasonable to use a risk function that depends on the velocity of the
vehicle.

Instead of keeping a minimum distance to a preceding vehicle, many authors
propose to track a time headway (TH) [58]. An example for an automated driving
algorithm that utilizes a constant TH policy is conventional ACC. Beside the main
goal of ACC, namely tracking the driver’s desired velocity, many algorithms track
a constant TH if a preceding vehicle on the same lane exists and drives slower.
Obviously, by constraining the minimum TH to a vehicle, the resulting inter-vehicle
distance must increase with the velocity of the ego vehicle. However, the minimum
headway could lead to very small distances for low velocities of the ego vehicle. To
keep a minimum distance in such situations, a constant term can be added to the TH,
which ensures a minimum distance when it comes to stop and go traffic, etc.

Observations of real traffic situation show that human drivers often approach
(e.g. dense traffic) very close to the preceding vehicle with TH values significantly
lower than those typically found in ACC functions. This indicates that the relative
velocity between controlled vehicle and obstacle plays an important role in human
risk perception.

A suitable metric that serves as indicator in many collision avoiding systems is
the time to collision (TTC). It assumes a constant speed difference over the time
and requires that the path of the ego-vehicle is the same as the preceding vehicle.
Several studies point out that it is beneficial to directly use TTC for decision making
in automated driving applications. TTC is considered to meet a drivers expectations
with respect to a collision avoidance system and it is shown that drivers decisions as
when to start braking in a critical situation may be well based on TTC. It can be seen
thatTTC>TH, andTTCandTHare equal in case if the velocity of the obstacle is zero.
The difference between the risk as measured by TH and TTC can be interpreted as
follows. A constraint on TTC allows in general lower inter-vehicle distances for low
relative speed compared to a constraint on the minimum TH. Whereas TH captures
rather the potential danger of a situation, TTC reflects the imminent danger. In fact,
low THmay not require any action of the system but low TTC signify that a reaction
is required to avoid an accident.

As one could see, TH and TTC have their drawbacks. On the one hand, the TH is
suitable to decrease the potential risk of a collision but it can be observed that many
drivers allow much lower TH in some situations. In many cases, tracking of TH is
not meaningful, e.g. when a vehicle crosses the lane and is driving faster or traffic
is dense. On the other hand, TTC depends on the relative speed of a vehicle and can
lead to very small headways to the preceding vehicle in steady state conditions.

In order to improve the risk assessment, some modifications and/or different
indexes can be found in the literature. In the case of modified TTC (MTTC), the
classical TTC is modified to include the current acceleration and thus predict the
time of collision if both vehicles would continue with the status quo [59].
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By using Deceleration Rate to Avoida Crash (DRAC), one defines the minimum
required deceleration rate which a vehicle has to apply to avoid a crash with the
leading vehicle [60], whereasmodifiedDRAC (DRAC) considers an important factor
in the analysis of safety—the minimum time required for the drivers to react, also
called Perception Reaction Time (PRT).

7 Outlook

7.1 Induced Effects on Other Vehicles

By considering the safety of the ego vehicle itself, it is usually assumed that the
other vehicles do not change their behavior as a consequence of the actions of the
ADAS. There are very good reasons for that, but in practice the reactions of other
drivers usually contribute to reduce the probability of an accident. A good example
of such contribution is a highwaymerging scenario, especially in a dense traffic. Very
often a vehicle driving on the main lane assists the merging vehicle in performing it’s
maneuver, either by reducing the own speed or by changing the lane to left, if enough
space is available. Therefore, the real safety tends to be even higher compared to that
estimated under the assumption that the surrounding vehicles do not change their
behavior.

On the other side, let us imagine the situation when an autonomous vehicle makes
a lane change in front of another human-driven vehicle. If the velocity of the ego car
is larger than the second vehicle’s, no rear-end collision is possible between these two
cars however close the merging has been. However, the human driver may be scared
by a possibly very small distance between the vehicles and can have a completely
different reaction when facing the safety critical situation. For instance, is driver may
perform a hard braking leading to the rear-end collision not with the ego car, but with
the car behind. As a result, the formal safety of the ADASwas fulfilled, but the traffic
accident still happened between two human driven vehicles as a result of the ego’s
action.

The importance of the latter is to some extent included inmany national regulation
documents. For example, in German traffic rules [(Straßenverkehrsordnung (StVO)]
it is stated:When changing lane to the left lane during overtaking, no following road
user shall be endangered. That means: whenever a vehicle changes to the left lane
to overtake another road user, the driver has to ensure that those on the left lane will
not be endangered. In particular, if a vehicle that approaching on the left lane could
be endangered in any way, overtaking is prohibited.

This can be interpreted in a more generic way by the so-called defensive driving.
The “Safe Practices for Motor Vehicle Operations” defines the defensive driving as
driving to save lives, time, and money, in spite of the conditions around you and the
actions of others. Its aim is to reduce the risk of collision by anticipating dangerous
situations, despite adverse conditions or the mistakes of others.
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Accordingly, the defensive paradigm means the development of an ADAS that
take in account the possible behavior so to minimize the risk that any other vehicle
is forced to slow down, speed up, or change lanes to avoid collision.

7.2 Shields and Emergency Systems

The riskmethodsmentioned above can be used also to improve safety. In this context,
there are two developmentswhich sharemany common aspects and are already partly
enforced, and partly under study.

The first approach are emergency which systems already exist (in different lev-
els of complexity), and are in some cases also required by law. For example, new
trucks and buses in the European Union have had to be equipped with Autonomous
Emergency Braking (AEB) assistants since 2015. The relevant regulations are sum-
marised in UN/ECE R131. Taking a look into the future, it can be assumed that this
type of emergency assistance system will be standard for newly developed cars in a
few years’ time. To support this kind of development, AEB/AES-systems are getting
more andmore into focus in the European NewCar Assessment Programme (NCAP)
rating of the upcoming years, as listed in [61].

The second aspect, safety-shields, are concerned with an additional, independent
layer which checks the plausibility of any decision by the ADAS and adapts the
system inputs if a critical statewould be reached, as shown e.g. in [62]. This concept is
utilized both in the field of controller synthesis [63, 64] with automotive applications
[62, 65, 66] as well as in the field of motion planning [67–69], including reachability
analysis of surrounding traffic participants. The key idea is shown in Figs. 11 and
12. Of course, the approach can be extended to include more elements, e.g. road
borders. To this end, the environment must be detected, the options available must
be evaluated, and if the case arises that without intervention each option would lead

Fig. 11 Exemplary visualization of safe (S), temporary safe (T ) and unsafe (U) sets of states
including an unsafe action a and a safe action ac. For simplicity only temporal sets of states are
shown
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Fig. 12 Exemplary concept
of a safety-shield. Starting
from a safe state xS0 the
shield utilizes environmental
knowledge to prevent and
adapt unsafe actions a which
would result in an unsafe
state xU1 into safe actions ac
resulting in a safe state xS1
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to an accident, the system must intervene to bring the vehicle into a safe state. The
challenges thereby are manifold, especially in mixed traffic, and simulation-based
validation methods are urgently needed before such systems should be used in road
traffic.

Appendix

See Tables4, 5, 6, 7, 8.
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Table 4 Basic scenarios: EGO in the course of lane change maneuver

Table 5 Basic scenarios: EGO in the car-following situation
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Table 6 Complex test scenarios: via braking evasive action
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Table 7 Complex test scenarios: via lane-changing evasive action
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Table 8 Complex test scenarios: via lane-changing evasive action
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Factors Influencing Driver Behavior
and Advances in Monitoring Methods

Shahzeb Ansari, Haiping Du, Fazel Naghdy, and David Stirling

Abstract Monitoring driver behavior in real-time is a challenging task as there are
several factors that can influence the driver to commit unpredictable mistakes while
driving. These factors mainly involve inattentive driver state, absent mind, unreliable
cornering, and speeding, resulting in fatal accidents. This chapter identifies the factors
that affect driver behavior and performance, and provides an in-depth analysis of
various deployed scientific monitoring methods and proposes solutions for early and
efficient real-time monitoring of driver behavior. The chapter also reviews real-time
smart detection algorithms deployed for the classification of driver state. In addition,
the chapter proposes an unsupervised deep learning neural network model that can
be deployed in classifying driver states and actions.

Keywords Human factors · Environmental factors · Driver behavior · Intelligent
monitoring methods · Driver states classification · Unsupervised deep learning

1 Introduction

Driving mistakes can result in injuries and fatalities. According to Transport for New
South Wales (NSW), Australia [1], over the period 2015–2020, there were 1688
traffic accidents, resulting in more than 1100 fatalities, including both drivers and
passengers. Figure1 shows accident statistics and the casualty rate over this five year
period. While there are various factors involved in such accidents, speeding, fatigue,
and alcohol are considered as the most serious causes of catastrophic situations [1],
as illustrated in Fig. 2.

Various categories of driving styles have been proposed in the literature [2–6].
Generally, driving behavior can be categorized as: (1) Aggressive, (2) Moderate, and
(3) Defensive. An aggressive driving style is characterized by thrill seeking, risky
and adventurous driving. Moderate driving behavior is the optimum driving style,
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Fig. 1 Year-wise fatality rate in NSW, Australia [1]

Fig. 2 Fatality rate of three
dangerous human factors [1]

where drivers safely maneuver the vehicle and cope with difficult road situations. In
this state, the driver is patient and avoids causing any trouble for other road users, as
well as prioritizing safe and vigilant driving. In the defensive driving style, the drivers
remains overly-patient and operates the vehicle when they feel confident and assume
safe road environment. It can be considered as slow driving style, where drivers
apply frequent braking and perform under-steering. Hence, this can cause irritation
in surrounding vehicle drivers, and can slow the flow of traffic. Furthermore, this can
also induce over-load mental fatigue in drivers [7].

Driving style can vary over time. For example, a young driver may exhibit an
aggressive driving style at the start of the trip on an empty street by over accelerating
the vehicle and engaging in unstable vehicle cornering. After some time though,
the driver then adopts a defensive style on a crowded road by managing the vehicle
speed within required speed limits, as well as leveraging the vehicle maneuverability
within a safe handling envelope (to maintain a stable vehicle sideslip angle and yaw
rate) [8].

Driver’s performance is affected by several factors, among which fatigue, drowsi-
ness, aggression, and misjudgment are the most common factors [2]. For instance, a
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driver experiencing fatigue and drowsiness can lose concentration and steer the vehi-
cle in a wrong direction [9–11]. Similarly, younger drivers are more prone to risky
and aggressive driving and can end up in fatal crashes [12]. According to statistics
provided by NSWTransport [1], 168 young drivers between the ages 17 and 25 were
involved in various crashes because of speeding. Figure3 provides statistics about
the type of crashes reported over the period of 2015–2020 and the factors involved.

Numerous methods have been proposed in the literature to understand driver
behavior. In most approaches, camera-based methods are deployed to track the
driver’s facial and body features in real-time [10]. Such methods are called direct
driver measurement. Alternatively, in indirect driver measurement [13], the driver’s
state is measured indirectly through vehicle dynamics by detecting motifs or anoma-
lies in the time-series data.

In this chapter, factors that influence driver behavior are discussed using both
direct and indirect methods. An in-depth analysis of different methods proposed to
effectively monitor the driver in real-time is conducted. Furthermore, the chapter
discusses the implementation of various machine learning algorithms in developing
the intelligent driver models. Finally, the chapter proposes an unsupervised deep
learning classifier known as deep learning auto-encoder that can be deployed to
predict the different driver states.

The remainder of the chapter is structured as follows. Section2 discusses the main
factors affecting driving. Section3 provides an in-depth analysis of driver monitoring
methods that can be deployed to detect the factors in real-time. Section4 provides
an overview of several algorithms proposed to monitor the states of both the driver
and vehicle. Section5 presents an analysis of deep learning classifiers. Finally, some
conclusions are drawn in Sect. 6.

Fig. 3 Types of crashes [1]
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2 Factors Influencing Driver Behavior

Driver’s state generally depends on the mental state and actions of the driver, as well
as the application of the steering wheel, acceleration, and braking pedals through the
vehicle’s human-machine interface (HMI). Figure4 shows the impact of different
factors on driver behavior that result in leveraging the vehicle operation.

The most common factors that influence the driver are shown in Fig. 5. These fac-
tors can be categorized as human factors and environmental factors. Human factors
include the driver’s mental condition, personality, and ergonomic posture. Environ-
mental factors are associated with the surrounding environment, such as emerging
obstacles.

Fig. 4 Impact of different
factors on vehicle
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Fig. 5 Factors influencing
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2.1 Types of Human Factors

There are six basic human factors that influence the driver performance and decision-
making process, as described below.

2.1.1 Mental Condition

Driver’s mental condition is affected by fatigue, drowsiness, and sleepiness. Accord-
ing to [14], driver fatigue, drowsiness and sleepiness are similar in meaning. Gener-
ally, driver fatigue is of two types: (1) sleep-related (SR) fatigue and (2) task-related
(TR) fatigue. SR fatigue is caused by sleep deprivation, inadequate sleep cycle, and
circadian times.

TR fatigue is further divided into two groups: underload TR fatigue and overload
TR fatigue. Underload mental or cognitive fatigue is induced because of extended
hours of driving on long highways, and intervention of driver assistance systems in
less dense traffic environments. It is also known as passive TRmental fatigue. On the
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contrary, overload mental fatigue, also called active TR mental fatigue, is induced
because of demanding driving operations in dense traffic environments.

Driver’smental condition is also affected byworkload, tiredness, and stress, result-
ing in absent-mindedness while driving. Poor mental state contributes to loss of
concentration on the road and unexpected vehicle maneuvers.

2.1.2 Demographics and Decision Making

Driver’s demographics include age and gender. Based on the research reported in
[15–17], young drivers tend to prefer pleasure seeking and risky driving compared
to older drivers. The driving of this group is characterized by higher acceleration,
speeding, and sharp cornering.

According to various studies, male drivers are more prone to high risk driving
than female drivers. A questionnaire survey showed that female drivers have higher
patience than male drivers [17]. However, male drivers possess a better ability to
self-regulate their driving style. In the context of driving behavior, self-regulation is
a decision-making skill where drivers suddenly change their driving style to cope
with critical driving conditions [18].

2.1.3 Personality Trends and Aggression Potential

Driver’s personality plays an important part in driving performance. Personality
depends on both driving experience and driving style [15]. Driving style relates to
the driver’s years of experience. Driving style generally falls into three categories:
(1) Aggressive, (2) Moderate, and (3) Defensive.

According to the survey conducted in [17, 18], driver’s aggressive nature reflects
riskier and less experienced driving. Drivers with 2–3 years of driving experience
can adopt aggressive driving for excitement, which results in higher likelihood of
accidents. Drivers with more than three years of experience prefer a more moderate
driving style, which is considered as an optimal driving style, where drivers are aware
of the surrounding environment and can predict the consequences of the vehicle
operation. A defensive driving style mainly falls in the category of the novice drivers
and older drivers. Such drivers prefer lower speed and frequently apply braking in
coping with road situations for a safe driving experience.

2.1.4 Driver Actions

Driver distraction often results in deterioration in driving performance. Distractions
can include driver actions such as, talking with passengers, interacting with infotain-
ment, inattention to the road, using a cell phone, and eating or drinking. Moreover,
actions such as yawning, nodding or shaking the head while driving are also consid-
ered as distractive activities as they indicate fatigued mental state [19, 20].
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2.1.5 Health Care and Ergonomic Posture

The health of the driver can play a major role in the quality of driving. Medical
problems, such as back or neck pain contribute to poor ergonomic posture. Driving
under the effects of alcohol is more prone to accidents [21–23]. The breath alcohol
concentration (BAC) test is conducted to scale the levels of alcohol and drug con-
sumption. Drivers with high BAC levels tend to steer erratically, as well as apply
erratic amount of pressure on the acceleration and brake pedals, resulting in lane
exceedance on a curvy road.

2.1.6 Route Familiarity

Route familiarity reduces the occurrence of distractive tasks, such as looking at a
navigation screen, resulting in reduced risk for accidents.However, unfamiliaritywith
the route requires more concentration on the road, thereby increasing and potentially
overloadingmental tasks, such as, interactingwith traffic signs, surrounding vehicles,
pedestrians, and road obstacles.

2.2 Types of Environmental Factors

As described below, there are five basic environmental factors that can influence the
performance and judgment of the driver.

2.2.1 Traffic and Surrounding Environment

Traffic signals and signs are used to ensure a safe and smooth flow of traffic. As
reported in [17], frequent changes of traffic signals and complex road signs result
in frustration and uncertainty for the driver. Traffic violations can occur because
of driver anger and anxiety [24]. The most important and potentially dangerous
features in the surrounding environment are the presence of neighboring vehicles
and pedestrians. The driver’s most pressing task is to avoid collisions with these
obstacles by selecting appropriate vehicle functions for a safe journey.

2.2.2 Road Variations

Variations in the road can cause unexpected interference of the non-linear longitudi-
nal, lateral and tire forces, resulting in vehicle rollover during high speed cornering
[25]. Furthermore, road complexity level caused by lane variations and roundabouts
can also affect driver behavior. It is observed that drivers prefer high speeds on long
monotonous highways, thus violating speed limits [25].
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2.2.3 Seasons, Weather, and Reduced Visibility

Badweather including rainy,wet, snow,windy, and fog conditions can impededriving
performance and are considered as extreme driving conditions. These environmental
factors result in challengingdriving conditions such as slippery roadways and reduced
visibility [26–28].

Technically, these factors reduce the tire-road friction co-efficient. Lower friction
can cause the vehicle skid and roll. Similarly, reduced visibility can make the driving
difficult for the driver to maintain a safe distance from other vehicles.

2.2.4 Vehicle Condition and Dynamics

Vehicle parameters, such as mass, tire cornering stiffness ratios, and moment of iner-
tia, are responsible for the feel that the driver experiences while driving the vehicle.
Variations in these parameters can significantly affect vehicle performance. Accord-
ing to the study conducted in [29], it is observed that with an increase in the number of
passengers in a vehicle, its overallmass increases, resulting in heavy load on the steer-
ing wheel and requiring more effort for the driver to turn the steering wheel on curvy
high-inclined roads. Similarly, varying the tire stiffness ratio can induce arbitrary
self-aligning torque that ultimately results in changing the feel of steering wheel.

2.2.5 Time of Day and Lighting Condition

Night-time driving is more challenging because of the reduced lighting condition,
making pedestrians, lane and road lines harder to see. On the other hand, excessive
amounts of sunshine can reduce the driver’s visibility and can increase the risk of
accidents.

2.3 Driver Profile

2.3.1 Driver Speed Profile

A driver speed profile provides a way to characterize the driver’s use of the accel-
eration and brake pedals. Various methods have been proposed to construct such a
profile. In the study reported in [30], the driver’s pedal behavior is modelled based
on the information of the pedal’s position, vehicle speed and acceleration, and road
speed limits and signs. Another method discussed in [4], deployed to classify driving
styles based on the headway gap, pedal position and vehicle speed. The classifica-
tion is categorized as aggressive, moderate, and defensive styles. Aggressiveness is
represented by fast speed, lower headway gap and higher pedal movements, whereas
defensiveness is the opposite.
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2.3.2 Driver Steering Profile

The driver steering behavior can be measured in terms of vehicle yaw, as well as
lateral and longitudinal dynamics. Generally, a 2-DOF bicycle dynamic model is
employed to estimate the vehicle lateral and yaw dynamics, as shown in Fig. 6. The
state equation can be written as:

[
β̇

γ̇

]
=

⎡
⎣

−C f −Cr

mV −1+ lrCr−l f C f

mV 2

lrCr−l f C f

Iz

−l2r Cr−l2f C f

IzV

⎤
⎦

[
β

γ

]
+

[ C f

mv
l f C f

Iz

]
δrw (1)

where, β is the vehicle sideslip angle. γ is the yaw rate, C f and Cr are cornering
stiffness coefficients of front and rear tires, respectively. V is the vehicle speed, l f and
lr are the distances from front and rear wheels to the center of gravity, respectively.
m is the vehicle mass, Iz is the vehicle inertia and δrw is the road wheel angle. During
cornering, lateral position and lateral acceleration determine the lateral force acting
on the roadwheels resulting in self-aligning torque (τa) [31] as shown inEquation (2).

τa = −C f (tm + tp)(β + γ l f
V

− δrw) (2)

where, tm and tp are the tire mechanical and pneumatic trails, respectively.

Fig. 6 2-DOF bicycle model
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Table 1 Intrusive measuring methods

Physiological signals Monitoring methods

Brain or cognitive Electroencephalogram (EEG)

Heart beat or pulse Electrocardiogram (ECG)

Eye’s blinking frequency Electrooculogram (EOG)

Respiration rate Wearable sensors, accelerometers

Skin conductance and temperature Wearable sensors

3 Driver Behavior Monitoring Methods

Generally, the method used to assess driver behavior is either subjective or objective.
In subjective approaches, also known as qualitative methods, the driver’s behavior is
assessed by performing pre-drive and post-drive interviews or answering question-
naires. Typical assessment questions focus on driver’s vigilance, such as whether the
driver failed to notice pedestrians in a desired path, or missed traffic signs, as well
as underestimated the speed of oncoming vehicles during overtaking. In objective
methods, driver behavior is assessed by measuring the physiological parameters as
well as vehicle parameters, such as longitudinal and lateral vehicle dynamics. In this
section, driver’s objective real-time monitoring methods are described.

3.1 Intrusive Measuring Methods

Driver monitoring based on intrusive methods are also known as direct measure-
ment approaches. Table1 presents the important intrusive physiological monitoring
methods commonly deployed in real-time.

3.1.1 EEG Based Monitoring System

Monitoring the driver’smental state based onbrain signals throughEEG is considered
as the gold standard for physiological assessment. A brain computer interface (BCI)
device, such as the one shown in Fig. 7 is used to record a set of electrical signals
(each a time-series) emanating from the brain, as recorded from sensors positioned
in various places in the BCI. In Fig. 7, a 32-channel Quick-cap (Compumedics-
Neuroscan) device is mounted on the driver’s head, where a subject is driving a
MATHWORKS simulated vehicle in a virtual environment [32].

The distribution of EEG electrodes over the brain regions is shown in Fig. 8.
According to the studies reported in [33], the spectral power in frequency bands of
the EEG channels/electrodes increases as the driver feels tired, stressed or fatigued.
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Fig. 7 Subject driving MATHWORKS simulated vehicle wearing a 32-Channel EEG device
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Fig. 8 Distribution of EEG channels with respect to brain region

The frontal and parietal regions are the most active parts of the brain, from where
driver’s vigilance and absenteeism can best be tracked [34]. The trend in time-series
spectrum of respective parts of the brain is highly visible so that motifs or anomalies
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can easily be detected. EEG-based monitoring systems provide an accurate assess-
ment of driver state. However, wearing the intrusive cap consisting of several elec-
trodes can disturb the driver’s comfort and focus.

3.1.2 ECG Based Monitoring System

Monitoring the heart pulse and rate is also considered as an effective method to
detect driver states. In the heart rate variability (HRV) analysis, the time variation in
the heartbeats is measured. It is an evaluation technique that assesses the peripheral
autonomic nervous system (ANS). It is an indicator of human health capability that
needs to be maintained stable during daily life routine activities [35]. The research
conducted in [35] demonstrates that the heart rate for a drowsy or fatigued driver
tends to reduce when the level of sleepiness increases. This implies that the HRV
time interval of a drowsy driver increases compared to an alert or active driver.

There are several devices available that can monitor the real-time heart activity
features, such as Alive Heart Activity Monitor [36] that provides ECG, heart rate,
and acceleration variations. These devices typically require some electrodes to be
attached to the chest. However, recent heart ratemeasurement devices can be attached
to the steering wheel and track the heart rate wirelessly [37].

3.1.3 EOG Based Monitoring System

EOG test is commonly deployed by attaching electrodes near the eyes to record
the eye blinking frequency as shown in Fig. 9. According to the literature, slow eye
movement and low blinking frequency are signs of a deterioration in driver alertness
[33]. This type of monitoring system requires the attachment of electrodes on the
driver’s face during driving, which makes it not conducive to a naturalistic driving
experience. Camera-based methods can overcome this inconvenience by visually
measuring eye blinking frequency.

3.1.4 Respiratory Rate, Skin Conductance and Temperature
Variations-Based Monitoring System

Other direct physiological measured parameters, such as respiratory rate, skin con-
ductance and temperature are also deployed to monitor driver behavior in real-time.
Wearable sensors have been extensively deployed, such as smartwatches, smart
glasses, smart clothes, and fitness wristbands are some examples of such applica-
tions. A good example is Base Peak Watch that measures the heart rate, GSR (Gal-
vanic Skin Response) and skin temperature [38]. Moreover, radar-based contact-less
devices have also proven effective in tracking the respiratory rate during driving [37].
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Fig. 9 Attachment of EOG
electrodes. The grey
electrode is the reference,
whereas, red and blue
electrodes representing
vertical and horizontal
voltage potentials,
respectively

Reference
Vertical EOG 

Horizontal EOG 

3.2 Camera Based Measuring Methods

Camera basedmonitoringmethods offer a cost effectiveway tomonitor driver behav-
ior. Generally, face features are captured through cameras mounted inside the vehicle
and analyzed to detect abnormalities and vigilance in the driver behavior. The fea-
tures used in the analysis include degree of eyelid opening, percentage of eye rate
closure (PERCLOS), eye pupil tracking, and mouth opening.

First, the images produced by the camera are processed to crop the face area of
the driver. Next, the eye pupils are tracked in successive image frames. According to
work reported in [39], a Kalman filter works effectively in estimating the position of
the moving objects. It is important to accurately determine the location of eye pupils,
as well as region of interest to be investigated in the next frame.

Another feature used is the percentage of number of frames with closed eyes
(Nclose) to the number of frames with open eyes (Nopen) in a fixed time frame [10].
The so-called PERCLOS measure is given in Equation (3), and is mainly deployed
to detect the level of drowsiness in the subject.

fPERCLOS = Nclose

Nopen
× 100% (3)

For detecting the behaviors such as yawning, singing, and talking to passengers,
the amount of mouth opening can be measured. To detect whether the mouth is open
or closed, the subject’s lips are segmented based on an eccentricity analysis, where
the lips region is assumed to be like an ellipsoid with eccentricity equal to 1 when
the mouth is closed. Furthermore, if the whole lip region is not detected then the
mouth centroid point is estimated through the eye pupil center points using Eq. (4),
as shown in Fig. 10. The mouth region is cropped from the image frames and then
processed to assess the frequency of mouth opening (FMO), which represents the
percentage of number of frames with closed mouth (Mclose) to the number of frames
with open mouth (Mopen), as given in Equation (5).
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Fig. 10 Mouth centroid
angle estimation

Pupil 
points
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θ = tan−1 |y2 − y1|
|x2 − x1| (4)

fFMO = Mclose

Mopen
× 100% (5)

3.3 Ergonomic and Body Posture Based Measuring Methods

Driver’s ergonomic and body posture behavior have direct impact on the driving
performance [7]. A normal ergonomic posture often indicates sound driving. When
seated, the position of the head should be upright with gaze towards the road. The
arms should be relaxed by adjusting the position of the steering wheel. Car mirrors
should be adjusted so that they can be viewed without restraining the neck or twisting
the body. The thighs should be straight, and the knees should be levelled with the hips
in a way that the feet are approached easily when operating the pedals. A comparison
of alert and inattentive ergonomic posture captured using XSENS motion capture
system [19] is illustrated in Fig. 11.

The work reported in [19, 20], studied the effects of mental fatigue through head
posture using motion capture suit. The study revealed that the driver’s nodding and
head shaking behavior are considered as distracted behavior due to influence of
fatigue. Figure12 shows the head posture inclination and nodding posture. The study
conducted in [9], developed a radio frequency based smart hat that can be deployed
in real-time driver behavior monitoring system to track driver’s head movements.
Furthermore, an inertial motion tracker based system was also deployed in [32] to
track the driver’s foot trajectory.
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Alert Inattentive Nodding

Fig. 11 Driver’s ergonomic posture [19, 20]

Fig. 12 Head posture RotationNodding

3.4 Vehicle Dynamics Based Measuring Methods

Driver behavior monitoring based on vehicle parameters is an example of indirect
driver measurement approach. Vehicle parameters such as speed, steering deviation,
lane deviation, roll rate, mass variations etc. are monitored to detect any unusual
activity or motif. In addition to driver behavior monitoring, this type of measurement
approach is also used to detect the environmental factors discussed in Sect. 2.2.

Steering angle (δsw)monitoring is a common method deployed to detect driver
condition. The steeringwheel subsystemmodel is deployed shown in Eq. (6) to detect
the time-series anomalies during vehicle operation. A steering wheel subsystem
includes the steering wheel, steering column, steering angle sensor, and a feedback
motor. The inputs to a steering subsystem are driver’s torque (τd) and self-aligning
torque (τa). Js , Cs and Bs are the moment of inertia, torsional stiffness, and viscous
friction co-efficient.

[
δ̇sw(t)
δ̈sw(t)

]
=

[
0 1

−Cs
Js

− Bs
Js

] [
δsw(t)
δ̇sw(t)

]
+

[
0
1

]
(τd(t) − τa(t)) (6)
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The steering wheel responds to the torque applied by the driver, which depends on
neuromuscular dynamics and brain intention. However, the torque applied is based
on the inertia, damping and stiffness of the human arm [40, 41]. Therefore, human
steering control behavior is important to be modelled due to its effect on the reaction
torque [42]. The driver receives information of the environment and vehicle states
and decides to steer the steering wheel at a desired angle and applies it as a torque
(τin) as shown in Fig. 13. A mathematical model of the human arm is provided in
Equation (7) with arm inertia (Ia), damping (Ba) and stiffness (Ka).

τin = Ia δ̈sw + Ba δ̇sw + Kaδsw (7)

The actual road wheel angle depends on the steering ratio (N ) of the system. It is
given as the ratio of the steering wheel (δsw) to the road wheel (δrw).

δrw = 1
N δsw

δ̇rw = 1
N δ̇sw

(8)

In a coupled steering system, the steering wheel is linked mechanically with
the tire system. In an uncoupled system, this linkage is removed and the steering
feel is artificially created [43]. Steer-by-Wire systems are the applications currently
deployed in commercial cars such as Infiniti Q50.

Lane deviation monitoring while driving is also considered as an effective method
to detect driver errors and mistakes. In this regard, vehicle lateral model shown in
Equation (2) is usually deployed according to the handling envelope [8]. The handling
envelope shown in Fig. 14 represents the relationship between vehicle sideslip angle
and yaw rate. It shows the stable vehicle maneuverability when vehicle retains its
lateral dynamics within the envelope.

Steering wheel subsystem

+

Brain intention
Environment and vehicle 

feedback

Road Feedback torques

δs

-
τin δsw δrw

Arm Dynamics

Ka
Ba

Ia
τsw 1

N

Fig. 13 Driver steering subsystem
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Fig. 14 Handling envelope
(from Balachandran et al.
[8])
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Tomonitor the driver speed profile, a dual-track 3-DOF nonlinear vehiclemodel is
deployedwith effects of the non-linear dynamics of the lateral tire forces, induced due
to unreliable steering of the driver. The 3-DOF vehicle model consists of longitudinal
speed, lateral velocity and yaw rate of the vehicle based on the non-linear Brush tire
model described by Pacejka [44]. This non-linear tire model can effectively provide
the in-vehicle parameters to identify the longitudinal and lateral driver behavior
through tire longitudinal and lateral forces [45, 46]. The dynamics of the vehicle
model is presented here, and the nomenclature of the variables is shown in Table2.

v̇x = vyγ + Fx f l + Fx f r + Fxrl + Fxrr + Fxext

m
(9)

v̇y = −vxγ + Fy f l + Fy f r + Fyrl + Fyrr + Fyext

m
(10)

γ̇ = a(Fy f l + Fy f r ) − b(Fyrl + Fyrr ) + Mzext + b f (Fx f l−Fx f r )+br (Fxrl−Fxrr )

2

Iz
(11)

Tire longitudinal and lateral forces are given as:

Fxi = Fxit cos(δi ) − Fyit sin(δi ) (12)

Fyi = Fxit sin(δi ) + Fyit cos(δi ) (13)

where, i = f l, f r, rl, rr, represents the front left, front right, rear left, and rear right
wheel, respectively.

If external longitudinal velocity is applied, then v̇x = 0 under quasi steady-state
condition. In this case, the longitudinal tire forces Fxit also become zero. Hence,
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Table 2 Vehicle dynamics nomenclature

Symbols Description

vx Vehicle longitudinal speed

vy Vehicle lateral velocity

γ Yaw rate

a, b Distance of front and rear wheels from center

b f , br Front and rear track widths

Fx f l , Fx f r , Fxrl , Fxrr Longitudinal forces applied on each wheel

Fy f l , Fy f r , Fyrl , Fyrr Lateral forces applied on each wheel

Fxext , Fyext Longitudinal and lateral external forces

Mzext External moment about vehicle center of gravity on yaw axis

δ f l , δ f r , δrl , δrr Steering angle of each road wheel

Ft Traction force on tire

Fs Side force on tire

Ci Longitudinal cornering stiffness

Cα Lateral cornering stiffness

αi Tire slip angle

s Slip ratio

μ Tire-road friction co-efficient

Fz Normal tire force

g Gravity

h Vehicle height

based on the Fiala’s Brush tire model [44], non-linear lateral forces due to slip angle
applied on each wheel can be calculated as follows:

Fyit = −Cαi tan(αi ) + C2
αi

3μi Fzi
tan(αi )| tan(αi )| − C3

αi

27(μi Fzi )2
tan3(αi ) (14)

Tire slip angle of each wheel is defined as:

α f l = tan−1

(
vy + aγ

vx + γ
b f

2

)
− δ f l (15)

α f r = tan−1

(
vy + aγ

vx − γ
b f

2

)
− δ f r (16)



Factors Influencing Driver Behavior and Advances in Monitoring Methods 405

αrl = tan−1

(
vy − bγ

vx + γ br
2

)
− δrl (17)

αrr = tan−1

(
vy − bγ

vx − γ br
2

)
− δrr (18)

Normal tire forces are computed as follows:

Fz f l = bmg − (v̇x − vyγ )mh

a + b
+ (mh

(
v̇y + vxγ

)
)
2

b f
(19)

Fz f r = bmg − (v̇x − vyγ )mh

a + b
+ (−mh

(
v̇y + vxγ

)
)
2

b f
(20)

Fzrl = amg + (v̇x − vyγ )mh

a + b
+ (mh

(
v̇y + vxγ

)
)
2

br
(21)

Fzrr = amg + (v̇x − vyγ )mh

a + b
+ (−mh

(
v̇y + vxγ

)
)
2

br
(22)

The cornering stiffness ratio (Cαi ) and surface friction coefficient (μi ) are the
design parameters which determine the road friction conditions of each tire.

3.5 Hybrid Measuring Methods

Hybrid driver monitoringmethods deploy themultiple detection systems in real-time
by integrating direct as well as indirect measurement methods. Hybrid approaches
deploy physiological or camera-based measuring methods to monitor the driver’s
condition and then combine the information with vehicle parameters to estimate the
state of both the driver and vehicle. One of the common approaches deployed is
to combine the driver’s eye gaze information with the road scene information [47].
Figure15 shows the methodology of deployment of intelligent hybrid system for
detecting driver states. Following are the typical hybrid driver monitoring systems:

1. Physiological system + vehicle dynamics.
2. Camera based systems + vehicle systems.
3. Wearable/Motion tracker sensors + vehicle systems.
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Fig. 15 Hybrid driver monitoring system

In the first type of system, the driver’s physiological features, such as EEG, ECG,
and EOG are analyzed simultaneously with the information of vehicle dynamics.
However, deployment of an intrusive approach is not practical in real-time because
of several electrodes that are required to be attached to the subject. In this regard,
alternative devices based on wearable sensors can monitor the physiological param-
eters, such as heart rate, skin conductance and temperature variations in real-time,
and can be deployed simultaneously with vehicle dynamics information. The motion
trackers/sensors record different parameters such as acceleration, velocity, orienta-
tion angles (Euler angles), and angular motion/displacement of body posture [19,
20]. The sensors need to be attached on the respective body segment whose data
needs to be monitored. On the contrary, non-intrusive systems such as camera-based
devices can be deployed in real-time in conjunction with vehicle sensors and dynam-
ics. MIT human-centered smart car is an example of a hybrid approach that tracks
the driver’s activities and vehicle dynamics simultaneously [48].

4 Smart Detection Algorithms

The techniques used in real-time driver behavior monitoring fall into two categories.
In the first category, a personalized driver behavior model is designed based on
the mathematical parametric relationship such as driver’s arm model as shown in
Equation (7) [49–51]. The mathematical models are hard-coded based on specific
threshold-rule strategies. Hence, they cannot be considered as general driver behavior
model. In the second category, driver behavior is analyzed using pattern classifica-
tion learning [52, 53]. The classification models are machine learning models that
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Fig. 16 Illustration of supervised and unsupervised methods

are trained over large data sets of human and vehicle information under different
scenarios and conditions. The classification methods can be divided into two groups:
(1) Supervised classification and (2)Unsupervised classification as shown in Fig. 16.

4.1 Supervised Classification

In supervised classification, the prediction of an unknown input is carried out based
on the label set. The supervisedmachine learning algorithms are trained over labelled
dataset of pre-defined classes. The dataset is labelled by human experts or validated
according to other benchmarks. Thesemethods accurately detect the newdata, and are
easily implementable for real-time driver and vehicle states classification. However,
the uncertainty in assessing driver’s performance due to different factors can lead to
incorrect labelling. Moreover, large complex multivariate datasets require extensive
labelling effort and time, resulting in subjective or human errors. Following are
the efficient supervised algorithms available in MATLAB, and commonly used for
categorical time-series data classification [54]:

1. Decision trees
2. Support vector machines
3. K-nearest neighbors (KNN)
4. AdaBoost Algorithm
5. RUSBoosted trees.

4.2 Unsupervised Classification

In unsupervised classification, the prediction of unknown data is carried out based on
the patterns or groups formed from the training of unlabeled data. Unlike supervised
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learning, unsupervised algorithms are trained without the target or labelled data. The
algorithms automatically find the correlation and relationship in the training data
set and cluster similar data-samples in separate groups. These algorithms avoid the
drawbacks of supervised algorithms, such asmanual labelling of the data. In addition,
they offer dimensionality reduction for complex data sets to detect the motif or
anomalies in the time-series data. For example, the work conducted in [19], deployed
aGaussianMixtureModel (GMM) to find the correlation in the driver’s head posture.
GMM automatically grouped similar data-points in each cluster based onMinimum-
MessageLength (MML) encoding, and clustered the different driver states in separate
clusters. The GMM sequences successfully reduced the dimensionality of the multi-
variate data set. The common unsupervised machine learning classifiers available in
the MATLAB are listed below [55]:

1. Principal component analysis
2. Hierarchical clustering
3. K-Means clustering
4. Gaussian mixture models
5. Hidden Markov models
6. Self-organizing maps.

