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Abstract. Recent progress in AI, which combines deep learning with
classical search algorithms, has shown remarkable performance improve-
ments for several challenging board games, such as Go and Chess. In this
paper, we propose a method to apply this new technique to model check-
ing problems. In particular, we leverage the game-theoretical semantics
of logic expressions (recursive first-order logic in our case) to turn a
model checking problem into a two-player perfect information win-lose
game. The game can then be played and learned by a deep learning
and search algorithm (neural MCTS). The existence of a winning strat-
egy of a player indicates that either the model-checked property can be
verified or there is a counterexample. We modified the classical neural
MCTS algorithm to ensure it can handle cycles when searching in state
space. We also propose a way to incorporate fairness constraints into the
learning and search process. We test our idea on two labeled transition
systems (one is from a numerical game, and the other is the classical
Dining Philosophers problem). Our experimental results show an out-
performance of our method compared with reinforcement-learning-based
model checking approaches.
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1 Introduction

The world has entered a new era where large distributed concurrent systems
have been developed to serve numerous clients worldwide. Those systems cover
a large part of our daily life, such as finance and transportation. A tiny mistake
in the design could potentially incur a severe security issue and cause economic
losses. Therefore, it is crucial to keep the design of those systems correct. That is
why model-checking deserves to be paid more attention to nowadays. However,
the model-checking community has long been troubled by the state explosion
problem [7], namely as the number of state variables in the system increases, the
size of the system state space grows exponentially.

The past few years have witnessed a combination of search algorithms and
machine learning (ML) techniques (i.e., neural MCTS) showing a remarkable
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performance improvement when dealing with games that have large state spaces,
such as Go and Chess [22–25]. Because states information is learned and stored
by neural networks, those algorithms’ memory usage can be considered con-
stants. Being motivated by the recent progress of AI in gameplay, we came up
with an alternative approach to tackle the state explosion problem. Specifically,
it has been known for decades that the game-theoretical semantics [13], which
shows a duality between logic and game, can be utilized for model-checking [27].
Although the goal of model-checking is to find errors that can appear in some
rare cases, the game-theoretical semantics allows one to reduce the problem of
verifying a property into a two-player semantic game defined on the logic used
to describe that property. Such a reduction (or gamification) allows one to apply
a self-play-based ML algorithm to learn from the game and eventually solve the
problem.

A high-level view of the Neural MCTS algorithm for an interpreted sentence
φ for some logic L with game-semantics is given by the following loop:
Repeat

– Find faulty predictions (TRUE or FALSE) for φ and its sub-formulas, called
curriculum(φ), through self-play of Game(L, φ).

– Learn from the faulty predictions curriculum(φ), which gives negative reward
information based on winning/losing predictions and self-play outcomes.

– Update approximation to value function, which predicates the winning/losing
chance, and policy functions, which approximate a serial of Skolem functions
used as a strategy to prove or disprove the formula.

Until convergence: there are no faulty predictions for φ and its sub-formulas.

Learning based on self-play is basically a process of finding faulty predictions
for each player. A faulty prediction is one where the prediction of the game
outcome (from the value function) contradicts the actual outcome. Since the
game is zero-sum with no draws, the two players will continuously compete by
mutually creating curricula for each other to learn until there is no faulty predic-
tion anymore. Consequently, a winning strategy learned by an ML algorithm for
that game shows how to verify/falsify that property. It should be noted that even
when the two players agree with each other, their prediction might still be wrong
because the agreement on a truth value might be based on weak players. This is a
common issue for all ML-based model checkers because ML algorithms are prob-
abilistic, and 100% correctness is not guaranteed. Therefore, “they should favor
the discovery of errors rather than focusing on guaranteeing correctness” [8].
That is also the reason why learning a strategy to falsify a property is especially
useful when constructing a counterexample from the model-checking problem.

Leveraging such a duality, in this paper, we show an approach to adapt neural
MCTS to on-the-fly model-checking through semantic-game-based gamification.
In particular, we use recursive first-order logic as our model specification lan-
guage, which provides us with a novel approach to generate state representations.
In addition to that, we also propose a method to impose fairness constraints
by concatenating a normalized counter vector to the state representation. We
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test our approach on two problems: model-checking an alternating reachability
property on a numeric game and a liveness property on the well-known dining
philosopher problem. Our preliminary experimental results show that turning
model-checking problems into games and solving them with cutting-edge game-
play AI technology might be a promising research direction.

2 Preliminary

2.1 Model Checking with Lµ

Modal μ-calculus (Lμ) has been used broadly in model checking, a logic used
to describe properties of the target labeled transition system (LTS). An LTS
is defined as a tuple (S, I,A, T ), where S is a set of states, I is a nonempty
subset of S of initial states, A is a set of actions, and relation T formulates
transitions among different states, which are labeled with actions. With an LTS,
one can abstract and model the possible development of a system. The problem
of model-checking a Lμ formula on a transition system is to decide whether the
LTS satisfies the formula.

