
More Programming Than Programming:
Teaching Formal Methods in a Software

Engineering Programme

James Noble(B) , David Streader, Isaac Oscar Gariano ,
and Miniruwani Samarakoon

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand
kjx@comp.vuw.ac.nz

http://ecs.vuw.ac.nz/∼kjx

Abstract. Formal methods for software correctness are critical to the future of
software engineering—and so must be an essential part of software engineer-
ing education. Unfortunately, formal methods are often resisted by students due
to perceived difficulty, mathematicity, and practical irrelevance. We redeveloped
our software correctness course by taking a programming intensive approach,
using the solver-aided language Dafny to provide instant formative feedback via
automated assessment. Our redeveloped course increased student retention and
resulted in the best evaluation for the course for at least ten years.

Keywords: Formal methods · Software engineering · Education · Dafny

1 Introduction

In the last 20 years, formal methods for software verification have moved from an
esoteric research topic [38] to a set of increasingly practical tools, and from doctoral
study to undergraduate degrees. Victoria University of Wellington’s Computer Science
and Software Engineering programmes include a course, SWEN324 “Software Cor-
rectness” that teaches software verification. We often call this course “Programming
Made Hard” because 100 students repeat the assignments they completed years ago in
introductory programming courses, but now must specify those programs’ behaviour
and verify that their implementations meet those specifications. In 2020 we redesigned
SWEN324 using the solver-aided Dafny language, supported by Leino’s Dafny text-
book [36]; we are just finishing teaching the 2021 version of the course at time of writ-
ing. Students and teaching staff found the use of Dafny very positive: the 2020 course
offering received the highest overall evaluation for at least ten years.

Although very positive overall, students found Dafny difficult to learn and to use,
and our informal observations as teachers are that many of these difficulties stem
from “accidental” complexity introduced by the Dafny tool. This accidental complexity
obscures the “essential” complexity of learning the fundamentals of software verifica-
tion, and then applying those techniques to verifying simple programs [9]. In this paper
we reflect on our experience teaching SWEN324, focusing particularly on our course
design and issues with formal tooling.
c© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 431–450, 2022.
https://doi.org/10.1007/978-3-031-06773-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_23&domain=pdf
http://orcid.org/0000-0001-9036-5692
http://orcid.org/0000-0002-4881-0999
https://doi.org/10.1007/978-3-031-06773-0_23


432 J. Noble et al.

2 Background

Formal verification of software systems has been a significant research topic for in com-
puter science for 50 years or more [28]. Tools such as Dafny, SAW, SPIN are increas-
ingly mature enough to support industrial application [23,47] but the main barrier to
adoption remains a lack of software engineers trained in their use [20]. To address this
problem, there have been a number of studies on the usability of formal methods, and
tools that support formal verification. Beckert and Grebing [6] for example used the
Cognitive Dimensions framework [22] to evaluate the usability of the KeY proof tool;
Grebing and Ulbrich [21] followed this up with a user study.

Tools have also been (re)designed to better support programmers in the task of ver-
ifying their programs. Whereas the Dafny tool, although interactive, requires program-
mers to verify their whole program statically, Gradual Dafny [18] allows programmers
to choose between static (“assert”) and dynamic (run time “assume”) verification for
each invariant. Other gradual verification approaches have shown similar promise at
partial verification, but with choices embodied in the tools themselves [3,5,45,48].
Coming at the problem from the other side, Müller & Ruskiewicz [41] demonstrated
how standard program debuggers could be used to debug verification failures, by gen-
erating a modified program that reproduced the failure when run, and Christakis [12]
integrated concolic testing tools and lower level solver debuggers into Dafny’s IDE.

More recently, some of the most interesting recent program verification work has
been using the Rust language [8]. Eschewing garbage collection, Rust has an own-
ership types system that is used to manage memory allocation, object lifetimes, and
permissible inter-object references. Program verification tools such as Prusti [4] and
RustBelt [29] leverage ownership information to support verification without needing
memory structures to be described separately.

Finally, as formal methods’ industrial use has increased, so has their relevance to
education [10,15,17,30]; Zhumagambetov [50] offers a relatively recent systematic lit-
erature review. Aceto and Ingolfsdottir [1], for example, have described a recent course
at the University of Reykjavik, where students can participate in a three week inten-
sive formal methods course at first year. Yatapanage [49] describes a recent second
year course taught at De Montfort University that applied formal methods to concur-
rent programming—although the paper’s title highlights most students’ concerns when
approaching this topic “Students Who Hate Maths and Struggle with Programming”.
Kamburjan and Gratz [30] showed how a custom interactive proof tool can generate a
positive effect on student engagement; Körner and Krings [32] describe how pedagogi-
cal changes to inquiry-based learning can support the user of formal tools. In some ways
closest to the approach we present here, Ettinger describes how Dafny has been used
for six years at Ben-Gurion University to support teaching refinement-style “correct-by-
construction” programming [16], and Blazy describes a similar course based on Why3
[7]. Güdemann describes how verification tools can even support similar learning strate-
gies even in applied computer science courses taught using C [24].



More Programming Than Programming 433

3 SWEN324 Software Correctness

Formal methods have been taught as part of Computer Science and Software Engineer-
ing programmers at VUW since 1984. Unfortunately, formal methods are often resisted
by students due to perceived difficulty, mathematicity, and practical irrelevance—and
SWEN324 had similar problems. In 2021 we had the opportunity to redevelop the
course, as a companion to a relatively new course SWEN326 “Safety Critical Systems”,
that focused on correct software engineering in a wider context, including software pro-
cesses, testing, and abstract modelling (based on Alloy). This meant that we were able
to refocus SWEN324 specifically on formal methods for software correctness based on
program proof.

