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Abstract. Density of the reachable states can help understand the risk
of safety-critical systems, especially in situations when worst-case reacha-
bility is too conservative. Recent work provides a data-driven approach to
compute the density distribution of autonomous systems’ forward reach-
able states online. In this paper, we study the use of such approach in
combination with model predictive control for verifiable safe path plan-
ning under uncertainties. We first use the learned density distribution to
compute the risk of collision online. If such risk exceeds the acceptable
threshold, our method will plan for a new path around the previous tra-
jectory, with the risk of collision below the threshold. Our method is well-
suited to handle systems with uncertainties and complicated dynamics
as our data-driven approach does not need an analytical form of the sys-
tems’ dynamics and can estimate forward state density with an arbitrary
initial distribution of uncertainties. We design two challenging scenarios
(autonomous driving and hovercraft control) for safe motion planning in
environments with obstacles under system uncertainties. We first show
that our density estimation approach can reach a similar accuracy as the
Monte-Carlo-based method while using only 0.01X training samples. By
leveraging the estimated risk, our algorithm achieves the highest success
rate in goal reaching when enforcing the safety rate above 0.99.

Keywords: Reachability analysis - State density estimation - Online
planning - Liouville Theorem * Neural network

1 Introduction

Verifying and enforcing the safety of the controlled systems is crucial for appli-
cations such as air collision avoidance systems [28], space exploration [32], and
autonomous vehicles. It is still a challenging problem to perform online verifica-
tion and controller synthesis for high-dimensional autonomous systems involving
complicated dynamics and uncertainties because of the scalability issue in veri-
fication and the absence of the analytical form to describe system trajectories.

Reachability analysis is one of the main techniques used for rigorously validat-
ing the system’s safeness [17,19,26,27,53] and controller synthesis [21,33,40,50].
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In reachability analysis, one computes the reachable set, defined as the set of
states where the system (with the control inputs) can be driven to from the
initial conditions, under the system dynamics and physical constraints. Take
the aircraft collision avoidance system as an example: the system safety can be
guaranteed if all the future space that the airplane can reach (under physical
constraints) will not overlap with obstacles. However, computing the reachable
states is proved to be undecidable in general (e.g., polynomial dynamical systems
with degrees larger than 2) [24] and is also empirically time-consuming, limiting
applications to simple dynamics (e.g., linear systems) or low-dimension systems.

Besides, using worst-case reachability for safety analysis will usually return
a binary result (“yes” or “no”), regardless of the initial state distribution and
the uncertainty in the systems. The focus on the “worst-case” makes the cor-
responding reachability-based planning methods “conservative” or “infeasible”
when the initial state has a large uncertainty. Consider a robot navigating in an
environment with obstacles and state uncertainty - when a collision is inevitable
in the worst case (though the worst case is a rare event), the planning algorithm
will fail to return any safety-guaranteed control policies but to let the robot
stop. Hence in those cases, we need a way to quantify the risk/probability of the
undesired event (e.g., collision) happening and guide controller designs.

In this paper, we present a probabilistic and reachability-based planning
framework for safety-critical applications. Inspired by [42], we first learn the
system flow maps and the density evolution by solving the Liouville partial dif-
ferential equation (PDE) using Neural Networks from collected trajectory data.
Instead of using the exact reachability analysis tool [54] for reachable states
probability estimation, we use Barycentric interpolation [25], which can handle
more complicated systems (dimension > 4) and sharply reduces the processing
time compared to [42]. In addition, by picking different numbers of sampled
points, our algorithm can flexibly control the trade-off between estimation effi-
ciency and accuracy. Leveraging this density estimation technique, our planning
framework (illustrated in Fig. 1) verifies the safety of the system trajectory via a
segment-by-segment checking. If one segment becomes unsafe, we perturb around
the reference trajectory to find a safe alternative, and plan for the rest of the
trajectory. The process repeats until all segments are enforced to be safe.

We conduct experiments on two challenging scenarios (autonomous car and
hovercraft control with uncertainties). Our estimated reachable states density
distribution is informative as it reflects the contraction behavior of the controllers
and highlights the places that the system is more likely to reach. Quantitatively,
compared to Monte Carlo density estimation, our approach can achieve a simi-
lar accuracy while only using 0.01X training samples. We test our density-based
planning algorithm in 20 randomly generated testing environments (for each sys-
tem), where we achieve the highest success rate in goal reaching with high safety
rate (measured by one minus the collision rate) compared to other baselines.