The syntax of Lμ is:

Φ := True | False | X | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | [A]Φ | 〈A〉Φ | νX.Φ | μX.Φ,

where X ranges over a set of variables, regarded as names of predicates. We
also use σX.Φ to stand for either νX.Φ or μX.Φ. The semantics of Lμ can be
represented with Monadic Second-order Logic (MSOL) since it has been proved
that Lμ is the bisimulation invariant fragment of MSOL [15]. To be specific,
let Φ[x] be the MSOL translation of a Lμ formula Φ, with one free variable x.
Then a Lμ formula can be translated into an MSOL formula recursively in the
following way:

X[x] = X(x)
(Φ1 ∧ Φ2)[x] = Φ1[x] ∧ Φ2[x]
(Φ1 ∨ Φ2)[x] = Φ1[x] ∨ Φ2[x]
(¬Φ)[x] = ¬Φ[x]
〈A〉Φ[x] = ∃y ∈ S. (xTy) ∧ Φ[y]
[A]Φ[x] = ∀y ∈ S. (xTy) → Φ[y]
μX.Φ[x] = ∃X ⊆ S. (∀y ∈ S. Φ[y] → X(y)) ∧ X(x)
νX.Φ[x] = ∃X ⊆ S. (∀y ∈ S. X(y) → Φ[y]) → X(x)

(1)

where X(x) means for some set X ⊆ S, x ∈ X.
It is to be noted that the definition of fix-point operator LFP and GFP

is intricate, for which we use the explanation from [28]. To put it simply, let
Φ(x;X) be any MSOL predicate parameterized on some set X. And suppose
SX = {x|Φ(x;X)}, then a MSOL predicate actually also defines a function which
maps X to SX . The fix-point of the function can be computed by recursively
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calling the function with its output. To be specific, the LFP of a predicate
Φ(x;X) is derived by a sequence of function calls:

S0 = {x|Φ(x; ∅)}, S1 = {x|Φ(x;S0)}, ..., Sn = {x|Φ(x;Sn)}
LFP. Φ(x;X) := Sn,

and similarly, the GFP of a predicate Φ(x;X) can be derived by the sequence:
Φ(x;X) is derived by a sequence of function calls:

S0 = {x|Φ(x;S)}, S1 = {x|Φ(x;S0)}, ..., Sn = {x|Φ(x;Sn)}
GFP. Φ(x;X) := Sn.

As a result, the fix-point operators and the two modal operators make it possible
to express the finite or infinite temporal properties of an LTS.

2.2 Game Theoretical Semantics

Game theoretical semantics is an approach that rebuilds the logical concepts with
game-theoretic concepts. A logical formula is interpreted as a game between two
players, one in the Proponent role and the other in the Opponent role. The
game runs recursively on the computational order of the logical operators. The
game ends when a primitive predicate is achieved, and the Proponent wins if the
formula evaluates to true; otherwise, the Opponent wins. A winning strategy can
be represented by a finite sequence of Skolem functions (which are useful tools
to improve the system design) corresponding to the moves made by the player
relative to those played by the other one [21].

To better understand the concept, we first introduce the game theoretical
semantics of first-order logic (FOL) [13,21]. A semantic game is represented as
a tuple (Ψ, P, OP), where the Ψ is a formula interpreted by a structure M . P
and OP denote the game role for each of the two players, and, initially, player-1
plays the P role. The game rule can be summarized in Table 1.

Table 1. The game semantics for a FOL formula ϕ. In this table, OP stands for
Opponent, and P stands for Proponent. The game ends at an atomic predicate ϕ. It is
to be noted that the negation switches the role of the two players; namely, strategies
for P in a game for ¬Ψ are strategies for OP in the game for Ψ .

Formula Operation Subgame

∀x ∈ A : Ψ(x) OP picks x0 from A (Ψ [x/x0], P, OP)

∃x ∈ A : Ψ(x) P picks x0 from A (Ψ [x/x0], P, OP)

Ψ ∧ χ OP picks Θ ∈ {Ψ, χ} (Θ, P, OP)

Ψ∨ χ P picks Θ ∈ {Ψ, χ} (Θ, P, OP)

¬Ψ N/A (Ψ, OP, P)

ϕ N/A N/A
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The concept of game theoretical semantics can also be extended to Lμ

