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Abstract. It is widely accepted that every system should be robust
in that “small” violations of environment assumptions should lead to
“small” violations of system guarantees, but it is less clear how to make
this intuition mathematically precise. While significant efforts have been
devoted to providing notions of robustness for Linear Temporal Logic
(LTL), branching-time logics, such as Computation Tree Logic (CTL)
and CTL*, have received less attention in this regard. To address this
shortcoming, we develop “robust” extensions of CTL and CTL*, which
we name robust CTL (rCTL) and robust CTL* (rCTL*). Both extensions
are syntactically similar to their parent logics but employ multi-valued
semantics to distinguish between “large” and “small” violations of the
specification. We show that the multi-valued semantics of rCTL make
it more expressive than CTL, while rCTL* is as expressive as CTL*.
Moreover, we devise efficient model checking algorithms for rCTL and
rCTL*, which have the same asymptotic time complexity as the model
checking algorithms for CTL and CTL*, respectively.

Keywords: Robustness · Computation tree logic · Linear temporal
logic · Model checking

1 Introduction

Specifications for reactive systems are typically written as an implication Φ ⇒ Ψ
where Φ is an environment assumption, and Ψ is a system guarantee. However,
the specification Φ ⇒ Ψ is satisfied if the environment assumption Φ is violated,
no matter how the system behaves. This is clearly inadequate since the environ-
ment assumptions will inevitably be violated in the real world: the true environ-
ment where the system will be deployed is often not entirely known at design
time and, thus, can not be accurately and fully formalized by the formula Φ.
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To prevent systems from behaving arbitrarily when the environment assump-
tion is violated, there have been concentrated efforts on improving the speci-
fications for reactive systems by making them robust to the violations of the
environment assumption. For instance, the works of Bloem et al. [2], Tarraf
et al. [18], Doyen et al. [4], Ehlers et al. [5], and Tabuada et al. [15,16] have pro-
vided different ways of introducing robustness for specifications in Linear Tem-
poral Logic (LTL). All these approaches require some additional assumptions
or additional quantitative information from the designer. This has motivated
Tabuada and Neider [17] to introduce a new logic, called robust LTL (rLTL),
which provides robustness without relying on any additional assumptions or
input from a designer beyond an LTL formula. Inspired by this logic, the works
of Neider et al. [13] introduced robust extensions for Prompt-LTL and Linear
Dynamic Logic.

Most work on robustness has been directed at LTL. Branching-time logic,
such as Computation Tree Logic (CTL) and CTL*, have received less attention
in this regard, with a few exceptions. For instance, the work of French et al. [9]
introduces a logic called RoCTL, but they use additional operators that require
manual quantification of the violations.

To address this shortcoming, we develop robust extensions of CTL and CTL*,
which we call robust CTL (rCTL) and robust CTL* (rCTL*). These logics are
inspired by rLTL. Similar to rLTL, our new logics employ multi-valued semantics
to track the degree of violations of a specification and are guided by two objec-
tives: first, the syntax of rCTL and rCTL* is similar to the syntax of CTL and
CTL*, respectively; second, the notion of robustness in these logics is intrinsic
rather than extrinsic, i.e., robustness does not rely on the designers to provide
quantitative information about the specification such as the number of violations
permitted, ranks, cost, etc.

To demonstrate how our notion of robustness works, consider a specifica-
tion Φ ⇒ Ψ for a robot deployed in an office-like environment. The environment
assumption Φ = ∀ ¬H states that humans never visit the initial location of
the robot. On the other hand, the robot guarantee Ψ = ∀ ∃ R states the fol-
lowing: “for all trajectories, regardless of the robot’s current position, the robot
can return to its initial location in one time step” (Note that such a specification
can not be expressed in LTL). Ideally, we would then want the following:

• if humans satisfy the assumption Φ, then the robot should also satisfy the
guarantee Ψ ;

• however, if humans violate the assumption by visiting the initial location
a finite number of times before realizing their mistake and eventually not
visiting it anymore, i.e., if they only satisfy ∀ ¬H, then rather than
behaving arbitrarily, the robot should also satisfy ∀ ∃ R, i.e., the robot
eventually should be able to return to its initial location from any point;

• similarly, if humans violate the assumption by not visiting the initial loca-
tion only infinitely often (or finitely often), i.e., if they satisfy ∀ ¬H (or
∀ ¬H), then the robot should satisfy ∀ ∃ R (or ∀ ∃ R, respec-
tively).



540 S. P. Nayak et al.

Later in this paper, we show that such a notion of robustness is indeed captured
by the semantics of rCTL and rCTL*.

The first two contributions of the paper are robust variants of the logics
CTL and CTL*, namely rCTL and rCTL*, respectively. Their semantics rely on
a many-valued truth system that captures the various degrees of violation of a
specification.

Second, we study the expressive power of rCTL and rCTL* and compare
them to existing logics such as LTL, rLTL, CTL, and CTL*. The key results
here are that rCTL is more expressive than CTL, while rCTL* has the same
expressive power as CTL*.

Third, to demonstrate that rCTL and rCTL* specifications can be effectively
used for verification, we provide efficient algorithms for model checking proper-
ties specified in these logics. We establish that the time complexity of rCTL and
rCTL* model checking is linear and exponential, respectively, in the size of the
formula, which is the same as the time complexity of CTL and CTL* model
checking, respectively. Thus, robustness can be added to branching-time logics
for free.

All proofs omitted due to space restrictions can be found in the full ver-
sion [12].

2 Notation and Review of Computation Tree Logic

In this section, we review the syntax and semantics of CTL, which expresses
properties of Kripke structures.

Throughout this paper, we fix a finite set P of atomic propositions. A (finite)
Kripke structure M = (S, I,R, L) over P consists of a finite set of states S, a set
of initial states I ⊆ S, a transition relation R ⊆ S × S such that for all states s
there exists a state s′ satisfying (s, s′) ∈ R, and a labeling function L : S → 2P .
The set post(s) = {s′ ∈ S | (s, s′) ∈ R} contains all successors of s ∈ S. A path
of the Kripke structure M is an infinite sequence of states π = s0s1 · · · such that
si+1 ∈ post(si) for each i ≥ 0. For a state s, let paths(s) denote the set of all
paths starting from s. And for a path π and i ≥ 0, let π[i] denote the i-th state
of π, and π[i..] denotes the suffix of π from index i on.

