
Jyotirmoy V. Deshmukh
Klaus Havelund
Ivan Perez (Eds.)

14th International Symposium, NFM 2022
Pasadena, CA, USA, May 24–27, 2022
Proceedings

NASA
Formal MethodsLN

CS
 1

32
60

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 13260

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Jyotirmoy V. Deshmukh •

Klaus Havelund • Ivan Perez (Eds.)

NASA
Formal Methods
14th International Symposium, NFM 2022
Pasadena, CA, USA, May 24–27, 2022
Proceedings

123

Editors
Jyotirmoy V. Deshmukh
University of Southern California
Los Angeles, CA, USA

Klaus Havelund
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA, USA

Ivan Perez
National Institute of Aerospace
Hampton, VA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-06772-3 ISBN 978-3-031-06773-0 (eBook)
https://doi.org/10.1007/978-3-031-06773-0

© Springer Nature Switzerland AG 2022, corrected publication 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8815-464X
https://orcid.org/0000-0001-7079-0472
https://orcid.org/0000-0002-9998-0269
https://doi.org/10.1007/978-3-031-06773-0

Preface

The NASA Formal Methods (NFM) Symposium is a forum to foster collaboration
between theoreticians and practitioners from NASA, academia, and industry, with the
goal of identifying challenges and providing solutions to achieve assurance in
mission-critical and safety-critical systems. The NASA Formal Methods Symposia
welcome submissions on cross-cutting approaches that bring together formal methods
and techniques from other domains. Topics covered by NFM 2022 included, but were
not limited to, the following:

– Advances in formal methods

• Interactive and automated theorem proving
• SMT and SAT solving
• Model checking
• Static analysis
• Runtime verification
• Automated testing
• Specification languages, textual and graphical
• Refinement
• Code synthesis
• Design for verification and correct-by-design techniques
• Requirements specification and analysis

– Integration of formal methods techniques

• Use of machine learning and probabilistic reasoning in formal methods
• Integration of formal methods into software engineering practices
• Combination of formal methods with simulation and analysis techniques
• Formal methods and fault tolerance, and self-healing systems
• Formal methods and graphical modeling languages such as SysML, UML
• Formal methods and autonomy

– Formal methods in practice

• Experience reports of application of formal methods on real systems
• Use of formal methods in systems engineering
• Use of formal methods in education
• Reports on negative results in the application of formal methods
• Usability of formal method tools, and application in industry
• Challenge problems for the formal methods community.

This volume contains the papers presented at NFM 2022, the 14th NASA Formal
Methods Symposium, held at the California Institute of Technology (Pasadena, CA,
USA) during May 24–27, 2022, and organized by JPL, the University of Southern
California, the Formal Methods group at NASA Langley Research Center, and the

California Institute of Technology. NFM 2021 and NFM 2020 were held virtually and
were organized by, respectively, the NASA Langley Research Center and the NASA
Ames Research Center. Prior symposia were held in Houston, TX (2019), Newport
News, VA (2018), Moffett Field, CA (2017), Minneapolis, MN (2016), Pasadena, CA
(2015), Houston, TX (2014), Moffett Field, CA (2013), Norfolk, VA (2012), Pasadena,
CA (2011), Washington, DC (2010), and Moffett Field, CA (2009). The series started
as the Langley Formal Methods Workshop, and was held under that name in 1990,
1992, 1995, 1997, 2000, and 2008.

Papers were solicited for NFM 2022 under two categories: regular papers describing
fully developed work and complete results, and short papers describing tools, experi-
ence reports, or work-in-progress with preliminary results. The symposium received
118 submissions for review, of which 93 were full papers and 25 were short papers.
A total of 39 papers were accepted for publication: 33 full papers and six short papers.
The submissions went through a rigorous review process where each paper was
independently reviewed by at least three reviewers and then subsequently discussed by
the Program Committee (PC).

In addition to the paper presentations, the symposium featured seven invited key-
note speakers: Dines Bjørner (Technical University of Denmark, Denmark), Steve
Chien (JPL, USA), Daniel Jackson (MIT, USA), Julia Lawall (Inria Paris, France),
Sriram Sankaranarayanan (University of Colorado Boulder, USA), Alex Summers
(University of British Columbia, Canada), and Emina Torlak (University of Wash-
ington, USA). The first day of the symposium included four tutorials presented by
Edwin Brady (University of St. Andrews, UK), Ankush Desai (Amazon Web Services,
USA), Anastasia Mavridou (KBR Inc./NASA Ames, USA), and Leonardo de Moura
(Microsoft Research, USA) and Sebastian Ullrich (Karlsruhe Institute of Technology,
Germany). Keynote speakers and tutorial presenters were invited to submit papers,
which are also included in the proceedings.

The PC chairs are especially grateful to Richard Murray, our Local Chair, for
making it possible to hold the symposium at the California Institute of Technology, as
well as Monica Nolasco, for help with local arrangements. We would also like to thank
our scientific advisor, Mani Chandy (California Institute of Technology), and the
application advisors, Robert Bocchino (JPL), John Day (JPL), Maged Elasaar (JPL),
Amalaye Oyake (Blue Origin), Nicolas Rouquette (JPL), and Vandi Verma (JPL).

The organizers are grateful to the authors for submitting their work to NFM 2022
and to all invited speakers for sharing their insights. NFM 2022 would not have been
possible without the work of the outstanding Program Committee and additional
reviewers, the support of the Steering Committee, the support of the California Institute
of Technology, JPL, the University of Southern California, and the NASA Langley
Research Center, and the general support of the NASA Formal Methods community.

The NFM 2022 website can be found at https://nfm2022.caltech.edu.

April 2022 Jyotirmoy V. Deshmukh
Klaus Havelund

Ivan Perez

vi Preface

https://nfm2022.caltech.edu

Organization

Program Chairs

Jyotirmoy V. Deshmukh University of Southern California, USA
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Ivan Perez National Institute of Aerospace, USA

Local Organizer

Richard M. Murray California Institute of Technology, USA

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Natalia Alexandrov NASA, USA
Nikos Arechiga Toyota Research Institute, USA
Julia Badger NASA, USA
Stanley Bak Stony Brook University, USA
Dirk Beyer Ludwig-Maximilians-Universität München, Germany
Sylvie Boldo Inria and Université Paris-Saclay, France
Borzoo Bonakdarpour Michigan State University, USA
Betty H. C. Cheng Michigan State University, USA
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Misty Davies NASA, USA
John Day Jet Propulsion Laboratory, California Institute of

Technology, USA
Ewen Denney NASA, USA
Aaron Dutle NASA, USA
Rüdiger Ehlers Clausthal University of Technology, Germany
Yliès Falcone Université Grenoble Alpes/Inria Grenoble, France
Chuchu Fan MIT, USA
Marie Farrell Maynooth University, Ireland
Martin Feather Jet Propulsion Laboratory, California Institute of

Technology, USA
Lu Feng University of Virginia, USA
Jean-Christophe Filliatre CNRS, France
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Alwyn Goodloe NASA, USA
Kim Guldstrand Larsen Aalborg University, Denmark
Arie Gurfinkel University of Waterloo, Canada
Constance Heitmeyer Naval Research Laboratory, USA

Kerianne Hobbs Air Force Research Laboratory, USA
Gerard Holzmann Nimble Research, USA
Bardh Hoxha Toyota Research Institute North America, USA
Marieke Huisman University of Twente, The Netherlands
Susmit Jha SRI International, USA
Rajeev Joshi Amazon Web Services, USA
Guy Katz The Hebrew University of Jerusalem, Israel
Martin Leucker University of Luebeck, Germany
Michael Lowry NASA, USA
Leonardo Mariani University of Milano Bicocca, Italy
Anastasia Mavridou KBR/NASA Ames, USA
Natasha Neogi NASA, USA
Dejan Nickovic Austrian Institute of Technology, Austria
Corina Pasareanu CMU/KBR/NASA Ames, USA
Doron Peled Bar Ilan University, Israel
Pavithra Prabhakar Kansas State University, USA
Giles Reger Amazon Web Services, USA, and University of

Manchester, UK
Nicolas Rouquette Jet Propulsion Laboratory, California Institute of

Technology, USA
Kristin Yvonne Rozier Iowa State University, USA
Anne-Kathrin Schmuck Max-Planck-Institute for Software Systems, Germany
Johann Schumann KBR/NASA Ames, USA
Cristina Seceleanu Mälardalen University, Sweden
Yasser Shoukry University of California, Irvine, USA
Julien Signoles CEA List/Université Paris-Saclay, France
Oleg Sokolsky University of Pennsylvania, USA
Marielle Stoelinga University of Twente, The Netherlands
Carolyn Talcott SRI International, USA
Marcel Verhoef European Space Agency, The Netherlands
Willem Visser Amazon Web Services, USA
Huafeng Yu Boeing Research and Technology, USA

Additional Reviewers

Anand, Ashwani
Andrès, Léo
Backeman, Peter
Barnat, Jiri
Bhayat, Ahmed
Borca-Tasciuc, Giorgian
Chawla, Abhinav
Chien, Po-Chun
Conrad, Esther
Das, Spandan

Dawson, Charles
Dobe, Oyendrila
Dolan, Sydney
Dross, Claire
Dureja, Rohit
Ferlez, James
Garcia-Contreras, Isabel
Girol, Guillaume
Goorden, Martijn
Grosen, Thomas M.

viii Organization

Gu, Rong
Guedri, Wissal
Hamilton, Nathaniel
Hansen, Jonas
Hsu, Tzu-Han
Jacquemin, Maxime
Johannsen, Chris
Kallwies, Hannes
Katis, Andreas
Kauffman, Sean
Kempa, Brian
Kochdumper, Niklas
Kolb, Christina
Lal, Ratan
Lammich, Peter
Lee, Nian-Ze
Lopuhaä-Zwakenberg, Milan
Mainhardt, Ana Maria
Marre, Bruno
Mata, Andrew
Meng, Yue
Neider, Daniel
Paskevich, Andrei
Prakash Nayak, Satya

Priya, Siddharth
Roussanaly, Victor
Rubbens, Robert
Sachenbacher, Martin
Schmitt, Frederik
Schmitz, Malte
Sheikhi, Sanaz
Slagel, Joseph
Slagel, Tanner
Soueidi, Chukri
Spiessl, Martin
Strub, Pierre-Yves
Su, Yusen
Thoma, Daniel
van den Bos, Petra
van Dijk, Tom
Vediramana Krishnan, Hari Govind
Wendler, Philipp
Winter, Stefan
Wu, Changshun
Xu, Kathleen
Yang, Xiaodong
Zhang, Songyuan
Zimmermann, Martin

Organization ix

Abstracts of Invited Tutorials

Total Functional Programming in Idris:
A Tutorial

Edwin Brady

School of Computer Science, University of St Andrews, Scotland, UK
ecb10@st-andrews.ac.uk

https://type-driven.org.uk/edwinb

Abstract. Idris is a pure functional programming language with dependent
types. The type system allows precise specification and reasoning about program
properties. Idris also supports totality checking. A total function is a function
which returns a finite, non-empty prefix of a (possibly infinite) result in finite
time. The analysis is necessarily incomplete, but Idris uses syntactic and
semantic checks to check which functions are guaranteed to be total. In this
tutorial, I will discuss total programming in Idris [2], both to show its practical
benefits in writing robust and secure code, and to show how to write total
programs in practice.

Overview

The tutorial is in two parts. In the first part, I show how to write total programs using
recursion and corecursion. Recursive programs are checked for totality by checking
how the size of inputs changes through recursive calls, using the size-change principle
[3]. Corecursive functions are checked for totality by ensuring that all corecursive calls
are guarded by a constructor. By combining recursive and corecursive functions and a
notion of “fuel” [4], we have a Turing-complete language where individual compo-
nents are guaranteed total. I also show how views, a concept enabled by dependent
types [5], make total programming powerful and accessible. I illustrate these concepts
with an example of a concurrent server program. In the second part, I show how to
define and implement the views we have used to describe common patterns of recur-
sion. This involves an accessibility predicate which we can use to prove that recursive
functions reduce to a base case. In particular, I demonstrate domain predicates [1] in
Idris, a method for proving termination of general recursive functions.

References

1. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct. in
Comp. Science 15, 671–708 (2002). https://doi.org/10.1017/S0960129505004822

2. Brady, E.: Idris 2: quantitative type theory in practice. In: Møller, A., Sridharan, M. (eds.)
35th European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 194, pp. 9:1–9:26. Schloss Dagstuhl –

https://orcid.org/0000-0002-9734-367X
https://doi.org/10.1017/S0960129505004822

Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.
ECOOP.2021.9, https://drops.dagstuhl.de/opus/volltexte/2021/14052

3. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termina-
tion. SIGPLAN Not. 36(3), 81–92 (2001). https://doi.org/10.1145/373243.360210

4. McBride, C.: Turing-completeness totally free. In: Hinze, R., Voigtländer, J. (eds.) MPC
2015. LNCS, vol. 9129, pp 257–275. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-19797-5_13

5. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1), 69–111 (2004).
https://doi.org/10.1017/S0956796803004829, http://www.journals.cambridge.org/abstract_
S0956796803004829

xiv E. Brady

https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://drops.dagstuhl.de/opus/volltexte/2021/14052
https://doi.org/10.1145/373243.360210
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1017/S0956796803004829
http://www.journals.cambridge.org/abstract_S0956796803004829
http://www.journals.cambridge.org/abstract_S0956796803004829

The Lean 4 Theorem Prover
and Programming Language: A Tutorial

Leonardo de Moura1 and Sebastian Ullrich2

1 Microsoft Research
leonardo@microsoft.com

2 Karlsruhe Institute of Technology
sebastian.ullrich@kit.edu

Lean 41 is an implementation of the Lean interactive theorem prover (ITP) and pro-
gramming language in Lean itself. It addresses many shortcomings of the previous
versions and contains many new features. Lean 4 is fully extensible: users can modify
and extend the parser, elaborator, tactics, decision procedures, pretty printer, and code
generator. The new system has a hygienic macro system custom-built for ITPs. It
contains a new typeclass resolution procedure based on tabled resolution, addressing
significant performance problems reported by the growing user base. Lean 4 is also an
efficient functional programming language based on a novel programming paradigm
called functional but in-place. Efficient code generation is crucial for Lean users
because many write custom-proof automation procedures in Lean itself.

The main goal of this tutorial is to introduce Lean 4 to potential users. Participants
are assumed to have only a basic grounding in logic and (functional) programming.
The tutorial is based on the book “Theorem Proving in Lean”2 and examples from the
“Lean 4 Language Manual”3.

1 http://leanprover.github.io/.
2 https://leanprover.github.io/theorem_proving_in_lean4/title_page.html.
3 https://leanprover.github.io/lean4/doc/.

http://leanprover.github.io/
https://leanprover.github.io/theorem_proving_in_lean4/title_page.html
https://leanprover.github.io/lean4/doc/

Formally Reasoning about Distributed Systems
using P

Ankush Desai

Amazon
ankushpd@amazon.com

Abstract. Distributed systems are notoriously hard to get right. Programmers
need to reason about numerous control paths resulting from the myriad inter-
leaving of messages and failures. Moreover, it is extremely difficult to sys-
tematically test distributed systems, most control paths remain untested, and
serious bugs can lie dormant for months or even years after deployment. These
bugs can be in the design of the system itself or a gap between design and its
implementation. Hence, there is need for tools and techniques that can enable
developers to reason about correctness of their system in different phases of the
development cycle, from design, to implementation and testing, and also after
deployment in production.
To address these challenges, we have been developing P, a unified framework

for reasoning about distributed systems. P is a state machine based programming
language for modeling and specifying distributed systems. P supports several
backend analysis engines (like model checking and symbolic execution) to
check that the distributed system modeled in P satisfies the desired correctness
specifications. Not only can a P program be systematically tested (e.g., model
checking), but it can also be compiled into executable code. Essentially, P
unifies modeling, specifying, implementing, and testing into one activity for the
programmer. P is currently being used extensively inside Amazon (AWS) for
analysis of complex distributed systems. P is also being used in academia for
programming safe robotic systems. P was first used to implement and validate
the USB device driver stack that ships with Microsoft Windows 8 and Windows
Phone.
In this short informal article, we provide a quick overview of the challenges

and key features in P that we believe helped in its adoption. Finally, we
encourage the formal methods and distributed systems community to use and
contribute to the open source P framework.

Keywords: Model checking � Formal methods � Distributed systems

1 Challenge: Programming Reliable Distributed Systems

Programming reliable distributed systems is challenging because of the need to reason
about correctness in the presence of myriad possible interleaving of messages and

failures. Unsurprisingly, it is common for developers to uncover correctness bugs after
deployment. Formal methods (FM)1 can play an important role in addressing this
challenge. But the key requirement for success, especially, in an industrial setting,
would be the ability to integrate FM in all the phases of development process, from
system design, to implementation, to unit and integration testing, and even in pro-
duction through runtime monitoring. Moreover, for most of the known applications of
formal techniques for distributed systems in industrial setup, analysis performed during
design phase (e.g., TLA+ [1]) has not been connected to popular techniques for
validation/testing of the implementation (e.g., Jepsen [2], Chaos Monkey [3]). It is
crucial for the adoption of formal methods that efforts invested in writing specifications
during the design verification phase must not get wasted and should play an important
role in the later phases of the software life cycle, e.g., during testing of implementation.

To summarize, there is a need to build an unified framework that can be used to
perform analysis of distributed systems at design, implementation, and even in pro-
duction with the capability to reuse developers efforts (e.g., artifacts like models and
specifications) across different phases of the development cycle.

2 P Framework

P [4] is a state machine-based programming language for modeling and specifying
complex distributed systems. The P framework has three important parts: (1) a
high-level state machine-based programming language, allowing programmers to
specify their system design as a collection of communicating state machines. P being a
programming language (rather than a mathematical modeling language) has been one
of the key reasons for its large-scale adoption; Developers find it easy to create formal
models in a programming language with familiar syntax. The syntactic sugar of state
machines, allows them capture the protocol as state machines which is how they
normally think about complex system design. (2) it supports scalable analysis engines
to check that the distributed system modeled in P satisfy the desired correctness
specifications. P can also leverages distributed compute to scale exploration to large
system design and has helped find critical bugs in complex systems. (3) we are actively
developing automated to check code conformance and take steps towards bridging the
gap between design models/specifications and the actual implementation. Each of these
features have played an important role in the adoption of P.

In our limited experience of using P inside industry and academia, we have
observed that P has helped developers in three critical ways: (1) “P as a thinking tool”:
Writing formal specifications in P forced developers to think about their system design
rigorously, and in turn helped in bridging gaps in their understanding of the system.
A large fraction of the bugs were eliminated in the process of writing specifications

1 Formal Methods is used leniently to refer to the wide area of techniques from model checking, to
property-based testing, to runtime monitoring. Essentially, approaches that can be easily integrated
into development process but does require engineers to create formal models and specifications
of their system.

Formally Reasoning about Distributed Systems using P xvii

itself; (2) “P as a bug finder”: Model checking helped find corner case bugs in system
design that were missed by stress and integration testing; (3) “P helped boost
developer velocity”: After the initial overhead of creating the formal models, future
updates and feature additions could be rolled out faster as these non-trivial changes are
rigorously validated before implementing them. P is an open source project and we
encourage the formal methods and distributed systems community to use and con-
tribute to the framework.

Acknowledgements. P has always been a collaborative project between industry and
academia. We sincerely thank all the contributors to P framework over the years.

References

1. TLA+. https://lamport.azurewebsites.net/tla/tla.html.
2. Jepsen. https://jepsen.io/.
3. Chaos Monkey. https://netflix.github.io/chaosmonkey/.
4. P. https://p-org.github.io/P/.

xviii A. Desai

https://lamport.azurewebsites.net/tla/tla.html
https://jepsen.io/
https://netflix.github.io/chaosmonkey/
https://p-org.github.io/P/

Contents

Invited Keynotes

Formal Methods for Trusted Space Autonomy: Boon or Bane? 3
Steve A. Chien

An Essence of Domain Engineering: A Basis for Trustworthy
Aeronautics and Space Software . 14

Dines Bjørner

Concept Design Moves . 52
Daniel Jackson

Automating Program Transformation with Coccinelle 71
Julia Lawall and Gilles Muller

The Prusti Project: Formal Verification for Rust . 88
Vytautas Astrauskas, Aurel Bílý, Jonáš Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli,
and Alexander J. Summers

Reachability Analysis for Cyber-Physical Systems: Are We There Yet? 109
Xin Chen and Sriram Sankaranarayanan

Regular Submissions

Towards Better Test Coverage: Merging Unit Tests for Autonomous
Systemsy . 133

Josefine B. Graebener, Apurva Badithela, and Richard M. Murray

Quantification of Battery Depletion Risk Made Efficient 156
Holger Hermanns and Gilles Nies

Hierarchical Contract-Based Synthesis for Assurance Cases 175
Timothy E. Wang, Zamira Daw, Pierluigi Nuzzo, and Alessandro Pinto

Verified Probabilistic Policies for Deep Reinforcement Learning 193
Edoardo Bacci and David Parker

NNLander-VeriF: A Neural Network Formal Verification Framework
for Vision-Based Autonomous Aircraft Landing . 213

Ulices Santa Cruz and Yasser Shoukry

The Black-Box Simplex Architecture for Runtime Assurance of
Autonomous CPS . 231

Usama Mehmood, Sanaz Sheikhi, Stanley Bak, Scott A. Smolka,
and Scott D. Stoller

Case Studies for Computing Density of Reachable States for Safe
Autonomous Motion Planning . 251

Yue Meng, Zeng Qiu, Md Tawhid Bin Waez, and Chuchu Fan

Towards Refactoring FRETish Requirements . 272
Marie Farrell, Matt Luckcuck, Oisín Sheridan, and Rosemary Monahan

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe:
Closed-Loop Verification Through Quantized State Backreachability 280

Stanley Bak and Hoang-Dung Tran

ZoPE: A Fast Optimizer for ReLU Networks with
Low-Dimensional Inputs . 299

Christopher A. Strong, Sydney M. Katz, Anthony L. Corso,
and Mykel J. Kochenderfer

Permutation Invariance of Deep Neural Networks with ReLUs 318
Diganta Mukhopadhyay, Kumar Madhukar, and Mandayam Srivas

Configurable Benchmarks for C Model Checkers . 338
Xaver Fink, Philipp Berger, and Joost-Pieter Katoen

Assume-Guarantee Reasoning with Scheduled Components 355
Cong Liu, Junaid Babar, Isaac Amundson, Karl Hoech, Darren Cofer,
and Eric Mercer

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata
Learning . 373

Andrea Pferscher and Bernhard K. Aichernig

From Verified Scala to STIX File System Embedded Code
Using Stainless . 393

Jad Hamza, Simon Felix, Viktor Kunčak, Ivo Nussbaumer,
and Filip Schramka

On the Termination of Borrow Checking in Featherweight Rust 411
Étienne Payet, David J. Pearce, and Fausto Spoto

More Programming Than Programming: Teaching Formal Methods in a
Software Engineering Programme . 431

James Noble, David Streader, Isaac Oscar Gariano,
and Miniruwani Samarakoon

xx Contents

Zone Extrapolations in Parametric Timed Automata 451
Johan Arcile and Étienne André

Exemplifying Parametric Timed Specifications over Signals with Bounded
Behavior . 470

Étienne André, Masaki Waga, Natuski Urabe, and Ichiro Hasuo

Timed Automata Learning via SMT Solving . 489
Martin Tappler, Bernhard K. Aichernig, and Florian Lorber

Asynchronous Composition of Local Interface LTL Properties 508
Alberto Bombardelli and Stefano Tonetta

Elucidation and Analysis of Specification Patterns in Aerospace System
Telemetry. 527

Zachary Luppen, Michael Jacks, Nathan Baughman, Muhamed Stilic,
Ryan Nasers, Benjamin Hertz, James Cutler, Dae-Young Lee,
and Kristin Yvonne Rozier

Robust Computation Tree Logic . 538
Satya Prakash Nayak, Daniel Neider, Rajarshi Roy, and Martin
Zimmermann

On-the-Fly Model Checking with Neural MCTS . 557
Ruiyang Xu and Karl Lieberherr

Requirements-Driven Model Checking and Test Generation for
Comprehensive Verification . 576

Devesh Bhatt, Hao Ren, Anitha Murugesan, Jason Biatek, Srivatsan
Varadarajan, and Natarajan Shankar

Operational Annotations: A New Method for Sequential Program
Verification . 597

Paul C. Attie

Towards Formal Verification of HotStuff-Based Byzantine Fault Tolerant
Consensus in Agda . 616

Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo,
and Lisandra Silva

DSV: Disassembly Soundness Validation Without Assuming a Ground
Truth . 636

Xiaoxin An, Freek Verbeek, and Binoy Ravindran

Probabilistic Hyperproperties with Rewards . 656
Oyendrila Dobe, Lukas Wilke, Erika Ábrahám, Ezio Bartocci,
and Borzoo Bonakdarpour

Contents xxi

Hypercontracts . 674
Inigo Incer, Albert Benveniste, Alberto Sangiovanni-Vincentelli,
and Sanjit A. Seshia

Monitorability of Expressive Verdicts . 693
Felipe Gorostiaga and César Sánchez

BDDs Strike Back: Efficient Analysis of Static and Dynamic Fault Trees . . . 713
Daniel Basgöze, Matthias Volk, Joost-Pieter Katoen, Shahid Khan,
and Marielle Stoelinga

Approximate Translation from Floating-Point to Real-Interval Arithmetic 733
Daisuke Ishii, Takashi Tomita, and Toshiaki Aoki

Synthesis of Optimal Defenses for System Architecture Design Model in
MaxSMT . 752

Baoluo Meng, Arjun Viswanathan, William Smith, Abha Moitra, Kit Siu,
and Michael Durling

Certified Computation of Nondeterministic Limits . 771
Michal Konečný, Sewon Park, and Holger Thies

The Power of Disjoint Support Decompositions in Decision Diagrams. 790
Lieuwe Vinkhuijzen and Alfons Laarman

Incremental Transitive Closure for Zonal Abstract Domain. 800
Kenny Ballou and Elena Sherman

Proof Mate: An Interactive Proof Helper for PVS (Tool Paper) 809
Paolo Masci and Aaron Dutle

Runtime Verification Triggers Real-Time, Autonomous Fault Recovery on
the CySat-I. 816

Alexis Aurandt, Phillip H. Jones, and Kristin Yvonne Rozier

Correction to: From Verified Scala to STIX File System Embedded Code
Using Stainless . C1

Jad Hamza, Simon Felix, Viktor Kunčak, Ivo Nussbaumer,
and Filip Schramka

Author Index . 827

xxii Contents

Invited Keynotes

Formal Methods for Trusted Space
Autonomy: Boon or Bane?

Steve A. Chien(B)

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109-8099, USA
steve.a.chien@jpl.nasa.gov

https://ai.jpl.nasa.gov

Abstract. Trusted Space Autonomy is challenging in that space sys-
tems are complex artifacts deployed in a high stakes environment with
complicated operational settings. Thus far these challenges have been
met using the full arsenal of tools: formal methods, informal methods,
testing, runtime techniques, and operations processes. Using examples
from previous deployments of autonomy (e.g. the Remote Agent Experi-
ment on Deep Space One, Autonomous Sciencecraft on Earth Observing
One, WATCH on MER, IPEX, AEGIS on MER, MSL, and M2020, and
the M2020 Onboard planner), we discuss how each of these approaches
have been used to enable successful deployment of autonomy. We next
focus on relatively limited use of formal methods (both prior to deploy-
ment and runtime methods). From the needs perspective, formal meth-
ods may represent the best chance for reliable autonomy. Testing, infor-
mal methods, and operations accommodations do not scale well with
increasing complexity of the autonomous system as the number of text
cases explodes and human effort for informal methods becomes infeasi-
ble. However from the practice perspective, formal methods have been
limited in their application due to: difficulty in eliciting formal speci-
fications, challenges in representing complex constraints such as metric
time and resources, and requiring significant expertise in formal methods
to apply properly to complex, critical applications. We discuss some of
these challenges as well as the opportunity to extend formal and informal
methods into runtime validation systems.

Keywords: Verification and validation · Flight software · Space
autonomy · Artificial intelligence

1 Introduction

From the dawn of the space era, software has played a key role in the advance-
ment of spaceflight. In the Apollo program, flight software in the Apollo Guid-
ance Computer [16] enabled the astronauts to safely land on the Moon despite
a radar configuration switch being set incorrectly.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 3–13, 2022.
https://doi.org/10.1007/978-3-031-06773-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_1&domain=pdf
http://orcid.org/0000-0003-1023-9480
https://doi.org/10.1007/978-3-031-06773-0_1

4 S. A. Chien

Yet even with this success, the Apollo flight software development process
encountered tremendous challenges [31], many of which would be quite familiar
to flight software teams of today:

– inadequate memory available for software to meet stated requirements,
– evolving requirements,
– unit software being delivered to integration without any unit testing,
– late software deliveries jeopardizing project schedule (even the launch dates),

and
– challenges in coordination between the teams distributed at NASA (Houston,

TX and Huntsville, AL) and MIT (Cambridge, MA).

The Apollo program mitigated these challenges using methods that would
be familiar to current flight software teams:

– revolutionary use of an interpreted “higher order language” rather than
machine or assembly code

– requirements driven software development,
– reduction in scope of the software (reducing the fidelity of the Earth model

used in lunar orbit, some attitude maneuver computations),
– development of significant infrastructure to support significant software test-

ing (e.g. hardware and software simulations),
– institution of change control boards to restrict scope changes, and
– mitigating the distributed teams by having key personnel spend time co-

location with other team elements.

In the end, the Apollo flight software delivered spectacularly, in no small
part because of the tremendously talented team. The lessons learned from the
Apollo flight software effort [31] would also come as no surprise to current flight
software practitioners:

– documentation is crucial,
– verification must proceed through several levels,
– requirements must be clearly defined and carefully managed,
– good development plans should be created and executed, and
– more programmers do not mean faster development.

The Apollo flight software can be considered the “first” space autonomy flight
software. The verification and validation process for this consisted primarily of
extensive unit and system level testing. Although it is not described explicitly
as such [31], informal methods must also have been heavily used in the form of
code reviews and algorithm reviews.

But if we are to realize the incredible promise of autonomy in future space
missions [10], which relies on reliable, trusted, autonomy flight software, what are
the prospects for such software moving forward? We argue that all three major
elements of validation and verification techniques will be critical as we move into
an era of greater autonomy flight software: formal methods, informal methods,

Formal Methods for Trusted Space Autonomy: Boon or Bane? 5

and testing. More precisely defined, verification typically refers to ensuring that
the software meets a specification and validation ensuring that the software
meets the customer/user needs. For the purposes of our discussion, the focus is
on verification but some elements of user studies, acceptance testing and informal
design reviews would also address validation. Also for the purposes of this paper
we use the following informal definitions.

Testing - exercising software artifacts - units, combinations of units, and system
level on inputs both within and beyond the design specifications.

Formal Methods - analytical and search based methods intended to prove spe-
cific positive or negative properties of software or algorithms. Examples formal
methods include model checking and static code analyzers.

Informal Methods - includes design reviews, code reviews, safety analysis, and
coding guidelines. Informal methods tend to be people and knowledge intensive
which is both a strength and a weakness. Some application of Formal Methods
that requires expert translation or re-implementation of an algorithm into a
different modelling language might best be considered hybrid formal/informal
methods with the manual translation being an informal method.

In the remainder of this paper, we first describe major autonomy software
that has been flown in space (including development of Mars 2020 Autonomy
Flight Software scheduled for deployment in 2023) and discuss the use of informal
methods, formal methods, and testing to Verify and Validate said software.

We then discuss the promise and the challenges in growing the role of formal
methods in developing increasingly robust, verified and validated autonomy flight
software.

2 Past Verification and Validation of Autonomy Flight
Software

While only a small fraction of space missions include significant autonomy flight
software, because of the large number of space missions there have been numer-
ous flights of autonomy software. In this section we survey prior flights of auton-
omy/artificial intelligence software and describe the use of testing, informal
methods, and formal methods in their deployment.

2.1 Remote Agent Experiment

The Remote Agent Experiment (RAX) [30] flew a planner-scheduler, task execu-
tive, and mode identification and recovery software onboard NASA’s Deep Space
One mission for two periods totaling approximately 48 h in 1999. RAX repre-
sented the first spaceflight of significant AI software. RAX made extensive use

6 S. A. Chien

of multiple software and hardware testbeds of varying fidelity [4] to Verify and
Validate the RAX software.

The verification and validation of the onboard planner used novel methods for
testing including definitions of test coverage, use of a logical domain specification
to check plans for correctness (derived from the planner model) and also checks
automatically derived from flight rules [13,33].

RAX was not only a significant advance in autonomy but also demonstrated
significant use of formal methods for verification. Specifically, the executive was
verified pre-flight using the SPIN model checker which identified several con-
currency bugs [18]. Additionally, when an anomaly occurred during flight, an
experiment was conducted to use formal methods to isolate the issue in a java
surrogate for the flight code [17]. These successes are an excellent indicator of
the utility of formal methods for AI/Autonomy software.

2.2 Autonomous Sciencecraft on Earth Observing One

The Autonomous Sciencecraft (ASE) flew onboard the Earth Observing One
(EO-1) Mission and enables significant science-driven autonomy [9,27]. ASE
flew the CASPER onboard planning system, the Spacecraft Command Language
(SCL) task executive, and also Onboard Data Analysis software (including Sup-
port Vector Machine Learning). ASE later flew the Livingston 2 (L2) Mode Iden-
tification and Recovery software as a further flight experiment but L2 was not
used operationally [19,20]. ASE enabled onboard analysis of acquired imagery
and modification of the future mission plan to acquire more images based on
image analysis. ASE originally was slated as a 6 month technology demonstra-
tion, but was so successful that it was approved for continued operational usage
and was the primary missions operation software for EO-1 for the remainder of
the mission 2004–2017 (over a dozen years). ASE represented flight of a con-
siderable code base (over 100 K source lines of code (SLOC), primarily in C++
and C. Preparing this large code base for flight required overcoming significant
software issues including memory allocation and code image size [34].

ASE was verified and validated using a combination of informal methods,
formal methods, and testing [11]. Significant testing was performed on a range of
software and hardware platforms of varying fidelity and included: requirements-
based testing, unit testing, system-level testing, and scenario-based testing -
including nominal, off nominal, and extrema scenarios.

ASE made heavy use of informal methods as well. A safety review was con-
ducted studying over 80 potential ways in which incorrect operations could harm
the spacecraft. ASE used a layered software and operations architecture with
multiple redundant layers of: operations procedures, planner, executive, base
flight software, and hardware. Therefore every layer could be used to redun-
dantly enforce flight rules to protect the spacecraft. This layered architecture
was very effective in enabling reliable operations.

ASE Verification and Validation had limited use of formal methods. Multiple
static code checkers were used to check all ASE code. Automated code gener-
ation was used to generate of SCL checks from CASPER activity and resource
specifications (this could be considered a form of runtime validation).

Formal Methods for Trusted Space Autonomy: Boon or Bane? 7

For a description of anomalies encountered during ASE operations and causes
see [35]. It is worth noting that the majority of these anomalies could be con-
sidered systems engineering issues that were manifested in software, not core
software errors (like pointer de-referencing or memory allocation issues).

2.3 WATCH/SPOTTER on Mars Exploration Rovers

WATCH/SPOTTER is image analysis software that was operationally qualified
on the Mars Exploration Rovers (MER) mission [5] (WATCH is the MER soft-
ware module name and SPOTTER is the name designated in publication(s)).
WATCH was tested at the unit and subsystem level on testbeds ranging from
workstation to the actual MER ground rover testbed. Informal methods were
also used: coding guidelines, code walkthroughs, and software design document
reviews. Standard code static analyzers were also applied as part of the project
standard software process.

2.4 AEGIS on MER, MSL, and M2020

AEGIS is software used on the MER, MSL, and M2020 rover missions that
allows the rover to acquire wide FOV imagery, find targets according to user
specified science criteria, and target with narrow FOV sensors. AEGIS was orig-
inally developed for the MER mission Mini-TES and Pancam instruments1 [12],
updated for MSL with the Chemcam instrument [14], and is now in use on M2020
with the SuperCam instrument. AEGIS represents a significant code base at just
under 30K lines of source code (SLOC).

Prior to deployment on all three rover missions, AEGIS was subjected to
testing on testbeds ranging from workstations to actual ground rover testbeds.
Informal methods were also applied such as code walkthroughs, software module
reviews, and requirements analysis. Formal methods static code analyzers were
also used as part of the normal software development process.

2.5 MSL FSW

While technically not all autonomy software, the Mars Science Laboratory
(MSL) flight software development practices are worth considering as they rep-
resent the state of the practice for flight software development [21].

MSL heavily used a range of informal methods to ensure software quality
including:

– risk-based coding rules (such as assertion density),
– design and code walkthroughs, and
– documentation requirements and reviews.

1 Unfortunately the Mini-TES instrument failed before AEGIS-MER operational qual-
ification so AEGIS was never able to be used with Mini-TES on MER on Mars.

8 S. A. Chien

Notably, the MSL project automated checking of the above software require-
ments.

MSL also conducted an extensive testing program on testbeds ranging from
WSTS/linux workstation to flight testbeds.

Finally, MSL used formal methods in several ways. First, the SPIN model
checker was used to search for concurrency issues in critical multithreaded code
[21]. Second, significant amounts of code were automatically generated from
higher-level specifications (such as controllers from statecharts). Third, MSL
used the Coverity, Codesonar, Semmle, and Uno static code analyzers.

2.6 Intelligent Payload Experiment (IPEX)

IPEX [7] was a cubesat technology demonstration mission that demonstrated
high throughput onboard processing for the HyspIRI Intelligent Payload Module
(IPM) concept [8]. IPEX used the CASPER planner, a linux shell-based task
executive, and numerous onboard instrument analysis software modules.

IPEX followed the same software processes as ASE. However, because IPEX
was a much less complex spacecraft than EO-1 (specifically no active attitude
control) the overall operations constraints were less complex. For IPEX the
flight processor was running linux. This simplified the Verification and Vali-
dation process because there was very little difference between workstation and
flight testbed environments - greatly facilitating testing. As with ASE, unit and
system level testing, including nominal, off nominal, and extrema cases were
performed. Informal methods included code, software module, and safety-based
walkthroughs and reviews. Use of formal methods was limited to static code
analyzers.

3 Current Validation of Autonomy Software: Onboard
Planner for M2020

The Mars 2020 Mission is deploying an onboard scheduler to the Perseverance
rover as this paper goes to press (Spring 2022) with a target operational date in
2023. This onboard scheduler would control most of the activities of the rover
- including rover wake/sleep [28,32]. This onboard scheduler must be fit within
limited rover computing resources [15]. The onboard scheduler also utilizes flexi-
ble execution (which can be viewed as taking on the role of an executive) [1] and
also supports a limited form of disjunction in plans [2]. The onboard planner rep-
resents a sizeable, complex code base at approximately 56K source lines of code
(SLOC). The ground-based version of the automated scheduler [36] also has an
explanation capability [3] to assist the ground operations team in understanding
possible plans and outcomes.

The onboard planner is being verified using a combination of testing, infor-
mal methods, and formal methods. Testing includes unit test, systems test, and
scenario tests. Specifically scenario testing includes approximately 1 year of oper-
ations data of the Perseverance rover since landing. Informal methods includes

Formal Methods for Trusted Space Autonomy: Boon or Bane? 9

code walkthroughs, coding guidelines and rules (see MSL above), as well as
design reviews and software documentation. Finally, formal methods include the
use of static code analyzers as part of the M2020 software development process.

4 Discussion of Competing Verification and Validation
Methods

In some sense, formal methods may be seen as more promising to achieve robust
Verification and Validation to large scale, complex, autonomous systems. Con-
sider the weaknesses of Testing and Informal Methods.

4.1 Limitations of Testing and Informal Methods

Testing can only reveal bugs, it cannot prove a software artifact bug-free. Resid-
ual defect rate refers to the defect rate in released software (e.g. post validation).
Even the highly verified NASA space shuttle avionics software experienced 0.1
residual defects per KLOC [26] and leading-edge software companies experi-
ence a residual defect rate of 0.2 residual defects per KLOC [25]. A more broad
reliability survey showed a residual defect rate of 1.4 per KLOC [29] and a Mil-
itary system survey [6] showed a residual defect rate of 5–55 residual detects
per KLOC. Additionally, testing can be extremely expensive both in terms of
infrastructure (test drivers, simulators, oracles to evaluate tests) as well as time
and computing power.

Informal methods can leverage significant human expert knowledge but are
also incredibly time, labor, and expertise intensive and therefore add considerable
expense to the software validation process.

4.2 Limitations of Formal Methods

Given the considerable weaknesses of testing and informal methods, one might
consider why formal methods are not used. However consider the following chal-
lenges for application of formal methods to validation of autonomous space sys-
tems.

The Formal Specification Problem. Typically in order to apply formal
methods, one needs three formal specifications: the target artifact, the algo-
rithm/semantics, and the conditions to check. For example, when analyzing a
computer program for race conditions, the target artifact is the program itself,
the algorithm/semantics are the semantics of the programming language, and
the conditions would be a formal specification of the “race conditions” one wishes
to identify. If one is validating that a space system planner will generate valid
plans, the target artifact might be the planner model, the algorithm/semantics
might be the target planner algorithm for generating plans, and the conditions
might be some specification of soundness or termination. The challenge of this

10 S. A. Chien

approach is twofold. First, it is a tremendous amount of effort to derive the
second and third specification, whose primary purpose is to enable the applica-
tion of the formal methods analysis. Second, even if one is able to derive these
specifications, they themselves are suspect and the process is only as good as
these input specifications. E.g. recursively one might require a Verification and
Validation process on these inputs as well.

The Representation Problem. Formal methods are challenged by expressive
representations. Specifically, space applications are demanding in their require-
ments for: complex spatial representations of location, free space, pointing and
geometry; mixed discrete and continuous quantities and resources; and use of
multiple, variable resolution time systems. Any one of these presents consid-
erable challenges for formal methods, space applications often include most if
not all of these representational challenges simultaneously. On the other hand,
practical problems are typically propositional (or at least bounded instances) so
that the truly general representations (such as first order predicate logic) are
not strictly required. Still, in order for formal methods to make further headway
in Verification and Validation of space autonomous systems, further advances in
domain modelling capability are needed.

The Tractability Problem. A formal methods proof that a property holds
often is achieved by exhaustive search of some execution space (such as proving
non concurrency of two elements may require searching the entire space of ele-
ment orderings). For many space autonomy problems complete search of such a
problem space is computationally intractable.

In some cases static source code analysis and logic model checking can been
used to study the dual problem. Instead of exhaustively searching a problem
space to prove a property, one searches in the problem space for violations of the
property. In this way, even partial search can identify issues in the code [23]. This
in some ways is more akin to testing but can achieve much greater coverage more
rapidly (e.g. this approach can be considered a more efficient means of testing).
Unfortunately, such approaches suffer similar drawbacks as testing - e.g. that
they can only find issues and cannot (without complete search) indicate that no
such issues exist.

Note also that increasing computing capabilities and swarm-based dis-
tributed methods of validation [22,24] spread computational difficulties of these
approaches may be mitigated. However, because many of these search problems
scale exponentially om problem specification (e.g. code size) progress can be
elusive.

The Expertise Problem. Because of the above challenges, it often requires
considerable expertise to apply formal methods to good effect. For example, the
MSL concurrency analysis was performed by world class experts in formal meth-
ods. Because of the challenges described, one must not only be able to develop

Formal Methods for Trusted Space Autonomy: Boon or Bane? 11

formal specifications, but one must understand how to build specifications that
model the correct aspects of the application and are amenable to efficient analy-
sis (e.g. this deeper application of formal methods is far from out of the box static
code analyzers). In many respects, this is analogous to the situation with auton-
omy for space applications, in which considerable expertise in software, space,
and operations is needed to develop and deploy critical autonomy software.

5 Conclusions

This paper has discussed prospects for an increasing role for formal methods
in the verification and validation of autonomy flight software. We first surveyed
a number of prior and ongoing developments of autonomy flight software and
described their use of testing, informal methods, and formal methods. In all of
these cases, the bulk of the effort consisted of testing and informal methods. With
only a few notable exceptions (such as MSL code generation and Model checking
of critical code), usage of formal methods was restricted to use of static code
analyzers. We then discussed several challenges in application of formal methods
that restrict its usage: The Formal Specification Problem, The Representation
Problem, The Tractability Problem, and The Expertise Problem. Yet because of
the inherent limitations of testing and informal methods, we are still optimistic
and believe that formal methods are an essential tool in the development of space
autonomy software in the future.

Acknowledgments. This work was performed at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

References

1. Agrawal, J., Chi, W., Chien, S.A., Rabideau, G., Gaines, D., Kuhn, S.: Analyzing
the effectiveness of rescheduling and flexible execution methods to address uncer-
tainty in execution duration for a planetary rover. Robot. Auton. Syst. 140 (2021)
103758 (2021). https://doi.org/10.1016/j.robot.2021.103758

2. Agrawal, J., et al.: Enabling limited resource-bounded disjunction in scheduling.
J. Aerosp. Inf. Syst. 18(6), 322–332 (2021). https://doi.org/10.2514/1.I010908

3. Agrawal, J., Yelamanchili, A., Chien, S.: Using explainable scheduling for the mars
2020 rover mission. In: Workshop on Explainable AI Planning (XAIP), Interna-
tional Conference on Automated Planning and Scheduling (ICAPS XAIP), October
2020. https://arxiv.org/pdf/2011.08733.pdf

4. Bernard, D.E., et al.: The remote agent experiment. In: Deep Space One Technol-
ogy Validation Symposium, Pasadena, CA, February 1999. https://ntrs.nasa.gov/
api/citations/20000116204/downloads/20000116204.pdf

5. Castano, A., et al.: Automatic detection of dust devils and clouds at mars. Mach.
Vis. Appl. 19(5–6), 467–482 (2008)

6. Cavano, J., LaMonica, F.: Quality assurance in future development environments.
IEEE Softw. 4, 26–34 (1987)

https://doi.org/10.1016/j.robot.2021.103758
https://doi.org/10.2514/1.I010908
https://arxiv.org/pdf/2011.08733.pdf
https://ntrs.nasa.gov/api/citations/20000116204/downloads/20000116204.pdf
https://ntrs.nasa.gov/api/citations/20000116204/downloads/20000116204.pdf

12 S. A. Chien

7. Chien, S., et al.: Onboard autonomy on the intelligent payload experiment (IPEX)
CubeSat mission. J. Aerosp. Inf. Syst. (JAIS) 14(6), 307–315 (2016). https://doi.
org/10.2514/1.I010386

8. Chien, S., Mclaren, D., Tran, D., Davies, A.G., Doubleday, J., Mandl, D.: Onboard
product generation on earth observing one: a pathfinder for the proposed Hyspiri
mission intelligent payload module. IEEE JSTARS Special Issue on the Earth
Observing One (EO-1) Satellite Mission: Over a decade in space (2013)

9. Chien, S., et al.: Using autonomy flight software to improve science return on earth
observing one. J. Aerosp. Comput. Inf. Commun. (JACIC) 2, 196–216 (2005)

10. Chien, S., Wagstaff, K.L.: Robotic space exploration agents. Sci. Robot. (2017).
https://www.science.org/doi/10.1126/scirobotics.aan4831

11. Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G., Sherwood, R.: Validating
the autonomous EO-1 science agent. In: International Workshop on Planning and
Scheduling for Space (IWPSS 2004), Darmstadt, Germany, June 2004

12. Estlin, T., et al.: AEGIS automated targeting for the MER opportunity rover.
ACM Trans. Intell. Syst. Technol. 3(3), 1–19 (2012). Article No.: 50. https://doi.
org/10.1145/2168752.2168764

13. Feather, M.S., Smith, B.: Automatic generation of test oracles–from pilot studies
to application. Autom. Softw. Eng. 8(1), 31–61 (2001)

14. Francis, R., et al.: AEGIS autonomous targeting for ChemCam on Mars Science
Laboratory: deployment and results of initial science team use. Sci. Robot. 2
(2017). https://doi.org/10.1126/scirobotics.aan4582

15. Gaines, D., Rabideau, G., Wong, V., Kuhn, S., Fosse, E., Chien, S.: The Mars
2020 on-board planner: balancing performance and computational constraints. In:
Flight Software Workshop, February 2022

16. George, A.: Margaret Hamilton led the NASA software team that landed
astronauts on the moon (2019). https://www.smithsonianmag.com/smithsonian-
institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-
180971575/. Accessed 25 Mar 2022

17. Havelund, K., et al.: Formal analysis of the remote agent before and after flight.
In: Lfm 2000: Fifth NASA Langley Formal Methods Workshop (2000)

18. Havelund, K., Lowry, M., Penix, J.: Formal analysis of a space-craft controller
using spin. IEEE Trans. Softw. Eng. 27(8), 749–765 (2001)

19. Hayden, S.C., Sweet, A.J., Christa, S.E.: Livingstone model-based diagnosis of
earth observing one. In: AIAA Intelligent Systems Technical Conference. AIAA
(2004). https://doi.org/10.2514/6.2004-6225

20. Hayden, S.C., Sweet, A.J., Shulman, S.: Lessons learned in the livingstone 2
on earth observing one flight experiment. In: AIAA Infotech@Aerospace. AIAA
(2005). https://doi.org/10.2514/6.2005-7000

21. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)
22. Holzmann, G.J.: Cloud-based verification of concurrent software. In: Jobstmann,

B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 311–327. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 15

23. Holzmann, G.J.: Test fatigue. IEEE Softw. 37(4), 11–16 (2020)
24. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans.

Softw. Eng. 37(6), 845–857 (2010)
25. Jones, C.: Applied Software Measurement. McGraw-Hill, New York (1991)
26. Joyce, E.: Is error free software possible? Datamation 35(18), 749–765 (1989)
27. JPL-Artificial-Intelligence-Group: Autonomous sciencecraft web site (2017).

https://ai.jpl.nasa.gov/public/projects/ase/. Accessed 25 Mar 2022

https://doi.org/10.2514/1.I010386
https://doi.org/10.2514/1.I010386
https://www.science.org/doi/10.1126/scirobotics.aan4831
https://doi.org/10.1145/2168752.2168764
https://doi.org/10.1145/2168752.2168764
https://doi.org/10.1126/scirobotics.aan4582
https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/
https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/
https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/
https://doi.org/10.2514/6.2004-6225
https://doi.org/10.2514/6.2005-7000
https://doi.org/10.1007/978-3-662-49122-5_15
https://ai.jpl.nasa.gov/public/projects/ase/

Formal Methods for Trusted Space Autonomy: Boon or Bane? 13

28. JPL-Artificial-Intelligence-Group: Mars 2020 onboard planner web site (2017).
https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/. Accessed 25 Mar 2022

29. Musa, J., et al.: Software Reliability: Measurement, Prediction, Application.
McGraw-Hill, New York (1990)

30. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote agent: to boldly go
where no AI system has gone before. Artif. Intell. 103(1–2), 5–47 (1998)

31. NASA: Chapter two: Computers on board the apollo spacecraft. In: Computers in
Spaceflight: The NASA Experience. NASA. https://history.nasa.gov/computers/
Ch2-6.html?mod=article inline. Accessed 27 Mar 2022

32. Rabideau, G., et al.: Onboard automated scheduling for the Mars 2020 rover. In:
Proceedings of the International Symposium on Artificial Intelligence, Robotics
and Automation for Space, i-SAIRAS 2020, European Space Agency, Noordwijk,
NL (2020)

33. Smith, B.D., Feather, M.S., Muscettola, N.: Challenges and methods in testing the
remote agent planner. In: AIPS, pp. 254–263 (2000)

34. Tran, D., Chien, S., Rabideau, G., Cichy, B.: Flight software issues in onboard auto-
mated planning: Lessons learned on EO-1. In: International Workshop on Planning
and Scheduling for Space (IWPSS 2004), Darmstadt, Germany, June 2004. https://
ai.jpl.nasa.gov/public/papers/tran iwpss2004.pdf

35. Tran, D., Chien, S., Rabideau, G., Cichy, B.: Safe agents in space: pre-
venting and responding to anomalies in the autonomous sciencecraft exper-
iment. In: Safety and Security in Multi Agent Systems Workshop (SASE-
MAS), Autonomous Agents and Multi-Agent Systems Conference (AAMAS
2005), Utrecht, Netherlands, July 2005. https://ai.jpl.nasa.gov/public/papers/
tran sasemas2005 PreventingResponding.pdf

36. Yelamanchili, A., et al.: Ground-based automated scheduling for opera-
tions of the Mars 2020 rover mission. In: Proceedings Space Operations
2021, May 2021. https://spaceops.iafastro.directory/a/proceedings/SpaceOps-
2021/SpaceOps-2021/6/manuscripts/SpaceOps-2021,6,x1385.pdf

https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/
https://history.nasa.gov/computers/Ch2-6.html?mod=article_inline
https://history.nasa.gov/computers/Ch2-6.html?mod=article_inline
https://ai.jpl.nasa.gov/public/papers/tran_iwpss2004.pdf
https://ai.jpl.nasa.gov/public/papers/tran_iwpss2004.pdf
https://ai.jpl.nasa.gov/public/papers/tran_sasemas2005_PreventingResponding.pdf
https://ai.jpl.nasa.gov/public/papers/tran_sasemas2005_PreventingResponding.pdf
https://spaceops.iafastro.directory/a/proceedings/SpaceOps-2021/SpaceOps-2021/6/manuscripts/SpaceOps-2021,6,x1385.pdf
https://spaceops.iafastro.directory/a/proceedings/SpaceOps-2021/SpaceOps-2021/6/manuscripts/SpaceOps-2021,6,x1385.pdf

An Essence of Domain Engineering

A Basis for Trustworthy Aeronautics and Space Software

Dines Bjørner1,2(B)

1 DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
bjorner@gmail.com

2 Technical University of Denmark, Fredsvej 11, 2840 Holte, Denmark

https://www.imm.dtu.dk/~dibj

Abstract. Before software can be designed one must have a reason-
able grasp of its requirements. Before requirements can be prescribed
one must have a reasonable grasp of the domain in which the software is
to serve. So we must study, analyse and describe the application domain .
We shall argue that domain science & engineering is a necessary prerequi-
site for requirements engineering, and hence software design. We survey
elements of domain science & engineering – and exemplify some elements
of domain descriptions. We finally speculate on the relevance of domain
engineering in the context of and aeronautics and space.

Keywords: Formal methods · Philosophy · Software · Domain
engineering · Requirements engineering

1 Introduction

A monograph has been published: [11, Domain Science and Engineering]. We
immodestly claim that the contents of that monograph “heralds” a new, an initial,
phase of software development—a new area of study within the exact sciences.

An aim of the present paper is to propagate awareness of the aim & objectives
of that book and hence of this new field, also, of computer science – as labeled
by the book title.

Another side-aim is to also introduce the possibility of a Philosophy of Infor-
matics1. This, we think, is a first for computer & computing science, to be
1 We take informatics to be an amalgam of mostly mathematical nature: computer &

computing science and mathematics. Another such amalgam is IT which we consider
as mostly of technological nature: electronics, plasma and quantum physics, etc.
Informatics, to us, is a universe of intellectual quality: meeting customers expectations,
correct wrt. specifications, etc. IT is then a universe of material quantity: smaller,
bigger, faster, less costly, etc. The products of informatics [must] satisfy laws of
mathematics, in particular of mathematical logic. The products of IT [must] satisfy
the laws of physics.

Invited paper for the The 14th NASA Formal Methods Symposium, https://nfm2022.
caltech.edu, May 24–27, 2022, Pasadena, California, USA.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 14–51, 2022.
https://doi.org/10.1007/978-3-031-06773-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_2&domain=pdf
https://nfm2022.caltech.edu
https://nfm2022.caltech.edu
https://doi.org/10.1007/978-3-031-06773-0_2

An Essence of Domain Engineering 15

“endowed” with a philosophy, as is mathematics [40], physics [13], life sciences
[74], etc. Yes, we are aware of previous attempts2 to include considerations of spe-
cific, detailed, technical issues of theoretical computer science as being of philo-
sophical nature. But what we are suggesting, is, perhaps immodestly expressed,
of a more foundational kind. In our treatment of a possible philosophy of infor-
matics we shall “dig deeper”, as directed by [65–68].

The first four lines of the abstract expresses a dogma – the Triptych3 dogma.
In those lines we used the term ‘reasonable’. By ‘reasonable’ we mean that we
can rationally reason about the domain – as do physicists and mathematicians.
To us that means that domain descriptions are expressed in some notation that
allows logical reasoning. Here we shall use RSL, the Raise4 Specification Language
[27,28]. To express the analysis and description calculi of this paper we shall use
an informal extension of RSL, one whose description functions yield RSL texts,
RSL+Text.

This paper thus serves to propagate the dogma that software development
proceeds from the study, analysis and informal and formal domain descriptions,
via the “derivation” of requirements prescriptions from domain descriptions, to
software design, “derived” from requirements prescriptions.

The paper presents a capsule view of the monograph. For the reasoning
behind the various concepts and the technical details of the domain engineering
method, its principles, techniques and tools, we refer to [11].

By a method we shall understand a set of principles and procedures for
selecting and applying a number of techniques and tools for constructing an
artifact. By a formal method we shall understand a method whose techniques
and tools are given a mathematical understanding. By a formal software devel-
opment method – in the context of the triptych dogma –we shall understand a
formal method which is “built upon”, i.e., utilizes, one or more formal specifica-
tion languages, i.e., languages with formal syntax, formal semantics and proof
systems, that are the used to describe, prescribe and design domain descrip-
tions, requirements prescriptions and software – allowing formal tests [33], for-
mal model checks [19] and formal proofs in order to verify these specifications
and their transformations.

1.1 What Is a Domain ?

By a domain we shall understand a rationally describable5 area of a discrete dynam-
ics segment of a human assisted reality , i.e., of the world, its solid or fluid entities:
natural [“God-given”] and artefactual [“man-made”] parts, and its living species
entities: plants and animals including, notably, humans [11, Sect. 4.2, Defn. 27].
In this paper we shall not cover the ‘living species’ aspects.
2 https://en.wikipedia.org/wiki/Philosophy of computer science.
3 Triptych: a picture (such as an altarpiece) or carving in three panels side by side, or

something composed or presented in three parts or sections especially, like a trilogy.
4 Raise: Rigorous approach to industrial software engineering.
5 By ‘rationally describable’ we mean that the specification, in this case the descrip-

tion, must allow for formal, i.e., logical reasoning.

https://en.wikipedia.org/wiki/Philosophy_of_computer_science

16 D. Bjørner

1.2 Structure of Paper

There are four main sections of this paper. Section 2 discusses the problem
of what must, unavoidably, be in any domain description. It does so on the
background of the quest of philosophers – since antiquity – for understanding
the world around us. Sections 3–4 summarise, respectively exemplify, a domain
analysis & description method. The two sections go hand-in-hand. They have,
sequentially, ‘near-identical’ subsections and paragraphs. Where some aspects of
the method may be omitted in Sect. 3, Sect. 4 may exemplify also those aspects.
Section 5 ‘speculates’ on further perspectives of domain science & engineering.
Its potential for application in aeronautics and space !

2 Philosophy: What Must be in any Domain Description?

Philosophy, since the ancient Greeks, have pondered over the question: which
are the absolutely necessary conditions for describing any world?, that is: what, if
anything, is of such necessity, that it could under no circumstances be otherwise?,
or: which are the necessary characteristics of any possible world? We take these
three as one-and-the-same question.

Philosophers, from Aristotle (384–322 BC) to Immanuel Kant (1724–1804),
and onwards, have contributed to understanding this set of questions. We shall
draw upon the works of the Danish Philosopher Kai Sørlander (1944) [65–68]. We
shall therefore base our search for techniques and tools with which to analyse &
describe domains in Sørlander’s findings. This, in effect means, that we suggest a
philosophy-basis for domain analysis & description! Next we shall therefore first
summarise two thousand five hundred years of trying to answer the question
with which we opened this section.

2.1 The Search

We shall focus only on one aspect of the philosophies of the very many philoso-
phers that are mentioned below—namely their thinking wrt. ontology6 and epis-
temology7; for many of these philosophers – from Plato onwards – this is, but a
mere fraction of their great thinking.

This section borrows heavily from [68]. That book is only published in Danish.
So the next three pages, till Sect. 3, is a terse summary of the first 130 pages of
[68].

The Ancient Greeks. The quest for understanding the world around us appears
to have started in ancient Greece. Thales of Miletus [51] (624/623–548/545 BC)
claimed that everything originates from water. Anaximander [20] (610–546 BC)
counter-claimed that ‘apeiron’ (the ‘un-differentiated’, ‘the unlimited’) was the
origin. Anaximenes [50] (586–526 BC) counter-counter-claimed that air was the

6 Ontology is the study of concepts such as existence, being, becoming, and reality.
7 Epistemology is the study of properties, origin and limits for human knowledge.

An Essence of Domain Engineering 17

basis for everything. Heraklit of Efesos [1] (540-480 BC) suggested that fire was
the basis and that everything in nature was in never-ending ‘‘battle’’.

Empedokles [75] (490–430 BC) synthesized the above into the claim that there
are four base elements: fire, water, air and soil. Parminedes [31] (515–470 BC)
meant that everything that exists is eternal and immutable. Demokrit [1]
(460–370 BC) argues that all is built from atoms. These were [some of] the
natural philosophers, the pre-Socrates philosophers, the ontologists, of Ancient
Greece.

The Sofists. Then came a period of so-called sofists. They maintained that we
cannot reach understanding of the world through common sense. For a time they
thus broke philosophical tradition. It was not their task to reach an understand-
ing of that which exists. Such an understanding, they claimed, was an illusion;
in that they seem to agree with today’s modernism and post-modernism.

Socrates, Plato and Aristotle. Socrates (470–399 BC) [2] broke rank with this.
For him it was a fundamental error to give up on the obligation of common,
universal sense. Socrates, instead of reflecting on the general aspects of ontol-
ogy, put the human in centrum. Plato [3] (427–347 BC) established a Theory of
Ideas of “universal concepts” as of highest reality, that, however, seems to raise
more questions than answering some. Aristotle [4] (384–322 BC) turned Plato’s
thinking upside-down: “concrete things” have primary existence and the uni-
versal concepts are abstractions. Aristotle made precise relations between the
modalities of the necessary, the real and the possible, and suggested a list, [4,
Categories], of ten categories: substance, quantity, quality, relation, place,
time, position, possession, acting and suffering.

The “Middle Ages”. Philosophical thinking – in the European sphere – from
about 300 BC till about 1600 AC was dominated by religious thought – till
shortly after the time of Martin Luther. From ontological arguments philosophy
turned in the direction of epistemological arguments.

From Descartes to Hume. Then a number of philosophical schools succeeded
one another. Sørlander shows that the philosophies of Descartes [23] (1596–
1650), Spinoza [69] (1632–1677), Leibniz [45] (1646–1716), Locke [47] (1632–
1704), Berkeley [7] (1685–1753) and Hume [38] (1711–1776) are individually
inconsistent, and must thus be rejected.

Historicism. Sørlander also rejects the ‘historicism’ philosophies, after Immanuel
Kant, i.e., those of Fichte [42] (1762–1814), Schelling [6] (1775–1854) and Hegel
[30] (1770–1831) as likewise individually inconsistent.

From Aristotle to Kant and Onwards Sørlander builds on the thinking of Aris-
totle [4] (384–322) and Immanuel Kant [43] (1724–1804). In doing so, Sørlander

18 D. Bjørner

takes up a thread, lost for two hundred years of “radical meaninglessness, loss
of religion, the disappearance of [proper] philosophy – lost in the “historicism”
of the 19th century and the “modernism” of the 20th century, in postmod-
ernism’s rejection of universal values, the possibility of objective knowledge,
or solid foundation for human existence.” ... “In this post-modern age nothing
seems to be absolutely valid, there is no sharp boundary between fiction and
science, everything is dissolved into uncertainty and individual interpretation”
No, says Sørlander, and builds a Philosophy based on rational reasoning. The
current author, obviously, subscribes to the above!

Philosophies of Sciences. The science breakthroughs, in the late 1800s s and
the early-to-mid 1900s,s, in mathematics, physics and biology, brought with it,
independent of the ‘historicism’ of philosophy, philosophical investigations of
these sciences.

Peano (1858–1932) [44] showed that some of mathematics could be under-
stood axiomatically, i.e., logically. Frege (1848–1925) [25] contributed signifi-
cantly to attempts to build an axiomatic basis for all of mathematics. On the
basis of similar axiom systems non-Euclidean Geometries were then put for-
ward8. Principia Mathematica [71, Whitehead & Russell] “grandiosely” attempted
to axiomatise all of mathematics. Gödel ’s (1906–1978) [29] first incompleteness
theorem states that in any formal system F within which a certain amount of
arithmetic can be carried out, there are statements of the language of F which
can neither be proved nor disproved in F. According to the second incompleteness
theorem, such a formal system cannot prove that the system itself is consistent
(assuming it is indeed consistent). These results have had a great impact on the
philosophy of mathematics and logic.

Within physics, Maxwell (1831–1879) [48] Planck (1858–1947) [53] originated
quantum mechanics. Einstein9 (1879–1955), in 1905–1916 changed the study of
physics with his special and general theories of relativity. Bohr10 (1885–1962) [24]
contributed with his understanding of the structure of atoms and with quantum
theory. Heisenberg (1901–1976) [32] contributed further to quantum theory and
is known for the uncertainty principle.

Darwin (1809–1882) [21, Origin of Species], Wallace (1823–1913) [70], and
Mendel (1822–1884) [49] – as did Planck, Einstein, Bohr, Heisenberg, et al. for
physics – founded modern life sciences.

These advances in mathematics and the natural sciences spurred some
philosophers on to renewed studies – “as from Kant!”

The 20th Century. The phenomenology of Husserl (1859–1938) [39], is the study
of structures of consciousness as experienced from the first-person point of view

8 https://en.wikipedia.org/wiki/Non-Euclidean geometry.
9 https://en.wikipedia.org/wiki/Religious and philosophical views of Albert -

Einstein#Philosophical beliefs.
10 https://plato.stanford.edu/entries/qm-copenhagen/.

https://en.wikipedia.org/wiki/Non-Euclidean_geometry
https://en.wikipedia.org/wiki/Religious_and_philosophical_views_of_Albert_-Einstein#Philosophical_beliefs
https://en.wikipedia.org/wiki/Religious_and_philosophical_views_of_Albert_-Einstein#Philosophical_beliefs
https://plato.stanford.edu/entries/qm-copenhagen/

An Essence of Domain Engineering 19

[Wikipedia]. Our consciousness, claims Husserl, is characterised by intentional-
ity: an elementary directedness. Husserl’s phenomenology appears to be incon-
sistent in the way it requires a study of our consciousness from “within”, for
example in the a-priory requirements that these concepts are introduced, not as
a result of the study, but “beforehand”.

It appeared then that philosophical studies along the lines “what must
inevitably be in any description of any domain” additionally required consideration
of our use of language. Wittgenstein (1889–1951) [72,73] and the Logical Atomism
[52] of Russell (1872–1970) [59–62], made attempts in this direction, but failed.
Wittgenstein realised that in his [73, “Philosophisces Untersuchungen”]. Logical
atomism failed in not finding examples of propositions if they have to be logically
independent of one another.

Logical Positivism, “coming out of” Vienna in the 1920s–1930s, rejected Rus-
sell’s logical atomism and concentrated on the meaning of a sentence as being
[the conditions for] its truth-value: one must be able to describe the circum-
stances under which the sentence can be verified. To them, in the early days,
meaningful propositions, say, in any of the sciences, must have a common lin-
guistic base. Eventually those theses also failed: Neither the verification-criteria,
of, for example Carnap (1891–1970) [14–17], could be verified, nor could the
falsification-criteria of Popper (1902–1994) [54–57] be falsified.

2.2 Sørlander’s Findings

Three Cornerstones. We can claim that Sørlander bases his philosophical
analyses on three “cornerstones”: (A) an analysis and a conclusion of “what it
means to be rational”; (B) an analysis and a conclusion of what it means to speak
abut “the meaning of a word”; and (C) an analysis and a conclusion of the base
point from which to start the philosophical inquiry into “what must inevitably be
in any domain description”. We shall now review these three bases.

A: Rational Thinking. The following is adapted from [66, Chapter II, Sects. 4–5
Common Sense and Motivation]. Humans are physical entities. Thus we are char-
acterisable by the causal conditions for moving around with purpose. To do so
requires three conditions: We can sense our immediate situation. We have feel-
ings that may result in incentives (encouragements). We have motoric apparatus
that satisfy physical laws. These were the causal conditions for purposeful move-
ments. Further: We possess languages by means of which to express propositions
as to what we sense, our feelings and actions. We express propositions which
reflect that we know, i.e., have knowledge, Finally we have memory from which
we build experience. The above factors, after some further analysis, leads us to
conclude that humans are rational beings.

B: The Implicit Meaning-Theory. The following is adapted from [67, Chapter III,
especially Sect. 9 The Meaning of a Word, Pages 121–122]. On the basis of some
simple considerations of what it means to express oneself by means of language,
i.e., linguistically, Sørlander reaches the interdependence criterion. In saying, or

20 D. Bjørner

writing, something, a choice is made. The chosen statement may be inconsis-
tent with something else that one could have chosen to state. That means, that
possible statements stand in consistence relations. What determines such rela-
tions? We can, firstly, say that these relations are determined by the meaning,
of the designations used in the statements. Secondly we can say that meaning of
the designations used in several statements which (thus must) stand in mutual
consistence-relations. It is thus that we arrive at the necessary condition, inter-
dependence criterion, also referred to as the implicit meaning theory, that there
is a mutual dependence between the meaning of designations and the consistence
relations between statements.

For computer scientists, this interdependence criterion is quite familiar.
When defining an abstract data type—that is, its values and operations, as is, for
example typical in algebraic semantics [63]—one states a number of propositions.
They constrain values and operations, and, together, express their meaning.

C: The Possibility of Truth. The following is adapted from [68, Part III,
Chapter 2 “Basis & Method for the Philosophy”]. Where Kant built on human
self-awareness, Sørlander builds on the possibility of truth. One cannot deny that
a proposition may be false. And one cannot accept that a proposition is both
true and false. Hence the possibility of truth.

Building a Foundation

Logic, Relations, Transcendental Deduction, Space and Time. On the basis of
the principle of contradiction and the implicit meaning theory . Kai Sørlander then
motivates the logical connectives and, from these, the associative, symmetry and
transitive relations, and, based on these, by transcendental deduction, reasons that
space and time follows, not as, with Immanuel Kant, empirical facts, but as logical
necessities.

Multiple, Uniquely Identifiable Entities and States. Again, in a rational manner,
Sørlander, motivates that there must be an indefinite number of entities, that
these are uniquely identifiable, and that they endure in possibly changing states.

Newton’s Laws. Again, in a rational manner, Sørlander, motivates movement and
causality, and, from these, again by transcendental deductions, Newton’s Laws.

2.3 The Basis

The above, i.e., the rational deductions of what must be in any domain descrip-
tion, is then the foundation on which [11] and the present paper base their
domain analysis & description approach.

An Essence of Domain Engineering 21

3 Elements of Domain Science and Engineering

We embark on introducing a number of domain analysis predicates. These are
not mathematical functions. They are informal in the sense of being applied
by human domain analysers cum describers. They can not be formalised. That
would require that we have a formal model of “the world” ! Our domain analysis
& description endeavour seeks such models ! So the reader must bear with me:
The delineations (cum definitions, characterisations) of the domain concepts
that now follow must unavoidably be informal, yet sufficiently precise. Most are
drawn from The Shorter Oxford Dictionary of the English Language [46, 2 vols.,
1987].

3.1 Phenomena, Entities, Endurants and Perdurants

A phenomenon, φ, is an entity, is entity(φ), if it can be observed, i.e., be seen
or touched by humans, or that can be conceived as an abstraction of an entity;
alternatively, a phenomenon is an entity if it exists, it is “being”, it is that which
makes a “thing” what it is: essence, essential nature [46, Vol. I, pg. 665]. If a
phenomenon cannot be so described it is not an entity.

There are an indefinite number of entities in any domain. This follows from
philosophic-analytic reasoning outlined by the philosopher Kai Sørlander [65–
68]. We refer to [11, Sect. 2.2.3] for a summary.

By an endurant, is endurant(e), we shall understand an entity, e, that can
be observed, or conceived and described, as a “complete thing” at no matter
which given snapshot of time; alternatively an entity is endurant if it is capable
of enduring, that is persist, “hold out” [46, Vol. I, pg. 656]. Were we to “freeze”
time we would still be able to observe the entire endurant.

By a perdurant, is perdurant(e), we shall understand an entity, e, for which
only a fragment exists if we look at or touch them at any given snapshot in time.
Were we to freeze time we would only see or touch a fragment of the perdurant
[46, Vol. II, pg. 1552].

External qualities of endurants of a manifest domain are, in a simplifying
sense, those we, for example with our eyes blinded, can touch, hence manifestly
“observe”, and hence speak about abstractly.

Internal qualities of endurants of a manifest domain are those we, with our
eyes open and with instruments, can measure.

3.2 Endurants

Figure 1 presents a graphic structure of the domain concepts such as we have
and shall unveil them.

External Qualities. Our treatment of endurants “follow” the upper ontology
of Fig. 1 in a left-to-right, depth-first traversal of the endurant “tree” (of Fig. 1).

22 D. Bjørner

Fig. 1. A domain description ontology

Analysis Predicates. Endurants, e [is endurant(e)], are either solid [is -
solid(e)]; or fluid [is fluid(e)] (such as liquids, gases and plasmas). Solid
endurants appears to be the “work-horse” of the domains we shall be concerned
with. Fluids are presently further un-analysed. A solid , e, is either a part [is -
part(e)]; or a structure [is structure(e)]; or a living species [is living -
species(e)]. A part, p, is either an atomic part [is atomic part(p)]; or a com-
pound part [is compound part(p)]. An atomic part, by definition, has no proper
sub-parts. It is the domain analyser cum describer who decides which parts are
atomic and which not. Atomic parts are further characterised by their internal
qualities. A compound part is either a composite part [is composite(p)]; or a
part set [is part set(p)], A part set is either a single sort part set of parts of the
same sort [is single sort set(p)]; or an alternative sort part set of parts of
two or more distinct sorts [is altermative sort set(p)] – with two or more
parts possibly being of the same sort.

A composite part consists of two or more parts (and could be modeled as a
Cartesian of these). A structure is like a compound part but we omit recording
its internal qualities11. A living species is either an animal [is animal(e)]; or a
plant [is plant(e)]. An animal is either a human [is human(e)]; or other.

11 We could omit the concept of structure altogether and just allow compounds
that do not have internal qualities.

An Essence of Domain Engineering 23

Observers. Given a compound part we can observe its sub-parts and their sorts.
We formulate these observers in RSL+Text.

• • •
We remind the reader that the analysis and description processes are necessarily
informal. That is, that it is the decision of the domain analyser cum describer
as to whether an entity is an endurant or other, a part or other, etc. Next, in
outlining, ever so briefly, the observer (cum describer) “functions”, the describer
must, repeatedly, decide that endurants are of definite sorts, and must, like-
wise repeatedly, choose names for endurant sorts. [11, Sect. 4.14] discusses that
process in some detail. In reality, to determine, distinctness and names of sorts
require a depth-first analysis, that is, one that analyses the internal qualities of
the sort under investigation, then the external followed by internal qualities of
possible sub-parts, et cetera, till atomic parts or fluids have been analysed, etc.
In this section we first analyse external qualities. Analysis of internal qualities
follow subsequently.

• • •
The next three observer functions reflect analyses pre-requisite to the subsequent
description functions. In the formulas below we introduce two notions: The name
of a type, say type E, as ηE, and the RSL text, of a type name, “ E ”. ηE is an
identifier whose value is “ E ”.

Observe Single Sort Part Sets.
Observing a part, p : P , which is a set of endurants of the same sort, yields a
pair of a set of endurants and the name of the endurant type.

value
obs single sort set: P → E-set × ηE

where E is to be further analysed and described.
Observe Alternative Sorts Part Sets.

Observing a part, p : P , which is a set of endurants of the possibly different sorts,
yields a Cartesian of representative pairs12 of endurants and names of their type.

value
obs alternative sort set: P → (E1 ×ηE1)×(E2 ×ηE2)× ... ×(Em ×ηEm)

where each Ei is to be further analysed and described.
Observe Composite Part.

Observing a part, p : P , which is a composite of endurants of [it is assumed]
different sorts, yields a pair Cartesians of endurants, respectively their type.

value
obs composite: P → (E 1×E 2×...×E m) × (ηE 1×ηE 2×...×ηE m)

where each E i is to be further analysed and described.
12 By ‘representative Cartesian of pairs’ we mean that there is a pair of any part (of

the set) and its type for every possible part type in the Cartesian.

24 D. Bjørner

Description Functions. There are three compound-part description functions.
These are summarised in the RSL+Text form next.

We advocate first narrating all formal texts. The literal type prefix type and
sort definitions. The literal value prefix predicate and function signatures and
definitions. Proof obligations are required where sorts are expressed in terms
of concrete types that may define something meaningless if not properly con-
strained.

Caveat: We remind the reader that the above description functions, really, are
not mathematical functions: They are, in a sense, procedural guide-lines to be
followed by domain analysers cum describers: they have to decide on which kind
of parts they are dealing with, of which, already “discovered” or new sorts, hence
sort names to ascribe these, etc.

The External Qualities Frames. The three frames next contain part descriptors
for single sort sets, alternative sort sets, and composites.

describe single sort set(p) as

let (,ηE) = obs single sort set(p) in

“ Narration:

... on sorts ...

... on sort observers ...

... on axioms/proof obligations ...

Formalisation:

type

E

Ps = P-set

value

obs Ps: E → Ps ”

end

pre: is single sort set(p)

describe alternative sorts set(p) as

let ((,ηE 1),...,(,ηE n))

= obs alternative sorts set(p) in

“ Narration:

... on alternative sorts ...

... on sort observers ...

... on axioms/proof obligations ...

Formalisation:

type

Ea = E 1 | ... | E n

E 1 :: E1, ..., E n :: En

E1 == ..., ..., En == ...

value

obs E i: E → E i [i=1,...,n]

proof obligation

[disjointness of alt. sorts] ”

end

pre: is alternative sorts set(p)

describe composite(p) as

let (,({ηE1,...,ηEm})) =

= obs composite(p) in

“ Narration:

... on sorts ...

... on sort observers ...

... on axiom/proof obligations ...

Formalisation:

type

E1, ..., Em

value

obs Ei: E → Ei [i:{1..m}]

proof obligation

[disjoint endurant sorts] ”

end

pre: is composite(p)

Initial Endurant State. An endurant state is any set of domain endurants.

Taxonomy. The taxonomy of a domain is given by the set of endurants sorts
and their observers. A taxonomy can be given a graphic rendition such as shown
in Fig. 2 on page 20.

Internal Qualities. Internal qualities of endurants of a manifest domain are,
in a simplifying sense, those which we may not be able to see or “feel” when
“touching” an endurant, but they can, as we now ‘mandate’ them, be reasoned
about, as for unique identifiers and mereologies, or be measured by some physi-
cal/chemical means, or be “spoken of” by intentional deduction, and be reasoned

An Essence of Domain Engineering 25

about, as we do when we attribute properties to endurants. We refer to [11,
Sects. 2.2.3–4, 3.8, and 5.2–5.3] for a fuller discussion of the concepts and unique
identification and mereology.

Unique Identifiers. With each part sort P we associate a further undefined
unique identifier sort Π and a similarly further undefined unique identifier
observer uid P such that for all distinct parts p, p′, ..., p′′ of sort P , uid P(p),
uid P(p′), ..., uid P(p′′), yield distinct unique identifiers (π, π′, ..., π′′).

We refer to the leftmost of the three internal qualities frames on Page 13.

Mereology. “Mereology (from the Greek μερoς ‘part’) is a theory of part-hood
relations: of the relations of part to whole and the relations of part to part within
a whole”13.

The mereology relations are here expressed in terms of the unique part
identifiers. Let p:P (p of sort P) be a part with unique identifiers π. Let
{p1 : P1, p2 : P2, ..., pm : Pm} be the set of parts (or respective sorts) to which
p is [mereologically] related. We can express this by stating that mereo P(p) =
{π1 : Π1, π2 : Π2, ..., πm : Πm}, or value mereo P: P→UI-set – i.e., as a set of
unique identifiers. mereo P is the mereology observer.

We shall deploy mereology practically. That is, we are not studying mere-
ology. We are using the ideas of mereology for experimental research and engi-
neering purposes.

For natural endurants, a typical relation is that of the topological “next-to”.
For artefactual endurants typical relations, in addition to topological mereolo-
gies, make explicit how the designers of these artefacts intended their logical,
not necessarily geographical relationship, to be: “next-to”, “to-be-part-of”, “as-
an-element-of-a-set”, et cetera.

We refer to the middle of the three internal qualities frames on Page 13.

Attributes. Whereas unique identification and mereology are both of abstract,
existential, logic nature, attributes are of concrete nature: physical, biological or
historical nature. Attributes have values and attribute values are of types. Two
or more endurants that all have sets of attribute values of the same type, as well as
the same unique identifier type and mereology types, are of the same sort. This is
the endurant sort-determining mantra.

From any part, p:P , we can thus identify a set of attribute type names,
{Ap1 , Ap2 , ...App

}, informally:

– attrs P(a) as {ηAp1 , ηAp2 , ..., ηApp
}.

Given a p:P , attr A obtains the value of attribute A. The attr Api
s are attribute

observers of pi:Pi.
We refer to the rightmost of the three internal qualities frames on Page 13.
Michael A. Jackson [41] has suggested a hierarchy of attribute categories.

13 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and
[18].

http://plato.stanford.edu/entries/mereology/

26 D. Bjørner

– Static attributes: values do not change.
– Dynamic attributes: values can change.

Within the dynamic attribute category there are sub-categories.
• Inert attributes: values are not determined by the endurant, but by “an

outside” (e.g., other endurants).
• Or reactive attributes: values which, if they change, change in response to

external stimuli.
• Or active attributes: values which change of the “own volition” of the part.

We can define sub-categories of dynamic attributes.
∗ Autonomous attributes: values which change only on the “own voli-

tion” of the part.
∗ Biddable attributes: values, values that may be prescribed14, but may

fail to attain the prescribed value.
∗ And programmable attributes: values which are prescribed.

For our purposes we “reduce” these six categories to three, CAT =
STA|MON|PRO:

– static [STA], (static values),
– monitorable [MON] (dynamic, except the programmable values), and the
– programmable (values) [PRO].

The Internal Qualities Frames. The three frames next contain part descriptors
for unique identifiers, mereologies, and attributes.

unique identifier observer(p) as

“ Narration:

on unique identifier sort UI ...

on unique identifier observer ...

on uniqueness of identifiers ...

Formalisation:

type

UI

value

uid P: P → UI

axiom

[disjoint UIs wrt. all sorts] ”

mereology observer(p) as

“ Narration:

on mereology type ...

on mereology observer ...

on mereology type constraints ...

Formalisation:

type

MT = M(UIi ,...,UIk)

value

mereo P: P → MT

axiom [Well−formed Mereology]

A(MT): well−formed ”

describe attributes(p) as

let {ηA1 ,...,ηAm} = attrs P(p) in

“ Narration:

on attribute sorts ...

on attribute sort observers ...

attribute sort proof obligations ...

Formalisation:

type

A1 , ..., Am

value

attr A1 : P→A1 ,

attr A1 : P→A2 ,

...,

attr A1 : P→Am

proof obligation [Disjointness]

let P be any part sort in

let a:(A1|...|Am) in

is Ai(a) �=is Aj (a) [i�=j, i,j:[1..m]]

end end ”

end

14 – by the transcendent part behaviour.

An Essence of Domain Engineering 27

Intentional Pull. The concept of intentional “pull” is a concept which “parallels”,
we claim, the gravitational pull concept of physics.

For artefacts one can claim that certain parts p:P are created in order to
“serve” other parts q:Q, and vice versa: roads serve to convey transport, and
automobiles serve to transport goods.

Historical events time-stamp record interactions between such parts p and
q. So a historical attribute of p records its interaction with q, and a historical
attribute of q records its interaction with p, and “one cannot have one without
the other”, and this is what we mean by intentional “pull” !

Since we can talk about such events we can also model them as attributes. So
introducing historical attributes for a sort P usually entails also introducing his-
torical attributes for another sort Q, et cetera. And this consequentially implies
that the domain analyser cum describer must express a necessary intentional
“pull” axiom that expresses that “one cannot have one without the other”.

A classical example of intentional pull is found in double bookkeeping which
states that every financial transaction has equal and opposite effects in at least
two different accounts. It is used to satisfy the accounting equation: Assets =
Liabilities + Equity.

3.3 Transcendental Deduction

“A transcendental argument is an argument which elucidates the conditions for
the possibility of some fundamental phenomenon, whose existence is unchal-
lenged or uncontroversial in the philosophical context in which the argument is
propounded” [5, Anthony Brueckner, page 808]. “Such an argument proceeds
deductively, from a premise of asserting the existence of some basic phenomenon
(such as a meaningful discourse, conceptualisation of objective states of affairs, or
the practice of making promises), to a conclusion asserting the existence of some
interesting, substantive enabling conditions for that phenomenon” [5, Anthony
Brueckner, page 808].

An example of a transcendental deduction is that of “morphing”, for exam-
ple, automobile endurants into automobile perdurants. That is: There is the auto-
mobile as, for example, shown at the dealer. It represents a part, an endurant.
And there is the automobile “speeding” down the road. It represents a behaviour,
a perdurant. The automobile as listed in the manufacturer’s and car dealer’s cat-
alogues represents an attribute of manufacturers and dealers.

3.4 Perdurants

The emphasis is now on the transcendental deduction of parts into behaviours.
To explain what we mean by behaviours we first introduce actions and events.

Channels will be introduced as a consequence of interacting, that is, communicat-
ing behaviours.

This section is necessarily a mere capsule view of Chapter 7 of [11].
Section 4.2, of the main example of this paper, should rectify some lacunae.

28 D. Bjørner

Actions, Events and Behaviours

Actions. By an action we shall understand something that occurs in time, lasting,
however, no time, or, at least, we ignore time – considering actions as indivisible,
taking place as the result of a “willed” [other] action, and usually changing the
state ξ:Ξ15.

The action may, or may not be based on some argument value.

value action: [VAL] → Ξ
∼→ Ξ

Events. By an event we shall understand something that occurs in time, lasting,
however, no time, taking place spontaneously, not as the result of a “willed”
action, but possibly as the result of another event, and usually changing the
state ξ:Ξ.

The event is usually not based on any argument value. The literal Unit can
here be understood as a no argument value.

value event: Unit → Ξ
∼→ Ξ

Behaviours. By a behaviour we shall then understand a set of sequences of
actions, events and [other, sub-] behaviours, some of which relate to, i.e., inter-
act with one another. Behaviours are uniquely identified, subject to the part
mereology, and otherwise based on static (constant) attribute argument values,
dynamic monitorable (variable) attribute argument values, dynamic programmable
(variable) attribute argument values, and channels (for their interaction).

Behaviour Deduction, I: Signature

value behaviour: Uid × Mereo × Static VAL∗ × Mon Attr Name∗

→ Prgr VAL∗ → in|out|in out ch... Unit

The literal Unit will here be understood as defining a never-ending behaviour.
The signature, with Unit, expresses that if the process terminates no value is
returned.

Channels. Interactions – between behaviours – are, as we model them, in RSL
– as inspired by CSP [34–36,36,58,64], expressed in terms of CSP-like channel
(ch) input/outputs: ch[index] ?, respectively ch[index] ! value, where values [based
on internal qualities] are communicated over indexed channels.

A domain defines a number of mereologies, one for each part (of the state).
These mereologies determine the channels to be declared. Given that any inter-
esting, i.e., to us relevant, domain always consists of an indefinite, larger than 1,
15 We shall forego explaining the state concept Ξ.

An Essence of Domain Engineering 29

number of parts, the common channel for all behaviours is an index-able channel
array16:

Channel Deduction

channel {ch[{i,j}]|i,j:UI•{i,j}⊆ [mereologies of the domain]}:M

where M is the type of the values communicated.

Part Behaviours. Parts exist in a context of several parts. (The taxonomy, for
example graphically represented, as in Fig. 2 on page 20, reflects these parts.)
Part behaviours can therefore be expected to interact, i.e., to synchronise and
communicate. A part behaviour can, consequently, be expected to alternate
between either (a) doing an internal non-deterministic choice (��) of 0, 1 or
more “own work” behaviours, or (b) external non-deterministic choice (����) offer-
ing [to accept] values from an alternative of 0, 1 or more other part behaviours.
We can, schematically, summarise (a-b) as follows:

Behaviour Deduction, II: Part Behaviour Definition Structure

value
part behav(...)(...) ≡

(a) �� { own behav i(...)(...) | i ∈ {1..p} }
��

(b) ���� { ext behav j(...)(...) | j ∈ {1..q} }
where: p+q > 0

The �� and ���� operators are the usual CSP operators on behaviours. The �� oper-
ator is like an “or” operator on behaviours. The ��, �� and ���� operators are com-
mutative. We shall refer to either of the alternatives of the part behav definition
body as a part alternative.

From Internal Qualities to Behaviour Arguments. By arguments of transcen-
dental nature we shall assign unique part identifiers as static arguments of
behaviours, part mereologies as determining channel communication, and part
attributes as either static or dynamic arguments of behaviours.

Behaviour Deduction, III: Signature, Part p:P

value
behaviourP : PI × mereo P × Stat Attr Vals P × Mon Attr Names

→ Prgr Attr Vals P →
→ in|out|in out {ch[{i,j}] [i,j ∈ mereology of P]} Unit

16 RSL does not have channel arrays. So this is a deviation from RSL.

30 D. Bjørner

Mon Attr Names makes use of attrs P.

Part Alternative Behaviours. We shall express behaviours in terms of usually
never-ending functions, behaviour !17 That is:

Behaviour Deduction, IV: Alternative Part Definition, Part p:P

value
alt behav(uid P(p),mereo P(p),Stat Attr Vals P(p),Mon Attr Names(p))

(Prgr Attr Vals P(p)) ≡
let ui=uid P(p), me=mereo P(p), sta=Stat Attr Vals P(p),

mnl=Mon Name list(p), prgr=Prgr Attr Vals P(p) in
let prgr′ = alt behav body(ui,me,sta,mnl)(prgr) in
part behav(ui,mereo,sta,mnl)(prgr′) end end

Behaviour Clauses: Expressions and Statements. Further: alt behav body is a
sequence of one or more action, event and sub-behaviour clauses – usually ending
with an expression:

value
behaviour body(uid,mereo,sta var)(prgr var) ≡ clause 1 ; clause 2 ; ... ; clause m

Clauses are either

– s, simple statements, or
– ch[...] ! expression, output statement, or
– let pattern18 = expression in ... end, value decompositions, or
– e, expressions19, or
– clause a �� clause b, internal non-deterministic clauses, or
– clause a ���� clause b, external non-deterministic clauses, or
– clause a �� clause b, either/or non-deterministic clauses, or
– clause a ‖ clause b, parallel clauses, or
– skip, skip clause, or
– stop, abort function invocation.

Values of monitorable attributes, of name ηA20, of parts p:P, are expressed as
attr val(uid)(σ) where attr val is defined as:

value
attr val: PI → ηA → Σ → VAL
attr val(pi)(ηA)(σ) ≡ attr A(retr P(pi)(σ))

17 Parts – being the bases for behaviours – persist, endure.
18 where pattern – typically is a “grouping expression” over [free] identifiers.
19 ch[{ui,uj}] ? is an expression.
20 The type of attribute A names (a single element type) is ηA, and the value is “A”.

The type of all attribute names is ηA.

An Essence of Domain Engineering 31

where σ is the endurants state:

type
Σ = (P|Q|...|R)-set

value
retr P: PI → Σ
retr P(pi)(σ) ≡ let p:P • p ∈ σ • uid P(pi) in p end

Initial System. Given a[n endurant] state, cf. Page 11, one can then define
[a corresponding perdurant] behaviour, namely the parallel (‖) composition of
an invocation of all the corresponding behaviours. This is exemplified as from
Item 69 on page 29.

3.5 The Domain Analysis and Description Process

1. There is the RSL+Text to be developed.
2. There is the Domain.
3. The analyse and describe domain process applies to a Domain and yields, line

12 an RSL+Text. That process proceeds “sequentially”:

4. first external qualities, then
5. unique identifiers,
6. mereologies,
7. attributes,
8. channels

9. behaviour signatures,
10. behaviour definitions, and
11. initial system – yielding
12. a complete RSL+Text21.

type
1. RSL+Text
2. D
value
3. analyse and describe domain: D → > RSL+Text
3. analyse and describe domain(d) ≡
4. let es = analyse and describe external qualities(d) in
5. let is = analyse and describe unique identifiers(es)(d) in
6. let ms = analyse and describe mereologies(es�is)(d) in
7. let as = analyse and describe attributes(es�is�ms)(d) in
8. let cs = analyse and describe channels(es�is�ms�as)(d) in
9. let ss = analyse and describe signatures(es�is�ms�as�cs)(d) in
10. let bs = analyse and describe behaviours(es�is�ms�as�cs�ss)(d) in
11. let si = analyse and describe initial system(es�is�ms�as�cs�ss�bs)(d)(s)
12. in es� is�ms� as� cs� ss� bs� si end end end end end end end end

21 The � operator merges RSL+Texts

32 D. Bjørner

4 An Example Domain Description

Initial Remark: We shall illustrate core elements of a domain description of a
road transport system. In doing so we really do not rely on the reader having
already an idea as to what the terms of this road transport system mean – as we
“slowly” unfold it. But at any stage, before the final, the informal meaning that
You, the reader may ascribe to these terms, is not what the formulas express !
At any stage, up to the point of the formal specification that we are unfolding,
this specification denotes a space of meanings according to the RSL semantics
[26]. Initially that space is very large. As we proceed the further formulas narrow
down, restrict, the space. When, at the end, we think we have specified all that
we need specify, the formulas define “exactly” what we mean by a road transport
system. We shall continue this remark at the very end of this section, i.e., just
before Sect. 5.

• • •
The sectioning/paragraph structure of this section follows that of Sect. 3.

4.1 Endurants

External Qualities

13. We start by identifying and naming the universe of discourse, here a road
transport system.

14. In a road transport system we can observe a structure of a composite in which
we observe an aggregate of a road net and an aggregate of automobiles.

15. Road nets are here seen as structures of composites of aggregates of road
links22 and road hubs23.

16. Link and Hub aggregates are set structures of Links, respectively Hubs.
17. Links and Hubs are considered atomic.
18. Automobile aggregates are set structures of automobiles.
19. Automobiles are considered atomic.

type
13. RTS
14. RN, AA
15. LS, HS
16. Ls = L-set, Hs = H-set
17. L, H
18. As = A-set
19. A

value
14. obs RN: RTS → RN
14. obs AA: RTS → AA
15. obs LS: RN → LS
15. obs HS: RN → HS
16. obs Ls: LS → Ls
16. obs Hs: HS → Hs
18. obs As: AA → As

State

20. The state, σ,
21. of a road transport system rts consists of
22 A link is a street segment delineated by street intersections.
23 A hub is a street intersection of one or more links.

An Essence of Domain Engineering 33

(a) the road net aggregate,
(b) the automobile aggregate,
(c) the links,

(d) the hubs,

(e) the automobiles.

22. For later use we also define the union of all links and hubs.

value
21. rts:RTS
20. σ:Σ = {rn}∪{aa}∪ls∪hs∪as
21a. rn = obs RN(rts)
21b. aa = obs AA(rts)

21c. ls = obs Ls(obs LS(rn))
21d. hs = obs Hs(obs HS(rn))
21e. as = obs As(aa)

22. us:(L|H)-set = ls ∪ hs

Taxonomy. Figure 2 presents a graphic rendition of the taxonomy of road trans-
port systems.

rts

rn aa

ls

la

hs

ha

l1 lml2 h1h2 hn

a1a2 aq

as

us

Fig. 2. Road transport system taxonomy

Internal Qualities

Unique Identifiers. Road traffic systems, aggregates of links and hubs, and sets
of links, hubs and automobiles are endurant structures, hence have no internal
qualities24.

23. Road nets have unique identification,
24. automobile aggregates likewise,
25. links, hubs and automobiles also !

24 – so we have decided !.

34 D. Bjørner

type
23. RNI
24. AAI
25. LI, HU, AI
value

23. uid RN: RN → RNI
24. uid AA: AA → AAI
25. uid L: L→LI
25. uid H:H→HI
25. uid A:A→AI

Uniqueness of Parts.

26. All parts (of the state σ) have unique identification. This means that the
number of state components equal the number of [their] unique identifiers.

value
26. rni = uid RN(rn), aai=uid AA(aa),
26. lis = {uid L(l)|l:L•l∈ ls},
26. his = {uid H(h)|h:H•h∈ hs},
26. ais = {uid A(a)|a:A•a∈ as},
26. σuis = {rni}∪{aai}∪lis∪his∪ais
axiom
26. card σ = card σuis

Retrieving Endurants.

27. Given any unique identifier, ui, in σuis, the “corresponding” endurant, e, can
be retrieved from σ.

value
27. retr E: UI → Σ → E
27. retr E(ui)(σ) ≡ let e:E • e ∈ σ ∧ uid E(e) = ui in e end

Mereology.

28. The mereology of a road net aggregate is a pair of the unique identifier of
the automobile aggregate of the road transport system of which the road net
is an aggregate, and a pair of sets of the unique identifiers of the links and
hubs of the road transport system of which the road net is an aggregate.

29. The mereology of an automobile aggregate is a pair of the unique identi-
fiers of the road net aggregate of the road transport system of which the
automobile aggregate net is a part, and a set of unique identifiers of auto-
mobiles of the automobile aggregate of the road transport system of which
the automobile aggregate is a part.

30. The mereology of a link is a pair of a two element set of hub identifiers and
a set of identifiers of the automobiles that are allowed onto the link – such
that the hub and automobile identifiers are of the road transport system.

31. The mereology of a hubs is a pair of a set of link identifiers and a set of
identifiers of the automobiles that are allowed into the hub – such that the
link and automobile identifiers are of the road transport system.

An Essence of Domain Engineering 35

32. The mereology of an automobile is a pair of the identifier of its automobile
aggregate and the set of identifiers of the links and hubs – of the road net
aggregate of the road transport system of which the automobile is a part it
is allowed to travel on.

33. The slanted texts above hint at axiomatic constraints.

type
28. RNM = AAI × (LI-set × HI-set)
29. AAI = RNI × AI-set
30. LM = HI-set × AI-set
31. HM = LI-set × AI-set
32. AM = AAI × (LI|RI)-set
value
28. mereo RN: RN → RNM
29. mereo AA: AA → AAM
30. mereo L: L → LM
31. mereo H: H → HM
32. mereo A: A → AM
axiom

28. let (aai,(lis,his)) = mereo RN(rn) in
28. aai = aai ∧ lis = lis ∧ his = his end
29. let (rni,ais) = mereo AA(aa) in
29. rni = rni ∧ ais ⊆ ais end
30. ∀ l:L • l ∈ ls ⇒
30. let (his,ais) = mereo L(l) in
30. his ⊆ his ∧ ais ⊆ ais end
31. ∀ h:H • h ∈ hs ⇒
31. let (lis,ais) = mereo H(h) in
31. lis ⊆ lis ∧ ais ⊆ ais end
32. ∀ a:A • a ∈ as ⇒
32. let (aai,ris) = mereo H(a) in
32. aai = aai ∧ ris ⊆ lis∪his end

Routes.

34. The observed road net defines a possibly infinite set of finite length routes:
Basis Clauses:

35. The null sequence, 〈〉, of no links or hubs is a route.
36. Any one link or hub, u, of a road net forms a route, 〈u〉, of length one.

Inductive Clauses:
37. Let rî〈ui〉 and 〈uj〉̂rj be two finite routes of a road net.
38. Let uiui

and ujui
be the unique identifiers for ui, respectively uj .

39. Let the road (hub or link) identifiers of mereology of ui be uis and of uj be
ujs. If uiui

is in uis and ujui
is in ujs,

40. then rî〈ui, uj〉̂rj is a route of the road net.
Extremal Clause:

41. Only such routes which can be formed by a finite number of applications of
the clauses form a route.

type
34. R = (L|H)∗
value
34 routes: RN

∼→ R-infset
34 routes(rn) ≡
35 let rs = {〈〉}
36 ∪ {〈u〉|u:(L|H)•u ∈ us} ∪
40 ∪ {rî〈ui〉̂〈uj〉̂rj | ui,uj:(L|H) • {ui,uj} ⊆ us
37 ∧ rî〈ui〉,〈uj〉̂rj:R • {rî〈ui〉,〈uj〉̂rj} ⊆ rs
38,39 ∧ ui ui = uid U(ui) ∧ ui ui ∈ xtr UIs(ui)

36 D. Bjørner

38,41 ∧ uj ui = uid U(uj) ∧ uj ui ∈ xtr UIs(uj)} in
35 rs end

xtr UIs: (L|H) → UI-set, xtr UIs(u) ≡ let (uis,)=mereo (L|H)(u) in uis end

rs is the smallest [fixed point] set of finite routes that satisfy the equation 35.

42. We can also model routes, as identifier routes, IR, in terms of link and hub
identifiers.

43. Given a road net we can examine whether it is strongly connected, i.e.,
whether any link or hub can be reached from any other link or hub.

44. Et cetera !

type
42. IR = (LI|HI)∗
value
42. i routes: RN → IR-infset
42. i routes(rn) ≡
42. let rs = routes(rn) in
42. { 〈 uid (L|H)(r[i]) | i:Nat • 1≤i≤len r 〉 | r:R • r ∈ rs } end

43. is connected RN: RN → Bool
43. is connected RN(rn) ≡
43. let rs = routes(rn) in
43. ∀ u,u′:(L|H) • {u,u′}⊆ ls ∪ hs ⇒ ∃ r:R • r ∈ rs and {u,u′} ⊆ elems r
43. end

Attributes. We treat attributes only for atomic sorts. And we show only a very
few attribute examples.

Links.

45. Links have lengths.
46. Links have states – sets of zero, one or two pairs of hub identifiers – of their

hub mereology25.
47. Links have state spaces: a set of all relevant link states – the link state must

at any time be in its link state space.

type
45. LEN
46. LΣ = (HI×HI)-set
47. LΩ = LΣ-set
value

25 – zero expresses that the link is [currently] closed for traffic, one if it is [cur-
rently] a one way link, in one or the other direction as indicated by the con-
necting hub identifiers, or two if it is [currently] a two way link.

An Essence of Domain Engineering 37

45. attr LEN: L → LEN
46. attr LΣ: L → LΣ
47. attr LΩ: L → LΩ
axiom
46. ∀ l:L • l ∈ ls ⇒
46. let (lσ,lω)=(attr LΣ,attr LΩ)(l) in lσ ∈ lω ∧
46. ∀ (hi′,hi′′):(HI×HI) • (hi′,hi′′)∈lσ ⇒ {hi′,hi′′}⊆his end

Hubs.

48. Hubs have states: a set of pairs of link identifiers – of its mereology.26

49. Hubs have state spaces: the set of all relevant hub states – the current hub
state must at any time be in its hub state space.

type
48. HΣ = (LI×LI)-set
49. HΩ = HΣ-set
value
48. attr HΣ: H → HΣ
49. attr HΩ: H → HΩ
axiom
48. ∀ h:H • h ∈ hs ⇒
49. let (hσ,hω)=(attr HΣ,attr HΩ)(h) in hσ ∈ hω ∧
49. ∀ (li′,li′′):(LI×LI) • (li′,li′′)∈hσ ⇒ {li′,li′′}⊆lis end

Automobiles.

50. Automobiles have positions on links or in hubs (programmable attributes).
(a) An automobile on a link position is a triplet of (1) a link identifier of

the road net, (2) and ordered pair of two hub identifiers of the link
mereology, and (3) a real number properly between 0 and 1.27

(b) An automobile at a hub position is a pair of (1) a hub identifier hi of the
road net, and (2) an ordered pair of two link identifiers li′ and li′′ of the
hub mereology.28

51. Automobiles have a (programmable attribute) history of appearing, at times,
at hubs or on links29.

53c Automobiles have (monitorable attribute) speed and acceleration (plus or
minus).

26 – each pair, (lij , lik) expressing that automobiles may [currently] enter the
hub from the links identified by lij and leave the hub to the links identified
by lik.

27 – expressing the fraction along the designated link between the two designated hubs.
The type constructor :: is “borrowed” from VDM [22].

28 – expressing that the automobile at hub hi is on its way between links designated
by li′ and li′′.

29 We shall define that attribute in items 53c on the facing page.

38 D. Bjørner

52. Etc.

type
50. APos = onL | atH
50a. onL :: LI × (HI×HI) × F
50a. F = Real, invariant: ∀ f:F • 0<f<1
50b. atH :: HI × (LI×LI)
53c. AHist
51. Vel, Acc
52. ...
value
50. attr APos: A → APos
51. attr Vel: A → Vel, attr Acc: A → Acc
52. ...
axiom
50. ∀ a:A • a ∈ as ⇒
50. let apos = attr APos(a) in
50. case apos:
50a. onL(li,(fhi,thi),) →
50a. li ∈ lis ∧ let (his,) = mereo L(retr L(li)(σ)) in {fhi,thi}⊆his end
50b. atH(hi,(fli,tli)) →
50b. hi ∈ his ∧ let (lis,) = mereo H(retr H(hi)(σ)) in {fli,tli}⊆lis end
51.,52. ...
50. end end

Intentional Pull. We simplify the link, hub and automobile histories – aiming
at just showing an essence of the intentional pull concept.

53. With links, hubs and automobiles we can associate history attributes.
(a) Link history attributes time-stamp record, as an ordered list, the pres-

ence of automobiles.
(b) Hub history attributes time-stamp record, as an ordered list, the pres-

ence of automobiles.
(c) Automobile history attributes time-stamp record, as an ordered list,

their visits to links and hubs.

type
53a. LHist = AI →m TIME

∗

53b. HHist = AI →m TIME
∗

53c. AHist = (LI|HI) →m TIME
∗

value
53a. attr LHist: L → LHist
53b. attr HHist: H → HHist
53c. attr AHist: A → AHist

Wellformedness of Event Histories.
Some observations must be made with respect to the above modelling of time-
stamped event histories.

An Essence of Domain Engineering 39

54. Each τ� : TIME
∗ is an indefinite list. We have not expressed any criteria for

the recording of events: all the time, continuously ! (?)
55. Each list of times, τ� : TIME

∗, is here to be in decreasing, continuous order
of times.

56. Time intervals from when an automobile enters a link (a hub) till it first
time leaves that link (hub) must not overlap with other such time intervals
for that automobile.

57. If an automobile leaves a link (a hub), at time τ , then it may enter a hub
(resp. a link) and then that must be at time τ ′ where τ ′ is some infinitesimal,
sampling time interval, quantity larger that τ . Again we refrain here from
speculating on the issue of sampling !

58. Altogether, ensembles of link and hub event histories for any given automo-
bile define routes that automobiles travel across the road net. Such routes
must be in the set of routes defined by the road net.

As You can see, there is enough of interesting modelling issues to tackle !
Formulation of an Intentional Pull.

59. An intentional pull of any road transport system, rts, is then if:
(a) for any automobile, a, of rts, on a link, � (hub, h), at time τ ,
(b) then that link, �, (hub h) “records” automobile a at that time.

60. and:
(c) for any link, � (hub, h) being visited by an automobile, a, at time τ ,
(d) then that automobile, a, is visiting that link, � (hub, h), at that time.

axiom
59a. ∀ a:A • a ∈ as ⇒
59a. let ahist = attr AHist(a) in
59a. ∀ ui:(LI|HI) • ui ∈ dom ahist ⇒
59b. ∀ τ :TIME • τ ∈ elems ahist(ui) ⇒
59b. let hist = is LI(ui) → attr LHist(retr L(ui))(σ),
59b. → attr HHist(retr H(ui))(σ) in
59b. τ ∈ elems hist(uid A(a)) end end
60. ∧
60c. ∀ u:(L|H) • u ∈ ls∪hs ⇒
60c. let uhist = attr(L|H)Hist(u) in
60d. ∀ ai:AI • ai ∈ dom uhist ⇒
60d. ∀ τ :TIME • τ ∈ elems uhist(ai) ⇒
60d. let ahist = attr AHist(retr A(ai))(σ) in
60d. τ ∈ elems uhist(ai) end end

4.2 Perdurants

Behaviours. We show only the signature and definition of one aspect of one
behaviour. That of an automobile at a hub. We refer to [11, Examples 82–83,
pages 183–184] for the full set of signatures and definitions for link, hub and
automobile behaviours.

40 D. Bjørner

Signatures.

61. automobile:
(a) there is the usual “triplet” of arguments: unique identifier, mereology

and static attributes;
(b) then there are two programmable attributes: the automobile position

(cf. Item 50 on page 24), and the automobile history (cf. Item53c on page
25);

(c) and finally there are the input/output channel references allowing com-
munication between the automobile and the hub and link behaviours.

We deviate from RSL in expression these signatures. The deviation amounts
to a form of dependent types [37].

62. Similar signatures can be given for
(a) link and
(b) hub behaviours.

We omit the modelling of monitorable attributes.

value
61,61a automobile: ai:AI×(,uis):AM×...
61b → (apos:APos × ahist:AHist)
61c → in out {ch[{ai,ui}]|ai:AI,ui:(HI|LI) • ai∈ais ∧ ui ∈ uis} Unit
62a link: li:LI×(his,ais):LM×LΩ
62a → LΣ
62a → in out {ch[{li,ui}]|li:LI,ui:(AI|HI)-set • ai∈ais ∧ li ∈lis∪his} Unit
62b hub: hi:HI×(,ais):HM×HΩ
62b → HΣ
62b → in out {ch[{ai,ui}]|hi:HI,ai:AI • ai∈ais ∧ hi ∈ uis} Unit

We omit the pre-conditions.

Definitions: Automobile at a Hub.

63. We abstract automobile behaviour at a Hub (hi).
(a) Either the automobile remains in the hub,
(b) or, internally non-deterministically,
(c) leaves the hub entering a link,
(d) or, internally non-deterministically,
(e) stops.
(f) or, internally non-deterministically,
(g) decides to communicate with the department of vehicles,
(h) or, externally non-deterministically,
(i) is contacted by department of vehicles,

We omit the definition of department of vehicle (i.e., automobile aggregate)
behaviour.

An Essence of Domain Engineering 41

63 automobile(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡
63a (automobile remains in hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63b ��
63c automobile leaving hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63d ��
63e automobile stop(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63f ��
63g automobile contacts dv(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist))
63h ����
63i dv contacts automobile(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)

64. [63a] The automobile remains in the hub:
(a) the automobile remains at that hub, “idling”,
(b) informing (“first”) the hub behaviour.

64 automobile remains in hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡
64 let τ = record TIME() in
64b ch[ai,hi] ! τ ;
64a automobile(ai,(aai,uis),...)(apos,upd hist(τ ,hi)(ahist))
64 end

64a upd hist: (TIME×I) → (AHist|LHist|HHist) → (AHist|LHist|HHist)
64a upd hist(τ ,i)(hist) ≡ hist † [i �→ 〈τ〉̂hist(i)]

65. [63c] The automobile leaves the hub entering a link:
(a) tli, whose “next” hub, identified by thi, is obtained from the mereology

of the link identified by tli;
(b) informs the hub it is leaving and the link it is entering,
(c) “whereupon” the vehicle resumes (i.e., “while at the same time” resum-

ing) the vehicle behaviour positioned at the very beginning (0) of that
link.

65 automobile leaving hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡
65a (let ({fhi,thi},ais) = mereo L(retr L(tli)(σ)) in assert: fhi=hi
65b (ch[ai,hi] ! τ ‖ ch[ai,tli] ! τ) ;
65c automobile(ai,(aai,uis),...)
65c (onL(tli,(hi,thi),0),upd hist(τ ,tli)(upd hist(τ ,hi)(ahist))) end)

66. [63e] Or the automobile “disappears—off the radar” !

66 automobile stop(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) ≡ stop

Similar behaviour definitions can be given for automobiles on a link, for links and
for hubs. Together they must reflect, amongst other things: the time continuity of
automobile flow, that automobiles follow routes, that automobiles, links and hubs
together adhere to the intentional pull expressed earlier, et cetera. A specification
of these aspects must be proved to adhere to these properties.