[12,20,27]. However, since Lμ is involved with a transition system, the game
rule is more complex (Table 2). Even though the modal operators [A] and 〈A〉
resemble the quantifiers in FOL, the fix-point operator is utterly distinct, which
actually grants Lμ more expressiveness than FOL [18]. As a result, the win-
ning condition is no longer as simple as the one with FOL. Instead of deciding
whether a formula can be evaluated as true or false, one may encounter situa-
tions where one of the players cannot pick any transition in the system because
of a deadlock. Alternatively, one may encounter situations where the game is
just running forever because of a cycle in the transition system. In summary, the
updated winning condition can be summarized as the following [27]:

– Proponent wins, when either
• within finitely many moves, the formula can be evaluated to true for the

underlying transition system.
• within finitely many moves, the Opponent gets into a deadlock where no

transition is available.
• the game can run forever because of a greatest fix-point operator νX.Ψ ,

which indicates that a safety property can always hold.
– Opponent wins, when either

• within finitely many moves, the formula can be evaluated to false for the
underlying transition system.

• within finitely many moves, Proponent gets into a deadlock where no
transition is available.

• the game can run forever because of a least fix-point operator μX.Ψ ,
which indicates that a liveness property can never hold.

Table 2. The game semantic for a Lµ formula ϕ with underlying transition system
state S, where X � σX.Ψ means X is bound by σX.Ψ . Notice that the game might not
always end at a primitive predicate. Due to the nature of Lµ, it may end at a deadlock
or just run forever.

Configuration Operation Subgame

([A]Ψ)[x] OP picks a transition x
a∈A−−−→ y (Ψ [y], P, OP)

(〈A〉Ψ)[x] P picks a transition x
a∈A−−−→ y (Ψ [y], P, OP)

(Ψ ∧ χ)[x] OP picks Θ ∈ {Ψ, χ} (Θ[x], P, OP)

(Ψ∨ χ)[x] P picks Θ ∈ {Ψ, χ} (Θ[x], P, OP)

(¬Ψ)[x] N/A (Ψ [x], OP, P)

(σX.Ψ)[x] N/A (Ψ [x], P, OP)

X[x] N/A (Ψ [x], P, OP), X � σX.Ψ

ϕ[x] N/A N/A

The game semantics of Lμ gives a local view on the model checking prob-
lem, while the MSOL semantics of Lμ provides a global view. Typically those



562 R. Xu and K. Lieberherr

fix-point operators, from a global view, define a closure of LTS state in which
certain temporal property always holds; yet from a local view, they describe
recursive behaviors so that the evolution of LTS forms a cycle. The local view,
acquired from game semantics, turns out to be more intuitive to help us under-
stand or design a Lμ property. For instance, νX.Φ defines a “good” cycle which
means something good should always happen; otherwise, the system is not well
designed; while μX.Φ specify a “bad” cycle which means, eventually something
good should happen; otherwise the system is not well designed.

2.3 Learning with Neural MCTS

Fig. 1. The workflow of the neural MCTS algorithm.

MCTS has been applied to solving combinatorial games for a long time [6],
while recently, combining deep neural networks with MCTS showed success in
improving solver competence in many practical combinatorial games. The con-
cept of neural MCTS was proposed independently in Expert Iteration [1], and
AlphaZero [25]. In a nutshell, neural MCTS uses the neural network as policy
and value approximators. During each learning iteration, it carries out multiple
rounds of self-plays. Each self-play runs several MCTS simulations to estimate
an empirical policy at each state, then sample from that policy, take a move, and
continue. After each round of self-play, the game’s outcome is backed up to all
states in that game episode. Those game episodes generated during self-play are
then stored in a replay buffer, which is used to train the neural network (Fig. 1).

During one self-play episode, for a given state, the neural MCTS runs a
given number of simulations on a game tree, rooted at that state to generate
an empirical policy. Each simulation, guided by the policy and value networks,
passes through 4 phases:

1. SELECT: At the beginning of each iteration, the algorithm selects a path
from the root (current game state) to a leaf (either a terminal state or an
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unvisited state) according to an upper confidence boundary (UCB, [3,4,17]).
Specifically, suppose the root is s0. The UCB determines a sequence of states
{s0, s1, ..., sl} by the following process:

ai = arg max
a

⎡
⎢⎢⎢⎣Q(si, a) + απθ(si, a)

√∑
a′ N(si, a′)

N(si, a) + 1︸ ︷︷ ︸
U(si,a)

⎤
⎥⎥⎥⎦

si+1 = move(si, ai)
Q(si, a) = N(si, a) = 0, if si+1 is unvisited

(2)

where α is a tunable parameter, N(s, a) counts the times of visiting (s, a)
during the MCTS simulations, and Q(s, a) is a state-action value estimator.
The UCB is also guided by a policy estimator πθ(s, a). It has been proved in
[9] that selecting actions using Eq. 2 is equivalent to optimize the empirical
policy

π̂(s, a) =
1 + N(s, a)

|A| +
∑

a′ N(s, a′)

where |A| is the size of the action space, so that it approximates the solution
of a regularized policy optimization problem. As a result, MCTS simulation
can be regarded as a regularized policy optimization [9]. As long as the value
network is accurate, the MCTS simulation will optimize the output policy to
maximize the action value output while minimizing the change to the policy
network.