Traditional Formal Course: We initially considered staying with a relatively straight-
forward, “traditional” formal methods course, introducing students to propositional and
predicate logic, then working up through weakest preconditions to Hoare logics and
their application in describing and reasoning about software systems, culminating in
pencil-and-paper proofs. After some debate, it was decided that this was not appro-
priate for several reasons. In particular, our students have already taken compulsory
courses including Boolean algebra and logic (as mathematics) and discrete logic (as
physics) during first year: we do not want students to regard this as “another maths or
physics course”—our earlier experience with such courses suggested that such a course
would not be popular [42]. On the other hand, our programme is heavily based around
programming, with all engineering majors requiring a full first year computer science
programme, and software engineering majors keen to take practical elective courses to
develop programming skill and experience [42,43].

Abstract Formal Modelling: We also considered taking an approach based on abstract
formal modelling. High-level tools, such as TLA+ [33], Alloy [27] or SPIN [26], sup-
port reasoning and mechanised checking of systems’ properties, based on abstract mod-
els of those systems, rather than actual programming and source code. It is clear that
these kinds of abstract formal models can play an important role in software engineer-
ing projects, at least in project’s the early stages, supporting design validation before a
single line of code has been written. Indeed, we had earlier taught a first-year course
(SWEN102) that attempted to give a gentle introduction to formal methods within a
more general context of software modelling, beginning with UML and moving through
to Alloy [42]. The idea was to present formal and informal approaches as different
points in a spectrum of approaches to describing software systems, rather than being
totally different subjects. We also wanted to ensure that students see software modelling
as a useful way of understanding systems, rather than just an exercise in learning new
notations, so we felt it was important that any formal notation we used be supported by
tools which allowed students to explore the consequences of the models they created.
This course was mostly successful on its own terms: even first year students were gen-
erally capable of domain modelling using Alloy, of translating functional requirements
into Alloy properties, and then able to analyse the Alloy models to demonstrate that the
requisite properties held (or explain why they did not).



434 J. Noble et al.

Unfortunately, our SWEN102 course was never widely popular: for better or for
worse, our cohort, privilege programming, over pretty much every other software engi-
neering activity or practice. For the SWEN102 approach to work, we first had to suc-
cessfully “sell” modelling, and then second to “sell” the advantage of formal models
over informal ones—where students simply did not see the relevance of the models to
the programming/software engineering tasks the expected to undertake. On the other
hand: SWEN102 demonstrated that even our early undergraduate students were capa-
ble of learning formal tools, constructing formal models, and handling propositional
and predicate logic.

Formalism as Programming: For this reason, we decided to base our SWEN324 course
redesign on the reverse of the traditional approach. Rather than progressing bottom up
from propositional logic to predicate logic, Hoare logic, and eventually perhaps exper-
imenting with a practical tool, we aimed to progress top down: starting with program-
ming language based tool, and then using that high-level tool as a context in which
we can present and teach the key concepts of software correctness—while offering the
majority of students an experience that feels like programming, rather than like doing
mathematics.

The latest version of this course—SWEN324 “Software Correctness” – adopted the
Dafny programming language and associated toolset, based on the Z3 solver and the
Visual Studio Code. Dafny provides what Leino has called “auto-active” verification
[37] in which verification is seamlessly incorporated into development practices and the
toolchain. It may be clearer to think of this approach as implicit verification where pro-
grammers annotate their programs with preconditions, postconditions, variants, invari-
ants, as in Eiffel [40], and do not interact directly with formal models or e.g. proof
trees. This is in contrast to explicit verification technologies such as Coq [11,44] where
programmers must interact with solvers by directly building proofs and proof trees,
potentially even extracting programs from those proofs. Dafny’s implicit approach still
offers many guarantees: Dafny attempts to prove programs totally correct by default, so
recursive methods and loops often require programmers to give variants to prove termi-
nation, and loops in particular generally require invariants to prove correctness. Array
and pointer accesses typically require invariants, assertions, or preconditions to ensure
all accesses are within bounds and variables are initialised and non-null. This means
that Dafny programmers (and thus students) interact with Dafny’s underlying prover
indirectly, at arm’s length, in terms of definitions in their programs and constructs in
the Dafny language, rather than having to learn explicit representations of proof.

Choice of Dafny: Dafny was selected for a number of pragmatic reasons: it is well
supported by a team in Amazon’s Automated Reasoning Group led by Rustan Leino,
has substantial publicly available on-boarding and tutorial material, including a full
book by Leino [36], an online playground at Rise4Fun, documentation available online,
and a developing academic community—and, frankly, because what little experience
the course staff had with suitable tools seemed most transferable to Dafny. Based on
our earlier experience, we hoped Dafny would offer a number of advantages over Alloy,
or more sophisticated tools like Coq [44] or Why3 [7]. First, Dafny offers a concrete,
ASCII-compliant syntax—being restricted to ASCII means students should feel some
familiarity with the notation: students would not need to learn how to type, let alone



More Programming Than Programming 435

pronounce, relatively esoteric characters such as α, δ, or o (little were we to know how
familiar alpha, delta, and omicron would become). Dafny’s syntax and semantics being
based on C� and Java should also be familiar. Students can use the development toolsets
they already know, such as VS Code, Eclipse, Git—particularly important for students
who need tools such as screen readers, magnifiers, or voice control to complete their
work.

Second, because Dafny is well supported by a toolset, we are able to rely on Dafny
itself to provide students rapid formative feedback—simply by requiring students to
submit their solutions via the Dafny verifier. In a very real sense, we are able to leverage
the “essential difficulty” of formal verification of correctness—that no only must stu-
dents implement a correct program, but they must also convince the Dafny prover that
their implementation is correct—to aid the students in that task. In simple cases, where
students’ focus on implementing programs, we can directly supply students with the
Dafny specifications and the tool itself will provide feedback: either their program ver-
ifies against the specification, or it does not. Where students’ focus is on writing speci-
fications, we can allow students to verify their solutions against hidden “oracle” speci-
fications, and again Dafny can check that the students’ specifications capture important
properties described by the oracles, or more straightforwardly, that the students’ speci-
fications and the oracles are mutually consistent [19].