5 Deep Learning Neural Network Classifiers

Deep learning neural networks (DLNN) consist of neural network architectures with
several hidden layers, and have been proved to offer high performance inmany differ-
ent types of classification problems. The architecture represents a more human-like
artificial intelligence, and is based on different layers that produce an artificial neural
network (ANN), and make decisions based on learning through hidden neurons. The
decision is processed through several non-linear processing units. The major advan-
tage of DLNN over traditional machine learning algorithms is that it takes the raw
input data and automatically extracts the features from the data.

The most common types of DLNN are convolutional neural networks (CNN) and
recurrent neural networks (RNN). CNNs are mostly deployed in image processing,
particularly for monitoring the driver behaviour using Camera-based approaches,
while RNNs are used for temporal sequence classification applications, where
driver’s direct measuring signals, such as EEG, ECG, and accelerometer, are used
for training the model and detecting the driver status in real-time. Unlike to Feed-
Forward Neural Network, RNNs are feedback-learners and can predict the long-term
dependencies [56, 57]. In this chapter, a special type of RNN known as long-short
term memory (LSTM) classifier is discussed.
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Fig. 17 Supervised LSTM classifier architecture

5.1 Supervised LSTM Classifier

LSTM is a type of RNN and is deployed for temporal sequence classification appli-
cations. It can learn the long-term dependencies between the temporal sequence-to-
sequence data. The architecture of a supervised sequence-to-sequence LSTM clas-
sifier is shown in Fig. 17.

The raw data is passed through the Sequence Input Layer to the network that
declares the dimension (number of input features) of the dataset. The data is then
processed by the LSTM Layer, which learns the long-term dependencies between the
time-series data and performs the additive interactions that can improve the gradient
flow during training based on the hidden neurons. The data is then multiplied by
the neurons weight matrix and added by a bias vector in Fully Connected Layer.
It creates the k fully connected layers based on the number of output classes. The
non-linear SoftMax Layer then applies the SoftMax function to the data and sends
to the Classification Layer. This final layer then computes the cross-entropy loss
function and infers the number of output classes from the output size of previous
layers. The mathematical relationships among the layers can be seen in [20].

5.2 Unsupervised LSTM Classifier

The unsupervised LSTM classifier works as an auto-encoder network classifier that
encodes the input signal and then decodes it based on the learning achieved through
the LSTM layer. An auto-encoder LSTM network learns the dataset without the
labelled or target set. It reconstructs the input signal based on the feature extraction by
learning from the training dataset. The architecture of the unsupervised LSTM auto-
encoder is shown in Fig. 18. It has a simple model architecture with low complexity
that results in short training time [9].

The LSTM auto-encoders work as a binary unsupervised classifier that are trained
on a specific type of data.When, the model is tested on the new data of n samples that
is similar to its training data, then model reconstructs the similar data of n samples
with higher similarity score (high accuracy). However, when the test input is com-
pletely different from its training data, then the similarity score drops considerably,
representing low detection accuracy.

In the example of detecting different driver states based on head posture as dis-
cussed in [19], a novel architecture of the unsupervised classifier can be deployed
as shown in Fig. 19, where multiple auto-encoders can be used for detecting each
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Fig. 18 LSTM auto-encoder architecture

Fig. 19 Driver states
classification using LSTM
auto-encoders
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Pre -Fatigue
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driver state, such as alert, pre-fatigue and fatigue. Each auto-encoder can be trained
over data of a particular driver state. For example, in Fig. 19, the auto-encoder1 can
be trained over driver’s alert information provided in [19]; the auto-encoder2 and
auto-encoder3 can be trained over driver pre-fatigue and fatigued driving datasets,
respectively. In such a case, if the input data corresponds to the alert data-points,
then the matching score of auto-encoder1 will be high compared to the other auto-
encoders. There are various similarity or matching score techniques available [58].
However, Euclidean distance or dynamic time warping (DTW) as given in Equation
(23) is generally deployed.

dist (x, y) =
√√√√ k∑

i=1

(xi − yi )
2 (23)

Here, x and y are the test and predicted samples. If the dist (x, y) is low, then the
accuracy will be considered high and vice versa.



Factors Influencing Driver Behavior and Advances in Monitoring Methods 411

6 Summary

With rapid advancements in the development of intelligent vehicles, there is a need
for smart, fast, and intelligent systems to predict the state of the driver. The next step
in the advancement of smart vehicles is to predict the driver behavior efficiently and
to provide assistance in coping with complex driving scenarios. Various intelligent
algorithms and methods will be deployed in commercial vehicles to identify the
intention of the driver in real-time and provide active shared control while driving.

In this chapter, several factors that influence driver behavior were presented, with
discussion on their effects and detection methods. The factors were divided into two
categories human factors and environmental factors. The core content of the chapter
was to discuss the possible methods in detecting the driver behavior in real-time. The
methods were divided into either direct measurement or indirect measurement meth-
ods. The advantages and disadvantages of all the presented methods were discussed
considering practical deployment in commercial cars.

More specifically, the importance of hybrid drivermonitoringmethods in real-time
applications was discussed and various smart detection algorithms were introduced.
In addition, the chapter proposed an unsupervised deep learning model based on
encoder-decoderLSTMnetworkknownasLSTMauto-encoder,which couldperform
themulti-level classification for detecting different states of the driver. The algorithm
deploys separate auto-encoders for each driver state classification and can efficiently
detect the various driver conditions by evaluating the performance of each auto-
encoder using a Euclidean distance-based similarity score.
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Towards Learning-Based Control
of Connected and Automated Vehicles:
Challenges and Perspectives

Alexander Katriniok

Abstract The exploitation of communication technologies enables connected and
automated vehicles (CAVs) to operate more collaboratively, that is, by exchanging or
even negotiating future trajectories and control actions. That way, CAVs (or agents)
can establish a networked control system such as to safely automate road traffic in
a collaborative fashion. A rich body of literature is available, e.g., on intersection
automation, automated lane change or lane merging scenarios. These control con-
cepts, though, are most tailored to the particular application and are in general not
applicable to multiple scenarios. This chapter conveys the challenges and perspec-
tives of modeling and optimization-based control techniques for the safe coordina-
tion of multiple connected agents in road traffic scenarios. Along these lines, the
perspective of generalizing controller design to serve multiple use cases simulta-
neously instead of designing separate controllers for every use case is discussed.
Moreover, the opportunities of learning-based control in case of model uncertain-
ties and mixed-traffic scenarios, involving connected and non-connected agents, are
outlined.

1 Introduction

Automated vehicles (AVs) perceive their environment through instantaneous sensor
measurements from radar, camera or LiDAR sensors and predict motion trajectories
of other road users, e.g., by utilizing machine learning methods [8]. These mostly
uncertain predictions are then leveraged in the AV control strategy to act more proac-
tively [7]. When AVs are additionally equipped with communication technologies,
these are referred to as connected and automated vehicles (CAVs). Compared to AVs,
CAVs are even able to explicitly exchange or even negotiate future trajectories and
control actions [27]. That way, the uncertainty related to future motion trajectories
of other CAVs in the vicinity can significantly be reduced. Moreover, CAVs have the
ability to establish a collaborative networked control system to safely automate traffic
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scenarios—such as intersections without traffic signs or lights [43], lane changing
or lane merging maneuvers [2].

There is a rich body of literature which addresses collaborative maneuvers of
CAVs, see [27, 43] for a comprehensive survey on intersection automation or [2]
for an overview of automated lane changing and lane merging maneuvers. Control
system architectures for such collaborative networked control systems can generally
be categorized into centralized, distributed and hybrid approaches. In centralized
control schemes, the CAVs (in the remainder referred to as agents) communicate
with a central node, that is, the agents transmit their current state to the central node
and in turn receive an optimized control action or (exclusive) access to a certain
road section [16, 21, 47, 59]. Conversely, in distributed schemes the agents only
communicate with each other, independent of a central node, and solve their part of
the control problem locally [3, 18, 23, 25, 36]. Hybrid concepts are a combination
of the previous two. Also decentralized control schemes are a prominent alternative
in the literature, however, these do not involve communication and are therefore
excluded from subsequent considerations. In terms of methodology, such kind of
multi-agent coordination problems have, amongst others, been addressed in various
ways, see [2, 27, 43] for a comprehensive review.

This chapter is predominantly devoted to optimization-based control schemes,
particularly to model predictive control (MPC) [35], as these allow to explicitly
accommodate constraints and exploit future trajectories of connected agents. That
said, the main contribution of this chapter is to convey the challenges and perspec-
tives related to modeling and optimization-based control for the safe coordination
of connected agents in road traffic scenarios—such as intersections, lane changing
or lane merging maneuvers. Along these lines, the author’s own work forms the
narrative but with sufficient and broad reference to the related literature. Given that
control concepts in the literature are mostly designed to address a particular use case,
this chapter discusses perspectives of generalizing controller design such as to serve
multiple use cases simultaneously. Starting with a centralized control scheme, the
chapter outlines the challenges that come along with the transition to a distributed
optimization regime. This step is even more cumbersome if the centralized prob-
lem is already nonconvex, mostly due to collision avoidance constraints. Finally,
the potentials of exploiting machine learning methods for such kind of problems
are highlighted. Especially, model uncertainties or the presence of non-connected
vehicles (also known as mixed-traffic scenarios [11]) give rise to control schemes
which learn from data and account for the associated uncertainty in the resulting
(stochastic) optimal control problem (OCP).

In the remainder, the definition of the considered multi-agent coordination prob-
lem and its fundamental assumptions are introduced in Sect. 2. Then concepts for
modeling agent dynamics are conveyed in Sect. 3 before Sect. 4 proceeds with an
outline of centralized and distributed control concepts. Extensions towards learning-
based control are discussed in Sect. 5 before Sect. 6 concludes the chapter.
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2 Multi-Agent Coordination Problem

Notation In the remainder, xk+ j |k refers to the prediction of variable x at the future
time step k + j given information up to time k. Moreover, the interval [a, b] ⊂ N

with a < b is denoted asN[a,b], whileN+ andR+ indicate the set of positive integers
and real numbers greater than zero. Finally, A� denotes the transpose of a matrix
A ∈ R

m×n .

We refer to the problem of safely coordinating multiple connected agents in road
traffic scenarios as themulti-agent coordination problem, which is generally defined
as follows.

Problem Statement

The problem of interest is to automate multiple connected agents in a certain
section of the road network and utilize vehicle-to-everything (V2X) communi-
cation for that purpose. The respective set of automated agents is denoted as
A � {1, . . . , NA} where NA refers to the total number of agents. An agent is said
to be automated if the associated control system is at least manipulating one con-
trol input. Starting at the current time tk , every agent travels from its initial position
pk � p(tk) � (X (tk), Y (tk)) along an a priori known route R. In general, the route
R rather prescribes a desired driving direction than the particular lane in the road
network (see Fig. 1b). Along these lines, the agents commonly pursue individual

Fig. 1 Two examples of multi-agent coordination problems. (Left) An unsignalized intersection
with two agents. (Right) A lane change scenario on a road section with two lanes. (Both) Every
agent moves in the direction of the routeR (dashed line) while its actual optimized trajectory (solid
line with dots, which indicate future time steps) does not have to coincide withR. The safety region
(hatched gray area) shall not be violated by the shape of the other agents. Fig. 1b Derived from [22]
©2020 IFAC with permission
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objectives such as tracking a desired speed or ensuring comfortable and efficient
driving. Most importantly, collisions between agents have to be avoided and agents
must not leave their designated lane(s) along the route R.

Two prominent and frequently researched examples of suchmulti-agent coordina-
tion problems are unsignalized intersections [18, 25, 29] and lane change scenarios
[22] as shown in Fig. 1a, b, respectively. In both use cases, the hatched gray area indi-
cates the safety area around the blue agent which must not be violated by the shape
of other agents—an example realization of collision avoidance. In the literature,
many different approaches have been pursued to mathematically formalize collision
avoidance, see Sect. 4.2. Along these lines, Fig. 1a shows the blue agent crossing
the intersection after the green agent, although it could have decided to cross first.
These type of choices challenge coordination schemes by means of nonconvexity
as outlined in the subsequent sections. Moreover, Fig. 1b gives an example that the
routeR does not necessarily have to coincide with the agent’s optimized trajectory.

To further limit the scopeof suchmulti-agent coordinationproblems, the following
fundamental assumptions are made.

Fundamental Assumptions

A1. The desired routeR of every agent is determined by a route planning algorithm,
which resides on a higher control level (see Fig. 2).

A2. Every agent is equipped with V2X communication capabilities.
A3. Every agent is able to communicate with every other agent.
A4. The communication channel is not prone to failures or package dropouts.
A5. Agent clocks are synchronized.
A6. Every agent has access to a digital map of the road network to reason about the

road geometry ahead.
A7. Agent dynamics and parameters are not subject to uncertainty.

Fig. 2 Hierarchical control
system architecture. A
high-level route planning
algorithm, running at a low
update rate, provides the
desired route R to the
cooperative motion planning
algorithm. The vehicle
actuators are finally
manipulated by low-level
controls



Towards Learning-Based Control of Connected and Automated Vehicles … 421

Assumptions A2–A7 are common in the literature to reduce complexity of the
control problem at hand [17, 29]. Moreover, the use of a high-level route planning
algorithm, as postulated in A1, is prevailing in AV control system architectures [30].
Along the lines of A1, a control system architecture as given in Fig. 2 is considered.
More precisely, a high-level route planner determines every agent’s route R which
then serves as an input to the cooperative motion planning algorithm—the controller
for multi-agent coordination, which is connected to other agents via V2X commu-
nication. With a central node in the infrastructure, the agents predominantly exploit
vehicle-to-infrastructure (V2I) communication while vehicle-to-vehicle (V2V) com-
munication is prevalent in distributed control schemes. Finally, low-level control
either (i) further refines control input and state trajectories (u·|k, x·|k) of the motion
planning layer before forwarding the resulting control actions to the actuators [40] or
(ii) represents the interface to the actuators which consume the (optimized) control
action uk [18, 24]. As illustrated in Fig. 2, this chapter contemplates the latter.

3 Modeling Agent Dynamics

To solve the multi-agent coordination problem at hand within an optimal control
framework, a dynamic agent model is required which is conducive to control. That
said, it should be simple but describe agent dynamics in terms of input to state
or input to output behavior sufficiently well. In the literature, the applied model
inherently depends on the considered application. Referring to the use cases in Fig. 1,
intersection coordination schemes mostly utilize a simple double integrator model
(sometimes accompanied by first order drivetrain dynamics) while lane change or
lane merging control regimes apply more complex (kinematic) bicycle models—as
discussed subsequently. The reader should be aware, though, that there might be
further alternative models which are not addressed in this chapter for the sake of
brevity.

3.1 Double Integrator Model

The simplest model that is frequently utilized in the literature is the double integrator
model [17, 23, 29, 42]. Every agent is represented by a reference point (mostly the
geometric center) which is assumed to travel along a route coordinate s, see Fig. 3a.
That said, the time evolution of the agent’s velocity v and route coordinate s is
prescribed through the integration of its longitudinal acceleration ax and its velocity
v respectively, i.e.,

v̇ = ax , ṡ = v. (1)
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Fig. 3 Control-oriented models for motion planning. (Left) Double integrator model which is
utilized in an intersection use case. The route R and the actual travel path are the same. Every
agent’s dimension is given by its length L and its widthW . The superscript indicates the respective
agent. (Right) Kinematic bicycle model in a lane change use case. With an additional degree of
freedom (steering), the travel path of the agent may deviate from R. Fig. 3b Derived from [22]
©2020 IFAC with permission

The advantage of such linear model is its simplicity. By applying model (1), though,
the underlying motion planning problem is one-dimensional. Thus, every agent
moves along its a priori fixed routeR : s �→ (X,Y ) (provided by the route planner)
where X ∈ R and Y ∈ R denote the respective coordinates in the global Cartesian
frame in dependence of the route coordinate s ∈ R, see Fig. 3a. In other words, the
model does not allow the agents to deviate from the given route R and as such to
involve lateral motion control. With (1), the resulting state space model ẋ = f (x, u)

with x ∈ X ⊆ R
nx , u ∈ U ⊆ R

nu and vector field f : X × U → R
nx exhibits the

state vector x = [s, v]� and the control input u = ax . In this context, X and U are
the admissible state and input sets, respectively.

3.2 Bicycle Model

To accommodate lateral vehicle dynamics in motion planning, a frequently pursued
approach is to utilize a bicycle model [33, 46, 49], which may either be purely
kinematic [46, 49] or is governed by Newton-Euler equations [33]. For a majority of
motion planning problems, though, kinematic models are prevalent in the literature
[2, 27, 43] as they are much less dependent on vehicle and tire parameters, while
still being sufficiently accurate for the considered application. For this reason, these
type of models are considered to be sufficient for the coordination problem at hand.
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In the literature, the time evolution of the agent’s position is commonly described
either with respect to global coordinates (X,Y ) [49] or along a given path (or route)
[22, 46]. We will follow the latter approach, appearing to be more suitable for our
coordination problem, and devise the agent’s motion along the given route R in
a curvilinear reference frame [22, 46]. Compared to Sect. 3.1, the route R : s �→
(X,Y ) with path coordinate s and global Cartesian coordinates X and Y does not
necessarilymatch the agent’s actual trajectory but rather reflects the road geometry—
usually defined by the road centerline. In the curvilinear Frenet frame [22, 46], as
illustrated in Fig. 3b, the agent’s position at time t relative to the routeR is given in
terms of its coordinate s alongR and its perpendicular distance toR. By considering
the route coordinate s, the lateral distance �y, the heading angle �ψ relative to the
route tangent tR and the velocity v as agent states, a state space model of the form

ṡ = v cos(�ψ + β)

(
1

1 − �y κ(s)

)
(2a)

�ẏ = v sin(�ψ + β) (2b)

�ψ̇ = v

lr
sin(β) − v cos(�ψ)

(
κ(s)

1 − �y κ(s)

)
(2c)

v̇ = ax (2d)

with the vehicle sideslip angle

β = arctan
(
tan(δ) lr/(l f + lr )

)
(2e)

is gained. In (2), l f and lr , respectively, refer to the distance of the front and rear axle to
the center of gravity. The route curvature κ(s) is assumed to be provided as a parame-
terized curve by the high-level route planner (see Assumption A1). The devised state
space model ẋ = f (x, u) exhibits the state vector x = [s, �y, �ψ, v]� along with
an increased input vector u = [ax , δ]�. Compared to the double integrator model
(1), the wheel steering angle δ adds an additional degree of freedom to accommodate
lateral motion control.

3.3 Further Extensions

The control-oriented state space models in Sects. 3.1 and 3.2 can be augmented by
first order drivetrain dynamics [25] such as to account for the time lag until the
longitudinal acceleration ax reaches its desired set point ax,ref, i.e.,

ȧx = − 1

Tax
ax + 1

Tax
ax,ref (3)

where Tax ∈ R
+ is the respective time constant. The inclusion of such dynamics

is not necessarily required in simulations. However, real-world experiments on the
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test track, carried out by the author, have shown that these dynamics can generally
not be neglected [24]. More precisely, time constants greater than 0.5 s have been
recognized, which are even dependent on the current state x and input u.

Likewise, in applications which involve lateral motion control, it may be required
to accommodate steering system dynamics. Especially, if the time constant of the
steering system is sufficiently large compared to the sample time of the controller,
its dynamics may have to be contemplated during controller design. Assuming first
order dynamics, such dynamic model can be represented as

δ̇ = − 1

Tδ

δ + 1

Tδ

δref (4)

where Tδ ∈ R
+ is the respective time constant.

Independent of the particularmodel choice, a continuous-time state spacemodel of
the form ẋ = f (x, u). is obtained. For the purpose of (direct) numerical optimization
within an optimal control framework, we discretize these dynamics by using zero-
order hold discretization. If f (x, u) is nonlinear, a suitable numerical integration
scheme, such as a fourth-order Runge-Kutta method [44], has to be applied. In the
linear case, that is, if f (x, u) = Ax + Bu with A ∈ R

nx×nx and B ∈ R
nx×nu , we

determine the exact time-discretization xk+1 = Adxk + Bduk with Ad = eATs and
Bd = ∫ Ts

τ=0 e
Aτdτ B where Ts ∈ R

+ denotes the controller sample time. In both case,
the following discrete-time agent dynamics are obtained

xk+1 = fd(xk, uk) (5)

which can be exploited for numerical optimization purposes.

3.4 Challenges and Perspectives

The inclusion of nonlinear systemdynamics (2) renders numerical optimizationmore
complex, thus having to solve a nonlinear programming (NLP) problem.Utilizing the
linear model (1) is much simpler, however, it restricts the degrees of freedom by only
allowing for the manipulation of longitudinal dynamics. That said, the challenge is to
devise an appropriate model which is conducive to control but preserves the real-time
capability of the underlying optimization-based control scheme, see Sect. 4. Recent
advances in solving NLPs in real-time, though, have made the accommodation of
nonlinear dynamics tractable [15, 54].

To generalize the applicability of a single controller to multiple road traffic sce-
narios (for multi-agent coordination), it is essential to determine a suitable control-
orientedmodel. Although the reader might conclude that the double integrator model
is not appropriate to solve lane chance scenarios, the authors in [40] have demon-
strated that an additional decision variable for the lane choice can indeed solve the
problem. In that case, a low-level controller takes care of lateral vehicle dynam-
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ics control. As a first step towards a generalized control scheme, Sect. 4 will further
discuss the integration of intersection and lane change scenarios, as depicted in Fig. 1.

Exogenous disturbances, unmodeled dynamics or parametric uncertainties pose
additional challenges to control. Contemplating (1) and (2), it can be recognized
that both models are simplified kinematic representations of the underlying vehicle
dynamics, that is, resistance forces (such as aerodynamic drag and rolling resistances)
or tire forces are not accommodated by the model. Moreover, model parameters
may be time-varying and as such subject to uncertainty. A particular example is the
drivetrain time constant as indicated in Sect. 3.3. We will further elaborate on this
topic when discussing the perspective of learning-based control in Sect. 5.

4 Optimal Agent Coordination

Having devised a suitable state space model in Sect. 3, this section continues with a
discussion on how to design centralized and distributed optimization-based control
schemes for multi-agent coordination. Along these lines, the focus is placed on
MPC-based control schemes which solve a finite horizon OCP at every time tk over
a prediction horizon of N ∈ N

+ time steps. After optimization, only the first control
input is applied to the plant and optimization is repeatedly executed over a shifted
horizon at the subsequent time tk+1 [35].

4.1 Local Objectives and Constraints

Objectives Formulti-agent coordination problems, as defined inSect. 2, the underly-
ing optimization problem is usually separable with respect to every agent’s individual
(local) objectives and constraints, whereas collision avoidance imposes a coupling in
terms of joint constraints. For the intersection automation problem, e.g., local agent
objectives involve the tracking of a reference velocity vref as well as ensuring com-
fortable and efficient driving [18, 25, 29, 42], where the latter generally translates
into a regularization term on the inputs. The lane change use case adds additional
objectives such as tracking the center of the target lane or minimizing the relative
heading between the routeR and the agent [22]. All these objectives can be summa-
rized as a quadratic stage cost �[i]

j : Rnx × R
nu → R for every agent i ∈ A (indicated

by the superscript [i]) at time step k + j , j ∈ N[0,N−1] over the prediction horizon,
i.e.,

�
[i]
j (x [i]

k+ j |k, u
[i]
k+ j |k) � (x [i]

k+ j |k − x [i],ref
k+ j |k)

�Q[i](x [i]
k+ j |k − x [i],ref

k+ j |k) (6)

+ (u[i]
k+ j |k)

�R[i]u[i]
k+ j |k

with reference state x [i],ref
k+ j |k and positive semidefinite weighting matrices Q[i] � 0,

R[i] � 0. At time step k + N , a terminal cost �[i]
N : Rnx → R such as
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�
[i]
N (x [i]

k+N |k) � (x [i]
k+N |k − x [i],ref

k+N |k)
�Q[i]

N (x [i]
k+N |k − x [i],ref

k+N |k) (7)

with Q[i]
N � 0 is applied, which does not depend on the control inputs. Mostly, the

terminal cost is designed such as to guarantee closed-loop stability [35].
Constraints Alongsidewith agent i’s objectives, its states and inputs are constrained
by polyhedral sets over the prediction horizon, that is,

x [i]
k+ j+1|k ∈ X [i]

k+ j+1|k, u[i]
k+ j |k ∈ U [i]

k+ j |k, j ∈ N[0,N−1]. (8)

For instance, the agent’s speed is frequently bounded from below by zero to avoid
driving backwards and bounded from above by the speed limit of the road section
[18, 25, 42]. Another example is to constrain the lateral displacement from the lane
center to avoid that agents leave their designated lane [22]. Constraints on the inputs
originate from actuator limitations [18, 29]. Additionally, the terminal state x [i]

k+N |k
is oftentimes forced to be located in the terminal set X [i]

k+N |k , that is,

x [i]
k+N |k ∈ X [i]

k+N |k (9)

to ensure stability (together with terminal cost (7)) and/or recursive feasibility [33,
35]. In the intersection use case [25], for instance, a terminal constraint is applied to
ensure that every agent has either passed the intersection at time step k + N or waits
at the stop line before entering the intersection. That way, unexpected collisions are
avoided at the intersection, even if the prediction horizon is short. As the admissible
state and input sets are polyhedrons, (8) can be rewritten as

P [i]
x x [i]

·|k + P [i]
u u[i]

·|k + q [i]
xu ≤ 0 (10)

with matrices and vectors P [i]
x , P [i]

u , q [i]
xu of appropriate dimension. Moreover,

x [i]
·|k � {x [i]

k+ j |k}Nj=1 and u
[i]
·|k � {u[i]

k+ j |k}N−1
j=0 refer to the state and input trajectories over

the entire prediction horizon. Terminal constraint (9) may be nonlinear (and even
nonconvex), we therefore state it in the form

hN (x [i]
k+N |k) ≤ 0. (11)

To account for all crucial systemconstraints, inmany cases the linear constraint (10) is
not sufficient. For instance, the intersection use case [41] and the lane change scenario
[22] require to constrain the lateral and total acceleration. Both quantities cannot
be represented as a linear combination of states and inputs. Therefore, nonlinear
constraints are added over the prediction horizon, which depend on the state x and
input u, i.e.,

hxu(x
[i]
·|k , u

[i]
·|k) ≤ 0. (12)
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4.2 Collision Avoidance

While objectives and constraints in Sect. 4.1 refer to the individual agent, collision
avoidance between agents i and l introduces coupling constraints of the form

hCA(x
[i]
k+ j |k, x

[l]
k+ j |k) ≤ 0 (13)

with j ∈ N[1,N ] and hCA : Rnx × R
nx → R. The constraint is imposed for every agent

l which belongs to the set C(i) ⊆ A \ {i} of agents that may potentially collide with
agent i . In the literature, there is a variety of options how to select hCA as outlined
subsequently. An important factor iswhether a certain order is imposed on the agents,
e.g., agents are ordered in their lane (agent 1 is ahead of agent 2, agent 2 is ahead of
agent 3, etc.) or an intersection is crossed in a prescribed sequence.

In the context of intersection automation, the authors in [17, 18] apply a central
coordinator to determine intersection entry and exit times for a given intersection
crossing order. Then, for the purpose of collision avoidance they impose linear con-
straints on the agents’ position over the prediction horizon to meet the respective
schedule and as such ensure safety. A similar principle of separating time slot allo-
cation and motion planning is pursued in [29, 36, 37]. For a fixed crossing order, an
alternative approach is to lower bound the distance between two agents along a given
route through a linear constraint function hCA [42] (see Fig. 4a). The same princi-
ple can be applied to rear-end collision avoidance as the frontal vehicle is known
(according to the given order). So, mostly hCA can be kept convex (or even linear)
if a certain order of the agents is prescribed, which has also been shown for the use
case of automated lane change maneuvers [22].

Fig. 4 Examples of collision avoidance formulations at intersections. (Left) Distance along travel
path (dashed orange) can be convex (crossing order fixed) or nonconvex (crossing order not fixed).
(Middle) Agents are safe if safety area (blue) and bounding box (green) do not overlap. (Right)
Agents are safe if the center point of the green agent is located outside the blue superellipse
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Whenever the order of the agents is not prescribed, collision avoidance con-
straints generally become nonconvex. For instance, to relax the fixed crossing order
in [42], the linear minimum distance constraints can, e.g., be formulated as noncon-
vex quadratic constraints [23], where the nonconvexity relates to agent i’s choice to
cross the intersection before or after agent l ∈ C(i). With the same reasoning, col-
lision avoidance constraints become nonconvex when claiming that agent l ∈ C(i)
must not violate a certain safety area around agent i . This safety area can, e.g., be
a rectangle [25] (see Fig. 4b) or a (super)ellipse [10] (see Fig. 4c), where the size of
the rectangle and the (super)ellipse encodes the geometry of agents i and l as well
as their desired safety distance to each other.

The challenge that arises with the choice of hCA is to ensure that the resulting
optimization problem can be solved in real-time. Especially when hCA is nonconvex,
the convergence towards a (local) optimal solution may take significantly longer
than in the convex case. The properties of the cost and constraint functions (such
as smoothness, Lipschitz continuity, etc.) as well as the choice of the numerical
solver have significant influence on convergence guarantees and the time to solve
the problem [44]. Our research work has shown that whenever hCA is nonconvex,
there is unfortunately no best practice or recommendation on how to choose hCA.
Nevertheless, in many traffic scenarios the cardinality of C(i) and as such the number
of collision avoidance constraints can significantly be reduced when contemplating
that only a subset of C(i) in the vicinity of agent i may pose a collision risk. For
instance, agents l that already have crossed the intersection and are then driving in a
different direction than agent i can be removed from C(i).

When aiming to generalize control schemes for multi-agent coordination such
as to serve multiple scenarios simultaneously (without explicit notion of the driving
context), the most intuitive way appears to be the definition of safety areas around the
vehicle that must not be violated by other agents (see the two examples in Fig. 4b,
c). However, such approach comes along with a higher complexity in solving the
underlying OCP. A good compromise is to exploit knowledge about the current
driving scenario and to impose convex collision avoidance constraints whenever
possible—e.g., when following the agent ahead.

4.3 Centralized Optimal Control Problem

When combining the individual cost terms (6), (7) for agent i ∈ A subject to agent
constraints (10)–(12), agent dynamics (5) and collision avoidance constraints (13)
over a prediction horizon of N time steps, we can summarize the multi-agent coor-
dination problem as the following centralized OCP with initial condition (14f)
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minimize
{u[i]

·|k , x
[i]
·|k }NAi=1

NA∑
i=1

[
�N (x [i]

k+N |k) +
N−1∑
j=0

� j (x
[i]
k+ j |k, u

[i]
k+ j |k)

]
(14a)

subject to agent constraints − − − f or all i ∈ A :
x [i]
k+ j+1|k = f [i]

d (x [i]
k+ j |k, u

[i]
k+ j |k), j ∈ N[0,N−1] (14b)

P [i]
x x [i]

·|k + P [i]
u u[i]

·|k + q [i]
xu ≤ 0 (14c)

hxu(x
[i]
·|k , u

[i]
·|k) ≤ 0 (14d)

hN (x [i]
k+N |k) ≤ 0 (14e)

x [i]
k|k = x [i]

k (14f)

coupling constraints

hCA(x
[i]
k+ j |k, x

[l]
k+ j |k) ≤ 0, ∀i ∈ A, ∀l ∈ C(i); j ∈ N[1,N ] (14g)

In general, OCP (14) is a (nonconvex) NLP which can, for instance, be solved
through sequential quadratic programming (SQP) [6], sequential convex program-
ming [31] or first order proximal methods [54, 55]. Problem (14) constitutes a direct
multiple shooting formulation [4] as system dynamics are imposed as equality con-
straints. Alternatively, by substituting (14b) into the cost (14a) and constraints (14c)–
(14e), (14g), a direct single shooting formulation [4] is obtained which requires to
solely optimize over control actions {u[i]

·|k}NA
i=1 (instead of states and control actions),

and which is oftentimes easier to solve.
As indicated throughout Sect. 4, Problem (14) exhibits a similar structure for

various multi-agent coordination problems. The intersection coordination problem
in [25, 42], e.g., can be solved by utilizing the bicycle model (2) instead of the double
integrator model (1). Then, for an a priori known routeR, the controller only needs
to track a constant lateral displacement �yref to ensure that every agent stays in its
designated lane. All other constraints can be posed in the same way. Along these
lines, the dedicated intersection and lane change control schemes, proposed by the
author in [22, 25], can even be combined to a single control regime when hCA in
(14g) represents a safety region such as a rectangle or a (super)ellipse (see Fig. 4b, c).
This observation gives rise to the perspective of generalizing or integrating control
schemes instead of solving use cases separately.

4.4 Distributed Solution

Solving OCP (14) in a centralized fashion is commonly not the preferred option as
the problem does not scale well with an increasing number NA of agents. Moreover,
the agents’ dynamic models and their parameters need to be known to the central
optimizer and a central node is prone to a single point of failure. For this reason,
there is a rich body of literature which deals with a (semi-)distributed solution of
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such multi-agent coordination problems [18, 25, 28, 32, 36, 53], where every agent
contributes to the solution of OCP (14). In contrast to fully distributed regimes, semi-
distributed control schemes apply a (central) coordinator to ensure convergence of
distributed computations towards a stationary point.

By virtue of OCP (14), it can be recognized that the problem can be decoupled
into NA independent OCPs with respect to every agent’s cost (14a) and its local
constraints (14b)–(14f).Only collision avoidance couples theOCPs through coupling
constraints (14g). To solve constraint coupled optimization problems in a distributed
fashion, there are mature methods in the literature that rely, amongst others, on
primal or dual decomposition techniques [45], the alternating direction method of
multipliers (ADMM) [1, 45] or ADMM with recent extensions towards nonconvex
problems [9, 57]. Distributed numerical optimization algorithms for multi-agent
coordination problems are generally challenged by the following three aspects, that
is, (i) convergence guarantees for nonconvex problems, (ii) the number of iterations
required to converge to a stationary point, which translates into the time required to
solve the OCP, and (iii) data privacy related to keeping the agents’ dynamic models
and their parameters private to the individual agents.
Convergence Convergence guarantees for distributed algorithms mostly assume
convexity of the cost function and constraints. For instance, ADMM converges to a
global optimal solution if OCP (14) is convex [5]. Oftentimes, we can expect multi-
agent coordination problems and as such (14) to be nonconvex. If nonconvexity only
occurs in the agent’s cost, ADMM is still guaranteed to converge to a stationary
point under certain regularity assumptions [14]. For a broader class of nonconvex
problems, methods such as the extra-layer augmented Lagrangian-based acceler-
ated distributed approximate optimization algorithm (ELLADA) or the augmented
Lagrangian alternating direction inexact Newton (ALADIN) algorithm and its fully
distributed variant [9] have been proposed. The authors in [20] have demonstrated
that ALADIN can be utilized for distributed optimal control of unsignalized intersec-
tions. Although convergence can be guaranteed, the algorithm does not yet overcome
challenge (ii), that is, it is not able to provide a solution in real-time.

Solution in Real-Time In the literature, various methods have been proposed
to solve the originally centralized problem in a distributed fashion by introducing
suitable relaxations in order to achieve real-time capability along with convergence
guarantees. For the purpose of intersection automation, the authors in [17] propose a
semi-distributed optimization schemewhich assumes the order of agents, crossing the
intersection, to be a priori fixed. A proof that this concept even works in a real-world
setting is demonstrated in [18]. In our research work, we have shown that OCP (14)
can be fully decoupled when collision avoidance constraint (14g) is only imposed on
one of the conflicting agents, that is, either on agent i or agent l ∈ C(i). Therefore,
a bijective prioritization function γ : A → A is introduced which assigns a unique
priority to every agent. If γ (i) < γ (l) for i ∈ A and l ∈ C(i), agent i is said to exhibit
a higher priority than agent l and the respective collision avoidance constraint (14g)
is only imposed on agent l. By leveraging the first order proximal averaged Newton
method for optimal control (PANOC) [55], the intersection coordination problem
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Fig. 5 Distributed control scheme [25] for a four way intersection with four agents. (Left) Agent
1 (red) and agent 3 (green) yield to agent 2 (blue), having the highest priority. The colored shaded
patches indicate the safety areas that must not be violated by the bounding box of the respective
agent with the same color. While turning, agent 2 (blue) is approximated by a bounding box that is
axis-alignedwith agent 1 (red) and agent 3 (green); (Right) Agent 2 (blue) avoids rear-end collisions
with agent 4 (cyan). Figure from [25] ©2019 IEEE, reproduced with permission

with four agents and a priori fixed priorities, as illustrated in Fig. 5, has been solved
in a fully distributed fashion in less than 50 ms (worst case), using a sample time of
100 ms [25]. Also the author’s experiments on the test track [24] have proven the
real-time capability of distributed multi-agent coordination algorithms which rely
on such priority-based decoupling. An extension towards time-varying priorities,
negotiated through consensus-based auction algorithms, has been proposed in [41].
To the author’s best knowledge, a fully distributed optimization scheme that solves
the originally centralized multi-agent coordination problem (14) with nonconvex
constraints in real-time is still part of ongoing research.

Data Privacy The third challenge in distributed optimization is to ensure data pri-
vacy. For instance, an agent may not bewilling to share its objectives, dynamicmodel
or parameters. When the OCP is constrained coupled, it is straightforward to keep
the agents’ objectives private as those are only associated to the local OCPs. When
substituting agent dynamics (14b) into the cost (14a) and constraints (14c)–(14g),
and utilizing optimization algorithms like ADMM, the agents exchange their primal
variables, i.e. their control trajectories u[i]

·|k , to solve OCP (14) in a distributed way. As
constraints (14g) are constituted in terms of the agents’ states, though, the knowledge
of the other agents’ dynamic model becomes inevitable to evaluate their states as a
function of their actions. Conversely, by leveraging a direct multiple shooting formu-
lation, which optimizes over states and actions, agents could simply exchange their
state trajectories, thus keeping their dynamic models and their parameters private.
As indicated previously, the resulting OCP is however oftentimes more complex to
solve. For the automated lane change maneuver, depicted in Fig. 1b, the author has
pursued the latter approach, that is, a multiple-shooting OCP has been solved in a
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receding horizon ADMM framework [22]. That way, the agents only exchange their
path coordinates (states) over the prediction horizon while their dynamic model and
the associated parameters indeed remain private to the agents.