2. EXPAND: Once the selected phase ends at an unvisited state sl, the state
will be fully expanded and marked as visited. During the next selection iter-
ation, all its child nodes will be considered leaf nodes.

3. ROLL-OUT: The roll-out is carried out for any unvisited state sl. If sl is a
terminal state, the game outcome R(sl) will be used as the state value backup
for the BACKUP phase, otherwise, the algorithm will use a value network
to estimate the result of the game (from current state sl) and use that value
Vθ(sl) for BACKUP.

4. BACKUP: This is the last phase of an MCTS simulation in which the
algorithm backs up the state value and updates the state-action value esti-
mator for each node in the selected states sequence. To illustrate this process,
suppose the selected states and corresponding actions and players are

{(s0, a0, p0), (s1, a1, p1), ...(sl−1, al−1, pl−1), (sl, , pl)}
Let vl be either the actual game outcome R(sl) or the estimated outcome
Vθ(si). The value is then backed up in the following way

{(s0, a0, p0, v0), (s1, a1, p1, v1), ...(sl−1, al−1, pl−1, vl−1), (sl, , pl, vl)},

where vi = (−1)|pi+1−pi|vi+1. In other words, for any two-player game, the
leaf state value vl is backed up in a fashion such that states play by the same
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player as the leaf state will be assigned the same value vl, while states play
by another player will be assigned the opposite value −vl. The backed up
state values are then be used to update the counter N and state-action value
estimator Q:

N(st, at) ← N(st, at) + 1

Q(st, at) ← Q(st, at) +
Vθ(sr) − Q(st, at)

N(st, at)
(3)

Once the given number of simulations has been reached, the algorithm returns
the empirical policy π̂(s) for the current state s. An action is then sampled from
π̂(s), and the game moves to the next state by playing that action. In this way,
MCTS generates the players’ states and actions alternately until the game ends
with some outcome R after T steps, which gives an episode for the game. Each
episode is defined as a sequence of tuples (si, pi, π̂i, vi), where si is the game
state at step i, pi is the player at step i, π̂i is the empirical policy generated
at step i, and vi = (−1)|pi−pT |R is the value signal from the outcome, which
will become a contradictory signal once the prediction from the value network
is faulty. After a given number of self-plays, all episodes will be stored into a
replay buffer so that it can be used to train and update the value network Vθ

(with all vi’s) and policy network πθ (with all π̂i’s).

3 Methodology

3.1 Recursive-FOL

In this work, we use recursive first-order logic (recursive-FOL) for model checking
a finite LTS. The recursive FOL is essentially an extension of FOL with fix-
point operators, which allows a predicate to be defined by referring back to
itself. However, unlike Lμ, which defines properties functionally, recursive-FOL
provides us more flexibility and allows us to describe model checking properties in
a modular way so that a property can be defined with multiple sub-components,
which is used later for deriving vector representations (see Sect. 3.2). To be
specific, a recursive-FOL property can be defined by the following grammar:

〈property〉 |= 〈predicates〉
〈predicates〉 |= 〈predicate〉 | 〈predicate〉 ; 〈predicates〉
〈predicate〉 |= LFP.X(s) := 〈fol-expr〉

| GFP.X(s) := 〈fol-expr〉
| X(s) := 〈fol-expr〉

〈fol-expr〉 |= True | False | ϕ(s) | X(s) | ¬〈fol-expr〉
| 〈fol-expr〉 ∨ 〈fol-expr〉
| 〈fol-expr〉 ∧ 〈fol-expr〉
| ∃a ∈ As. X(sa)
| ∀a ∈ As. X(sa)
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where ϕ ranges over all primitive predicates, X ranges over the identifiers of the
predicates, s is the LTS state variable for each predicate, As is the action space
for the current state, and sa is the successor state that s

a−→ sa.
The motivation of applying recursive-FOL to model checking comes directly

from the MSOL interpretation of Lμ (see Sect. 2.1). However, different from
MSOL, which implies fix-point operator intrinsically, adding a fix-point operator
to FOL is tricky and error-prone [11]. Specifically, suppose we have a FOL predi-
cate Φ(x;P ), parameterized by a variable x and another predicate P (x). To make
sure an extended FOL formula (say LFP.Φ(x;P )) is well-formed, the function
F (P ) = {x|Φ(x;P )} must be monotone, which means either F (P ) ⊆ {x|P (x)}
or F (P ) ⊇ {x|P (x)}. It is to be noted that, in general, whether a FOL pred-
icate Φ(x;P ) is monotone is undecidable. Nevertheless, one can still construct
monotone predicates by forcing each occurrence of P in Φ(x;P ) to be positive
[10]. In this work, we assume the user always defines a well-formed formula. This
assumption comes from a practical consideration that any two-player extensive
form game can be abstractly described as:

LFP.Φ(s, p;P ) := Q(s, p) ∨ ∃a ∈ Ap
s . ¬P (sa, p̄),

where sa is the state following s
a−→ sa, p̄ is the opposite player of p, Q(s, p)

means that the game ends at s and player p wins the game, and Φ(s, p;P )
means that given the current game state s and player p, the current player p
will eventually win the game. As a result, the predicate is defined by the formula
and the underlying structure of the game states. In other words, if the game can
generate infinitely many states, then the formula above is not well-formed.

Next, we show how to transform a Lμ formula to recursive-FOL. Since a
modular approach is used to define a predicate, we need to first decompose a Lμ

formula into different predicates. For example, suppose the given formula is

νZ.(p ∨ μX.(q ∨ [A]X)) ∧ 〈A〉Z, (4)

we can rewrite it into two individual fix-point predicates, with a distinct state
variable s as:

GFP.Z(s) := (p[s] ∨ X[s]) ∧ (〈A〉Z)[s]
LFP.X(s) := q[s] ∨ ([A]X)[s].

After decomposing every fix-point operator into individual predicates, we finish
by transforming recursively with the following rules:

p[x] = p(x)
(Φ1 ∧ Φ2)[x] = Φ1[x] ∧ Φ2[x]
(Φ1 ∨ Φ2)[x] = Φ1[x] ∨ Φ2[x]
(¬Φ)[x] = ¬Φ[x]
(〈A〉Φ)[x] = ∃a ∈ Ax. Z[xa]
([A]Φ)[x] = ∀a ∈ Ax. Z[xa],

(5)
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where p means a primitive predicate that can always be evaluated, given the
current state variable x. Ax is the set of all legal actions of an LTS at state x,
and xa represents the state such that x

a−→ xa.
The game semantics of recursive-FOL is almost the same as FOL’s, except

that the winning condition of the Lμ semantic game has been applied. However,
it should be pointed out that since the variables of fix-point operators in Lμ

have been transformed to unique fix-point predicates, there is no need to track
bounded variables anymore. Consequently, the semantic game plays on a group
of predicates and jumps from one to another if necessary.

3.2 State Representation

The state representation of any game state for a recursive-FOL semantic game
is a vector [i, p, ξ, ζ], where i is an integer ID number for each predicate (in this
case, i(Z) = 0, i(X) = 1), and p ∈ {−1, 1} is the player ID. ξ and ζ are two
vector components, where ξ is the vectorized representation of the current LTS
state s, and ζ is an encoding of the action sequence on the syntax tree, which is
initialized to all −1 for each predicate.

The entrance of a semantic game is always a predicate, which can be repre-
sented as a syntax tree. Once evaluated step by step, each node is either a logic
operator or a predicate. A predicate indicates a leaf node for the current tree,
but it also points to an entrance of another tree. We use a preorder traversal
to identify each node and vectorize the action sequence on the tree structure,
namely ζ.

For illustration, let’s use the transformed recursive-FOL formula from Eq. 4,
which contains two fix-point predicates:

GFP.Z(s) := (p(s) ∨ X(s)) ∧ (∀a ∈ As. Z(sa))
LFP.X(s) := q(s)s ∨ (∃a ∈ As. X(sa)),

where p and q are primitive predicates. The syntax trees of the two predicates
can be drawn out as:

Z

∧

∨

p X

∀

Z

X

∨

q ∃

X

To better understand how to generate ζ properly, let’s see the example above.
The preorder indexes for each node in the two trees are:

[Z : 0,∧ : 1,∨ : 2, p : 3,X : 4,∀ : 5, Z : 6]
[X : 0,∨ : 1, q : 2,∃ : 3,X : 4],
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which means we can use a length-seven vector to completely encode any action
sequences on these two trees during gameplay. All we need is to store the action
taken on each node to the corresponding position in the vector. For instance,
starting from some Z(s), if a player took the left branch of the ∧ operator at
position 1, and then the other player took the right branch of the ∨ operator at
position 2, then the vector ζ at leaf node X becomes:

[0, 0, 1,−1,−1,−1,−1].

Furthermore, if the game continued from predicate X, and one of the players
picked the right branch of the ∨ operator at position 1, and then chose some
move m ∈ As on the ∃ operator at position 3, then the vector ζ at leaf node X
becomes:

[0, 1,m,−1,−1,−1,−1].