Finally, because Dafny is relatively mature, there is a fair amount of material avail-
able online, which students are able to access as necessary. We were also able to use a
draft version of Leino’s Program Proofs textbook [36].

Continuous Automated Feedback: The ability for Dafny to provide feedback, and
that this course was targeted at third-year students—experienced both in programming
and in tertiary study—lead us to make this automated feedback a central feature of
the course. Again based on our department’s practice in teaching programming—with
which our students are very familiar!—we provide that feedback in two ways.

First, our “lectures” are centred around a weekly series of small “mastery” questions
about Dafny and verification, served from a simple website. This is similar to the exist-
ing Dafny Rise4Fun website, but simpler: we discuss this further in the next section.
The weekly questions are released at the start of each week, and students may discuss
the questions, may work in groups, ask for answers, and make any number of attempts
at answering them—but are expected to answer the vast bulk of these questions cor-
rectly. The time in “lectures” allows students to discuss any of the questions with the
class, lead by the course staff—in practice, the website lets us know which questions
students are currently finding difficult, and so we use that to guide choices. Because
of the very liberal rules around answering the mastery questions, we can work out the
solution to any weekly question in class, and even demonstrate the correct answer and
show it verifying: if students choose to pay little attention and just copy the provided
answer, so be it.

Second, we also incorporate automated feedback into larger summative individ-
ual assignments (again, we provide examples in the next section). Students can sub-
mit answers to the assignments as many times as necessary: by running each sub-
mission through the Dafny verifier, students then get immediate feedback about their
submission. This feedback is quite terse (just the number of assertions verified, or not
verified) because it is not intended to replace students’ use of IDEs or to substitute



436 J. Noble et al.

for their own attempts at verification—rather it is so students can judge their progress
through the course, and in particular, to know when they have completed each part of
each assignment. We are careful to ensure that every important concept required by the
summative assignments are covered by weekly questions before the assignment is due.
Thus, while we can discuss the summative assignments only in broad outline, we can
(and do) refer students to the relevant weekly questions which we can discuss in as
much detail and at as much length as necessary.

Course Design: As with all VUW engineering courses, SWEN324 is offered in one
twelve week semester, generally split into two six-week half-semesters. Figure 1 shows
the ideal course plan (for COVID reasons, an extra week’s break was substituted at
week 9 in 2020 and week 3 in 2021). There are four main topics in the course: learning
Dafny as a programming language; writing Dafny (method) specifications; verifying
those specifications against Dafny programs; and handling objects with mutable state.

Fig. 1. SWEN324 course plan.

Course Content: The resulting course covers most of the content Leino’s Programs
Proofs [36], although it does not explicitly address the foundational material. In more
detail: we address essentially all the “core” features of Dafny circa 2020, i.e. Dafny ver-
sion 2.3.0. This included Dafny methods and classes (imperative, and mutable); func-
tions and inductive datatypes (immutable, finitary); pre and postconditions; predicates
(Boolean functions); assumptions and assertions; compiled vs ghost code, well-founded
recursion and explicit termination measures, pattern matching, destructors; built-in col-
lections (arrays, sets, maps); loops, invariants, and variants; recursive specifications of
iterative programs (including transformations between general recursion, tail recursion,
and iteration); and representation invariants for dynamic data structures.

There are only two chapters of material from Program Proofs that we intentionally
overlook. Chapter 2 presents the mathematical foundations of Dafny’s program logic,



More Programming Than Programming 437

based on Hoare Logic and Weakest Preconditions. Where necessary, we discuss Dafny’s
semantics informally: we have not needed to refer the formal definitions. Chapter 5
presents the notion of proof and Dafny’s constructs (function lemmas, calc blocks)
that can support programmers in making explicit proofs. Perhaps more surprisingly we
have not needed this material either. Because Dafny is an implicit verification system,
students do not need to build proof objects, and they are not even able to see what proofs
Dafny’s solver many have constructed!

Course Assessment: The overall assessment of the course is shown in Fig. 2. A sig-
nificant fraction of the assessment supports the formative mastery questions, with the
balance taken up by four summative assignments, one for each part, and a reflective
essay. Each part of the course is addressed by around 25 weekly formative mastery
questions. Students who complete all the mastery questions and the first assignment are
well on the way to obtaining a bare pass; students who are hoping for an “excellent”
grade must complete most of the assignments correctly.

Fig. 2. SWEN304 assessment items.

These assessment weights also guide students time. VUW courses of this size (15
points) are rated at 150 h over the whole trimester—nominally 10 h per week over 15
weeks—12 lecture weeks and a three-week assessment period at the end. Allowing
approx. 25 h (2 h per week) to attend lectures, and another 25 h for background read-
ing, installing software, navigating Git, etc., that leaves 100 h of assessed work. The
assessment percentages offer a rough guide to the amount of time students should aim
to spend on each piece of work.

Course Objectives: The resulting course objectives are that, by the end of the course,
students should be able to:

1. Explain what it means for a system to be correct, what engineering techniques we
can use to increase confidence in correctness, and why this is important.

2. Use formal structures such as sets, functions, relations and sequences to model soft-
ware systems.

3. Use formal notations to specify desired properties of software systems, such as asser-
tions, pre- and postconditions, variants, and invariants.

4. Use formal tools to check that systems correctly implement their desired properties.
5. Use formal reasoning to explain why a particular system is correct with respect to a

specification.

The first objective is primarily tested by the essay: the other objectives by the assign-
ments and mastery questions.



438 J. Noble et al.

4 Assessment

To quote Tom Angelo [2], “most students are going to try to ‘study to the test.’”. What is
assessed is what we can expect students to (try to) learn. This is why we have restructured
SWEN324 around questions and assignments with automated feedback, rather e.g. than
traditional lecture content. In this section we present examples of the assessment items
we designed for SWEN324, to demonstrate the kind of problems students are able to
solve during the course.