Our contributions are: (1) we are the first group to study the use of learned
reachability density in safe motion planning to ensure probabilistic safety for
complicated autonomous systems, (2) our approach can estimate state density
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and conduct safe planning for systems with nonlinear dynamics, state uncer-
tainty, and disturbances, and (3) we design both qualitative and quantitative
experiments for two challenging systems to validate our algorithm being accu-
rate, data-efficient and achieving the best overall performance for the goal reach-
ing success rate and safety.1

2 Related Work

Reachability analysis has been a powerful tool for system verification. The
related literature has been extensively studied in [2,10,12,37]. However, few of
those have been tackling the problem of calculating reachable set density distri-
bution. Hamilton Jacobian PDE has been used to derive the exact reachable sets
in [6,10,43], but this approach does not compute the density. Many data-driven
methods can compute reachable sets with probabilistic guarantees using scenario
optimization [14,56], convex shapes [7,35,36], support vector machines [3,48],
and nonparametric methods [13,51]. However, they cannot estimate state den-
sity distribution. [20] estimates human policy distribution using a probabilistic
model but requires state discretization. [39] uses the Liouville equation to maxi-
mize the backward reachable set for only polynomial system dynamics. In [1], the
authors discretize the system to Markov Chains (MC) and perform probabilistic
analysis on MC. This approach is computation-heavy for online safety checks.

Recently, with Neural Networks (NN) development, there has been a grow-
ing interest in studying worst-case reachability for NN [30,31,42,54,55,57] or
NN-controlled systems [17,19,26,27,53]. Among those, [42] leverages the exact
reachability method [54] and the Liouville Theorem to perform reachability anal-
ysis and reachable set density distribution. This approach finds the probability
density function transport equation by solving the Liouville PDE using NN.
It shows high accuracy in density estimation compared with histogram, kernel
density estimation [11], and Sigmoidal Gaussian Cox Processes methods [15].
Hence, we choose this approach to verify the autonomous systems’ safety and to
conduct safe motion planning.

There have been various motion planning techniques for autonomous systems,
and we refer the interested readers to these surveys [22,23,44]. Most approaches
use sampling-based algorithms [29], state lattice planners [41,46], continuous
optimization [8,47], and deep neural networks [9,58]. Reachable sets have also
been used for safe motion planning for autonomous systems [21,33,40,50]. How-
ever, worst-case reachability-based methods only treat reachability as a binary
“yes” or “no” problem without considering the density distribution of the
reachable states. This boolean reachability setting makes the reachability-based
motion planner conservative when the collision is inevitable in the worst case
(but only happens at a very low probability) thus the system cannot reach the
goal state. In this paper, we integrate the density-based reachability estimation
method in [42] with model predictive control to improve the goal reaching success
rate while enforcing the systems’ safety in high probability.

! The code is available at https://github.com/mengyuest /density_planner.
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3 Problem Formulation

Consider a controlled system ¢ = f(g,u) where ¢ € @ C R? denotes the system
state (e.g., position and heading) and v € U C R* denotes the control inputs
(e.g., thrust and angular velocity). For a given control policy 7 : @ — U, the
system becomes an autonomous system ¢ = f(q,7(q)) = f=(¢) that the future
state ¢; at time ¢ will only depends on the initial state gy. We assume the initial
state qop € Qg C Q. Then, the forward reachable set at time ¢ is defined as:

Q=1 | a0 € o, 4= fr(q)} (1)

Assume the initial state go follows a distribution D with the support Q.
Given obstacles {O; C RP}M, in the environment, we aim to compute the prob-
ability for colliding with obstacles and the forward probabilistic reachability
defined below:

Definition 1 (Collision probability estimation). Given a system ¢ = f(q)
with initial state distribution D, compute the probability for states colliding with
an obstacle O at time t: Py(O) = Prob{qo ~ D, ¢ = f(q), [I(q:) € O} where
11 : Q@ — RP projects the system state to the space that the obstacle O resides.