3.3 MCTS with Fix-point Predicates

Applying neural MCTS to a recursive-FOL semantic game looks straightforward.
However, it turns out to be non-trivial. Specifically, a semantic game might have
an infinite game sequence composed of a set of states in a cycle. However, one
of the players can still win the game as long as we can track the type of the
leading fix-point operator (namely, the starting point of a cycle). On the other
hand, the neural MCTS algorithm was not designed to handle an infinite game
that uses looping states as a winning condition. As a result, we propose some
modifications to the previous design to deal with this new situation.

Our method is motivated by the bounded game semantics on Lμ [12]. During
the self-play and MCTS simulation, we maintain a stack L and a counter C to
track the number of visits of each fix-point predicate along a game sequence. To
be specific, for a given game state s, if s is the root node of some predicate’s
syntax tree, and also that predicate is a fix-point predicate, then we check if s is
in the stack L. If it is already there, then we continuously pop from the stack the
top state t and set C[t] = 0 until we hit s, then set C[s] = C[s] + 1; otherwise, we
just push s to L and set C[s] = 1. After updating the stack, we check if C[s] > Γ
for some given integer bound Γ . s is considered to be a winning state for the
Proponent/Opponent only if C[s] > Γ and s is the root node of a GFP/LFP
predicate.

After updating L and C, we concatenate the visiting time of the predicate to
the state representation of the corresponding state in the search tree. In other
words, each tree node represents a tuple (s,C[s.root]), where s.root is the root
state of a predicate’s syntax tree that state s is affiliated to. In this manner,
neural MCTS no longer needs to deal with a potentially infinite game sequence,
but it can still detect a cycle in the state space.

3.4 Fairness as a Challenge

Fairness is an essential concept in model-checking. Informally speaking, the fair-
ness constraint requires that, in a multi-process system, each process should get
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an equal chance to run when it is able to run. This requirement is crucial, espe-
cially when searching for a counterexample of a liveness property. Since a model
checking algorithm also decides how to schedule the running of each process, it
is trivial for it to fabricate an unrealistic “counterexample” when ignoring the
fairness constraint.

Classical model-checking algorithms solve this problem with a global method,
which searches for all possible strongly connected components (SCCs) in the
state space, then verify each component to see if it satisfies the fairness con-
straint. However, for a large LTS, the global method becomes intractable because
of the state explosion issue.

With that being said, the main motivation to use neural MCTS in model-
checking is its ability to handle large state space through a local search. We
propose here a local approach to the fairness problem by maintaining a list
of process access counter F. Therefore F[p] means process with id number p
has been accessed F[p] times. The counter list F is then be concatenated with
state representation. During self-play and MCTS simulation, we check if, at
the current state, |max(F) − min(F)| > K for some integer constant K. If
so, then the current player loses the game immediately. It should be pointed
out that F needs to be normalized before it is used as an input to the neural
network. Consequently, neural MCTS is forced to learn to access every process
in a balanced way.

4 Experiments

4.1 Highest Safe Rung Problem

The Highest Safe Rung (HSR) problem is a well-known puzzle [26]. The problem
can be described as follows:

Consider throwing jars from a specific rung of a ladder. The jars could either
break or not. If a jar is unbroken after a trial, it can be used next time. The
highest safe rung is the rung that the jar will break for any trial performed above
it. Given three positive numbers k , q , and n , can we always be able to locate the
highest safe rung on a n-rung ladder with at most k jars and q trials? (assuming
the jars are identical with each other).

The above problem can actually be solved by playing an alternating reach-
ability game [12] between two players, Alice and Bob. In the beginning, Alice
claims that within q trials, she would be able to locate the highest safe rung
on a n-rung ladder by using at most k jars, or noted as HSR(k, q, n). Alice
first makes a move during the gameplay by selecting a rung m (1 ≤ m < n)
and performing one trial on that rung. And Bob then decides whether the jar
will break or not. If the jar is broken, Alice would only have to check rungs
below rung m; otherwise, she needs to check rungs above m. As a result, Alice
either claims HSR(k − 1, q − 1,m) if Bob says “break”, or HSR(k, q − 1, n − m)
if Bob says “safe”. The game will end if either Alice wins by claim something
like HSR(k, q, 1) where (k ≥ 0 ∧ q ≥ 0), or Bob wins by forcing Alice to claim
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something like HSR(k, q, n) where ((k ≤ 0 ∨ q ≤ 0) ∧ n > 1). The original HSR
problem can be solved if and only if Alice has a winning strategy.