4.1 Weekly Overview Questions

As discussed above, 20% of the assessment in SWEN324 is in the form of formative
weekly questions. Students can choose to answer any question at any time, and make
repeated attempts to answer each question. The point is formative, to support learn-
ing, rather than summative evaluation—although the system records when each student
successfully answers each question. Students can repeat completed questions (e.g. to
experiment with alternative solutions)—the question stays listed as completed.

Figure 3 shows the rudimentary web system that presents these questions to stu-
dents. The left-hand pane shows some Dafny code including a place-holder “[???]”;
this placeholder is replaced by whatever students type in to the right-hand pane. This
system was originally built by our colleague Marco Servetto to help students revise
their Java knowledge, and is well integrated with the other systems which we use in the
school: we have re-purposed this tool for Dafny.

The question in Fig. 3 (titled “First Past the Post”) is addressing a basic definition
of Boolean algebra: what is Dafny’s Boolean “exclusive-or” operator. This question
shows the advantage of the placeholder mechanism: potential solutions are necessarily
restricted to fit within the syntactic context of the placeholder. The solution to this
question is Dafny’s “!=” operator.

Fig. 3. Web interface for weekly questions.



More Programming Than Programming 439

Figure 4 shows the course-wide overview of the summary questions, showing how
many students have completed each question. This proved very used in tracking stu-
dents’ progress through the course overall, and in choosing lecture topics (i.e. which
questions we will discuss and then answer in lectures). Generally we aim to pick ques-
tions where that top 10–20% of students have answered successfully (we can lure them
into the discussion of their solutions) but the bulk of the class has not (so that they are
interested in learning how to solve those questions). This also allows us to choose not to
revisit questions that the vast majority of the class has already answered, even if some
stragglers have not—rather than taking up everyone’s class time with well understood
topics. Rather, we can direct stragglers e.g. to the recordings of the lectures where we
have answered those questions, or arrange to provide individual support.

Fig. 4. Overview of student progress.

It is worth reiterating that these questions are at least as important as resources
or content or prompts for lecture sessions, as questions that students must answer by
themselves. Fairly early on, for example, there is a relatively simple question that most
students get wrong:

//complete the following method which returns the "real"
//sum and product of its two real arguments
method SumAndDifference(a : real, b : real) [???]

//Hint: https: //www.youtube.com/watch?v=kqFPDrDWAHs

The point of this question is that the question title (“We’ll look at them together then
we’ll take them apart”) and method name (“SumAndDifference”) are inconsis-
tent with the comment on the method (“//.."real" sum and product”). This
inconsistency was originally introduced in error, however we kept it because of the valu-
able in-class discussion it engendered, about how comments can be misleading, as can



440 J. Noble et al.

method names, or alternatively tests or specifications can be incorrect. As it happens,
here the comment is wrong: the automated test indeed requires sum and difference not
sum and product.

The “First Past the Post” question illustrates how we use Dafny to revise Boolean
algebra. The questions get rather more sophisticated as the course progresses. For exam-
ple, the “Very Logical, Mr Spock” question also tests Boolean algebra, but requires stu-
dents to understand how a method’s control flow and assignments are summarised by
postconditions (“ensures”):

method logical(a : bool, b : bool, c : bool) returns (t : bool)
ensures [???]

{
t := false;
if (b) {

if (a) { t := true; } } else { t := false; }
if (c) { t := a; }

}

The “How many leaves” question requires students to write a recursive function to
calculate the size of a tree:

datatype Tree = Leaf | Node(left: Tree, right: Tree)
function method Size(t: Tree): nat
[???]

method Main() {
var tl: Tree := Leaf;
var tc: Tree := Node(Node(Leaf, Leaf),Leaf);
assert Size(tl) = 1;
assert Size(tc) = 3;
print " ",Size(tl)," ",Size(tc), "\n";

}

The “Hopalong” question requires students to define a termination measure, as
Dafny programs are total by default:

//insert a decreases clause so Dafny can prove termination
function hopalong(q: int, x : int, y : int, z : int) : int
[???]

{
var modulo := (x + y + z) % 3;

q + if (y ≤ 0) ∨ (z ≤ 0) ∨ (x ≤ 0) then 0 else
if (modulo = 0) then (hopalong(q+1, x + 3, y - 1, z + 2))

else if (modulo = 1) then (hopalong(q+3, x - 3, y , z - 1))
else (hopalong(q+5, x + 2, y, z - 10))

}

Our final example is an excerpt of the last of the weekly questions—the full exam-
ple presents 90 lines of code to students; another 30 lines of code for method imple-
mentations are omitted. This question is rather more complex, requiring students to



More Programming Than Programming 441

implement both the “Valid()” predicate to describe the class invariant of a complex
mutable object, and to manipulate the “Repr” ghost field that must track the auxiliary
implementation objects owned by the stack:

datatype StackModel = Empty | Push(val : int, prev : StackModel)

class Stack {
var values : array<int>
var capacity : nat
var size : nat

ghost const Repr : set<object>

//Define these two methods so that the hidden code below works
// constructor(capacity_ : nat)
// predicate Valid()
[???]

method push(i : int)
requires Valid()
ensures Valid()
modifies Repr
ensures capacity = old(capacity)

/*omitted*/

4.2 Assignments

The four Dafny assignments are very similar to the overview questions in spirit—but
with two main differences: they are undertaken using whichever Dafny IDE students
choose (usually Visual Studio Code); and students must upload complete Dafny files
into the school’s standard submission system, rather than using a specialised web inter-
face. Assignment questions are significantly larger than weekly questions. Whereas the
overview questions typically aim to teach one single verification concept or Dafny con-
struct, the assignments typically require students to combine techniques and link con-
cepts together. To guide students’ work, we again ensure rapid feedback by reporting
the results of Dafny attempting to verify each submission, and we allow students to
submit work any number of times. Space does not permit us to include full details of
assignment questions here—however some of the more interesting questions included:

1. Add annotations to the code of a vector sum (A1) or small sorting network (A1).
2. Print out the text of the song “Ten Green Bottles” (exactly as supplied, 1743 charac-

ters) but with a program shorter than 750 characters (A1).
3. Calculate the income tax payable by an individual New Zealander (A1).
4. Calculate with Carolingian duodecimal currency or interval arithmetic (A2).
5. Verify functional implementations of sets, lists, and maps (A2, A3).
6. Test if a string is a Palindrome (A4).
7. Implement search trees (A3), tries (A3), or balanced trees (A4).
8. Implement an object-oriented mutable map (A4).