Definition 2 (Forward probabilistic reachability estimation). Given a
system ¢ = fr(q) with initial state distribution D, for each time step t, estimate
the forward reachable set Q; and the probability distribution {(A;, Pi(A;))}N,.
Here Ay, ..., An, is a non-overlapping partition for Qy, i.e., A;NA; = @,Vi # j,

Ny
U A =09,
=1

Assume 7 is a tracking controller: 7(q) = u(q,q"®f) with a reference tra-
jectory {gr*/}T_, of length T first generated from a high-level planner with
commands U = {u}*/}T_| . Define the total collision risk:

Prob(colliding) = P.(U"*/) = Z Z P(O (2)

t=1 =1

We are interested in the following problem:

Definition 3 (Safety verification and planning problem). Given a system
G = f=(q) with initial state distribution D and reference control commands U7,
verify the total collision risk P.(U™®f) < ~, where v is a tolerant collision rzsk
threshold. If not, plan a new command U to ensure P.(U"*f) < ~

In this paper, the details about the dynamic systems ¢ = f(¢q) and controllers
7(q) = u(g,q"¢') are listed in the A and B.

4 Technical Approaches

Inspired by [42], we design a sample-based approach to compute the reachability
and the density distribution for the system described in the previous section and
further leverage these results for trajectory planning for autonomous systems.
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4.1 Data-driven Reachability and Density Estimation

Our framework is built on top of a recently published density-based reachability
analysis method [42]. From the collected trajectory data, [42] learns the system
flow map and the state density concentration function jointly, guided by the
fact that the state density evolution follows the Liouville partial differential
equation (PDE). With the set-based reachability analysis tools RPM [54], they
can estimate the bound for the reachable set probability distribution.?

For the autonomous system defined in Sect. 3, we denote the density function
p: QxR — R2% which measures how states distribute in the state space
at a specific time step. The density function is completely determined by the
underlying dynamics f, and the initial density map pgp : @ — RZ° according to
the Liouville PDE [16].

O 9o ) =0, p(a:0) = polg) (3)

ot
We define the flow map @ : Q@ x R — Q such that &(qo,t) is the state at
time ¢ starting from ¢o at time 0. The density along the trajectory ®(qo,t) is an
univariate function of ¢, i.e., p(t) = p(P(qo,t),t). If we consider the augmented
system with states [q, p], from Eq.3 we can get the dynamics of the augmented

system: |
m - [—v]i”}ff)(qm] )

To compute the state and the density at time T from the initial condition
[90, po(qo)], one can solve the Eq.4 and the solution at time T will give the
desired density value. To accelerate the computation process for a large number
of initial points, we use neural networks to estimate the density p(q,t) and the
flow map &(q, t). Details for the network training are introduced in Sect. 3 of [42].

4.2 Reach Set Probability Estimation

As mentioned in [42], when the system state is high (>4), it is either infeasible
(due to the numerical issue in computing for polyhedra) or too time-consuming
to generate RPM results for probability estimation. The state dimension will
become 7-10 for a 2D car control or a 3D hovercraft control problem after
including the reference control inputs. If we use other worst-case reachability
analysis tools such as [17] to compute the probability, the reachable set will be
too conservative and the planner will not return a feasible solution (other than
stop) because the reachable states will occupy the whole state space regardless of
the choice of the reference controls. Therefore, we use a sample-based approach
to estimate the probability of the reachable sets, as introduced in the following.

To estimate the probability in Prob. 1, we first uniformly sample initial states
{qé}fvzsl from the support of the distribution py and use the method in Sect. 4.1

2 For details about computing the probability of the reachable state, we refer the
interested readers to [42](Appendix B).
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to estimate the future states and the corresponding densities at time ¢ denoted as
{(q, pe()))}X=,. We approximate the forward reachable set Q; defined in Eq. 1 as
the convex hull of {¢/} Y+, and denote it as CH;. Then, based on {(¢}, p+(¢}))} Y,
we use the linear interpolation to estimate the density distribution g;() at time
t. Finally, we uniformly sample points ¢; within the convex hull CH;, and the
probability for the system reaching A can be computed as:

> qo~er, Has € Abpe(gs)
ZQSNCHt ﬁt(q%)

Here are some remarks for our approach. The probabilistic guarantee about
estimation accuracy is provided in [42][Appendix A]. Besides, our approach will
return probability zero if the ground truth probability of reaching A is zero.
Moreover, compared to the set-based approach RPM, which has poor scalability
because of the number of polyhedral cells growing exponentially to the system
state dimension, our sample-based approach is fast, and the runtime can be
controlled by selecting different numbers of sampled points as a trade-off between
efficiency and accuracy.