Syntax. CTL formulas are classified into state and path formulas. Intuitively,
state formulas express properties of states, whereas path formulas express tem-
poral properties of paths. For ease of notation, we denote state formulas and
path formulas by Greek capital letters and Greek lowercase letters, respectively.
CTL state formulas over P are given by the grammar

Φ:: = p | Φ ∨ Φ | Φ ∧ Φ | ¬Φ | Φ ⇒ Φ | ∃ϕ | ∀Φ,

where p ∈ P and ϕ is a path formula. CTL path formulas are given by the
grammar

ϕ:: = Φ | Φ | Φ | Φ U Φ | Φ W Φ,

where , , , U, and W denote the operator next, eventually, always, until,
and weak until, respectively.
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Semantics. Slightly deviating from the usual notation, we define the CTL seman-
tics using a mapping VCTL that maps a state/path and a CTL formula to a truth
value in B = {0, 1}. Given a state s and state formulas Φ, Ψ , CTL semantics is
defined as follows:

• VCTL(s, p) =

{
0 if p �∈ L(s); and
1 if p ∈ L(s).

• VCTL(s, Φ ∨ Ψ) = max{VCTL(s, Φ), VCTL(s, Ψ)}.
• VCTL(s, Φ ∧ Ψ) = min{VCTL(s, Φ), VCTL(s, Ψ)}.
• VCTL(s,¬Φ) = 1 − VCTL(s, Φ).
• VCTL(s, Φ ⇒ Ψ) = max{1 − VCTL(s, Φ), VCTL(s, Ψ)}.
• VCTL(s,∃ϕ) = maxπ∈paths(s) VCTL(π, ϕ).
• VCTL(s,∀ϕ) = minπ∈paths(s) VCTL(π, ϕ).

Similarly, for a path π, the CTL semantics of path formulas is defined as given
below:

• VCTL(π, Φ) = VCTL(π[1], Φ).
• VCTL(π, Φ) = maxi≥0 VCTL(π[i], Φ).
• VCTL(π, Φ) = mini≥0 VCTL(π[i], Φ).
• VCTL(π, ΦUΨ) = maxj≥0 min{VCTL(π[j], Ψ),min0≤i<j VCTL(π[i], Φ)}.
• VCTL(π, ΦWΨ) = minj≥0 max{VCTL(π[j], Φ),max0≤i≤j VCTL(π[i], Ψ)}.

Note that this definition is equivalent to the usual semantics of CTL [1].

3 Robust Computation Tree Logic

In this section, we robustify CTL by generalizing the ideas underlying robust
LTL to CTL, obtaining the logic rCTL. We describe the syntax and semantics of
rCTL and discuss the relation and differences between rCTL and other temporal
logics.

As discussed in the robot example in the introduction, we want to capture the
notion of robustness in CTL by ensuring that a small violation in environment
assumptions leads to a small violation of system guarantees. To achieve that, we
introduce robust semantics for CTL. Following arguments given by Tabuada and
Neider [17], we first motivate the semantics of rCTL using an example. Consider
the CTL path formula p, where p is an atomic proposition. The formula can
be satisfied in only one way, namely when p holds at every step (i.e., state) of the
path. In contrast, the formula can be violated in several ways. Intuitively, p is
violated in the worst manner when p fails to hold at every step. Then, we would
prefer a case where p holds for finitely many steps. Even better would be the
case when p holds at infinitely many steps. Finally, among all possible ways p
can be violated, we would prefer the situation where p fails to hold for at most
finitely many steps. Our robust semantics is designed to distinguish between
satisfaction and these four different degrees of violation of p. However, as
convincing as this argument might be, a question persists: in which sense can
we regard these five alternatives as canonical?
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We answer this question by interpreting the satisfaction of p as a count-
ing problem. Recall that the semantics of p for a path π is given by
VCTL((π, p) = mini≥0 VCTL(π[i], p). Now, observe that the truth value of
the CTL formula p for a path π only depends on the number of occurrences
of 0’s and 1’s in the infinite word α = VCTL(π[0], p)VCTL(π[1], p) · · · ∈ B

ω but not
on their order. From this perspective, p is violated in the worst manner when
p fails to hold at every step, which corresponds to the number of occurrences
of 1 in α being zero. The next degree of violation of p in which p holds at
finitely many steps corresponds to having a finite number of 1’s. Similarly, the
next degree of violation corresponds to having an infinite number of 1’s and an
infinite number of 0’s. Among all the ways in which p is violated, the most
preferred way corresponds to having finitely many 0’s. Finally, the satisfaction
of p corresponds to having zero 0’s. Note that the position where 0’s and
1’s occur is irrelevant for our argument. Furthermore, note that by successively
applying permutations that swap position i with position i + 1 and leave all the
remaining elements of N unaltered, one can transform any α ∈ B

ω into words of
one of the following five forms: 1ω, 0k1ω, (01)ω, 1k0ω, 0ω. It is not hard to verify
that the five cases of violations of p that we discussed above amount to the
words of the five forms given above. We thus conclude the need for five truth
values to describe five different ways of counting 0’s and 1’s that correspond to
five different canonical forms of violations of p.

According to our motivating example p, the desired semantics should have
one truth value corresponding to true and four truth values corresponding to the
different shades of false. It is instructive to think of truth values as elements of
B
4. To ease notation, we denote such values by b = b1b2b3b4 or b = (b1, b2, b3, b4)

with bi ∈ B. We denote the set of truth values as B4, which consists of the
five truth values {0000, 0001, 0011, 0111, 1111}. The value 1111 corresponds to
true, and the others correspond to different shades of false. The truth values are
ordered naturally as 0000 < 0001 < 0011 < 0111 < 1111.

Syntax. Similar to the syntax of CTL, formulas of rCTL are also classified into
state and path formulas. Furthermore, we equip every temporal operator with
dots to distinguish the robust operators from the normal ones. rCTL state for-
mulas over P are formed according to the grammar

Φ:: = p | Φ ∨ Φ | Φ ∧ Φ | ¬Φ | Φ ⇒ Φ | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. rCTL path formulas are formed according
to the grammar

ϕ:: = Φ | Φ | Φ | Φ U Φ | Φ W Φ.