442 J. Noble et al.

These questions obviously get harder as they go along. The first questions either
ask students to annotate existing code, or write code without specifications to introduce
students to the language. Even here, however, apparently simply programs such as “Ten
Green Bottles” (which we do not verify against any external specifications) still require
significant verification effort to be accepted by Dafny—at least four or five lines of
annotation out of a 25-line solution. Dafny needs to prove termination, and that all array
accesses are in bounds, and this necessitates preconditions constraining arguments on
all subsidiary methods and functions. The final assignment questions are as complex as
the final data structure examples from Program Proofs.

4.3 Essay

A reflective essay provides the last 20% of the course. This is the final assessment com-
ponent that students complete—although due to VUW’s regulations, it is due together
with the fourth Dafny assignment, as late as possible in the term. The core rubric for the
essay is straightforward: to write no more than 750 words reflecting on students’ “expe-
rience with verified programming in Dafny to ensure software correctness’, in the style
of a blog post aimed to communicate to other students, developers, or software engi-
neers. Students are invited to select a problem (typically from the final assignment, but
“in case of emergency” they may choose any programming problem) and then explain
how they used Dafny to specify, implement, and verify their chosen problem; to discuss
which features of Dafny made this easier (or harder); and if they had to do it again, what
they would do differently and why.

This essay fulfills two important purposes in the course design. Towards higher
marks, a VUW “A−” grade is 80%: a student who completes all the assignments per-
fectly but chose not to attempt the essay would get that grade. The essay thus enables
us to distinguish the truly outstanding “A+” students from the merely excellent “A” or
“A−”: students. At the other end of the grade distribution, reasonable attempts at the
weekly questions and the first two assignments should yield 40%: an essay that demon-
strates merely “adequate evidence of learning” is then sufficient to pass the course.

5 Experience with Dafny

Mathematics may still be taught via pencil and paper (or LATEX) but these days teaching
programming is impossible without a toolchain: a language implementation, a devel-
opment environment, and the other accoutrements students expect. Our course design
teaches verification as a specially intense kind of programming (“More programming
than programming is our motto” [46])—this requires a toolchain that is reliable, scal-
able, and supported enough to cope with daily use by hundreds of students. Luckily,
we found the current versions Dafny were certainly good enough for our purposes: we
were able to spend the vast majority of our efforts in teaching the practices and princi-
ples of verification, rather than working around problems and bugs in the tools. While
we encountered roughly one serious bug during each course offering so far, the Dafny
project team resolved them assiduously. Our overall experience with Dafny was very
positive.



More Programming Than Programming 443

Probably the biggest issue we encountered was just finding the resources – notably
staff time and effort—to support rapid feedback via automated marking of the weekly
questions and the assignments. The problem was not so much the necessary infras-
tructure, which is essentially a one-off cost, but the advance preparation needed for
automated marking of every assignment. Basically, marking must be complete before
an assignment can be released, rendering it no longer possible to write underspecified
assignments which point students in a general direction, wait until the assignment dead-
line, and then take as much time as necessary after the students have submitted their
work to work out the marks, the desired solutions, or even whether solutions are possi-
ble. All this work must now be completed beforehand.

That said, we did strike three more technical issues that could be addressed via
changes to Dafny’s design:

Program Testing: We encourage students to start by testing their implementations,
because it is easier to verify code that is correct than it is to verify incorrect code:-).
Dafny’s tight integration of proving and programming unfortunately means that pro-
grams cannot easily be tested until they are fully verified. We observed students contin-
ually “commenting out” assertions and preconditions to be able to test their programs,
and then undoing those comments to undertake verification. There are four related prob-
lems here.

First, Dafny’s requirements to prove all memory accesses safe, and that all programs
terminate, often mean even simple programs have to be heavily annotated just to com-
pile. A method to swap two array elements will require array reads and writes to be
in bounds; the obvious (and best practice) solution is to define method preconditions
which ensure method arguments are in bounds: but now all callers of the method must
themselves do enough to meet those preconditions.

Second, while annotations, assumptions, and non-totality declarations etc. can be
used to remove the need for some of these checks, they still require students to annotate
their programs explicitly, i.e. so students always have to deal with the checks even if
just to tell Dafny to ignore them!

Third, while Dafny does support command line options to e.g. ignore verification
and compile and run programs directly, verification is an all-or-nothing, static affair:
either verification is attempted for the whole program, or all specification and verifica-
tion constructs are ignored.

Fourth (and finally) the options to control verification are buried in the command
line, and are not surfaced in the Visual Studio Code IDE.

Following the example of Gradual Dafny [18] and Gradual Verification [3,5,48]
more generally should make testing easier. Ideally students would be able to run pro-
grams in a “test mode” where Dafny checks as many assertions, assumptions, and pre-
and postconditions as possible dynamically. Students could then express a series of unit
tests as Dafny assertions: if the program verifies, well and good; but if not, they would
still have the option of running the program and using print statements or host debug-
gers to interrogate program state. Recent Dafny releases [34] now support an expect
statement that does Gradual Dafny style dynamic checking: implementing this option
may be as simple as translating Dafny’s verification condition as expects rather than
asserts.