[Probabilistic reachability- |

based safety checking
NN estimated
i' reachability and

Consider the first
segment in the
trajectory

Prob(¢q; € A) ~

(5)

density

Prob(colliding) > 104

Perturb around the

Perturb around the
segment to ensure safety

No-» current segment to
enforce safety

v

NLP replans for the
rest segments

Is the current
segment safe?

Yes

Safe (high probability) \\\_
v

NLP re-plans for the rest

Move to the next segments of the trajectory

Is it the last

segment? segment
Yes
Safe (high probability)\
(a) Flow chart of the algorithm (b) Planning process

Fig. 1. The safe planning algorithm.
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4.3 Motion Planning Based on Reachability Analysis

After estimating the reachable states and density for the autonomous system
under a reference trajectory, we utilize the results to plan feasible trajectories
to ensure the collision probability is under a tolerable threshold.

In this paper, the reference trajectory is generated using nonlinear program-
ming (NLP). Given the origin state Qorigin, the destination state qges¢, the phys-
ical constraints Umin < t < Umq, and M obstacles {(z?,y?) fi 81 (with radius
{ri}M51) in the environment, discrete time duration A; and total number of
timesteps T, we solve an NLP using CasADI [5] to generate a reference tra-
jectory, which consists of N trajectory segments &,...,{n—1 (each segment &;
has length L and is generated by g¢;.r and u;). The details about this nonlinear
optimization formulation can be found in Appendix C

Then for each segment {;, with the uncertainty and disturbances considered,
we use the approach in Sect. 4.2 to estimate the system’s reachable states as well
as their density. If the total collision risk defined in Eq. 2 is below a predefined
threshold (10~ in our case), we call the current trajectory “safe”. Otherwise, we
call the trajectory “unsafe” and adjust for the current trajectory segment. Notice
that the traditional reachability-based planning is just a special case when we
set this threshold to 0.

To ensure fast computation for the planning, we use the perturbation method
to sample candidate trajectory segments around this “unsafe” trajectory segment
&, (by adding Au to the reference control commands) and again use the method
in Sect. 4.2 to verify whether the candidate is “unsafe”, until we find one segment
&; that is “safe”, and then we conduct the NLP starting from the endpoint of the
segment Ej. We repeat this process until all the trajectory segments are validated
to be “safe”. The whole process is summarized in Algorithm 1.

Given enough sampled points with guaranteed correctness in approximat-
ing state density and forward reachable set, the algorithm is sound because the
produced control inputs will always ensure the system is “safe”. However, our
algorithm is not complete because: (1) in general, the nonlinear programming
is not always feasible, and (2) the perturbation method might not be able to
find a feasible solution around the “unsafe” trajectory. The first point can be
addressed by introducing slack variables to relax for the safety and goal-reaching
constraints. The second point can be tackled by increasing the tolerance proba-
bility threshold of collision.

5 Experiments

We investigate our approach in autonomous driving and hovercraft navigation
applications under the following setup: given an environment with an origin
point, a destination region, and obstacles, the goal for the agent at the origin
point is to reach the destination while avoiding all the obstacles. Notice that
this is a very general setup to encode the real-world driving scenarios because:
(1) the road boundaries and other irregular-shaped obstacles can be represented
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Algorithm 1. Reachability-based Planning Algorithm
Input: Origin So, destination Sy, NLP constraints

Output: Reference trajectories £y, &1, ,En—1

1: 90

2: while ¢ < N do

3: Generate segments &;, ...,En—1 from S; to Sy using NLP

4: for j=1i: N do

5: Use the method in Sect. 4.2 to check whether the trajectory segment &; is
“safe”.

6: if The trajectory is “safe” then

T Continue

8: else

9: Perturb the segment &; to search for a possible “safe” segment g}- (goes
from S; to close to Sj+1).