Finding a winning strategy can be regarded as a model checking problem to
verify a reachability property on an LTS. The LTS can be generated by applying
the above game rule to a given initial state (k, q, n) (see Fig. 2 for an example).
The property can be described as starting from the initial state, Alice will
eventually win the game . We formulate this property with recursive-FOL
predicates:

LFP.X(s) := p(s) ∨ ∃a ∈ As. Y (sa)
Y (s) := q(s) ∧ ∀a ∈ As. X(sa)
p(s) := s.n = 1
q(s) := s.n = 1 ∨ (s.k > 0 ∧ s.q > 0)

Fig. 2. The LTS for HSR(2, 2, 4) where solid edges are actions taken by Alice, dashed
edges are actions taken by Bob. The gray nodes are terminal states where Alice wins.

We carry out our experiment with HSR(8, 8, 256) and HSR(3, 8, 93). For each
instance, we run five experiments. In each experiment, we record the number
of Proponent’s (Alice’s) winning games during 100 self-plays. As the hyper-
parameters, we set the number of MCTS simulations to 25, exploration coef-
ficient α is 4. We use a four-layer multi-layer perceptron (MLP) network with
shape [256, 256, 256, 256] for the policy and value neural network. The neural
network is trained with the Adam optimizer, with learning being 0.001. The
mini-batch size is set to 64, and the training epoch is set to 10. We run the
experiment until one of the players consistently wins during the self-play, indi-
cating that a winning strategy has been learned against the other player. We
executed these experiments with a Core i7-9750H 4.5 GHz CPU, 16 GB Mem-
ory, and a GTX 1650 GPU. It can be seen from the experimental result (Fig. 3)
that the neural MCTS can learn a winning strategy for the Proponent in 25
iterations (each iteration takes 10 min on average). Besides, we have also verified
the correctness of the learned strategy with the ground truth solution using the
Bernoulli Triangle in [29].
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Fig. 3. Experimental results for HSR(8,8,256) (left) and HSR(3,8,93) (right). There
are five trials. Each trial has 25 iterations. And each iteration contains 100 self-play.
We show the wins of Alice (the Proponent) among 100 games in each iteration. It can
be seen from the figure above that Alice has a U-shape learning curve in both cases,
which indicates that the two players competed and learned from each other.

4.2 Dining Philosopher Problem

Our model for the dining philosopher problem is straightforward. N philosophers
sit around a table with N forks among them, N ≥ 3. At a philosopher’s initial
state, he can randomly choose the fork either on his right or left if another
philosopher has not taken it. After taking the fork, he checks the availability of
the fork on the other side. If unavailable, he concedes, releases the fork possessed,
and returns to the initial state. If available, he picks it up and enters the eating
state. After finishing his meal, he randomly releases one fork first, then releases
the other fork before returning to the initial state. The model is parametric in the
number of philosophers, where each philosopher model has ten states (Fig. 4). It
is to be noted that we intentionally make our model imperfect so that when all
philosophers follow this scheme, some of them may starve. We expect the model
checking process to capture this design fallacy by showing us a counterexample.

In this experiment, we are interested in model-checking the property that if
philosopher 0 is hungry, then eventually the philosopher will eat. This
property can also be rewritten as the following recursive-FOL:

GFP.Z(s) := (¬p(s) ∨ X(s)) ∧ ∀a ∈ As. Z(sa)
LFP.X(s) := q(s) ∨ ∀a ∈ As. X(sa)
p(s) := in s, philosopher 0 is hungry.
q(s) := in s, philosopher 0 is eating.

The recursive-FOL expression is a bit complex. There are two fix-point predicates
nested within each other. The first fix-point predicate Z(s) means that starting
from state s, it is always true that if philosopher 0 is hungry, he
will eventually eat. While the second fix-point predicate X(s) means that
starting from state s, no matter how the system evolves, philosopher
0 will eventually eat.

The experiment is conducted with eight instances, parameterized with N
equal to 3 to 10. For each instance, we run five trials. We take down the number of
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Fig. 4. The LTS for a single philosopher. State 0 is the initial state. State 1 and 2 are
first picking attempts, either left or right. A philosopher will stay at one of these two
states if he cannot obtain the first fork. After successfully picking his first fork, at state
3 or 4, he will try to pick the second fork. If he cannot obtain the second fork, he will
go to either state 5 or 6 to release the fork picked. Otherwise, the philosopher can go
to state 7, the eating state. After eating, he releases one of the forks and goes to either
state 8 or 9, where he will release the other fork and go back to the initial state.

transitions required in each trial before finding a counterexample. As the hyper-
parameters, we change the number of MCTS simulations to 5 and the exploration
coefficient α to 1. The MLP networks with shape [128, 128, 128, 64] are used for
both the policy and value neural network. We run the experiment until the
Opponent discovers a counterexample. It should also be noted that fairness is
not negligible since we are dealing with a liveness property. We use the approach
mentioned in Sect. 3.4 to add fairness constraints to our system, where we set
K to be 50. The experimental results are listed in the table below (Table 3).
Even though it takes time for neural MCTS to self-play and learn, the running
time to find a counterexample is proportional to the number of transitions in
the path, while each transition takes 50 ms on average. It can be seen that
our results outperform the ones from a reinforcement learning (Q-learning to be
precise) based method [5], which takes more running time but only finds a longer
path. Moreover, we have also tested this problem with two off-the-shelf model
checkers, SPIN [14], and PRISM [19]. Due to the state explosion issue, SPIN
can only run up to N=7 on our computer (Table 4), while PRISM only runs up
to N= 5 (since PRISM does not support generating of a counterexample for the
CTL property in the form of A [G (“hungry” => F “eating”)]), we cannot show
the path length in this case).