Semantics. We now discuss the motivation behind our many-valued semantics for
rCTL. The notion of a triangular-norm summarizes all the desirable properties
of a many-valued conjunction (see P. Hájek [11] for details), and it is natural to
model conjunction and disjunction in B4 by min and max, respectively. Moreover,
as in intuitionistic logic, we define the implication, denoted by a → b on the level



Robust Computation Tree Logic 543

of truth values, such that c ≤ a → b if and only if c ∧ a ≤ b for every c ∈ B4.
This leads to

a → b =

{
1111 if a ≤ b; and
b otherwise.

However, the negation, denoted by a on the level of truth values, defined
by a → 0000 as in intuitionistic logic, is not compatible with our interpretation
that all elements in B4\{1111} represent different shades of false and, thus, their
negation should be 1111. Therefore, we follow the ideas introduced by rLTL and
use da Costa algebras to define the negation (see Priest and Graham [14] for
details):

a =

{
0000 if a = 1111; and
1111 otherwise.

In other words, “true” (1111) gets mapped to “false” (0000), while “shades of
false” get mapped to “true”.

It should be mentioned that working with a five-valued semantics has its
price. As in intuitionistic logic, a may not be equal to a as evidenced by taking
a = 0111. Although it is still true that a → a. Interestingly, we can think of
double negation as quantization in the sense that true is mapped to true and all
the shades of false are mapped to 0000 (false). Hence, double negation quantizes
the five different truth values into two truth values (true and false) in a manner
that is compatible with our interpretation of truth values.

Similar to the semantics of CTL, we define the semantics of rCTL by a
mapping V , called valuation, that maps an rCTL formula and a state/path to
an element of B4. For an atomic proposition p ∈ P, it is defined classically:

V (s, p) =

{
0000 if p �∈ L(s); and
1111 if p ∈ L(s).

Following the semantics of rLTL, we define the semantics for boolean connectives
in rCTL using da Costa algebras, as follows:

V (s, Φ ∨ Ψ) = max
{

V (s, Φ), V (s, Ψ)
}

.

V (s, Φ ∧ Ψ) = min
{

V (s, Φ), V (s, Ψ)
}

.

V (s,¬Φ) = V (s, Φ)
V (s, Φ ⇒ Ψ) = V (s, Φ) → V (s, Ψ)

For existential path quantification, we want V (s,∃ϕ) ≥ b if there exists a path π
from s such that V (π, ϕ) ≥ b. Similarly, we want V (s,∀ϕ) ≥ b if for all paths π
from s holds that V (π, ϕ) ≥ b. This leads to:
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V (s,∃ϕ) = max
π∈paths(s)

V (π, ϕ) and V (s,∀ϕ) = min
π∈paths(s)

V (π, ϕ).

Now, for path formulas, we formalize the intuition above in the semantics of the
temporal operators. Using the counting interpretation as discussed earlier, we
define the semantics of by

V (π, Φ) =

(
min
i≥0

V1(π[i], Φ),max
j≥0

min
i≥j

V2(π[i], Φ),min
j≥0

max
i≥j

V3(π[i], Φ),max
i≥0

V4(π[i], Φ)

)
,

where V�(π, ϕ) denotes the �-th entry of V (π, ϕ) for 1 ≤ � ≤ 4.
The semantics of Φ mimics the classical semantics in that the truth value

of Φ on π is the maximal truth value of Φ that is assumed at any position of
π.

V (π, Φ) = max
i≥0

V (π[i], Φ).

Using a similar approach, the semantics for other temporal operators are
defined as follows:

V (π, Φ) = V (π[1], Φ).
V (π, Φ U Ψ) = maxj≥0 min

{
V (π[j], Ψ),min0≤i<j V (π[i], Φ)

}
.

V (π, Φ W Ψ)=(minj≥0 W1,maxk≥0 minj≥k W2,mink≥0 maxj≥k W3,maxj≥0

W4) where

Wl = max
{

Vl(π[j], Φ), max
0≤i≤j

Vl(π[i], Ψ)
}

.

Example 1. Having defined the rCTL semantics, let us recall the example of
the specification for a robot given in Sect. 1: Φ ⇒ Ψ , where Φ = ∀ ¬H is
the environment assumption that humans never visit the initial location, and
Ψ = ∀ ∃ R is the robot guarantee that from any state in a path there exists
a way for the robot to return to its initial location in one time step. The robust
version of this formula is ∀ ¬H⇒∀ ∃ R. Let us see if this formula captures
the robustness property as discussed in Sect. 1.

Now, coming back to our example, suppose Φ1 = ¬H and Φ2 = ∃ R. Let
us assume ∀ Φ1⇒∀ Φ2 evaluates to 1111 for some Kripke structure. Then
the following hold.

• If humans never visit the initial location, then in any path, Φ1 holds at every
state. Hence, ∀ Φ1 evaluates to 1111. Then by the semantics of ⇒, the
formula ∀ Φ2 also must evaluate to 1111. That means, in any path, Φ2

also holds at every state. Therefore, from any state of a path, the robot can
return to its initial location in one time step. Hence, the desired behavior
of the system is retained when the environment assumption holds with no
violation.
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• If humans violate the assumption by visiting the initial location finitely many
times and eventually not visiting it anymore, then for any path, Φ1 holds
eventually at every state. Hence, ∀ Φ1 evaluates to 0111. Then, by the
rCTL semantics, ∀ Φ2 evaluates to 0111 or higher. Hence, in any path, Φ2

also needs to hold eventually at every state. That means, from any state in a
path, the robot can return to its initial location eventually.

• Similarly, if Φ1 holds at infinitely (finitely) many states in every path, then
Φ2 needs to hold at infinitely (finitely) many states in every path.

Hence, whenever the formula ∀ Φ1⇒∀ Φ2 evaluates to 1111, its semantics
captures the intended robustness property by which a weakening of the assump-
tion ∀ Φ1 leads to a weakening of the guarantee ∀ Φ2.