5 Towards Learning-Based Control

In the previous sections, it has been assumed that agent models are not subject
to unmodeled dynamics, parametric uncertainties or exogenous disturbances (see
Sect. 2, Assumption A7). Moreover, we contemplated every agent to be connected
and equally automated (i.e., using the same control strategy), thus being able to
reliably share its future intents (see Sect. 2, Assumptions A3–A4). These assump-
tions have led to the nominal control problem outlined in Sect. 4. Relaxing these
assumptions gives rise to optimal control schemes which have to deal with model
uncertainties or unknown exogenous disturbances. There is a rich body of literature
which addresses such kind of problems in a robust or stochastic optimal control
framework [38]. While the former considers the worst case realization of the uncer-
tainty or disturbance at the price of higher conservatism and degraded performance,
the latter exploits its stochastic nature to be less conservative. In everyday traffic
scenarios, human drivers accept a certain risk of collision during their driving task
[34]. Therefore, it is more naturalistic to design the controller in a stochastic fashion
with sufficiently high probability of constraint satisfaction. In stochastic OCPs, con-
straints are predominantly imposed as so called chance constraints, which have to
be satisfied with a minimal user-defined probability [38]. These stochastic optimal
control schemes have recently been complemented by machine learning techniques
such as to adapt the probabilistic representation of the uncertainty [7, 13, 39] as more
data is collected from the environment.

In this section, the discussion is devoted to challenges and perspectives in learning-
based model predictive control for multi-agent coordination. As this field of research
is very broad and comprehensive, the reader should be aware that only selected topics
are contemplated, that is, (i) model uncertainties related to every agent i and (ii)
mixed-traffic scenarios with connected and non-connected agents. In the latter case,
the main source of uncertainty stems from the presence of non-connected automated
or human-driven vehicles whose future motion trajectories are subject to uncertainty.

5.1 Model Uncertainties

The first perspective of extending the nominal control problem in Sect. 4 is to account
for uncertainties in the dynamic model of agent i , i.e., to relax Assumption A7 in
Sect. 2—while all agents are still connected and equally automated. Section3 conveys
two alternative representations of agent dynamics, that is, the double integratormodel
and the kinematic bicycle model. Although both models are usually sufficiently
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accurate for motion planning purposes, they entirely neglect resistance or tire forces
and are as such subject to uncertainty which depends on the driving conditions
[49]. Moreover, in the scope of intersection automation experimental tests [24] have
revealed that the inclusion of drivetrain dynamics (as discussed in Sect. 3.3) into
the double integrator model is crucial and has significant influence on the actual
speed and position of the agent, and as such on keeping the required distance to
other agents. The corresponding dynamic time constant Tax oftentimes even has a
nonlinear dependence on the state x and the input u. Eventually, there are also further
noise factors that influence the accuracy of the control-oriented model and as such
the control performance and the satisfaction of constraints.

Let’s assume that such model uncertainty is hard to describe by means of first
principle models and may even change over time. Then, learning-based concepts
can alleviate the problem of dealing with uncertainty. Such a concept is presented in
Hewing et al. [13] where the authors learn the tire force model online while driving
on the race track. Adapting this idea to the multi-agent coordination problem, the
uncertain dynamics of every agent can be represented as

xk+1 = fd(xk, uk) + gd(xk, uk) + νk (15)

where fd(xk, uk) is the nominal part (see Sect. 3.4) and gd(xk, uk) the unknown part
of the dynamics. Moreover, νk ∈ R

nx is considered to be independent and identi-
cally distributed (i.i.d.) white process noise, i.e., νk ∼ N (0, �ν) with positive semi-
definite covariance matrix �ν . A prominent approach in the literature is to utilize
Gaussian process regression (GPR) models [50]

gd(xk, uk) ∼ N (μgd (xk, uk),�
gd (xk, uk)) (16)

to approximate the unknown dynamics through a vector gd : Rnx × R
nu → R

nx of
Gaussian processes with mean μgd (xk, uk) and covariance �gd (xk, uk). The training
data D = ((x ι, uι), yι)

ND
ι=1 is defined as a sequence of ND visited state-input pairs

(x ι, uι) and measurements yι where the latter is given by x(tι+1) − fd(x(tι), u(tι)),
i.e., the difference between the next visited state x(tι+1) and the nominal mapping
fd of states x(tι) and inputs u(tι) to the next state. While collecting more data, the
GPR model’s posterior mean and covariance is updated by extending the so called
Kernel matrix KGP.

In the context of multi-agent coordination, gd(xk, uk) in (16) could represent the
uncertain part of every agent’s dynamic model, where the uncertainty originates,
e.g., from neglecting resistance and tire forces, or from a time-varying drivetrain
time constant. While observing data D during the maneuver, every agent’s model
can be adapted online through learning from data. When the learning process is
independent from taking decisions for control, it is referred to as passive learning.
Conversely, if control actions are explicitly chosen such as to gather suitable data
to improve the learning objective, such process is referred to as active learning
[58]. The latter is closely related to the exploration versus exploitation dilemma
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in reinforcement learning [56] as collecting useful data may (temporarily) sacrifice
system performance or violate constraints.

To accommodate the uncertainty that resides in the learned model (15), we can
integrate GPR models with a (centralized) stochastic OCP formulation. The covari-
ance �gd in (16) provides a quantification of uncertainty which can be exploited to
impose input and state constraints (14c)–(14e) as well as coupling constraints (14g)
as chance constraints. These probabilistic constraints have to be satisfied with a min-
imal user-defined probability [13, 19]. Compared to the nominal control problem
(14), the stochastic OCP commonly minimizes the expected value of the cost (14a)
subject to chance constraints.

A distributed formulation of such centralized stochastic OCP is mostly straight-
forward if the uncertainty does not affect coupling constraints (14g). Then, only the
local subproblems can be modified while the rest of the distributed algorithm does
not have to be changed. Conversely, if coupling constraints are influenced by the
uncertainty, e.g., because uncertain drivetrain dynamics imply an uncertain position
of the agent, the entire centralized stochastic OCP has to be transferred into a central-
ized deterministic counterpart first. Then, an appropriate distributed algorithm can
be chosen that is able to accommodate the resulting type of coupling constraints.

Although the potentials are promising, the challenges that arise with GPRmodels
are manifold and we are highlighting only on a few of them. First, GPR models
aggregate data points in the kernel matrix KGP, whose dimensionality grows lin-
early with the number of data points. Moreover, the evaluation of the mean μgd and
covariance �gd requires the inversion of a (high-dimensional) Kernel matrix [50]. In
other words, an embedded implementation is challenged by an increasing demand
for memory and computational resources as more data is collected. It is still part
of ongoing research to evaluate suitable data-driven models for learning-based opti-
mal control regimes such as to achieve a suitable trade-off between model accuracy,
uncertainty quantification, memory demand and computational complexity.

Another important aspect is the (potential) discrepancy between the empirical dis-
tribution, being constructed frommeasured data, and the true underlying distribution.
This discrepancy may eventually lead to a lower probability of constraint satisfaction
and as such to a loss of rigorous safety guarantees. For that reason, distributionally
robust control schemes, which account for the discrepancy between the empirical
and true distribution, have recently gained significant attention [12, 48, 52] in the
research community.

5.2 Mixed-Traffic Scenarios

When relaxing the assumption that all agents are connected (Sect. 2, Assumptions
A3–A4), we are facing the challenge of so called mixed-traffic scenarios [11]. In the
scope of amulti-agent coordination problem, the traffic scenario then involves a set of
connected and automated agentsAcon (same as setA in Sect. 2), which apply the same
control strategy, and a set of non-connected agentsAncon withAcon ∩ Ancon = ∅. The
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non-connected agents can either be automated (using a control strategy independent
from the connected agents) or human-driven.

In contrast to Sect. 5.1, it is now assumed that the dynamic models, the dynamic
models of agents i ∈ Acon are not subject to uncertainty (see Sect. 2, AssumptionA7).
That way, only the non-connected agents l ∈ Ancon are introducing uncertainty into
the control system due to their uncertain future motion trajectories. In the literature,
the intelligent driver model (IDM) [26], e.g., has frequently been utilized in the
context of car following problems such as to predict the (nominal) motion trajectory
of the frontal vehicle. The IDM is a parametric dynamic model which mimics a
human driver tracking a reference speed and keeping a safe distance to the preceding
vehicle. Also other predictors like artificial neural networks (ANN) have been applied
for that purpose [11]. Following the idea in Sect. 5.1, a meaningful approach would
be to complement the nominal model of other road participants, such as the IDM,
with unknown dynamics which are successively learned from data. For the sake of
simplicity, it is assumed that the dynamics of every non-connected agent l ∈ Ancon

depend on the state vector x [i]
k of exactly one other connected agent i ∈ Acon. Then,

the discrete-time state space model of agent l can be written as

ξ
[l]
k+1 = f [l]

d,ξ (ξ
[l]
k , x [i]

k ) + g[l]
d,ξ (ξ

[l]
k , x [i]

k ) (17)

where ξ
[l]
k is the state vector of agent l. Moreover, f [l]

d,ξ represents the nominal part

of the model, which is, e.g., given in terms of the IDM, whereas g[l]
d,ξ is learned

from data—e.g., by utilizing a GPR model. This approach is meaningful if f [l]
d,ξ

mimics agent l’s behavior generally well, i.e., if agent l is a human-driven vehicle.
Conversely, if agent l is an automated vehicle, its actions may be entirely different
from the IDM and it may be more reasonable to disregard f [l]

d,ξ in (17) and only

learn the unknown dynamics g[l]
d,ξ . Such a concept is pursued by Brüdigam et al. [7]

in the context of autonomous racing where the dynamics of the leading vehicle are
learned through a GPR model. While [7] follows a passive learning approach, an
interesting perspective is to apply active learning, that is, to choose control actions
such as to optimize a learning objective, like in reinforcement learning [51]. That
way, the autonomous race car could gather relevant data from the leading vehicle
that eventually helps to overtake the opponent. Such approach would also be helpful
for mixed-traffic multi-agent coordination problems. For instance, consider a lane
changing scenario, in which a connected agent intends to change to the adjacent
lane, which is densely populated with non-connected agents. The connected agent
could actively learn the behavior of the closest agents in the adjacent lane by safely
driving towards the lane markings. That way, performance criteria like comfort may
be sacrificed, however, meaningful data about agents in the adjacent lane can be
collected. The connected agent can as such reason about the probability that the
agents in the adjacent lane make sufficient space to allow for a lane change. The
problem at hand gets even more complex if the dynamics (17) of agent l ∈ Ancon are
a function of two or more other agents, if the agents’ actions are mutually dependent,
or if the number of interactions with other agents varies over time. The latter can,



436 A. Katriniok

for instance, be observed in intersection scenarios where the number of conflicting
agents usually varies over time, see Sect. 2.

When utilizing a probabilistic model of non-connected agents that provides a
measure of uncertainty, such as a GPR model, then this uncertainty measure can
be utilized to come up with a centralized stochastic OCP, as outlined in Sect. 5.1.
Again, the transition to a distributed stochastic control scheme is mainly challenged
by solving the OCP subject to joint chance constraints.

6 Conclusion

This chapter has conveyed the challenges and perspectives of modeling and
optimization-based control in the context of multi-agent coordination problems.
Starting with the nominal control problem, that is, when no uncertainties affect the
networked control system, centralized and distributed control schemes have been
investigated on the example of intersection automation and lane change scenarios.
Furthermore, potentials of generalizing controller design such as to be applicable
to multiple scenarios simultaneously have been discussed. In distributed optimal
control concepts, especially nonconvexity challenges convergence guarantees and a
problem solution in real-time.

In Sect. 5, the potentials and challenges of learning-based control concepts for
the safe coordination of agents in road traffic scenarios have been discussed. For
the sake of brevity, the section has focused on model uncertainties and mixed-traffic
scenarios. The discussion has conveyed that there are many opportunities to leverage
machine learning methods for multi-agent coordination problems, and that active
learning is a promising research direction to solve challenging scenarios. Along these
lines, uncertainty is usually accommodated by solving a chance constrained optimal
control problem. As the empirical distribution, derived from collected data, in reality
deviates from the true underlying distribution, distributionally robust optimal control
schemes are important to provide reliable safety guarantees in learning-based control.
Many of these opportunities are still part of ongoing research work and are expected
to introduce significant improvements for such kind of multi-agent coordination
problems.
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Abstract This work gives introduction to traffic control by connected automated
vehicles. The influence of vehicle control on vehicular traffic and traffic control
strategies are discussed and compared. It is highlighted that vehicle-to-everything
connectivity allows connected automated vehicles to access the state of the traffic
behind them such that feedback can be utilized to mitigate evolving congestions.
Numerical simulations demonstrate that such connectivity-based traffic control is
beneficial for smoothness and energy efficiency of highway traffic. The dynamics
and stability of traffic flow, under the proposed controllers, are analyzed in detail to
construct stability charts that guide the selection of stabilizing control gains.
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1 Introduction

Traffic congestion is a major factor in reducing the efficiency of road transportation,
as it increases travel times, energy consumption of vehicles and air pollution. Human-
driven traffic often suffers from the onset of stop-and-go traffic jams on highways.
These may occur without any incident and may be triggered by the human driving
behavior [1]. This is illustrated in Fig. 1a, where a chain of human-driven vehicles
(HVs) is simulated on a single lane (with details given later in the paper). When the
lead vehicle (black) decelerates, the following human drivers (gray) tend to overreact
and reduce their speed more: they get slower the farther they are behind the lead
vehicle. This, so-called string unstable driving behavior is typical in human-driven
traffic [2]. It eventually leads to low speeds and stop-and-go motion on highways,
giving birth to a traffic congestion [3].

This chapter is dedicated to strategies that allow prevention or mitigation of such
driving behavior-induced traffic congestions. Alleviating traffic jams has substantial
benefits for each individual vehicle participating in traffic: it improves their travel
time and energy consumption. The key factor to obtain these benefits is to ensure
that vehicles drive as smoothly as possible without major deceleration. Smoothness
is often analyzed via the notion of string stability [4–7], which also has been used
recently to evaluate commercial cruise control systems [8–10]. Smooth driving can be
achieved either at the level of individual vehicles by vehicle control or at large-scale
traffic level by traffic control [11].

Vehicle control can be realized on automated vehicles (AVs), with various levels
of automation. Control strategies include adaptive cruise control (ACC) for individ-
ual AVs [12], connected cruise control (CCC) for connected automated vehicles [13],
and cooperative adaptive cruise control (CACC) for vehicle platoons [14]. Control-
ling vehicles to drive smoothly achieves significant benefits in energy efficiency,
safety and passenger comfort [15–17]. While vehicle control guarantees benefits for
the individual AVs only, a sufficient number of well-designed AVs may positively
influence traffic at large and mitigate traffic jams due to their smooth driving behav-
ior [18–21]. The influence of vehicle control on traffic is demonstrated in Fig. 1b,
where AVs (green) are mixed with HVs (gray) in the traffic flow. As the AVs drive
smoothly and reduce their speed less than the vehicle they follow, the traffic jam is
mitigated. This way, vehicle control also controls traffic indirectly, however, there is
no direct measurement or feedback of the traffic state.

Traffic control, on the other hand, directly uses the state of the traffic flow as
feedback. Traffic state estimation may rely on data from loop detectors or cameras at
fixed locations [3, 22, 23] or from vehicles traveling in the traffic flow [24–27]. State
estimatorsmay involveKalman filtering techniques [28–30] and data fusion [31–33].
Via traffic state feedback, traffic control aims to maximize the benefits of large-scale
traffic, which eventually leads to benefits for individual vehicles too. Research in
traffic control has seen a surge in recent years [34], extending from classical traffic
control [11] to reinforcement learning [35, 36]. Traffic control has been approached
from so-called Eulerian and Lagrangian perspectives [37]. In Eulerian traffic control,
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Fig. 1 Dynamics of traffic flows. a A chain of human-driven vehicles (HVs). If the lead vehicle
brakes, the vehicle chain amplifies it and the tail vehicle reduces its speed more than the lead.
b Vehicle control on large penetration of automated vehicles (AVs) which influences traffic. The
tail vehicle reduces its speed about as much as the lead. c Traffic control with a single connected
automated vehicle (CAV) where the tail vehicle is a connected human-driven vehicle (CHV). The
tail vehicle reduces its speed less than the lead

traffic flow is regulated at specific locations along the highway based on data about
the traffic further down the road [38, 39]. Traffic control measures include speed lim-
its [40] and ramp metering [41–44]. In Lagrangian traffic control, traffic is regulated
by the driving behavior of certain vehicles in the flow [45, 46], which directly take
into account how they affect traffic, and utilize the traffic state as feedback in their
controllers.

Since Lagrangian traffic controllers have been enabled by vehicle automation,
they have appeared more recently than Eulerian traffic control, and their literature is
still less extensive. Meanwhile, technological advancement in the field of automated
vehicles keeps opening new possibilities for traffic control. In particular, the occur-
rence of connected automated vehicles (CAVs) has significant potential that has not
yet been addressed by the literature. Therefore, this chapter is devoted to establish-
ing the notion of Lagrangian traffic control by connected automated vehicles, and
highlighting its potential for mitigating traffic congestions.

Namely, automated vehicles must monitor the state of the traffic behind them
while traveling on highways in order to achieve Lagrangian control of the traffic
behind.Monitoring traffic can be realized by vehicle-to-everything (V2X) connectiv-
ity, which becomes the enabling technology of traffic control by connected automated
vehicles. A CAV, communicating with vehicles behind it, receives traffic state infor-
mation that can be used as feedback [47]. This approach is demonstrated in Fig. 1c,
where a CAV communicates with and responds to a connected human-driven vehicle
(CHV) behind it. Information from the CHV (red) allows the CAV (blue) to mitigate
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the traffic jam efficiently: the entire vehicle chain reduces its speed less than for the
case with a large number of AVs in Fig. 1b. This demonstrates the large potential of
CAVs in traffic control that is yet to be exploited.

The feedback loop in Fig. 1c is similar to when vehicles travel on a ring road:
they respond to each other in a loop, the first vehicle responding to the last one. Ring
configurations have rich and interesting dynamics [3, 17, 48–50] and there have
even been successful implementations of vehicle controllers on ring roads tomitigate
traffic [51]. While the road geometry may not be a ring in practice, the response of
vehicles in Lagrangian traffic control has a similar structure, which we refer to as
virtual rings. The concept of virtual rings have been introduced in the experiments
of [52] where three vehicles performed car following on a straight highway, with
the first vehicle responding to the last one. This concept was further discussed in the
context of traffic control in [53, 54], and also utilized in [55] where the so-called
leading cruise control was introduced for high-connectivity penetration scenarios.

Here we further elaborate the concept of virtual rings and Lagrangian traffic
control by CAVs. As opposed to previous works [54, 55], we put more emphasis on
the stability analysis of traffic flow, focus on low-automation and low-connectivity
scenarios, and incorporate time delays associated with the response of vehicles,
their controllers and the human drivers. We first introduce strategies for vehicle and
traffic control, then highlight the benefits of connectivity-enabled feedback loops via
simulations, and finally give a comprehensive stability analysis.

2 Traffic Control by Connected Automated Vehicles

We consider traffic regulation by means of controlling the motions of automated
vehicles (AVs) and connected automated vehicles (CAVs) traveling in the traffic flow.
Since the driving behavior of theseAVs andCAVs affects themotion of other vehicles
behind them, including human-driven vehicles (HVs) and connected human-driven
vehicles (CHVs), they regulate the traffic behind.

First, we discuss strategies where AVs and CAVs respond to vehicles ahead of
them only. In this case, AVs and CAVs indirectly control the traffic behind them,
without feedback of the traffic state. We call this case as vehicle control influencing
traffic. Then we propose strategies where CAVs respond to vehicles behind them as
well. This allows CAVs to directly control traffic by using the traffic state behind as
feedback. We refer to this case as traffic control.

We consider single lane traffic for simplicity of exposition. The results could be
extended to multiple lanes by incorporating the cross-lane dynamics. While lane
changes and overtaking requires further investigation and extensive future work, we
remark that traffic controllers realized on CAVs consider the interest of the vehicles
behind them, which makes it less likely for those vehicles to overtake the CAVs.
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2.1 Simplified Models for Longitudinal Vehicle and Traffic
Dynamics

Consider the scenario in Fig. 1, in which vehicles follow each other on a single lane
of a straight road. We number the vehicles with indices increasing in the direction of
motion. We denote the set of all vehicle indices by N that comprises of the indices
N = {NHV,NCHV,NAV,NCAV} representing four vehicle types defined previously.
We distinguish a so-called ego vehicle of interest by index 0. We denote the length
of vehicle n by ln, the position of its rear bumper by sn and its speed by vn, n ∈ N .

We model the motion of vehicle n by a delayed double integrator with saturation:

ṡn(t) = vn(t) ,

v̇n(t) = sat(un(t − τn)) ,
(1)

∀n ∈ N , where un is the desired acceleration of vehicle n, selected by the human
driver forHVs andCHVs (n ∈ {NHV,NCHV}) and prescribed by the longitudinal con-
troller of AVs and CAVs (n ∈ {NAV,NCAV}). We assume that each vehicle realizes
the desired acceleration by the help of human action or low-level controllers, respec-
tively, unless this acceleration is above the acceleration capability amax or below the
braking limit −amin of the vehicle. This is captured by the saturation function:

sat(u) = min{max{−amin, u}, amax} . (2)

Furthermore, we incorporate the time delay τn into the model, that involves the
response time of the vehicle, as well as the driver reaction time for HVs and CHVs,
and feedback delays for AVs and CAVs. For simplicity, we assume identical delays
for HVs and CHVs throughout this study with τn = τ , n ∈ {NHV,NCHV}, and we
distinguish the delay of the ego vehicle 0 by the notation σ = τ0.

To capture human driver behavior, we use simple car-following models. Namely,
our human driver model (HDM) assumes that vehicle n responds to vehicle n + 1
ahead considering the headway (range) hn = sn+1 − sn − ln and the speed difference
(range rate) ḣn = vn+1 − vn between them:

un = fH(hn, ḣn, vn) , (3)

where the specific expression of fH depends on the choice of the model. Examples
for HDM include the optimal velocity model (OVM) [56] and the intelligent driver
model (IDM) [57], which were shown to capture human driver behavior observed in
experimental data [52, 58]. For simplicity of exposition, throughout this paper we
assume that human drivers are identical in their driving behaviors and fH is the same
for each n ∈ {NHV,NCHV}.
Example 1 For the numerical examples of this paper, we use the optimal velocity
model as human driver model:
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fH(hn, ḣn, vn) = αH
(
VH(hn) − vn

) + βHḣn . (4)

Here αH and βH are parameters describing the human driver. The second term
with coefficient βH captures the response of human drivers to the speed difference
ḣn = vn+1 − vn relative to the vehicle ahead. The first term with parameter αH char-
acterizes the response to the headway hn = sn+1 − sn − ln measured from the vehicle
ahead.We assume that human drivers track a headway-dependent desired speed given
by the range policy:

VH(h) = min{max{0,FH(h)}, vmax} . (5)

This desired speed is nonnegative and it saturates at the speed limit vmax. The
speed increases strictly monotonically between 0 and vmax at a rate defined by FH

that is a function of the headway h.

2.2 Vehicle Control Influencing Traffic

Nowwe consider vehicle control for (connected) automated vehicles where AVs and
CAVs influence the traffic behind them without explicitly responding to its state.
Consider the scenario in Fig. 2a–c. We assume that the ego vehicle (vehicle 0) is

Fig. 2 Vehicle control strategies where the driving behavior of (connected) automated vehicles
influences the traffic behind them, including a cruise control, b adaptive cruise control, c connected
cruise control, and d these strategies realized on a ring road
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automated (an AV in Fig. 2a, b and a CAV in Fig. 2c), and it is followed by N
human-driven vehicles (HVs) constituting the traffic influenced by vehicle control.

Our goal is to design a control input u0 for the ego vehicle based on the traffic
ahead and observe its effects on the behavior of the traffic behind. If traffic conditions
are free-flowing and there are no vehicles ahead of the AV such as in Fig. 2a, then
the AV may use cruise control (CC) to track a reference speed vref(t) such that its
speed v0(t) approaches vref(t):

u0 = fCC(v0, vref︸︷︷︸
reference

) . (6)

The specific form of fCC depends on the controller type. The reference speed vref(t)
may be constant, or time-varying, or it may even depend on the position s0(t)—an
example for the latter case is when vehicles optimize their set speed based on road
elevation [59].

If the traffic is more dense, the AV may need to respond to the vehicle ahead; see
Fig. 2b. This can be achieved by sensing the position and speed of the vehicle ahead
via on-board sensors (radar, lidar, camera or ultrasonics) and using adaptive cruise
control (ACC) that takes into account the positions and speeds of the AV and the
vehicle ahead:

u0 = fACC(s0, v0, s1, v1︸ ︷︷ ︸
vehicle ahead

) . (7)

Finally, if the ego vehicle is equipped with a communication device, i.e., it is
a CAV, then it may respond to connected human-driven vehicles (CHVs) farther
ahead, as shown by Fig. 2c. This leads to connected cruise control (CCC) that may
potentially take into account the positions and speeds of M vehicles ahead:

u0 = fCCC(s0, v0, s1, v1, . . . , sM , vM︸ ︷︷ ︸
multiple vehicles ahead

) . (8)

If a vehicle ahead is not connected to or sensed by the CAV, its state can be omitted
from fCCC. An aggregated response to multiple vehicles ahead facilitates smooth
driving by making the CAV more clairvoyant about upcoming changes in traffic
conditions [16].

Example 2 Throughout this paper, we consider the following simple examples as
controllers for AVs and CAVs that influence the traffic behind. The simplest CC
strategy is a proportional controller for speed tracking with a control gain β:

fCC(v0, vref) = β
(
vref − v0

)
. (9)

Indeed, this law could be replaced by other more sophisticated controllers.
For ACC, we consider the following control law:
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fACC(s0, v0, s1, v1) = α
(
V (s1 − s0 − l0) − v0

) + β
(
W (v1) − v0

)
. (10)

This is an analog to the optimal velocitymodel (4), with the difference that the control
gains α, β and the range policy V can be selected as control design parameters. For
V we keep the form (5) and prescribe the desired speed-headway relationship via F .
Furthermore, in (10) we include the speed policyW that allows the AV to follow the
speed v1 of the vehicle ahead or the speed limit vmax, whichever is smaller:

W (v1) = min{v1, vmax} . (11)

Finally, for CCC we extend the controller (10) with response to the speed of
multiple vehicles ahead [60]:

fCCC(s0, v0, s1, v1, . . . , sM , vM ) = α
(
V (s1 − s0 − l0) − v0

) +
M∑

m=1

βm
(
W (vm) − v0

)
,

(12)
where βm is the control gain associated with the speed vm of vehicle m ahead. If some vehicle
m is not connected and cannot be perceived by the CAV, we omit the response to it by taking
βm = 0.

2.3 Traffic Control

Now consider the scenario illustrated in Fig. 3a–c, where the ego vehicle is a CAV
and at least one vehicle behind it is connected, e.g., a CHV. Once the CAV syncs
with the CHV, it can actively regulate the traffic behind, since it uses traffic state
feedback when responding to the CHV. When there are no vehicles ahead of the
CAV to respond to, such as in Fig. 3a, the cruise control (6) can be extended to traffic
control (TC) in response to the positions and speeds of the connected vehicles behind
the ego CAV:

u0 = fTC(s−N , v−N , . . . , s−1, v−1︸ ︷︷ ︸
traffic behind

, s0, v0, vref︸︷︷︸
reference

) . (13)

The quantities s−N , v−N , . . . , s−1, v−1 represent the state of the traffic behind the
CAV. We assume that not all vehicles behind the ego CAV are connected, thus, only
some of these states (corresponding to connected vehicles) may be available to the
CAV and affect u0. Accordingly, −N denotes the index of the farthest connected
vehicle behind communicating with the ego CAV. This scenario is ideal for traffic
control in the sense that the CAV does not have to respond to the traffic ahead in
order to minimize collision risks. Such large control freedom enables the CAV to
stabilize long vehicle chains behind it.

However, when the CAV is traveling in denser traffic environments like the one
in Fig. 3b, it has to respond to the vehicle ahead and has less freedom to regulate the
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traffic behind it. In such a setup, the adaptive cruise control (7) can be extended with
feedback from the traffic behind to adaptive traffic control (ATC):

u0 = fATC(s−N , v−N , . . . , s−1, v−1︸ ︷︷ ︸
traffic behind

, s0, v0, s1, v1︸ ︷︷ ︸
vehicle ahead

). (14)

Finally, if vehicles ahead of the CAV are also connected, as illustrated by Fig. 3c,
we may establish connected traffic control (CTC) that responds to multiple vehicles
ahead while also taking into account its effect on the traffic behind:

u0 = fCTC(s−N , v−N , . . . , s−1, v−1︸ ︷︷ ︸
traffic behind

, s0, v0, s1, v1, . . . , sM , vM︸ ︷︷ ︸
multiple vehicles ahead

) . (15)

Remark 1 (Connectivity and automation) We remark that although only CTC
includes the word “connected” in its name, TC and ATC also rely on connectivity to
obtain information from the traffic behind (unless N = 1 and the vehicle behind the
AV is detected by on-board sensors). At the same time, automation is not required
by any of these strategies for vehicles other than the ego vehicle. Yet, if other con-
nected vehicles happen to possess sufficient levels of automation (they are CAVs),
that opens the possibility of coordinating CAVs for traffic control [61–63]. In this
paper, we will not discuss details about such coordination.

Fig. 3 Traffic control strategies executed by connected automated vehicles responding to the traffic
behind, including a traffic control, b adaptive traffic control, c connected traffic control, and d the
virtual ring associated with these traffic control strategies
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Example 3 Analogously to the CCC strategy in (12), response to the traffic behind
can be achieved from the feedback of the speed of each connected vehicle behind.
This leads to the TC algorithm:

u0 = β
(
vref − v0

) +
−1∑

n=−N

βn
(
W (vn) − v0

)
, (16)

cf. (9). Again, βn = 0 is considered if the CAV does not perceive a vehicle due to
the lack of sensors or connectivity.

The ACC strategy (10) can also be extended to ATC with a feedback term from
the traffic behind:

u0 = α
(
V (s1 − s0) − v0

) + β
(
W (v1) − v0

) +
−1∑

n=−N

βn
(
W (vn) − v0

)
. (17)

In what follows, we focus on scenarios with lean penetration of connectivity. If only
a single vehicle is connected to the CAV, we obtain

u0 = α
(
V (s1 − s0) − v0

) + β
(
W (v1) − v0

) + βB(W (v−N ) − v0) , (18)

where βB = β−N is the control gain related to the traffic behind.
Finally, the CCC (12) can be extended to CTC according to

u0 = α
(
V (s1 − s0) − v0

) +
M∑

m=1

βm
(
W (vm) − v0

) +
−1∑

n=−N

βn
(
W (vn) − v0

)
. (19)

Remark 2 (Relationships between control strategies) All of the above vehicle and
traffic controllers can be regarded as special cases of CTC. Ultimately, the choice of
controller depends on the available information: whether there are vehicles ahead and
behind the ego CAV that are connected to it. The various scenarios are summarized
at the top of Fig. 4. When the ego CAV does not respond to multiple vehicles ahead,
the CTC and CCC strategies reduce to ATC and ACC. When there are no vehicles
ahead of the CAV at all, ATC and ACC reduce to TC and CC. When the CAV
does not respond to the traffic behind, the CTC, ATC and TC strategies reduce to
a CAV executing CCC, ACC and CC, respectively, that influences the following
human-driven traffic. Taking N = 0 we can disregard the influence of the CAV on
the traffic behind, leading to CCC, ACC and CC controllers without considering
traffic environment. Finally, if the CAV behaves as a human driver, we recover the
case of human-driven traffic. We will also see these interconnections in the formulas
describing the stability of traffic flow.

Remark 3 (Rings and virtual rings) Longitudinal controllers of AVs and CAVs are
often analyzed on ring roads, as illustrated by Fig. 2d. Mathematically, the ring
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Fig. 4 Relationships between control strategies (top) and the associated stability conditions
(bottom)

configuration has an additional periodic boundary condition. For example, if there
are N + 1 vehicles (indexed from −N to 0) on a ring, we have:

s−N (t) = s1(t) ,

v−N (t) = v1(t) .
(20)

This is a useful property for the stability analysis of traffic, as discussed below. Apart
from analysis [3, 17, 48–50], ring roads have been used in experiments, including
successful mitigation of traffic jams [51].

The ring configuration is important conceptually for traffic control that involves
feedback of the traffic behind. Namely, the structure of which vehicles respond to
which other vehicles includes a ring (a loop), see Fig. 3d, without physically traveling
on a ring road. Therefore, we refer to the structure of traffic control as virtual ring.
The concept of virtual ring appeared in the experiments of [52] and the analysis
of [53, 54]. Below we build on these works and give a more detailed analysis.

We also remark that traffic control on single-lane ring roads has a significant
advantage compared to single-lane straight roads: the CAV can affect the equilibrium



452 T. G. Molnár et al.

speed of the ring and can decide to travel slower than the set speed of the vehicle
ahead. Once the CAV slows down, all vehicles including the vehicle ahead will
eventually travel slower on the ring. In contrast, if the CAV decides to travel slower
on a straight road, it will fall behind the vehicle ahead and break up the car-following
scenario. Hence the virtual ring is more appealing for highway applications than
considering a physical ring road.

Remark 4 (Scenario in the rest of the paper) In what follows, we analyze the dynam-
ics and stability of traffic influenced by vehicle control and traffic control. For sim-
plicity, we consider ACC, like in Fig. 2b, and ATCwith a single CHV behind the ego
CAV, like in Fig. 3b. This restricts us to lean penetration of connectivity and we can
compare how vehicle control without connectivity influences traffic to traffic control
allowed by connectivity. We use human driver model (4), ACC (10) and ATC (18)
as example. Vehicle 1 is the lead vehicle, vehicle 0 is the ego CAV, and vehicles
−1, . . . ,−N are HVs with −N being connected in the ATC setup. Furthermore, we
analyze ACC on a ring road and relate it to the virtual ring of ATC.

3 Benefits of Connectivity

Nowwedemonstrate that information fromconnectivity is highly beneficial for traffic
control. We compare the ACC and ATC setups by investigating the traffic behavior
through numerical simulations. We also evaluate the energy consumption of vehicles
and show that utilizing connectivity leads to energy savings. The parameters used for
numerical case studies throughout this paper are listed in Table 1 in the Appendix.

3.1 Simulation Results

First, we study a baseline scenario without automation. We simulate (1), (3) for
human driver model (4) in Example 1 with typical human driver parameters selected
from [52]. The simulation results are shown in Fig. 1a. In the simulation, a lead
vehicle (black) sequentially decelerates, accelerates and cruises at constant speed,
followed by 11 HVs (gray). The following HVs tend to reduce their speed more the
farther they are from the lead vehicle as speed perturbations amplify along the vehicle
chain. Consequently, the tail vehicle brakes noticeably more than the lead (purple
highlight). This is called string unstable behavior and often leads to the formation of
stop-and-go traffic jams for large enough number of string unstable drivers.

String instability can be mitigated by vehicle control using AVs or CAVs. To
demonstrate how vehicle control influences traffic, we simulate (1), (3), (7) for a
heterogeneous chain of HVs and AVs using ACC controller (10) in Example 2. The
simulation results shown by Fig. 1b indicate that the AVs can successfully mitigate
the onset of a traffic congestion: the tail vehicle brakes as much as the lead vehicle
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and not more (purple highlight). We remark that congestions are often caused by the
reaction time of human drivers: a delayed reaction forces drivers to overreact and
brake or accelerate more. As such, automated vehicles must be designed carefully to
reduce their response delays, and their controllers must be tuned by considering the
presence of delays. There exist strategies for automated vehicles that specifically aim
to eliminate the effect of delays [64–68]. Still, even with well-designed automated
vehicles it may require a relatively large penetration of AVs in the traffic flow to
mitigate congestions if human drivers are string unstable (the penetration is 25%
in our example, i.e., every fourth vehicle is automated). Connectivity and a CCC
strategy could lead to further benefits: some level of connectivity may reduce the
required penetration of automation to stabilize traffic [53]. Yet, with vehicle control
it is often hard to achieve stability for CAV penetrations around or below 10%.

The benefits of connectivity are further exploited by traffic control strategies.
Simulation of (1), (3), (14) with ATC controller (18) in Example 3 is shown in
Fig. 1(c). Here a single CAV responds to the vehicle ahead and to a single CHV
N = 10 vehicles behind. With ATC strategy, the ego CAV is able to stabilize the
traffic flow, and each vehicle including the CHV brakes less than the lead vehicle.
This is achieved with about 8% penetration of automation and 17% penetration
of connectivity (one automated and two connected vehicles out of 12 vehicles).
The required penetration of automation is reduced (compared to when traffic is
influenced by vehicle control) thanks to the extra connectivity—which is a significant
benefit since automation implies more cost and requirements than communication.
Moreover, the CHV has incentive to be connected to the CAV as it can slow down
less.

The performancewith andwithout connectivity is further explored in Fig. 5,where
the influence of a single ACC vehicle on traffic is compared to traffic control by ATC.
These scenarios are illustrated in Figs. 2b and 3b; their only difference is that the
vehicle −N is connected in the ATC setup and the ego CAV responds to it. It can
be seen that ATC results in less speed reduction and smoother driving for the whole
vehicle chain. The price is that the headway of the CAV executing ATC fluctuates
more than that for ACC. However, it does not compromise safety, the vehicle is still
far from collision. In themeantime, smooth driving leads to less energy consumption,
which is discussed next.

3.2 Energy Efficiency

We evaluate the energy consumption for each vehicle by the following measure [69]:

wn(t) =
t∫

t0

vn(θ)g
(
v̇n(θ) + p(vn(θ))

)
dθ , (21)
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Fig. 5 Traffic influenced by vehicle control without connectivity using adaptive cruise control (left)
and regulated ty traffic control with connectivity using adaptive traffic control (right)

that is, the energy over unit mass consumed during the time interval [t0, t]. It is an
integral of the power over unit mass obtained from the product of speed and com-
manded acceleration. The latter involves the vehicle acceleration and the resistance
terms represented by p that vehicles need to overcome. These can be modeled for
example by

p(v) = ar + crv
2 , (22)

where ar accounts for rolling resistance, while crv2 represents air drag. Furthermore,
function g in (21) describes how the commanded acceleration is related to energy
consumption. For example, if we take

g(x) = max{0, x} , (23)

then we assume energy consumption during acceleration only and no energy con-
sumption or regeneration during braking.

The energy measure (21), (22), (23) was evaluated for the simulations in Fig. 5;
see the bottom of the plot. The energy consumption stays constant during braking,
increases linearly during constant speed cruising, and increases at a higher rate during
acceleration. Therefore, it is critical for the vehicles to drive smoothly and avoid
decelerations after which they need to accelerate to recover the speed.

To highlight the difference between the total energy consumption of ACC and
ATC, in Fig. 6 we plot the final value w0(tf) of the energy consumed by the CAV
over the simulation interval [t0, tf ]. Specifically, the simulationswere repeated and the
energy consumption was calculated for a grid of β and βB control gains representing
various control designs. The corresponding energy consumption levels are shown by
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Fig. 6 Total energy consumption of the ego CAV in the simulation scenario of Fig. 5 with various
β and βB control gains (left). The energy consumption is reduced in traffic control (ATC, βB �= 0)
compared to vehicle control (ACC, βB = 0). The relative energy benefits are shown for both the
ego CAV and the CHV (right)

the colored contours. It can be seen that increasing βB leads to a lower energy level.
One should, however, always keep safety in mind and choose βB small enough to
maintain a safe headway similarly to Fig. 5.