42 D. Bjørner

Initial System. The initial system is the parallel composition of

67. the road net aggregate behaviour,
68. the automobile aggregate behaviour,
69. all automobile behaviours,
70. all link behaviours, and
71. all hub behaviours.

value
67. dept of roads(uid RN(rn),mereo RN(rn),...)(...)
68. ‖ dept of vehicles(uid AA(aa),mereo AA(aa),...)(...)
69. ‖ {automobile(uid A(a),mereo A(a),...)(attr Apos(a),attr AHist(a))|a:A•a∈as}
70. ‖ {link(uid L(l),mereo L(l),(attr LEN(l),attr LΩ(l)))(attr LΣ(l),attr LHist(l))|l:L•l∈ls}
71. ‖ {hub(uid H(h),mereo H(h),attr HΩ(h))(attr HΣ(h),attr HHist(h))|h:H•h∈hs}

That’s all folks ! Neat ! ?

• • •
Initial Remark Reviewed: Initially the narratives of the domain description were
scant and their counterpart formalisations left many possible interpretations as
to what these formal types and function signatures really meant. As the domain
description proceeded – now with perdurants: channels and action, event and
behaviour signatures and definitions – these meanings were narrowed down, con-
siderably – focusing, finally, on yielding the properties that are deemed necessary
and sufficient.

5 Relevance to Aeronautics and Space

The specific relevance of domain engineering to aeronautics and space will be
the subject of this section.

5.1 But First

As a preamble for briefly discussing the relevance of domain engineering to aero-
nautics and space, we ’complete’ our treatment of domain engineering with three
small notes.

Domain Modelling Experiments. It is appropriate to mention that the
method, i.e., the principles, techniques and tools of domain analysis & descrip-
tion, has been “tuned & honed” by extensive “laboratory work”. That is, there
has been experimentally researched and developed a number of less-or-more
“complete” domain models. In reverse chronological order we mention some:

– 2021: Assembly Lines, September, 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/2021/assembly/assembly-line.pdf

www.imm.dtu.dk/~{}dibj/2021/assembly/assembly-line.pdf

An Essence of Domain Engineering 43

– 2021: Shipping, April 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/2021/ral/ral.pdf

– 2021: Rivers and Canals, March 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/2021/Graphs/Rivers-and-Canals.pdf

– 2021: A Retailer Market, January 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/2021/Retailer/BjornerHeraklit27January2021.pdf

– 2019: Container Terminals, ECNU, Shanghai, China
www.imm.dtu.dk/∼dibj/2018/yangshan/maersk-pa.pdf

– 2018: Documents, TongJi Univ., Shanghai, China
www.imm.dtu.dk/∼dibj/2017/docs/docs.pdf

– 2017: Urban Planning, TongJi Univ., Shanghai, China
www.imm.dtu.dk/∼dibj/2018/BjornerUrbanPlanning24Jan2018.pdf

– 2017: Swarms of Drones, Inst. of Softw., CAS, Peking, China
www.imm.dtu.dk/∼dibj/2017/swarms/swarm-paper.pdf

– 2013: Road Transport, Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/road-p.pdf

– 2012: Credit Cards, Uppsala, Sweden
www.imm.dtu.dk/∼dibj/2016/credit/accs.pdf

– 2012: Weather Information, Bergen, Norway
www.imm.dtu.dk/∼dibj/2016/wis/wis-p.pdf

– 2010: Web-based Transaction Processing, Techn. Univ. of Vienna, Austria
www.imm.dtu.dk/∼dibj/wfdftp.pdf

– 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan
www.imm.dtu.dk/∼db/todai/tse-1.pdf, www.imm.dtu.dk/∼db/todai/tse-2.
pdf

– 2009: Pipelines, Techn. Univ. of Graz, Austria
www.imm.dtu.dk/∼dibj/pipe-p.pdf

– 2007: A Container Line Industry Domain, Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/container-paper.pdf

– 2002: The Market, Techn. Univ. of Denmark
www.imm.dtu.dk/∼dibj/themarket.pdf

– 1995–2004: Railways, Techn. Univ. of Denmark - a compendium
www.imm.dtu.dk/∼dibj/train-book.pdf

Requirements Engineering. If our objective for having a domain description
is that it serves as a basis for software development, then a [next] phase of
development is that of requirements engineering. Chapter 9 of [11] shows how to
systematically develop requirements from a domain description.

As we did for domain analysis & description, Sect. 3.5 on page 18, we can do
for requirements development: present an informal, but precise specification of
the requirements analysis & description process.

The “formalisation” below reveals an essence of [11, Chapter 9]. Namely that
the requirements development consists of three major stages: domain require-
ments, DR – which in turn consists of five steps, interface requirements, IR,
and machine requirements, MR. The stages of domain and interface require-
ments development can be further ‘decomposed’ into steps. The pseudo proce-
dure names these steps. For details we refer to [11, Chapter 9]

www.imm.dtu.dk/~{}dibj/2021/ral/ral.pdf
www.imm.dtu.dk/~{}dibj/2021/Graphs/Rivers-and-Canals.pdf
www.imm.dtu.dk/~{}dibj/2021/Retailer/BjornerHeraklit27January2021.pdf
www.imm.dtu.dk/~{}dibj/2018/yangshan/maersk-pa.pdf
www.imm.dtu.dk/~{}dibj/2017/docs/docs.pdf
www.imm.dtu.dk/~{}dibj/2018/BjornerUrbanPlanning24Jan2018.pdf
www.imm.dtu.dk/~{}dibj/2017/swarms/swarm-paper.pdf
www.imm.dtu.dk/~{}dibj/road-p.pdf
www.imm.dtu.dk/~{}dibj/2016/credit/accs.pdf
www.imm.dtu.dk/~{}dibj/2016/wis/wis-p.pdf
www.imm.dtu.dk/~{}dibj/wfdftp.pdf
www.imm.dtu.dk/~{}db/todai/tse-1.pdf
www.imm.dtu.dk/~{}db/todai/tse-2.pdf
www.imm.dtu.dk/~{}db/todai/tse-2.pdf
www.imm.dtu.dk/~{}dibj/pipe-p.pdf
www.imm.dtu.dk/~{}dibj/container-paper.pdf
www.imm.dtu.dk/~{}dibj/themarket.pdf
www.imm.dtu.dk/~{}dibj/train-book.pdf

44 D. Bjørner

value
requirements analysis description: RSL+Text→ D →

(D×D×...×D) → RSL+Text
requirements analysis description(rsl txt)(d)(d1,...,dm) ≡

DR: let dr=(let drp = domain projection(rsl txt)(d) in
let dri = domain requirements instantiation(drp)(d) in
let drd = domain requirements determination(dri)(d) in
let dre = domain requirements extension(drd)(d) in
let drf = domain requirements fitting(dre)((d1,...,dm),d)
in drf end end end end end) in

IR: let irp = interface requirements(drf)(d) in
MR: let mrp = machine requirementsn(irp)(d)

in mrp end end end

Here (d1,...,dm) are the “other” requirements with which ((dre),(...,d)) is to be
fitted; mrp then represents the full set of requirements from which to develop, in
a next phase, the software.

Software Design. The three monographs cum textbooks [8–10] show how to
develop software from requirements prescriptions.

5.2 Air Traffic Control, ATC

On the background of the domain to requirements transformation, [11, Chapter
9], and a similar requirements to software design transformation [10], we now
claim to have a rigorous path of development from domains to trustworthy soft-
ware.

An domain, “close”, informally speaking, to that of NASA’s concerns, is air
traffic control, ATC.

Future ATCs. Today’s ATC is primarily radar-based and human-operated.
Tomorrow’s ATC appears headed for satellite-orientation and automation.30

We suggest, in this paper, that major US and European efforts for formulat-
ing the next generation ATCs be supported by pre-domain modeling experiments.

Models of proposed ATCs are neither domain models nor requirements mod-
els. They are models of virtual ATCs, as [12] formulates a family of models
of automobile assembly lines. Such a family can be used to determine values
of future ATC “parameters”: which ATC components should undertake which

30 We refer to:

– ICAO: https://www.icao.int/airnavigation/documents/ganp-2016-interactive.pdf
– US: https://www.faa.gov/nextgen/
– Europe: https://www.easa.europa.eu/domains/air-traffic-management

.

https://www.icao.int/airnavigation/documents/ganp-2016-interactive.pdf
https://www.faa.gov/nextgen/
https://www.easa.europa.eu/domains/air-traffic-management

An Essence of Domain Engineering 45

tasks, etc. Their modelling process can also, and this is something new, help
experiment with alternative ATC-component or procedure proposals, as a form
of “sounding boards”.

A Model for Current ATC. In order to develop models for families of ATCs
we suggest to first develop a model of the existing, worldwide ATC. A basis for
such a model is illustrated in Fig. 3.

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower
Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

Terminal TerminalAreaArea
Centre Centre

CentreCentre

This right 1/2 is a "mirror image" of left 1/2 of the figure

ch[{...}]:GA|AG

ch[{...}]:AT|TA

ch[{...}]:AR|RA

ch[{...}]:RC|CR
ch[{...}]:AC|CA

ch[{...}]:GC|CG

ch[{...}]:RC|CR
ch[{...}]:AC|CA

ch[{...}]:AT|TA

ch[{...}]:GC|CG

ch[{...}]:GA|AG

ch[{...}]:CC

ch[{...}]:AR|RA

behaviour in/out

Fig. 3. Conventional air traffic control

Thus we challenge the reader to analyse & describe external qualities (as basi-
cally shown in Fig. 3), and states, then internal qualities, first unique identi-
fiers, mereologies, and attributes; then external qualities, first channels, then
behaviour signatures and definitions, and finally an initial state.

Now the modellers are well prepared for modelling future ATCs.

• • •
The above suggests that domain modelling problems related to aeronautics and
space might also be a good idea !

5.3 An Aeronautics and Space Domain

To properly understand the domain of aeronautics &31 space we must first analyse
various facets of the domain as we see it today. Aeronautics & space, as an
endeavour, is pursued in order to explore space, with space exploration missions
“divided” into stages, deploying a variety of technologies, and satellites.32

31 We shall use the ampersand, &, instead of ‘and’, to emphasize that we speak of one,
consolidated topic, not two !.

32 The following text is adapted from various NASA Web pages found under: https://
www.nasa.gov.

https://www.nasa.gov
https://www.nasa.gov

46 D. Bjørner

[I] Types of Space Exploration. There are many kinds of space exploration: earth
observation satellites, spy satellites, communications satellites, military satellites,
satellite navigation, space telescopes, space exploration and space tourism.

[II] Stages of Space Exploration. There are common stages of missions: the launch
phase (assembly, test, and launch operations), the cruise phase, the encounter
phase and depending on the state of spacecraft health and mission funding, the
extended operations phase.

[III] Space Technologies. There are different kinds of space technologies: space-
craft, satellites, space stations and orbital launch.

[IV] Types of Satellites and Applications. And there are many types of satellites
and applications: remote sensing satellites, navigation satellites, geocentric orbit
type satellites, global positioning systems, geostationary satellites, drone satellites,
ground satellites and polar satellites.

• • •

A[n Aeronautics &] Space Control, ASC, Sketch.

An Analysis. Air traffic control, ATC, hinted at in Sect. 5.2, can, in contrast to
a perceived aeronautics & space monitoring, communication and control, i.e., an
air space control, ASC, it seems, be primarily characterised as follows: (a) ATC is
concerned with only one kind of moveable entities: passenger and cargo aircraft
whereas an ASC would have to deal with quite a variety of moveable entities; (b)
ATC is independent of the multitude of national and international air carriers,
whereas, it seems, today’s national aeronautics & space efforts and their moni-
toring, communications and controls are fragmented into national agencies who
are also the [main] stakeholders in the monitored, etc., space efforts; (c) ATC can,
today, be partly identified in terms of aircraft (one, unifying concept), ground
control towers, terminal controls, area controls and continental controls; and (d)
ATC responsibility is shared by many (overflown) nations.

• • •
There is today an estimated 3.500 man-made space objects “up there”, right
now ! Each such space “mission” lasting for up to many years. In contrast there
is, today, an estimated 10.000 aircraft in flight at any moment. Each such flight
lasting between 1/2 h and 14+ hours. We proceed, therefore, on the assumption
that a global, multi-nation co-ordinated ASC is required.

• • •

An Essence of Domain Engineering 47

The As Yet Unknowns. The above rather terse and simplified analysis left open a
number of issues: (i) Can a perceived, “single”, ASC be devised to handle all facets
of space exploration, applications and technologies ? (ii) Can a perceived ASC, of a
next future, be “pinned down” to two or more separate physical, stationary parts
(and behaviours) such as the aircraft, ground control towers, terminal controls, area
controls and continental controls ? (iii) Is it too early to consolidate matters ?
That is, do political concerns and technological advances stand in the way of
consolidation ?

A Suggestion. It is therefore suggested that the concepts of domain science &
engineering be applied to the issues of whether (α) a national and/or an inter-
national, or a global, ASC; (β) one or several distinct ASCs, one per type of space
exploration ([I]) or satellite ([IV]) or application ([IV]); and (γ) in case (β) rec-
ommends several, typed, ASCs, how to coordinate these.

In doing so domain science & engineering is being used not to model an exist-
ing, but a contemplated domain ! Thus the modelling may involve modelling a
variety of choices. In [12], the authors show how domain modelling can be for-
mulated such that optimisation of assembly line production can be investigated.
Similar possibilities could be investigated in connection with modelling proposed
aeronautic & space control. Domain science & engineering may cast a new kind
of light on these issues.

Thus it is suggested that the US Government FAA and NASA, and, in Europe,
the EUROCONTROL and ESA, separately or jointly, and these in cooperation with
many other space agencies33, co-operate on researching and experimentally
developing domain models for aeronautics & space.

6 Conclusion

The title of this paper had the prefix ‘An Essence of’. The ‘An’, rather than a
‘The’, shall indicate that there are many essential aspects of domain engineering.
Some essences of domain science & engineering are (i) a basis in philosophy ; (ii)
an interpretation of transcendental deduction; (iii) intentional pull, an interpre-
tation of “gravitational pull” being a core property of domains; and (iv) that
domain analysis & description ‘wavers’ between science and engineering, being
conducted in a context of more-or-less following formal method principles, tech-
niques and tools – yet searching and deciding informally for the entities to analyse
& describe.

33 ICAO (UN), Roscosmos (Russia), CNSA (China), ISRO (India), JAXA (Japan),

AEB (Brazil), CSA (Canada), ASA (Australia) and others.

48 D. Bjørner

There may be other ‘essences’ !34 We refer to [11] for other aspects.
The proposed domain modelling method of this paper, and hence [11], raises

a great many research issues:

– The issue of intentional pull is also only briefly sketched, paragraph Intentional
Pull Sect., 3.2 on page 14.

– There is the issue of the modelling of continuity, illustrated in paragraph Inten-
tional Pull of Sect. 4.1 on page 25. In modelling aeronautics & space there is a
more general need for modelling continuity. ‘Formal Methods’, so far, has yet
to “deliver” on this: the ability to freely alternate between discrete, logical
models and continuous, say differential and integral calculus-based models.

– There is a carefully thought out and apparently complete analysis & descrip-
tion calculus for endurants, but there is no analysis & description calculus for
perdurants ! ?

Acknowledgments. The front matter preface of [11] ends with an extensive list of
acknowledgments. For this paper I repeat acknowledging three persons: Kai Sørlander
from whose philosophical works and from our personal interaction I have benefited; my
editor at Springer, Ronan Nugent, whose steadfast and tireless work also lies behind [11];
and Klaus Havelund for being a great discussion partner over now many years. I also
thank the NASA Formal Methods Symposium for the invitation which has afforded me
the possibility to correct, clarify and simplify a number of issues wrt. RSL, RSL+Text,
and domain analysis and description methodology: its principles, techniques and tools.

References

1. Aaronson, S.: Quantum Computing since Democritus. Cambridge University Press,
Cambridge (2013)

2. Ahbel-Rappe, S.: Socrates: A Guide for the Perplexed. A&C Black (Bloomsbury)
(2011). ISBN 978-0-8264-3325-1

3. Ross, W.D., et al.: Plato’s Theory of Ideas. Oxford University Press, Oxford (1963)
4. Aristotle: Categories. On Interpretation. Prior Analytics. Harvard University Press

[Loebb Classical Library, translated by H.P. Cooke and Hugh Tredenick] (1938)
5. Audi, R.: The Cambridge Dictionary of Philosophy. Cambridge University Press,

Cambridge (1995)

34 It appears to have become fashionable to include the idea of ‘essence’ in the title of
methods or books:

– https://essence.ivarjacobson.com/services/what-essence: The Essence of Software
Engineering. The SEMAT kernel. Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon,
Ian Spence, and Svante Lidman. ACM Queue, October 24, 2012, Volume 10, issue
10.

– https://press.princeton.edu/books/hardcover/9780691225388/the-essence-of-
software: The Essence of Software: Why Concepts Matter for Great Design. Daniel
Jackson, Nov.16, 2021.

.

https://essence.ivarjacobson.com/services/what-essence
https://press.princeton.edu/books/hardcover/9780691225388/the-essence-of-software
https://press.princeton.edu/books/hardcover/9780691225388/the-essence-of-software

An Essence of Domain Engineering 49

6. Berger, B., Whistler, D.: The Schelling Reader. Bloomsbury Publishing PLC, Lon-
don (2020)

7. Berkeley, G.: Philosophical Works, Including the Works on Vision. Everyman edi-
tion, London (1975). (1713)

8. Bjørner, D.: Software Engineering, Vol. 1: Abstraction and Modelling. TTCS.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31288-9

9. Bjørner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
TTCS. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33193-3.
Chapters 12–14 are primarily authored by Christian Krog Madsen

10. Bjørner, D.: Software Engineering, Vol. 3: Domains, Requirements and Software
Design. TTCS. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33653-
2

11. Bjørner, D.: Domain Science & Engineering - A Foundation for Software Develop-
ment. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-73484-8

12. Bjørner, N., Levatich, M., Lopes, N.P., Rybalchenko, A., Vuppalapati, C.: Super-
charging plant configurations using Z3. In: Stuckey, P.J. (ed.) CPAIOR 2021.
LNCS, vol. 12735, pp. 1–25. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-78230-6 1

13. Butterfield, J., Earmann, J. (eds.): Philosophy of Physics. Handbook of The Phi-
losophy of Science. Elsevier (2006)

14. Carnap, R.: Der Logische Aufbau der Welt. Weltkreis, Berlin (1928)
15. Carnap, R.: The Logical Syntax of Language. Harcourt Brace and Co., New York

(1937)
16. Carnap, R.: Introduction to Semantics. Harvard University Press, Cambridge

(1942)
17. Carnap, R.: Meaning and Necessity, A Study in Semantics and Modal Logic. Uni-

versity of Chicago Press, Chicago (1947, 1956)
18. Casati, R., Varzi, A.C.: Parts and Places: The Structures of Spatial Representation.

MIT Press, Cambridge (1999)
19. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.

Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8
20. Couprie, D.L., Kocandrle, R.: Anaximander: Anaximander on Generation and

Destruction. Briefs in Philosophy Series. Springer
21. Darwin, C.: Origin of Species. Penguin Putnam (2003). Introduction by Sir Julian

Huxley
22. Dawes, J.: The VDM-SL reference guide, vol. 18. Pitman, London (1991)
23. Descartes, R.: Discours de la méthode. Texte et commentaire par Étienne Gilson.

Vrin, Paris (1987)
24. Henry Folse, J.F. (ed.): Niels Bohr and the Philosophy of Physics: Twenty-First-

Century Perspectives. Bloomsbury Academic (2019)
25. Frege, G. (ed.): Begriffsschrift - “a formula language, modelled on that of arith-

metic, for pure thought”. Verlag von Louis Nebert, Halle (1879)
26. George, C., Haxthausen, A.E.: The logic of the RAISE specification language.

Comput. Artif. Intell. 22(3–4), 323–350 (2003). http://www.sav.sk/index.php?
lang=en&charset=ascii&doc=journal&part=list articles&journal issue no=882#
abstract 2729

27. George, C.W., et al.: The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead (1992)

https://doi.org/10.1007/3-540-31288-9
https://doi.org/10.1007/978-3-540-33193-3
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/978-3-030-73484-8
https://doi.org/10.1007/978-3-030-78230-6_1
https://doi.org/10.1007/978-3-030-78230-6_1
https://doi.org/10.1007/978-3-319-10575-8
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#abstract_2729
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#abstract_2729
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#abstract_2729

50 D. Bjørner

28. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead (1995)

29. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik Physik 38, 173–198 (1931).
[English translation in van Heijenoort 1967, 596–616, and in Gödel, 1986, 144–195]

30. Hegel, G.W.F.: Wissenschaft der Logik. Hofenberg (2016). (1812–1816)
31. Heidegger, M.: Parminedes. Indiana University Press, Bloomington (1998)
32. Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science.

Harper Perennial Modern Classics (2007)
33. Hierons, R.M., Bowen, J.P., Harman, M. (eds.): Formal Methods and Testing.

LNCS, vol. 4949. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8

34. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

35. Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science, Prentice-Hall International (1985)

36. Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in
Computer Science. Prentice-Hall International (1985). published electronically:
usingcsp.com/cspbook.pdf (2004)

37. Hofmann, M.: Syntax and semantics of dependent types. In: Extensional Con-
structs in Intensional Type Theory. DISTDISS, pp. 13–54. Springer, London
(1997). https://doi.org/10.1007/978-1-4471-0963-1 2

38. Hume, D.: Enquiry Concerning Human Understanding. Squashed Editions, Win-
ster (2020). (1758)

39. Husserl, E.: Ideas. General Introduction to Pure Phenomenology. Routledge, Mil-
ton Park (2012)

40. Irvine, A.D. (ed.): Philosophy of Mathematics. Elsevier Science & Technology
(2006)

41. Jackson, M.A.: Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices. ACM Press, Addison-Wesley, Reading (1995)

42. James, D., Zoller, G.: Cambridge Companion to Fichte. Cambridge University
Press, Cambridge (2016)

43. Kant, I.: Critique of Pure Reason. Penguin Books Ltd, London (2007). (1787)
44. Kennedy, H.C. (ed.): Selected works of Giuseppe Peano, with a biographical sketch

and bibliography. Allen & Unwin, London (1973)
45. Leibniz, G.W.: The Philosophical Writings of Leibniz. Hassell Street Press, Stoke-

on-Trent (2021)
46. Little, W., Fowler, H., Coulson, J., Onions, C.: The Shorter Oxford English Dic-

tionary on Historical Principles. Clarendon Press, Oxford (1973, 1987). Two vols
47. Locke, J.: An Essay Concerning Human Understanding. Penguin Classics, London

(1998). (1689)
48. Maxwell, J.C.: A Treatise on Electricity and Magnetism, 3rd edn., vol. 1–2. Dover

reprint, Garden City (1954). (1892)
49. Mendel, G., Bateson, W. (eds.): Mendel’s Principles of Heredity. Franklin Classics

Trade Press, Minneapolis (2018)
50. Mercer, J.E.: The Mysticism of Anaximenes and the Air. Kessinger Publishing,

LLC, Whitefish (2010)
51. O’Grady, P.: Thales of Miletus. Western Philosophy Series. Routledge, Milton Park

(2002)

https://doi.org/10.1007/978-3-540-78917-8
https://doi.org/10.1007/978-3-540-78917-8
https://doi.org/10.1007/978-1-4471-0963-1_2

An Essence of Domain Engineering 51

52. Pears, D.: Russell’s Logical Atomism. Fontana Collins (1972)
53. Planck, M.: Eight Lectures on Theoretical Physics. Dover Publications, Garden

City (2003). (1915)
54. Popper, K.R.: Logik der Forschung. Julius Springer Verlag, Vienna, Austria (1934).

(1935). english version [56]
55. Popper, K.R.: The Logic of Scientific Discovery. Hutchinson of London, 3 Fitzroy

Square, London W1, England (1959,... 1979), translated from [55]
56. Popper, K.R.: Conjectures and Refutations. The Growth of Scientific Knowledge.

Routledge and Kegan Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD,
London, England (New York, NY, USA) (1963,...,1981)

57. Popper, K.R.: A Pocket Popper. Fontana Pocket Readers, Fontana Press, England
(1983). An edited collection, Ed. David Miller

58. Roscoe, A.W.: Theory and Practice of Concurrency. C.A.R. Hoare Series in
Computer Science. Prentice-Hall (1997). http://www.comlab.ox.ac.uk/people/bill.
roscoe/publications/68b.pdf

59. Russell, B.: On denoting. Mind 14, 479–493 (1905)
60. Russell, B.: The Problems of Philosophy. Home University Library, London (1912).

oxford University Press paperback, 1959 Reprinted, 1971–2
61. Russell, B.: Introduction to Mathematical Philosophy. George Allen and Unwin,

London (1919)
62. Russell, B.: “Preface”. Our Knowledge of the External World. G. Allen & Unwin

Ltd, London (1952)
63. Sannella, D., Tarlecki, A.: Foundations of Algebraic Semantics and Formal Software

Development. Monographs in Theoretical Computer Science, Springer, Heidelberg
(2012)

64. Schneider, S.: Concurrent and Real-Time Systems – The CSP Approach. World-
wide Series in Computer Science. Wiley, Chichester (2000)

65. Sørlander, K.: Det Uomgængelige - Filosofiske Deduktioner [The Inevitable - Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard ·
Rosinante (1994). 168 pages

66. Sørlander, K.: Under Evighedens Synsvinkel [Under the viewpoint of eternity].
Munksgaard · Rosinante (1997). 200 pages

67. Sørlander, K.: Den Endegyldige Sandhed [The Final Truth]. Rosinante (2002). 187
pages

68. Sørlander, K.: Indføring i Filosofien [Introduction to The Philosophy]. Informations
Forlag (2016). 233 pages

69. Spinoza, B.: Ethics, Demonstrated in Geometrical Order. The Netherlands (1677)
70. Wallace, A.R.: The Annotated Malaysian Archipelago. National University of Sin-

gapore Press, Singapore (2014). Edited by John Van Wyhe
71. Whitehead, A.N., Russell, B.: Principia Mathematica, 3 vols (1962). Cambridge

University Press (1910, 1912, and 1913), second edition, 1925 (Vol. 1), 1927 (Vols
2, 3), also Cambridge University Press

72. Wittgenstein, L.J.J.: Tractatus Logico-Philosophicus. Oxford University Press,
London (1961). (1921)

73. Wittgenstein, L.J.J.: Philosophical Investigations. Oxford University Press, Oxford
(1958)

74. Wolfe, C.T., Huneman, P., Reydon, T.A. (eds.): History, Philosophy and Theory
of the Life Sciences. Springer, Heidelberg (2013)

75. Wright, M.: Empedokles: The Extant Fragments. Hackett Publishing Company,
Inc. (1995)

http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

Concept Design Moves

Daniel Jackson(B)

Massachusetts Institute of Technology, Cambridge, MA, USA
dnj@mit.edu

Abstract. Great designs are rarely inventions without precedent; more often they
are skillful adaptations of earlier designs. Designers work by recognizing struc-
tures they have previously seen, and taking steps they have taken before. By
making such patterns and design moves explicit, we can educate designers more
effectively and promote good design. This paper explains concepts, a modular
structure for describing software behavior that allows patterns to be recognized,
and proposes three pairs of design moves for software design, illustrating their
application in some widely used products.

Keywords: Software design · Design patterns · Design moves · Software
concepts · Modularity

1 Introduction: Codifying Design Expertise

Accounts of design as a creative process often give the impression that design is mostly
about coming up with entirely novel ideas. The fashionable term “ideation” reinforces
this view, and suggests that insights emerge ex nihilo in the designer’s mind. With the
assumption that little can be done to make any individual designer more imaginative or
creative, we tend to turn to a collaborative process to improve the outcome, for example
by encouraging earlier prototyping, or by brainstorming with a diverse group of people.
Such practices are helpful, but they are tangential to the substance of design.

1.1 Designers Bring Prior Knowledge

Instead, we might look to how experienced designers think, and try to make explicit
(and learnable) the insights that they have gained over years of experience. From my
own experience watching software designers in action, and from analyzing the occasions
on which I have had design insights myself, I have concluded that design ideas do not
appear in a vacuum, but are usually drawn from prior experience. This does notmean that
the experienced designer is not creative. Precedents rarely match exactly, so identifying
them demands insight (often in the form of an analogy or abstraction), and applying them
requires adaptation and skill. Design is thus less about sudden inspiration andmore about
patient analogizing and adjustment. Innovation is no less important, but becomes less
visible, being found not in a wholesale replacement of old ideas with new ones, but
rather in subtle (and sometimes unexpected) details of reworking and refinement.

© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 52–70, 2022.
https://doi.org/10.1007/978-3-031-06773-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_3

Concept Design Moves 53

Design expertise, codified in an applicable form, can offer a shortcut to inexperienced
designers, who can benefit from the accumulated wisdom of the community, and it
can amplify the skills of experienced designers. In a sense, such codification is what
thoughtful education in all practical areas seeks: to learn by doing, but where much of
the doing has already been done (by others, in the past).

1.2 Standard Solutions and Moves

Different kinds of expertise might be codified, including: (a) standard solutions or pat-
terns, which can be adopted in different contexts; (b) design moves, in which the solution
is not provided, but instead a standard transformation from one solution to another; and
(c) methods for applying these, e.g. for identifying relevant solutions or moves, and
making whatever adjustments are needed to apply them in a new situation.

The first two categories of reusable expertise have been articulated in a variety of
design fields. Notable examples include Alexander’s design patterns [2, 3], which offer
standard solutions in architecture and urban/landscape design, and Altshuller’s TRIZ
[26], which codified 40 design moves extracted from a study of thousands of patents
for physical devices. The third category is addressed tangentially in some of the pattern
literature, but has yet to be fully explored.

In software engineering, patterns have been formulated and widely adopted in many
areas, including object-oriented programming [10], software architectures [23], enter-
prise applications [9], and user interfaces [27]. While many pattern collections are avail-
able, collections of designmoves are harder to comeby.Code refactoring [12] is a notable
exception. Some of the most influential ideas about program structure might also be seen
as design moves, most notably information hiding [21] and decoupling [22].

1.3 Design vs. Engineering

All of these examples in the software realm start from the point at which the observable
behavior of the software has already been determined, and the problem is how to realize
that behavior in code. The most far-reaching decisions—what the functions of the soft-
ware will be, and how those functions will be organized—have already been made. The
user’s experience has been set; all that remains is the task of ensuring that the system
will deliver its functions reliably and efficiently.

That task, of course, comprises all of programming and software architecture, and
arguably user interface design also, so its importance should not be minimized. Never-
theless, our field has tended to focus on it at the expense of the more fundamental task
of shaping the software’s behavior. As Fred Brooks put it [5]: “The essence of a soft-
ware entity is a construct of interlocking concepts… I believe the hard part of building
software to be the specification, design, and testing of this conceptual construct, not the
labor of representing it.”

54 D. Jackson

For this reason, I believe it’s helpful to distinguish the terms software design and
software engineering, reserving the first for the shaping of behavior and the second for
structuring its implementation. This usage would accord with the way the term “design”
is used in other fields. Adopting it is not a mere philological exercise, but a serious
attempt to recognize the importance of design in its own right. As Mitchell Kapor wrote
(paraphrasing slightly): “When you go to design a house you talk to an architect first,
not an engineer. Why is this? Because the criteria for what makes a good building fall
outside the domain of engineering. Similarly, in computer programs, the selection of the
various components and elements of the application must be driven by the conditions of
use. How is this to be done? By software designers.” [20].

This paper proposes some design moves for software design. These moves depend
on expressing the function of a software system using structures that I call concepts.
I will explain first what concepts are, and then present the design moves, along with
examples of their application. The idea of concepts is presented more fully in a recently
published book [15], which also explains the design criteria on which the design moves
are based, and includes many of the examples used in this paper—but does not articulate
explicitly the idea of design moves.

Concepts are not the first attempt to identify patterns in software design prior to
implementation. This work was inspired and influenced in particular by Michael Jack-
son’s problem frames [18] and Martin Fowler’s analysis patterns [8]. Patterns in data
models have also been explored [13].

2 Concept Structuring

The behavior of a software system can be modeled as a set of interacting concepts. Each
concept has its own state and a set of actions that update the state. Importantly, and in
contrast to modules in the code, both the state and the actions are visible to the user.

The formulation of a concept’s behavior is not novel. To a practitioner of formal
methods, a concept is just a state machine, conventionally used to define entire systems
in languages such as Alloy [16, 17], B [1], VDM [19] or Z [24]. To a software architect,
a concept can be viewed as a service with a public API, like a microservice but smaller
(perhaps a “nanoservice”), or as a domain (in the sense of domain-driven design [7]),with
the state comprising a context that is even more “bounded” than usual. To a psychologist
or social scientist, a concept is a little behavioral protocol that a user engages in, just
like the protocols we use in everyday life (for example, in the way we add items to a
shopping list and then check them off as we find the items in the store).

The Label concept (Fig. 1), for example, provides the functionality associated with
labeling items and subsequently retrieving them through their labels. Some details of
the description to note:

1. The term Label is overloaded to refer to the name of the concept (in the first line)
and the set of labels (elsewhere). The concept is parameterized by Item, the type of
items to be labeled.

2. The state and actions are defined using Alloy notation, augmented with a C-style
update operator (and implicit frame conditions). Thus, for example, the formula

Concept Design Moves 55

i.labels + = l in the add_label action says that the set of labels of the item i has l
added to it.

3. The clear_labels action removes all the labels from an item, effectively removing
the item from the concept’s state.

4. The operational principle is one or more scenarios that demonstrate how the concept
fulfills its purpose. In this case, the first says that if label l is added to item i and not
removed, then performing a find on that label will return a set of items that includes
i; the second says that if no addition of such a label occurs for an item, it will not be
returned in a find on that label. The operational principle is intended to explain the
basic operation of the concept and not all the details. Thus, it does not explain, for
example, that a find on a set of labels returns the items that have all those labels, nor
does it mention the clear_labels actions.

1 concept Label [Item]
2 purpose
3 classify items into overlapping categories
4 state
5 labels: Item -> set Label
6 actions
7 add_label (i: Item, l: Label)
8 i.labels += l
9 remove_label (i: Item, l: Label)
10 i.labels -= l
11 clear_labels (i: Item)
12 i.labels := none
13 find (ls: set Label): set Item
14 return {i: Item | ls in i.labels}
15 operational principle
16 if add_label (i, l) and no remove_label (i, l),
17 find (l) returns items including i
18 if no add_label (i, l), then find (l) returns items not including i

Fig. 1. An example concept: Label.

As another example, the Todo concept (Fig. 2) provides the basic functionality of
a todo list, namely adding tasks to be displayed and marking them as done. Note that
the Task type is not treated as a type parameter; the assumption is that task objects are
generated by this concept, and that their details are not specified here. In the simplest
case, a task would be just a text string.

56 D. Jackson

1 concept Todo
2 purpose
3 track status of tasks
4 state
5 pending, done: set Task
6 actions
7 add_task (t: Task)
8 pending += t
9 remove_task (t: Task)
10 t in pending + done
11 pending -= t
12 done -= t
13 complete_task (t: Task)
14 t in pending
15 done += t
16 pending -= t
17 uncomplete_task (t: Task)
18 t in done
19 done -= t
20 pending += t
21 operational principle
22 following add_task (t), t is in pending until complete_task(t),
23 after which t is in done

Fig. 2. An example concept: Todo.

2.1 Concept Independence

Two important properties characterize concepts, distinguishing them from other behav-
ioral structures (such as features [4] or object-oriented classes). First, each concept is
self-contained: its behavior is defined without reference to other concepts, and concepts
do not “use” each other in the way that one module or microservice in the code of a
software system may use another, for example by making calls to it.

Second, concepts are purposive: each brings its own benefit that can be defined and
evaluated without reference to another. These properties are different but nonetheless
related; one can think of them both as forms of independence, the former in the realm
of behavior and the latter in the realm of the needs or requirements that the behavior is
intended to satisfy.

To achieve these properties, concept boundaries have to be drawn in certain ways,
and not all increments of function can be described as concepts. In marked contrast,
features can be used to organize the codebase of a system in almost arbitrary units.
The rationale for the more restrictive notion of concept is that it ensures that concepts
can be understood independently of one another, simplifying the user’s mental model.
Indeed, this independence of elements of a mental model is essential for its cognitive
“robustness” [6]. It also allows the same concept to be instantiated in different systems,
which brings benefits to both user (in terms of familiarity) and designer (in terms of
reuse of design knowledge).

Concept Design Moves 57

Theseproperties are illustratedby theLabel concept (Fig. 1). Self-containmentmeans
first that it includes the end-to-end functionality associated with labels: not only adding
and removing labels, but actually using the labels to find items. It also means that, as
reflected in the polymorphism of the concept, it relies on no properties of items except
that they exist and can be distinguished, so it has no reliance on any other concept.

2.2 Concept Synchronization

Concepts are composed together to form an application. Since no concept uses the
services of another, and every concept’s behavior must be visible and intelligible to
the user, traditional procedure call is not a suitable composition mechanism. Instead,
we’ll compose concepts by running them in parallel, synchronizing their actions where
needed.

Synchronizations have the form “when action A1 happens in concept C1, action A2
happens in concept C2.” An action in one concept can lead to any number of actions
in other concepts. Synchronizations may also be conditioned on the states of the con-
cepts. Synchronization is thus similar to the mechanism of an event-driven architec-
ture, but there is an important distinction. A concept can refuse an action, and in that
case a synchronization that would lead to that action must be blocked in its entirety. A
synchronization is thus a kind of transaction, and its execution is all or nothing.

1 app todo-with-labels
2 include
3 Todo
4 Label [Todo.Task]
5 sync Todo.remove_task (t)
6 Label.clear_labels (t)
7 sync Todo.add_task (t)
8 Label.add_label (t, PENDING)
9 sync Todo.complete_task (t)
10 Label.remove_label (t, PENDING)
11 sync Label.remove_label (t, PENDING)
12 Todo.complete_task (t)
13 sync Label.add_label (t, PENDING)
14 Todo.uncomplete_task (t)

Fig. 3. An example synchronization.

This composition mechanism is borrowed from CSP [14]. In CSP, actions in two
processes are synchronized when they have the same name, and in the resulting com-
position, a single shared action occurs for both processes. When process actions with
different names are to be synchronized, a renaming operator is first applied. For con-
cepts, it makes more sense to allow actions with different names to be synchronized,
and for a single synchronization to result in multiple actions in the various participating
concepts.

Despite this difference, a fundamental property ofCSP is retained. Suppose a concept
C has a specification S(C), which you can think of as the set of permitted histories of

58 D. Jackson

actions (called traces in CSP). Let’s say that an app conforms to the specification of C
if every history of actions of the app, when restricted to those actions relevant to C, is a
permitted history in S(C). Then given two concepts C1 and C2, any composition C1 ||
C2 will conform to both specifications S(C1) and S(C2). In other words, composition of
concepts implements conjunction of specifications.

This is hardly surprising. Synchronization can never make a concept do an action it
would not otherwise allow, and can therefore only restrict which actions happen. If this
were not the case, a concept, once embedded in an app, might behave in an unfamiliar
way, compromising the user’s understanding of that concept as a distinct and separable
unit of functionality.

In the absence of synchronization, a concept’s actions are unconstrained, and may
occur in any order consistent with the concept behavior. In practice, a user interface
will limit which actions are available at any time, typically by offering certain groups
of actions on certain pages, with traversal actions to navigate from page to page. Such
limitations are rarely fundamental, however, and are unlikely to be imposed by the
service layer that lies behind the user interface. They could in theory be described as
synchronizations, but in most cases (especially for non-critical software) the effort of
specifying them carefully will not be worthwhile, and they would be better addressed in
the context of wireframing.

We can assemble a little application that combines the two concepts we defined
earlier, allowing the user to add labels to tasks, using the label PENDING for tasks that
are pending (Fig. 3). Some details to note:

1. The instantiation of the Label concept passes in the Task type of the Todo concept
as a parameter, thus ensuring that the items manipulated by the Label concept are
the tasks of the Todo concept.

2. The implicational structure of synchronizations is implicit. Thus, the first synchro-
nization, for example, says that when a remove_task action happens in the Todo
concept for task t, a corresponding clear_labels action happens in the Label concept
for the same task.

3. The first synchronization is just a bit of book-keeping, ensuring that when a task
is removed from the Todo concept, it doesn’t remain as a labeled item in the Label
concept. If it did, the removed task might appear when the user tries to find tasks by
label.

4. The four remaining synchronizations bring a little magic: when a task is added, it
automatically gets the PENDING label; and when the task is completed, the label is
removed. Conversely, adding and removing the label changes the task status. This
allows a user to filter tasks by their labels and by their task status at once, since the
latter is now expressible with labels. (For simplicity, I’ve only included a PENDING
label, but of course we could add a COMPLETED label too allowing the user to find
completed tasks as well as PENDING tasks.)

The synchronizations of actions between the two concepts preserve an invariant: that
the tasks classified as pending in the Todo concept are labeled as PENDING in the
Label concept. You might think at first that this redundancy brings little benefit. But
actually there’s a valuable synergy at play. With the task classification now reflected

Concept Design Moves 59

in the labeling, the user can use the Label concept to perform filterings that might
otherwise have needed additional functionality in the Todo concept. Imagine a user
interface for this app: a button that filters tasks to those that are pending would, prior to
this synchronization, have required a special implementation as a query over the state
of the Todo concept, but now it can be implemented using the find action of Label. The
benefit would be even greater if (as would occur in practice) the Label concept were
extended to a rich query language, so that the PENDING status could be combined with
other labels in conjunction and disjunction.

3 Design Moves: Mechanical Analogues

To introduce the concept designmoves in an intuitiveway, I’ll use some familiarmechan-
ical analogues. There are six design moves, organized into three pairs of duals. Each
pair embodies some design tradeoffs; a move in one direction benefits some property P
at the cost of some other property P′, with its dual in the other direction benefitting P′
at the cost of P.

3.1 Split/Merge

The split/merge pair (Fig. 4) trade off simplicity and directness of usage on the one hand
with flexibility on the other. The first photocopier machines offered a single concept,
Photocopy say. Today’s all-in-one printers also provide photocopying, but no longer as
its own concept. Instead, there are two distinct concepts, Print and Scan, each with its
own collection of controls and customizations. By splitting the Photocopy concept into
Print and Scan, the user now has more flexibility. Photocopying is still available as a
synchronization of the two, but it is marginally less convenient.

Fig. 4. Split-merge design moves.

For the dual, consider the emergency flashlight, whose single concept merges the dis-
tinct concepts of Flashlight, Battery andCharger. Themerging brings a loss of flexibility:
you can’t use the batteries in another device, for example. But the gain in simplicity is
significant, which is important especially for a device designed for use in emergencies.
The merged concept also permits some special functionality, for example automatically
turning the flashlight on when an outlet in which it has been charging loses power.

60 D. Jackson

Fig. 5. Unify-specialize design moves.

Fig. 6. Tighten-loosen design moves.

3.2 Unify/Specialize

The unify/specialize pair (Fig. 5) trade off generality and specificity. The invention of the
adjustablewrench (in themid-19th century) solved the problemof needing a collection of
wrenches to handle nuts of different sizes; one single concept replaced multiple variants.
Of course the generality comes at a cost in specificity, since the adjustable wrench isn’t
quite as good a fit for a given nut as a plain wrench of the exact size.

A macro lens is specialized for taking close-ups. A general purpose lens can be used
for close-ups, but not so effectively: both its closest focus distance and smallest aperture
are typically larger than for the specialized lens. On the other hand, a macro lens is
usually less suitable for other applications (such as portraits), since its widest aperture
is typically smaller.

3.3 Tighten/Loosen

The tighten/loosen pair (Fig. 6) trade off automation and control. In an aircraft toilet,
the light and the door lock are synchronized tightly: you can’t turn on the light without
locking the door. The loss in flexibility (of a cleaner being able to keep the light on and
door open) comes with the benefit of a passenger avoiding embarrassment of the door
being opened while using the toilet.

Concept Design Moves 61

The dual move, in which concept synchronization is loosened, can be seen inmodern
dimmer switches. The earliest switches coupled together the basic light switch concept
and the dimmer concept: to turn the light off you had to first dim it all the way down. In
modern designs, the two concepts can be operated independently, so that a light can be
turned on and off while retaining the brightness setting.

4 Concept Design Moves: Software Examples

I’ll now illustrate each of the design moves with an example from software, showing
how the move was applied successfully in a familiar software product.

4.1 Split: Emergence of a Concept in Keynote

The Fullscreen concept (Fig. 7) has had a slow emergence. Initially, certain apps used
full screen mode only for certain functions. Presentation apps such as Powerpoint and
Keynote, in particular, would go full screen when the user switched from editing to
presenting. Later, apps began to offer a full screen mode as an option during regular
use. The final step came during the COVID-19 pandemic, when users began to make
slide presentations in Zoom meetings, and needed a way to present without going full
screen (so they could continue to see the other participants). Finally, Fullscreen became
a concept in its own right that can be fully controlled independently of other concepts.

Fig. 7. Keynote’s fullscreen for edit (left) and non-fullscreen for play (right).

4.2 Merge: The Yellkey URL Shortener

The ShortURL and Expiry concepts have been known for a long time, although they
weren’t typically combined. Most URL shortening services generated a short URL that
was permanent. The Expiry concept is used in a variety of contexts, and is often under
user control (for example, to allow you to limit the access period for a shared document).
The Yellkey URL shortener (Fig. 8) brought these two concepts together so tightly that
they no longer appear to have any independent existence: when you request a short URL,
you enter the long URL and an expiry time. No other action is provided, except of course
the redirection in which short URLs are expanded. The benefit of this integration is that,
by ensuring very short lifetimes for short URLs, a common word can be used in place
of an unreadable sequence of random characters.

62 D. Jackson

Fig. 8. Yellkey URL shortener.

4.3 Unify: MITs Moira Service

My own university offers a service for mailing lists called Moira (Fig. 9). The owner
of a mailing list can be a single user, but it can also be a group of users. This is handy,
because it permits the burden of maintaining the group to be spread amongst multiple
administrators; it also supports the common case of a professor delegating control to an
assistant.

In a deft design move, Moira’s designers chose to reuse the mailing list concept for
administrative groups too. Essentially, there is only a single concept, List say, which
unifies two concepts, MailingList and AdminGroup, which might have been separated,
but which share several key actions (notably adding and removing members). The uni-
fication simplifies the user interface and its implementation, and also offers the ability
to treat an administrative group as a mailing list (so you can provide an email address
for the administrators of a list to those who want to join or leave).

Fig. 9. MIT’s Moira mailing list service.

But, as with all unifications, the move is not free of costs. A mailing list can include
two types of members: internal users (who have MIT accounts, and are identified by
their MIT user names) and external users (who do not have accounts, and are identified
by their full email addresses). Because all administrative functions require login with an
MIT user name, an external user cannot administer a mailing list. If you assign as the

Concept Design Moves 63

owner of a list a group comprising only external members, nobody can edit the list! It
is also possible to create cyclic ownership—two mailing lists each of which serves as
the administrative group for the other. Because the system is used by a relatively small
community of mostly expert users, however, these problems do not appear to matter
much in practice.

4.4 Specialize: Three Similar Concepts in Lightroom

Intentional specializations are harder to find in software, since software designers tend
to favor unification over specialization, often to reduce implementation effort.

In Adobe Lightroom, there are three distinct concepts that all serve the purpose of
classifying photos into a small number of fixed categories (Fig. 10). The Rating concept
lets you rate a photo with some number of stars between zero and five; the Flag concept
lets you mark a photo as picked or rejected (or neither); the ColorLabel concept lets
you assign one of a few colors to a photo. These three distinct concepts are applied by
Lightroom users mostly in one particular scenario: marking uploaded photos by quality
prior to deleting some of them.

There are various differences between the concepts. The colors of the ColorLabel
concept are not ordered; the Rating concept, in contrast, allows you to filter for photos
with more than one star (for example). The Flag concept has a rather baroque built-in
action called refine whose effect is to cause unflagged photos to be flagged as rejected,
and picked photos to be unflagged. There is also a delete-rejected action which can then
be applied to delete the photos that are now marked as rejected (and were previously the
ones not picked).

Fig. 10. Lightroom ratings, flags and color labels.

In an early version of Lightroom, ratings and color labels were associated with files
(so that if a photo belonged to multiple collections, any change in its rating or label
would be seen in all of them), but flags were scoped by collection, so the same photo
could have a flag in one collection but not another. This was a feature with legitimate
uses, but it was removed, and flags were brought into line with ratings and color labels,
presumably because users found it confusing that flag metadata was not saved to file.

Whether three distinct concepts are necessary here is not clear, but the cost of the
additional complexity seems minor, and users seem to appreciate the choice.

64 D. Jackson

4.5 Tighten: Page Scheduling in Hugo

Traditional blogging platforms such as WordPress and SquareSpace offer a Schedule
concept that allows a blogger to author a post now but schedule it for publication at
some date in the future. Blog posts also have metadata that includes a date which is
often set by default to the date on which the post was created, and thus need not match
the publication date.

In the Hugo static website generator, in contrast, scheduling is implicit. Files are
written in markdown and contain a preamble giving the value of various metadata fields.
The date field determines the date of publication, so all a user need do to schedule a post
in the future is to enter the desired date in the file. Every file is treated uniformly, so any
file on the website—not just a blog post—can be scheduled in this way.

This mechanism is a synchronization of Hugo’s Metadata and Schedule concepts.
The Metadata concept in its general form lets you associate properties with an object,
retrieve them and sometimes also sort and filter collections of objects by their properties.
In this design, the date field of a file is playing two roles: one (the basic Metadata role) is
to show the date of a post on the website, and to sort posts by their dates in index pages;
the other (the Schedule role) is to determine the date on which the post becomes visible.
In fact, many of the other metadata fields in Hugo play additional roles of this sort via
synchronization.

While elegant and flexible, the design is not without problems. Because the publica-
tion date of any file can be set in this way, it is possible if one is not careful to introduce
inconsistencies in which a file and the files it references are published at different times,
leading to broken links.

4.6 Loosen: Expert Control in ProCamera

Most digital cameras offer a rich Focus concept, often with many modes and settings,
that sets the focal distance of the lens automatically, and an Exposure concept that sets
the exposure (the aperture, shutter speed and sometimes also the ISO speed). In most
cameras, the Focus concept offers an option in which the user can select a focal point
somewhere in the image, and move it around (for example with a little joy stick on the
back of the camera). In more advanced cameras, exposure can either be set by averaging
over the scene, or by sampling a particular point (allowing the photographer to ensure
that a face, for example, is correctly exposed). In almost all cameras, the Exposure point
coincides with the Focus point.

Sometimes, however, the photographer wants to focus at one point and set exposure
at another. In most cameras, this can be achieved by moving the focus point to the first
point and setting “focus lock,” and then moving it to the second point to set the exposure
(or vice versa, using “exposure lock”).

In ProCamera, a camera app for the iPhone, this complexity is eliminated by loosen-
ing the synchronization between the Focus and Exposure concepts. Unlike the conven-
tional design, in which the target point of the Focus concept is used as the target point
of the Exposure concept, each concept has its own point, so that focus and exposure can
be sampled independently.

Concept Design Moves 65

5 Solving Problems with Design Moves

To show how design moves might be used to fix design problems, let’s consider some
troubled designs.

5.1 Aspect Ratio in Fujifilm Cameras

Fujifilm makes a range of digital cameras that are widely admired for their physical
design. Their cameras have been lauded especially for theirmanual controls, which allow
almost all adjustments to bemade directly by turning a dial or ring, andwithout having to
navigate through menus. This is especially significant because, as in most cameras, the
user interface design for the virtual controls is not as refined as the mechanical design.

One example can be found in the way one selects the aspect ratio (which can only
be done by menu). Most mirrorless cameras (and some digital SLRs too) let you choose
an aspect ratio that differs from the sensor’s native ratio. This means wasting pixels, but
allows a photographer to employ a different framing, and to visualize that framing in
the viewfinder. The most common non-standard ratio is probably 1:1, since it matches
Instagram’s preferred ratio.

On Fujifilm cameras (Fig. 11), the ratio is set in the Image Size menu (whose name
already suggests a problematic design). This menu is used also to set JPEG resolution.
Thus, if you want a 1:1 ratio, for example, the menu offers three options for that ratio,
combining it with L, M and S settings (for large, medium and small numbers of pixels in
the recorded JPEG). A separate menu, called Image Quality, lets you choose to record
just a raw file, or just a JPEG file, either in fine or normal quality, or to record both raw
and JPEG, with either of the two JPEG quality options.

Fig. 11. Fujifilm image quality menu (left) and image size menu (right).

If you choose the option to store only raw files, and no JPEGs, the Image Size menu
is greyed out, and the aspect ratio reverts to the default. You might imagine that this is
because custom ratios are achieved by cropping the JPEG in-camera (which is true), and
that they cannot therefore play a role for raw files (which is false). In fact, these cameras
helpfully store a non-destructive crop in the raw file. But because of the strange design,
if you want only raw files but with a custom ratio, you need to switch to the option to
store JPEGs too, and then throw them away.

66 D. Jackson

The remedy here seems straightforward. Ratio is not a proper concept in its own
right; it has been merged into the Image Size concept as an additional feature. This is
what I call “overloading by piggybacking”: it seems as if the developer needed to find a
place to insert the ratio feature and “piggybacked” it onto another concept. Applying a
split and making Ratio a concept in its own right, so that the user could select the ratio
independently of the JPEG size, would eliminate the problem of having to generate spu-
rious JPEGs. It would also allow Fujifilm to support a larger number of ratios. Users are
always asking for more (and there is even an online petition) but Fujifilm is presumably
reluctant to do so, because of the combinatorial explosion it would produce in the Image
Size menu (with its current design).

The Image Quality menu has a bad smell too in its mixing the choice of format
(JPEG vs raw) and JPEG quality. There seems to be an opportunity to rework the entire
menu system of digital cameras in a more systematic, concept-structured way.

5.2 Message Filters in Apple Mail

AppleMail, the default mail client onmacOS, includes several strongly related concepts:
Rule, which lets you define a processing rule that when matched on a message performs
some action (such as moving it to a given mailbox); Search, which lets you search for
messages from particular senders or with certain subjects (amongst other things); and
SmartMailbox, which lets you define a mailbox containing messages that meet certain
criteria.

All three concepts involve filtering a set of messages using defined criteria. For Rule,
the set comprises either incoming messages (by default), or the messages in a specified
mailbox; for Search, the set comprises either all messages or the messages in selected
mailboxes; and for SmartMailbox, it comprises all messages.

There is no fundamental reason (as far as I can tell) that this filtering should be
specialized to the three concepts.Andyet each concept has not only its ownuser interface,
but also its own filtering options, and these options are incomparable. Thus, only Rule
lets you filter on whether messages are encrypted or not; only Search lets you select
messages in a mailbox whose name contains a given string; and only SmartMailbox lets
you choosemessages by the datewhen last viewed. Furthermore,Rule andSmartMailbox
let you conjoin or disjoin multiple conditions; Search does not.

Applying the unify move to create a single, general filtering concept might improve
this design. It would allow a single user interface for the filtering aspect of all three
concepts, and it would allow more powerful filtering (especially for Search, which is
very limited). It would also support converting a search into a rule or a smart mailbox. As
with all unifications, there would be rough edges to handle: most notably, some warning
would be desirable when a rule is applied only to incoming messages but contains a
condition that does not apply to them (such as belonging to a given mailbox, or having
been viewed already).

5.3 Event Deletion in Calendars

Calendar apps such as Apple Calendar and Google Calendar synchronize two concepts
together: an Event concept (which lets you store and view upcoming events) and an

Concept Design Moves 67

Invitation concept (which lets you send a request to a group of participants and receive
replies). Obviously, the two concepts need to work in concert together, but in practice
the synchronization has sometimes been too tight.

For years, Apple Calendar’s predecessor iCal suffered from an amusing problem—
although hardly amusing to users. If an event had an associated invitation, then deleting
it would automatically send a reply that the invitation had been declined. This created
a Catch-22 when you receive calendar spam: if you deleted the spam event, the reply
would reveal to the spammer that your email addresswas legitimate, but if you left it, your
calendar could fill up with spurious events. Various workarounds (such as moving the
spam events to a new calendar and deleting the calendar in its entirety) were developed
until Apple solved the problem by loosening the synchronization and offering users the
option of deleting an event without declining the associated invitation.

This problem seems to have persisted longer in Google Calendar. A few years ago,
seminars in our lab would routinely appear to be canceled, only for the organizer to
assure people that the seminar was in fact going ahead. The problem, it turned out was
that members of the lab mailing list received the seminar announcement in their email
client, which in some cases automatically installed the event in their calendar. If someone
then deleted their copy of the event, a message saying the event was canceled was sent to
all (nearly 1,000!) members of the seminar mailing list, which was specified as a single
participant in the seminar event.

It’s unclear whether this problem remains in Google Calendar. In the official doc-
umentation for “Delete an event,” there is no mention of deleting without canceling or
sending a notification. Google Calendar does seem to present a “delete without notify”
option in some cases, but according to one forum thread, only if the deletion is being
requested by the owner of the event/invitation and not if by a recipient.

Fig. 12. Zoom reaction options.

5.4 Sticky Hands in Zoom

Finally, here is an example that seems to call for a tightenmove. InZoom, theRaisedHand
concept operates entirely independently of other concepts, notably the Mute concept.
And yet a common protocol for meetings has participants mute themselves until they
want to talk; then raise their hand; then unmute when called upon. Unfortunately, people
often forget to lower their hands, so the moderator is uncertain of whether or not to call
on them again.

68 D. Jackson

Introducing some synchronization here might help. One possibility would be to offer
a special meeting mode in which only one participant who is not a host can be unmuted
at a time; participants raise their hands to speak, and when a host selects someone, they
are simultaneously unmuted, their hand is lowered, and the previous speaker muted.

The key point here is not that the design move is obvious or trivial. On the contrary,
there are many pitfalls in designing this kind of behavior while trying to maintain a
balance between simplicity and flexibility. What the design move offers is not a panacea
but a way to frame the design space, by encouraging the designer to separate the design
of the concepts and their actions from theway inwhich those actions are synchronized. A
slightly different view of this problem is possible. In the current user interface of Zoom,
the “raise hand” option appears when you click the “Reactions” button, along with other
options such as displaying a clapping emoji (Fig. 12). This suggests that RaisedHand
is not in fact a concept in its own right, but is a feature (comprising just the raise-hand
action) that is subsumed by the Reaction concept. In this case, the appropriate design
move might be first to apply a split so that RaisedHand is made a concept in its own
right. That would allow a raised hand to have different behavior from a reaction. For
example, a host might choose the next person to speak by clicking a button that changes
their raised hand to a different icon (in contrast to reactions, which are controlled solely
by the participant).

6 Discussion

The design moves described here should be viewed as an initial proposal. They are
undoubtedly incomplete; they do not include, for example, some arguably even more
fundamental moves (such as adjusting a novel concept to bring it into alignment with a
familiar, existing concept). The distinctions between the moves are not always as clear
as they might be. For example, while the general ideas of split and loosen are easy to
distinguish, we saw in the context of the Zoom problem that whether one or the other
applied depended on whether the raised-hand feature were viewed as a concept in its
own right or just part of a Reaction concept.

I have also been a bit sloppy in identifying the exact boundaries of concepts. In
the Apple Mail filtering case, for example, it seems likely that the unify design move
would apply only to the filtering aspect of each of the three concepts Rule, Search and
Smart-Mailbox, each of which would be composed with a unified Filter concept but
would retain its own distinct identity. The same treatment might apply to theMoira case,
so that instead of seeing the design as a unifying of MailingList and AdminGroup, it is
seen as the factoring out of a unified (and shared) List concept.

Although much remains to be done, my hope is that this initial effort will inspire
others to think about design in this way. Design will always remain a creative and
uncertain activity, but a good design language and design structures can empower us to
work with greater confidence and clarity.

Acknowledgments. Thank you to Geoffrey Litt, Joshua Pollock andMichael Jackson for helpful
discussions about design moves, and to Akiva Jackson, Rachel Jackson and Rebecca Jackson for

Concept Design Moves 69

sharing their experiences and insights about troubled concepts. The author’s research was sup-
ported in part by the National Science Foundation, under the Secure and Trustworthy Cyberspace
(SATC) and Designing Accountable Software Systems (DASS) programs.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (2005)

2. Alexander, C.: APattern Language: Towns, Buildings, Construction.OxfordUniversity Press,
Oxford (1977)

3. Alexander, C.: Timeless Way of Building. Oxford University Press, Oxford (1979)
4. Batory, D., O’Malley, S.: The design and implementation of hierarchical software systems

with reusable components. ACM Trans. Softw. Eng. Methodol. 1(4), 355–398 (1992)
5. Brooks, F.P.: No silver bullet—essence and accident in software engineering. In: Proceedings

of the IFIP Tenth World Computing Conference, pp. 1069–1076 (1986)
6. de Kleer, J., Brown, J.S.: Mental models of physical mechanisms and their acquisition. In:

Anderson, J.R. (ed.) Cognitive Skills and Their Acquisition, pp. 285–309. Lawrence Erlbaum
(1981)

7. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, Hoboken (2004)

8. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley Professional,
Hoboken (1997)

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Professional,
Hoboken (2002)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Hoboken (1994)

11. Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the time). In:
Proceedings of Computer Human Interaction (CHI 2008), April 2008

12. Griswold, W., Notkin, D.: Automated assistance for program restructuring. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 2(3), 228–269 (1993)

13. Hay, D.C.: Data Model Patterns. Dorset House (2011)
14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken (1985)
15. Jackson, D.: The Essence of Software: Why Concepts Matter for Great Design. Princeton

University Press, Princeton (2021)
16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge

(2012)
17. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun. ACM 62(9),

66–76 (2019). https://cacm.acm.org/magazines/2019/9/238969-alloy
18. Jackson, M.: Problem Frames: Analysing & Structuring Software Development Problems.

Addison-Wesley Professional, Boston (2000)
19. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall, Hoboken (1990)
20. Kapor, M.: A software design manifesto. Reprinted as Chapter 1 of [28]
21. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053–1058 (1972)
22. Parnas, D.L.: Designing software for ease of extension and contraction. IEEE Trans. Softw.

Eng. 5, 2 (1979)
23. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.

Pearson (1996)

https://cacm.acm.org/magazines/2019/9/238969-alloy

70 D. Jackson

24. Spivey, J.M.: The ZNotation: AReferenceManual. International Series in Computer Science,
2nd edn. Prentice Hall (1992). https://spivey.oriel.ox.ac.uk/wiki/files/zrm/zrm.pdf

25. Tognazzini, B.: First Principles of Interaction Design, revised & expanded (2014). https://ask
tog.com/atc/principles-of-interaction-design

26. TRIZ (Wikipedia article). https://en.wikipedia.org/wiki/TRIZ
27. User Interface Design Patterns. https://ui-patterns.com
28. Winograd, T., Bennett, J., De Young, L., Hartfield, B. (eds.): Bringing Design to Software.

Addison-Wesley, Boston (1996)

https://spivey.oriel.ox.ac.uk/wiki/files/zrm/zrm.pdf
https://asktog.com/atc/principles-of-interaction-design
https://en.wikipedia.org/wiki/TRIZ
https://ui-patterns.com

Automating Program Transformation
with Coccinelle

Julia Lawall(B) and Gilles Muller

Inria, Paris, France
{julia.lawall,gilles.muller}@inria.fr

https://coccinelle.gitlabpages.inria.fr/website/

Abstract. Coccinelle is a program matching and transformation engine
for C code. This paper introduces the use of Coccinelle through a collec-
tion of examples targeting evolutions and bug fixes in the Linux kernel.

Keywords: Linux kernel · Coccinelle · Program transformation

1 Introduction

It is the dream of every programmer to have a tool that will automatically tra-
verse their software and make any kind of changes that the programmer wants.
Early efforts include sed and awk that permit developers to write simple search-
and-replace patterns involving regular expressions [10,11]. Such tools are pow-
erful, but regular expressions are hard to write, are error prone, have a lim-
ited view of the code, and are not aware of the programming language syntax.
Tools designed according to the Visitor pattern [6], such as CIL [20], have been
developed, but these require the user to become familiar with the visitor’s cho-
sen internal representation for the programming language. Must easier to use,
common semantics-preserving changes, known as refactorings, were classified by
Fowler [5], and are provided as a collection of black-box tools within integrated
development environments such as Eclipse [3]. But in real software development,
it is often necessary to perform changes that do not fit within a tidy collection
of common refactorings. These include repetitive bug fixes, that intrinsically
change the semantics of the code, and changes that respect the invariants that
the developer knows, but that are difficult to automatically recover from the
code base.

Coccinelle is a program matching and transformation engine for C code
[15,22]. The goal of Coccinelle is to make it easy for software developers to
express code transformations and apply these transformations across a large C
code base. Coccinelle’s transformation specification language SmPL (Semantic
Patch Language) allows transformations to be expressed using code fragments,
annotated with − and +, for lines to remove and add, respectively, mirroring the

Gilles Muller passed away before the writing of this paper. He initiated the Coccinelle
project in 2004 and supported its development over the next 17 years.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 71–87, 2022.
https://doi.org/10.1007/978-3-031-06773-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_4&domain=pdf
http://orcid.org/0000-0002-1684-1264
http://orcid.org/0000-0002-0000-8569
https://doi.org/10.1007/978-3-031-06773-0_4

72 J. Lawall and G. Muller

familiar patch syntax [18]. Such pattern-matching rules can include scripts writ-
ten in Python or OCaml, for greater expressiveness. Coccinelle was originally
designed for updating Linux kernel device drivers to take into account evolu-
tions in Linux kernel internal APIs [22], and accordingly supports a very large
portion of the C language. It has been used in over 9000 Linux kernel commits,
and is used in other C software projects, such as wine [25,27], systemd [26], and
git [7].

Previous works on Coccinelle have presented the design of the tool [22], the
semantics of its transformation language SmPL [1], the use of Coccinelle for
finding bugs in Linux kernel code [16,23], and a retrospective after 10 years
of use, including an enumeration and assessment of the design decisions [15].
Tutorials on Coccinelle have been presented at developer conferences, some of
which are available as videos [12–14]. This paper takes advantage of the written
format to make a deep dive into SmPL, to describe the reasoning that goes into
constructing a semantic patch: how to identify a problem for which Coccinelle
can be appropriate, how to sketch a solution for such a problem using SmPL,
and how to iteratively make that solution more powerful and more automatic.
Our examples focus on the Linux kernel, but should be applicable to other kinds
of C software.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on the Linux kernel, its development challenges, and the opportunities
that it raises for automatic program transformation. Section 3 presents a simple
and classic example, the transformation of a call to the kernel memory alloca-
tion function kmalloc, followed by a zeroing call to memset, into a single call
to the zeroing kernel memory allocation function kzalloc. Section 4 scales this
kind of transformation up to the detection of memory leaks involving kernel
device node structures. Section 5 considers detection of anomalies in the use of
the Linux kernel memory allocation flags, GFP KERNEL and GFP ATOMIC. Each
of these examples emphasizes the aspect of exploration facilitated by Coccinelle
– the use of Coccinelle scales naturally from simple rules with a limited scope
that may have false positives, but get the job done, to more complex rules that
capture a wider variety of conditions in a more accurate way. It is hoped that
this work can serve as a reference for a developer who wants to use Coccinelle
for the first time or who wants to explore some of its more advanced features.

2 Background

The original and primary target of Coccinelle is the Linux kernel. The Linux
kernel poses a huge maintenance challenge. It amounts to over 21 million lines
of code in Linux v5.16 (January 2022), accepts contributions from over 4000
developers per year, and undergoes frequent and large-scale changes, motivated
by security, performance, new hardware features, etc. As part of the Linux ker-
nel’s evolution, it often occurs that some API function is found to be unsuitable,
the function is redefined in some way, and then the uses of the function have
to be modified across the kernel. These modifications may involve changes in

Automating Program Transformation with Coccinelle 73

Table 1. Usage of common functions in the files of Linux 5.16, drivers/usb/atm. �
indicates that the given API function is called at least once in the given file.

cxacru.c speedtch.c ueagle-atm.c usbatm.c xusbatm.c

atm usbatm usb probe � � � – �
usb interface to usbdev � � � � �
specific usb submit urb � � � � –

usb set intfdata – � – � �
kernel request firmware � � � – –

generic wait for completion � – – � –

mutex lock � – � � –

init timer � � – � –

kzalloc � � � � –

the arguments and return values, triggering the need for further changes in the
usage context.

Intuitively, sustaining the high rate of development on the huge code base
of the Linux kernel may seem like an impossible task. Indeed one may think
of one’s own small software projects, where often one decides to just live with
some unsuitable code structure to avoid the need to do all of the work required
to change it. Scaling this work up to 21 million lines of code, and managing to
make all the changes correctly is a real challenge.

A mitigating factor is that the Linux kernel code base contains a lot of rep-
etition [2]. For example, consider the kernel API functions (Table 1) used in the
various files of the Linux v5.16 directory drivers/atm, containing Asynchronous
Transfer Mode (ATM) network device drivers. Many of the key kernel API func-
tions are used in many of the drivers. This commonality occurs at all levels –
we see functions that are specific to ATM drivers, functions that are generic
to USB drivers, and functions that are generic to the entire kernel, including
kzalloc for memory allocation, which we use as an initial case study in Sect. 3.
This pattern raises hope that not only may these functions be reused across the
various drivers, but they may also be used in similar ways. If this is the case,
then it may be possible to automate any needed changes in their usage.

Repetitive API usages raise the opportunity for using a tool to script API
usage changes. That is, rather than manually collecting the relevant files (e.g.,
with grep) and then tracking down the relevant usage contexts (e.g., with search
in an editor), it could be faster and more reliable to write a transformation rule
and then leave the job of finding the relevant code and making the changes to a
transformation tool. This is the role of Coccinelle, that is the focus of this paper.

3 Coccinelle in a Nutshell, Illustrated by kzalloc

Coccinelle offers a pattern-based language for matching and transforming C
code. It has been under development since 2005 and open source since 2008. An

74 J. Lawall and G. Muller

important goal of Coccinelle is to fit with the habits of Linux kernel developers.
The Linux kernel follows an email-based development model, where develop-
ers exchange patches describing their proposed changes, and thus developers
are used to creating, reading, and applying them. Accordingly, Coccinelle was
designed to allow code changes to be expressed using patch-like code patterns.
We refer to these as semantic patches, because they are like patches, but their
application takes into account the program control flow, and thus part of its
semantics.

A common use of Coccinelle is to reorganize a collection of one or more API
functions. Accordingly, to present Coccinelle, we consider a simple example, the
merging of uses of the kernel memory allocation function kzalloc followed by a
zeroing of the allocated memory with memset, into a single call to the kernel zero-
ing memory allocation function kzalloc. An example of this change is shown, as
a patch, in Fig. 1. The change itself is simple: replace kmalloc by kzalloc and
drop the now redundant call to memset. Still, finding the opportunities for the
change is complex: The calls to kmalloc and memset are typically not contigu-
ous – as illustrated in Fig. 1, there is often at least some error-handling code in
between them. Furthermore, some kmallocs have no following memsets and some
memsets have no preceding kmallocs, so simply using grep to find calls to one
or the other will return many irrelevant code locations. Finally, some memsets
may serve to reinitialize a structure rather than initialize a just-allocated one.
Even though calls to both kmalloc and memset are present, we do not want to
create a call to kzalloc in these cases. Coccinelle is designed to help with these
challenges.

Fig. 1. An instance of the conversion of kmalloc and memset to kzalloc.

3.1 First Steps

To develop a kmalloc-memset semantic patch that is widely applicable across
the Linux kernel code base, we take the patch of Fig. 1 as a starting point, and
consider how it can be made more generic.

The first step is to consider what parts of the patch in Fig. 1 are generic
to the change, and what parts are specific to a particular instance. For the
kmalloc-memset transformation, it is necessary to have a call to kmalloc fol-
lowed by a call to memset, where the second argument to memset should be 0.

Automating Program Transformation with Coccinelle 75

These terms will thus appear in the semantic patch exactly as they appear in
Fig. 1. On the other hand, some other terms in the patch of Fig. 1 are important,
not for their specific content, but for their relationship to other terms appearing
in the affected code. This is the case for 1) the return value of kmalloc (i.e., fh)
and the first argument of memset, which must be the same expression, 2) the
first argument of kmalloc (the size of the allocated region), that becomes the
first argument of the call to kzalloc and should be the third (size) argument
of memset, and 3) the second argument of kmalloc that becomes the second
argument of kzalloc. These terms appear in the semantic patch as metavari-
ables, i.e., variables that can match against any term in the source code, but
that must be matched consistently. The metavariables are declared between the
initial pair of @@, at the place of the affected line numbers in the standard patch.
The metavariables are furthermore declared with their types; all of the metavari-
ables that are relevant to this change have type expression. Finally, some terms
are not important to the change, such as the if statement between the calls to
kmalloc and memset. Such terms are removed, and replaced by “...”.1 “...”
matches any control-flow path from a source code term matching the pattern
before the “...” to a source code term matching the pattern after the “...”.
Furthermore, by default, all such execution paths that do not lead to an error
return must satisfy these constraints.

The resulting semantic patch is shown in Fig. 2. It makes six changes in
Linux v5.16, with no false positives. Figure 3 shows one change, in which the
code separating the kmalloc and memset is more complex than a single if. All
of the generated patches have been submitted to the Linux kernel. One received
the feedback that a different zeroing function should be used (kcalloc). Four
have been applied unchanged in linux-next as of March 25, 2022.

Fig. 2. A first attempt at a kmalloc and memset to kzalloc semantic patch.

3.2 A Refinement

While our experiment with the semantic patch in Fig. 1 was completely success-
ful on Linux v5.16, the semantic patch is not fully reliable. Figure 4 shows a
false positive in net/sunrpc/auth gss/gss krb5 keys.c, in Linux v5.2. Here
a kmalloc is indeed followed by a memset, according to our pattern, but the
memset is used to reinitialize the data to 0 (just before freeing the data, for
security reasons), rather than to initialize the data to 0 as done by kzalloc.

1 To prevent misreading, in the text, we always enclose SmPL ... in quotes.

76 J. Lawall and G. Muller

Fig. 3. A successful change in sound/core/seq/oss/seq oss init.c.

Fig. 4. An false positive for the kmalloc and memset semantic patch.

Indeed, by simply replacing the code between the kmalloc and the memset
by “...”, we have eliminated any constraints on the code found in the execution
path between them. To limit the matches to the cases where the memset repre-
sents an initialization, we can add constraints on the matching of “...” using
the keyword when. For inspiration, we consider how the allocated data is used in
the false positive of Fig. 4. The data allocated by the call to kmalloc on line 1 is
used in the right side of an assignment on line 6, creating an alias through which
it is subsequently initialized on line 10 or 12. If such an assignment appears in
the region matched by “...”, then the memset is performing a reinitialization
and should not be removed. This constraint is written as e = <+... res ...+>
(Fig. 5, line 7), to indicate that the value returned by kmalloc, res, should not
appear anywhere on the right-hand side of the assignment. Analogous to this
example use, we also add constraints to ensure that the allocated data is not
assigned to directly (line 8), or passed to another function (line 9), likely with
the purpose of initializing it. Finally, we forbid loops, as the memset may be used
to reinitialize the data on each iteration (lines 10–11). Figure 5 shows the result-
ing more robust semantic patch. On Linux v5.16, this semantic patch makes the
same changes as the original one found in Fig. 2.

Automating Program Transformation with Coccinelle 77

Fig. 5. A more robust kmalloc and memset to kzalloc semantic patch. Lines 3 and
7–11 are new.

3.3 A Second Refinement

Our semantic patch requires that the allocated data size be expressed in the
same way in both the call to kmalloc (first argument) and the call to memset
(third argument), to ensure that the sizes are the same. However, there are two
common ways of indicating data sizes in the Linux kernel: sizeof(T), where T
is the type referenced by the data pointer, and sizeof(*x), where x is the data
pointer itself. Figure 6 shows a more flexible semantic patch allowing either style
or a mixture.

Fig. 6. A more flexible kmalloc and memset to kzalloc semantic patch. Lines 4–5,
7–10, and 16 are new.

This semantic patch illustrates several new features:

– - and + need not be applied to complete lines of code (lines 7–10). The
matching and transformation process is independent of any whitespace in the
semantic patch.

– An expression metavariable can be declared to have a specific type (line 5).
This can be a C-language type, or, as illustrated here, a type metavariable.

78 J. Lawall and G. Muller

– A disjunction, here written as \(...\|...\), allows specifying a selection of
patterns that can be allowed to match. The first match is chosen. A disjunc-
tion can also be written as (...|...), where the (, |, and) are in column 0.

This semantic patch finds two more opportunities for kzalloc, as compared to
the one in Fig. 5, however it overlooks two opportunities as well, in which the
size is not expressed as a single sizeof expression. For greater flexibility, we can
create a single semantic patch consisting of Fig. 5 followed by Fig. 6, to find a
larger set of transformation opportunities.

4 A Second Example: of node put

We next present a case study related to bug finding and fixing. Bug finding
and fixing was not the original target of Coccinelle [22], but it can also involve
searching for patterns of code and making repetitive changes accordingly, and
thus Coccinelle can be useful in this case. While the previous example reorganizes
a collection of API calls, this one finds the need for an API call that is missing,
in a specific context. This example also illustrates how one instance of a change
can be scaled up to many variants.

4.1 The Problem

We consider the case of iterators over collections of device node structures.
These structures are managed using reference counts. Forgetting to decrement
a reference count when needed prevents the structure from ever being freed,
causing a memory leak. As a concrete example, we consider the use of the for -
each child of node iterator. Each iteration visits a device node structure. To
simplify the code, this iterator increases the reference count of the current node
before executing the body of the loop, and then decreases the reference count of
that node before moving on to the next iteration. Figure 7 shows a typical use
of the iterator that benefits from these hidden reference count operations.

But, out of sight, out of mind. By hiding the management of the reference
count in the normal case, the iterator hides the fact that explicit management
of the reference count is needed in exceptional cases. Specifically, in the example
of Fig. 8, if there is a jump out of the loop body via the return (line 7), the
increment of the reference count is performed, but the decrement (of node put),
that is performed by the iterator at the end of a loop iteration, is not executed.
The solution is to add a call to of node put (line 6).

Fig. 7. A simple use of for each child of node, from drivers/pci/hotplug/-

pnv php.c, Linux v5.16.

Automating Program Transformation with Coccinelle 79

Fig. 8. A use of for each child of node that may case a memory leak, from dri-

vers/mailbox/mtk-cmdq-mailbox.c, Linux v5.16, slightly simplified for conciseness.

The issue occurs not only for jumps via return, but also for goto and break.
The jump out of the loop body can occur anywhere within the loop body and
there may be multiple such jumps. There is also a large set of relevant iterators.

4.2 The Semantic Patch

Figure 9 shows the semantic patch for the case of for each child of node and
return. This semantic patch uses “...” (line 9) to trace through each possi-
ble execution path in the loop body to find those where the reference count is
decremented (line 11), where the device node variable may be stored in some
more global way that requires the reference count to remain raised (lines 13–17),
and where there is a jump out of a loop (line 20). It is on the latter that an
of node put should be inserted (line 19).

The semantic patch illustrates some more features of SmPL:

– Iterators: Iterators are not part of the C language, but are rather defined by
the Linux kernel as macros. While many macros can be parsed as function
calls, this is not possible for iterators, because an iterator amounts to a loop
header. Accordingly, SmPL provides a special notation for declaring them.
iterator name (line 2) allows declaring the name of a specific iterator, which
is then parsed similarly to a while loop. iterator (line 5) allows declaring
a metavariable that can match any iterator.

– Local variables: local idexpression (line 3) declares a metavariable that
only matches a variable declared in the current function. This feature is impor-
tant in this semantic patch, to ensure that the device node does not escape
the loop.

– Disjunction: (|) in the leftmost column indicates a choice between a selec-
tion of patterns. The ? on the last pattern indicates that the return is
optional; as in Fig. 7, some paths may not match any of the patterns.

80 J. Lawall and G. Muller

Fig. 9. for each child of node with no of node put before a return out of the loop.

– When any: By default, “...” matches a path that does not contain a match
of any pattern appearing just before or after the “...”. when any allows such
matches. The effect of the when any on the second “...” is that the disjunc-
tion pattern matches the first instance of the pattern along each execution
path through the loop body.

4.3 Scaling Up

In the previous semantic patch rule, the jump out of the loop is performed by
a return. goto and break each introduce minor specific issues, and one can
create a rule for each case. A second point of variation is the iterator name, and
indeed new iterators can be introduced over time. The semantic patch in Fig. 10
addresses this issue, for a small selection of iterators, using a pair of rules.

The first rule (lines 1–20), named r (line 1), matches the complete loop
in two ways, using a conjunction (&), analogous to the disjunction introduced
previously. The first conjunct lists the names of specific iterators to match, while
the second uses metavariables to capture the name of the iterator (i) and the
number of arguments (len) before the device node typed index variable. Note
that the position of this index variable varies depending on the iterator.

The second rule (lines 22–44) then inherits from rule r the metavariables i
(denoted r.i), representing the iterator name, and len, representing the offset
of the index variable (denoted r.len). These inherited metavariables can then
be used freely, like any other metavariable.

When applied to a given file, the semantic patch matches the first rule across
the file, and collects possible bindings of the set of metavariables. The second
rule is triggered once for each unique set of bindings of the metavariables that

Automating Program Transformation with Coccinelle 81

Fig. 10. for each child of node with no of node put before a jump out of the loop.

it inherits. Thus, the second rule will be applied to the entire file up to three
times, depending on how many of the iterators mentioned in r are used in the
file, and thus the number of bindings of rule r’s i and len metavariables.

4.4 Impact

Figure 11 shows the number of files in each release of the Linux ker-
nel between v4.0 (April 2015) and v5.16 (January 2022) that are miss-
ing an of node put() within a use of one of the iterators for each node -
by name, for each node by type, for each compatible node, for each -
matching node, for each matching node and match, for each child of -
node, for each available child of node, or for each node with property.

82 J. Lawall and G. Muller

We collected this information using the for each child.cocci semantic patch
that has been part of the Linux kernel distribution since v5.10 (December 2020).

Fig. 11. Number of files missing uses of of node put as detected by the for each -

child.cocci semantic patch found in the Linux kernel.

Over most of the time shown (April 2015–January 2022), the number of
affected files has slowly increased, as, for example, new files have been added that
do not contain the required code. The large dips from version v4.3 to version
v4.4 and then from version v5.2 to version v5.4 were due in part to the use
of Coccinelle to add the needed calls at a large scale. In recent years, there
has been a steady decline, starting with Linux v5.10, in which a semantic patch
addressing the need for of node put was added into the Linux kernel. Developers
and continuous integration tools can use this semantic patch to add the missing
calls even before the code is integrated into a mainline Linux kernel release,
breaking the steady upward trend seen in previous releases.

5 A Third Example: Inconsistent Atomicity Flags

Our final example shows how Coccinelle can be used to collect information across
a complete code base, and to report anomalies in the collected information
as potential bugs. Similar reasoning has been used effectively in various prior
approaches for mining API usage rules [4,8,17]. We how this idea can be used in
a lightweight way with Coccinelle. A challenge is that Coccinelle works on one
file at a time, and within each file on one function (or other top-level declara-
tion) at a time. We show how Coccinelle’s scripting language interface, allowing
the use of scripts written in OCaml or Python, makes collecting and processing
information across an entire code base possible.

5.1 The Problem

Our example relates to the use of the Linux kernel flags GFP KERNEL and GFP -
ATOMIC that are commonly passed to memory allocation functions to indicate
whether the function may sleep or not to wait for memory to be available,
respectively. Essentially, GFP KERNEL should be used when no lock is held, and

Automating Program Transformation with Coccinelle 83

GFP ATOMIC should be used when a lock is held. The challenge is that holding
a lock is an interprocedural property; taking a lock in one function means that
the lock is held in the execution of all called functions, until the lock is released.

Detecting whether a caller may hold a lock is particularly difficult for function
pointers, which the Linux kernel uses extensively. Figure 12 shows an example,
representing an interface to a network device driver. The choice of GFP KERNEL
or GFP ATOMIC depends on whether locks are held at the call sites of these func-
tion pointers. Such call sites are typically located in other files, and thus are
not accessible to Coccinelle when processing the file that contains this interface
definition and the definitions of the referenced functions. The call sites may be
subject to further interprocedural locking effects that are difficult to analyze.

Fig. 12. Collection of function pointers representing an interface to the MOXA ART
Ethernet (RTL8201CP) driver (drivers/net/ethernet/moxa/moxart ether.c).

5.2 The Solution

Rather than search for the function-pointer call sites and the contexts in which
they occur, we instead explore what information we can infer by assuming that
the function stored in a particular structure member is always called in the same
way. This assumption implies that if no locking code is present in the function
itself, then either GFP KERNEL will always be used by all functions stored in a
given structure member, or GFP ATOMIC will always be used. A mixture would
imply that either our hypothesis is false, and the function pointer is called in
different contexts, or that the function is using an incorrect flag.

The structure of the semantic patch is roughly as follows. First, it will pass
over the code base to collect the names of all functions containing a reference
to GFP KERNEL and the names of all functions containing a reference to GFP -
ATOMIC. In each case, it identifies the structure member storing the function,
if any. Finally, after collecting this information across the entire code base, for
each structure member, it compares the number of functions in each category.
If there is a large number of functions in one category and a small number of
functions in the other, it is possible that inappropriate flags are being used, and
the relevant code should be further investigated.

The semantic patch starts as shown below, by defining some hash tables to
collect information from across the code base. This rule is indicated as initial-
ize:ocaml (line 1), meaning that it is run before the treatment of any files, and

84 J. Lawall and G. Muller

that it contains OCaml script code. Such script code is passed directly to the
OCaml interpreter, and is not processed by Coccinelle in any way.
1 @initialize:ocaml@
2 @@
3 let atbl = Hashtbl.create 101 (* collect functions using GFP_ATOMIC *)
4 let ktbl = Hashtbl.create 101 (* collect functions using GFP_KERNEL *)

Next, the semantic patch matches uses of GFP KERNEL and GFP ATOMIC, first
identifying a use, then detecting whether the containing function is stored in a
structure member, and finally, if so, storing the location of the reference in the
appropriate hash table. The rules for each flag are independent, and are thus
shown in parallel in Fig. 13, although in the actual semantic patch, one sequence
of rules comes after the other. The first rule in the GFP ATOMIC case (lines 1–14
on the right of Fig. 13) is more complex than the first rule in the GFP KERNEL
(lines 1–5 on the left of Fig. 13); in the former case we have to ensure that the
code is not executed when a lock is locally held, which is verified by ensuring that
there is no subsequent lock release before the taking of another lock is optionally
reached (lines 8–14), considering some common lock functions.

Fig. 13. Collection of information about occurrences of GFP KERNEL and GFP ATOMIC.

The semantic patch concludes with a straightforward finalize:ocaml rule
that iterates over one of the hash tables, and for each structure member compares
the number of pointed functions using GFP KERNEL or GFP ATOMIC. The output
can be freely tailored to be more complete, possibly including false positives, or to
only include the most likely anomalies, possibly creating false negatives. Among

Automating Program Transformation with Coccinelle 85

the results, we observe that, in Linux 5.16, 7 functions in the probe member
of a platform driver structure, as illustrated in Fig. 12, use GFP ATOMIC, while
2627 use GFP KERNEL. Checking the 7 cases reveals that they should be converted
to use GFP KERNEL. Patches making these changes have been submitted to the
Linux kernel, and appear in the linux-next version of March 10, 2022.

6 Related Work

Automated program transformation has a long history. We focus on work specif-
ically related to Coccinelle. Lawall and Muller give an overview of the design
decisions of Coccinelle, its impact, and closely related work [15]. Martone and
Lawall provides a tutorial in using Coccinelle, similar to that presented here,
but targeting high-performance computing [19]. Kang et al. [9] explore the use
of Coccinelle for Java. Outside of the Coccinelle team, Nielsen et al. [21] pro-
pose a transformation system something like Coccinelle to meet the needs of
JavaScript programs. Some Coccinelle-like features have recently been added to
the Java source-code analysis and transformation tool Spoon [24].

7 Conclusion

Coccinelle has facilitated thousands of lines of changes in the Linux kernel and
other software projects. By making it possible to easily write complex patterns,
describing code fragments and their context, Coccinelle enables an alternate,
cross cutting view of a large code base. Coccinelle has been a source of fun
and pride for its developers. We hope that the reader will have a chance to try
Coccinelle, and will enjoy using it too.

Availability: Coccinelle is available from many Linux distributions, and from the
Coccinelle website: https://coccinelle.gitlabpages.inria.fr/website/

Acknowledgments. Yoann Padioleau and René Rydhof Hansen were postdocs work-
ing on Coccinelle in its earliest days, and contributed greatly to the design and imple-
mentation. Nicolas Palix has also maintained parts of Coccinelle over the years. Recent
interns who contributed greatly to the code base include Jaskaran Singh and Keisuke
Nishimura. The initial work on Coccinelle was funded in part by the French ANR and
the Danish FTP. Recently, Inria has supported the continued maintenance of Coc-
cinelle, with the help of Sébastien Hinderer and then Thierry Martinez. We are also
deeply grateful for the feedback and support from the Linux kernel developer commu-
nity. Keisuke Nishimura and Michele Martone also gave helpful feedback on drafts of
this paper. We thank the organizers of NFM22 for the invitation to present this work.

References

1. Brunel, J., Doligez, D., Hansen, R.R., Lawall, J., Muller, G.: A foundation for
flow-based program matching using temporal logic and model checking. In: POPL,
pp. 114–126, January 2009

https://coccinelle.gitlabpages.inria.fr/website/

86 J. Lawall and G. Muller

2. Casazza, G., Villano, U., Merlo, E., Antoniol, G., DiPenta, M.: Identifying clones
in the Linux kernel. In: Proceedings First IEEE International Workshop on Source
Code Analysis and Manipulation (2001)

3. Eclipse (2022). https://www.eclipse.org/ide/
4. Engler, D.R., Chen, D.Y., Chou, A.: Bugs as deviant behavior: a general approach

to inferring errors in systems code. In: Marzullo, K., Satyanarayanan, M. (eds.)
SOSP, pp. 57–72. ACM (2001)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (2002)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

7. Git, September 2021. https://github.com/git/git/tree/master/contrib/coccinelle
8. Le Goues, C., Weimer, W.: Specification mining with few false positives. In:

Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 292–306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2 26

9. Kang, H.J., Thung, F., Lawall, J., Muller, G., Jiang, L., Lo, D.: Semantic patches
for Java program transformation (experience report). In: ECOOP. LIPIcs, vol. 134,
pp. 22:1–22:27 (2019)

10. Kernighan, B.: UNIX: A History and a Memoir. Kindle Direct Publishing (2019)
11. Kernighan, B.W., Pike, R.: The UNIX Programming Environment. Prentice Hall,

Hoboken (1984)
12. Lawall, J.: An introduction to Coccinelle bug finding and code evolution

for the Linux kernel. Suse Labs (2014). https://www.youtube.com/watch?
v=buZrNd6XkEw

13. Lawall, J.: Keynote: Inside the mind of a coccinelle programmer. Linux Security
Summit (2016). https://www.youtube.com/watch?v=xA5FBvuCvMs

14. Lawall, J.: Coccinelle: 10 years of automated evolution in the Linux kernel. Linaro
Connect (2019). https://www.youtube.com/watch?v=LOsluYTzdMg

15. Lawall, J., Muller, G.: Coccinelle: 10 years of automated evolution in the Linux
kernel. In: USENIX ATC, pp. 601–614 (2018)

16. Lawall, J.L., Brunel, J., Palix, N., Hansen, R.R., Stuart, H., Muller, G.: WYSI-
WIB: exploiting fine-grained program structure in a scriptable API-usage protocol-
finding process. Softw. Pract. Exp. 43(1), 67–92 (2013)

17. Li, Z., Zhou, Y.: PR-Miner: Automatically extracting implicit programming rules
and detecting violations in large software code. In: ESEC-FSE (2005)

18. MacKenzie, D., Eggert, P., Stallman, R.: Comparing and Merging Files With Gnu
Diff and Patch. Network Theory Ltd, January 2003. Unified Format section. http://
www.gnu.org/software/diffutils/manual/html node/Unified-Format.html

19. Martone, M., Lawall, J.: Refactoring for performance with semantic patching: case
study with recipes. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds.) ISC
High Performance 2021. LNCS, vol. 12761, pp. 226–232. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90539-2 15

20. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

21. Nielsen, B.B., Torp, M.T., Møller, A.: Semantic patches for adaptation of
JavaScript programs to evolving libraries. In: ICSE, pp. 74–85. IEEE (2021)

22. Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating
collateral evolutions in Linux device drivers. In: EuroSys 2008, Glasgow, Scotland,
pp. 247–260. ACM, March 2008

https://www.eclipse.org/ide/
https://github.com/git/git/tree/master/contrib/coccinelle
https://doi.org/10.1007/978-3-642-00768-2_26
https://www.youtube.com/watch?v=buZrNd6XkEw
https://www.youtube.com/watch?v=buZrNd6XkEw
https://www.youtube.com/watch?v=xA5FBvuCvMs
https://www.youtube.com/watch?v=LOsluYTzdMg
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
https://doi.org/10.1007/978-3-030-90539-2_15
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16

Automating Program Transformation with Coccinelle 87

23. Palix, N., Thomas, G., Saha, S., Calvès, C., Lawall, J., Muller, G.: Faults in Linux
2.6. ACM Trans. Comput. Syst. 32(2), 4:1–4:40 (2014)

24. Spoon, March 2022. https://github.com/INRIA/spoon
25. Stefaniuc, M.: Coccinelle scripts for Wine, September 2021. https://github.com/

mstefani/coccinelle-wine
26. Systemd, February 2022. https://github.com/systemd/systemd/tree/main/

coccinelle
27. WineHQ: Static analysis, February 2016. https://wiki.winehq.org/Static Analysis

https://github.com/INRIA/spoon
https://github.com/mstefani/coccinelle-wine
https://github.com/mstefani/coccinelle-wine
https://github.com/systemd/systemd/tree/main/coccinelle
https://github.com/systemd/systemd/tree/main/coccinelle
https://wiki.winehq.org/Static_Analysis

The Prusti Project: Formal Verification
for Rust

Vytautas Astrauskas1, Aurel B́ılý1, Jonáš Fiala1, Zachary Grannan2,
Christoph Matheja3, Peter Müller1, Federico Poli1,

and Alexander J. Summers2(B)

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
2 University of British Columbia, Vancouver, Canada

alex.summers@ubc.ca
3 Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. Rust is a modern systems programming language designed
to offer both performance and static safety. A key distinguishing feature
is a strong type system, which enforces by default that memory is either
shared or mutable, but never both. This guarantee is used to prevent
common pitfalls such as memory errors and data races. It can also be used
to greatly simplify formal verification, as we demonstrated by developing
the Prusti verifier, which can verify rich correctness properties of Rust
programs with a very modest annotation overhead. In this paper, we
provide an overview of the Prusti project. We outline its main design
goals, illustrate examples of its use, and discuss important outcomes from
the perspectives of a user, a verification expert, and a tool developer.

Keywords: Rust · Deductive verification · Separation logic

1 Introduction

Systems programming languages have traditionally had one dominating design
goal: performance. To achieve this goal they give programmers maximum free-
dom in organising their code and data. They allow unrestricted aliasing and
freely bypassing the safety checks of the language, for instance through unchecked
type casts. This freedom enables the development of highly efficient programs,
but also makes it all too easy to introduce errors and vulnerabilities, such as
buffer overflows, memory errors, data races, and subtle functionality bugs.

Rust is a modern systems programming language that is built on a different
premise: it is designed to maximise both performance and static safety. Rust
employs a strong type system that prevents many common errors at compile
time. In particular, it eradicates memory errors (e.g. accessing uninitialised or
freed memory), various sources of program crashes (e.g. null-dereferencing), and
data races. In cases where the type system is too restrictive, programmers can
escape into unsafe Rust, which permits direct pointer manipulation like in tradi-
tional systems programming languages. However, according to Rust’s design phi-
losophy [25,32], unsafe operations are typically confined to libraries and encap-
sulated behind safe abstractions, while client code is written in safe Rust [5,30].
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 88–108, 2022.
https://doi.org/10.1007/978-3-031-06773-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_5

The Prusti Project: Formal Verification for Rust 89

This design makes Rust a promising target for program verification. Not
only does Rust’s type system prevent certain errors, such that verification need
not deal with them, but it also provides strong compiler-enforced restrictions
on aliasing and mutable state, which can be leveraged to simplify verification.
There is also an important social motivation: Rust is often chosen for projects
with high safety and security requirements, whose members are likely open to
program verification as an additional means of achieving these requirements.

To explore this opportunity, we started the Prusti project in 2017. Prusti [6]
is a general-purpose deductive verifier for Rust. We had three key design goals:

1. Enable the verification of expressive program properties. These go beyond
the absence of exceptions (called panics in Rust, e.g. due to overflows or
out-of-bounds accesses) to include invariants of data types, and more-general
functional correctness properties. We initially focused on safe Rust code, but
a designated goal of the Prusti project has been to generate self-contained
proofs that are valid independently of the guarantees of safe Rust. For the
properties guaranteed by safe Rust, this so-called core proof is redundant
(assuming Rust’s type system is sound), but it forms a reusable basis for lay-
ering correctness arguments for more complex properties on top, and (even-
tually) extending verification to common usages of unsafe code.

2. Reduce the annotation burden for programmers by leveraging Rust’s design.
Prusti addresses this goal along two dimensions. First, it reduces the complex-
ity of annotations. Safe Rust’s restrictions on aliasing and mutations allow
Prusti to use annotations based on Rust expressions, without the need to
expose programmers to non-trivial logics such as separation logic [39,43].
The resulting annotations are similar to classical contracts [35], but enable
sound, modular verification of heap-manipulating programs.
Second, Prusti reduces the amount of necessary annotations. Mainstream
verification techniques such as separation logic or dynamic frames [29] require
a large upfront investment to declare and manipulate predicates and ghost
state that describe the shape of data structures, and to prove memory safety
as the basis for more advanced properties. In contrast, Prusti extracts this
information automatically from Rust’s type system, allowing programmers to
focus immediately on the functional properties they care about.

3. Integrate smoothly into the workflow of Rust programmers. Integrating verifi-
cation tools into development workflows is widely regarded as a major obstacle
for their adoption [18]. Prusti simplifies integration in two ways:
First, since Prusti requires no upfront investment, it enables a workflow where
programmers can incrementally write more annotations to obtain stronger
guarantees. It offers a mode that does not check panic freedom, such that
it can be run on unannotated Rust programs. Panic freedom can generally
be proved by adding a small (often zero) number of simple annotations (e.g.
function preconditions); richer properties can be expressed and proved by
adding postconditions and invariants.
Second, Prusti integrates smoothly into the compiler infrastructure. It oper-
ates on the same representations of programs that the Rust compiler uses.
This avoids discrepancies with the compiler (which, in the absence of a

90 V. Astrauskas et al.

formal language specification serves as a working definition) and makes sure
the verifier does not drift out of sync as the Rust language and compiler
evolve. It also gives a unified view on potential errors: verification issues are
reported in the same way as compilation errors.

In this paper, we give an overview of the Prusti verifier and discuss the central
design decisions and relevant outcomes so far from the perspective of a user
(Sect. 2), a verification expert (Sect. 3), and a tool developer (Sect. 4). We
discuss related work (Sect. 5) and conclude with some directions for future work
(Sect. 6).

2 Prusti from a User’s Perspective

We first consider the Prusti verifier from a Rust progammer’s perspective. Prusti
builds upon the standard Rust compiler rustc. The command prusti-rustc
can be used as a drop-in replacement for rustc to verify individual files; the
command cargo prusti uses Rust’s package manager cargo to run Prusti on
Rust projects. Alternatively, Prusti can be used through an extension for Visual
Studio Code (VSCode), which is a popular editor for Rust programming [49].

A key feature of Prusti is that it supports incremental verification with an
initial annotation effort of (almost) zero: developers get guarantees beyond those
of safe Rust and useful feedback by just running Prusti on their code; they can
then choose to invest more effort to obtain more powerful guarantees. We will
illustrate Prusti’s capabilities by proving increasingly complex properties for safe
Rust programs. Further details and examples are available online [47].

2.1 (Almost) Zero-Cost Verification

By default, Prusti checks that a Rust program will not panic (terminate with
an unrecoverable error) at runtime, whether due to an explicit panic!(...) call1

or e.g. due to bounds-checks and integer overflows. Prusti can perform these
checks directly on the input program, with no modification and no user-supplied
annotations; in particular, it does not require the specifications of data structures
and side-effects required as upfront investment by verification techniques for
other imperative languages. For many examples, the checks for panic freedom
succeed immediately; others require a small amount of simple annotations. In
the following, we present examples for both cases.

As a first example, consider the Rust function in Fig. 1, which performs a
binary search for a value key on a slice of integers a, i.e. a contiguous subsequence
of the elements in a collection. Compiling this function with rustc produces no
errors. However, running prusti-rustc reveals a potential bug: the statement
let mid = (low+high)/2 on line 7 might overflow for a very large slice a. This
automatically detected bug is non-trivial: it remained undetected for years in a
similar implementation provided by the Java standard library [9].

1 or its siblings unreachable!(), unimplemented!(), assert!(false), etc.

The Prusti Project: Formal Verification for Rust 91

Fig. 1. Buggy binary search. Fig. 2. Reported error and fixed loop.

Whenever Prusti fails to verify the absence of panics, it reports potential
issues like compiler errors, as in Fig. 2 (upper half); these naturally benefit from
any IDE highlighting of errors. Programmers can understand and handle such
warnings as if Prusti were a stricter compiler for Rust.

We can fix the bug by rewriting line 7 to let mid = low + ((high-low)/2).
Now Prusti is able to infer both that high-low cannot underflow (from the loop
guard: low < high) and that low + ((high-low)/2) cannot overflow.

While this property can be proved without any help from the programmer,
others require annotations. Prusti verifies loops according to the guarantees of
the Rust type system and any user-provided loop invariants. After fixing the
overflow error in our example, Prusti cannot show that, in every loop iteration,
the slice access a[mid] (line 9) is within bounds. To establish this it suffices to
add a simple loop invariant2 stating that, during every iteration, high <= a.len()

holds just inside the loop body. The annotated code accepted by Prusti is shown
in Fig. 2 (lower half). Prusti proves that the loop invariant holds (inductively);
the invariant, along with the loop guard mid < high and the (implicit) unsigned
types of these index variables, allows Prusti to prove that a[mid] is safe).

This simplest way of using Prusti requires almost no user annotation: Prusti’s
underlying reasoning accounts for path conditions, value ranges and (not shown
here) non-aliasing guarantees implied by rustc’s type-checking. Additional local
properties of interest can be added with standard Rust assert macros (e.g. line 8
in Fig. 2), and checked statically with Prusti rather than (only) at runtime; the
initial friction in using Prusti this way is as low as for using a code linter.

2 In slight contrast to classical loop invariants, a body_invariant!(...) need only
hold for every loop iteration reaching this location inside the loop body.

92 V. Astrauskas et al.

2.2 Modular Verification of User-Specified Contracts

After using Prusti for proving panic freedom, developers may decide to invest
annotation effort step-by-step to obtain stronger correctness guarantees about
their Rust code. To this end, every function can be annotated with a contract : a
specification consisting of pre- and postconditions. Functions are verified mod-
ularly against these contracts: when verifying calls to the function, only its
contract and type signature are used, not its concrete implementation. Besides
facilitating scalability and supporting recursion, a modular approach enables
decoupling verification of client code from e.g. specific library implementations.

Continuing our example from Fig. 1, consider the following contract:

1 #[requires(a.len() < usize::MAX / 2)]

2 #[ensures(if let Some(idx) = result { idx < a.len() && a[idx] == key }

3 else { true })]

4 fn search(a: &[i32], key: i32) -> Option<usize> { /* ... */ }

Specifications in Prusti consist of (a large subset of) side-effect free Rust expres-
sions with a few carefully chosen extensions, as we discuss below. The above
postcondition ensures(...) uses the special Prusti variable result to refer to the
function’s return value3. It specifies that whenever search returns some position
idx, then the value a[idx] equals the search key. Prusti checks this property and
also that the slice access a[idx] in the postcondition is in bounds.

The precondition requires(...) states that search can be called only on slices
whose length is at most half of the largest number of type usize—Prusti will
report an error if a caller attempts to pass a longer slice. Under this precondition,
the original overflow bug could never be triggered, and Prusti can also verify the
unmodified code from Fig. 1 (for calls allowed by the precondition).

2.3 The Prusti Specification Language

We will now explain and illustrate numerous features of Prusti’s specification
language via its usage on a binary search tree (BST), given by:

1 // A binary search tree data structure (elements should be sorted)

2 pub enum Tree<T: Ord> {

3 Node(T, Box<Tree<T>>, Box<Tree<T>>),

4 Empty,

5 }

Every element of a Tree is either an Empty leaf or a Node storing pointers to its
left and right subtree, and a value of (generic) type T; the bound on T requires
that this type must implement the Ord trait so that values can be compared. We
assume that this BST represents a set, i.e. duplicate entries will never be stored.

Prusti’s specification syntax (e.g. for pre- and postconditions) reuses Rust
expressions as far as possible. Not all Rust expressions are accepted: the evalua-
tion of expressions used in specifications must not have side-effects (specifications
3 The if let construct is standard Rust, branching on whether the value can be

pattern-matched against Some(idx) (taking the second branch if not, i.e. for None).

The Prusti Project: Formal Verification for Rust 93

should not affect program execution), and must be deterministic and terminate,
to ensure that specifications have an intuitive meaning for programmers (a clear
mathematical interpretation for the verifier). Prusti identifies a pure subset of
Rust with the above properties allowed in specifications, including dereferencing,
branching, pattern-matching etc.., as used in our search postconditions above.

Importantly, Prusti allows calls to functions within specifications, if they
have the Prusti-specific attribute #[pure]. The body of a function labelled as pure
must fall into Prusti’s pure Rust fragment described above. As of now, Prusti
checks that pure functions have no side-effects and are deterministic (termination
checking is not yet performed, but will be added in the near future).

A common case of pure functions are queries (or getters) of a data structure,
such as the contains function below, which often appear in specifications.

1 impl<T: Ord> Tree<T> {

2 #[pure]

3 pub fn contains(&self, find_value: &T) -> bool {

4 // ... with the natural (recursive) definition in Rust ...

This function is implemented as a straightforward recursive traversal over the
BST [48], naturally satisfying the requirements for a pure function4. As contains

is declared pure, Prusti will treat it analogously to a mathematical function and
unroll its definition (in a bounded way, to avoid non-termination) instead of
relying solely on the function’s contract (as for ordinary methods). Annotating
the function as pure suffices for proving simple code such as the following:

1 let v = 0;

2 let t = Tree::Node(v, Box::new(Tree::Empty), Box::new(Tree::Empty));

3 assert!(t.contains(&v));

While it is reassuring that such unit-test-like programs can be statically verified
automatically, the real power of pure functions is that they provide API-specific
building blocks for defining richer functional specifications, as we show next.

Type Invariants. Our next goal is to specify that Tree objects maintain a funda-
mental invariant, namely that they model binary search trees. Assume, for the
moment, that we already have a specification of the search tree property given by
a pure method bst_invariant(&self) -> bool. Prusti’s #[invariant(...)] anno-
tation then allows us to directly attach the invariant to the Tree type:

1 #[invariant(self.bst_invariant())]

2 pub enum Tree<T: Ord> {

Now, Prusti will ensure that whenever a Tree instance is passed as function argu-
ment or return value, the invariant is guaranteed; it is correspondingly assumed
for function parameters (by the callee) and return values (by the caller).

4 Values of generic type T are compared with the library function cmp from trait Ord,
which is specified to satisfy the standard properties of total orders using an external
specification; this Prusti feature is explained in Sect. 2.4.

94 V. Astrauskas et al.

Fig. 3. Predicate expressing the invariant of a binary search tree.

Quantifiers and Predicates. Our invariant bst_invariant needs to capture
the following informal search tree property: any value v of type T in the
left (resp. right) subtree of a BST instance t with root value v’ is smaller
(resp. greater) than v’ according to T’s ordering. Rather than implementing
this property as a pure function in Rust, the above description suggests quanti-
fying over all values. Prusti specifications may contain both universal (syntax:
forall(|vars| expr)) and existential (syntax: exists(|vars| expr)) quantifiers,
where the declaration of quantified variables vars is analogous to declaring Rust
closure parameters.

We can now precisely define our intended invariant with this powerful mix of
logical quantifiers and pure functions denoting data-structure-specific abstrac-
tions. However, since quantifiers are not Rust expressions, the invariant itself
cannot be defined in a Rust function. Instead, Prusti provides the feature of
predicates, which are similar to (pure) Rust functions whose bodies can be any
expression allowed in Prusti’s specification language. Our formal Prusti spec-
ification of the invariant is shown in Fig. 3. Prusti checks that predicates are
only ever invoked in specifications; they cannot be called from executable code
(general quantifiers need not have an executable semantics).

Old Expressions. Now that we have established the search tree property as an
invariant of Tree, we may decide to add further contracts to functions working
with trees. For instance, Fig. 4 shows a method insert that inserts a new value
into a binary search tree; it is equipped with a simple postcondition (line 1)
stating that, once the function terminates, the tree contains the new value.
Since insert mutates the given tree, we may also want to make sure that, apart
from adding the new value, no other values have been added or removed. Prusti
specifications can include old(...) expressions in postconditions to refer to the
memory before execution of the function’s body. As shown in lines 2–3, we can
then specify that, for all values except the new one, the function contains returns
the same result when executed on the tree before and after running insert.

Pledges. One of the most advanced specification features Prusti adds to its
base language of Rust expressions tackles specification of reborrowing : func-

The Prusti Project: Formal Verification for Rust 95

Fig. 4. Insertion into a binary search tree.

tions that both take and return mutable references. An example is the function
get_root_value below, which hands out a reference to the root value of the tree.

1 pub fn get_root_value(&mut self) -> &mut T {

2 if let Tree::Node(value, _, _) = self { value } else { panic!() }

3 }

Rust’s type system (generally forbidding the combination of usable aliases and
mutability) makes the reference self blocked after calling this function, until
the returned reference’s lifetime expires (it is no longer used). This creates an
interesting challenge if (as we did for Prusti) one wants a specification language
which is in-keeping with both Rust expression syntax and its typing rules, to aid
programmer understanding. The key challenges [6] are: (1) one wants to specify
guarantees that will be true for self once it becomes accessible again, but in the
post-state of the call one cannot (according to the type system) talk about the
blocked reference to self, and (2) some facts that one cares about cannot even
be determined in the post-state of this call, since the value that the root will
have when the reborrow expires is not yet known: it depends on what the caller
does with the returned reference to this root value.

Prusti solves both problems with pledges [6], a novel specification feature
which allows one to express specifications about points in the future of this call,
when the returned reborrow expires. Pledges use two specification constructs:
after_expiry(e) (which describes what e’s value will be once the returned ref-
erence expires), and before_expiry(e) (which describes e’s value just before
the returned reference expires). Using these constructs, one can write e.g. a
postcondition after_expiry(self.contains(before_expiry(result))), to express
that once the returned reference result expires, the BST self is guaranteed to
contain whatever value result stores by the time it expires. More examples are
discussed in our earlier paper [6].

96 V. Astrauskas et al.

Fig. 5. A rich specification combining many Prusti and Rust features.

Given our desired BST invariant, client code should modify the root’s value
only in a way that guarantees to preserve the BST invariant. This can be enforced
with the more-advanced pledge construct assert_on_expiry(e’,e). This con-
struct expresses after_expiry(e) and, in addition, asserts e’ at the point where
the reborrowed reference expires. To demonstrate the expressiveness of these
features combined, we show a very general specification for get_root_value in
Fig. 5, which exploits the power of Prusti’s specifications to combine pledges,
old expressions, pure functions, quantifiers along with standard Rust features.
Notably, the constraint on the reborrowed reference result relates only its (sin-
gle) value to the old version of the tree: the rest of the tree structure is guaranteed
immutable while the reborrow is live, and Prusti’s underlying separation logic
proof (discussed in the next section) captures this directly.

2.4 Incremental Verification in Practice

As illustrated above, Prusti’s design enables developers to verify a codebase by
incrementally trading annotation effort for stronger guarantees. In this subsec-
tion, we report on preliminary experiences from an ongoing project in which
Prusti is used this way to analyse the ibc [21] crate, an implementation of the
Interblockchain Communication Protocol [19] containing >20,000 lines of code.

At the time of our first experiments, Prusti could run on roughly 70% of
the functions in the two crates (495/716 and 545/738) analysed; the remain-
der used features unsupported by the verifier. Without specifications the vast
majority of these functions were proved panic-free automatically. Prusti identi-
fied a small number of potential panics, due to manual assert! calls (conceptu-
ally expressing preconditions) or potential overflows due to expressions such as

The Prusti Project: Formal Verification for Rust 97

self.revision_height + delta where delta was a u64 function parameter. Mak-
ing manual assert!s into preconditions (which are then checked at call sites!) is
easy since Prusti’s specifications can be Rust expressions; adding preconditions
to rule out overflows was also simple, e.g. this precondition for the case above:

1 #[requires(u64::MAX - self.revision_height >= delta)]

2 pub fn add(&self, delta: u64) -> Height { /* ... */ }

This ruled out language-level panics for all supported functions, but (as is com-
mon) the code also uses standard library functions such as Option.unwrap(),
which panic at runtime if called incorrectly. To extend Prusti’s reach to uncov-
ering such panics, we need to add a precondition for Option.unwrap(), but since
this is standard library code, we also can’t (and don’t want to) edit it.