572 R. Xu and K. Lieberherr

Table 3. Number of transitions required to find a counterexample for model-checking
the given dining philosopher model. For each instance, we run 5 experiments. The
number in the parentheses is the cycle lengths of the found counterexample.

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 27 (14) 27 (17) 102 (54) 342 (271) 1046 (59) 838 (124) 3676 (553) 4742 (4405)

2 55 (48) 77 (63) 344 (309) 597 (547) 300 (154) 1217 (308) 2519(1980) 2727 (1226)

3 113 (39) 186 (175) 204 (37) 679 (509) 2248 (922) 1744 (164) 4664 (728) 2636 (1592)

4 76 (35) 98 (54) 579 (391) 344 (179) 976 (211) 1024 (831) 1956 (1017) 3480 (2350)

5 49 (37) 70 (50) 289 (268) 287 (168) 294 (60) 1218 (582) 1488 (1086) 3651 (1370)

Table 4. Model-checking the dining philosopher model with SPIN [14]. It can be
seen that, even though SPIN tends to find shorter cycles, the running time increases
exponentially because of the state explosion. As a result, SPIN can only model-check
the problem up to N = 7.

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

Length 2504 (18) 2165 (8) 2760 (28) 2959 (14) 9660 (12) N/A

Time(s) 0.03 0.09 0.3 3.84 643 1.93E+03

States 5236 37302 113680 2.09E+06 2.03E+08 5.37E+08

5 Related Work

Model-checking through games was first proposed in [27], where the author
applied a game-theoretical semantics to Lμ so that a model-checking problem
is transformed into a two-player game. However, unlike our method, the author
proposed to solve the game by a pure search algorithm with backtracking tech-
niques. Another limitation to their method is that their system cannot handle
fairness. It is to be noted that the work in [12], which is quite similar to the pre-
vious one, is more theoretical oriented rather than providing a concrete model
checking algorithm. To our knowledge, we are the first work to apply modern
gameplay AI to model-checking-problem-derived semantic games.

Applying machine learning to model checking for searching counterexamples
has only been found in [2] and [5], both of which are reinforcement learning
(Q-learning) based. They both use Büchi Automata to transform the model-
checking problem into a graph search problem, which can be solved by reinforce-
ment learning after formulating the graph search problem as a Markov Decision
Process (MDP). Our method can treat as a complement to the study in this
direction. However, unlike the Q-learning approach, which treats an on-the-fly
model-checking task as a single MDP, we use a game-centric system that makes
it possible to leverage the power of neural MCTS. We show that our method is
superior to the approach from [5], but not the other one. However, [2] is only
designed for liveness property, which allows it to encode state space efficiently,
therefore mitigating the state explosion problem. Besides, we propose to use
recursive-FOL as our model specification language, which is very close to Lμ. As
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a result, our method supports a more expressive specification than the ones in
[5], which only supports LTL.

6 Conclusion

This paper highlights a likely promising approach for model checking systems
with large state spaces. Our method is mainly based on two lines of develop-
ment in computer science: the first one is from the formal methods and logic
community, where we use the game-theoretical semantics of a logic to turn a
logic expression into a two-player semantic game; the second one is from the AI
and machine learning community, where we adapt the neural MCTS, a robust
gameplay algorithm based on searching and learning, to play the semantic game
derived from the logic specification. In this way, we can solve the classical model-
checking problems by leveraging cutting-edge AI techniques. Besides, we propose
recursive-FOL as our specification language, which is powerful in expressiveness.
We also introduce a way to build fairness constraints in the game process. We
compared our result with other model-checker tools and machine learning-based
approaches and showed that it outperforms them.

In future work, we also plan to test our method on a more practical set of
benchmarks, such as ones from the hardware model checking competition. We
also work on improving the efficiency of Neural MCTS by using a meta-learning
approach to build the neural network in incremental steps [16].

Finally, it is worth pointing out that, like other ML-based-model-checking
methods, since the learned strategy might only win against a potentially sub-
optimal strategy of the opponent, our method should only be applied to error-
detection (i.e., finding counterexamples) instead of certifying the correctness.
Although there are some limitations to our approach, the potential of the com-
bination of search and learning is still considerable.
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