The gains corresponding to Fig. 5 are indicated by point A for ACC (βB = 0) and
point B for ATC (βB �= 0) in Fig. 6. These two cases are compared on the right of
Fig. 6 for various values of N . It can be seen that ATC consistently saves around
2-3% energy for the ego CAV compared to ACC if N ≥ 5. The energy consumption
w−N (tf) of the CHV is also indicated. By deciding to stay connected, the CHV saves
significant energy, around 6-8% if N ≥ 14. The trend is that the farther the CHV is
from the CAV (i.e., the larger N is), the more energy it saves—this is a consequence
of a longer string unstable chain of HVs being more sensitive to the CAV’s motion.

We remark that the energy contours in Fig. 6 are specific to the velocity profile
of the lead vehicle and to the choice (21) of the energy measure. Besides, exten-
sive numerical simulations were needed to obtain these contours and to identify
which controller parameters are energy efficient. Finding energy-optimal parame-
ters through theoretical analysis is a challenging task [69]. On the other hand, energy
consumption is associated with the smoothness of driving, thus it is related to the sta-
bility of the traffic flow. String stable chains of vehicles attenuate speed fluctuations,
drive smoother, and hence tend to consume less energy. Stability analysis is more
straightforward than finding energy optima. Hence, below we analyze the dynamics
and stability of traffic to drive the controller parameter selection.

4 Dynamics of Traffic Flow

In the remaining two sections, we study the dynamics and stability of vehicle and
traffic control in detail. The end result is manifested in so-called stability charts,
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which can be used to select the control gains of vehicle and traffic controllers such
that string stability is achieved and traffic congestions are alleviated. These two
sections are algebraically more involved, thus readers who are less interested in the
technical details can skip these and move to the Conclusions.

4.1 Linearized Dynamics

To analyze stability, first we consider traffic flows in equilibrium (often referred to as
uniform flow) where all vehicles drive at the same constant speed. The equilibrium
speed is dictated by how fast the lead vehicle travels—in practice it can be considered
as the average speed of the lead vehicle—and the following vehicles adjust their speed
to the lead. Afterwards, we consider deviations from this equilibrium to quantify how
much speed perturbations amplify. Thiswill also be used to carry out stability analysis
in the next section.We conduct our analysis in the frequency domain by linearization
and by constructing transfer functions that allow us to characterize the response of
individual vehicles and the overall traffic behavior.

We start with formalizing the equilibrium solution as

vn(t) ≡ v∗ , sn(t) = s∗n(t) = v∗t + sn(0) , (24)

n ∈ N , which is associated with constant speed v∗ that is identical for each vehicle,
and constant headway h∗

n = s∗n+1 − s∗n − ln that may be different for each vehicle.
This equilibrium can be found by substituting (24) into (1), (3) and (7) for ACC
or (14) for ATC, and solving for v∗ and h∗

n.
We consider perturbations around the equilibrium in the form

vn(t) = v∗ + ṽn(t) , sn(t) = s∗n(t) + s̃n(t) , (25)

and collect position and speed perturbations into the state vector x given by

xn(t) =
[
s̃n(t)
ṽn(t)

]
=

⎡

⎣ṽn(0) +
t∫

0
ṽn(θ)dθ

ṽn(t)

⎤

⎦ , (26)

from which the speed fluctuations can be recovered by

ṽn(t) = cxn(t), c = [
0 1

]
. (27)

Assuming the accelerations of vehicles do not saturate, the linearized dynamics
of HVs and CHVs can be derived from (1), (3) in the form

ẋn(t) = axn(t) + aHxn(t − τ) + bHxn+1(t − τ) , (28)
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n ∈ {NHV,NCHV}. That is, it contains the delay-free state of vehicle n and the delayed
states of vehicles n and n + 1 with coefficient matrices

a =
[
0 1
0 0

]
, aH =

⎡

⎣
0 0

− ∂fH
∂hn

∣∣∣∣∗

∂fH
∂vn

∣∣∣∣∗
− ∂fH

∂ ḣn

∣∣∣∣∗

⎤

⎦ , bH =
⎡

⎣
0 0

∂fH
∂hn

∣∣∣∣∗

∂fH
∂ ḣn

∣∣∣∣∗

⎤

⎦ ,

(29)
where star indicates that partial derivatives are evaluated at the equilibrium. For AVs
performing ACC the linearized dynamics become

ẋ0(t) = ax0(t) + aFx0(t − σ) + bFx1(t − σ) , (30)

with

a =
[
0 1
0 0

]
, aF =

⎡

⎣
0 0

∂fACC
∂s0

∣∣∣∣∗

∂fACC
∂v0

∣∣∣∣∗

⎤

⎦ , bF =
⎡

⎣
0 0

∂fACC
∂s1

∣∣∣∣∗

∂fACC
∂v1

∣∣∣∣∗

⎤

⎦ . (31)

whereas CAVs executing ATC are described by

ẋ0(t) = ax0(t) + aFBx0(t − σ) + bFx1(t − σ) + bBx−N (t − σ) , (32)

with

a =
[
0 1
0 0

]
, aFB =

⎡

⎣
0 0

∂fATC
∂s0

∣∣∣∣∗

∂fATC
∂v0

∣∣∣∣∗

⎤

⎦ ,

bF =
⎡

⎣
0 0

∂fATC
∂s1

∣∣
∣∣∗

∂fATC
∂v1

∣∣
∣∣∗

⎤

⎦ , bB =
⎡

⎣
0 0

∂fATC
∂s−N

∣∣
∣∣∗

∂fATC
∂v−N

∣∣
∣∣∗

⎤

⎦ .

(33)

In summary, vehicle control influencing traffic is described by (28), (30) at the
linear level, while traffic control is characterized by (28), (32). For the ring configu-
ration, one also has periodicity given by (20) that yields

x−N (t) = x1(t) . (34)

Example 4 The coefficient matrices (29) describing human drivers have the follow-
ing expressions for the case of the optimal velocity model (4):

a =
[
0 1
0 0

]
, aH =

[
0 0

−αHκH −(αH + βH)

]
, bH =

[
0 0

αHκH βH

]
. (35)
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The ACC controller (10) is associated with the coefficient matrices

a =
[
0 1
0 0

]
, aF =

[
0 0

−ακ −(α + β)

]
, bF =

[
0 0

ακ β

]
, (36)

whereas the ATC controller (18) corresponds to

a =
[
0 1
0 0

]
, aFB =

[
0 0

−ακ −(α + β + βB)

]
, bF =

[
0 0

ακ β

]
, bB =

[
0 0
0 βB

]
.

(37)

4.2 Transfer Functions

We analyze the linearized dynamics in Laplace domain (assuming zero initial per-
turbations). Our ultimate goal is to analyze the stability of the system, in particular,
whether speed fluctuations amplify or decay as they propagate along the chain of
vehicles. This amplification property can be well represented by means of transfer
functions describing the response of vehicles to the neighboring traffic.

First, we formulate the so-called link transfer functions [60] associated with vehi-
cle pairs. For human drivers, the link transfer function TH(s) relates the speed fluc-
tuation of an HV to that of the vehicle ahead as

Vn(s) = TH(s)Vn+1(s) , (38)

where TH(s) can be obtained from (27), (28) in the form

TH(s) = c
(
sI − a − aHe−sτ

)−1
bHe−sτ

[
1
s
1

]
. (39)

Similarly, in ACC where the automated vehicle responds to the vehicle immediately
ahead only, the response can be characterized by a single link transfer function T (s):

V0(s) = T (s)V1(s) , (40)

whose expression can be derived from (30) as

T (s) = c
(
sI − a − aFe−sσ

)−1
bFe−sσ

[
1
s
1

]
. (41)

On the other hand, in ATC the ego CAV responds to multiple vehicles, associated
with multiple link transfer functions. For example, when responding to a single
vehicle ahead and a single vehicle behind, we obtain
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V0(s) = TF(s)V1(s) + TB(s)V−N (s) , (42)

where TF(s) and TB(s) are the link transfer functions characterizing the response
forward and backward. These are obtained from (32):

TF(s) = c
(
sI − a − aFBe−sσ

)−1
bFe−sσ

[
1
s
1

]
,

TB(s) = c
(
sI − a − aFBe−sσ

)−1
bBe−sσ

[
1
s
1

]
.

(43)

Notice that the denominators of TF(s) and TB(s) are the same, D(TF(s)) = D(TB(s)),
since the same matrix is inverted.

Using the link transfer functions, we can analyze the overall response of traffic.
For a chain of N human drivers, the overall response

V−N (s) = 	(s)V0(s) (44)

is characterized by 	(s) given by

	(s) = TH(s)N . (45)

Note that this corresponds to identical human drivers; for the case of a heterogeneous
chain of HVs it should be replaced with 	(s) = ∏−1

n=−N TH,n(s).
Introducing the ego vehicle (indexed 0) and the vehicle ahead of it (lead vehicle 1)

into the human-driven traffic, like in Figs. 2b and 3b, we can describe the overall
response of the traffic flow from the head vehicle to the tail vehicle via the head-to-tail
transfer function [60] given by

V−N (s) = G(s)V1(s) . (46)

G(s) depends on the human response	(s) and the control strategy of the ego vehicle.
For vehicle control with ACC, we write (40), (44) and obtain

G(s) = T (s)	(s) . (47)

For the traffic control setup with ATC, we have (42), (44) that lead to

G(s) = TF(s)	(s)

1 − TB(s)	(s)
. (48)

If traffic is considered on a ring road, we have the periodic boundary condition

V−N (s) = V1(s) , (49)
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that leads to
G(s) = 1 , (50)

as the characteristic equation of the ring configuration.

Remark 5 (Dynamics of rings and virtual rings) If vehicle control (47) is executed
on a ring road, (50) leads to

1 − T (s)	(s) = 0 . (51)

Here the left-hand side corresponds to the expression in the denominator of G(s)
in (48). Therefore, the dynamics of traffic control, that involves a virtual ring, is
closely related to how vehicle control influences traffic when executed on a ring road.
As highlighted in the analysis below, the stability properties of the ring configuration
give the backbone of the stability analysis of the virtual ring.

Example 5 Substituting the coefficient matrices in (35) into the link transfer func-
tion (39) describing human drivers leads to

TH(s) = βHs + αHκH

s2esτ + (αH + βH)s + αHκH
. (52)

Similarly, the link transfer function of ACC given by (36) and (41) is

T (s) = βs + ακ

s2esσ + (α + β)s + ακ
, (53)

whereas for ATC (37) and (43) give

TF(s) = βs + ακ

s2esσ + (α + β + βB)s + ακ
,

TB(s) = βBs

s2esσ + (α + β + βB)s + ακ
.

(54)

Observe that we have T (s) = TF(s)/(1 − TB(s)) that relates ACC and ATC.

Remark 6 (Special cases)When the ego CAV does not respond to the traffic behind,
ATC reduces to ACC. Mathematically, this means setting TB(s) = 0, TF(s) = T (s),
e.g. by taking βB = 0 in Example 5. This reduces G(s) in (48) to G(s) in (47). If
no traffic is considered behind the ego CAV, then N = 0 and 	(s) = 1 due to (45).
In such a case, G(s) in (47) and (48) both reduce to T (s) describing the response of
the ACC vehicle to the vehicle ahead only (since T (s) = TF(s)/(1 − TB(s)) in our
example). Consequently, we can analyze the dynamics of ATC and then take these
special cases to capture the dynamics of ACC followed by human-driven traffic or
ACC on its own; recall Fig. 4.
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5 Stability of Traffic Flow

Herein we formalize the stability conditions of traffic flows influenced by vehicle
control and regulated by traffic control, while linking them to those of the ring
configuration.

5.1 Stability Conditions

For a chain of vehicles traveling on a straight road, the system is non-autonomous,
forced by the speed perturbations of the lead vehicle. Thus, we consider the notions
of plant stability and string stability [5, 6, 60] to analyze the behavior without
speed perturbations and the response to the perturbations, respectively. For the ring
configuration, the system evolves autonomously, and we apply a single notion of
stability; for more details on stability definitions see [48].

String stability is particularly important in traffic control. It has various mathe-
matical definitions; see a comprehensive summary in [5]. Now we consider linear
input-to-output string stability with respect to L2 norm. This string stability notion
is directly related to the magnitude (H∞ norm) of the transfer function describing
system, whichmakes it is easy to analyze and useful for control design. Other notions
are also widely-used, such as Lp string stability for any value of p [6]. L∞ string
stability is particularly relevant for traffic safety, since it characterizes the overshoot
of the response to perturbations. As this notion is related to the impulse response, it
is more challenging to analyze it explicitly, and we rather considerL2 string stability.

5.1.1 Plant Stability of a Vehicle Chain

Plant stability means that each vehicle in the chain can approach a constant (equi-
librium) speed in a stable manner. If the vehicle chain is associated with head-to-tail
transfer function G(s), the plant stability condition is given by

D(G(s
)) = 0 ⇒ 
(s
) < 0 , ∀
 ∈ N . (55)

That is, the roots s
 of the characteristic equation D(G(s)) = 0 are located in the
left-half of the complex plane, where D(G(s)) is the denominator of the head-to-tail
transfer function. The system is at the plant stability boundary if either a real root
s = 0 is located on the imaginary axis:

D(G(0)) = 0 , (56)
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or a complex conjugate pair of roots s = ±i�, � > 0:

D(G(i�)) = 0 . (57)

5.1.2 String Stability of a Vehicle Chain

String stability requires, on one hand, plant stability as a necessary condition, and
on the other hand, that the speed perturbations of the head vehicle are not amplified
by the vehicle chain. Otherwise large speed fluctuations could arise at the end of
the chain, ultimately leading to traffic jams and stop-and-go motion. Specifically,
we require that the speed fluctuations V1(iω) of the head vehicle with any given
frequency ω > 0 are smaller in amplitude than those V−N (iω) of the tail vehicle,
which, based on (46), can be expressed as

|G(iω)| < 1 , ∀ω > 0 . (58)

At the string stability boundary we have

|G(iω)| = 1 ⇐⇒ G(iω) = e−iK , (59)

for some ω > 0 and K ∈ [0, 2π), i.e., the speed fluctuations of the head vehicle are
“repeated” by the tail vehicle with a phase lag K (also called as the wave number).

Furthermore, string stability can also be studied when ω → 0, shortly referred to
as ω = 0 string stability. For algebraic convenience, we study this by introducing

P(ω) = 1

ω2

(
D

(|G(iω)|2) − N
(|G(iω)|2)) , (60)

where N and D denote numerator and denominator, respectively. With this defini-
tion, (58) can be rewritten as

P(ω) > 0 , ∀ω > 0 , (61)

and the ω = 0 string stability boundary can be written simply as

P(0) = 0 . (62)
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5.1.3 Stability of the Ring Configuration

Finally, the stability of the ring configuration is determined by the roots of the
characteristic equation (50), and stability requires:

G(s
) = 1 ⇒ 
(s
) < 0 , ∀
 ∈ N , (63)

analogously to (55). Recall that G(s) is the head-to-tail transfer function of the
corresponding open chain configuration. Since G(0) = 1 automatically holds, we
consider the stability boundary where s = 0 is a double root of G(s) − 1, and where
s = ±iω, ω > 0 satisfies the characteristic equation:

G(iω) = 1 . (64)

5.2 Relationship of the Stability Conditions

Now let us take a deeper look into the relationship between the various vehicle
configurations and their stability conditions. These relationships are summarized at
the bottom of Fig. 4 for the s = iω stability boundaries.

For vehicle control with (47), we have D(G(s)) = D(T (s))D(	(s)), hence the
plant stability condition becomes

D(T (s
)) = 0 ⇒ 
(s
) < 0 , ∀
 ∈ N , and

D(	(s
)) = 0 ⇒ 
(s
) < 0 , ∀
 ∈ N ,
(65)

that is, both the AV and HVs must be plant stable individually. For string stability,
we require

|T (iω)| |	(iω)| < 1 , ∀ω > 0 , (66)

and at the stability boundary we have

T (iω)	(iω) = e−iK , (67)

which depend both on the response of the AV and the chain of HVs. If the human-
driven traffic is not considered, i.e., N = 0, 	(iω) = 1, then we recover the string
stability limit T (iω) = e−iK for a single ACC vehicle.

Now consider a nonzero (and potentially large) number N of HVs. This leads
to one of the most interesting research questions, that several recent works have
studied [20, 51, 70]: how many AVs are needed to mitigate traffic congestions? If a
human-driven vehicle chain behind anAV is long (N is large), it results in a significant
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(exponential) increase of speed perturbations. Thus, the AV has to make consider-
able effort to dampen the perturbation in order to prevent or mitigate a congestion.
Mathematically, the magnitude |TH(iω)| of the individual human responses affects
the overall response |	(iω)| = |TH(iω)|N more significantly for large N . Therefore,
it may be more challenging to stabilize a long chain of HVs with a single AV.

To highlight this, consider the limitN → ∞. If the human drivers are string stable,
i.e., |TH(iω)| < 1, then |	(iω)| = 0 for all ω > 0. Unless |T (iω)| → ∞, which can
only happen at the plant stability boundary D(T (iω)) = 0 of the AV, (66) is automat-
ically satisfied. Thus string stability is achieved for a long string stable chain of HVs
and a plant stable AV. However, when the human drivers are string unstable—which
is more likely the case in real traffic [2]—we have |TH(iω)| > 1 and |	(iω)| → ∞
for some ω > 0 and N → ∞. Thus, string stability in (66) cannot be achieved by
any AV design (as long as T (iω) �= 0, i.e., the AV responds to what is ahead). This
shows the fundamental limitation of influencing traffic by vehicle control: string sta-
bility cannot be achieved with arbitrarily small penetration of AVs (i.e., in the limit
N → ∞) if the human drivers are string unstable.

If vehicle control is executed on a ring, the stability limit (64) becomes

T (iω)	(iω) = 1 . (68)

Therefore, the stability boundary of the ring can be obtained as the K = 0 special
case of the string stability boundary (67) of the open chain. Physically, it means
that perturbations propagate through the ring and arrive back to the same vehicle
in the same phase due to the periodic boundary condition. Another special case to
mention is when all vehicles on the ring are identical, achieved by the substitution
T (s) = TH(s). Then the characteristic Eq. (68) gives

TH(iω)N+1 = 1 ⇐⇒ TH(iω) = e−i 2kπ
N+1 , k ∈ {0, 1, . . . ,N } . (69)

When N → ∞, the exponent K = 2kπ/(N + 1) may take any value on [0, 2π)

and we recover the string stability condition TH(iω) = e−iK for individual human
drivers. Thus, the stability of an infinitely long homogeneous ring is equivalent to
the string stability of a homogeneous chain of vehicles. Conversely, the substitution
of K = 2kπ/(N + 1) into the string stability limit TH(iω) = e−iK of an individual
human driver gives the stability limit (69) of the homogeneous ring.

Additionally, and most importantly, the traffic control setup as a virtual ring is
related to both the open chain and ring configurations in terms of stability. Consider
formula (48) of G(s). Since D(TF(s)) = D(TB(s)), we have

D(G(s)) = D(TB(s)	(s))
(
1 − TB(s)	(s)

)
. (70)

Hence, the plant stability condition (55) leads to
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D(TB(s
)	(s
)) = 0 ⇒ 
(s
) < 0 , ∀
 ∈ N , and

TB(s)	(s) = 1 ⇒ 
(s
) < 0 , ∀
 ∈ N .
(71)

That is, it requires both the plant stability of the associated vehicle control setup and
the stability of the associated virtual ring configuration.

The string stability boundary of ATC can be written in the form

TF(iω)	(iω)

1 − TB(iω)	(iω)
= e−iK . (72)

This reduces to the string stability boundary of traffic flows influenced by vehicle con-
trol when there is no response to the traffic behind, i.e., TB(iω) = 0, TF(iω) = T (iω),
which is achieved by βB = 0 in our example. In this sense, the string stability of ATC
is related to that of ACC while the plant stability of ATC is related to the stability of
its virtual ring.

Example 6 The stability analysis can be carried out for the specific choice (4) of
human driver model and selection (10), (18) of control laws. The expressions (56),
(57) of the plant stability boundaries, (59), (62) of the string stability boundaries
and (64) of the stability boundaries for the ring can be expanded by using (52),
(53), (54). Then, the stability boundaries can be expressed in terms of the controller
parameters such as α, β or βB. This allows one to select control gains such that they
ensure stability. The detailed formulas of this analysis are derived in the Appendix.

The resulting stability boundaries can be visualized in the space of control param-
eters, which we refer to as stability charts. The left panel of Fig. 7 shows the stability
chart in the (β, α) plane for ACC without considering the traffic behind, i.e., for
N = 0. This special case can also be found in [60]. Dashed red line indicates the
s = 0 plant stability boundary, solid red line shows the s = ±i� plant stability bound-
ary, and the plant stable region is light gray. Furthermore, dashed blue lines show the
ω = 0 string stability boundaries (that overlap with the dashed red lines at α = 0),
and colorful curves denote the ω > 0 string stability boundaries for various values
of K ∈ [0, 2π) indicated by color. The envelope of these curves is presented in the
center with a solid blue line, and the string stable region is dark gray. The control
gains shall be selected from this region to achieve stability.

Figure 7 also illustrates the characteristics of traffic dynamics under different
selections of the control gains (β, α). The right panels show the characteristic roots
associated with the plant stability condition (55) for a plant unstable point with a
complex pair of unstable roots (A), a plant stable point (C), and a plant unstable
point with a real unstable root (E). The bottom panels depict the magnitude of the
head-to-tail transfer function related to the string stability condition (58) for a point
with ω = 0 string instability (B), a string stable point (C) and a point with ω > 0
string instability (D). Out of these points, only point C has desired behavior. This
illustrates how stability charts may drive the selection of controller parameters, so
that the end result is a stable and smooth traffic flow.
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Fig. 7 Stability chart of adaptive cruise control without considering its influence on the traffic
behind (N = 0). Detailed (left) and simplified view (center). The light gray region enclosed by red
is plant stable, the dark gray region encircled by blue is string stable. Characteristic roots (right)
and frequency response (bottom) for specific control gains selected from the stability chart

The stability charts also give another aspect of comparing vehicle and traffic
control strategies. The top row of Fig. 8 show the stability charts in the (β, α) plane
for ACC followed by various numbers of human drivers (N = 1, 2, 3, 4). Since the
human driver parameters are selected to be string unstable, the string stable region
shrinks as the number of vehicles increases. Furthermore, it also shifts towards large
gains that may require large control input and acceleration from the ACC vehicle.
In comparison, the string stable region of ATC in the second row of Fig. 8 shrinks
faster, but is located at lower α gains associated with smaller acceleration and better
passenger comfort.

For a fixed, reasonably small gain α, the stability charts of ATC are plotted in the
(β, βB) plane in the third row of Fig. 8. Note that the points along βB = 0 represent
ACC as a special case, and they are located close to or outside the string stable
region. Hence for such realistic choice of α, traffic control with ATC (βB �= 0) may
achieve string stability while vehicle control with ACC (βB = 0) may not. For a
large number of string unstable human drivers, the string stable region disappears
(seeN = 4). However, ATCmay still be beneficial by reducing instability, improving
the smoothness of driving behavior, and reducing energy consumption; as these were
highlighted in Figs. 1 and 6.

Finally, the last row of Fig. 8 shows the stability charts of TC (as the α = 0
special case of ATC). Although the string stable region shrinks as the chain of HVs
gets longer (N gets larger), it is significantly larger than that of ATC. In fact, the string
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Fig. 8 Stability charts of vehicle control influencing traffic (ACC, first row) and traffic control
(ATC, second and third rows, and TC, fourth row). The color scheme is the same as in Fig. 7

stable region does not vanish even for chains as long as N = 10 HVs. This indicates
that CAVs can control traffic significantly more efficiently in situations where they
do not have to respond to the position of the vehicle ahead.

6 Conclusions

We have discussed vehicle control strategies influencing traffic and traffic control
strategies regulating traffic by means of injecting connected automated vehicles
(CAVs) into the traffic flow. We have shown that vehicle-to-everything (V2X) con-
nectivity allows a CAV to receive information about the traffic behind it, respond
to it, and mitigate traffic congestions, while also responding to vehicles ahead. The
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response to the traffic behind creates a feedback loop for traffic control, in a similar
structure to a ring road, termed virtual ring. This strategy achieves smooth driving
and energy savings for both the CAV, and the vehicles behind it that decide to stay
connected to help traffic control. We have also analyzed the stability of the traffic
flow and derived stability charts that guide controller tuning.

To realize the proposed traffic control strategies on real highways, it is essential
for the CAV to access information about the traffic behind it. Thus, sufficient pene-
tration of connectivity is required so that the CAV can sync with connected vehicles
behind it in its communication range, that may be limited to a few hundred meters.
Furthermore, the controllers proposed in this paper were discussed for a single-lane
scenario—for multiple lanes they should be extended by considering the cross-lane
dynamics, and lane information should be acquired and incorporated into the control
laws. Finally, we emphasize that connected vehicles behind the CAVdo not necessar-
ily have to be automated. If they possess sufficient level of automation, however, they
can coordinate with the CAV for more efficient traffic control. Our future work will
explore coordination of multiple CAVs and multi-lane dynamics in traffic control.

Acknowledgements This workwas supported by FordMotor Co. and theUniversity ofMichigan’s
Center for Connected and Automated Transportation through the US DOT grant 69A3551747105.

Appendix

The parameters used throughout the paper are given in Table 1. The detailed formulas
of the stability boundaries plotted in Sect. 5 are given below.

Stability of ATC

As highlighted in Fig. 4, the car-following configurations in our examples can all
be considered as the special cases of traffic control with ATC. Therefore, we derive
the stability charts of ATC and then obtain those of other scenarios as special cases.
Throughout the appendix we use (52)–(54) as the expressions of the link transfer
functions TH(s), T (s), TF(s) and TB(s).

First, consider the plant stability of ATC. Based on (71), it decomposes into
the plant stability of the associated vehicle control setup and virtual ring. Consider
the first line of (71) and assume a plant stable chain of HVs described by 	(s)
(the conditions of this are given at the end of the Appendix). Then we can take
D(TB(s)) = 0, which leads to the characteristic equation

s2esσ + (α + β + βB)s + ακ = 0 . (73)
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Table 1 Parameters of the numerical case studies

Field Description Parameter Value

Vehicle properties Vehicle length l 5 m

Braking limit amin 7 m/s2

Acceleration limit amax 3 m/s2

Human-driven vehicle Time delay τ 0.8 s

Gain for headway
response

αH 0.1 s−1

Gain for speed
response

βH 0.6 s−1

Range policy FH(h) vmax

(
1 −

(
hgo−h
hgo−hst

)2)

Automated vehicle Time delay σ 0.6 s

Gain for headway
response

α 0.4 s−1

Gain for speed
response

β 0.5 s−1

Gain for traffic control βB 0.2 s−1

Range policy F(h) vmax
h−hst
hgo−hst

Range policy Standstill headway hst 5 m

Free flow headway hgo 55 m

Speed limit vmax 30 m/s

Simulations Time interval [t0, tf ] [0,60] s

Time step �t 0.01 s

Lead vehicle braking a1(t) −1 m/s2, t ∈ [0, 10] s
Lead vehicle
acceleration

a1(t) 0.5 m/s2, t ∈ [10, 30] s

Initial conditions sn(t), vn(t)
t ∈ [−τn, 0]

Constant s∗n , v∗
n

Energy consumption Constant resistance
coefficient

ar 0.0981 m/s2

Quadratic resistance
coefficient

cr 0.0003 m−1

Resolution of contour
plots

�β × �βB 0.05 × 0.01 s−1

Stability charts Range policy gradient
for HVs

κH 0.7 s−1

Range policy gradient
for AVs

κ 0.6 s−1

Frequency range for
plant stability

[�min, �max] [0, 2π ] rad/s

Frequency range for
string stability

[ωmin, ωmax] [0, 2π ] rad/s
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The case s = 0 gives the plant stability boundary

α = 0 , (74)

whereas substitution of s = ±i�, separation into real and imaginary parts and solu-
tion for α and β lead to the plant stability boundary

α = �2 cos(�σ)

κ
,

β = � sin(�σ) − α − βB .

(75)

This can also be rearranged to

βB = �∗(α) sin
(
�∗(α)σ

) − α − β , (76)

where �∗(α) is the solution of α = �2 cos(�σ)/κ for �.
Similarly, the second line of (71) leads to the characteristic equation

s2esσ + (α + β + βB)s + ακ − βBs	(s) = 0 . (77)

For s = 0, this yields the plant stability boundary

α = 0 , (78)

while for s = ±i� it implies

α = �2 cos(�σ) − �	IβB

κ
,

β = � sin(�σ) − α − (1 − 	R)βB ,

(79)

or, equivalently,

βB = �2 cos(�σ) − ακ

�	I
,

β = � sin(�σ) − α − (1 − 	R)βB ,

(80)

where 	R = 
(	(i�)) and 	I = (	(i�)). These equations were used to plot the
plant stability boundaries in the (β, α) and (β, βB) planes in Figs. 7 and 8.

String stability can be analyzed by the help of the head-to-tail transfer func-
tion (48), which now reads

G(iω) = (βiω + ακ)(	R + i	I)

−ω2eiωσ + (α + β + βB)iω + ακ − βBiω(	R + i	I)
, (81)
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for s = iω, where 	R = 
(	(iω)) and 	I = (	(iω)). Direct substitution into (60)
gives the following expression for P(ω):

P(ω) = ω2 − 2ακ cos(ωσ) − 2βBω	I cos(ωσ) + α2κ2 1 − 	2
R − 	2

I

ω2 + 2ακβB
	I

ω
+ β2

B	2
I

−2
(
α + β + (1 − 	R)βB

)
ω sin(ωσ) + (

α + β + (1 − 	R)βB
)2 − β2(	2

R + 	2
I ) . (82)

We can construct the ω = 0 string stability boundaries via (62). Note that the
following hold for ω → 0:

lim
ω→0

	I

ω
= − N

κH
,

lim
ω→0

	R − 1

ω2
= N

2κH − 2βH − (N + 1)αH

2αHκ2
H

.

(83)

This can be shown by substituting (52) into (45), taking s = iω, and calculat-
ing the limits above by applying L’Hospital’s rule (once for 	I/ω and twice for
(	R − 1)/ω2). At the limit ω → 0 we get

P(0) = α

(
α + 2β − 2κ + N

ακ2

αHκ2
H

(αH + 2βH − 2κH) − 2N
κ

κH
βB

)
. (84)

Taking P(0) = 0 finally gives the ω = 0 string stability boundaries in the form

α = 0 ,

α =
2
(
κ − β + N κ

κH
βB

)

1 + Nκ2

αHκ2
H
(αH + 2βH − 2κH)

,
(85)

which can also be expressed as

βB = κH

2Nκ

(
α + 2β − 2κ + N

ακ2

αHκ2
H

(αH + 2βH − 2κH)

)
. (86)

Theω > 0 string stability boundaries canbe foundby substitutionof (48) into (59).
Then, separation into real and imaginary parts leads to a linear system of equations
for α and β, that ultimately gives
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α = ω2
(
	I sin(ωσ − K) + 	R cos(ωσ − K) − cos(ωσ)

)

ω(	R sinK + 	I cosK) − κ(1 + 	2
R + 	2

I − 2	R cosK + 2	I sinK)

+ βBω
(
(	2

R + 	2
I ) sinK − 	R sinK + 	I(1 − cosK)

)

ω(	R sinK + 	I cosK) − κ(1 + 	2
R + 	2

I − 2	R cosK + 2	I sinK)
,

β = ω2 cos(ωσ) − κω
(
	I cos(ωσ − K) − 	R sin(ωσ − K) + sin(ωσ)

)

ω(	R sinK + 	I cosK) − κ(1 + 	2
R + 	2

I − 2	R cosK + 2	I sinK)

+ βB
( − ω	I + κ

(
1 + (	2

R + 	2
I ) cosK − 	R(1 + cosK) + 	I sinK

))

ω(	R sinK + 	I cosK) − κ(1 + 	2
R + 	2

I − 2	R cosK + 2	I sinK)
.

(87)

This can be re-written also in the form

βB = ω2
( − 	I sin(ωσ − K) − 	R cos(ωσ − K) + cos(ωσ))

)

ω
(
	I(1 − cosK) − 	R sinK + (	2

R + 	2
I ) sinK

)

+ αω(	R sinK + 	I cosK) − ακ
(
1 + 	2

R + 	2
I − 2	R cosK + 2	I sinK

)

ω
(
	I(1 − cosK) − 	R sinK + (	2

R + 	2
I ) sinK

) ,

β = ω2
(
	I sin(ωσ) − (1 − 	R) cos(ωσ)

)

ω
(
	I(1 − cosK) − 	R sinK + (	2

R + 	2
I ) sinK

)

+ −αω	I + ακ
(
1 + (	2

R + 	2
I ) cosK − 	R(1 + cosK) + 	I sinK

)

ω
(
	I(1 − cosK) − 	R sinK + (	2

R + 	2
I ) sinK

) .

(88)

These formulas allowed us to plot the string stability boundaries in the (β, α) and
(β, βB) planes in Figs. 7 and 8.

Stability of ACC

Nowwe consider the stability of traffic flows influenced by vehicle control via ACC.

ACC Followed by Human-Driven Traffic

Since ACC is a special case of ATC, all stability boundaries can be obtained by
substituting βB = 0. The plant stability boundaries (74)–(79) reduce to

α = 0 , (89)
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and

α = �2 cos(�σ)

κ
,

β = � sin(�σ) − α ,

(90)

whereas the string stability boundaries become

α = 0 ,

α = 2(κ − β)

1 + Nκ2

αHκ2
H
(αH + 2βH − 2κH)

,
(91)

and

α = ω2
(
	I sin(ωσ − K) + 	R cos(ωσ − K) − cos(ωσ)

)

ω(	R sinK + 	I cosK) − κ(1 + 	2
R + 	2

I − 2	R cosK + 2	I sinK)
,

β = ω2 cos(ωσ) − κω
(
	I cos(ωσ − K) − 	R sin(ωσ − K) + sin(ωσ)

)

ω(	R sinK + 	I cosK) − κ(1 + 	2
R + 	2

I − 2	R cosK + 2	I sinK)
.

(92)

ACC Followed by Human-Driven Traffic on a Ring

When the ACC scenario with subsequent human-driven vehicles is driven on a ring
road, the characteristic equation becomes (50). As pointed out in Sect. 5.2, the sta-
bility boundary is analogous to the plant stability of the virtual ring in ATC. Thus,
for s = 0 we obtain

α = 0 , (93)

cf. (74), (78). For s = iω, the stability boundary can be obtained as theK = 0 special
case of the ω > 0 string stability boundary of the associated straight-road configu-
ration. Thus, substituting K = 0 into (92) leads to

α = ω2
(
	I sin(ωσ) − (1 − 	R) cos(ωσ)

)

ω	I − κ
(
(1 − 	R)2 + 	2

I

) ,

β = ω2 cos(ωσ) − κω
(
	I cos(ωσ) + (1 − 	R) sin(ωσ)

)

ω	I − κ
(
(1 − 	R)2 + 	2

I

) .

(94)

Notice that this gives back the plant stability boundaries (90) if we substitute
	(iω) = 0, i.e., 	R = 0, 	I = 0 (which is the special case of N → ∞ string sta-
ble human drivers with |TH(iω)| < 1, see Sect. 5.2).
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ACC without Considering the Traffic Behind

The influence of ACC controllers on the traffic flow behind them is often neglected
during cruise control design. This can be considered as theN = 0 special case ofACC
followed by human-driven traffic discussed above. ForN = 0, we have	(s) = 1 that
implies 	R = 1, 	I = 0. The plant stability conditions still yield (89), (90), since we
have already considered a plant stable human-driven chain:

α = 0 , (95)

and

α = �2 cos(�σ)

κ
,

β = � sin(�σ) − α .

(96)

On the other hand, substitution of N = 0 into (91) leads to the ω = 0 string stability
boundaries

α = 0 ,

α = 2(κ − β) ,
(97)

while substitution of	R = 1 and	I = 0 into (92) results in theω > 0 string stability
boundaries

α = ω2
(
cos(ωσ − K) − cos(ωσ)

)

ω sinK − 2κ(1 − cosK)
,

β = ω2 cos(ωσ) + κω
(
sin(ωσ − K) − sin(ωσ)

)

ω sinK − 2κ(1 − cosK)
.

(98)

Stability of Human-Driven Traffic

Finally, human-driven traffic can also be analyzed as a special case of ATC or ACC
by considering that the ego vehicle that acts like a human driver. In terms of formulas,
this case is recovered by replacing α, β, κ , σ with αH, βH, κH, τ .

Human-Driven Traffic on a Straight Road

The straightforward replacement of parameters leads to the plant stability conditions
for human drivers in the form
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αH = 0 , (99)

and

αH = �2 cos(�τ)

κH
,

βH = � sin(�τ) − αH ,

(100)

as well as the string stability conditions

αH = 0 ,

αH = 2(κH − βH) ,
(101)

and

αH = ω2
(
cos(ωτ − K) − cos(ωτ)

)

ω sinK − 2κH(1 − cosK)
,

βH = ω2 cos(ωτ) + κHω
(
sin(ωτ − K) − sin(ωτ)

)

ω sinK − 2κH(1 − cosK)
.

(102)

Human-Driven Traffic on a Ring

Human-driven traffic on a ring can be analyzed by the characteristic equation (69).
For s = 0 the stability boundary is still

αH = 0 , (103)

whereas for s = iω it becomes

αH = ω2
(
cos

(
ωτ − k2π

N+1

) − cos(ωτ)
)

ω sin
(
k2π
N+1

) − 2κH
(
1 − cos

(
k2π
N+1

)) ,

βH = ω2 cos(ωτ) + κHω
(
sin

(
ωτ − k2π

N+1

) − sin(ωτ)
)

ω sin
(
k2π
N+1

) − 2κH
(
1 − cos

(
k2π
N+1

)) .