For this purpose, Prusti offers the external specifications (extern_spec) fea-
ture, which allows attaching contracts to functions (including library functions)
separately from their implementation5. Such specifications look like a regular
implementation block for a Rust type except that functions have no bodies
(mimicking Rust’s trait declaration syntax).

For instance, the following external specification makes sure that calls to
Option.unwrap() won’t cause panics, which is naturally expressed as a Prusti
specification by identifying is_some as a pure method:

1 #[extern_spec]

2 impl<T> std::option::Option<T> {

3 #[pure]

4 fn is_some(&self) -> bool;

5

6 #[requires(self.is_some())]

7 fn unwrap(self) -> T;

8 }

As a user, one can take an incre-
mental approach to adding such spec-
ifications to called functions, adding
those which are most worthwhile for
the user’s goals. For our panic-freedom
pass, we pragmatically focused on the
most widely used functions known to
panic (from Option<T> and Result<T>),
which already gave us stronger guaran-
tees than our initial run with no such
specifications.

After ruling out (most) panics in this way, we added specifications to check
important domain-specific requirements, for example, that the height and time
of each block in the blockchain increases monotonically. We used Prusti to verify
that various functions in the ibc crate maintain these monotonicity invariants.

Inevitably for such a large codebase, we found functions that use currently
unsupported language features. We can still attach contracts to such functions,
which will subsequently be used by Prusti to deal with calls. We can tell Prusti
not to check these specifications with a #[trusted] annotation. For example, in
ibc, some time-related functions, such as from_nanos below, relied on unsup-
ported types exposed by the chrono [28] crate and were marked as #[trusted].
The specification below expresses that from nanos returns a valid result (rather
than the error case of Result) if the u64 parameter nanos fits within an i64, but
Prusti does not check the function’s body to verify that the specification holds.
5 External specifications can also be used for functions inside the same crate, allowing

developers to apply Prusti without modifying source files, if desired.

98 V. Astrauskas et al.

1 #[trusted]

2 #[ensures(nanos <= i64::MAX as u64 ==> result.is_ok())]

3 pub fn from_nanos(nanos: u64) -> Result<Timestamp, TryFromIntError> {

4 let nanos = nanos.try_into()?;

5 Ok(Timestamp {time: Some(Utc.timestamp_nanos(nanos))})

6 }

While trusted specifications must be written carefully, they enable developers
to pragmatically focus on specifying and proving those properties they consider
most relevant without imposing an excessive verification burden.

These features provide a further degree of freedom in the verification work-
flow: developers may initially use many #[trusted] annotations in a first itera-
tion, and later attempt to reduce the number of trusted functions in subsequent
iterations. As such, both trusted functions and external specifications further
facilitate the incremental verification of realistic Rust code using Prusti.

3 Prusti from a Verification Expert’s Perspective

At the heart of Prusti lies the core proof, i.e. a memory safety proof writ-
ten in separation logic [23,39,43], the de-facto standard for verifying resource-
manipulating programs. Conceptually, the Prusti project explores three main
questions, upon which we will reflect in this section:

1. To what extent can intuitive reasoning about most Rust programs be captured
by an off-the-shelf separation logic?

2. To what extent can the generation of core proofs be automated?
3. To what extent can core proofs be leveraged for verifying interesting func-

tional correctness properties?

3.1 Core Proofs in an Off-the-Shelf Separation Logic

Separation logic nowadays comes in numerous flavours, ranging from simple log-
ics for verifying sequential heap-manipulating code to highly specialised variants
targeting intricate concurrency or weak-memory models (cf. [39]). It is thus not
surprising (but still very challenging!) that one can construct some separation
logic which allows precise reasoning about all aspects of Rust’s memory model;
RustBelt [27] is the most impressive attempt in that direction so far.

By contrast, the Prusti project aims to enable intuitive formal reasoning
about most Rust code. We believe that this approach matches Rust’s design
philosophy of enabling “fearless programming”: safe Rust code, i.e. code without
any direct usages of unsafe language features should be understandable, without
low-level concerns. Recent studies [5,16] confirm that Rust code in the wild
largely adheres to this philosophy: the vast majority of function implementations
are written in safe Rust; they may call functions that are implemented using
unsafe features, but shield clients from these details through encapsulation.

More concretely, Prusti embeds an annotated Rust program (cf. Sect. 2) in
the Viper intermediate verification language [38], which is based on Implicit

The Prusti Project: Formal Verification for Rust 99

Dynamic Frames (IDF)—a variant of traditional separation logics with a clear
formal connection to standard separation logic [40]. Building upon an off-the-
shelf logic has the advantage that the overall soundness of the embedding is
analogous to soundness arguments that are well-understood for separation logic
reasoning; it also allows us to draw on substantial prior work and expertise,
particularly when it comes to proof automation.

The original Prusti paper [6] describes the embedding in detail. Overall, we
found that the read and write capabilities governed by Rust’s flow sensitive
type system have almost identical properties to the assertions governing heap
accesses in IDF. In particular, Rust structs can be modelled as (possibly nested
and recursive) predicates representing unique access to a type instance. More-
over, moves and simple usages of Rust’s shared and mutable borrows resemble
ownership transfers in the permission reading of separation logic assertions [10];
reborrowing is modelled directly by magic wands: when a reborrowed reference is
passed back to a caller, it comes with a magic wand representing the ownership
of all borrowed-from locations not currently in the proof.

Prusti’s underlying logic champions simplicity and fits well into Rust’s overall
design philosophy: at every point in Prusti’s core proof, there is direct representa-
tion of ownership in separation logic terms. This is different from RustBelt [27],
where ownership and the connection between reborrowed and borrowed-from
locations is handled via an indirection through a custom lifetime logic designed to
express general semantic requirements on how lifetimes are manipulated, includ-
ing via ad hoc manual policies implemented by unsafe code.

However, the simplicity of Prusti’s underlying logic has also made some (safe)
Rust features harder to incorporate. One key example is struct types with explicit
lifetime parameters (used to accommodate reference-typed fields), for which it
is sometimes convenient to treat the struct as a single resource, and sometimes
convenient to consider it as multiple individual resources borrowed for a certain
lifetime. RustBelt achieves this via the more fine-grained resources of its lifetime
logic; it is unclear whether this complexity is inevitable.

3.2 Full Automation of Core Proofs for Type-Checked Rust

As explained above, Prusti’s underlying model introduces nested and potentially
recursive predicates to model instances of Rust types. However, general reasoning
about such separation logic predicates is known to be undecidable [3,22]. Verifiers
such as Viper require additional annotations to guide reasoning about predicates,
e.g. by inserting explicit statements to unfold and fold predicate definitions
into a Viper program. For example, when a field of a struct is accessed in the
Rust program, this requires unfolding the predicate modelling the capabilities
for accessing the struct; the obtained capabilities cannot always be re-folded into
a predicate since the field might be borrowed or moved-out.

While fold and unfold statements cannot be inferred automatically for arbi-
trary code with recursive predicates, Prusti infers them automatically for type-
correct Rust code. The essential point is that the Rust compiler, when enforcing
the flow-sensitive typing rules for the language, requires book-keeping similar to

100 V. Astrauskas et al.

that of unfolding and folding our predicates. For example, enforcing the check
that fields moved out from a struct are (all) moved back in before the struct can
be returned is conceptually analogous to refolding its corresponding predicate
definition in Prusti’s model.

Prusti performs a pass over the encoded Rust program to add the neces-
sary fold and unfold operations: essentially it performs a symbolic execution,
tracking the accessible places at each program point and their current depth of
unfolding (differentiating, say, between a struct being accessible and its fields
being accessible). In addition to fold/unfold annotations, Prusti also infers all of
the necessary Viper annotations for reasoning about magic wands [45] modelling
reborrows. In all, the annotations required make up a large chunk of the gener-
ated Viper code, but they are generated fully automatically for all Rust programs
supported by Prusti. This degree of automation is challenging to achieve but (we
believe) an important objective for a tool that tries to raise the conceptual level
at which a user interacts with a verifier. It ensures that Prusti users do not have
to understand the sometimes intricate logical encoding of their programs. To our
knowledge, Prusti was the first tool to be able to automatically produce formal
proofs about a substantial fragment of Rust that could be automatically checked
by a program verifier.

3.3 Incorporating Rich Functional Specifications

Prusti’s underlying logic is Viper’s dialect of Implicit Dynamic Frames. Although
closely related to separation logic, a key feature of this logic is that one can con-
join functional specifications concerning heap values directly onto the resources
such as permissions and predicate instances. In this sense, once the core proof
is in place, layering functional specifications on top comes essentially for free.

Our first versions of Prusti exploited this technical feature to embed all
aspects of user-written specifications (i.e. Rust annotations) into correspond-
ing expressions in the generated Viper code, i.e. the core proof. A more-recent
extension of Prusti’s core model equips each predicate instance with a snapshot :
a value used as a mathematical identity for the current state of the (possibly
composite) portion of the program memory accessible via this predicate. This
technique originates (we believe) from the implementation of the VeriFast pro-
gram verifier [24], and is also used extensively in Viper’s symbolic execution
engine [46]. RustHornBelt [33] uses a similar technique to layer functional spec-
ification on top of RustBelt [27] predicates. Snapshots simplify encoding prop-
erties guaranteed by reasoning methodologies other than the basic separation
logic framing built into Prusti’s core proofs. For example, (in work with Fabian
Wolff) we use the flexibility provided by snapshots to layer guarantees about
the heap on top of the core proof to extend Prusti’s support for a rich class of
specifications about Rust closures [52].

The Prusti Project: Formal Verification for Rust 101

Local crate, untyped Local crate, typed
(Sect. 4.3)

External crates,
Standard library

Prusti Viper program

ru
st

c
ru

st
c

+
ca

rg
o

Verification server

AST

Desugared AST

Dependencies

Types

HIR

Unopt. MIR

Polonius facts

Types

Opt. MIR

R
eb

or
ro

w
in

g
D

A
G

..
.

Domains

Functions

Predicates

Methods

Encoding
(Sect. 4.4)

Pure

Impure

Embedding (Sect. 4.2)

Fig. 6. Overview of Prusti’s encoding process.

4 Prusti from a Tool Engineer’s Perspective

Prusti targets real-world code in Rust, itself a mature and complex language.
Accordingly, Prusti is designed to reuse existing functionality from the Rust
compiler whenever possible, in order to reduce the implementation burden and
faithfully maintain compatibility with the constantly-evolving Rust ecosystem.

4.1 Architecture and Design Overview

Prusti is implemented as a compiler driver, reusing the standard rustc compiler
extensively; its overall workflow is presented in Fig. 6. Prusti launches and inter-
acts with a full instance of rustc, used both for its program representations and
analysis results (second column; cf. Sect. 4.3). To have Prusti-specific specifica-
tion features (Sect. 2.3) type-checked analogously to regular Rust expressions
(including error-reporting), Prusti performs a specification embedding, reusing
existing Rust features whose type-checking rules are analogous (top-left; cf.
Sect. 4.2). Prusti has rustc map the sources for both the program and (embed-
ded) specifications down to rustc’s mid-level representations as for standard
compilation. Prusti performs its own analyses (third column), and assimilates
all necessary information to generate a Viper program (last column) that it sends
to a further Prusti component which performs verification through a Viper wrap-
per. If verification fails, Prusti maps the Viper errors to user-readable Rust errors
reported via the compiler API.

The compiler driver architecture is used by popular tools such as Clippy [11]
and Miri [36]; it has two main advantages. First, it raises confidence that the

102 V. Astrauskas et al.

semantics used by Prusti is faithful. Prusti directly obtains a control-flow graph
(CFG) representation of any parsed Rust function from the compiler, instead of
inventing its own representation, which could lead to errors or semantic differ-
ences over time. The CFG-based representation used by Prusti, called unopti-
mised MIR, has a simple order-of-execution semantics and a limited number of
statements; at this stage, many of the more-subtle aspects of Rust’s evaluation
semantics have been already handled by the compiler. For example, Prusti does
not need to be aware that Rust uses short-circuiting semantics for Boolean oper-
ators, because Boolean expressions are already transformed by the compiler into
multiple statements evaluating individual operators. Unoptimised MIR main-
tains all type-checker information, along with back-links that allow the compiler
(and thus also Prusti) to translate error messages back to the source code.

Second, the above architecture enables Prusti to reuse compiler components.
Besides building upon unoptimised MIR, Prusti reuses the compiler’s type and
borrow checker to ensure that user-written Prusti annotations follow typing
rules analogous to regular Rust expressions, as explained in Sect. 4.2. Simi-
larly, Prusti reuses the Rust compiler’s error reporting component to display
verification errors. This way, the default syntax of the reports is familiar to Rust
programmers and the compiler can be configured to report machine-readable
errors. The latter simplifies integrating Prusti with other tools. For example,
IDE extensions like the official Prusti Assistant extension for Visual Studio Code,
but even Prusti-unaware tools such as Rust-analyzer [44], can be configured to
report Prusti verification errors generated by running cargo-prusti instead of
cargo check.

4.2 Specification Embedding

Prusti-specific annotations (e.g. method contracts) are implemented with pro-
cedural macros [1]. These macros are defined to generate nothing when com-
piled using the regular Rust compiler. However, when compiled with Prusti,
a specification embedding is performed: to make the compiler both type-check
and translate (to MIR) these specifications, corresponding methods are added
to the program. For Prusti-specific constructs the specification embedding is
more involved, replacing them with usages of Rust features which have the right
type-checking requirements. For example, quantifiers (Sect. 2.3) are embedded
as closures.

Prusti uses a Pratt parser [41] to perform the embedding of Prusti-specific
constructs, before invoking the syn [13] Rust parser on the result, yielding an
AST representation. The resulting specification expressions are embedded into
the bodies of methods with unique names. Prusti constructs a mapping between
these generated methods (called specification items) and the relevant construct
in the original source code (e.g. for a precondition, the method it is a precon-
dition of). By feeding the program augmented with specification items through
the compiler, we both check that the specifications type-check and can obtain
corresponding MIR representations of the specifications. The type-checking and
evaluation semantics reflected by this translation to MIR are those of standard

The Prusti Project: Formal Verification for Rust 103

rustc; this approach reuses the standard semantics of the Rust language for
specification checking and compilation.

4.3 Compiler Interface

Prusti obtains various information from rustc’s data structures, as illustrated in
the second column of Fig. 6. Given how Rust compilation works, different infor-
mation is available (and used by Prusti) for the local crate (i.e. the crate being
compiled/verified) and external crates (the dependencies of the local crate).

Local Crate. For the local crate, Prusti obtains a high-level AST representation
(HIR), the type definitions, the unoptimised CFGs of the functions (MIR), and
borrow-checker information (Polonius facts), defining the compiler-determined
lifetimes of references. Prusti uses HIR, in which function names have already
been associated to their definition, to retrieve specifications embedded in speci-
fication items, as described in Sect. 4.2. Prusti uses type definitions to generate
Viper predicate definitions for the core proof (cf. Sect. 3), while unoptimised
MIR is used to generate the corresponding Viper code itself (cf. Sect. 4.4).

The compiler offers various versions of MIR at different stages during the
compilation process. Prusti uses the unoptimised version because it is the only
one on which the borrow-checker runs. This also has a semantic advantage, since
we do not need to worry whether compiler optimisations preserve the strong
type properties that Prusti exploits6. Prusti uses the results from the Polonius
borrow-checker, also called facts, to automate the generation of annotations such
as folding and unfolding of Viper predicates (cf. Sect. 3.2).

Previously, the compiler API did not expose Polonius facts, but the com-
piler developers were very supportive in accepting our proposed additions to the
API [4]. Our changes have since been used by at least one other static analysis
tool, Flowistry [12], to access precise aliasing information.

External Crates. For external crates, the compiler offers strictly less informa-
tion than for the local one, primarily for performance reasons. Type definitions
and optimised MIR are available (Prusti uses the former to encode calls), but
the HIR, the unoptimised MIR, and the Polonius facts are not present. Since
Prusti’s overall methodology is modular, the only real limitation this imposes is
that any Prusti specifications written in an external crate will not be seen. As
explained in Sect. 2.4, Prusti supports external specifications to be applied to
these functions from the local crate. Nonetheless, following the example of the
MIRAI static analyser [17], we believe that, in the future, previously-compiled
Prusti specifications could be recovered for external crates from a combination
of the optimised MIR and persisting some information to disk between compi-
lations.

6 See for example https://github.com/rust-lang/rust/issues/46420 for an optimisation
that used to copy non-duplicable mutable references.

https://github.com/rust-lang/rust/issues/46420

104 V. Astrauskas et al.

4.4 Encoding to Viper

Finally, Prusti uses the information assembled from the Rust compiler to encode
an annotated Rust program to a Viper program for verification. As shown in the
right half of Fig. 6, there are two different encodings: a pure encoding to Viper
expressions and an impure encoding to Viper statements.

Pure Encoding. Prusti’s pure encoding is used for specifications and pure
functions (which may be invoked from within specifications), and is necessary as
Viper specifications must be Viper expressions (which are side-effect-free, unlike
statements, which are a distinct notion in Viper).

Pure Rust expressions (cf. Sect. 2.3) are encoded to Viper expressions using
a backwards symbolic execution through their CFG, starting from the variable
which stores the final result (easily determined in MIR); the steps are reminiscent
of a standard weakest-precondition calculation.

To represent Rust values in pure code, Prusti uses the snapshot technique
presented in Sect. 3.3. Snapshots are encoded to Viper domains; that is, abstract
type definitions with uninterpreted functions and axioms that describe the rela-
tion between the snapshot of a type and the snapshot of its inner instances (e.g.
variants of an enumeration or fields of a structure). These are computed from
the compiler’s type definitions.

Impure Encoding. Like the pure encoding, the impure encoding processes the
unoptimised MIR and analyses the CFG of a method. However, in the impure
case, the output is a Viper method containing heap-mutating statements. Viper
methods can also contain goto statements, which allows us to encode the MIR
CFG without having to reconstruct loops or standard control flow structures.

To encode mutable references, Prusti needs to know the program point at
which references expire and which places receive the no-longer-borrowed owner-
ship, such that magic wands that encode the ownership flow can be applied in
the right order to form the core proof. To do so, Prusti elaborates the borrow-
checker facts to automatically compute a directed acyclic graph (DAG) of the
borrowing relations for each program point: each node with exit edges represents
a reference and each edge points to the places that it blocks. When a set of ref-
erences expire, a topological sort of the DAG determines the order in which the
magic wands associated to the edges should be applied. This Reborrowing DAG
is generalised to appropriately account for conditional paths through the CFG.

5 Related Work

RustBelt [27] is a long-standing verification project for Rust. RustBelt focuses
on proving that abstractions provided by internally unsafe libraries are safe;
verification is performed in Coq [8] over a simplified language based on Rust. By
contrast, Prusti is designed for general-purpose verification (with an emphasis
on safe Rust), and directly uses the representations in the Rust compiler.

Several verification approaches have been developed which avoid explicitly
modelling Rust’s memory (and aliasing) for safe Rust (only). Electrolysis [50]

The Prusti Project: Formal Verification for Rust 105

applied purification of such programs to convert them to functional programs
to be verified in Lean [37]. More recently, RustHorn [34] and Creusot [14] lever-
age Rust’s ownership semantics to model mutable references using a technique
similar to prophecy variables [2] rather than explicitly modelling the heap. The
soundness of the approach was shown in RustHornBelt [33], a unification of
RustBelt and RustHorn. To our knowledge, automatic generation of core proofs
in these underlying models remains an open problem. Although not for Rust,
the Move Prover [15] employs a reborrowing DAG similar to Prusti’s, although
it then employs techniques similar to purification to eliminate heap reasoning.

Several automated static analysers have been developed for Rust, including
the abstract interpreter MIRAI [17]. The Kani Rust Verifier [51] applies bounded
model-checking. Other tools analyse the generated LLVM: e.g. Klee Rust per-
forms symbolic testing [31], Smack applies bounded verification [7], Project Oak
[42] provides an evolving portfolio of complementary tools. None of these tools
use the ownership guarantees of the type system, to our knowledge.

Stacked Borrows [26] is another formal model for Rust aiming to precisely
define notions of undefined behaviour for the Rust language; it is accompanied
by the interpreter Miri [36], which can be used to dynamically check for rule
violations. We are not aware of corresponding static tools based on this model.

6 Conclusions and Future Work

We have presented the Prusti project, and reflected on its key features and most-
notable design decisions from three different perspectives: for users, verification
experts, and authors of other Rust analysis tools. From a user’s perspective,
notable features include the close relationship between specifications and Rust
expressions, and the flexible trade-offs between annotation effort and richness of
guarantees, which supports incremental usage of the tool on large-scale projects.
For verification experts, a notable goal is the reuse of long-standing program
reasoning techniques for reasoning about (primarily) safe Rust code. For tool
builders, the extensive reuse of compiler data structures, analyses and error
reporting mechanisms has proven powerful; these techniques are largely reusable.

A key goal for future work to benefit users is to enable richer specifications
(when desired), via built-in types (such as mathematical sets) and add dedi-
cated features for ghost code, as well as improving verification performance. Of
more interest to verification experts, we are exploring the adaptation of Prusti’s
core model and proofs to both structs with lifetime parameters and some usages
of unsafe code. On the tooling front, we aim to support persistence of com-
piled Prusti specifications, and offering built-in specifications for common Rust
libraries.

Acknowledgements. We warmly thank Nicholas D. Matsakis, Nick Cameron, Derek
Dreyer and Ralf Jung for extensive discussions and feedback in the early stages of this
project, and are very grateful to Florian Hahn for his work on a precursor to Prusti [20],
as well as numerous Master’s and undergraduate students who have since contributed
via projects.

106 V. Astrauskas et al.

This work was partially funded by the Swiss National Science Foundation (SNSF)
(Grant No. 200021 169503), the Natural Sciences and Engineering Research Council
of Canada (NSERC) (ref. RGPIN-2020-06072), Amazon Research Awards, Meta (then
Facebook) Research and the Interchain Foundation.

References

1. Procedural macros documentation (2022). https://doc.rust-lang.org/reference/
procedural-macros.html

2. Abadi, M., Lamport, L.: The existence of refinement mappings. In: Proceed-
ings of the 3rd Annual Symposium on Logic in Computer Science, pp. 165–175,
July 1988. https://www.microsoft.com/en-us/research/publication/the-existence-
of-refinement-mappings/, lICS 1988 Test of Time Award

3. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 27

4. Astrauskas, V.: Enable compiler consumers to obtain MIR: Body with Polonius
facts. https://github.com/rust-lang/rust/pull/86977

5. Astrauskas, V., Matheja, C., Poli, F., Müller, P., Summers, A.J.: How do program-
mers use unsafe Rust? Proc. ACM Program. Lang. 4(OOPSLA), 1–27 (2020)

6. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 147:1–
147:30 (2019). https://doi.org/10.1145/3360573

7. Baranowski, M., He, S., Rakamarić, Z.: Verifying rust programs with SMACK. In:
Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 528–535. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 32

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment: Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical
Computer Science. An EATCS Series, pp. XXV–472. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

9. Bloch, J.: Extra, extra - read all about it: Nearly all binary searches and merge-
sorts are broken, June 2006. https://ai.googleblog.com/2006/06/extra-extra-read-
all-about-it-nearly.html

10. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 259–270 (2005)

11. Clippy developers: Clippy: A collection of lints to catch common mistakes and
improve your Rust code. https://github.com/rust-lang/rust-clippy

12. Crichton, W.: Flowistry: Information flow for Rust. https://github.com/
willcrichton/flowistry

13. Tolnay, D.: Parser for Rust source code (2021). https://crates.io/crates/syn
14. Denis, X., Jourdan, J.H., Marché, C.: The Creusot environment for the deductive

verification of Rust programs (2021)
15. Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E.: Fast and reli-

able formal verification of smart contracts with the Move prover. arXiv preprint
arXiv:2110.08362 (2021)

16. Evans, A.N., Campbell, B., Soffa, M.L.: Is rust used safely by software develop-
ers? In: 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), pp. 246–257. IEEE (2020)

https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://doi.org/10.1007/978-3-642-54830-7_27
https://github.com/rust-lang/rust/pull/86977
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10.1007/978-3-662-07964-5
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://github.com/rust-lang/rust-clippy
https://github.com/willcrichton/flowistry
https://github.com/willcrichton/flowistry
https://crates.io/crates/syn
http://arxiv.org/abs/2110.08362

The Prusti Project: Formal Verification for Rust 107

17. Facebook: MIRAI: an abstract interpreter for the Rust compiler’s mid-level inter-
mediate representation. https://github.com/facebookexperimental/MIRAI

18. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 1

19. Goes, C.: The interblockchain communication protocol: an overview. arXiv preprint
arXiv:2006.15918 (2020)

20. Hahn, F.: Rust2Viper: building a static verifier for Rust. Master’s thesis, ETH
Zurich (2015)

21. Informal Systems Inc. and ibc-rs authors: Rust implementation of the Inter-
Blockchain Communication (IBC) protocol (2021). https://docs.rs/ibc

22. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 15

23. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL, pp. 14–26. ACM (2001)

24. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

25. Jung, R.: The scope of unsafe, January 2016. https://www.ralfj.de/blog/2016/01/
09/the-scope-of-unsafe.html

26. Jung, R., Dang, H.H., Kang, J., Dreyer, D.: Stacked borrows: an aliasing model
for Rust. Proc. ACM Program. Lang. 4(POPL), 1–32 (2019)

27. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the Rust programming language. Proc. ACM Program. Lang. 2(POPL),
1–34 (2017)

28. Seonghoon, K., et al.: Chrono: Date and Time for Rust (2021). https://docs.rs/
chrono

29. Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267–289
(2011)

30. Klabnik, S., Nichols, C.: Unsafe Rust (2022). https://doc.rust-lang.org/book/ch19-
01-unsafe-rust.html

31. Lindner, M., Aparicius, J., Lindgren, P.: No panic! Verification of Rust programs
by symbolic execution. In: 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), pp. 108–114. IEEE (2018)

32. Matsakis, N.D.: Unsafe abstractions (2016). http://smallcultfollowing.com/
babysteps/blog/2016/05/23/unsafe-abstractions

33. Matsushita, Y.: Extensible functional-correctness verification of rust programs by
the technique of prophecy. Master’s thesis, University of Tokyo (2021)

34. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for Rust programs. In: ESOP, pp. 484–514 (2020)

35. Meyer, B.: Design by contract. In: Mandrioli, D., Meyer, B. (eds.) Advances in
Object-Oriented Software Engineering, pp. 1–50. Prentice Hall (1991)

36. Miri developers: Miri: An interpreter for Rust’s mid-level intermediate representa-
tion. https://github.com/rust-lang/miri

https://github.com/facebookexperimental/MIRAI
https://doi.org/10.1007/978-3-030-58298-2_1
http://arxiv.org/abs/2006.15918
https://docs.rs/ibc
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
https://docs.rs/chrono
https://docs.rs/chrono
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
http://smallcultfollowing.com/babysteps/blog/2016/05/23/unsafe-abstractions
http://smallcultfollowing.com/babysteps/blog/2016/05/23/unsafe-abstractions
https://github.com/rust-lang/miri

108 V. Astrauskas et al.

37. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

38. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

39. O’Hearn, P.: Separation logic. Commun. ACM 62(2), 86–95 (2019)
40. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and

implicit dynamic frames. Log. Methods Comput. Sci. 8(3:01), 1–54 (2012)
41. Pratt, V.R.: Top down operator precedence. In: Proceedings of the 1st Annual

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 41–51 (1973)

42. Reid, A., Church, L., Flur, S., de Haas, S., Johnson, M., Laurie, B.: Towards
making formal methods normal: meeting developers where they are. arXiv preprint
arXiv:2010.16345 (2020)

43. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55–74. IEEE (2002)

44. Rust-analyzer developers: Rust-analyzer: A Rust compiler front-end for ides.
https://github.com/rust-analyzer/rust-analyzer

45. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an auto-
matic verifier. In: 29th European Conference on Object-Oriented Programming
(ECOOP 2015), vol. 37, pp. 614–638. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2015)

46. Schwerhoff, M.H.: Advancing automated, permission-based program verification
using symbolic execution. Ph.D. thesis, ETH Zurich (2016)

47. The Prusti Team: Prusti User Guide (2020). https://viperproject.github.io/prusti-
dev/user-guide/

48. The Prusti Team: Prusti NFM 2022 Online Appendix (2022). https://github.com/
viperproject/prusti-dev/tree/master/prusti-tests/tests/verify overflow/pass/
nfm22

49. The Rust Survey Team: Rust survey 2019 results: Rust blog, April 2020. https://
blog.rust-lang.org/2020/04/17/Rust-survey-2019.html

50. Ullrich, S.: Simple verification of Rust programs via functional purification. Mas-
ter’s thesis, Karlsruher Institut für Technologie (KIT) (2016)

51. VanHattum, A., Schwartz-Narbonne, D., Chong, N., Sampson, A.: Verifying
dynamic trait objects in Rust (2022)

52. Wolff, F., B́ılý, A., Matheja, C., Müller, P., Summers, A.J.: Modular specification
and verification of closures in Rust. Proc. ACM Program. Lang. 5(OOPSLA), 1–29
(2021)

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
http://arxiv.org/abs/2010.16345
https://github.com/rust-analyzer/rust-analyzer
https://viperproject.github.io/prusti-dev/user-guide/
https://viperproject.github.io/prusti-dev/user-guide/
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html

Reachability Analysis for Cyber-Physical
Systems: Are We There Yet?

Xin Chen1 and Sriram Sankaranarayanan2(B)

1 University of Dayton, Dayton, USA
2 University of Colorado Boulder, Boulder, USA

srirams@colorado.EDU

Abstract. Reachability analysis is a fundamental problem in verification that
checks for a given model and set of initial states if the system will reach a given
set of unsafe states. Its importance lies in the ability to exhaustively explore
the behaviors of a model over a finite or infinite time horizon. The problem of
reachability analysis for Cyber-Physical Systems (CPS) is especially challenging
because it involves reasoning about the continuous states of the system as well as
its switching behavior. Each of these two aspects can by itself cause the reachabil-
ity analysis problem to be undecidable. In this paper, we survey recent progress
in this field beginning with the success of hybrid systems with affine dynamics.
We then examine the current state-of-the-art for CPS with nonlinear dynamics
and those driven by “learning-enabled” components such as neural networks. We
conclude with an examination of some promising directions and open challenges.

1 Introduction

Formal verification techniques attempt to exhaustively explore the behaviors of com-
putational models that include finite state machines that model sequential circuits and
network protocols; push-down machines that model function calls/returns in software;
Petri-net models of concurrent systems or timed automata that model the execution of
real-time systems. In each of the instances above, the reachability problem asks given a
model, an initial set of configurations and a target unsafe set, whether the system start-
ing at some initial state can reach an “unsafe” state in some finite number of steps. A
reachability analyzer will either provide a proof that the unsafe set is not reachable or a
witness execution that shows how to reach an unsafe state starting from an initial state.

Reachability analysis has been a powerful tool for checking properties of hard-
ware circuits and software programs with success stories arising from their ability
to discover bugs in these systems or prove their absence through exhaustive verifica-
tion [20,26,27,40,42,48,68,69,75,117]. Since the early 90s, the formal methods and
control theory communities have investigated so-called “hybrid” or “Cyber-Physical
Systems” (CPS), that model computation interacting closely with a physical environ-
ment. Such systems have been mathematically captured by formalisms such as hybrid
automata, that combine the evolution of continuous states through ordinary differen-
tial equations (ODEs) with discrete mode switches modeled using finite state automata.
CPS include systems from a variety of safety-critical areas such as medical devices,
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 109–130, 2022.
https://doi.org/10.1007/978-3-031-06773-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_6

110 X. Chen and S. Sankaranarayanan

control systems that help fly airplanes, power systems and autonomous vehicles. Mod-
eling these systems and reasoning about the set of all reachable states can go a long way
towards guaranteeing safe operation during deployment.

Fig. 1. Reachable sets (in gray) showing the possible blood glucose levels of a patient controlled
by two different instantiations of an automated insulin infusion algorithm taken from Chen et
al. [34]. Simulation trajectories are shown in black. The analysis proves for instance (a) that the
blood glucose levels remain below 260mg/dl over a 24 h period, whereas for instance (b) it is
unable to establish that bound.

Fig. 2. Block diagram of an insulin infusion control system.

Consider the block dia-
gram of an insulin infusion
control system for patients
with type-1 diabetes taken
from our previous work [34].
Here, b(t) represents exter-
nal user commanded insulin,
u(t): the insulin infused to
patient, G(t), blood glucose
level of the patient, n(t): sen-
sor measurement error (noise),
Gs(t): glucose level estimated/
reported by sensor, and uc(t):
insulin infusion commanded by the algorithm. The patient’s blood glucose level is
modeled using nonlinear human insulin-glucose model coupled with a controller that
switches between various levels of insulin, based on the sensed blood glucose level of
the patient. The reachable set estimates computed using the tool Flow* [33] establishes
bounds the possible blood glucose levels over a 24 h time period. Such a flowpipe can
be used to establish upper and lower bounds on the value of the blood glucose levels as
shown in Fig. 1. Further details are available from our ARCH 2017 paper [34] (Fig. 2).

In this paper, we present a brief overview of reachability analysis for Cyber-Physical
Systems. We begin by formulating the problem in a formal manner and discuss cases
when the problem is known to be decidable along with a brief mention of the broad
class of approaches taken to solve the reachability problem. We focus on set-based tech-
niques for systems with linear dynamics wherein powerful tools such as SpaceEx [56]

Reachability Analysis for Cyber-Physical Systems 111

and Hylaa [18] have pushed the state of the art to large hybrid systems with thousands
of state variables. We then present some of the approaches for nonlinear systems, while
illustrating why the problem is much more challenging when the dynamics are non-
linear. We discuss emerging areas of interest, including reachability analysis for neural
networks. This paper is not meant to be an exhaustive survey of results in this area. A
recent survey by Althoff et al. is recommended for the reader who wishes to learn more
about set-based techniques [4]. The main purposes of this article are to (a) illustrate why
the problem is important but challenging; (b) highlight some important approaches to
the problem; and (c) highlight a few emerging areas where efficient and precise reach-
ability analysis techniques will play an important role.

2 Hybrid Systems and Reachability Analysis

In this section, we will briefly review some of the fundamental concepts that include (a)
models of hybrid (Cyber-Physical) systems; (b) the reachability analysis problem; (c)
decidable cases for the problem and (d) a brief overview of existing approaches.

A Brief History: The formal study of hybrid (Cyber-Physical) systems was initiated
in the early 1990s from the computer science and the control communities. In the con-
trols community, the consideration of hybrid control systems began in the late 1980s as
an attempt to formalize supervisory control wherein discrete-event systems are used to
represent “higher level” decision making which may switch between multiple “lower
level” control strategies to interact with a continuous plant [13]. Early modeling efforts
for such systems include the work of Peleties and DeCarlo [97], Gollu and Varaiya [64]
and Benveniste and Le Guernic [22]. In the computer science community, the prob-
lem of modeling and reasoning about reactive systems naturally led to the considera-
tion of timed systems followed by hybrid systems [88]. The timed-automaton model of
Alur and Dill augments automata with finitely many clocks that can trigger transitions
between states which may in turn reset these clocks [10,11]. Hybrid systems can then
be modeled augmenting these further with physical quantities that evolve according to
simple differential equations [8,89,96].

The hybrid automaton model was proposed in order to unify the continuous evolu-
tion of state variables with switching due to mode changes within a single formalism.
Detailed descriptions are available elsewhere [7,84,114].

Example 1. Figure 3 illustrates a hybrid automaton with four modes {m1, . . . ,m4},
continuous state variables {x1, x2, x3} and an external time-varying disturbance input
w lying in the range [−0.25, 0.25]. The dynamics inside each mode and the transitions
between modes are also shown. The transitions are defined by guards and reset maps, as
shown in the figure. The figure also shows 5000 trajectories with randomly sampled ini-
tial conditions starting from mode m1 and x1 ∈ [0.3, 0.5], x2 ∈ [0.2, 0.4], x3 ∈ [0, 0.4]
with the disturbance in the range [−0.25, 0.25]. Each mode is shown in a different color.
We note that only 6 out of the 5000 trajectories reach mode m2 (green).

The example above shows the need for exhaustive simulations, since “corner case
behaviors” that violate safety properties are often a concern. We have encountered more

112 X. Chen and S. Sankaranarayanan

Fig. 3. Description of hybrid automaton and randomly simulated trajectories.

realistic systems wherein nearly 100 million random simulations do not expose a safety
violation that can be discovered quite easily by a more exhaustive approach [121].

2.1 Reachability Analysis

Rather than rely on finitely many simulations, we wish to exhaustively explore the set
of reachable states of a hybrid system, in order to decide if a given set of unsafe states
is reachable starting from a set of initial conditions. This is known as the reachability
analysis problem.

Definition 1 (Reachability Problem). Given a hybrid system H, initial set of states
X0, unsafe set Xu and time horizon T , is there any trajectory that starts from some
state in X0 and reaches some state in Xu, within the given time horizon T?

The reachability analysis problems can be finite time horizon problems where T is
finite, or infinite time horizon problems if T = ∞. Naturally, the latter class of problems
are harder than the former. Although a finite time horizon seems restrictive, there are
many reasons why it is important: (a) often, it is known that failures would manifest
within a finite time horizon if at all; (b) in many cases the reachability analysis problem
has uncertain time varying parameters that makes the model invalid for infinite time
horizons; or (c) the infinite time horizon problem is often harder to solve than the finite
time horizon problem.

Reachability analysis is a fundamental verification problem for hybrid systems.
Important correctness properties of hybrid systems are naturally posed as safety prop-
erties. Reachability analysis can also be used as a primitive step for reasoning about

Reachability Analysis for Cyber-Physical Systems 113

more complex liveness properties. Therefore, the question of decidability of reachabil-
ity problem is of great interest. Unfortunately, it is known that the reachability analysis
problem is undecidable for all but the simplest classes of hybrid systems.

Asarin, Maler and Pnueli showed that hybrid systems with piece-wise constant
dynamics (the simplest dynamics possible) already have an undecidable reachability
problems for systems with 3 or more state variables [15]. Specifically, their model con-
siders a partitioning of the state-space by convex polyhedra where each partition has its
dynamics of the form �̇x = �c for a fixed �c. At the same time, the reachability analysis
problem is undecidable for non-linear dynamical systems without any switching [94].
The finite time horizon reachability problem for linear dynamical systems (also known
as the “continuous Skolem-Pisot problem” [21]) has been shown to be decidable pro-
vided an open number-theoretic conjecture called the Schaunel conjecture is true [36].
Broadly, we note that undecidability arises separately from the presence of switching
between modes even if the dynamics are simple, or just from the continuous dynamics
themselves without switching. The reachability problem for systems combining both
switching and linear/non-linear dynamics is thus a computationally hard problem.

In the past three decades since these results, a number of sub-classes of hybrid
automata have been identified for which the reachability problem is decidable, start-
ing with Henzinger et al. [71] who defined the class of initialized rectangular hybrid
automata. Subsequently, O-minimal hybrid systems that allow for a more general class
of dynamics in each mode were introduced by Laffarriere et al. [82]. These have been
generalized by Vladimerou et al. [118]. In general, decidability results place restrictions
on the form of transitions between modes as well as the dynamics in each mode. These
restrictions ensure that the resulting system has a finite bisimulation quotient which can
be used to check any temporal logic property. However, such restrictions are often not
met by the systems which we are interested in reasoning about. As a result, numerous
approaches attempt to solve the reachability problem by over-approximating the reach-
able set of states, or proposing a semi-algorithm that may not terminate in the worst
case. The former class of approaches can help us conclude that the unsafe states are
not reachable but fail to provide concrete counterexamples, whereas the latter class of
approaches can fail by exhausting computational resources. We will now summarize a
few approaches for solving the reachability analysis problem.

Abstraction-Based Techniques: The goal is to construct a finite-state abstraction that
can be refined, possibly using counterexamples. Once the abstraction is constructed,
we solve the reachability problem on this abstraction. If the unsafe set in the abstract
state-space cannot be reached, we conclude the same for the original system. However,
abstract counterexamples can be spurious: i.e., they need not correspond to a real exe-
cution of the concrete system. This can be addressed by refining the abstraction to rule
away such counterexamples [9,12,41,61]. Interestingly, the abstractions need not nec-
essarily be finite state. For instance, Prabhakar et al. present an approach that considers
rectangular hybrid automata as abstractions [102]. Hybridization is yet another app-
roach that relies on locally abstracting nonlinear dynamics by linear dynamics while
accounting for the error [46]. Abstraction-based approaches are quite versatile since
they can be applied to a large class of hybrid systems with nonlinear dynamics. How-

114 X. Chen and S. Sankaranarayanan

ever, these approaches typically resort to tiling the state-space into discrete cells in order
to handle complex nonlinear dynamics. This often limits the number of state variables
that can be treated by these techniques.

Dynamic Programming (Hamilton-Jacobi) Approaches: In this approach, the more
general problem of controlling a hybrid system (with control and disturbance inputs) is
considered as a game between two players. The goal is to characterize a controllable
region (termed as the viability kernel), a subset of the state-space which excludes the
undesired set of states, such that the controller can keep the system within this region
no matter what disturbance signal is applied. This approach was proposed by Lygeros,
Tomlin and Sastry [85], and leads to a partial differential equation (PDE) that needs
to be solved in order to compute the controllable region. Subsequent work by Mitchell
and Tomlin uses level-set methods to solve this PDE [92,93]. The dynamic program-
ming approach is quite powerful: it applies to nonlinear systems and can compute a
set of control strategies for guaranteeing safety. We note, however, that the reachability
problems we have considered thus far do not involve control inputs. However, solving
PDEs requires expensive numerical methods whose complexity can be exponential in
the number of state variables.

Deductive Approaches: Deductive approaches are based on proving that the unsafe
states are unreachable from the initial set by obtaining (positive) invariant sets of the
hybrid system, and proving that these sets contain the initial set but exclude the unsafe
set. Such invariants can be synthesized automatically using techniques from optimiza-
tion and algebraic geometry [60,103,110,115]. However, invariant construction tech-
niques are quite limited in the kind of systems that can be proven correct. In general,
they play a supporting role inside a theorem prover that is built on top of a logic that
supports reasoning about hybrid systems. The work of Platzer et al. has constructed the
rich framework of differential dynamic logic [99,101] and integrated this inside a theo-
rem prover Keymaera [98,100]. In general, deductive approaches can prove that unsafe
sets are not reachable. It is incumbent upon the user to deduce how the failure of a proof
can lead to the construction of a counterexample.

Set-Propagation: Set propagation approaches rely on a chosen family of sets to repre-
sent sets of states (examples include ellipsoids, polyhedra, Taylor models) [4]. At each
step, the reachable set is represented as a union of sets in this family. These algorithms
propagate these sets for a small time step Δ so that an approximation that is valid for
time up to t is now valid for time up to t + Δ. By repeatedly iterating this process, an
over-approximation of the reachable sets up to a finite time horizon T is produced. Set
propagation techniques have been investigated extensively for linear systems beginning
with the pioneering work on the tool HyTech for rectangular hybrid automata [70] and
followed by a quick succession of approaches for richer classes of hybrid systems per-
mitting nonlinear dynamics [14,112]. Currently, set propagation techniques are capable
of analyzing linear dynamical systems with more than a billion state variables [19],
linear hybrid systems with hundreds of state-variables [56] and nonlinear systems with

Reachability Analysis for Cyber-Physical Systems 115

tens of state variables [33]. Due to the over-approximate nature of these techniques,
they are unable to produce concrete counter-example. Furthermore, these approaches
are mostly restricted to finite time horizon problems.

However, there are successful reachability analysis techniques that fail to fit neatly
into any of the categories above, or deserve to be described on their own.

Constraint Solving Approaches: An important class of approaches uses constraint
solvers to show that no counterexample trace with a given length/time bound exists for
a reachability problem. Ratschan and She achieve this by constructing an abstraction
that is refined using ideas borrowed from constraint programming [105]. Franzle et al.
use a bounded-model checking approach that encodes the reachability problem as a set
of constraints [55,72]. More recently, Kong et al. build on top of their previous work
on the dReal solver for nonlinear constraints [57] to build a reachability analyzer called
dReach [80]. An important advantage of constraint solvers lies in their ability to search
in a non chronological manner. I.e, they can search for counterexamples or prove their
absence without necessarily having to start from time t = 0. However, the same factors
that make the problem challenging hamper their performance. For one, the ability to
reason about dynamical systems inside a constraint solver is a challenge. dReach uses
other reachability analysis tools for nonlinear dynamical systems to approximate the
solution to ODEs. Another challenge lies in choosing how to iteratively subdivide a
large state-space during constraint solving in order to zero in on a counterexample or
rule out counterexamples altogether.

Falsification: Whereas most approaches cited so far focus on verification, which is
typically defined as “the process of establishing the truth, accuracy, or validity of some-
thing”, approaches for falsification focus on disproving correctness by searching for
a counterexample that establishes that an unsafe state is reachable starting from some
initial state. Recently, there have been many approaches towards falsification based on
using robustness of trajectory (its minimum distance to the unsafe set) as a fitness func-
tion that is minimized repeatedly using optimization [1]. Although they do not have
guarantees of exhaustiveness, falsification techniques have been more successful in the
industry wherein they provide a form of “smart fuzz-testing” for CPS [49,78].

3 Set-Propagation Approaches

In this section, we present the so-called set propagation approach for solving the reach-
ability analysis problem. These approaches construct an over-approximation of the
reachable set by (a) choosing a family of set representations such as ellipsoids to over-
approximate sets of states; and (b) iteratively propagating the reachable state over-
approximation forward in time according to the semantics of the hybrid automaton.
Rather than attempt an exhaustive survey, we will briefly describe these approaches
and highlight some of the successes. As mentioned earlier, a comprehensive survey of
many of these techniques is available elsewhere [4]. Set-propagation approaches are
analogous to techniques such as symbolic model checking and abstract interpretation
that are commonly used for verifying digital circuits and computer software [16,45].

116 X. Chen and S. Sankaranarayanan

3.1 Linear Hybrid Systems

Linear Hybrid Systems (LHS) are characterized by multiple modes (also known as loca-
tions) and continuous states �x. A configuration, also called a state, of an LHS is denoted
by a pair (�x, �) such that �x is the current valuation of the state variables and � is the cur-
rent location. Starting from an initial state, an LHS evolves in the following way.

Fig. 4. Flowpipe construction for LHS.

Continuous Evolution. The state variable values change continuously within the loca-
tion invariant under the continuous dynamics which is a linear ODE in the form of
ẋ = A�x + B �w associated with the current location. The parameters �w are used to
represent range-bounded uncertainties if there is any, and the invariant is defined by a
conjunction of linear constraints over �x. In a continuous evolution, the location of the
system does not change, and the values of �x should satisfy the invariant.

Discrete Jump. The discrete dynamics of an LHS is defined by a set of transitions. The
system instantly updates its current location according to the specification of a transi-
tion. More precisely, a transition can be made by satisfying the following requirements:
(a) The current and new locations should be the start and end locations respectively of
the transition; (b) The current state variable values should satisfy the transition guard
which is defined by a conjunction of linear constraints over �x. A transition may also
update the state variables �x according to its linear reset rule.

Set-propagation approaches for LHS compute reachable sets for a bounded time
horizon [0, T]1. We illustrate the main algorithm in Fig. 4. Starting from a given initial
state set X0, the algorithm first over-approximates the reachable set by a convex set
Ω0 in the time interval of [0, δ] which is called the first time step according to a given
step size δ > 0. Next, we iteratively compute the sets Ω1, . . . , ΩN−1, that are over-
approximations of the reachable sets over the time intervals [δ, 2δ], . . . , [(N −1)δ,Nδ],
respectively, until Nδ ≥ T . This step is usually done by repeatedly computing the
flowpipes using the recurrent relation Ωi = eAδΩi−1 ⊕ V wherein V is a convex set
containing the impact from all uncertainties in a one-step evolution. When there is an
invariant associated to the location, the flowpipes should also be intersected with it in
order to exclude the unreachable states outside of the invariant. Finally, we compute
over-approximations for the reachable sets under all possible discrete jumps, which

1 Such reachable sets are often called flowpipes following the early work of Feng Zhao [120].

Reachability Analysis for Cyber-Physical Systems 117

themselves form initial sets in new locations. The algorithm repeatedly performs the
three steps mentioned above, until all of executions in the time horizon are explored.

In order to represent sets, existing approaches use geometric objects such as poly-
topes [39,66,70,109], zonotopes [62] and ellipsoids [81], or symbolic representations
for convex sets such as support functions [83]. These representations are closed under
key operations that are performed by the reachability algorithms, including linear trans-
formation and Minkowski sum in computing the recurrence relation. However, it is
still challenging to handle discrete jumps, the main difficulty comes from the compu-
tation of the intersection with transition guards. Although a few of the representations
such as polytopes are closed under intersections with sets defined by linear constraints,
no representation can efficiently perform all the required set operations. Hence, much
effort has been devoted to developing effective and efficient over-approximation algo-
rithms for various intersection types, including ellipsoid/ellipsoid intersections [106],
zonotope/hyperplane intersections [63], zonotope/polyhedron [3,5], and support func-
tion/support function [65]. The approaches are integrated into verification tools such as
SpaceEx [56] and CORA [2].

Besides the above set-based approaches, a novel approach by Duggirala et al.
focuses on producing approximations at discrete time points using numerical simu-
lations and the super-position principle for linear dynamics [51]. Such a technique is
used in the tool Hylaa [18].

3.2 Nonlinear Hybrid Systems

Fig. 5. Illustration of conservative lin-
earization for nonlinear ODEs

NonLinear Hybrid Systems (NLHS) have an anal-
ogous structure to LHS except that the continuous
dynamics may be defined by nonlinear ODEs, the
guards and invariants may be defined by nonlin-
ear constraints, and the reset rules of the jumps
may also be nonlinear. Due to these nonlineari-
ties, the reachability analysis on NLHS calls for
a different class of approaches. The challenges
are from answering the following two questions:
(i) How to compute the flowpipes for nonlin-
ear ODEs? and (ii) How to compute nonlinear
flowpipe/guard intersections? We may categorize
existing approaches as follows:

Conservative Linearization of ODEs: It has
already been shown that flowpipes for nonlinear
ODEs can be effectively computed by repeatedly
calling the following steps: (1) Conservatively lin-
earizing the ODE to a range-bounded linear differential inclusion in the form of
�̇x ∈ A�x + U in a local neighborhood in the state space; (2) Computing the flowpipes
for the linear differential inclusion in the neighborhood. The algorithm goes to the step
(1) with the last flowpipe which almost exceeds the neighborhood.

118 X. Chen and S. Sankaranarayanan

Althoff et al. [6] presented a framework that computing the reachable sets for a
nonlinear system by conservatively linearizing the ODE on the fly. The linearization
error is controlled by splitting the reachable sets. A more complex framework for over-
approximating a nonlinear ODE by an LHS, which is also called hybridization, is pre-
sented by Dang et al. [46,47]. The approach computes bounded state subspaces which
are called hybridization domain along the system executions, and linearizes the dynam-
ics in those subspaces. Then the flowpipes can be obtained using an existing method for
linear dynamics. Figure 5 illustrates hybridization approach. The flowpipes for the non-
linear ODE �̇x = f(�x) are computed based on two linear differential inclusions, each of
which is an over-approximation of the nonlinear dynamics in its hybridization domain.

Verified Set-Valued Integration: Verified integration are set-based techniques which
were introduced to provide guaranteed solutions for initial value problems: i.e., find
�x(t) for some time t > 0 for an ODE defined by �̇x = f(�x, t) with an initial condi-
tion �x(0) ∈ X0. The main idea of the techniques is to iteratively compute a reach-
able set over-approximation over a time step. In each integration step, starting from
the over-approximation set obtained at the end of the previous step, a new set which
is guaranteed to contain the reachable set in the current step is computed by a set-
based arithmetic such as interval arithmetic, and then verified by ensuring the con-
tractiveness of the Picard operator over the set [91]. Several well-developed interval-
based integration methods have already been implemented and released as tools such
as VNODE-LP [95] and CAPD [77]. In order to better control the overestimation, Berz
and Makino [25,87] developed the Taylor model-based integration approach. A Taylor
Model (TM) is denoted by a pair (p, I) such that p is a polynomial and I is an interval
remainder. A function f(�x) is over-approximated by a TM (p(�x), I) over an interval
domain, if for all �x ∈ D, we have that f(�x) ∈ p(�x) + I . Verified integration methods
are also used in some constraint solving-based verification tools such as iSAT [54] and
dReach [58].

Although the nonlinear continuous dynamics of an NLHS can be handled by the
above methods, it is still very challenging to deal with the flowpipe/guard intersections
since the guards may be defined by nonlinear constraints. Many reachability analysis
frameworks or tools compute these intersections by constraint solving. Ariadne [23,24]
uses intervals which are obtained from merging the interval solutions of the con-
straints defining the guard and flowpipes. In [104], Ramdani and Nedialkov described
a method to compute an intersection by solving a constraint satisfiability problem, and
use branch-and-prune to find the solution boxes. The method developed by Chen et
al. [32] uses a combination of domain contraction and range over-approximation to
over-approximate a TM flowpipe/guard intersection by a TM, and it is later imple-
mented in the tool Flow* [33].

Besides, some other approaches such as the technique implemented in the tool
C2E2 [50] which uses set propagation method under the hood but simulates trajectories
to construct discrepancy functions.

We have briefly described reachability analysis techniques based on set-propagation
in this section. Whereas the approaches for linear hybrid systems can now be considered
mature by most reasonable standards, the same cannot be said for general nonlinear

Reachability Analysis for Cyber-Physical Systems 119

hybrid systems. For instance, our own tool Flow* supports many different heuristic
strategies for computing reachable sets efficiently. The choice of such a strategy requires
setting time steps, polynomial orders, aggregation heuristics and many other details
that are internal to the algorithm. However, different choices of these parameters yield
vastly different results in terms of computation speed and the overestimation error in
the results. Understanding the interplay between these parameters will help improve
the usability of nonlinear reachability analysis techniques.

4 Scaling up Reachability Analysis

In this section, we briefly describe some novel approaches that have been applied to
scale up reachability analysis, especially for nonlinear systems. As discussed previ-
ously, the work of Bak et al. cleverly exploits the sparsity in the system’s dynamics as
well as the properties of the initial and unsafe sets to compute the projections of the
reachable sets over linear systems with billions of state variables [19]. In this section,
we will discuss some recent work on scaling up reachability analysis.

Exploiting Monotonicity: Monotone systems are those where there is a partial order
between states in the state-space such that if �x(0) � �y(0) for two initial states, then
�x(t) � �y(t) for the respective trajectories encountered starting from these initial states.
Monotonicity is natural in many types of systems such as traffic networks. Coogan
and Arcak show how monotone systems lend themselves to efficient computation of
abstractions that can be used to solve reachability analysis problems [43,44]. In fact,
their work also extends the classic notion of monotonicity to apply to a wider class of
systems. Under these monotonicity assumptions, it can be shown that the reachable set
for a hyper-rectangular set is obtained precisely by simulating two diagonally opposite
corner points. As a result, it is possible to solve verification problems for monotone
systems with large state spaces.

Exploiting Symmetries: Another approach that exploits special structure in the sys-
tem concerns symmetries in the system description. These symmetries can be discrete
symmetries wherein permutations of the state variables can lead to the original system
back. The permutations define an equivalence class amongst the state variables, and
therefore, a smaller system can be obtained by “lumping” system variables together in
a natural manner. This approach has been shown to work for nonlinear systems derived
from gene regulatory networks [28]. However, its application requires that the initial
conditions of the lumped variables agree with each other. Another approach considers
continuous (Lie) symmetries, including invariance of the system’s dynamics to trans-
lations and rotations of the coordinate frames. This is a powerful approach that can
be exploited to speed up reachability analysis. Maidens and Arcak exploit symmetries
for backward reachability in order to synthesize controllers using the dynamic pro-
gramming framework [86]. A different approach to ensuring efficiency by exploiting
symmetry is considered by Sibai et al. [111], particularly for the case when a system
involves multiple agents. Their approach uses previously caches reachable set compu-
tations: for instance, some set Xt+Δ is reachable from some other set Xt in time Δ.

120 X. Chen and S. Sankaranarayanan

Symmetry allows us to reuse this information for a different set Y that may not be the
same as Xt but related to it through a transformation. An almost identical approach
was also adopted (independently) by the second author jointly with Chou and Yoon,
wherein they show how reachable sets can be pre-computed offline in order to sup-
port rapid table lookups to perform predictive runtime monitoring [38]. This approach
was designed specifically to exploit invariance to rotation and translations for vehicle
models.

Decompositions Based on System Structure: Decompositions are a very promising
approach to reducing reachability problems for systems over higher dimensional state-
spaces into problems that involve multiple systems over a subset of the state variables.
The key idea is to consider how the state-variables in the dynamics depend on each
other through a dependency graph.

ẋ = v cos(ψ)
ẏ = v sin(ψ)
ψ̇ = u1

v̇ = u2

u1(t + Δ) = f1(x(t), y(t))
u2(t + Δ) = f2(x(t), y(t))

x

y

ψ

v

u1

u2

Fig. 6. A 2 dimensional Dubin’s vehicle model and its
dependency graph. The dashed line shows feedback
from the vehicle position at a previous time step to the
control inputs at the subsequent time step.

Figure 6 shows an example of
a Dubin’s vehicle with a “sampled-
data” control strategy where the
control inputs u1, u2 are computed
using the state at a previous time
step. Therefore, for the duration of
a time step Δ, they may be thought
of as a constant. Thus, instead
of considering 4 state variables
together, the reachability algorithm
can separately integrate the sub-
systems for ψ, v and use these in
turn to separately compute reach-
able set estimates for x, y. These
are effectively systems with a sin-
gle state variable. This idea was considered independently by Mo Chen et al. [29,30] in
the context of the Hamilton-Jacobi approach and by the authors of this paper in the con-
text of nonlinear set-based reachability [35]. In both cases, a dependency graph is con-
structed and decomposed into strongly connected components. Furthermore, our work
also focused on approximate methods by “cutting” continuous feedback loops. Decom-
position methods are very powerful in that they allow us to treat “loosely coupled” sys-
tems with hundreds of state variables. Recently, Sankaranarayanan used a tree-width
decomposition approach to consider overlapping partitions of the system variables. The
system is then projected into multiple abstract subsystems each involving one of the par-
titions. The key idea is that the partitions can exchange information using an algorithm
inspired by belief propagation [108].

Although, we have presented a few promising approaches to scaling up reachabil-
ity analysis, there are currently numerous challenges that require new approaches. We
mention a few promising areas for future work.

Model Order Reductions: The reachability problem for large CPS often involve safety
properties that are expressed over very few system variables. It is thus interesting to con-

Reachability Analysis for Cyber-Physical Systems 121

sider techniques akin to model-order reductions that can speed up reachability analysis.
Model-order reductions have been explored in the past by using standard approaches
in that area to reduce the dimensionality of the state-space [37,67]. However, these
approaches do not preserve soundness. Recent approaches that have exploited the fact
that initial conditions and unsafe sets involve a few of the system variables with great
success and without sacrificing soundness for linear dynamical systems [19]. A new
general approach to such reductions that allows us to avoid computing reachability
information for “unnecessary” state variables in a sound manner is needed.

Koopman Operator-Based Linearization: Another promising approach is to convert
linear systems into nonlinear systems in a higher dimensional space through the theory
of Koopman operators [90]. The key idea here is to consider a new state-space in terms
of functions {f1(�x), . . . , fN (�x)} wherein the derivative of each fi can be written as
an affine function of the other functions. This helps us abstract the trajectories of the
system by a linear system. Reachability analysis over this system gives us reachable
set over-approximations of the original nonlinear systems. The key here is to discover
appropriate basis functions fi (so-called Koopman invariant subspace), and there is no
guarantee that these functions will be polynomials. Earlier work by Sankaranarayanan
explored an iterative approach to discovering a basis where fi are all polynomials [107].
However, there is no guarantee that such a basis would exist. More recently, Bak et
al. present an algorithm that assumes that a Koopman-invariant subspace is known or
approximated through techniques such as dynamic mode decomposition. It then shows
how the resulting reachability analysis problem can be solved [17]. In general, ideas
such as Koopman operator-based linearization provide alternatives to existing ways of
abstracting nonlinear dynamics which could be an interesting way forward to make
reachability analysis more scalable.

5 Neural Network Controlled Systems

With the rapid development of machine learning techniques, more and more CPS are
using learning-enabled components such as neural networks for making decisions in
strategic situations. Since most of such learning-enabled CPS are safety-critical, it is
important to develop new methods for ensuring their safety. However, most of the ver-
ification methods developed for pure discrete or even hybrid systems can hardly be
applied due to the complex system behavior produced by the interaction between the
learning-enabled components and the others.

Recently, a great amount of work has been devoted to developing new formal meth-
ods for verifying neural network controlled systems (NNCS) which are a basic class of
learning-enabled CPS but very challenging to verify. Figure 7 shows the formal model
of NNCS. It is a class of sampled-data systems in which the plant, i.e., the continuous
dynamics, is defined by an ODE over the state variable(s) x and the control input(s) u,
while the controller is a Feed-forward Neural Network (FNN). Given a control step size
δc > 0, at the time t = kδc for every k = 0, 1, . . . , the controller reads the current state
of the plant and computes the control input which will be used immediately for δc-time,
i.e., in the current control step, by the plant. Since a control input is obtained from the

122 X. Chen and S. Sankaranarayanan

FNN, the computation time is ignored in the system execution due to the fast response
of neural networks.

Fig. 7.Model of NNCS Fig. 8. Dependency on the initial state

NNCS are continuous systems but not necessarily differentiable due to the non-
differentiable activation functions such as ReLU in the neural networks. Given an
NNCS, the system execution from an initial state x0 is deterministic and can be defined
by a flow map function Φ such that Φ(x0, t) denotes the system state at a future time
t ≥ 0. According to the behavior of NNCS, for k = 0, 1, . . . , xk = Φ(x0, kδc) is the
initial state of the (k+1)-st control step, and the control input used in that step is derived
as uk = κ(xk) wherein κ(·) denotes the input-output mapping of the FNN controller.
Hence, not only the reachable states but also the control inputs in a system execution
are determined by the initial state x0. Figure 8 illustrates the dependency between a
reachable state and the initial state. In the case of a set X0 of initial states, the exact
reachable set at a time t ≥ 0 is denoted by Φ(X0, t) = {Φ(x0, t) |x0 ∈ X0}, and the
set of the control inputs used in the (k + 1)-st step is given by Uk = κ(Xk) wherein
Xk = Φ(X0, kδc). The core technique in a reachability analysis approach for NNCS is
an algorithm to over-approximate the range of the flow map Φ over a time interval w.r.t.
a given set of initial states.

Most of the existing reachability analysis methods use a set-propagation scheme to
compute over-approximate reachable set segments, i.e., flowpipes, over a finite number
K of control steps. Starting with a given initial set X̂0 = X0, the main algorithm
repeatedly performs the following two steps to compute the flowpipes in the (k + 1)-st
control step for k = 0, 1, . . . ,K − 1:

(i) Computing the output range of the controller. In this step, a set Ûk which is guar-
anteed to contain all of the control inputs in Uk is computed.

(ii) Flowpipe computation for the plant. The step computes the flowpipes for the plant
ODE ẋ = f(x, u) with the local initial set X̂k and the control input range u ∈ Ûk.
Then the local initial set of the next iteration is computed as X̂k+1 which is an
over-approximation of Φ(X0, (k + 1)δc).

They can be classified as follows, based on the over-approximation schemes.

Directly Over-Approximating Reachable Sets. A reachability analysis algorithm on
NNCS can be developed as a combination use of a method for computing FNN output

Reachability Analysis for Cyber-Physical Systems 123

ranges and an existing flowpipe construction technique for ODEs. To do so, one may
need to use a uniform set representation for FNN output ranges and ODE flowpipes.
Many FNN output ranges analysis techniques [53,59,74,79,116,119] can be extended
and work cooperatively with the existing reachability tools for ODEs [2,33,95]. The
main advantage of this scheme is twofold. Firstly, there is no need to develop a new
technique from scratch, and the correctness of the composed approach can be proved
easily based on the correctness of the existing methods. Secondly, the performance of
the approach is often good since it can use well engineered tools as primitives. However,
on the other hand, the relationship between the control inputs and the plant states (see
Fig. 8) are not explicitly represented in this approach. This may lead to a overestima-
tion when the plant dynamics is nonlinear or the initial set is large, making the resulting
bounds less useful in proving properties of interest.

Over-Approximating Flow Map Functions. More accurate over-approximations can be
obtained if a reachability method tries to over-approximate the flow map function Φ
instead of its image. It is well-known that functional over-approximations such as TMs
have an apparent advantage in accuracy over the pure range over-approximation meth-
ods for nonlinear dynamical systems [31]. Recent work has applied interval, polynomial
and TM arithmetic to obtain over-approximations for NNCS flow maps [52,73,76].
Those techniques are often able to compute more accurate flowpipes than the meth-
ods in Category (A). On the other hand, the functional over-approximation methods
are often computationally expensive due to the computation of nonlinear multivariate
polynomials for tracking the dependencies.

Neural Network Control Systems are an emerging area that has seen an explosion
of interest in the recent years. Persistent challenges include the need to handle ever
larger networks and also the need to integrate rich sensor inputs from sensors such as
camera and LiDAR. This poses a hard modeling challenge that requires us to link the
state of the system with the possible inputs that these sensors may provide. The work of
Shoukry et al. presents an interesting case for solving this challenge when the system’s
operating environment is known [113]. This paper represents a very promising line of
work that can benefit from further investigation.

6 Conclusions

We have thus far introduced a wide variety of techniques that have been explored for
solving the reachability analysis of CPS, integrating ideas from diverse disciplines,
ranging from Logic to control theory. We have also briefly surveyed exciting new fron-
tiers, including the emerging topic of verifying safety of systems controlled by neural
networks. While it is clear that the research on reachability analysis techniques have
come a long way, numerous challenges remain. For one, many of the techniques remain
inaccessible to control engineers due to many reasons. There is a gap between the rich
expressive modeling formalisms that are used by engineers such as Simulink/Stateflow,
and the capabilities of existing reachability analysis tools that work on hybrid automata
models. The translation from one to another is not simple. Tools like C2E2 are seek-
ing to bridge this gap by allowing model specifications inside Stateflow [50], but more

124 X. Chen and S. Sankaranarayanan

needs to happen along this front before such tools can be said to be developer friendly.
Besides these practical concerns, there are numerous open challenges and new frontiers.
One such area that has not been mentioned in this survey concerns the reachability anal-
ysis of stochastic hybrid systems. Another open area concerns reachability analysis for
systems whose feedback control inputs are specified in an implicit manner: i.e., they are
specified as minimizers of some cost functions. Such systems arise from many domains
such as model-predictive control algorithms or physics-based models that are described
using potential fields.

To conclude, we revisit the question in the title “Are we there yet?”. Briefly, we
would conclude at this time that reachability analysis of CPS has gone places without
yet arriving at a destination!

Acknowledgments. We thank Klaus Havelund for helpful comments and suggestions. Sankara-
narayanan gratefully acknowledges support from the NSF through award numbers 1815983,
1836900 and 1932189. Chen gratefully acknowledges the support from the US Air Force
Research Laboratory (AFRL) under contract FA8650-16-C-2642. All opinions are those of the
authors and not necessarily of NSF or AFRL.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic tem-
poral logic falsification of cyber-physical systems. ACM Trans. Embedded Comput. Syst.
(TECS) 12(12s), 95 (2013)

2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of ARCH 2015, EPiC Series
in Computer Science, vol. 34, pp. 120–151. EasyChair (2015)

3. Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems using
a combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst 4(2), 233–249
(2010)

4. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability analysis.
Annu. Rev. Control Robot. Auton. Syst. 4, 369–395 (2021)

5. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability anal-
ysis of hybrid systems. In: Proceedings of HSCC 2012, pp. 45–54. ACM (2012)

6. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncer-
tain parameters using conservative linearization. In: Proceedings of CDC 2008, pp. 4042–
4048. IEEE (2008)

7. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
8. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorith-

mic approach to the specification and verification of hybrid systems. In: Grossman, R.L.,
Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6 30

9. Alur, R., Dang, T., Ivančićl, F.: Counter-example guided predicate abstraction of hybrid
systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 15

10. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP
1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0032042

11. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235
(1994)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-36577-X_15
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/BFb0032042

Reachability Analysis for Cyber-Physical Systems 125

12. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid sys-
tems. Proc. IEEE 88(7), 971–984 (2000)

13. Antsaklis, P.J., Passino, K.M., Wang, S.J.: An introduction to autonomous control systems.
IEEE Control Syst. Mag. 11(4), 5–13 (1991)

14. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 30

15. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoret. Comput. Sci. 138, 35–66 (1995)

16. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
17. Bak, S., Bogomolov, S., Duggirala, P.S., Gerlach, A.R., Potomkin, K.: Reachability of

black-box nonlinear systems after Koopman operator linearization. In: Analysis and Design
of Hybrid Systems (ADHS), IFAC-PapersOnLine, vol. 54, pp. 253–258. Elsevier (2021)

18. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reachability
for linear systems. In: Proceedings of HSCC 2017, pp. 173–178. ACM (2017)

19. Bak, S., Tran, H.-D., Johnson, T.T.: Numerical verification of affine systems with up to
a billion dimensions. In: HSCC 2019, pp. 23–32. Association for Computing Machinery,
New York (2019)

20. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static anal-
ysis. In: POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 1–3. ACM, New York (2002)

21. Bell, P.C., Delvenne, J.-C., Jungers, R.M., Blondel, V.D.: The continuous Skolem-Pisot
problem. Theoret. Comput. Sci. 411(40), 3625–3634 (2010)

22. Benveniste, A., Le Guernic, P.: Hybrid dynamical systems theory and the signal language.
IEEE Trans. Autom. Control 35(5), 535–546 (1990)

23. Benvenuti, L., et al.: Reachability computation for hybrid systems with Ariadne. In: Pro-
ceedings of the 17th IFAC World Congress. IFAC Papers-OnLine (2008)

24. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Ariadne: domi-
nance checking of nonlinear hybrid automata using reachability analysis. In: Finkel, A.,
Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 79–91. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33512-9 8

25. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliable Comput. 4, 361–369 (1998)

26. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.
STTT 9(5–6), 505–525 (2007)

27. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: Programming
Language Design & Implementation, pp. 196–207. ACM Press (2003)

28. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of dif-
ferential equivalences. ACM SIGPLAN Not. 51, 137–150 (2016)

29. Chen, M., Herbert, S.L., Vashishtha, M.S., Bansal, S., Tomlin, C.J.: Decomposition of
reachable sets and tubes for a class of nonlinear systems. arXiv e-prints (2017)

30. Chen, M., Herbert, S., Tomlin, C.: Exact and efficient Hamilton-Jacobi-based guaranteed
safety analysis via system decomposition. In: IEEE International Conference on Robotics
and Automation (ICRA) (2017). arXiv:1609.05248

31. Chen, X.: Reachability analysis of non-linear hybrid systems using Taylor models. Ph.D.
thesis, RWTH Aachen University (2015)

32. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
linear hybrid systems. In: Proceedings of the 33rd IEEE Real-Time Systems Symposium
(RTSS 2012), pp. 183–192. IEEE Computer Society (2012)

https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/978-3-642-33512-9_8
http://arxiv.org/abs/1609.05248

126 X. Chen and S. Sankaranarayanan

33. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid
systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 18

34. Chen, X., Dutta, S., Sankaranarayanan, S.: Formal verification of a multi-basal insulin infu-
sion control model. In: Workshop on Applied Verification of Hybrid Systems (ARCH), p.
16. Easychair (2017)

35. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems.
In: IEEE Real Time Systems Symposium (RTSS), pp. 13–24. IEEE Press (2016)

36. Chonev, V., Ouaknine, J., Worrell, J.: On the skolem problem for continuous linear dynam-
ical systems. In: ICALP 2016, LIPIcs, vol. 55, pp. 100:1–100:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016)

37. Chou, Y., Chen, X., Sankaranarayanan, S.: A study of model-order reduction techniques
for verification. In: Abate, A., Boldo, S. (eds.) NSV 2017. LNCS, vol. 10381, pp. 98–113.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63501-9 8

38. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehicle mod-
els using Bayesian estimation and reachability analysis. In: International Conference on
Intelligent Robots and Systems (IROS), pp. 2111–2118. IEEE Press (2020)

39. Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for dynamic
systems. In: Proceedings of IEEE CDC. IEEE Press (1998)

40. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24730-2 15

41. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification
of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel,
H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 14

42. Edmund, M., Clarke, O.G., Peled, D.A: Model Checking. MIT Press, Cambridge (1999)
43. Coogan, S.: Mixed monotonicity for reachability and safety in dynamical systems. In: 2020

59th IEEE Conference on Decision and Control (CDC), pp. 5074–5085. IEEE Press (2020)
44. Coogan, S., Arcak, M.: Efficient finite abstraction of mixed monotone systems. In: Girard,

A., Sankaranarayanan, S. (eds.) HSCC 2015, pp. 58–67. ACM (2015)
45. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)
46. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Pro-

ceedings of HSCC 2010, pp. 11–20. ACM (2010)
47. Dang, T., Testylier, R.: Hybridization domain construction using curvature estimation. In:

Proceedings of HSCC 2011, pp. 123–132. ACM (2011)
48. Delmas, D., Souyris, J.: Astrée: from research to industry. In: Nielson, H.R., Filé, G. (eds.)

SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74061-2 27

49. Donzé, A.: BreachFlows: simulation-based design with formal requirements for industrial
CPS (extended abstract). In: Workshop on Autonomous Systems Design (ASD 2020). Ope-
nAccess Series in Informatics (OASIcs), vol. 79, pp. 5:1–5:5 (2020)

50. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for state-
flow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 5

51. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of linear
systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 477–494.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 26

52. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback sys-
tems using regressive polynomial rule inference. In: Ozay, N., Prabhakar, P. (eds.) Proceed-
ings of HSCC 2019, pp. 157–168. ACM (2019)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-63501-9_8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-36577-X_14
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-319-41528-4_26

Reachability Analysis for Cyber-Physical Systems 127

53. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feed-
forward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018.
LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77935-5 9

54. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE for
hybrid systems analysis by combining different enclosure methods. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24690-6 13

55. M. Fränzle, C. Herde, S. Ratschan, T. Schubert, Teige, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex Boolean structure. JSAT–J. Satisfiability
Boolean Model. Comput. 1, 209–236 (2007). Special Issue on SAT/CP Integration

56. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 30

57. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

58. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo odes. In: Proceedings of FMCAD
2013, pp. 105–112. IEEE (2013)

59. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: Pro-
ceedings of S& P 2018, pp. 3–18. IEEE Computer Society (2018)

60. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking positive
invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst. Struct. 47, 19–43
(2017)

61. Ghosh, R., Tomlin, C.J.: Symbolic reachable set computation of piecewise affine hybrid
automata and its application to biological modeling: Delta-Notch protein signaling. IEE
Trans. Syst. Biol. 1(1), 170–183 (2004)

62. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele,
L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31954-2 19

63. Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems reach-
ability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp.
215–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1 16

64. Gollu, A., Varaiya, P.: Hybrid dynamical systems. In: Proceedings of the 28th IEEE Con-
ference on Decision and Control, vol. 3, pp. 2708–2712 (1989)

65. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 40

66. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear
relation analysis. Formal Methods Syst. Des. 11(2), 157–185 (1997)

67. Han, Z., Krogh, B.: Reachability analysis of hybrid control systems using reduced-order
models. In: Proceedings of the American Control Conference, vol. 2, pp. 1183–1189, Jan-
uary 2004

68. Harrison, J.: Formal methods at Intel - an overview. In: Proceedings of the Second NASA
Formal Methods Symposium (NFM) (2010)

69. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA PathFinder. Int.
J. Softw. Tools Technol. Trans. 2(4), 366–381 (2000)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-642-24690-6_13
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-540-78929-1_16
https://doi.org/10.1007/978-3-642-02658-4_40

128 X. Chen and S. Sankaranarayanan

70. Henzinger, T.A., Ho, P.-H.: HyTech: the Cornell hybrid technology tool. In: Antsaklis, P.,
Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–293. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3 14

71. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

72. Herde, C., Eggers, A., Franzle, T., Teige, M.: Analysis of hybrid systems using HySAT. In:
Third International Conference on Systems 2008. ICONS 2008, pp. 13–18. IEEE (2008)

73. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis of neural-
network controlled systems. ACM Trans. Embed. Comput. Syst. 18(5s), 106:1–106:22
(2019)

74. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural net-
works. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

75. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K.: Model checking C programs using f-soft.
In: ICCD, pp. 297–308. IEEE Computer Society (2005)

76. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying the safety of
autonomous systems with neural network controllers. ACM Trans. Embed. Comput. Syst.
20(1), 7:1–7:26 (2021)

77. Kapela, T., Mrozek, M., Pilarczyk, P., Wilczak, D., Zgliczyński, P.: CAPD - a rigorous
toolbox for computer assisted proofs in dynamics. Technical report, Jagiellonian University
(2010)

78. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.R.: Simulation-guided approaches for
verification of automotive powertrain control systems. In: American Control Conference,
ACC 2015, Chicago, IL, USA, 1–3 July 2015, pp. 4086–4095. IEEE (2015)

79. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 5

80. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid systems.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

81. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch,
N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46430-1 19

82. Lafferriere, G., Pappas, G., Sastry, S.: O-minimal hybrid systems. Math. Control Sig. Syst.
13, 1–21 (2000)

83. Guernic, C.L., Girard, A.: Reachability analysis of linear systems using support functions.
Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010). IFAC World Congress 2008

84. Lygeros, J.: Lecture notes on hybrid systems (2004). Notes for ENSIETA short course
85. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid

systems. Automatica 35(3), 349–370 (1999)
86. Maidens, J., Arcak, M.: Exploiting symmetry for discrete-time reachability computations.

IEEE Control Syst. Lett. 2(2), 213–217 (2018)
87. Makino, K., Berz, M.: Remainder differential algebras and their applications. In: Berz, M.,

et al. (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 63–75.
SIAM (1996)

88. Maler, O.: Amir Pnueli and the dawn of hybrid systems. In: Proceedings of the Hybrid
Systems: Computation and Control, pp. 293–295. Association for Computing Machinery
(2010)

https://doi.org/10.1007/3-540-60472-3_14
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/3-540-46430-1_19

Reachability Analysis for Cyber-Physical Systems 129

89. Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: de Bakker, J.W., Huiz-
ing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 447–484.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0032003

90. Mauroy, A., Mezić, I., Susuki, Y. (eds.): The Koopman Operator in Systems and Control.
LNCIS, vol. 484. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35713-9

91. Meiss, J.D.: Differential Dynamical Systems. SIAM Publishers (2007)
92. Mitchell, I.: Toolbox of level-set methods. Technical report, UBC Department of Computer

Science Technical Report TR-2007-11 (2007)
93. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In: Lynch,

N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46430-1 27

94. Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64,
2354–2357 (1990)

95. Nedialkov, N.S.: Implementing a rigorous ode solver through literate programming. In:
Rauh, A., Auer, E. (eds.) Modeling. Design, and Simulation of Systems with Uncertain-
ties, volume 3 of Mathematical Engineering, chapter Mathematical Engineering, pp. 3–19.
Springer, Berlin Heidelberg (2011)

96. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis
of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-
1992. LNCS, vol. 736, pp. 149–178. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57318-6 28

97. Peleties, P., DeCarlo, R.: A modeling strategy with event structures for hybrid systems. In:
Proceedings of the 28th IEEE Conference on Decision and Control, vol. 2, pp. 1308–1313
(1989)

98. Platzer, A.: Logical Foundations of Cyber-Physical Systems, 1st edn. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

99. Platzer, A., Clarke, E.: Computing differential invariants of hybrid systems as fixedpoints.
Formal Methods Syst. Des. 35(1), 98–120 (2009)

100. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems (sys-
tem description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7 15

101. Platzer, A., Quesel, J.-D.: Logical verification and systematic parametric analysis in train
control. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 646–649.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1 55

102. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR
for rectangular hybrid systems. Formal Methods Syst. Des. 46(2), 105–134 (2015). https://
doi.org/10.1007/s10703-015-0225-4

103. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates.
In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

104. Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear hybrid
systems using interval constraint-propagation techniques. Nonlinear Anal. Hybrid Syst.
5(2), 149–162 (2011)

105. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based
abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
573–589. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 37

106. Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion.
IEEE Trans. Syst. Man Cybern. Part B 32(4), 430–442 (2002)

107. Sankaranarayanan, S.: Change of basis abstractions for non-linear hybrid systems. Nonlin-
ear Anal. Hybrid Syst 19, 107–133 (2016)

https://doi.org/10.1007/BFb0032003
https://doi.org/10.1007/978-3-030-35713-9
https://doi.org/10.1007/3-540-46430-1_27
https://doi.org/10.1007/3-540-57318-6_28
https://doi.org/10.1007/3-540-57318-6_28
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-78929-1_55
https://doi.org/10.1007/s10703-015-0225-4
https://doi.org/10.1007/s10703-015-0225-4
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-540-31954-2_37

130 X. Chen and S. Sankaranarayanan

108. Sankaranarayanan, S.: Reachability analysis using message passing over tree decompo-
sitions. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 604–628.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 30

109. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems
using template Polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 188–202. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78800-3 14

110. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems.
Formal Methods Syst. Des. 32(1), 25–55 (2008)

111. Sibai, H., Mokhlesi, N., Fan, C., Mitra, S.: Multi-agent safety verification using symmetry
transformations. In: TACAS 2020. LNCS, vol. 12078, pp. 173–190. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45190-5 10

112. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of hybrid
dynamical system using checkmate. In: ADPM 2000 (2000). http://www.ece.cmu.edu/
∼webk/checkmate

113. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled autono
mous systems. In: HSCC, pp. 147–156. ACM (2019)

114. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer,
New York (2009). https://doi.org/10.1007/978-1-4419-0224-5

115. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R., Pap-
pas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24743-2 40

116. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 1

117. Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model checking programs. Autom.
Softw. Eng. 10(2), 203–232 (2003)

118. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.: STORMED hybrid sys-
tems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 136–147. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70583-3 12

119. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural
networks using symbolic intervals. In: Proceedings of USENIX Security 2018, pp. 1599–
1614. USENIX Association (2018)

120. Zhao, F.: Automatic analysis and synthesis of controllers for dynamical systems based on
phase-space knowledge. Ph.D. thesis (1998)

121. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., Jin, X.: Symbolic-numeric reachability
analysis of closed-loop control software. In: Hybrid Systems: Computation and Control
(HSCC), pp. 135–144. ACM Press (2016)

https://doi.org/10.1007/978-3-030-53288-8_30
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-030-45190-5_10
http://www.ece.cmu.edu/~webk/checkmate
http://www.ece.cmu.edu/~webk/checkmate
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.1007/978-3-540-24743-2_40
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-540-70583-3_12

Regular Submissions

Towards Better Test Coverage: Merging
Unit Tests for Autonomous Systems†

Josefine B. Graebener(B), Apurva Badithela, and Richard M. Murray

California Institute of Technology, Pasadena, CA 91125, USA
{jgraeben,apurva,murray}@caltech.edu

Abstract. We present a framework for merging unit tests for
autonomous systems. Typically, it is intractable to test an autonomous
system for every scenario in its operating environment. The question of
whether it is possible to design a single test for multiple requirements of
the system motivates this work. First, we formally define three attributes
of a test: a test specification that characterizes behaviors observed in a
test execution, a test environment, and a test policy. Using the merge
operator from contract-based design theory, we provide a formalism to
construct a merged test specification from two unit test specifications.
Temporal constraints on the merged test specification guarantee that
non-trivial satisfaction of both unit test specifications is necessary for a
successful merged test execution. We assume that the test environment
remains the same across the unit tests and the merged test. Given a test
specification and a test environment, we synthesize a test policy filter
using a receding horizon approach, and use the test policy filter to guide
a search procedure (e.g. Monte-Carlo Tree Search) to find a test policy
that is guaranteed to satisfy the test specification. This search procedure
finds a test policy that maximizes a pre-defined robustness metric for the
test while the filter guarantees a test policy for satisfying the test specifi-
cation. We prove that our algorithm is sound. Furthermore, the receding
horizon approach to synthesizing the filter ensures that our algorithm is
scalable. Finally, we show that merging unit tests is impactful for design-
ing efficient test campaigns to achieve similar levels of coverage in fewer
test executions. We illustrate our framework on two self-driving examples
in a discrete-state setting.

Keywords: Testing of autonomous systems · Assume-guarantee
contracts · Receding horizon synthesis

1 Introduction

Rigorous test and evaluation of autonomous systems is imperative for deploy-
ing autonomy in safety-critical settings [25]. In the case of testing self-driving

J. B. Graebener and A. Badithela—Contributed equally to this work.
The code for examples given in this paper can be found at: https://github.com/jgraeb/
MergeUnitTests.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 133–155, 2022.
https://doi.org/10.1007/978-3-031-06773-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_7&domain=pdf
https://github.com/jgraeb/MergeUnitTests
https://github.com/jgraeb/MergeUnitTests
https://doi.org/10.1007/978-3-031-06773-0_7

134 J. B. Graebener et al.

cars, operational tests are constructed manually by experienced test engineers
and can be combined with test cases generated in simulators using falsification
techniques [11]. In addition, operational testing of self-driving cars on the road
is expensive, and would need to be repeated after every design iteration [13].
In this paper, we pose the question of whether it is possible to check multiple
requirements in a single test execution. Addressing this question is the first step
towards optimizing for the largest number of test requirements checked in as few
operational tests as possible.

The study of principled approaches to testing, verification and validation is
a relatively young but growing research area. In the formal methods commu-
nity, falsification is the technical term referring to the study of optimization
algorithms, typically black-box, and sampling techniques to search for inputs
that result in the system-under-test violating its formal requirements on input-
output behavior [1,2,8,9,12,24]. Falsification algorithms require a metric defined
over temporal logic requirements to quantitatively reason about the degree to
which a formal requirement has been satisfied. Assuming that the design of the
autonomous system is black-box, falsification algorithms seek to find inputs that
minimize the metric associated with satisfying formal requirements. The reason-
ing here is that minimizing this metric brings the system closer to violating its
requirements, thus being a critical test scenario [14]. Formal methods literature
uses falsification and testing interchangeably. In addition to manually construct-
ing operational tests, falsification is used to find critical scenarios in simulation
and the test environment parameters characterizing these critical scenarios are
used for operational testing [11]. Falsification aims to find parameters of the test
environment that lead the system to violate its requirements. However, our app-
roach is different in that we construct a test with respect to a test specification,

Fig. 1. Overview of the proposed framework. The blocks the left represent the inputs
to the algorithm that define the unit tests, the blocks on the top represent inputs
describing the system under test, the building blocks of our approach are shown in the
blue shaded box, and the test policy is the result of the algorithm. (Color figure online)

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 135

which characterizes a set of desired test executions. For example, consider an
autonomous car on a test track. The requirement for the autonomous car is to
drive around the track and follow traffic rules while the human drivers of the test
vehicles are instructed to drive in a specific fashion (ex: maintaining some dis-
tance between each other). These guidelines given to the test drivers constitute
the test specification, which is not known to the system-under-test. Instead of
considering all possible test environment policies, the test specification restricts
the space of scenarios that our test policy search algorithm searches over. It also
leverages reactivity: test scenarios are not planned in advance, but the test envi-
ronment agents will react depending on the actions taken by the system under
test.

Our contributions are the following. First, we formally characterize a test
by three attributes, a test specification, a test environment and a test policy.
Second, we leverage the merge operator from assume-guarantee contract theory
to merge two unit test specifications into a merged specification, resulting in a
single test that checks the test specifications of both unit tests. Furthermore, if
necessary, we characterize temporal constraints on the merged test specification.
Finally, we use Monte Carlo Tree Search (MCTS) to search for a test environment
policy corresponding to the test specification, and use receding horizon synthesis
techniques to prevent the search procedure from exploring policies that violate
the test specification. This framework is illustrated in Fig. 1.

2 Background

In this work, we choose Linear Temporal Logic (LTL) to represent the system
and test specifications. LTL is a temporal logic language for describing linear-
time properties over traces of computer programs and formally verifying their
properties [23]. Although first introduced to formally describe properties of com-
puter programs, LTL has been used for formal methods applications in control
such as temporal logic synthesis of planners and controllers [15,17,26].

Definition 1 (Linear Temporal Logic (LTL) [3]). Given a set of atomic propo-
sitions AP , the syntax of LTL is given by the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 (1)

where a ∈ AP is an atomic proposition, ∧ (and) and ¬ (not) are logic operators,
and © (next) and U (until) are temporal operators. Other temporal operators
such as � (always), ♦ (eventually), �♦ (always eventually), and ♦� (eventu-
ally always) can be derived. Let ϕ be an LTL formula over the set of atomic
propositions AP . The semantics of LTL are inductively defined over an infinite
sequence of states σ = s0s1s2 . . . as follows: i) If p ∈ AP , si |= p iff p evaluates
to true at si, ii) si |= ¬ϕ iff si �|= ϕ, iii) si |= ϕ1 ∧ ϕ2 iff si |= ϕ1 ∧ si |= ϕ2,
iv) si |= ©ϕ iff si+1 |= ϕ, v) si |= ϕ1Uϕ2 iff ∃j > i such that for all k ∈ [i, j),
sk |= ϕ1 and sj |= ϕ2. An infinite sequence σ = s0s1 . . . satisfies an LTL formula
ϕ, denoted by σ |= ϕ, iff s0 |= ϕ.

136 J. B. Graebener et al.

In our framework, we consider a fragment of LTL specifications in the class of
generalized reactivity of rank 1 (GR(1)) [22]. GR(1) specifications are expressive
for capturing safety (�), liveness (♦), and recurrence (�♦) requirements that are
relevant to several autonomous systems [17,26]. A GR(1) formula ϕ is as follows,

ϕ = (ϕinit
e ∧ �ϕs

e ∧ �♦ϕf
e) → (ϕinit

s ∧ �ϕs
s ∧ �♦ϕf

s) , (2)

where the subscript s refers to the robotic system for which a reactive controller
is being synthesized, and ϕinit

s , �ϕs
s, and �♦ϕf

s , define respectively, the initial
requirements, safety requirements and recurrence requirements on the system
denoted by s. Similarly, ϕinit

e , �ϕs
e, and �♦ϕf

e , define requirements on the envi-
ronment e of the system s. Furthermore, synthesis for GR(1) formulas has time
complexity O(|V |3), where |V | is the size of the state space [22].

Assume-Guarantee Contracts. Contract-based design was first developed
as a formal modular design methodology for analysis of component-based soft-
ware systems [7,18,19], and later applied for the design and analysis of complex
autonomous systems [10,20]. In this work, we adopt the mathematical framework
of assume-guarantee contracts presented in [5,21].

Definition 2 (Assume-Guarantee Contract). Let Λ be an alphabet and B(Λ)
be the set of all behaviors over Λ. A component M over the alphabet Λ is
defined as M ⊆ B(Λ). Then an assume-guarantee contract C is defined as a pair
C = (A,G), where A is a set of behaviors for assumptions on the environment
in which the component operates, and G is a set of behaviors for the guarantees
that the component provides, assuming its assumptions on the environment are
met. M is an implementation of a contract, M |= C, if and only if M ⊆ G∧¬A ⇔
M ∧ (A ∧ ¬G) = ∅ [4].

In this work, the assumptions and guarantees constituting assume-guarantee
contracts are LTL formulas. To facilitate the contract algebra, we will consider
contracts in their saturated form, where a contract is defined as C = (A,A → G).
In Sect. 3 we define system and test specifications with LTL and borrow operators
from assume-guarantee contract theory in Sect. 4.1 to formally define the merge
of two unit tests.

3 Problem Setup

First we define the system under test, which we will refer to as system for
brevity, and its corresponding system specification. We assume that the system,
the system specification, and the controller are provided by the designer of the
system and cannot be modified when designing the test.

Definition 3 (Transition System). A transition system is a tuple T := (Q,→),
where Q is a set of states and →⊆ Q×Q is a transition relation. If ∃ a transition
from q1 ∈ Q to q2 ∈ Q, we write q1 → q2.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 137

Definition 4 (System). Let VS be the set of system variables, and let Qsys

be the set of all possible valuations of Vsys. A system S is a transition system
Tsys = (Qsys,→sys), where the transition relation →sys is defined by the dynamics
of the system.

Definition 5 (System Specification). A system specification ϕsys is the GR(1)
formula,

ϕsys = (ϕinit
test ∧ �ϕs

test ∧ �♦ϕf
test) → (ϕinit

sys ∧ �ϕs
sys ∧ �♦ϕf

sys) , (3)

where ϕinit
sys is the initial condition that the system needs to satisfy, ϕs

sys encode
system dynamics and safety requirements on the system, and ϕf

sys specifies recur-
rence goals for the system. Likewise, ϕinit

test, ϕs
test, and ϕf

test represent assumptions
the system has on the test environment.

The system is evaluated in a test environment, which comprises of both the
test track and test agents. A test is characterized by the test environment, a test
specification, and a test policy. Our approach differs from falsification in that we
are not generating a test strategy to stress test the system for ϕinit

sys ∧ �ϕs
sys ∧

�♦ϕf
sys. Instead, we synthesize a test for a new concept—a test specification—

which describes the set of behaviors we would like to see in a test. For example,
an informal version of a test specification is requiring test agents to “drive around
the test track at a fixed speed while maintaining a certain distance from each
other”.

Definition 6 (Test Environment). Let Vtest be the set of test environment vari-
ables, and let Qtest be the set of all possible valuations of Vtest. A test environ-
ment T is a transition system Ttest = (Qtest,→test), where the transition relation
→test is defined by the dynamics of the test agents.

Definition 7 (Test Specification). A test specification ϕtest is the GR(1) for-
mula,

ϕtest :=
(
ϕinit
sys ∧�ϕs

sys∧�♦ϕf
sys

)
→

(
ϕinit
test ∧�ϕs

test∧�♦ϕf
test∧�ψs

test∧�♦ψf
test

)
,

(4)
where ϕinit

sys , ϕs
sys and ϕf

sys, ϕinit
test , ϕs

test and ϕf
test are propositional formulas from

Eq. (3). Additionally, �ψs
test and �♦ψf

test describe the safety and recurrence for-
mulas for the test environment in addition to the dynamics of the test environ-
ment known to the system. Note that the system is unaware of these additional
specifications on the test environment, and the test specification is such that
the system is allowed to satisfy its requirements. Defining the test specification
in this manner allows for i) synthesizing a test in which the system, if prop-
erly designed, can meet ϕsys, and ii) specifying additional requirements on the
test environment, unknown to the system at design time. We assume that test
specifications are defined a priori ; we leave finding relevant test specifications
to future work.

138 J. B. Graebener et al.

Let Tprod = (Qprod,→prod) be a turn-based product transition sys-
tem constructed from Tsys and Ttest, where Qprod := Qsys × Qtest, and
→prod⊆ Qprod × Qprod. In particular, for every transition (s, s′) ∈→sys, we
have ((s, t), (s′, t)) ∈→prod where t ∈ Qtest. Similarly, for every transition
(t, t′) ∈→test, we have ((s, t), (s, t′)) ∈→prod where s ∈ Qsys.

Definition 8 (Game Graph). Let Vsys and Vtest be copies of the states Qprod.
Let Esys denote the set of transitions ((s, t), (s′, t)) ∈→prod, and let Etest denote
the set of transitions ((s, t), (s, t′)) ∈→prod for some s, s′ ∈ Qsys and t, t′ ∈ Qtest.
Then the game graph G = (V,E) is a directed graph with vertices V := Vsys ∪
Vtest and edges E := Esys ∪ Etest.

Definition 9 (Policy). On the game graph G, a policy for the system is a func-
tion πsys : V ∗Vsys → Vtest such that (s, πsys(w · s)) ∈ Esys, where s ∈ Vsys and
w ∈ V ∗. Similarly defined, πtest denotes the test environment policy, where ∗ is
the Kleene star operator.

Definition 10 (Test Execution). A test execution σ = v0v1v2 . . . starting from
vertex v0 ∈ V is an infinite sequence of states on the game graph G. Since G
is a turn-based game graph, the states in the test execution alternate between
Vsys and Vtest, so if V1 ∈ Vsys, then vi+1 = πsys(v0 . . . V1). Let σπsys×πtest(s0)
be the test execution starting from state s0 ∈ Vsys for policies πsys and πtest.
Let Σ denote the set of all possible test executions on G. A robustness metric
ρ : Σ → R is a function evaluated assigning a scalar value to a test execution.

Problem 1. Given system and environment transition systems, Tsys and Ttest,
two unit test specifications ϕtest,1 and ϕtest,2, and a robustness metric ρ, find a
test policy π∗

test, such that

π∗
test = arg max

πtest
ρ(σπsys×πtest)

s.t. σπsys×πtest |= (ϕtest,1 ∧ ϕtest,2) , ∀ πsys |= ϕsys,
(5)

Running Example—Lane Change. Consider the example of lane change
illustrated in Fig. 2. The system (red car) must merge into the lower lane before
the track ends, and must not collide with the test environment agents (blue
cars). Thus, the liveness requirement of changing lanes, ϕf

sys := (ysys = 2), and
the safety requirement of not colliding with test agent i, ¬(ysys = ytest,i ∧xsys =
xtest,i) ∈ ϕs

sys, constitute part of the system specification ϕsys. In the two unit
tests, we have the system changing into the other lane in front of and behind
a tester car, respectively, and in the merged test, it finished its lane change
maneuver in between the tester cars.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 139

Fig. 2. Lane change example with initial (left) and final (right) configurations. The
x-coordinates are numbered from left to right, and y-coordinates are numbered top
to bottom, starting from 1. The system (red) is required to merge into the lower lane
without colliding. Merging in front of (top), behind (center), or in between (bottom)
tester agents (blue). (Color figure online)

4 Merging Unit Tests

In this section, we will outline our main approach for merging unit tests. First,
we define the notion of a merged test and use the merge operator for merging
test specifications and add temporal constraints to the test specification, if nec-
essary. Then, we construct an auxiliary graph corresponding to the merged test
specification and describe the synthesis of the test policy filter on this auxiliary
graph using a receding horizon approach.

4.1 Merging Test Specifications

The merge, also known as strong merge, operator of two contracts C1 and C2 is
defined as follows,

C1 · C2 = (a1 ∧ a2, (a1 ∧ a2) → [(a1 → g1) ∧ (a2 → g2)]) (6)

In addition to strong merge, contract theory defines other operators over a pair of
contracts such as composition and conjunction [5,21]. Among all these operators,
strong merge is the only operator that requires assumptions from both unit
contracts (and as a result, unit test specifications) to hold true. Thus, we choose
the strong merge operator to derive the merged test specification. Given two
unit test specifications, ϕtest,1 and ϕtest,2, we can construct the corresponding
contracts C1 = (a1, a1 → g1) and C2 = (a2, a2 → g2), where ai = (ϕinit

sys ∧
�ϕs

sys ∧ �♦ϕf
sys) being the assumptions on the system (under test), and gi =

(ϕinit
test,i ∧�ϕs

test,i ∧�♦ϕf
test,i ∧�ψs

test,i ∧�♦ψf
test,i) being the guarantees for unit

test i.

Remark 1. We make the following modifications to guarantees gi for brevity.
First, we assume that the only recurrence requirements in the test specification

140 J. B. Graebener et al.

is �♦ψf
test,i, which is not a part of the system’s assumptions on the environment.

Second, we assume that the merged test environment Ttest,m is a simple product
transition system of the unit test environments, Ttest,1 and Ttest,2. On the merged
test environment, we assume that the initial conditions ϕinit

test,1 and ϕinit
test,2 are

equivalent, and test environment dynamics ϕs
test,1 and ϕs

test,2 are equivalent.
Therefore, in merging the two unit specifications, we refer to the test guarantees
as gt,i = �ψs

test,i ∧ �♦ψf
test,i.

Definition 11 (Merged Test). From the merged contract Cm := (am, am →
gm) = C1 · C2, the specification ϕtest,m = am → gm, where am = a1 ∧ a2, and
gm = [(a1 → g1)∧(a2 → g2)] is the merged test specification. A test environment
policy πtest,m for merged test specification ϕtest,m results in a test execution
σ |= ϕtest,m.

Lemma 1. Given unit test specifications ϕtest,1 and ϕtest,2 such that ϕtest,m =
am → gm is the corresponding merged test specification. Then, for every test
execution σ |= ϕtest,m such that σ |= am, we also have that σ |= ϕtest,1 and
σ |= ϕtest,2.

Proof. Suppose C1 and C2 are the assume-guarantee contracts corresponding to
unit test specifications ϕtest,1 and ϕtest,2. Applying strong merge operator on
contracts C1 and C2, we get:

C1 · C2 =(a1 ∧ a2, (a1 ∧ a2) → [(a1 → g1) ∧ (a2 → g2)])

=
(
a1 ∧ a2,¬a1 ∨ ¬a2 ∨ (g1 ∧ g2)

)
.

(7)

Thus, the merged test specification ϕtest,m = ¬a1∨¬a2∨(g1∧g2) requires either
one of the assumptions to not be satisfied, or for both the guarantees hold. Since
σ |= am = a1 ∧ a2, and σ |= ϕtest,m, we get that σ |= ϕtest,1 and σ |= ϕtest,2. ��

A key point in our framework is that we select g1 and g2 to guide the test
search, that is, we do not allow merged test policies that vacuously satisfy the
merged test specification. This allows the test environment to always give the
system an opportunity to satisfy its specification. If assumptions ever get vio-
lated, that is because of the system, and not the design of the test.

Returning to our lane change example, we define the unit test specifications
as merging behind a car and merging in front of a car. The respective saturated
assume guarantee contracts are defined as C1 = (a1, a1 → g1) and C2 = (a2, a2 →
g2) with a1 = ϕinit

sys ∧ �ϕs
sys ∧ �♦(y = 2) and g1 = �♦(y = y1 = 2 ∧ x = x1 + 1),

and a2 = ϕinit
sys ∧ �ϕs

sys ∧ �♦(y = 2) and g2 = �♦(y = y2 = 2 ∧ x = x2 − 1)
being the assumptions and guarantees of the two individual tests. Thus, after
applying the strong merge operation to the two contracts, the guarantee of the
merged test specification for the lane change example is,

gm = �♦(y = y1 = 2 ∧ x = x1 + 1) ∧ �♦(y = y2 = 2 ∧ x = x2 − 1). (8)

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 141

4.2 Temporal Constraints on the Merged Test Specification

Definition 12 (Temporally constrained tests). For a test trace σ, let σt be the
suffix of the trace, starting at time t. Let tS1, tS2 be times such that σtS1 |= ϕtest,1

and σtS2 |= ϕtest,2, and assume there exists a time tF1 such that tF1 = min(t)
for all t, t > tS1 such that σtF 1 �|= ϕtest,1 and assume that there exists a time
tF2 such that tF2 = min(t) for all t, t > tS2 such that σtF2 �|= ϕtest,2. Then if
tS1 = tS2 = t1 and tF1 = tF2 = t2 the tests are parallel-merged in the interval
t ∈ [t1, t2]. If tS1 < tS2 and tF1 < tF2, or tS1 > tS2 and tF1 > tF2, the tests are
temporally constrained.

In this section, we will outline when the merged test specification requires a more
constrained temporal structure. To ensure that the test execution will provide
the desired information, we need to make certain that each test specification is
sufficiently checked. For example, consider the lane change example. There exist
many executions in which one of the unit tests is satisfied (i.e. the car merges
in front of a vehicle), but it is not guaranteed that the other specification is
satisfied as well. Therefore these two tests can be parallel-merged. In contrast
to this there exist test specifications where satisfying one will trivially satisfy
the other. Then we are not able to distinguish which specification was checked,
thus these unit tests should not be parallel-merged to ensure that during the
test there is a point in time where each test specification is satisfied individually.

Proposition 1. If for two test specifications ϕtest,1 and ϕtest,2, and the set of
all test executions Σ, we have σ |= ϕtest,1 ⇐⇒ σ |= ϕtest,2 ∀ σ ∈ Σ, then these
tests cannot be parallel-merged. Instead, the temporal constraint must be enforced
on gt,1 and gt,2.

Proof. We refine the general specification in Eq. (7), which allows any temporal
structure, to include the temporal constraints in the guarantees. The temporally
constrained merged test specification is thus defined as ϕ′

test,m = am → g′
m, with

g′
m = (¬a1 ∨ ¬a2 ∨ (♦(gt,1 ∧ ¬gt,2) ∧ ♦(¬gt,1 ∧ gt,2) ∧ (g1 ∧ g2))). (9)

Because any trace σ satisfying ϕ′
test,m will also satisfy ϕtest,m, σ |= ϕ′

test,m ⇒
σ |= ϕtest,m. Any test trace satisfying this specification will consist of at least
one occurrence of visiting a state satisfying gt,1 and not gt,2 and vice versa. Thus
the guarantees of the specifications for each unit test, gt,1 and gt,2 are checked
individually during the merged test which satisfies the temporal constraints. ��

4.3 Receding Horizon Synthesis of Test Policy Filter

Since the test specification characterizes the set of possible test executions, we
need a policy for the test environment that is consistent with the test specifica-
tion. In this section,we detail the construction of an auxiliary game graph and algo-
rithms for receding horizon synthesis of the test specification on the auxiliary game
graph. This filter will then be used to find the test policy (detailed in Sect. 4.4).

142 J. B. Graebener et al.

Auxiliary Game Graph Gaux. Assume we are given a game graph G = (V,E)
constructed according to Definition (8), and a (merged) test specification ϕtest,m

in GR(1) form as in Eq. (4). Then, for each recurrence requirement in the test
specification, �♦ψf

test, we can find a set of states I = {i1, . . . , in} ⊆ V that sat-
isfy the propositional formula ψf

test. For each i ∈ I, there exists a non-empty sub-
set of vertices V s ⊆ V that can be partitioned into {Vi

0, . . . ,Vi
n}. We follow [26]

in partitioning the states; Vi
k is the set of states in V that is exactly k steps away

from the goal state i. From this partition of states, we can construct a partial
order, Pi = ({Vi

0, . . . ,Vi
n},≤), such that Vi

l ≤ Vi
l−1 for all l ∈ {0, . . . , n}. This

partial order will be useful in the receding horizon synthesis of the test policy
outlined below [26]. We construct an auxiliary game graph Gaux = (Vaux, Eaux)
(illustrated in Fig. 3) to accommodate any temporal constraints on the merged
test specification before proceeding to synthesize a filter for the test policy. With-
out loss of generality, we elaborate on the auxiliary graph construction in the
case of one recurrence requirement in each unit specification, but this approach
can be easily extended to multiple progress requirements. An illustration of the
auxiliary graph is given in Fig. 3. Let ϕtest,1 and ϕtest,2 be the two unit test spec-
ifications, with ψf

test,1 and ϕf
test,2, respectively. First, we make three copies of the

game graph G = (V,E)—Gϕtest,1∨ϕtest,2 = (V1∨2, E1∨2), Gϕtest,1 = (V1, E1), and
Gϕtest,2 = (V2, E2). Note that, V1∨2, V1 and V2 are all copies of V , but are denoted
differently for differentiating between the vertices that constitute Gaux, and a
similar argument applies to edges of these subgraphs. Let Vi

0 =
⋃

Vij
0 ⊆ V1∨2

be the set of states in Gϕtest,1∨ϕtest,2 that satisfy propositional formula ψf
test,1.

Likewise, the set of states Vk
0 ⊆ V1∨2 satisfy the propositional formula ψf

test,2.

Fig. 3. Auxiliary game graph construction for the merged test specification of unit
test specifications ϕtest,1 and ϕtest,2. Subgraphs Gϕtest,1∨ϕtest,2 , Gϕtest,1 and Gϕtest,2

are copies of the game graph G constructed per Definition 8. In Gϕtest,1∨ϕtest,2 , the
sets of states at which the progress propositional formulas of test specifications, ϕtest,1

and ϕtest,2, are satisfied are shaded yellow and blue, respectively. (Color figure online)

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 143

Now, we connect the various subgraphs through the vertices in Vi
0 and Vk

0 .
Let (vk

0 , u) be an outgoing edge from a node vk
0 ∈ Vk

0 , and let u1 be the vertex
in subgraph Gtest,1 that corresponds to vertex u in Gϕtest,1∨ϕtest,2 . Remove edge
(vk

0 , u) and add the edge (vk
0 , u1). Likewise, every outgoing edge from Vi

0 ∪ Vk
0 in

Gϕtest,1∨ϕtest,2 is replaced by adding edges to Gϕtest,1 and Gϕtest,2 . On subgraphs
Gϕtest,1 and Gϕtest,2 , vertices are partitioned and partial orders are constructed
once again for ψf

test,1 and ψf
test,2, respectively. From Vi

0 defined on the nodes of
the graph Gϕtest,1 , every outgoing edge is replaced by a corresponding edge to
Gϕtest,1∨ϕtest,2 . Subgraph Gϕtest,2 is connected back to Gϕtest,1∨ϕtest,2 in a similar
manner. The construction of the auxiliary graph Gaux and partial order Pi is
summarized in Algorithm 2. Our choice of constructing the auxiliary graph in
this manner is amenable to constructing a simple partial order as outlined below.

Assumption 1. For unit test specifications ϕtest,1 and ϕtest,2 with recur-
rence specifications ϕp

1 and ϕp
2, respectively, such that ϕp

1 = �♦ψf
test,1 and

ϕp
2 = �♦ψf

test,2. Suppose there exist partial orders Pi = ({Vi
n, . . . ,Vi

0},≤) and
Pk = ({Vk

m, . . . ,Vk
0 },≤) on G corresponding to ψf

test,1 and ψf
test,2, respectively.

Assume that at least one of the following is true: (a) there exists an edge (u1, v2)
where u1 ∈ Vi

0 and v2 ∈ Vk
j for some j ∈ 1, . . . ,m, (b) there exists an edge

(u2, v1) where u2 ∈ Vk
0 and v1 ∈ Vi

j for some j ∈ 1, . . . , n.

Lemma 2. If Assumption 1 holds, there exists a partial order on Gaux for the
merged recurrence propositional formula, ψf

test,m, where ψf
test,m is the propo-

sitional formula that evaluates to true at: (i) all v ∈ V1∨2 such that v |=
ψf
test,1 ∧ ψf

test,2, (ii) all v ∈ V1 such that v |= ψf
test,1, and (iii) all v ∈ V2 such

that v |= ψf
test,2.

Proof. Let Vm
0 ⊆ Vaux denote the non-empty set of states at which ψf

test,m eval-
uates to true. Then, let Vm

j ⊆ Vaux be the subset of states that is at least
j steps away from a vertex in Vm

0 . Then, we can construct the partial order
Pm = ({Vm

l , . . . ,Vm
0 },≤), where l is the distance of the farthest vertex connected

to Vm
0 . The subset of vertices

⋃
j Vm

j ⊆ Vaux is non-empty because Vm
0 is non-

empty. Furthermore, from Assumption 1, if (a) holds, there exists a j ∈ {1, . . . , l}
such that Vm

j ∩Vi
0 is non-empty. Likewise, if (b) holds, there exists a j ∈ {1, . . . , l}

such that Vm
j ∩ Vk

0 is non-empty. Therefore, for some j ∈ {1, . . . , l} there exists
a test execution σ over the game graph Gaux such that σ |= �♦ψf

test,m. ��

Remark 2. If Assumption 1 is not true, the unit tests corresponding to test
specifications ϕtest,1 and ϕtest,2 cannot be merged.

Receding Horizon Synthesis on Gaux. We leverage receding horizon syn-
thesis to scalably compute the set of states W from which the test environment
can realize the test specification on the system in a test execution. Note that we
are not synthesizing a test strategy using the receding horizon approach, instead
using W as a filter on a search algorithm (MCTS) that finds an optimal test

144 J. B. Graebener et al.

policy. Further details on applying receding horizon strategies for temporal logic
planning can be found in [26]. A distinction in our work is that there can be
multiple states in graph Gaux that satisfy a progress requirement on the test
specification.