Now, a natural question arises: does the formula still provide useful informa-
tion when its value is lower than 1111. It follows from the semantics of impli-
cation that ∀ Φ1⇒∀ Φ2 evaluates to b < 1111 only when ∀ Φ1 evaluates
to a higher value than b, whereas ∀ Φ2 evaluates to b. So, the desired system
guarantee is not satisfied. However, the value of ∀ Φ1⇒∀ Φ2 still describes
which weakened guarantee follows from the environment assumption. This can
be seen as another measure of robustness: despite ∀ Φ2 not following from
∀ Φ1, the system’s behavior is not arbitrary, a value of b is still guaranteed.

3.1 Expressiveness of rCTL

In this section, we compare the expressiveness of rCTL with other temporal
logics such as CTL, LTL, and rLTL. We show that the five truth values of rCTL
make it more expressive than CTL. More precisely, there are properties that one
can express in rCTL but not in CTL. However, the expressiveness of rCTL and
LTL are incomparable; and the same also holds for rCTL and rLTL.

We compare the expressiveness of two classes of logics by comparing the
expressiveness of their formulas. For logics A and B, we say A is as expressive
as B if for every formula in B there is an equivalent formula in A. Moreover,
we say A is more expressive than B if A is as expressive as B but the converse
is not true. Furthermore, we say A and B have incomparable expressiveness if
neither of A and B is as expressive as the other one. For branching time logics,
we only consider the state formulas when comparing the expressiveness.

Now the question is what it means for two formulas to be equivalent. Intu-
itively speaking, equivalent means “express the same thing”. Formally, we define
the equivalence of two formulas using their satisfaction sets. For a given Kripke
structure, and a state formula Φ, we define the satisfaction set Sat(Φ, b) of an
rCTL formula Φ and with value b ∈ B4 to be the set of states s such that
V (s, Φ) ≥ b. Since the satisfaction sets of an rCTL (state) formula are always
associated with a truth value in B4, we always associate a truth value with an
rCTL formula when comparing its expressiveness.

For two rCTL state formulas Φ1, Φ2 and two truth values b1, b2 ∈ B4, we say
Φ1 with truth value b1 is equivalent to Φ2 with truth value b2 if for every Kripke
structure it holds that Sat(Φ1, b1) = Sat(Φ2, b2). Similarly, an rCTL formula Φ1
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with truth value b1 is equivalent to a CTL formula Φ2 if for every Kripke structure
it holds that Sat(Φ1, b1) = SatCTL(Φ2), where SatCTL(·) denotes the satisfaction
sets for CTL formulas. The equivalence between an rCTL formula and LTL
formula is defined analogously.

Now, comparing the semantics of CTL and rCTL, an induction over the
structure of formulas shows that the CTL semantics of a formula containing no
implication can be recovered from the first bit of the rCTL semantics. Recall
that VCTL and V1 are the CTL valuation and the first bit of the rCTL valuation,
respectively.

Lemma 1. For any CTL state formula Φ containing no implication, let Φr be
the rCTL state formula obtained by dotting all temporal operators in Φ. Then
for any state s, it holds that VCTL(s, Φ) = V1(s, Φr). Consequently, it holds that
SatCTL(Φ) = Sat(Φr, 1111).

As we know that Φ ⇒ Ψ is equivalent to ¬Φ ∨ Ψ in CTL, hence, one can
rewrite any CTL formula into a formula containing no implication. Therefore,
by using Lemma 1, rCTL is at least as expressive as CTL.

However, the converse is not true, i.e., there exist rCTL formulas that have
no equivalent CTL formula. For example, consider the rCTL formula Φ = ∀ p
with truth value 0111. For a state s, we have s ∈ Sat(Φ, 0111) if and only if
for each π ∈ paths(s), there exists j such that p ∈ L(π[i]) for all i ≥ j, which
is equivalent to each path π ∈ paths(s) satisfying the LTL formula p.
However, as we know, the formula p can not be expressed in CTL (see
Baier and Katoen [1] for details). Therefore, there is no CTL formula Ψ such
that Sat(Φ, 0111) = SatCTL(Ψ). In total, we obtain the following result.

Theorem 1. rCTL is more expressive than CTL.

It is known that the expressiveness of LTL and CTL is incomparable, i.e.,
there exist CTL formulas (i.e., ∀ ∀ p) for which there is no equivalent LTL
formula, and there exist LTL formulas (i.e., (p ∧ p)) for which there is
no equivalent CTL formula (see Baier and Katoen [1] for details). The same
holds for the expressiveness of LTL and rCTL. As we just saw that the first
bit of the rCTL semantics captures the CTL semantics (for a formula with no
implication), it follows that for the rCTL formula ∀ ∀ p (with value 1111),
there is no equivalent LTL formula. Furthermore, it is easy to see that the five-
valued semantics does not help in expressing ϕ = (p ∧ p). Hence, using
the proof of inexpressibility of ϕ in CTL, it can be shown that ϕ can not be
expressed by any rCTL formula either. Intuitively, a Kripke structure satisfies
the formula ϕ if all paths contain a pair of consecutive states where p holds.
This property is inexpressible in rCTL as all path formulas are guarded with an
existential or universal operator. One can express “all paths contain a state such
that p holds at that state and at all (or some) of its successor” in rCTL, which is
not the same as the property we want. Therefore, we obtain the following result.

Theorem 2. rCTL and LTL have incomparable expressiveness.
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In the paper on rLTL [17], Tabuada and Neider showed that LTL and rLTL
are equally expressive. Hence, a direct corollary of Theorem 2 is the following:

Corollary 1. rCTL and rLTL have incomparable expressiveness.

3.2 rCTL Model Checking

The classical CTL model checking problem asks whether all executions of a
system satisfy a given property. However, in the context of rCTL, this question
is more involved due to rCTL’s many-valued semantics. A natural generalization
is whether all executions satisfy a given property with at least a given value
b0 ∈ B4. Formally, the rCTL model checking problem is: for a given Kripke
structure M = (S, I,R, L), an rCTL formula Φ and a truth value b0 ∈ B4,
does V (s, Φ) ≥ b0 hold for all initial states s ∈ I? Our rCTL model checking
procedure is shown as pseudocode in Algorithm 1. It is similar to the standard
CTL model checking algorithm in that it recursively computes the satisfaction
sets Sat(Ψ, b) for each subformula1 Ψ ∈ Sub(Φ) and each truth value b ∈ B4. To
check whether all paths of the Kripke structure starting in an initial state satisfy
Φ, it is then enough to check whether all initial states belong to Sat(Φ, b0). Note
that Sat(Ψ, 0000) = S since every state satisfies any rCTL formula Ψ with truth
value 0000.