(104)

This latter result can be obtained by substituting K = 2kπ/(N + 1) into the string
stability boundaries (102) of the human-driven chain of vehicles, as explained in
Sect. 5.2. Alternatively, the same result can be achieved based on (68, 69) by con-
sidering 	(iω) = ei

2kπ
N+1 and substituting 	R = cos

(
2kπ
N+1

)
, 	I = sin

(
2kπ
N+1

)
into (92)

with α = αH, β = βH, κ = κH and σ = τ .
Finally, we remark that the stability of TC, CC followed by human-driven traffic

on a straight road or ring, and CC without considering the traffic behind can all be
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obtained as the special cases of ATC: when there is no response to the distance from
the vehicle ahead, i.e., α = 0. For the s = 0 stability boundaries, however, one needs
to take special care since it is exactly α = 0 in ATC.
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Socioeconomic Impact of Emerging
Mobility Markets and Implementation
Strategies

Ioannis Vasileios Chremos and Andreas A. Malikopoulos

Abstract Emerging mobility systems such as connected and automated vehicles
(CAVs) provide the most intriguing opportunity for more accessible, safe, and effi-
cient transportation.CAVsare expected to significantly improve safety by eliminating
the human factor and ensure transportation efficiency by allowing users to monitor
transportation network conditions and make better operating decisions. However,
CAVs could alter the users’ tendency-to-travel, leading to a higher traffic demand
than expected, thus causing rebound effects (e.g., increased vehicle-miles-traveled).
In this chapter, we focus on tackling the social factors that could drive an emerging
mobility system to unsustainable congestion levels. We propose a mobility market
that models the economic in-nature interactions of the travelers in a smart city net-
work with roads and public transit infrastructure. Using techniques frommechanism
design, we introduce appropriate monetary incentives (e.g., tolls, fares, fees) and
show how a mobility system consisting of selfish travelers that seek to travel either
with a CAV or use public transit can be socially efficient. Furthermore, the proposed
mobility market ensures that travelers always report their true travel preferences and
always benefit from participating in the market; lastly, we also show that the market
generates enough revenue to potentially cover its operating costs.

1 Introduction

Nowadays, it is nearly impossible to commute in a major urban area without the
frustration of congestion and traffic jams. Moreover, congestion is one of the leading
factors behind road accidents and altercations, negatively impacting the economic
success of cities and the quality of life of their citizens. For these reasons, congestion
has been broadly recognized as one of the major challenges to address for next-
generation cities. One incoming highly transformative innovation that promises to
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address congestion though is autonomous driving, and in particular, connected and
automatedvehicles (CAVs).Recent advancements in emergingmobility systemswith
CAVs are highly expected to eliminate congestion and increase mobility efficiency
in terms of energy consumption and travel time [1]. In addition, CAVs are expected
to have vast technological, commercial, and regulatory dimensions [2].

There has been a significant amount of work on the technological impact of CAVs,
mostly focusing on congestion, emissions, energy consumption, and safety [3, 4]. It
is apparent that CAVs will transform today’s urban transportation system and revo-
lutionize mobility [5]. However, one of the most novel and defining characteristics of
an emerging mobility system is its socioeconomic complexity. Mobility is an indis-
pensable prerequisite for social, cultural, and economic development aswell as social
participation. Thanks to the unprecedented improvements in mobility, we expect a
significant alteration in humanbehavior and,most importantly, on tendency-to-travel.
This may lead to unintended consequences, i.e., rebound effects, in the sense of addi-
tional energy use and greenhouse gas emissions, as well as leading to decreases in
the density of urban areas and negatively impacting congestion. In addition, future
mobility systems will enable human-vehicle interactions between people of any age
and abilities, thus allowing enhanced and universal accessibility. One key reason
why connectivity (e.g., Internet of Things) and automation in mobility may lead to
rebound effects is because of the high levels of comfort and convenience—factors
that urge drivers, passengers, and travelers to change their commute and travel ten-
dencies, and thus use their vehicles quite more frequently and more unexpectedly.
As urban social life has been greatly associated with the technological impact of the
car, this compels us to reassess the relationship between automobility and social life
[6, 7]. To add to our argument, evident from similar technological revolutions, for
example, the impact of elevators on building design and social class hierarchies [8],
human social perspective and view can have a tremendous effect on how technologi-
cal innovations are utilized and implemented. For all these reasons, it is vital to study
the impact of CAVs in a sociotechnical context focusing on the social implications
and attempt to provide optimal solutions for the efficient CAV-utilization in society.

There is a solid body of research now available for optimizing the efficiency
of emerging mobility systems with CAVs. Over the last decade, several research
efforts reported in the literature [9–13] have aimed at addressing questions regarding
the CAVs’ impact on transportation efficiency. For example, can we consider the
problem of optimizing fuel economy and emissions by coordinating a mobility sys-
tem consisting of CAVs? What would be the appropriate conceptual approaches for
modeling and optimizing emerging mobility systems? Recent technological devel-
opments can answer the above questions, indicating that CAVs will most likely help
us eliminate congestion, significantly decrease fuel consumption, and minimize road
accidents. Analytical frameworks have been proposed to quantify and evaluate the
impacts of CAVs from the technological perspective [14, 15]. Furthermore, coordi-
nation of CAVs at different traffic scenarios (e.g., intersections, vehicle-following)
have been extensively evaluated in the literature [16–20]. Moreover, the impact of
CAVs has been identified as one that will enable traffic administrators to moni-
tor transportation network conditions efficiently and effectively, thus improving the
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operating decisions that are required daily [1, 21]. However, they are challenges.
The cyber-physical nature of emerging mobility systems is associated with signifi-
cant control challenges and gives rise to a new level of complexity in modeling and
control [22]. These challenges tend to focus on the technological dimension, and
what is mostly missing is a complementary study to the broader social implications
of CAVs. For example, the impact of selfish social behavior in routing networks of
regular and autonomous vehicles has been studied [23–25], as well as “how people
learn” inmobility systemswith behavioral dynamics [26–29]. However, it seems that
the problem of how CAVs will affect human tendency-to-travel and decision-making
has not been adequately approached yet. Understanding this “social” aspect of CAVs
is critical in our effort to design efficient mobility systems.

One of the standard approaches to alleviate congestion in a transportation system
has been the management of demand size due to the shortage of space availabil-
ity and scarce economic resources in the form of congestion pricing (alternatively
called “tolling mechanisms” [30, 31]). Such an approach focuses primarily on intel-
ligent and scalable traffic routing, in which the objective is to guide and coordinate
users in path-choice decision-making. For example, one computes the shortest path
from a source to a destination regardless of the changing traffic conditions [32].
Interestingly, by adopting a game-theoretic approach, advanced systems have been
proposed to assign users concrete routes or minimize travel time and studying the
Nash equilibria under different tolling mechanisms [33–38]. This motivates us to
ask: “How can we design an emerging mobility system that ensures that all travelers
reach their destination safely, efficiently, and in a timely manner?” This question is
quite important as it is widely accepted that CAVs will revolutionize the way people
travel. We aim to provide a first-attempt answer to this question in this chapter and
argue that a sociotechnical approach focusing on the social dimension of a mobility
problem can help us design the next-generation mobility systems. To achieve this,
we consider a mobility system with decentralized information (alternatively called
“asymmetric information”) andmultiple selfish and intelligent decision-makers (e.g.,
travelers), who, in turn, may misreport their true travel preferences for better indi-
vidual benefits. Hence, based on their background and unique behavioral tendencies,
travelers make decisions that generally do not lead to system-wide optimal perfor-
mance. We tackle this discrepancy between individual and collective interests [39]
by reverse-engineering themobility system from its optimal solution (e.g., efficiency,
congestion-free) to what should each traveler do via the implementation of monetary
incentives. This method in economics is known as “mechanism design,” in which by
treating systems as economic institutions, we can control and coordinate the selfish
agents’ “economic activity” (e.g., which mode of transportation to use).

The theory of mechanism design was developed as an objective-first approach
to efficiently align the individuals’ and system’s interests in problems of asymmet-
ric information, where the individual agents have private preferences [40, 41]. It
can be viewed as the art of designing the rules of a game to achieve a specific
desired outcome. A well-established and broadly-used mechanism that has been
successful in widely different applications (e.g., auctions, public projects, and cost-
minimization problems) is the Vickrey-Clarke-Groves (VCG) mechanism [42–44].
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The VCGmechanism ensures the existence and implementation of a dominant strat-
egy equilibrium, which is an efficient solution and allows selfish agents to make a
decision (alternatively choose a strategy) that is best no matter what other agents
may decide. Agents are also incentivized to report their private preferences truth-
fully and have no reason (e.g., chance of receiving negative utility) not to participate
in the mechanism. However, the VCG mechanism is known to be an extravagant
mechanism, i.e., it can generate big surpluses. Overall, mechanism design has broad
applications spanning surprisingly many different fields, including microeconomics,
social choice theory, and control engineering. Applications in engineering include
communication networks [45], social media [46], transportation routing [47], online
advertising [48], smart grid [49], multi-agent systems [50], and in general resource
allocation problems [51]. We provide a formal overview of mechanism design in
Sect. 2.

The application of mechanism design is not new in transportation and mobil-
ity problems [52–56]. For example, it has been used to provide solutions to indi-
vidual route selection under different congestion traffic scenarios (e.g., first-mile
ridesharing, selfish routing, tradable driving permits). In particular, auction-based
mechanisms treat traffic congestion as an economic problem of supply and demand,
focusing on travel time allocation or routing. So, on the one hand, auctions have
been proposed to design pricing schemes with tolls in a network of roads leading
to a spark of studies in auctioning techniques. On the other hand, this approach has
important limitations: (i) the implementability of auction-based tolling on highways
is not straightforward due to the dynamic and fast-changing nature of transportation
systems; (ii) it is also uncertain how the public (e.g., drivers, passengers, travelers)
will respond concerning toll roads in an auction setting. Therefore, understanding the
travelers’ interests (willingness-to-pay, value of time) and the impacts on different
sociodemographic groups become imperative for a socially-efficient design of an
emerging mobility system. For these reasons, it is essential to design an emerging
mobility system whose focal point is the social aspect and societal impact of CAVs.
In conjunction, it is the authors’ belief that the emerging mobility systems—CAVs,
shared mobility, electric vehicles—will be characterized by their socioeconomic
complexity: (1) improved productivity and energy efficiency, (2) widespread acces-
sibility, and (3) drastic urban redesign and evolved urban culture. This characteristic
can naturally be modeled and analyzed using game theory/mechanism design and
behavioral economics alongside control and optimization techniques. One of the
main arguments in this chapter is that the social interactions of human travelers
with CAVs, and other modes of transportation can be modeled as an economically-
inspired mobility market, where monetary incentives (tolls) are used to induce the
desired socially-efficient outcome.

Our aim is to develop a holistic and rigorous framework to capture the societal
impact of connectivity and automation in emerging mobility systems and provide
solutions that prevent any potential rebound effects (e.g., increased vehicle-miles-
traveled, increased travel demand, empty trips). To achieve this aim, as a first attempt,
we study an emerging mobility system consisting of a finite group of travelers who
seek to travel in a “smart city,” where a central authority (alternatively called social
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planner) seeks to ensure the efficient distribution and operation of the differentmodes
of transportation offered by the city. We call these different modes of transportation
“mobility services.” A few examples of mobility services are CAVs, shared vehicles,
and public transit (e.g., train, bus, light rail, subway). The travelers request to use at
most one service to satisfy their mobility needs, i.e., to reach their destination, via a
smartphone app easily accessible to all travelers. The social planner (e.g., a central
computer) compiles all travelers’ origin-destination requests and other information
(e.g., preferred travel time, value of time, and maximumwillingness-to-pay) in order
to provide a travel recommendation to each traveler. The social planner’s goal is to
ensure that the aggregate travel recommendations are socially-efficient. Informally,
by socially-efficient, we mean that the endmost collective travel recommendation
must achieve two objectives: (i) respect and satisfy the travelers’ preferences regard-
ing mobility, and (ii) ensure the alleviation of congestion in the system. Since our
focus is to provide socially-efficient solutions, we consider a city that supports con-
nected and automatedmobility technologies on its roads and public transit infrastruc-
ture. Subsequently, the social planner is fully aware of the system’s capabilities and
network’s capacity. In other words, the social planner is fully capable of computing
the maximum capacity of each mobility service and the associated costs aimed at
providing travel recommendations to all travelers.

Our objective in this chapter is to design a mobility market of an emerging mobil-
ity system and provide a socially-efficient solution consisting of well-designed and
appropriate monetary incentives (e.g., tolls, fares, fees) for a social planner to guar-
antee the realization of the desired outcome, i.e., maximize the social welfare of all
travelers. At the same time, our solution will ensure to provide such incentives to
travelers so that the usage of any mobility service will not lead to congestion in the
mobility system. In other words, we design a mobility market that efficiently assigns
each traveler to the “right” mode of transportation.

Our contributions are the following:we design a socially-efficientmobilitymarket
that assigns mobility services to a finite group of travelers by taking into considera-
tion their travel preferences. We achieve that by implementing a special case of the
VCG mechanism after modifying it accordingly for a mobility problem. We show
that the proposed mobility market is incentive compatible and individually rational,
two properties that ensure all selfish travelers are truthful in their communication
with the social planner and voluntarily participate in the mobility market. We also
show that the proposed market is economically sustainable, i.e., it generates rev-
enue from each traveler and ensures that the operating costs of each mobility service
are covered. It is through the appropriate design of monetary incentives that we
successfully incentivize all travelers to truthfully report their travel preferences and
voluntarily participate in the market. Thus, we are guaranteed a socially-efficient
mobility solution. The proposed mobility market also provides an incentive to cen-
tral authorities to implement it, since as we show, the market ensures that there are
minimum acceptable payments to cover the operating costs of the mobility services.

The chapter is structured as follows. In Sect. 2, we review the main concepts of
mechanism design and briefly discuss theVCGmechanism. In Sect. 3, we present the
mathematical formulation of the emerging mobility market, which forms the basis
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for the rest of the chapter. In Sect. 3.2, we present the imposed optimization problem.
In Sect. 4, we present the methodology used to design the monetary incentives for
each traveler. In Sect. 5, we study the properties of the mobility market, and finally,
in Sect. 6, we draw conclusions and offer a discussion for future research.

2 Theoretical Preliminaries

In this section,weprovide the theoretical preliminarymaterial related to this chapter’s
proposed modeling framework, and we formally introduce all important concepts
needed to prove our principal results.

2.1 An Introduction to Mechanism Design

Most generic control systems can be viewed as a specification of how decisions
(e.g., how to utilize a number of resources) are determined as a function of the
information that is known by the agents in the system.What interests us inmost cases
is efficiency, i.e., realizing the best possible allocation of resourceswith the best use of
information to achieve an outcome where collectively agents are satisfied, and there
is no overutilization of the system’s resources [57]. One key challenge in ensuring
efficiency in a control system is the fact that different agents may have conflicting
interests and act selfishly. In other words, systems that incorporate human decision-
making, if remained uninfluenced, are not guaranteed to exhibit optimal performance.
This is well-known to be the case in control theory, and economics [58, 59]. There are
various different theories and approaches that attempt to guarantee efficiency in such
systems and can provide solutions of varying degrees of success. One such theory
is mechanism design, in which we are concerned with how to implement system-
wide optimal solutions to problems involving multiple selfish agents, each with
private information about their preferences [60, 61]. Within the context of mobility,
agents are the travelers, and their private information can be either tolerance to traffic
delays, value of time, preferred travel time, or any disposition to a specific mode of
transportation. Our goal in mechanism design is to design appropriate incentives in
order to align the interests of agentswith the interests of the system [51]. For example,
in mobility, given that each traveler/driver/passenger “competes” with everyone else
to reach their destination first, we want to ensure that given this inherent conflict
of interest, we can still guarantee uncongested roads, no traffic accidents, and no
travel time delays. Mechanism design can help us design the rules of systems where
information is decentralized (different agents know different things), and agents
do not necessarily have an immediate incentive to cooperate [62]. In particular,
mechanism design helps us design rules that align all agents’ decision-making by
providing the right incentives to achieve a well-defined objective for the system (e.g.,
aggregate optimal performance, system-level efficiency). Thus, mechanism design
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entails solving an optimization problem with sometimes unverifiable and always
incomplete information structure [63]. We call such a problem an incentive design
and preference elicitation problem.

We start by supposing that there is a system consisted of a finite group of agents,
each competingwith each other for a limited, fixed allocation of resources. Each agent
evaluates different allocations based on some private information that is known only
to them. We consider a social planner, playing the role of a centralized entity, whose
task is to align the selfish and conflicting interests of the agents with the overall
system’s objective (e.g., an efficient allocation of resources or the maximization of
social welfare). As it can be seen in Fig. 1, there are four components: (1) There
is a group of decision-makers, (2) who make a decision based on their personal
information, and (3) that decision is reported as a message to the social planner who
is tasked to design the rules of which (4) it can be determined what each agent gets.
What follows next is a mathematically formal presentation of the social planner’s
task.

Consider a set of selfish agents I, |I| = n ∈ N with preferences over different
outcomes in a set O. Each agent i ∈ I is assumed to possess private information,
denoted by θi ∈ �i . Since an agent i’s θi can characterize and influence their decision-
making in a significant way, we call θi the type of agent i . We write (θi )i∈I = θ ∈
� = ∏

i∈I �i to represent the type profile of all agents. Next, an agent i’s preferences
over different outcomes can be represented by a utility function ui : O × �i → R.
Although the exact form of ui can vary depending on the application of the problem
[64–67], what is common in the literature [41, 50, 62] is a quasilinear function of
the form

ui (o, θi ) = vi (o, θi ) − pi , (1)

Fig. 1 A visualization of how an arbitrary control system (agents, preferences, allocations) can
be viewed under a mechanism design framework. Agents hold private information, of which they
send reports to the social planner who is responsible for designing a mechanism. How efficient the
mechanism is can depend on whether the agents’ messages are truthful or not
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where vi : O × �i → R≥0 represents an arbitrary valuation function, and pi �→ R

is a monotonically increasing function. If outcome o ∈ O represents an allocation
of a resource, then pi can be thought of as a transfer of agent i’s wealth or a cost
imposed to agent i for that particular allocation o. Intuitively, a quasilinear function
defined as in (1) ensures that the marginal value of vi does not depend on how large
pi becomes, and vice-versa. Furthermore, (1) assumes ui is linear with respect to pi .
We can now naturally define the social welfare as the collective summation of all
agents’ valuations, i.e.,

w(o, θ) =
∑

i∈I
vi (o, θi ). (2)

If our system objective is tomaximizew, then immediatelywe observe that there is an
important obstacle, i.e., any agent i maymisreport their type θi in the hopes to increase
their own utility. So, the question is now: How can we incentivize agents to truthfully
report their type? The answer is through the appropriate design of pi . Next, we outline
the building blocks that can help us design pi . Formally, we can define a mechanism
as the tuple 〈 f, p〉 composed of a social choice function (SCF) f : � → O and a
vector of payment functions p = (pi )i∈I , with pi : � → R. In words, a mechanism
〈 f, p〉 defines the rules of which we can implement a system objective by mapping
the agents’ types to an outcome while using the payments to ensure the optimality
or efficiency of that outcome (see Fig. 2 for an illustration of the mechanism design
framework). We can now state the social planner’s problem as follows

max
o∈O

w(o, θ) (3)

subject to: θ̂i = θi , ∀i ∈ I, (4)

∑

i∈I
vi (o, θi ) ≥

∑

i∈I
vi (o

′, θi ), ∀o′ ∈ O, (5)

∑

i∈I
pi (s(θ)) ≥ 0, ∀θ ∈ �, (6)

vi ( f (s(θ))) − pi (s(θ)) ≥ 0, ∀i ∈ I,∀θ ∈ �, (7)

where θ̂i denotes the reported type of agent i , s(·) is the equilibrium strategy pro-
file (e.g., Nash equilibrium). Constraints (4) ensure the truthfulness in the agents’
reported types, (5) impose an efficiency condition, (6) make certain that no external
payments are required, and (7) incentivize all agents to voluntarily participate in the
mechanism. Ifwe could know for certain the true types of all agents, thenwewould be
able solve the optimization problem (3)–(7) using standard optimization techniques.
However, as this is unreasonable to expect from selfish decision-makers, the social
planner needs to elicit θ = (θi )i∈I by designing the appropriate p = (pi )i∈I . We dis-
cuss in the next subsection one such mechanism that elicits the private information
of agents truthfully.
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Fig. 2 A theoretical representation of the mechanism design framework

2.2 The Vickrey-Clarke-Groves Mechanism

In the previous subsection, we reviewed the main concepts of mechanism design
and formulated the incentive design and preference elicitation problem. In words,
we asked “How can we design the payments p = (pi )i∈I so that every agent makes
the decision that agrees with what we have chosen as the system’s objective (e.g.,
efficiency)? To answer this question, in this subsection, we review the Vickrey-
Clarke-Groves (VCG) mechanism [42–44], one of the most successful mechanisms
as it incentivizes agents to be truthful and guarantees efficiency.

As we discussed earlier, a mechanism is a tuple 〈 f, p〉. In a VCGmechanism, the
SCF f is defined as an allocation rule (who gets what) based on the optimization
problem (3)–(7), i.e.,

f (θ̂) = argmax
o∈O

W (o, θ̂i ), (8)

where θ̂ = (θ̂i )i∈I . Inwords, assuming that the agents disclose their true information,
(8) provides to the social planner who attempts to maximize the social welfare a
formal way to compute the allocations of each agent. At the same time, the VCG
mechanism charges each agent for their allocation as follows

pi (θ̂) =
∑

j 
=i

v j ( f (θ̂−i )) −
∑

j 
=i

v j ( f (θ̂)), (9)

where θ̂−i denotes the type profile of all agents except agent i . Note that the payments
defined in (9) do not depend on an agent i’s own declaration θ̂i . Let us assume
for a moment that all agents declare their types truthfully. Then, the first sum in
(9) computes the value of the social welfare with agent i not participating in the
mechanism. The second sum in (9) computes the value of the social welfare of all
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other agents j 
= i with agent i participating in the mechanism. Thus, agent i when
they report θ̂i are made to pay the marginal effect of their decision (in our case that
is agent i’s reported type θ̂i ). In other words, this particular design of the payments
in (9) internalizes an agent i’s social externality, i.e., agent i’s impact on every other
agents’ welfare.

The VCG mechanism represented by the SCF f defined by (8) and the payment
functions p defined by (9) satisfies the following properties:

1. For any agent, truth-telling is a strategy that dominates any other strategy that
is available for that agent. We say then that truth-telling is a dominant strategy.
Note that such strategies are “always optimal” no matter what the other agents
decide.

2. The VCG mechanism successfully aligns the agents’ individual interests with
the system’s objective. In our case, that objective was to maximize the social
welfare of all agents. We call this property, economic efficiency.

3. For any agent, the VCG mechanism incentivizes them to voluntarily participate
in the mechanism as no agent loses by participation (in terms of utility).

4. The VCG mechanism ensures no positive transfers are made from the social
planner to the agents. Thus, the mechanism does not incur a loss. We call this
weakly budget balanced.

The VCG mechanism essentially ensures the realization of a socially-efficient out-
come, i.e., satisfying properties 1–3, in a system of selfish agents, where each pos-
sesses private information. It is noteworthy tonote howpowerful theVCGmechanism
is as it induces a dominant strategy equilibrium maximizing the social welfare while
also making sure no agent is hurt by participating.

We conclude Sect. 2 with the following remark: although the main motivation
of mechanism design is the microeconomic study of institutions and relies heavily
on game-theoretic techniques, it can prove a powerful theory providing a system-
atic methodology in the design of systems of asymmetric information, consisted of
strategic decision-makers, and whose performance must attain a specified system
objective. The rest of the chapter shall present how we can use this theory to design
a socially-efficient mobility system consisting of travelers who compete with each
other for the utilization of a limited number of mobility services.

3 The Emerging Mobility Market

We consider an emerging mobility system consisting of a transportation city network
managed by a social planner and a finite group of travelers who seek to travel in the
network. Informally, this network represents the high-level mobility connections
of multiple and different city neighborhoods. In other words, we move away from
the concept of “personally-owned” modes of transportation and focus our modeling
towardsmobility provided as a service. Thismeans that a social planner (e.g., a central
computer) offers travelers a unified gateway of public and private transportation
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providers capable of providing mobility solutions to manage and realize their trip.
For example, travelers can plan their journey via a smartphone app by specifying
their preferences (e.g., cost, time, and convenience) and their desired destination.
The social planner then is tasked to offer a travel recommendation to each traveler,
i.e., which mode of transportation to take. In addition, we consider that multiple
and different travel options can be offered to each traveler focusing on urban modes
of transportation (e.g., CAVs, bus, train). We call these options “mobility services”
or “services” for short. Within this framework, we propose a mobility market for
a socially-efficient implementation of connectivity and automation in an emerging
mobility system. The goal of the mobility market is twofold: (i) ensure that all
travelers voluntarily participate and truthfully report their travel preferences, and (ii)
be economically sustainable by generating revenue from each traveler and setting
a minimum acceptable mobility payment for each traveler to potentially cover the
operating costs.

3.1 Mathematical Formulation of the Emerging Mobility
Market

The proposed mobility market is managed by a social planner who aims to allocate
m ∈ Nmobility services to n ∈ N travelers, where n ≥ m 
= 0. We denote the set of
travelers by I, |I| = n and the set of mobility services byJ , |J | = m. For example,
each service j ∈ J can either represent a shared CAV, a train, or a bus. Both sets I
and J are nonempty, disjoint, and finite. The set of all mobility services J can be
partitioned to a finite number of disjoint subsets, each representing a specific “type”
of amobility service, i.e.,J = ⋃H

h=1 Jh , where H ∈ N is the number of subsets ofJ .
For example,J = J1 ∪ J2, where |J1| represents the number of all available CAVs,
and |J2| represents the number of all available busses. Next, travelers seek to travel
using thesemobility services in a transportation network represented by an undirected
multigraph G = (V, E), where each node in V represents a different city area or
neighborhood, and each link e ∈ E represents a sequence of city roads or a public
transit connection. For our purposes, we think of G = (V, E) as a representation of
a smart city network with a road and public transit infrastructure. In G, a traveler
i ∈ I seeks to travel from their current location oi ∈ V to their desired destination
di ∈ V . So, on one hand, each traveler i ∈ I is associated with a origin-destination
pair (oi , di ). On the other hand, each type of mobility services (e.g., one type is
shared CAVs, another is trains) is associated with a unique link that connects any
two nodes. At the same time,we do not limit the number of differentmobility services
that connect any origin oi to any destination di of any traveler i ∈ I. We suppose
that any traveler i ∈ I has at least two travel options for their origin-destination pair
(oi , di ). Furthermore, each traveler i ∈ I can travel in G with any mobility service
j ∈ J that satisfies their origin-destination pair (oi , di ) and each service j ∈ J can
be used by multiple travelers.



492 I. V. Chremos and A. A. Malikopoulos

Remark 1 Network G represents the upper-level connections of different city neigh-
borhoods. By connections, we mean either roads or public transit routes. Instead of
modeling each node to represent travelers’ exact location, we consider dividing a
city into zones. By grouping travelers’ exact locations into such zones, we can use
network G to model the mobility connections between the different city zones.

Next, we partition the set of travelers I into different smaller subsets characterized
by a common origin-destination pair.

Definition 1 The set of travelers with the exact same origin-destination pair is
Ik = {i ∈ I | (oi , di ) = (ok, dk)}, k = 1, 2, . . . , K , where K ∈ N is the number of
subclasses over the complete set of travelers, i.e., I = ⋃K

k=1 Ik .
The justification of Definition 1 is that in an emerging mobility system, we can

acquire verifiable location data of travelers either by using a global positioning system
or estimating the average number of travelers using public transit [68, 69].

Mathematically, the allocation of the finite number ofmobility services to travelers
can be described by a vector of binary variables.

Definition 2 The traveler-service assignment is a vector a = (ai j )i∈I, j∈J , where
ai j is a binary variable of the form:

ai j =
{
1, if i ∈ I is assigned to j ∈ J ,

0, otherwise.
(10)

Note that we have (ai j )i∈I, j∈J = (a11, . . . , ai j , . . . , anm). By partitioning the set
of travelers in K ∈ N subclasses, the traveler-service assignment of subclass Ik is
given by ak = (ai j )i∈Ik , j∈J .

Naturally, we need to impose a physical limit on the use of each mobility service
j ∈ J in network G as well as a connection capacity of a mobility service for each
link in the network. Note that each link in G represents a road or a public transit
connection, which means that multiple mobility services of one type use that one
link. For example, one link can be a bus lane with stops between two different city
areas; another can be a train route between two stations.

Definition 3 The usage capacity of any mobility service j ∈ J is given by ε j ∈ N.
The link capacity in network G is given by γe ∈ R≥0.

For example, ε j can represent the maximum number of travelers (or passengers)
in a shared vehicle or the maximum number of travelers in a train vehicle (seated and
standing). Similarly, γe can represent a critical traffic density of mobility services,
whichmeans that any additional input of vehicles or trains can lead to a reduced traffic
flow and eventually to traffic congestion. For example, we can use the GreenShields
model to define explicitly the critical traffic density [70].

As in any mobility problem that involves travelers, we need to consider the trav-
elers’ preferences (e.g., preferred travel time, value of time, willingness-to-pay for
service). Hence, we formally define the notion of “personal travel requirements” by
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introducing three important parameters (our selection of those three parameters is
justified by recent transportation studies [71, 72].)

Definition 4 For any traveler i ∈ Ik , k = 1, . . . , K , let αi ∈ (0, 1) be the value of
time, θi ∈ R≥0 the preferred travel time, and v̄i ∈ R≥0 the maximum willingness-
to-pay. Then, the personal travel requirements of traveler i is a tuple of the form
πi = (αi , θi , v̄i ).

We offer the intuition behind each parameter: traveler i’s value of time αi trans-
forms the traveler’s time urgency in monetary units as it can model, for example, the
acceptable amount of compensation for lost time. Similarly, a traveler i’s preferred
travel time θi is a non-negative real value representing how fast traveler i wishes to
reach their destination. The last term in πi captures how much traveler i appraises
a direct and completely convenient mobility service. For example, v̄i can measure
the maximum willingness-to-pay of traveler i traveling with the fastest and most
convenient service (e.g., taking a taxicab with no co-travelers) to their destination.

For each traveler i ∈ Ik , the tuple πi is considered private information, known
only to traveler i . Hence, as the social planner does not know (πi )i∈I , each traveler
i must report their πi . This is one of the key challenges in the proposed mobility
market: How can we incentivize the travelers to be truthful and elicit the private
information needed to provide a socially-efficient solution to the emerging mobility
market? The answer to this question will be given in Sect. 4.

Next, we introduce an “inconvenience” metric for any traveler i ∈ Ik using any
mobility service j ∈ J . Quantitatively, the inconvenience metric can represent the
extra monetary value of travel disutility from any costs, travel delays, or violation of
personal travel requirements caused by the use of a mobility service.

Definition 5 The mobility inconvenience metric for traveler i ∈ Ik , k = 1, . . . , K ,
assigned to service j ∈ J is a continuous, increasing, and convex function

φi

(
αi , θi , θ̃i (ak)

)
�→ R≥0, where θ̃i (ak) ∈ R≥0 is the experienced travel time.

Note that the mobility inconvenience metric φi increases when θ̃i (ak) increases.
From a modeling perspective, traveling with time delays or during peak times can
cause significant inconveniences to any traveler i ∈ Ik . Although, an exact form of
φ is beyond the scope of this chapter, our definition of φ is consistent with general
inconvenience functions in the literature [73, 74].

Next, a traveler i’s satisfaction is captured by a valuation function vi , which can
reflect the traveler’s willingness-to-pay for their travel, i.e.,

vi (ak) = v̄i − φi

(
αi , θi , θ̃i (ak)

)
, (11)

where v̄i ∈ R≥0 is the value gained by traveler i ∈ Ik when their origin-destination
pair (oi , di ) is satisfied using service j ∈ J without any travel delays, i.e., θi =
θ̃i (ak). Naturally, for any traveler i and any service j , we have vi (ak) ∈ [0, v̄i ], where
vi (ak) = 0 means that traveler i is unwilling to use service j . Below we summarize
the two extreme cases and their interpretation:
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vi (ak) =
{
v̄i , if φi = 0,

0, if φi = v̄i .
(12)

When φi = 0, we say that traveler i travels to their destination in the fastest and
most convenient mobility service offered by the mobility market (e.g., a taxicab with
no co-travelers). On the other hand, when φi = v̄i , we say that traveler i’s personal
travel requirements are not satisfied, and the traveler is most inconvenienced with
regards to mobility.

Although our analysis can treat the valuation function vi in its most general form,
given by (11), we explicitly define the second component of (11) in ourmathematical
exposition. Thus, the explicit form for the inconvenience mobility metric φi is

φi

(
αi , θi , θ̃i (ak)

)
= αi · (θ̃i (ak) − θi ), (13)

Basically, (13) gives the monetary value of the difference between the travel times
(experienced vs preferred), and can be interpreted as the travel time tolerance that
the traveler can accept (in monetary units).

In our modeling framework, the total utility ui (ak) of traveler i ∈ Ik , k =
1, . . . , K , is given by

ui (ak) = vi (ak) − pi (ak), (14)

where vi (ak) is the willingness-to-pay and pi (ak) ∈ R≥0 is the mobility payment
that traveler i is required to make to use service j ∈ J (e.g., pay road tolls or buy a
public transit fare). Hence, (14) establishes a “quasi-linear” relationship between a
traveler’s satisfaction and payment, both measured in monetary units [40].

In contrast to the traveler’s satisfaction, we also introduce an “operating cost”
to capture the needed investment that public and private mobility providers and
operators make to ensure the proper function of their mobility services.

Definition 6 The operating cost of service j ∈ J can be computed by

c j (ak) =
∑

i∈Ik

ci j (ai j ), (15)

where ci j (ai j ) ∈ R≥0 is traveler i’s corresponding share of the operating cost of
vehicle j ∈ J . In the case of ai j = 0, we have ci j = 0.

Intuitively, the operating cost ci j captures traveler i’s fair share of the costs of
service j ∈ J . These costs can be associated with fuel/energy consumption, drivers’
labor reimbursement, maintenance, and environmental impact.

Definition 7 Given the traveler-service assignmentak = (ai j )i∈Ik , j∈J , the travelers’
payments are given by the vector pk = (pi (ai j ))i∈Ik , j∈J . Then, for a subclass Ik ,
k = 1, . . . , K , the proposed mobility market can be fully described by the tuple

〈Ik,J , (πi )i∈Ik , (ui )i∈Ik , ak,pk
〉
, (16)
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where (πi )i∈Ik is considered private information (unknown to the social planner),
and the experienced travel time θ̃i and operation costs c j of all mobility services are
considered known to the social planner.

Note that in Definition 7, we have also defined the informational structure of the
proposed market. The operation costs (c j ) j∈J are considered public information
as well as the minimum acceptable mobility payments (σi )i∈I . In general, though,
any VCG-based mechanism requires agents to report their entire valuation function
[75]. In our case, we can take advantage of more advanced and sophisticated data
gathering techniques so that wemay infer the form and shape of a traveler’s valuation
(and utility) function using, for example, historical and empirical data [76, 77].
Hence, the functional form of vi can be considered known, but the realization of
vi (·) is agent i’s private information. It is important to note that the evaluation of
any traveler i’s valuation function can be learned using the three-parameter tuple πi ,
which provides the personal travel requirements of any traveler i ∈ Ik . In addition,
we expect any social planner of a generic transportation system to have the ability
(e.g., using regression analysis [78]) to approximate the experienced travel time of
any mobility service and its operating costs. Hence, the only private information
that we are required to elicit from the travelers is their personal travel requirements
(πi )i∈Ik , k = 1, . . . , K . At the same time, receiving communication in the form of
messages from all travelers regarding the (πi )i∈Ik , k = 1, . . . , K can be an unrealistic
burden. That is why, in our framework, any traveler i ∈ I is expected to report the
evaluation of their valuation function vi , which depends on their πi . Essentially, we
parameterize the private information of travelers into a one-dimensional number. In
future research, we plan to address a multi-dimensional mechanism to ensure there
is no loss of information of the traveler’s preferences.

On a different note, a natural question to ask here is whether there is any guarantee
that the travelers’ mobility payments will meet the providers’ operating costs. As
we saw in Sect. 2, the VCG mechanism can only charge travelers their social cost or
impact into the mobility system. Thus, this might lead to very lowmobility payments
for a significant number of travelers, leading to deficits to cover operating costs for
the providers. Since, in reality, we cannot expect any providers to serve travelers
indefinitely when their costs have not been met, we introduce a “pricing base” for
the mobility payments. Essentially, these bases can be chosen by the providers to
ensure that no payment by any traveler is below a set value (e.g., minimum acceptable
payment), which can be determined approximately by the traveler’s location and
destination, supply and demand, and operator’s reimbursement fee [79].

Definition 8 The minimum acceptable mobility payment of any service j ∈ J is
given by σi (ak) ∈ R≥0, for any traveler i ∈ Ik , k = 1, . . . , K . If for an arbitrary
traveler i , we have pi (ak) ≥ σi (ak), then we say that the mobility market, defined in
(16), is economically sustainable.
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The minimum acceptable mobility payments σ = (σi )i∈I are considered public
information set by the providers and may be different for each traveler i ∈ Ik , k =
1, . . . , K .

In themodeling framework described above,we impose the following assumption:

Assumption 1 For all subclasses Ik , k = 1, . . . , K , K ∈ N, any traveler i ∈ Ik is
modeled as a selfish decision-maker with private information πi = (αi , θi , v̄i ). Trav-
eler i’s objective is to maximize their total utility ui (ak) = vi (ak) − pi (ak) in a
non-cooperative game-theoretic setting.

Assumption 1 essentially says that each traveler is selfish in the sense that they
are only interested in their own well-being. In economics, such behavior is called
“strategic” since agents attempt to misreport their private information to the social
planner if that means higher individual benefits.

Assumption 2 The aggregate usage capacities of all mobility services can ade-
quately serve all travel requests of travelers. Mathematically, we have

∑
j∈J ε j =

n = |I|.
Intuitively, Assumption 2 ensures that no traveler will remain unassigned. We can

justify this assumption as follows: our focus is on efficiently allocating the different
mobility services to travelers in a mobility market, a multimodal mobility system
that incorporates public transit services with high traveler capacity capabilities. A
relaxation of this assumption must consider scenarios where the existing mobility
services cannot meet the travelers’ demand, thus transforming our problem into a
“mobility and equity” problem (giving priority to a subset of travelers in a fair way).

3.2 The Optimization Problem Statement of the Emerging
Mobility Market

In the proposedmobilitymarket, travelers request (via a smartphone app), in advance,
a travel recommendation from the social planner that satisfies their origin-destination.
Given the travelers’ origin-destination pairs, the social planner partitions all travelers
to different subclasses, as described in Definition 1. Thus, travelers from the same
neighborhood have the same origin. Similarly, travelers going to the same neighbor-
hood have the same destination. The social planner’s task is to elicit the travelers’
preferences, attempt to satisfy all travel requests, and provide recommendations to
the travelers (e.g., which mobility service to use) by considering the social opti-
mum subject to the city network’s physical constraints. Hence, we are interested in
minimizing the travel inconvenience of all travelers and the operating costs.

Remark 2 Without loss of generality and to simplify the mathematical analysis in
our exposition, we consider that both the mobility inconvenience metrics (φi )i∈Ik ,
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k = 1, . . . , K , theminimummobility payments (σi )i∈Ik , k = 1, . . . , K , and the oper-
ating costs (c j ) j∈J are normalized. This ensures that φi , σi , and c j do not dominate
each other in Problem 1 next, while all three are measured in the same monetary
units.