10: & =& _

11: Sit1 < Sit1

12: end if

13: end for > By far, So — Sj4+1 is “safe”

14: i—j+1 > Next step will inspect Sj41 — -+ SN

15: end while

by using a set of obstacles, and (2) other road participants (pedestrians, other
driving cars) can be modeled as moving obstacles. Here we consider only the
center of mass of the car/hovercraft in rendering reachable sets and planning (we
can bloat the radius of the obstacle to take the car/hovercraft length and width
into account). In Sect. 5.1, we evaluate the reachability and density for the system
under a fixed reference trajectory. In Sect. 5.2, we leverage the reachability and
density result to do trajectory re-planning when the system is “unsafe”.

We collect 50,000 trajectories from the simulator, with randomly sampled
initial states, reference trajectories, and disturbances. Each trajectory has 50
timesteps with a duration of 0.02s at each time step. Then, we select 40,000 for
the training set and 10,000 for the evaluation set and train a neural network
for estimating the future states and the density evolution mentioned in [42]. We
use a fully connected ReLU-based neural network with 3 hidden layers and 128
hidden units in each layer. We train the neural network for 500k epochs, using
stochastic gradient descent with a batch size of 256 and a learning rate of 0.1.
The code is implemented in PyTorch [45], and the training takes less than an
hour on an NVidia RTX 2080Ti GPU.

5.1 Reachable States and Density Estimation

In this section, we first conceptually show how our approach of estimating reach-
able states and density can benefit safety-critical applications. As depicted in
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Fig.4, a car plans to move to the destination (the red arrow) while avoiding all
the obstacles on the road. The initial state of the car (X,Y position, and head-
ing angle) and the disturbance follow a Gaussian distribution. The high-level
motion planner has already generated a reference trajectory (the blue line in
Fig. 4), with the uncertainty owing to the initial state estimation error and the
disturbance. We will show that our approach can estimate the state density dis-
tribution and reachable state accurately and can help to certify that the planned
reference trajectory is not colliding with obstacles in high probability.

Visualizations of the Estimated Reachability and Density Heatmap.
Using the method introduced in Sect. 4.2, we can first estimate the tracking error
density distribution and marginalize it to the 2D XY-plane to get the probability
heatmaps (as shown in Fig. 2(a)—(d)). Then we can transform it to the reference
trajectory and check whether it has an intersection with the obstacles in the
environment (as shown in Fig 2(e)).
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Fig. 2. Estimated density (for states in (a)—(d) and along the trajectory in (e)) for the
car model. The states are shown to concentrate on reference trajectory (blue line in
(e)), and the collision risk is very low. (Color figure online)

To verify the correctness of our estimated reachable states and density, we
also sample a large number of states from the initial state distribution and use
the ODE to simulate actual car trajectories, as shown in Fig.2(b). Comparing
Fig.2(a) with Fig.2(b), we find out in both cases that the vehicle will have a
collision with the bottom obstacle. In addition, our density result also shows that
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the risk of the collision is very low (Prob(colliding)<10~* as shown in Sect. 5.1),
which is reasonable because the majority of the states will be converging to
the reference trajectory (as indicated from Fig.2(a)—(d)). Only a few outlier
trajectories will intersect with the obstacle. We also conduct this experiment
with the Hovercraft system (3D scenarios), where the results in Fig.3 reflect
similar contraction behaviors, and the probability of colliding with the obstacles
is very low (thus, we do not need to do planning in this stage).

Visually, our results are more informative than the pure reachability analysis
because ours reflects the tracking controller’s contraction behavior and illustrates
that the colliding event is in very low probability. The following subsection will
further quantify this probability and compare it with a traditional probability
estimation method.
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(e) Density distribution on trajectories. (f) Simulated trajectories.

Fig. 3. Estimated density (for states in (a)—(d) and along the trajectory in (e)) for the
hovercraft model. The states are shown to concentrate on reference trajectory (blue
line in (e)), and the collision probability is very low. (Color figure online)

Comparison with Monte-Carlo Based Probability Estimation. Our
visualization result in Sect. 5.1 reflects that under some initial conditions, the
vehicle might hit the obstacle. Although Fig. 2 shows that the likelihood of the
clash is very low, we want to quantify the risk of the collision to benefit future
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decisions (e.g., choosing the policy with the lowest collision probability or with
the lowest value at risk (VaR) [38]). However, it is intractable to derive the
ground-truth probability of collision for general non-linear systems. Therefore,
we compare our estimation result with the Monte Carlo approximation (this
is done by generating a considerable amount of simulations and counts for the
frequency of the collision.