444 J. Noble et al.

Verification Debugging: Much of the work of verifying Dafny programs involves stu-
dents annotating their code—adding require and ensure clauses and assertions until the
verifier has enough information to discharge its proof obligations. Students find this
hard because it is not obvious what Dafny “knows” at any given program point: which
assertions Dafny is able to prove, which assertions Dafny is able to refute, and which
assertions Dafny is unable to answer (i.e. where the prover times out). We also observed
cases where Dafny is unable to verify an assertion because it does not have enough
information about variable values—this is particularly prevalent in code where e.g. stu-
dents have forgotten to write method postconditions, or have not realised a particular
postcondition is necessary. This manifests as Dafny being unable to verify an asser-
tion about a method’s return value, and simultaneously unable to verify the negation of
that same assertion. Even good students find this situation intensely frustrating. Ideally
Dafny would be able to give programmers more information about what it knows, e.g.
by querying its underlying solver [12].

Mutable Object Structure: Dafny is one of the few tools that can verify programs built
from composite structures of mutable objects using class invariants and representa-
tion sets. In practice, this requires either explicit definitions of “Valid” and “Repr”
attributes [36] which are verbose and complex, or implicit definitions generated via
the “autocontracts” attribute [35] which are concise but opaque. Few students were
able to use either mechanism effectively. Perhaps by building on work verifying Rust
programs, such as Prusti [4] and RustBelt [29], it should be possible to add ownership
annotations to fields and parameters, to check those annotations as with Rust’s bor-
row checker [14,31,39] and thus extend the implicit definitions already generated by
autocontracts.

We also encountered a number of pragmatic issues that arose with Dafny, but which
appear to be consequences of Dafny’s design choices, and as such are less amenable to
technical fixes.

Idiosyncrasies: Dafny’s syntax is sometimes idiosyncratic, which students found hard
to follow. To give just one example, here are a method and function to add two numbers:

method addM (a : int, b : int) returns (c : int) { c := a + b; }
function method addF (a : int, b : int) : int { a + b }

The syntax for declaring the return values are different (returns vs : ); the syntax
for actually returning the results are different; a final semicolon is mandatory in the
method and forbidden in the function. Adding insult to injury, methods and functions
then perform very differently in the verifier:

0 var m := addM(x,y);
1 var f := addF(x,y);
2 assert m = x + y; //Fails to verify
3 assert f = x + y; //Verifies



More Programming Than Programming 445

Dafny verifies the assertion on line 4, because functions are incorporated into the veri-
fication context. Dafny fails to verify the assertion on line 3, however, because methods
are always abstracted by their postconditions, and the declaration of addM omits post-
conditions. There are reasons for these choices, but they do make the language more
difficult to learn.

Implicit vs. Explicit Verification: We have described as taking an implicit (aka “auto-
active” [37]) approach to verification. Our students, or Dafny programmers in general,
do not construct proofs explicitly, in some verification domain that reflects on the base
domain of the program: rather they work in an extended programming language domain.
That is, students focus on programs, and program verification, but not on the founda-
tions of logic, programming languages, and critically, not on proof. Our teaching prac-
tice builds on this implicit approach: students definitely need an implicit understanding
of the underlying formal concepts—because they will be incapable of completing any
work without that understanding—but we present those concepts completely within the
programming approach: we don’t discuss the semantics of programming languages,
weakest preconditions, the kind of inferences Dafny’s underlying solver is making, let
alone how it works. We approach software verification in the same way that most soft-
ware engineering courses approach statically-typed languages: students can understand
the benefits, and use the type systems, but could not give a type-theoretic explanation
for why their programs don’t compile.

Arguably the biggest weakness of this implicit approach is that it sidesteps the ques-
tion of proof. Dafny does not illustrate proofs of programs (other than symbolic dumps
designed for debugging Dafny). As a result, we do not expose students to formal proofs,
and in fact students never need to understand what a proof is.

We do teach that Dafny assertions can be used as “hints” to the verifier checker; we
also show how Dafny (ghost) functions can be used within specifications or assertions to
embody lemmas that Dafny cannot find itself. In the latter part of the course, questions
require (ghost) data and methods to model the state of imperative objects. We mention
Dafny’s calc statement that supports line-by-line reasoning only in passing.

We consider this a trade-off worth making: the course stays focused on program
verification, through a programming lens, and we use the time to allow students to
complete more significant examples with more complex verification constructs, rather
than teaching proof and necessarily working on smaller examples.

6 Evaluation

As part of VUW’s quality assurance process, we conducted a standard evaluation
of SWEN324. Under the terms of that process, we can only report the quantitative
results here. The quantitative questions employed a 5-point Likert scale (“Strongly
Agree/Agree/Neither Agree nor Disagree/Strongly Disagree” unless otherwise noted)
and employ both objective and affective questions. We received 19 questionnaires from
88 students nominally enrolled in the course when the evaluations where conducted.

Based on the quantitative feedback, over 70% of students either agreed or strongly
agreed that the course was well organised, and that its objectives were communicated



446 J. Noble et al.

well. 70% of students considered the workload “about right”, although of the balance,
20% considered the workload “too much” or “far too much” while only 5% considered
that it was “too little”.

Considering quality measures, most students considered the course overall as “very
good” (58%) or “excellent” (21%)—although one outlier did rank the course as “poor”.
Apart from that outlier, all evaluated students agreed or strongly agreed that what they
had learned in the course had been valuable, and over half that the course had stimulated
interest in the subject “a great deal”. This results in a median overall score or 2.0 “very
good”. Compared with other courses in the faculty, that is a slightly worse median (1.9),
but perhaps more relevant are comparisons with earlier offerings of more traditional
versions of the course. Over the last ten years, across many iterations of the course,
these have ranged from 3.8 “Poor” to 2.3 (approaching “Good”) with most offerings
around 2.6–2.7—i.e. this version seems substantially better.

Finally, given the focus of our course design on online tools and automatic marking
to provide rapid feedback, it is gratifying that 80% of students agreed or strongly agreed
that the “online components of the course contributed to my learning”. Over 90% agreed
or strongly agreed that “Assessment tasks have helped me to learn” and that “I received
helpful feedback on my progress.” This is about as strong evidence for the benefits of
the “programming style” approach we adopted in SWEN324, and the use of automated
marking and feedback, that one is ever likely to receive.