Algorithm 1. rCTL Model Checking
Input : Kripke structure M , rCTL formula Φ and a truth value b0 ∈ B4

for all Ψ ∈ Sub(Φ) in increasing size do
Sat(Ψ, 0000) = S
for all b = 1111 to 0001 do

Compute Sat(Ψ, b) as characterized in Table 1

return I ⊆ Sat(Φ, b0)

The key idea of Algorithm 1 is to recursively compute the satisfaction sets
using a dynamic programming technique. More precisely, we compute the satis-
faction sets by induction over the construction of Φ as shown in Table 1. Since
Sat(Ψ, 0000) = S for any rCTL formula Ψ , Table 1 only shows the case b > 0000.
To simplify the following presentation of these cases, we split the discussion
into three categories: atomic propositions, boolean connectives, and temporal
operators.

Atomic Propositions. The valuation for atomic propositions is defined classically,
as in the case of CTL. Hence, the satisfaction set Sat(p, b) of an atomic proposi-
tion p ∈ P with a value b > 0000 is the set of all states whose label contains p.

Boolean Connectives. The computation of the satisfaction sets for the boolean
connectives closely follows the semantic definition based on the da Costa alge-
bra. Conjunction and disjunction are implemented using the usual intersection
1 The set of subformulas is defined as for CTL. See Baier and Katoen [1] for details.
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Table 1. Characterization of the satisfaction sets

Symbol Sat(·, ·) for formulas Φ, Ψ and value b ∈ B4 \ {0000}
p ∈ P Sat(p, b) = {s ∈ S | p ∈ L(s)}
∨ Sat(Φ ∨ Ψ, b) = Sat(Φ, b) ∪ Sat(Ψ, b)

∧ Sat(Φ ∧ Ψ, b) = Sat(Φ, b) ∩ Sat(Ψ, b)

¬ Sat(¬Φ, b) = S \ Sat(Φ, 1111)

⇒ Sat(Φ ⇒ Ψ, 1111) =
⋂

b Sat(Ψ, b) ∪ (S \ Sat(Φ, b))

Sat(Φ ⇒ ψ, b) = Sat(Φ ⇒ Ψ, 1111) ∪ Sat(Ψ, b) for any b ≤ 0111

Sat(∃ Φ, b) = {s ∈ S | post(s) ∩ Sat(Φ, b) 
= ∅}
Sat(∀ Φ, b) = {s ∈ S | post(s) ⊆ Sat(Φ, b)}
Sat(∃ Φ, b) = μT.F∃

(
T, Sat(Φ, b), S

)
Sat(∀ Φ, b) = μT.F∀

(
T, Sat(Φ, b), S

)
Sat(∃ Φ, 1111) = νT.F∃

(
T, ∅, Sat(Φ, 1111)

)
Sat(∃ Φ, 0111) = μT1.νT2.G∃(T1, T2, ∅, Sat(Φ, 0111))

Sat(∃ Φ, 0011) = νT2.μT1.G∃(T1, T2, ∅, Sat(Φ, 0011))

Sat(∃ Φ, 0001) = μT.F∃
(
T, Sat(Φ, 0001), S

)
Sat(∀ Φ, 1111) = νT.F∀

(
T, ∅, Sat(Φ, 1111)

)
Sat(∀ Φ, 0111) = μT1.νT2.G∀(T1, T2, ∅, Sat(Φ, 0111))

Sat(∀ Φ, 0011) = νT2.μT1.G∀(T1, T2, ∅, Sat(Φ, 0011))

Sat(∀ Φ, 0001) = μT.F∀
(
T, Sat(Φ, 0001), S

)
U Sat(∃(Φ U Ψ), b) = μT.F∃

(
T, Sat(Ψ, b),Sat(Φ, b)

)
Sat(∀(Φ U Ψ), b) = μT.F∀

(
T, Sat(Ψ, b),Sat(Φ, b)

)
W Sat(∃(Φ W Ψ), 1111) = νT.F∃

(
T,Sat(Ψ, 1111), Sat(Φ, 1111)

)
Sat(∃(Φ W Ψ), 0111) = μT1.νT2.G∃(T1, T2, Sat(Ψ, 0111), Sat(Φ, 0111))

Sat(∃(Φ W Ψ), 0011) = νT2.μT1.G∃(T1, T2, Sat(Ψ, 0011), Sat(Φ, 0011))

Sat(∃(Φ W Ψ), 0001) = μT.F∃
(
T,Sat(Ψ, 0001) ∪ Sat(Φ, 0001), S

)
Sat(∀(Φ W Ψ), 1111) = νT.F∀

(
T,Sat(Ψ, 1111), Sat(Φ, 1111)

)
Sat(∀(Φ W Ψ), 0111) = μT1.νT2.G∀(T1, T2, Sat(Ψ, 0111), Sat(Φ, 0111))

Sat(∀(Φ W Ψ), 0011) = νT2.μT1.G∀(T1, T2, Sat(Ψ, 0011), Sat(Φ, 0011))

Sat(∀(Φ W Ψ), 0001) = μT.F∀
(
T,Sat(Ψ, 0001) ∪ Sat(Φ, 0001), S

)

and union of sets, respectively. The set Sat(¬Φ, b) is the complement of all
states on which Φ evaluates to 1111 (recall that we assume b > 0000). Finally,
the implementation of the implication is more involved. By definition, the set
Sat(Φ ⇒ Ψ, 1111) is the set of states s for which V (s, Φ) is less than V (s, Ψ); in set
notation, this is expressed by the intersection of the sets Sat(Ψ, b)∪(S\Sat(Φ, b))
for each b ∈ B4. For any other truth value b ≤ 0111, Sat(Φ ⇒ Ψ, b) consists of
all states where the implication evaluates to 1111 or Ψ evaluates to at least b.

Temporal Operators. For all temporal operators, we compute the satisfaction sets
for existential and universal path formulas individually.