We try different numbers of samples (from 500 to 512000) and compare our
approach to the Monte Carlo estimation. As shown in Fig.5, the groundtruth
probability of collision (where we approximated by sampling 5 x 107 trajectories
and compute the collision rate) is approximately 5 x 1075. The Monte Carlo
approach fails to predict meaningful probability results until increasing the sam-
ple size to 64000. In contrast, our approach can give a non-trivial probability
estimation using only 500 examples, less than 0.01X the samples needed for the
Monte Carlo approach.

The black vertical arrow in Fig. 5 corresponds to the 40000 sample size (the
number of samples we have used offline for our neural network training). The
corresponding result is already as stable as the Monte Carlo approach which
requires more than 64000 samples. Furthermore, our approach can be adapted
to any initial condition for the same car dynamic system without retraining or
fine-tuning, making it possible for downstream tasks like online planning, as
introduced in the following section.

In terms of the computation time (for 512000 points), our approach requires
2.3X amount of time (31.8 s) as needed for the Monte Carlo method (14.1 s),
mainly because that the Delaunay Triangulation method [34] used for state-
space partition in the linear interpolation has the complexity of O(NL%/2)) [52]
for N data points in the d-dimension system. Thus the run time will grow about
quadratically to the number of sample points in our case (state dimension=4).
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With 1000 sampled points (as used in the rest of the experiments), our method
takes ~2 s, which is acceptable. One alternative solution to accelerate the com-
putation is to use Nearest Neighbor interpolation for density estimation.

5.2 Online Planning via Reachable Set Density Estimation

When the probability of collision is higher than the threshold (10~* in our exper-
iment setting), we need to use the planning algorithm to ensure the safety of the
autonomous system under uncertainty and disturbance. We first show how the
planning algorithm works in Sect. 5.2, and then quantitative assessment of our
algorithm is conducted in Sect. 5.2.

Demonstration for an Example. We conduct experiments to demonstrate
how our proposed reachability-based planning framework works for autonomous
driving cars and hovercraft applications. In Fig. 6, a car is moving from left to
right of the map while avoiding collisions with obstacles. After checking for the
first segment’s safety (Fig.6(a)), the algorithm finds out the probability of the
collision is higher than 10~%. Thus it starts to plan for the first segment (the
red line in Fig. 6(b)) around the reference trajectory (the blue line in Fig. 6(b)).
Moreover, after it updates the reference trajectory using the NLP solver (the blue
line in Fig. 6(c)) based on the perturbed segment, the algorithm detects the next
segment as “unsafe.” Hence it plans again to enforce the collision probability is
below 10~* (Fig.6(c)). Another example in a 3D scenario is shown in Fig.7,
where the hovercraft perturbs for the first segment and then later verifies that
the next two segments are all “safe”, hence the whole trajectory in Fig. 7(c) is
“safe.”

Reference Trajectory ~—— Perturbed Segment Reference Trajectory ~—— Perturbed Segment Reference Trajectory ~—— Perturbed Segment

0.10
- 5 . 0.08
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(a) t=0, “unsafe” detected. (b) t=0, perturb to “safe”’. (c) t=1, perturb to “safe”.
Prob(colliding) > 10~* Prob(colliding) < 10™* Prob(colliding) < 10™*

Fig. 6. Demonstration for the re-planning algorithm for the 2D car experiment. For
each trajectory segment, if the probability of collision is higher than a predefined
threshold, we denote the trajectory segment as “unsafe”, otherwise, we denote the
trajectory segment as “safe”. (Color figure online)
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(a) t=0, perturb to “safe”. (b) t=1, “safe” is verified. (c) t=2, “safe” is verified.
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Fig. 7. Demonstration for the re-planning algorithm for the 3D hovercraft experiment.
For each trajectory segment, if the probability of collision is higher than a predefined
threshold, we denote the trajectory segment as “unsafe”, otherwise, we denote the
trajectory segment as “safe”.