Problem 1 For each subclass Ik , k = 1, . . . , K , the optimization problem is

min
ak

∑

i∈Ik

[
φi

(
αi , θi , θ̃i (ak)

)
+ σi (ak)

]
+

∑

j∈J
c j (ak), (17)

subject to:
∑

j∈J
ai j ≤ 1, ∀i ∈ Ik, (18)

∑

i∈Ik

ai j ≤ ε j , ∀ j ∈ J , (19)

∑

j∈Jh

∑

i∈Ik

ai j ≤ γe, ∀h ∈ {1, 2, . . . , H}, ∀e ∈ E, (20)

where (18) assures that each traveler i ∈ Ik will be assigned at most one mobility
service, and (19) stipulates that service j’s maximum usage capacity ε j must not be
exceeded. Lastly, (20) ensures that there will be no congestion on the links that rep-
resent roads or public transit connections. Note also that even though in Problem 1
we focus only on the kth partition of the set of travelers I, we do not need to do the
same for the mobility services. In other words, since each type of mobility services
is associated with a unique link that connects any two nodes, any services that do not
satisfy (ok, dk) will not be considered in the optimization.

Problem 1 is similar to the many-to-one assignment problem, and standard algo-
rithmic approaches (e.g., Jonker-Volgenant algorithm [80]) exist to find its global
optimal solution or, in worst-case scenarios, a second-best optimal approximation of
a solution. We can also reformulate Problem 1 to a linear program by relaxing to a
non-negativity constraint the binary optimization variable ai j for all i ∈ I and j ∈ J .
We can then guarantee that an optimal solution of zeros and ones exists by noting
that the constraint matrix formed by (18)–(20) satisfies the total unimodularity prop-
erty [81]. Note, though, that these approaches assume complete information of all
parameters and variables in the model. Such an assumption is unreasonable to expect
from strategic decision-makers, so, in our framework, travelers are not expected to
report their private information truthfully. This turns our problems to a preference
elicitation problem. Our task in Sect. 4 is to provide a theoretical approach that elicits
the necessary private information of all travelers using monetary incentives in the
form of mobility payments (e.g., tolls, fares, fees).
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4 Methodology for the Design of Mobility Incentives

We can reformulate Problem 1 as a standard social welfare maximization prob-

lem. First, recall that φi

(
αi , θi , θ̃i (ak)

)
= v̄i − vi (ak), so the objective function (17)

becomes
max
ak

∑

i∈Ik

[vi (ak) − σi (ak)] −
∑

j∈J
c j (ak). (21)

This reformulation will prove useful as the design of the monetary payments relies
on the social welfare impact (or mobility externality) caused by one traveler to the
rest of the travelers in the proposed mobility market.

Problem 2 We rewrite Problem 1 as follows:

max
ak

∑

i∈Ik

[vi (ak) − σi (ak)] −
∑

j∈J
c j (ak), (22)

subject to:
∑

j∈J
ai j ≤ 1, ∀i ∈ Ik, (23)

∑

i∈Ik

ai j ≤ ε j , ∀ j ∈ J , (24)

∑

j∈Jh

∑

i∈Ik

ai j ≤ γe, ∀h ∈ {1, 2, . . . , H}, ∀e ∈ E, (25)

where ak = (ai j )i∈Ik , j∈J denotes the solution of Problem 2.

In order for the solution of Problem 2 to be socially-efficient, we would need a
control input in utility function (14) to incentivize all travelers to report their personal
travel requirements truthfully. In our case, this control input is the payments pk , k =
1, . . . , K , which can be designed to be the difference between the maximum social
welfare with traveler 
 ∈ Ik not participating and the maximum social welfare of
other travelers with traveler 
 participating. Thus, to capture the first term, we revise
Problem 2 by adding constraint (30) to help us capture the “mobility externality” of
traveler 
 rejecting any travel recommendations from the social planner. For example,
traveler 
 may use a taxicab with no other co-travelers. Thus, Problem 2 takes the
following form.

Problem 3 For each traveler i ∈ Ik , k = 1, . . . , K , we fix traveler 
 ∈ Ik and solve
the following optimization problem:
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max
bk

∑

i∈Ik

[vi (bk) − σi (bk)] −
∑

j∈J
c j (bk), (26)

subject to:
∑

j∈J
bi j ≤ 1, ∀i ∈ Ik, (27)

∑

i∈Ik

bi j ≤ ε j , ∀ j ∈ J , (28)

∑

j∈Jh

∑

i∈Ik

bi j ≤ γe, ∀h ∈ {1, 2, . . . , H}, ∀e ∈ E, (29)

b
j = 0, ∀ j ∈ J , (30)

where bk = (bi j )i∈Ik , j∈J defined similarly as in (10) denotes the solution of Problem
3, and (30) states that traveler 
 ∈ Ik is not considered in the optimization problem.

Remark 3 In what follows, to simplify the mathematical exposition, we introduce
the following notation:

w2(ak) =
∑

i∈Ik

[vi (ak) − σi (ak)] −
∑

j∈J
c j (ak), (31)

w3(bk) =
∑

i∈Ik

[vi (bk) − σi (bk)] −
∑

j∈J
c j (bk), (32)

where w2 and w3 denote the objective functions of Problems 2 and 3, respectively.

We can now propose the exact form of the mobility payment p
 for an arbitrary
traveler 
 ∈ Ik , k = 1, . . . , K , of the proposed mobility market. For any subclass Ik ,
k = 1, . . . , K , traveler 
 ∈ Ik makes the following payment:

p
(ak,bk) = w3(bk) − [w2(ak) − v
(ak)] . (33)

Since w3(bk) yields the maximum social welfare from the traveler-service assign-
ment bk when traveler 
 ∈ Ik does not participate in the mobility market, it can
be viewed by traveler 
 ∈ Ik in (33) as a constant, regardless of what traveler 


reports to the social planner about their own personal travel requirements π
. The
term [w2(ak) − v
(ak)] in (33) represents the maximum social welfare of all travelers
other than traveler 
 ∈ Ik , when traveler 
 ∈ Ik partakes in the mobility market. As a
consequence, p
 can be interpreted as the externality caused by traveler 
 ∈ Ik to all
other travelers. In addition, the computation of the mobility payments (33) requires
solving Problem 3 repeatedly for each traveler. As shown in Algorithm 1, first we
derive the optimal solution of Problem 2, and then we use the optimal solution of
Problem 3 to compute the monetary payment of each traveler 
 ∈ Ik .
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Algorithm 1: Solution of Problem 2 with Problems 3
Data: Ik ,J , (πi )i∈Ik , (ui )i∈Ik

Result: a∗
k and pk

Solve for the optimal solution a∗
k of Problem 2;

for 
 ∈ Ik do
Solve for the optimal solution b∗

k of Problem 3;
Next, compute

p
(a∗
k ,b

∗
k ) = w3(b∗

k ) − [
w2(a∗

k ) − v
(a∗
k )

]
.

end

Before we move on to the next section, we note that informally we talked about a
traveler not participating in themobility market in solving Problem 3. This idea helps
us design the mobility payments in (33) by identifying the mobility externalities in
the welfare of all travelers. Thus, we introduce the notion of “mobility exclusion,”
which will help us capture the socioeconomic impact of any traveler on the rest of
the mobility market.

Definition 9 For any subclass Ik , k = 1, . . . , K , given a traveler-service assignment
ak of Problem 2, a traveler 
 ∈ Ik is said to be mobility excluded if they are not
assigned to any mobility service in the traveler-service assignment bk of Problem 3.

Problem 3 is used to compute themobility payments for each traveler in themobil-
ity market by identifying the mobility externality caused by the decision-making of
the traveler to the rest of the market. In addition, however, we are also interested in
identifying the traveler’s impact on (i) operating costs and (ii) overall welfare. We
shall see in the next section how we can achieve this.

5 Properties of the Mobility Market

Our first result is an immediate and straightforward consequence of Definition 9.
Recall that the operating cost ci j (ai j ) captures traveler i’s fair share of the mobility
service j’s costs that they use under the traveler-service assignment ak .

Corollary 1 Let b

k be a feasible traveler-service assignment of Problem 3. Given

that traveler 
 ∈ Ik is mobility excluded, the operating cost that is associated with
the traveler-service assignment b


k is smaller than or equal than the operating cost
associated with the optimal assignment a∗

k of Problem 2, i.e., we have

∑

i∈Ik

ci j (a
∗
i j ) ≥

∑

i∈Ik\{
}
ci j (b



i j ). (34)

Similarly, using Definition 9, we show that the sum of valuations (or welfare) of
all travelers other than the traveler, who is mobility excluded specifically in Problem
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3, is greater or equal than the sum of valuations evaluated at the traveler-service
assignment of Problem 2.

Lemma 1 Let b

k be a feasible traveler-service assignment of Problem 3, in which

traveler 
 ∈ Ik is mobility excluded. Then, we have
∑

i∈Ik\{
}
vi (ak) ≤

∑

i∈Ik

vi (b

k). (35)

Proof Given that traveler 
 ∈ Ik is mobility excluded in the traveler-service assign-
ment b


k of Problem 3, we know that there is one less traveler required to be served
by any mobility service in the market. Naturally, this affects the experienced travel
times of any other traveler i ∈ Ik , i.e., we have either a decreased or constant θ̃i (b


k).
So, mathematically this means that with traveler-service assignment ak of Problem
2, we have

θ̃i (b

k) ≤ θ̃i (ak), (36)

where θ̃i (b

k) is the experienced travel time of traveler i ∈ Ik evaluated at b


k and
θ̃i (ak) is the experienced travel time of traveler i evaluated at ak . Intuitively, (36)
means there is one less traveler leading to better travel times for other travelers
(better here means less). Hence, since the explicit form of traveler i’s valuation is
given by

vi (ak) = v̄i − φi

(
αi , θi , θ̃i (ak)

)
= v̄i − αi · (θ̃i (ak) − θi ), (37)

if we compare the two valuations vi (ak) and vi (b

k), we get vi (ak) ≤ vi (b


k). This
completes the proof. �

Next, we show that for any traveler, their valuation will always be greater or equal
than the minimum mobility payment. This will be instrumental in our attempt to
show individual rationality later on.

Lemma 2 Let a∗
k denote the optimal solution of Problem 2. Then the minimum

mobility payment σ
 in the objective function (22) of Problem 2 ensures that, for any

 ∈ Ik , k = 1, . . . , K, v
(a∗

k ) ≥ σ
(a∗
k ).

Proof Let a∗
k denote the optimal solution of Problem 2 and b


k
∗
the corresponding

solution of Problem 3. Hence, traveler 
 has been assigned a mobility service in the
optimal traveler-service assignment a∗

k , but they are mobility excluded in b

k
∗
. Thus,

we have

w3(b

k
∗
) =

∑

i∈Ik

[
vi (b


k
∗
) − σi (b


k
∗
)
]

−
∑

j∈J
c j (b


k
∗
)

≥
∑

i∈Ik\{
}
vi (a∗

k ) −
∑

i∈Ik

σi (b

k
∗
) −

∑

j∈J
c j (a∗

k ), (38)



502 I. V. Chremos and A. A. Malikopoulos

where (38) follows from Corollary 1 and Lemma 1. Next, we look at the welfare of
an arbitrary traveler i ∈ Ik under a∗

k , i.e.,

w2(a∗
k ) =

∑

i∈Ik

[
vi (a∗

k ) − σi (a∗
k )

] −
∑

j∈J
c j (a∗

k )

=
∑

i∈Ik

vi (a∗
k ) −

∑

i∈Ik

σi (a∗
k ) −

∑

j∈J
c j (a∗

k ), (39)

where it also follows that w2(a∗
k ) ≥ w3(b


k
∗
) from the fact that b


k
∗
is not an optimal

solution of Problem 2. Thus, if we compare (38) and (39), we get

∑

i∈Ik

vi (a∗
k ) −

∑

i∈Ik

σi (a∗
k ) −

∑

j∈J
c j (a∗

k )

≥
∑

i∈Ik\{
}
vi (a∗

k ) −
∑

i∈Ik

σi (b

k
∗
) −

∑

j∈J
c j (a∗

k ). (40)

So, by simplifying and rearranging (40), we have

∑

i∈Ik

vi (a∗
k ) −

∑

i∈Ik\{
}
vi (a∗

k ) ≥
∑

i∈Ik

σi (a∗
k ) −

∑

i∈Ik

σi (b

k
∗
),

= σ
(a∗
k ) − σ
(b


k
∗
) = σ
(a∗

k ), (41)

since σ
(b

k
∗
) = 0 as traveler 
 is not assigned anymobility service under the traveler-

service assignment b

k
∗
. Therefore, (41) simplifies to v
(a∗

k ) ≥ σ
(a∗
k ). �

Our first main result is incentive compatibility, which means that all travelers are
incentivized to report their private information truthfully. Formally, for an arbitrary
traveler i ∈ Ik , k = 1, . . . , K , given that u′

i is the utility gained with misreported πi

and ui is the “actual” utility, showing that u′
i ≤ ui guarantees truthfulness.

Theorem 1 The mobility market defined in (16) provides the appropriate mone-
tary incentives to each traveler i ∈ Ik , k = 1, . . . , K to report their personal travel
requirements πi = (αi , θi , v̄i ) truthfully regardless of what other travelers report.

Proof It is sufficient to show incentive compatibility only for an arbitrary mobility
market for some arbitrary k ∈ {1, . . . , K }. Suppose some traveler 
 ∈ Ik misreports
their personal travel requirements denoted by π
 = (α′


, θ
′

, v̄

′

) to the social planner.

Thus, we have
v′

(ak) = v̄′


 − φ


(
α′


, θ
′

, θ̃
(ak)

)
. (42)

The objective function of Problem 2 becomes

w′
2(ak) =

∑

i∈Ik\{
}
[vi (ak) − σi (ak)] −

∑

j∈J
c j (ak) + v′


(ak), (43)
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where the feasible solution of (43) is subject to the same constraints as in Problem
2. We denote the optimal solution of the optimization problem that traveler 
 has
misreported their personal travel requirements π
 with (43) as the objective function
by ã∗

k . Then, for traveler 
 ∈ Ik their mobility payment can be computed as follows:

p′

(ã

∗
k , b̃

∗
k) = w3(b̃∗

k) − [
w

2(ã

∗
k ) − v′


(ã
∗
k )

] = w3(b∗
k) − [

w

2(ã

∗
k ) − v′


(ã
∗
k )

]
, (44)

where b̃∗
k denotes the optimal solutionofProblem3with traveler 
 ∈ Ik misreporting.

However, w3(b̃∗
k) = w3(b∗

k) since, in Problem 3, it does not matter what traveler

 ∈ Ik reports. Thus, the total utility of traveler 
 ∈ Ik is

u
(ã∗
k ) = v
(ã∗

k ) − p′

(ã

∗
k ,b

∗
k), (45)

where for traveler 
 ∈ Ik the term v
(ã∗
k ) is the actual satisfaction gained by misre-

porting their private information. Substituting (44) into (45) yields

u
(ã∗
k ) = v
(ã∗

k ) − [
w3(b∗

k) − (
w

2(ã

∗
k ) − v′


(ã
∗
k )

)]
, (46)

which after a few simplifications gives

u
(ã∗
k ) = v
(ã∗

k ) − w3(b∗
k)

−
⎡

⎣

⎛

⎝
∑

i∈Ik\{
}

[
vi (ã∗

k ) − σi (ã∗
k )

] −
∑

j∈J
c j (ã∗

k ) + v′

(ã

∗
k )

⎞

⎠ − v′

(ã

∗
k )

⎤

⎦ .

(47)

Hence, as the term v′

(ã

∗
k ) appears in opposite signs in (47), we have

u
(ã∗
k ) =

⎡

⎣
∑

i∈Ik

[
vi (ã∗

k ) − σi (ã∗
k )

] −
∑

j∈J
c j (ã∗

k )

⎤

⎦ − w3(b∗
k)

= w2(ã∗
k ) − w3(b∗

k). (48)

Note that ã∗
k is not necessarily the optimal solution of Problem 2. Thus, we have

w2(ã∗
k ) ≤ w2(a∗

k ). So, we observe that

u
(ã∗
k ) = w2(ã∗

k ) − w3(b∗
k) ≤ w2(a∗

k ) − w3(b∗
k) = u
(a∗

k ). (49)

Therefore, from (49), it follows immediately that the proposed mobility market is
incentive compatible. �

Our next result is individual rationality, which implies that all travelers voluntarily
participate in the proposed mobility market. Formally, for any traveler i ∈ Ik , k =
1, . . . , K , if traveler i’s utility ui is non-negative, i.e., ui ≥ 0, then we say traveler i
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voluntarily participates in the mobility market. This is important as we can guarantee
for any traveler i that what they are willing to pay, vi , will never be less than what
they actually pay, pi .

Theorem 2 The mobility market is individually rational. For any subclass Ik , k =
1, . . . , K, and for any traveler i ∈ Ik , the utility of any traveler is non-negative, i.e.,
we have for all i ∈ Ik , ui (ak) ≥ 0. Equivalently, vi (ak) ≥ pi (ak).

Proof It is sufficient to show the result only for one instance of a mobility market
for some k = {1, . . . , K }. There are two cases to consider. First, let us suppose that
traveler 
 ∈ Ik rejects any travel recommendations from the social planner; denote
such an assignment by âk . From (33), traveler 
would be required tomake amonetary
payment equal to their maximum willingness-to-pay, i.e., p
 = v̄
. This implies that
u
(âk) = 0. This is justifiable as traveler 
 seeks to travel and the only alternative
travel option to our mobility market is a taxicab service.

For the second case, let us consider the utility of an arbitrary traveler i ∈ Ik
evaluated at the optimal solution a∗

k is given by

ui (a∗
k ) = vi (a∗

k ) − pi (a∗
k ,b

∗
k). (50)

Note that by Theorem 1 all travelers report their true private information at equilib-
rium. So, substituting (33) into (50) yields

ui (a∗
k ) = vi (a∗

k ) − [
w3(b∗

k) − [
w2(a∗

k ) − vi (a∗
k )

]] = w2(a∗
k ) − w3(b∗

k). (51)

Note that for each k = 1, . . . , K , the feasible regions of Problems 2 and 3, say F2

and F3, respectively, satisfy the relation F3 ⊂ F2. This is because Problem 3 has
the exact same constraints plus an additional one, i.e., (30), thus the maximization
of w3 (which is almost similar to the one in Problem 2) will always be less or equal
than the maximization of w2. Hence, it follows that ui (a∗

k ) = w2(a∗
k ) − w3(b∗

k) ≥ 0.
Therefore, the result follows. �

Next, we establish that the proposed mobility market is economically sustainable
(see Definition 8).

Theorem 3 The mobility market is economically sustainable, i.e., it is guaranteed
to generate revenue from each traveler and always meet the minimum acceptable
mobility payments. In other words, for each subclass Ik , k = 1, . . . , K, and for an
arbitrary 
 ∈ Ik , we have

p
(a∗
k ,b

∗
k) = w3(b∗

k) − [
w2(a∗

k ) − v
(a∗
k )

] ≥ σ
(a∗
k ). (52)

Proof Let b∗
k be an optimal solution of Problem 3 and b


k
∗
be the corresponding

feasible solution of Problem 3 with a∗
k an optimal solution of Problem 1. Since b


k
∗

is only a feasible solution, we have

w3(b∗
k) ≥ w3(b


k
∗
). (53)
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Given the mobility payments (33), if we subtract the term
[
w2(a∗

k ) − v
(a∗
k )

]
from

both sides of (53), we have

p
(a∗
k ,b

∗
k) = w3(b∗

k) − [
w2(a∗

k ) − v
(a∗
k )

] ≥ w3(b

k
∗
) − [

w2(a∗
k ) − v
(a∗

k )
]
. (54)

The RHS of (54) can be expanded as follows:

w3(b

k
∗
) − [

w2(a∗
k ) − v
(a∗

k )
] =

∑

i∈Ik

[
vi (b


k
∗
) − σi (b


k
∗
)
]

−
∑

j∈J
c j (b


k
∗
)

−
⎡

⎣

⎛

⎝
∑

i∈Ik

[
vi (a∗

k ) − σi (a∗
k )

] −
∑

j∈J
c j (a∗

k )

⎞

⎠ − v
(a∗
k )

⎤

⎦ . (55)

After a few simplifications and rearranging of (55), we have

p
(a∗
k ,b

∗
k) ≥

⎡

⎣
∑

i∈Ik

vi (b

k
∗
) −

∑

i∈Ik\{
}
vi (a∗

k )

⎤

⎦

+
∑

i∈Ik

[
σi (a∗

k ) − σi (b

k
∗
)
]

+
⎡

⎣
∑

j∈J
c j (a∗

k ) −
∑

j∈J
c j (b


k
∗
)

⎤

⎦ . (56)

So, by Corollary 1, the last term in (56) is non-negative. Similarly, by Lemma 1, the
first term in (56) is non-negative. So, we get

p
(a∗
k ,b

∗
k) ≥ σ
(a∗

k ) − σ
(b

k
∗
) = σ
(a∗

k ), (57)

since under b

k
∗
traveler 
 has not been assigned anymobility service, thus σ
(b


k
∗
) =

0, and so the result follows immediately. �

6 Conclusion

This chapter demonstrates howwe canmodel and study themobility decision-making
of selfish travelers who are faced with the dilemma of “which mode of transporta-
tion to use” as an economically-inspired mobility market. First, the proposed market
provides a socially-efficient solution, i.e., the endmost collective travel recommenda-
tion respects and satisfies the travelers’ preferences regarding mobility and ensures
that, implicitly, there will be an alleviation of congestion in the system. We achieve
the latter by introducing appropriate constraints in the optimization problem; thus,
our solution efficiently allocates all the available mobility services to the travelers.
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Furthermore, we showed that the proposed mobility market attains the properties of
incentive compatibility and individual rationality. In other words, all travelers are
incentivized to participate in the market while also truthfully reporting their personal
travel requirements. Last, we introduced the notion of minimum acceptable mobility
payments to ensure that the tolls and fares collected by the social planner will meet
the mobility services’ operating costs. Hence, the proposed market satisfies a status
of economic sustainability.

One particular limitation of the proposed mobility market is that we require all
travelers to book in advance, so the traveler-service assignment is static. This implies
that the social planner would have to recompute all optimization problems in the
mobility market to get an updated traveler-service assignment if the travelers’ infor-
mation changes. However, the static aspect of the proposed model is quite fitting in
our case as our aim was to design a mobility market that considers the travelers’ per-
sonal travel requirements to provide a socially-efficient assignment, i.e., “who should
use which mode of transportation.” Future work will focus on translating our model
and results in a real-time environment. Furthermore, we have implicitly assumed that
the travelers’ utilities are not interdependent, i.e., a traveler’s utility does not depend
on the other travelers’ private information. It remains an open problem the design of
dynamic mechanisms with interdependent utility functions for mobility systems.

Ongoing work includes extending and enhancing the traveler-behavioral model,
motivated by a social-mobility survey. Our objective is to observe any correlations
between behavioral tendencies or attitudes of travelers and their mode of transporta-
tion preference (including CAVs). For example, how likely are people to use CAVs
instead of public transit? Will CAVs impact travelers’ tendencies and behavior; if
yes, then in what way? Answers can help us refine the proposed mobility market
and improve our understanding of the socioeconomic impact of CAVs. Our future
research efforts will also focus on using methods, techniques, and insights from
behavioral economics and mixed integer optimization theory to develop a holistic
framework of the societal impact of connectivity and automation in mobility and
provide socially-efficient, real-time solutions while tackling any potential rebound
effects.
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A Real-Time Seq2Seq Beamforming
Prediction Model for C-V2X Links

Weidong Xiang, Vivekanandh Elangovan, and Sridhar Lakshmanan

Abstract The chapter presents the research on a real-time deep-learning beamform-
ing prediction model for C-V2X systems. Machine Learning (ML) for modeling and
predicting wireless channels of vehicular communications has attracted increasing
interest recently. In C-V2X systems, long-haul communication is critically needed,
sometimes, without sacrificing congestion factor. Beamforming emerges as such an
enabling approach to enlarge coverage by choosing right beams, instantaneously. In
both the latest Wi-Fi and C-V2X standards, beamforming selections are to scan all
the beams and pick up optimum beams during antenna training phase within a bea-
con interval (BI). Simulations and experiments conducted by the authors identified
such scheme will lead to medium to significant degradation in performances some-
times during the whole BI under certain situations. To respond to this vital situation,
this paper presented and studied a deep-learning beamforming prediction model to
forecast optimum beams within each BI. In this chapter, a real-time sequence-to-
sequence (Seq2Seq) beamforming prediction model is presented and implemented.
Experiment data validated the effectiveness of the proposed prediction model under
the Dearborn Campus of the University of Michigan, resulting in an enhancement of
prediction accuracy of 50–75%.

1 Backgrounds

Cellular vehicle to everything (C-V2X) is an emerging technology which encom-
passes Vehicle to Vehicle (V2V) connectivity, Vehicle to Infrastructure (V2I), Vehi-
cle to Pedestrians (V2P) and Vehicle to Network (V2N). C-V2X communication
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is envisioned to enhance the safety of drivers, passengers and pedestrians. C-V2X
is considered as an upgrade to Dedicated Short-Range Communications (DSRC).
C-V2X is more often referred to as PC5 interfaces in Long-Term Evolution (LTE)
Release 14 standard released by the 3rd Generation Partnership Project (3GPP) [1].
C-V2X communication has been explained in detail in [2, 3].

C-V2Xsystem is governedby theNationalHighwayTrafficSafetyAdministration
(NHTSA) and Department of Transportation (DOT). In 2017, the NHTSA and DOT
issues Notice of Proposed Rulemaking (NPRM) [4] for the V2V communication. At
that times, V2V communication was based on the DSRC defined in SAE J2735 [5].
The technology behind V2V communication expects an implementation of 360◦C
“awareness” and a range of 300m where omnidirectional antennas are adopted.

Omnidirectional antenna gives complete coverage of 300m but increases conges-
tion factor, which is regulated in SAE J2945/1 [6]. In a highly congested vehicular
location, a network experiences high data loads, which requires reduced radiation
powers. On the other hand, reducing power reduces the coverage. An effective way
to communicate in longer range without increasing the congestion is to adopt direc-
tional antennas. Beamforming is a technique inwhich an antenna array can be steered
in predefined directions. The input RF signal is fed to the antenna array in parallel
and signals are added constructively and destructively, depending on the phases, in
such a way that they concentrate the energy into a narrow beam.

In bothWi-Fi and 5G standards, during the antenna training phase of each beacon
interval (BI) scanning is performed across all the beams and the optimum one is
chosen and adopted during the whole BI. If the same method is performed in the
C-V2X system, it will lead to medium or significant non-optimum selection of beam
due to rapid variation of direction of arrival (DoA) of multipath signals. To this
end, a real-time beam prediction model is presented and researched in this paper
through adopting the so-called msequence to sequence (Seq2Seq) prediction model.
The receiving signal strength indicator (RSSI) is used as the metric to select the
optimum beam.

Wireless Channel prediction is a well-researched topic using methods from
Markov Chain to machine learning [7–10]. There has been numerous neural net-
work research being performed in wireless communication. In [11, 12], the authors
designed deep learning models for addressing hybrid precoding and beamforming
issues in MIMO systems. Interference alignment for wireless communications were
studied in [13]. A convolutional neural network used for distance estimation between
vehicles for DSRC system is presented in [14]. Similarly, the authors in [15] adopted
a reinforcement learning (RL) to study on a heterogeneous 5G architecture includ-
ing both DSRC and V2X communications. The research in [16] presented machine
learning for analyzing the Doppler profile to improve the road safety in V2V net-
work. The work of [17] performs reinforcement learning for intelligent traffic signal
control systems, the authors of [18] performed a smoothed LSTM on Vehicular GPS
prediction. A comprehensive survey on the use of deep learning in wireless network
has been presented at [19, 20]. Chen et al. presented a tutorial elaborating on various
types of machine learning used for corresponding wireless networks.
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The rest of the chapter is organized as follows. Section2 briefs systemmodel. The
implementation and filed test are detailed in Sect. 3. The real-time Seq2Seq beam-
forming predictionmodel are presented and discussed in Sect. 4. Finally, conclusions
are given in Sect. 5.

2 System Model

A4-element uniform linear array (ULA) beamforming is developed and implemented
to evaluate the enhancement of performances for C-V2X systems when compared
to adopting omni-directional antennas. The beamforming antenna array is illustrated
in Fig. 1, of which the spacing between the antennas is half a wavelength, λ, at
5.9GHz. The arriving signal with an incident angel of θ creates a phase difference
of φ = kdcosθ between two adjacent antennas within the array, where k = 2/λ is
the wave number and d = /2 the antenna spacing. The array factor (AF) of the array
is given by,

AF(θ) =
∣
∣
∣
∣

1

N

N−1
∑

n=0

e j (nkdcosθ+αn)

∣
∣
∣
∣

2

(1)

where N is the total number of antennas and αn is additional phase shift of nth
antenna element.

A 4 × 4Butlermatrix is used to offer addition phase shift for each antenna element
in order to generate predefined beams. Moreover, an omnidirectional antenna is
added as a benchmark during the project, which is selected by a single pole four

Fig. 1 The configuration of a 4-element ULA
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Fig. 2 The diagram of
beamforming antenna array

throw (SP4T) RF switch and then a single pole double throw (SPDT) RF switch, the
diagram of which is shown in Fig. 2.

For a broadside antenna array, the AF can be further written as,

AF(θ, φ) =
[

sin( N
2 (kdsinθcosφ + β))

Nsin( 12 (kdsinθcosφ + β))

]2

(2)

finally, the beamforming radiation pattern is given by,

BF(θ, φ) = AF(θ, φ)P(θ) (3)

where P(θ) is the radio pattern of an element antenna. The generated four beams are
shown in Fig. 3.
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Fig. 3 The radiation pattern of 4-element ULA at Port 0, 1, 2 and 3 where BW = 116◦, 28◦, 28◦
and 116◦, respectively

3 Implementation and Field Test

The beamforming antenna array is adopted at the receiver of C-V2X road side unit
(RSU) while the transmitter adopts omnidirectional antenna, the pictures of which
are shown in Fig. 4. During the experiments, the vehicle mounting the transmitter
was parked at the corner of a parking lot in the University of Michigan, Dearborn
campus while the vehicle with the receiver driving around the parking lot.

The left figure of Fig. 5 illustrates the best beam, varying with the positioning
of the receiver. The red dot shows the beam direction aligns with the line-of-sight
(LOS) between transmitter and receiver, while the blue dot does not, due to in lack of
LOS. The right figure of Fig. 5 illustrates the gain of beamforming when comparing
to omnidirectional antenna. It validates the effectiveness of adopting beamforming
can enlarge coverage, enhance signal strength as well as anti-interference. As shown
in the figure, the best beam varying with positions.
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Fig. 4 The pictures of C-V2X transmitter (left) and receiver with beamforming antenna array
(right)

Fig. 5 The illustration of the best beam varying with positions (left) and gain of beamforming
when comparing omnidirectional antenna

4 Real-Time Seq2Seq Beamforming Prediction Model

Current WiFi systems have not adopted the beamforming antenna array, but it has
been included in the IEEE 802.11ad standard. In the IEEE 802.11ad standard, a bea-
con interval (BI), defined as the duration between two beacon frames, consists of a
beacon header interval (BHI) for information exchange of management and network
information, and a data transmission interval (DTI) for data delivery. Furthermore,
BHI is divided into beacon a transmission interval (BTI), for network announce-
ment and beamforming training, an association beamforming training (A-BFT), for
antenna training and pairing by the aid of access points (APs) and an announce-
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Fig. 6 The configuration of a beacon interval

Fig. 7 The processing of SLS defined by the IEEE 802.11ad standard

ment transmission interval (ATI), for management information exchange with the
associated stations. Figure6 shows the configuration.

Th access point (AP) and stations may adopt a different number of beams; say
8 and 4 beams, as an example. Beamforming will be performed in two phases of
sector-level sweep (SLS) for the exchange of bidirectional frame sequence and beam
refinement phase (BRP) for the stations to select the right beam accordingly.

However, the main issue that existed in the IEEE 802.11ad beamforming process
is the overhead of SLS. For example, if there is single AP and multiple stations, a
lot amount of time is spent in the training frames delivery. In fact, SLS is performed
in the following four steps: (1) the initiator broadcast a training frame per beam,
and responders listen through all the beams. (2) A responder replies with a frame
in all its beams. (3) The imitator then sends the Sector Sweep Feedback (SSW-FB)
frames, and (4) The responder sends backwith the sector sweep acknowledges (SSW-
ACKs). The above process is illustrated in Fig. 7. SLS and BRP are two essential
beamforming training processing, the former is used to establish a link between two
users, and the latter is to refine the beam over existing links.

In general, an AP broadcasts beacon frames through all beams alternatively, while
the station tries to receive all of them. The station reads the corresponding headers
and data and then acknowledges the received packets. The payload helps the station to
associate with the AP during A-BFT. However, if the station is far from the AP, it will
enter control mode. During control mode, it will adopt a single-carrier differential
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BPSK modulation with a spreading factor of 32, ending up 15 dB gain with broader
coverage.

In this project, a proactive beamforming scheme is presented, in each SLS, to
largely reduce the overhead through exploring only the most likely 1–3 beams in
both AP and stations, which is predicted by a novel real-time reinforcement learning
beam prediction model.

Traditional prediction models are statistically based, including hidden Markov
model (HMM), autoregressive integrated moving average (ARIMA), support vector
regression (SVR). All the models require sufficient data and not specialized for
specific applications and scenarios. It is important to note that ARIMA tends to
approach the mean of past data, and SVR lacks the structure to identify some key
parameters. HMM is typically used to model the user time-series data sequence
and to perform prediction through Bayesian interference. Its main disadvantages are
over-fitting with specific conditions and the generation of the unsatisfied outcome to
general cases.

Recently, deep learning based on neural networks has attracted intensive attention
due to their superior performance in data fitting and classification. The proposed
beamforming prediction model can comprehensively depict, in a non-mathematical
way yet statistically accurately, the time-varying rssi values from all the beams as
well as the omnidirectional antenna, used as a reference, under various environments.

In this project, a novel Seq2Seq is adopted to predict the best beam within the
next several transmission slots. The training and prediction process is illustrated in
Fig. 8, shown below. The (M + N ) data set of RSSI vectors, each containing four
RSSI values from four beams in addition to one from omnidirectional antenna, are
normalized between 0 and 1 and fed into the predictor at the current time slot t0.
The first M data are set as input data, and the latest N data as targets. After training
is accomplished, the predictor generates predicted RSSI vectors in the next several
transmission slots, from which the best beam is chosen. For example, for the settings
of M = 30 and N = 10, the data set of the previous 3 seconds will be adopted to
train the predictor in a real-time mode, and the predicator predicts the next 10 RSSI
vectors in next one second where the RSSI vectors update rate is set as 10Hz.

Figure8 is the state diagram of the Seq2Seq predictor consisting of three phases,
namely, training, prediction, and monitoring. The predictor will enter training mode,
periodically or triggered by an event. Every t = ntp the predictor will preform train-
ing based on the previous (M + N ) data set and update corresponding parameters,
where n is an integer and tp is the training interval, both can be predefined or adap-
tively set. The predictor can also be triggered by an event, which is defined as the
case that there are several consecutive estimate errors. At tq + tp, predictor finishes
training and enters the prediction mode generating prediction results within the inter-
est time duration, where tq is the time that predictor preform a prediction. During
the prediction phase and at every nt f , the prediction monitor will calculate the esti-
mate accuracy where t f can be set as the beacon update rate, that is, t f = 100ms
in this work. If the prediction is reconsidered workable, it will return acknowledge
information to prediction at nt f + tr where tr is the processing time; otherwise, an
event will be released to force the predictor to initiate a new training. Such a Seq2Seq
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Fig. 8 The training and prediction of the proposed real-time Seq2Seq beam predictor (left) and its
state diagram (right)

Fig. 9 The comparison of the predicted and real best beams at two locations during the experiments

predictor is developed and implemented and the enhancement of prediction accuracy
ranging from 50% − 75% for various road conditions. Figure9 illustrate two typical
such results where the gray line shows the actual best beam measured and red line
the selected best beam.
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5 Conclusion

A real-time Seq2Seq predictor is presented and implemented achieving an enhanced
beam prediction accuracy in a range of 50 − 75% when compared to the IEEE
802.11ad standard through experiments. Extensive road testing are being conducted
to validate the proposed beam prediction models under diverse of road scenarios.
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Big Data in Road Transport and Mobility
Research

Carol A. Flannagan

Abstract This chapter covers topics related to big data sources, methods and appli-
cations in transportation and mobility research. Big data sources covered include
data from vehicle-based and infrastructure-based sensors. Methods from traditional
regression to machine-learning and AI are discussed in terms of prediction and infer-
ence goals. Finally, example use cases of BigData andAI are discussed in the context
of safety, travel and micromobility.

1 Introduction

In the early days of the previous transportation revolution around the turn of the
twentieth century, it became clear that traffic crashes involving the new automotive
technology were a significant problem. From that time to now, crash data have been
recorded by police officers at the scene of crashes, though the data contents and
systems have improved dramatically over the last century. Notably, in 1975, the
National Highway Traffic Safety Administration (NHTSA) established the Fatality
Analysis Reporting System (FARS), a census of crashes in the U.S. that occur on
public roads and in which someone dies of injuries sustained in the crash within
30 days. Every state has a FARS office that gathers additional data about fatal crashes
and submits those data electronically to NHTSA. The dataset is publicly available
and provides accurate annual counts of fatalities in the U.S., along with extensive
detail that has substantially improved our understanding of causes of fatal crashes.

In 1979, NHTSA introduced the National Automotive Sampling System (NASS),
which collects two key samples of crashes in the U.S.:

1. Police-reported crashes of all types and severities called the General Estimates
System (GES) until 2016 when it was replaced by the Crash Report Sampling
System (CRSS)
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2. Towaway crashes involving light vehicles called the Crashworthiness Data
System (CDS) until 2016 when it was replaced by the Crash Investigation
Sampling System (CISS).

These additional datasets are carefully selected, representative samples of their
respective crash types. Both involve significant work by individuals to code police
reports to a common standard (in the case of GES/CRSS) and to do in-depth on-
site investigation of crashes (in the case of CDS/CISS). Both have led to significant
insights and changes in vehicle design, state law, and infrastructure design that have
improved safety over nearly half a century.

While these datasets have led to significant benefits in fatality-rate reduction, the
vehicle-based countermeasures they support are primarily related to injurymitigation
rather than crash prevention. According to NHTSA, airbags, seat belts, crush zones
and other improvements related to crash-data-supported federal motor vehicle safety
standards (FMVSS) have saved over 500,000 lives since 1975 [1].1 These achieve-
ments are extremely important, but in the last two decades, sensor and computing
technology advancements have supported a shift to development of safety systems
that prevent crashes altogether. These systems, which include Advanced Driver
Assistance Systems (ADAS) as well as Automated Driving Systems (ADS) hold
the promise of preventing not just fatalities or injuries, but the broad cost of crashes,
including costs of congestion, property damage, emergency response, medical bills,
and so on.