Overall we consider the experiment of our redesign of SWEN324 a success. Fol-
lowing this programming-centric approach, almost all students were able to demon-
strate enough engagement with practical software verification to pass the course, and
those students who chose to put in the necessary time and effort were able to complete
quite significant verification tasks. In spite of the “mastery” approach taken in much of
the course, the final assignments and essays, were sufficient to ensure a good spread of
grades across the course.

We are aware that the practical, pragmatic, programming focus of this approach
has some trade-offs and costs. While students are able to program with Dafny, their
knowledge of logic and indeed of formal methods and software verification is latent,
i.e. implicit. For example, students would be able to propose preconditions for a given
Dafny function (e.g. to avoid array bounds errors or invalid computation), and given
interaction with a Dafny IDE, to write preconditions that Dafny could verify: many
students could argue informally about why such preconditions were necessary. Because
the knowledge is not explicit, they would not be able to present the formal rationale
for those preconditions, to derive them from e.g. weakest preconditions, or to produce
a formal proof that those preconditions would definitively rule out crashes at run time.
We had hoped that these topics could be addressed in a follow-on fourth-year course,
however it seems we will not have that opportunity.

The other costs were essentially resources: all students needed access to the Dafny
tool at all times; technical support from tutors thus needed to be provided whenever
possible. Automated marking (both weekly questions and assignments) was essential
to maintaining that programming focus, and directly supported learning. Preparing the
automated questions, and then validating them by verifying several different solutions
also required significant time and effort, by both tutors and academic staff. Some of



More Programming Than Programming 447

this effort (e.g. weekly questions) could be amortised over multiple offerings of the
course, but most institutions would need to refresh the main assignments for each course
offering—at least in institutions without very strong honour code traditions that prevent
sharing solutions across cohorts.

7 Conclusion

Getting code to work is one thing.
Proving it does what it’s supposed to is something else.
Convincing Dafny you’ve proved it does what it’s supposed to

is something else entirely.

“Motto for a Software Correctness Course”
Thomas J. “Tad” Peckish (attrib.), twitter, Oct 4 2020

Formal methods are becoming more popular in software engineering practice, and
accordingly more common in software engineering education course work. This shift
has implications for how we teach: a course that aims to ensure every computer science
or software engineering student has understanding of formal methods, and some basic
exposure to formal tools, must necessarily be different to a course that (explicitly or
implicitly) aims to prepare students for graduate work. We have described our expe-
rience in redeveloping our formal methods course to be for the many, not the few; by
employing tool and strategies typically used to teach programming, rather than those
of mathematics. So far, this approach has been fruitful: most students who enroll in
the course are able to pass it; are able to actually complete some small problems using
Dafny; and overall consider the course worthwhile. The key factors supporting this out-
come were the Dafny tool, which is now sufficiently mature to be used at this scale, and
the necessary time and effort to prepare weekly questions and assignments in advance to
support feedback via automatic marking. We hope to continue with work, both to inte-
grate formal methods ever more tightly into teaching programming, and to investigate
how tools such as Dafny can best support this approach.

Acknowledgements. Thanks to Rustan Leino and James Wilcox for all their help with Dafny;
to our colleagues Marco Servetto for the “marcotron” weekly question system, to Royce Brown,
Christo Muller, and the ECS technical staff for their support with the course automation; to
Lindsay Groves, longtime custodian of Formal Methods at VUW through various iterations
(COMP202, SWEN202, SWEN224, SWEN324); to the reviewers for their helpful comments;
and above all to the students who choose to stay with SWEN324 in spite of everything.

This work was supported in part by the Royal Society of New Zealand Marsden Fund Grant
VUW1815, and by a gift from Agoric.



448 J. Noble et al.

References

1. Aceto, L., Ingólfsdóttir, A.: Introducing formal methods to first-year students in three inten-
sive weeks. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122,
pp. 1–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 1

2. Angelo, T.: A teacher’s dozen-fourteen general research-based principles for improving
higher learning. AAHE Bulletin (1993)

3. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The gradual verifier. In:
Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 313–327. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06200-6 27

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for modular speci-
fication and verification. Proc. ACM Program. Lang. 3(OOPSLA), 1–30 (2019)

5. Bader, J., Aldrich, J., Tanter, É.: Gradual program verification. In: VMCAI 2018. LNCS, vol.
10747, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 2

6. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems. In:
COMPARE, pp. 3–17. Citeseer (2012)

7. Blazy, S.: Teaching deductive verification in Why3 to undergraduate students. In: Dongol,
B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 52–66. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32441-4 4

8. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value storage node in
amazon S3. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pp. 836–850 (2021)

9. Brooks, F., Kugler, H.: No silver bullet, April 1987
10. Cerone, A., Roggenbach, M. (eds.): FMFun 2019. CCIS, vol. 1301. Springer, Cham (2021).

https://doi.org/10.1007/978-3-030-71374-4
11. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Introduction to the

CoQ Proof Assistant. MIT Press, Cambridge (2013)
12. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment for diagnos-

ing verification errors. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 424–441. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 25

13. Cook, B.: Formal reasoning about the security of amazon web services. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 3

14. Dietl, W., Dietzel, S., Ernst, M.D., Muşlu, K., Schiller, T.W.: Building and using pluggable
type-checkers. In: Proceedings of the 33rd International Conference on Software Engineer-
ing, pp. 681–690 (2011)

15. Dongol, B., Petre, L., Smith, G. (eds.): FMTea 2019. LNCS, vol. 11758. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32441-4

16. Ettinger, R.: Lessons of formal program design in Dafny. In: Ferreira, J.F., Mendes, A.,
Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122, pp. 84–100. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91550-6 7

17. Ferreira, J.F., Mendes, A., Menghi, C. (eds.): FMTea 2021. LNCS, vol. 13122. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-91550-6