A state s satisfies the formula ∃ Φ with a value of at least b if one of its
successors satisfies Φ with a value of at least b. Hence, the set Sat(∃ Φ, b) is
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the set of states s such that one of its successors is in Sat(Φ, b). Similarly, the set
Sat(∀ Φ, b) is the set of states s such that all of its successors are in Sat(Φ, b).

Next, a state s satisfies the formula ∃ Φ with a value of at least b if
there exists a path from s containing a state that satisfies Φ with a value of
at least b. By applying expansion laws similar to those of CTL (see Baier and
Katoen [1] for details), this statement is equivalent to s satisfying Φ with a
value of at least b or one of its successors satisfying ∃ Φ with a value of at
least b. Hence, as in CTL, Sat(∃ Φ, b) is the smallest subset T of S satisfying
Sat(Φ, b) ∪ {s ∈ S | post(s) ∩ T �= ∅} ⊆ T . Equivalently, this set equals the least
fixed point of the function

F∃(T, S1, S2) = S1 ∪ {s ∈ S2 | post(s) ∩ T �= ∅},
where S1 = Sat(Φ, b), S2 = S, and T is the fixed-point variable. To simplify our
notation, we use standard notation for fixed points and write μT.F (T, ·), and
νT.F (T, ·), respectively for the least and greatest fixed point of a function F(T,·)
with fixed-point variable T (which is unique for all functions we consider).

Similarly, a state s satisfies the formula ∀ Φ with a value of at least b if
every path starting from s contains a state satisfying Φ with value at least b.
Hence, the set Sat(∀ Φ, b) is the least fixed point μT.F∀(T,Sat(Φ, b), S) of the
function

F∀(T, S1, S2) = S1 ∪ {s ∈ S2 | post(s) ⊆ T}.

The characterization of the set Sat(∃ Φ, b) is more complex, and we discuss
each truth value separately. Firstly, a state s satisfies ∃ Φ with value 1111 if
there exists a path from s on which every state satisfies Φ with value 1111. By
applying expansion laws similar to those of CTL, this statement is equivalent to
s satisfying Φ with value 1111 and one of its successors satisfying ∃ Φ with
value 1111. Hence, the set Sat(∃ Φ, 1111) equals νT.F∃(T, ∅,Sat(Φ, 1111)).

Next, a state s satisfies ∃ Φ with a value of at least 0111 if there exists a
path from s on which eventually every state satisfies Φ with a value of at least
0111. It is not hard to verify that the set Sat(∃ Φ, 0111) is equal to the nested
fixed point μT1.νT2.G∃(T1, T2, ∅,Sat(Φ, 0111)) of the function

G∃(T1, T2, S1, S2) = {s | post(s) ∩ T1 �= ∅} ∪ S1 ∪ {s ∈ S2 | post(s) ∩ T2 �= ∅}.
The greatest fixed point of the function containing the last two terms (on the
right side) of the above equation represents a property of a path that all states
on that path satisfy Φ with a value of at least 0111 and then the least fixed
point of the function ensures that there exists a path that has a suffix with that
property.

Similarly, a state s satisfies ∃ Φ with a value of at least 0011 if there exists
a path from s on which there exist infinitely many states satisfying Φ with a
value of at least 0011. Note that the property that a path contains infinitely
many states satisfying Φ (with a value b) is the dual of the property that a path
contains finitely many states satisfying Φ (with a value b). Hence, similar to the
last case, it is not hard to see that

Sat(∃ Φ, 0011) = νT2.μT1.G∃(T1, T2, ∅,Sat(Φ, 0011)).
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Finally, a state s satisfies ∃ Φ with a value of at least 0001 if there exists
a path from s containing a state that satisfies Φ with a value of at least 0001,
which is equivalent to satisfying ∃ Φ with a value of at least 0001. Hence,
Sat(∃ Φ, 0001) is the set μT.F∃(T,Sat(Φ, 0001), S), as above.

Analogously, one can characterize ∀ Φ using the fixed points of the func-
tions F∀ and G∀, where

G∀(T1, T2, S1, S2) = {s | post(s) ⊆ T1} ∪ S1 ∪ {s ∈ S2 | post(s) ⊆ T2}.

Characterizations for Φ U Ψ and Φ W Ψ can be obtained similarly. In total,
we obtain the result given below.

Theorem 3. Let M = (S, I,R, L) be a Kripke structure. Then for rCTL for-
mulas Φ and truth values b ∈ B4 \ {0000}, one can compute the sets Sat(Φ, b)
recursively as specified in Table 1.

Algorithm 1 computes 5 · |sub(Φ)| satisfaction sets following the subformula
ordering. Using the standard fixed-point iterations, which take linear time in the
number of the states, each fixed point can be computed in linear time. Similarly,
one can compute the nested fixed points in quadratic time in the number of
states. Thus, we obtain the following.

Theorem 4. The rCTL model checking problem can be solved in time O(N2|Φ|),
where N is the number of states of the given Kripke structure, and Φ is the given
rCTL specification.

As we know, the CTL model checking algorithm also takes linear time in the
size of the formula [1]. Hence, both model checking problems are in PTIME.

3.3 rCTL Satisfiability

This section considers the satisfiability problem for rCTL, which is: for a given
rCTL formula Φ and truth value b0 ∈ B4, does there exist a Kripke structure M =
(S, I,R, L) such that I ⊆ Sat(Φ, b0)? The rCTL satisfiability can be solved by
translating the given rCTL formula and the given truth value into an equivalent
μ-calculus formula (see Bradfield and Walukiewicz [3] for definitions) of linear
size and then checking the resulting formula for satisfiability. This is always
possible relying on the fixed point characterizations described in Sect. 3.2 (see
Table 1). Since the satisfiability problem for μ-calculus is EXPTIME-complete [3],
rCTL satisfiability is in EXPTIME. A matching lower bound already holds for
CTL [6].

Theorem 5. The satisfiability problem for rCTL is EXPTIME-complete.

4 Robust CTL*

In this section, we present the robust version of CTL*, named robust CTL*,
which combines the features of rCTL and rLTL. We show that rCTL* is more
expressive than both and then present an algorithm for rCTL* model checking.