The advances in sensor and computing technology not only support development
of these safety systems, but they also support large-scale collection of data related
to mobility in general, i.e., Big Data in transportation. These new data sources have
opened upwhole new areas of research intomobility topics and enabled new insights.
However, Big Data comes with new challenges as well.

In this chapter, I discuss Big Data and Big Data methods as they relate to trans-
portation research. The first section covers common large transportation-data sources
and Big Data analytical methods. Detailed description of methods is out of scope
for this chapter. Instead, the goal of this section is to introduce the reader to a wide
variety of methods used in transportation research.

Following this introduction tomethods, the next section describes examples of the
use of Big Data analysis to understand certain transportation problems. The section
focuses on applications to transportation safety and travel behavior. These cover large
subsets of research in the mobility field and provide key use cases for the methods
and methodological issues describe in this chapter.

Finally, the last section addresses challenges, pros, and cons of Big Data, Arti-
ficial Intelligence (AI), and Machine Learning (ML). The transition from carefully
constructed, representative samples to less expensive, larger, but non-representative
samples introduces potential benefits and new cautions for the analyst. The chapter
ends with recommendations for the future in this area.

1 This number was obtained from Table 2–3 by summing lives saved from 1975 forward.
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2 Big Data and Methods in Transportation Research

2.1 Big Data Sources

2.1.1 Vehicle-Based Data Sources

A key source of information about driver behavior, safety, route choice, and travel
is data captured from vehicles while in motion. “Naturalistic” Driving Study (NDS)
is a term used to refer to studies in which participants drive instrumented vehicles in
the course of their daily travel and data about their driving is captured. These studies
emphasize driver behavior because the studies are meant to capture typical driving
without interventions.

Field Operational Tests (FOTs) are similar to NDSs in that study participants
drive vehicles with instrumentation capable of capturing driving data. However,
these studies include evaluation of some type of technology, such as Forward Colli-
sion Warning (FCW; [2]) or multiple integrated ADAS [3]. A common, though not
universal, study design includes a baseline period when the system is turned off,
followed by a test period when the system is enabled. This allows comparison of an
individual driver’s behavior with and without the system.

Classic NDSs and FOTs, which involve extensive vehicle instrumentation and
relatively frequent data downloads from the vehicle, are very expensive to run. These
studies tend to have extensive instrumentation, including video cameras capturing
interior and exterior views, multi-axis accelerometers capturing vehicle motions in
detail, Global Positioning Systems (GPSs) capturing location and route information,
and in some cases, radar(s) capturing proximity to other road users. Some studies
include data from the vehicle’s Controller Area Network (CAN) bus, which provides
access to the vehicle’s own sensors and internal states.

While this level of detail is very useful for many research topics, sample sizes
and geographic diversity are very limited. For example, the largest NDS in the world
was the second Strategic Research Program (SHRP2) NDS, which was conducted
from 2012–2014 [4]. That study captured data from over 3000 drivers in six U.S.
locations. However, even the SHRP2 sample is limited with respect to rare events
such as crashes, especially serious crashes. That dataset contains approximately 100
serious crashes, with an additional ~150 crashes considered to be police-reportable
level. These ~250 crashes can be compared to the GES/CRSS data sample, which
includes 50,000 raw cases per year representing approximately 6 million crashes
annually. While SHRP2 and other NDS provide data critical for insights into driver
behavior, they are far too expensive to conduct regularly as a means of tracking how
behavior changes, or in the form of FOTs, as a means of testing new technologies.

In Fig. 1, the gray rectangle represents all possible information that could be
captured from a vehicle while driving. Rows represent cases, events, drivers, or even
moments in time, while columns represent variables, or types of information (e.g.,
location, speed, distance to lead vehicle, etc.). In principle, a dataset covering all
of the gray rectangle would provide complete information for research purposes.
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Fig. 1 Illustration of two strategies for vehicle-based data collection

However, with three trillion vehicle miles traveled per year in the U.S., this approach
is prohibitively expensive. Instead, there are two basic approaches to capturing data
that have different advantages and disadvantages. The first, which is used by classic
NDSs and FOTs, is to capture extensive information through on-board instrumen-
tation, but to study only a small subset of driver, events, locations, etc. This can be
called a “horizontal” dataset with high detail and low sample size. The alternative is
to use on-vehicle telematic capability to capture a small amount of information about
a large number of vehicles, miles, etc. This information is often triggered, meaning
that data are only captured when certain conditions (e.g., hard braking) apply. This
can be called a “vertical” dataset with low detail and high sample size.

Triggered datasets have been used for a number of observational FOTs. In these
studies, drivers opted in to having their data captured through General Motors
(GM) Corporation’s OnStar® system. Data included information triggered by alerts
from the systems under study (e.g., Forward Collision Warning (FCW) and Lane-
Departure Warning (FCW); [5]; or Automatic Emergency Braking (AEB); [6]) as
well as background information captured in the form of histograms of speeds or in
some cases, 1-Hz speed and location.

The datasets used in those FOTs include thousands of alert events from thousands
of drivers at relatively low cost, but the data capture systems must be purpose-built
for the study goals. That is, the on-vehicle production modules must be capable of
capturing the desired data in the first place, to be transferred for storage and analysis
over the air later.

In contrast, another form of triggered data collection is often used by insur-
ance companies, which provide drivers with a dongle or a smartphone app that can
capture simple triggered data about vehicle motions and send it to a data repository
telematically. These dongles are relatively inexpensive and have been used for both
commercial [7] and research [8] purposes.
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Finally, another form of “vertical” moving-base (in this case, person-based) data
capture is the use of location traces from smart phones. Because of the ubiquitous use
of smart phones and their GPS sensors, cell phone companies and researchers can
capture location data as individuals move around on a large scale. Data aggregators
purchase such data from companies and can use algorithms to estimate whether an
individual is traveling by car, bus, bicycle or on foot. Researchers (and practitioners)
can purchase the aggregated data or can collect their own data with a smartphone app
and participants who opt in. Location traces can be mined for a variety of types of
information including route choices, travel speeds, and trip origin–destination pairs
and estimated travel mode(s).

2.1.2 Infrastructure-Based Data Sources

The other primary source of Big Data for transportation research is data collected
from fixed infrastructure locations. Here, sensors are mounted in a fixed location and
collect information about the movements of people and vehicles past that location.
These data are crucial to understanding congestion, effects of signal phase and timing,
and volume of various road users, among other topics.

Traffic volume has beenmeasured using sensors for decades. Sensors include both
permanent installations such as inductive loops embedded in the road surface and
temporary sensors such as pneumatic tubes stretched across the road. Newer sensing
options include cameras, which can be usedwith computer vision algorithms to count
and identify types of vehicles, as well as pedestrians and bicyclists.

A key future source of infrastructure-based data will be Connected Vehicle to
Anything (CV2X) messages captured by roadside units. This data source has been
studied in a number of pilot demonstration projects, of which the largest is the
Safety Pilot Model Deployment (SPMD), conducted in Southeast Michigan from
2012–2013 [9]. This study included installation of roadside units along with over
2800 passenger cars, buses and trucks equipped with devices capable of sending and
receiving Basic Safety Messages (BSMs). The SPMD data have supported analysis
of effects of distance and orientation onmessage transmission [10], potential benefits
of safety countermeasures [11], and traffic volume estimation [12], to name just a
few topics.

In general, infrastructure-based sensing can be used inexpensively to capture
comprehensive data at a single location (a “horizontal” dataset). The challenge for
research is that sensing must be set up at a large number of (ideally representa-
tive) locations to ensure that results of analyses are generalizable. The promise of
communication-based data is that roadside units will be deployedwidely for practical
purposes, but that the data will also serve broad research purposes.



528 C. A. Flannagan

2.2 Methods

Two key goals of research data analysis are inference and prediction. Prediction
models and methods are aimed at accurately estimating values of a variable for
instances outside of the data sample being analyzed. For prediction models, the
means of generating predictions and the variables used are unimportant and only
the accuracy of the out-of-sample prediction are of concern. Inference refers to the
goal of understanding relationships between variables that will generalize to the real
world. Most such analysis is aimed at causal inference in which the causes of an
outcome of interest (e.g., crashes) are identified and their relationship measured.

2.2.1 Prediction

A prediction model is one that is intended to simply estimate a value for observations
not in the original dataset. For example, prediction models are used to estimate
annual daily traffic volume on segments of roads where traffic volume is not directly
measured; to estimate how many crashes will occur at certain intersections; or to
predict how long a trip will take based on the time of day.

Prediction models can be developed using a wide variety of methods. Classical
methods are typically parametric–that is, they assume a distribution for the error in
the model and often assume a shape of the relationship between predictors and the
outcome. Multple linear regression is the most well-known parametric model, but in
transportation research, binary-outcome models (e.g., logistic or probit models) and
count-outcome models (Poisson or negative binomial regression) are used exten-
sively. Binary outcomes occur frequently in analyses of injury outcome or crash
outcome (i.e., what is the probability that an occupant will be injured given the speed
of a crash and the direction of impact?). Count outcomes occur frequently in anal-
yses of crash counts or other event counts (e.g., near misses, pedestrians crossing the
street, etc.) as a function of characteristics of a road or intersection.

In contrast, non-parametric models do not make distribution assumptions and thus
can be more flexible. Machine-learning approaches, such as random forest, support
vectormachines or neural networks, are generally non-parametric. These approaches,
enabled by large training datasets and fast computers, have revolutionized prediction
and are the engine behind AI applications such as ADS. They are able to represent
very complex interactions between predictors and outcomes. Importantly, unlike
classical models, where the model form and predictor variables are selected by the
human analyst, machine learning models essentially can, within limits, select their
own structures and the form of the relationships between variables that they model.
That is, they can flexibly select cutpoints in continuous variables and/or choose
combinations of variables and categories that are used together to predict an outcome.

In the context of prediction, machine-learning approaches generally outperform
classical models on out-of-sample cross-validation accuracy. However, machine
learning models are black boxes, where the relationships between predictors and
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the outcome are not apparent to the analyst. While extrapolation of any prediction
model to cases outside of its training sample’s distribution can produce errors, the
behavior of machine learning models can be unexpected in extrapolation. Validation
of any predictionmodel should includemore detailed examination of its performance
in subsets of the population rather than assuming that average performance (e.g., 90%
accuracy on a decision task) will apply across the board.

2.2.2 Inference

In contrast to causal inference, inference is much more complex. A detailed discus-
sion of causal inference is out of scope for this chapter, but a few key elements are
worth introducing. First, there are two major approaches to causal inference: (1)
counterfactuals [13] and (2) potential outcomes [14]. Both approaches aim to esti-
mate the relationship between a causal factor and an outcome to answer questions
such as “If a pedestrian crossing had been installed at this intersection, how many
pedestrian crashes would have occurred?” The counterfactual approach identifies of
the state of a causal factor that would be changed in a hypothetical version of reality
(in the example, “intersection has pedestrian crossing” is the counterfactual). The
potential outcomes approach focuses on the difference in outcomes between the two
conditions. The existing condition (no pedestrian crossing) is in the dataset and the
outcome under the alternative case (with a pedestrian crossing) is treated as missing
data.

A key aspect of both approaches is that observational data alone cannot prove
a causal relationship. Instead, certain assumptions must be brought to the analysis,
often in the form of a causal diagram or model that defines how the researcher envi-
sions the relationships between variables. This diagram is, in essence, an argument
for a particular causal structure among variables, and that causal structure can be
discussed and modified through the research process. The corresponding data anal-
ysis is then a means of estimating the magnitude of the relationships and thus the
potential effect of implementing changes in practice.

Another key aspect of all causal inference from observational data is that the data
themselves must support the inferences in the model. A key reason that the Random-
ized Controlled Trial (RCT) is considered the gold standard of causal inference is
that the experimental design itself produces qualities in the data that are needed for
causal inference. For example, random assignment of individuals to groups means
that people in each group are exchangeable (i.e., that information on outcomes of
members of Group A are informative for what would have happened to members
of Group B if they had been in Group A (the counterfactual condition). Moreoever,
all individuals have a non-zero probability of having been assigned to either group,
a condition known as positivity, or common support. Thus, it is possible to look at
the difference in outcomes between the two groups and make the inference that the
difference in treatment between Group A and Group B has caused the difference in
outcomes.
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In observational data, such as nearly all Big Data, these assumptions are not
automatically met by the sampling design. Instead, people typically self-sort into
groups; for example, people who live in urban areas are more likely to use public
transportation than people who live in rural areas. If we are interested in the causal
effect of using public transportation as opposed to driving on individual’s risk of
injury, we cannot assume that people in cities are completely exchangeable with
people in rural areas, even if we could imagine public transportation being in rural
areas. Residents or rural areas are older, on average, than residents of urban areas,
and as a result, they have a higher risk of injury in general if they are in a crash. Thus,
age and transportation mode are confounded. Confounding in itself does not prevent
us frommaking causal inferences, and is actually expected in observational datasets.
However, in this example, if all rural residents always drive, then the data do not
support inferences about public transportation risks for rural residents because the
rural group has failed to meet the positivity requirement (i.e., there is no empirical
information about their outcomes on public transportation). The only recourse, then,
is to ignore the effect of rural/urban residence and assume that older adults in cities
are exchangeable with older adults in rural areas in terms of their injury risk. Because
older adults in the dataset can be in either treatment condition, we can estimate the
difference in injury risk, conditioned on age and any other available variables with
appropriate common support.

The challenge in ensuring positivity is especially significant when ML models
are used for causal inference. Because ML models tend to represent finely-detailed
interactions among variables, often as categories, some of those categories will not
meet the positivity requirement. Using machine learning for causal inference is a
new field and will be discussed more later in this chapter.

It is important to note that a great deal of transportation research involves causal
inference. Many research questions revolve around how to make changes to meet
some goal such as improving safety, reducing congestion, or shortening commute
times. These are all questions that seek to identify countermeasures or factors that
will cause a change in an outcome of interest.

2.2.3 Choosing Methods

A new area of methods work has been in combining machine learning and causal
inference (e.g., [15]). In this approach, a machine learning model is developed to
predict the outcome of interest. Then, counterfactual inputs are used to predict the
outcome for each case as though it were in a different condition. For example, vari-
ables describing the characteristics of intersections might be used to predict pedes-
trian crash count at each intersection, such as the presence/absence of crosswalks.
The training sample contains actual observations, but after the model is developed,
the counts for all intersections without crosswalks can be predicted by changing
their true input (crosswalk = 0) to the counterfactual input (crosswalk = 1) while
keeping all other values the same. In principle, this approach can estimate the effect
of changing something such as implementing a countermeasure. However, given the
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opacity of the ML model and the lack of an associated causal diagram, it is easy to
create a counterfactual condition that would not exist. For example, the presence of
a crosswalk may lead pedestrians to choose to cross at that intersection rather than
elsewhere. If so, then the crosswalk will cause both an increase in pedestrians and
potentially a reduction in their individual risk when crossing. On balance, the total
number of pedestrian crashes could go up or down, even if crosswalks are shown to
improve safety (causally). Changing the input to the ML model simulates the case
where the crosswalk does not change pedestrian volumes, which is an intermediate
effect that is not represented anywhere in the ML model but could (and generally
would) be represented in a different type of model created by an analyst. However,
failing to account for intermediate effects will lead to failure to correctly predict the
effect of changing the crosswalk.

In general, the real strength of ML models is in their prediction capability. In
choosing a modeling approach, the analyst should determine whether their research
question is aimed at prediction or inference. If the goal of analysis is to learn some-
thing about countermeasures or the relationship between variables, then (causal)
inference techniques are required and care should be taken to build a causal model,
check data for support, and use methods that are appropriate. However, if the goal
is to predict or label (e.g., a model that labels whether a driver is attentive based on
their lane-keeping and speed-keeping), then the flexibility of ML methods is likely
to produce better results.

3 Transportation Research Using Big Data

This section contains a set of general topics and examples of transportation research
using Big Data and/or ML/AI approaches. The examples fall primarily into the
categories of safety and travel behavior. The goal is to familiarize the reader with the
kind of things that are being done with these cutting-edge datasets and methods.

With respect to safety, research in transportation is about understanding crashes
and how to prevent them, prevent injury from them and/or respond to them. Histor-
ically, crash data have been the key data source that safety research was based on.
Other datasets that provide context such as population, vehicle-miles traveled, travel
behavior, may be used to understand the exposure of different road users, but crash
datasets remain the key data sources for this research.

In general, crash data do not qualify as “Big Data” even though some crash
databases are very large (e.g., state police-reported crash data over years). Informa-
tion about each crash was hand-collected by someone (a police officer or crash inves-
tigator) and the data are not truly crowd-sourced or derived from sensors. However,
crash data can serve as training data for a variety of ML models and ML approaches
can enhance the interpretation of data present in crash datasets.

Because this chapter is intended to go beyond traditional crash data analysis and
look at Big Data sources and the use of AI/ML methods, I focus on a small set of
key safety use cases:
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1. Use of AI/ML to add to information in transportation safety data
2. Use of sensors and AI/ML to obtain safety-relevant data at large scales
3. Use of AI/ML as a safety-research tool.

In contrast with safety data research, mobility, or travel-related research depends
primarily on data that can shed light on where, when, why, and how people travel.
The gold standard nationally representative travel dataset is the National Household
Travel Survey (NHTS; [16]), which is collected approximately every seven years.
The infrequent collection of these data is due to the high cost, so many researchers
have been looking at other data sources for understanding travel. These sources and
associated research are discussed in presentation of three travel-related use cases for
ML and Big Data:

1. Travel demand estimation
2. Route choice
3. Understanding micromobility.

3.1 Use of AI/ML to Add to Information in Large
Transportation Datasets

As described earlier, a limitation of traditional crash datasets is that they require the
crash to have occurred before data are collected. Vehicle-based sensor data through
NDSs and FOTs provide a new opportunity to learn about the precursors to crashes
by observing kinematics and driver behavior while driving and just prior to crashing.
In addition, police reports include diagrams and narratives that typically include the
officer’s assessment of how the crash arose (albeit inferred after the fact). These data
sources can substantially improve our understanding of crash indicators and causal
factors, but they both require substantial work to annotate and interpret.

One use of AI in safety research has been to add information to crash or driving
datasets in a scalable way by using prediction models to replace some human labor in
the data-enhancement process. For example, textmining has been used in a few appli-
cations to interpret police-report narratives. For example, [17] used natural language
processing (NLP) to interpret crash narratives. Their vocabulary and association rules
were based on a training dataset of 10,000 crashes in the UK. The development of
the domain-specific grammar rules and vocabulary required some substantial human
work, but the resulting knowledge-representationmodel could be used to parse narra-
tives into a common machine-interpretable structure from which information could
be extracted per the needs of a research question.

Text mining approaches have also been used for more specific goals that do not
require building a complete grammar and association rules. For example, NLP-based
classifiers were used to identify work-zone crashes [18]; random forest, support
vector machines, and logistic regression have been used on Kentucky police-report
narratives to identify secondary crashes that were not coded on the forms [19] and
to identify causes of highway-grade rail crossing crashes [20]; finally, topic models
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were used with California AV crash reports to identify five themes, or clusters of AV
crash characteristics [21].

Another area where ML approaches are being used to extract additional infor-
mation from transportation safety datasets has been in annotating and identifying
events in NDS data. While horizontal (i.e., highly detailed) NDS data provide a
unique view of driver behavior and crash precursors, key information about driver
involvement in secondary tasks and eye-gaze location or fatigue is based on in-cabin
camera views that must be annotated. The Federal HighwayAdministration (FHWA)
ExploratoryAdvanced Research (EAR) program has funded a series of studies devel-
oping computer vision algorithms for use with SHRP2 data [22]. Approaches include
CNNs designed to extract information about features or objects present in forward
and face views as well as automated masking of identity to better enable sharing of
face views without violating privacy requirements.

Similarly, neural networks have been used with street scene photographs (e.g.,
from Google® Street View or other available sources) to identify elements of the
roadway infrastructure that are not available in datasets. For example, Campbell
et al. [23] use deep learning to extract street signs from street images, and Ning
et al. [24] used a similar method to identify sidewalks from images. These roadway
features can be used for many research questions related to safety (e.g., linking
roadway features to crash data) and travel (e.g., predicting pedestrian routing as a
function of sidewalk locations).

Computer vision algorithms have the potential to substantially increase the
usability of NDS and roadway asset datasets, but their accuracy needs to be much
higher than is currently being achieved to ensure that errors in labels don’t affect
research findings. That said, the same algorithms can be used effectively to find
potential events of interest for review by human video coders. For rare events such
as crashes or conflicts with pedestrians, this can save substantial amounts of time
that would be spent viewing irrelevant video or looking at thousands of street view
images. This type of machine-assisted labeling has significant potential to improve
the use of large transportation datasets.

3.2 Use of Sensors and Algorithms to Obtain Safety-Relevant
Data at Large Scales

The primary use of ML techniques to obtain safety-relevant data on a large scale is
to define triggers for data collection from sensors that are widespread. As described
earlier, triggered (vertical) datasets are used when data must be sent over the air to
be stored and data volumes are too large for it to be practical to obtain all data that
way.

Newer vehicles, in particular, are equipped with production sensing systems that
can be used for data capture as well. However, onboard storage and bus capacity are
limited, so stored data must be very small in size, and the data triggering system
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must be designed to capture only the most important information. For example,
Event Data Recorders (EDRs) capture a variety of data elements from a few seconds
before a crash to just after (e.g., 500 ms). EDR trigger criteria and minimum data
elements are regulated [25], but many manufacturers capture additional information,
such as pre-crash steering, passenger belt status, and even occupant size beyond that
required (e.g., [26]). EDR data capture is triggered by a sustained deceleration pulse
and/or airbag deployment. The acceleration pulse trigger is designed to exclude false
positives such as those caused by potholes and other roadway-based acceleration
signals, while still capturing crashes with appreciable injury risk. The same type of
data capture approach used for EDRs can also be used to gather large-scale data on
advanced driver assistance systems in the field (e.g., [6]).

While EDR contents and triggers are pre-defined in regulation, other data are
captured by a variety of companies using triggers determined by ML algorithms.
The most well-known such use is dongle-based and smartphone-based data capture
systems used by insurance companies to adjust rates. Tselentis and colleagues [27]
reviews a variety of such systems and the data behind them. The relevant data
elements can be divided into usage-based data and driver-behavior data. The former
includes total miles or time, number of trips, time of day, and trip location. The latter
includes acceleration, braking, and speeding, among others. Tselentis and colleagues
[27] summarized the approaches to determining triggers as well as models deter-
mining insurance rates. Most of the approaches to date use linear models, but some
have explored non-linear models including neural networks and decision trees e.g.,
[28].

Finally, driver monitoring systems with in-vehicle and forward cameras plus
limited kinematic sensing also trigger on crash-related kinematics, capturing and
saving only a small video clip that include a few seconds prior to the event. Notably,
Lytx, for example, uses ML models to refine its triggering algorithm for its driver
monitoring system [29]. Lytx’s commercial purpose is to identify crashes and limit
the cost of review time by their staff. For research purposes, most trigger algorithms
to date have been constructed by hand (e.g., [5, 6]). However, ML models have
the potential to influence future research-level triggering in addition to commercial
purposes.

For all of these high-volume data-collection approaches, a key element is that
the triggering algorithm must be pre-determined and designed for the purpose that
the system serves. This creates a sort of chicken-and-egg problem where complete
data are needed to develop the triggering algorithm so that large-scale data can be
obtained. NDS data can be useful for such algorithm development, especially to
provide training data for ML algorithms.



Big Data in Road Transport and Mobility Research 535

3.3 Machine Learning and Artificial Intelligence in Safety
Research

3.3.1 Naturalistic Driving Study Data

NDS data is useful for understanding an array of aspects human driver behavior,
including behaviors related to safety. To investigate safety-related questions, unsafe
events must be identified in the data. Many crashes are very minor and do not result
in the abrupt end of a trip or even very significant accelerations, so these crashes
are found using an algorithm followed by human video review. That algorithm is
generally a set of kinematic thresholds such as hard deceleration or swerving, but
many events that exceed the threshold are not crashes. Thus, video review by human
coders is essential to finding these events for later use.

In addition, crashes are rare events and even in a very large NDS such as SHRP2,
there are relatively few of them to support analyses. One approach to addressing this
limitation is to use crash surrogates, which are events that are similar to crashes (e.g.,
near-crashes) but are not actually crashes. A good surrogate is influenced by the same
factors as crashes are and can predict crash counts in an area. This notion, which
was inspired by Heinrich’s Triangle [30] and developed into the Traffic Conflict
Technique for traffic safety by Hyden [31], assumes that there is a constant ratio
between more common, less severe surrogates and crashes (or more severe crashes).

Work by Wu and Jovanis ([32–34]) and Tarko [35], among others, shows that
surrogates do not work equally well for all crash types and that there is not a constant
ratio between near crashes and crashes in all locations and situations, for example.
Instead, they recommend focusing on a particular crash mechanism when using
surrogates. For example, Tarko [35] proposes measuring maxima of longitudinal
time to collision (TTC) over periods of driving and employing extreme value analysis
(EVA) to estimate the rate of rear-end striking crashes. This approach uses TTC as
a surrogate to enable estimation of one particular type of crash.

While surrogates have been shown to be influenced by variables that also influence
crash rates, their use results in effect estimates that are biased towards the null [36].
That is, surrogates appear to partially reflect crash mechanisms, but dampen the size
of effects, presumably because they add noise to analyses that include them.

Finally, because NDS are essentially observations of driver behavior, much of the
research using NDS has focused on behavioral risk factors. Attention and secondary
tasks have received a lot of attention in the literature ([37, 38]). However, NDS have
also been used to develop driver state prediction models based on kinematics. These
models use machine learning techniques and/or computer vision techniques (with
face video) to predict when a driver is distracted (e.g., [39]) or fatigued (e.g., [16])
based on driving performance data such as lane-keeping or speed-keeping.
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3.3.2 Triggered Data Modeling

In contrast with instrumented NDS data, most triggered (vertical) large-scale data
does not include video. The exception to this is data from commercial driver-
monitoring systems that captures clips from in-cab cameras when certain kinematic
triggers are met (e.g., used in [40]). Crucially, without video, algorithms and corre-
sponding inferences need to be made with limited or non-existent ground truth.
Moreover, triggering itself imposes a filter on what enters the research dataset, so
care must be taken to understand the context from which the triggered data comes.

The large-scale FCW/LDW study [5] described earlier in this chapter obtained
data from almost 2000 drivers across the U.S. who produced over 250,000 FCW
events and over 10 million LDW events. Data collection also included contextual
information such as total driving time and miles, as well as histograms of speeds and
headways to lead vehicles. The limited context data is crucial because ADAS often
work only at certain speeds and, for example, FCW is irrelevant if there is no lead
vehicle.

One of the key results of that study categorized FCW events into scenarios that
were defined on the basis of very limited kinematic data. Kinematic variables were
captured at three timepoints around FCWwarning events—3–6 s before, at the event,
and four seconds after. Braking onset (if any) was also captured between the at-event
and post-event timepoints. Scenarios are essentially clusters of events from which
inferences can be made, but without video, validation is not possible. The notable
finding of this analysis was that over 80% of FCW events occur in situations that can
resolve themselves without braking, whereas 19% occur in lead-vehicle decelerating
scenarios and <1% in lead-vehicle stopped scenarios. In this study, scenarios were
defined by the researchers, but in principle, clustering methods could also be used
on such data. The key is that methodologically, useful machine-learning approaches
would generally be unsupervised clusteringmethods rather than supervising learning
approaches (because there is no ground truth to learn). This is true for most datasets
without video, which would be a typical source of ground-truth data for NDS.

As described in the previous section, another key source of triggered data comes
from EDRs. Smaller-scale EDR data with context available (e.g. in the Crashwor-
thiness Data System (CDS) database) has been used to validate and/or supplement
detailed crash investigation data [41], estimate pre-crash time-to-collision in inter-
section crashes [42], and understand pre-crash braking behavior in rear-end crashes
[43]. However, these studies benefit from the associated (expensive) detailed in-depth
crash investigation. EDR supplements the information with key measurements but is
not being used in the absence of knowledge of, for example, the crash configuration.
In contrast, use of EDR alone could be done on a large scale, but so far, few published
studies have done so. Once exception is [26] which describes distributions of crash
severity as a function of speed prior to the crash and crash direction.

Triggered data from driver-monitoring systems with video provide an interesting
intermediate approach between detailed instrumented-vehicle NDS and the triggered
data collection approach described above. The challenge with data from such sources
is that they seldom include baseline data because all of the events meet the triggering
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conditions. In general, this type of source has been used primarily to identify crashes
and review pre-crash conditions in the video and kinematic data around those crashes
(e.g., [44, 45]). That said, a challenge of using commercial data in a research setting
is that because both the triggering method and the context are unknown, it is difficult
to assess representativeness. As will be discussed later in this chapter, this is an
important issue for research using Big Data.

3.4 Travel Demand Estimation

As described earlier in the chapter, travel-data sources include Big Data such as
cell phone location traces, and in the future, BSMs that include location traces from
CV2X data. Over-the-air vehicle-based data collection and instrumented-vehicle-
based data can also include location traces. While location traces are in some ways
very simple, they can be used to infer a variety of additional pieces of information,
such as travel mode, travel speeds, and origins and destinations.

A number of studies have used cell-phone-based data to estimate travel demand
in localized areas (e.g., Senegal [46]; Israel [47]). Travel demand has also been
estimated by mode, by using patterns in each cell-phone record to infer travel mode.
Mode inference is most commonly based on GPS traces (e.g., [48, 49]), but has also
been inferred based on coarse information from simple call data that provides only
total travel time and original and destination [50]. ML approaches are useful when
trip-mode ground truth is present, because they can represent complex interactions
in predicting mode.

Travel demand for specific locations is crucial for planning applications. However,
it is also the observed outcome in activity-based models of travel choices. For
example, Clifton and colleagues have developed models to estimate pedestrian
activity and travel choices ([51, 52]). Their work is based on a number of data
sources including travel surveys that help identify choices people make to walk and
characteristics of locations that make themmore or less attractive as trip destinations
and/or routes.

3.5 Route Choice Models

Routing is another research topic that benefits from Big Data on travel choices.
Routing has been investigated both as an observed behavior and to develop algorithms
to aid travelers in choosing routes that conform to certain criteria. Chen et al. [53]
reviewed the literature on travel behavior with particular emphasis on the differences
between big and small data sources. They describe the use of Big Data for a number
of uses including inferring activity locations (i.e., endpoints of travel), inferring
activity purpose (based on the nature of the location), inferring mode and route
choices, and deriving origin–destination matrices that summarize travel patterns in
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an area. The use of Big Data for these purposes is still being developed, with areas of
research needed in validating the inferences made and in handling data that are not
representative of the population. However, these data sources show great promise
for travel behavior research.

Advisory routing algorithms often seek to optimize certain route characteristics
such as travel time and route preferences (e.g., avoiding tolls). However, the quality
of travel time estimates depends on the ability of the algorithm to accurately predict
speeds on road segments at particular times of day and under particular conditions.
Park et al. [54] used a machine learning model trained on traffic sensor data from
California to predict travel speeds as a function of time of day, day of the week,
and speeds on neighboring road segments. Using NDS data from two drivers, Dai
et al. [55] developed a machine-learning algorithm to estimate those specific drivers’
route preference at each link as a function of past route choices between common
origin–destination pairs. This produced a personalized route choicemodel that could,
in principle, learn patterns of any individual driver over time.

3.5.1 Micromobility

Sensors and smartphone apps are enabling technology that have led to the explosion
of a variety of shared small-vehicle transportation options, collectively known as
“micromobility.” These include shared bicycles, e-bikes, e-scooters, and mopeds,
among others.

In 2021, Abduljabbar and colleagues [56] published a systematic literature review
of research related to micromobility and its effect on city transportation, especially
as related to sustainability. They identified four clusters of research that they called
Benefits, Policy, Technology, and Determinants of Usage. This robust research area
relied primarily on publicly available data provided by micromobility companies
and simulation studies. Typically, publicly available data was in the form of origin–
destination pairs rather than complete trajectories.

One of the key findings of work onmicromobility was that these modes can create
a net increase in energy use because of the resources required for manufacturing,
maintenance and redistribution [57]. Moreover, the modes tend to replace public
transportation rather than use of private vehicles. However, the potential to decrease
energy use is there, but requires certain effort on the part of policy-makers and
mobility companies to reduce resource use and encourage travelers to replace private-
vehicle use.

4 Pros and Cons of Big Data and ML/AI

While Big Data in combination with Machine Learning and Artificial Intelligence
show great potential for transportation research, they are tools that have advantages
and disadvantages. The advantages, demonstrated above, include the ability tomodel
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complex interactions in very large samples of travel. In addition, prediction perfor-
mance of ML methods nearly always outstrips that of traditional parametric models.
That said, two major challenges to using these tools are (1) non-representativeness
of Big Data, and (2) opaqueness, or “black box” qualities of ML methods.

4.1 Big Data Challenges

4.1.1 Sample Characteristics

A significant challenge for using Big Data is to understand sample representation.
In 2016, [58] reviewed a number of issues related to Big Data use and pointed out
two key factors. First, Big Data are convenience samples, which have an unknown
relationship to the population of interest. Second, Big Data is often provided by
private companies whose interest is not in producing a carefully constructed sample
for public use. Even when data are made available, they reflect the behavior of the
companies’ customers and the algorithm used to produce the data.

These issues lead to what is known as the Big Data paradox [59] where increasing
the size of a poor-quality sample can lead to results that are increasingly biased
relative to the true population statistics. This has also been phrased as estimates that
are “precisely inaccurate” [60].

In transportation, key Big Data sources include smartphone-based travel data,
which reflect the sample of smartphone users, typically those with contracts with
large companies; instrumented vehicle data inNDS,which uses convenience samples
of drivers in localized areas; over-the-air vehicle data from a specific manufacturer,
reflecting that company’s sales demographics; and infrastructure-based sensors typi-
cally installed at high-traffic-volume locations that emphasize vehicle traffic, such
that motorized-vehicle travelers who live nearby tend to be overrepresented.

A related challenge in the area of travel behavior is that only people who travel
are included in sensor-based datasets. This means that unmet demand is never found
in such datasets, even if people in areas with low vehicle ownership and fewer trans-
portation options have smartphones. Travel that is needed but not undertaken because
of lack of resources can only be measured using surveys (though notably, the NHTS
also only measures travel actually taken as of this writing). The combination of the
failure of Big Data sources to represent those less likely to have smartphones (e.g.,
elderly and low-income travelers) and the assumption that observed travel represents
needed travel doubly disadvantages certain subgroups of travelers in research and in
planning applications that use the same data sources.

Addressing issues of representation in Big Data requires there to be carefully
constructed probability samples or complete administrative databases (e.g., U.S.
Census or state police crash databases) that allow for adjustment of Big Data via
weights or other methods. A significant body of work in survey methods is aimed at
developing methods to achieve the goal of addressing the representation issue in Big
Data in transportation and other fields (e.g., [60–62]).
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What thismeans, however, is that surveys likeNHTS aremore important than ever.
Such surveys can be designed to maximize their value in combining with Big Data,
and they can even include sensor-based data collection (e.g., travel surveys where
participants wear location-data collection devices to track their travel in addition
to answering questions about those trips). However, Big Data cannot replace such
surveys without leaving researchers in the dark about how estimates may be biased
for the population as a whole.

4.1.2 Algorithm Testing

As discussed above, developing a good prediction model on an unrepresentative
dataset, and then applying it to subgroups who were not represented in the original
data (e.g., people without smartphones) potentially further exacerbates the failures
of representation in the original data source. It is unlikely that people who are not
represented in Big Data are missing at random. Instead, these are typically groups
of people who do not have the same resources as those who are counted. Because
Big Data are less expensive to collect, it can be tempting to ignore these issues and
hope that the large sample size and prediction performance will overcome these
disadvantages. However, a good algorithm evaluation strategy can help to mitigate
issues introduced into research (or application) by the algorithm itself.

The most common approach to evaluating algorithms is to hold out a randomly
sampled subset of the original dataset and test the algorithm’s performance on that.
Accuracy is measured as the number of correct predictions divided by the total
number of samples. However, because the validation sample is a random subset
of the original sample, it will have the same characteristics as the training sample.
Thus, it will tend to overrepresent the same groups as in the training sample and thus
overrepresent performance on these groups in accuracy assessment. To address this,
algorithm performance testing needs to go beyond the standard accuracy measure.

In recent years, there has been substantially more attention paid to “fairness”
in AI, including definitions of fairness as well as solutions to improve fairness in
algorithms (e.g., [63, 64]). One element of this is that not all definitions of fairness
can necessarily be met simultaneously. Thus, for each AI algorithm, its use needs to
be considered in determining appropriate evaluation metrics.

Notably, it is important to assess whether the output of an algorithm is used to
provide benefits or punishments. In the transportation case, most AI is likely to
identify where to provide benefit—e.g., repaving a road, adding crosswalks, adding
transit stops. Thus, evaluating algorithms to be sure that the needed benefits are
equally likely to be identified (under the same conditions) for different subgroups of
travelers might be critical. Further details can be found in [64] and implementation
code can be found in [65].
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4.1.3 Opaque Algorithms

Another challenge in using ML approaches is that their “black box” nature makes
inference, especially causal inference, very difficult. As described earlier, causal
inference relies on external assumptions, including a model of how variables are
related to each other causally. In standard practice (e.g., [66]), a causal diagram
informs the nature of the analysis, such as which variables are included or excluded.
Moreover, the form of the relationship between two variables is pre-specified and
transparent in traditional approaches.

That said, causal inference usingML is a rising field, led by Judea Pearl (accessible
summary here: [67]). Pearl argues that by appropriately tying ML techniques to
the causal inference framework that emphasizes these external causal models and
assessment of assumptions, the challenges brought by opaqueness ofML approaches
can be overcome.

4.1.4 Protecting Privacy

A significant challenge in the use of Big Data in transportation is privacy protec-
tion. NDS and other traditional studies make use of consent forms and Institu-
tional Review Board (IRB) requirements for ethical treatment of participants’ data.
However, sensor-based Big Data is often collected without participants’ awareness
and generally contains personally identifying information (PII).

In NDS, PII is generally in the form of face video. Measures to protect PII often
make it very difficult to for researchers to access face video, which is key to under-
standing driver behavior. One possible approach to serving both privacy goals and
access goals is to use computer vision (CV) algorithms to label driver face video in
place of human annotators. FHWA’s support of work in this field is aimed at main-
taining privacy protection while enabling the use of more data. To the extent that CV
can accurately mirror human annotations, this approach shows promise.

A more common form of PII in Big Data in transportation is travel traces.
Smartphone-based and dongle-based data collect a location “bread-crumb trail” in
the form of a series of GPS points following a driver’s path. Since drivers generally
repeat certain trips and end their travel day at home, it is relatively easy to re-identify
them based on their most common final location. A number of methods have been
developed to mask geographical data to preserve privacy [68]. For travel data, these
might include removal of the starts and ends of all trips (ideallywith a randomcompo-
nent on the length of the removed portion) or sharing only summary statistics, such
as trip length, trip distance, hard-braking events, and other key elements of travel
(excluding the specific location). ML approaches, such as Generalized Adversarial
Networks (GANs), have also been used for this purpose [69].