Evaluation of Trajectory Planning Performance. To illustrate the advan-
tage of our approach in enforcing the system safety, we design 20 testing envi-
ronments with randomly placed obstacles (while ensuring the initial reference
trajectory is feasible from the NLP solver) for the autonomous car system and
the hovercraft control system. We compare our framework with several base-
line methods: the “original” approach just uses the initial reference trajectory
(without any planning process), the “d =7” approach denotes the distance-based
planning methods with the safety distance threshold set as d (the larger d is,
the more conservative and safer the algorithm will be, at the cost of infeasible
solutions), the “reach” approach uses estimated reachable tube computed from
the sampled convex hull CH introduced in Sect. 4.2 to do safe planning.

We measure the performances of different methods using two metrics: feasi-
bility and safety. Feasibility is defined as the frequency that the algorithm can
return a plausible solution (but might be unsafe) to reach the designed des-
tination. Over all feasible solutions, safety is defined as the expected collision
probability. Intuitively, the feasibility measures the successful rate of the goal
reaching, and the “safety” measures how “reliable” the planner is.

As shown in Fig.8(a)(b) for the car experiments, compared to the “reach”
method (which just uses reachable tubes to do planning) and a distance-based
planning method (“d = 1.0”), our approach can achieve a similar safety rate,
while having 0.29-0.76 higher feasibility (due to less conservative planning).
Though we are 0.059 less in feasibility than the “original” and the “d = 0.1”
baselines, they lead to 3772X-4574X collision rates than ours (due to our app-
roach being less aggressive in planning). Compared to the “d = 0.2” method,
we are 0.06 better in feasibility (0.94 vs 0.88) while being only 0.2X in collision
rate (0.000025 vs 0.000125), we also get a lower collision rate . A similar trend
can also be observed from the hovercraft experiment (Fig.8(c)(d)). Hence, our
approach achieves the best overall performance by considering feasibility and
safety.
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Fig. 8. Feasibility and safety comparisons. Our method achieves the best trade-off
between the feasibility and the safety, with close to 100% safety and 0.2X—4X improve-
ment in feasibility comparing to high-safety methods. Here “original” uses nonlinear
programming for planning ,“d =7” denotes the distance-based re-planning with the
safety distance d, “reach” uses estimated reachable tube to do re-planning, and “ours”
leverages both the reachable tube and the corresponding density to do re-planning.
More details can be found in Sect. 5.2

5.3 Discussions

While our approach can accurately estimate the collision probability and the
motion planner using our estimated density can achieve the highest goal reaching
rate compared to other baselines when enforcing the safety rate above 0.99, we
admit there are assumptions and limitations in our method.

First we assume the neural network can learn a perfect state dynamic and
state density evolution, which is not always satisfied due to the model capacity
and the complexity of the system. The proof in [42][Appendix A] shows the gen-
eralization error bound for this learning framework, which indicates one possible
remedy is to collect more training trajectories.

Besides, we assume the sampled trajectories from the simulator are following
the same distribution as for the real world trajectories. This assumption might
create biases in the density concentration function and the flow map estimation.
One way to resolve this issue is to further fine-tuning the neural network using
the real world data at the inference stage.

The first limitation of our approach is lacking guarantee for the convergence
of the planning algorithm. The success planning rate of our method depends on
the perturbation range (how far the control policy can deviate from the reference
policy) and the perturbation resolution (the minimum difference between two
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candidate policies). There are also optimization-based methods, such as stochas-
tic gradient descent [4], that can converge with probabilistic guarantee derived
from the Robbins-Siegmund theorem [49]. Using optimization-based method for
density-based planning is left to our future work.

The second limitation of our planning framework is the computation time.
This is mainly due to our risk computation step in Eq.2, as mentioned in
Sect. 5.1. Although our proposed probability computation method can handle
higher dimension systems than [42], the complexity of the Delaunay Triangula-
tion process in our framework grows in the power of |d/2| for a d-dimensional
system. In practice, one can use less number of sample points to reduce the com-
putation time. Another alternative is to use other interpolation methods (e.g.,
Nearest Neighbor interpolation) for d-dimensional space.