Robust Computation Tree Logic 551

Syntax. Like CTL*, robust CTL* allows path quantifiers ∃ and ∀ to be arbitrarily
nested with temporal operators. The syntax of rCTL* state formulas is the same
as in rCTL. Moreover, rCTL* path formulas are similar to rLTL formulas, with
the only difference being the use of arbitrary rCTL* state formulas as atoms.
rCTL* state formulas over P are formed according to the grammar

Φ:: = p | Φ ∨ Φ | Φ ∧ Φ | ¬Φ | Φ ⇒ Φ | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. rCTL* path formulas are formed according
to the grammar

ϕ:: = Φ | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ϕ ⇒ ψ | ϕ | ϕ | ϕ | ϕ U ψ | ϕ W ψ.

Semantics. As in CTL*, the semantics for rCTL* state and path formulas are
analogous to rCTL and rLTL semantics, respectively. Let M be a Kripke struc-
ture and Φ, Ψ be rCTL* state formulas and ϕ, ψ be rCTL* path formulas. Then
for a state s, the rCTL* semantics V (s, Φ) is the same as the rCTL semantics.
For a path π, the semantics is analogous to rLTL semantics, as defined below.

• V (π, Φ) = V (π[0], Φ)
• V (π,¬ϕ) = V (π, ϕ)
• V (π, ϕ) = V (π[1..], ϕ)
• V (π, ϕ ∨ ψ) = max

{
V (π, ϕ), V (π, ψ)

}
• V (π, ϕ ∧ ψ) = min

{
V (π, ϕ), V (π, ψ)

}
• V (π, ϕ ⇒ ψ) = V (π, ϕ) → V (π, ψ)

• V (π, Φ) = maxi≥0 V (π[i], Φ)
• V (π, Φ) = (mini≥0 V1(π[i], Φ),maxj≥0 mini≥j V2(π[i], Φ),

minj≥0 maxi≥j V3(π[i], Φ),maxi≥0 V4(π[i], Φ))
• V (π, ϕ U ψ) = maxj≥0 min

{
V (π[j..], ψ),min0≤i<j V (π[i..], ϕ)

}
• V (π, ϕ W ψ) = (minj≥0 W1,maxk≥0 minj≥k W2,mink≥0 maxj≥k W3,

maxj≥0 W4) where

Wl = max
{

Vl(π[j..], ϕ), max
0≤i≤j

Vl(π[i..], ψ)
}

Example 2. Having defined the rCTL* semantics, let us see how the rCTL* for-
mula ∀( Φ1 ⇒ Φ2) is different from ∀ Φ1 ⇒ ∀ Φ2, where Φ1 = ¬H
states that humans are not at the robot’s initial location and Φ2 = ∃ R states
that the robot can return to its initial location in one time step, as described
in Sect. 1. Assume ∀( Φ1 ⇒ Φ2) evaluates to 1111. Then the formula

Φ1 ⇒ Φ2 must evaluate to 1111 for each path. Hence, the following holds:

• If Φ1 holds at every state in a path π, then V (π, Φ1) evaluates to 1111.
Hence, by the rCTL* semantics, V (π, Φ2) must also evaluate to 1111. That
means, Φ2 also holds at every state in π. Hence, in any path, if humans never
visit the initial location, then from every state, the robot can return to its
initial location in one time step.
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• Similarly, if Φ1 holds eventually always for some path π, then V (π, Φ1)
evaluates to 0111. Then, by the rCTL* semantics, V (π, Φ2) evaluates to
0111 or higher. Hence, Φ2 also needs to hold eventually always in π. Therefore,
if humans visit the initial location a few times and never visit it again in a
path, then from any state in that path, the robot can return to its initial
location eventually.

• Similarly, if Φ1 holds at infinitely (finitely) many states in some path π, then
Φ2 needs to hold at infinitely (finitely) many states in π.

As we can see, the semantics of ∀( Φ1 ⇒ Φ2) captures the robustness prop-
erty for every path separately, whereas the rCTL formula ∀ Φ1 ⇒ ∀ Φ2

captures the robustness property jointly for all paths starting from a state.

To understand the difference, let us consider the Kripke structure M with
initial state s0 as shown in Fig. 1 (where transitions are depicted by edges).
Suppose the set of states that satisfy (with value 1111) the state formulas Φ1

and Φ2 are {s0, s1} and {s0, s2}, respectively (as shown by the labels in the
figure).

There are only two paths starting from s0, i.e., π1 = s0s1s1 · · · and π2 =
s0s2s2 · · · . Since Φ1 holds at every state in the path π1, we have V (π1, Φ1) =
1111. Moreover, since Φ1 holds only at the first state in the path π2, we
have V (π2, Φ1) = 0001. Hence, V (s0,∀ Φ1) = mini∈{1,2} V (πi, Φ1) =
0001. Similarly, since Φ2 holds only at the first state of each path, we have
V (π1, Φ2) = V (π2, Φ2) = 0001. Hence, V (s0,∀ Φ2) = 0001. Therefore,
it holds that V (s,∀ Φ1 ⇒ ∀ Φ2) = 1111.

However, as we have V (π1, Φ2) = 0001 < V (π1, Φ1), it holds that
V (π1, Φ1 ⇒ Φ2) = 0001. Similarly, we have V (π2, Φ1 ⇒ Φ2) =
1111. Hence, we have

V (s,∀( Φ1 ⇒ Φ2)) = 0001 �= V (s,∀ Φ1 ⇒ ∀ Φ2).

This is the case because both of the paths do not satisfy Φ1 ⇒ Φ2 with
value 1111 individually, but collectively, the state s0 satisfies ∀ Φ1 ⇒ ∀ Φ2.

4.1 Expressiveness of rCTL*

The satisfaction sets and the equivalence between two formulas in rCTL* are
defined as for rCTL. Now, as we can see, rCTL* is an extension of both rCTL
and rLTL. Therefore, it subsumes both rCTL and rLTL (and hence, it also
subsumes LTL). Furthermore, using the discussion in Sect. 3.1, it is easy to see
that the rCTL* formula

(∀ ∀ p
) ∨ (

p ⇒ q
)

can not be expressed
in rLTL or rCTL. In total, we obtain the following result:

Theorem 6. rCTL* is more expressive than rLTL, rCTL, and LTL.