For a test specification ϕtest,1 with progress propositional formula �♦ψf
test,1,

let I be the set of states on Gaux at which ψf
test,1 evaluates to true. Specifically,

for some goal i ∈ I, if the product state starts at j steps from i (i.e. v ∈
Vi

j+1), the test environment is required to guide the product state to Vi
j−1. The

corresponding formal specification for the test environment is,

ψi
j = (v ∈ Vi

j+1 ∧Φ∧�ϕs
sys ∧�♦ϕf

sys) → (�♦(v ∈ Vi
j−1)∧�ϕs

test ∧�ψs
test ∧�Φ),

(10)
where Φ is the invariant condition that ensures that ψi

j is realizable. See [26]
for further details on how this invariant can be constructed. Since there are |I|
different ways to satisfy the goal requirement ψf

test,1, and the test specification
requires that we satisfy ψf

test,1 for at least one i ∈ I. To capture this in the
receding horizon framework the test execution must progress to at least one
i ∈ I, formally stated as,

ΨI
j = ∨i∈I ψi

j . (11)

Thus, the set of states from which the test environment has a strategy that
satisfies the specification in Eq. (11) is the short horizon filter, denoted by WI

j .
Let jmax denote the supremum of all shortest paths from a vertex v ∈ V to some
i ∈ I. Then, overall test policy filter is the union of short-horizon test policy
filters,

WI =
jmax⋃

j=1

WI
j . (12)

The synthesis of WI and its use as a test policy filter in the MCTS proce-
dure used to find the test environment policy is outlined in Algorithm 1. Note,
that this receding horizon approach to generating a filter W can be applied
on any GR(1) specification and its corresponding game graph. For the merged
test specification, WI is generated on Gaux where I is the set of states cor-
responding to ψf

test,m, and for simplicity, we apply the following arguments on
Gaux. Let GWI = (VW , EW) be the subgraph of Gaux induced by WI such that
VW = WI ⊆ Vaux and EW = {(u, v) ∈ Eaux|u ∈ WI ∧ v ∈ WI}.

On WI as a Test Policy Filter. Inspired by work on shield synthesis [6], we
use the winning set WI as a filter to guide rollouts in the Monte Carlo Tree
Search sub-routine for finding the test policy. Since ΨI

j is a disjunction of short-
horizon GR(1) specifications, it is possible that an execution always satisfies ΨI

j

without ever satisfying the progress requirement �♦ψf
test. This happens when

the test execution makes progress towards some i ∈ I but never actually reaches

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 145

a goal in I, resulting in a live lock. Further details addressing this are given in
the Appendix. We assume that the graph is constructed such that there are no
such cycles. In addition to using W I to ensure that ΨI

j will always be satisfied,
we enforce progress by only allowing the search procedure to take actions that
will lead to a state which is closer to one of the goals i ∈ I. Thus, the search
procedure will ensure that for every state vl ∈ Vi

j , the control strategy for the
next horizon will end in vl′ ∈ Vi

k, such that k ≤ l for at least one goal i ∈ I.

Fig. 4. Illustration of the intersection of the winning sets for the unit specification. Vtest

are depicted as circles and Vsys as rhombi. The black states lie in the intersection and
the filter will ensure that only these states are being searched. The orange intersection
represents the set of traces of the merged test specification.

Theorem 1. Receding horizon synthesis of test filter WI is such that any test
execution σ on GWI starting from an initial state in VW ∩ V satisfies the test
specification in Eq. (4).

Proof. For the recurrence formula of the merged test specification, �♦ψf
test,m,

suppose there exists a single vertex on Gaux that satisfies ψf
test,m. Then, it is

shown in [26] that if there exists a partial order ({Vi
p, . . . ,Vi

0},≤) on Gaux, we
can find a set of vertices Wi ⊆ Vaux, such that every test execution σ that
remains in Wi, will satisfy the safety requirements �ϕs

test and �ψs
test, and the

invariant Φ. Furthermore, given the partial order ({Vi
p, . . . ,Vi

0},≤), one can find
a test policy to ensure that the σ makes progress along the partial order such
that for some t > 0, σt ∈ Vi

0. However, in case of multiple vertices in Gaux that
satisfy ψf

test,m, we need to extend the receding horizon synthesis to specification
ΨI

j . We construct the filter WI and also check that for every test execution
σ, there exists i ∈ I such that for every k ≥ 0, σk ∈ Vi

j and σk+1 ∈ Vi
j′ .

Therefore, because the auxiliary game graph is assumed to not have cycles, the
test execution makes progress on the partial order of at least one i ∈ I at
each timestep, thus eventually satisfying ψf

test,m. Thus every execution of our
algorithm will satisfy Eq. (4). ��

146 J. B. Graebener et al.

Algorithm 1. Merge Unit Tests (ϕtest,1, ϕtest,2, ϕsys, Tsys, Ttest,1, Ttest,2, ρ)
Input: Unit test specifications ϕtest,1 and ϕtest,2, system specification ϕsys, System

Tsys, unit test environments, Ttest,1 and Ttest,2, and quantitative metric of robust-
ness ρ,

Output: Merged test specification ϕtest,m, Merged test environment Ttest,m, Merged
test policy πtest,m

1: C1, C2 ← Construct contracts for ϕtest,1 and ϕtest,2

2: Ttest ← Ttest,1 × Ttest,2 Merged test environment
3: Tprod ← Tsys × Ttest Product transition system
4: G ← Game graph from product transition system Tprod

5: Cm := (am, am → gm) ← strong merge(C1, C2) Constructing the merged specifica-
tion

6: ϕtest,m ← am → gm Merged test specification
7: Gaux ← Auxiliary game graph.
8: I = {s ∈ Vaux|s |= ψf

test,m} Defining goal states and partial orders
9: for i ∈ I do

10: Pi := {(Vi
p, . . . , Vi

0)} ← Partial order for goal i
11: ψi

j ← Receding horizon specification for goal i at distance j
12: end for
13: WI := {Wi

j} ← Test policy filter for goal i at a distance of j
14: πtest,m ← Searching for test policy guided by WI

15: return ϕtest,m, Ttest,m, πtest,m

4.4 Searching for a Test Policy

To find the merged test policy πtext,m, we use Monte-Carlo Tree Search (MCTS),
which is a search method that and combines random sampling with the precision
of a tree search. Using MCTS with an upper confidence bound (UCB) was intro-
duced in [16] as upper confidence bound for trees (UCT) which guarantees that
given enough time and memory, the result converges to the optimal solution. We
use MCTS to find π∗

test,m, the approximate solution to Problem 1 for the merged
test. We apply the filter that was generated according to the approach detailed
in Sect. 4.3 to constrain the search space as shown graphically in Fig. 4.

Proposition 2. Algorithm 1 is sound.

Proof. This follows by construction of the algorithm and the use of MCTS with
UCB. Given a test policy πtest and a system policy πsys, for every resulting
execution σπsys×πtest starting from an initial state in WI , it is guaranteed that
σ |= ϕtest,m by Theorem 1. This is because for any action chosen by the test
environment according to the policy πtest found by MCTS, we are guaranteed to
remain in WI for any valid system policy πsys. If WI = ∅ or the initial state is
not in WI , the algorithm will terminate before any rollout is attempted and no
policy is returned. It can be shown that the probability of selecting the optimal
action converges to 1 as the limit of the number of rollouts is taken to infinity.
For convergence analysis of MCTS, please refer to [16]. ��

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 147

Complexity Analysis. The time complexity of GR(1) synthesis is in the order
of O(|N |3), where |N | is the size of the state space. To improve the scalability, our
algorithm uses a receding horizon approach to synthesize the winning sets, which
reduces the time complexity significantly, please prefer to [26]. The complexity
for MCTS is given as O(ijkl) with j the number of rollouts, k the branching
factor of the tree, l the depth of the tree, and i the number of iterations. In our
approach the filter reduces the size of the search space, for a visualization refer
to Fig. 4. The number of rollouts and iterations are design variables, that can be
chosen to ensure convergence. More details on the complexity of MCTS for the
lane change example can be found in the Appendix.

Definition 13 (Coverage). A test execution σ covers a test specification ϕtest if
the test execution non-trivially satisfies the test specification, that is, σ |= ϕtest

and σ |= ϕinit
sys ∧ �ϕs

sys ∧ �♦ϕf
sys. A set of test executions T = {σ1, . . . , σn}

covers the set of test specifications Φ := {ϕtest,1, . . . , ϕtest,m} iff for each test
specification ϕtest ∈ Φ, there exists a test execution σj ∈ T such that σj covers
ϕtest,1.

Optimizing for the smallest set of test executions that cover a set of test
specifications is combinatorial in the number of test specifications. In this work,
we outlined an algorithm for merging two unit tests. In future work, given N unit
tests, we will consider the problem of constructing a smaller set of N ′ merged
test specifications with upper bounds on N ′/N .

Lemma 3. Given a set of unit test specifications, ΦT := {ϕtest,1, . . . , ϕtest,N}
such that N test executions are are required to cover Φ, i.e. one test execution for
each test specification, merging unit tests results in N ′ test executions that cover
Φ where N ′ ≤ N . The equality holds iff no two unit tests in Φ can be merged.

Proof. If at least a pair of test specifications in Φ can be merged, it is possible
to characterize a set of test specifications Φ′ such that the cardinality of Φ′, N ′,
is always smaller than N . If each test specification in Φ′ has a test execution,
then we have N ′ < N test executions. ��

5 Examples

We implemented the examples as a discrete gridworld simulation in Python,
where the system controller is non-deterministic and the test agents follow the
test policy generated by our framework. We use the Temporal Logic and Planning
Toolbox (TuLiP) to synthesize the winning sets [27] and online MCTS to find the
test policy. Videos of the results can be found in the linked GitHub repository.

5.1 Lane Change

For our discrete lane change example, we define ρ(σ) as the x-value of the cell in
which the system finished its lane change maneuver. We search for the test policy
that satisfies the test specification in Eq. (8) as explained in Sect. 4. Snapshots
of the resulting test execution are depicted in Fig. 5.

148 J. B. Graebener et al.

Fig. 5. Snapshots during the execution of the test generated by our framework. The
system under test (red car) needs to merge onto the lower lane between the two test
agents (blue cars). (Color figure online)

Unprotected Left-Turn at Intersection. Consider the example of an
autonomous vehicle (AV) crossing an intersection with the intention of tak-
ing a left-turn. The test agents are a car approaching the intersection from the
opposite direction and a pedestrian crossing the crosswalk to the left of the AV
under test. The intersection layout can be seen in Fig. 6. The individual tests are
defined to be waiting for a car, and waiting for a pedestrian while taking a left
turn. The unit specification for waiting for the pedestrian are defined according
to Eq. (4), with

ϕinit
sys = (xS ∈ IS), �♦ϕf

sys = ♦(xS ∈ SG), �♦ψf
test = ♦(xS ∈ SP ∧ xP ∈ TP) ,

(13)
with xS the system coordinates, IS the initial state of the system, SG the set
of desired goal states after the left turn, xP the pedestrian coordinates, and SP
the states in which the car must wait for the pedestrian if the pedestrian is in
a state in TP . Similarly we define the specification for waiting for the tester car
(detailed in the Appendix).

The robustness metric is assumed to be the time until the traffic light changes
to red starting the moment the system executes a successful left turn, and min-
imizing this metric results in a difficult test execution. Next, we merge unit test
contracts, and derive the resulting merged test specification. According to Propo-
sition 1, this merged specification needs to include the temporal constraints as
defined in Eq. (9). In this example, waiting for the tester car and waiting for
the pedestrian trivially imply each other in this example. Any execution of the
system waiting at the intersection will satisfy both unit specifications. Thus we
need to find a test where the system waits for just the tester car at some time
during the test execution and waits for the tester pedestrian at another time
during the test execution. We follow the approach detailed in Sect. 4.3 to gener-
ate the auxiliary graph for this example, with the terminal states corresponding

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 149

Fig. 6. Snapshots during the execution of the unprotected left turn test generated by
our framework. The autonomous vehicle (AV) under test (red) should take an unpro-
tected left turn and wait for the pedestrian and the car (blue) individually, which are
agents of the test environment. In the snapshots at time steps 8 and 12, the AV waits
just for the car, and in time step 21 it waits just for the pedestrian. (Color figure online)

to a successful left turn through the intersection after satisfying the temporally
constrained merged test specification. The graph for this example is illustrated
in Fig. 3, with test, 1 and test, 2 being the subscripts for the first and second
unit test specification. We then generate the test policy filter by constructing
a partial order for the goal states and synthesizing the winning sets with the
receding horizon strategy detailed in Sect. 4.3. Finally, applying this test filter
on MCTS to find the test policy. Figure 6 shows snapshots from a test execution
resulting from a test policy generated by Algorithm 1. As expected, we see the
system first waiting for the tester car to pass the intersection. Even after the
tester car passes, the pedestrian is still traversing the crosswalk, causing the
system to wait for the pedestrian, satisfying the temporally constrained merged
test specification.

6 Conclusion and Future Work

In this work, we presented a framework for merging unit test specifications. While
we applied this framework to two discrete-state examples in the self-driving
domain, this framework can be applied to test other autonomous systems as well.
This paper details the mathematical and algorithmic foundation for merging two
unit tests. This technique could be used as a subroutine to optimize for a small
set of tests that cover several unit specifications. The winning set structure of
the unit specifications could be leveraged to decide which unit specifications

150 J. B. Graebener et al.

should be merged. The scalability of our algorithm can be further improved by
symbolic implementations to synthesize the test policy filter. Lastly, we would
like to show the results of this framework on continuous dynamical systems with
a discrete abstraction for which the test policy filter can be synthesized.

Acknowledgements. We thank Dr. Ioannis Filippidis, Dr. Tichakorn Wongpirom-
sarn, Íñigo Íncer Romeo, Dr. Qiming Zhao, Dr. Michel Ingham, and Dr. Karena Cai
for valuable discussions that helped shape this work. The authors acknowledge fund-
ing from AFOSR Test and Evaluation program, grant FA9550-19-1-0302 and National
Science Foundation award CNS-1932091.

7 Appendix

7.1 Construction of the Partial Order

In Algorithm 2 we provide an algorithm to construct the partial order and the
auxiliary game graph.

7.2 Live Lock

Depending on the construction of the partial order, the test could end up in a
live lock. This is a result of planning over a short horizon for a disjunction of
specifications, ψi

j , each of which specifies progress on different partial orders. An
example of naively applying WI as a filter is given in Fig. 7b, where an execution
can get stuck in the loop (V1

2 → V2
3 → V2

2 → V1
3 → . . .), where progress towards

goals 1 and 2 happens infinitely often but neither of the goals are reached.
Consider the example of a roundabout, where the system always makes progress
towards one of the exits while driving around the roundabout, even if it never
chooses to take an exit. To address this, we propose removing a goal from I that
the test execution has stopped making progress towards, and store it in I ′. If I
becomes empty before one of the goals are reached, we reset I to have all goals
stored in I ′.

Remark 3. This approach to ensuring that the test execution reaches one of the
goals i ∈ I requires that eventually, there exists a path.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 151

Algorithm 2. Construction of Partial Order and Auxiliary Graph
Input: Game graph G = (V, E), propositional formulas ψf

test,1 and ψf
test,2 constituting

the progress requirements of unit test specifications
Output: Auxiliary game graph Gaux

1: Gϕtest,1∨ϕtest,2 := (V, E) ← G Initialize subgraph
2: Gϕtest,1 := (V1, E1) ← G Initialize subgraph
3: Gϕtest,2 := (V2, E2) ← G Initialize subgraph

4: [Pi
ϕtest,1∨ϕtest,2 , Pk

ϕtest,1∨ϕtest,2] ← Partial order(Gϕtest,1∨ϕtest,2 , [ψf
test,1, ψ

f
test,2])

5: Pi
ϕtest,1 ← Partial order(Gϕtest,1 , ψf

test,1)

6: Pk
ϕtest,2 ← Partial order(Gϕtest,2 , ψf

test,2)

7: Er
ϕtest,1∨ϕtest,2 ⊆ E Deleting outgoing edges from Vi

0∪Vk
0 ⊆ V within Gϕtest,1∨ϕtest,2

8: Ea
ϕtest,1∨ϕtest,2 Adding edges from Vi

0 ∪ Vk
0 ⊆ V to subgraphs Gϕtest,1 and Gϕtest,2

9: Er
ϕtest,1 ⊆ E1 Deleting outgoing edges from Vi

0 ⊆ V1 within Gϕtest,1

10: Ea
ϕtest,1 Adding edges from Vi

0 ⊆ V1 to subgraph Gϕtest,1∨ϕtest,2

11: Er
ϕtest,2 ⊆ E2 Deleting outgoing edges from Vk

0 ⊆ V2 within Gϕtest,2

12: Ea
ϕtest,2 Adding edges from Vk

0 ⊆ V2 to subgraph Gϕtest,1∨ϕtest,2

13: Vaux = V ∪ V1 ∪ V2

14: Eaux =
(
E \ Er

ϕtest,1∨ϕtest,2

)
∪

(
E1 \ Er

ϕtest,2

)
∪

(
E2 \ Er

ϕtest,2

)
∪ Ea

ϕtest,2 ∪ Ea
ϕtest,1 ∪

Ea
ϕtest,1∨ϕtest,2

15: Gaux = (Vaux, Eaux)
16: return Gaux, Pi

ϕtest,1∨ϕtest,2 , Pk
ϕtest,1∨ϕtest,2 , Pi

ϕtest,1 , Pk
ϕtest,2

Fig. 7. Sketch of receding horizon winning set with and without cycle.

7.3 Example: Lane Change

On the lane change example, we analyzed the convergence of MCTS as the search
procedure. Figure 8 shows that the terminal cost (robustness metric) reaches the
maximum value with a relatively low number of rollouts. This is due to the
fact that we are applying our framework to a problem with a relatively small
action space for the test environment, using the test policy filter, and MCTS
as an online policy. Even though the state space of the lane change example
grows significantly with an increase of the track length, the actions that the
testers can take are at maximum four (both move, both stay, one moves/one
stays). With the use of the winning set and depending on the positions of the
system and testers, the number of possible actions can be smaller. Because only

152 J. B. Graebener et al.

Fig. 8. The normalized mean terminal cost of the test execution found by our frame-
work shown for a different number of rollouts for the track lengths 5, 10, and 15. The
shaded areas represent the minimum and maximum value (light blue) and the standard
deviation (blue) over 50 runs. (Color figure online)

actions that remain in the winning set for the specification can be chosen, the
search procedure quickly finds a policy that maximizes the cost. The number of
iterations used by the online MCTS depends on the actions of the system and
is upper bounded by the maximum duration of the test. As we find a search
procedure online, every time that the test environment has to take its turn,
MCTS executes the specified number of rollouts to choose the next action, and
this continues until the test is finished.

In Fig. 9 the runtime for the winning set synthesis is shown. We compare the
runtime of the receding horizon approach to the synthesis of the full horizon win-
ning set for each goal location at once. While the runtimes for both approaches
increase significantly, the full horizon approach is already unable to generate a
winning set for a track length of 11 for the same specifications.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 153

Fig. 9. The computation time required to generate the winning set filter with the
receding horizon approach and by computing the entire winning set for each possible
goal at once. The experiments were run on a MacBook Pro with a 2.3 GHz Quad-Core
Intel Core i7 processor with 32 GB RAM.

Fig. 10. Layout of the unprotected left turn at intersection example. The system starts
in cell (7,4) and wants to reach the goal cell (0,3), while the initial positions of the test
agents are at the beginning of the road and crosswalk. (Color figure online)

7.4 Example: Unprotected Left Turn

The test specification for waiting for the test car is specified according to Eq. (4),
with

ϕinit
sys = (xS ∈ IS), �♦ϕf

sys = ♦(xS ∈ SG), �♦ψf
test = ♦(xS ∈ SC ∧ xC ∈ TC) ,

(14)

154 J. B. Graebener et al.

where the subscript C denotes the tester car. In Fig. 10, the conventions used for
the left turn at intersection example are depicted. The coordinate system starts
in the upper left corner with cell (y, z) = (0, 0) and the y-axis facing south and
the z-axis facing east. The crosswalk locations are numbered from north to south,
starting with 0. The initial states of the test agents are xC = (0, 3) and xP = 0,
and the initial state of the system is xS = (7, 4). The goal state for the system
is xG = (0, 3). In this example xG is the only element in SG . The states in which
the system needs to wait for the pedestrian and the car, SP and SP respectively,
are both x = (4, 4) for this layout. The states of the tester car, for which the
system has to wait are given as TC = {(0, 3), (1, 3), (2, 3), (3, 3)} and the states
of the pedestrian, for which the system has to wait are SP = {1, 2, 3, 4, 5}, which
represent the cells on the crosswalk, that map to grid coordinates. Note that if
the pedestrian is in cell 0, the system is not required to wait for the pedestrian,
as she is too far away from the road. The traffic light sequence is predetermined,
the light will be green for a fixed number of time steps tg, followed by ty time
steps of yellow and red for tr time steps. We are assuming that the system
designer supplied the robustness metric as the time until the traffic light turns
red, resulting in a harder test the closer the light is to red once the system
successfully takes the turn.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Probabilis-
tic temporal logic falsification of cyber-physical systems. ACM Trans. Embedded
Comput. Syst. (TECS) 12(2s), 1–30 (2013)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

4. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol.
5382, pp. 200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-92188-2 9

5. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2–3), 124–400 (2018)

6. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533–548. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 51

7. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

8. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63(4), 1031–1053
(2019)

9. Dreossi, T., et al.: VERIFAI: a toolkit for the design and analysis of artificial
intelligence-based systems. arXiv preprint arXiv:1902.04245 (2019)

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-662-46681-0_51
http://arxiv.org/abs/1902.04245

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 155

10. Filippidis, I., Murray, R.M.: Layering assume-guarantee contracts for hierarchical
system design. Proc. IEEE 106(9), 1616–1654 (2018)

11. Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: From
simulation to the real world. In: 2020 IEEE 23rd International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 1–8. IEEE (2020)

12. Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S., Kapoor, A.: Verifying con-
trollers against adversarial examples with Bayesian optimization. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7306–7313.
IEEE (2018)

13. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy
Pract. 94, 182–193 (2016)

14. Klischat, M., Liu, E.I., Holtke, F., Althoff, M.: Scenario factory: creating safety-
critical traffic scenarios for automated vehicles. In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pp. 1–7. IEEE (2020)

15. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297
(2008)

16. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

17. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

18. Lamport, L.: Win and sin: predicate transformers for concurrency. ACM Trans.
Programm. Lang. Syst. (TOPLAS) 12(3), 396–428 (1990)

19. Meyer, B.: Applying’ design by contract’. Computer 25(10), 40–51 (1992)
20. Nuzzo, P., et al.: A contract-based methodology for aircraft electric power system

design. IEEE Access 2, 1–25 (2013)
21. Passerone, R., Íncer Romeo, Í., Sangiovanni-Vincentelli, A.L.: Coherent extension,

composition, and merging operators in contract models for system design. ACM
Trans. Embedded Comput. Syst. (TECS) 18(5s), 1–23 (2019)

22. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57. IEEE (1977)

24. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of the 15th ACM Inter-
national Conference on Hybrid Systems: Computation and Control, pp. 125–134
(2012)

25. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. arXiv
preprint arXiv:1606.08514 (2016)

26. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012)

27. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: Proceedings of the 14th
International Conference on Hybrid Systems: Computation and Control, pp. 313–
314 (2011)

https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11609773_24
http://arxiv.org/abs/1606.08514

Quantification of Battery Depletion Risk
Made Efficient

Holger Hermanns and Gilles Nies(B)

Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Germany
{hermanns,nies}@cs.uni-saarland.de

Abstract. Rechargeable batteries are the backbone of our mobile
and wireless way of life. In the context of model-based bat-
tery depletion estimation, the kinetic battery model (KiBaM) pairs
modelling convenience with prediction accuracy. This paper pro-
poses algorithms to analyze energy budgets with respect to a
rechargeable stochastic KiBaM with capacity bounds. Concretely, we
present two different approaches to narrowly bound the cumula-
tive depletion risk induced by a sequence of possibly noisy tasks.
One of them enables adaptive discretization of the (provably) rele-
vant portion of the charge space. The other avoids this discretization
by instead propagating charge percentiles iteratively, resulting in safe
bounds on the depletion risk. Both approaches have their particular
strengths with respect to applicability, precision, space and runtime com-
plexity. We provide empirical evidence of their characteristics on the basis
of a representative example.

Keywords: Battery Power · Kinetic Battery Model · Depletion Risk
Estimation · Adaptive Discretization · Percentile Propagation

1 Introduction

Rechargeable battery technology is nowadays built into almost every portable
device, and is the acclaimed enabler of electric mobility. For battery electric vehi-
cles, range anxiety is the fear of the vehicle occupants to get stranded on the way
to a destination due to battery depletion. Efficient and precise methods for model-
based estimation of battery depletion risks are needed in order to outstrip range
anxiety as a major barrier to large scale adoption of all-electric cars. Due to the
omnipresence of rechargeable batteries, estimation methods for battery depletion
risks actually have a much broader application range, from earth-orbiting satel-
lites, to autonomous vacuum robots, to wearable smartwatches, to energy buffers
in power grids. In the context of model-based battery depletion estimation, the
kinetic battery model (KiBaM) [9] pairs modelling convenience with prediction
accuracy and constitutes the premier consensus model relative to the simplistic
linear battery model and much more complex electro-chemical models [8]. As such,
the KiBaM, or one of its many extensions [4,11,14] is often used when investigat-
ing the lifetime of a system [3,11], inferring suitable capacity limits [1], planning
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 156–174, 2022.
https://doi.org/10.1007/978-3-031-06773-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_8

Quantification of Battery Depletion Risk Made Efficient 157

and scheduling of tasks [13] and by now has found its way into widely used tools
such as UPPAAL as first-class citizen [7].

Recently proposed extensions to the KiBaM are [6]: (i) the incorporation of
capacity bounds when charging, (ii) uncertainty in the initial battery state, use-
ful to reflect manufacturing tolerances and self-discharging while inactive, and
(iii) imprecision or noise in battery loads. These extensions have been motivated
especially by low-Earth orbit applications [5,10,12]. In this setting, it has become
apparent that precise and efficient estimates of battery depletion risks are much
harder to calculate than in a purely deterministic setting. This paper addresses
this challenge.

We start off from the existing, universally applicable discretization algorithm,
which safely approximates the entire battery state distribution [6]. This is
enhanced to an adaptive discretization approach that keeps only a relevant neigh-
borhood of the state of charge space (Section 3.2). This enables the use of
smaller and more focussed representations without altering precision, which in
turn implies better runtime and space efficiency at the cost of a negligible compu-
tational overhead. This improved method inherits all the merits from the previous
version.

Additionally, we propose an approach that avoids discretization of the charge
space entirely. It instead directly estimates the quantity of interest, the depletion
risk (Section 3.3). The computation harvests analytical insights for the computa-
tion of charge percentiles, thereby providing bounds on the depletion risk of the
entire initial charge distribution. The approach however comes with mild restric-
tions on the class of initial charge distributions it supports. Iterative applications
of this so-called percentile propagation scheme, result in arbitrarily tight and pre-
configurable bounding of the true depletion risk.

We discuss both these approaches in great detail, and empirically evaluate
(Section 4) their effectiveness with respect to runtime and memory requirements.
Percentile propagation comes with a precision level configurable a priori and can
play out its strengths especially on scenarios with low noise. On the other hand,
adaptive discretization is conceptually bound to higher space requirements which
pays off for higher noise scenarios, with the precision being revealed a posteriori
only. All experimental results and the code are made available as an artefact.

2 Battery Kinetics

The Kinetic Battery Model (KiBaM) is an energy storage model that models the
state of charge (SoC) of a battery by splitting it into two disjoint portions, namely
(i) the available charge a(t), the portion of stored charge that is directly available
to be consumed or replenished, (ii) the bound charge b(t), the portion of stored
charge that is considered chemically bound inside the battery, and is not immedi-
ately available. These quantities can be considered unitless and abstract for math-
ematical and analytical purposes, and we will denote battery states as rowvectors
[a; b], throughout this paper. The battery is strained by a load �(t) that represents
charging and discharging if �(t) < 0 and �(t) > 0, respectively. If there is no load
(i.e. � = 0) we speak of a resting period.

158 H. Hermanns and G. Nies

Fig. 1. The two-wells illustration of the KiBaM.

The principle behind the KiBaM is that one type of charge is converted
into the other over time via diffusion, depending on the amount of each type of
charge currently in the battery. For this reason the KiBaM is often depicted as
two interconnected wells holding fluid as depicted on the right above, as seen
in Figure 1. The model is characterized by two parameters, the first of which
being the width parameter c ∈]0, 1[. It corresponds to the width of the available
charge well, while 1 − c is the width of the bound charge well. The second
parameter, the diffusion rate parameter p > 0, is the factor of proportionality
of the difference in fluid levels of both wells, namely a(t)/c and b(t)/1 − c, and thus
governs the speed with which bound charge is converted to available charge and
vice-versa. Among other characteristics, these parameters are usually estimated
for a specific battery type, and are likely subject to change as the battery ages.

KiBaM ODE System. Mathematically, the KiBaM state of charge evolves as
indicated by two coupled differential equations given in Equation 1.

ȧ(t) = −�(t) + p

(
b(t)
1 − c

− a(t)
c

)

ḃ(t) = p

(
a(t)
c

− b(t)
1 − c

) (1)

The dynamics of the KiBaM account for a couple of non-linear effects that can be
observed in real-world batteries, which makes the model at hand highly relevant,
as is made clear by related literature [8].

We denote SoCs by row vectors [a; b], and denote the set of all SoCs by S.
We say that a SoC is in equilibrium iff no diffusion is taking place, i.e a

c = b
1−c .

We interpret operations on SoCs to be componentwise, hence for an arithmetic
operator �, and for any comparison operator � we have

[a0; b0] � x :=

{
[a0 � a1; b0 � b1] if x = [a1; b1]
[a0 � k; b0 � k] ifx = k ∈ R

and

[a0; b0] � x :=

{
a0 � a1 ∧ b0 � b1 if x = [a1; b1]
a0 � k ∧ b0 � k if x = k ∈ R

.

Quantification of Battery Depletion Risk Made Efficient 159

Load model. The load model we want to investigate is described by tasks and
sequences thereof. A task (Δ, �) is a pair of a positive time duration Δ > 0
and a load � with which the battery is strained throughout that time duration,
i.e. for 0 ≤ t < Δ, we have �(t) = �. We denote the set of tasks by T :=
R>0 × R. A sequence of tasks thus induces a piecewise constant load sequence.
It is possible to derive a solution of the ODEs at time Δ, for instance by using
Laplace transforms. We can capture all of the above formally, by introducing
an operator on tasks and SoCs, as a vector valued linear map, taking the initial
available and bound charge a0 and b0 as argument. Thus we denote the successor
SoC of [a0; b0] as application of an operator K, i.e. K(Δ,�)[a0; b0]. The choice
of piecewise constant load sequences is necessary to enable efficient handling of
depletion and saturation scenarios outlined in the next section. In most practical
cases, like a processor executing an arithmetic operation, the generated load
sequences can be considered piecewise constant, or loads can easily be collapsed
into a single constant load by averaging. However, there are instances in which
the load is inherently non-linear. Charging via solar panels is such an example,
as the panel’s efficiency is highly dependent on temperature, which decreases as
it is hit by sun light. In such cases the load is abstracted into a constant load,
for instance by considering mean efficiencies.

Depletion and Capacity Limits. So far, the operator K is defined on any given
SoC and its evolution potentially spans the entire range of SoCs, including the
negatives. We instead define the region of critically low SoCs in terms of a
given battery depletion level depl, which in turn induces depletion thresholds
on available and bound charge quantities by [a; b] := [c; 1 − c] · depl. We refer
to a SoC S as safe iff S > [a; b]. Safe SoCs can sustain a discharging task for
a non-zero duration without depleting. We let ⊥ := [a; b], denote the canonical
depletion SoC. SoC S is depleted if its available charge is lower than the depletion
threshold, i.e. if a ≤ a. For depletion, only the available charge dimension is
decisive, because this is when a battery-powered system stops operating. We
do not differentiate between depleted SoCs, as none of them can support any
further discharging.

Real-world batteries are evidently not infinite energy storage devices. The
KiBaM does not reflect this, since the K-operator can attain arbitrarily large
values. We enforce a capacity limit of cap ∈ R>depl, which induces limits
[a; b] := [c; (1 − c)] · cap on available and bound charge. We call a SoC saturated
and over-saturated, iff a = a and a > a, respectively. Just as for depletion, the
available charge is the decisive quantity for saturation.

Charging and discharging are not fully symmetric: A depleted SoC can no
longer power its task, contrary to a saturated SoC that continues to operate, but
changes its further charging behavior. In this case a sufficiently high charging
load � induces that only the bound charge increases due to diffusion while the
available charge stays at the capacity limit: This is the case if � ≤ p(b0/(1− c)−
cap). Stated differently, the least bound charge to compensate the diffusion given
� is bsat� := �

p (1−c)+b. For a sufficient load, the subsequent evolution of the bound
charge is given by B

sat
Δ (b0) = e−ckΔ · b0 +

(
1 − e−ckΔ

) · b̄, with k = p/c(1 − c).
We lift this evolution to an operator on SoCs K

sat by K
sat
Δ [a; b] := [a;Bsat

Δ (b)].

160 H. Hermanns and G. Nies

Evolution across Saturation. Each non-saturated SoC will eventually become
saturated via indefinite charging. We are interested in the time point of sat-
uration, since this is when the dynamics of the battery change. So, with Δ
identifying the time point at which the first component of K(Δ,�)S is exactly a,
and with δ := Δ−Δ being the remainder of the task, we can express the SoC of
a KiBaM after powering a given task (Δ, �) by splitting, if needed, the evolution
at Δ. This results in an operator K,

KT S :=

⎧⎪⎨
⎪⎩

⊥, if S = ⊥ or KT S is depleted

K
sat
δ ◦ K(Δ,�)S if KT S is over-saturated

KT S, otherwise

.

Note that K is invariant with respect to the canonical depletion SoC ⊥ (first case),
even ifT is a charging task, reflecting that the battery-powered device canno longer
sustain operation. The correctness of the development in the next sections hinges
on the following two very intuitive properties, both of which can be proven via case
distinctions and investigation of the sign of partial derivatives of K.

Lemma 1. Let Δ be a positive duration, S, S0, S1 be SoCs, �0, �1 be loads, and
T be a task. We have

�0 ≥ �1 =⇒ K(Δ,�0)S ≤ K(Δ,�1)S and S0 ≤ S1 =⇒ KT S0 ≤ KT S1.

The computational nature of K is problematic, because Δ is transcendental [6],
thus we resort to under- and over-approximations. A simplistic approximation is
the interval [0,Δ], but saturation time points can easily be approximated up to
a chosen width ε by an iterative interval halving scheme: Starting from the inter-
val [0,Δ], we test the exact midpoint of the interval for saturation. The midpoint
becomes the new right endpoint Δ� if the battery is already over-saturated mid-
way, otherwise it becomes the new left endpoint Δ�. We repeat this step until the
width of the interval [Δ�,Δ�] falls below ε, and return the interval.

To enclose the true evolution of the SoC across saturation, we will adjust
the load � we work with so that instead saturation is reached at precisely Δ�,
respectively Δ�. In order to derive the load reaching saturation from a SoC S
precisely at, say Δ, we solve K(Δ,�)S = [a; •] for � (which is straightforward)
and denote by �ΔS its solution. With this, we define operators K

� and K
� that

approximate K. They both agree with K unless K(Δ,�)S is over-saturated for
task (Δ, �) and SoC S, while in that case we define

K
�

(Δ,�)S := K
sat
δ�

◦ K(Δ�,�Δ
�
)S and K

�

(Δ,�)S := K
sat
δ�

◦ K(Δ�,�Δ
�
)S

where δ� := Δ − Δ� and δ� := Δ − Δ�. Figure 2 illustrates how we handle the
saturation time point scenario of the K

�- and K
�-operators. Indeed, K� and K

�

bound the actual KiBaM SoC evolution: For any SoC S and any task T ∈ T we
have K

�

T S ≤ KT S ≤ K
�

T S.

Quantification of Battery Depletion Risk Made Efficient 161

Fig. 2. An illustration of the K
�
-operator (left) and the K

�
-operator (right). K

�
makes

the available charge (red) hit the saturation limit a at Δ� prior to actual saturation

at Δ, which leads to an over-approximation of the SoC, while with K
�

this happens
afterwards at Δ�, inducing a SoC under-approximation, and this order transfers to the
bound charges (blue).

Stochastic Battery Kinetics. In order to treat the KiBaM as a stochastic object,
we consider the initial SoC [a0; b0] as being random, reflecting the real phenomenon
of uncertain initial charge levels, rooted in wear and manufacturing variances [2]
as well as self discharging rates during a battery’s shelf life. The distribution of a
random SoC is described by a triple 〈f̄ , f, z〉, where f̄ is a one-dimensional density
function, describing how the bound charge is distributed under the condition that
the battery is saturated, f is a joint density over the non-saturated SoC space, and
finally z ∈ [0, 1] that is the cumulative probability of depletion, i.e. the likelihood
of the battery depleting withing a given time horizon. A random [A;B] is said to be
distributed according to a SoC distribution 〈f̄ , f, z〉, and write [A;B] ∼ 〈f̄ , f, z〉 if
for any measurable set X ⊆ S, we have

Pr
[
S ∈ X

]
=

∫∫
[a;b]∈X

f(a, b) dadb +
∫
[a;b]∈X

f̄(b) db + zI⊥∈X

where Iϕ denotes the indicator function of a condition ϕ. In Figure 3a, we visual-
ize a SoC distribution as three stacked heatmaps: On the very top resides a one-
dimensional heatmap depicting f̄ , in the middle sits the two-dimensional density
of the non-saturated safe portion f and on the bottom the accumulated depletion
risk z as a color-coded probability value. The red checkered area represents unsafe
SoCs. In addition, we consider the load � that is imposed on a battery as being
a random quantity as well, reflecting, for example, measurement noise. Thus, the
load on the battery is considered a random variable L, independent of the SoC, dis-
tributed as given by an associated probability density function g. We write L ∼ g
with g : R → R, and refer to tasks with random load as noisy tasks.

3 Algorithms

Up to this point, most of what has been covered has been presented (possibly
using different notation) in earlier work [6]. We now turn to the question how
to efficiently compute the SoC distribution resulting from a certain sequence of
possibly noisy tasks. This is a problem of major concern in applications.

162 H. Hermanns and G. Nies

Fig. 3. A SoC distribution, its support and bounding box.

Along the way, we need to refer to the charge portion for which a certain task
is saturating or depleting. For a task T and available charge level ã we call the
set {S | KT S = [ã; •]} the ã-target boundary of T . Specifically, fixing ã := a gives
the depletion boundary of T , and ã := a the saturation boundary. We visualize
these concepts in the SoC space in Figure 4.

a

bb

a

KT

a

bb

a

KT

Fig. 4. A discharging task’s depletion boundary (left) and charging task’s saturation
boundary (right), with illustrative K-mappings of SoCs.

Assuming a discharging task T , the red line indicates the depletion boundary
of T . Any SoC (represented in the figure as blue dots) above and to the right of
the depletion boundary remains safe after T , while SoCs below and to the left
of the boundary are rendered unsafe. SoCs that are part of the boundary reach
a SoC of the form [a; b], for some b.

Quantification of Battery Depletion Risk Made Efficient 163

Analogously, for a charging task T , the SoCs above and to the right of the
saturation boundary are over-saturated after T , while SoCs below and to the
left of the boundary remain unsaturated. SoCs that are situated exactly on the
boundary end up saturated. As the above example already indicates, the target
boundaries are linear in the SoC space and are strictly monotonically decreasing
(can be shown by investigating the sign of the derivative). We write aã

T (b) or
bã
T (a) to denote the target boundary (ã omitted if clear from context). aã

T (b)
describes the available charge on the boundary as function of the bound charge,
and vice-versa for bã

T (a). As a consequence, the SoC S on T ’s target boundary
that minimizes (maximizes) KT S = [ã; bΔ] is at the left (right) domain boundary.

3.1 Static Discretization

To track SoC distributions along noisy task sequences, past work has discretized
noisy tasks with finite support into discretized noisy tasks and SoC distribu-
tions into discretized SoC distributions [6]. For the former, the task support
is divided into a number of equi-sized chunks. For each chunk, the entirety of
the probability mass contained is concentrated into its left-hand endpoint to
get an over-approximation, and in the right-hand endpoint to get an under-
approximation. The discretization of SoC distributions is similar: One constructs
a two-dimensional N ×N grid with equi-sized grid cells on the SoC space between
depletion and saturation limits, and condenses the probability mass of each grid-
cell into the bottom-left (the smallest SoC in the cell) and top-right corners (the
largest SoC in the cell) to under- and over-approximate the original distribution,
respectively. Powering a task then means K

�- and K
�-mapping each cell’s appro-

priate corner-point, and rounding the result to the appropriate corner-point of the
cell it landed in, thereby amassing approximation errors proportional to the size of
grid-cells. Given that the grid stays invariant, we call this scheme static discretiza-
tion (SD).

3.2 Adaptive Discretization

In most scenarios, the initial SoC of a battery is located in only a small portion of
the SoC space: This is because the operation of battery-powered systems usually
starts with an (almost) fully charged and equilibrated battery. This leads to just
a localized neighborhood of grid-cells actually carrying non-zero probability mass,
while much of the rest of the grid is empty. In the following we generalize this dis-
cretization scheme by bounding boxes: Instead of putting a grid on the entire SoC
space,weput a grid only on a rectangular, localized neighborhood of the actual sup-
port of the initial SoC distribution, and propagate this neighborhood along a task
sequence, exploiting properties of the K-operators to keep these neighborhoods as
tight as possible. This way, grid-cells remain as small as possible, which entails min-
imal approximation errors with every tasks. We refer to this scheme as adaptive dis-
cretization (AD). In Figure 3b we visualize a bounding box of a SoC distribution.

164 H. Hermanns and G. Nies

Definition 1. A bounding box B of a SoC distribution 〈f̄ , f, z〉 is a triple of
intervals 〈A,B,B〉 such that

supp(f) ⊆ A × B ⊆ [a, a] × [b, b] and supp(f̄) ⊆ {a} × B ⊆ {a} × [b, b] .

In Figure 3b above we display the support (black) and its bounding box (blue)
for the SoC distribution shown before. Before we transform the SoC distribution
according to K, we compute the successor bounding box, denoted by KTB, from
task T and the initial bounding box B := 〈A,B,B〉. The successor box can be
computed in a modular fashion, meaning that we can combine the successors of
each of the two components KT [A;B] := KT 〈A,B, ∅〉 and KT B := KT 〈∅, ∅, B〉
into a bounding box of the successor SoC distribution. To this end, we start
by introducing the notion of subsumption and closure of bounding boxes, by
essentially lifting the subset relation and the union operation on intervals.

Definition 2 (Subsumption). Let B0 := 〈A0, B0, B0〉 and
B1 := 〈A1, B1, B1〉 be boxes. We denote by B0 � B1 that B0 is subsumed by
B1. Subsumption is defined as B0 � B1 := A0 ⊆ A1 ∧ B0 ⊆ B1 ∧ B0 ⊆ B1.

Definition 3 (Closure of boxes). Let B0 := 〈A0, B0, B0〉 and
B1 := 〈A1, B1, B1〉 be two boxes. The closure of B0 and B1, denoted by
B0�B1 is defined componentwise by B0�B1 := 〈A0 � A1, B0 � B1, B0 � B1〉,
where M � N is defined as [min(M ∪ N),max(M ∪ N)] provided both M and
N are non-empty. Otherwise, M � N returns M if N = ∅, or otherwise N . The
closure of countably many boxes

⊔N
i=0 Bi is defined inductively.

The following properties will in the sequel be used throughout without explicit
reference. For two boxes B0 and B1, we have B0 � B1 � B0 and
B0 � B1 � B1. Furthermore, if 〈f̄ , f, z〉 is a SoC distribution with bounding
box B0 then each B1 with B0 � B1 is also a bounding box of 〈f̄ , f, z〉.

Successor bounding box if charging. We now focus on how to compute the suc-
cessor box KTB, where T is a charging task, since charging is the most involved
scenario. The basic principle is to track the smallest and the largest SoCs, given
by the left and right endpoints of the box intervals, respectively. By Lemma 1
these SoCs remain the extreme SoCs after T , and therefore the successor box
still accounts for the entire support of the successor SoC distribution. Certain
intermediate SoCs are of specific interest: If the bounding box B is cut by T ’s
saturation boundary, then a part of the box contributes to the saturated part of
the successor box KTB, while the other part remains unsaturated, and thus con-
tributes to the unsaturated part of the successor box KTB. Since the saturation
boundary is monotonically decreasing, the left-most intersection point with the
box decides where the unsaturated part of the successor box ends, and where
the saturated part of the successor box starts. The resulting bounding box can
then easily be composed from both parts by KT [A;B] � KT B.

Quantification of Battery Depletion Risk Made Efficient 165

Definition 4. Let A = [a�, a�] and B = [b�, b�], then

KT [A;B] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈∅, ∅, [bmin
sat , b

max
sat]〉, if aT (b�) < a�

〈[amin
mid, a

max
mid], [bmin

mid, b
max
mid], ∅〉, if aT (b�) > a�

〈[amin
mid, a], [bmin

mid, b
top
hit], [btop

hit , bmax
sat]〉, if bT (a�) ∈ B

〈[amin
mid, a], [bmin

mid, b
left
hit], [bleft

hit , b
max
sat]〉, if aT (b�) ∈ A

where [•; bmin
sat] :=K

�

T [a; b�], [amin
mid; bmin

mid] := KT [a�; b�], [•; btop
hit] := KT [a�; bT (a�)]

[•; bmax
sat] :=K

�

T [a; b�], [amax
mid ; bmax

mid] := KT [a�; b�], [•; bleft
hit] := KT [aT (b�); b�].

To compute the successor of the saturated part, we need to incorporate the
additional scenario of saturated SoCs temporarily becoming unsaturated due to
diffusion. The decisive value is the least diffusion-compensating bound charge
bsat

� , which separates the box into a perpetually saturated portion (use K
sat), and

a transiently unsaturated portion (use K
�/K�).

Definition 5. For B = [b�, b�] and T := (Δ, �) we define

KT B :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈∅, ∅, [bsat

Δ(b�),bsat

Δ(b�)]〉, if bsat

� < b�

〈[amin
mid, a

max
mid], [bmin

mid, b
max
mid], ∅〉, if bT (a) > b�

〈∅, ∅, [bmin
sat , b

max
sat]〉, if bT (a) < b� ∧ bsat

� > b�

〈[amin
mid, a], [bmin

mid, bret], [bret,b
sat

Δ(b�)]〉, if bT (a) ∈ B ∧ bsat

� ∈ B
〈∅, ∅, [bmin

sat ,b
sat

Δ(b�)]〉, if bT (a) < b� ∧ bsat

� ∈ B
〈[amin

mid, a], [bmin
mid, bret], [bret, bmax

sat]〉, if bT (a) ∈ B ∧ bsat

� > b�

where [•; bmin
sat] := K

�

T [a; b�], [amin
mid; bmin

mid] := KT [a; b�], [•; bret] := KT [a; bT (a)],

[•; bmax
sat] := K

�

T [a; b�], [amax
mid ; bmax

mid] := KT [a; b�].

Note that we use K
� and K

� whenever there is saturation, thus the computed
box is slightly larger than the exact one. It however subsumes the latter, and
hence constitutes a valid bounding box.

Successor bounding box if discharging or resting. Essentially the dual idea applies
to discharging: (i) Instead of saturation there might be depletion. Therefore, if the
depletion boundary cuts the box into a depleting part and a non-depleting part, the
left-most intersection point provides the smallest non-depleting SoC and hence the
lower-left corner of the unsaturated part of KTB. (ii) The saturated part of KTB
is empty, and the top-right cornerpoint of the unsaturated part is determined as
the largest among the right endpoint of B, and the top-right cornerpoint of [A;B].
For resting, we can simply propagate the box as is, using K.

Successor bounding box of noisy tasks. Lastly, in order to lift the above from
tasks (Δ, �) to discretized noisy tasks (Δ, γ), we need to compute the successor
bounding box, for each load instance in the support of γ and build their closure,

166 H. Hermanns and G. Nies

i.e. K(Δ,γ)B :=
⊔

�∈supp(γ) K(Δ,�)B. The fact that this indeed provides a valid
bounding box is witnessed by Lemma 1 and the properties of subsumption.

Algorithm. With all of the above in place, we are ready to formalize an algorithm
that tracks an initial SoC distribution 〈f̄ , f, z〉 along a sequence of discretized
noisy tasks (Ti)M

i=0. A pseudo-code formulation is given in Algorithm 1. It first
discretizes the initial SoC at hand, and then iteratively propagates discretized
SoC distributions along discretized noisy tasks, by determining the successor box
via the closure of boxes induced by the support of the noisy task loads, placing
a grid into the successor box, and finally mapping the cells of the current grid
onto the cells of the successor grid in an under- and over-approximating fashion.

In : A SoC distribution 〈f̄ , f, z〉 with bounding box B, a sequence of
discretized noisy tasks (Ti)

M
i=0 and a grid size N .

Out: Two discrete SoC distributions bounding K(Ti)
M
i=0

〈f̄ , f, z〉
1 B� := B; B� := B

2 D�, D� := discretizations of 〈f̄ , f, z〉 with box B

3 foreach (Δ, γ) ∈ (Ti)
M
i=0 do

4 B� := K(Δ,γ)B
�; B� := K(Δ,γ)B

�

5 Place N × N grid in both B� and B�

6 D� := K
�

(Δ,γ)D
� with box B�; D� := K

�

(Δ,γ)D
� with box B�

7 return D�, D�

Algorithm 1: The AD algorithm in pseudo-code.

3.3 Percentile Propagation

The algorithm developed above supports (almost) any initial SoC distribution as
well as load distributions, by appropriate discretization of both. The price of this
generality is that of precision. Due to the permanent rounding of SoCs onto the
grid-cell cornerpoints, estimates diverge the longer the task sequence we apply.

We now discuss a different approach that does not attempt to track the
entire distribution, but aims at a precise estimate of the cumulative depletion
risks induced by a possibly very long task sequence. Often the depletion risk
constitutes the most crucial information of an energy budget analysis of a bat-
tery powered system. By restricting to a certain, relevant, class of initial SoC
distributions we are indeed able to estimate that risk precisely. The idea is to
exploit monotonicity of the operator K (Lemma 1), in the sense that if a SoC S
depletes when strained by a task sequence (Ti)

n
i=0, then every SoC smaller than

S must also deplete. Additionally, if S is greater than q percent of all the initially
supported SoCs, we can deduce that the depletion risk is at least q. Dually, if
S does not deplete, then depletion risk is at most q. Since the depletion risk is
bounded by 0 and 1, the idea is to iteratively tighten the bounds around the

Quantification of Battery Depletion Risk Made Efficient 167

depletion risk by probing and propagating certain percentiles of the initial dis-
tribution until the bounds exhibit a difference less than a given ε⊥. We refer to
this paradigm as percentile propagation PP.

However, clearly not all SoCs are pairwise either smaller than or greater than,
because ≤ is not a total order. Therefore we need to restrict this idea to initial
SoC distributions that do not contain two pairwise incomparable SoCs with
respect to ≤. Luckily, this is not an unrealistic assumption, since batteries that
have had enough time to equilibriate exhibit exactly such initial SoC distribu-
tions. These distributions basically degenerate to one-dimensional distributions,
since each SoC [a; b] is uniquely defined by the sum of its components a + b.

For a cumulative density function (CDF) F the q–percentile is given by the
generalized inverse of F , F−1(q) := infx∈R{F (x) ≥ q}. The infimum is needed
because F is not necessarily invertible in the functional sense.

To lift the notion of percentiles to SoCs, we consider distributions over the
total charge stored in a battery, since it uniquely defines SoCs supported by the
SoC distribution with the above restrictions in place.

Definition 6. Let 〈f̄ , f, z〉 be a SoC distribution such that ({a} × supp(f̄)) ∪
supp(f) is a totally ordered set with respect to ≤. We define h as follows:

h(c) :=

⎧⎪⎨
⎪⎩

f̄(b), if c = a + b ∧ [a; b] ∈ {a} × supp(f̄)
f(a, b), if c = a + b ∧ [a; b] ∈ supp(f)
0, otherwise

Then, the (z + q)–percentile of 〈f̄ , f, z〉 is the unique SoC [a; b] such that c = a+b
is the (conventional) q–percentile of h, for 0 ≤ q ≤ 1 − z.

The function h essentially constitutes a diagonal sweep of the SoC space, cumu-
latively “picking up” SoCs in the appropriate order. The function is well-defined
if, for every position of the sweep diagonal (red line), it intersects the support of
〈f̄ , f, z〉 (blue) in at most one single SoC, like in the following visual example:

SoC distributions are inherently non-continuous because they are by definition
separated into three distinct parts. In conclusion, SoC percentiles are not unique
without the infimum operation. With a few restrictions, however, we are able
to fulfill all the necessary assumptions to drop the infimum operator. In order
to avoid technical problems, let’s therefore assume that the initial SoC distri-
bution exhibits no initial depletion risk, and that the entire probability mass is
exclusively supported by either f̄ or f . Again these assumptions are not very
restrictive. For instance, a saturated battery (i.e. the entire probability mass is

168 H. Hermanns and G. Nies

in f̄), or a battery in full equilibrium (i.e. the entire probability mass is situated
on the diagonal of f) are valid scenarios.

Depletion risk approximation. We now give a pseudo-code algorithm to bound
the depletion risk within an interval of arbitrary width, given a sequence of tasks
and an initial SoC distribution meeting the criteria from above.

The algorithm initially bounds the depletion risk z with the interval [0, 1]. We
then keep halving the interval [z�, z�] iteratively in the following sense. We look
at q, the midpoint of z� and z�, and check whether the q–percentile depletes when
strained with (Ti)

N
i=0 using both approximation operators K

� and K
�. If the K

�

trace exhibits depletion, we deduce that the depletion risk is at least q, and thus
assign z� := q. If the K

� trace does not exhibit depletion, we conclude that the
depletion risk is at most q, and assign z� := q. If the approximations disagree,
we narrow the approximation corridor, by gradually increasing the saturation
time point precision εΔ, until they eventually agree. We keep increasing the
precision by a factor of 0.1 and recompute the approximations until a consensus
is reached, upon which we reset the precision εΔ to its initial value. If said
consensus is depletion, we update the lower bound z� := q, otherwise the upper
bound z� := q, for the same reason as above. Finally, after having narrowed down
the interval surrounding the true depletion risk enough, we return the current
interval.

Algorithm. The function estimate in Algorithm 2 formalizes the above in
pseudo-code. Notably, the estimate function describes a semi-decision proce-
dure. Divergence may happen if the q–percentile currently under investigation
corresponds to the true depletion risk zN , and the task sequence causes battery
saturation at least once. In this case, the K

�-, K�-approximations never reach a
consensus, no matter how precisely we estimate the saturation time points. In all
other cases, the approximations eventually agree, and the algorithm terminates,
because we halve the interval in each iteration, eventually undershooting ε⊥ in
width.

To lift this scheme to sequences of noisy tasks we discretize the load dis-
tributions, generate every possible task sequence of non-zero probability, run
estimate on each sequence to find it’s depletion risk interval, and weight the
interval bounds with the probability of actually achieving the sequence at hand.
Finally, the weighted sum of the sequence’s lower and upper bound values defines
the overall lower and upper bound on the depletion risk.

The obvious bottleneck here is the size of the cartesian product. For n tasks,
each supporting k loads, the cartesian product has kn members, for which we
run estimate. For k = 1, the cartesian product degenerates to one single task
sequence. With a generative implementation of the cartesian product, we don’t
need to store every trace in memory, but rather the state of the generator, which
takes O(n) space. Thus, this paradigm excels in space efficiency.

Quantification of Battery Depletion Risk Made Efficient 169

In : SoC distribution 〈f̄ , f, z〉, discretized noisy tasks (Δi, γi)
N
i=0, ε > 0

Out: Interval bounding the depletion risk of K(Δi,γi)
N
i=0

〈f̄ , f, z〉
1 Function estimate(〈f̄ , f, z〉, (Ti)

N
i=0, ε):

In : A SoC distribution 〈f̄ , f, z〉, a task sequence (Ti)
N
i=0 and ε > 0

Out: Interval [z�, z�] of width at most ε with zN ∈ [z�, z�]

2 [z�, z�] := [0, 1]

3 while z� − z� ≥ ε do
4 q := (z� + z�)/2
5 [aq; bq] := q–percentile SoC of 〈f̄ , f, z〉
6 S�, S� := K

�

(Ti)
N
i=0

[aq; bq], K
�

(Ti)
N
i=0

[aq; bq] with precision εΔ

7 if S� = ⊥ then z� := q
8 else if S� �= ⊥ then
9 do

10 εΔ := 0.1 · εΔ

11 S�, S� := K
�

(Ti)
N
i=0

[aq; bq],K
�

(Ti)
N
i=0

[aq; bq] with precision εΔ

12 while S� �= S�

13 reset εΔ

14 if S� = ⊥ = S� then z� := q else z� := q

15 else z� := q

16 return [z�, z�]

17 [z�, z�] := [0, 0]

18 foreach (�j)
N
j=0 ∈ supp(γ0) × · · · × supp(γN) do

19 p :=
∏N

k=0 γk(�k)

20 [z′
�, z′

�] := estimate(〈f̄ , f, z〉, (Δj , �j)
N
j=0, ε)

21 z� := z� + p · z′
�; z� := z� + p · z′

�

22 return [z�, z�]

Algorithm 2: The PP algorithm in pseudo-code.

4 Evaluation

We now cross-compare the performance of the algorithms presented. All experi-
ments were run on an Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz-2.30 GHz
and 16 GB RAM.

Comparison of SD and AD. In order to achieve a satisfying sample size of task
sequences we synthesize tasks from a Markovian probabilistic load process, to
ensure that the sequences exhibit a minimal degree of structure. The generated
tasks are of duration Δ ∼ U [50, 500], and exhibit loads � ∼ U [−30,−5] for charg-
ing, loads � ∼ U [5, 30] for discharging and � = 0 for resting. The synthesis excludes
consecutive resting tasks, but allows consecutive charging as well as discharging

170 H. Hermanns and G. Nies

Fig. 5. A graph representation of the Markovian load process we used to synthesize
(noisy) task sequences. The edge labels describe jump probabilities, while the state
annotations describe the intervals loads � and durations Δ are sampled from. Ingoing
arrows into states represent the initial state distribution. The sampled durations and
loads are taken uniformly at random from the annotated intervals. The loads then serve
as the location parameter of a normal distribution.

tasks, albeit with a slight bias against this. Figure 5 provides a graph representa-
tion of the load process, a slightly altered version of the Process introduced in [6]

The battery is instantiated with a capacity of 300 000 J, c = 0.5 (thus,
a = b = 150000) with a depletion threshold depl = 0.5, and various values for
the diffusion parameter p. Its initial SoC is uniformly distributed on the set
a [0.65, 0.75] × [0.65, 0.75] b discretized to different grid sizes N . The sampled
load � serves either as a single load, i.e. task, or as the location parameter of a
normal distribution N (�, 1.5) for noisy tasks. In this case, the load distributions
are truncated and discretized into 10 samples.

SD was run on 50 generated task sequences of length 150 with grid sizes
N = 500, 750, 1000, 1250 and 1500. For each run, we determine a grid size for AD
that induces a result of the same precision via binary search with the lowest and
the largest grid size being 0 and the grid size used for SD, and report the relative
runtime of AD with the found grid size. The runs producing a singleton interval
(either 0 or 1, i.e. both approximations agree on sure survival or depletion) were
discarded, because AD can find these essentially with a 1×1 grid. The aggregated
results of the evaluation are depicted in Figure 6.

A comparison of the left and the middle plot shows that the faster the dif-
fusion (larger diffusion parameter p), the more efficient AD becomes relative to
SD, both in terms of runtime and grid size. The reason is, that the support of the
SoC distribution is less spread out, and thus occupies a smaller portion of the
bounding box, meaning we have less cells carrying a non-zero probability mass.
The right and middle plot showcase a similar difference, but here the spread is
caused by noise in the task loads.

The results paint a relatively clear picture of overall superiority of AD over
SD, in terms of space as well as runtime efficiency.

Comparison of AD and PP. We first evaluate AD and PP on simple task
sequences. We assume a battery (cap = 300 000 J, c = 0.5, p = 0.0005, depl

Quantification of Battery Depletion Risk Made Efficient 171

Fig. 6. Evaluation of SD vs. AD. Grid size for SD (x-axes) is plotted against mean grid
size needed by AD to produce a similar solution (red squares) and against mean ratio
of runtimes AD/SD for the determined grid (blue bullets).

Fig. 7. Evaluation of PP vs AD. Precision for PP (x-axes) is plotted against mean grid
size that AD needed to produce a similar solution (red squares) and against mean ratio
of runtimes AD/PP for the determined grid (blue bullets).

= 0.5) that is in equilibrium and that is between 60% and 80% full, i.e. on the
set S := {x · [c; 1 − c] | x ∈ [0.6, 0.8] · cap}, and construct the initial SoC distri-
bution 〈f̄ , f, z〉 such that f is a uniform distribution on S. Note that ≤ is indeed
a total order on S.

Similar to the previous comparison, we run PP on 50 task sequences of length
150 from the load process with precision levels ε⊥ = 0.1, 0.075, 0.05, 0.025 and
0.01. For each run, we determine a grid size for AD that induces a depletion
risk interval that is as narrow or narrower than ε⊥. This can be achieved via
binary search with the lowest and the largest grid size being 0 and 6000, and
report the relative runtime of AD with the found grid size. The boundary of
6000 was chosen for time reasons. It is worth mentioning that AD uses the
simplistic version of the saturation time point algorithm (which allows an efficient
vectorized implementation), while PP uses the iterative version with εΔ = 0.1.
The runs producing a singleton interval (either 0 or 1) were again discarded.
The aggregated results of the evaluation are depicted in the leftmost plot of
Figure 7. We observe that here PP is up to 4 orders of magnitude faster than

172 H. Hermanns and G. Nies

AD, with the necessary grid size of AD rapidly growing as the precision level of
PP shrinks. Actually, for many runs the maximal AD grid size of N = 6000 did
not suffice to reach the desired precision of 0.01. The reason is the combined
effect of the superior saturation time point estimation by PP as well as the
task sequence length of 150, because AD needs to approximate each cell with
appropriate cornerpoints after each task, which is not necessary for PP. Mean
runtimes for AD reached from around 6 seconds for a precision 0.1 to 140 seconds
with precision level 0.01. PP clearly beats AD with a runtime of 0.0064 seconds
and 0.0083 seconds on these precision levels.

In order to compare PP and AD on noisy task sequences, we chose two con-
figurations, namely sequences of 8 tasks, each supporting 4 loads, as well as
sequences of 16 tasks, each supporting only 2 loads. Both scenarios result in the
same workload of 65 536 possible load sequences for PP. For the former con-
figuration we needed to alter the load process to allow loads from the interval
[5, 45] and [−45,−5], in order to observe non-singleton depletion risk intervals
more frequently. We assume a battery in equilibrium and that is between 60%
and 65% full. Comparing the quality of the results is slightly different from the
comparison before. The precision level ε⊥ for PP applies to each task sequence
in the cartesian product, but not necessarily to the final depletion risk interval.
Therefore, we chose the actual width of the depletion risk interval as computed
by PP on each run to be the quality of the result. Singleton interval runs were
again discarded.

The results of the two configurations are shown in the middle and rightmost
plot of Figure 7. Comparing the two plots makes again clear that task sequence
length deteriorates estimation quality for AD. The extent is so severe that PP
actually beats AD for precision level ε⊥ = 0.01 in terms of runtime for 16 tasks,
while AD was way faster for only 8 tasks.

5 Conclusion

This paper has introduced two KiBaM-based algorithms, AD and PP, to estimate
the cumulative depletion risk of rechargable battery-powered systems subject to
stochastic fluctuations in both the initial battery state and the loads imposed on
the battery. AD generalizes the previously introduced discretization algorithm
by making its focus follow the relevant neighborhood of the actual battery state,
thereby improving both runtime and memory efficiency. On the other hand, PP
harvests the KiBaM’s order-preserving properties to iteratively narrow down the
depletion risk of relevant classes of initial charge distributions.

After examining the evaluation of AD and PP a few points are worth being
highlighted. First, we point out that AD is the universally applicable algorithm
that can be run on any initial SoC distribution, while PP requires mild condi-
tions on the initial charge to be fulfilled. The consequence of this is, that AD
can be used to analyze systems which are already in operation, while PP is only
suitable for inactive (and fully equilibriated systems) or fully charged systems.
On noisy task instances with large supports, chances are that PP does not per-
form well, but it still provides an alternative with low space requirements, and

Quantification of Battery Depletion Risk Made Efficient 173

comes with an a priori configurable precision level. On the other hand, if high
precision is required, and the task sequences are long, AD requires large grids
that do not directly translate into a precision level. AD has high space require-
ments, with the precision being revealed a posteriori only. Additionally, PP only
estimates the depletion risk, which most of the time is the quantity of interest.
If instead the entire final distribution is required, for example to examine where
the surviving probability mass ends up at the very end of the task sequence, AD
is the algorithm that should be used.

Acknowledgement. This work was partially supported by ERC Proof of Concept
Grant 966770 (LEOpowver), by EU Horizon 2020 Grant 101008233 (MISSION), and
by DFG grant 389792660 as part of TRR 248 – CPEC.

References

1. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In:
Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20–21, 2014. pp. 595–606. ACM (2014). https://doi.org/10.1145/2535838.
2535875

2. Buchmann, I. Inc, C.E.: Batteries in a Portable World: A Handbook on Recharge-
able Batteries for Non-engineers. Cadex Electronics (2001). https://books.google.
de/books?id=YIBhAAAACAAJ

3. Cloth, L., Jongerden, M.R., Haverkort, B.R.: Computing battery lifetime distribu-
tions. In: 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN’07). pp. 780–789 (2007). https://doi.org/10.1109/DSN.
2007.26

4. Fenner, G., Stringini, L., Rangel, C., Canha, L.: Comprehensive model for real bat-
tery simulation responsive to variable load. Energies 14, 3209 (05 2021). https://
doi.org/10.3390/en14113209

5. Fraire, J.A., Nies, G., Hermanns, H., Bay, K., Bisgaard, M.: Battery-aware contact
plan design for LEO satellite constellations: The ulloriaq case study. In: IEEE
Global Communications Conference, GLOBECOM 2018, Abu Dhabi, United Arab
Emirates, December 9–13, 2018. pp. 1–7. IEEE (2018). https://doi.org/10.1109/
GLOCOM.2018.8647822

6. Hermanns, H., Krcál, J., Nies, G.: How is your satellite doing? battery kinetics with
recharging and uncertainty. Leibniz Trans. Embed. Syst. 4(1), 04:1–04:28 (2017).
https://doi.org/10.4230/LITES-v004-i001-a004

7. Ivanov, D., Larsen, K.G., Schupp, S., Srba, J.: Analytical solution for long bat-
tery lifetime prediction in nonadaptive systems. In: McIver, A., Horváth, A. (eds.)
Quantitative Evaluation of Systems - 15th International Conference, QEST 2018,
Beijing, China, September 4–7, 2018, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 11024, pp. 173–189. Springer (2018). https://doi.org/10.1007/978-3-319-
99154-2 11

8. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Softw. 3(6),
445–457 (2009). https://doi.org/10.1049/iet-sen.2009.0001

9. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy
systems. Solar energy 50(5), 399–405 (1993)

https://perspicuous-computing.science
https://doi.org/10.1145/2535838.2535875
https://doi.org/10.1145/2535838.2535875
https://books.google.de/books?id=YIBhAAAACAAJ
https://books.google.de/books?id=YIBhAAAACAAJ
https://doi.org/10.1109/DSN.2007.26
https://doi.org/10.1109/DSN.2007.26
https://doi.org/10.3390/en14113209
https://doi.org/10.3390/en14113209
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.4230/LITES-v004-i001-a004
https://doi.org/10.1007/978-3-319-99154-2_11
https://doi.org/10.1007/978-3-319-99154-2_11
https://doi.org/10.1049/iet-sen.2009.0001

174 H. Hermanns and G. Nies

10. Nies, G., Stenger, M., Krčál, J., Hermanns, H., Bisgaard, M., Gerhardt, D.,
Haverkort, B., Jongerden, M., Larsen, K.G., Wognsen, E.R.: Mastering oper-
ational limitations of leo satellites - the gomx-3 approach. Acta Astronautica
151, 726–735 (2018). https://doi.org/10.1016/j.actaastro.2018.04.040, https://
www.sciencedirect.com/science/article/pii/S009457651730321

11. Rao, V., Singhal, G., Kumar, A., Navet, N.: Battery model for embedded systems.
In: 18th International Conference on VLSI Design held jointly with 4th Interna-
tional Conference on Embedded Systems Design. pp. 105–110 (2005). https://doi.
org/10.1109/ICVD.2005.61

12. Stock, G., Fraire, J.A., Mömke, T., Hermanns, H., Babayev, F., Cruz, E.: Managing
fleets of LEO satellites: Nonlinear, optimal, efficient, scalable, usable, and robust.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 3762–3773 (2020).
https://doi.org/10.1109/TCAD.2020.3012751

13. Wognsen, E.R., Hansen, R.R., Larsen, K.G.: Battery-aware scheduling of mixed
criticality systems. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation. Specialized Techniques and Applica-
tions - 6th International Symposium, ISoLA 2014, Imperial, Corfu, Greece, October
8–11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8803,
pp. 208–222. Springer (2014). https://doi.org/10.1007/978-3-662-45231-8 15

14. Zhang, Q., Li, Y., Shang, Y., Duan, B., Cui, N., Zhang, C.: A fractional-order
kinetic battery model of lithium-ion batteries considering a nonlinear capacity.
Electronics 8, 394 (04 2019). https://doi.org/10.3390/electronics8040394

https://doi.org/10.1016/j.actaastro.2018.04.040
https://www.sciencedirect.com/science/article/pii/S009457651730321
https://www.sciencedirect.com/science/article/pii/S009457651730321
https://doi.org/10.1109/ICVD.2005.61
https://doi.org/10.1109/ICVD.2005.61
https://doi.org/10.1109/TCAD.2020.3012751
https://doi.org/10.1007/978-3-662-45231-8_15
https://doi.org/10.3390/electronics8040394

Hierarchical Contract-Based Synthesis
for Assurance Cases

Timothy E. Wang1(B), Zamira Daw1, Pierluigi Nuzzo2, and Alessandro Pinto1

1 Raytheon Technologies Research Center, Berkeley, CA 94705, USA
{timothy.wang,zamira.daw,alessandro.pinto}@rtx.com

2 University of Southern California, Los Angeles, CA 90089, USA
nuzzo@usc.edu

Abstract. An automatic synthesis problem is often characterized by
an overall goal or specification to be satisfied, the set of all possible
outcomes, called the design space, and an algorithm for the automatic
selection of one or more members from the design space that are prov-
ably guaranteed to satisfy the overall specification. A key challenge in
automatic synthesis is the complexity of the design space. In this paper,
we introduce a formal model, termed hierarchical contract nets, and a
framework for the efficient automatic synthesis of hierarchical contract
nets, based on a library of refinement relations between contracts and
contract nets. We show, via the application of automatic synthesis of
assurances cases, that hierarchical contract-based synthesis can mitigate
the design space complexity problem. We also show that the approach
can bring both the benefits of automating the creation of assurance cases
and ensuring that the knowledge from the argumentation experts is cap-
tured and reflected in the synthesized assurance cases.

Keywords: Contracts · Automated synthesis · Assurance case ·
Certification

1 Introduction

Program synthesis consists of automatically finding a program in an underlying
programming language that satisfies a user intent captured by a specification.
This problem, which has long been considered a holy grail [1] of computer sci-
ence, can be traced back to Alonzo Church’s synthesis problem [2], albeit posed
in the context of circuits rather than programs. From the perspective of formal
verification, program synthesis is closely tied to deductive theorem proving, on
which the earliest known work traces back to the beginning of theoretical com-
puter science [3]. Subsequent developments in deductive theorem proving have
resulted in proof assistants that can be used for program extractions [4], where
the extracted program is a solution to the program synthesis problem.

The idea behind program synthesis holds several attractions, including (i)
automating the task of low-level programming away from error-prone manual

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 175–192, 2022.
https://doi.org/10.1007/978-3-031-06773-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_9

176 T. E. Wang et al.

implementations, and (ii) providing a provable guarantee of the correctness of
the program by virtue of the correct-by-construction method. Moreover, the
concept has analogues in many fields, from logic synthesis to robust control
and architecture design exploration [5]. In its logical underpinnings, the core
synthesis problem is the problem of deciding an existential formula in second-
order logic [6]. However, a general, systematic strategy for solving synthesis
problems remains “notoriously challenging” [1].

The inherent challenges stem from the very large search space of possible solu-
tions, the complexity of the specification, and the ambiguities of the user intent.
Moreover, any attempt at a generic approach is often outperformed by special
purpose synthesis methods with narrowly tailored search strategies adapted for
the application at hand. For example, synthesis problems in robust control are
solved by restricting the design space or the specification to have a certain struc-
tural property, e.g., convexity. Similarly, in program synthesis, possible programs
are restricted to certain syntactical templates [7].

In this paper, we address these challenges via a hierarchical synthesis app-
roach based on contracts and a library of pre-crafted parts that captures the
knowledge of the domain experts. The goal of the automated synthesis proce-
dure is to construct a solution using all or some parts from the library. While the
synthesis process is fully automatic, the library may be manually constructed.
The design space is then purposefully constrained, which allows harnessing com-
plexity. However, we do not restrict to any language or syntax a priori, except
that the possible outcomes be expressed as finite collections of collections of
contracts.

Contracts have shown to offer effective mechanisms to analyze system require-
ments and behaviors in a modular way for the design of complex hardware and
software systems [8–12]. A contract consists of a pair of specifications called
assumptions and guarantees. Intuitively, the assumptions express the set of envi-
ronments that the system or software operate in, and the guarantees express the
set of possible implementations of the system or software. A system component
can then be captured by a contract. Contracts can be “combined” in the same
way as components are combined to form the overall system. In this paper, we
denote a collection of contracts, their interconnections, and the associated alge-
bra for composition as a contract net. Depending on the specific contract oper-
ations (e.g., composition or conjunction), a contract net can represent either a
collection of components or a collection of different views of a system.

A preorder can be established over contracts via a binary refinement relation
� such that C2 refines C1, written C2 � C1, implies, intuitively, that contract
C1 can be replaced by contract C2. In system design, if component M2 satis-
fies C2, then it can be swapped in for any component M1 satisfying C1 while
still guaranteeing that the overall specification C1 is satisfied. In this paper, we
establish a similar notion of ordering between a contract and a contract net.
The relation �, the contract, and the contract net form an atomic hierarchical
contract net (HCN), and our reference library is a collection of atomic HCNs.
By restricting the design space to the power-set of a finite collection of HCNs,

Hierarchical Contract-Based Synthesis for Assurance Cases 177

its complexity is reduced. Intuitively, each atomic HCN refers to a component
(contract) of the system, a collection of sub-components that can be manually
created by the domain experts (contract net), and the preorder relation linking
them, i.e., an indication that the collection of sub-components, when combined
together based on some algebra, refines the component.

By the hierarchical structure of the HCN, each of the sub-components of an
atomic HCN can be linked with another collection of sub-components to form
other atomic HCNs, and so on. The synthesis procedure itself starts with a
top-level contract net (root) and, for each of the contracts within the top-level
contract net, it searches the library for any contract nets that can refine the
contract based on the established pre-order relation. If one such contract net
is found, then the contract net is connected with the contract, thus forming
an HCN. The synthesis procedure performs this recursively until all the “leaf”
contracts of the resulting HCN cannot be refined by any other contract net in
the library.

Program synthesis from component libraries is undecidable, in general [13,
14]. Imposing a bound on the number of selected components to achieve decid-
ability, by relying on a library of predefined components (and contracts), possibly
including refinement relations, has also been proposed for automated verifica-
tion [15] and synthesis [16,17] in the context of linear temporal logic (LTL)
contracts. This paper rethinks the synthesis problem within the general, hierar-
chical framework offered by HCNs. Moreover, while the main idea of hierarchical
contract-based synthesis seems straightforward, its practical implementation in
the context of various industry-scale synthesis problems hinges on addressing
some critical challenges:

1. The size of the library can be very large and the library construction is pro-
hibitively expensive.

2. The complexity of formally verifying the preorder relations can lead to
tractability issues depending on the complexity of the specifications captured
by the contracts.

This paper focuses on these challenges. We introduce a technical approach
to address them in Sects. 2 and 3 based on hierarchical contract networks and
a library-based synthesis algorithm. Section 4 presents the application of hierar-
chical contract-based synthesis to the automatic generation of assurance cases.
Finally, Sect. 5 draws some conclusions.

2 Hierarchical Contract Networks

We first provide a brief overview of the theory of specifications and contracts [9]
used in this paper. A specification theory is a triple (S, ||,≤), where S is a set
of specifications, || : S × S → S is a parallel composition operator over spec-
ifications, and ≤⊆ S × S is a reflexive and transitive refinement relation. A
specification is a pair S = (VS , φS), where VS is a set of variables and φS is a
formula over VS . The parallel composition of two specifications S = (VS , φS) and

178 T. E. Wang et al.

T = (VT , φT) is a new specification S||T = (VS ∪ VT , φS ∧ φT). Finally, a speci-
fication (VS , φS) refines a specification (VT , φT), written (VS , φS) ≤ (VT , φT), if
and only if VT ⊆ VS and φS =⇒ φT is valid. The contract theory that we are
going to use is based on this specification theory.

Definition 1. A contract is a pair of specifications ((V,A), (V,G)), shortened
as (A,G), where V is a set of variables and A and G are referred to as assump-
tions and guarantees, respectively. Given a contract (A,G), its normal form is
(A,A =⇒ G).

The environment semantics of a contract is the set of specifications that
refines the assumptions: �C�env = {E ∈ S|E ≤ A}, S denoting the set of all
the specifications in the theory. The implementation semantics of a contract
is the set of specifications that refines the guarantees G under assumptions A:
�C�impl = {I ∈ S|I ≤ (A =⇒ G)}. Two contracts are semantically equivalent
if their environment and implementation semantics are the same, respectively.
A contract C = (A,G) is semantically equivalent to its normal form. A contract
C is compatible if there exists a valid environment semantics for it, i.e., A is
satisfiable, and consistent if there exists a valid implementation semantics, i.e.,
A =⇒ G is satisfiable. We also say that C is feasible when A ∧ G is satisfiable.

Contracts can also be related by a refinement relation �. A contract C ′ =
(A′, G′) refines C = (A,G) if and only if �C ′�env ⊇ �C�env and �C ′�impl ⊆
�C�impl. It can be shown that this condition corresponds to A ≤ A′ and G′ ≤
(A =⇒ G).

A contract C is a common dominator of two contracts C1 and C2 if and only
if the following conditions hold: (i) ∀I1 ∈ �C1�impl and ∀I2 ∈ �C2�impl, I1||I2 ∈
�C�impl; (ii) for all environments E ∈ �C�env: ∀I1 ∈ �C1�impl, E||I1 ∈ �C2�env,
and ∀I2 ∈ �C2�impl, E||I2 ∈ �C1�env. Given two contracts C1 and C2, their
composition C = C1||C2, if it exists, is their most specific common dominator,
i.e., C is a common dominator of both, and for any common dominator C ′,
C � C ′ holds. Composition is associative and commutative.

2.1 Contract Networks and Library

We first give the definition of contract network and then introduce the concept
of library for automatic synthesis.

Definition 2. A contract network (net) is a tuple N := (C, ||, κ), consisting of
a collection of contracts C = {C1, . . . , Cn}, the composition operation || over the
contracts, and a set of formulas κ encoding relations over the variables V of the
contracts in C.

The semantics of a contract net N are given by the composite contract CN =
C1 ‖ · · · ‖ Cn ‖ (, κ1) ‖ · · · ‖ (, κ|κ|) where |κ| is the cardinality of κ and
 denotes the Boolean value true. We can then extend the standard refinement
relation between contracts to also formalize a substitutability relation between a
net N and a contract C, so that the contract net N can replace C in all contexts
where C works.

Hierarchical Contract-Based Synthesis for Assurance Cases 179

Certain synthesis problems deal with specific classes of contracts and a
restricted set of possible refinements into contract networks for each class. Let
C denote a class of contracts, P(C) the powerset of contracts, i.e., contract net-
works in the class, and �⊆ C × P(C) the refinement relation between contracts
and contract networks in the class. We could then define a library as the tuple
L = (C,�). We use the library to capture a set of high-level components (con-
tracts) as well as atomic components, i.e., components whose contracts are not
related to any network in the library. A library can then encapsulate the different
ways in which contracts can be refined by contract networks, perhaps following
a set of architectural patterns that are used in system or software design. Notice,
however, that there are no limitations on the size of the library. In principle, a
contract can be associated with any large number of networks in the library.

A synthesis framework based on such a library would present two challenges:
the library could be too large to specify and the algorithm would need to search
over a large number of contracts. In the following, we detail how we address
the first issue via (1) the re-definition of the library over equivalence classes of
contracts, and (2) a weaker notion of refinement called conditional refinement.

Consider an equivalence relation ∼ over the set of specification S, such that if
S ≤ T , and S′ ∼ S, then there exists T ′ ∼ T such that S′ ≤ T ′. The equivalence
relation extends to a contract theory built over such a specification theory. If
the contract set of a library is endowed with such an equivalence relation, then
the library is amenable to a more compact representation, including only a set
of representative refinement relations, since a single relation of the form N � C
can represent a potentially large class of relations of the form N ′ � C ′, where
C ′ ∼ C and N ′ ∼ N hold. To make the representation even more compact, we
also leverage the notion of conditional refinement, which we introduce with a
concrete example below.

Consider the case of two refinements N1 � C1 = (A1, G) and N2 � C2 =
(A2, G) and assume that there exists A such that A1 = A∧A′

1 and A2 = A∧A′
2.

Then, we can factor out a common contract (A,G) and represent the two refine-
ment relations as refinements of the same contract (A,G) subject to additional
conditions, such that N1 �A′

1
(A,G) and N2 �A′

2
(A,G) hold. This method

enables halving the number of contracts in this simple example. In the follow-
ing section, we discuss how a weaker notion of refinement, namely, conditional
refinement, enables such compact representations.

2.2 Conditional Refinement and Hierarchical Contract Networks

Definition 3. C2 conditionally refines C1 under specification ϕ, written
C2 �ϕ C1, if and only if A1 ∧ ϕ is satisfiable and ϕ =⇒ (C2 � C1).

The following theorem shows that a conditional refinement amounts to
strengthening the environment assumptions of the contract being refined.

Theorem 1. The conditional refinement C2 �ϕ C1 is equivalent to

(A2, G2) � (A1 ∧ ϕ,G1). (1)

180 T. E. Wang et al.

Proof. Note that ϕ =⇒ (C2 � C1) is true if and only if the following implica-
tions are true:

ϕ =⇒ (A1 =⇒ A2), (2)

ϕ =⇒ ((A2 =⇒ G2) =⇒ (A1 =⇒ G1)). (3)

Note that (2) is equivalent to

A1 ∧ ϕ =⇒ A2, (4)

and (3) is equivalent to

(A2 =⇒ G2) =⇒ ((A1 ∧ ϕ) =⇒ G1). (5)

Consider the normal forms of (A2, G2) and (A1 ∧ ϕ,G1), which are (A2, A2 =⇒
G2) and (A1 ∧ ϕ,A1 ∧ ϕ =⇒ G1). We observe that (A2, G2) � (A1 ∧ ϕ,G1) is
equivalent to A1 ∧ φ =⇒ A2 and (A2 =⇒ G2) =⇒ (A1 ∧ ϕ =⇒ G1), which
are precisely (4) and (5). ��

The conditional refinement relation extends to a contract network N and a
contract C. For the rest of this paper, with an abuse of notation, we refer to both
relations as conditional refinements. Moreover, we use conditional refinement as
an element of the library L.

Definition 4. A conditional refinement of the library L is a tuple (N,ϕ,C) such
that N conditionally refines C under ϕ, i.e., N �ϕ C.

In the following, we use a function with the same name as an element of a
tuple to return the tuple member itself, e.g., A(C) returns the assumption of the
contract C, C(N) returns the set of contracts in the contract network N , and
ϕ(R) returns the conditional formula of refinement R. Figure 1 illustrates how
conditional refinement can be used for synthesis. Let the top-level requirement of
a design be modeled by C0 and let ϕ0 be its assumption, capturing all the valid
environments for the design, shown as the solid gray box in the figure. ϕ0 can be
very large, e.g., it may represent the set of all the possible operating conditions
of an autonomous aircraft, including all the possible airport settings, all the
hours of the day, and the possible weather and traffic conditions. It is, however,
possible that certain components of the design only operate under a subset of the
environments satisfying φ0, e.g., an autoland component C1 may work during the
daylight hours, in good weather and in medium air traffic conditions. Conditional
refinement enables a mechanism for the selection of library components based
on further restrictions of the environment in which the system is expected to
work. In this example, we have that C1 �φ1 C0, i.e., the autoland component
C1 satisfies C0 under the conditions posed by φ1.

We now introduce a notion of transitivity for conditional refinements.

Definition 5. Given C2 �φ2 C1 and C1 �φ1 C0, we say that conditional refine-
ments �φi

are conditionally transitive, i.e., C2 �φ′ C0 holds with φ′ ≡ φ2 ∧ φ1.

Hierarchical Contract-Based Synthesis for Assurance Cases 181

Fig. 1. A library of conditional refinements.

Conditional transitivity between C2, C1, and C0 subject to φ′ is well defined
only if A0 ∧ φ1 ∧ φ2 is satisfiable, A0 being the assumptions of C0, since, by
Theorem 1, C2 �φ′ C0 is equivalent to (A2, G2) � (A0 ∧ φ1 ∧ φ2, G0). If A0 ∧
φ1 ∧ φ2 is unsatisfiable, then the contract C ′

0 = (A0 ∧ φ1 ∧ φ2, G0) admits no
environment. This is illustrated in Fig. 1, where φ3∧φ1 is unsatisfiable, hence the
conditional refinement C3 �φ3∧φ1 C0 is undefined. The following result shows
that conditional transitivity holds for conditional refinements between contract
networks.

Theorem 2. Given a contract C = (A,G), a contract network N = (C =
{C1, . . . , CM} , ||, κ), and contract networks Ni = (Ci, ||, κi) for i = 1, . . . ,M .
Assume that N �φ C, Ni = (Ci, ||, κi) �φi

Ci for i = 1, . . . ,M , and A ∧ φ ∧
∧M

i=1 φi is satisfiable. Then, the following holds:

N ′ =

(
M⋃

i=1

Ci, ||, κ ∧
M∧

i=1

κi

)

�φ∧∧M
i=1 φi

C. (6)

Proof. The satisfiability condition on A∧φ∧∧M
i=1 φi ensures that the conditional

refinement N ′ �φ∧∧M
i=1 φi

C is defined (see Definition 3). First, we show that the
guarantees of C are strengthened by N ′. Let GNF be the guarantees of the
normal form of a contract, i.e., GNF := A =⇒ G; we show that

κ ∧ φ ∧
M∧

i=1

κi ∧ φi ∧
∧

Ck∈⋃M
i=1 Ci

GNF
k =⇒ GNF . (7)

182 T. E. Wang et al.

Since Ni �φi
Ci for i = 1, . . . ,M , which means that κi ∧ φi ∧

∧

Ck∈Ci

GNF
k =⇒

GNF
i holds for i = 1, . . . ,M , (7) is equivalent to its conjunction with

∧

Ci∈C

GNF
i .

We can then show that the following holds:

κ ∧ φ ∧
∧

Ci∈C

GNF
i ∧

M∧

i=1

κi ∧ φi ∧
∧

Ck∈⋃M
i=1 Ci

GNF
k =⇒ GNF . (8)

Moreover, N �φ C implies that the following holds:

κ ∧ φ ∧
∧

Ci∈C

GNF
i =⇒ GNF . (9)

From (9), we conclude that (8) is true. We then show that the assumptions of
C are weakened via refinement, that is,

κ ∧ φ ∧ A ∧
M∧

i=1

κi ∧ φi ∧
∧

Ck∈⋃M
i=1 Ci\{Cj}

GNF
k =⇒ Aj . (10)

For Cj ∈ CJ , J ∈ [1,M], (10) is equivalent to

κ ∧ φ ∧ A ∧ α ∧ κJ ∧ φJ ∧
∧

Cl∈CJ\{Cj}
GNF

l =⇒ Aj , (11)

in which
α :=

∧

i�=J

κi ∧ φi ∧
∧

Ck∈⋃
i�=J Ci

GNF
k . (12)

Because Ni �φi
Ci, (11) is equivalent to its conjunction with

∧

Ci∈C\{CJ}
GNF

i , i.e.,

κ ∧ φ ∧ A ∧
∧

Ci∈C\{CJ}
GNF

i ∧ α ∧ κJ ∧ φJ ∧
∧

Cl∈CJ\{Cj}
GNF

l =⇒ Aj . (13)

By N �φ C, (13) is equivalent to its conjunction with AJ , i.e.,

κ ∧ φ ∧ A ∧
∧

Ci∈C\{CJ}
GNF

i ∧ α ∧ κJ ∧ φJ ∧ AJ ∧
∧

Cl∈CJ\{Cj}
GNF

l =⇒ Aj . (14)

Since NJ �φJ
CJ , (14) is valid and holds for any CJ ∈

M⋃

i=1

Ci since J ∈ [1,M]

was arbitrary. ��
We now define what is a hierarchical contract network (HCN).

Hierarchical Contract-Based Synthesis for Assurance Cases 183

Definition 6. A hierarchical contract network is a graph with the nodes being
contract networks, and each edge links a contract of a node with another node,
indicating a conditional refinement relation between the two. There exists only
one node in an HCN, denoted as the top-level node, which is not linked by a
refinement relation to a contract of any other node in the graph.

Intuitively, the simplest, or atomic, HCN is a conditional refinement from
the library (see Definition 4), in which a network N1 conditionally refines C(N),
where N contains one contract C. In an HCN, zero or more contracts of a node
could be conditionally refined by another node, i.e., Ni �φi

Ci(N) for zero
or more Ci ∈ C(N). Moreover, a contract could be linked to more than one
node, i.e., N1 �φ1 C(N), N2 �φ2 C(N), . . . , NM �φM

C(N). This results in
an HCN containing multiple hierarchies, in which each hierarchy represents a
different outcome of a refinement process. In this case, there are M different
hierarchies. An HCN is hierarchical in the sense that N1 �φ1 C1(N), N2 �φ2

C1(N1), . . . , NM �φM
C1(NM−1).

In summary, let �φ⊆ C × P(C) denote a set of conditional refinements. A
library can be compactly represented as the pair L = (C/ ∼,�φ). Given a library
L and a contract network N with one contract C, the synthesis problem turns
into a search over the library to replace contracts with contract networks via
possible refinements until no more replacements can be found.

3 Automatic Synthesis

The synthesis algorithm leverages a well-formed component library to ensure
soundness and termination. The definitions of a library and a well-formed library
are given in Sect. 3.1 while the synthesis algorithm is described in Sect. 3.2.

3.1 Well-Formed Library

Definition 7. A library L is a tuple (C,R,N), where C is a collection of con-
tracts, N is a collection of contract networks such that ∀N ∈ N ,C(N) ∈ 2C,
and R ⊆ N × C is a collection of conditional refinements.

A well-formed library, defined as follows, ensures that the synthesis algorithm
terminates.

Definition 8. A library L is well-formed if and only if all of the following con-
ditions are satisfied:

1. All conditional refinements hold, i.e., ∀R ∈ R(L), where R = (C,ϕ,N),
N �ϕ C.

2. There is no circularity in the library, i.e., there does not exist a sequence of
conditional refinements Ri = (Ni, ϕi, Ci), i = 1, . . . , M , such that N1 �ϕ1 C1,
C2 ∈ C(N1) and N2 �ϕ2 C2,. . ., CM ∈ C(NM−1) and NM �ϕM

CM ,
∧M

i=1 ϕi

is satisfiable, and there exists a contract CM+1 ∈ C(NM) such that C1 �
CM+1.

184 T. E. Wang et al.

The first item in Definition 8 ensures that all the conditional refinements
in the library hold, which, as described in Theorem 2, is one of the conditions
for the algorithm to be sound. The second condition ensures that the algorithm
will always terminate. In fact, conditional refinement enables the possibility of
having a sequence of refinements which leads back to the initial contract C1 of
the sequence. Consider, for example, the following contracts: C0 = (x ≥ 0, true),
C1 = (x ≥ 1, true), and φ defined as x ≥ 1. Clearly, C1 �φ C0 holds, and
since C0 � C1, the synthesis algorithm will not terminate. In this paper, we do
not directly address how to ensure that there are no circularities in the library,
leaving it as future work. However, we include a runtime check for circularity in
a tool implementation of the algorithm described in the next section.

3.2 Synthesis Algorithm

As summarized in Algorithm 1, the main function of the synthesis algorithm
returns a hierarchical contract network H containing the set of all satisfying
hierarchies if all the pre-conditions are satisfied. The inputs to the algorithm
include the library L, a contract network Ñ consisting of only one contract
C̃ representing the top-level specification to be satisfied by the output H, a
set of formulas X that are assumed to hold, a set of system contexts I, and
the formula Φ which is a conjunction of all the conditions of the conditional
refinements used in the construction of the hierarchy (for example, see A ∧ φ ∧∧

i=1 φi used in Theorem 2). The system contexts I is a set of constants which
provides information about the system under design or assurance depending on
the application of the synthesis procedure. The formula Φ is initialized to A,
which is the assumption of the contract in Ñ . The pre-conditions require that
the library of components L be well-formed and that the contract network Ñ
admit at least one environment and at least one implementation when X holds.

The function findRefinements enables a full search of the library for any
contract that might refine the leaf contract of the synthesized H at some itera-
tion of the algorithm. This enables the algorithm to find potential refinements
in the library which are not explicitly added by a human user, thus reducing
the manual effort in creating the library. The instantiation function instren,I is
parameterized by the system contexts I and a bijective mapping ren : V (C) → I
from the variables of the contract V (C) to the system contexts I. It takes in a
contract C and returns an instantiated contract C̃ such that

C̃ = (A[vi ← ren(vi)], G[vi ← ren(vi)]) . (15)

The inverse of instren,I , inst−1
ren,I , returns C given C̃. The instantiation function

induces an equivalence relation over the contracts, i.e., C ∼ C̃. Furthermore,
the instren,I function is overloaded for contract networks and refinements. For
a contract network N , instren,I returns

Ñ = ((instren,I(C1), . . . , instren,I(CM)), ||, κ[vi ← ren(vi)]). (16)

Hierarchical Contract-Based Synthesis for Assurance Cases 185

Algorithm 1. Synthesize a satisfying hierarchical contract net H from a library
L, a top-level specification represented by the contract net Ñ , a set of facts about
the system and other axioms X , and a set of system contexts I.
Require: L is well-formed, Φ is satisfiable, Ñ is consistent, compatible, and feasible.
Ensure: Termination and an output satisfying HCN H.

1: function mainL,I,X (Ñ , Φ)
2: for C̃j ∈ Ñ do
3: R ← findRefinements(C̃j , L)
4: for Rk ∈ R, Rk = (Cj , φ+, Nk) do
5: R̃k ← instren,I(Rk, C̃j)
6: Φ′ ← φ+ ∧ X ∧ Φ
7: if sat?(Φ′) then
8: getEdges(C̃j) ← getEdges(C̃j) ∪ Ñk

9: Φ ← φ+ ∧ Φ

10: for C̃j ∈ Ñi do
11: for Ñm ∈ getEdges(C̃j) do

12: mainL,I,X

(
Ñm, Φ

)

13: function findRefinements(C̃j , L)
14: Cj ← inst−1

ren,I(C̃j)
15: for Ci ∈ L do
16: if Ci � Cj then
17: for Ri ∈ L do
18: if Ci = C(Ri) then
19: R ← insert(R, Ri)

For refinements, instr,I takes in a refinement R = (C,ϕ,N) and contract C̃ and
returns

R̃ = (C̃, ϕ[vi ← ren(vi)], Ñ). (17)

In this paper, we consider contracts expressed in a first order logic language.
Satisfaction and refinement checks are then translated into satisfiability modulo
theory [18] (SMT) problems and solved using a state-of-art SMT solver [19].
While SMT solving can be computationally expensive, for the application in this
paper, we have primarily used quantifier-free formulas. In the few instances in
which we use quantifiers, those formulas are restricted to one universal quantifier
over uninterpreted functions.

4 Application: Assurance Cases

In this section, we give a brief introduction to assurance cases, describe the
application of hierarchical contract-based synthesis for the automatic generation
of assurance cases, and provide a case study of synthesis of assurance cases for
aerospace software certification.

186 T. E. Wang et al.

An assurance case (AC) is a collection of structured arguments that are
supported by evidence, intended to argue that a claim about the system or
software is true to some acceptable level of confidence. Since the Goal Structuring
Notation [20] (GSN) is a popular notation for writing ACs, for the purpose
of illustration, in this section, we describe the typical structure of an AC by
using elements from this notation, e.g., claims (goals), strategy, assumptions,
justifications, contexts, and solutions. We discuss how ACs can be formalized in
terms of HCNs in Sect. 4.1.

The top claim is the overall objective of the assurance case, e.g., stating
that the system is safe. A strategy describes the approach used to make the
argument. An example of such strategy for the top-level claim that “the system
is safe” is to argue that the claim can be supported if each of the identified
hazards of the system has been mitigated. This sort of strategy typically results
in the decomposition of a higher-level claim into a set of lower-level claims, or
sub-claims. A solution is one or more pieces of evidence that directly support a
claim without additional intermediate arguments. Solutions are the leaf nodes
of an AC. Assumptions are additional propositions that need to be true for a
strategy to be valid, but do not need to be backed up by any other arguments.
For example, the strategy “each of the identified hazards of the system has been
mitigated” used to infer that the system is safe is obviously not sound if one does
not assume that all the hazards have been identified. Finally, the justification
provides the reasons why a strategy is adopted.

4.1 Assurance Case as a Hierarchical Contract Network

Instead of viewing an assurance case as a set of structured arguments, one can
also view it as representing an evolving assurance process. This system-theoretic
viewpoint of assurance cases naturally leads to modeling them as HCNs. In an
HCN, each contract provides an abstraction for a step in the assurance process.
The top-level element of the HCN, a contract network N0 containing one or
more contracts, is an abstraction of the entire assurance process, of which the
outcome is that the system satisfies some safety or security goal up to some level
of acceptance. Each contract Ci in N0 has guarantees Gi, which form the top-
level claims of the assurance case (and relate to the top-level claim in the GSN
notation). The refinements of N0 amount to the decomposition of the assurance
process into a collection of smaller processes, each with its own sub-claims. This
decomposition relates intuitively to the decomposition of claims into sub-claims
in a GSN-based notation.

While contract guarantees map directly to claims, the role of contract
assumptions is less intuitive. As an example, consider the following contract,
where the set Hazsys := {h ∈ Hazards|present(h, system)} is by definition the
set of all the hazards of the system:

A :=
∧M

i=1 belongs(hi,Hazsys) ∧ (∀h ∈ Hazsys :
∨M

i=1(h = hi))
G :=

∧M
i=1 mitigated(hi).

(18)

Hierarchical Contract-Based Synthesis for Assurance Cases 187

The guarantees directly map to a claim stating that the hazards hi, i = 1, . . . , M ,
have been mitigated. The assumptions require, instead, that the hazards hi

belong to the system, and that these are the only hazards for the system. On
the other hand, the assumption in GSN is a proposition (unsupported by other
arguments or evidence within the AC) that is used to support the argument for
another claim. A GSN assumption (e.g., “all hazards of the system have been
identified”) can then be mapped to a predicate of the contract assumption as
well as to part or to the whole of a condition ϕ in a conditional refinement.
Likewise, a GSN strategy can also be mapped to part or to the whole of the con-
dition in a conditional refinement. For example, the condition below captures
both the assumption (by definition of Hazsys) that all hazards of the system
have been identified and the argumentation strategy arguing that the system is
safe because all hazards of the system have been mitigated.

ϕ1 =
∧M

i=1 belongs(hi,Hazsys) ∧ (∀h ∈ Hazsys :
∨M

i=1(h = hi))
∧∧M

i=1 mitigated(hi) =⇒ safe(system).
(19)

4.2 Case Study: Assurance Cases for Certification

A certification process evaluates whether the risk of a software system is accept-
able for its intent. The evaluation criteria are usually defined in certification
standards, which encapsulate domain knowledge and best practices for a spe-
cific industry. To streamline the certification process, the Overarching Proper-
ties (OPs) [21] concept has been developed with support of NASA and certifying
agencies including the Federal Aviation Administration (FAA) and the European
Aviation Safety Agency (EASA). OPs provide the flexibility to propose differ-
ent means of compliance by showing that the product possesses the three OPs:
Intent (the system has been specified correctly), Correctness (the system has
been correctly implemented), and Innocuity (the system is safe).

This case study aims to demonstrate how the synthesis of assurance cases
can be used to generate OP certification arguments for an autopilot based on an
assurance case library inspired by best practices presented in RTCA DO-178C,
DO-331, and DO-333. The autopilot has a flight stack, to perform estimation
and control of a drone, and a middleware that supports communication and
hardware integration. System-level requirements (SLR) are formally defined in
computation tree logic (CTL) while high-level requirements (HLR) are mod-
eled using automata. Low-level requirements (LLR) for the flight stack are then
modeled in Simulink (LLR6-10), from which code is automatically generated.
For the middleware, LLR are written, instead, in natural language (LLR1-5)
and manually implemented in C.

A set of “partial” assurance cases in our library (atomic HCNs) related to the
intent property is shown in Fig. 2. Every assurance case has only one reasoning
step, so that the synthesis algorithm can explore multiple combinations from the
library. AC1 specifies that the system needs to possess the Intent, Correctness,
and Innocuity OPs. AC2 specifies that, to possess Intent, the specification must

188 T. E. Wang et al.

Fig. 2. Pictorial representation (following a GSN-based notation) of a library of “par-
tial” AC patterns used in the synthesis process for the case study.

be developed, have high quality, and satisfy the SLR. AC3 shows that traceabil-
ity and compliance between SLR and HLR is required to satisfy SLR. AC1, AC2,
and AC3 are general assurance cases that can be applied to any system. On the
other hand, showing that the specification has high quality is specific to the type
of specification being considered. As AC4 shows, natural-language requirements
require properties such as verifiability, accuracy, conformance to standards, and
compatibility with the target. In the absence of a formal representation of these
requirements, as it may be the case for legacy software, these properties may
still need to be checked using manual reviews. To ensure the quality of a formal
representation, e.g., based on automata or a Simulink model, for example, we
need to check that the abstraction accurately represents the intended specifica-
tion. In these cases, certain verifiability properties can be intrinsically enforced
by the adoption of a formal language. In a similar way, AC7 and AC8 show
patterns that describe how to check if LLR, specified using Simulink models or
natural language, comply with HLR, specified using automata. Compliance can
be checked by either using a verification tool, in the case of Simulink models, or
manual review, in the case of natural-language requirements.

Hierarchical Contract-Based Synthesis for Assurance Cases 189

Fig. 3. Pictorial representation (following a GSN-based notation) of the result from
the synthesis algorithm.

Based on this library, the synthesis tool explores 8 candidates, including all
the possible combinations of the library patterns (atomic HCNs). The number of
candidates is reduced when considering the top-level claim for the system and the
available development process, as shown in Fig. 3. The claims of the library nets
are instantiated and connected to their premises and sub-claims based on the
evaluation of the conditional refinement relations. The claims represented with a
green diamond have not been developed because the algorithm did not find any
contract network that satisfies the refinement relationship. The pattern AC2 is
instantiated based on the requirement set of the autopilot associated with the
claim in G2. The algorithm also instantiates different patterns to refine G8 based
on the type or requirement: AC4 for natural-language requirements, AC6 for
requirements specified using Simulink models, and AC5 for formal requirements.
Being able to instantiate patterns for groups of artifacts of the same type, in this
case requirements, reduces the number of refinement evaluations and facilitates
the interpretation of the argument.

190 T. E. Wang et al.

A tool implementation of Algorithm 1 was used to generate an assurance case
for the certification of a commercial aerospace system. The system is a legacy
one that was already certified according to the RTCA DO-178B standard. Its
676 requirements were written in natural language, and tests were used to vali-
date the implementation. Existing artifacts were used to support the generated
assurance cases. For this case study, we created 40 patterns. While most of the
patterns were motivated by compliance to DO-178C, we also created patterns
capturing best practices in system development. The overall synthesis time was
about 2 s.

Overall, grouping the certification artifacts using types (e.g., requirements,
test cases, reviews) helps improve the scalability of the synthesis algorithm. Espe-
cially in the context of OPs, as different applicants can develop different argu-
ments, the heterogeneity and size of the space of possible assurance cases can
overwhelm certification authorities. Therefore, relying on a library of reusable
assurance case patterns vetted by a team of domain experts can speed up the
approval process without compromising assurance. Finally, the automated syn-
thesis and validation of assurance cases based on a library of vetted formal
patterns open up opportunities for optimizing the process of reaching compli-
ance based on cost, schedule, or confidence, and allow more efficiently comparing
different development processes to help project managers make more informed
decisions.

5 Conclusion

We presented an automated compositional synthesis approach, based on the
formal foundation of assume-guarantee contracts, for generating hierarchies of
interconnected contracts, i.e., hierarchical contract networks, to satisfy a system-
level specification. The approach employs a library of components, encoded using
atomic hierarchical contract nets, that captures the domain knowledge and a
satisfiability modulo theory (SMT)-based synthesis procedure that is fully auto-
mated. We presented the synthesis algorithm and its application to the automatic
generation of assurance cases. We illustrated how assurance cases can be formally
represented using hierarchical contract networks and provided a case study on
creating assurance cases for software certification in the aerospace domain. The
proposed approach provides the correct balance between automation and knowl-
edge representation capabilities that is demanded for the construction of certi-
fication arguments in safety-critical applications. In future work, we want to
also explore this synthesis approach for system design with potentially other
specification languages, such as Simulink. In this context, refinement checking of
contracts over streams is more of a challenge for SMT solving than the quantifier-
free fragment that we have mostly utilized for assurance cases.

Acknowledgments. Distribution Statement A (Approved for Public Release, Dis-
tribution Unlimited). This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA) contract FA875020C0508. The views,

Hierarchical Contract-Based Synthesis for Assurance Cases 191

opinions, or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S.
Government.

References

1. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Found. Trends Pro-
gramm. Lang. 4(1–2), 1–119 (2017)

2. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symbol. Logic 28(4) (1963)

3. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69 (1949)

4. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media (2013)

5. Nuzzo, P., Bajaj, N., Masin, M., Kirov, D., Passerone, R., Sangiovanni-Vincentelli,
A.L.: Optimized selection of reliable and cost-effective safety-critical system archi-
tectures. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 39(10), 2109–2123
(2020)

6. David, C., Kroening, D.: Program synthesis: challenges and opportunities. Philos.
Trans. Royal Soc. A: Math. Phys. Eng. Sci. 375(2104), 20150403 (2017)

7. Alur, R., et al.: Syntax-guided synthesis. IEEE (2013)
8. Benveniste, A., et al.: Contracts for system design. PhD thesis, Inria (2012)
9. Sebastian, S., et al.: Moving from specifications to contracts in component-based

design. In: Fundamental Approaches to Software Engineering (2012)
10. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming dr. Frankenstein:

Contract-based design for cyber-physical systems. Eur. J. Control 18, 217–238
(2012)

11. Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D., Geretti, L., Villa, T.: A
platform-based design methodology with contracts and related tools for the design
of cyber-physical systems. In: Proceedings of the IEEE (2015)

12. Benveniste, A., et al.: Contracts for System Design. Werner Damm (2018)
13. Pneuli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:

Proceedings Annual Symposium on Foundations of Computer Science, pp. 746–
757 (1990)

14. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: de Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00596-1 28

15. Iannopollo, A., Nuzzo, P., Tripakis, S., Sangiovanni-Vincentelli, A.: Library-based
scalable refinement checking for contract-based design. In: 2014 Design, Automa-
tion Test in Europe Conference Exhibition (DATE) (2014)

16. Iannopollo, A., Tripakis, S., Sangiovanni-Vincentelli, A.: Constrained synthesis
from component libraries. Sci. Comput. Programm. 171, 21–41 (2019)

17. Iannopollo, A., Tripakis, S., Sangiovanni-Vincentelli, A.: Specification decomposi-
tion for synthesis from libraries of LTL assume/guarantee contracts. In: Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1574–1579 (2018)

18. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 11

https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11

192 T. E. Wang et al.

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Kelly, T., Weaver, R.: The goal structuring notation-a safety argument notation.
In: Proceedings of the Dependable Systems and Networks 2004 Workshop on Assur-
ance Cases, p. 6. Citeseer (2004)

21. Holloway, C.M.: Understanding the Overarching Properties. NASA Langley
Research Center (2019)

https://doi.org/10.1007/978-3-540-78800-3_24

Verified Probabilistic Policies for Deep
Reinforcement Learning

Edoardo Bacci and David Parker(B)

University of Birmingham, Birmingham, UK
{exb461,d.a.parker}@bham.ac.uk

Abstract. Deep reinforcement learning is an increasingly popular tech-
nique for synthesising policies to control an agent’s interaction with its
environment. There is also growing interest in formally verifying that
such policies are correct and execute safely. Progress has been made
in this area by building on existing work for verification of deep neu-
ral networks and of continuous-state dynamical systems. In this paper,
we tackle the problem of verifying probabilistic policies for deep rein-
forcement learning, which are used to, for example, tackle adversarial
environments, break symmetries and manage trade-offs. We propose an
abstraction approach, based on interval Markov decision processes, that
yields probabilistic guarantees on a policy’s execution, and present tech-
niques to build and solve these models using abstract interpretation,
mixed-integer linear programming, entropy-based refinement and prob-
abilistic model checking. We implement our approach and illustrate its
effectiveness on a selection of reinforcement learning benchmarks.

1 Introduction

Reinforcement learning (RL) is a technique for training a policy used to govern
the interaction between an agent and an environment. It is based on repeated
explorations of the environment, which yield rewards that the agent should aim
to maximise. Deep reinforcement learning combines RL and deep learning, by
using neural networks to store a representation of a learnt reward function or
optimal policy. These methods have been increasingly successful across a wide
range of challenging application domains, including for example, autonomous
driving [30], robotics [19] and healthcare [49].

In safety critical domains, it is particularly important to assure that policies
learnt via RL will be executed safely, which makes the application of formal
verification to this problem appealing. This is challenging, especially for deep
RL, since it requires reasoning about multi-dimensional, continuous state spaces
and complex policies encoded as deep neural networks.

There are several approaches to assuring safety in reinforcement learning,
often leveraging ideas from formal verification, such as the use of temporal logic
to specify safety conditions, or the use of abstract interpretation to build dis-
cretised models. One approach is shielding (e.g., [1]), which synthesises override

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 193–212, 2022.
https://doi.org/10.1007/978-3-031-06773-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_10&domain=pdf
http://orcid.org/0000-0002-0367-898X
http://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-031-06773-0_10

194 E. Bacci and D. Parker

mechanisms to prevent the RL agent from acting upon bad decisions; another is
constrained or safe RL (e.g. [17]), which generates provably safe policies, typi-
cally by restricting the training process to safe explorations.

An alternative approach, which we take in this paper, is to verify an RL
policy’s correctness after it has been learnt, rather than placing restrictions on
the learning process or on its deployment. Progress has been made in the formal
verification of policies for RL [6] and also for the specific case of deep RL [3,4,28],
in the latter case by building on advances in abstraction and verification tech-
niques for neural networks; [3] also exploits the development of efficient abstract
domains such as template polyhedra [42], previously applied to the verification
of continuous-space and hybrid systems [7,16].

A useful tool in reinforcement learning is the notion of a probabilistic pol-
icy (or stochastic policy), which chooses randomly between available actions in
each state, according to a probability distribution specified by the policy. This
brings a number of advantages (similarly to mixed strategies [39] in game the-
ory and contextual bandits [34]), such as balancing the exploration-exploitation
tradeoff [18], dealing with partial observability of the environment [40], handling
multiple objectives [47] or learning continuous actions [38].

In this paper, we tackle the problem of verifying the safety of probabilistic
policies for deep reinforcement learning. We define a formal model of their exe-
cution using (continuous-state, finite-branching) discrete-time Markov processes.
We then build and solve sound abstractions of these models. This approach was
also taken in earlier work [4], which used Markov decision process abstractions
to verify deep RL policies in which actions may exhibit failures.

However, a particular challenge for probabilistic policies, as generated by
deep RL, is that policies tend to specify very different action distributions across
states. We thus propose a novel abstraction based on interval Markov decision
processes (IMDPs), in which transitions are labelled with intervals of probabil-
ities, representing the range of possible events that can occur. We solve these
IMDPs, over a finite time horizon, which we show yields probabilistic guarantees,
in the form of upper bounds on the actual probability of the RL policy leading
the agent to a state designated to be unsafe.