6 Conclusion

We propose a data-driven framework for probabilistic verification and safe
motion planning for autonomous systems. Our approach can accurately esti-
mate collision risk, using only 0.01X training samples compared to the Monte
Carlo method. We conduct experiments for autonomous driving and hovercraft
control, where the car (hovercraft) with state uncertainty and control input dis-
turbances plans to move to the destination while avoiding all the obstacles. We
show that our approach can achieve the highest goal reaching rate among all
approaches that can enforce the safety rate above 0.99. For future works, we
manage to develop verification approaches for cases that consider (1) other road
participants’ presence and intention and (2) more complicated sensory inputs,
such as LIDAR measurements or even raw camera inputs.
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Appendix
A Car Model Dynamic and Controller Designs
The dynamics for the rearwheel kinematic car model [18] is:

g= |y| = |sinf 0

T cosf 0
¥
6 0 1

(6)

where (z,y) denotes the position of the vehicle’s center of mass, 6 denotes
vehicle’s heading angle, and v,w are the velocity and angular velocity control
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inputs. Given a reference trajectory generated from the motion planner
(z7ef yref gmef)T | the error for the car model is:

€x cos(f) sin(f) 0] [z — amef
ey| = | —sin(d) cos(0) 0| |y —y"ef (7)
ep 0 0 1| [6—0t

The Lyapunov-based controller is designed as:

— ref . i
{v v cos(eg) + ke, + dy (8)

w = w" + vl (kye, + k3sin(eg)) + d,,

where ki, ko, k3 are the coefficients for the controller and d, and d, are the
controller disturbances.

B Hovercraft Model Dynamic and Controller Designs

The hovercraft is the model tested in 3D scenarios. The dynamics for the hov-
ercraft [18] is:

T cosf00 v

) Y sinf 00

=1z 7| o 10| |” ©)
6 0o o1| ¥

where (z,y,z) denotes the 3D position of the hovercraft’s center of mass, 6
denotes the heading angle of the hovercraft in the zy-plane, v (and w) denotes
the velocity (and angular velocity) in the xy-plane, v, denotes the velocity along
the z-axis. When a reference trajectory (z7¢f,ymef, zref 67¢f)T is introduced,
the error for the car model is:

[ cos(f) sin(f) 00| [z —a"f
ey| | —sin(@) cos(0) 00| |y —y"ef 10
e.| 0 0 10| |z—2"¢f (10)
ep 0 0 01| |6—06mef

The Lyapunov-based controller is designed as:

v =" cos(ep) + k1e, + d,,
v, = 0% + kye, +d,, (11)
w = w" + v (kye, + k3 sin(eq)) + d,,

where ki, ko, k3, k4 are the coeflicients for the controller and d,, d,. and d,, are
the corresponding disturbances.
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C Nonlinear Programming for Controller Synthesize

The goal of this section is to find a control sequence {u; };V:_Ol for the car (or the
hovercraft, we use “robot” to represent them in the following context) starting
from gorigin € R to reach the goal state qgest € R% in T time steps, while
satisfying the physical constraints and avoiding colliding with the surrounding
obstacles (M obstacles in total) in the environment. We use the forward Euler
method to compute the ODE ¢ = f(q,u), with each time step duration as At.
Each control input u; will last for L = f%] steps. For the physical constraints,
we set up the maximum and minimum allowed value for the control inputs
as Umaz, Umin € R?. We represent the obstacles as circles (and spheres in 3D
scenarios). The i-th obstacle has a center position ¢¢ € R? (g2 € R? in 3D
scenarios) and a radius r; € R™ (we use ¢; to represent the robot position at
time j, to distinguish with the full robot state g;). We formulate the optimization
process as followed:

M-1 T
. 2
min E E Vi
UO:N—1 < . >
=0 j=0
st. qo = Gorigin
qT = qdest

Umin < Uj < Uma:cvvj =0..N -1

Qj.L+k+1 = qj.L+k T f(q]'.L_HC,Uj)At,Vj =0.N—-1,Vk=0..L—-1

G — @1+~ >rd Vi=0.,M—-1,¥j =0,..,T

(12)

where the first two constraints make sure the robot starts from the initial point
and will reach the goal point, the third and forth constraints enforce the physical
constraints and the robot dynamic, and the last constraint ensure the robot
will not hit obstacles at any time. For feasibility issues, slack variables +; ; are
introduced to relax the collision avoidance constraint (the robot safety will be
checked and ensured during the online planning process after this optimization
process).
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