Now, using the same idea as in Lemma 1, one can recover the CTL* seman-
tics of a formula with no implication from the first component of the rCTL*
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s0

{Φ1, Φ2}

s1

{Φ1}

s2

{}

Fig. 1. Example of a Kripke structure

semantics. Conversely, using the same arguments as for the analogous result for
rLTL [17, Proposition 5], one can translate each rCTL* formula into four CTL*
formulas that captures the four components of the rCTL* semantics. Hence, we
obtain the following result.

Theorem 7. CTL* and rCTL* are equally expressive.

4.2 rCTL* Model Checking

The model checking problem for rCTL* is analogous to that of rCTL, which is:
for a given Kripke structure M = (S, I,R, L), an rCTL* formula Φ and a truth
value b0 ∈ B4, does V (s, Φ) ≥ b0 hold for all initial states s ∈ I? As we will
see, to solve the rCTL* model checking problem, one can use a combination of
rCTL and rLTL model checking. This is similar to CTL* model checking, which
combines CTL and LTL model checking.

As in rCTL, for the rCTL* model checking, we use the characterization
of the satisfaction sets. Sat(Φ, b) can be computed using Table 1 for every state
formula Φ which is either an atomic proposition or can be expressed as a boolean
combination (conjunction, negation, etc.) of two subformulas. Otherwise, we use
an rLTL model checking algorithm to compute Sat(Φ, b) for a state formula
starting with a path quantifier.

Let us first go through the basic concepts of rLTL and its model checking
algorithm. As we have described earlier, rCTL* is an extension of rLTL. Both
rCTL* path formulas and rLTL formulas are defined using the same grammar,
with the only difference being the use of state formulas as atoms in rCTL*.
Moreover, the valuation V for rLTL formulas is defined the same way as it is
defined for rCTL* path formulas. Furthermore, given a Kripke structure M , an
rLTL formula ϕ, and a set of truth values B ⊆ B4, the rLTL model checking
problem is to determine whether for all paths π starting from an initial state
in M , it holds that V (π, ϕ) ∈ B. To solve the rLTL model checking, Tabuada
and Neider [17] have provided an algorithm to compute a generalized Büchi
automaton (see Grädel et al. [10] for definition) recognizing all paths satisfying
a given formula with a value b ∈ B for a given set B ⊆ B4, as formalized below.

Lemma 2 (Tabuada and Neider [17]). Given an rLTL formula ϕ, and a set
of truth values B ⊆ B4, one can construct a generalized Büchi automaton Aϕ,B

with O(5|ϕ|) states and O(|ϕ|) accepting sets that recognizes all paths π such that
V (π, ϕ) ∈ B.
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Then, one can solve the rLTL model checking problem by translating M into a
Büchi automaton and determining the emptiness of L(M) ∩ L(Aϕ,B4\B).

Coming back to computing Sat(Φ, b) for Φ starting with a path quantifier,
let us consider Φ = ∀ϕ. Observe that s ∈ Sat(∀ϕ, b) if and only if V (s,∀ϕ) ≥ b.
Further, V (s,∀ϕ) ≥ b if and only if V (π, ϕ) ≥ b for all π ∈ paths(s). The basic
idea is now to replace all maximal proper state subformulas Ψ of ϕ by fresh
atomic propositions aΨ and use the rLTL model checking algorithm to compute
all the states from which all paths satisfy the rLTL formula ϕ with value at
least b. However, we need to make a minor modification in the construction of the
Büchi automaton of Lemma 2 such that for each aΨ , it holds that V (s, aΨ ) ≥ b
whenever s ∈ Sat(Ψ, b) and V (s, aΨ ) < b whenever s �∈ Sat(Ψ, b). This can be
done by initializing these atomic propositions with the required truth value.

Similarly, we compute Sat(∃ϕ, b) by the rLTL model checking algorithm using
the observation that s �∈ Sat(∃ϕ, b) if and only if V (π, ϕ) < b for all π ∈ paths(s).

Now, one can solve the rCTL* model checking problem using Algorithm 1.
However, the time complexity of the algorithm is not the same as in rCTL since
the computation of Sat uses the rLTL model checking algorithm, which takes
exponential time in the size of the formula (Tabuada and Neider [17]). Hence,
the time complexity of the rCTL* model checking algorithm is dominated by
the time complexity of the rLTL model checking algorithm.

Altogether, our algorithm runs in polynomial space (as rLTL model checking
is in PSPACE [17]). A matching lower bound already holds for CTL* [7].

Theorem 8. The rCTL* model checking problem is PSPACE-complete.

As we know, CTL* model checking problem is also PSPACE-complete [7].
Hence, both CTL* and rCTL* model checking problems have the same asymp-
totic complexity.

4.3 rCTL* Satisfiability

This section considers the satisfiability problem for rCTL*, which is: for a given
rCTL* formula Φ and truth value b0 ∈ B4, does there exist a Kripke structure
M = (S, I,R, L) such that I ⊆ Sat(Φ, b0)? One can solve rCTL* satisfiability
by translating the given rCTL* formula and the truth value into an equivalent
CTL* formula using Theorem 7 and then solving CTL* satisfiability. Since CTL*
satisfiability is 2EXPTIME-complete, so is rCTL* satisfiability.

Theorem 9. The satisfiability problem for rCTL* is 2EXPTIME-complete.

5 Conclusion

Inspired by robust LTL, we first developed robust extensions of the logics CTL
and CTL*, named rCTL and rCTL*, respectively. Second, we showed that rCTL
is more expressive than CTL, while rCTL* is as expressive as CTL*. Third, we
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showed that the rCTL and rCTL* model checking problem lie in PTIME and
PSPACE, respectively, as do the CTL and CTL* model checking problem.

Tabuada and Neider [17] described quality as the dual of robustness. To illus-
trate this point, consider the CTL formula Φ ⇒ Ψ . According to the motto
“more is better” we would prefer the system to guarantee the stronger property

Ψ whenever the environment satisfies the stronger property Ψ . And
similarly, Φ should lead to Ψ and Φ should lead to Ψ . Then,
a natural question that arises for further research is whether there is an exten-
sion of CTL (and CTL*) that can be used to reason about both robustness and
quality.

Another promising direction is to study the synthesis problem for rCTL and
rCTL*. One approach would be to extend bounded synthesis (see Schewe and
Finkbeiner [8] for details) to rCTL*.
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