A key aspect of geo-privacy protection measures is that their use trades off with
the accuracy of analytic results. For example, [68] evaluates a number of approaches
on their relative ability to prevent re-identification and their effect on accuracy of
analysis. This is true for the use of CV algorithms to replace human annotators as
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well. In general, the tolerance of different research topics to inaccuracy in data due to
privacy protection varies. Themore options can preserved, the better the overall value
for research. That is, approaching privacy protection and data sharing with a tiered
approach will produce better research results, such that some well-de-identified data
can be shared easily but re-identifiable data is shared using more secure methods
such as in data enclaves.

4.2 Going Forward

Improvements in sensor and computing technology have enabled an explosion of Big
Data sources in transportation. Moreover, developments in Machine Learning and
Artificial Intelligence methods have made prediction models substantially more flex-
ible and accurate. The combination of the twohas great potential to enable researchers
to answer questions that could not previously be answered.

However, with great power comes great responsibility. Big Data sources are often
convenience samples that will fail to represent subgroups of people who are not
measured. Proper sample surveys (possibly using sensor-based measurement tech-
niques) are even more crucial than ever to ensure that Big Data insights apply to
everyone.

Similarly, ML models applied without care can produce impressive prediction
performance that will fail on cases it hasn’t seen (e.g., subgroups not included a in
Big Data sample) and that are opaque to researchers. In particular, it is easy to rely on
measures such as variable “importance” to make unjustified causal inferences (i.e.,
if a variable is a key predictor of an outcome, it must therefore be causally related).
Instead, causal inference requires careful external construction of models of how
variables are related to each other (causally) in conjunction with ML or traditional
parametric models to estimate causal effects.

This chapter was aimed at introducing the reader to some key sources of Big Data
in transportation, as well as some key methods and issues in the use of ML/AI and
Big Data in transportation. There are extensive resources available for more detail
on any particular topic and the reader is encouraged to take a deeper dive.
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Machine Learning for Automotive
Cybersecurity: Challenges,
Opportunities and Future Directions

Rafi Ud Daula Refat, Abdulrahman Abu Elkhail, and Hafiz Malik

Abstract Connected autonomous vehicles (CAVs) hold the promise of not only
improving functional safety but also improving mobility and the efficiency of trans-
portation systems. CAVs can be viewed as a cyber-physical system that contains
a large number of minicomputers called electronic control units (ECUs). In order
for ECU subsystems to share information and operate efficiently, they are typically
networked via various in-vehicle networks (IVNs). Such IVNs include the controller
area network (CAN), local interconnected network (LIN), media-oriented system
transport (MOST), FlexRay and automotive Ethernet. These IVNs are used to con-
nect safety-critical and non-critical components of the vehicle, including brakes,
airbags, engine control, active safety devices, the electronic stability program and
adaptive cruise control. Although these IVNs provide some luxury functions and
improve the functional safety of the vehicles, the use of in-vehicle communication
networks can pose serious security threats to CAVs. Several incidents have been
reported showing that intruders are able to access vehicle information, even for
safety critical tasks. As the IVNs architecturally are not designed to defend against
these attacks, additional methods are needed for security. In recent years researchers
are taking advantage of advances in more powerful computing hardware, as well the
availability of huge amounts of network data and proposing machine learning-based
frameworks to secure these IVNs. To the best of our knowledge, these frameworks
lack details such as how to apply machine learning for IVN security. Most of them
are focused on the selection of machine learning algorithms to improve attack detec-
tion rates. As a result, these frameworks become uninterpreted since they took a lot
of time in order to reproduce their result. An efficient successful machine learning
system depends not only on the selected machine learning algorithm but also on the
quality of data. This chapter aims to bridge this research gap by developing a gener-
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alized machine learning pipeline designed to defend against existing and emerging
cyberattacks on IVNs. The chapter starts with an overview of IVNs, threat modeling
of IVNs followed by machine learning-based defense mechanisms against existing
and emerging cyberattacks targeted at these IVNs. The last section of the chapter out-
lines future directions of using the proposed machine learning approach as a solution
against vehicle-based cyberattacks for the next generation of vehicles.

1 Introduction

Connectivity and automation are foundational attributes of autonomous vehicles.
Connectivity is the backbone of connected vehicle systems by which vehicles com-
municate. On the other hand, automation is the foundation of self-driving cars. These
two technologies can improve the luxury features, functional safety and trafficmobil-
ity in vehicles. As a demonstration, recent work shows that these technologies can
reduce traffic accidents and improve transport system efficiency [1]. According to
the author in [2], connectivity and automation can be used to lower the rate of traffic
accidents by lowering the rate of human errors. They can also be used to improve the
lifestyle of citizens; for example by providing transportation for people who are not
able to drive. Another important example is trucking and product delivery services.
If human involvement can be reduced, there will potentially be less injury to humans
associated with these risky tasks.

These two technologies are merged by the automotive industry to evolve the term
connected autonomous vehicle (CAV). The connectivity gathers information from
the vehicle’s surroundings and passes it to the intelligent decision-making unit of
the vehicle. The vehicle can take the right decision using this valuable information.
Althoughwehave not reached the highest level of automation, there are somevehicles
in the market that are at level 3 (controlled automation). Fully automated vehicles
i.e. level 5 automation is not possible unless the decision-making unit of the vehicle
is trustworthy and capable of performing driving tasks like an actual human without
fear of cyberattack. In order to do so, it is necessary to provide security to the
vehicle in different layers, including (1) sensing layer or data gathering layer, (2)
data processing layer and (3) onboard data-sharing layer. The scope of this chapter
is focused on the security of the data-sharing layer inside a vehicle. This is called
in-vehicle network security.

Recently,machine learning-based approaches are becoming popular for providing
network security [3–5]. Machine learning algorithms are a good fit for this purpose
since they analyze the data to generalize system behavior. These algorithms try to
mimic the human learning system by finding patterns from past incidents and taking
decisions according to the knowledge. Based on this, unwanted system behavior
can be detected. That’s why a machine learning algorithm is a perfect approach for
attack detection of any kind of system. However, to build a machine learning system,
sequential generalized steps should be considered. The overall workflow is called
the machine learning pipeline, which is difficult to manage and time-consuming.
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The main goal of this chapter is to present a description of the machine learning
framework for in-vehicle network security. This chapter begins with a section that
discusses the security analysis of CAVs. This is followed by a description of the
in-vehicle networks that are commonly employed today. The chapter further dis-
cusses the architectural loopholes of the in-vehicle networks in terms of security.
Furthermore, the security mechanism of an in-vehicle network is modeled with the
generalized machine learning pipeline. Finally, this chapter includes a discussion
of the challenges and future opportunities of using machine learning for in-vehicle
network security. Our existing work on automotive cybersecurity [6–8] employs
machine learning tools and techniques to secure in-vehicle networks. These meth-
ods have demonstrated good accuracy in detecting attacks. This chapter provides a
detailed discussion of the most promising technologies that can provide in-vehicle
network (IVN) security.

2 Security Analysis of CAVs

Current vehicular systems are considered intelligent when they perceive and respond
to their surroundings in an efficient and safe manner, equalling or even surpassing
human performance on the same task. These advanced vehicles gather and exchange
information with other vehicles or infrastructures by establishing v2x communica-
tion.Theyuse the gathered informationwith orwithout the captureddata fromsensors
and provide advanced features like lane detection, cruise control, object detection,
etc. To achieve these complex driving tasks, modern vehicles utilize electronic con-
trol units (ECUs) or mini embedded computers, known as the brain of the vehicle.
State-of-the-art vehicles [9] currently utilize 70–100 ECUs. Depending on the data
they receive as input, these ECUs control one or more sub-system functionality of
the vehicle. Depending on the types of functionalities they perform, the ECUs can
be divided into safety critical ECUs and non-safety critical ECUs. Routine control
of the window or windshield wiper blades is not related to passenger safety, thus
the ECUs controlling them fall into the category of non-safety critical ECUs. On
the other hand, the ECUs that control the brakes, gas padel, etc. and can affect the
life of passengers and pedestrians are obviously safety critical. Regardless of these
differences. ECUs communicate among each other to control different vehicular sys-
tems efficiently through an automotive network (CAN bus) which has some known
security vulnerabilities.

Until recently, the unguarded automotive network was considered safe, as the
network was accessible only through the OBD-II port. Nowadays, vehicles can be
connected with a variety of technologies, such as WiFi, Bluetooth, 3G, etc. which
has caught the attention of hackers. Intruders can use these connectivity ports as a
backdoor to access the automotive network. Recentwork has shown that intruders can
take control of the car remotely and canmisguide the vehicle. From2010 to 2018 there
were several high profile reports where hackers gained access to the vehicle using
wireless or wired connectivity ports. In 2010, Karl Koscher and his team performed
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an experiment by taking control of a car using the OBD port [10]. A recent report in
2018 also indicates that hackers were able to inject malware into a BMW vehicle via
the OBD2 unit. In 2014 Stephen and his group showed that someone can remotely
take control over a vehicle [11]. Miller and Valasek proved Stephen’s conjecture and
were able to misguide a Jeep Cherokee vehicle by establishing remote access in 2015
[12]. The Keen Security Lab of Tencent was able to gain access to a Tesla through
the wifi/cellular network of the vehicle. They even injected malicious messages into
the vehicle and were able to misguide not only a parked vehicle but also a driving
one [13].

These attacks can be divided by two different categories.
Message injection attack: As the name suggests, a message injection attack hap-

pens when the attacker injects a suspicious message into the CAN bus system and
pretends to be an authorized entity in the vehicular system. For example, in aCANbus
system, by default, the CANmessage does not contain sender or receiver information
embedded in its packer, so the CAN bus will not be able to distinguish between the
CANmessage sent by an authorized or unauthorized ECU. By injecting themessage,
the attacker can misguide the vehicle and cause unintended behaviors like turning
on the light indicators, unlocking the door, or decelerating the vehicle. This type of
attack is also called a spoofing attack or fuzzy attack.

Denial of service (DoS) attack: The motivation of this attack is to prevent autho-
rized ECUs from using the IVN to communicate with other ECUs. This type of attack
is easy to implement as the goal is to make the bandwidth of the bus unavailable so
that data can not transmit through the channel. For example. in a CAN bus system,
the attacker can inject a high priority CAN message. Subsequently, it causes delays
of other messages and causes threats in regards to availability with no reaction to the
driver’s commands since all ECUs share a single bus.

3 In Vehicular Networks (IVN)

Current automotive vehicles use multiple communication protocols to exchange
information between ECUs, vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), and vehicle-to-pedestrians (V2P). The IVN protocols have their own char-
acteristics, such as speed, specification, and use cases. They help to reduce the com-
plex wiring system of a car, making it easier to maintain, thereby reducing cost. This
section presents the conventional automotive networking protocols such as LIN,
MOST, CAN, FlexRay, and Ethernet.

3.1 LIN Protocol

Local Interconnect Network (LIN) was introduced in the late 90’s as a low-cost
alternative of CAN bus protocol to connect components in a car [14]. It allows serial
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communication in a master-slave architecture and has a data rate of 20–25 kbit/s.
However, due to the low bandwidth of data communication, it is impractical to use
in a high-speed communication system. But it became popular to use for connecting
non-critical subsystems where the speed of communication is not considered as an
issue because the protocol itself is low cost. It has been used in subsystems, such as
adjusting seats, mirrors, or controlling car windows, etc. [15].

3.2 MOST Protocol

Media Oriented System Transport (MOST) is a high-speed multimedia network
protocol and was developed in 1988 by MOST corporation [9]. By architecture, it
supports up to 64ECUs to connect in a ring topology structure. It has amaximumdata
rate of 24.8 Mbit/s [15]. Due to the support of high-speed communication, it became
popular for use in car infotainment systems. MOST has been used by renowned car
manufacturers, such as BMW, Mercedes-Benz, Porsche, Audi, Volkswagen, Jaguar,
Hyundai, Toyota, Land Rover and many others [16].

3.3 FlexRay Protocol

FlexRay is another in-vehicle communication protocol and was first introduced in
vehicles by BMW in 2006 [9]. It has a data rate of 10 Mbit/s. This data rate is
high enough to support high-speed communication between ECUs and is used for
applications like active suspensions, adaptive cruise control, etc. [15]. BMW7Series
is the first car that used FlexRay fully in the car [9]. Other interesting characteristics
of FlexRay are, it can fit any kind of topological network structure.

3.4 CAN Bus Protocol

Controller area network (CAN) is the most widely used in-vehicle communication
protocol. It was developed by the German company Robert Bosch GmbH in 1980
[17] and was first made public in 1986 [9]. The introduction of the CAN protocol
dramatically solved the complex wiring issue in a vehicle and it became popular in a
short time. By architecture, it is a broadcasting system and any ECU can access the
bus at any time. For their access control, Carrier SenseMultipleAccesswithCollision
Detection (CSMA/CD) is used with the help of a few bits in the CANmessage frame
called arbitration ID [18]. In terms of speed, it has a data rate of 1 Mbit/s. Due to
its simplicity and easy plug and play feature it is used in communication between
safety-critical ECUs and is used by most of the leading car manufacturers in the
world.
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3.5 Ethernet Protocol

Another popular IVNused nowadays is the Ethernet. It is a physical network that con-
nects different components of a vehicle. The popularity of Ethernet is demonstrated
by its recent use by Hyundai, BMW and Volkswagen [19]. As a communication
protocol, Ethernet has been used in computer networks for decades, but was not
considered for the automotive industry because of OEM’s automotive requirement.
But extensive research to develop driverless vehicles and camera-based ADAS sys-
tems has convinced the automotive industry that its components need high speed
and high bandwidth buses. As a result, IEEE 802.3 Ethernet was introduced by auto-
motive makers. Modern software and electronics in vehicles can introduce exciting
new functionalities because of the speed and bandwidth offered by Ethernet. Unlike
the CAN protocol, the Ethernet protocol has sender and receiver information in the
message packet and is considered more secure.

4 Security Analysis of IVN Architecture

The section security analysis ofCAVshows that vehicle connectivity can be leveraged
by intruders and they canmisguide the vehicle. It is considered a serious issue because
the driver’s and/or passenger’s life can be at risk if malicious hackers can remotely
take control of the vehicle. In this section, we discuss the architectural loopholes in
each of the IVNs outlined above, save for the MOST protocol, which, to best to our
knowledge, has no history of demonstrated attacks.

4.1 LIN

LIN is known as a low-cost IVN that connects non safety critical sensors and ECUs in
a vehicle. By architecture, it is a single wire system and has a UART serial interface
[20]. Modern vehicle systems connect a master and several slaves to form a LIN
network and they send two types of messages in the bus: (1) unconditional message
frame and (2) event triggeredmessage frame. In an unconditional message frame, the
master specifies a slave to respondwith amessage and the slave follows the command.
The event-triggered message frame is sent to the bus by the master when information
is requested from the slave. The main difference between the unconditional message
frame and the event-triggered message frame is the response of the slaves. Unlike the
unconditional message frame, the slave did not respond in an unchanged state upon
receiving the event triggermessage frame. From an intruder point of view, this feature
can be used to perform attacks. As themaster initiates action for all the slaves, gaining
access to one of those gives the attacker access to the bus. Apart from this, another
type of attack has been reported by researchers: sending the sleep command [21].
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Although considered as a unique advantage of the LIN communication protocol, the
ability to enter sleep mode to save power can be exploited by the attacker to disable
the LIN bus system in a vehicle. Lastly, the normal state of a LIN bus system can
be hampered by an attacker using electromagnetic interference as it is a single wire
system [20].

4.2 FlexRay

FlexRay is another IVN protocol that provides high-speed communication between
ECUs. It has been used recently in several applications such as adaptive cruise control
and active suspensions [15]. It is tailored to the demands of today’s automotive indus-
try, with features such as flexible data transfers, support for any kind of topological
network structure, fault-tolerant operation, and greater data throughput than prior
standard protocols. It is also a dual-channel system that supports both asynchronous
and real-time data transfermodes [22]. Although it provides some protection features
of data availability and data integrity since it uses CRC as a kind of data protection
against transmission mistakes, these features do not imply any guarantee of data
confidentiality, authenticity, or freshness. A FlexRay network, in reality, does not
have directly accessible interfaces; instead, it connects to other network protocols
through gateways. Access to the FlexRay bus can be gained through such gateways.
This makes the FlexRay protocol insufficiently protected against attacks and makes
the FlexRay bus a likely target for attackers since the ECUs attached to it is utilized
to provide control and mobility in the vehicles. These cyberattacks can target the in-
vehicle network’s control andmaneuverability ECUs, causing significant harm to the
driver. A variety of attacks have been easily created and developed on the FlexRay
standard protocol including the Nilsson-Larson attacker model [23], in which an
adversary has access to the in-vehicle network via the wireless gateway and can
read, modify, flood, steal, drop, monitor, record, broadcast, spoof and replay mes-
sages. Also, the Man-in-the-middle attacks, or intercepting and dropping messages,
are possible with such an adversary [24].

4.3 CAN (Controller Area Network)

Controller area network (CAN) is known as the de facto standard for IVN commu-
nication. Architecturally it is a broadcasting system that means any CAN messages
sent to the bus can be accessed by all the components connected to the network.
This makes the vehicular networking system more simple and solves the complex
wiring problem. But the design of the protocol lacks authentication features because
it does not have any field containing sender or receiver information in their message
frame. A typical standard CAN data frame has 111 bits at most. Out of them, it has
a unique arbitration ID (11 bits), that is used to control the accessibility of the CAN
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bus by establishing a priority scheme. According to the scheme, a lower arbitration
ID has a higher priority to send messages to the bus. That means if two ECUs try
to send CAN message to the bus at the same time, the protocol lets the sender with
a lower arbitration ID send messages first before the other one. Theoretically, if an
ECU sends a CAN message with an arbitration ID of 0000 continuously, then the
other ECUs will not get a chance to transmit messages to the bus. There is also a
15 bit CRC field in the CAN data frame that is calculated from the data fields (0-8
bytes), but that only protects the data loads. By default, there are no other ways to
provide security to the CAN message frame. The attacker can take advantage of
the CAN bus protocol characteristics discussed above and manipulate the bus. In
particular, there are three important properties of the protocol that an intruder can
utilize to perform state-of-the-art attacks [25]. First, the broadcasting nature provides
a way for the attackers to read all the CAN messages in the network without getting
noticed. Second, the priority scheme of the protocol can be misused by the intruder
and a denial of service attack can be performed by sending the highest priority CAN
message continuously. Finally, due to the lack of sender identification, an attacker
can act as an authorized ECU and can send CAN messages to the bus to perform a
spoofing attack.

4.4 Ethernet

The Ethernet has recently been employed in camera-based ADAS systems and self-
driving vehicles [26]. It is a physical network that allows various components of a
vehicle to be connected to each other. The Ethernet protocol offers greater features
compared to the standard CAN protocol such as speed, flexibility, bandwidth, cost-
effectiveness, and interoperability. The Ethernet protocol is also considered more
secure compared to the standard CAN protocol since it relies on the TCP/IP proto-
col, which includes sender and receiver information in the message packet, which
eliminates the need to broadcast each message. However, because Ethernet has long
been the actual standard protocol for linking computers, years of expertise in hacking
computers may be applied to hacking vehicles. Furthermore, the Ethernet protocol
might be vulnerable to attacks since it relies on TCP/IP protocol which focuses on
communication for resource sharing. A variety of attacks have been implemented on
TCP/IP protocol, including source address attacks, sequence number spoofing attacks
and mad authentication attacks [27]. Another possible issue is that open-source pro-
tocol is not highly appreciated in the automotive sector due to common copyleft rules
that compel companies to publicly reveal code updates and enhancements. Further-
more, the lack of validation of the open-source protocol implementations may cause
further implementation issues, which potentially expose serious vulnerabilities.
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5 Machine Learning as Defence Mechanism

Although the IVNs are not security proven at least in terms of their architecture, nev-
ertheless they have been used in automotive systems for decades and the production
of such vehicles is increasing due to high market demand. For providing a better
passenger experience, these vehicles are equipped with intelligent software and are
treated as cyber-physical systems. As the safety of passengers is directly related to
the security IVN, there are two popular approaches that can increase the security of
safety-critical IVNs (i.e. CAN bus). The first is implementing an encryption algo-
rithm to secure the CAN bus channel. The second is to monitor the network traffic
data and/or analog CAN signal and report unusual behavior. One process of pro-
viding solutions by using CAN data is machine learning technology, which is now
widely used in the domain of network security. In this section, a brief description of
the intersection point between machine learning and IVN security will be discussed.
The section will present an overview of the machine learning pipeline when it is used
in IVN security. The overall diagram of the machine learning pipeline is displayed
in Fig. 1.

As the CAN bus in modern vehicles is exposed to a large number of threats and
becomes an attractive target for attackers, the need for an Intrusion Detection System
(IDS) for the CANbus is becoming one of themost important security components in
modern vehicles. The existing IDSs for the CAN bus can be divided into behavior-
based IDS and fingerprinting-based IDS. Behavior-based IDS operate on the data
link layer and fingerprinting-based IDS operate on the physical layer. Behavior-based
IDS are used to monitor network traffic data in the data link layer and report unusual
behavior while fingerprinting-based IDS is used to utilize the physical characteristics
of the analog CAN signal in the physical layer and report any anomalies. One process
of using the network traffic data and the physical characteristics of the analog CAN
signal in order to build an automated solution is machine learning technology, which
is currently becoming one of themost popular technologies in the domain of security.
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Fig. 1 Machine learning pipeline in CAN security
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5.1 CAN Data Acquisition

The first step for implementing a machine learning system to defend the CAN bus
against cyberattacks is to acquire CAN data. This data acquisition is a complex
process where the researcher needs to access the CAN bus of the vehicle first. To
access the CAN bus, a standardized connector to a vehicle is needed: OBD-II. Since
2006, the OBD-II port was required for every consumer vehicle and was mandated
by law in the USA. The OBD-II port has 16 pins and they are summarized in Table 1.
The CAN—H and CAN—L pins can be wired to a microcontroller unit like an
Arduino with the help of a CAN bus shield (CAN bus transceiver) to capture raw
CAN bus data traffic. There are also a few commercial dongle interfaces available
that can be used to capture raw CAN bus data like panda OBD-II OBD2 interface,
OpenXC, OBDLink SX, etc. The streamed CAN bus raw data can be captured in
the data link layer of Open Systems Interconnection (OSI) model as network traffic
and is presented in Fig. 2. As the data acquisition from an actual vehicle needs to be
accessed through the OBD-II port, preparation should be taken for safety according
to [28]. To avoid this complex task people have also used car simulators with a virtual
CAN like the popular ICSim. Researchers in [28–30] have gathered CAN bus traffic
data using the ICSim simulator. The simulator simulates a car’s instrument cluster,
e.g. speedometer, its controls, e.g. throttle and steering, and the corresponding CAN
traffic. It is built based on the SocketCAN—a Linux-based library for the CAN
network. According to [30], the CAN traffic generated from ICSim seems like real
vehicular traffic. On the other hand, the CANbus data can be collected in the physical
layer of the OSI model shown in Fig. 2 that is the analog data (voltages). To collect
the analog CAN signals data TivaC, TM4C123GXL, MCP, TriCore, NXP MPC,
STM32, and oscilloscope instruments can be used [6, 7, 31–36].

Table 1 Physical layer features

Feature type Feature name

Time-domain features Maximum, Minimum, Mean, Variance,
Std.-Dev., Average deviation, Non-negative
count, Zero Crossing Rate (ZCR), Root Mean
Square (RMS), Amplitude, Energy, Power,
Skewness, Kurtosis

Frequency-domain features Spectral std.-dev., Spectral entropy, Spectral
spread, Spectral flux, Spectral roll off, Spectral
skewness, Spectral brightness, Spectral
kurtosis, Spectral flatness, Spectral centroid,
Irregularity K

Signal descriptive features Ratio max plateau, Plateau, Overshoot height,
Maximum

Deep features Deep features were extracted using Recurrent
Neural Network (RNN)
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Fig. 2 CAN bus data acquisition in data link layer and physical link layer

5.1.1 Available Public Dataset

While capturing CAN bus traffic in the data link layer is pretty straightforward, there
are few variations when analog CAN signals are captured. The researchers in [7, 31,
36] have used an oscilloscope with 2 GS/s in order to collect 144k samples, 4.147 M
samples, and 3.15M samples of the CAN signals where the CAN signals are captured
with different CAN cable types with various lengths, as well as different number of
ECUs with the same input of the CAN bus message. Similarly, work in [32, 33] have
used an oscilloscope with 2.5 and 1 GS/s, in order to record the CAN signals frames.
Other work in [35] have used an MCP2515 controller and an MCP2551 transceiver
and by using a 20 MS/s, they were able to capture 56.56k frames of the CAN signals
where the CAN signals were recorded at the output of ten ECUs. Similarly, work in
[6] also used the MCP2515 controller and the MCP2551 transceiver to capture the
CAN signal and they were able to capture 48.128k frames of the CAN signals of five
ECUs by using only 2 MS/s. Additional work in [34] have used a TM4C123GXL
microcontroller integrated with TivaC instrument and by using 50 MS/s, they were
able to collect 10k frames of the CAN signal of ten ECUs. Unfortunately, none
of the aforementioned datasets are publicly available for researchers. On the other
hand, for the data link layer, the CAN traffic is captured and is publicly available for
researchers. The CAN datasets are presented in Table 2.

Table 2 Available public datasets

Dataset reference CAN data source type

[37] KIA soul

[38] Ford escape

[39] Synthetic CAN bus data
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While real vehicle data provides an accurate description of the attacked or attack-
free state of a vehicle, synthetic CAN bus data can provide different types of attack
scenarios that can be a challenge to gather from a real vehicle. By design, a vehicle
is a very complex system and it takes a lot of time and effort to learn enough about
its inner workings in order to execute a successful attack. On the other hand, with
a synthetic CAN bus, data can be collected in a cost and time-efficient manner to
conduct further research.

5.1.2 Data Acquisition Using Test-Bed

According to the state-of-the-art, the researchers in [34] were able to build a testbed
consisting of ten Arduino Unos, each with two identical CAN shields, and use
a TM4C123GXL microcontroller combined with a TivaC instrument with using
50 MS/s in order to capture CAN signal frames. Other works in [6, 35] were able to
create testbeds in order to collect the CAN signals frames from the Fiat 500 and the
Porsche Panamera vehicles. The testbeds in [6, 35] consist of ten Arduino Unos and
five Arduino Unos, respectively. Each Arduino Uno is equipped with two identical
CAN shields and both work in [6, 35] used anMCP2515 controller and anMCP2551
transceiver using 20 and 2 MS/s, respectively in order to record CAN signal frames
from both the Fiat 500 and the Porsche Panamera vehicles. Additionally, two Rasp-
berry Pis where each one is equipped with a CAN Shield were connected to increase
the number of ECUs. One of the Raspberry Pis was connected to the OBD-II port
and the second one was connected to the CAN bus in order to capture CAN signal
frames.

5.2 Data Processing

Data processing is a step of using domain knowledge to extract information (char-
acteristics, properties, attributes) from raw data. The success of machine learning
depends on this information which makes the learning easier if the extracted char-
acteristics correlate with the target class. On the other hand, if the class is a very
complex function of the extracted information, one may not be able to learn it prop-
erly. Often, the raw data is not in a form that is amenable to learning, but suitable
features can be constructed. In machine learning, the extraction of salient features is
what accounts formost of the development effort. It is also one of themost interesting
parts of development, where intuition, creativity, and “black art” are as important
as the technical requirements. To implement machine learning, it is important to
choose attributes that are different between benign CAN bus traffic and malicious
CAN bus traffic. This subsection will provide an overview of the feature extraction,
engineering and selection process when applying machine learning in the domain of
CAN bus security.
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Fig. 3 CAN bus message frame

5.2.1 Feature Extraction

Toextract important information from theCANdata, it is important to first understand
CANbus traffic. For the standardCANbus protocol, eachECUsends aCANmessage
of at most 111 bits. Out of the 111 bits, 11 bits are known as the arbitration ID, 0-8
bytes contain the data payload, and the remaining bits consist of a start bit, RTR bit,
CRC bit and end bits, etc. Figure 3 shows a packet of CANmessages. These portions
of CAN bus messages have been used as machine learning features for years. In
particular, the CAN arbitration ID and the data fields have been used in [8, 40, 41]
for detecting benign and malicious CAN bus messages. Apart from these traditional
features, authors in [42] used the timestamp of each message and used it as a feature
for classification.

5.2.2 Feature Engineering

The above subsection shows that there are few features in the CAN bus data. Obvi-
ously, too few features can not show the complexity of the data, which will affect
intrusion detection performance. So, to increase the performance ofmachine learning
models, the idea is to generate features that represent hidden differentiable character-
istics of the CAN bus. To do this, one popular approach is to construct entropy-based
features [43, 44], where two or more features are used to generate a new feature
that improves the attack detection rate of the model. Another popular technique is
to extract graph theory-based features from CAN message [25, 45]. This interest-
ing approach considers a window of CAN messages to construct a graph and then
extracts graph-based attributes like a number of edges, nodes, degree of nodes, etc.
to use as machine learning features. For example, in [45], the author took batches of
200 CANmessages into consideration and built a graph using them. He further used
these graphs to gather features i.e. number of edges, number of nodes, radius, diame-
ter, density, reciprocity, average cluster coefficient, and assortativity coefficient. The
result section shows the effectiveness of feature engineering in CAN security. The
graph-based features approach shows better performance than traditional CAN bus
message features by at most 1.44%when using the samemachine learning algorithm
as the attack detector.
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Table 3 OBD-II pinout description

Pin Description Pin Description

1 Vendor option 9 Vendor option

2 J1850 bus+ 10 J1850 Bus

3 Vendor option 11 Vendor Option

4 Chassis ground 12 Vendor Option

5 Signal ground 13 Vendor Option

6 CAN (J-2234) high 14 CAN (J-2234) low

7 ISO 9141-2 K-line 15 ISO 9141-2 low

8 Vendor option 16 Battery power

When working with analog CAN signals, feature engineering is a mandatory step.
According to the state-of-the-art, statistical features were extracted from CAN ana-
log voltages and used in intrusion detection. Fingerprinting-based IDSs [6, 7, 31–36]
utilize this approach in order to detect anomalies, where these statistical features rep-
resent the signal fingerprint in addition to the associated ECU. These statistical fea-
tures can be classified into four main types: time-domain features, frequency-domain
features, signal descriptive features, and deep features. These statistical features are
presented in Table 3.

5.2.3 Feature Selection

The last important task before training the model is to select appropriate features.
This process can be done manually or automatically. The main goal of this process is
to select the features that correlate with the target variable. This process is sometimes
considered of lesser importance than the feature extraction or engineering steps. In
fact, by using irrelevant features the model memorizes rather than generalizes the
problem from the training data. Thus the inclusion of non-salient features decrease
the accuracy of the model. In CAN bus security research, the two most common
approaches are selecting features based on feature differences [45] or based on a fea-
ture rank score on the model prediction [41]. For example, in [45], the author plotted
the graph features as box plots for attack-free and attacked graphs and selected 7
features out of the 8 features which have high feature differences in terms of data
distribution. The feature involving the number of nodes in the graph is the same for
both the attacked and attack-free graphs, hence does not have a significant effect on
the model’s prediction. To determine a ranking score between the features using a
machine learning algorithm on the training data is another way for selecting the fea-
tures. Tree-based algorithms calculate the importance of each feature based on every
single tree and then average the output of the trees to make the result more reliable.
Additionally, different traditional feature selectionmethods such as information gain,
entropy, and the Gini coefficient can be utilized also for this purpose.
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5.3 Algorithms to Detect a CAN Bus Attack

In a machine learning project, the next task after feature selection is modeling. It
is the process of constructing a mathematical equation by iterating a set of data to
find a perfect line that can either categorize the data or predict future values. This
process can be broken down into three parts: algorithm selection, hyperparameter
tuning, and model validation. In the following subsections, the description of these
three procedures will be explained in terms of CAN bus data.

5.3.1 Algorithm Selection

The selection of machine learning algorithms in CAN data security is dependent
on the quality of data and available differential features. In a modern vehicle, there
are 70–100 ECUs and they communicate with each other very frequently, hence
we can assume there is a large amount of data available for detecting CAN bus
attacks. KNN, decision trees, or kernel SVM algorithms can be used. Refat et al.
[45], Alshammari et al. [46] used KNN and kernel SVM, [8, 41] used decision trees
to detect CAN bus attacks and achieved high accuracy in detection. The authors in
[39, 47, 48] used deep learning-based algorithms to detect CAN bus intrusion which
is computationally expensive as shown in Table 4.

When working with physical CAN signals, according to the state-of-the-art,
fingerprinting-based IDSs [6, 7, 31–36], work in [34, 35] used an Artificial Neural
Network (ANN) algorithm to detect anomalies in the CAN bus. Similarly, work in [7,
31] also used an ANN algorithm to detect anomalies in the CAN bus, where 70 and
65% of the collected samples were used for training the model and the 30 and 35%
of the collected samples were used for testing. Other work in [36] used a recurrent
neural network with long short-term memory (RNN-LSTM) to detect anomalies in
the CAN bus. Additional work in [32, 33] used a Support Vector Machine (SVM),
ANN, and Bagged Decision Tree (BDT) to detect any anomalies in the CAN bus.
Similarly, work in [6] used the same algorithms as [32, 33] in addition to Logistic
Regression (LR) and Naive Bayes to detect anomalies in the CAN bus.

Table 4 Experimental environment for deep learning-based algorithms

Paper CPU GPU (GHz) RAM (GB)

[39] 3.50 N/A 32

[47] 3.60 Yes 32

[48] 2.20 Yes 16
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Fig. 4 Tuning number of nearest neighbors (k) in KNN algorithm

5.3.2 Hyperparameter Tuning

To train an unbiased, highly efficient machine learning model, it is important to tune
the hyperparameters of the selected algorithm and select the parameters before mov-
ing to model validation. In CAN bus security, state-of-the-art papers do not explain
the hyperparameter tuning process, hence an example is given how the hyperparam-
eter can be selected using the KNN algorithm. This will help to interpolate the model
and provide an idea of how tuning can be done. In the KNN algorithm, k is a param-
eter that needs to be tuned, but unfortunately, there is no conventional way to tune
the parameter. The go-to approach is to try different values of k, monitor the training
and test error rates and finally choose the k that yields the smallest amount of test
and training errors. Figure 4 shows the results of applying the KNN algorithm with
different values of k with the selected features in paper [45] while using the same
public dataset [37]. According to the plot the value of k = 4 is chosen on the training
data as it provides the smaller training and test errors. The entire hyperparameter
selection process can be automated as shown by the authors in [49, 50].

5.3.3 Model Validation

Once the hyperparameters are set, the model is finally trained and ready to be val-
idated. It is always advisable to validate the model with an unknown set of data.
This will help the researcher to understand whether the model has successfully gen-
eralized from the training data or it has only been memorized. To execute this step,
the total data set can be divided into three chunks into a ratio of 60%:20%:20%: (1)
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training data, (2) test data and (3) validate data. The training data and test data are
used till the hyperparameter tuning and the validation dataset will be used to measure
the final performance of the model. For example, with k = 4, the KNN achieved an
accuracy of 98.00% when working with 8 graph-based CAN features from [45].

5.4 Challenges of ML in IVN Research

The first challenge of applying machine learning to secure IVN is to supply quality
network data to themodel. CANdata acquisition is not a straightforward task because
access to the network of the vehicle is required to capture such data. Acquiring net-
work data from an actual vehicle is a complex process, hence people usually build
vehicular networking prototypes which is also challenging. Because this process
requires analog data acquisition devices, such as an oscilloscope, it can be expensive
and not very portable. The oscilloscope can be replaced by low-costmicrocontrollers,
but they require additional programming. To capture quality physical layer data, a
higher sampling rate should be used to read analog voltages, which is also a chal-
lenging task [6]. On the other hand, while using the automotive network’s data link
layer and data in the machine learning model, feature engineering needs particular
attention because of the lack of direct features. Another challenge is monitoring
and detecting any anomalies in the CAN bus in real-time, where the majority of
research so far has been done to detect intrusions using datasets and is not suitable
for real-time detection. Moreover, there is no well-known and widely recognized
dataset that can be used to assess the effectiveness of intrusion detection systems for
vehicles and unfortunately, no datasets for the physical layer are publicly available
for researchers. The limited computing power of ECUs to process complex machine
learning to detect anomalies in IVN is also challenging.

5.5 Future Opportunities in This Domain

One critical threat to modern vehicles is malware, which is malicious software
designed to gain unauthorized access to data or to disrupt computer operations. Mal-
ware can infect vehicles via a variety of interface vulnerabilities, including wireless
connections with roadside networks, Wi-Fi hotspots, Internet connectivity, Blue-
tooth, and cellular networks like 5G. It can also infect vehicles through cell phones,
removable media, iPods and laptops that are connected directly with the vehicle’s
network [11]. Malware can cause a wide range of disturbances and harm to the vehi-
cle system once it is inside the vehicle [51]. Some examples of how malware affects
the vehicle’s regular operations are: tampering with the in-car radio so the driver
can’t turn it on, locking automotive functions such as locking the car doors, occu-
pying the memory and CPU cycles of the ECUs, and disabling the vehicle’s safety
features [51]. The above-mentioned examples are considered high priority that must
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be appropriately handled in order to effectively safeguard them. According to the
state-of-the-art [52], machine learning approaches are successful in production level
applications for defending malware, and we expect machine learning techniques can
be used in the future to address such cases and effectively protect the vehicle systems
from malware.

6 Conclusion

The advances in the technologies related to CAV are the main catalyst behind the
research works in the intelligent transportation system. This chapter shows that
researchers are achieving significant results in securing the in-vehicle network.
The introduction of CAV will reduce human-related errors and misjudgements in
decision-making while driving by providing more control to the vehicle on the road.
The transition to autonomous driving has the potential to prevent thousands of lives
lost to road crashes, save millions of work hours lost to road congestion, improve the
environment by reducing carbon emission, and make our lives better by providing
the flexibility of mobility without the worries of the driving and parking tasks. At the
same time, the errors made by the self-driven vehicle need to be minimized. To elim-
inate the external bias of an unauthorized entity on the decision of a self-driven vehi-
cle, a strong trustworthy intrusion detection system is needed. Data-centric machine
learning algorithms can be a good choice for building such systems. The success of
machine learning-based systems depends not only on the selection of algorithms but
also on the quality of the underlying data. This book chapter discusses the general-
ized steps for developing a machine learning systemwhen working with in-vehicular
network security. The factors involved in the development of a high quality machine
learning-based solution were indicated. The challenges such as the difficulty of data
acquisition (in-vehicle network), scarcity of differential features, and real-time attack
detection are also specified. Finally, the future direction of machine learning in an
in-vehicular network was pointed to the area of defending malware in CAVs.
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