We present methods to construct IMDP abstractions using template poly-
hedra as an abstract domain, and mixed-integer linear programming (MILP) to
reason symbolically about the neural network policy encoding and a model of
the RL agent’s environment. We extend existing MILP-based methods for neu-
ral networks to cope with the softmax encoding used for probabilistic policies.
Naive approaches to constructing these IMDPs yield abstractions that are too
coarse, i.e., where the probability intervals are too wide and the resulting safety
probability bounds are too high be useful. So, we present an iterative refine-
ment approach based on sampling which splits abstract states via cross-entropy
minimisation based on the uncertainty of the over-approximation.

We implement our techniques, building on an extension of the probabilistic
model checker PRISM [32] to solve IMDPs. We show that our approach suc-
cessfully verifies probabilistic policies trained for several reinforcement learning
benchmarks and explore trade-offs in precision and computational efficiency.

Verified Probabilistic Policies for Deep Reinforcement Learning 195

Related Work. As discussed above, other approaches to assuring safety in rein-
forcement learning include shielding [1,5,25,31,52] and constrained or safe RL
[13,17,21–23,26,37,45]. By contrast, we verify policies independently, without
limiting the training process or imposing constraints on execution.

Formal verification of RL, but in a non-probabilistic setting includes: [6],
which extracts and analyses decision trees; [28], which checks safety and liveness
properties for deep RL; and [3], which also uses template polyhedra and MILP
to build abstractions, but to check (non-probabilistic) safety invariants.

In the probabilistic setting, perhaps closest is our earlier work [4], which
uses abstraction for finite-horizon probabilistic verification of deep RL, but for
non-probabilistic policies, thus using a simpler (MDP) abstraction, as well as a
coarser (interval) abstract domain and a different, more basic approach to refine-
ment. Another approach to generating formal probabilistic guarantees is [14],
which, unlike us, does not need a model of the environment and instead learns
an approximation and produces probably approximately correct (PAC) guaran-
tees. Probabilistic verification of neural network policies on partially observable
models, but for discrete state spaces, was considered in [10].

There is also a body of work on verifying continuous space probabilistic
models and stochastic hybrid systems, by building finite-state abstractions as,
e.g., interval Markov chains [33] or interval MDPs [11,36], but these do not
consider control policies encoded as neural networks. Similarly, abstractions of
discrete-state probabilistic models use similar ideas to our approach, notably via
the use of interval Markov chains [15] and stochastic games [27].

2 Background

We first provide background on the two key probabilistic models used in this
paper: discrete-time Markov processes (DTMPs), used to model RL policy exe-
cutions, and interval Markov decision processes (IMDPs), used for abstractions.
Notation. We write Dist(X) for the set of discrete probability distributions
over a set X, i.e., functions μ : X → [0, 1] where

∑
x∈X μ(x) = 1. The support

of μ, denoted supp(μ), is defined as supp(μ) = {x ∈ X |μ(x) > 0}. We use the
same notation where X is uncountable but where μ has finite support. We write
P(X) to denote the powerset of X and vi for the ith element of a vector v.

Definition 1 (Discrete-time Markov process). A (finite-branching)
discrete-time Markov process is a tuple (S, S0,P,AP , L), where: S is a (possibly
uncountably infinite) set of states; S0 ⊆ S is a set of initial states; P : S × S →
[0, 1] is a transition probability matrix, where

∑
s′∈supp(P(s,·)) P(s, s′) = 1 for all

s ∈ S; AP is a set of atomic propositions; and L : S → P(AP) is a labelling
function.

A DTMP begins in some initial state s0 ∈ S0 and then moves between states
at discrete time steps. From state s, the probability of making a transition to
state s′ is P(s, s′). Note that, although the state space of DTMPs used here is
continuous, each state only has a finite number of possible successors. This is

196 E. Bacci and D. Parker

always true for our models (where transitions represent policies choosing between
a finite number of actions) and simplifies the model.

A path through a DTMP is an infinite sequence of states s0s1s2 . . . such that
P(si, si+1) > 0 for all i. The set of all paths starting in state s is denoted Path(s)
and we define a probability space Prs over Path(s) in the usual way [29]. We use
atomic propositions (from the set AP) to label states of interest for verification,
e.g., to denote them as safe or unsafe. For b ∈ AP , we write s |= b if b ∈ L(s).

The probability of reaching a b-labelled state from s within k steps is:

Prs(♦�kb) = Prs({s0s1s2 · · · ∈ Path(s) | si |= b for some 0 � i � k})

which, since DTMPs are finite-branching models, can be computed recursively:

Prs(♦�kb) =

{
1 if s |= b
0 if s �|= b ∧ k=0

∑
s′∈supp(P(s,·)) P(s, s′) · Prs′ (♦�k−1b) otherwise.

To build abstractions, we use interval Markov decision processes (IMDPs).

Definition 2 (Interval Markov decision process). An interval Markov
decision process is a tuple (S, S0,P,AP , L), where: S is a finite set of states;
S0 ⊆ S are initial states; P : S×N×S → (I∪0) is the interval transition probabil-
ity function, where I is the set of probability intervals I = {[a, b] | 0 < a � b � 1},
assigning either a probability interval or the probability exactly 0 to any transi-
tion; AP is a set of atomic propositions; and L:S→P(AP) is a labelling function.

Like a DTMP, an IMDP evolves through states in a state space S, starting
from an initial state s0 ∈ S0. In each state s ∈ S, an action j must be chosen.
Because of the way we use IMDPs, and to avoid confusion with the actions taken
by RL policies, we simply use integer indices j ∈ N for actions. The probability
of moving to each successor state s′ then falls within the interval P(s, j, s′).

To reason about IMDPs, we use policies, which resolve the nondeterminism
in terms of actions and probabilities. A policy σ of the IMDP selects the choice
to take in each state, based on the history of its execution so far. In addition,
we have a so-called environment policy τ which selects probabilities for each
transition that fall within the specified intervals. For a policy σ and environment
policy τ , we have a probability space Prσ,τ

s over the set of infinite paths starting
in state s. As above, we can define, for example, the probability Prσ,τ

s (♦�kb) of
reaching a b-labelled state from s within k steps, under σ and τ .

If ψ is an event of interest defined by a measurable set of paths (e.g., ♦�kb),
we can compute (through robust value iteration [48]) lower and upper bounds
on, e.g., maximum probabilities, over the set of all allowable probability values:

Prmaxmin
s (ψ) = sup

σ
inf
τ

Prσ,τ
s (ψ) and Prmax,max

s (ψ) = sup
σ

sup
τ

Prσ,τ
s (ψ)

3 Modelling and Abstraction of Reinforcement Learning

We begin by giving a formal definition of our model for the execution of a
reinforcement learning system, under the control of a probabilistic policy. We

Verified Probabilistic Policies for Deep Reinforcement Learning 197

also define the problem of verifying that this policy is executed safely, namely
that the probability of visiting an unsafe system state, within a specified time
horizon, is below an acceptable threshold.

Then we define abstractions of these models, given an abstract domain over
the states of the model, and show how an analysis of the resulting abstraction
yields probabilistic guarantees in the form of sound upper bounds on the prob-
ability of a failure occurring. In this section, we make no particular assumption
about the representation of the policy, nor about the abstract domain.

3.1 Modelling and Verification of Reinforcement Learning

Our model takes the form of a controlled dynamical system over a continuous
n-dimensional state space S ⊆ R

n, assuming a finite set of actions A performed
at discrete time steps. A (time invariant) environment E : S × A → S describes
the effect of executing an action in a state, i.e., if st is the state at time t and
at is the action taken in that state, we have st+1 = E(st, at).

We assume a reinforcement learning system is controlled by a probabilistic
policy, i.e., a function of the form π : S → Dist(A), where π(s)(a) specifies
the probability with which action a should be taken in state s. Since we are
interested in verifying the behaviour of a particular policy, not in the problem of
learning such a policy, we ignore issues of partial observability. We also do not
need to include any definition of rewards.

Furthermore, since our primary interest here is in the treatment of proba-
bilistic policies, we do not consider other sources of stochasticity, such as the
agent’s perception of its state or the environment’s response to an action. Our
model could easily be extended with other discrete probabilistic aspects, such as
the policy execution failure models considered in [4].

Combining all of the above, we define an RL execution model as a
(continuous-space, finite-branching) discrete-time Markov process (DTMP). In
addition to a particular environment E and policy π, we also specify a set S0 ⊆ S
of possible initial states and a set Sfail ⊆ S of failure states, representing unsafe
states.

Definition 3 (RL execution model). Assuming a state space S ⊆ R
n and

action set A, and given an environment E : S ×A → S, policy π : S → Dist(A),
initial states S0 ⊆ S and failure states Sfail ⊆ S, the corresponding RL execution
model is the DTMP (S, S0,P,AP , L) where AP = {fail}, for any s ∈ S, fail ∈
L(s) iff s ∈ Sfail and, for states s, s′ ∈ S:

P(s, s′) =
∑

{π(s)(a) | a ∈ A s.t. E(s, a) = s′} .

The summation in Definition 3 is required since distinct actions a and a′ applied
in state s could result in the same successor state s′.

Then, assuming the model above, we define the problem of verifying that an
RL policy executes safely. We consider a fixed time horizon k ∈ N and an error
probability threshold psafe, and the check that the probability of reaching an
unsafe state within k time steps is always (from any start state) below psafe.

198 E. Bacci and D. Parker

Definition 4 (RL verification problem). Given a DTMP model of an RL
execution, as in Definition 3, a time horizon k ∈ N and a threshold psafe ∈ [0, 1],
the RL verification problem is to check that Prs(♦�kfail) � psafe for all s ∈ S0.

In practice, we often tackle a numerical version of the verification problem,
and instead compute the worst-case probability of error for any start state p+ =
inf{Prs(♦�kfail) | s ∈ S0} or (as we do later) an upper bound on this value.

3.2 Abstractions for Verification of Reinforcement Learning

Because our models of RL systems are over continuous state spaces, in order to
verify them in practice, we construct finite abstractions. These represent an over-
approximation of the original model, by grouping states with similar behaviour
into abstract states, belonging to some abstract domain Ŝ ⊆ P(S).

Such abstractions are usually necessarily nondeterministic since an abstract
state groups states with similar, but distinct, behaviour. For example, abstrac-
tion of a probabilistic model such as a discrete-time Markov process could be
captured as a Markov decision process [4]. However, a further source of com-
plexity for abstracting probabilistic policies, especially those represented as deep
neural networks, is that states can also vary widely with regards to the proba-
bilities with which policies select actions in those states.

So, in this work we represent abstractions as interval MDPs (IMDPs), in
which transitions are labelled with intervals, representing a range of different
possible probabilities. We will show that solving the IMDP (i.e., computing the
maximum finite-horizon probability of reaching a failure state) yields an upper
bound on the corresponding probability for the model being abstracted.

Below, we define this abstraction and state its correctness, first focusing
separately on abstractions of an RL system’s environment and policy, and then
combining these into a single IMDP abstraction.

Assuming an abstract domain Ŝ ⊆ P(S), we first require an environment
abstraction Ê : Ŝ × A → Ŝ, which soundly over-approximates the RL environ-
ment E : S × A → S, as follows.

Definition 5 (Environment abstraction). For environment E : S ×A → S
and set of abstract states Ŝ ⊆ P(S), an environment abstraction is a function
Ê : Ŝ × A → Ŝ such that: for any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and
action a ∈ A, we have E(s, a) ∈ Ê(ŝ, a).

Additionally, we need, for any RL policy π, a policy abstraction π̂, which gives
a lower and upper bound on the probability with which each action is selected
within the states grouped by each abstract state.

Definition 6 (Policy abstraction). For a policy π : S → Dist(A) and a set
of abstract states Ŝ ⊆ P(S), a policy abstraction is a pair (π̂L, π̂U) of functions
of the form π̂L : Ŝ × A → [0, 1] and π̂U : Ŝ × A → [0, 1], satisfying the following:
for any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and action a ∈ A, we have
π̂L(ŝ, a) � π(s, a) � π̂U (ŝ, a).

Verified Probabilistic Policies for Deep Reinforcement Learning 199

Finally, combining these notions, we can define an RL execution abstraction,
which is an IMDP abstraction of the execution of an policy in an environment.

Definition 7 (RL execution abstraction). Let E and π be an RL envi-
ronment and policy, DTMP (S, S0,P,AP , L) be the corresponding RL execution
model and Ŝ ⊆ P(S) be a set of abstract states. Given also a policy abstraction
π̂ of π and an environment abstraction Ê of E, an RL execution abstraction is
an IMDP (Ŝ, Ŝ0, P̂,AP , L̂) satisfying the following:

– for all s ∈ S0, s ∈ ŝ for some ŝ ∈ Ŝ0;
– for each ŝ ∈ Ŝ, there is a partition {ŝ1, . . . , ŝm} of ŝ such that, for each

j ∈ {1, . . . , m} we have P̂(ŝ, j, ŝ′) = [P̂L(ŝ, j, ŝ′), P̂U (ŝ, j, ŝ′)] where:

P̂L(ŝ, j, ŝ′) =
∑{

π̂L(ŝj , a) | a ∈ A s.t. Ê(ŝj , a) = ŝ′
}

P̂U (ŝ, j, ŝ′) =
∑{

π̂U (ŝj , a) | a ∈ A s.t. Ê(ŝj , a) = ŝ′
}

– AP = {fail} and fail ∈ L̂(ŝ) iff fail ∈ L(s) for some s ∈ ŝ.

Intuitively, each abstract state ŝ is partitioned into groups of states ŝj that
behave the same under the specified environment and policy abstractions. The
nondeterministic choice between actions j ∈ {1, . . . , m} in abstract state ŝ, each
of which corresponds to the state subset ŝj , allows the abstraction to overap-
proximate the behaviour of the original DTMP model.

Finally, we state the correctness of the abstraction, i.e., that solving the
IMDP provides upper bounds on the probability of policy execution resulting in
a failure. This is formalised as follows (see the appendix for a proof).

Theorem 1. Given a state s ∈ S of an RL execution model DTMP, and an
abstract state ŝ ∈ Ŝ of the corresponding abstraction IMDP for which s ∈ ŝ:

Prs(♦�kfail) � Prmaxmax
ŝ (♦�kfail).

In particular, this means that we can tackle the RL verification problem of
checking that the error probability is below a threshold psafe for all possible
start states (see Definition 4). We can do this by finding an abstraction for
which Prmaxmax

ŝ (♦�kfail) � psafe for all initial abstract states ŝ ∈ Ŝ0.
Although Prmaxmin

ŝ (♦�kfail) is not necessarily a lower bound on the failure
probability, the value may still be useful to guide abstraction refinement.

4 Template-Based Abstraction of Neural Network
Policies

We now describe in more detail the process for constructing an IMDP abstrac-
tion, as given in Definition 7, to verify the execution of an agent with its environ-
ment, under the control of a probabilistic policy. We assume that the policy is

200 E. Bacci and D. Parker

encoded in neural network form and has already been learnt, prior to verification,
and we use template polyhedra to represent abstract states.

The overall process works by building a k-step unfolding of the IMDP, start-
ing from a set of initial states Ŝ0 ⊆ S. For each abstract state ŝ explored during
this process, we need to split ŝ into an appropriate partition {ŝ1, . . . , ŝm}. Then,
for each ŝj ∈ ŝ and each action a ∈ A, we determine lower and upper bounds on
the probabilities with which a is selected in states in ŝj , i.e., we construct a policy
abstraction (π̂L, π̂U). We also find the successor abstract state that results from
executing a in ŝj , i.e., we build an environment abstraction Ê. Construction of
the IMDP then follows directly from Definition 7.

In the following sections, we describe our techniques in more detail. First,
we give brief details of the abstract domain used: bounded polyhedra. Next, we
describe how to construct policy abstractions via MILP. Lastly, we describe how
to partition abstract states via refinement. We omit details of the environment
abstraction since we reuse the symbolic post operator over template polyhedra
given in [3], also performed with MILP. This supports environments specified
as linear, piecewise linear or non-linear systems defined with polynomial and
transcendental functions. The latter is dealt with using linearisation, subdividing
into small intervals and over-approximating using interval arithmetic.

Further details of the algorithms in this section can be found in [2].

4.1 Bounded Template Polyhedra

Recall that the state space of our model S ⊆ R
n is over n real-valued variables.

We represent abstract states using template polyhedra [42], which are convex
subsets of R

n, defined by constraints in a finite set of directions Δ ⊂ R
n (in

other words, the facets of the polyhedra are normal to the directions in Δ). We
call a fixed set of directions Δ ⊂ R

n a template.
Given a (convex) abstract state ŝ ⊆ R

n, a Δ-polyhedron of ŝ is defined as
the tightest Δ-polyhedron enclosing ŝ:

∩{{s : 〈δ, s〉 � sup{〈δ, s〉 : s ∈ ŝ}} : δ ∈ Δ},

where 〈·, ·〉 denotes scalar product. In this paper, we restrict our attention to
bounded template polyhedra (also called polytopes), in which every variable in
the state space is bounded by a direction of the template, since this is needed
for our refinement scheme.

Important special cases of template polyhedra are rectangles (i.e., intervals)
and octagons. Later, in Sect. 5, we will present an empirical comparison of these
different abstract domains applied to our setting, and show the benefits of the
more general case of template polyhedra.

4.2 Constructing Policy Abstractions

We focus first on the abstraction of the RL policy π : S → Dist(A), assuming
there are k actions: A = {a1, . . . , ak}. Let π be encoded by a neural network

Verified Probabilistic Policies for Deep Reinforcement Learning 201

comprising n input neurons, l hidden layers, each containing hi neurons (1 �
i � l), and k output neurons, and using ReLU activation functions.

The policy is encoded as follows. We use variable vectors z0 . . . , zl+1 to denote
the values of the neurons at each layer. The current state of the environment is
fed to the input layer z0, each hidden layer’s values are as follows:

zi = ReLU(Wizi−1 + bi) for i = 1, . . . , l

and the output layer is zl+1 = Wl+1zl, where each Wi is a matrix of weights
connecting layers i−1 and i and each bi is a vector of biases. In the usual fash-
ion, ReLU(z) = max(z, 0). Finally, the k output neurons yield the probability
assigned by the policy to each action. More precisely, the probability that the
encoded policy selects action aj is given by pj based on a softmax normalisation
of the output layer:

pj = softmax(zl+1)j =
ezj

l+1

∑k
i=1 ezi

l+1

For an abstract state ŝ, we compute the policy abstraction, i.e., lower and upper
bounds π̂L(ŝ, aj) and π̂U (ŝ, aj) for all actions aj (see Definition 6), via mixed-
integer linear programming (MILP), building on existing MILP encodings of
neural networks [9,12,46]. The probability bounds cannot be directly computed
via MILP due to the nonlinearity of the softmax function so, as a proxy, we
maximise the corresponding entry (the jth logit) of the output layer (l+1). For
the upper bound (the lower bound is computed analogously), we optimise:

maximize zj
l+1

subject to z0 ∈ ŝ,
0 � zi − Wizi−1 − bi � Mz′

i for i = 1, . . . , l,
0 � zi � M − Mz′

i for i = 1, . . . , l,
0 � z′

i � 1 for i = 1, . . . , l,
zl+1 = Wl+1zl,

(1)

over the variables z0 ∈ R
n, zl+1 ∈ R

k and zi ∈ R
hi , z′

i ∈ Z
hi for 1 � i � l.

Since abstract state ŝ is a convex polyhedron, the initial constraint z0 ∈ ŝ
on the vector of values z0 fed to the input layer is represented by |Δ| linear
inequalities. ReLU functions are modelled using a big-M encoding [46], where
we add integer variable vectors z′

i and M ∈ R is a constant representing an
upper bound for the possible values of neurons.

We solve 2k MILPs to obtain lower and upper bounds on the logits for
all k actions. We then calculate bounds on the probabilities of each action by
combining these values as described below. Since the exponential function in
softmax is monotonic, it preserves the order of the intervals, allowing us to
compute the bounds on the probabilities achievable in ŝ.

Let xlb,i and xub,i denote the lower and upper bounds, respectively, obtained
for each action ai via MILP (i.e., the optimised values zi

l+1 in (1) above). Then,

202 E. Bacci and D. Parker

the upper bound for the probability of choosing action aj is yub,j :

yub,j = softmax(zub,j) where zi
ub,j =

{
xub,i if i = j

1 − xlb,i otherwise

and where zub,j is an intermediate vector of size k. Again, the computation for
the lower bound is performed analogously.

4.3 Refinement of Abstract States

As discussed above, each abstract state ŝ in the IMDP is split into a partition
{ŝ1, . . . , ŝm} and, for each ŝi, the probability bounds π̂L(ŝi, a) and π̂U (ŝi, a) are
determined for each action a. If these intervals are two wide, the abstraction is
too coarse and the results uninformative. To determine a good partition (i.e., one
that groups states with similar behaviour in terms of the probabilities chosen by
the policy), we use refinement, repeatedly splitting ŝi into finer partitions.

We define the maximum probability spread of ŝi, denoted Δmax
π̂ (ŝi), as:

Δmax
π̂ (ŝi) = max

a∈A
(π̂U (ŝi, a) − π̂L(ŝi, a))

and we refine ŝi until Δmax
π̂ (ŝi) falls below a specified threshold φ. Varying φ

allows us to tune the desired degree of precision.
When refining, our aim is minimise Δmax

π̂ (ŝi), i.e., to group areas of the
state space that have similar probability ranges, but also to minimise the num-
ber of splits performed. We try to find a good compromise between improving
the accuracy of the abstraction and reducing partition growth, which generates
additional abstract states and increases the size of the IMDP abstraction.

Calculating the range Δmax
π̂ (ŝi) can be done by using MILP to compute each

of the lower and upper bounds π̂L(ŝi, a) and π̂U (ŝi, a). However, this may be
time consuming. So, during the first part of refinement for each abstract state,
we sample probabilities for some states to compute an underestimate of the true
range. If the sampled range is already wide enough to trigger further refinement,
we do so; otherwise we calculate the exact range of probabilities using MILP to
check whether there is a need for further refinement.

Each refinement step comprises three phases, described in more detail below:
(i) sampling policy probabilities; (ii) selecting a direction to split; (iii) splitting.
Figure 1 gives an illustrative example of a full refinement.

Sampling the Neural Network Policy. We first generate a sample of the
probabilities chosen by the policy within the abstract state. Since this is a con-
vex region, we sample state points within it randomly using the Hit & Run
method [44]. We then obtain, from the neural network, the probabilities of pick-
ing actions at each sampled state. We consider each action a separately, and
then later split according to the most promising one (i.e., with the widest prob-
ability spread across all actions). The probabilities for each a are computed in
a one-vs-all fashion: we generate a point cloud representing the probability of
taking that action as opposed to any other action.

Verified Probabilistic Policies for Deep Reinforcement Learning 203

Fig. 1. Sampled policy probabilities for one action in an abstract state (left) and the
template polyhedra partition generated through refinement (right).

The number of samples used (and hence the time needed) is kept fixed,
rather than fixing the density of the sampled points. We sample 1000 points per
abstract state split but this parameter can be tuned depending on the machine
and the desired time/accuracy tradeoff. This ensures that ever more accurate
approximations are generated as the size of the polyhedra decreases.

Choosing Candidate Directions. We refine abstract states (represented as
template polyhedra) by bisecting them along a chosen direction from the set Δ
used to define them. Since the polyhedra are bounded, we are free to pick any one.
To find the direction that contributes most to reducing the probability spread,
we use cross-entropy minimisation to find the optimal boundary at which to split
each direction, and then pick the direction that yields the lowest value.

Let S̃ be the set of sampled points and Ỹs denote the true probability of
choosing action a in each point s ∈ S̃, as extracted from the probabilistic policy.
For a direction δ, we project all points in S̃ onto δ and sort them accordingly,
i.e., we let S̃ = {s1, . . . , sm}, where m = |S̃| and index i is sorted by 〈δ, si〉.
We determine the optimal boundary for splitting in direction δ by finding the
optimal index k that splits S̃ into {s1, . . . , sk} and {sk+1, . . . , sm}. To do so, we
first define the function Y k,δ

i classifying the ith point according to this split:

Y k,δ
i =

{
1 if i � k
0 if i > k

and then minimise, over k, the binary cross entropy loss function:

H(Y k,δ, Ỹ) = − 1
m

∑m

i=1

(
Y k,δ

i log(Ỹsi
) + (1 − Y k,δ

i) log(1 − Ỹsi
)
)

which reflects how well the true probability for each point Ỹs matches the sepa-
ration into the two groups.

204 E. Bacci and D. Parker

One problem with this approach is that, if the distribution of probabilities
is skewed to strongly favour some probabilities, a good decision boundary may
not be picked. To counter this, we perform sample weighting by grouping the
sampled probabilities into small bins, and counting the number of samples in
each bin to calculate how much weight to give to each sample.

Abstract State Splitting. Once a direction δ and bisection point sk are chosen,
the abstract state is split into two with a corresponding pair of constraints that
splits the polyhedron. Because we are constrained to the directions of the tem-
plate, and the decision boundary is highly non-linear, sometimes the bisection
point falls close to the interval boundary and the resulting slices are extremely
thin. This would cause the creation of an unnecessarily high number of polyhe-
dra, which we prevent by imposing a minimum size of the split relative to the
dimension chosen. By doing so we are guaranteed a minimum degree of progress
and the complex shapes in the non-linear policy space which are not easily classi-
fied (such as non-convex shapes) are broken down into more manageable regions.

5 Experimental Evaluation

We evaluate our approach by implementing the techniques described in Sect. 4
and applying them to 3 reinforcement learning benchmarks, analysing perfor-
mance and the impact of various configurations and optimisations.

5.1 Experimental Setup

Implementation. The code is developed in a mixture of Python and Java. Neu-
ral network manipulation is done through Pytorch [51], MILP solution through
Gurobi [20], graph analysis with networkX [50] and cross-entropy minimisation
with Scikit-learn [41]. IMDPs are constructed and solved using an extension of
PRISM [32] which implements robust value iteration [48]. The code is available
from https://github.com/phate09/SafeDRL.

Benchmarks. We use the following three RL benchmark environments:

(i) Bouncing ball [24]: The agent controls a ball with height p and vertical
velocity v, choosing to either hit the ball downward with a paddle, adding speed,
or do nothing. The ball accelerates while falling and bounces on the ground losing
10% of its energy; it eventually stops bouncing if its height is too low and it is out
of reach of the paddle. The initial heights and speed vary. In our experiments,
we consider two possible starting regions: “large” (S0 = L), where p ∈ [5, 9] and
v ∈ [−1, 1], and “small” (S0 = S), where p ∈ [5, 9] and v ∈ [−0.1, 0]. The safety
constraint is that the ball never stops bouncing.

(ii) Adaptive cruise control [3]: The problem has two vehicles i ∈ {lead , ego},
whose state is determined by variables xi and vi for the position and speed of
each car, respectively. The lead car proceeds at constant speed (28 m s−1), and
the agent controls the acceleration (±1 m s−2) of ego using two actions. The

https://github.com/phate09/SafeDRL

Verified Probabilistic Policies for Deep Reinforcement Learning 205

Fig. 2. Policy abstractions for an abstract state from the adaptive cruise control bench-
mark, using different abstract domains (see Fig. 1 for legend).

range of possible start states allows a relative distance of [3, 10] metres and the
speed of the ego vehicle is in [26, 32] m/s. Safety means preserving xlead � xego.

(iii) Inverted pendulum: This benchmark is a modified (discrete action) version
of the “Pendulum-v0” environment from the OpenAI Gym [8] where an agent
applies left or right rotational force to a pole pivoting around one of its ends,
with the aim of balancing the pole in an upright position. The state is modelled
by 2 variables: the angular position and velocity of the pole. We consider initial
conditions of an angle [−0.05, 0.05] and speed [−0.05, 0.05]. Safety constitutes
remaining within a range of positions and velocities such that an upright position
can be recovered. This benchmark is more challenging than the previous two: it
allows 3 actions (noop, push left, push right) and the dynamics of the system
are highly non-linear, making the problem more complex.

Policy Training. All agents have been trained using proximal policy optimisa-
tion (PPO) [43] in actor-critic configuration with Adam optimiser. The training
is distributed over 8 actors with 10 instances of each environment, managing the
collection of results and the update of the network with RLlib [35]. Hyperpa-
rameters have been mostly kept unchanged from their default values except the
learning rate and batch size which have been set to 5×10−4 and 4096, respec-
tively. We used a standard feed forward architecture with 2 hidden layers (size
32 for the bouncing ball and size 64 for the adaptive cruise control and inverted
pendulum problems) and ReLU activation functions.

Abstract Domains. The abstraction techniques we present in Sect. 4 are based
on the use of template polyhedra as an abstract domain. As special cases, this
includes rectangles (intervals) and octagons. We use both of these in our experi-
ments, but also the more general case of arbitrary bounded template polyhedra.
In the latter case, we choose a set of directions by sampling a representative
portion of the state space where the agent is expected to operate, and choosing
appropriate slopes for the directions to better represents the decision bound-
aries. The effect of the choice of different template can be seen in Fig. 2 where

206 E. Bacci and D. Parker

Table 1. Verification results for the benchmark environments

Benchmark environment k Abs. dom. φ Contain.

check

Num.

poly.

Num.

visited

IMDP

size

Prob.

bound

Runtime

(min.)

Bouncing ball

(S0 = S)

20 Rect 0.1 ✓ 337 28 411 0.0 1

20 Oct 0.1 ✓ 352 66 484 0.0 2

Bouncing ball

(S0 = L)

20 Rect 0.1 ✓ 1727 5534 7796 0.63 30

20 Oct 0.1 ✓ 2489 3045 6273 0.0 33

20 Rect 0.1 ✗ 18890 0 23337 0.006 91

20 Oct 0.1 ✗ 13437 0 16837 0.0 111

Adaptive cruise

control

7 Rect 0.33 ✓ 1522 4770 10702 0.084 85

7 Oct 0.33 ✓ 1415 2299 6394 0.078 60

7 Temp 0.33 ✓ 2440 2475 9234 0.47 70

7 Rect 0.5 ✓ 593 1589 3776 0.62 29

7 Oct 0.5 ✓ 801 881 3063 0.12 30

7 Temp 0.5 ✓ 1102 1079 4045 0.53 34

7 Rect 0.33 ✗ 11334 0 24184 0.040 176

7 Oct 0.33 ✗ 7609 0 16899 0.031 152

7 Temp 0.33 ✗ 6710 0 14626 0.038 113

7 Rect 0.5 ✗ 3981 0 8395 0.17 64

7 Oct 0.5 ✗ 2662 0 5895 0.12 52

7 Temp 0.5 ✗ 2809 0 6178 0.16 48

Inverted

pendulum

6 Rect 0.5 ✓ 1494 3788 14726 0.057 71

6 Rect 0.5 ✗ 5436 0 16695 0.057 69

we show a representative abstract state and how the refinement algorithm is
affected by the choice of template: as expected, increasing the generality of the
abstract domain results in a smaller number of abstract states.

Containment Checks. Lastly, we describe an optimisation implemented for
construction of IMDP abstractions, whose effectiveness we will evaluate in the
next section. When calculating the successors of abstract states to construct
an IMDP, we sometimes find that successors that are partially or fully con-
tained within previously visited abstract states. Against the possible trade-off of
decreasing the accuracy of the abstraction, we can attempt to reduce the total
size of the IMDP that is constructed by aggregating together states which are
fully contained within previously visited abstract states.

5.2 Experimental Results

Table 1 summarises the experimental results across the different benchmark envi-
ronments; k denotes the time horizon considered. We use a range of configura-
tions, varying: the abstract domain used (rectangles, octagons or general tem-
plate polyhedra); the maximum probability spread threshold φ and whether the
containment check optimisation is used.

The table lists, for each case: the number of independent polyhedra generated,
the number of instances in which polyhedra are contained in previously visited
abstract states and aggregated together; the final size of the IMDP abstraction
(number of abstract states); the generated upper bound on the probability of

Verified Probabilistic Policies for Deep Reinforcement Learning 207

encountering an unsafe state from an initial state; and the runtime of the whole
process. Experiments were run on a 4-core 4.2 GHz PC with 64 GB RAM.

Verification successfully produced probability bounds for all environments
considered. Typically, the values of k shown are the largest time horizons we
could check, assuming a 3 h timeout for verification. The majority of the runtime
is for constructing the abstraction, not solving the IMDP.

As can be seen, the various configurations result in different safety probability
bounds and runtimes for the same environments, so we are primarily interested in
the impact that these choices have on the trade-off between abstraction precision
and performance. We summarise findings for each benchmark separately.

Bouncing Ball. These are the quickest abstractions to construct and verify
due to the low number of variables and the simplicity of the dynamics. For both
initial regions considered, we can actually verify that it is fully safe (maximum
probability 0). However, for the larger one, rectangles (particular with contain-
ment checks) are not accurate enough to show this.

Two main areas of the policy are identified for refinement: one where it can
reach the ball and should hit it and one where the ball is out of reach and the
paddle should not be activated to preserve energy. But even for threshold φ = 0.1
(lower than used for other benchmarks), rectangular abstractions resulted in
large abstract states containing most of the other states visited by the agent,
and which ultimately overlapped with the unsafe region.

Adaptive Cruise Control. On this benchmark, we use a wider range of con-
figurations. Firstly, as expected, for smaller values of the maximum probability
spread threshold φ, the probability bound obtained is lower (the overestima-
tion error from the abstraction decreases, making it closer to the true maximum
probability) but the abstraction size and runtime increase. Applying the con-
tainment check for previously visited states has a similar effect: it helps reduce
the computation time, but at the expense of overapproximation (higher bounds)

The choice of abstract domain also has a significant impact. Octagons yield
more precise results than rectangles, for the same values of φ, and also produce
smaller abstractions (and therefore lower runtime). On the other hand, general
template polyhedra (chosen to better approximate the decision boundary) do
not appear to provide an improvement in time or precision on this example,
instead causing higher probability bounds, especially when combined with the
containment check. Our hypothesis is that this abstract domains groups large
areas of the state space (as shown in Fig. 2) and this eventually leads to overlaps
with the unsafe region.

Inverted Pendulum. This benchmark is more challenging and, while we suc-
cessfully generate bounds on the probability of unsafe behaviour, for smaller
values of φ and other abstract domains, experiments timed out due to the high
number of abstract states generated and the time needed for MILP solution.
The abstract states generated were sufficiently small that the containment check
could be used to reduce runtime without increasing the probability bound.

208 E. Bacci and D. Parker

Fig. 3. Refined policy abstractions from the inverted pendulum benchmark (Color
figure online)

Figure 3 illustrates abstraction applied to a state space fragment from this
benchmark using both rectangles and octagons. It shows the probability of choos-
ing one of three actions, coded by RGB colour: noop (red), right (green) and left
(blue), The X axis represents angular speed and the Y axis represents the angle
of the pendulum in radians. Notice the grey area towards the centre where all
3 actions have the same probability, the centre right area with yellow tints (red
and green), and the centre left area with purple tints (red and blue). Towards
the bottom of the heatmap, the colour fades to green as the agent tries to push
the pendulum so that it spins and balances once it reaches the opposite side.

6 Conclusion

We presented an approach for verifying probabilistic policies for deep reinforce-
ment learning agents. This is based on a formal model of their execution as
continuous-space discrete time Markov process, and a novel abstraction repre-
sented as an interval MDP. We propose techniques to implement this framework
with MILP and a sampling-based refinement method using cross-entropy min-
imisation. Experiments on several RL benchmarks illustrate its effectiveness and
show how we can tune the approach to trade off accuracy and performance.

Future work includes automating the selection of an appropriate template for
abstraction and using lower bounds from the abstraction to improve refinement.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 834115, FUN2MODEL).

Verified Probabilistic Policies for Deep Reinforcement Learning 209

Appendix: Proof of Theorem 1

We provide here a proof of Theorem 1, from Sect. 3, which states that:
Given a state s ∈ S of an RL execution model DTMP, and abstract state

ŝ ∈ Ŝ of the corresponding controller abstraction IMDP for which s ∈ ŝ, we
have:

Prs(♦�kfail) � Prmaxmax
ŝ (♦�kfail)

By the definition of Prmaxmax
ŝ (·), it suffices to show that there is some policy σ

and some environment policy τ in the IMDP such that:

Prs(♦�kfail) � Prσ,τ
ŝ (♦�kfail) (2)

Recall that, in the construction of the IMDP (see Definition 7), an abstract state
ŝ is associated with a partition of subsets ŝj of ŝ, each of which is used to define
the j-labelled choice in state ŝ. Let σ be the policy that picks in each state s
(regardless of history) the unique index js such that s ∈ ŝjs

. Then, let τ be
the environment policy that selects the upper bound of the interval for every
transition probability. We use function P̂τ to denote the chosen probabilities,
i.e., we have P̂τ (ŝ, js, ŝ

′) = P̂U (ŝ, js, ŝ
′) for any ŝ, js, ŝ

′.
The probabilities Prσ,τ

ŝ (♦�kfail) for these policies, starting in ŝ, are defined
similarly to those for discrete-time Markov processes (see Sect. 2):

Prσ,τ
ŝ (♦�kfail) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ŝ |= fail
0 if ŝ �|= fail ∧ k=0

∑

ŝ′∈supp(P̂(ŝ,js,·))
P̂(ŝ, js, ŝ′)·Prσ,τ

ŝ′ (♦�k−1fail) otherwise.

Since this is defined recursively, we prove (2) by induction over k. For the case
k = 0, the definitions of Prs(♦�0fail) and Pr ŝ(♦�0fail) are equivalent: they
equal 1 if s |= fail (or ŝ |= fail) and 0 otherwise. From Definition 7, s |= fail
implies ŝ |= fail . Therefore, Prs(♦�0fail) � Prσ,τ

ŝ (♦�0fail).
Next, for the inductive step, we will assume, as the inductive hypothesis,

that Prs′(♦�k−1fail) � Prσ,τ
ŝ′ (♦�k−1fail) for s′ ∈ S and ŝ′ ∈ Ŝ with s′ ∈ ŝ′. If

ŝ |= fail then Prσ,τ
ŝ (♦�kfail) = 1 � Prs(♦�kfail). Otherwise we have:

Prσ,τ
ŝ (♦�kfail)

=
∑

ŝ′∈supp(P̂τ (ŝ,js,·)) P̂τ (ŝ, js, ŝ′) · Pr
ŝ′ (♦�k−1fail) by defn. of σ and Prσ,τ

ŝ (♦�kfail)

=
∑

ŝ′∈supp(P̂U (ŝ,js,·)) P̂U (ŝ, js, ŝ′) · Pr
ŝ′ (♦�k−1fail) by defn. of τ

=
∑

a∈A πU (ŝ, a) · Pr
Ê(ŝj ,a)

(♦�k−1fail) by defn. of P̂U (ŝ, j, ŝ′)

� ∑
a∈A π(s, a) · Pr

Ê(ŝj ,a)
(♦�k−1fail) since s ∈ ŝ and by Defn.6

� ∑
a∈A π(s, a) · PrE(s,a)(♦�k−1fail) by induction and since, by

Defn. 5, E(s, w) ∈ Ê(ŝj , w)

=
∑

s′∈supp(P(s,·)) P(s, s′) · Pr
s′ (♦�k−1fail) by defn. of P(s, s′)

= Prs(♦�kfail) by defn. of Prs(♦�kfail)

which completes the proof.

210 E. Bacci and D. Parker

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of 32nd AAAI Conference on
Artificial Intelligence (AAAI 2018), pp. 2669–2678 (2018)

2. Bacci, E.: Formal Verification of Deep Reinforcement Learning Agents. Ph.D. the-
sis, School of Computer Science, University of Birmingham (2022)

3. Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infin-
ity. In: Proceedings 30th International Joint Conference on Artificial Intelligence
(IJCAI 2021), pp. 2154–2160 (2021)

4. Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learning.
In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 231–
248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8 14

5. Bastani, O.: Safe reinforcement learning with nonlinear dynamics via model predic-
tive shielding. In: Proceedings of the American Control Conference, pp. 3488–3494
(2021)

6. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via pol-
icy extraction. In: Proceedings of 2018 Annual Conference on Neural Information
Processing Systems (NeurIPS 2018), pp. 2499–2509 (2018)

7. Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided
refinement of template polyhedra. In: TACAS (1), pp. 589–606 (2017)

8. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym, June 2016

9. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Kumar, P.: A unified view of piecewise
linear neural network verification. In: Proceedings of 32nd International Conference
on Neural Information Processing Systems (NIPS 2018), pp. 4795–4804 (2018)

10. Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable RNN-based policies for par-
tially observable Markov decision processes. J. Artif. Intell. Res. 72, 819–847 (2021)

11. Cauchi, N., Laurenti, L., Lahijanian, M., Abate, A., Kwiatkowska, M., Cardelli,
L.: Efficiency through uncertainty: scalable formal synthesis for stochastic hybrid
systems. In: 22nd ACM International Conference on Hybrid Systems: Computation
and Control (2019)

12. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

13. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
AAAI, pp. 3387–3395. AAAI Press (2019)

14. Delgrange, F., Ann Now e, G.A.P.: Distillation of RL policies with formal guar-
antees via variational abstraction of Markov decision processes. In: Proceedings of
36th AAAI Conference on Artificial Intelligence (AAAI 2022) (2022)

15. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006).
https://doi.org/10.1007/11691617 5

16. Frehse, G., Giacobbe, M., Henzinger, T.A.: Space-time interpolants. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 468–486. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 25

17. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: AAAI, pp. 6485–6492. AAAI Press
(2018)

https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/11691617_5
https://doi.org/10.1007/978-3-319-96145-3_25

Verified Probabilistic Policies for Deep Reinforcement Learning 211

18. Garćıa, J., Fernández, F.: Probabilistic policy reuse for safe reinforcement learning.
ACM Trans. Autonomous Adaptive Syst. 13(3), 1–24 (2018)

19. Gu, S., Holly, E., Lillicrap, T.P., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: Proceedings of 2017 IEEE
International Conference on Robotics and Automation (ICRA 2017), pp. 3389–
3396 (2017)

20. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021)
21. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained neural fitted q-

iteration. In: AAMAS, pp. 2012–2014. IFAAMAS (2019)
22. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with

logical constraints. In: AAMAS, pp. 483–491. International Foundation for
Autonomous Agents and Multiagent Systems (2020)

23. Hunt, N., Fulton, N., Magliacane, S., Hoang, T.N., Das, S., Solar-Lezama, A.:
Verifiably safe exploration for end-to-end reinforcement learning. In: Proceedings
of 24th International Conference on Hybrid Systems: Computation and Control
(HSCC 2021) (2021)

24. Jaeger, M., Jensen, P.G., Guldstrand Larsen, K., Legay, A., Sedwards, S.,
Taankvist, J.H.: Teaching stratego to play ball: optimal synthesis for continuous
space MDPs. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 81–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 5

25. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields. In: Proceedings of 31st International Confer-
ence on Concurrency Theory (CONCUR 2020), vol. 171, pp. 31–316 (2020)

26. Jin, P., Zhang, M., Li, J., Han, L., Wen, X.: Learning on Abstract Domains: A
New Approach for Verifiable Guarantee in Reinforcement Learning, June 2021

27. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
Syst. Des. 36(3), 246–280 (2010)

28. Kazak, Y., Barrett, C.W., Katz, G., Schapira, M.: Verifying deep-RL-driven
systems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML,
NetAI@SIGCOMM 2019, pp. 83–89. ACM (2019)

29. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer
(1976)

30. Kendall, A., et al.: Learning to drive in a day. In: ICRA, pp. 8248–8254. IEEE
(2019)

31. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4 16

32. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

33. Lahijania, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control 60(8), 2031–2045
(2015)

34. Langford, J., Zhang, T.: The epoch-greedy algorithm for contextual multi-armed
bandits. Adv. Neural. Inf. Process. Syst. 20(1), 96–1 (2007)

https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

212 E. Bacci and D. Parker

35. Liang, E., et al.: RLlib: abstractions for distributed reinforcement learning. In:
Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 3053–
3062. PMLR, 10–15 July 2018

36. Lun, Y.Z., Wheatley, J., D’Innocenzo, A., Abate, A.: Approximate abstractions
of Markov chains with interval decision processes. In: Proceedings of 6th IFAC
Conference on Analysis and Design of Hybrid Systems (2018)

37. Ma, H., Guan, Y., Li, S.E., Zhang, X., Zheng, S., Chen, J.: Feasible Actor-Critic:
Constrained Reinforcement Learning for Ensuring Statewise Safety (2021)

38. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Balcan,
M.F., Weinberger, K.Q. (eds.) Proceedings of 33rd International Conference on
Machine Learning, vol. 48, pp. 1928–1937. PMLR (2016)

39. Osborne, M.J., et al.: An Introduction to Game Theory, vol. 3. Oxford University
Press, New York (2004)

40. Papoudakis, G., Christianos, F., Albrecht, S.V.: Agent modelling under partial
observability for deep reinforcement learning. In: Proceedings of the Neural Infor-
mation Processing Systems (NeurIPS) (2021)

41. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

42. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25–41. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30579-8 2

43. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

44. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly
distributed over bounded regions. Oper. Res. 32(6), 1296–1308 (1984)

45. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be Safe: Deep
RL with a Safety Critic (2020)

46. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating Robustness of Neural Networks with
Mixed Integer Programming (2017)

47. Vamplew, P., Dazeley, R., Barker, E., Kelarev, A.: Constructing stochastic mixture
policies for episodic multiobjective reinforcement learning tasks. In: Nicholson, A.,
Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 340–349. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10439-8 35

48. Wolff, E., Topcu, U., Murray, R.: Robust control of uncertain Markov decision pro-
cesses with temporal logic specifications. In: Proceedings of 51th IEEE Conference
on Decision and Control (CDC 2012), pp. 3372–3379 (2012)

49. Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: a survey.
ACM Comput. Surv. 55(1), 1–36 (2021)

50. Networkx - network analysis in python. https://networkx.github.io/. Accessed 07
May 2020

51. Pytorch. https://pytorch.org/. Accessed 07 May 2020
52. Zhu, H., Magill, S., Xiong, Z., Jagannathan, S.: An inductive synthesis frame-

work for verifiable reinforcement learning. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
686–701. Association for Computing Machinery, June 2019

https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-30579-8_2
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-642-10439-8_35
https://networkx.github.io/
https://pytorch.org/

NNLander-VeriF: A Neural Network
Formal Verification Framework

for Vision-Based Autonomous Aircraft
Landing

Ulices Santa Cruz(B) and Yasser Shoukry

University of California Irvine, Irvine, CA, USA
{usantacr,yshoukry}@uci.edu

Abstract. In this paper, we consider the problem of formally verifying
a Neural Network (NN) based autonomous landing system. In such a
system, a NN controller processes images from a camera to guide the
aircraft while approaching the runway. A central challenge for the safety
and liveness verification of vision-based closed-loop systems is the lack
of mathematical models that captures the relation between the system
states (e.g., position of the aircraft) and the images processed by the
vision-based NN controller. Another challenge is the limited abilities of
state-of-the-art NN model checkers. Such model checkers can reason only
about simple input-output robustness properties of neural networks. This
limitation creates a gap between the NN model checker abilities and the
need to verify a closed-loop system while considering the aircraft dynam-
ics, the perception components, and the NN controller. To this end, this
paper presents NNLander-VeriF, a framework to verify vision-based NN
controllers used for autonomous landing. NNLander-VeriF addresses the
challenges above by exploiting geometric models of perspective cameras
to obtain a mathematical model that captures the relation between the
aircraft states and the inputs to the NN controller. By converting this
model into a NN (with manually assigned weights) and composing it
with the NN controller, one can capture the relation between aircraft
states and control actions using one augmented NN. Such an augmented
NN model leads to a natural encoding of the closed-loop verification into
several NN robustness queries, which state-of-the-art NN model check-
ers can handle. Finally, we evaluate our framework to formally verify the
properties of a trained NN and we show its efficiency.

Keywords: Neural network · Formal verification · Perception

1 Introduction

Machine learning models, like deep neural networks, are used heavily to process
high-dimensional imaging data like LiDAR scanners and cameras. These data

This work was supported by the National Science Foundation under grant numbers
#2002405 and #2013824.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 213–230, 2022.
https://doi.org/10.1007/978-3-031-06773-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_11

214 U. Santa Cruz and Y. Shoukry

driven models are then used to provide estimates for the surrounding environ-
ment which is then used to close the loop and control the rest of the system.
Nevertheless, the use of such data-driven models in safety-critical systems raises
several safety and reliability concerns. It is unsurprising the increasing attention
given to the problem of formally verifying Neural Network (NN)-based systems.

The work in the literature of verifying NNs and NN-based systems can be
classified into component-level and system-level verification. Representatives of
the first class, namely component-level verification are the work on creating spe-
cialized decision procedures that can reason about input-output properties of
NNs [2,8,10,11,17,18,20,25,26]. In all these works, the focus is to ensure that
inputs of the NN that belong to a particular convex set will result in NN outputs
that belong to a defined set of outputs. Such input-output specification allows
designers to verify interesting properties of NN like robustness to adversarial
inputs and verify the safety of collision avoidance protocols. For a comparison
between the details and performance of these NN model checkers, the reader is
referred to the annual competition on verification of neural networks [1]. Regard-
less of the improvements observed every year in the literature of NN model
checkers, verifying properties of perception and vision-based systems as a simple
input-output property of NNs is still an open challenge.

On the other hand, system-level verification refers to the ability of reasoning
about the temporal evolution of the whole system (including the NNs) while pro-
viding safety and liveness assurance [7,12,23,24]. A central challenge to verify
systems that rely on vision-based systems and other high-bandwidth signals (e.g.,
LiDARs) is the need to explicitly model the imaging process, i.e., the relation
between the system state and the images created by cameras and LiDARs [23].
While first steps were taken to provide formal models for LiDAR based sys-
tems [23], very little attention is given to perception and vision-based systems.
In particular, current state-of-the-art aims to avoid modeling the perception sys-
tem formally, and instead focus on the use of abstractions of the perception sys-
tem [14,19]. Unfortunately, these abstractions are only tested on a set of samples
and lack any formal guarantees in their ability to model the perception system
formally. Other techniques use the formal specifications to guide the generation
of test scenarios to increase the chances of finding a counterexample but without
the ability to formally prove the correctness of the vision-based system [12].

Motivated by the lack of formal guarantees of the abstractions of perception
components [14,19], we argue in this paper for the need to formally model such
perception components. Fortunately, such models were historically investigated
in the literature of machine vision before the explosion of using data-driven
approaches in machine learning [9,21]. While these physical/geometrical models
of perception were shown to be complex to design vision-based systems with high
performance, we argue that these models can be used for verification. In other
words, we employ the philosophy of data-driven design of vision-based systems
and model-based verification of such systems.

In this paper, we employ our philosophy above to the problem of design-
ing a vision-based NN that controls aircraft while approaching runways to per-

NNLander-VeriF: A Neural Network Formal Verification Framework 215

form autonomous landing. Such a problem enjoys geometric nature that can
be exploited to develop a geometrical/physical model of the perception system,
yet represent an important real-world problem of interest to the autonomous
systems designers. In particular, we present NNLander-VeriF, a framework for
formal verification of vision-based autonomous aircraft landing. This framework
provides several contributions to the state of the art:

– The proposed framework exploits the geometry of the autonomous landing
problem to construct a formal model for the image formation process (a map
between the aircraft states and the image produced by the camera). This
formal model is designed such that it can be encoded as a neural network
(with manually chosen weights) that we refer to as the perception NN. By
augmenting the perception NN along with the NN controller (which maps
camera images into control actions), we obtain a formal relation between the
aircraft states and the control action that is amenable to verification.

– The proposed framework uses symbolic abstraction of the physical dynamics
of the aircraft to divide the problem of model checking the system-level safety
and liveness properties into a set of NN robustness queries (applied to the
augmented NN obtained above). Such robustness queries can be carried out
efficiently using state-of-the-art component-level NN model checkers.

– We evaluated the proposed framework on a NN controller trained using imi-
tation learning.

2 Problem Formulation

Notation. We will denote by N, B, R and R
+ the set of natural, Boolean,

real, and non-negative real numbers, respectively. We use ||x||∞ to denote the
infinity norm of a vector x ∈ R

n. Finally, we denote by Br(c) the infinity norm
ball centered at c with radius r, i.e., Br(c) = {x ∈ R

n | ||c − x||∞ ≤ r}.

Aircraft Dynamical Model. In this paper, we will consider an aircraft landing
on a runway. We assume the states of the aircraft to be measured with respect
to the origin of the Runway Coordinate Frame (shown in Fig. 1(left)), where
positions are: ξx is the axis across runway; ξy is the altitude, and ξz is the
axis along runway. We consider only one angle ξθ which represents the pitch
rotation around x axis of the aircraft. The state vector of the aircraft at time
t ∈ N is denoted by ξ(t) ∈ R

4 = [ξ(t)θ , ξ
(t)
x , ξ

(t)
y , ξ

(t)
z]T and is assumed to evolve

over time while being governed by a general nonlinear dynamical system of the
form ξ(t+1) = f(ξ(t), u(t)) where u(t) ∈ R

m is the control vector at time t. Such
nonlinear dynamical system is assumed to be time-sampled from an underlying
continuous-time system with a sample time equal to τ .

Runway Parameters. We consider runway that consists of two line segments L
and R. Each line segment can be characterized by its start and end point (mea-
sured also in the Runway Coordinate Frame) i.e. L = [(Lx, 0, Lz), (Lx, 0, Lz +rl)]
and R = [(Rx, 0, Rz), (Rx, 0, Rz +rl)], with Rx = Lx +rw and Rz = Lz where rw

216 U. Santa Cruz and Y. Shoukry

Fig. 1. Main coordinate frames: Runway (RCF), Camera (CCF) and Pixel (PCF).

and rl refers to the runway width and length (standard international runways
are designed with rw = 40 m wide and rl = 3000 m).

Camera Model. We assume the aircraft is equipped with a monochrome cam-
era C that produces an image I of q × q pixels. Since the camera is assumed to
be monochromatic, each pixel in the image I takes a value of 0 or 1. The image
produced by the camera depends on the relative location of the aircraft with
respect to the runway. In other words, we can model the camera C as a function
that maps aircraft states into images, i.e., C : R4 → B

q×q. Although the images
created by the camera depend on the runway parameters, for ease of notation,
we drop this dependence from our notation in C.

We utilize an ideal pinhole camera model [21] to capture the image formation
process of this camera. In general, a point p = (px, py, pz) in the Runway Coor-
dinate Frame (RCF) is mapped into a point p′ = (p′

xCCF
, p′

yCCF
, p′

zCCF
) on the Camera

Coordinate Frame (CCF) using a translation and rotation transformations defined
by [13]: ⎡

⎢⎢⎣
p′

xCCF

p′
yCCF

p′
zCCF

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 x
0 cos θ sin θ y
0 − sin θ cos θ z
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

px

py

pz

1

⎤
⎥⎥⎦ (1)

The camera then converts the 3-dimensional point p′ on the camera coordinate
frame into two-dimensional point p′′ on the Pixel Coordinate Frame (PCF) as:

p′′ =
(
p′′

xPCF
, p′′

yPCF

)
=

(⌊
qxPCF

qzPCF

⌋
,

⌊
qyPCF

qzPCF

⌋)
(2)

where: ⎡
⎣

qxPCF

qyPCF

qzPCF

⎤
⎦ =

⎡
⎣

ρw 0 u0

0 −ρh v0
0 0 1

⎤
⎦

⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

p′
xCCF

p′
yCCF

p′
zCCF

1

⎤
⎥⎥⎦ (3)

and f is the focal length of the camera lens, W is the image width (in meters),
H is the image width (in meters), WP is the image width (in pixels), HP is the
image height (in pixels), and u0 = 0.5×WP, v0 = 0.5×HP, ρw = WP

W , ρh = HP
H .

NNLander-VeriF: A Neural Network Formal Verification Framework 217

What is remaining is to map the coordinates of p′′ =
(
p′′

xPCF
, p′′

yPCF

)
into a

binary assignment for the different q × q pixels. But first, we need to check if
p′′ is actually inside the physical limits of the Pixel Coordinate Frame (PCF) by
checking:

visible =

{
yes |p′′

xPCF
| ≤ W

2 ∨ |p′′
yPCF

| ≤ H
2

no otherwise
(4)

Whenever the point p′′ is within the limits of PCF, then the pixel I[i, j] should
be assigned to 1 whenever the index of the pixel matches the coordinates(
p′′

xPCF
, p′′

yPCF

)
, i.e.:

I[i, j] =

{
1 (p′′

xPCF
== i − 1) ∧ (p′′

yPCF
== j − 1) ∧ visible

0 otherwise
(5)

for i, j ∈ (1, 2, 3...WP). Where for simplicity, we set HP = WP for square images.
This process of mapping a point p in the Runway Coordinate Frame (RCF) to a
pixel in the image I is summarized in Fig. 1 (right).

Neural Network Controller. The aircraft is controlled by a vision based
neural network NN controller that maps the images I created by the camera C
into a control action, i.e., NN : Bq×q → R

m. We confine our attention to neural
networks that consist of multiple layers and where Rectified Linear Unit (ReLU)
are used as the non-linear activation units.

Problem Formulation. Consider the closed-loop vision based system Σ defined
as:

Σ :
{

ξ(t+1) = f(ξ(t),NN (C(ξ(t)))).

A trajectory of the closed loop system Σ that starts from the initial condition ξ0
is the sequence {ξ(t)}∞

t=0,ξ(0)=ξ0
. Consider also a set of initial conditions X0 ⊂ R

4.
We denote by ΣX0 the trajectories of the system Σ that starts from X0, i.e.,

ΣX0 =
⋃

ξ0∈X0

{ξ(t)}∞
t=0,ξ(0)=ξ0

.

We are interested in checking if the closed-loop system meets some specifica-
tions that are captured using Linear Temporal Logic (LTL) (or a Bounded-Time
LTL) formula ϕ. Examples of such formulas may include, but are not limited to:

– ϕ1 := ♦{ξθ = 0 ∧ ξy = 0} which means that the aircraft should eventually
reach an altitude of zero while the pitch angle is also zero. Satisfying ϕ1

ensures that the aircraft landed on the ground.
– ϕ2 := �{ξz ≤ 3000} which ensures the aircraft will always land before the

end of the runway (assuming a runway length that is equal to 3000 m).

For the formal definition of the syntax and semantics of LTL and Bounded-Time
LTL formulas, we refer the reader to [5]. Given a formula ϕ that specifies correct
landing, our objective is to design a bounded model checking framework that
verifies if all the trajectories ΣX0 satisfy ϕ (denoted by ΣX0 |= ϕ).

218 U. Santa Cruz and Y. Shoukry

3 Framework

The verification problem described in Sect. 2 is challenging because it needs to
take into account the nonlinear dynamics of the aircraft f , the image formation
process captured by the camera model C, and the neural network controller NN .

Fig. 2. Main elements of the proposed NNLander-VeriF framework: (A): construction
of the augmented neural network that captures both perception and control, (B:) sym-
bolic analysis of aircraft trajectories, (C:) neural network verification.

Our framework starts by re-modeling the pinhole camera model as a ReLU
based neural network (with manually designed weights) that we refer to as the
perception neural network NN C . To facilitate this re-modeling, we need first to
apply a change of coordinates to the states of the dynamical systems. We refer to
the states in the new coordinates as ζ, i.e., ζ = h(ξ). By augmenting NN C along
with the neural network controller NN , one can obtain an augmented neural
network NN aug : Rn → R

m defined as NN aug = NN ◦ NN C and a simplified
closed-loop dynamics, in the new coordinates, written as:

Σ :
{

ζ(t+1) = g(ζ(t),NN aug(ζ(t))).

Now, assume that we are given (i) a region Ξ in the new coordinate system
and (ii) the maximal set of control actions (denoted by UΞ) that can be applied
at Ξ while ensuring the system adhere to the specification ϕ. Given this pair
(Ξ,UΞ) one can always ensure that the augmented neural network NN aug will
produce actions in the set UΞ whenever its inputs are restricted to Ξ by checking
the following property:

∀ζ ∈ Ξ.
(NN aug(ζ) ∈ UΞ

)
(6)

NNLander-VeriF: A Neural Network Formal Verification Framework 219

which can be easily verified using existing neural network model checkers [10,18,
20]. In other words, checking the augmented neural network against the property
above ensures that all the images produced within the region Ξ will force the
neural network controller NN to produce control actions that are within the set
of allowable actions UΞ .

To complete our framework, we need to partition the state-space into regions
(Ξ1, Ξ2, . . .). Each region is a ball parametrized by a center ζi and a radius ε. For
each region, our framework will compute the set of allowable control actions at
each of these regions (UΞ1 ,UΞ2 , . . .). Our framework will also parametrize each
set UΞi

as a ball with center ci and radius μi, i.e., UΞi
= {u ∈ R

4| ‖u − ci‖ ≤ μi}.
The computations of the pairs (Ξi,UΞi

) can be carried out using the knowledge
of the aircraft dynamics f . In summary, and as shown in Fig. 2, our framework
will consist of the following steps:

– (A) Compute the augmented neural network: Using the physical model
of the pinhole camera, our framework will re-model the pinhole camera C as
a neural network that can be augmented with the neural network controller
to produce a simpler model that is amenable for verification.

– (B) Compute the set of allowable control actions: We use the properties
of the dynamical system f to compute the set of safe control actions UΞi

for
each partition Ξi of the state space.

– (C) Apply the neural network model checker: We use the neural net-
work model checkers to verify that NN aug satisfies (6) for each identified pair
(Ξ,UΞi

).

The remainder of this paper is devoted to providing details for the steps
required for each of the three phases above.

4 Neural Network Augmentation

In this section, we focus on the problem of using the geometry of the runway
to develop a different mathematical model for the camera C. As argued in the
previous section and shown in Fig. 3, our goal is to obtain a model with the same
structure of a neural network (i.e., consists of several layers and neurons) and
contains only ReLU activation units. We refer to this new model as NN C .

The main challenge to construct NN C is the fact that ReLU based neural
networks can only represent piece-wise affine (or linear) functions [22]. Never-
theless, the camera model C is inherently nonlinear due to the optical projection
present in any camera. Such non-linearity can not be expressed (without any
error) via a piece-wise affine function. To solve this problem, we propose a change
of coordinates to the aircraft states h. Such change of coordinates is designed to
eliminate part of the camera’s non-linearity while allowing the remainder of the
model to be expressed as a piece-wise affine transformation.

Change of Coordinates: Recall the runway consists of line segments L and
R (defined in Sect. 2). Instead of measuring the state of the aircraft by the

220 U. Santa Cruz and Y. Shoukry

Fig. 3. Augmented network NN aug maps the output ζ to control action u.

vector ζ = [ξθ, ξx, ξy, ξz], we propose measuring the state of the aircraft by the
projections of the end points of the lines L and R on the Pixel Coordinate Frame
PCF. Formally, we define the change of coordinates as:

ζ = hr,C(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1

ζ2

ζ3

ζ4

ζ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρwf Lx+ξx

Lzcos(ξθ)+ξz
+ u0

−ρhf
Lzsin(θ)+ξy

Lzcos(ξθ)+ξz
+ v0

ρwf Lx+ξx

(Lz+rL)cos(ξθ)+ξz
+ u0

−ρhf
(Lz+rL)sin(ξθ)+ξy

(Lz+rL)cos(ξθ)+ξz
+ v0

ζ1ζ4 − ζ2ζ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where f, ρh, ρw, v0, u0 are the camera physical parameters as defined in Sect. 2.
In other words, the pair (ζ1, ζ2) is the projection of the start point of the runway
(Lx, 0, Lz) onto the Pixel Coordinate Frame PCF (while ignoring the flooring
operator for now). Similarly, the pair (ζ3, ζ4) is the projection of the endpoint of
the runway (Lx, 0, Lz + rL) onto the PCF frame. Indeed, we can define a similar
set of variables for the other line segment of the runway, R. The dependence of
this change of coordinates on the camera parameters (e.g., the focal length f)
and the runway parameters justifies the subscripts in our notation hr,C . We refer
to the new state-space as Ξ.

Before we proceed, it is crucial to establish the following result.

Proposition 1. The change of coordinates function hr,C is bijective.

The proof of such proposition is based on ensuring that the inverse function h−1
r,C

exists. For brevity, we will omit the details of this proof. Since hr,C is bijective,
we can re-write the closed-loop dynamics of the system as:

Σζ :
{

ζ(t+1) = hr,C ◦ f
(
h−1

r,C(ζ(t)),NN (C(h−1
r,C(ζ(t))))

)
(8)

Indeed, if Σζ satisfies the property ϕ then do the original system Σ and vice
versa, thanks for the fact that hr,C is bijective. This is captured by the following
proposition:

NNLander-VeriF: A Neural Network Formal Verification Framework 221

Proposition 2. Consider the dynamical systems Σ and Σζ . Consider a set of
initial states X0 and an LTL formula ϕ, the following holds:

ΣX0 |= ϕ ⇐⇒ ΣΞ0
ζ |= ϕ

where Ξ0 = {hr,C(ξ) | ξ ∈ X0}.

Neural Network-Based Model for Perception: While the model of the
pinhole camera (defined in Eq. (1)–(5)) focuses on mapping individual points
into pixels, we aim here to obtain a model that maps the entire runway lines
R and L into the corresponding binary assignment for each pixel in the image.
Therefore, it is insufficient to analyze the values of ζ1, . . . , ζ4 which encodes the
start point (ζ1, ζ2) and the endpoint (ζ3, ζ4) of the runway line segments on the
PCF. To correctly generate the final image I ∈ B

q×q, we need to map every point
between (ζ1, ζ2) and (ζ3, ζ4) into the corresponding pixels.

While the pinhole camera (defined in Eq. (1)–(4)) uses the information in the
Pixel Coordinate Frame (PCF) to compute the values of each pixel, we instead
rely on the information in the Camera Coordinate Frame (CCF) to avoid the
nonlinearities added by the flooring operator in (2) and the logical checks in
(4)–(5). For each pixel, imagine a set of four line segments AB,BC,CD,DA in
the Pixel Coordinate Frame (PCF) that defines the edges of each pixel (see Fig. 4
for an illustration). To check if a pixel should be set to zero or one, it is enough
to check the intersection between the line segment (ζ1, ζ2) − (ζ3, ζ4) and each
of the lines A–B, B–C, C–D, D–A. Whenever an intersection occurs, the pixel
should be assigned to one.

To intersect one of the pixel edges, e.g., the edge A − B = (Ax, Ay) −
(Bx, By), with the line segment (ζ1, ζ2) − (ζ3, ζ4), we proceed with the stan-
dard line segment intersection algorithm [6] which compute four values named
O1, O2, O3, O4 as:

O1 = ζ1(Ay − By) + ζ2(Bx − Ax) + AxBy − AyBx (9)
O2 = ζ3(Ay − By) + ζ4(Bx − Ax) + AxBy − AyBx (10)
O3 = −ζ1(Ay) + ζ2(Ax) + ζ3(Ay) − ζ4(Ax) + ζ5 (11)
O4 = −ζ1(By) + ζ2(Bx) + ζ3(By) − ζ4(Bx) + ζ5 (12)

The line segment algorithm [6] detects an intersection whenever the following
condition holds:

(sign(O1) = sign(O2)) ∧ (sign(O3) = sign(O4)) (13)

Luckily, we can organize the equations (9)–(13) in the form of a neural net-
work with a Rectifier Linear Activation Unit (ReLU). ReLU nonlinearity takes
the form of ReLU(x) = max{x, 0}. To show this conversion, we first note that the
values of Ax, Ay, Bx, By are constant and well defined for each pixel. So assum-
ing the input to such a neural network is the vector ζ, one can use equations
(9)–(12) to assign the weights to the input layer of the neural network (as shown

222 U. Santa Cruz and Y. Shoukry

in Fig. 4). To check the signs of O1, . . . , O4, we recall the well-known identity for
numbers of the same sign:

sign(a) = sign(b) ⇐⇒ |a + b| − |a| − |b| = 0 (14)

The absolute function can be implemented directly with a ReLU using the iden-
tity:

|x| = max{x, 0} + max{−x, 0}. (15)

Fig. 4. Line-segment intersection algorithm: The runway line (in red) as seen by the
camera intersects the pixel edge A–B (in blue), this single edge intersection is detected
by using a layer of six ReLU’s. (Color figure online)

The process above has to be repeated four times (to account for all edges
A–B, B–C, C–D, D–A of a pixel). Finally, to check that at least one intersection
occurred, we compute the minimum across the results from all the intersections.
Calculating the minimum itself can be implemented directly with a ReLU using
the identity:

min{a, b} =
a + b

2
− |a − b|

2
. (16)

The overall neural network requires 68 × q × q ReLU neurons for each projected
line segment. The final architecture is shown in Fig. 5. We refer to the resulting
neural network as NN C(ζ(t)).

It is direct to show that the constructed neural network NN C(ζ(t)) will
produce the same images obtained by the pinhole camera model C, i.e.,

C(h−1
r,C(ζ(t))) = NN C(ζ(t))

Finally, by substituting in (8), we can now re-write the closed-loop dynamics as:

Σζ :
{

ζ(t+1) = g
(
h−1

r,C(ζ(t)),NN aug(ζ(t))
)

(17)

where NN aug = NN ◦ NN C and g = hr,C ◦ f .

NNLander-VeriF: A Neural Network Formal Verification Framework 223

Fig. 5. NN C checks the intersection between line segment (ζ1, ζ2) − (ζ3, ζ4) and all
edges of each cell pixel of the final image.

5 Identifying the Allowable Control Actions Using
Symbolic Abstractions

As shown in Sect. 3, our framework aims to split the verification of the dynamical
system (17) into several NN model checking queries. Each query will verify the
correctness of the closed-loop system within a region (or a symbol) Ξi of the state
space. To prepare for such queries, we need to compute a set of input/output
pairs (Ξi,UΞi

) with the guarantee that all the control inputs inside each UΞi
will

produce trajectories that satisfy the specifications ϕ. In this section, we provide
details of how to compute the pairs (Ξi,UΞi

).

State Space Partitioning: Given a partitioning parameter ε, we partition the
new coordinate space of ζ into L regions Ξ1, Ξ2, . . . , ΞL such that each Ξi is
an infinity-norm ball with radius ε and center ci. For simplicity of notation, we
keep the radius ε constant within all the regions Ξi. However, the framework is
generic enough to account for multi-scale partitioning schemes similar to those
reported in the literature of symbolic analysis of hybrid systems [15].

Obtain Symbolic Models: Given the regions Ξ1, Ξ2, . . ., the next step is to
construct a finite-state abstraction for the closed loop system (17). Such finite
state abstraction takes the form of a finite state machine Σq = (Sq, σq) where
Sq is the set of finite states and σq : Sq → 2Sq is the state transition map of the
finite state machine, defined as:

Sq = {1, 2, . . . L} and j ∈ σq(i) ⇐⇒ g
(
h−1

r,C(ci),NN aug(ci)
)

∈ Ξj . (18)

In other words, the finite state machine (FSM) has a number of states L that is
equal to the number of regions Ξi, i.e., each finite state symbolically represents
a region. A transition between the state i and j is added to the state transition
map σq whenever applying the NN controller to the center of the region i (i.e.,
ci) will force the next state of the system to be within the region Ξj . The value

of g
(
h−1

r,C(ci),NN aug(ci)
)

can be directly computed by evaluating the neural
network NN aug at the center ci followed by evaluating the function g.

224 U. Santa Cruz and Y. Shoukry

So far, the state transition map σq accounts only for actions taken at the
center of the region. To account for the control actions in all the states ζi ∈ Ξi,
we need to bound the distance between the trajectories that start at the center
of the region ci and the trajectories that start from any other state ζi ∈ Ξi.
For such bound to exist, we enforce an additional assumption on the dynamics
of the aircraft model f (and hence g = hr,C ◦ f) named δ forward complete
(δ-FC) [28]. Given the center of a region ci and an arbitrary state ζi ∈ Ξi, the
δ-FC assumption bounds the distance, denoted by δζ , between the trajectories
that starts at ζi and the center ci as:

δζ ≤ β(ε, τ) + γ(||NN aug(ci) − NN aug(ζi)||∞, τ) (19)

where τ is the sample time used to obtain the dynamics f (as explained in
Sect. 2) and β and γ are class K∞ functions that can be computed from the
knowledge of the dynamics f . Such δ-FC assumption is shown to be mild and
does not require the aircraft dynamics to be stable. For technical details about
the δ-FC assumption and the computation of the functions β and γ, we refer
the reader to [27]. Given the inequality (19), we can revisit the definition of the
state transition map σq to account for all possible trajectories as:

j ∈ σq(i) ⇐⇒ g
(
h−1

r,C(ci),NN aug(ci)
)

+ δζ ∈ Ξj . (20)

With such a modification, it is direct to show the following result:

Proposition 3. Consider the dynamical systems Σζ and Σq. Consider also a
set of initial conditions Ξ0 and a specification ϕ. The following holds:

ΣS0
q |= ϕ ⇒ ΣΞo

ζ |= ϕ

where S0 = {i ∈ {1, . . . , L} | ∃ ζ0 ∈ Ξ0 : ζ0 ∈ Ξi}.
This proposition follows directly from Theorem 4.1 in [28].

Compute the Set of Allowable Control Actions: Unfortunately, computing
the norm ||NN aug(ci) − NN aug(ζi)||∞ (and hence δζ) is challenging. As shown
in [16], computing such norm is NP-hard and existing tools in the literature
focus on computing an upper bound for such norm. Nevertheless, the bounds
given by the existing literature constitute large error margins that will render
our approach severely conservative.

To alleviate the problem above, we use the inequality (19) in a “backward
design approach”. We first search for the maximum value of δζ that renders
Σq compatible with the specification. To that end, we substitute the norm
||NN aug(ci) − NN aug(ζi)||∞ with a dummy variable μ. By iteratively increas-
ing the value of μ, we will obtain different Σq, one for each value of μ. We use a
bounded model checker for each value of μ to verify if the resulting Σq satisfies
the specification. We keep increasing the value of μ until the resulting Σq no
longer satisfies ϕ. We refer to this value as μmax. What is remaining is to ensure
that the neural network indeed respects the bound:

||NN aug(ci) − NN aug(ζi)||∞ ≤ μmax

NNLander-VeriF: A Neural Network Formal Verification Framework 225

Algorithm 1. LanderNN-VeriF
Input: Ξ, Ξ0, ϕ, ε, τ , β, γ, NN aug, T , μ, μ, f , h, h−1

Output: STATUS

1: {Ξ1, Ξ2, . . . , ΞL} = Partition into regions(Ξ, ε)
2: μ = μ
3: while statusFSM == UNSAT do
4: Σq = Create FSM(f, h, h−1, τ, β, γ, NN aug, Ξ1..L, μ)
5: statusFSM = Check FSM(ϕ, Σq, T)
6: if μ ≤ μ then
7: μ = Increase MU(μ)
8: end if
9: end while

10: for i = 1 to L do
11: STATUS NN[i] = NN Verifier(NN aug, Ξi, μ)
12: if STATUS NN[i] == SAT then
13: STATUS = UNSAFE
14: else
15: STATUS = SAFE
16: end if
17: end for
18: return STATUS

To that end, we define the set of allowable control actions UΞi
as:

UΞi
= Bμmax(NN aug(ci))

It is then direct to show the following equivalence:

||NN aug(ci) − NN aug(ζi)||∞ ≤ μmax ⇐⇒ ∀ζ ∈ Ξi.
(NN aug(ζ) ∈ UΞi

)

where UΞi
= Bμmax(NN aug(ci)). Luckily, the right-hand side of this equiva-

lence is precisely what neural network model checkers are capable of verifying.
Algorithm 1 summarizes this discussion. The following result captures the guar-
antees provided by the proposed framework:

Proposition 4. The LanderNN-VeriF algorithm (Algorithm 1) is sound but not
complete.

6 Numerical Example

We illustrate the results in this paper using a vision-based aircraft landing sys-
tem. We use a fixed-wing aircraft model defined using the guidance kinematic
model [3], where orientations (in Rads) are defined by the course angle χ (rota-
tion around yCCF axis), pitch angle θ (rotation around xCCF axis) and Vg denotes
the total Aircraft velocity relative to the ground. We further simplify the sys-
tem by keeping the course angle pointing towards the runway (χ = 0), similarly
velocity is kept as constant. Moreover, θ̇ (Rad/s) is regarded as the control

226 U. Santa Cruz and Y. Shoukry

input u. According to this model, the state vector of the aircraft evolves over
time while being governed by the following dynamical system [3]:

ξ(t+1)
z = ξ(t)z + Vgτ cos (ξ(t)θ) (21)

ξ(t+1)
y = ξ(t)y + Vgτ sin (ξ(t)θ) (22)

ξ
(t+1)
θ = ξ

(t)
θ + u(t)τ (23)

where τ is the sampling time. For our simulations we consider Vg = 25m
s

and τ = 0.1. Moreover based on airport standards we consider the run-
way segments (in meters) defined by L = [(Lx, 0, Lz), (Lx, 0, Lz + rl)] and
R = [(Rx, 0, Rz), (Rx, 0, Rz + rl)] where Rx = 20, Lx = −20, Rz = 0, Lz = 0,
rl = 3000. For the camera parameters we consider images of 16 × 16 pixels and
focal length of 400mm.

We note that the system dynamics (21)–(23) is a δ-FC system. In particular,
by using the method [27] and the δ-FC Lyapunov function V(ξ, ξ′) = ||ξ − ξ′||22
one can show that:

β(ζ1, ζ2, ζ3, τ) =
√

8
√

ζ21 + ζ22 + ζ23 eτ (24)

γ(μ, τ) =
√

Vg(e2τ − 1)μ (25)

We work on the output space set D = [ζ1 × ζ2 × ζ3] = [0, 16]× [0, 16]× [0, 16]
of Σζ with a precision ε = 1, thus our discretized grid consists of 163 cubes.

We used Imitation Learning to train a fully connected ReLU Neural Network
controller (NN) of 2 layers with 128 Neurons each. Trajectories from different
initial conditions were collected and used to train the network. Our objective is
to verify that the aircraft landing using the trained NN aug satisfies the safety
specification φ = �¬qunsafe where qunsafe = [ξz = 800, ξy = 200, ξθ = 1] which
corresponds to an unsafe region while landing.

In what next, we report the execution time to verify the trained network.
All experiments were executed on an Intel Core i7 processor with 50 GB of
RAM. First, we implemented our Vision Network (NN C) for images of 16 × 16
pixels using Keras. Similarly, we used Keras composition libraries to merge the
controller and perception networks into the augmented network (NN aug), a
landing trajectory using NN aug is shown in Fig. 6 and its corresponding camera
view is shown in Fig. 7.

Fig. 6. Aircraft landing using augmented controller NN aug. Left: aircraft position
(ξy, ξz); Middle: aircraft angle (ξθ); Right: aircraft control (u = NN aug).

NNLander-VeriF: A Neural Network Formal Verification Framework 227

Fig. 7. Landing camera view using 16×16 pixels resolution. Left: ξ1 = [1000, 1000, π
4
],

Middle: ξ300 = [400, 300, π
8
], Right: ξ1000 = [5, 5, 0].

We used a Boolean SAT solver named SAT4J [4] to implement the Check FSM
function in Algorithm 1. The finite state machine Σq was encoded using a set of
Boolean variables and our implementation performed a bounded model checking
for the generated FSMs (the bounded model checking horizon was set to 20).
We constructed FSMs with the following values μ = [0.1, 0.2, 0.3, 0.6, 0.8, 0.9, 1.1]
until a value of μmax = 1.1 was found. The execution time for creating Σq and
verifying its properties with the bounded model checker increased monotonically
from 2000 seconds for μ = 0.1 to 7000 seconds for μ = 1.1. As expected, the
higher the value of μ, the higher the number of transitions in Σq, and the higher
the time needed to create and verify.

Finally, we used PeregriNN [20] as the NN model checker. Figure 8 reports the
execution time for verifying the neural network property in 100 random regions,
and Fig. 9 in regions 1 to 500. The average execution time was 76 s per region
and the NN was found to be safe and satisfying the specification ϕ.

Fig. 8. Execution time for verifying ϕ
in 100 different random regions.

Fig. 9. Execution time for verifying ϕ in
regions 1 to 500.

7 Conclusion and Future Work

Due to the recent surge in vision-based autonomous systems, it is becoming
increasingly important to provide frameworks to facilitate its formal verifica-
tion. In this work we have proposed two key contributions: first, a generative

228 U. Santa Cruz and Y. Shoukry

model that encodes part of the camera image formation process into a ReLU
neural network, where the neuronal weights are fully determined by the camera
intrinsic parameters, and second, a framework that uses the characteristics of the
dynamical system (i.e. δ-FC) to compute the set of safe control actions; Finally,
having both contributions allows us to use off-the-shelf neural network checkers
to verify the entire system.

At the same time, there are some limitations. First, the generative model
we developed insists on modeling the image formation process with a piece-
wise affine (PWA) function which facilitates encoding it as a ReLU network.
However, this restriction may in odds with realistic scenarios which may not
be captured exactly by CPWA functions. Nevertheless, it is widely known that
CPWA functions can approximate general nonlinear functions with some error.
This also leads to the second limitation, namely, the inability to consider noise
in the image formation process. Finally, the number of pixels has a direct effect
on the scalability of the framework, as a consequence further improvements are
required to build more concise finite-state machine abstractions of the physical
system.

Moving forward, we plan to extend our approach in different directions to
account for the aforementioned limitations. First, we seek to generalize the frame-
work to account for uncertainties in the camera model, the image formation
model, and the environment. Second, we intend to process more complex image
features (e.g. combinations of multiple lines and curvatures) by developing bet-
ter generative models with provable error bounds. Finally, we aim to verify the
robustness of neural network controllers to external disturbances (e.g., wind)
while developing better scalable algorithms.

References

1. International Verification of Neural Networks Competition 2020 (VNN-COMP
2020). https://sites.google.com/view/vnn20

2. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved Geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020, Part I. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 4

3. Beard, R.W., Mclain, T.W.: Small Unmanned Aircraft: Theory and Practice.
Princeton University Press, Princeton (2012)

4. Berre, D.L., Parrain, A.: The Sat4j library. Boolean Model. Comput. 7, 59–64
(2010)

5. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of Model
Checking, vol. 10. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-
10575-8

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The
MIT Press, Cambridge (2003)

7. Cruz, U.S., Ferlez, J., Shoukry, Y.: Safe-by-repair: a convex optimization approach
for repairing unsafe two-level lattice neural network controllers. arXiv preprint
arXiv:2104.02788 (2021)

https://sites.google.com/view/vnn20
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
http://arxiv.org/abs/2104.02788

NNLander-VeriF: A Neural Network Formal Verification Framework 229

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

9. Faugeras, O., Faugeras, O.A.: Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, Cambridge (1993)

10. Ferlez, J., Khedr, H., Shoukry, Y.: Fast BATLLNN: fast box analysis of two-level
lattice neural networks. In: Proceedings of the 25th ACM International Conference
on Hybrid Systems: Computation and Control (2022)

11. Ferlez, J., Shoukry, Y.: Bounding the complexity of formally verifying neural net-
works: a geometric approach. In: 2021 60th IEEE Conference on Decision and
Control (CDC), pp. 5104–5109. IEEE (2021)

12. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Ver-
ifAI. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020, Part I. LNCS, vol. 12224, pp.
122–134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 6

13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2003)

14. Hsieh, C., Joshi, K., Misailovic, S., Mitra, S.: Verifying controllers with convo-
lutional neural network-based perception: a case for intelligible, safe, and precise
abstractions. arXiv preprint arXiv:2111.05534 (2021)

15. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.K.: Multi-layered abstraction-
based controller synthesis for continuous-time systems. In: Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (part of
CPS Week), pp. 120–129 (2018)

16. Kallus, N., Zhou, A.: Assessing disparate impact of personalized interventions:
identifiability and bounds. Adv. Neural Inf. Process. Syst. 32 (2019)

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63387-9 5

18. Katz, G., et al.: The marabou framework for verification and analysis of deep neural
networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019, Part I. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

19. Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of
image-based neural network controllers using generative models. arXiv preprint
arXiv:2105.07091 (2021)

20. Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRiNN: penalized-relaxation greedy neu-
ral network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021, Part I. LNCS,
vol. 12759, pp. 287–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81685-8 13

21. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From
Images to Geometric Models, vol. 26. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-0-387-21779-6

22. Nagamine, T., Mesgarani, N.: Understanding the representation and computation
of multilayer perceptrons: a case study in speech recognition. In: International
Conference on Machine Learning, pp. 2564–2573. PMLR (2017)

23. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 147–156 (2019)

24. Sun, X., Shoukry, Y.: Provably correct training of neural network controllers using
reachability analysis. arXiv preprint arXiv:2102.10806 (2021)

https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-53288-8_6
http://arxiv.org/abs/2111.05534
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/2105.07091
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-0-387-21779-6
https://doi.org/10.1007/978-0-387-21779-6
http://arxiv.org/abs/2102.10806

230 U. Santa Cruz and Y. Shoukry

25. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020, Part I. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53288-8 1

26. Wang, Y.S., Weng, L., Daniel, L.: Neural network control policy verification
with persistent adversarial perturbation. In: International Conference on Machine
Learning, pp. 10050–10059. PMLR (2020). https://proceedings.mlr.press/v119/
wang20v.html

27. Zamani, M.: Control of cyber-physical systems using incremental properties of
physical systems. Ph.D. thesis (2012)

28. Zamani, M., Pola, G., Mazo, M., Jr., Tabuada, P.: Symbolic models for nonlinear
control systems without stability assumptions. IEEE Trans. Autom. Control 57(7),
1804–1809 (2012)

https://doi.org/10.1007/978-3-030-53288-8_1
https://proceedings.mlr.press/v119/wang20v.html
https://proceedings.mlr.press/v119/wang20v.html

The Black-Box Simplex Architecture
for Runtime Assurance
of Autonomous CPS

Usama Mehmood, Sanaz Sheikhi(B), Stanley Bak, Scott A. Smolka,
and Scott D. Stoller

Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
{umehmood,ssheikhi,sbak,sas,stoller}@cs.stonybrook.edu

Abstract. The Simplex Architecture is a runtime assurance framework
where control authority may switch from an unverified and potentially
unsafe advanced controller to a backup baseline controller in order to
maintain the safety of an autonomous cyber-physical system. In this
work, we show that runtime checks can replace the requirement to stat-
ically verify safety of the baseline controller. This is important as there
are many powerful control techniques, such as model-predictive control
and neural network controllers, that work well in practice but are dif-
ficult to statically verify. Since the method does not use internal infor-
mation about the advanced or baseline controller, we call the approach
the Black-Box Simplex Architecture. We prove the architecture is safe
and present two case studies where (i) model-predictive control provides
safe multi-robot coordination, and (ii) neural networks provably prevent
collisions in groups of F-16 aircraft, despite the controllers occasionally
outputting unsafe commands.

Keywords: Black-Box Simplex · Runtime assurance · Autonomous
CPS

1 Introduction

Autonomous cyber-physical systems (CPS) have the potential to transform vital
domains such as transportation, health-care, and energy management. As these
systems perform complex functions, they often require complex designs. More-
over, since autonomous CPS interact with the physical world, they are typically
safety-critical. Formal analysis, however, can be difficult for complex systems.

In the development of such CPS, powerful control techniques such as model-
predictive control and deep reinforcement learning are increasingly being used
instead of traditional controller design techniques. Such trends exacerbate the
safety verification problem. Additionally, there is increasing interest in systems
that can learn in the field, changing their behaviors based on observations. Clas-
sical verification strategies are poorly suited for such designs.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 231–250, 2022.
https://doi.org/10.1007/978-3-031-06773-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_12

232 U. Mehmood et al.

Fig. 1. The Black-Box Simplex Architecture guarantees safety despite a black-box
advanced controller and a black-box baseline controller.

One approach for dynamically providing safety for systems with complex and
unverified components is runtime assurance [9], where the state of the plant is
monitored at runtime to mitigate possible imminent violations of formal prop-
erties. A well-known runtime assurance technique is the Simplex Control Archi-
tecture [36,37], which has been applied to a wide range of systems [10,30,32].
In the original Simplex Architecture, shown in Fig. 1(a), the baseline controller
(BC) and the decision module (DM) are part of the trusted computing base. The
DM monitors the state of the system and switches control from the advanced
controller (AC) to the BC if using the former could result in a safety violation
in the near future. The original Simplex Architecture requires creating a prov-
ably safe BC, which can be difficult. In this work, we eliminate this requirement
through a greater reliance on runtime verification.

In the proposed Black-Box Simplex Architecture (BSA), shown in Fig. 1(b),
the BC (now referred to as the Lookahead Baseline Controller (LBC)), no longer
needs to be statically verified, and can even be incorrect. The tradeoff is that
the DM performs more extensive runtime checking and stores backup command
sequences from previous computation steps. The DM performs simulation or
reachability analysis based on a known system model. If the DM’s computation
time is too large, BSA keeps the system safe by switching control to a stored
command sequence generated at an earlier step by the LBC and checked for
safety by the DM. The specifics of the approach will be discussed in Sect. 2.

We prove two theorems about this architecture: (i) safety is always guaran-
teed, and (ii) when the baseline and advanced controllers perform well (to be for-
mally defined in Sect. 2), the architecture is transparent: the advanced controller
appears to have full control of the system. The practicality of these assumptions
and the utility of the BSA architecture itself is demonstrated through two signifi-
cant case studies. In the first, a multi-robot coordination system uses a BC based
on a model-predicative control algorithm with a potential-field approach for col-
lision avoidance. Such a setup is difficult to statically verify as it depends on
the online solution of a nonlinear optimization problem. In the second, a mid-air
collision avoidance system for groups of F-16 aircraft is created from imperfect
logic encoded in neural networks. A preview of the second case study is shown
in Fig. 2, where directly using the neural networks causes a collision (left), but
the Black-Box Simplex approach safely navigates the scenario, resulting in an
emergent maneuver similar to a roundabout (right).

The Black-Box Simplex Architecture for Runtime Assurance of CPS 233

Fig. 2. Black-Box Simplex safely navigates complex scenarios. In the 15-aircraft case,
all aircraft cross the circle while maintaining a 1500 ft separation distance.

The rest of the paper is organized as follows. Section 2 presents a formal
definition of the Black-Box Simplex Architecture, including proofs of safety and
transparency. Section 3 features two case studies implementing the architecture.
Section 4 discusses related work and Sect. 5 offers our concluding remarks.

2 Black-Box Simplex

The traditional Simplex Architecture, shown in Fig. 1(a), preserves the safety of
the system while permitting the use of an unverified AC. It does this by using
the AC in conjunction with a verified BC and a verified DM. The DM cannot
simply check if the next state is safe, as cyber-physical systems have inertia and
it may be too late to take corrective action. Rather, the verified design of a
Simplex system usually requires offline reasoning with respect to a trusted BC
and the system dynamics.

If the system dynamics are linear and the admissible states are defined with
linear constraints, a state-feedback BC and a DM can be synthesized by solving a
linear matrix inequality [36]. If the system dynamics or constraints are nonlinear,
however, there is no direct approach to create a trusted BC and DM. This
prevents more widespread use of the traditional Simplex Architecture.

The proposed Black-Box Simplex Architecture removes the requirement that
the BC is statically verified, allowing provable safety with both an unverified AC
and an unverified BC. Its architecture is shown in Fig. 1(b). Apart from elimi-
nating the need to establish safety of the BC, BSA differs from the traditional
Simplex Architecture in other important ways. First, the AC shares its com-
mand with the LBC instead of passing it directly to the DM. Second, the LBC
uses this command as the starting point of a candidate safe command sequence.
(Sanaz: inconsistant with Sect. 3.2).

Candidate command sequences may be generated using state-of-the-art con-
troller designs, including neural networks trained with reinforcement learning or

234 U. Mehmood et al.

MPC. Note that a candidate command sequence is not guaranteed to be safe
until it is verified by the DM through a runtime check. Specifically, the DM
checks safety of the LBC’s candidate command sequence, rejecting it if safety is
not ensured. The DM checks safety by running simulations (rollouts) for deter-
ministic systems; for systems with uncertainty, it performs online reachability
computation [2,4,21]. BSA does not fail if the DM cannot finish the computation
in time. Rather, it aborts the computation and switches to a backup command
sequence that continues to ensure system safety. It can subsequently switch back
to the AC when the runtime checks finish in time.

As long as the AC drives the system through states from which the LBC
can recover, it continues to actuate the system. However, if the LBC fails to
compute a candidate command sequence that maintains safety—due to a fault
of the unverified AC or the unverified BC, or due to excessive computation time
for any of the components—the DM can still recover the system using the safe
command sequence from the previous step. Note that the DM does not generate
any command sequences. It only performs runtime checks and stores command
sequences to maintain a safe backup plan at all times.

The applicability of BSA depends on the feasibility of two system-specific
steps: (i) constructing candidate command sequences and (ii) proving their safety
at runtime. For some systems, a safe command sequence can simply bring the
system to a stop. An autonomous car, for example, could have a safe com-
mand sequence that steers the car to the side of the road and then stops. A safe
sequence for a drone might direct it to the closest emergency landing location. For
an rapidly-moving autonomous fixed-wing aircraft swarm, a safe sequence could
fly all aircraft in non-intersecting circles to allow time for human intervention.
Proving safety of a given command sequence can also be challenging and depends
on the system dynamics. For nondeterministic systems, this could involve per-
forming reachability computations at runtime [2,4,21]. Such techniques assume
an accurate system model is available in order to compute reachable sets. Notice
that traditional offline control theory also requires this assumption, so we do not
view it as overly burdensome.

In BSA, although both controllers are unverified, we do not combine them
into a single unverified controller. This allows for a logical separation of concerns,
where the AC focuses on making progress on the mission, and the BC focuses
on generating safe backup plans.

2.1 Formal Definition of Black-Box Simplex

We formalize the behavior and requirements for the components of the Black-Box
Simplex Architecture in order to prove properties about the system’s behavior.

Plant Model. We consider discrete-time plant dynamics, modeled as a function

f(xi
︸︷︷︸

state

, ui
︸︷︷︸

input

, wi
︸︷︷︸

disturbance

) = xi+1
︸︷︷︸

next state

(1)

The Black-Box Simplex Architecture for Runtime Assurance of CPS 235

where i ∈ Z
+ is the time step, xi ∈ X is the system state, ui ∈ U is a control

input command, and wi ∈ W is an environmental disturbance. We sometimes
also consider a deterministic version of the system, where the disturbance wi

can be taken to be zero at every step.

Admissible States. The system is characterized by a set of operational con-
straints which include physical limits and safety properties. States that satisfy
all the operational constraints are called admissible states.

Candidate Command Sequences. A single-input command is some u ∈ U ,
and a k-length sequence of commands is written as u ∈ Uk. The length of a
sequence can be written as ulen = k, where we also can take the length of a
single command, ulen = 1. We use Python-like notation for subsequences, where
the first element in a sequence is u[0], and the rest of the sequence is u[1:].

Decision Module. The decision module in Black-Box Simplex stores a com-
mand sequence s, which we sometimes call the decision module’s state. The
behavior of the DM is defined through two functions, dmupdate and dmstep. The
dmupdate function attempts to modify the DM’s stored command sequence:

dmupdate(x
︸︷︷︸

state

, s
︸︷︷︸

cur seq

, t
︸︷︷︸

proposed seq

) = s′
︸︷︷︸

new seq

(2)

where if s′ = t then we say that the proposed command sequence is accepted ;
otherwise s′ = s and we say that it is rejected. Correctness conditions on dmupdate

are given in Sect. 2.2. Note that the DM will accept a safe command sequence
from the AC even if the previous command sequence from the AC was rejected
because it was unsafe. As in [28], we refer to this as reverse switching, since it
switches control back to the AC.

The dmstep function produces the next command u to apply to the plant, as
well as the next step’s command sequence s′ for the DM:

dmstep(s̄
︸︷︷︸

cur seq

) = (u
︸︷︷︸

next input

, s′
︸︷︷︸

next seq

) (3)

where u = s[0] and s′ is constructed from s̄ by removing the first command (if
the current sequence s has only one command then it is repeated):

s′ =

{

s if slen = 1
s[1:] otherwise

Controllers. The AC and LBC are defined using functions of the system state.
In particular, the AC is defined by a function ac(x) = u, where u ∈ U is a single
command. BSA’s look-ahead baseline controller is defined by lbc(x) = u, where

236 U. Mehmood et al.

u ∈ Uk is a k-length command sequence. The LBC outputs candidate command
sequences that start with a given command, specifically, the command proposed
by the AC. These can be defined with a function lbcac(x) = u, with u[0] = ac(x).
We generally drop the subscript on lbc, as it is clear from context.

Execution Semantics. At step i, given system state xi and DM state si,
the next system state xi+1 and next DM state si+1 are computed with the
following sequence of steps: (1) zi = ac(xi); (2) ti = lbc(xi), with ti[0] = zi;
(3) s′

i = dmupdate(xi, si, ti); (4) (ui, si+1) = dmstep(s′
i); (5) xi+1 = f(xi, ui, wi),

for some disturbance wi ∈ W.

2.2 Safety and Transparency Theorems

We define several relevant concepts and then state and prove safety and trans-
parency theorems for Black-Box Simplex.

Definition 1 (Safe System Execution). A system execution is called safe if
and only if the system state is admissible at every step.

Safety can be ensured by following a permanently safe command sequence from
a given system state.

Definition 2 (Permanently Safe Command Sequence). Given state xi, a
k-length permanently safe command sequence si ∈ Uk is one where the state
xj is admissible at every step j ≥ i, where (ui, si+1) = dmstep(si), and xi+1 =
f(xi, ui, wi), for every choice of disturbance wi ∈ W.

That is, the system state will remain admissible when applying each command in
the sequence si, and then repeatedly using the last command forever, according
to the semantics of dmstep. More general definitions of permanently safe com-
mand sequences could be considered, such as repeating a suffix rather than just
the last command. For simplicity we do not explore this here.

We define recoverable commands to be commands that result in states that
have permanently safe command sequences.

Definition 3 (Recoverable Command). Given state xi, a recoverable com-
mand u is one where there exists a permanently safe command sequence from
xi+1, where xi+1 = f(xi, u, wi), for every choice of disturbance wi ∈ W.

Optimal decision modules are defined by requiring the dmupdate function accept
all sequences that can guarantee future safety.

Definition 4 (Optimal Decision Module). An optimal decision module has
a dmupdate function that accepts t at state x if and only if t is a permanently safe
command sequence starting from x.

A correct DM is one which only accepts sequences that can guarantee future
safety. A correct DM, by this definition, could reject every command sequence.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 237

Definition 5 (Correct Decision Module). A correct decision module has
a dmupdate function that accepts t at state x only if t is a permanently safe
command sequence starting from x.

The role of the BC is to try to keep the system safe. An optimal look-ahead
BC can be defined as one that always produces a permanently safe command
sequence when it exists. This is optimal in the sense that during system execu-
tion, it allows the DM to override the AC as infrequently as possible while still
guaranteeing safety. This notion of optimality can be defined with respect to a
specific advanced controller ac.

Definition 6 (Optimal Look-Ahead Baseline Controller). Given state x
with u = ac(x), if there exists a permanently safe command sequence s from x
with s[0] = u, then an optimal look-ahead baseline controller will always produce
a permanently safe command sequence t, with t[0] = u.

Note that t may differ from s, as there can be multiple permanently safe com-
mand sequences from the same state.

Theorem 1 (Safety). Given initial state x0 along with an initial permanently
safe command sequence s0, if the decision module is correct, then the system’s
execution is safe regardless of the outputs of the advanced controller ac and look-
ahead baseline controller lbc.

Proof. The command executed at each step comes from the state of the decision
module si, which maintains the invariant that si is always a permanently safe
command sequence from the current system state xi. The dmupdate function can
only replace a permanently safe command sequence with another permanently
safe command sequence. Since initially, s0 is permanently safe, then by induction
on the step number, the decision module’s command sequence at every step is
permanently safe, and so the system’s execution is safe.

Although safety is important, achieving only safety is trivial, as a decision
module can simply reject all new command sequences. A runtime assurance
system must also have a transparency property, where the advanced controller
retains control in sufficiently well-designed systems.

Theorem 2 (Transparency). If (i) from every state xi encountered, the out-
put of the advanced controller ac(xi) = zi is a recoverable command, (ii) the
look-ahead baseline controller is optimal, and (iii) the decision module is opti-
mal, then the input command used to actuate the system at every step is the
advanced controller’s command, zi.

Proof. The proof proceeds by stepping through an arbitrary step i of the execu-
tion semantics defined in Sect. 2.1. Since the output of the advanced controller
ac(xi) = zi is assumed to be recoverable, there exists a permanently safe com-
mand sequence from xi that starts with zi. By the definition of an optimal
look-ahead baseline controller, since there exists a permanently safe command
sequence, the output lbc(xi) = t must also be a permanently safe command

238 U. Mehmood et al.

sequence, with t[0] = zi as required by the definition of a look-ahead baseline
controller. In step (3) of the execution semantics, dmupdate(xi, si, ti) = s′

i. Since
t is a permanently safe command sequence and the decision module is optimal,
the command sequence will be accepted by the decision module, and so s′

i = t.
Step (4) of the execution semantics produces ui, which is the first command in
the sequence t. As shown before, this command is equal to zi, which is used in
step (5) of the execution semantics to actuate the system. This reasoning applies
at every step, and so the advanced controller’s command is always used.

Discussion. There are several practical considerations with the described app-
roach. For example, the black-box controllers may not only generate unsafe com-
mands, but a controller implementation may fail to generate a command at all,
for example, entering an infinite loop. To account for such behaviors, a runtime
cap can be used with a default command sequence assumed if the DM receives
no input. For increased protection, the black-box controllers can be isolated on
dedicated hardware [3] so that they do not, for example, crash a shared operat-
ing system. Also, the DM’s analysis of the command sequence is nontrivial and
could involve a runtime reachability computation. If this may take too long, we
again could use a runtime cap. This means that the practicality of the architec-
ture depends on the efficiency of runtime reachability methods, an active area
of research orthogonal to this work.

Another consideration is the feasibility of coming up with permanently safe
command sequences. For systems where landing or coming to a stop is considered
safe, remaining there forever will be permanently safe. Other approaches, which
we use the case studies in the next section, rely on geometric arguments to
show permanent safety. Methods from control theory could also be used for this,
such as computing forward invariant sets [16] or using a locally stable controller.
For example, using the indirect method of Lyapnuov, a closed-loop system’s
equilibrium point x∗ can be proven to be stable using linearization, along with
conservative bounds on its basin of attraction [27]. The BC would then strive
to get the system into the basin of attraction of x∗, and then use the locally
stable controller to ensure indefinite future safety. Directly using the locally
stable controller as the BC, however, would be overly conservative, as it would
not allow the system to leave the (potentially small) basin of attraction.

3 Case Studies

In this section, we apply the approach to two case studies: a multi-robot coor-
dination system, and a mid-air collision avoidance system for groups of F-16
aircraft.

3.1 Multi-robot Coordination

We consider a multi-agent system (MAS), indexed by M = {1, ..., n}, of planar
robots modeled with discrete-time dynamics of the form:

The Black-Box Simplex Architecture for Runtime Assurance of CPS 239

-8 -4 0 4 8

-8

-4

0

4

8

(a) Initial configura-
tion, k = 1

-8 -4 0 4 8

-8

-4

0

4

8

(b) k = 10
-8 -4 0 4

-8

-4

0

4

8

(c) BC fails, k = 11
-12 -8 -4 0 4 8 12

-12

-8

-4

0

4

8

(d) Final configura-
tion, k = 32

Fig. 3. Simulation of the MAS with 7 robots. The DM performs system recovery after
the BC produces an unsafe command sequence. The BC’s proposed path is shown
in part (c) at k = 11, where the two dotted red lines intersect, indicating the future
paths of the agents cross. We represent current positions as red dots, future positions
corresponding to the safe/unsafe command sequences as green/blue dots, velocities as
blue lines, and agent trajectories as grey curves. (Color figure online)

pi(k + 1) = pi(k) + dt · vi(k), |vi(k)| < vmax

vi(k + 1) = vi(k) + dt · ai(k), |ai(k)| < amax
(4)

where pi, vi, ai ∈ R
2 are the position, velocity and acceleration of agent i,

respectively, at time step k, and dt ∈ R
+ is the time step. The magnitudes

of velocities and accelerations are bounded by vmax and amax, respectively. The
acceleration ai is the control input for agent i. The combined state of all agents is
denoted as x = [pT1 , vT

1 , ..., pTn , vT
n]T , and their accelerations are a = [aT

1 , ..., aT
n]T .

In the initial configuration, the agents are equally spaced on the boundary of
a circle and are at rest. Agent i’s goal is to reach a target location ri, located on
the opposite side of the circle. The initial configuration of the MAS is shown in
Fig. 3(a), where the agents and their target locations are represented as red dots
and blue crosses, respectively. The safety property is absence of inter-agent colli-
sions. A pair of agents is considered to collide if the Euclidean distance between
them is less than a non-negative threshold dmin. Thus, the safety property is
that ‖pi − pj‖ > dmin for all pairs of agents i, j ∈ M with i �= j.

Both the AC and the BC are designed using centralized Model Predictive
Control (MPC), which produces command sequences as part of the solution of
a nonlinear optimization problem. For collision avoidance, we use a potential
field formulation [19] in both the AC and BC. While the AC tries to reach the
target positions on the opposite side of the circle, the BC has a simpler goal
of having each agent leave the circle. Note that numerical methods for global
nonlinear optimization, such as MATLAB’s fmincon used in our implementation,
do not provide a guaranteed optimal solution. To create unsafe variants of the
controllers, we simply limit the number of iterations used for optimization.

The AC only outputs the first command of the command sequence, whereas
the BC produces the full command sequence. Both the AC and the BC are
high-level controllers that produce accelerations. In our simulations, we do not

240 U. Mehmood et al.

model the low-level controller; the plant dynamics work directly with the acceler-
ations. When implementing our approach on physical robots, a trusted low-level
controller will map the desired acceleration commands to actuator inputs.

A centralized MPC controller produces a command sequence s of length T ,
where T is the prediction horizon, and each command s[i] contains the acceler-
ations for all agents to use at step i.

The centralized MPC controller solves the following optimization problem at
each time step k:

arg min
a(k|k),...,a(k+T−1|k)

T−1
∑

t=0

J(k + t | k) + λ ·
T−1
∑

t=0

‖a(k + t | k)‖2 (5)

where a(k + t | k) and J(k + t | k) are the predictions made at time step k for
the values at time step k + t of the accelerations and the centralized (global)
cost function J , respectively. The first term is the sum of the centralized cost
function, evaluated for T time steps, starting at time step k. It encodes the
control objective. The second term, scaled by a weight λ > 0, penalizes large
control inputs.

Advanced Controller. The centralized cost function Jac for the AC contains
two terms: (1) a separation term based on the inverse of the squared distance
between each pair of agents (potential field term for collision avoidance); and
(2) a target seeking term based on the distance between the agent and its target
location.

Jac = ωs

∑

i>j

1
‖pi − pj‖2

+ ωt

∑

i

‖pi − ri‖2 (6)

where ωs, ωt ∈ R are the weights of the separation term and target seeking
terms. The separation term promotes inter-agent spacing but does not guaran-
tee collision avoidance. The AC generates a command sequence by solving the
optimization problem in Eq. 5, with J replaced by Jac. The first command in
that sequence is the AC’s command; it is passed to the LBC.

Baseline Controller. The centralized cost function Jbc for the BC contains
two terms. As in Eq. 6, the first term is the separation term (collision avoidance
based on potential fields). The second term is a divergence term which forces
the agents to move out of the circle by aligning their velocities with rays radially
pointing out of the center of the circle.

Jbc = ωs

∑

i>j

1
‖pi − pj‖2

+ ωd

∑

i

(

1 − (pi − c) · vi
|pi − c||vi|

)

(7)

where ωs, ωd ∈ R are the weights of the separation term and the divergence
term, and c is the center of the circle containing the initial configuration of the
robots and their target locations. The control law for the BC is Eq. 5, with J
replaced by Jbc. A zero acceleration is appended to the end of the BC’s command
sequence to help establish collision freedom for all future time steps.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 241

-8 -4 0 4 8

-8

-4

0

4

8

Fig. 4. Stress test of robotic MAS with 12 robots reaching their targets. Trajectory
segments where stored command sequences are used are shown in blue. (Color figure
online)

Decision Module. The LBC combines accelerations from the AC and the
BC, producing the command sequence t = [ac(x), bc(x′),0], where x′ is the next
state after executing ac(x) in state x. The function dmupdate(x, s, t) accepts the
proposed command sequence t if and only if t is a permanently safe command
sequence. For this system, a command sequence t is considered permanently safe
in a state x if it satisfies the following two conditions. First, for all states in the
state trajectory obtained by executing t from x, the Euclidean distance between
every pair of distinct agents is at least dmin. Second, in the final state, for all pairs
of distinct agents, the rays extending from their positions and in the directions
of their velocities do not intersect. Any pair of agents that satisfies the second
condition will not collide in the future, since the last command in the sequence t
has zero acceleration. The initial permanently safe command sequence is a zero
acceleration for all agents, as the agents start at rest.

MPC Parameters. In our case study, we use the following MPC parameters:
dt = 0.3 sec, dmin = 1.7, amax = 1.5, and vmax = 2. The length of the prediction
horizon for MPC is Tac = Tbc = 10.

Successful Recovery After Failure. We first consider seven robotic agents
initialized on a circle centered at the origin, with a radius of 10. The initial
state of the system is shown in Fig. 3(a). At k = 11, the BC produces an unsafe
command sequence. The state trajectory corresponding to the unsafe sequence
is shown in blue. As shown in Fig. 3(c), the final paths of the two agents corre-
sponding to the larger red dots cross after simulating the current state forward
with the unsafe sequence. Hence, at k = 11, the DM rejects the proposed com-
mand sequence and shifts control to the previous safe command sequence, which
safely recovers the system. Here, we purposefully did not return control to the
AC to demonstrate how the stored command sequence keeps the agents safe1.
1 A video of the simulation is available at https://youtu.be/bcVJBkGgnxA.

https://youtu.be/bcVJBkGgnxA

242 U. Mehmood et al.

Reverse Switching Scenario. We stress-tested the multi-robot system by
initializing 12 agents on a circle of radius 10. The path of the agents is shown in
Fig. 4. There are 10 instances where the DM rejects the AC’s proposed command
sequence and instead uses the stored command sequence. Nonetheless, all agents
reach their target locations without colliding, maintaining a minimum separation
of 1.724 between any pair of agents2.

Handling Uncertainty. We next investigate the DM’s runtime overhead when
there is uncertainty in the robot’s state or the dynamics. The former case arises
when the sensors used to determine the positions and velocities are subject
to sensor noise. The latter case could be used to account for modeling errors,
through disturbances on the positions and velocities at each step.

We continue to use the same MPC strategy as before; thus, the controllers
ignore the uncertainty when generating proposed command sequences. Only the
logic used by the DM to accept or reject command sequences is modified to
account for uncertainty. We examine the scenario shown before in Fig. 3(b). To
account for the uncertainty, we perform an online reachability computation. To
do this, we use efficient methods for reachability for linear systems based on zono-
topes [11], which we implement in Python. Briefly, a zonotope is a set of states
represented as an affine transformation of a unit box. The unit box is associated
with a number of generator vectors, where each generator vector corresponds to
one dimension of the box. The computational efficiency of propagating sets over
time using zonotopes relates to the number of generators. Each agent has four
state variables, two for position and two for velocity. The composed system with
seven agents has 28 state variables.

In the situation shown in Fig. 5(a), the current state is assumed to have uncer-
tainty independently in both position and velocity with an L2 norm of 0.1. We
use a 16-sided polygon to bound this uncertainty. In the plot, the deterministic
simulation is given, along with black polygons for each agent that show the states
that might be reachable at each step due to the sensor uncertainty. The uncer-
tainty in the velocity causes the set to expand over time, since the open-loop
command sequence does not attempt to compensate for the uncertainty. The
zonotope representation of the composed system needs 112 generator vectors to
represent the initial states, which remains constant at every time step.

In the situation shown in Fig. 5(b), the initial state has very little error, but
the dynamics is modified to have disturbances at each step. For each component
of each agent’s position and velocity, we allow an external disturbance value
to be added in the range [−0.02, 0.02]. Since each agent has four independent
disturbances, the zonotope representation of the composition will have 28 new
generators added at each step. After 12 steps, the final zonotope will have a total
of 364 generators.

2 A video of the simulation is available at https://youtu.be/qmk31jS6B2Y.

https://youtu.be/qmk31jS6B2Y

The Black-Box Simplex Architecture for Runtime Assurance of CPS 243

Fig. 5. Zonotope reachability computes future states with uncertainty.