18. Figueroa, I., Garcı́a, B., Leger, P.: Towards progressive program verification in Dafny. In:
Proceedings of the XXII Brazilian Symposium on Programming Languages, pp. 90–97
(2018)

19. Flannery-Dailey, F., Wagner, R.L.: Wake up! Gnosticism and Buddhism in the Matrix. J.
Religion Film 5(2), 4 (2001)

20. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In: ter Beek,
M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58298-2 1

https://doi.org/10.1007/978-3-030-91550-6_1
https://doi.org/10.1007/978-3-319-06200-6_27
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.1007/978-3-030-32441-4_4
https://doi.org/10.1007/978-3-030-71374-4
https://doi.org/10.1007/978-3-662-49674-9_25
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-030-32441-4
https://doi.org/10.1007/978-3-030-91550-6_7
https://doi.org/10.1007/978-3-030-91550-6
https://doi.org/10.1007/978-3-030-58298-2_1


More Programming Than Programming 449

21. Grebing, S., Ulbrich, M.: Usability recommendations for user guidance in deductive program
verification. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.) Deductive
Software Verification: Future Perspectives. LNCS, vol. 12345, pp. 261–284. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64354-6 11

22. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a ‘cogni-
tive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

23. Greengard, S.: The Internet of Things. MIT Press, Cambridge (2021)
24. Güdemann, M.: Online teaching of verification of C programs in applied computer science.

In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122, pp. 18–34.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 2

25. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed systems.
Commun. ACM 60(7), 83–92 (2017)

26. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston (2003)

27. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge
(2006)

28. Jones, C.B., Misra, J.: Theories of Programming: The Life and Works of Tony Hoare. Morgan
& Claypool, Williston (2021)

29. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the foundations of the
rust programming language. Proc. ACM Program. Lang. 2(POPL), 1–34 (2017)

30. Kamburjan, E., Grätz, L.: Increasing engagement with interactive visualization: formal meth-
ods as serious games. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS,
vol. 13122, pp. 43–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-
6 4

31. Klabnik, S., Nichols, C.: The Rust Programming Language (Covers Rust 2018). No Starch
Press, San Francisco (2019)

32. Körner, P., Krings, S.: Increasing student self-reliance and engagement in model-checking
courses. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122,
pp. 60–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 5

33. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Pearson, London (2002)

34. Leino, K.R.M.: Dafny 3.0.0 release. https://github.com/dafny-lang/dafny/-releases/tag/v3.0.
0

35. Leino, K.R.M.: Developing verified programs with Dafny. In: 2013 35th International Con-
ference on Software Engineering (ICSE), pp. 1488–1490. IEEE (2013)

36. Leino, K.R.M.: Program Proofs. Available from Lulu.com (2020)
37. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-

shop (UV10) (2010)
38. Rustan, K., Leino, M., Nelson, G.: An extended static checker for modula-3. In: Koskimies,

K. (ed.) CC 1998. LNCS, vol. 1383, pp. 302–305. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0026441

39. Markstrum, S., Marino, D., Esquivel, M., Millstein, T., Andreae, C., Noble, J.: JavaCOP:
declarative pluggable types for java. ACM Trans. Program. Lang. Syst. (TOPLAS) 32(2),
1–37 (2010)

40. Meyer, B.: Touch of Class. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
92145-5

41. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification attempts. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21437-0 8

42. Noble, J., Pearce, D.J., Groves, L.: Introducing Alloy in a software modelling course. In: 1st
Workshop on Formal Methods in Computer Science Education (FORMED) (2008)

https://doi.org/10.1007/978-3-030-64354-6_11
https://doi.org/10.1007/978-3-030-91550-6_2
https://doi.org/10.1007/978-3-030-91550-6_4
https://doi.org/10.1007/978-3-030-91550-6_4
https://doi.org/10.1007/978-3-030-91550-6_5
https://github.com/dafny-lang/dafny/-releases/tag/v3.0.0
https://github.com/dafny-lang/dafny/-releases/tag/v3.0.0
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-642-21437-0_8


450 J. Noble et al.

43. Pang, A., Anslow, C., Noble, J.: What programming languages do developers use? A theory
of static vs dynamic language choice. In: 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 239–247. IEEE (2018)

44. Paulin-Mohring, C.: Introduction to the Coq proof-assistant for practical software verifica-
tion. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 45–95. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-6 3

45. Pearce, D.J., Groves, L.: Designing a verifying compiler: lessons learned from developing
Whiley. Sci. Comput. Program. 113, 191–220 (2015)

46. Scott, R.: Blade runner. Motion Picture (1982)
47. Wayne, H.: Temporal logic. In: Practical TLA+, pp. 97–110. Apress, Berkeley (2018).

https://doi.org/10.1007/978-1-4842-3829-5 6
48. Wise, J., Bader, J., Wong, C., Aldrich, J., Tanter, É., Sunshine, J.: Gradual verification of

recursive heap data structures. Proc. ACM Program. Lang. 4(OOPSLA), 1–28 (2020)
49. Yatapanage, N.: Introducing formal methods to students who hate maths and struggle with

programming. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol.
13122, pp. 133–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 10

50. Zhumagambetov, R.: Teaching formal methods in academia: a systematic literature review.
In: Cerone, A., Roggenbach, M. (eds.) FMFun 2019. CCIS, vol. 1301, pp. 218–226. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71374-4 12

https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/978-1-4842-3829-5_6
https://doi.org/10.1007/978-3-030-91550-6_10
https://doi.org/10.1007/978-3-030-71374-4_12

	More Programming Than Programming: Teaching Formal Methods in a Software Engineering Programme
	1 Introduction
	2 Background
	3 SWEN324 Software Correctness
	4 Assessment
	4.1 Weekly Overview Questions
	4.2 Assignments
	4.3 Essay

	5 Experience with Dafny
	6 Evaluation
	7 Conclusion
	References