Runtime. To measure runtime, we used a standard laptop with a 2.70 GHz Intel
Xeon E-2176M CPU and 32 GB RAM. The method is fast. For the case of sensor
uncertainty, computing the box bounds of the reachable set at all the steps takes
about 1.5 ms. With uncertainty, even though the number of generators grows over
time, it is not large enough to significantly affect the runtime. The computation
with disturbances requires about 2 ms to complete. We believe such execution
times are sufficiently fast for use in the decision module.

3.2 Multi-aircraft Collision Avoidance

Our second evaluation system guarantees collision avoidance for groups of air-
craft. We use a full six-degrees-of-freedom F-16 simulation model [14], based on
dynamics taken from an Aerospace Engineering textbook [38]. Each aircraft is
modeled with 16 state variables, including positional states, positional velocities,
rotational states, rotational velocities, an engine thrust lag term, and integrator
states for the low-level controllers. These controllers actuate the system using
the typical aircraft control surfaces—the ailerons, elevators, and rudder—as well
as by setting the engine thrust. The system evolves continuously with piece-wise
nonlinear differential equations, where the function that computes the derivative
given the state is provided as Python code. In order to match the discrete-time
plant model in Definition 1, we periodically select a control strategy with a fre-
quency of once every two seconds. The model further includes high-level autopilot
logic for waypoint following, which we reuse in the advanced controller.

For the collision-avoidance baseline controller, our controller is based on the
ACAS Xu system designed for collision avoidance in unmanned aircraft [20].
While the original system was designed using a partially observable Markov
decision process (POMDP), the resultant controller was encoded in a large look-
up table that used hundreds of gigabytes of storage [15]. To make the system
more practical, one early approach considered a downsampling process followed
by a lossy compression using neural networks [15,17]. We use these downsampled
neural networks as the BC and refer to this as the original system.

244 U. Mehmood et al.

The system issues horizontal turn advisories based on the relative positions
of two aircraft, an ownship and an intruder. The system is similar to Simplex,
where the output can be either clear-of-conflict, where any command is allowed,
or an override command that is one of weak-left, weak-right, strong-left or strong-
right. We adapt this system to the multi-aircraft case by having each aircraft
run an instance of the system against every other aircraft, using the closest turn
advisory as the output.

To create command sequences, the BC repeatedly advances the plant model
and re-runs the collision avoidance system in a closed-loop fashion until the
generated command sequence is permanently safe. To check whether a generated
command sequence is permanently safe, the DM checks that (i) each aircraft’s
state stays within the model limits (e.g., no aircraft enters a stall), (ii) all aircraft
obey the safety distance constraint at all times, and (iii) the execution ends in
a state where the roll angle of each aircraft has been small (less than 15◦) and
the distances between all pairs of aircraft has been increasing consecutively for
several seconds. If all aircraft continue to fly straight and level from such a
configuration, their distance would increase and no collisions would occur in the
future.

As with the multi-robot scenario, we examine cases where the initial air-
craft state x0 has all aircraft starting evenly-spaced, facing towards the center
of a circle with a given initial diameter. Each aircraft has an initial velocity of
807 ft/s and an initial altitude of 1000 ft, both of which are maintained through-
out the maneuver by the lower-level controllers. The AC commands each aircraft
to fly towards a waypoint past the opposite side of the circle, which would cause
a collision at the center. The safety property requires maintaining horizontal
separation. The near mid-air collision cylinder (NMAC) uses a safe horizon-
tal separation of 500 ft [24], although we will vary this in our evaluation. For
the initial permanently safe command sequence s0, we have each aircraft fly in
clockwise circles forever, which avoids collisions.

In addition to the AC being unsafe, the baseline controller should not be fully
trusted for many reasons. The original POMDP formulation was not proven for-
mally correct, not to mention the downsampling and lossy neural network com-
pression. While some research has examined proving open-loop properties for
the neural network compression [5,6,17], these do not imply closed-loop collision
avoidance. Further, we use a multi-aircraft adaptation of the system, which could
also lead to problems. Although aspirationally, the system should handle up to 30
intruders [15], in practice most analysis has been performed on two aircraft sce-
narios. Finally, the intended physical system response to the collision-avoidance
commands is that weak-left and weak-right should cause turning at 1.5◦ per sec-
ond, whereas strong-left and strong-right turn at 3.0◦ per second [15]. However,
turning an aircraft in the F-16 model (as well as in the real world) is not an
instantaneous process, and requires first performing a roll maneuver before the
heading angle begins to change. For these reasons, the BC in this scenario is
also an unverified component, and we will show scenarios where it misbehaves.
Nonetheless, we will compose the incorrect AC with the incorrect BC to create
a safe collision-avoidance system by using BSA.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 245

Fig. 6. Black-Box Simplex is safe. In the three-aircraft case, the original system fails,
whereas BSA maintains the 1500 ft separation.

We now elaborate on three scenarios: (i) a three aircraft case, which shows the
safety of the system despite unsafe outputs, (ii) a four aircraft case, which shows
the increased transparency of BSA, and (iii) a 15 aircraft case, which shows safe
navigation of a complex scenario. Also, a seven aircraft case is presented in the
appendix of extended report3, which shows the safety condition can be easily
customized.

In all the plots in this section, we show snapshots at the time when the
distance between the two closest aircraft is smallest. The two red aircraft are
the closest pair, and their distance is printed in the bottom right of each figure.
The solid line shows the historic path of each aircraft, and the dotted line is the
future trajectory.

Three Aircraft Scenario. The original collision avoidance system was
designed with two aircraft in mind, an ownship and an intruder. We adapted it
to the multi-aircraft case, but this mismatch between the system design assump-
tions and usage scenario can lead to problems. In Fig. 6, we show such a scenario,
where the initial circle diameter is 90,000 ft. In Fig. 6(a), the minimum distance
between the top two aircraft is 175 ft, violating the near mid-air collision safety
distance. The other two subplots show the system using BSA with a safety dis-
tance of 1500 ft; the minimum separation is 1602 ft, which satisfies the constraint.

Four Aircraft Scenario. Figure 7 shows a four-aircraft scenario using an initial
circle diameter of 70,000 ft. In this case, both designs have safe executions. Using
the original system leads to a minimum separation of 5342 ft, whereas the min-
imum separation with Black-Box Simplex is 1600 ft, much closer to the 1500 ft
safety-distance constraint used in the DM. Although both systems are safe, from
the plots it is clear that the Black-Box Simplex version is more transparent, in
the sense that it produces smaller modifications to the direct-line trajectories
commanded by the AC.

3 https://arxiv.org/abs/2102.12981.

https://arxiv.org/abs/2102.12981

246 U. Mehmood et al.

Fig. 7. Black-Box Simplex is more transparent. For the four aircraft case, the orig-
inal system is significantly more intrusive than Black-Box Simplex, which overrides
commands just enough to guarantee the 1500 ft separation requirement.

Fifteen Aircraft Scenario. Finally, we demonstrate the system’s ability to
safely navigate complex scenarios. For this, we use a 15 aircraft scenario, with
an initial circle diameter of 90,000 ft. With 15 aircraft, the composed system
has 240 real-valued state variables, each of which evolves according to piece-
wise nonlinear differential equations. The plot for this system was shown in the
introduction in Fig. 2. While the original system is unsafe, Black-Box Simplex
has a minimum separation of 1500.5 ft, just above the 1500 ft safety constraint
used in the DM. Another surprising observation is that in some of the cases,
such as this 15-aircraft case and the seven-aircraft case shown in the appendix
of the extended report(see Footnote 3), the aircraft perform something similar to
a roundabout maneuver. This is an emergent behavior, not something explicitly
hardcoded or anticipated. A video of this case is also available online4.

Runtime. The existing implementation uses numerical integration for the
dynamics with an adaptive-step explicit Runge-Kutta scheme of order 5(4) from
Python’s scipy package. On our laptop platform with default accuracy param-
eters, this runs at about 55 times faster than real-time per aircraft.

4 Related Work

Reachability-based verification methods for black-box systems for waypoint fol-
lowing with uncertainty have been recently investigated in the ReachFlow frame-
work [21]. ReachFlow builds upon the Flow* reachability tool [8], which is
unlikely to scale to systems like the 240-variable 15-aircraft scenario.

A framework for safe trajectory planning using MILP for piecewise-linear
vehicle models is presented in [33,34]. The method relies on the ability of an
MPC controller to produce command sequences where the terminal state in the
4 https://youtu.be/Bhn0uqKCj7Q.

https://youtu.be/Bhn0uqKCj7Q

The Black-Box Simplex Architecture for Runtime Assurance of CPS 247

prediction horizon is constrained to lie within a safe invariant set. This provides
a safe back-up command sequence for the next step in case the system fails to
find a safe sequence. The scope of this work is limited to MPC, and it is not
clear how to extend it to other types of controllers. Moreover, the conditions for
switching back from the stored return trajectory are not formalized.

In the Contingency Model Predictive Control framework [1], an MPC con-
troller maintains a contingency plan in addition to the nominal or desired plan
to ensure safety during an identified potential emergency. Like BSA, the initial
command is common to both plans. In this framework, both plans must be gen-
erated using their custom version of MPC, whereas Black-Box Simplex works
with independent baseline and advanced controllers of any design.

Similar frameworks have been considered for autonomous vehicles, using fail-
safe backup plans and reachability analysis [22]. In this case, the target was plan-
ning for autonomous vehicles where most likely trajectories are used for other
vehicles but safety can still be provided if emergency maneuvers are performed
instead. Other ideas such as Safety Net Control [35] extend the approach to
use backreachability and underapproximations of nonlinear reachable sets while
taking computation time into account.

Designing safe switching logic for a given baseline controller is related to the
concept of computing viability kernels [31] (closed controlled-invariant subsets)
in control theory. This often requires set operations which can be inefficient in
high-dimensional spaces with nonlinear dynamics, although there has been some
progress on this [18,23].

Simplex designs have also been considered that use a combination of offline
analysis with online reachability [4]. Again, though, reachability computation is
currently intractable for large nonlinear systems, and requires symbolic differ-
ential equations. Other work has used Simplex to provide safety guarantees for
neural network controllers with online retraining [29]. In these approaches, the
baseline controller must be verified ahead of time.

Online simulation-based methods have also been investigated to secure power
grids from insider attacks [25]. As with this work, fast online simulation is critical,
although the goal there is system security not safe high-level control design.

The design of the MPC controllers for our multi-robot case study is similar
to Control Barrier Function methods [7,12] and Implicit Active Set Invariance
Filtering [13]. There, a runtime assurance system was used to provide mini-
mally perturbed advanced controller commands, computed using a constrained-
optimization problem. However, the optimization problem might become infea-
sible or global nonlinear optimization could perform poorly at one of the steps
at runtime, causing this method to be unsafe. With Black-Box Simplex, failure
of the baseline controller does not compromise safety.

5 Conclusions

We have presented the Black-Box Simplex Architecture, a methodology for con-
structing safe CPS from unverified black-box high-level controllers. Unlike the

248 U. Mehmood et al.

classical Simplex design, the baseline controller does not need to be statically
verified and can even be incorrect. The tradeoff is that the decision module per-
forms more extensive runtime checking and stores backup command sequences
produced by the black-box baseline controller at previous time steps. The com-
plexity of runtime checking depends on the nature of the system model. For
deterministic models, simulation suffices. However, if the model has uncertainty
then we need to perform online reachability analysis.

BSA reduces the difficult problem of proving high-level safety to a simpler
problem of performance optimization: ensuring that the runtime checking com-
pletes before a decision is needed. The practicality of the approach was demon-
strated through two significant case studies, including a mid-air collision avoid-
ance system for groups of F-16 aircraft created from imperfect logic encoded
in neural networks. This case study involves a highly complex nonlinear system
with over a hundred dimensional variables and a neural-network-based controller.
Black-Box Simplex provides a feasible path for runtime verification of systems
that are otherwise unverifiable in practice.

Acknowledgement. This material is based upon work supported by National Science
Foundation (NSF) under grant numbers OIA-2134840, OIA-2040599, CCF-1918225,
CCF-1954837 and CPS-1446832, the Office of Naval Research (ONR) under grants
N000142112719 and N000142212156, and the Air Force Office of Scientific Research
(AFOSR) under award numbers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-22-1-
0450. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the NSF,
United States Air Force or the United States Navy. An early version of this work was
presented in the CAADCPS 2021 workshop under the title “Safe CPS from Unsafe
Controllers” [26].

References

1. Alsterda, J.P., Brown, M., Gerdes, J.C.: Contingency model predictive control for
automated vehicles. In: 2019 American Control Conference (ACC), pp. 717–722
(2019). https://doi.org/10.23919/ACC.2019.8815260

2. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robot. 30(4) (2014)

3. Bak, S., Chivukula, D.K., Adekunle, O., Sun, M., Caccamo, M., Sha, L.: The
system-level simplex architecture for improved real-time embedded system safety.
In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 99–107. IEEE (2009)

4. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: 35th IEEE Real-Time Systems Symposium (RTSS 2014). IEEE
Computer Society, Rome, December 2014

5. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (VNN-COMP 2021): summary and results. arXiv preprint
arXiv:2109.00498 (2021)

6. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying Relu neural networks. In: Proceedings of the 32nd International
Conference on Computer Aided Verification (2020)

https://doi.org/10.23919/ACC.2019.8815260
http://arxiv.org/abs/2109.00498

The Black-Box Simplex Architecture for Runtime Assurance of CPS 249

7. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certifi-
cates for safe swarm behavior. In: Egerstedt, M., Wardi, Y. (eds.) ADHS. IFAC-
PapersOnLine, vol. 48, pp. 68–73. Elsevier, Amsterdam (2015)

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

9. Clark, M., et al.: A study on run time assurance for complex cyber physical systems.
Technical report, Air Force Research Laboratory, Aerospace Systems Directorate
(2013)

10. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: SOTER: a runtime
assurance framework for programming safe robotics systems. In: 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2019, Portland, OR, USA, 24–27 June 2019. IEEE (2019)

11. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

12. Gurriet, T., Mote, M., Ames, A.D., Feron, E.: An online approach to active set
invariance. In: Conference on Decision and Control. IEEE (2018)

13. Gurriet, T., Mote, M., Singletary, A., Feron, E., Ames, A.D.: A scalable controlled
set invariance framework with practical safety guarantees. In: 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 2046–2053. IEEE (2019)

14. Heidlauf, P., Collins, A., Bolender, M., Bak, S.: Verification challenges in f-16
ground collision avoidance and other automated maneuvers. In: 5th International
Workshop on Applied Verification of Continuous and Hybrid Systems. EPiC Series
in Computing, EasyChair (2018)

15. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608
(2019)

16. Kapinski, J., Deshmukh, J.: Discovering forward invariant sets for nonlinear
dynamical systems. In: Cojocaru, M.G., Kotsireas, I.S., Makarov, R.N., Melnik,
R.V.N., Shodiev, H. (eds.) Interdisciplinary Topics in Applied Mathematics, Mod-
eling and Computational Science. SPMS, vol. 117, pp. 259–264. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-12307-3 37

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

18. Kaynama, S., Maidens, J., Oishi, M., Mitchell, I.M., Dumont, G.A.: Computing
the viability kernel using maximal reachable sets. In: Proceedings of the 15th ACM
International Conference on Hybrid Systems: Computation and Control, pp. 55–64
(2012)

19. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In:
Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 396–404. Springer,
New York (1986). https://doi.org/10.1007/978-1-4613-8997-2 29

20. Kochenderfer, M.J., Chryssanthacopoulos, J.: Robust airborne collision avoidance
through dynamic programming. Project Report ATC-371 130, Lincoln Laboratory,
Massachusetts Institute of Technology (2011)

21. Lin, Q., Chen, X., Khurana, A., Dolan, J.: ReachFlow: an online safety assurance
framework for waypoint-following of self-driving cars. In: 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (2020)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-319-12307-3_37
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-1-4613-8997-2_29

250 U. Mehmood et al.

22. Magdici, S., Althoff, M.: Fail-safe motion planning of autonomous vehicles. In:
2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), pp. 452–458. IEEE (2016)

23. Maidens, J.N., Kaynama, S., Mitchell, I.M., Oishi, M.M., Dumont, G.A.:
Lagrangian methods for approximating the viability kernel in high-dimensional
systems. Automatica 49(7), 2017–2029 (2013)

24. Marston, M., Baca, G.: ACAS-Xu initial self-separation flight tests. Technical
report, NASA (2015)

25. Mashima, D., Chen, B., Zhou, T., Rajendran, R., Sikdar, B.: Securing substa-
tions through command authentication using on-the-fly simulation of power sys-
tem dynamics. In: IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (2018)

26. Mehmood, U., Bak, S., Smolka, S.A., Stoller, S.D.: Safe cps from unsafe controllers.
In: Proceedings of the Workshop on Computation-Aware Algorithmic Design for
Cyber-Physical Systems, pp. 26–28 (2021)

27. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A Mathematical Introduction to
Robotic Manipulation. CRC Press, Boca Raton (1994)

28. Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.): NFM 2020. LNCS, vol.
12229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6

29. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural
simplex architecture. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 97–114. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 6

30. Phan, D., Yang, J., Grosu, R., Smolka, S.A., Stoller, S.D.: Collision avoidance for
mobile robots with limited sensing and limited information about moving obstacles.
Formal Methods Syst. Des. 51(1), 62–86 (2017). https://doi.org/10.1007/s10703-
016-0265-4

31. Saint-Pierre, P.: Approximation of the viability kernel. Appl. Math. Optim. 29(2),
187–209 (1994)

32. Schierman, J., et al.: Runtime assurance framework development for highly adap-
tive flight control systems. Report AD1010277, Defense Technical Information Cen-
ter (2015)

33. Schouwenaars, T., Valenti, M., Feron, E., How, J.: Implementation and flight test
results of MILP-based UAV guidance. In: 2005 IEEE Aerospace Conference, pp.
1–13 (2005)

34. Schouwenaars, T.: Safe trajectory planning of autonomous vehicles. Ph.D. thesis,
Massachusetts Institute of Technology (2006)

35. Schurmann, B., Klischat, M., Kochdumper, N., Althoff, M.: Formal safety net
control using backward reachability analysis. IEEE Trans. Autom. Control (2021)

36. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online
control system upgrades. In: Proceedings of the 1998 American Control Conference.
ACC (IEEE Cat. No. 98CH36207), vol. 6. IEEE (1998)

37. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001).
https://doi.org/10.1109/MS.2001.936213

38. Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft Control and Simulation. Wiley,
New York (2015)

https://doi.org/10.1007/978-3-030-55754-6
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/s10703-016-0265-4
https://doi.org/10.1007/s10703-016-0265-4
https://doi.org/10.1109/MS.2001.936213

Case Studies for Computing Density
of Reachable States for Safe Autonomous

Motion Planning

Yue Meng1(B), Zeng Qiu2, Md Tawhid Bin Waez2, and Chuchu Fan1

1 Massachusetts Institute of Technology, Cambridge, USA
mengyue@mit.edu

2 Ford Motor Company, Dearborn, USA

Abstract. Density of the reachable states can help understand the risk
of safety-critical systems, especially in situations when worst-case reacha-
bility is too conservative. Recent work provides a data-driven approach to
compute the density distribution of autonomous systems’ forward reach-
able states online. In this paper, we study the use of such approach in
combination with model predictive control for verifiable safe path plan-
ning under uncertainties. We first use the learned density distribution to
compute the risk of collision online. If such risk exceeds the acceptable
threshold, our method will plan for a new path around the previous tra-
jectory, with the risk of collision below the threshold. Our method is well-
suited to handle systems with uncertainties and complicated dynamics
as our data-driven approach does not need an analytical form of the sys-
tems’ dynamics and can estimate forward state density with an arbitrary
initial distribution of uncertainties. We design two challenging scenarios
(autonomous driving and hovercraft control) for safe motion planning in
environments with obstacles under system uncertainties. We first show
that our density estimation approach can reach a similar accuracy as the
Monte-Carlo-based method while using only 0.01X training samples. By
leveraging the estimated risk, our algorithm achieves the highest success
rate in goal reaching when enforcing the safety rate above 0.99.

Keywords: Reachability analysis · State density estimation · Online
planning · Liouville Theorem · Neural network

1 Introduction

Verifying and enforcing the safety of the controlled systems is crucial for appli-
cations such as air collision avoidance systems [28], space exploration [32], and
autonomous vehicles. It is still a challenging problem to perform online verifica-
tion and controller synthesis for high-dimensional autonomous systems involving
complicated dynamics and uncertainties because of the scalability issue in veri-
fication and the absence of the analytical form to describe system trajectories.

Reachability analysis is one of the main techniques used for rigorously validat-
ing the system’s safeness [17,19,26,27,53] and controller synthesis [21,33,40,50].
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 251–271, 2022.
https://doi.org/10.1007/978-3-031-06773-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_13&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_13

252 Y. Meng et al.

In reachability analysis, one computes the reachable set, defined as the set of
states where the system (with the control inputs) can be driven to from the
initial conditions, under the system dynamics and physical constraints. Take
the aircraft collision avoidance system as an example: the system safety can be
guaranteed if all the future space that the airplane can reach (under physical
constraints) will not overlap with obstacles. However, computing the reachable
states is proved to be undecidable in general (e.g., polynomial dynamical systems
with degrees larger than 2) [24] and is also empirically time-consuming, limiting
applications to simple dynamics (e.g., linear systems) or low-dimension systems.

Besides, using worst-case reachability for safety analysis will usually return
a binary result (“yes” or “no”), regardless of the initial state distribution and
the uncertainty in the systems. The focus on the “worst-case” makes the cor-
responding reachability-based planning methods “conservative” or “infeasible”
when the initial state has a large uncertainty. Consider a robot navigating in an
environment with obstacles and state uncertainty - when a collision is inevitable
in the worst case (though the worst case is a rare event), the planning algorithm
will fail to return any safety-guaranteed control policies but to let the robot
stop. Hence in those cases, we need a way to quantify the risk/probability of the
undesired event (e.g., collision) happening and guide controller designs.

In this paper, we present a probabilistic and reachability-based planning
framework for safety-critical applications. Inspired by [42], we first learn the
system flow maps and the density evolution by solving the Liouville partial dif-
ferential equation (PDE) using Neural Networks from collected trajectory data.
Instead of using the exact reachability analysis tool [54] for reachable states
probability estimation, we use Barycentric interpolation [25], which can handle
more complicated systems (dimension > 4) and sharply reduces the processing
time compared to [42]. In addition, by picking different numbers of sampled
points, our algorithm can flexibly control the trade-off between estimation effi-
ciency and accuracy. Leveraging this density estimation technique, our planning
framework (illustrated in Fig. 1) verifies the safety of the system trajectory via a
segment-by-segment checking. If one segment becomes unsafe, we perturb around
the reference trajectory to find a safe alternative, and plan for the rest of the
trajectory. The process repeats until all segments are enforced to be safe.

We conduct experiments on two challenging scenarios (autonomous car and
hovercraft control with uncertainties). Our estimated reachable states density
distribution is informative as it reflects the contraction behavior of the controllers
and highlights the places that the system is more likely to reach. Quantitatively,
compared to Monte Carlo density estimation, our approach can achieve a simi-
lar accuracy while only using 0.01X training samples. We test our density-based
planning algorithm in 20 randomly generated testing environments (for each sys-
tem), where we achieve the highest success rate in goal reaching with high safety
rate (measured by one minus the collision rate) compared to other baselines.

Our contributions are: (1) we are the first group to study the use of learned
reachability density in safe motion planning to ensure probabilistic safety for
complicated autonomous systems, (2) our approach can estimate state density

Computing Density of Reachable States for Safe Motion Planning 253

and conduct safe planning for systems with nonlinear dynamics, state uncer-
tainty, and disturbances, and (3) we design both qualitative and quantitative
experiments for two challenging systems to validate our algorithm being accu-
rate, data-efficient and achieving the best overall performance for the goal reach-
ing success rate and safety.1

2 Related Work

Reachability analysis has been a powerful tool for system verification. The
related literature has been extensively studied in [2,10,12,37]. However, few of
those have been tackling the problem of calculating reachable set density distri-
bution. Hamilton Jacobian PDE has been used to derive the exact reachable sets
in [6,10,43], but this approach does not compute the density. Many data-driven
methods can compute reachable sets with probabilistic guarantees using scenario
optimization [14,56], convex shapes [7,35,36], support vector machines [3,48],
and nonparametric methods [13,51]. However, they cannot estimate state den-
sity distribution. [20] estimates human policy distribution using a probabilistic
model but requires state discretization. [39] uses the Liouville equation to maxi-
mize the backward reachable set for only polynomial system dynamics. In [1], the
authors discretize the system to Markov Chains (MC) and perform probabilistic
analysis on MC. This approach is computation-heavy for online safety checks.

Recently, with Neural Networks (NN) development, there has been a grow-
ing interest in studying worst-case reachability for NN [30,31,42,54,55,57] or
NN-controlled systems [17,19,26,27,53]. Among those, [42] leverages the exact
reachability method [54] and the Liouville Theorem to perform reachability anal-
ysis and reachable set density distribution. This approach finds the probability
density function transport equation by solving the Liouville PDE using NN.
It shows high accuracy in density estimation compared with histogram, kernel
density estimation [11], and Sigmoidal Gaussian Cox Processes methods [15].
Hence, we choose this approach to verify the autonomous systems’ safety and to
conduct safe motion planning.

There have been various motion planning techniques for autonomous systems,
and we refer the interested readers to these surveys [22,23,44]. Most approaches
use sampling-based algorithms [29], state lattice planners [41,46], continuous
optimization [8,47], and deep neural networks [9,58]. Reachable sets have also
been used for safe motion planning for autonomous systems [21,33,40,50]. How-
ever, worst-case reachability-based methods only treat reachability as a binary
“yes” or “no” problem without considering the density distribution of the
reachable states. This boolean reachability setting makes the reachability-based
motion planner conservative when the collision is inevitable in the worst case
(but only happens at a very low probability) thus the system cannot reach the
goal state. In this paper, we integrate the density-based reachability estimation
method in [42] with model predictive control to improve the goal reaching success
rate while enforcing the systems’ safety in high probability.
1 The code is available at https://github.com/mengyuest/density planner.

https://github.com/mengyuest/density_planner

254 Y. Meng et al.

3 Problem Formulation

Consider a controlled system q̇ = f(q, u) where q ∈ Q ⊆ R
d denotes the system

state (e.g., position and heading) and u ∈ U ⊆ R
z denotes the control inputs

(e.g., thrust and angular velocity). For a given control policy π : Q → U , the
system becomes an autonomous system q̇ = f(q, π(q)) = fπ(q) that the future
state qt at time t will only depends on the initial state q0. We assume the initial
state q0 ∈ Q0 ⊆ Q. Then, the forward reachable set at time t is defined as:

Qt = {qt | q0 ∈ Q0, q̇ = fπ(q)} (1)

Assume the initial state q0 follows a distribution D with the support Q0.
Given obstacles {Oi ⊆ R

p}M
i=1 in the environment, we aim to compute the prob-

ability for colliding with obstacles and the forward probabilistic reachability
defined below:

Definition 1 (Collision probability estimation). Given a system q̇ = fπ(q)
with initial state distribution D, compute the probability for states colliding with
an obstacle O at time t: Pt(O) = Prob{q0 ∼ D, q̇ = fπ(q), Π(qt) ∈ O} where
Π : Q → R

p projects the system state to the space that the obstacle O resides.

Definition 2 (Forward probabilistic reachability estimation). Given a
system q̇ = fπ(q) with initial state distribution D, for each time step t, estimate
the forward reachable set Qt and the probability distribution {(Ai, Pt(Ai))}Nt

i=1.
Here A1, ..., ANt

is a non-overlapping partition for Qt, i.e., Ai∩Aj = ∅,∀i �= j,
Nt∪
i=1

Ai = Qt.

Assume π is a tracking controller: π(q) = u(q, qref) with a reference tra-
jectory {qref

t }T
t=1 of length T first generated from a high-level planner with

commands Uref = {uref
t }T

t=1. Define the total collision risk :

Prob(colliding) = Pc(Uref) =
T∑

t=1

M∑

i=1

Pt(Oi) (2)

We are interested in the following problem:

Definition 3 (Safety verification and planning problem). Given a system
q̇ = fπ(q) with initial state distribution D and reference control commands Uref ,
verify the total collision risk Pc(Uref) ≤ γ, where γ is a tolerant collision risk
threshold. If not, plan a new command Ũref to ensure Pc(Ũref) ≤ γ

In this paper, the details about the dynamic systems q̇ = fπ(q) and controllers
π(q) = u(q, qref) are listed in the A and B.

4 Technical Approaches

Inspired by [42], we design a sample-based approach to compute the reachability
and the density distribution for the system described in the previous section and
further leverage these results for trajectory planning for autonomous systems.

Computing Density of Reachable States for Safe Motion Planning 255

4.1 Data-driven Reachability and Density Estimation

Our framework is built on top of a recently published density-based reachability
analysis method [42]. From the collected trajectory data, [42] learns the system
flow map and the state density concentration function jointly, guided by the
fact that the state density evolution follows the Liouville partial differential
equation (PDE). With the set-based reachability analysis tools RPM [54], they
can estimate the bound for the reachable set probability distribution.2

For the autonomous system defined in Sect. 3, we denote the density function
ρ : Q × R → R

≥0 which measures how states distribute in the state space
at a specific time step. The density function is completely determined by the
underlying dynamics fπ and the initial density map ρ0 : Q → R

≥0 according to
the Liouville PDE [16].

∂ρ

∂t
+ ∇ · (ρ · fπ) = 0, ρ(q, 0) = ρ0(q) (3)

We define the flow map Φ : Q × R → Q such that Φ(q0, t) is the state at
time t starting from q0 at time 0. The density along the trajectory Φ(q0, t) is an
univariate function of t, i.e., ρ(t) = ρ(Φ(q0, t), t). If we consider the augmented
system with states [q, ρ], from Eq. 3 we can get the dynamics of the augmented
system: [

q̇
ρ̇

]
=

[
fπ(q)

−∇ · fπ(q)ρ

]
(4)

To compute the state and the density at time T from the initial condition
[q0, ρ0(q0)], one can solve the Eq. 4 and the solution at time T will give the
desired density value. To accelerate the computation process for a large number
of initial points, we use neural networks to estimate the density ρ(q, t) and the
flow map Φ(q, t). Details for the network training are introduced in Sect. 3 of [42].

4.2 Reach Set Probability Estimation

As mentioned in [42], when the system state is high (≥4), it is either infeasible
(due to the numerical issue in computing for polyhedra) or too time-consuming
to generate RPM results for probability estimation. The state dimension will
become 7–10 for a 2D car control or a 3D hovercraft control problem after
including the reference control inputs. If we use other worst-case reachability
analysis tools such as [17] to compute the probability, the reachable set will be
too conservative and the planner will not return a feasible solution (other than
stop) because the reachable states will occupy the whole state space regardless of
the choice of the reference controls. Therefore, we use a sample-based approach
to estimate the probability of the reachable sets, as introduced in the following.

To estimate the probability in Prob. 1, we first uniformly sample initial states
{qi

0}Ns
i=1 from the support of the distribution ρ0 and use the method in Sect. 4.1

2 For details about computing the probability of the reachable state, we refer the
interested readers to [42](Appendix B).

256 Y. Meng et al.

to estimate the future states and the corresponding densities at time t denoted as
{(qi

t, ρt(qi
t))}Ns

i=1. We approximate the forward reachable set Qt defined in Eq. 1 as
the convex hull of {qi

t}Ns
i=1, and denote it as CHt. Then, based on {(qi

t, ρt(qi
t))}Ns

i=1,
we use the linear interpolation to estimate the density distribution ρ̂t(·) at time
t. Finally, we uniformly sample points qs within the convex hull CHt, and the
probability for the system reaching A can be computed as:

Prob(qt ∈ A) ≈
∑

qs∼CHt
1{qs ∈ A}ρ̂t(qs)∑

qs∼CHt
ρ̂t(qs)

(5)

Here are some remarks for our approach. The probabilistic guarantee about
estimation accuracy is provided in [42][Appendix A]. Besides, our approach will
return probability zero if the ground truth probability of reaching A is zero.
Moreover, compared to the set-based approach RPM, which has poor scalability
because of the number of polyhedral cells growing exponentially to the system
state dimension, our sample-based approach is fast, and the runtime can be
controlled by selecting different numbers of sampled points as a trade-off between
efficiency and accuracy.

Fig. 1. The safe planning algorithm.

Computing Density of Reachable States for Safe Motion Planning 257

4.3 Motion Planning Based on Reachability Analysis

After estimating the reachable states and density for the autonomous system
under a reference trajectory, we utilize the results to plan feasible trajectories
to ensure the collision probability is under a tolerable threshold.

In this paper, the reference trajectory is generated using nonlinear program-
ming (NLP). Given the origin state qorigin, the destination state qdest, the phys-
ical constraints umin ≤ u ≤ umax and M obstacles {(xo

i , y
o
i)}M−1

i=0 (with radius
{ri}M−1

i=0) in the environment, discrete time duration Δt and total number of
timesteps T , we solve an NLP using CasADI [5] to generate a reference tra-
jectory, which consists of N trajectory segments ξ0, ..., ξN−1 (each segment ξj

has length L and is generated by qj·L and uj). The details about this nonlinear
optimization formulation can be found in Appendix C

Then for each segment ξj , with the uncertainty and disturbances considered,
we use the approach in Sect. 4.2 to estimate the system’s reachable states as well
as their density. If the total collision risk defined in Eq. 2 is below a predefined
threshold (10−4 in our case), we call the current trajectory “safe”. Otherwise, we
call the trajectory “unsafe” and adjust for the current trajectory segment. Notice
that the traditional reachability-based planning is just a special case when we
set this threshold to 0.

To ensure fast computation for the planning, we use the perturbation method
to sample candidate trajectory segments around this “unsafe” trajectory segment
ξj (by adding Δu to the reference control commands) and again use the method
in Sect. 4.2 to verify whether the candidate is “unsafe”, until we find one segment
ξ̃j that is “safe”, and then we conduct the NLP starting from the endpoint of the
segment ξ̃j . We repeat this process until all the trajectory segments are validated
to be “safe”. The whole process is summarized in Algorithm 1.

Given enough sampled points with guaranteed correctness in approximat-
ing state density and forward reachable set, the algorithm is sound because the
produced control inputs will always ensure the system is “safe”. However, our
algorithm is not complete because: (1) in general, the nonlinear programming
is not always feasible, and (2) the perturbation method might not be able to
find a feasible solution around the “unsafe” trajectory. The first point can be
addressed by introducing slack variables to relax for the safety and goal-reaching
constraints. The second point can be tackled by increasing the tolerance proba-
bility threshold of collision.

5 Experiments

We investigate our approach in autonomous driving and hovercraft navigation
applications under the following setup: given an environment with an origin
point, a destination region, and obstacles, the goal for the agent at the origin
point is to reach the destination while avoiding all the obstacles. Notice that
this is a very general setup to encode the real-world driving scenarios because:
(1) the road boundaries and other irregular-shaped obstacles can be represented

258 Y. Meng et al.

Algorithm 1. Reachability-based Planning Algorithm
Input: Origin S0, destination SN , NLP constraints
Output: Reference trajectories ξ0, ξ1, · · · , ξN−1

1: i ← 0
2: while i < N do
3: Generate segments ξi, ..., ξN−1 from Si to SN using NLP
4: for j = i : N do
5: Use the method in Sect. 4.2 to check whether the trajectory segment ξj is

“safe”.
6: if The trajectory is “safe” then
7: Continue
8: else
9: Perturb the segment ξj to search for a possible “safe” segment ξ̃j (goes

from Sj to close to Sj+1).
10: ξj ← ξ̃j
11: Sj+1 ← S̃j+1

12: end if
13: end for � By far, S0 → Sj+1 is “safe”
14: i ← j + 1 � Next step will inspect Sj+1 → · · · SN

15: end while

by using a set of obstacles, and (2) other road participants (pedestrians, other
driving cars) can be modeled as moving obstacles. Here we consider only the
center of mass of the car/hovercraft in rendering reachable sets and planning (we
can bloat the radius of the obstacle to take the car/hovercraft length and width
into account). In Sect. 5.1, we evaluate the reachability and density for the system
under a fixed reference trajectory. In Sect. 5.2, we leverage the reachability and
density result to do trajectory re-planning when the system is “unsafe”.

We collect 50,000 trajectories from the simulator, with randomly sampled
initial states, reference trajectories, and disturbances. Each trajectory has 50
timesteps with a duration of 0.02s at each time step. Then, we select 40,000 for
the training set and 10,000 for the evaluation set and train a neural network
for estimating the future states and the density evolution mentioned in [42]. We
use a fully connected ReLU-based neural network with 3 hidden layers and 128
hidden units in each layer. We train the neural network for 500k epochs, using
stochastic gradient descent with a batch size of 256 and a learning rate of 0.1.
The code is implemented in PyTorch [45], and the training takes less than an
hour on an NVidia RTX 2080Ti GPU.

5.1 Reachable States and Density Estimation

In this section, we first conceptually show how our approach of estimating reach-
able states and density can benefit safety-critical applications. As depicted in

Computing Density of Reachable States for Safe Motion Planning 259

Fig. 4, a car plans to move to the destination (the red arrow) while avoiding all
the obstacles on the road. The initial state of the car (X,Y position, and head-
ing angle) and the disturbance follow a Gaussian distribution. The high-level
motion planner has already generated a reference trajectory (the blue line in
Fig. 4), with the uncertainty owing to the initial state estimation error and the
disturbance. We will show that our approach can estimate the state density dis-
tribution and reachable state accurately and can help to certify that the planned
reference trajectory is not colliding with obstacles in high probability.

Visualizations of the Estimated Reachability and Density Heatmap.
Using the method introduced in Sect. 4.2, we can first estimate the tracking error
density distribution and marginalize it to the 2D XY-plane to get the probability
heatmaps (as shown in Fig. 2(a)–(d)). Then we can transform it to the reference
trajectory and check whether it has an intersection with the obstacles in the
environment (as shown in Fig 2(e)).

Fig. 2. Estimated density (for states in (a)–(d) and along the trajectory in (e)) for the
car model. The states are shown to concentrate on reference trajectory (blue line in
(e)), and the collision risk is very low. (Color figure online)

To verify the correctness of our estimated reachable states and density, we
also sample a large number of states from the initial state distribution and use
the ODE to simulate actual car trajectories, as shown in Fig. 2(b). Comparing
Fig. 2(a) with Fig. 2(b), we find out in both cases that the vehicle will have a
collision with the bottom obstacle. In addition, our density result also shows that

260 Y. Meng et al.

the risk of the collision is very low (Prob(colliding)≤10−4 as shown in Sect. 5.1),
which is reasonable because the majority of the states will be converging to
the reference trajectory (as indicated from Fig. 2(a)–(d)). Only a few outlier
trajectories will intersect with the obstacle. We also conduct this experiment
with the Hovercraft system (3D scenarios), where the results in Fig. 3 reflect
similar contraction behaviors, and the probability of colliding with the obstacles
is very low (thus, we do not need to do planning in this stage).

Visually, our results are more informative than the pure reachability analysis
because ours reflects the tracking controller’s contraction behavior and illustrates
that the colliding event is in very low probability. The following subsection will
further quantify this probability and compare it with a traditional probability
estimation method.

Fig. 3. Estimated density (for states in (a)–(d) and along the trajectory in (e)) for the
hovercraft model. The states are shown to concentrate on reference trajectory (blue
line in (e)), and the collision probability is very low. (Color figure online)

Comparison with Monte-Carlo Based Probability Estimation. Our
visualization result in Sect. 5.1 reflects that under some initial conditions, the
vehicle might hit the obstacle. Although Fig. 2 shows that the likelihood of the
clash is very low, we want to quantify the risk of the collision to benefit future

Computing Density of Reachable States for Safe Motion Planning 261

Fig. 4. A vehicle plans to reach the red
arrow while avoiding all the obstacles.
Blue region shows the reference tra-
jectory and uncertainty. (Color figure
online)

Fig. 5. Estimation of collision proba-
bility with respect to sample size.

decisions (e.g., choosing the policy with the lowest collision probability or with
the lowest value at risk (VaR) [38]). However, it is intractable to derive the
ground-truth probability of collision for general non-linear systems. Therefore,
we compare our estimation result with the Monte Carlo approximation (this
is done by generating a considerable amount of simulations and counts for the
frequency of the collision.

We try different numbers of samples (from 500 to 512000) and compare our
approach to the Monte Carlo estimation. As shown in Fig. 5, the groundtruth
probability of collision (where we approximated by sampling 5×107 trajectories
and compute the collision rate) is approximately 5 × 10−5. The Monte Carlo
approach fails to predict meaningful probability results until increasing the sam-
ple size to 64000. In contrast, our approach can give a non-trivial probability
estimation using only 500 examples, less than 0.01X the samples needed for the
Monte Carlo approach.

The black vertical arrow in Fig. 5 corresponds to the 40000 sample size (the
number of samples we have used offline for our neural network training). The
corresponding result is already as stable as the Monte Carlo approach which
requires more than 64000 samples. Furthermore, our approach can be adapted
to any initial condition for the same car dynamic system without retraining or
fine-tuning, making it possible for downstream tasks like online planning, as
introduced in the following section.

In terms of the computation time (for 512000 points), our approach requires
2.3X amount of time (31.8 s) as needed for the Monte Carlo method (14.1 s),
mainly because that the Delaunay Triangulation method [34] used for state-
space partition in the linear interpolation has the complexity of O(N�d/2�) [52]
for N data points in the d-dimension system. Thus the run time will grow about
quadratically to the number of sample points in our case (state dimension=4).

262 Y. Meng et al.

With 1000 sampled points (as used in the rest of the experiments), our method
takes ∼2 s, which is acceptable. One alternative solution to accelerate the com-
putation is to use Nearest Neighbor interpolation for density estimation.

5.2 Online Planning via Reachable Set Density Estimation

When the probability of collision is higher than the threshold (10−4 in our exper-
iment setting), we need to use the planning algorithm to ensure the safety of the
autonomous system under uncertainty and disturbance. We first show how the
planning algorithm works in Sect. 5.2, and then quantitative assessment of our
algorithm is conducted in Sect. 5.2.

Demonstration for an Example. We conduct experiments to demonstrate
how our proposed reachability-based planning framework works for autonomous
driving cars and hovercraft applications. In Fig. 6, a car is moving from left to
right of the map while avoiding collisions with obstacles. After checking for the
first segment’s safety (Fig. 6(a)), the algorithm finds out the probability of the
collision is higher than 10−4. Thus it starts to plan for the first segment (the
red line in Fig. 6(b)) around the reference trajectory (the blue line in Fig. 6(b)).
Moreover, after it updates the reference trajectory using the NLP solver (the blue
line in Fig. 6(c)) based on the perturbed segment, the algorithm detects the next
segment as “unsafe.” Hence it plans again to enforce the collision probability is
below 10−4 (Fig. 6(c)). Another example in a 3D scenario is shown in Fig. 7,
where the hovercraft perturbs for the first segment and then later verifies that
the next two segments are all “safe”, hence the whole trajectory in Fig. 7(c) is
“safe.”

Fig. 6. Demonstration for the re-planning algorithm for the 2D car experiment. For
each trajectory segment, if the probability of collision is higher than a predefined
threshold, we denote the trajectory segment as “unsafe”, otherwise, we denote the
trajectory segment as “safe”. (Color figure online)

Computing Density of Reachable States for Safe Motion Planning 263

Fig. 7. Demonstration for the re-planning algorithm for the 3D hovercraft experiment.
For each trajectory segment, if the probability of collision is higher than a predefined
threshold, we denote the trajectory segment as “unsafe”, otherwise, we denote the
trajectory segment as “safe”.

Evaluation of Trajectory Planning Performance. To illustrate the advan-
tage of our approach in enforcing the system safety, we design 20 testing envi-
ronments with randomly placed obstacles (while ensuring the initial reference
trajectory is feasible from the NLP solver) for the autonomous car system and
the hovercraft control system. We compare our framework with several base-
line methods: the “original” approach just uses the initial reference trajectory
(without any planning process), the “d =?” approach denotes the distance-based
planning methods with the safety distance threshold set as d (the larger d is,
the more conservative and safer the algorithm will be, at the cost of infeasible
solutions), the “reach” approach uses estimated reachable tube computed from
the sampled convex hull CH introduced in Sect. 4.2 to do safe planning.

We measure the performances of different methods using two metrics: feasi-
bility and safety. Feasibility is defined as the frequency that the algorithm can
return a plausible solution (but might be unsafe) to reach the designed des-
tination. Over all feasible solutions, safety is defined as the expected collision
probability. Intuitively, the feasibility measures the successful rate of the goal
reaching, and the “safety” measures how “reliable” the planner is.

As shown in Fig. 8(a)(b) for the car experiments, compared to the “reach”
method (which just uses reachable tubes to do planning) and a distance-based
planning method (“d = 1.0”), our approach can achieve a similar safety rate,
while having 0.29–0.76 higher feasibility (due to less conservative planning).
Though we are 0.059 less in feasibility than the “original” and the “d = 0.1”
baselines, they lead to 3772X–4574X collision rates than ours (due to our app-
roach being less aggressive in planning). Compared to the “d = 0.2” method,
we are 0.06 better in feasibility (0.94 vs 0.88) while being only 0.2X in collision
rate (0.000025 vs 0.000125), we also get a lower collision rate . A similar trend
can also be observed from the hovercraft experiment (Fig. 8(c)(d)). Hence, our
approach achieves the best overall performance by considering feasibility and
safety.

264 Y. Meng et al.

Fig. 8. Feasibility and safety comparisons. Our method achieves the best trade-off
between the feasibility and the safety, with close to 100% safety and 0.2X–4X improve-
ment in feasibility comparing to high-safety methods. Here “original” uses nonlinear
programming for planning ,“d =?” denotes the distance-based re-planning with the
safety distance d, “reach” uses estimated reachable tube to do re-planning, and “ours”
leverages both the reachable tube and the corresponding density to do re-planning.
More details can be found in Sect. 5.2

5.3 Discussions

While our approach can accurately estimate the collision probability and the
motion planner using our estimated density can achieve the highest goal reaching
rate compared to other baselines when enforcing the safety rate above 0.99, we
admit there are assumptions and limitations in our method.

First we assume the neural network can learn a perfect state dynamic and
state density evolution, which is not always satisfied due to the model capacity
and the complexity of the system. The proof in [42][Appendix A] shows the gen-
eralization error bound for this learning framework, which indicates one possible
remedy is to collect more training trajectories.

Besides, we assume the sampled trajectories from the simulator are following
the same distribution as for the real world trajectories. This assumption might
create biases in the density concentration function and the flow map estimation.
One way to resolve this issue is to further fine-tuning the neural network using
the real world data at the inference stage.

The first limitation of our approach is lacking guarantee for the convergence
of the planning algorithm. The success planning rate of our method depends on
the perturbation range (how far the control policy can deviate from the reference
policy) and the perturbation resolution (the minimum difference between two

Computing Density of Reachable States for Safe Motion Planning 265

candidate policies). There are also optimization-based methods, such as stochas-
tic gradient descent [4], that can converge with probabilistic guarantee derived
from the Robbins-Siegmund theorem [49]. Using optimization-based method for
density-based planning is left to our future work.

The second limitation of our planning framework is the computation time.
This is mainly due to our risk computation step in Eq. 2, as mentioned in
Sect. 5.1. Although our proposed probability computation method can handle
higher dimension systems than [42], the complexity of the Delaunay Triangula-
tion process in our framework grows in the power of �d/2� for a d-dimensional
system. In practice, one can use less number of sample points to reduce the com-
putation time. Another alternative is to use other interpolation methods (e.g.,
Nearest Neighbor interpolation) for d-dimensional space.

6 Conclusion

We propose a data-driven framework for probabilistic verification and safe
motion planning for autonomous systems. Our approach can accurately esti-
mate collision risk, using only 0.01X training samples compared to the Monte
Carlo method. We conduct experiments for autonomous driving and hovercraft
control, where the car (hovercraft) with state uncertainty and control input dis-
turbances plans to move to the destination while avoiding all the obstacles. We
show that our approach can achieve the highest goal reaching rate among all
approaches that can enforce the safety rate above 0.99. For future works, we
manage to develop verification approaches for cases that consider (1) other road
participants’ presence and intention and (2) more complicated sensory inputs,
such as LiDAR measurements or even raw camera inputs.

Acknowledgement. The Ford Motor Company provided funds to assist the authors
with their research, but this article solely reflects the opinions and conclusions of its
authors and not any Ford entity. The authors would also want to thank Kyle Post for
providing constructive suggestions regarding experiment designs, figures, and paper
writings.

Appendix

A Car Model Dynamic and Controller Designs

The dynamics for the rearwheel kinematic car model [18] is:

q̇ =

⎡

⎣
ẋ
ẏ

θ̇

⎤

⎦ =

⎡

⎣
cos θ 0
sin θ 0

0 1

⎤

⎦
[
v
ω

]
(6)

where (x, y) denotes the position of the vehicle’s center of mass, θ denotes
vehicle’s heading angle, and v, ω are the velocity and angular velocity control

266 Y. Meng et al.

inputs. Given a reference trajectory generated from the motion planner
(xref , yref , θref)T , the error for the car model is:

⎡

⎣
ex

ey

eθ

⎤

⎦ =

⎡

⎣
cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎤

⎦

⎡

⎣
x − xref

y − yref

θ − θref

⎤

⎦ (7)

The Lyapunov-based controller is designed as:
{

v = vref cos(eθ) + k1ex + dv

ω = ωref + vref (k2ey + k3 sin(eθ)) + dω

(8)

where k1, k2, k3 are the coefficients for the controller and dv and dω are the
controller disturbances.

B Hovercraft Model Dynamic and Controller Designs

The hovercraft is the model tested in 3D scenarios. The dynamics for the hov-
ercraft [18] is:

q̇ =

⎡

⎢⎢⎣

ẋ
ẏ
ż

θ̇

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

cos θ 0 0
sin θ 0 0

0 1 0
0 0 1

⎤

⎥⎥⎦

⎡

⎣
v
vz

ω

⎤

⎦ (9)

where (x, y, z) denotes the 3D position of the hovercraft’s center of mass, θ
denotes the heading angle of the hovercraft in the xy-plane, v (and ω) denotes
the velocity (and angular velocity) in the xy-plane, vz denotes the velocity along
the z-axis. When a reference trajectory (xref , yref , zref , θref)T is introduced,
the error for the car model is:

⎡

⎢⎢⎣

ex

ey

ez

eθ

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x − xref

y − yref

z − zref

θ − θref

⎤

⎥⎥⎦ (10)

The Lyapunov-based controller is designed as:
⎧
⎪⎨

⎪⎩

v = vref cos(eθ) + k1ex + dv

vz = vref
z + k4ez + dvz

ω = ωref + vref (k2ey + k3 sin(eθ)) + dω

(11)

where k1, k2, k3, k4 are the coefficients for the controller and dv, dvz
and dω are

the corresponding disturbances.

Computing Density of Reachable States for Safe Motion Planning 267

C Nonlinear Programming for Controller Synthesize

The goal of this section is to find a control sequence {uj}N−1
j=0 for the car (or the

hovercraft, we use “robot” to represent them in the following context) starting
from qorigin ∈ R

d to reach the goal state qdest ∈ R
d in T time steps, while

satisfying the physical constraints and avoiding colliding with the surrounding
obstacles (M obstacles in total) in the environment. We use the forward Euler
method to compute the ODE q̇ = f(q, u), with each time step duration as Δt.
Each control input uj will last for L = � T

N � steps. For the physical constraints,
we set up the maximum and minimum allowed value for the control inputs
as umax, umin ∈ R

z. We represent the obstacles as circles (and spheres in 3D
scenarios). The i-th obstacle has a center position q̄o

i ∈ R
2 (q̄o

i ∈ R
3 in 3D

scenarios) and a radius ri ∈ R
+ (we use q̄j to represent the robot position at

time j, to distinguish with the full robot state qj). We formulate the optimization
process as followed:

min
u0:N−1

M−1∑

i=0

T∑

j=0

γ2
i,j

s.t. q0 = qorigin

qT = qdest

umin ≤ uj ≤ umax,∀j = 0...N − 1
qj·L+k+1 = qj·L+k + f(qj·L+k, uj)Δt,∀j = 0...N − 1,∀k = 0...L − 1

|q̄j − q̄o
i |2 + γ2

i,j ≥ ri
2,∀i = 0...,M − 1,∀j = 0, ..., T

(12)
where the first two constraints make sure the robot starts from the initial point
and will reach the goal point, the third and forth constraints enforce the physical
constraints and the robot dynamic, and the last constraint ensure the robot
will not hit obstacles at any time. For feasibility issues, slack variables γi,j are
introduced to relax the collision avoidance constraint (the robot safety will be
checked and ensured during the online planning process after this optimization
process).

References

1. Abate, A.: Probabilistic Reachability for Stochastic Hybrid Systems: Theory, Com-
putations, and Applications. University of California, Berkeley (2007)

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. (TOMACS) 28(1), 1–39 (2018)

3. Allen, R.E., Clark, A.A., Starek, J.A., Pavone, M.: A machine learning approach
for real-time reachability analysis. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2202–2208. IEEE (2014)

4. Amari, S.: Backpropagation and stochastic gradient descent method. Neurocom-
puting 5(4–5), 185–196 (1993)

268 Y. Meng et al.

5. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: Casadi: a soft-
ware framework for nonlinear optimization and optimal control. Math. Program.
Comput. 11(1), 1–36, 2019

6. Bansal, S., Tomlin, C.: Deepreach: A deep learning approach to high-dimensional
reachability. arXiv preprint arXiv:2011.02082 (2020)

7. Berndt, A., Alanwar, A., Johansson, K.H., Sandberg, H.: Data-driven set-based
estimation using matrix zonotopes with set containment guarantees. arXiv preprint
arXiv:2101.10784 (2021)

8. Chen, J., Liu, C., Tomizuka, M.: Foad: fast optimization-based autonomous driving
motion planner. In: 2018 Annual American Control Conference (ACC), pp. 4725–
4732. IEEE (2018)

9. Chen, L., Xuemin, H., Tian, W., Wang, H., Cao, D., Wang, F.-Y.: Parallel planning:
a new motion planning framework for autonomous driving. IEEE/CAA J. Autom.
Sin. 6(1), 236–246 (2018)

10. Chen, M., Tomlin, C.J.: Hamilton-jacobi reachability: some recent theoretical
advances and applications in unmanned airspace management. Ann. Rev. Con-
trol Robot. Autonom. Syst. 1, 333–358 (2018)

11. Chen, Y., Ahmadi, M., Ames, A.D.: Optimal safe controller synthesis: a density
function approach. In: 2020 American Control Conference (ACC), pp. 5407–5412.
IEEE (2020)

12. International competition on verifying continuous and hybrid systems. https://
cps-vo.org/group/ARCH/FriendlyCompetition. Accessed 18 June 2021

13. Devonport, A., Arcak, M.: Data-driven reachable set computation using adaptive
gaussian process classification and Monte Carlo methods. In: 2020 American Con-
trol Conference (ACC), pp. 2629–2634. IEEE (2020)

14. Devonport, A., Arcak, M.: Estimating reachable sets with scenario optimization.
In: Learning for Dynamics and Control, pp. 75–84. PMLR (2020)

15. Donner, C., Opper, M.: Efficient bayesian inference of sigmoidal gaussian cox pro-
cesses. https://doi.org/10.14279/depositonce-8398 (2018)

16. Ehrendorfer, M.: The liouville equation and prediction of forecast skill. In: Pre-
dictability and Nonlinear Modelling in Natural Sciences and Economics, pp. 29–44.
Springer (1994)

17. Everett, M., Habibi, G., Jonathan, P.: How Efficient reachability analysis of closed-
loop systems with neural network controllers. arXiv preprint arXiv:2101.01815
(2021)

18. Fan, C., Miller, K., Mitra, S.: Fast and guaranteed safe controller synthesis for
nonlinear vehicle models. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 629–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 31

19. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59152-6 30

20. Fridovich-Keil, D., et al.: Confidence-aware motion prediction for real-time collision
avoidance1. Int. J. Robot. Res. 39(2–3), 250–265 (2020)

21. Gerdts, M., Xausa, I.: Avoidance trajectories using reachable sets and parametric
sensitivity analysis. In: Hömberg, D., Tröltzsch, F. (eds.) CSMO 2011. IAICT, vol.
391, pp. 491–500. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36062-6 49

http://arxiv.org/abs/2011.02082
http://arxiv.org/abs/2101.10784
https://cps-vo.org/group/ARCH/FriendlyCompetition
https://cps-vo.org/group/ARCH/FriendlyCompetition
https://doi.org/10.14279/depositonce-8398
http://arxiv.org/abs/2101.01815
https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-642-36062-6_49
https://doi.org/10.1007/978-3-642-36062-6_49

Computing Density of Reachable States for Safe Motion Planning 269

22. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from
the perspective of autonomous uav guidance. J. Intell. Robot. Syst. 57(1), 65–100
(2010)

23. González, D., Pérez, J., Milanés, V., Nashashibi, F.: A review of motion planning
techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 17(4), 1135–
1145 (2015)

24. Hainry, E.: Decidability and undecidability in dynamical systems. In: Research
Report (2009)

25. Hormann, K.: Barycentric interpolation. In: Approximation Theory XIV: San
Antonio 2013, pp. 197–218. Springer (2014)

26. Hu, H., Fazlyab, M., Morari, M., Pappas, G.J.: Reach-sdp: Reachability analysis of
closed-loop systems with neural network controllers via semidefinite programming.
In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 5929–5934.
IEEE (2020)

27. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

28. Julian, K.D., Kochenderfer, M.D.: Reachability analysis for neural network aircraft
collision avoidance systems. J. Guidance Control Dyn. 44(6), 1132–1142 (2021)

29. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
Int. J. Robot. Res. 30(7), 846–894 (2011)

30. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

31. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

32. Kornfeld, R.P., Prakash, R., Devereaux, A.S., Greco, M.E., Harmon, C.C., Kipp,
D.M.: Verification and validation of the mars science laboratory/curiosity rover
entry, descent, and landing system. J. Spacecraft Rockets 51(4), 1251–1269 (2014)

33. Kousik, S., Vaskov, S., Fan, B., Johnson-Roberson, M., Vasudevan, R.: Bridging
the gap between safety and real-time performance in receding-horizon trajectory
design for mobile robots. Int. J. Robot. Res. 39(12), 1419–1469 (2020)

34. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a delaunay triangula-
tion. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

35. Lew, T., Pavone, M.: Sampling-based reachability analysis: A random set theory
approach with adversarial sampling. arXiv preprint arXiv:2008.10180 (2020)

36. Liebenwein, L., Baykal, C., Gilitschenski, I., Karaman, S., Rus, D.: Sampling-based
approximation algorithms for reachability analysis with provable guarantees. RSS
(2018)

37. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-
rithms for verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

38. Majumdar, A., Pavone, M.: How should a robot assess risk? towards an axiomatic
theory of risk in robotics. In: Amato, N.M., Hager, G., Thomas, S., Torres-Torriti,
M. (eds.) Robotics Research. SPAR, vol. 10, pp. 75–84. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-28619-4 10

39. Majumdar, A., Vasudevan, R., Tobenkin, M.M., Tedrake, R.: Convex optimiza-
tion of nonlinear feedback controllers via occupation measures. Int. J. Robot. Res.
33(9), 1209–1230 (2014)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/2008.10180
http://arxiv.org/abs/1903.06758
https://doi.org/10.1007/978-3-030-28619-4_10

270 Y. Meng et al.

40. Manzinger, S., Pek, C., Althoff, M.: Using reachable sets for trajectory planning
of automated vehicles. IEEE Trans. Intell. Veh. 6(2), 232–248 (2020)

41. McNaughton, M., Urmson, C., Dolan, J.M., Lee, J.W.: Motion planning for
autonomous driving with a conformal spatiotemporal lattice. In: 2011 IEEE Inter-
national Conference on Robotics and Automation, pp. 4889–4895. IEEE (2011)

42. Meng, Y., Sun, D., Qiu, Z., Waez, M.T.B., Fan, C.: Learning density distribution of
reachable states for autonomous systems. arXiv preprint arXiv:2109.06728 (2021)

43. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent hamilton-jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Autom.
Control 50(7), 947–957 (2005)

44. Paden, B Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion plan-
ning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh.
1(1), 33–55 (2016)

45. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

46. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot
motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

47. Qian, X., Altché, F., Bender, P., Stiller, C., de La Fortelle, A.: Optimal trajectory
planning for autonomous driving integrating logical constraints: an miqp perspec-
tive. In: 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 205–210. IEEE (2016)

48. Rasmussen, M., Rieger, J., Webster, K.N.: Approximation of reachable sets using
optimal control and support vector machines. J. Comput. Appl. Math. 311, 68–83
(2017)

49. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost super-
martingales and some applications. In: Optimizing Methods in Statistics, pp. 233–
257. Elsevier (1971)

50. Shkolnik, A., Walter, M., Tedrake, R.: Reachability-guided sampling for planning
under differential constraints. In 2009 IEEE International Conference on Robotics
and Automation, pp. 2859–2865. IEEE (2009)

51. Thorpe, A.J., Ortiz, K.R., Oishi, M.M.K.: Data-driven stochastic reachability using
hilbert space embeddings. arXiv preprint arXiv:2010.08036 (2020)

52. Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computa-
tional Geometry. CRC Press (2017)

53. Tran, H.D., et al.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

54. Vincent, J.A., Schwager, M.: Reachable polyhedral marching (rpm): A safety veri-
fication algorithm for robotic systems with deep neural network components. arXiv
preprint arXiv:2011.11609 (2020)

55. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

56. Xue, B., Zhang, M., Easwaran, A., Li, Q.: PAC model checking of black-box
continuous-time dynamical systems. IEEE Trans. Comput.-Aid. Des. Integr. Circ.
Syst. 39(11), 3944–3955 (2020)

http://arxiv.org/abs/2109.06728
http://arxiv.org/abs/2010.08036
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
http://arxiv.org/abs/2011.11609

Computing Density of Reachable States for Safe Motion Planning 271

57. Yang, X., Tran, H.-D., Xiang, W., Johnson, T.: Reachability analysis for feed-
forward neural networks using face lattices. arXiv preprint arXiv:2003.01226 (2020)

58. Zeng, W.: End-to-end interpretable neural motion planner. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8660–
8669 (2019)

http://arxiv.org/abs/2003.01226

Towards Refactoring FRETish
Requirements

Marie Farrell(B), Matt Luckcuck, Oiśın Sheridan, and Rosemary Monahan

Department of Computer Science and Hamilton Institute, Maynooth University, Co.,
Kildare, Ireland

{marie.farrell,matt.luckcuck,rosemary.monahan}@mu.ie,
oisin.sheridan.2019@mumail.ie

Abstract. Like software, requirements evolve and change frequently
during the development process. Refactoring is the process of reorganis-
ing software without changing its behaviour, to make it easier to under-
stand and modify. We propose refactoring for formalised requirements
to reduce repetition in the requirement set so that they are easier to
maintain as the system and requirements evolve. This work-in-progress
paper describes our motivation for and initial approach to refactoring
requirements in NASA’s Formal Requirements Elicitation Tool (FRET).
This work was directly triggered by our experience with an industrial
aircraft engine software controller use case. In this paper, we reflect on
the requirements that were obtained and, with a view to their maintain-
ability, propose and outline functionality for refactoring fretish require-
ments.

Keywords: Refactoring · Formal requirements · FRET

1 Introduction and Background

Detailed requirements elicitation is an important step in the software develop-
ment process. This often begins with a set of natural-language requirements,
which then evolve as the project progresses, as additional functionality is added,
and as bugs reveal unintended or unsafe system behaviour. For safety-critical
systems, requirements can often be drawn from standards or regulator guid-
ance, and verifying that the system’s design and implementation preserve these
requirements can be an integral part of securing approval to use the system.

The authors thank Georgios Giantamidis, Stylianos Basagiannis, and Vassilios A. Tsa-
chouridis (United Technologies Research Center, Ireland) for their collaboration in the
requirements elicitation process; and Anastasia Mavridou (KBR/NASA Ames Research
Center, USA) for her help with FRET.
This research was financially supported by the European Union’s Horizon 2020 research
and innovation programme under the VALU3S project (grant No 876852). This project
is also funded by Enterprise Ireland (grant No IR20200054). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 272–279, 2022.
https://doi.org/10.1007/978-3-031-06773-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_14

Towards Refactoring FRETish Requirements 273

Formal methods can provide robust verification that gives developers and
regulators the confidence that the system functions correctly and safely. How-
ever, natural-language requirements can be difficult to express in the logical
formalisms that formal methods use. Tools such as NASA’s Formal Require-
ments Elicitation Tool (FRET) plug this gap by providing a structured natural
requirements language (called fretish) that has an underlying temporal logic
semantics, which can be used directly as input to formal methods tools [3,8].

Through examining recent work [4], we see that sets of natural-language
requirements can contain many similar requirements, as well as dependencies
between requirements. This makes the necessary task of maintaining the require-
ments tedious and error-prone, as the system and its requirements evolve.

In software engineering, refactoring is the process of improving the struc-
ture of the software without altering its functionality [7]. An example is using
the Extract Method refactoring, which extracts a large piece of code into a
method, to simplify and modularise the program. This is often used when the
same functionality is repeated throughout the program. Here we investigate how
to use refactoring to simplify and modularise requirements.

The cleaner code produced by refactoring is easier to maintain, examine,
understand and update. Like software, requirements often go through several
iterations before they are complete. Even then, they may need updating, if an
error is found or a new feature is added. This means that their structure is
almost as important as the software that they specify.

We view the maintenance of a requirements set to have similar benefits to
the maintenance of software, namely that the requirements can be modified
more easily with a reduced potential for human error. The notion of refactoring
requirements is not new and has been previously explored in [13]. Here, we
introduce the idea for FRET through examining how refactoring can be applied
to the fretish requirements for an aircraft engine controller system.

Within the VALU3S project1, we elicited and formalised requirements for
an aircraft engine software controller use case with our industrial partner [5,9].
We are now constructing formal models of the system to verify the requirements
against, and generating verification conditions from the requirements. At this
stage, it is important that our fretish requirements are easy to maintain and
update, should new or modified functionality be developed. As a result, we are
devising an approach to refactoring these requirements to reduce repetition and
aid the maintainabilty of the requirements set. We take inspiration from prior
work on refactoring natural-language requirements [13] and apply it to formal
requirements with an additional step to check that the refactored requirement
preserves the meaning of its unrefactored counterpart.

This work-in-progress paper explores how formalised FRET requirements can
be refactored, and illustrates our refactoring process via our industrial, aerospace
use case. We begin by providing a brief analysis of the requirements in our use
case and introduce refactoring for fretish requirements. We then discuss the
ways in which refactoring might be suppoorted in FRET.

1 https://valu3s.eu/.

https://valu3s.eu/

274 M. Farrell et al.

Table 1. UC5 R 1–UC5 R 4 of the natural-language requirements for the aircraft
engine controller. These 4 requirements are mainly concerned with continued oper-
ation of the controller in the presence of sensor faults [5].

ID Description

UC5 R 1 Under sensor faults, while tracking pilot commands, control objectives shall be

satisfied (e.g., settling time, overshoot, and steady state error will be within

predefined, acceptable limits)

UC5 R 2 Under sensor faults, during regulation of nominal system operation (no change in

pilot input), control objectives shall be satisfied (e.g., settling time, overshoot, and

steady state error will be within predefined, acceptable limits)

UC5 R 3 Under sensor faults, while tracking pilot commands, operating limit objectives shall

be satisfied (e.g., respecting upper limit in shaft speed)

UC5 R 4 Under sensor faults, during regulation of nominal system operation (no change in

pilot input), operating limit objectives shall be satisfied (e.g., respecting upper limit

in shaft speed)

2 Refactoring Requirements

This section provides an overview and brief analysis of the requirements that we
elicited for the aircraft engine software controller use case (originally presented
in [5]) and describes our approach to refactoring them.

2.1 Analysis: Aircraft Engine Controller Requirements

Previously, we presented 14 natural-language requirements for an industrial air-
craft engine controller which we formalised using FRET [5]. Table 1 contains
the first 4 of these requirements, which were constructed independently by our
industrial partner. It was clear to us from the outset that these requirements
were repetitive, for example the phrase ‘Under sensor faults’ appears in several
requirements (4/14 in total).

To preserve traceability between the natural language requirements and their
corresponding fretish encodings we opted for a one-to-one mapping, where
each natural-language requirement corresponds to one (parent) requirement in
fretish. fretish requirements have the following structure and fields:

scope condition component shall timing response

Here, the scope and timing fields are optional. Users specify a condition under
which a component shall satisfy a response. For example the fretish encod-
ing of UC5 R 1 is: if((sensorFaults)&(trackingPilotCommands)) Controller

shall satisfy (controlObjectives). ‘Under sensor faults’ maps to the boolean
sensorFaults, and the other requirements (Table 1) follow a similar structure.

Since we adopted a one-to-one mapping, the repetition of ‘Under sensor
faults’ is mirrored by the repetition of sensorFaults in the fretish require-
ments. We refer to these repeated pieces as requirement fragments. We iden-
tified 7 fragments in our 14 abstract requirements, and each fragment was
repeated in between 4 and 7 of the 14 requirements. Figure 1 shows the dependen-
cies between the requirements and specific fragments and includes the natural-
language description of the fragments themselves.

Towards Refactoring FRETish Requirements 275

F1 F2 F3 F4 F5 F6 F7

R1 R3

R4

R5 R6

R7

R8

R9

R10

R11
R12

R13 R14

R2

F1
Tracking
Pilot
Commands

F2
Sensor
Faults

F3
Control
Objectives F4

Operating
Limit
Objectives

F5
Mechanical
Fatigue

F6 Low Probability
Hazardous Events

F7
Regulation of
Nominal Operation

Fig. 1. Dependency graph: arrows indicate a ‘depends on’ relationship between require-
ments (white boxes) and fragments (grey boxes).

Once the high-level requirements were encoded in fretish, we elicited 28
detailed child requirements that expanded the definitions of the abstract terms
in the 14 parent requirements [5]. UC5 R 1 has 3 child requirements (Table 2).
Each of these contains the expanded, more detailed definition of sensorFaults:

(sensorValue(S) > nominalValue + R) | (sensorValue(S) <

nominalValue - R) | (sensorValue(S) = null)

As expected, this repetition of definitions in the child requirements makes the
requirements set more difficult to maintain, because changes to the definition of
one fragment cause updates in multiple places. For example, if the definition of
sensorFaults were to change, as it did during the elicitation process, then 8 of the
28 child requirements would require updating. This process is time-consuming,
tedious, and error prone. A better approach would be to update the definition
of sensorFaults in one place and avoid this duplication of effort.

sensorFaults corresponds to one detailed clause in each child requirement,
but this was not the case for all fragments. For example, trackingPilotCommands
corresponds to a condition (when (diff(r(i),y(i))>E)) and a timing constraint
(until (diff(r(i),y(i))<e)). An automatic approach to refactoring fretish
requirements would be even more helpful in similar situations where an abstract
requirement corresponds to multiple detailed clauses.

Next, we outline our approach to refactoring fretish requirements, taking
inspiration from prior work on refactoring natural-language requirements.

276 M. Farrell et al.

Table 2. Three distinct child requirements for UC5 R 1 capture the correct behaviour
with respect to each of settling time, overshoot and steady state error.

ID FRETISH

UC5 R 1.1 when (diff(r(i),y(i)) > E) if((sensorValue(S) > nominalValue + R)
| (sensorValue(S) < nominalValue - R) | (sensorValue(S) = null) &
(pilotInput => setThrust = V2) & (observedThrust = V1)) Controller
shall until (diff(r(i),y(i)) < e) satisfy (settlingTime >= 0) &
(settlingTime <= settlingTimeMax) & (observedThrust = V2)

UC5 R 1.2 when (diff(r(i),y(i)) > E) if((sensorValue(S) > nominalValue
+ R) | (sensorValue(S) < nominalValue - R) | (sensorValue(S) =
null)& (pilotInput => setThrust = V2) & (observedThrust = V1))
Controller shall until (diff(r(i),y(i)) < e) satisfy (overshoot >= 0)
& (overshoot <= overshootMax) & (observedThrust = V2)

UC5 R 1.3 when (diff(r(i),y(i)) > E) if((sensorValue(S) > nominalValue + R)
| (sensorValue(S) < nominalValue - R) | (sensorValue(S) = null)&
(pilotInput => setThrust = V2)& (observedThrust = V1)) Controller
shall until (diff(r(i),y(i)) < e) satisfy (steadyStateError >= 0) &
(steadyStateError <= steadyStateErrorMax) & (observedThrust = V2)

2.2 Refactoring Requirements

We briefly show how we specialise the classical refactoring, Extract
Method [7], to requirements. Extract Method extracts code into a method,
so that it can be called rather than copying code snippets. Our specialisation
is based on the Extract Requirement refactoring in [13]; but with an extra
step, facilitated by FRET’s automatic translation of requirements to temporal
logic.

We begin by creating a new requirement to contain the behaviour that we
wish to extract. We then replace the extracted behaviour in the original require-
ment with a reference to the new one. Finally, we check that the restructuring
has not altered the behaviour of the original requirement, and we propagate this
change throughout the requirements set.

Extract Requirement allows us to define the sensorFaults fragment in
one place. Then, individual requirements essentially ‘call’ the fragment in a sim-
ilar way to method calls in object oriented programming languages. Supporting
this ‘calling’ capability in FRET is part of our current work.

We chose FRET because it facilitates the formal verification that an imple-
mentation obeys its requirements. We intend to translate fretish requirements
into other formalisms for verification [9]; so it is important that they are easy to
maintain, if and when formal methods tools find problems in the system.

When refactoring the fretish encodings of requirements we can formally ver-
ify that the refactoring preserves the semantics of the original requirements. The
Linear-time Temporal Logic (LTL) representation FRET generates enables us
to perform the ‘compile and test’ step that is included in software refactoring [7]
but not previously addressed for refactoring natural-language requirements [13].
Specifically, this involves checking that the temporal logic version of the require-
ments before refactoring has taken place is the same as that after (i.e. that the

Towards Refactoring FRETish Requirements 277

behaviour has not changed). This can be achieved by checking that the two tem-
poral logic formulae are equivalent; or that the refactored requirement implies
the original.

There are many other refactorings that might be applied such as the Pull
Up Method refactoring that also helps to remove code duplication. This is par-
ticularly relevant for the child requirements and is used to eliminate duplication
in sibling subclasses [7]. We are currently investigating how this might be applied
in our requirements set.

3 Towards FRET-Supported Refactoring

FRET does not currently support refactoring. This section outlines our initial
investigations into how automatic refactoring functionality could be included.

FRET requirements are not aware of one another. For example, although
one requirement might depend on another requirement, it cannot call the other
requirement in the way that a program can call a method. Requirements can be
linked by a parent-child relationship but this is superficial at present, although
it is useful from a user-perspective for maintaining traceability as requirements
evolve.

We propose an additional requirement type, called Fragment, that can be
called from other requirements. This will involve updating the FRET interface
and will lead to minor modifications to the generation of LTL specifications.
FRET uses an in-built bank of templates to generate the LTL semantics for each
requirement [8]. Templates take the form: [<scope-option>, <condition-option>,
<timing-option>]. Since each Fragment will be a specialised requirement, each
will produce a template. When generating the LTL semantics for a requirement
that references a Fragment, it will be necessary to combine the templates of
the Fragment and the requirement to produce a complete template.

In general we think that combining templates can be achieved by taking
the union of the scope, condition, and timing fields (respectively). However, we
can also see specific situations where this simple approach might fail; e.g., if we
combine two distinct timing options, should they be summed or should one take
precedence (if so, which one)? We leave this investigation as future work.

Users should be able to refactor existing requirements and create fragments
from scratch. Refactoring existing requirements could be realised, similarly to
refactoring code in Eclipse2, by selecting the part of a requirement to become
a Fragment and selecting (from a context-menu) that it should be extracted.
The FRET interface should also provide the option to ‘create Fragment’.

When refactoring existing requirements, FRET should check that the original
and refactored requirements (including the extracted Fragment(s)) are equiv-
alent. FRET already checks the equivalence of the past- and future-time LTL
for each requirement, this step performs a similar check between requirements.

FRET links to the CoCoSim [2] and Copilot [12] verification tools. The trans-
lations to these tools would now require an extra step to address refactored
2 Eclipse: https://www.eclipse.org/ide/.

https://www.eclipse.org/ide/

278 M. Farrell et al.

requirements. A naive approach would involve recombining the fragments, effec-
tively ‘unrefactoring’ the requirement. This would be hidden from the user, with
the fully expanded requirement only appearing in the generated verification con-
ditions. However, if the user wanted to edit the generated conditions, the original
problems with repetition in the requirements would reappear.

A more sophisticated approach would carry the refactoring relationship
through to the generated conditions. For example, in CoCoSim, guarantees would
be generated corresponding to the fragments, but investigating how these guar-
antees are combined whilst preserving the semantics of the requirement is future
work.

Recent work has formally verified the FRET design using the PVS theorem
prover [3]. The changes that we propose in this paper by including a designated
Fragment requirement type and related refactoring functionality would need to
be similarly verified to preserve the trustworthiness and integrity of FRET. This
would likely involve extending the PVS specification and associated denotational
semantics in [3] to support and verify the refactoring features that we propose.

4 Conclusion

This paper presents our work-in-progress on refactoring FRET requirements,
which is directly motivated by our specification of an industrial aircraft engine
controller use case. We demonstrated that repetition in natural-language require-
ments can cause difficulty when maintaining a set of corresponding formalised
requirements, and presented an approach to refactoring requirements that
extends an existing approach in the literature. We have also outlined how we
intend to implement this in FRET as future work.

Other FRET studies have not encountered such a strong need for refactoring
[1,6,10]. However, these do not directly involve an industry partner throughout
the requirements elicitation and formalisation process. Our study is unique, since
it is the first published use of FRET in an industrial case study where develop-
ment of the system is ongoing [5]. That said, recent fretish requirements for
a liquid mixer [11] exhibit some repetition, so may benefit from our refactoring
approach. Investigating refactoring for FRET in other use cases is an important
avenue of future work.

References

1. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

2. Bourbouh, H., Garoche, P.L., Loquen, T., Noulard, É., Pagetti, C.: CoCoSim,
a code generation framework for control/command applications an overview of
CoCoSim for multi-periodic discrete Simulink models. In: European Congress on
Embedded Real Time Software and Systems (2020)

https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4

Towards Refactoring FRETish Requirements 279

3. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A compo-
sitional proof framework for FRETish requirements. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
68–81 (2022)

4. Deshpande, G., Arora, C., Ruhe, G.: Data-driven elicitation and optimization of
dependencies between requirements. In: International Requirements Engineering
Conference, pp. 416–421. IEEE (2019)

5. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: FRETting about require-
ments: formalised requirements for an aircraft engine controller. In: Gervasi, V.,
Vogelsang, A. (eds.) Requirements Engineering: Foundation for Software Quality.
REFSQ 2022. LNCS, vol. 13216, pp. 96–111. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-98464-9 9

6. Farrell, M., Mavrakis, N., Ferrando, A., Dixon, C., Gao, Y.: Formal modelling
and runtime verification of autonomous grasping for active debris removal. Front.
Robot. AI 8, 639282 (2022)

7. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. The
Addison-Wesley object technology series. Addison-Wesley (1999)

8. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Software Technol.
137, 106590 (2021)

9. Luckcuck, M., Farrell, M., Sheridan, O., Monahan, R.: A methodology for devel-
oping a verifiable aircraft engine controller from formal requirements. In: IEEE
Aerospace Conference (2022)

10. Mavridou, A., et al.: The ten Lockheed martin cyber-physical challenges: formal-
ized, analyzed, and explained. In: International Requirements Engineering Confer-
ence, pp. 300–310. IEEE (2020)

11. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen,
M.W.: From Partial to global assume-guarantee contracts: compositional realiz-
ability analysis in FRET. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM
2021. LNCS, vol. 13047, pp. 503–523. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90870-6 27

12. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Technical report, NASA/TM-2020-
220587, National Aeronautics and Space Administration (2020)

13. Ramos, R., et al.: Improving the Quality of Requirements with Refactoring. In:
Simpósio Brasileiro de Qualidade de Software, pp. 141–155. Sociedade Brasileira
de Computação (2007)

https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-90870-6_27
https://doi.org/10.1007/978-3-030-90870-6_27

Neural Network Compression of ACAS
Xu Early Prototype Is Unsafe:

Closed-Loop Verification Through
Quantized State Backreachability

Stanley Bak1(B) and Hoang-Dung Tran2

1 Stony Brook University, Stony Brook, NY, USA
stanley.bak@stonybrook.edu

2 University of Nebraska-Lincoln, Lincoln, NE, USA

dtran30@unl.edu

Abstract. ACAS Xu is an air-to-air collision avoidance system designed
for unmanned aircraft that issues horizontal turn advisories to avoid an
intruder aircraft. Due the use of a large lookup table in the design, a
neural network compression of the policy was proposed. Analysis of this
system has spurred a significant body of research in the formal methods
community on neural network verification. While many powerful meth-
ods have been developed, most work focuses on open-loop properties
of the networks, rather than the main point of the system—collision
avoidance—which requires closed-loop analysis.

In this work, we develop a technique to verify a closed-loop approxi-
mation of the system using state quantization and backreachability. We
use favorable assumptions for the analysis—perfect sensor information,
instant following of advisories, ideal aircraft maneuvers and an intruder
that only flies straight. When the method fails to prove the system is safe,
we refine the quantization parameters until generating counterexamples
where the original (non-quantized) system also has collisions.

Keywords: Neural network verification · ACAS Xu · Reachability

1 Introduction

The Airborne Collision Avoidance System X (ACAS X) is a mid-air collision
avoidance system under development [26], with the ACAS Xu variant focused on
collision avoidance for unmanned aircraft [20]. Originally designed offline using
dynamic programming and Markov decision processes (MDPs) [21], the large
rule table was compressed by a factor of 1000 using a set of neural networks [19].
The proposed system is an example of a neural network control system (NNCS),
where the system’s execution alternates between the aircraft dynamics and a
neural network controller. As collision avoidance is safety-critical, analysis of
the neural networks has spurred a significant body of research on neural network
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 280–298, 2022.
https://doi.org/10.1007/978-3-031-06773-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_15

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 281

verification. Most existing work, however, focuses on open-loop verification, such
as property φ3 from the original work [20], which states, “if the intruder is
directly ahead and is moving towards the ownship, [a turn will be commanded].”
Open-loop properties can be expressed in terms of constraints over the inputs and
outputs of a single execution of the neural network. However, satisfying open-
loop properties does not prove the system is safe, as this requires reasoning with
the physical system dynamics—how the aircraft responds to turn commands.
Also, the system is running continuously and may change advisories at a future
time, complicating safety analysis. Verification of closed-loop safety of provided
collision avoidance system under all designed operating conditions is thus a sort
of grand challenge.

While verification of neural networks is continuously improving, an intrigu-
ing alternate approach has recently been proposed based on input quantiza-
tion [15]. Rather than verifying the neural network directly, which requires rea-
soning about the semantics at each layer, the system’s execution semantics are
changed to round the inputs to a discrete set of possible values before running
the network. To be clear, this type of quantization is a preprocessing layer before
the network runs; it does not change the representation of the floating-point val-
ues inside the network itself. Through input quantization, proving open-loop
properties of a neural network is reduced to the problem of network execution
for each of a finite set of possible inputs. Due to the possibility of combina-
torial explosion, this strategy can only work if the number of inputs is small,
which is often the case for neural networks used in control systems. When the
strategy is applicable, however, it enjoys several advantages: (i) batch execu-
tion of neural networks is often used in training and so optimized hardware like
GPUs can be leveraged to enumerate the possible inputs for verification, (ii) the
performance of the final quantized system approximates the performance of the
original neural network and the approximation can be tuned through the quanti-
zation parameters, and (iii) the verification method only requires execution, and
works regardless of the network size, the network architecture, or the layer types,
unlike most neural network verification methods. In the context of verification,
however, quantization has only been considered for open-loop properties.

In this work, we propose an approach to formally verify quantized closed-
loop NNCS. Although the technique is general, we focus primarily on proving
safety for quantized version of the well-studied aircraft collision avoidance neu-
ral network benchmark. Two key ideas are needed to make this work: (1) we
perform state quantization rather than input quantization and (2) we use back-
reachability from the unsafe states to reduce the number of partitions. We prove
the approach is sound and complete, in the sense that by continuing to refine
quantization parameters, either the quantized system will eventually be proven
safe or an unsafe counterexample will be found in the original system. When the
method fails to prove safety of quantized closed-loop system, we refine the quan-
tization values until discovering cases where the original (unquantized) version
of the system fails. We also show that with stricter assumptions on the ownship
aircraft’s velocity, the quantized system can guarantee safety.

282 S. Bak and H.-D. Tran

Fig. 1. The closed-loop air-to-air collision avoidance system design.

2 Background and Problem Formulation

We next review key aspects of the system design, proof assumptions, and provide
background on AH-Polytopes before formulating the safety verification problem.

2.1 Collision Avoidance System Design

We are interested in safety verification and falsification of the closed-loop air-
to-air collision avoidance system [20,21] depicted in Fig. 1. The system com-
putes advisory commands to control an ownship aircraft with physical dynamics
described by a set of ordinary differential equations (ODEs), trying to avoid
collisions with a nearby intruder.

A detailed description of the inputs and actions in the system is shown in
Table 1. The system receives 7 inputs about the state of an ownship and a nearby
intruder aircraft, I = {ρ, θ, ψ, vown, vint, τ, aprev}, and produces one of five pos-
sible advisories for the ownship, A = {coc, wl, wr, sl, sr}.

The turn advisories in the system are generated by 45 deep ReLU neu-
ral networks with 6 layers and 50 neurons per layer for each network. Con-
trol switches between different neural networks Naprev,τ based on the previous
advisory aprev (total of 5 choices) and the time until loss of vertical separation
τ = {0, 1, 5, 10, 20, 50, 60, 80, 100} (total of 9 choices). For example, the network
N5,3 will be invoked if the previous advisory is aprev = sr and τ = 5. If the
ownship and the intruder are at the same altitude, then τ = 0 and only five
neural network controllers need to be used, N1,1, N2,1, N3,1, N4,1, and N5,1.

2.2 Assumptions and Plant Model

Before we describe the plant model used in analysis, we first state our sys-
tem assumptions: (i) the intruder flies in straight-line trajectories with constant
speed, (ii) the ownship flies with constant speed and its heading is adjusted

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 283

every second (the NNCS control period), (iii) the actions correspond to heading
changes in the intruder of 1.5 deg/sec for weak turn commands, 3.0 deg/sec for
strong turns and 0.0 deg/sec for clear-of-conflict commands [19], (iv) there is no
sensor noise and (v) advisories are followed exactly and immediately. Many of
these are fairly strong and the real system would need to be robust to maneu-
vering intruders, pilot delay and sensor noise. From a safety proof perspective,
however, we would want the system to at least be safe under these ideal assump-
tions.

To model the state of the system with these assumptions, we use Carte-
sian coordinates. The values xown, yown, xint, yint refer to the x and y posi-
tions of the ownship and the intruder; vown =

√
(vx

own)2 + (vy
own)2 and vint =√

(vx
int)2 + (vy

int)2 are the speed of the ownship and the intruder; θown and θint

are the heading of the ownship and the intruder w.r.t the x axis. The system
performs idealized turn maneuvers modeled with Dubins aircraft dynamics:

ẋown = vx
own = vowncos(θown)

ẏown = vy
own = vownsin(θown)

ẋint = vx
int = vintcos(θint)

ẏint = vy
int = vintsin(θint)

(1)

Equation 1 does not show clearly how the aircraft can be controlled by chang-
ing their heading. Taking derivatives of the Eq. 1 one more time and noticing
that θ̇own is a constant between advisories, θ̇own = (π/180)u = c(rad/s), and
then taking θ̇int = 0, we obtain the following 8-d linear system dynamics:

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

ẋown

ẏown

v̇x
own

v̇y
own

ẋint

ẏint

v̇x
int

v̇y
int

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 −c 0 0 0 0
0 0 c 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

xown

yown

vx
own

vy
own

xint

yint

vx
int

vy
int

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(2)

Table 1. Input variables used to produce a turn advisory.

Input Units Description Action Description

ρ ft Distance between ownship and intruder sl Strong left turn at 3.0 deg/s

θ rad Angle to intruder w.r.t ownship heading wl Weak left at turn 1.5 deg/s

ψ rad Heading of intruder w.r.t ownship coc Clear of conflict (do nothing)

vown ft/s Velocity of ownship wr Weak right turn at 1.5 deg/s

vint ft/s Velocity of intruder sr Strong right turn at 3.0 deg/s

τ s Time until loss of vertical separation

aprev previous advisory

284 S. Bak and H.-D. Tran

The linear model described in Eq. 2 is valid for only one control step, with a fixed
control signal u, which may be either −3,−1.5, 0, 1.5 or 3 deg/s depending on the
specific command. Therefore, this model can be considered as a piece-wise linear
model of the system. From the plant state variables, we can obtain the inputs
for the neural network controller which are expected to in radial coordinates as
follows.

θown = arctan(
vy

own

vx
own

), θint = arctan(
vy

int

vx
int

),

ρ =
√

(xint − xown)2 + (yint − yown)2,

θ = arctan(
yint − yown

xint − xown
) − θown, ψ = θint − θown.

(3)

2.3 Reachability with AH-Polytopes

An AH-polytope is a set representation that informally is an affine transforma-
tion of a half-space polytope, where the affine transformation and polytope terms
are explicitly kept separate. Although the name is fairly recent [27], this set rep-
resentation has often been used in reachability analysis for linear systems [2,5]
and neural networks [4,30], where it is also called a linear star set [8], constrained
zonotope [28], affine form [12], or symbolic orthogonal projection [11].

Importantly for this work, discrete-time reachability of systems with linear
dynamics, ẋ = Ax, can be expressed exactly using this set representation, as
it amounts to a linear transformation of the entire set by the matrix exponen-
tial eAt, where t is the time step. Further, operations like intersections can be
performed exactly on AH-polytopes, as well as linear optimization over the sets.

Definition 1 (AH-Polytope). An AH-Polytope is a tuple Θ = 〈V, c, C, d〉
that represents a set of states as follows:

�Θ� = {x ∈ R
n | ∃α ∈ R

m, x = V α + c ∧ Cα ≤ d}.

Proposition 1 (Affine Mapping). An affine mapping of an AH-Polytope
Θ = 〈V, c, C, d〉 with a mapping matrix W and an offset vector b is a new AH-
Polytope Θ′ = 〈V ′, c′, C ′, d′〉 in which V ′ = WV, c′ = Wc + b, C ′ = C, d′ = d.

Proposition 2 (Linear Transformation). A linear transformation of an
AH-Polytope with a matrix W is an affine mapping using mapping matrix W
and an offset vector of b = 0.

Proposition 3 (Intersection). The intersection of Θ = 〈V, c, C, d〉 and a half-
space H = {x | Gx ≤ g} is a new AH-Polytope Θ′ = 〈V ′, c′, C ′, d′〉 with c′ =
c, V ′ = V, C ′ = [C;GV], d′ = [d; g − Gc].

Proposition 4 (Linear Optimization). Linear optimization in given a direc-
tion w ∈ R

n over a star set Θ = 〈V, c, C, d〉 can be solved with linear programming
as follows: min(wT x), s.t. x ∈ Θ = wT c + min(wT V α), s.t. Cα ≤ d.

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 285

2.4 Safety Problem Formulation

Verifying the safety of the closed-loop system means proving the absence of
unsafe paths under all operating conditions. For simplified presentation, we con-
sider a discrete-time version of the problem, where we only check for collisions
once a second when the system is activated. Our analysis could be extended
to continuous time through conservative time-discretization approaches from
hybrid systems reachability analysis [10], which essentially bloat the initial set
and then perform discrete-time analysis.

Definition 2 (Path). A path is written as s1
α1−→ s2

α2−→ . . .
αn−1−−−→ sn, where

successive values of si and si+1 correspond to the state of the system one second
apart according to the plant dynamics in Eq. 2. The command αi is the system
output from state si using αprev = αi−1, with s1 using the coc network. Paths
can either be in-plane, where τ̇ = 0 and τ = 0 in all states and so the N1,∗
networks get used to generate all commands, or out-of-plane, where τ̇ = −1. In
the out-of-plane case, each state in the path should decrease τ by one second.

An unsafe path has s1 as an initial state and sn as an unsafe state.

Definition 3 (Initial State). An initial state of the state of the system is one
where the aircraft are outside of the system’s operating range (ρ > 60760 ft).

Definition 4 (Unsafe State). Unsafe states are defined to be any states in the
near mid-air collision (NMAC) cylinder [25], where the horizontal separation ρ
is less than 500 ft and the time to loss of vertical separation τ is zero seconds.

The operating conditions where the system should ensure safety are extracted
based on the training ranges used for the original neural networks [20,21]. The
system should be active when the distance between aircraft ρ ∈ [0, 60760] ft, oth-
erwise clear-of-conflict is commanded. The valid values for the ownship velocity
are vown ∈ [100, 1200] ft/sec, valid values for intruder velocity are vint ∈ [0, 1200]
ft/sec, and the angular inputs θ and ψ are both between −π and π.

3 Quantized State Backreachability

Our verification strategy is to compute the backwards reachable set of states
from all possible unsafe states, trying to a find a path that begins with an initial
state. We first partition the unsafe states along state quantization boundaries.

3.1 Partitioning the Unsafe States

Since the system advisories are only based on relative positions and headings, we
eliminate symmetry by assuming that at the time of the collision the intruder is
flying due east and at the origin. We then consider all possible positions of the
ownship to account for all possible unsafe states. Three quantization parameters
are used in the analysis: qpos to quantize positions, qvel to quantize velocities,

286 S. Bak and H.-D. Tran

Fig. 2. The ownship velocity range and heading angle range are used to create linear
bounds on vx

own and vy
own by connecting the points a, b, c, d and e.

and qθ to quantize the heading angle. Based on these parameters, we parti-
tion the unsafe states into 8-d AH-polytopes covering the entire set of possible
unsafe states. The eight dimensions correspond to the system states in the linear
dynamics in Eq. 2, including positions x, y, and velocities vx, vy for both the
ownship and intruder. Associated with each partition, we also enumerate the
five possible previous commands αprev and two possibilities for whether there
is a relative vertical velocity—whether the time to loss of vertical separation is
fixed at 0 or decreasing, τ̇ ∈ {0,−1}.

To create partitions, the xown and yown values are divided into a grid based on
qpos. The intruder position (xint, yint) is set to (0, 0). The intruder and ownship
velocities are partitioned based on qvel, which gets reflected in the x and y
velocity state variables for the two aircraft. The intruder is moving due east,
so vy

int = 0 and vx
int is set to the range of intruder velocities corresponding to

the current partition. The heading of the angle of the ownship is partitioned
based on qθ, where each partition has a lower and upper bound on the heading
[θlb

own, θub
own]. From the current range of values for the ownship heading and the

range of values for the ownship velocity, we can construct linear bounds on vx
own

and vy
own. This is done by connecting five points, a, b, c, d and e, where a and b

are the points at two extreme angles and minimum velocity, c and d are the two
extreme angles and max velocity, and e is the point at the intersection of the
tangent lines of the maximum velocity circle at c and d. A visualization is shown
in Fig. 2. We generally use qθ = 1.5 deg (as it makes for a cleaner backreachability
step), which guarantee all possible vx

own, vy
own values are covered.

3.2 Backreachability from Each Partition

Once a covering of the entire set of unsafe states is performed, for each partition
we compute the exact set of predecessor states that can lead to the states in the
partition at a previous step. This process is repeated until either no predecessors

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 287

Function: check state, Recursively checks safety of predecessors
Input : State set: S, Prev cmd: αprev, Time to loss of vertical separation: τ
Output : Verification Result (safe or unsafe)

1 P = backreach step(S, αprev) // state set of one-step predecessors

2 τprev = τ − τ̇ // τ̇ is fixed at either 0 or -1

3 for αprevprev in [coc, wl, wr, sl, sr] do
4 predecessor quanta ← List()
5 all correct ← true
6 for q in possible quantized states(P) do
7 if run network(αprevprev, τprev, q) = αprev then
8 predecessor quanta.append(q)
9 if ρmin(q) > 60760 then

10 return unsafe // predecessor is valid initial state

11 else
12 all correct ← false

13 end
14 if all correct then
15 // recursive case without splitting

16 if check state(P, αprevprev, τprev) = unsafe then
17 return unsafe
18 end

19 else
20 // recursive case with splitting along quantum boundaries

21 for q in predecessor quanta do
22 T ← quantized to state set(q)
23 Q ← T ∩ P
24 if check state(Q, αprevprev, τprev) = unsafe then
25 return unsafe
26 end

27 end

28 end
29 return safe

Algorithm 1: High-level algorithm for single partition backreachability.

exist or an initial state predecessor is found1, as described in Definition 3. In the
latter case, a path exists from an initial state to a partition of the unsafe states
in the quantized closed-loop system. Otherwise, if no partitions contain unsafe
paths, then the quantized closed-loop system is safe.

The check state function in Algorithm 1 recursively computes and checks
predecessors. The input is a state set S, which is initially an 8-d partition of the
unsafe states represented as an AH-Polytope, as well as the associated value of
αprev and the time to loss of vertical separation, τ = 0 in all unsafe states.

In line 1, backreach step is called, which returns the predecessor set of
states as an AH-polytope P. This is done by taking the linear derivative matrix

1 Degenerate paths could theoretically exist of infinite length that never include a
valid initial state, but we did not observe this occurring in practice.

288 S. Bak and H.-D. Tran

Ac from Eq. 2 with the value of c corresponding to αprev, and then computing
the matrix exponential W = e−Ac . The resulting matrix is the solution matrix
for the system one second prior. A linear transformation of the AH-polytope S
is then performed by W in order to obtain P. In line 2, the value of the time
to loss of vertical separation at the previous step τprev is computed. This either
always equals 0 if τ̇ = 0 for the current partition corresponding to in-plane flight,
or increases by 1 at each call to check state if τ̇ = −1 for out-of-plane flight.

Next, the algorithm computes states in P where the command produced by
the networks was αprev and the time to loss of vertical separation was the value
at the previous step, τprev. This requires iterating over the five possible networks
that could have been used at the prior state (the loop on line 3). For each network
(corresponding to αprevprev), we check each quantized state in P (line 6).

The possible quantized states returns a list of quantized states, which
are 5-tuples of integers, q = (dx, dy, θown, vown, vint). The dx and dy terms cor-
respond to the difference in positions between the intruder and ownship, divided
by the position quantum qpos. The θown term is the heading angle divided by qθ,
and the velocities vown and vint are the fixed aircraft velocities, integer divided
by qvel. The function computes the possible quantized states by using linear pro-
gramming to find P’s bounding box, and then looping over possible quantized
states to check for feasibility when intersected with AH-polytope P.

Line 7 runs the neural network corresponding to αprevprev on quantized state
q to check if the correct command (αprev) is obtained. This process requires
converting from the quantized state (a 5-tuple of integers) to continuous inputs
for the neural network. To do this, we use Eq. 3, noting that the θown is quantized
using qθ, θint is always 0, and the computation of ρ and θ uses the dequantized
value of dx and dy (xint − xown is taken to be qpos

2 + dx ∗ qpos).
When the network output matches the required αprev command, line 8 adds

the quantized state to the valid list of predecessors predecessor quanta. Oth-
erwise, line 12 sets the all correct flag to false, since some of the quantized
states are not valid predecessors. Line 10 checks if the predecessor state satisfies
the initial state condition, in which case an unsafe path has been found. On this
line, ρmin(q) is the minimum aircraft separation distance in the quantized state
q, which must be greater than 60760 ft in an initial state.

After classifying each quantized predecessor state, either all quantized states
had the correct output or some did not. Based on this, we either recursively
call check state on the entire set P (line 16), or we split the set P into parts,
and only recursively call check state on parts that had the correct output.
On line 22, quantized to state set returns the 8-d continuous states corre-
sponding to the quantized state q, which is then intersected with P before being
recursively passed to check state. When splitting is performed, it is possible
that no states had the correct output (predecessor quanta may be empty).

An illustration of the algorithm is provided in Fig. 3. In the figure, the set
P is covered by nine quantized states returned by possible quantized states
(the dots on the right side). Of these nine, eight have a correct output (blue

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 289

Fig. 3. Illustration of Algorithm 1 given state set S.

dots), and one has an incorrect output (red dot). In this case, the algorithm
would split the set P into eight parts and call check state on each recursively2.

We next prove the described algorithm is sound with respect to the safety of
the quantized closed-loop system.

Theorem 1 (Soundness). If check state returns safe for every partition,
the quantized closed-loop system is safe.

Proof. We proceed by contraction. Assume the quantized closed-loop system is
unsafe and so these exists a finite path from an initial state to an unsafe state,
s1

α1−→ s2
α2−→ . . .

αn−1−−−→ sn. Since the unsafe state partitioning covers the full
set of unsafe states, the unsafe state sn is in some partition. We can follow the
progress of sn ∈ S, through check state at each recursive call.

At each call, si ∈ S has a predecessor si−1 ∈ P that gets to si using command
αi−1. In the call to check state, αprev will be αi−1. The value of τprev is incre-
mented at each call on line 2 and so always correctly corresponds to si−1. Since
si−1 ∈ P, si−1 will also be in one of the quantized states qi−1 checked on line 6.
The existence of the counterexample path segment

αi−2−−−→ si−1
αi−1−−−→ si means

that the condition on line 7 will be true when αprevprev = αi−2, and so qi−1 will
be added to predecessor quanta. Since si−1 is both in P and in the state set
corresponding to a quantized state in predecessor quanta, it will be used in
a recursive call to check state. This argument can be repeated for all states
in the unsafe path back to the initial state s1, which would have been returned
as unsafe on line 10 rather than used in a recursive call. This contradicts the
assumption that check state returned safe for every partition.
�

3.3 Falsification of Original (Unquantized) System

The algorithm in the previous section can be used to efficiently find unsafe paths
of the original, unquantized, closed-loop neural network control system. This is
done by repeatedly calling the algorithm with smaller and smaller quantization
constants qpos, qvel and qθ and checking the quantized system for safety.

2 An implementation optimization could be to reduce this splitting into only three
parts. Three is the minimum in this case, since AH-polytopes must be convex.

290 S. Bak and H.-D. Tran

At each step if the safety proof fails, with small modifications to check state
we can get the trace corresponding to the unsafe path for each partition. In par-
ticular, rather than simply returning unsafe on line 10, we can instead return
the set of unsafe initial states quantized to state set(q) ∩ P. A witness point
inside this set can be obtained through linear programming3. This witness point
is then executed on the original system, without quantization, checking for safety.
If the witness point is safe in the non-quantized system, the quantization con-
stants are refined by taking turns dividing each of them in half.

Theorem 2 (Completeness). By following the falsification approach above
and repeatedly refining qpos, qvel and qθ, either we will prove the quantized system
is safe or find an unsafe trace in the original, unquantized system.

Proof. First, consider the case that the system is robustly unsafe, which we
define as there existing a ball Binit of initial states of radius δ > 0 that all follow
the same command sequence α1, α2, . . . , αn and end in the unsafe set. Since all
the initial states follow the same command sequence, the linear transformations
corresponding to the commands α1, α2, . . . , αn, which we call Ac1 , Ac2 , . . . , Acn

can be multiplied together into a single matrix that transforms initial states
to unsafe states, AC = Acn . . . Ac2Ac1 . The matrix AC is invertible since all the
transformations corresponding to each command Ac1 , Ac2 , . . . , Acn are invertible.
The matrix AC being invertible means that since the volume of the ball in the
initial states Binit is nonzero, the corresponding set of states in the unsafe set
is an ellipsoid with nonzero volume, which we call Eunsafe. Through refinement
of the quantization parameters qpos, qvel and qθ, eventually a partition will be
entirely contained in Eunsafe. When this happens, every witness point of the
quantized counterexample from that partition will be in Binit, and so will be an
initial state of an unsafe oath of the original, unquantized system.

Perhaps less practically, even if the original system is not robustly unsafe,
the process still will theoretically terminate when finite-precision numbers are
used in the non-quantized system, such as with air-to-air collision avoidance
neural networks that use 32-bit floats. As the quantization values are halved, the
difference between the unsafe state in the quantized and nonquantized system is
also reduced, until it reaches numeric precision.
�

The second case may seem like one needs to split the entire state space up to
machine precision, which would make it very impractical. However, if the goal
is to search for counterexamples, then the process can first refine the regions
that were found as unsafe using the previous quantization values, in a depth-
first search manner. In this way, when the system is unsafe the process would
not need to immediately refine the entire state space in order to find these
counterexamples. Also keep in mind that the quantized system being safe is
a valid outcome of this refinement process, and this does not mean that the
original, unquantized system, is safe.
3 For witness points, we use the Chebyshev center of the six-dimensional state polytope

(removing yint and vy
int since they are fixed at zero), as it helps avoid numerical issues

that can occur at the boundaries of the set.

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 291

4 Evaluation

We implemented the approach and set out to prove the safety of quantized
closed-loop air-to-air collision avoidance system4. We ran the measurements on
an Amazon Web Services (AWS) Elastic Computing Cloud (EC2) server with
a c6i.metal instance type, which has a 3.5 GHz Intel Xeon processor with 128
virtual CPUs, and 256 GB memory. The algorithm is easily parallelized as proofs
for each partition of the unsafe states can be checked independently.

4.1 Complete Proof of Safety Attempt

We first attempted a proof of safety for the entire range of unsafe states for
ACAS Xu. For this, we started with large quantization values, qpos = 500 ft, qvel
= 100 ft/sec, and qθ = 1.5 deg. In this case, the unsafe near-mid-air collision
circle of radius 500 ft can be covered with 4 partitions, the complete velocity
range of the ownship [100, 1200] needs 11 partitions, the velocity of the intruder
[0, 1200] needs 12 partitions, the heading angle of the ownship is divided into
360 deg
1.5 deg = 240 partitions, and there are 5 choices for the αprev and two possibilities
to check for τ̇ . Multiplying these together, we get a total of 1267200 partitions
of the unsafe states, each of which we pass to check state (Algorithm 1).

This quickly, within a minute, finds counterexamples in the quantized system.
When the witness initial states of the quantized counterexample are replayed on
the original non-quantized system, according to the falsification algorithm from
Sect. 3.3, these were also found to be unsafe! The exact runtime before an unsafe
case is found depends on the order in which the partitions are searched, but we
found that although changing this did affect the counterexample produced, the
runtime was usually less than a minute. Two of the unsafe cases are shown in
Fig. 4 in parts (a) and (b).

In the situation shown in Fig. 4(a), the intruder starts beyond the range of
the network (ρ > 60780 ft). As soon as the intruder gets in range, a turn is
commanded, but the velocity of the ownship is slow and a collision still occurs.
This situation looks like it could be fixed by increasing the range of the system
beyond 60780 ft—likely requiring retraining the networks—to allow a turn to be
commanded earlier. Alternatively, perhaps adding a “do not turn” option as a
possible output would be another way to address this scenario (clear-of-conflict
could allow the ownship to maneuver as desired which may be unsafe here).

Figure 4(b) shows another unsafe case found that is particularly concerning.
This is a tail-chase scenario, although the ownship is already moving away from
the straight-line trajectory of the intruder. The system nonetheless commands
a turn and actively maneuvers the ownship aircraft back into the path of the
intruder. This situation demonstrates one of the dangers of the collision risk
metric used to evaluate the effectiveness of many air-to-air collision avoidance
systems, which compares the number of near mid-air collisions (NMAC) with

4 The code and instructions to reproduce all the results are online: https://github.
com/stanleybak/quantized nn backreach/releases/tag/NFM2022 submitted.

https://github.com/stanleybak/quantized_nn_backreach/releases/tag/NFM2022_submitted
https://github.com/stanleybak/quantized_nn_backreach/releases/tag/NFM2022_submitted

292 S. Bak and H.-D. Tran

Fig. 4. Unsafe counterexamples found in the original non-quantized NNCS. Step-by-
step traces of the counterexamples are provided in the appendix of the extended report:
https://arxiv.org/abs/2201.06626.

and without the system using a large number of simulations. Although a system
can be effective by this metric, in specific cases it may still create collisions that
would not otherwise have occurred, as demonstrated in this scenario.

4.2 Proving Safety in More Limited Operating Conditions

As the proof of safety for the entire operating range failed, we next tried to prove
safety in restricted operating conditions. Many of the unsafe situations found,
including the two above, had a slow ownship velocity and a fast intruder. By
making the ownship fast enough, we hypothesized collisions could be avoided.

When we restricted the range of vown to be in [1000, 1200] ft/sec, using qpos
= 250 ft, qvel = 50 ft/sec, and qθ = 1.5 deg, we were able to guarantee safety
of the quantized closed-loop neural network control system. The proof requred
checking 3.7 million cases and took about 32 min. The longest runtime for any
single call to check state (checking a single partition) was 63 s.

https://arxiv.org/abs/2201.06626

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 293

Reducing vown further to [950, 1000] ft/sec made the quantized system
unsafe. Following the falsification approach from Sect. 3.3, we refined the quan-
tization parameters until we were able to find a counterexample in the original
unquantized closed loop system. In this case, the ownship was moving with
vown = 964.1 ft/sec, and the time to loss of vertical separation τ was initially 75
secs (the quantized system was safe for in-plane flight, with τ̇ = 0). This case is
shown in Fig. 4(c).

From the other side, we can alternatively attempt to prove safety under the
assumption that the intruder is slow without restricting the ownship’s velocity.
In this case, the method also finds unsafe counterexamples in the unquantized
system, such as the 159 s trace shown in Fig. 4(d) with vint = 390.1 ft/sec. The
full trace for this situation is provided in the appendix of the extended report5

and has a peculiar characteristic. The command switch from weak-left to strong-
right a few seconds before the collision corresponds to the relative position angle
θ wrapping from −π to π. This discontinuity in the network input between
successive steps is a strong candidate root cause of the eventual near mid-air
collision.

4.3 Comparison with Other Approaches

As far as we are aware, the proposed method is the first to provide safety guar-
antees while varying all of the operating conditions of the neural network com-
pression of the collision avoidance system.

One related technique, based on computing discrete abstractions and for-
ward reachability was able to provide safety guarantees for the similar Horizon-
tal CAS [17]. This system is simpler to analyze: the inputs were modified to
take in Cartesian state variables, the operating range was smaller (ρ < 50000),
there were fewer neural networks in the system, each of which had half as many
neurons per layer, and critically, fixed velocities of vown = 200 and vint = 185
were considered, rather than using velocity ranges. Despite these simplifications,
analysis took 227 CPU hours, mostly on the neural network analysis step to
analyze 74 million partitions. For a comparison, we analyzed the larger neural
networks in this work with the proposed state quantization and backreachability
method, using the same fixed vown and vint values. Using a quantized system
with qpos = 250 ft and qθ = 1.5 deg, the method proved safety of all 38400
partitions of the unsafe states in 60.6 s. Also note that while the Horizontal CAS
discrete abstraction approach can sometimes prove safety, it would be poor at
generating counterexamples, as abstract reachability overapproximates the true
reachable set; abstract counterexamples do not correspond to real counterexam-
ples. In contrast, the backwards reachability performed in Algorithm 1 is exact
with respect to the quantized system, and the gap between the quantized and
original system can be reduced by refining the quantization parameters, making
it highly effective for counterexample generation.

5 https://arxiv.org/abs/2201.06626.

https://arxiv.org/abs/2201.06626

294 S. Bak and H.-D. Tran

We also compared our method with simulation-based analysis, which can-
not provide guarantees about system safety but should be able to find unsafe
counterexamples if enough simulations are attempted, as the system was shown
to be unsafe. In earlier work [18], 1.5 million encounters were simulated for the
original neural network compression to evaluate the risk of collisions, sampling
from probability distributions of actual maneuvers and taking into account sen-
sor noise. We evaluated the same number of simulations without sensor noise
and sampling over the entire set of operating conditions, in order to match the
assumptions used in the safety proof. We generated uniform random initial states
by considering an initial ρ ∈ [60760, 63160] and θ, ψ, vown and vint in their entire
operating range. When considering τ̇ = −1, we assigned the initial value of
τ between 25 and 160 s, as the unsafe case in Fig. 4(d) was a 159 s trace. We
repeated the process of running 1.5 million simulations one hundred times each
for both τ̇ = −1 and τ̇ = 0, in order to account for statistical noise.

In the τ̇ = 0 case, each batch of 1.5 million simulations found on average
17.07 unsafe paths. The unsafe cases were dominated by situations where the
intruder velocity was low and the ownship velocity was high. The mean value
of vint was 997.8, with a standard deviation of 147.5. The lowest values of vint

over the unsafe cases in all 150 million simulations was 927.6, whereas Fig. 4(d)
showed a case with vint = 390.1 found with our approach. The mean value of
vown in the unsafe cases was 133.4 with a standard deviation of 43.0. The greatest
value of vown over all the unsafe cases found with 150 million simulations was
452.3, whereas our approach found an in-plane case with vown = 881.6.

The performance of simulation analysis for the out-of-plane case is even
worse, as the initial state must also correctly choose the value of the time to
loss of vertical separation τ in order to find a collision. Each batch of 1.5 million
simulations with τ̇ = −1 had on average 0.07 unsafe simulations. The maximum
ownship velocity vown in the unsafe cases had a mean of 175.4 with a standard
deviation of 77.9. The greatest value of vown over the unsafe cases found in
all 150 million simulations was 343.0, whereas our approach found a case with
vown = 964.1, as shown before in Fig. 4(c).

Overall, while simulation analysis may find some unsafe cases, it would be
difficult to find the extreme velocity cases discovered with the proposed app-
roach. Further, simulation analysis is incomplete and cannot prove safety for the
system under subsets of operating conditions as was done in Sect. 4.2.

5 Related Work

Simulation-Based Safety Analysis. The air-to-air collision avoidance system
was originally evaluated using 1.5 million simulations [22] based on Bayesian
statistical encounter models. This uses relaxed assumptions compared with our
work, such as allowing for changes in acceleration. The output of such analysis
is not a yes/no assessment of safety, as the system can clearly be unsafe if the
intruder is faster than the ownship and maneuvers adversarially, but rather a
risk score assessment of the change in safety compared to without using the

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 295

system. Via simulation, given a bounded uncertainty in sensing and control, the
probability of near-mid-air-collision was about 10−4 [18]. Although simulations
show that the system may be unsafe, we do not know if the collision occurs due
to the uncertainty or the system itself. In this work, we could show that the
system itself was unsafe, even if we have perfect sensing and control.

Verification of NNCS. The Verisig approach [14] verifies a NNCS by trans-
forming a network with a sigmoidal neural network controller to an equivalent
hybrid system that can be analyzed with Flow* [6], a well-known tool for ver-
ifying nonlinear hybrid systems. Another method [9,13] combines polynomial
approximation of the neural network controller with the plant’s physical dynam-
ics to construct a tight overapproximation of the system’s reachable set. The star
set approach [29] shows that the exact reachable set of an NNCS with a linear
plant model and a ReLU neural network controller can be computed, although
this is expensive when initial states are large. These methods build upon open-
loop neural network verification algorithms [23,31], which can be difficult to
scale to large complex networks [3] and can sometimes lose soundness due to
floating-point numeric issues [34]. The proposed quantization analysis only needs
to execute neural networks, and so does not suffer from these problems.

Verification of the Closed-loop Air-to-Air Collision Avoidance System.
Existing works have verified NNCS with a single neural network controller on a
small set of initial states [16]. The closed-loop system involves switching between
multiple neural networks and has a large set of initial states, creating a unique
challenge for verification. The simplified Horizontal CAS system was analyzed
using fast symbolic interval analysis for neural network controllers [33] to con-
struct a discrete abstraction [17]. This method can consider sensor uncertainty,
inexact turn commands, and pilot delay, although simplified assumptions are
made, as discussed in Sect. 4.3. Recently, the same system as this work has been
verified with extensions of the symbolic interval method [7] and with star-based
reachability [24] in nnv [32] and nnenum [1]. These approaches use forward reach-
ability analysis and provide sound but not complete verification results. However,
verification has only been demonstrated for specific scenarios with small sets of
initial states, not the full operating conditions considered here.

6 Conclusion

In this work, we set out to prove the closed-loop safety of one of the most popu-
lar benchmarks for neural network verification methods, using a new algorithm
based on state quantization and backreachability. In principle, the approach
scaled sufficiently well to be able to verify the system under all valid initial states
and aircraft velocities. However, the proof process instead found many unsafe
scenarios where the original, unquantized system had near mid-air collisions,
despite ideal assumptions on sensors and maneuvering. Compared with random
simulation-based analysis, we could find counterexamples at more extreme veloc-
ities, as well as provide proofs of safety of the quantized closed-loop system in
more limited scenarios.

296 S. Bak and H.-D. Tran

The approach is could be attractive for certification. A system with a quan-
tization layer behaves like a large lookup table, and the method is therefore
effective on any size network with any layer type, and may even be applicable
to other machine learning approaches. The trade-off of quantization is usually a
small degradation in performance of the controller, with a significant benefit of
reducing analysis complexity and allowing for the possibility of verification.

Acknowledgement. This material is based upon work supported by the NSF
EPSCoR First Award, the Air Force Office of Scientific Research and the Office of
Naval Research under award numbers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-
22-1-0450 and N00014-22-1-2156. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the NSF, US Air Force or US Navy.

References

1. Bak, S.: nnenum: verification of ReLU neural networks with optimized abstraction
refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.)
NFM 2021. LNCS, vol. 12673, pp. 19–36. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-76384-8 2

2. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control. HSCC 2017 (2017)

3. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (VNN-COMP 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

4. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

5. Bak, S., Tran, H.D., Johnson, T.T.: Numerical verification of affine systems with up
to a billion dimensions. In: Proceedings of the 22Nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 23–32. HSCC 2019. ACM, New
York, NY, USA (2019)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

7. Clavière, A., Asselin, E., Garion, C., Pagetti, C.: Safety verification of neural net-
work controlled systems. In: 2021 51st Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshops (DSN-W), pp. 47–54. IEEE
(2021)

8. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of
linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 26

9. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control, pp.
157–168 (2019)

https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
http://arxiv.org/abs/2109.00498
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-41528-4_26

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe 297

10. Forets, M., Schilling, C.: Conservative time discretization: a comparative study.
arXiv preprint arXiv:2111.01454 (2021)

11. Hagemann, W.: Reachability analysis of hybrid systems using symbolic orthogonal
projections. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 407–
423. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 27

12. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using
low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). https://doi.org/10.
1007/11730637 23

13. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis of
neural-network controlled systems. ACM Trans. Embedded Comput. Syst. (TECS)
18(5s), 1–22 (2019)

14. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

15. Jia, K., Rinard, M.: Verifying low-dimensional input neural networks via input
quantization. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021. LNCS,
vol. 12913, pp. 206–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-88806-0 10

16. Johnson, T.T., et al.: ARCH-COMP21 category report: Artificial intelligence and
neural network control systems (AINNCS) for continuous and hybrid systems
plants. EPiC Ser. Comput. 80, 90–119 (2021)

17. Julian, K.D., Kochenderfer, M.J.: Guaranteeing safety for neural network-based
aircraft collision avoidance systems. In: 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC), pp. 1–10. IEEE (2019)

18. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608
(2019)

19. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)

20. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

21. Kochenderfer, M.J., Chryssanthacopoulos, J.: Robust airborne collision avoidance
through dynamic programming. Massachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-371 130 (2011)

22. Kochenderfer, M.J., Edwards, M.W., Espindle, L.P., Kuchar, J.K., Griffith, J.D.:
Airspace encounter models for estimating collision risk. J. Guid. Control. Dyn.
33(2), 487–499 (2010)

23. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

24. Lopez, D.M., Johnson, T.T., Tran, H.D., Bak, S., Chen, X., Hobbs, K.: Verification
of neural network compression of ACAS Xu lookup tables with star set reachability.
In: AIAA Scitech 2021 Forum. AIAA, January 2021

25. Marston, M., Baca, G.: ACAS-Xu initial self-separation flight tests. http://hdl.
handle.net/2060/20150008347 (2015)

26. Olson, W.A.: Airborne collision avoidance system x. Tech. rep, MAS-
SACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB (2015)

http://arxiv.org/abs/2111.01454
https://doi.org/10.1007/978-3-319-08867-9_27
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/978-3-030-88806-0_10
https://doi.org/10.1007/978-3-030-88806-0_10
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1903.06758
http://hdl.handle.net/2060/20150008347
http://hdl.handle.net/2060/20150008347

298 S. Bak and H.-D. Tran

27. Sadraddini, S., Tedrake, R.: Linear encodings for polytope containment problems.
In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 4367–4372.
IEEE (2019)

28. Scott, J.K., Raimondo, D.M., Marseglia, G.R., Braatz, R.D.: Constrained zono-
topes: a new tool for set-based estimation and fault detection. Automatica 69,
126–136 (2016)

29. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. ACM
Trans. Embedded Comput. Syst. (TECS) 18(5s), 1–22 (2019)

30. Tran, H.D., et al.: Star-based reachability analysis of deep neural networks. In:
International Symposium on Formal Methods, pp. 670–686. Springer (2019)

31. Tran, H.D., Xiang, W., Johnson, T.T.: Verification approaches for learning-enabled
autonomous cyber-physical systems. IEEE Design & Test (2020)

32. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

33. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium,
pp. 1599–1614 (2018)

34. Zombori, D., Bánhelyi, B., Csendes, T., Megyeri, I., Jelasity, M.: Fooling a complete
neural network verifier. In: International Conference on Learning Representations
(2020)

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1

ZoPE: A Fast Optimizer for ReLU
Networks with Low-Dimensional Inputs

Christopher A. Strong1(B), Sydney M. Katz2, Anthony L. Corso2,
and Mykel J. Kochenderfer2

1 Department of Electrical Engineering, Stanford University, Stanford, USA
christopher strong@berkeley.edu

2 Department of Aeronautics and Astronautics, Stanford University, Stanford, USA
{smkatz,acorso,mykel}@stanford.edu

Abstract. Deep neural networks often lack the safety and robustness
guarantees needed to be deployed in safety critical systems. Formal veri-
fication techniques can be used to prove input-output safety properties of
networks, but when properties are difficult to specify, we rely on the solu-
tion to various optimization problems. In this work, we present an algo-
rithm called ZoPE that solves optimization problems over the output of
feedforward ReLU networks with low-dimensional inputs. The algorithm
eagerly splits the input space, bounding the objective using zonotope
propagation at each step, and improves computational efficiency com-
pared to existing mixed-integer programming approaches. We demon-
strate how to formulate and solve three types of optimization problems:
(i) minimization of any convex function over the output space, (ii) min-
imization of a convex function over the output of two networks in series
with an adversarial perturbation in the layer between them, and (iii)
maximization of the difference in output between two networks. Using
ZoPE, we observe a 25× speedup on property 1 of the ACAS Xu neu-
ral network verification benchmark compared to several state-of-the-art
verifiers, and an 85× speedup on a set of linear optimization problems
compared to a mixed-integer programming baseline. We demonstrate the
versatility of the optimizer in analyzing networks by projecting onto the
range of a generative adversarial network and visualizing the differences
between a compressed and uncompressed network.

Keywords: Neural network verification · Global optimization ·
Convex optimization · Safety critical systems

1 Introduction

The incorporation of deep neural networks (DNNs) into safety critical systems
is limited by our ability to provide guarantees on their behavior [1,2]. Neural
network verification tools aim to provide these guarantees by proving whether
a network satisfies a given input-output property [3]. When input-output rela-
tionships are difficult to specify, analyzing a system may require the solution to
an optimization problem [4].
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 299–317, 2022.
https://doi.org/10.1007/978-3-031-06773-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_16&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_16

300 C. A. Strong et al.

In this paper, we focus on solving optimization problems involving feedfor-
ward ReLU networks with low-dimensional inputs. Neural networks that control
dynamical systems from state estimates often have low input dimension. For
example, the ACAS Xu networks for aircraft collision avoidance have a five-
dimensional input [2]. Additionally, semantic perturbations to high dimensional
spaces can be analyzed through low dimensional networks [4]. When the input
space is low-dimensional, it can more easily be decomposed into smaller regions,
each defining a simpler optimization problem. We leverage this insight by rapidly
dividing the input space into smaller regions that can be more tightly approxi-
mated, realizing a significant performance gain and finding the optimal value to
a desired tolerance.

We consider the following three optimization problems, each of which is moti-
vated by an application related to verifying the behavior of safety critical sys-
tems:

– Minimizing a convex function of the output of a network. This problem can
be used to reason about the actions of a control network [5,6]. It can also
be used to evaluate a generative adversarial network (GAN), which is a net-
work architecture often used to model high-dimensional data distributions,
by calculating the recall metric [4,7].

– Minimizing a convex function of the output of two networks in series subject
to an adversarial attack at the output of the first network. This problem can
be used to consider adversarial attacks on the input of a network when the
input space is itself modeled by another network [8].

– Maximizing the difference between the outputs of two networks given the same
input. This problem can be used to compare a compressed and uncompressed
network.

Minimizing a convex function of the output can be used to solve many neural
network verification problems [3,9]. The other two problems have received less
attention in the literature.

In this work, we propose the Zonotope Propagation with Eagerness (ZoPE)
optimizer, which solves these optimization problems to a desired tolerance by (i)
eagerly breaking down the problem by splitting the input region, and (ii) relying
on zonotope propagation to reason about the output reachable set from each input
region. We consider a more “eager” solver to be one which spends less time on its
bounding functions before splitting. We evaluate the optimizer through runtime
comparisons and qualitative demonstrations. We solve four of the standard ACAS
Xu neural network verification benchmarks, and compare to state-of-the-art neu-
ral network verification tools ERAN [10], nnenum [11], and Marabou [12]. On
property 1, which can be solved as a linear optimization problem over the output
of the network, we observe a speedup of over 25× compared to the next best tool.
We also evaluate the runtime of ZoPE on a batch of linear optimization problems
from Katz, Corso, Strong, and Kochenderfer [4] and compare against a baseline
that mirrors RefineZono’s approach to verifying the ACAS Xu benchmark [10].
We observe a speedup of 85×. Lastly, we demonstrate how ZoPE can be used as

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 301

a tool to evaluate a generative adversarial network (GAN) and how it can be used
to compare compressed to non-compressed networks.

There have been numerous recent works in the field of neural network verifi-
cation. These approaches often focus on networks with piecewise linear activation
functions, such as the rectified linear unit (ReLU), and frequently take the form
of a branch and bound search [13]. Our optimizer does the same. Many break the
verification problem into subproblems by case-splitting on the activation function
or dividing the input domain [11,12,14–17]. A survey by Liu, Arnon, Lazarus,
Strong, Barrett, and Kochenderfer [3] compares these verification algorithms.

Many neural network verification tools can be extended to solve optimiza-
tion problems [9,18]. Inspired by this idea, the proposed optimizer uses com-
ponents from several verifiers—it eagerly splits the input domain like ReluVal
[16], propagates zonotopes like DeepZ [19], combines zonotope propagation with
input splitting like RefineZono [20], and can optimize functions on the out-
put like MIPVerify [18]. The pieces we drew from these different approaches
were chosen in order to eagerly break down the input space while still limiting
the overapproximation at each step. We expected rapidly splitting would have
an advantage on networks with low-dimensional inputs that hadn’t been fully
explored by existing optimizers.

This paper contains the following contributions:

– A unified optimizer for three global optimization problems over low input
dimension ReLU networks. These problems are of interest for verifying safety
critical systems.

– A comparison of this new optimizer to existing verifiers and optimizers demon-
strating a significant improvement against the state of the art when optimiz-
ing affine functions.

– Demonstrations of optimization problems which project onto the range of a
network and find the maximum difference between two networks.

2 Background

In this section we introduce notation, discuss the standard neural network veri-
fication problem, and compare it to the optimization problems that we focus on.
We view a network f as representing a function

f : Rnin → R
nout

We will only consider feedforward ReLU networks.

Geometric Objects and Operations. We will make use of several geometric
objects. The first is a hyperrectangle, the generalization of a rectangle to n-
dimensional space, which is defined by a center c ∈ R

n and a radius r ∈ R
n such

that
H = {x ∈ R

n | c − r � x � c + r}
where � is the elementwise ≤ between two vectors.

302 C. A. Strong et al.

Hyperrectangles are a special case of a more general class of geometric objects
called zonotopes, which can be defined as an affine transform of the unit hyper-
cube. A zonotope Z can be represented using matrix G ∈ R

n×m whose columns
are referred to as generators, and a vector c ∈ R

n which is the center of the
zonotope as

Z = {y ∈ R
n | y = Gx + c,−1 ≤ xi ≤ 1 ∀i = 1, . . . ,m}

Zonotopes are a subset of polytopes, and have symmetry about their center.
Optimizing a linear function over a hyperrectangle or a zonotope can be done
analytically instead of by solving a linear program [21,22].

We will also use the Minkowski sum between two sets X and Y defined as

X ⊕ Y = {x + y | x ∈ X,y ∈ Y }

This can be visualized as padding one set with the other.

Zonotope Propagation. A vital component of our approach will be finding
an overapproximation of the output reachable set for a given input region. There
are a variety of techniques to find symbolic or concrete descriptions of such a
set [3,16,19]. One approach, used in the neural network verification tool DeepZ
[19], propagates zonotopes through a network layer by layer. After each layer the
respective zonotope is an overapproximation of the reachable set for that layer.
The new zonotope is formed elementwise, with overapproximation introduced
for any dimension in the input zonotope that can be both negative and positive.
For dimensions where this is true, an additional generator is introduced into the
zonotope. The cost of computing this overapproximation is linear in the number
of existing generators. We refer readers to the original paper, in particular Theo-
rem 3.1, for details on this procedure [19]. We will make use of this algorithm in
our optimizer, although in principal other overapproximate output reachable sets
could be used. Exploring these alternatives is a promising direction for future
work.

3 Optimization Problems

The field of neural network verification has focused on checking input-output
properties with yes or no answers. Formally, for input sets X and Y a neural
network verification tool tells us whether the property

x ∈ X =⇒ y ∈ Y (1)

holds [3]. Recent work has explored extending these tools to solve optimization
problems [9]. In this work, we would like to address several optimization problems
involving neural networks. In each problem we will only consider optimizing over
hyperrectangular or zonotopic input sets.

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 303

Minimizing a Convex Function on the Range of a Network. Our first
problem of interest is to minimize a convex function on the output of a network.
We can write this problem as

minimize
x

g(f(x))

subject to x ∈ X
(2)

where g is a convex function. This can be used to solve a variety of neural
network verification problems as defined in Eq. (1). We can view the problem of
projecting onto the range of a network as a special case with

g(f(x)) = ‖f(x) − y0‖ (3)

An example use case is when f is a generative adversarial network (GAN). By
solving this optimization problem we can find the closest possible generated
image to a ground truth image.

Noise Buffer. We would like to optimize over the output of two networks in
series with an adversarial perturbation applied between the two networks. This
can be formulated as

minimize
x,z

g(f2(f1(x) + z)))

subject to x ∈ X
z ∈ Z

(4)

where Z is a zonotope of allowed perturbations and f1 and f2 are our two net-
works in series. The addition of z from the set Z can be viewed as padding the
output manifold of the first network. We will limit g to be convex in this work.
For an example of its use, consider if f1 is a generative model and f2 is a control
network. By solving this optimization problem, we can evaluate the behavior of
the controller with inputs defined by the generative model and subject to adver-
sarial perturbations. Of note, this noise buffer optimization problem could also
be put into the form of the first optimization problem in Eq. (2) by considering
an augmented input space that parameterizes the noise, then connecting those
extra inputs to the intermediate layer with skip connections or a larger network.
However, this could substantially increase the input dimension, so we focus on
the framing of the problem given in Eq. (4) and leave a comparison with the
alternative framing for future work.

Network Difference. A third optimization problem of interest is to determine
how different the output of two networks can be if they take in the same input.
We can write this as

maximize
x

‖f1(x) − f2(x)‖p
subject to x ∈ X

(5)

304 C. A. Strong et al.

for �p norm with p ≥ 1. For an example of its use, consider if f1 is a large network
and f2 is a smaller “compressed” network that attempts to mimic the behavior of
f1. By solving this optimization problem, we can evaluate how closely f1 and f2

will match. The non-convexity of this problem comes both from the network’s
non-convexity and from the fact that we would like to maximize rather than
minimize a convex function.

4 Approach

Our proposed approach takes the form of a branch and bound search for the
optimum value. The components within this branch and bound search will vary
between optimization problems but share some common elements, including
input splitting and zonotope propagation. Below we first sketch the general
branch and bound algorithm and then discuss how it can be applied to each
of the optimization problems of interest.

4.1 Optimization with Branch and Bound

Branch and bound is an approach to optimization which repeatedly breaks down
a problem into smaller sub-problems, bounding the optimal value of each sub-
problem as it goes, and using those bounds to prune regions of the search space
[23,24]. Suppose we would like to minimize an objective over some region. The
branch and bound algorithm requires three functions: (i) Split, (ii) Upper-
Bound, and (iii) LowerBound. The function Split splits a problem into mul-
tiple subproblems, LowerBound finds a lower bound on the optimal value for
a sub-problem, and upperBound(f)inds an upper bound on the optimal value
for a sub-problem. The algorithm maintains a priority queue of subproblems
ordered by their associated lower bound on the objective from LowerBound,
with highest priority given to the subproblem with the lowest lower bound. Some
or all subproblems will also have associated upper bounds on their optimal value
from UpperBound. At each step, the subproblem with lowest lower bound is
removed from the queue and split. Each new subproblem then has its lower
bound evaluated and is added back onto the queue. The new subproblems may
have an upper bound on their minimum objective evaluated as well, and those
that don’t inherit the upper bound of their parent subproblem.

The optimality gap at any point is given by the difference between the lowest
lower bound and the lowest upper bound across the open subproblems (those
in the priority queue). If the optimality gap ever falls below a tolerance ε ≥ 0,
the algorithm can return with a value within ε of the global optimum. The sub-
problems with lower bound greater than the lowest upper bound are effectively
pruned, as they will never be revisited in the search for the optimum. If we
would like to maximize instead of minimize an objective, we can reframe the
problem as minimizing the negative of the original objective. Many neural net-
work verification tools can be viewed as performing a branch and bound search
for violations of a property [13].

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 305

In our case, the problem will correspond to an input set X that we would
like to optimize over, and the subproblems will be regions from this original set.
In this work we will only consider zonotope input sets, which includes hyper-
rectangles. In order to solve the optimization problems described in Sect. 3 with
the generic branch and bound algorithm, we will describe how to implement the
three functions required: (i) Split, (ii) UpperBound, and (iii) LowerBound.

4.2 Split, UpperBound, LowerBound

We will start by addressing Split, which will be common to each of the problems
we would like to solve. For a zonotope input set Zin ⊆ R

nin defined by ngen

generators G ∈ R
nin×ngen and center c ∈ R

nin , we choose to split along the
generator with largest �2 norm using Proposition 3 from the work of Althoff,
Stursberg, and Buss [25]. This approach splits a zonotope into two zonotopes,
but these zonotopes may have a non-empty intersection. Their union will be
guaranteed to contain the original zonotope.

For a hyperrectangular input set, we choose the dimension with largest radius
and split the hyperrectangle halfway along that dimension into two hyperrect-
angles. The interiors of the hyperrectangles will have an empty intersection. We
experimented with a simple gradient based splitting heuristic but did not see an
improvement to the performance. This may have been the result of the particular
geometry of these networks. The computation required for the zonotope propa-
gation at each step depends on the number of network activation regions, which
are sets where the activation pattern of the network is constant, that overlap
with the current input region. As a result, we conjecture that a splitting strategy
which aims to mold the subregions to match the geometric structure of the acti-
vation regions may be beneficial. Other gradient or duality based input splitting
heuristics from neural network verification tools may lead to better splits and
should be explored in the future [16,26]. Since we rely on splitting the input
space, we expect our approach to scale poorly to high dimensions.

The approach to UpperBound will also be similar across our problems. For
the upper bound on the optimization problem over a region, we will evaluate the
objective for a single point in the region. As an achievable objective, this will
always upperbound the minimum achievable objective. We choose to evaluate
the center of our input region. We experimented with a first order method to
choose the point to evaluate but found limited benefit, and as a result chose to
keep the heuristic of using the center point for simplicity. The optimality gap
depends on two factors: the value of the achievable objective and the size of
the input region. The overapproximation from propagating the input region is
often more substantial, so choosing a better achievable objective does little to
improve runtime. As a result, even with a better heuristic there is a limit to the
performance gains from the LowerBound function. Many adversarial attacks
could be repurposed to perform some local exploration for this step [27], and
the tradeoff between the runtime of the UpperBound function and the ability
to reduce the optimality gap sooner could be explored. For the noise buffer
problem, to find an upperbound we hold the input to the first network constant

306 C. A. Strong et al.

at the cell’s center, leading to an output y1 from the first network. To account
for points in the buffered region, we then optimize our objective over the second
network with input given by the padded region {y1} ⊕ Z.

Next, we will focus on LowerBound for each of the optimization problems,
which differs depending on the problem type. This function must map from a
zonotopic or hyperrectangular input region X to a lower bound on the objective
value.

Minimizing a Convex Function on the Range of a Network. To lower
bound a convex function over the output, we first propagate the input set X
to a zonotopic output set Zout with generator Gout ∈ R

nout×ngen and center
cout ∈ R

nout which overapproximates the true output reachable set for this
region. We then solve the convex program

minimize
z

g(z)

subject to z ∈ Zout

(6)

The constraint z ∈ Zout is a set of linear constraints which can be written by
introducing variables x ∈ R

ngen to get

minimize
z,x

g(z)

subject to − 1 ≤ xi ≤ 1 i = 1, . . . , ngen

z = Goutx + cout

(7)

We will return the optimal value p∗ of this convex program as the lower bound.
If g is an affine function g(y) = a�y + b, then the solution is analytic and is

given by
p∗ = c�

outa +
∥
∥G�

outa
∥
∥

1
+ b (8)

where G is the generator matrix for the zonotope and c is the center of the
zonotope [28]. Computing this expression will typically be much faster than
solving a convex program, giving a large speedup when optimizing an affine
function.

Additionally, checking whether the output of a network is always contained
within a polytope P = {x | Ax ≤ b,A ∈ R

n×m,b ∈ R
n} can be accomplished

by maximizing the maximum violation of the polytope’s constraints. We will
denote the ith row of A as a�

i . This problem could either be solved with the
above framework through n separate queries with the negative violation of the
ith constraint as the objective g(y) = −a�

i y− bi, or through a single query with
g(y) = −maxi(a�

i y− bi) This objective is the negative of a pointwise maximum
of affine functions, so is concave. Fortunately, although g is concave, minimizing
g over a zonotope can be accomplished with one linear optimization per row of
A, each of which is analytical. As a result, checking whether the output of a
network is always contained within a polytope P can be performed through n
separate queries which solve a single linear optimization at each step, or through
a single query which solves n linear optimizations at each step.

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 307

Lastly, if we are projecting onto the range of a network with g(y) = ‖y − y0‖,
the choice of norm will affect the complexity of the optimization problem over a
zonotope. For example, with �1 or �∞ norms this can be formulated as a linear
program, while for the �2 norm it will be a quadratic program. Future work could
explore using faster projection algorithms instead of solving a convex program
at each step which may yield significant speedups.

Noise Buffer. We would like to optimize a function over two networks in series
with a buffer of allowed perturbations Z after the first layer. This is equivalent
to taking the Minkowski sum of the output manifold of the first network and the
buffer. We would like to find a lower bound on the objective that will approach
the true objective as the input cell grows smaller. We first propagate the cell
through the first network to get a zonotope Z1out which overapproximates the
reachable set. We then take the Minkowski sum of this zonotope with our buffer
to get

Zbuffered = Z1out ⊕ Z = {z1out + z | z1out ∈ Z1out , z ∈ Z}
Since zonotopes are closed under Minkowski sums, the resulting object will still
be a zonotope [29].

Our problem now becomes trying to lower bound our function g on this
buffered set. As our input cell becomes small, Z1out does as well, and Zbuffered

approaches the size of the buffer. Since the buffered zonotope will not become
arbitrarily small, if we were to just propagate Zbuffered through the second net-
work, we would incur some steady state error in our lower bound. To avoid this
overapproximation, we can solve the optimization problem from the buffered
zonotope to the output exactly. If the dimension of the intermediate space is
low, we could apply the algorithm we have already given for optimizing convex
functions over a single network. If the dimension is high, we can use another
optimization strategy such as encoding the second network using mixed-integer
constraints as done by NSVerify, MIPVerify, and ERAN [10,18,30], then
adding the objective and solving the resulting optimization problem with an off-
the-shelf MIP solver such as Gurobi or GLPK. Since this approach nests another
full optimization problem over the second half of the network within each step
of the original branch and bound, we expect the runtime to scale poorly as the
size of the perturbation set Z and the complexity of the second network grow,
which may limit the use of the proposed approach for this type of analysis.

In summary, to get a lower bound we (i) overapproximate the set passing
through the first network, then (ii) solve the resulting optimization problem
over the second network with input set given by a buffered zonotope.

Network Difference. Our goal is to find the maximum difference in the output
of two networks over an input region. Since we are maximizing a function, we
are interested in finding an upper bound on the objective over our input cell. We
start by propagating the input cell through the first network to get Z1out and
the second network to get Z2out . We can then tightly overapproximate each of

308 C. A. Strong et al.

these zonotopes as hyperrectangles H1 and H2 by finding their maximum and
minimum value in each elementary direction. Each of these operations can be
performed analytically. Once we have these two hyperrectangular overapproxi-
mations, we are interested in solving

maximize
h1,h2

‖h1 − h2‖p
subject to h1 ∈ H1

h2 ∈ H2

(9)

whose optimal value will upper bound the true maximum distance in this region.
Let c1 and c2 be the centers of H1 and H2 and r1 and r2 be the radius of H1

and H2 in each elementary direction. An analytical solution to this optimization
problem is given by

h∗
1 = c1 + sign(c1 − c2) � r1

h∗
2 = c2 + sign(c2 − c1) � r2

d∗ = ‖h∗
1 − h∗

2‖p
where � represents elementwise multiplication and d∗ is the optimal value. See
Appendix A.1 for a derivation of this analytical solution. Returning d∗ as defined
above will upper bound the objective function.

4.3 Implementation

Each of the approaches described in Sect. 4.2 were implemented in a Julia pack-
age.1 This repository also has code to reproduce the benchmarks on our optimizer
in Sect. 5. The zonotope propagation and zonotope splitting is performed with
the LazySets library.2 For solving linear and mixed-integer linear programs we
use Gurobi and for solving other convex programs we use Mosek, both of which
have a free academic license.3 The implementation is modular and is intended
to be easily extended to solve other optimization problems.

5 Experimental Results

We apply ZoPE to a variety of problems, first comparing its runtime to existing
solvers on the ACAS Xu benchmark and linear optimization problems. We then
showcase how it can be used to solve problems with more complex objectives.
In several of these experiments we use a conditional GAN trained to represent
images from a wing-mounted camera on a taxiing aircraft. The conditional GAN
has four inputs, two of which are the crosstrack position and heading while
the other two are latent inputs. We also use a state estimation network which
1 Source is at https://github.com/sisl/NeuralPriorityOptimizer.jl.
2 Source is at https://github.com/JuliaReach/LazySets.jl.
3 Available at https://www.gurobi.com and https://www.mosek.com.

https://github.com/sisl/NeuralPriorityOptimizer.jl
https://github.com/JuliaReach/LazySets.jl
https://www.gurobi.com
https://www.mosek.com

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 309

takes as input a 128-dimensional image of the taxiway and outputs the state
of the aircraft. The GAN and state estimation network can be combined in
series. All timing is done on a single core of an Intel Xeon 2.20 GHz CPU and
with an optimality gap of 1 × 10−4 unless otherwise specified. All queries use
hyperrectangular input sets; in future work it would be valuable to explore the
runtime consequences when splitting non-hyperrectangular input zonotopes as
well.

5.1 ACAS Xu Benchmark

The ACAS Xu neural network verification benchmark contains a set of properties
on networks trained to compress the ACAS Xu collision avoidance system and
is often used to benchmark verification tools [2,15]. We will consider properties
1, 2, 3, and 4 introduced by Katz, Barrett, Dill, Julian, and Kochenderfer [15].
We compare to the neural network verification tools Marabou [12], nnenum
[11], and ERAN [10,19,20,31]. See Appendix A.2 for details on how each solver
was configured. Property 1 can be evaluated by maximizing a linear function,
while properties 2, 3, and 4 can be evaluated by minimizing the convex indicator
function to the output polytope associated with the property or by minimizing
the distance to the output polytope associated with the property. Viewed in
another way, property 1 can be solved by asking the question “Is the network
always contained in a polytope?” while property 2 can be solved by asking the
question “Does the network ever reach a polytope?” For property 1 each step
is analytical, while for properties 2, 3, and 4 at each step we apply a quick
approximate check for intersection, and if it is indeterminate we solve a linear
program. Each verification tool was run on a single core.

Figure 1 shows the performance of the optimizer on four ACAS properties.
ZoPE achieves a speedup of about 25× on property 1. We remain competitive
with the other tools on properties 2, 3, and 4, where we may need to solve a
linear program at each step.

5.2 Optimizing Convex Functions

We first evaluate ZoPE maximizing a linear objective. We run queries on a
network composed of the conditional GAN concatenated with the image-based
control network. This combined network was introduced by Katz, Corso, Strong,
and Kochenderfer [4] and has an input of two states and two latent dimensions.
The objective function corresponds to the control effort. The baseline we com-
pare against divides the state dimensions into hyperrectangular cells, propagates
a zonotope through each cell with DeepZ’s approach, then uses the resulting
bounds to formulate a mixed-integer program and find the optimum for that
cell. Since we run these queries sequentially, each mixed-integer program also
has a constraint that the objective should be larger than the best seen so far.
The strategy of interleaving splitting and MIP calls mirrors RefineZono’s app-
roach to verifying the ACAS Xu networks [10]. Table 1 shows more than an 85×
speedup of our approach over the baseline. The efficiency of ZoPE relies heavily

310 C. A. Strong et al.

Fig. 1. Comparison of Solvers on ACASXu Properties 1, 2, 3, and 4 with a 300 s
timeout.

Table 1. Performance on linear optimization problems. 25 queries in different regions
of the input space are run on a single network. The network was introduced in Katz,
Corso, Strong, and Kochenderfer [4] and consists of a conditional GAN concatenated
with an image-based controller. The performance of the MIP approach with a variety
of discretizations of the state space is shown. For example, MIP 3 × 3 corresponds to
an optimizer which for each query (i) discretizes the input space into a 3× 3 grid, then
(ii) for each cell in the grid finds bounds on each node using the approach of DeepZ,
and (iii) solves the resulting MIP using Gurobi.

Approach Total time (s)

MIP 3 × 3 3728

MIP 5 × 5 1171

MIP 10 × 10 1610

MIP 15 × 15 2473

ZoPE (ours) 13.5

on the computational cost of finding bounds for the objective over a zonotope.
As a result, like with ACAS property 1 we see substantially better performance
than existing tools when optimizing an objective with only analytical operations
at each step.

Next, we demonstrate using the proposed optimizer to project an image onto
the output manifold of a conditional GAN. The GAN has a finite, convex support
for its latent variables. This allows us to project onto the range of the network,
under some �p norm, by minimizing the convex objective function in Eq. (3).
Figure 2 shows several images and their corresponding closest generated images

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 311

Fig. 2. Closest generated images (bottom row) to a set of true images (top row) with
distance measured by the �2 norm.

Fig. 3. The maximum output distance in L1 norm of two networks over the state space.

from the GAN. The visual similarity between the two rows gives some evidence
that the GAN is capturing the desired images in its output manifold. However,
we still see some slight differences between the images. The degree of these
differences can be used to measure how closely the GAN captures each training
datapoint, giving a recall metric to evaluate a GAN and inform hyperparameter
choice, as was done in Katz, Corso, Strong, and Kochenderfer [4]. Note that this
analysis, and the sense of “closeness” in this context, depends on the norm used
for the projection.

5.3 Maximum Distance Between Compressed and Original
Networks

By finding the maximum distance between the outputs of two networks as
described in Sect. 4.2, we can evaluate how well a compressed network mimics
the behavior of an original uncompressed network. We validate this technique
on a large conditional GAN, with two input states to be conditioned on, two
latent dimensions, four layers with 256 ReLUs each, and a 128 dimensional out-
put layer. The second “compressed” network has the same input and output
spaces, but only two layers with 128 ReLUs each. We use a required optimality
gap of 0.1. The heatmap in Fig. 3 shows the maximum difference in the output

312 C. A. Strong et al.

of these networks across a slice of the state space. These maximum differences,
or an approximation thereof, could be used to retrain the network in regions
where the difference is large.

6 Conclusion

In this work, we introduced an algorithm for solving a wide variety of optimiza-
tion problems on feedforward ReLU networks with low input dimension. The
algorithm relies on eagerly splitting the input space and making use of zono-
tope propagation through the network to bound the optimum at each step. We
observe a speedup of 25× on property 1 of the ACAS Xu benchmark compared to
several existing verification tools, and 85× on a linear optimization benchmark
compared to a mixed-integer programming baseline. We also demonstrate how
the optimizer can be used to analyze how closely a GAN has learned to replicate
its training data and how it can be used to compare a compressed and uncom-
pressed network. The optimizer was implemented modularly and was made avail-
able as a Julia package at https://github.com/sisl/NeuralPriorityOptimizer.jl so
as to flexibly allow for a reader to explore solving other optimization problems.
Any non-convex objective which can be optimized over a zonotope can readily
be optimized in this framework, as was demonstrated in both our approach to
check whether the output of a network is contained within a polytope and to
maximize the distance between the output of two networks.

There are several major avenues for future work. The often prohibitive growth
of the runtime with the input dimension, depth, and width of the network
remains as a significant challenge for this and other exact optimizers. One direc-
tion of interest would be to develop more specialized lower bound functions for
particular problems. For example, faster intersection or projection algorithms
may be applied to some problems where our implementation solves a convex
program at each step. We could also incorporate and compare some of the opti-
mizations that ERAN makes use of; for example, mixing mixed-integer program
solves in with the splitting, tightening the propagated zonotopes, or propagat-
ing polytopes instead of zonotopes. Another would be to consider how to scale
up to high-dimensional input spaces, and consider what a more eager splitting
strategy looks like in those contexts. Lastly, we could find other optimization
problems of interest over neural networks that could be solved with the same or
a similar framework.

Acknowledgments. We would like to acknowledge support from Eric Luxenberg,
Haoze Wu, Gagandeep Singh, Chelsea Sidrane, Joe Vincent, Changliu Liu, Tomer
Arnon, and Katherine Strong.

Funding in support of this work is from DARPA under contract FA8750-18-C-
009, the NASA University Leadership Initiative (grant #80NSSC20M0163), and the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-
1656518. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of DARPA,
any NASA entity, or the National Science Foundation.

https://github.com/sisl/NeuralPriorityOptimizer.jl

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 313

A Appendix

A.1 Maximum Distance Between Points in Two Hyperrectangles

We would like to derive an analytical solution for the maximum distance given
by a p-norm with p ≥ 1 between two hyperrectangles H1 and H2. We will let
c1 and c2 be the centers of H1 and H2, and r1 and r2 be the radii of H1 and
H2. The maximum distance can be found by solving the following optimization
problem

maximize
h1,h2

‖h1 − h2‖p
subject to h1 ∈ H1

h2 ∈ H2

The p-norm for finite p is defined as

‖x‖p = (
n∑

i=1

|(x)i|p) 1
p

We expand the objective of our maximization problem to be

(
n∑

i=1

(|(h1)i − (h2)i|p)) 1
p

and since x
1
p is monotonically increasing on the non-negative reals for p ≥ 1, we

can remove the power of 1
p giving us the equivalent problem

maximize
h1,h2

n∑

i=1

(|(h1)i − (h2)i|p)

subject to h1 ∈ H1

h2 ∈ H2

(10)

Now we see that the constraints h1 ∈ H1 and h2 ∈ H2 apply independent
constraints to each dimension of h1 and h2. We also note that the objective can
be decomposed coordinate-wise. As a result, in order to solve this optimization
problem, we will need to solve n optimization problems of the form

maximize
(h1)i,(h2)i

|(h1)i − (h2)i|p

subject to (c1)i − (r1)i ≤ (h1)i ≤ (c1)i + (r1)i
(c2)i − (r2)i ≤ (h2)i ≤ (c2)i + (r2)i

(11)

Since xp is monotonically increasing for p ≥ 1 we can equivalently maximize
|(h1)i − (h2)i|. We show an analytic form for the maximum by checking cases.
If (c2)i is larger than (c1)i, the maximum will be found by pushing (h2)i to
its upper bound and (h1)i to its lower bound. Conversely, if (h1)i is larger than

314 C. A. Strong et al.

(h2)i, the maximum will be found by pushing (h1)i to its upper bound and (h2)i
to its lower bound. If (c1)i is equal to (c2)i, then we can arbitrarily choose one
to push to its lower bound and the other to push to its upper bound—we select
(h1)i to go to its upper bound and (h2)i to go to its lower bound. As a result
we have the optimal inputs

(h1)∗
i = (c1)i + sign((c1)i − (c1)i)(r1)i

(h2)∗
i = (c2)i + sign((c2)i − (c2)i)(r2)i

where the sign function is given by

sign(x) =

{

1.0 x ≥ 0
−1.0 x < 0

Then, backtracking to our original problem and vectorizing gives us the analyt-
ical solution to this optimization problem with optimal value d∗

h∗
1 = c1 + sign(c1 − c2) � r1

h∗
2 = c2 + sign(c2 − c1) � r2

d∗ = ‖h∗
1 − h∗

2‖p
where the sign function is applied elementwise. This completes our derivation of
the analytical solution for the maximum distance between two points contained
in two hyperrectangles.

A.2 Verifier Configuration for the Collision Avoidance Benchmark

This section describes how each verifier was configured for the collision avoidance
benchmark discussed in Sect. 5.1. Table 2 summarizes the non-default parameters
for each solver and the location where the parameter was set. Both NNENUM
and ERAN by default make use of parallelization, and Marabou has a parallel
mode of operation, but for this experiment we restrict all tools to a single core.
We ran the experiments on a single core to try to separate the aspects of how
each solver was parallelized from what we viewed as the core of its algorithmic
approach. We expect ZoPE would parallelize well, especially on more challenging
problems. The hyperparameters we ran for ERAN may be better suited for
multiple cores than a single core, so further comparison could explore these
in more depth. Additionally, the timing results from the Verification of Neural
Networks 2020 competition4 for several properties for ERAN were slower than
we expected from the change in hardware and the restriction to a single core.
Exploring the tool further, we observed that on several problem instances it
would return back a failed status before reaching a timeout. On these same
instances we saw that ERAN would find several inputs that were almost counter-
examples, for example with a margin of 1 × 10−6 from violating the property,

4 https://sites.google.com/view/vnn20/vnncomp.

https://sites.google.com/view/vnn20/vnncomp

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 315

Table 2. Non-default verifier parameters

Solver Parameter Value Location

Marabou

Split-threshold 1 Command line argument

INTERVAL SPLITTING FREQUENCY 1 GlobalConfiguration.cpp file

NNENUM

Settings.NUM PROCESSES 1 acasxu all.py file

ERAN

use parallel solve True main .py file

Processes 1 main .py file

Domain Deeppoly Command line argument

Complete True Command line argument

timeout milp 10 Command line argument

Numproc 1 Command line argument

ZoPE

stop gap 1 × 10−4 acas example.jl

stop frequency 1 acas example.jl

flag these as potential counter-examples, then move on. It is possible that the
root cause of the abnormalities we observed affected timing results. On problems
where ERAN did return a status the results were consistent with the ground
truth.

The parameters were chosen based off of a mix of recommendations from
developers on their best configuration for the collision avoidance benchmark or
existing documented settings for this benchmark. For example, ERAN’s param-
eters were based off of the VNN20 competition as found at https://github.com/
GgnDpSngh/ERAN-VNN-COMP/blob/master/tf verify/run acasxu.sh. The
code for for Marabou,5 NNENUM,6 ERAN,7 and our optimizer ZoPE8 is
available for free online.

References

1. Bojarski, M., et al.: End to end learning for self-driving cars, Technical Report
(2016). http://arxiv.org/abs/1604.07316

2. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. AIAA J. Guid. Control Dyn. 42(3), 598–
608 (2019)

3. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-
rithms for verifying deep neural networks. Found. Trends R© Optim. 4(3–4), 244–404
(2021)

5 https://github.com/NeuralNetworkVerification/Marabou.
6 https://github.com/stanleybak/nnenum.
7 https://github.com/eth-sri/eran.
8 https://github.com/sisl/NeuralPriorityOptimizer.jl.

https://github.com/GgnDpSngh/ERAN-VNN-COMP/blob/master/tf_verify/run_acasxu.sh
https://github.com/GgnDpSngh/ERAN-VNN-COMP/blob/master/tf_verify/run_acasxu.sh
http://arxiv.org/abs/1604.07316
https://github.com/NeuralNetworkVerification/Marabou
https://github.com/stanleybak/nnenum
https://github.com/eth-sri/eran
https://github.com/sisl/NeuralPriorityOptimizer.jl

316 C. A. Strong et al.

4. Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of image-
based neural network controllers using generative models. In: Digital Avionics Sys-
tems Conference (DASC) (2021)

5. Julian, K.D., Lee, R., Kochenderfer, M.J.: Validation of image-based neural net-
work controllers through adaptive stress testing (2020)

6. Katz, S.M., Julian, K.D., Strong, C.A., Kochenderfer, M.J.: Generating probabilis-
tic safety guarantees for neural network controllers. Mach. Learn. , 1–29 (2021).
https://doi.org/10.1007/s10994-021-06065-9

7. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved pre-
cision and recall metric for assessing generative models. In: Advances in Neural
Information Processing Systems (NeurIPS) (2019)

8. Mirman, M., Gehr, T., Vechev, M.: Robustness certification with generative mod-
els. In: ACM SIGPLAN International Conference on Programming Language
Design and Implementation (2021)

9. Strong, C.A., et al.: Global optimization of objective functions represented by
ReLU networks. Mach. Learn. 2010.03258 (2021). https://doi.org/10.1007/s10994-
021-06050-2

10. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (2019)

11. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

12. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

13. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch
and bound for piecewise linear neural network verification. J. Mach. Learn. Res.
21(2020), 1–39 (2020)

14. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

15. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

16. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: USENIX Security Symposium 2018,
pp. 1599–1614 (2018)

17. Wu, H., et al.: Parallelization techniques for verifying neural networks. CoRR, vol.
abs/2004.08440 (2020). arXiv: 2004.08440

18. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2017)

19. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems
(NeurIPS) (2018)

20. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 1–30 (2019)

https://doi.org/10.1007/s10994-021-06065-9
https://doi.org/10.1007/s10994-021-06050-2
https://doi.org/10.1007/s10994-021-06050-2
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/2004.08440

ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs 317

21. Fujishige, S.: Submodular Functions and Optimization. Elsevier (2005)
22. Kitahara, T., Sukegawa, N.: A simple projection algorithm for linear programming

problems. Algorithmica 81(1), 167–178 (2019)
23. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4),

699–719 (1966)
24. Kochenderfer, M.J., Wheeler, T.A.: Algorithms for Optimization. MIT Press, Cam-

bridge (2019)
25. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems

with uncertain parameters using conservative linearization. In: IEEE Conference
on Decision and Control (CDC), pp. 4042–4048 (2008)

26. Rubies-Royo, V., Calandra, R., Stipanovic, D.M., Tomlin, C.: Fast neural network
verification via shadow prices. arXiv preprint arXiv:1902.07247 (2019)

27. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

28. Althoff, M., Frehse, G.: Combining zonotopes and support functions for efficient
reachability analysis of linear systems. In: IEEE Conference on Decision and Con-
trol (CDC), pp. 7439–7446 (2016)

29. Althoff, M.: On computing the Minkowski difference of zonotopes. arXiv preprint
arXiv:1512.02794 (2015)

30. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feedforward
ReLU neural networks. arXiv preprint arXiv:1706.07351 (2017)

31. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems (NeurIPS), vol. 32, pp. 15 098–15 109 (2019)

http://arxiv.org/abs/1902.07247
http://arxiv.org/abs/1512.02794
http://arxiv.org/abs/1706.07351

Permutation Invariance of Deep Neural
Networks with ReLUs

Diganta Mukhopadhyay1(B), Kumar Madhukar2, and Mandayam Srivas1

1 Chennai Mathematical Institute, Chennai, India
digantam@cmi.ac.in

2 Indian Institute of Technology Delhi, Delhi, India

madhukar@cse.iitd.ac.in

Abstract. We look at the problem of verifying permutation invariance
in Deep Neural Networks (DNNs) – if certain permutations are applied
on the inputs, its effect on the outputs will also be a permutation (pos-
sibly identity). These properties surface in many interesting practical
applications of DNNs, e.g. consider the aircraft collision avoidance sys-
tem that guides an aircraft to turn right if the sensory inputs suggest an
intruder aircraft coming from the left, and vice-versa. The naive way of
verifying such properties – using two copies of the network and a stan-
dard DNN verification technique, e.g. Reluplex – is impracticable as the
complexity of this task is exponential in the network size. This paper
proposes a sound, abstraction-based technique to establish permutation
invariance in DNNs with ReLU as the activation function. The technique
computes an over-approximation of the reachable states, and an under-
approximation of the safe states, and propagates this information across
the layers, both forward and backward. The novelty of our approach lies
in a useful tie-class analysis, that we introduce for forward propagation,
and a scalable 2-polytope under-approximation method that escapes the
exponential blow-up in the number of regions during backward propa-
gation. Experiments demonstrate that our method compares favorably
with the existing state-of-the-art in DNN verification.

1 Introduction

Artificial neural networks are now ubiquitous. They are increasingly being
allowed and used to handle increasingly more complex tasks, that used to
be unimaginable for a machine to perform. This includes driving cars, play-
ing games, maneuvering air traffic, recognizing speech, interpreting images and
videos, creating art, and numerous other things. While this is exciting, it is
crucial to understand that neural networks are responsible for a lot of decision
making, some of which can have disastrous consequences if gone wrong. Con-
sider a DNN that is being used to suggest the direction in which an aircraft

The authors are thankful to TCS Research, Pune, India. A substantial part of this
work was done when the first two authors were associated with TCS Research, as an
intern and as an employee, respectively.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 318–337, 2022.
https://doi.org/10.1007/978-3-031-06773-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_17

Permutation Invariance of Deep Neural Networks with ReLUs 319

must turn to avoid a possible collision with an intruder aircraft. Informally, such
a network is well-behaved if it asks the own ship to turn right (left) when an
intruder approaches from the left (right). Consider another network that takes
four inputs – the cards dealt to the players in a game of contract bridge – and
decides which team can bid game. Loosely speaking, if you exchange the hands
of partners (north and south, or east and west), the decision would not change.
However, it will change if, say, you exchange north’s hand with east. Such per-
mutation invariance properties, for certain permutations at input and output
layers, are important to the correctness and robustness of these networks.

Formally, given a DNN N , permutations σin and σout, two vectors B1 and
B2 of dimension as large as the input size of the neural network and a positive
real M , the permutation invariance is defined as: if the inputs of the network lie
between B1 and B2 component-wise, then permuting the input of the network by
σin leads to the output being permuted by σout up to a tolerance of M . That is,

B1 ≤ x ≤ B2 ⇒ |σout(N (x)) − N (σin(x))| ≤ M

Permutation invariance of DNNs is really a two-safety property, i.e. it can
be verified using existing techniques for safety verification of feed-forward neu-
ral networks (FFNNs), by composing two copies of the network. A straight-
forward way to do this would be to encode the network and the property as
SMT constraints, and solve it using Z3 [4]. It is invariably more efficient, how-
ever, to use specially designed solvers and frameworks such as Reluplex [12]
and Marabou [13,14]. Still, these methods do not scale well, and are particu-
larly inapplicable in this case (which requires doubling the network size), as the
worst-case complexity of FFNN verification is exponential in the size of the input
network.

This paper proposes a technique to verify permutation invariance properties
in DNNs with ReLU (Rectified Linear Unit) activation function. Our technique
computes, at each layer, an over-approximation of the reachable states (moving
forward from the input layer), and also an under-approximation of the safe states
(moving backward from the final layer at which the property is specified). If the
reachable states fall entirely within the safe region in any of the layers, the
property is established. Otherwise, we obtain a witness to exclusion at each
layer and do a spuriousness check to see if there is an actual counterexample.

The novelty of our approach lies in the way we propagate information across
layers. For the forward propagation of reachable states, as affine regions, we have
introduced the notion of tie classes. The purpose of tie classes is to group together
the Relu nodes that will always get inputs of the same sign. This grouping cuts
down on the branching required to account for active and inactive states of all
the Relu nodes during forward propagation. Intuitively, tie classes let us exploit
the behavioral symmetry of the network, with respect to the inputs and the
permutation. The backward propagation relies on convex polytope propagation.
During the propagation one may have to account for multiple cases, based on the
possible signs of the inputs to the Relu nodes (corresponding to each quadrant
of the space in which the polytope resides), leading to an exponential blow-up in
the worst case. We address this by proposing a 2-polytope under-approximation

320 D. Mukhopadhyay et al.

method that is efficient (does not depend on LP/SMT solving), scalable, as
well as effective. Note that the forward propagation may also be done using
convex polytope propagation (which is how it is usually done, e.g. [19]), but it
requires computing the convex hull each time, which is an expensive operation.
In contrast, tie-class analysis helps us propagate the affine regions efficiently.

The core contributions of this paper are: i) an approach for verifying permu-
tation invariance, based on novel forward- and backward-propagation techniques
(Sect. 4), ii) a proof of soundness of the proposed approach (in the Appendix),
and iii) a tool and an experimental evaluation of our approach (Sect. 5).

2 Preliminaries

We represent vectors in n-dimensional space as row matrices, i.e., with one row
and n columns. A linear transform T from and n dimensional space to an m
dimensional space can then be represented by a matrix M with n rows and m
columns, and we have: T (x) = xM .

Convex Polytopes. A convex polytope is defined as a conjunction of a set of
linear constraints indexed by i of the form x.vi ≤ ci, for fixed (column) vectors
vi and constants ci. Geometrically, it is a convex region in space enclosed within
a set of planar boundaries. Symbolically, we can represent a convex polytope by
arranging all the vis into the columns of a matrix M , and letting the components
of a row vector b to be constants bi: xM ≤ b.

Pullback. The pullback of a convex polytope P (given by xMn×k
P ≤ bp), over

an affine transform T (given by x → xMm×n
T + tT), is defined as the set of all

points x such that T (x) lies inside P , i.e., T (x) ∈ P ⇔ xMT MP ≤ bP −tT MP .1

Affine Region. An n-dimensional affine subspace is the set of all points gener-
ated by linear combinations of a set of basis vectors vi , 0 ≤ i < k, added to a
center c: {x | x = (Σk−1

i=0 αivi) + c, for some real αi}.
We define an affine region as a constrained affine subspace by bounding the val-
ues of α to be between −1 and 1. Formally, an affine region A[BA, c] generated
by a set of basis vectors vi , 0 ≤ i < k, represented by a matrix Bk×n

A , is defined
as the following set of points: x ∈ A ⇔ (∃α. x = αBA + c ∧ |α| ≤ 1).

Pushforward. The pushforward (AT) of an affine region A (defined by BA and
cA), across an affine transform T , (given by x → xMT +tT), is the set of points:
x ∈ AT ⇔ (∃α. x = αBAMT + cAMT + tT , |α| ≤ 1). This is the image of
A under T . (In a DNN context, a separate MT and tT is associated with each
layer that is constructed from the weights and bias used at that layer.)

DNN Notation and Conventions. We number the layers of the neural net-
work as 0, 1, 2, and so on, upto n − 1. A layer is said to consist of an affine
transform followed by a Relu layer. The affine transform of layer i is given by
x → xWi +bi , where Wi are the weights and bi are biases. We denote the input

1 We use bold face to denote vectors, and Ap×q means P is a p × q matrix.

Permutation Invariance of Deep Neural Networks with ReLUs 321

vectors by x0 feeding into the affine transform of layer 0, and in general for
i > 0, the input of layer i’s affine transform (the output of the i − 1th layer’s
Relu) as xi . The output of layer i’s affine transform (the input to layer i’s Relu)
is labeled as yi . Finally, the output is xn . Also, we maintain copies of each
variable’s original and permuted value (using a primed notation). So, we have:

x0,x
′
0 → xW0 + b0 → y0, y

′
0 → Relu → x1,x

′
1 → xW1 + b1 → y1, y

′
1 → Relu →

· · ·yn −1, y
′
n −1 → Relu → xn ,x′

n

Here, Wi and bi represent the action of the layer on the joint space of xi and
x′

i . Then, the invariance property we wish to verify has the following form:

B1 ≤ x0,x
′
0 ≤ B2 ∧ x′

0 = σin(x0) ⇒ |x′
n − σout(xn)| ≤ M

Note that the precondition here is an affine region and the postcondition is a
conjunction of linear inequalities, involving permutations.

3 Informal Overview

Algorithm 1. Overview of our approach
1: inputs: N ,n, pre, post
2: globals: reach[n], safe[n]

3: reach[0] ← initPre(pre, N)
4: safe[n − 1] ← initPost(post , N)
5: for i ∈ [1 . . . n) do
6: reach[i] ← forwardPropagate(reach[i−1], N)

7: for i ∈ [n − 2 . . . 0) do
8: safe[i] ← backwardPropagate(safe[i + 1], N)

9: for i ∈ [1 . . . n) do
10: if (reach[i] ∧ ¬safe[i]) is unsatisfiable then
11: return property holds
12: else � there must be a satisfying witness
13: spuriousnessCheck(witness, i)

Algorithm 1 presents an
overview of our approach.
The input to it is the net-
work N with n layers, and the
invariance property given as
a (pre, post) pair of formu-
las. The algorithm begins by
converting the pre-condition
to an affine region by calling
initPre (line 3) and express-
ing the postcondition as a
convex polytope by calling
initPost (line 4), without
any loss of precision (see
Sect. 3.1). Then it propagates
the affine region forward, to

obtain an over-approximation of the set of reachable values as an affine region
at each subsequent layers (line 6). Similarly, an under-approximation of the safe
region – as a union of two convex polytopes – is calculated at each layer, prop-
agating the information backward from the output layer (line 8). The property
holds if the reachable region at any layer is contained within the safe region
(lines 9–13).

If the inclusion check does not succeed, the algorithm attempts to construct
an actual counterexample from the witness to the inclusion check failure (see
Algorithm 2). In general, pulling back the witness to the first layer is as hard as
pulling back the postcondition. So, we try to find several individual input points
that lead to something close to the witness at the layer where the inclusion fails,

322 D. Mukhopadhyay et al.

Algorithm 2. Spuriouness checking algorithm
1: procedure spuriousnessCheck (counterexample, layer)
2: cexes ← [counterexample] � list of potential counterexamples
3: while cexes �= ∅ ∧ layer > 0 do
4: prevCexes ← ∅ � collect (approximate) pullbacks in the prev. reach
5: for cex ∈ cexes do
6: prevCexes << pullBackCex (cex , layer , N)

⋂
reach[layer − 1]

7: cexes ← prevCexes; layer ← layer − 1

8: if cexes = ∅ then
9: return inconclusive � pullback failed, no potential counterexamples

10: for cex ∈ cexes do
11: for j ∈ [0 . . . n) do � forward simulation of the counterexample
12: cex ← simulateLayer(cex , j, N)
13: if cex ∈ safe[j] then � spurious c’example, move on to the next one
14: break
15: return (property failed, cex) � actual counterexample found

16: return inconclusive � all potential counterexamples are safe

allowing us to check a number of potential counterexamples. In lines 5–6 (Algo-
rithm 2) we repeatedly apply pullBackCex and collect these approximate pull
back points layer by layer backwards until the input layer. We now simulate these
points forward to check if the output of the DNN lies within the safe region in
lines 11–17. If for any point it does not, we have successfully constructed a coun-
terexample. Otherwise, if we cannot find any potential counterexamples (line 10),
or if all the potential counterexamples are safe (line 17), the witness represents a
spurious counterexample and the algorithm returns inconclusive. Before getting
into the details of forwardPropagate, backwardPropagate, and pullBackCex , we
present an example and describe the pre-processing part of our algorithm.

3.1 Running Example

Consider the neural network shown in Fig. 1. Here, we have separated the result
of computing the weighted sum from that of the application of the Relu into
separate nodes, represented by dashed and solid circles respectively. Also, we
show the weights as labels on the arrows coming into a combination point (dark
circles), and biases as labels of arrows emerging from the point. The arrows for
weights that are 0 have been omitted. The values at (output of) each node in
the network for the input in the range [0.5 0] are shown in the diagram at that
node. This network has the following symmetry property: 0 ≤ x00, x01, x

′
00, x

′
01 ≤

1 ∧ x00 = x′
01 ∧ x01 = x′

00 ⇒ |[x20 x21]− [x′
21 x′

20]| ≤ 0.1. This expresses the fact
that flipping the inputs leads to the outputs being flipped, σin and σout both
flip the components.

Preprocessing: The Wi and bi are calculated as follows: If the weights and
bias of layer i are W i and bi , then Wi =

[
W i 0
0 W i

]
and bi = [bi bi] as we need

to track both the original and permuted values at each layer. For this example:

Permutation Invariance of Deep Neural Networks with ReLUs 323

y00

500

x10

500

x00

0 .5

y01

−500

x11

0

y10

1

x20

1

x01

0

y02

499

x12

499

y11

0

x21

0

y03

−501

x13

0

g

−g

g

−g

−g

g

−g

g

0

0

−1

−1

Relu

Relu

Relu

Relu

1

−1

1

−1

0

0

Relu

Relu

Fig. 1. σ = (0→1, 1→0), g = 1000

W0 =⎡
⎢⎢⎣

1000 −1000 1000 −1000 0 0 0 0
−1000 1000 −1000 1000 0 0 0 0

0 0 0 0 1000 −1000 1000 −1000
0 0 0 0 −1000 1000 −1000 1000

⎤
⎥⎥⎦

b0 =
[
0 0 −1 −1 0 0 −1 −1

]

W1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b1 =
[
0 0 0 0

]

Action of initPre and initPost: Now, initPre calculates reach[0] as the follow-
ing affine region given by basis B0 and center c0, and initPost expresses safe[2]
as a convex polytope:

reach[0] :
∃α : [x0 x′

0] = αB0 + c0, |α| ≤ 1

B0 =
[
0.5 0 0 0.5
0 0.5 0.5 0

]

c0 =
[
0.5 0.5 0.5 0.5

]

safe[2] :

[x2 x′
2]

⎡

⎢
⎢
⎣

1 0 −1 0
0 1 0 −1
0 −1 0 1

−1 0 1 0

⎤

⎥
⎥
⎦ ≤ [

0.1 0.1 0.1 0.1
]

(1)
Forward Propagation: ForwardPropagate then propagates (1) across the lay-
ers to get affine regions that are over-approximations for the reachable region
for that layer. While propagation across the linear layer can be done easily via
matrix multiplication, propagating across the Relu layer is in general hard, since
we need to take into account all possible branching behaviors. We do this via a
tie class analysis (Sect. 4.1) that exploits the inherent symmetry of the network
and precondition. For this network, propagating across the first linear layer gives
us an affine region given by the basis and center:

324 D. Mukhopadhyay et al.

B′
0 =

[
500 −500 500 −500 −500 500 −500 500

−500 500 −500 500 500 −500 500 −500

]

c′
0 =

[
0 0 −1 −1 0 0 −1 −1

]

Then, propagating across the Relu using the tie class analysis (Sect. 4.1) gives
us the basis B1 and center c1 for reach[1]. Similarly, the algorithm propagates
across the second layer to get B′

1, c′
1, B2 and c2. In this case, the affine region

before and after the Relu turn out to be the same, and there is no loss in precision
going from B′

1 to B2. The matrices are:

B1 = B′
1, B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

500 0 0 0 0 500 0 0
−500 0 0 0 0 −500 0 0

0 −500 0 0 −500 0 0 0
0 500 0 0 500 0 0 0
0 0 500 0 0 0 0 500
0 0 −500 0 0 0 0 −500
0 0 0 −500 0 0 −500 0
0 0 0 500 0 0 500 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

500 0 0 −500
−500 0 0 500

0 −500 −500 0
0 500 500 0

−500 0 0 −500
500 0 0 500
0 500 500 0
0 −500 −500 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c1 =
[
0 0 0 0 0 0 0 0

]
c′
1, c2 =

[
0 0 0 0

]

(2)

Inclusion Check: Now, we see that if we substitute x with the form given in
reach[2] given by B2 and c2 above into safe[2] from Eq. 1, the right side of the
inequality in safe[2] is a matrix multiplication that evaluates to 0. So, reach[2]
is included in safe[2]. This is done by an algorithm (Sect. 4.3) that checks this
using an LP solver, and since it succeeds in this case, it returns property holds.

Note that for this example, it was unnecessary to perform any back propa-
gation of the safe[i] to previous layers, as the inclusion check succeeded at the
output layer. In general, back propagation (Sect. 4.2) would be performed to
compute under-approximations. Spuriousness check (Sect. 4.3) will be needed if
the inclusion check fails.

4 Forward and Backward Propagation

An input precondition of the form B1 ≤ [x0,x
′
0] ≤ B2 with x′

0 = σ(x0) can
always be converted into an equivalent affine region characterized by the formula
∃α : [x0 x′

0] = αV + c, |α| ≤ 1 by making corresponding components of V the
same according to σ, shifting the origin of V and scaling. This gives us reach[0].
Similarly, a postcondition of the form |x′

n − σout(xn)| ≤ M can be written as
the convex polytope |[xn x′

n]L| ≤ M where each column of L calculates one of
the differences of corresponding components, giving us safen . Having reach[0]
and safen , we move on to forward and backward propagation.

Permutation Invariance of Deep Neural Networks with ReLUs 325

4.1 Forward Propagation Using Tie Classes

Let reach[j] = {[xj x′
j] | ∃α : [xj x′

j] = αBj +cj , |α| ≤ 1}, be the affine region
representing an over-approximation of reachable points at the input to layer j;
forwardPropagate constructs reach[j + 1] as an affine region that is an over-
approximation for the set of all points produced when reach[j] is propagated
to the input of layer j + 1. reach[j + 1], is constructed by forward propagating
reach[j] first across the affine transform at j to produce an affine region Aj ,
which is then further forward propagated across the Relu layer.

Forward propagation across the linear transform given by x → xWj + bj is
straightforward and precise as it can be computed as a simple linear pushforward
across Wj , i.e., Aj([yj y′

j]) ⇔ (∃α : [yj y′
j] = αB′

j + c′
j , |α| ≤ 1), where

B′
j = BjWj is the new basis and c′

j = cjWj + bj is the new center.
Propagating Aj across Relu is more complex and challenging as it requires,

in general, a detailed case analysis of the polarity and strength of the compo-
nents of the basis vectors and the scaling α; rather than performing it precisely,
reach[j + 1] is constructed as an affine region that over-approximates the Relu
image. Several methods can be used to construct an over-approximation that
make different tradeoffs between precision and efficiency. One can construct the
smallest affine region (or polytope) that includes all the reachable values possi-
ble across the Relu [19]. Computing the smallest region can be inefficient as it
is an optimization problem requiring several expensive LP or convex-hull calls.
Our method efficiently constructs an over-approximate affine region that, while
sub-optimal, does not need any LP calls and is effective for checking permutation
invariance properties.

Our method to construct the over-approximate affine region relies on looking
for similarities in the polarity of the components of the vectors belonging to
reach[j] that are preserved when a Relu is applied to the region. For this, we
introduce the notion of tie classes associated with an affine region.

Propagating over Relu with Tie Classes. Given an affine region A defined
by a basis vi and center c we define a binary relation, tied, over the set of indices2

denoting the components of any vector x in A as follows.

Definition 1 (Tied). Given an affine region A characterized by the condition
∃αi : x =

∑
i αivi + c, |αi| ≤ 1, and two indices i1 and i2 in the index set, we

say i1 and i2 are tied iff for every vector x in A the components at i1 and i2
have the same sign.

The binary relation being tied is an equivalence relation on the index set of
vectors x that generates an equivalence class defined as follows.

Definition 2 (Tie Class). A tie class for an affine region A is the equivalence
class (partitioning) of the index set for the vectors in A induced by the equivalence
relation tied for A.

2 We assume the indices range from 0 to n − 1 for vectors of size n.

326 D. Mukhopadhyay et al.

Consider the affine region generated by the basis vi and c: v0 = [1 0 0 2], v1 =
[0 1 0.5 0], c = [0.5 2 1 1]. For this region, the indices 0 and 3 are tied because
for every vector in the region the component 3 is always 2 times the component
0 , since the component 3 of the vi and the c are 2 times the component 0.
Similarly, indices 1 and 2 are tied as well. For this region, the tie equivalence
class is {0 : {0, 3}, 1 : {1, 2}}

Tie Class Based Transformation of Basis Vectors. To help construct the
basis vectors for the over-approximation of the output of Relu, we define a trans-
formation of the set of basis vectors at the input to Relu. For each tie class j
in the equivalence class induced, and each vector vi in the input basis set, we
construct a vector v′j

i by setting all the components of vi that are not in the tie
class j to 0. Similarly, we get a cj from c for each tie class j. For the example
above, we have:

v′0
0 = [1 0 0 2] v′0

1 = [0 0 0 0] c0 = [0.5 0 0 1]

v′1
0 = [0 0 0 0] v′1

1 = [0 1 0.5 0] c1 = [0 2 1 0]

Lemma 1. Given x =
∑

i αivi + c, we can write Relu(x) =
∑

i,j α′j
i v′j

i +
∑

j βjcj where each α′j
i is either αi or is 0, and each βj is either 0 or 1. More-

over, the components of Relu(x) with indices in a tie class j are 0 iff α′j
i and βj

are 0.

This lemma3 states that there exists an oracle that, given an x in reach[j],
can determine whether to set each α′j

i to αi or 0 and each βj to 0 or 1 so that
we can express Relu(x) in the above form. Regardless of what the oracle chooses
we can always replace the condition α′j

i = αi ∨ α′j
i = 0 with |α′j

i | ≤ 1 as
an over-approximation. Now, if we can somehow replace

∑
j βjcj with a single

vector, we will have found our output affine region. The following theorem proves
that we can replace this sum with Relu(c).

Theorem 1. Given x =
∑

i αivi + c, |αi | ≤ 1, in an affine region A, there are
scalars α′j

i such that:

1. Relu(x) =
∑

i,j α′j
i v′j

i + Relu(c)
2. |α′j

i | ≤ 1 for all i and j.

The above theorem ensures that if we relax the condition on α′j
i to |α′j

i | ≤ 1,
the affine region obtained an over-approximation for the Relu image of A. Given
vi and c, it is easy to compute v′j

i and Relu(c) if we know what the tie classes
are, since this only involves setting certain components to 0. All we need to do
now is compute the tie classes for the given vi and c.

3 A more detailed version of the paper including an appendix with all the proofs and
other details is available at https://arxiv.org/abs/2110.09578.

https://arxiv.org/abs/2110.09578

Permutation Invariance of Deep Neural Networks with ReLUs 327

Algorithm 3. Checking tiedness
1: inputs: A, −→vi , −→c , i1, i2

2: if ∀j :
v
i1
j

v
i2
j

= ci1

ci2
then return tied

3: else if −→ci1 ≥ 0 and −→ci2 ≥ 0 then
4: if i1 or i2 component of some −→x ∈ A < 0

then return not tied
5: else return tied
6: else if −→ci1 < 0 and −→ci2 < 0 then
7: if i1 or i2 component of some −→x ∈ A > 0

then return not tied
8: else return tied
9: else return not tied

Computing Tie Classes.
To compute tie classes, for
every pair of indices i1 and
i2, we check whether i1 and i2
are tied, and then group them
together. One way to check if
two i1 and i2 are in the same
tie class using two LP queries
involving the αi: one which
constrains the value of com-
ponent i1 of x to positive and
component i2 to negative, and
vice versa. If any of these are
feasible, i1 and i2 cannot be

in the same tie class. Else, they are in the same tie class. This needs to be
repeated for each pair of i1 and i2, which amounts to n ∗ (n − 1) LP calls for n
Relu nodes, which is inefficient. Instead, we state another property of tie classes
that will allow us to compute the tie classes more efficiently:

Theorem 2. Two indices i1 and i2 are in the same tie class if and only if one
of the following is true:

1. The i1 and i2 components of x are always both positive.
2. The i1 and i2 components of x are always both negative.
3. The vector formed by the i1 and i2 components of the vk and c are parallel.

In other words, if vl
k is the l-component of vk , and cl is the l component of

c, then [vi1
1 , vi1

2 , · · ·ci1] = k[vi2
1 , vi2

2 , · · ·ci2] for some real k > 0.

Algorithm 3 uses Theorem 2 to check if i1 and i2 are in the same tie class.
The queries in lines 5, 7, 12 and 14 can be reduced to looking for αj such that∑

j αjv
i1
j + ci1 < 0. Such queries can be solved via an LP call, but we use

Lemma 2 to avoid LP calls and check these queries efficiently.

Lemma 2. The maximum and minimum values of
∑

i αivi, for real αi, fixed
real vi, constrained by |αi| ≤ 1, are

∑
i |vi| and −∑

i |vi| respectively.

If the network has a lot of inherent symmetry with respect to the input
permutation, it is more likely for different neurons in the same layer to be tied
together, leading to larger tie classes. This, in turn, reduces the number of basis
vectors required to construct our over-approximation of the Relu image, and
improves the quality of the over-approximation. Thus, we can expect our over-
approximation to perform well for checking permutation invariance.

4.2 Backward (Polytope) Propagation

Given a convex polytope P : xL ≤ u, we aim to symbolically construct a region
that reasonably under-approximates WeakestPrecond(Layer , P). Back propagat-
ing P across the linear part of a layer is easy as it can be done precisely by simply
pulling back P across the affine transform of the layer.

328 D. Mukhopadhyay et al.

Back propagating it across Relu is challenging as WeakestPrecond(Relu, P)
may potentially touch all of the exponentially many “non-positive” quadrants.
For each non-positive quadrant Q, relu acts on the points in the quadrant by
projecting them linearly to the positive quadrant. If this projection is given by
Relu(x) = xΠQ, we have Relu(x)L ≤ u ⇔ xΠQL ≤ u. Thus, the inverse
image of P over Relu restricted to each quadrant is itself a polytope, giv-
ing us exponentially many polytopes in WeakestPrecond(Relu, P). Therefore,
exact backpropagation is infeasible, and we look for under-approximations to
WeakestPrecond(Relu, P).

A sound single polytope solution is to use P ∧x ≥ 0 ignoring the entire “non-
positive” region at the input, but this is too imprecise. Our compromise solution
is to use a union of two polytopes: one that includes the positive region P ∧x ≥
0 and another that includes as much of the non-positive region as possible.
To construct a polytope under-approximating the non-positive regions using
inexpensive linear algebraic techniques, we use two separate methods, depending
on whether P includes the 0 vector or not.

Case 1, P Does not include 0: Of all the non-positive quadrants, we choose
the quadrant Qc that has the center point of reach[i]. Then, we take the polytope
corresponding to the inverse image of P over Relu restricted to Qc as the under-
approximation for the non-positive region. This center point based heuristic for
choosing a quadrant is motivated by the fact that if the center point of reach[i]
is in Qc, we know that at-least a part of reach[i] must be in Qc.

x

⎡

⎣
1 −1
1 −1
1 −1

⎤

⎦ ≤ [
2 −1

]
(3) x

⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 −1
1 −1
1 −1

⎤

⎦ = x

⎡

⎣
0 0
1 −1
1 −1

⎤

⎦ ≤ [
2 −1

]
(4)

For example, consider the polytope given in Eq. 3. This touches all of the 7
non-positive quadrants, and so there will be one polytope for each of these in
WeakestPrecond(Relu, P). Let us say the center point reach[i] is in the quadrant
where the first component of x is negative, and all other components are non-
negative. In this component, Relu acts by setting the first component to 0, and
ΠQ is given by the identity matrix with the uppermost leftmost element set to
0. Then, following the calculations before, Eq. 4 gives us the polytope for the
negative side region.

Case 2, P includes the 0 vector: If 0 is inside P , there is a high chance for
the center of reach[i] to lie inside the all-negative quadrant, and for the above
method to produce x ≤ 0 as the non-positive polytope. While this polytope may
potentially cover a large number of the points in reach[i], the polytope touches
P only at the origin. Thus, points in reach[i] that are close to the origin may
not be covered. We therefore try to do better by extending x ≤ 0 a region of the
form x ≤ η, where all components of η are non-negative.

We notice that x ≤ η ⇒ 0 ≤ Relu(x) ≤ η. Thus, η should satisfy the
soundness condition ∀y 0 ≤ y ≤ η ⇒ yL ≤ u. To cover as many points as
possible in the region, we try to maximize the “volume”

∏
i ηi, where ηi are

the components of η. If P has a single linear inequality, we can do this by

Permutation Invariance of Deep Neural Networks with ReLUs 329

constraining η to the boundary, and solving for the gradient of
∏

i ηi to be 0.
This reduces to solving a set of linear inequalities. We repeat this procedure for
each inequality j in P to get an ηj and take the component-wise minimum to
get the final η. For example, the columns 1 and 2 of polytope 5 below give us
the η1 and η2 in Eq. 6.

x

[
1 2
2 1

]
≤ [

2 2
]

(5)
η1 =

[
1 0.5

]
,η2 =

[
0.5 1

]

η = min(η1,η2) =
[
0.5 0.5

] (6)

Thus, we backpropagate a polytope across Relu to get a union of two poly-
topes. If we repeat this process at each layer, the number of polytopes will
double at each layer, leading to an exponential blowup. To avoid this, we keep
this 2-polytope under-approximation only to perform inclusion check (line 10
in Algorithm 1). The polytope corresponding to the negative region is dropped
before it is subsequently back propagated further into earlier layers.

4.3 Inclusion Checking and Counterexample Propagation

Our goal is to check whether reach[i], given by basis B and center c, is included
in safe[i], given as union of P1 : xL1 ≤ u1 and P2 : xL2 ≤ u2.

The first challenge in inclusion checking comes from the fact that safe is a
disjunction of two polytopes. In the case when P comes from Case 2 above,
we notice that the two polytopes P1 and P2 lie entirely in the opposite sides
of the plane separating the selected quadrant from the positive quadrant. This
allows us to reduce the inclusion check to seeing if all points in reach[i] on each
side of the plane lie entirely inside the corresponding polytope. For Case 1 we
do not have any such separating plane, but here inclusion holds iff for all i, all
points in reach[i] above the xi ≥ ηi plane lies in the positive side polytope.
Thus, in both cases, we have reduced inclusion checking to a query of the form
(∃α : x = αB + c ∧ |α| ≤ 1 ∧ x.v ≥ k) ⇒ xL ≤ u.

To solve the above query, we pull xL ≤ u and x.v ≤ k back to the space of α
using the linear transform given by B and c to get Pα and Kα respectively. This
gives us a bounded polytope inclusion query, which can be solved by optimizing
the objective given by each inequality of Pα with Kα as constraint. This we solve
via an LP call, thus reducing inclusion checking to multiple simple LP calls.

If the inclusion fails, we obtain a point w that witnesses the violation of
the inclusion at layer i. Since back-propagating this witness to the input layer
to generate a counterexample is in general as hard as backpropagating the safe
regions, in pullBackCex we generate multiple approximate back-propagations of
w across a layer, which map to points close to w when taken across the layer.
We do this by first generating several candidate back-propagated points x in the
reach randomly. Then, we project each x towards the pullback of w with respect
to the action of the layer restricted to x’s quadrant. Finally, we discard all x that
under the action of the layer lead to points that have euclidean distance more
than D from w, where D is a parameter that we tune. Doing this backwards
layer by layer gives us many points in the input layer which approximately map
to w, and we check if these violate the property.

330 D. Mukhopadhyay et al.

4.4 Example (continued from Sect. 3.1)

Details of initPre: For the input points [x00 x01 x′
00 x′

01], x00 = x′
01, and

x01 = x′
00. This can be expressed as saying that [x00 x01 x′

00 x′
01] is a linear

combination of the rows of:
[
1 0 0 1
0 1 1 0

]
.

Now, as the points also have components in the range [0, 1], we can shift the
origin to 0.5 and scale by 0.5 to get the affine region αB0 + c0, |α| ≤ 1 with

B0 =
[
0.5 0 0 0.5
0 0.5 0.5 0

]
c0 =

[
0.5 0.5 0.5 0.5

]

Forward Propagation Across Layer 1: Now, we follow the algorithm as it
pushes 1 forward across the layers of the network to get the postconditions at
various points. Firstly, 1 is pushed forward across linear layer 0 by taking the
pushforward with respect to W0 and b0 to get:

B′
0 =

[
500 −500 500 −500 −500 500 −500 500

−500 500 −500 500 500 −500 500 −500

]

c′
0 =

[
0 0 −1 −1 0 0 −1 −1

]

Now, the algorithm performs the tie class analysis to push B′
0 and c′

0 across
the Relu to get B1 and c1. Here, using 3 of Theorem 2 the algorithm determines
that the tie classes of the columns are {0, 5}, {1, 4}, {2, 7},{3, 6}. We note that if
x0 and x′

0 are related by the permutation that swaps the components, the pairs
of variables in each of the above tie class will actually have the same value. Thus,
the tie class is capturing a weaker over-approximation of this strict symmetry
property. Now, for each tie class, all the columns of all the basis vectors in B′

0

not in the tie class is set to 0, and collecting the resulting vectors gives us B1;
c1 is simply given by Relu(c′

0). As before, B1 is pushed across linear layer 1 to
get B′

1. Both these matrices are given in Eq. 2 in Sect. 3.1. Again, the algorithm
performs a tie class analysis, getting {0, 3} and {1, 2}. This again is a weakening
of the fact that these pairs of variables are actually equal. Note that the basis
B2 gotten on the other side of the Relu in this case is actually the same as B′

1.

5 Experiments

We have implemented this in Python, using the numpy and scipy libraries for
linear algebra and LP solving, respectively. Our experiments were run on an
Intel i7 9750H processor with 6 cores and 12 threads with 32 GB RAM. The
artifacts are available for evaluation at https://github.com/digumx/permcheck/
tree/nfm22.

We have compared our algorithm with the Marabou [13,14] implementation
of the Reluplex [12] on a few DNNs of various sizes with the following target
behavior: for n inputs, there should be n outputs so that if input i is the largest
among all the inputs, output i should be 1. These networks have three layers

https://github.com/digumx/permcheck/tree/nfm22
https://github.com/digumx/permcheck/tree/nfm22

Permutation Invariance of Deep Neural Networks with ReLUs 331

excluding the input layer, with sizes 2n(n − 1), n(n − 1) and n respectively.
Formally, we check that 0 ≤ x ≤ 1 ⇒ |σ(N (x)) − N (σ(x))| ≤ ε, where σ
represents the permutation sending 1 → 2, 2 → 3· · ·n → 1 cyclically, and ε varies
across the experiments. Note that if the network follows the target behavior, then
this property should hold.

We first demonstrate our algorithm on a set of hand-crafted networks solving
the above problem for which we have manually fixed the weights. The network
has been manually engineered so that the first and second layers perform pairwise
comparisions of the input, and the third layer combines the results of these
comparisions logically to produce the output.

In general, as the input to the above DNN varies within the precondition
region, the input to the Relu nodes can regularly switch between positive and
negative. This can potentially lead to an exponential blowup in the number of
case-splits. However, since permuting the inputs of this DNN leads to a more
complicated permutation of the intermediate layers, intuitively we should be able
to easily verify the property using an effective abstraction. The columns labelled
Safe of Table 1 compares the time taken by our algorithm and by Marabou
on these networks and demonstrates that the over-approximation and under-
approximation used in our algorithm form an effective abstraction for this exam-
ple, and is likely to be so for similar, symmetric networks.

We also test our algorithm on an unsafe problem using the same hand-crafted
network from the previous example. To do so, we change the permutation on the
output side to be the identity permutation, leading to a property that clearly
should never hold. The results are given in the columns labelled Unsafe of Table 1
and show that our counterexample search is able to find counterexamples in a
way that is competitive with Marabou, especially for networks with 8 or more
inputs.

Table 1. Comparison of Marabou and our algorithm on safe and unsafe synthetic
networks

Inputs Size Safe Unsafe

Our algorithm Marabou Our algorithm Marabou

Time Splits Time Splits

3 21 0.074 4.833 2046 0.048 0.187 68

4 40 0.112 >100.8 >11234 0.074 0.202 38

5 65 0.163 >101.9 >5186 0.132 0.267 47

6 96 0.269 >100.1 >2243 0.233 0.603 60

7 133 0.493 >106.8 >1533 0.422 1.085 64

8 176 0.911 >126.5 >475 0.809 71.89 299

9 225 1.477 >183.9 >467 1.508 5.011 91

10 280 2.276 >158.7 >394 2.157 29.09 202

332 D. Mukhopadhyay et al.

Finally, we compare the performance of our algorithm with Marabou on two
sets of trained DNNs. The first is a set of DNNs for the same problem that have
been trained using SGD to have the target behavior described above, using a
large number of randomly generated input and corresponding correct output for
training. We compare the algorithms on trained networks of various sizes, and
with various values of ε.

The results (Table 2) show that for these examples, most networks are unsafe,
and as the size of the network increases, both our algorithm and Marabou is able
to find counterexamples. However, the time taken by Marabou increases signif-
icantly for the larger networks, eventually timing out for the largest examples,
while our algorithm scales much better. The table also shows that for smaller
networks Marabou performs better than our algorithm. We believe this is due
to the inefficiencies in our prototype implementation compared to Marabou. For
some small networks, our algorithm is unable to find a proof or counterexam-
ple, however we believe this issue can be handled with a counterexample guided
refinement procedure in the future (Fig. 2).

Table 2. Comparison of Marabou and our algorithm on trained networks. the time is
given in seconds.

Network Our algorithm Marabou

n Size ε Accuracy Time Result Time Splits Result

3 21 0.1 94.0% 0.023 CEX 0.023 10 CEX

3 21 0.5 100% 0.249 INCONS 0.034 16 CEX

3 21 0.9 100% 0.204 INCONS 1.330 274 SAFE

5 65 0.1 97.1% 0.197 CEX 0.684 35 CEX

5 65 0.5 99.5% 0.188 CEX 0.682 35 CEX

6 96 0.1 98.0% 0.012 CEX 3.070 85 CEX

6 96 0.3 98.6% 0.018 CEX 3.138 85 CEX

7 133 0.1 87.5% 0.011 CEX 5.651 84 CEX

7 133 0.3 96.1% 0.012 CEX 5.810 86 CEX

8 176 0.1 65.7% 0.012 CEX 44.42 258 CEX

8 176 0.3 68.5% 1.584 CEX 42.80 258 CEX

9 255 0.1 58.4% 1.193 CEX >120.3 >228 TO

9 255 0.3 70.2% 1.310 CEX >127.9 >179 TO

10 280 0.1 20.8% 4.040 CEX >130.4 >58 TO

10 280 0.3 31.0% 3.966 CEX >125.0 >58 TO

Permutation Invariance of Deep Neural Networks with ReLUs 333

Fig. 2. Example craft paths (Color figure
online)

The second set of examples
involve DNNs that we have trained
to solve a smaller-scale simpler ver-
sion of the collision avoidance prob-
lem. Here, we consider a craft mov-
ing through 2D space with a given
initial position and velocity under
a given constant acceleration. The
DNN must take as input the initial
position, velocity and constant accel-
eration for a pair of crafts and deter-
mine weather they will collide. In the
attached figure, the green plots show
the trajectory of a non-colliding pair
of crafts, and the red plots show the

trajectory of a colliding pair in the dataset. There is an inherent symmetry to
this problem: if we swap the two crafts, the output of the DNN should remain
the same. We generated a dataset of 100000 pairs of craft position, velocity and
acceleration, labeled as colliding and non-colliding. On this dataset we trained
(using SGD) DNNs with various sizes, and used them to compare Marabou and
our method on the problem of verifying invariance under swapping for different
values of ε. The data is given in the Table 3.

Table 3. Comparison of Marabou and our algorithm on collision avoidance networks.

Network Our algorithm Marabou

Size ε Accuracy Time Result Time Splits Result

33 0.1 76.4% 0.059 CEX 0.123 27 CEX

33 0.5 97.2% 0.337 CEX 0.312 40 CEX

33 0.7 99.5% 1.440 INCONS 0.325 47 CEX

33 0.9 100% 1.679 INCONS >121.0 >12466 TO

52 0.1 81.6% 0.093 CEX 0.808 26 CEX

52 0.7 98.9% 10.13 INCONS 5.692 140 CEX

52 0.9 100% 10.94 INCONS >121.0 >4084 TO

90 0.1 90.0% 0.433 CEX 10.13 100 CEX

90 0.5 98.6% 1.906 CEX 10.07 101 CEX

90 0.9 100% 36.25 INCONS >121.0 >745 TO

138 0.1 92.3% 0.564 CEX 27.52 108 CEX

138 0.9 99.9% 31.34 INCONS >121.0 > 274 TO

318 0.1 91.7% 2.328 CEX >121.0 >118 TO

318 0.3 94.9% 2.373 CEX >121.0 >118 TO

318 0.5 96.8% 2.445 CEX >121.0 >118 TO

488 0.1 92.5% 10.15 CEX >121.0 >6 TO

488 0.3 94.5% 9.932 CEX >121.0 >6 TO

334 D. Mukhopadhyay et al.

The results (Table 3) demonstrate the performance of our algorithm on a
realistic example. Again we find that most of these networks are unsafe. However
for some networks our algorithm returns inconclusive and Marabou times out,
and these networks may indeed be safe. We again find that while Marabou is
faster on smaller networks, for the larger networks Marabou begins to time out
more and more frequently, while our algorithm scales much better. We also find
that for certain networks, our algorithm returns inconclusive, however the larger
of these networks are hard for Marabou as well.

Though small in number, our benchmarks are challenging due to their size
and complexity of verification. We attribute the efficiency of our approach to a
number of design elements that are crucial in our approach – a layer by layer anal-
ysis, abstractions (that help reduce case-splits), under-approximations (that lead
to good counterexamples), algebraic manipulations instead of LP/SMT calls, etc.
A downside of our algorithm is that it may sometimes return inconclusive. A
counterexample-guided refinement procedure can help tackle this issue.

6 Related Work

The field of DNN verification has gained significant attention in recent years.
DNNs are increasingly being used in safety- and business-critical systems, mak-
ing it crucial to formally argue that the presence of ML components do not
compromise on the essential and desirable system-properties. Efforts in formal
verification of neural networks have relied on abstraction-refinement [7,15,16],
constraint-solving [1,5,6,20], abstract interpretation [9,17,18], layer-by-layer
search [10,21], two-player games [22], dependency analysis [3] and several other
approaches [11,23].

The most closely related work to ours is using a DNN verification engine such
as Reluplex [12] and Marabou [13,14] to verify permutation invariance properties
by reasoning over two copies of the network. Reasoning over multiple copies also
comes up in the context of verifying Deep Reinforcement Learning Systems [8].
However, verification of DNNs is worst-case exponential in the size of the network
and therefore our proposal to handle permutation invariance directly (instead of
multiplying the network-size) holds a lot of promise.

Polytope propagation has been quite useful in the context of DNN verifi-
cation (e.g. [19,24]). In the case of forward propagation, however, it requires
computing the convex hull each time, which is an expensive. In contrast, our tie-
class analysis helps us propagate the affine regions efficiently. In the backward
direction, even though we rely on convex polytope propagation, we mitigate
the worst-case exponential blow-up by using a 2-polytope under-approximation
method that does not depend on LP or SMT solving, and is both scalable and
effective.

In general, the complexity of a verification exercise can be mitigated by
abstraction techniques, e.g. [2,7] for DNNs. The essential idea is to let go of an
exact computation, which is achieved by merging of neurons in [7]. In [15], the
authors propose construction of a simpler neural network with fewer neurons,

Permutation Invariance of Deep Neural Networks with ReLUs 335

using interval weights, to over-approximate the output range of the original
neural network. Our work is similar in spirit, in that it avoids exact computation
unless really necessary for establishing the property. In practice, these techniques
can even be used complementary to one another.

7 Conclusion

We presented a technique to verify permutation invariance in DNNs, based
on novel forward- and backward-propagation methods. Our approach is sound
(not just for permutation invariance properties, but for general safety properties
too), efficient, and scalable. It is natural to wonder whether the approximately
computed reach and safe regions may be refined to eliminate spurious coun-
terexamples, and continue propagation till the property is proved or refuted.
Our approach is definitely amenable to a counterexample-guided refinement. In
particular, the spurious counterexamples can guide us to split Relu nodes (to
refine over-approximations), and add additional safe regions (to refine under-
approximations). This would require us to maintain sets of affine regions and
convex polytopes at each layer, which is challenging but an interesting direction
to pursue.

References

1. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Thielscher, M., Toni, F., Wolter, F.,
(eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the
Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October - 2
November 2018, pp. 184–193. AAAI Press (2018)

2. Ashok, P., Hashemi, V., Křet́ınský, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA
2020. LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59152-6 5

3. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 3291–3299 (2020)

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

5. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

6. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

7. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verifi-
cation. pp, pp. 43–65. Springer International Publishing, Cham (2020)

https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19

336 D. Mukhopadhyay et al.

8. Eliyahu, T., Kazak, Y., Katz, G., Schapira, M.: Verifying learning-augmented sys-
tems. In: Kuipers, F.A., Caesar, M.C. (eds.), ACM SIGCOMM 2021 Conference,
Virtual Event, USA, 23–27 August 2021, pp. 305–318. ACM (2021)

9. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), Los Alamitos,
CA, USA, IEEE Computer Society, May 2018

10. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

11. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302,
pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 3

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

13. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

14. Kazak, Y., Barrett, C.W., Katz, G., Schapira, M.: Verifying deep-rl-driven sys-
tems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML,
NetAI@SIGCOMM 2019, Beijing, China, 23 August 2019, pp. 83–89. ACM (2019)

15. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural
networks. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E.B., Garnett, R. (eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 15762–15772 (2019)

16. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

17. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada, pp. 10825–10836
(2018)

18. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019)

19. Sotoudeh, M., Thakur, A.V.: SyReNN: a tool for analyzing deep neural networks.
In: TACAS 2021. LNCS, vol. 12652, pp. 281–302. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72013-1 15

20. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: ICLR (2019)

21. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.), Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, 14–20 April 2018, Pro-
ceedings, Part I, volume 10805 of LNCS, pp. 408–426. Springer (2018)

https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-030-72013-1_15
https://doi.org/10.1007/978-3-030-72013-1_15

Permutation Invariance of Deep Neural Networks with ReLUs 337

22. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theor.
Comput. Sci. 807, 298–329 (2020)

23. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

24. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifica-
tion of recurrent neural networks for cognitive tasks via reachability analysis. In:
Giacomo, G.D. (eds.) et al., ECAI 2020–24th European Conference on Artificial
Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of
Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in Artificial Intelligence
and Applications, pp. 1690–1697. IOS Press (2020)

Configurable Benchmarks for C Model
Checkers

Xaver Fink, Philipp Berger(B) , and Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany
{berger,katoen}@cs.rwth-aachen.de

Abstract. Software model checkers employ many different techniques.
During various competitions, the capabilities of these verification tools
are compared on a wide variety of benchmarks. Our aim is to get insight
into which code characteristics are “hard” for software model checkers.
To that end, we present a software tool that automatically generates C
benchmark programs that are intended as stress tests for software model
checkers. The parameters of the generated C programs, e.g., program
size, types of operation, are controllable, and programs can be tweaked,
e.g., floats can be replaced by integers and pointer dereferencing can be
used for variable accesses. Our tool enables a systematic comparison of
software verifiers. We illustrate its usage by evaluating the top verifiers
from the SV-COMP 2022 reachability category and analyze what makes
benchmarks hard for these tools and how well these tools scale, both in
terms of code related to the property at hand as well as in terms of code
that is unrelated to it.

1 Introduction

Software model checkers verify essential properties of program code such as
reachability and safety. Model checking tools for various programming languages
exist; this paper focuses on verifying ANSI C programs. Software model check-
ing is notoriously hard. It attempts to tackle a problem that is inherently unde-
cidable. Software model checkers are in fact no pure model checkers, but use
techniques from various domains [14]: model checking (such as abstraction-
refinement), deductive verification (e.g. loop invariant synthesis), abstract inter-
pretation (using abstract domains) and satisfiability (modulo theory) checking.

The capability and precision of software model checkers are annually com-
pared in verification competitions such as the annual Competition on Software
Verification (SV-COMP) [2]. As an important by-product of these competitions,
a set of benchmarks is provided to the research community which grows with each
issue of the competition. Many benchmarks are provided by the tool builders of
the competing software model checkers and often focus on specific new algo-
rithmic developments. As a result, the benchmark code is usually not consistent
in size and properties used, which, in general, is great but makes it impossible
to study the impact of specific code features and -size. Some papers show that

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 338–354, 2022.
https://doi.org/10.1007/978-3-031-06773-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_18&domain=pdf
http://orcid.org/0000-0002-3942-3217
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-031-06773-0_18

Configurable Benchmarks for C Model Checkers 339

exposing software model checkers to industrial code indeed shows significant
weaknesses [10,21].

The aim of this work is to get insight into which code characteristics are
“hard” for software model checkers. To that end, we present a software tool
that automatically generates C benchmark programs that are intended as stress
tests for software model checkers. The parameters of the generated C programs,
e.g., program size, types of operation and data, are controllable, and programs
can be tweaked, e.g., floats can be replaced by integers and pointer dereferenc-
ing can be used for variable accesses. The generated programs are reactive in
nature, i.e., infinite loops in which in each iteration signal variables are set non-
deterministically, statements are executed in a lock-step manner and a property
check is carried out. These closed-loop programs are popular in the automotive
domain and can be obtained automatically from block-based Simulink models,
see [1]. Figure 1 provides an overview of our benchmark-generation tool.

Options

Modules

Templates

Random Code
Tree Generation

Instantiated
Templates

Post
Processing

• Filler Code
• Functionizing

• Integer Restriction

• Variable Wrapping

Property Code
Generation

Template
Generation

Code
Generation

Code Generator

optional

control

.c

Fig. 1. An overview over the inner working of the benchmark generation tool.

Our tool enables a systematic comparison of software verifiers and is publicly
available. We show its usage by performing a number of extensive experiments
using the top verifiers from the SV-COMP 2022 “ReachSafety” category investi-
gating their robustness—both in terms of verification outcome as well as model-
checking performance—against code changes that do not affect the validity of
the property at hand. Our experiments address questions such as:

– What is the effect of adding arbitrary, innocent code?
– What is the impact of variable wrapping (as array, struct, etc.)?
– What is the effect of wrapping expressions by function calls?
– What is the effect of using pointer for variable accesses?
– What is effect of floating-point variables and arithmetic?, and
– How scalable are software model checkers?

Our experiments give some interesting and unexpected insights, and are statis-
tically analyzed in the paper.

340 X. Fink et al.

Related Work. Bug detection in model checkers using fuzzing is presented in
[22]. Soundness and precision is analyzed using benchmarks generated from seed
programs in [15]. Automatic code generation is discussed in several works. A
translation tool for the generation of programming language code from exist-
ing, hand-crafted Event-B models is presented in [17]. [13] presents a framework
for synthesizing benchmark tasks from formal specifications and translation into
C, Java or Petri nets, used in the RERS competition [12]. While task size and
-hardness are configurable, it is not possible to apply transformations for dif-
ferential analysis or control code connectivity. In [1] industrial-grade C-code,
generated from Simulink, is benchmarked with an industrial verification soft-
ware. This study was repeated in [21] with academic verification tools such as
2LS, CPAchecker and others.

There exist several reports and evaluations comparing specific verification
approaches. A comparison of static program analysis with model checking is
performed in [20]. In another work traditional testing methods are compared to
model checking [4]. In [8] model checkers for Java programs are compared. In [7]
program slicing techniques are evaluated on several C software verification tools
using the SV-COMP task-set.

2 Tool and Code Generation

In this paper, we present a tool for the automatic generation of benchmark code
for C code model checkers. The tool allows for the generation of verification tasks
based on specified options controlling size, composition and style of the code. It
supports the random generation of tasks as well as the modification of previously
generated task templates. In this section, we explain the different ingredients of
our tool as indicated in Fig. 1.

Code Structure. The generated verification tasks follow the structure presented
in Fig. 2. The tasks consist of an infinite loop as typical for reactive systems. The
system being modeled can be standalone or downstream of other, similar com-
ponents, modeled by signal variables that change their value within a specified
range non-deterministically at the start of every iteration. Execution in such
systems happens in (forced) lockstep in a predefined, known and fixed order.
Such systems are popular in automotive engineering and can be auto-coded to
C for embedded systems using Simulink from block-based Simulink models. The
structure of generated verification tasks into requirements in this work is inspired
by the tasks encountered in [1].

Requirements. A requirement defines the behavior of one or more output vari-
ables, whose values are defined using expressions over variables and constants as
input. An output can also be an input, but we require it to be distinctly marked
using the last i(var, steps) function (internally), realized by distinct copies
in the code for allowing the verification access to earlier values. Figure 3 shows
an example requirement which defines var2 based on other inputs. From every
such definition of an output variable we derive properties, essentially describ-
ing the same behavior as the conditional assignment expression. One or more

Configurable Benchmarks for C Model Checkers 341

1 extern void r e a ch e r r o r () ;
2 i n t main () {
3 i n i t i a l i z e () ;
4 whi le (1) {
5 nondet var update () ;
6 s tep () ;
7 i f (! property ())
8 r e a ch e r r o r () ;
9 s h i f t l a s t v a r i a b l e s () ;

10 }}
11

Fig. 2. The basic structure of the generated code.

requirements form the loop body of the code, where they are executed in an infi-
nite loop with non-deterministic updates to all external input variables before
each step. Non-deterministic initialization and updates to the variables based on
defined variable ranges allow for model checking of all possible system behaviors.
On generating the code, we try not to impose any unnecessary restrictions on
the order and the type of operations. Necessary restrictions include prohibition
of undefined behavior and arithmetic problems like division by zero, which we
achieve by over-approximation of value ranges, see Sect. 2.1. This diversity can
be helpful in “fuzzing” edge cases (see e.g.1).

if-then

greater-than

multiplication

5

var1

2.0f

assignment

var2

abs-value

var3

1 // (1) Trans la t i on in to code
2 i f var1) > 2 .0 f) {
3 var2 = abs (var3) ;
4 }
5

6 // (2) Trans la t i on in to a property
7

((

(var1 > 2 .0 f) ?
8 (var2 == abs (var3)) : 1

Fig. 3. Code representation in the tool: internal, property and functional.

1 https://github.com/ultimate-pa/ultimate/issues/578.

https://github.com/ultimate-pa/ultimate/issues/578

342 X. Fink et al.

Templates. A template is a piece of C code including all internal supplemental
information in a non-human-readable format. Its purpose is being used by further
code-gen and/or post-processing, e.g. in differential analysis of float vs. int,
where multiple programs are generated from the same base template. It is not
meant to be hand-crafted, only exported as the result of a call to the tool.

2.1 Code Generation

Type Widening and Expression Conditioning. When generating code, restric-
tions regarding allowed types and values need to be passed along the generated
tree of operations. Similarly, we need to gauge possible value ranges of gener-
ated expressions when considering variables for expression generation. Instead
of full-blown model checking or applying SMT solving, we rely on a simplified
over-approximation consisting of a range and list of excluded values. When con-
sidering an integer division for example, we disallow 0. Similarly, as we do not
allow over- or underflows on signed integers or floating-point variables as to
not risk undefined behavior or Inf-values, we enforce limits smaller than the
maximum of the datatype.

Limitations of the Tool. While we can generate functions by way of extracting
parts of the code tree and placing them into functions, no recursive functions
may be generated this way. The current version does not generate any dynamic
pointer arithmetic or otherwise non-trivial access via pointers. As our expression
range estimation is coarse, we are severely limited in self-referential expressions
such as x = EXPR + x; as they can easily escalate out of original bounds. This
hurts statefulness, i.e. behavior which can only be observed after a number of
iterations, and limits complexity of the generated programs, but allows us to
control ground truth and absence of undefined behavior.

Step-local Variables. To not only produce global variables, we optionally intro-
duce step-local variables in a post-processing that capture part of an expression.

Seeds. The tool is entirely deterministic such that fixing the seed of the random
number generator, the output programs will always look the same when using
the same options and tool version. This allows reproducibility, easy bug hunting
and testing when exploring runs.

Dependencies and Sorting. Just as the Simulink programs analyzed in [1], we
fix the execution order of requirements a priori. As we use outputs (assigned-
to variables) of other requirements as possible inputs, and especially with the
dependency-creation post-processor, we might construct two requirements such
as x = y + c; and y = 0.5 * x;. Since there is a mutual dependence on the
output of the other being available, we break this cycle by introducing an explicit
last, e.g. y = 0.5 * last(x);, accessing the value of the previous iteration.
Now a clear ordering can be established.

Configurable Benchmarks for C Model Checkers 343

Tool and Availability. The tool is publicly available at https://github.com/
moves-rwth/c-code-generator. It is written in Java 11 and consists of about
23k LOC. Development of its core has taken about 30 person-months.

3 Benchmarking the Open-Source Verifiers

The experiments were performed on a machine with four AMD Opteron 6172
processors, 192 GB DDR3 memory at 1333 MHz MHz on Debian 11 running
kernel 5.14.0-0.bpo.2-amd64. Each benchmark verification run was restricted to
15 min of CPU time, 15 GB of memory and at most eight CPU cores, unless
otherwise noted. These restrictions were chosen based on the SV-COMP speci-
fications to account for verification tool optimizations.

3.1 Verification Tool Setup

We evaluate the experiments by benchmarking verification runs of six academic
verification tools with historically good performance on reachability properties.
Based on the performance in the category “ReachSafety” of the SV-COMP 20222

we chose 2LS [16], CPAchecker [3], ESBMC [9], PeSCo [18], Symbiotic
[6] and Ultimate Automizer [11].

For all verification tools we used the version and verification parameters
supplied for the ReachSafety Category of SV-COMP 2022. One exception is
Symbiotic, for which we had to replace its shipped version of libz3 with a
build compatible with our host CPUs. We note that this might influence the
tool-performance. While we would have liked to include VeriAbs, the winner of
the ReachSafety category in SV-COMP 2022, its license allows use only within
SV-COMP 2022 and the competition benchmarks.

3.2 Verification Task Creation

The individual verification tasks were created using our tool. The verification
task sets for each configuration were generated by a PowerShell wrapper script.
The wrapper script produces the following output for each configuration:

– .c-File and corresponding .yml-File for each verification task,
– .json-File containing file-statistics for each verification task,
– .xml-Files for each verification tool containing Benchexec task definitions,
– multiple helper scripts.

In general, we create 100 tasks (files) per configuration and test. However,
the tool is capable of producing a higher number of tasks without difficulties.
All created files, the tool and generated data can be found in the artifact.

3.3 Benchmarking Setup

For reliable and reproducible results, we rely on the Benchexec framework with
the SV-COMP 2022 configuration. Benchexec is a benchmarking framework
developed at the LMU Munich, designed to reliably measure and limit resource
2 https://sv-comp.sosy-lab.org/2022/systems.php.

https://github.com/moves-rwth/c-code-generator
https://github.com/moves-rwth/c-code-generator
https://sv-comp.sosy-lab.org/2022/systems.php

344 X. Fink et al.

usage using the cgroups feature of the Linux kernel [5]. Its successful usage in
the annual Competitions on Software Verification of recent years make it a great
tool for our purposes. We set up our environment based on the instructions for
Execution and Reproduction of the SV-COMP 2022 benchmarks3.

3.4 Experiment I: Effect of Filler Code

Fig. 4. Influence of filler code on CPU time used. P is the position of inserted code
(End, Random, Start), C the connection type (inputs, outputs, nothing).

Table 1. Wilcoxon rank sum results on runtimes in Fig. 4 between unchanged and
modified code. We use p < 0.05 as threshold.

Tool PE CI PE CN PE CO PR CI PR CN PR CO PS CI PS CN PS CO

2LS 2.2E–06 4.1E–09 4.0E–08 7.9E-07 4.2E–10 1.1E–08 9.9E–07 1.4E–08 3.8E–08

CPA 1.9E–02 3.8E–04 5.7E–03 9.5E-03 5.5E–04 1.3E–04 1.1E–02 1.4E–03 8.7E–04

ESBMC 6.2E–01 5.8E–01 6.0E–01 7.8E–01 6.1E–01 6.6E–01 7.3E–01 5.2E–01 5.9E–01

PESCO 4.3E–03 1.3E–03 1.8E–03 7.2E-03 3.7E–03 1.0E–04 4.2E-03 8.6E-03 9.9E–04

SYMB 6.6E–01 NA 5.3E-01 4.3E–01 NA 7.3E–01 5.9E-01 NA 3.2E–01

UA NA NA NA NA NA NA NA NA NA

3 https://gitlab.com/sosy-lab/benchmarking/competition-scripts/#instructions-for-
execution-and-reproduction.

https://gitlab.com/sosy-lab/benchmarking/competition-scripts/#instructions-for-execution-and-reproduction
https://gitlab.com/sosy-lab/benchmarking/competition-scripts/#instructions-for-execution-and-reproduction

Configurable Benchmarks for C Model Checkers 345

Here, we investigate the influence of additional code on the model checking time
of the requirement. The programs studied in [1] often contained large disjunct
parts together with unused functions and variables. The size of the property (≈50
operations) under test stays constant over all configurations and benchmarks.
The filler code is made up of ≈50 operations and is subject to the same generation
conditions as the property of interest. An expression such as y = 0.5 * x;
would count as two operations (one assignment and one multiplication).

Our tool supports three possible options for the location of filler code: in
front of the real code (S), behind it (E) or randomly placed (even within, R).
We fully control the flow of information between both code parts: we can either
have no connection (neither input- nor output variables are shared, N), shared
input meaning the external input signals are used read-only by both code parts
(I) and consecutive, where the filler code uses outputs generated by the real code
as read-only inputs (O). Correctness of the property in question is not influenced
by the filler code in any way.

Figure 4 shows box-plots of the processing times including the median. The
top lines show the number of instances that resulted in state “out of memory”
(OOM), “unknown” (UKN), “false negative” (FN), “error” (ERR) and “time-
out” (TO). The configuration “normal” provides a baseline, containing only the
property under test and no additional code. For example, the leftmost blue entry,
marked in the color of the corresponding tool 2LS, shows the median runtime
(0.5s), upper and lower quartils, outliers towards the top and eight timeouts.

For determining whether the changes in runtime are significant, we employ
the Wilcoxon rank sum test with continuity correction as provided by R4 on
all runtimes ≤ TO (900s) that resulted in “true”. The values given in Table 1
are the p-values, meaning a lower value equals a higher probability for the two
sample sets being from different populations, implying a significance in observed
difference. We say the shift in runtime is significant iff p < 0.05. If less than five
data points are available, we instead put “NA”. As all results other than “true”
are not considered in this test, we manually evaluate them.

When reviewing Table 1, we can see that for all tools but ESBMC, all config-
urations show a significant, positive shift. Thus, we—considering available space
and time—focus on “PS CN” for further analysis, as this configuration, with no
connection between parts, gives the tools the best possible chance of ignoring
the disjunct code.

We now fix the placement and connection type of the filler code and instead
test different amounts (scaling). The results are given in Fig. 5. The number of
operators added as filler is given in the configuration name. The configuration
“normal” with ≈50 operations again provides a baseline with no filler coded
added. Symbiotic can solve almost no instances, regardless of filler presence,
with 92% timeouts even in the best case. Ultimate Automizer similarly has
many timeouts. They are therefore not considered any further. The box-plot of
CPAchecker in the 500-configuration and those of 2LS and PeSCo in 250 and
500 are skewed by the large amount of instances running into timeout. As the
results of the model checker in cases of timeout or error are not known, they are

4 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html

346 X. Fink et al.

Fig. 5. Influence of filler code on CPU time used. Position and connection are fixed to
“start” and “nothing”, but the amount of filler is varied.

ignored. All relevant tools show significant impact of additional code on runtime,
and, keeping the loglog-scale (the amount of code also grows exponentially) in
mind, at least a linear influence of its size. This is an important insight, as, due
to the connection type, the filler code should potentially be easily handled by
slicing and static analysis. Even Symbiotic, which implements program slicing,
is heavily influenced by unconnected filler code.

Conclusion: Code size, even when mostly unrelated to the property in ques-
tion, hugely influences model checking times.

3.5 Experiment II: Effect of Variable Wrapping

Many real-world programs use arrays or structs. To simulate this and its effect on
model checking, we use post-processors that “wrap” all global variables in a pro-
gram. We use code with ≈30 operations as base. The array wrapper (A) creates
one array per type, often with more than one dimension for added complexity.
The struct wrapper (S) creates one struct around all variables. The pointer
wrapper (P) creates a type-correct pointer for every variable and replaces every
access, read and write, by a pointer operation. With the combination AP (arrays
accessed through pointer) we found an issue in 2LS which does not support
pointer access inside arrays5.

5 https://github.com/diffblue/2ls/issues/159.

https://github.com/diffblue/2ls/issues/159

Configurable Benchmarks for C Model Checkers 347

Table 2. Wilcoxon rank sum results on runtimes in Fig. 5 between unchanged and
modified code. We use p < 0.05 as threshold.

Tool PS CN 10 PS CN 25 PS CN 50 PS CN 100 PS CN 250 PS CN 500

2LS 7.3E–02 2.8E–04 7.3E–09 1.8E–13 1.3E–18 3.2E–21

CPA 9.0E–01 1.3E–01 2.7E–03 1.8E–13 1.5E–19 1.2E–20

ESBMC 9.7E–01 7.7E–01 5.5E–01 4.1E–01 1.4E–01 1.4E–03

PESCO 2.8E–01 2.3E–01 6.3E–03 1.2E–06 4.2E–06 3.2E–11

SYMB 3.2E–01 6.3E–01 NA NA NA NA

UA NA NA NA NA NA NA

Table 3. Wilcoxon rank sum results on runtimes in Fig. 6 between code with and
without variable wrapping. We use p < 0.05 as threshold.

Tool Array Pointer Struct Array + Pointer Struct + Pointer

2LS 7.8E–09 1.5E–10 6.1E–01 NA 4.2E–10

CPA 7.5E–02 4.8E–07 1.8E–02 NA 3.8E–07

ESBMC 2.2E–01 NA 9.3E–01 NA NA

PESCO 5.4E–07 1.1E–15 5.7E–01 NA 3.4E–17

SYMB 8.6E–01 NA 8.6E–01 NA NA

UA NA NA NA NA NA

The box-plots in Fig. 6 show the runtime on the unmodified code (col-
umn “normal”) and the wrapped variants. As Symbiotic and Ultimate
Automizer in the base case only solve less than 10% and 18%, respectively,
we ignore them in the comparison. With almost all wrapping types, we see a
significant impact on results - large numbers of timeouts, unknown and errors.
For some tools and configurations, we observe a decrease in median runtime. We
believe this stems from the large number of timeouts combined with not all tasks
containing “hard” properties due to the relatively low code size. With a small
code size, the probability of containing every type of operation is small. This
experiment shows that only structs are handled without a significant increase in
runtime, and even that with slightly elevated error rates. Combining arrays and
pointers or structs and pointers brings even the most mature and well-known
tools to their knees Table 3.

Conclusion: While many tools are capable of handling features such as point-
ers or arrays, their combined complexity seems to offer a large opportunity for
improvement.

3.6 Experiment III: Loop vs. Straight-line Code

While the program structure generated by our tool in general contains an outer
infinite loop, we introduced the option to replace it by a bounded for-loop, for
which we can fix the bound k to a constant. This allows us to easily generate

348 X. Fink et al.

Fig. 6. Influence of wrappers on CPU time used. Wrapping types are Array, Pointer,
Struct and the combinations Array + Pointers and Struct + Pointers.

“straight-line code”. We performed statistical analysis on the difference between
“ 1loop” (straight-line code) and “ while” (infinite-loop code) to analyze the
significance of differences, shown in Table 4. The prefix of the indicated con-
figuration is the amount of operations in the generated code (25, 50 and 100).
With rising code size, the rate of timeouts increases. Symbiotic and Ulti-
mate Automizer run into timeout in almost all instances, barring any relevant
analysis. CPAchecker, in the 25 and 50 operations configuration, where the
number of timeouts is still low, shows a significant impact of the outer loop
type. And while most tools show an increase in median processing time, only
ESBMC shows a significant difference across all sizes. Of course, the reason can
also be that ESBMC is the only tool capable of exploiting the missing loop.

Conclusion: For the checked code sizes, only ESBMC is significantly influ-
enced by the presence/absence of an infinite outer loop, while we can not make
any such claims about 2LS , CPAchecker and PeSCo , as the timeouts and
errors blur the picture.

3.7 Experiment IV: Effect of Code Structure

Aside from loops, many structural properties of code can potentially impact
model checking performance. Regarding our selection, the problem of analyz-
ing functions concerning inter-procedural data-flow is long known [19]. Our
“functionizing” post-processor randomly replaces arbitrary sub-expressions by

Configurable Benchmarks for C Model Checkers 349

Fig. 7. Influence of loop presence on CPU time used.

Table 4. Wilcoxon rank sum results on runtimes in Fig. 7 between loop- and straight-
line code. We use p < 0.05 as threshold.

Tool 25 Ops 50 Ops 100 Ops

2LS 4.8E–01 8.8E–01 8.1E–01

CPA 1.9E–03 3.2E–02 1.9E-01

ESBMC 1.3E–15 6.2E–22 2.0E–25

PESCO 3.6E–01 4.4E–01 4.5E–01

SYMB 5.7E–03 1.8E–01 6.8E–01

UA 7.4E–01 NA NA

function calls to newly created functions encapsulating the cut sub-expression,
where constants and variables within are randomly either used as function
parameters or kept as is. For a second experiment, we interconnect the code
further by aggressively replacing (external non-deterministic) input variables
with outputs from other requirements in the program, reducing the number of
variables but increasing dependencies. Lastly, we use the “step locals” post-
processing to transform part of expressions into local variable assignments, as
this can have side effects on expression optimization. The resulting runtimes
are shown in Fig. 8. A statistical evaluation comparing the column “normal”
with the three modified code variants is presented in Table 5. We can see no
significant change in runtimes for “Dependencies” and “StepLocals”, but both

350 X. Fink et al.

Fig. 8. Influence of code structure on CPU time used.

“Functionizing” shows such change for 2LS. In the case of “Functionizing”, a
significant increase in timeouts for 2LS, CPAchecker and PeSCo is visible
(Table 5).

Conclusion: From the analyzed structural modifications and code sizes, func-
tionizing has the strongest impact on model checking runtimes with large amounts
of timeouts.

3.8 Experiment V: Influence of Floating-point Arithmetic

Table 5. Wilcoxon rank sum results on runtimes in
Fig. 8 between unmodified and restructured code.

Tool Dependencies Functionizing StepLocals

2LS 1.2E-01 4.6E-06 3.2E-01

CPA 2.4E-01 1.9E-01 5.5E-01

ESBMC 1.8E-01 6.2E-01 9.2E-01

PESCO 4.6E-01 2.4E-01 3.1E-01

SYMB 4.3E-02 7.0E-01 7.0E-01

UA NA NA NA

We use p < 0.05 as threshold.

Table 6. Wilcoxon rank
sum results on runtimes in
Fig. 9 between unchanged
and modified code.

Tool NO FLOATS

2LS 1.0E–03

CPA 3.6E–12

ESBMC 4.1E–05

PESCO 1.5E–06

SYMB NA

UA 3.2E–02

Configurable Benchmarks for C Model Checkers 351

Fig. 9. Influence of floats on CPU time used.

Floating-point arithmetic is often regarded as hard for model checking. For a
direct comparison on its influence, we generate a set of benchmark tasks including
floating-point variables and operations on them. We then derive a second set
of benchmark tasks from this set, where all floating-point variables and con-
stants are replaced by integer equivalents. Since overall form, type of operations,
number of assignments, etc. are the same, we believe this gives good insight
into impact of floating-points on verification performance. Figure 9 presents the
resulting runtimes (left half with floats, right half without). Symbiotic, even
though it fails on more “no floats”-instances than those with floats, solves not
enough tasks for further analysis. For the remaining tools, we observe a signif-
icant change in verification time needed when operating only on integers and
reduced timeout-rates. 2LS, ESBMC, PeSCo and Ultimate Automizer all
solve more instances and faster when no floats are present. The most significant
change, however, we see with CPAchecker, and unexpectedly so, in the other
direction. This behavior warrants further analysis in the future. From logs, the
presence of floats seems to change the initial verification strategy to one appar-
ently more suited to the tasks at hand. Additionally, the variance is greater for
the floating-point case for all tools.

Conclusion: Aside from CPAchecker , floating-point presence significantly
increases model checking complexity. For multi-technique tools, the automated
initial algorithm selection might also have significant influence.

352 X. Fink et al.

Fig. 10. Influence of code size on CPU time used.

3.9 Experiment VI: Effect of Code Size

As we are interested in how well model checkers scale, experimenting with dif-
ferent code sizes is an obvious choice. We can easily configure how many opera-
tions should be generated. For these benchmarks, we impose no type restrictions
(floating-point, etc.) but also do not apply any post processing such as function-
izing or step-local variables.

Figure 10 presents the results for six different code sizes (ranging from 10 to
500 operations). Symbiotic and Ultimate Automizer are unable to solve a
significant amount of tasks even with small programs. The number of timeouts
rises quickly for all tools, which skews their results and median. Considering the
loglog-scale, we observe potential exponential growth in 2LS, CPAchecker and
PeSCo.

Conclusion: Of course the low number of data points in general and high
number of timeouts towards the greater code sizes prevent us from drawing any
strong conclusions, but, as perhaps expected, code size could have an exponential
impact on model checking runtime.

4 Epilogue

This paper presents a tool for generating targeted C-code benchmarks and
reported on six experiments using such generated code. While the tool and code

Configurable Benchmarks for C Model Checkers 353

certainly have limitations regarding structure, parallelism and depth of state,
we were able to target specific properties of interest such as unrelated code,
structured variables, functions, presence of loops and floating-points and overall
code size. With the presented results, we gained reproducible insight into the
strengths and weaknesses of the software model checkers and possible areas of
improvement: a high impact of functions always called at only one point, unre-
lated code which could potentially be sliced, the occurrence of floating-point
variables and how they influence algorithm selection and problems with combi-
nations of pointers, arrays and structs. Since these are features often observed
in industrial systems, we believe these to be relevant areas of improvement for
making model checking more viable in practice.

Future Work. We plan to support automatic loop generation, deeper state-
ful systems and generating programs with violated properties. These programs
require at least one execution to reach that part of the program, which requires
extensive knowledge about reachability and satisfiability of generated conditions.
Additionally, we want to harvest the extensive knowledge about the generated
programs for a cluster-analysis of what floating-point operations impact the run-
time the most. Including existing, specialized commercial model checkers in our
experiments could help highlight relevant directions for future research.

5 Artifact

The replication artifact can be found at https://doi.org/10.5281/zenodo.
6392205. All scripts, generated code, data and plots are included. See README.md
in the artifact for instructions and usage examples.

Acknowledgments. We thank Fabian Hippler and Felix Faber for their continuing
support and work.

References

1. Berger, P., Katoen, J.-P., Ábrahám, E., Waez, M.T.B., Rambow, T.: Verifying
auto-generated C code from simulink. In: Havelund, K., Peleska, J., Roscoe, B., de
Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 312–328. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95582-7 18

2. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021).
In: TACAS 2021. LNCS, vol. 12652, pp. 401–422. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72013-1 24

3. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

4. Beyer, D., Lemberger, T.: Software verification: testing vs. model checking. In:
HVC 2017. LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70389-3 7

https://doi.org/10.5281/zenodo.6392205
https://doi.org/10.5281/zenodo.6392205
https://doi.org/10.1007/978-3-319-95582-7_18
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7

354 X. Fink et al.

5. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019)

6. Chalupa, M., Novák, J., Strejcek, J.: Symbiotic 8: parallel and targeted test gen-
eration - (competition contribution). In: FASE. LNCS, vol. 12649, pp. 368–372.
Springer (2021)

7. Chalupa, M., Strejček, J.: Evaluation of program slicing in software verification. In:
Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 101–119.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-4 6

8. Cordeiro, L.C., Kroening, D., Schrammel, P.: Benchmarking of java verification
tools at the software verification competition (SV-COMP). ACM SIGSOFT Softw.
Eng. Notes 43(4), 56 (2018)

9. Gadelha, M.Y.R., Menezes, R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.:
ESBMC: scalable and precise test generation based on the floating-point theory
- (competition contribution). In: FASE. LNCS, vol. 12076, pp. 525–529. Springer
(2020)

10. Groce, A., Havelund, K., Holzmann, G., Joshi, R., Xu, R.-G.: Establishing flight
software reliability: testing, model checking, constraint-solving, monitoring and
learning. Ann. Math. Artif. Intell. 70(4), 315–349 (2014). https://doi.org/10.1007/
s10472-014-9408-8

11. Heizmann, M., et al.: Ultimate automizer and the search for perfect interpolants.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 447–451.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 30

12. Howar, F., Jasper, M., Mues, M., Schmidt, D., Steffen, B.: The RERS challenge:
towards controllable and scalable benchmark synthesis. Int. J. Softw. Tools Tech-
nol. Transf. 23(6), 917–930 (2021). https://doi.org/10.1007/s10009-021-00617-z

13. Jasper, M.: Synthesizing realistic verification tasks. Ph.D. thesis, Technical Uni-
versity of Dortmund, Germany (2021)

14. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

15. Klinger, C., Christakis, M., Wüstholz, V.: Differentially testing soundness and
precision of program analyzers. In: ISSTA, pp. 239–250. ACM (2019)

16. Maĺık, V., Schrammel, P., Vojnar, T.: 2LS: heap analysis and memory safety. In:
TACAS 2020. LNCS, vol. 12079, pp. 368–372. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45237-7 22

17. Méry, D., Singh, N.K.: Automatic code generation from event-b models. In: SoICT,
pp. 179–188. ACM (2011)

18. Richter, C., Wehrheim, H.: PeSCo: predicting sequential combinations of verifiers.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 229–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17502-3 19

19. Sharir, M., Pnueli, A., et al.: Two Approaches to Interprocedural Data Flow Anal-
ysis. New York University, Courant Institute of Mathematical Sciences (1978)

20. Vorobyov, K., Krishnan, P.: Comparing model checking and static program anal-
ysis: a case study in error detection approaches. In: Proceedings of SSV (2010)

21. Westhofen, L., Berger, P., Katoen, J.-P.: Benchmarking software model checkers
on automotive code. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 133–150. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-55754-6 8

22. Zhang, C., Su, T., Yan, Y., Zhang, F., Pu, G., Su, Z.: Finding and understanding
bugs in software model checkers. In: ESEC/SIGSOFT FSE, pp. 763–773. ACM
(2019)

https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/s10472-014-9408-8
https://doi.org/10.1007/s10472-014-9408-8
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/s10009-021-00617-z
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-55754-6_8
https://doi.org/10.1007/978-3-030-55754-6_8

Assume-Guarantee Reasoning
with Scheduled Components

Cong Liu1(B), Junaid Babar1, Isaac Amundson1, Karl Hoech1, Darren Cofer1,
and Eric Mercer2

1 Applied Research and Technology, Collins Aerospace, Charlotte, USA
{cong.liu,junaid.babar,isaac.amundson,karl.hoech,

darren.cofer}@collins.com
2 Brigham Young University, Provo, USA

egm@cs.byu.edu

Abstract. Contract-based assume-guarantee reasoning can be used to
improve the scalability of model checking by decomposing complex veri-
fication problems. In previous work, we demonstrated this approach for
systems modeled using the Architecture Analysis and Design Language
(AADL) assuming a synchronous model of computation. This allows non-
deterministic ordering of parallel components and generally results in an
over-approximation of real behavior. This paper describes an approach
to incorporating an execution schedule in the assume-guarantee reason-
ing. We define our semantic interpretation of contracts when components
are executed according to this schedule, more accurately reflecting the
behavior of the system implementation. We introduce virtual scheduling
events which tie AADL timing and execution semantics to contracts. A
case study based on a simple unmanned air vehicle surveillance system
is provided to illustrate our approach.

Keywords: Assume-guarantee · Compositional verification · Model
checking · Model based system engineering · AADL · Scheduling
semantics

1 Introduction

Formal verification of cyber-physical systems can be a daunting task due to the
state explosion problem [5]. We tackle this challenge from two angles. First, we
use a compositional verification technique [6,23] to decompose the reasoning
on the global state space into a number of localized problems for each compo-
nent separately. The system proof is constructed from the individual component
proofs. Second, we assume that the components execute in a static sequential
order. We do not consider all possible execution orders; in other words, non-
determinism due to scheduling decisions is excluded. In fact, in many safety-
critical applications the actual implementation executes according to a pre-
defined schedule [2] to achieve real-time performance requirements.
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 355–372, 2022.
https://doi.org/10.1007/978-3-031-06773-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_19&domain=pdf
http://orcid.org/0000-0002-2264-2958
https://doi.org/10.1007/978-3-031-06773-0_19

356 C. Liu et al.

Previous work has not incorporated component execution times or ordering
imposed by a component execution schedule. As a result, an analysis performed
at the model level may produce results that deviate from the actual behavior of
the system implemented from the model. Our objective is to refine our composi-
tional verification approach to capture this aspect of the design and ensure that
analysis results faithfully represent the system implementation.

The Architecture Analysis and Design Language (AADL) was developed to
capture the important design concepts in distributed real-time embedded sys-
tems [10]. AADL captures both the hardware and software architecture in a
hierarchical format, offering a high degree of flexibility and supporting incre-
mental development in which an architecture is refined to add increasing levels
of detail.

In AADL, an architecture model includes component interfaces, connections,
and execution characteristics, but not component implementations. It describes
the interactions between components and their arrangement in the system, but
the lowest level components themselves are “black boxes.” Their implementa-
tions must be described separately using model-based behavioral specification
languages or traditional programming languages, which may be included by ref-
erence in the architecture model.

In previous work, we developed the Assume Guarantee Reasoning Environ-
ment (AGREE) [8], a language and tool for compositional verification of AADL
models. The behavior of a model is described by contracts [4] specified for each
component. A contract contains a set of assumptions about the component’s
inputs and a set of guarantees about the outputs. The guarantees of a compo-
nent must be true provided that the component’s assumptions are true. The goal
of an AGREE analysis is to prove that each component’s contract is entailed by
the contracts of its subcomponents. Guarantees on a leaf-level component must
be verified to hold by its implementation.

AGREE was originally developed to reason about systems that execute syn-
chronously. These systems have straightforward translations to Lustre [13], a syn-
chronous dataflow language interpreted by the model checkers used by AGREE.
However, many systems that are modeled in AADL do not behave synchronously.
Ideally one can implement a communication protocol between components, such
as Physically Asynchronous Logically Synchronous (PALS) [20], that allows the
abstraction of synchronous communication to be sound. However, for many sys-
tems this is not the case.

In this paper, we extend the AGREE framework to enable the verification
of scheduled AADL models. We introduce virtual scheduling events, which tie
AADL timing and scheduling semantics to AGREE contracts. This enhancement
enables AGREE to take the software execution schedule into account in the
analysis. Furthermore, it enables formal verification of a new class of embedded
system architectures.

This paper is organized as follows. First we illustrate the motivation of our
work using simple examples in Sect. 2. We then provide an informal description
of our interpretation of the scheduling semantics in Sect. 3, followed by formal
definitions of the model in Sect. 4. We present the modeling of the semantics in

Assume-Guarantee Reasoning with Scheduled Components 357

Fig. 1. A simple feedback system

the AGREE AADL annex and Lustre backend in Sect. 6 and Sect. 7, respectively.
We demonstrate usage of the model in a case study in Sect. 8. Related work is
presented in Sect. 9. We discuss our conclusion and future work in Sect. 10.

2 Motivating Examples

First, we will illustrate the key semantic difference between the synchronous
model used in the original AGREE framework and the proposed model. Con-
sider an AADL model that consists of two threads A and B, as shown in
Fig. 1. All ports are data ports. The behavior of each thread is indicated by
its AGREE contract. The output of thread A is double its input and the out-
put of thread B increments its input by one. By the synchronous semantics,
the value of signal x and y at computation step n is defined by the solution
to the two equations yn = 2xn and xn = yn + 1, for all n ∈ N . This results
in x = (−1,−1, . . .), y = (−2,−2, . . .) for all time. However, if the two threads
execute in a sequential order (ABAB...), letting x0, y0 denote the initial value
of x and y, respectively, an intuitive interpretation of the execution semantics
is y1 = 2x0, x1 = y1 + 1, y2 = 2x1.... If x0 = 0 and y0 = 0, this results in
x = (0, 1, 3, 7, . . .) and y = (0, 0, 2, 6, . . .). The example shows that the behavior
of a synchronous model is defined by the solution(s) to systems of mathematical
equations (or inequalities) at each instant, while the behavior of the scheduled
components is defined through iterations over time.

We are aware that the Lustre compiler rejects all syntactic loops. A one-step
delay (the pre operator) could be added between A and B, resulting in an implied
schedule and legal Lustre code. Since an AGREE analysis does not compile the
generated Lustre code but instead interprets it via one of the underlying model
checkers, we do not face the same limitation and can compute a solution for
synchronous execution whenever one exists.

Now consider an AADL model that consists of four threads A,B,C,D, as
shown in Fig. 2. Again, all ports are data ports. Thread A outputs the sequence of
all natural numbers. Threads B and C simply copy their inputs to their outputs.
Thread D subtracts the second (bottom) input value from the first (top) input
value. Given a schedule (ACABD)∗, suppose we want to prove that the primary
output d is a sequence of ones (ignoring the initial prefix). This can be achieved
with the proposed model, since thread B only copies even numbers, and thread
C only copies odd numbers. However, it cannot be proved directly with the

358 C. Liu et al.

Fig. 2. A simple downsampling system

Fig. 3. A simple integrator AADL model in AGREE

synchronous model, where d is a sequence of zeroes. Note that in the example,
threads B and C essentially downsample the data stream from thread A. To
model this kind of behavior, we require a mechanism significantly more complex
than delays.

Note that if the schedule is (ABCD)∗, the output d is a sequence of zeroes
(ignoring the initial prefix), matching the behavior of the synchronous model.
This indicates that the execution order could have an impact on the system
behavior. As we will show later, our model is not a variant of Kahn Process
Network [15], like Lee’s Synchronous Dataflow [18], where any execution order
results in the same system behavior. Therefore, it makes sense to tie a system-
level property to a specific schedule of the components.

3 Overview of the Model

We now discuss in detail our semantic interpretation of AGREE contracts on
scheduled components. Consider the AADL model of an integrator, shown in
Fig. 3. We assume that an execution time slot is assigned to the thread. The
first question that we face is when the contracts shall hold. In a synchronous
model, contracts hold at every instant. However, with scheduled execution, it is
reasonable to assume that the contract may not hold when the component is not
activated. But once it is activated, shall a contract hold throughout the entire
execution or just at certain instants? Second, how shall Input (referred to in the

Assume-Guarantee Reasoning with Scheduled Components 359

contract) be interpreted? One interpretation is that it refers to the input value at
the time when the contract is evaluated, which may vary during the execution.
Another interpretation is that it refers to the input value when the component
starts its execution. In other words, there is a notion of sample and hold. This
interpretation is consistent with the frozen inputs described in the AADL V2
standard. Third, how shall the prev operator be interpreted? In a synchronous
model, it refers to the previous instant. However, with scheduled execution, it
seems reasonable to interpret prev as the previous activation (i.e. the value when
the component was last activated). If the contracts hold throughout the activa-
tion, a more sensible interpretation is that at the first instant during activation,
it refers to the previous activation. Then at each following instant, it refers to
the last updated value in the current activation. This interpretation is adopted
in the activation condition in SCADE [9] and the clock mechanism in SIGNAL
[3].

We believe that AGREE contracts are intended to model requirements
[26], not implementations. Guarantees model the component requirements, and
assumptions model the environmental constraints that are used to verify the
component requirements. Following the AADL input-compute-output model,
assumptions are said to hold at the start of the execution (i.e. dispatch) when
the inputs are read. The guarantees shall be satisfied at the end of the execution
(i.e. complete) when the outputs are written. This interpretation has a few impli-
cations. First, since we adopt the AADL frozen inputs concept, any reference to
Input refers to the input value that was read in at dispatch. Second, a compo-
nent’s assigned time slot does not necessarily exactly match its execution time
window. If the time slot is greater than its execution time, we interpret the start
and end of the time slot as dispatch and complete, respectively. Otherwise, we
claim that a preemption has occurred. Third, each contract is examined exactly
once in each activation. Thus, we interpret the prev operator as the previous
activation. Fourth, the guarantees are not models of the transient behavior dur-
ing an execution. Instead, we interpret them as constraints on the steady-state
outputs at the end of activation.

We assume that the requirements do not contain real-time constraints. Mod-
eling such constraints in AGREE is discussed in [1]. However, this does not mean
that AGREE contracts cannot model timer based requirements. In practice, a
timer is usually implemented as a counter, whose limit (constant) is calculated
based on the frequency of its execution. The counter is activated periodically
and increments by only one during each activation, independent of the execu-
tion time. This is consistent with our interpretation.

Thus, for each component we introduce two distinctive events, dispatch and
complete, to model the start and end of its activation, respectively. Similarly, for
a system (consisting of components), the two events model the start and end
of a scheduling cycle. The two events shall appear in pairs and alternate, with
dispatch appearing before complete. We introduce the notion of well-ordered in
Sect. 4 to capture this pattern.

360 C. Liu et al.

In SCADE and SIGNAL, when a component is not activated, its outputs
retain their previous values. We extend this output freeze time window to com-
plete events, including activation. We understand that in practice the actual
output values may change during activation. We choose this because we inter-
pret the guarantees as steady-state requirements of outputs at complete. Output
values between dispatch and complete are undefined. Thus, we model them using
the last output values, so that the outputs are well-defined at every instant.

We inherit the same notion of composition used in the current AGREE frame-
work. A connection between two components means their contracts refer to the
same signal. This, combined with a schedule and the output freeze rule, essen-
tially simulates communication based on shared variables. When the producer is
not activated, its outputs hold the last values. When the consumer is activated, it
reads the last values from the producer. The communication may also be viewed
as a FIFO queue, where the queue size is one. This means the proposed model
only supports limited AADL event data port communication.

We only consider single-machine schedules. The scheduler ensures that at
most one component is activated at a time. For a preemptive schedule, we require
that a component can only be preempted by another component if they do not
have connections. Thus, there is no ambiguity on the order of read and write or
the variable value referenced in the contracts.

We assume that the system-level inputs do not change values throughout
a scheduling cycle. In practice, this means that there may exist a queue that
holds the system-level input messages, which are periodically sampled by the
components, or the inputs may come from another system, which is inactive
while the system under consideration is active.

The input freeze rule may imply that the assumptions could be examined at
complete, instead of dispatch. Thus, we may not really need the dispatch event.
We keep it mainly for two reasons. First, the assumptions in general could depend
on previous outputs. In our model, the outputs are updated at complete. So the
output values at dispatch may be different from the values at the corresponding
complete. Therefore, it is important to distinguish between the two events to
avoid ambiguity of the output values. Second, keeping the pair (dispatch, com-
plete) may help users to better understand the AGREE counterexample trace,
particularly with a preemptive schedule.

The original schedule is often specified in the form of a sequence of time
slots assigned to the components. The schedule could come from an AADL real-
time scheduling tool such as Cheddar [25], or from a scheduler provided by an
RTOS/Microkernel vendor, such as seL4 [17]. To properly model the schedule
in AGREE, the component execution time has to be considered. Consider the
example shown in Fig. 4 with two scheduled components A and B. We refer to
the original schedule and its model in AGREE as the real-time schedule and
AGREE schedule, respectively. Given the same real-time schedule, due to the
different execution time CA of A, two different AGREE schedules are created. In
Fig. 4(a), since CA is equal to the time slots assigned to A, the end of the each
time slot is modeled as complete. In Fig. 4(b), since the first time slot assigned

Assume-Guarantee Reasoning with Scheduled Components 361

Fig. 4. Models of real-time schedule in AGREE

to A is less than its execution time, the end of the first time slot is interpreted
as preemption, instead of complete.

4 Formal Definitions

In this section we formally define the proposed model.

Signal. A signal x is a function x : N → V , where N is the set of natural
numbers including zero, and V is a value set. A signal is Boolean if the value set
is the Boolean domain. We use x(n) to denote the value of signal x at instant n.

Port. Let Q be a set of ports. For each port q ∈ Q, a set Vq denotes the values
that may be assigned to port q. A signal xq at port q is a function xq : N → Vq.
A trace σQ of Q is an assignment of a signal xq to each port q in Q. We use ΣQ

to denote the set of all traces of Q. Given a set Q′ ⊆ Q, the projection of a trace
σQ onto Q′ is the assignment of signal xq to each port q in Q′, as defined in σQ.
We denote the projection as σQ|Q′ .

Dispatch and Complete. Two Boolean signals dispatch and complete are well-
ordered if

1. ∀n ∈ N, dispatch(n) �= 1 ∨ complete(n) �= 1,
2. ∀n ∈ N, dispatch(n) = 1 =⇒ ∃m ∈ N,m > n, complete(m) = 1,
3. ∀m ∈ N, complete(m) = 1 =⇒ ∃n ∈ N,n < m, dispatch(n) = 1,
4. ∀n,m ∈ N,n < m, dispatch(n) = 1 ∧ dispatch(m) = 1 =⇒ ∃k ∈ N,n < k <

m, complete(k) = 1.
5. ∀n,m ∈ N,n < m, complete(n) = 1 ∧ complete(m) = 1 =⇒ ∃k ∈ N,n <

k < m, dispatch(k) = 1.

The first condition requires that dispatch and complete are mutually exclu-
sive. The second and third conditions state that dispatch and complete appear
in pairs, and in each pair dispatch appears before complete. The fourth and fifth

362 C. Liu et al.

conditions ensure that dispatch and complete appear alternately. From here on
we only consider a well-ordered pair (dispatch, complete).

An interval δ of a pair (dispatch, complete) is a set of integers [n,m] ∩
N,n,m ∈ N,n < m, satisfying:

1. dispatch(n) = 1,
2. complete(m) = 1,
3. ∀k ∈ (n,m) ∩ N, dispatch(k) = 0 ∧ complete(k) = 0.

We denote the set of all such intervals as Δ.

Component. A (scheduled) component c is a tuple (Ic, Oc, Ac, Pc, dispatchc,
completec), where:

– Ic is a finite set of ports, called inputs,
– Oc is a finite set of ports disjoint from Ic, called outputs,
– Ac and Pc are two past-time LTL formulas on a trace σc ∈ ΣIc∪Oc

, called
assumptions and guarantees, respectively,

– (dispatchc, completec) is a pair of well-ordered Boolean signals.

The behaviors of a component c are a set Σc ⊆ ΣIc∪Oc
, such that ∀σc ∈

ΣIc∪Oc
, σc ∈ Σc if and only if the following propositions hold:

The assumptions hold at dispatch. That is,

dispatchc(n) =⇒ (σc, n) |= Ac,∀n ∈ N. (1)

Inputs freeze between dispatch and complete. That is,

x(i) = x(j),∀i, j ∈ δ ∩ N,∀δ ∈ Δ,∀x ∈ σc|Ic . (2)

The guarantees hold at complete. That is,

completec(n) =⇒ (σc, n) |= Pc,∀n ∈ N. (3)

Outputs freeze between completes. That is,

¬completec(n) =⇒ y(n) = y(n − 1),∀n ∈ N,n > 0,∀y ∈ σc|Oc
. (4)

Equations 1, 2, 3, and 4 represent the specification of a scheduled component.

Connection. Two components c, c′, c �= c′ are said to be connected if

Oc ∩ Ic′ �= ∅ ∨ Oc′ ∩ Ic �= ∅. (5)

Note that by definition the intersection of a component’s inputs and outputs is
empty. Thus, we forbid a component from connecting to itself.

Schedule. Let C be a finite set of components, a schedule φ of C with length
T ∈ N is a partial function [1, T]∩N → C×{Dispatch,Complete}, where Dispatch
and Complete are two strings, satisfying:

Assume-Guarantee Reasoning with Scheduled Components 363

1. ∀i ∈ dom φ, c ∈ C, φ(i) = (c,Dispatch) =⇒ ∃j ∈ dom φ, j > i, φ(j) =
(c,Complete),

2. ∀j ∈ dom φ, c ∈ C, φ(j) = (c,Complete) =⇒ ∃i ∈ dom φ, i < j, φ(i) =
(c,Dispatch),

3. ∀i, j ∈ dom φ, i < j, c ∈ C, φ(i) = (c,Dispatch) ∧ φ(j) = (c,Dispatch) =⇒
∃k ∈ dom φ, i < k < j, φ(k) = (c,Complete),

4. ∀i, j ∈ dom φ, i < j, c ∈ C, φ(i) = (c,Complete) ∧ φ(j) = (c,Complete) =⇒
∃k ∈ dom φ, i < k < j, φ(k) = (c,Dispatch),

5. ∀i, j ∈ dom φ, i < j, c, c′ ∈ C, c �= c′, φ(i) = (c,Dispatch) ∧ φ(j) =
(c′,Dispatch) ∧ ∀k ∈ dom φ, i < k < j, φ(k) �= (c,Complete) =⇒ c, c′ are not
connected,

6. ∀i, j, k ∈ dom φ, i < j < k, c, c′ ∈ C, c �= c′, φ(i) = (c,Dispatch) ∧ φ(j) =
(c′,Dispatch) ∧ φ(k) = (c,Complete) =⇒ ∃n ∈ dom φ, j < n < k, φ(n) =
(c′,Complete).

The first four conditions ensure the pair (Dispatch, Complete) associated with
a component is well-ordered in a schedule. The fifth condition allows a component
to be preempted by another component if the two have no connection. The sixth
condition ensures that the scheduling events of two components are interleaved
in a proper order. A schedule is minimal if φ is a total function. This means
that at each instant there is either a dispatch or a complete. A schedule is fair
if φ is surjective. This means that every component is scheduled to execute at
least once. If a schedule is minimal and non-preemptive, we could simplify the
notation and denote the schedule as a function that maps [1, |C|] ∩ N to C, as
shown in the previous examples.

Given a schedule φ of components C, the dispatch and complete signals of
each component c ∈ C are defined as follows: ∀i ∈ N ,

dispatchφ
c (i) =

{
1, if φ(i mod T) = (c,Dispatch)
0, otherwise

, (6)

completeφ
c (i) =

{
1, if φ(i mod T) = (c,Complete)
0, otherwise

. (7)

System. A set C of components are said to be compatible if no two components
share the same output. That is,

∀ci, cj ∈ C, ci �= cj , Oci ∩ Ocj = ∅. (8)

A system S is a tuple (C, φ, Is, Os, As, Ps, dispatchs, completes), where:

– C is a set of compatible, scheduled components,
– φ is a schedule of C,
– Is = ∪∀c∈CIc − ∪∀c∈COc,
– Os = ∪∀c∈COc,

364 C. Liu et al.

– As and Ps are two past-time LTL formulas on a trace σs ∈ ΣIs∪Os
, called

system-level assumptions and guarantees, respectively,

– dispatchs(i) =

{
1, if i mod T = 1
0, otherwise

,∀i ∈ N ,

– completes(i) =

{
1, if i mod T = 0
0, otherwise

,∀i ∈ N, i > 0.

We have Is ∪ Os = ∪∀c∈C(Ic ∪ Oc). The behaviors of a system S are a set
Σs ⊆ ΣIs∪Os

, such that ∀σs ∈ ΣIs∪Os
,

σs ∈ Σs ⇐⇒ ∀c ∈ C,∃σc ∈ Σc, σs|Ic∪Oc
= σc. (9)

Informally, a trace of a system’s ports is a behavior of the system if and only if
its projection onto any component’s ports is a behavior of the component. This
implies that a system behavior maps the connected ports to the same signal. We
use δs to denote an interval of the pair (dispatchs, completes). And we use Δs to
denote the set of all such intervals. Given a system S and a trace σs ∈ ΣIs∪Os

,
we define the following propositions:

The system-level assumptions hold at dispatch. That is,

dispatchs(n) =⇒ (σs, n) |= As,∀n ∈ N. (10)

Inputs freeze between dispatch and complete. That is,

x(i) = x(j),∀i, j ∈ δs ∩ N,∀δs ∈ Δs,∀x ∈ σs|Is . (11)

The system-level guarantees hold at complete. That is,

completes(n) =⇒ (σs, n) |= Ps,∀n ∈ N. (12)

Equations 10–12 represent the system specification of a set of scheduled com-
ponents. Our verification goal is to prove that the system behaviors satisfy the
system specification. Note that we do not define the system output freeze rule.
This is because (in our context) the system under consideration is always active.
The rule would make sense in the assume-guarantee reasoning at a higher level in
the hierarchy, where the system is viewed as a periodically activated component.

5 Assume-Guarantee Reasoning

Scheduled components lend themselves to hierarchical assume-guarantee reason-
ing in a manner similar to that in [26]. The verification conditions to prove a
system of unscheduled components correct are formalized in past-time linear
temporal logic (PLTL) [16]. The two PLTL operators necessary for the verifica-
tion conditions are G (globally) and H (historically). These are defined over a
trace of the system, π, and a moment of evaluation in the trace, i, as follows:

(π, i) |= G(f) ⇐⇒ ∀j ≥ i, (π, j) |= f

(π, i) |= H(f) ⇐⇒ ∀0 ≤ j ≤ i, (π, j) |= f

Assume-Guarantee Reasoning with Scheduled Components 365

Globally is invariant from the current moment into the future and historically is
invariant from the beginning to the current moment.

We define Ic to be the set of components providing input to some component
c in the system, and we define O to be the set of components that provide the
output for the system. An unscheduled system, S = (I,O,A, P), is correct if
and only if for all π and for all i ≥ 0 the following holds:

∀c ∈ C G(H(A ∧ ∧
c′∈Ic

Pc′) =⇒ Ac)∧
G(H(A ∧ ∧

c′∈O
Pc′) =⇒ P)

The first condition checks the input assumptions on each component under the
system assumptions and upstream component guarantees. The second checks the
output guarantees of the system under the system assumptions and component
guarantees providing the output. If both conditions hold, then the system is said
to be correct, meaning that G(H(A) =⇒ P) holds.

The verification conditions are extended to scheduled components by adding
a notion of dispatch and complete to the verification conditions. We define a
predicate same(X) that is true in the first moment, and after that, true at any
moment if and only if the signals in the set X are unchanged from the previous
moment. We also define the predicate δφ

c to be true if the current moment is in
a dispatch interval for the component c according the schedule.

The assumptions in a scheduled component must hold at dispatch, and the
guarantees of the same component must hold at complete. A component also
assumes that its inputs are invariant through the dispatch interval and it guaran-
tees that the outputs are invariant between complete cycles. These requirements
are captured in the following predicates where x is a component:

D
φ
x(Ax) =

[(
dispatchφ

x ∧ Ax

)
∨ (

δφ
x ∧ same(Ix)

)]
C

φ
x(Px) =

[(
completeφ

x ∧ Px

)
∨

(
¬completeφ

x ∧ same(Ox)
)]

D
φ
x(Ax) relies on the scheduling interval, δφ

x , for the input assumption to hold.
The guarantee on the output hold is more direct relying only on the current
value of completeφ

x.
A scheduled system, S = (C, φ, I,O,A, P), is correct if and only if for all π

and for all i ≥ 0 the following holds:

∀c ∈ C G
[
H

(
D

φ
S (A) ∧ ∧

c′∈Ic
C

φ
c′ (Pc′)

)
=⇒ D

φ
c (Ac)

] ∧

G
[
H

(
D

φ
S (A) ∧ ∧

c′∈O
C

φ
c′ (Pc′)

)
=⇒

(
completeφ

s ∧ Ps

)]
Here the system itself has a dispatch cycle in the schedule as discussed in the prior
section. The first set of verification conditions, one condition in the set for each
component, checks compatibility between connected components. Component
outputs that are consumed by downstream components as inputs must have

366 C. Liu et al.

Fig. 5. Modeling of scheduling semantics in AGREE

guarantees strong enough to satisfy input assumptions at dispatch. These must
also respect the input freeze required by the consuming component.

The second condition is for the system outputs. Components producing sys-
tem outputs must have guarantees strong enough to imply that the system guar-
antees hold at complete. Unlike components though, there is no output hold
requirement for the system because outputs appear depending on when com-
ponents producing those outputs complete. As before, if all of the verification
conditions hold, then a scheduled system is said to be correct. Correct means
that for the schedule φ′, G

[
H

(
D

φ′
S (A)

)
=⇒ C

φ′
S (P)

]
holds. Here the internal

components of the system are completely abstracted away, and the system itself
is just some scheduled component in φ′ belonging to a larger system.

6 AGREE Model

The scheduling semantics can often be directly modeled in the AADL AGREE
annex. At the component level, this requires introducing two Boolean variables
dispatch and complete, augmenting the original assumptions and guarantees with
dispatch and complete, respectively, and adding additional guarantees to enforce
the output freeze rule. We often omit the assumptions of frozen inputs, as they
are trivially satisfied by the schedule definition, the output freeze rule, and the
system-level assumptions.

Figure 5 shows a simplified AADL model originally developed on the DARPA
CASE program [19]. The first two guarantees are added to freeze the outputs
between completions. Also the original contract (the assumption and the third
guarantee) are augmented with dispatch and complete. In practice, we find that
direct modeling is helpful to clarify the semantics with users. However, in general
it could be a complex task, particularly if the contracts depend on past history.
In the next section, we will discuss how the Lustre backend model is used to
handle the general case.

Assume-Guarantee Reasoning with Scheduled Components 367

Fig. 6. Modeling schedule with circular counter in AGREE

At the system level, we use a circular counter to model a cyclic schedule
in AGREE. The counter updates at every instant. Once it reaches the limit, it
resets to one at the next instant. We set the limit to the period of the schedule.

Based on the current count, the counter triggers a corresponding scheduling
event. Figure 6 shows an AGREE model of the schedule (ABACD).

7 LUSTRE Backend Model

AGREE translates an AADL model and its annotated contracts into a dialect
[12] of the Lustre language, and then queries a user-selected model checker to
perform the verification. The dialect includes an expression called condact, which
is similar to the activation condition in SCADE. It clocks a node call expression
as follows: condact(cond, node(node inputs, node outputs), init outputs). If the
Boolean signal cond is true, the clocked node node is activated and updates its
local and output signals. Otherwise, the node keeps the previous value of the
local and output signals. Before the first activation, the node outputs values are
set to init outputs. We are aware that the standard Lustre language introduced
similar temporal operators like when and current. We use condact simply because
it is supported by our default model checker JKind [12].

AGREE translates an AADL thread to a Lustre node in a constraint style,
in which the thread input and output ports are both mapped to the node input
signals. Thus, the condact expression does not automatically freeze the thread
outputs. We add assertions to enforce the output freeze rule, and we use the
thread complete signal to clock the node. The complete signal is triggered by the
circular counter shown in Fig. 6. Figure 7 shows an example of using condact to
model a scheduled AADL thread.

368 C. Liu et al.

Fig. 7. Modeling scheduling semantics with condact in lustre

Fig. 8. UAV software architecture model in AADL

8 Case Study

The approach presented in this paper was applied to the BriefCASE toolchain [7],
which was developed on the DARPA CASE program to assist engineers in the
design of inherently cyber-resilient embedded systems. As part of the demon-
stration effort, a UAV surveillance system architecture was modeled in AADL.
Figure 8 shows the architecture of the UAV mission computer software, which
receives commands from a ground station to conduct surveillance along a geo-
graphical feature, such as a river. The software generates a flight plan adhering
to a set of keep-in and keep-out zones, which is then sent to the UAV flight
controller.

The baseline design included the UxAS [24] flight planning component, way-
point plan manager, UART driver, radio driver, and fly-zone database. These
components were associated with varying levels of trustworthiness. In particu-
lar, UxAS was treated as blackbox software and deemed potentially security-
compromised since it was an open-source component developed by a third party.
BriefCASE includes tools that analyze architecture models and generate require-
ments corresponding to vulnerabilities in the design. The BriefCASE cyber-
resiliency tool was then used to address the requirements by transforming the
model, thereby mitigating the corresponding vulnerabilities. The transforma-
tions inserted eight high-assurance components into the model including an
attestation manager, attestation gate, two monitors, and four filters. AGREE
behavioral specifications for these components were provided, describing their
intended functionality.

The hardened model (baseline plus high-assurance components) contained 13
threads, all of which were mapped to a single mission computer processor running

Assume-Guarantee Reasoning with Scheduled Components 369

Fig. 9. Model of assumptions and well-formedness properties in AGREE

the seL4 microkernel (chosen for its formally verified separation guarantees). An
seL4 domain schedule was added to the model with all threads designated to run
once per scheduling cycle with a period of 500 ms. The processor time allocated
to each thread ranged from 2 ms (filters and monitors) to 100 ms (UxAS).
The verification goal was to prove that the key system security properties were
satisfied by the hardened model with the components executing according to the
seL4 domain schedule.

We note that although event and event data ports were used in the UAV
AADL model, they were intended to model the event-triggered execution of
periodic threads. In addition, since each thread executed once every scheduling
cycle, the number of queued events or data was always equal to or less than one,
making this model suitable for the application of our modeling framework.

The following system-level security properties were to be verified in the pres-
ence of the seL4 domain schedule: (a) the output UART and RF messages are
well-formed, (b) the system only responds to trusted sources, and (c) the way-
points generated are geo-fenced. The encoding of the well-formedness property
and its assumptions is shown in Fig. 9.

Our framework was able to prove these properties in less than 2 min on a
PC with 2.6 GHz CPU and 32 GB RAM. The verification results are shown in
Fig. 10.

The case study is reflective of a development workflow in which we first verify
that the component contracts hold under a synchronous dataflow model. As the
design is refined and an execution schedule for each component is specified, we
want to show that the system properties continue to hold. Our new framework
enables such verification, providing assurance of intended behavior at runtime.

9 Related Work

The AADL standard by itself does not have a well-defined execution semantics.
In order to formally verify an AADL model, it is often translated to a formal
model, like timed automata [11], Lustre [14], and Real-Time Maude [22]. Then
a formal method is applied to analyze the translated model.

370 C. Liu et al.

Fig. 10. Use case verification results in AGREE

In aadl2sync [14], the AADL behavior models are translated to synchronous
programs mainly for simulation. aadl2sync uses activation condition to model
sporadic execution of software components. By contrast, our proposed framework
focuses on simulating detailed timed behavior in the presence of clock drift.
Moreover, we focus on the formal verification of system properties based on
component requirements, which in general do not completely define component
behavior.

Metzler et al. [21] use an iterative and incremental approach to prove safety
properties of concurrent programs. Their technique starts with a proof under
a specific schedule, and then in each following iteration gradually relaxes the
scheduling constraints. The iteration stops when all possible executions are
explored or a counterexample is generated. Unlike our component model, their
programs are “white boxes”, allowing their schedule to interleave instructions
between programs. In comparison, our basic scheduling unit is a software thread.
In each iteration, the model checking problem is still challenging. In this context,
our compositional verification approach makes sense.

10 Conclusion and Future Work

Based on the AGREE framework, we presented an approach to assume-guarantee
reasoning with scheduled components. The proposed model of computation dif-
fers from the synchronous model used in the current framework. We introduced
virtual scheduling events to tie the AADL execution semantics to AGREE con-
tracts. Our approach was applied to the compositional verification of a UAV
model developed on the DARPA CASE program.

In the proposed model, the queue associated with an AADL event or event
data port is limited to size of one. This limitation is due to our domain of

Assume-Guarantee Reasoning with Scheduled Components 371

interest. One interesting future task is to extend the modeling framework to
allow a larger queue size. Given a balanced schedule, the maximum size of each
queue is a constant that can be calculated from the schedule.

Acknowledgment. This work was funded by DARPA contract HR00111890001. The
views, opinions and/or findings expressed are those of the author and should not be
interpreted as representing the official views or policies of the Department of Defense
or the U.S. Government.

We would like to thank John Hatcliff and Robby for many helpful discussions to
clarify our understanding of the AADL semantics. We also want to thank David Hardin
and anonymous reviewers for their comments that greatly improved the paper.

References

1. Backes, J.D., Whalen, M.W., Gacek, A., Komp, J.: On implementing real-time
specification patterns using observers. In: International Symposium on NASA For-
mal Methods. pp. 19–33. Springer (2016)

2. Baker, T., Shaw, A.: The cyclic executive model and Ada. In: Real-Time Systems
Symposium, pp. 120–129. IEEE (1988)

3. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the SIGNAL language and its semantics. Science of Computer
Programming 16(2), 103–149 (1991)

4. Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: A mode-aware
contract language for reactive systems. In: International Conference on Software
Engineering and Formal Methods. pp. 347–366. Springer (2016)

5. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) Tools for Practical Software
Verification: LASER 2011, pp. 1–30. Springer (2012).

6. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Fourth
Annual Symposium on Logic in Computer Science, pp. 353–362. IEEE (1989)

7. Cofer, D., Amundson, I., Babar, J., Hardin, D., Slind, K., Alexander, P., Hatcliff, J.,
Robby, R., Klein, G., Lewis, C., Mercer, E., Shackleton, J.: Cyberassured systems
engineering at scale. IEEE Secur. Priv. 01, 2–14 (2022)

8. Cofer, D., Gacek, A., Backes, J., Whalen, M.W., Pike, L., Foltzer, A., Podhradsky,
M., Klein, G., Kuz, I., Andronick, J., Heiser, G., Stuart, D.: A formal approach to
constructing secure air vehicle software. Computer 51(11), 14–23 (2018)

9. Colaço, J.L., Pagano, B., Pouzet, M.: SCADE 6: a formal language for embedded
critical software development. In: International Symposium on Theoretical Aspects
of Software Engineering, pp. 1–11. IEEE (2017)

10. Feiler, P., Gluch, D.: Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. Addison-Wesley Professional
(2012)

11. Frana, R., Bodeveix, J.P., Filali, M., Rolland, J.F.: The AADL behaviour annex -
experiments and roadmap. In: International Conference on Engineering of Complex
Computer Systems, pp. 377–382. IEEE (2007)

12. Gacek, A., Backes, J., Whalen, M., Wagner, L.G., Ghassabani, E.: The JKind
model checker. In: International Conference on Computer Aided Verification. pp.
20–27. Springer (2018)

372 C. Liu et al.

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)

14. Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., Lesens, D.: Virtual execution
of AADL models via a translation into synchronous programs. In: International
Conference on Embedded Software, pp. 134–143. ACM (2007)

15. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing, Proceedings of the 6th IFIP Congress 1974,
pp. 471–475. North-Holland (1974)

16. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, UCLA
(1968)

17. Klein, G., et al.: seL4: formal verification of an OS kernel. In: ACM Symposium
on Operating Systems Principles, pp. 207–220. ACM (2009)

18. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

19. Mercer, E., Slind, K., Amundson, I., Cofer, D., Babar, J., Hardin, D.: Synthesizing
verified components for cyber assured systems engineering. In: 24th International
Conference on Model Driven Engineering Languages and Systems, pp. 205–215.
IEEE (2021)

20. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theor. Comput. Sci. 451, 1–37
(2012)

21. Metzler, P., Suri, N., Weissenbacher, G.: Extracting safe thread schedules from
incomplete model checking results. International Journal on Software Tools for
Technology Transfer 22(5), 565–581 (2020)

22. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in real-time Maude. In: Hatcliff, J., Zucca, E. (eds.) Formal
Techniques for Distributed Systems. pp. 47–62. Springer (2010)

23. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems, sub-series F: Computer and
System Science, pp. 123–144. Springer-Verlag (1985)

24. Rasmussen, S., Kingston, D., Humphrey, L.: A brief introduction to unmanned
systems autonomy services (UxAS). In: International Conference on Unmanned
Aircraft Systems, pp. 257–268. IEEE (2018)

25. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Scheduling and memory require-
ments analysis with AADL. In: Annual ACM SIGAda International Conference on
Ada, pp. 1–10. ACM (2005)

26. Whalen, M.W., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.P.,
Rayadurgam, S.: Your what is my how: iteration and hierarchy in system design.
IEEE Softw. 30(2), 54–60 (2013)

Stateful Black-Box Fuzzing of Bluetooth
Devices Using Automata Learning

Andrea Pferscher(B) and Bernhard K. Aichernig

Institute of Software Technology, Graz University of Technology, Graz, Austria
{apfersch,aichernig}@ist.tugraz.at

Abstract. Fuzzing (aka fuzz testing) shows promising results in secu-
rity testing. The advantage of fuzzing is the relatively simple applica-
bility compared to comprehensive manual security analysis. However,
the effectiveness of black-box fuzzing is hard to judge since the internal
structure of the system under test is unknown. Hence, in-depth behav-
ior might not be covered by fuzzing. This paper aims at overcoming the
limitations of black-box fuzzing. We present a stateful black-box fuzzing
technique that uses a behavioral model of the system under test. Instead
of manually creating the model, we apply active automata learning to
automatically infer the model. Our framework generates a test suite for
fuzzing that includes valid and invalid inputs. The goal is to explore unex-
pected behavior. For this, we test for conformance between the learned
model and the system under test. Additionally, we analyze behavioral
differences using the learned state information. In a case study, we eval-
uate implementations of the Bluetooth Low Energy (BLE) protocol on
physical devices. The results reveal security and dependability issues in
the tested devices leading to crashes of four out of six devices.

Keywords: Automata learning · Fuzz testing · Model-based fuzzing ·
Bluetooth Low Energy

1 Introduction

The Internet of Things (IoT) connects billions of devices, and the number of
connected devices will increase with the pervasion of new communication pro-
tocols. One popular protocol for short-range communication is Bluetooth. The
introduction of Bluetooth Low Energy (BLE) made Bluetooth also available for
low-energy devices in the IoT. Nowadays, manufacturers advertise BLE as a
key communication technology that could make wired communication obsolete
in some applications. For example, Texas Instruments [21] motivates the use of
BLE chips for the automotive industry. They suggest that BLE can replace wires
that connect sensors in a vehicle. Further automotive applications include, e.g.,
the use of the smartphone as a “virtual” key. These proposals stress the need for
thorough testing techniques to ensure the safety and security of the user.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 373–392, 2022.
https://doi.org/10.1007/978-3-031-06773-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_20&domain=pdf
http://orcid.org/0000-0002-3484-5584
https://doi.org/10.1007/978-3-031-06773-0_20

374 A. Pferscher and B. K. Aichernig

Fuzzing (aka fuzz testing) is a security and robustness testing technique.
Fuzzing aims to reveal unexpected behavior, e.g. crashes. For this, fuzzing exe-
cutes a large number of randomly generated test cases that include invalid or
unusual inputs. One problem in fuzzing is the definition of a termination crite-
rion for testing. In a white- or gray-box setting, coverage measurements, e.g. code
coverage, create the possibility to define termination criteria. However, assum-
ing a black-box environment hampers coverage measurements. One solution to
obtain behavioral coverage for black-box fuzzing is the extension of fuzzing by
model-based testing. Garbelini et al. [17] used model-based fuzzing to reveal
security issues in BLE devices. They manually created a generic model based
on the BLE specification. However, the manual creation of a model can be an
error-prone process and additionally requires the ongoing effort of keeping the
model up-to-date.

Instead of manual modeling, automata learning automatically creates behav-
ioral models of black-box components from observed system behavior. In prac-
tice, automata learning has successfully been applied to show flaws in communi-
cation protocols like (D)TLS [14,30], TCP [13], SSH [15], or MQTT [37]. These
learning applications deduce behavioral inconsistencies by comparing learned
models against the specification.

In this paper, we present a stateful black-box fuzzer that tests BLE devices.
For this, we combine automata learning and fuzzing. In preliminary work, Aich-
ernig et al. [2] proposed learning-based fuzzing for MQTT servers. In contrast
to their work, we do not learn one generic model for all devices, but rather
base our proposed fuzzing technique on individual learned models for every BLE
device. This is motivated by the observation in our previous work [26], where
BLE devices behaved differently. The learned models show that functionalities
might not be available or only after a specific message sequence. Hence, learn-
ing a generic model from one device is not feasible. Unlike Aichernig et al. [2],
we do not only test one specific input. Instead we fuzz several packets from
different layers of the BLE stack. Additionally, we extended the learning-based
fuzzing framework with a counterexample analysis technique that automatically
investigates unexpected behavior. Our results show that all BLE devices contain
behavioral inconsistencies, security, or robustness issues. As a result, we were
able to crash four out of the six investigated devices.

The contribution of this paper is threefold. First, we propose a stateful black-
box fuzzing framework for fuzzing BLE devices. Second, we present the con-
ducted case study that is based on six BLE devices. Last, we provide the code
of the learning-based fuzzing framework online1 [25].

The paper is structured as follows. Section 2 discusses the needed back-
ground. In Sect. 3, we introduce the developed learning-based fuzzing framework.
Section 4 presents the case study on learning-based fuzzing of the BLE devices.
We discuss related work in Sect. 5, and conclude our work with a discussion and
an outlook on future work in Sect. 6.

1 https://git.ist.tugraz.at/apferscher/ble-fuzzing.

https://git.ist.tugraz.at/apferscher/ble-fuzzing

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 375

Fig. 1. Bluetooth sequence diagram including the connection procedure and the start
of the pairing procedure. The figure is taken from our previous work [26].

2 Preliminaries

2.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is part of the Bluetooth specification [6] since
version 4.2 and enables communication via Bluetooth also for low energy devices.
Compared to the Bluetooth classic, BLE builds upon a different protocol stack.

Figure 1 shows the sequence chart of the connection procedure between two
BLE devices. We distinguish between two roles of the devices: the central and
the peripheral device. In the remaining of the paper, we refer to the central and
peripheral devices as central and peripheral. The central initiates the connec-
tion, whereas the peripheral is available for the establishment of a connection.
For example, a central would be a smartphone that connects to a peripheral like a
smartwatch. The peripheral is initially in an advertising state sending advertise-
ments. The central starts in the scanning state by scanning for advertisements
via performing a scan_req. The peripheral’s response either contains an adver-
tisement or a scan response, both are referred to in Fig. 1 as scan_rsp. Then the
central enters the initiating state by sending a connection_req that is answered
by a connection_rsp. Next, a negotiation phase starts, where parameters like
maximum transmission unit (MTU) or Bluetooth version are agreed upon. Note
that also the peripheral may request parameters from the central, which should
be answered. The BLE specification does not specify which parameters must
be negotiated. Hence, the establishment of a connection might be different for
every BLE device. Afterward, the devices are connected and the pairing proce-
dure can start. We distinguish between legacy and secure pairing, which differ
in the encryption key-exchange procedure. A connection can be terminated by
sending an additional scan_req or by a termination indication (termination_ind).

376 A. Pferscher and B. K. Aichernig

2.2 Mealy Machine

Mealy machines are finite state machines including state transitions that are
labeled with input/output action pairs. Therefore, Mealy machines represent a
modeling formalism for reactive systems. We define a Mealy machine as a 6-tuple
M = 〈Q, q0, I, O, δ, λ〉 where Q is the finite set of states, q0 is the initial state,
I is the finite set of inputs, O is the finite set of outputs, δ : Q × I → Q is the
state-transition function, and λ : Q × I → O is the output function.

We assume that δ and λ are total functions, i.e., M is input enabled and
deterministic. Let s ∈ (I × O)∗ be a sequence of alternating inputs and outputs,
where sI ∈ I∗ is the corresponding input sequence and sO ∈ O∗ the output
sequence. We denote the empty sequence as ε and upgrade a single element to
a sequence of size one. We write s · s′ for the concatenation of two sequences s
and s′. We extend δ and λ for sequences. Let δ∗ : Q × I∗ → Q be a function
that returns the target state after executing an input sequence from a source
state. Similarly, we define λ∗ : Q × I∗ → O∗ which returns the corresponding
output sequence that is observable on executing an input sequence starting at a
given state. Let SI be the set of all possible input sequences in M. We denote
that two Mealy machines M = 〈Q, q0, I, O, δ, λ〉 and M′ = 〈Q′, q′

0, I, O, δ′, λ′〉
are behavioral equivalent if ∀ sI ∈ SI : λ∗(q0, sI) = λ′∗(q′

0, sI). Consequently, a
counterexample to conformance between M and M′ is an input sequence sI ∈ SI

where λ∗(q0, sI) �= λ′∗(q′
0, sI).

2.3 Automata Learning

Automata learning creates behavioral models of black-box systems using system
observations. In automata learning, we distinguish between two main directions:
passive and active learning. Passive learning infers a behavioral model from a
given data set, e.g., log files. Therefore, the quality of the learned behavioral
model depends on the provided data. Active learning creates a behavioral model
by actively querying the System Under Learning (SUL). For this, we require an
interface to the SUL that enables query execution and observation of outputs.

Many state-of-the-art learning algorithms build upon the L∗ algorithm pro-
posed by Dana Angluin [3]. Her seminal work introduces the minimally adequate
teacher framework that comprises two members: the learner and the teacher.
The learner’s objective is to create a minimal Deterministic Finite Automa-
ton (DFA) that represents a hidden regular language. The teacher knows this
regular language. To learn the DFA, the learner asks the teacher two differ-
ent types of queries. First, the learner asks if a word is part of the language.
We denote such queries as membership queries. Based on the answers to the
membership queries, the learner creates an initial hypothesis. This hypothesis is
then provided to the teacher. Since the learner asks for equivalence between the
hypothesis and the SUL, the second query type is named equivalence queries.
The teacher answers equivalence queries either by confirming that the provided
hypothesis conforms to the regular language or by returning a counterexam-
ple that shows the non-conformance between the hypothesis and the SUL. In

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 377

the case of non-conformance, the learner creates new membership queries based
on the counterexample and then proposes a new hypothesis. This procedure
repeats until a conforming hypothesis is provided. The L∗ algorithm has been
extended for various behavioral system types. Shahbaz and Groz [34] propose
Angluin-style learning for reactive systems, where the behavior is formalized by
Mealy machines. For this, the learner asks output queries instead of membership
queries. Output queries include an input sequence, and the teacher responds with
the corresponding output sequence. Since the efficiency of L∗-based algorithms
depends on the considered alphabet, active learning does not scale well for sys-
tems with large input and output space. To overcome this issue, Aarts et al. [1]
introduce a mapper component that enables learning with an abstracted alpha-
bet.

The assumption of a teacher with a perfect equivalence oracle is not practi-
cal. Therefore, conformance testing implements the equivalence oracle. For this,
a conformance relation must be defined. Assuming that an implementation rep-
resents a hidden Mealy machine I, Tretmans [38] defines the implementation
relation I imp S between an implementation I and a Mealy machine specifica-
tion S. We denote conformance between I and S based on the behavioral equiva-
lence of Mealy machines. In automata learning, conformance testing aims to test
that a proposed hypothesis H conforms to a black-box implementation I, i.e.,
testing that H imp I is satisfied. Since the behavioral conformance between two
Mealy machines is based on equivalence, I imp H ⇔ H imp I holds. Assuming
that a finite set of input sequences S′

I ⊆ SI adequately represents the behavior
of I, we can define the following conformance relation for learning:

H imp I ⇔ ∀s′
I ∈ S′

I : λ∗
H(qH

0 , s′
I) = λ∗

I(q
I
0 , s′

I). (1)

2.4 Fuzzing

Fuzzing aims at finding unexpected behavior of the System Under Test (SUT)
by executing a large number of tests. To trigger unexpected behavior, executed
tests not only contain valid inputs, but also invalid or unusual inputs. The first
fuzzing framework was introduced by Miller et al. [22] to test UNIX utilities.

We categorize fuzzing based on three access levels to the SUT: white, gray,
and black box. In white-box fuzzing access to the code is given. White-box tech-
niques, e.g. SAGE [19], apply symbolic execution to generate inputs that also exe-
cute in-depth behavior. Gray-box fuzzer, e.g. american fuzzing loop (AFL) [40],
are based on instrumented binary code, which enables reasoning about cov-
ered behavior. In black-box fuzzing, no access to the system’s code is assumed.
Böhme et al. [7] distinguish between mutational and generational black-box tech-
niques. Mutational fuzzers generate random inputs by modifying an initial input,
e.g. via bit-flipping. Generational fuzzers require a priori knowledge about the
input structure of the SUT, e.g., the packet structure of the tested protocol.

The main problem in black-box fuzzing is the assurance of sufficient test cov-
erage. To overcome this problem, Aichernig et al. [2] presented a generational
black-box fuzzer that is based on active automata learning. Figure 2 illustrates

378 A. Pferscher and B. K. Aichernig

Fig. 2. Concept of learning-based fuzzing technique proposed by Aichernig et al. [2].

the proposed two-step procedure of learning-based fuzzing. First, Aichernig et
al. learn a behavioral model of the SUL. Since learning would not be feasi-
ble using all possible inputs, an abstracted alphabet is considered. The learned
abstract model is then used for model-based fuzzing of other SUTs which rep-
resent different implementations of the SUL. The learned model is on a more
abstract level than the SUTs. Therefore, Aichernig et al. extend the model-based
testing technique with a so-called fuzzing mapper. The fuzzing mapper generates
fuzzing inputs by concretizing the abstract inputs to invalid and valid inputs.
The stateful fuzzer then identifies behavioral differences between the model and
the SUTs.

3 Methodology

In the following, we present a fuzzing framework that combines automata learn-
ing and fuzzing to create a stateful black-box fuzzing technique. Figure 3 illus-
trates our proposed learning-based fuzzing framework. The framework consists
of three components: the system interface, the active automata learning compo-
nent, and the stateful fuzzer. The presented technique is a two-step procedure.
First, we use active automata learning to generate a behavioral model of the
SUT. Second, we fuzz the SUT based on the learned model. In the following
sections, we describe the details of each component.

3.1 System Interface

The system interface comprises the SUT and an adapter that enables commu-
nication to the SUT. We assume that the SUT is a reactive black-box system,
where we can execute inputs and observe outputs. Furthermore, we require the
SUT to be resettable via inputs sent by the adapter.

Our testing targets are BLE devices. To communicate with a black-box BLE
device, we require another BLE device as part of our adapter component. The
device used in the adapter is controlled by us and enables the transmission of
manually crafted BLE packets to the SUT. In the context of Fig. 1, the adapter
device represents the central, whereas the SUT acts as peripheral. Hence, the
SUT initially distributes BLE advertisements. The used learning algorithm and
conformance testing technique require that the SUT can be reset to the initial

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 379

Fig. 3. The proposed framework for learning-based fuzzing of BLE devices comprises
three components: the system interface, the learning component, and the fuzzer.

advertising state. We assume that the BLE connection can be terminated by
performing termination_ind or scan_req. After the connection is terminated, we
expect that the peripheral again enters the advertising state. A reset via BLE
messages is assumed to be equal to a hard reset, e.g., via pressing the reset
button on the device.

Garbelini et al. [17] provide a firmware for the central that enables the trans-
mission of manually crafted BLE packets. Using Python and the library Scapy
[31], we can draft BLE packets and send them via the central to the peripheral,
i.e. the SUT. Vice versa, we parse received packets from the peripheral by the
central again using Scapy.

3.2 Automata Learning

The automata learning component implements a framework that deduces a
behavioral model from the observations returned by the system interface. Since
we require for fuzzing that the behavior in every state for all inputs is defined,
we apply an L∗-based automata learning algorithm. We applied an improved
variant of the L∗ algorithm proposed by Shahbaz and Groz [34] that learns a
Mealy machine of a reactive system.

The L∗-based learning algorithm requires the SUL to be deterministic and
resettable. Due to the wireless setup, we have to take care of non-deterministic
behavior and a sufficient reset procedure. For this, we use an updated version of
the learning framework for BLE devices presented in our previous work [26]. The
updates include a different reset implementation and a more fault-tolerant han-

380 A. Pferscher and B. K. Aichernig

dling of non-deterministic behavior. The SUT must be reset after each performed
query by the learning algorithm. Since a hard reset would make learning a tedious
process, we perform a termination_ind via the peripheral. To ensure that the SUT
is properly reset, we search for advertisements via a scan_req before executing a
query. Hence, we can control the reset completely remotely via our adapter com-
ponent. Furthermore, we have to consider non-determinism. Even though, we
assume that the SUL behaves deterministically, non-determinism is still possible
due to the wireless learning interface. Examples for non-deterministic behavior
could be the lost or delayed messages either by the adapter or the SUL. In case
of non-determinism, we repeat the query and apply a majority selection to select
the most commonly observed value.

Similar to our previous technique [26], we consider an abstracted input alpha-
bet which makes learning feasible within an adequate time. Figure 3 shows the
mapper component that translates abstract inputs of the learning algorithm to
concrete inputs that are executable on the SUL. Based on Fig. 1, we consider
the following abstract input alphabet IA = {scan_req, connect_req, length_req,
length_rsp, feature_req, feature_rsp, version_req, mtu_req, pairing_req}. The
concretization of these abstract inputs is based on values, which we assume to be
valid BLE packets that lead to similar responses each time they are sent. The con-
crete values are mainly based on preset values provided by Scapy. For example,
the mapper translates the abstract input version_req to BTLE(access_addr)/
BTLE_DATA()/BTLE_CTRL()/LL_VERSION_IND(version), where the fields
access_addr and version are defined by the mapper. The mapper then for-
wards the concrete packet to the system interface and waits for a response. The
received concrete packets from the system interface are then translated by the
mapper to an abstract output. The output abstraction removes field values from
the packets and considers only the packet type name provided by Scapy.

3.3 Stateful Fuzzer

The stateful fuzzer is the third component in our learning-based fuzzing frame-
work and executes the last step in our fuzzing technique. Our proposed stateful
fuzzer aims to find and analyze counterexamples to the conformance between
the provided hypothesis and the SUT. The stateful fuzzer takes the learned
automaton as input and has access to the interface of the SUT.

In contrast to other model-based fuzzers [2,17], our technique does not require
a generic behavioral model of the SUT. According to Garbelini et al. [17], the
manual creation of a generic BLE model is tedious due to the underspecified
connection procedure in the BLE specification [6]. Furthermore, we cannot follow
the learning-based fuzzing technique proposed by Aichernig et al. [2], since there
does not exist any SUL that implements a generic model of the BLE protocol.
The results of previous work [26] show that the learned model differs for every
BLE device. Differences arise due to limitations of functionality, e.g. no support
for BLE pairing, or functionality that is only available after a certain input
sequence.

Our fuzzing technique is based on model-based testing and the conformance
relation used in the fuzzing component follows the one during active automata

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 381

learning. However, we need to adapt this conformance relation, since our fuzzing
technique aims at testing if the provided SUT I implements the behavior defined
by the provided automaton H. Therefore, we test if I imp H holds. The provided
automaton H specifies the behavior on an abstract level. Due to the abstraction,
we define conformance based on the abstract input and output alphabet. Let TA,
where TA ⊆ I∗

A, be a finite set of abstract input sequences. For this, we denote
conformance between the provided automaton H and the SUT I for fuzzing as
follows:

I imp H ⇔ ∀tA ∈ TA : λ∗
I(q

I
0 , tA) = λ∗

H(qH
0 , tA). (2)

Note that λ∗ returns a sequence of abstract outputs for the provided abstract
input sequence. Let I∗ be the set of possible concrete input sequences. The
stateful fuzzer aims at finding a concrete input sequence t ∈ I∗ that shows for
the corresponding abstract input sequence tA ∈ I∗

A that λ∗
I(q

I
0 , tA) �= λ∗

H(qH
0 , tA)

is fulfilled. In the remainder of this work, we denote t ∈ I∗ as test sequence and
the corresponding tA ∈ I∗

A as abstract test sequence.
We generate abstract test sequences that consist of three parts p ·f ·s, where

p ∈ I∗
A is the prefix of the sequence, f ∈ IA is a fuzzing input, and s ∈ I∗

A is the
suffix of the test sequence. The prefix p represents an access sequence to a state
in the behavioral model. The access sequence is an abstract test sequence that
defines the shortest sequence to reach a state in the behavioral model starting
from the initial state, where the access sequence for the initial state is the empty
sequence ε. We can guarantee state coverage for fuzzing by generating for every
access sequence corresponding test sequences. The fuzzing input f is a randomly
selected abstract input that is later concretized by fuzzing techniques. The suffix
s is a sequence of randomly selected inputs.

The fuzzing mapper translates the abstract test sequence to a concrete test
sequence. The generation of concrete inputs differs for the three parts of the
test sequence. The prefix p and the suffix s correspond to valid BLE packets
similar to the translation during learning. The fuzzing input f is differently
generated. The fuzzing mapper selects concrete fuzzed values for fields in the
BLE packet based on given value ranges. For every packet, we fuzz exactly
one field and if the packet has several fields randomly one field is chosen.
The selection of the concrete value is based on randomness. For some fields,
a set of possible values is given, whereas others are limited by minimum and
maximum values. Additionally, for fields that are limited by an upper and
lower bound, the selection of boundary values is preferred. For example, if the
abstract input is a connect_req, then the concrete BLE packet in Scapy syntax
is BTLE() / BTLE_ADV(. . .) / BTLE_CONNECT_REQ(interval , timeout , . . .).
The fuzzing mapper concretizes the fields and chooses exactly one field to be
fuzzed. For example, the mapper selects to fuzz the field timeout . Next, the
fuzzer randomly picks a value between 0 and 216 −1, since the BLE specification
considers two bytes for the timeout field. The fuzzing mapper similarly trans-
lates all other fields as in the learning phase. Note that the fuzzed fields might
be invalid according to the BLE specification. Considering the given example,

382 A. Pferscher and B. K. Aichernig

the BLE specification defines the supervision timeout to be within 100 ms and
32 s, which corresponds to timeout values between 10 and 3 200.

We check after each executed input on the SUT I if the received output
deviates from the defined output in the hypothesis H. If this is the case, we stop
the execution of the test sequence and truncate the test sequence after the first
non-corresponding output. The counterexample to the conformance between I
and H is then provided to the counterexample analysis component. Before we
start the analysis, we try to reproduce the found counterexample. To avoid the
reporting of counterexamples due to connection errors and non-deterministic
behavior, we require to observe the found counterexample again within ncex

attempts.
If we found a reproducible counterexample, we perform the counterexample

analysis. The counterexample analysis examines unexpected state transitions
revealed by the fuzzing input. Based on the W-Method [9], we use the char-
acterization set to calculate possible different state transitions between I and
H. The characterization set contains input sequences that generate a unique set
of output sequences for every state. By the execution of input sequences of the
characterization set, we aim to identify if an unexpected output leads to a differ-
ent state. Since the characterization set might change for the extended fuzzing
input alphabet, we extend the characterization set always by the input alphabet.
The advantage of performing an L∗-based learning algorithm in advance is that
the characterization set can be automatically derived from the data structures
used during learning. Note that this counterexample analysis only hints at a pos-
sible target state. For example, a BLE connection might terminate on an invalid
request. In this case, we would observe a transition to the initial state. To check
the actual state equivalence, a more comprehensive conformance test would be
required. The counterexample analysis is also limited by ncex repetitions in the
case of connection errors or non-deterministic behavior.

To make conformance testing feasible, we limit the size of TA by nfuzz ∈ N

and the size of the suffix s for each trace by nsuffix ∈ N. All executed test
sequences, including the counterexample analysis, are stated in a final report
that is generated after the conformance test. In the case that the SUT crashes,
the report includes all executed traces up to the crash.

4 Evaluation

We evaluated our learning-based fuzzing technique on six different BLE devices.
In the following, we present the practical setup for learning and fuzzing the BLE
devices. Furthermore, we discuss the issues found by learning-based fuzzing. Our
learning-based fuzzing framework, implemented in Python 3.9, and the learned
automata are available online2 [25]. We ran all experiments on an Apple Mac-
Book Pro 2019 with an Intel Quad-Core i5 (2.4 GHz) and 8 GB RAM.

2 https://git.ist.tugraz.at/apferscher/ble-fuzzing.

https://git.ist.tugraz.at/apferscher/ble-fuzzing

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 383

Table 1. Investigated BLE devices

Manufacturer (Board) SoC Application

Texas Instruments (LAUNCHXL-CC2640R2) CC2640R2F Project Zero

Texas Instruments (LAUNCHXL-CC2650) CC2650 Project Zero

Texas Instruments (LAUNCHXL-CC26X2R1) CC2652R1 Project Zero

Cypress (CY8CPROTO-063-BLE) CYBLE-416045-02 Find Me Target

Cypress (Raspberry Pi 4 Model B) CYW43455 bluetoothctl

Nordic (decaWave DWM1001-DEV) nRF52832 Nordic GATTS

4.1 General Setup

Table 1 lists the six evaluated BLE devices. Our evaluation includes five devices
that were already considered in previous work [26] and an additional device
from Texas Instruments (CC2652R1). All of the selected devices implement the
BLE 5 standard. The selection involves devices from different manufacturers
that were also part of the case study by Garbelini et al. [17]. We extended our
selection to popular boards, e.g., the Raspberry Pi 4. Furthermore, we aimed
to identify behavioral differences between boards of the same manufacturer. All
devices run an example application that sends BLE advertisements and allows
a connection with the central. We refer to the BLE devices by their System
on Chip (SoC) name. As central for learning and fuzzing, we used the Nordic
nRF52840 Dongle and the Nordic nRF52840 Development Kit. We flashed both
devices with custom firmware provided by Garbelini et al. [17].

To learn behavioral models of the BLE devices, we followed the learning
setup presented in our previous work [26]. We used an adapted version of the
learning library AALpy [23] (v1.1.5) which implements Rivest and Shapire’s
[28] improved L∗ for Mealy machines. The learning library was extended by a
method to calculate the characterization set, which is now included in v1.1.7. For
the creation of BLE packets, we used an adapted version of the library Scapy
[31] (v2.4.4), where the used updates are available in v2.4.5.

Similar to our previous work [26], we adapted the considered input alpha-
bet for the CC2640R2F to learn deterministic behavioral models, since the SoC
behaves non-deterministically on some input sequences. We learned three dif-
ferent deterministic models of the CC2640R2 using a decreased input alphabet.
The first variation considers the abstracted input alphabet IA, introduced in
Sect. 3.2, without pairing_req, the second without feature_req, and the third
without length_req. For fuzzing, we separately tested each behavioral model
against the SoC CC2640R2 with the corresponding reduced input alphabet.

For CC2651R1 and CYW43455, we required a different learning setup since
the consecutive performing of connection_req led disproportionately often to
connection errors. For these SoCs, we established a connection before executing
a test sequence. Considering Fig. 1, we started learning in the initiating phase
of the central after the connection_req. After executing the test sequence, a
termination indication was performed to cancel the connection. Furthermore,

384 A. Pferscher and B. K. Aichernig

Table 2. Overview on fuzzing results. The *-symbol denotes that learning and fuzzing
starts after the connection_req. Two SoCs crash before executing 1 000 queries.

SoC States Fuzzing rounds Crashes Queries CEX

CC2640R2F (no pairing_req) 6 4 3 1 280 27
CC2640R2F (no feature_req) 11 5 5 928 50
CC2640R2F (no length_req) 11 5 5 767 39
CC2650 5 4 3 1 375 28
CC2652R1* 4 5 5 (6) 919 39
CYBLE-416045-02 3 2 1 1 413 38
CYW43455* 16 1 0 2 652 197
nRF52832 5 1 0 2 258 113

we decrease the learning alphabet to I ′
A = {length_req, length_rsp, feature_req,

feature_rsp, version_req,mtu_req, pairing_req}. Hence, we solely learned for
these devices the behavior during the parameter negotiation phase until the
initiation of the pairing procedure.

For the conformance check during fuzzing, we define the minimum number
of generated test sequences to nfuzz = 1000. Since we want to create a state-
ful fuzzer, we defined the actual number of performed tests depending on the
number of states. Let n ∈ N be the number of states of the provided learned
model, then the number of generated test sequences per state is defined as fol-
lows
nfuzz

n �. In previous work [26], we observed that the SUT might behave
non-deterministically due to lost or delayed packets. Additionally, we check if a
valid connection can be established before executing a test sequence. If not, we
note down a connection error. We also require an error-handling behavior for the
conformance testing. For each performed query, we set the maximum number of
non-deterministic errors nnondet = 20 and connection errors nerrors = 20. In case
the BLE device crashed due to the execution of a fuzzed input, the conformance
check stops after observing nerrors connection errors. For the counterexample
analysis, the maximum attempts to reproduce the counterexample is ncex = 5.

4.2 Fuzzing Results

Table 2 shows the learning-based fuzzing results for the investigated BLE SoCs.
For every SoC, we list the number of states of the learned Mealy machine. The
learned behavioral models of the SoCs that we already considered in the pre-
vious case study [26] did not change except for CYW43455. For CYW43455,
we updated the BlueZ version and used a different example application. Due
to the update, the behavior on the connection_req changes, since consecutive
connection_req lead more frequently to connection errors.

The Fuzzing Rounds indicate the number of performed conformance testing
attempts performed by our stateful fuzzer. The stateful fuzzer aims to execute

 1 000

n � · n test sequences, where n is the number of states. However, four out of
the six investigated SoCs crashed during the execution of our fuzzing technique.

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 385

In the case of a crash, we identify the cause of the crash. For example, whether a
BLE packet with a fuzzed field causes the crash. In Sect. 4.3, we provide examples
for fuzzed fields that led to a crash. If there exists such a field, we exclude the
fuzzing of it in the next fuzzing execution. If the cause for crashing is not obvious,
we repeat the stateful fuzzing without any changes a second time.

Looking at the number of crashes reported in Table 2, we not only see that
four out of six SoCs crash, but, more seriously, two SoCs (CC2640R2F and
CC2652R1) crash on every execution. Hence, we could not execute at least 1 000
fuzzed test sequences without crashing the devices. For the CC2652R1, we rec-
ognized an additional crash during the learning setup.

The column Queries reports the number of performed test sequences on the
SoC during fuzzing. This number also includes the executions for the repetition
of counterexamples and the following state analysis. The column CEX shows the
number of found counterexamples to the conformance between the learned model
and the SoC. Note that the number of counterexamples does not conclude that
the SoC behaves erroneously. Instead, a high number of counterexamples more
likely indicates that we observe more countermeasures against invalid inputs.
In case of crashes, we take the number of performed tests and counterexamples
from the fuzzing execution that executed the most test sequences.

The execution of conformance testing including the counterexample analysis
took on average 5.6 h for non-crashing runs. However, this average runtime
does not include the runtime of the nRF52832, since it has an extraordinary
high runtime of 42.2 h. This observation conforms to the learning results we
obtained in previous work [26] where the interaction with nRF52832 was more
time-consuming than with other devices. We detect crashes within 12.6 min and
22.2 h. We assume that there is a high potential for optimization of the time to
detect crashes due to the immediately performed counterexample analysis and
the high number of accepted connection errors nerrors.

4.3 Bug Hunt

Table 3 presents the found vulnerabilities, and anomalies to the BLE specification
[6] or compared to other devices. We found four different crash scenarios denoted
by an identifier (ID) starting with a “C”. Furthermore, we present two anomalies,
A1 and A2, to the BLE specification and another two, A3 and A4, that shows
a unique behavior compared to all other devices. The last finding of our paper
reveals a security vulnerability (identified by V1) which allows a reduction of
the key’s entropy during the pairing procedure.

Connection crashes (C1-C4). All three investigated SoCs from Texas Instruments
crashed due to performing connection requests (C1-C4). The crash C1 requires
no input modification. Instead, a sequence of valid inputs crashes the CC2651R1.
During learning, we observed that the CC2651R1 crashes on a sequence of non-
fuzzed connection_req. For example, the execution of the following sequence of
valid inputs leads to a crash on the CC2651R1:

scan_req · connection_req · connection_req.

386 A. Pferscher and B. K. Aichernig

Table 3. List of found crashes and anomalies. The identifiers (IDs) of crashes start
with a “C”, behavioral anomalies with an “A”, and other vulnerabilities with a “V”.

ID Issue SoCs

C1 Crash on consecutive connection_req CC2652R1

C2 Crash on connection_req(interval) CC2640R2F, CC2650, CYBLE-416045-02

C3 Crash on connection_req(timeout) CC2640R2F, CC2650

C4 Crash on connection_req(latency) CC2640R2F, CC2650

A1 Multiple responses to version_req CC2652R1

A2 Accepting
pairing_req(max_kex_size :> 16)

CYW43455

A3 Connection termination on length_rsp nRF52832

A4 Unknown behavior on
length_{req, rsp}(max_{tx , rx}_bytes)

CC2652R1

V1 Key size reduction on
pairing_req(max_kex_size : [7, 16])

All devices (except CYBLE-416045-02)

With the support of Texas Instruments, we identified the origin of this issue in
the installed application software. The running application stops sending adver-
tisements after two consecutive connections. Additionally, the connection cannot
be reset, since no further scan_req are accepted. Hence, the device is inaccessible.

The crashes C2-C4 were caused by fuzzed fields of the connection_req. The
fields that crashed the devices CC2640R2F and CC2650 were latency, timeout,
and interval. Invalid values of the field interval (C1) also crashed one BLE device
of Cypress (CYBLE-416045-02). We assume that issues relate to CVE-2019-
19193 which has been reported by Garbelini et al. [17]. According to Garbelini
et al., this issue has been fixed by the manufacturers.

Multiple Answers to Version Requests (A1). Figure 4 illustrates a simplified
learned model of the CC2651R1. This model shows that every version_req is
always answered by a version indication. The BLE specification [6] defines that
an already answered version_ind should not be answered again.

Anomalies in Length Requests and Responses. A comparison of the learned mod-
els shows that the nRF52832 is the only SoC that terminates the BLE connection
and returns to the initial state if an unexpected length_rsp is performed. We
observed that behavior even though the length_rsp did not contain any fuzzed
fields. Furthermore, our counterexample analysis revealed an anomalous behav-
ior for the CC2651R1 (A4). We trigger the anomaly by performing a length_rsp
or length_req, where we fuzzed the fields max_tx_bytes or max_rx_bytes.
After this, we execute a non-fuzzed mtu_req or pairing_req. Executing this
sequence, the CC2651R1 enters a state, where only empty BLE data packets are
received for all inputs except those that reset the connection. A4 also violates the
BLE specification, since none of the further requests is appropriately answered.
Furthermore, this unknown state cannot be exited by performing another valid
length_req.

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 387

Fig. 4. Model learned of CC2652R1. For clarity, some transitions are not displayed.
The complete model is available online [25].

Key Size Acceptance in Pairing Request (V1, A2). We see for all tested SoCs,
except for the CYLBE-416045-02, that a reduction of the maximum key size dur-
ing the pairing request is possible (V1). The test fails on the CYLBE-416045-02
since the SoC does not accept any pairing_req. By performing a pairing_req, the
requesting party proposes some parameters for the pairing, e.g., the maximum
key size of the long-termkey (LTK) that is later used to distribute session keys for
a secure connection. The BLE specification defines that the key size field needs
to be within 7 and 16 bytes. Downgrade attacks, e.g. the KNOB attack [4], show
that accepting low key sizes decreases the entropy of the LTK and, therefore,
enables brute-forcing of the used key. All devices, except CYLBE-416045-02,
accept a key with an entropy of 7 bytes. Additionally, fuzzing the accepted key
sizes shows that CYW43455 accepts pairing_req that contains maximum key
sizes greater than 16 bytes.

5 Related Work

In practice, protocol state fuzzing proved itself a useful tool to reveal security
issues and behavioral anomalies of communication protocols, e.g. TCP [13], SSH
[15], TLS [30], DTLS [14], 802.11 4-way handshake [36], MQTT [37], OpenVPN
[11], and QUIC [27]. In the literature, this technique is also known as learning-
based testing where the SUT is tested via active automata learning. Hence, our
learning-based fuzzer also performs protocol state fuzzing during learning the
behavioral models of the BLE devices.

Several black-box fuzzers for network protocols exist, e.g. boofuzz (former
Sulley) [24] or GitLab Protocol Fuzzer Community Edition (former Peach) [18].
They require user-defined input generators and guidance to in-depth paths. To
enable stateful black-box fuzzing model-based techniques have been proposed.
SNOOZE [5] is a model-based fuzzer for network protocols. However, input
generators, as well as the model, must be manually crafted. Another model-
based fuzzer for telecommunication protocols is T-Fuzz [20]. T-Fuzz extracts the

388 A. Pferscher and B. K. Aichernig

required model via static analysis during compile time. Therefore, this model-
based fuzzer is only applicable in this special environment.

Instead of creating the model manually, learning-based fuzzing techniques
automatically infer a behavioral model. Based on passive learning, Comparetti
et al. [10] extract a model from given input data. The generated model can
then be used as input for the black-box fuzzer Peach [18]. Doupé et al. [12]
also present a black-box fuzzer for web applications, where they generate the
model via crawling the tested web application. However, passive learning can
cover only behavior that is provided by the given input data. Aichernig et al. [2]
presented a learning-based fuzzing technique for MQTT servers based on active
automata learning. Different from our technique, they learned the model of one
SUL, which they assume contained the most conforming behavior. This model is
then used to fuzz other implementations of the tested system. The assumption
of a generic model might hamper the applicability of learning-based fuzzing.
Our results show that such an approach would not be feasible for BLE devices.
In contrast to our technique, they fuzzed only one specific input field type and
based their conformance tests on random traces which does not provide any
guarantees about in-depth state coverage.

Bluetooth attacks and vulnerability collections like BlueBorne [32], BLEED-
INGBIT [33], KNOB [4], BLESA [39], Frankenstein [29], SweynTooth [17] and
BrakTooth [16] reveal severe issues in the Bluetooth protocol. Ruge et al. [29]
detected issues concerning Bluetooth classic and BLE. They propose a frame-
work that fuzzes an emulated chip firmware. Since no over-the-air communi-
cation is required the time efficiency of fuzzing can be significantly improved.
However, preparing the firmware for emulation is tedious. The motivation for our
work originates from the fuzzing framework proposed by Garbelini et al. [17].
Instead of providing a handcrafted general model, we extend the model-based
fuzzing framework by automata learning. This allows us to create more BLE
device-specific input sequences. Furthermore, behavioral differences become vis-
ible through the learned individual models. Additionally, we extend our fuzzer by
a counterexample analysis tool that reports unknown state transitions or states.

6 Conclusion

6.1 Summary

We presented a learning-based fuzzing technique for BLE devices. Our proposed
method is based on a black-box assumption. To achieve in-depth testing, we
require a behavioral model of the SUT. Instead of manually crafting the model,
we used automata learning to automatically generate the model. Using the
learned model, we created a stateful black-box fuzzer. Furthermore, we extended
our fuzzer with a counterexample analysis tool that examines unknown behavior.
Our evaluation revealed anomalies and security issues in the tested BLE devices.
Additionally, our fuzzer crashed four out of six devices.

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 389

6.2 Discussion

The missing ability to measure coverage limits the applicability of black-box
fuzzing. To overcome this limitation, black-box fuzzing extended by model-based
testing techniques shows promising results [17,20]. However, manually crafting
models might be an error-prone process. In learning-based fuzzing, we extend
fuzzing by automata learning to automatically create behavioral models. Still,
our previous work [26] showed that the creation of a fault-tolerant interface for
learning a remote physical device might not be straightforward. Nevertheless,
this work has to be only done once. Our work indicates that the learning inter-
face can then be easily extended to a stateful black-box fuzzer. The availability
of distinct behavioral models enables checking for behavioral differences. Fur-
thermore, we can automatically analyze found counterexamples.

6.3 Future Work

In future work, we propose advancements for learning as well as for fuzzing. For
learning, we want to consider other modeling formalisms. Evaluating commu-
nication protocols shows that non-deterministic behavior hampers determinis-
tic learning. Modeling this non-deterministic behavior might also hint at faulty
behavior. Additionally, the work of Garbelini et al. [17] revealed several vul-
nerabilities during the pairing procedure of the BLE protocol. For this, we will
extend our learning framework to deduce behavioral models of the pairing pro-
cedure. For fuzzing, we plan to adapt our generation of fuzzed inputs with a
search-based technique. By defining a reward function for test sequences, we
might cover more error-handling behavior of the SUT. Regarding our proposed
counterexample analysis, we saw that fuzzed inputs revealed not yet observed
behavior. Smeters et al. [35] used fuzzing as an equivalence oracle during learn-
ing. Following an akin idea, we can extend our learned models by the information
that we already gained during the counterexample analysis. With this, we can
generate models that also formalize error-handling behavior.

Acknowledgement. This work is funded by the TU Graz LEAD project Dependable
Internet of Things in Adverse Environments, by the LearnTwins project (No 880852)
from the Austrian Research Promotion Agency (FFG), and by AIDOaRt project (grant
agreement No 101007350) from the ECSEL Joint Undertaking (JU). The JU receives
support from the European Union’s Horizon 2020 research and innovation programme
and Sweden, Austria, Czech Republic, Finland, France, Italy, and Spain. We would like
to thank Maximilian Schuh for providing support for the BLE devices and the authors
of the SweynTooth paper for creating an open-source BLE interface. Furthermore, we
thank the anonymous reviewers for their useful remarks.

References

1. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-
state communication protocols using regular inference with abstraction. Formal
Methods Syst. Des. 46(1), 1–41 (2015). https://doi.org/10.1007/s10703-014-0216-
x

https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x

390 A. Pferscher and B. K. Aichernig

2. Aichernig, B.K., Muškardin, E., Pferscher, A.: Learning-based fuzzing of IoT mes-
sage brokers. In: 14th IEEE Conference on Software Testing, Verification and Val-
idation, ICST 2021, Porto de Galinhas, Brazil, 12–16 April 2021, pp. 47–58. IEEE
(2021). https://doi.org/10.1109/ICST49551.2021.00017

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

4. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: Key negotiation downgrade
attacks on Bluetooth and Bluetooth Low Energy. ACM Trans. Priv. Secur. 23(3),
14:1–14:28 (2020). https://doi.org/10.1145/3394497

5. Banks, G., Cova, M., Felmetsger, V., Almeroth, K.C., Kemmerer, R.A., Vigna, G.:
SNOOZE: Toward a stateful network protocol fuzzer. In: Katsikas, S.K., López,
J., Backes, M., Gritzalis, S., Preneel, B. (eds.) Information Security, 9th Interna-
tional Conference, ISC 2006, Samos Island, Greece, 30 August–2 September 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4176, pp. 343–358. Springer
(2006). https://doi.org/10.1007/11836810_25

6. Bluetooth SIG: Bluetooth core specification v5.3. Standard (2021). https://www.
bluetooth.com/specifications/specs/core-specification/

7. Böhme, M., Cadar, C., Roychoudhury, A.: Fuzzing: Challenges and reflections.
IEEE Softw. 38(3), 79–86 (2021). https://doi.org/10.1109/MS.2020.3016773

8. Capkun, S., Roesner, F. (eds.): 29th USENIX Security Symposium, USENIX Secu-
rity 2020, 12–14 August 2020. USENIX Association (2020). https://www.usenix.
org/conference/usenixsecurity20

9. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

10. Comparetti, P.M., Wondracek, G., Krügel, C., Kirda, E.: Prospex: Protocol specifi-
cation extraction. In: 30th IEEE Symposium on Security and Privacy (S&P 2009),
17–20 May 2009, Oakland, California, USA, pp. 110–125. IEEE Computer Society
(2009). https://doi.org/10.1109/SP.2009.14

11. Daniel, L., Poll, E., de Ruiter, J.: Inferring OpenVPN state machines using protocol
state fuzzing. In: 2018 IEEE European Symposium on Security and Privacy Work-
shops, EuroS&P Workshops 2018, London, United Kingdom, 23–27 April 2018, pp.
11–19. IEEE (2018). https://doi.org/10.1109/EuroSPW.2018.00009

12. Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the state: A state-
aware black-box web vulnerability scanner. In: Kohno, T. (ed.) Proceedings of
the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August 2012,
pp. 523–538. USENIX Association (2012). https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/doupe

13. Fiterau-Brostean, P., Janssen, R., Vaandrager, F.W.: Combining model learning
and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan,
A. (eds.) Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17–23, 2016, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9780, pp. 454–471. Springer (2016). https://doi.org/10.
1007/978-3-319-41540-6_25

14. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K.,
Somorovsky, J.: Analysis of DTLS implementations using protocol state fuzzing.
In: Capkun and Roesner [8], pp. 2523–2540. https://www.usenix.org/conference/
usenixsecurity20/presentation/fiterau-brostean

https://doi.org/10.1109/ICST49551.2021.00017
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/3394497
https://doi.org/10.1007/11836810_25
https://www.bluetooth.com/specifications/specs/core-specification/
https://www.bluetooth.com/specifications/specs/core-specification/
https://doi.org/10.1109/MS.2020.3016773
https://www.usenix.org/conference/usenixsecurity20
https://www.usenix.org/conference/usenixsecurity20
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/SP.2009.14
https://doi.org/10.1109/EuroSPW.2018.00009
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/doupe
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning 391

15. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdogmus,
H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, 10–
14 July 2017, pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

16. Garbelini, M.E., Chattopadhyay, S., Bedi, V., Sun, S., Kurniawan, E.: BRAK-
TOOTH: Causing havoc on Bluetooth link manager. https://asset-group.github.
io/disclosures/braktooth/braktooth.pdf (2021). Accessed 8 Jan 2022

17. Garbelini, M.E., Wang, C., Chattopadhyay, S., Sun, S., Kurniawan, E.: Sweyn-
Tooth: Unleashing mayhem over Bluetooth Low Energy. In: Gavrilovska, A., Zadok,
E. (eds.) 2020 USENIX Annual Technical Conference, USENIX ATC 2020, 15–
17 July 2020, pp. 911–925. USENIX Association (2020). https://www.usenix.org/
conference/atc20/presentation/garbelini

18. Gitlab.org: Gitlab protocol fuzzer community edition. https://gitlab.com/gitlab-
org/security-products/protocol-fuzzer-ce. Accessed 8 Jan 2022

19. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: Whitebox fuzzing for security
testing. ACM Queue 10(1), 20 (2012). https://doi.org/10.1145/2090147.2094081

20. Johansson, W., Svensson, M., Larson, U.E., Almgren, M., Gulisano, V.: T-Fuzz:
Model-based fuzzing for robustness testing of telecommunication protocols. In: Sev-
enth IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2014, 31 March 2014–4 April 2014, Cleveland, Ohio, USA, pp. 323–332.
IEEE Computer Society (2014). https://doi.org/10.1109/ICST.2014.45

21. Le, K.T.: Bluetooth Low Energy and the automotive transformation. https://www.
ti.com/lit/wp/sway008/sway008.pdf. Accessed 29 Dec 2021

22. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.
96279

23. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: An
active automata learning library. Innovations Syst. Softw. Eng. (2022). https://
doi.org/10.1007/s11334-022-00449-3

24. Pereyda, J.: boofuzz: Network protocol fuzzing for humans. https://github.com/
jtpereyda/boofuzz. Accessed 8 Jan 2022

25. Pferscher, A.: Stateful black-box fuzzing of BLE devices using automata learning.
https://git.ist.tugraz.at/apferscher/ble-fuzzing. Accessed 9 Jan 2022

26. Pferscher, A., Aichernig, B.K.: Fingerprinting Bluetooth Low Energy devices via
active automata learning. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) For-
mal Methods - 24th International Symposium, FM 2021, Virtual Event, 20–26
November 2021, Proceedings. Lecture Notes in Computer Science, vol. 13047, pp.
524–542. Springer (2021). https://doi.org/10.1007/978-3-030-90870-6_28

27. Rasool, A., Alpár, G., de Ruiter, J.: State machine inference of QUIC. CoRR
abs/1903.04384 (2019). http://arxiv.org/abs/1903.04384

28. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

29. Ruge, J., Classen, J., Gringoli, F., Hollick, M.: Frankenstein: Advanced wireless
fuzzing to exploit new Bluetooth escalation targets. In: Capkun and Roesner [8], pp.
19–36. https://www.usenix.org/conference/usenixsecurity20/presentation/ruge

30. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security
15, 12–14 August 2015, Washington, D.C., USA, pp. 193–206. USENIX Asso-
ciation (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

https://doi.org/10.1145/3092282.3092289
https://asset-group.github.io/disclosures/braktooth/braktooth.pdf
https://asset-group.github.io/disclosures/braktooth/braktooth.pdf
https://www.usenix.org/conference/atc20/presentation/garbelini
https://www.usenix.org/conference/atc20/presentation/garbelini
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1109/ICST.2014.45
https://www.ti.com/lit/wp/sway008/sway008.pdf
https://www.ti.com/lit/wp/sway008/sway008.pdf
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/s11334-022-00449-3
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://git.ist.tugraz.at/apferscher/ble-fuzzing
https://doi.org/10.1007/978-3-030-90870-6_28
http://arxiv.org/abs/1903.04384
https://doi.org/10.1006/inco.1993.1021
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

392 A. Pferscher and B. K. Aichernig

31. Rohith Raj, S., Rohith, R., Moharir, M., Shobha, G.: SCAPY - A powerful interac-
tive packet manipulation program. In: 2018 International Conference on Network-
ing, Embedded and Wireless Systems (ICNEWS), pp. 1–5 (2018). https://doi.org/
10.1109/ICNEWS.2018.8903954

32. Seri, B., Livne, A.: Exploiting BlueBorne in Linux-based IoT devices. Armis, Inc
(2019). https://www.armis.com/research/blueborne/. Accessed 8 Jan 2022

33. Seri, B., Vishnepolsky, G., Zusman, D.: BLEEDINGBIT: The hidden attack
surface within BLE chips. Armis, Inc (2019). https://www.armis.com/research/
bleedingbit/. Accessed 8 Jan 2022

34. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams,
D. (eds.) FM 2009, Eindhoven, The Netherlands, 2–6 November 2009. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5850, pp. 207–222. Springer
(2009). https://doi.org/10.1007/978-3-642-05089-3_14, https://doi.org/10.1007/
978-3-642-05089-3

35. Smetsers, R., Moerman, J., Janssen, M., Verwer, S.: Complementing model learning
with mutation-based fuzzing. CoRR abs/1611.02429 (2016). http://arxiv.org/abs/
1611.02429

36. Stone, C.M., Chothia, T., de Ruiter, J.: Extending automated protocol state learn-
ing for the 802.11 4-way handshake. In: López, J., Zhou, J., Soriano, M. (eds.)
Computer Security - 23rd European Symposium on Research in Computer Secu-
rity, ESORICS 2018, 3–7 September 2018, Barcelona, Spain, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 11098, pp. 325–345. Springer (2018).
https://doi.org/10.1007/978-3-319-99073-6_16

37. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, 13–17 March 2017, Tokyo, Japan,
pp. 276–287. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.
32

38. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing, An Outcome
of the FORTEST Network, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 4949, pp. 1–38. Springer (2008). https://doi.org/10.1007/978-3-540-
78917-8_1

39. Wu, J., et al.: BLESA: Spoofing attacks against reconnections in Bluetooth Low
Energy. In: Yarom, Y., Zennou, S. (eds.) 14th USENIX Workshop on Offensive
Technologies, WOOT 2020, 11 August 2020. USENIX Association (2020). https://
www.usenix.org/conference/woot20/presentation/wu

40. Zalewski, M.: American fuzzy lop. https://lcamtuf.coredump.cx/afl/ (2013).
Accessed 2 Jan 2022

https://doi.org/10.1109/ICNEWS.2018.8903954
https://doi.org/10.1109/ICNEWS.2018.8903954
https://www.armis.com/research/blueborne/
https://www.armis.com/research/bleedingbit/
https://www.armis.com/research/bleedingbit/
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-05089-3
https://doi.org/10.1007/978-3-642-05089-3
http://arxiv.org/abs/1611.02429
http://arxiv.org/abs/1611.02429
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
https://www.usenix.org/conference/woot20/presentation/wu
https://www.usenix.org/conference/woot20/presentation/wu
https://lcamtuf.coredump.cx/afl/

From Verified Scala to STIX File System
Embedded Code Using Stainless

Jad Hamza1, Simon Felix2 , Viktor Kunčak1(B) , Ivo Nussbaumer2,
and Filip Schramka2

1 EPFL IC LARA, Lausanne, Switzerland
{jad.hamza,viktor.kuncak}@epfl.ch
2 Ateleris GmbH, Brugg, Switzerland

{simon.felix,ivo.nussbaumer,filip.schramka}@ateleris.ch

Abstract. We present an approach for using formal methods in embed-
ded systems and its evaluation on a case study. In our approach, the
developers describe the system in a restricted subset of the high-level
programming language Scala. We then use 1) a verification system to for-
mally prove properties of such Scala program, and 2) a source-to-source
translator to map Scala to C code. We have adapted the Stainless veri-
fication system to support constructs for describing embedded software
(more machine integer types and early returns) and to support verifi-
cation patterns needed for embedded systems code (array swap opera-
tion, pre-allocated and initialized memory, constant-length arrays). The
implemented C code translator generates code that can be compiled with
compilers such as GCC and integrated into larger C applications.

We evaluate our approach on a case study of a file system of an instru-
ment on the Solar Orbiter satellite. We have ported around a thousand
lines of C code to Scala. We wrote specification and proof hints to make
the code verify. Stainless verified the absence of run-time errors, as well
as function preconditions, postconditions, and data structure invariants.
The generated C code was integrated into the existing code base and
exhibits very similar code size, memory use, and performance. In this
process we identified multiple bugs in the well-tested code base, which
were fixed in-orbit.

Keywords: Formal verification · Embedded system · File system ·
Flight software · Scala · Stainless

1 Introduction

This paper includes our experience in using and adapting Stainless, a verifier for
the Scala programming language [18], for a software component of a mission-
critical system. Mission- and safety-critical systems such as trains, cars, aircraft,

In the original version of this chapter, Fig. 3 is missing. The correction can be found
at https://doi.org/10.1007/978-3-031-06773-0 46

Work financially supported by the Swiss Space Center project Embedded Flight Soft-
ware Verification (ESOVER).

c© Springer Nature Switzerland AG 2022, corrected publication 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 393–410, 2022.
https://doi.org/10.1007/978-3-031-06773-0 21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_21&domain=pdf
http://orcid.org/0000-0002-3979-128X
http://orcid.org/0000-0001-7044-9522
https://doi.org/10.1007/978-3-031-06773-0_46
https://doi.org/10.1007/978-3-031-06773-0_21

394 J. Hamza et al.

satellites and space probes contain embedded software that must be at all cost
free of bugs. While extensive testing prevents many bugs, we aim to raise the cor-
rectness standard by additionally leveraging formal verification in the develop-
ment process. With formal verification, we model the behavior of a program and
prove that, under well-defined assumptions, the program behaves as expected in
all executions.

Our use of Stainless is motivated by the knowledge of the tool by some of us,
as well by our desire to make the experience appealing from both software devel-
opment and verification experience point of view. Whereas our target application
is a component of a custom file system, we choose to use a general-purpose tool,
instead of a specialized one that may achieve higher automation [1,8,11,12,23],
in part because we aim to arrive at conclusions and methodologies that generalize
to other pieces of embedded software and because we wish to make assumptions
of formal proof more explicit. Furthermore, formal verification tools may take
several decades to become mature and develop a user community [21,30,32], an
effort that is amortized over more use cases with general-purpose techniques.
On the extreme end of this spectrum, interactive theorem provers have had long
continued history of use and have high degree of trustworthiness. At the same
time, they may appear unusual to developers accustomed to widely used pro-
gramming languages. It is therefore natural to try and use a general-purpose and
relatively mature verification tool while still remaining close to project source
code. We found that Stainless enabled us to pursue this approach. While the
original target of Stainless is (sequential) functional code, it has gained several
features along the years, including support for imperative code. We show in this
case study how Stainless can be used to verify real-world embedded code.

The experience that was driving our approach was formally verifying a por-
tion of the file system of Spectrometer Telescope for Imaging X-rays, used on-
board the Solar Orbiter satellite. We ported parts of the C code in this software to
Scala and verified it using Stainless. Thanks to the use of Stainless, the resulting
code was shown free from buffer and arithmetic overflows, two common problems
in C. Furthermore, we also verified and proved additional properties, specified
as invariants, preconditions, and postconditions.1

Using a Scala source to C source translator we incorporated into Stainless,
we mapped the verified Scala code automatically to C, and used it as a drop-in
replacement for the original C code in the existing system. Using this approach
we were able to incrementally verify increasingly large components of the existing
system, gradually replacing them with C code generated from verified Scala
source.

Making this case study possible required us to add a new execution path to
Stainless, which does not use Java Virtual Machine but C source code as target,
without using memory allocation. Using C source code allowed us to use the
gcc compiler available for a wide range of platforms, including LEON3 [15] soft

1 A repository containing an illustrative fragment of the code we ported to Scala code
and verified is https://github.com/epfl-lara/STIX-showcase.

https://github.com/epfl-lara/STIX-showcase

From Verified Scala to STIX File System Embedded Code Using Stainless 395

core on which the software is deployed. Our translator generates readable code
similar in structure to the Scala input.

To accommodate the use of unsigned machine integer types of various lengths,
we extended the Scala front end of Stainless with libraries and incorporated
support into our C code generator to handle these C data types, generating
code that efficiently interacts with the surrounding embedded C code.

A design choice of Stainless is to not use global variables but instead use the
pattern of passing (possibly implicitly declared) parameters to functions, thus
documenting program side effects. This approach is a simple version of object
capability discipline, advocated as part of a type discipline for actor-based Scala
concurrency [17]. In our work, we identify a combination of source code patterns
(use of implicit parameters and initial values of default parameters) and code
generation to respect this design choice. Consequently, we were able to support
writing arguably reasonable Scala code that can be mapped to the embedded
code with statically allocated and initialized memory.

1.1 Contributions

This paper makes the following contributions:

– We present an extension of the Stainless verifier for handling embedded-style
imperative code with statically allocated memory, fixed-sized arrays, early
returns, and additional bitvector data types (Sect. 4).

– We show how to generate suitable embedded C code using source-to-source
translation from Scala input to C code, extending a previous code generation
approach of the Leon system [2] to recognize statically allocated memory use
as well as to systematically eliminate specification-only (ghost) code (Sect. 5).

– As a case study, we present our experience in rewriting parts of the Spectrom-
eter Telescope for Imaging X-rays (STIX) file system to Scala code, proving
the absence of run-time errors, memory errors, as well as invariants, precon-
ditions and postconditions. We have integrated the generated C code into the
original project without loss of performance (Sect. 6).

1.2 Related Work

Cogent [1] is a high-level language specifically designed for formal verification of
file systems. It features a compiler whose correctness is formally proven in the
Isabelle proof assistant [31]. The authors of [1] wrote a file system and proved
high-level properties. Other works strive for more automation using general tech-
niques but tuned to file system models [8], or focus on finding bugs [23] instead of
proving their absence. Interactive theorem provers have great expressive power
for checking arbitrarily complex proofs, and they contain frameworks that help
automate verification in various domains, including file systems [11,12]. In con-
trast, in our approach, we write the specification in Scala, the same language
(and in the same place) as the actual code. Dafny [27] has many similarities to
Stainless; it was used in [9] to implement and verify operational crash-consistency

396 J. Hamza et al.

file system models at a higher level of abstraction but was also used for low-level
code in other projects [20].

SPARK Ada and other tools by AdaCore are alternative single-language
options for high assurance software. Whereas Ada has the advantage of being
designed for verification, it is not a functional language and does not support
higher-order functions. We believe that functional programming is a strong basis
for formal reasoning. That said, the approach of Stainless with preconditions and
postconditions results in similar code in many cases, so it may even be possible
to perform source-to-source translation between these two languages.

A parallel approach to our C code generator in Stainless (which started in its
predecessor, Leon [2]) has been the development of SLang [33], a subset of Scala
from which, among others, C code can be generated. In comparison to SLang,
Stainless uses Scala itself for contracts, supports higher-order functions, and per-
mits certain forms of subtyping. Stainless uses Scala 2 and Scala 3 compilers as
front ends, benefiting from type checks and type-informed transformations per-
formed early in the Scala compiler pipeline. Stainless itself does not use macros,
but its Scala 3 version is compatible with inline functions in the input Scala
code.

The Verified C Compiler VCC [4,13] could be likely used to directly verify
C code and has the advantage of supporting concurrency, though it also uses a
different specification language than the implementation language. Before using
Stainless to verify STIX code, a subset of authors tested CBMC [24] and Frama-
C [14] on other parts of the code base. Both tools did not scale to the size of the
code and struggled to work with the idioms in the application code and operating
system. We suspect that both tools could have produced better results, had we
invested more time. We suspect no tool will work out of the box entirely, even if
it is designed to not require annotations as modular verification does. Because
our Stainless-based verification approach results in C code, we could use tools
like CBMC and Frama-C on the generated code to detect errors in the code
generation step. In this project we rely on a code generation facility mapping
a subset of Scala to C. Building such code generation implementation within a
foundational framework such as CompCert [28] or CakeML [26] would further
improve the confidence in the resulting generated code.

2 STIX Instrument Onboard Solar Orbiter—Background

The Spectrometer Telescope for Imaging X-rays (STIX [25]) onboard ESA’s Solar
Orbiter satellite is a hard X-ray imaging spectrometer. STIX observes hard X-
ray bremsstrahlung emissions from solar flares and provides information about
the hottest flare plasmas. The instrument and the satellite are shown in Fig. 1.
The satellite was launched in early 2020; the STIX instrument was turned on a
few days later.

The STIX hardware consists of several custom application-specific inte-
grated circuits (ASIC) and sensors, a radiation-hardened field-programmable
gate array (FPGA), 128 MB DRAM, 2 MB SRAM, 1 MB EEPROM and 16 GB

From Verified Scala to STIX File System Embedded Code Using Stainless 397

Fig. 1. Left: STIX images X-ray sources using moiré patterns produced by two tungsten
grids placed in front of a sensor. Center: Solar Orbiter being prepared for launch. Right:
Solar Orbiter completed its second Venus flyby maneuver November 2021.

flash memory. The FPGA implements logic for real-time data processing, and
a LEON3 [15] soft microprocessor. This SPARC V8-compatible soft micropro-
cessor executes the flight software, which is the focus of this work. Owed to the
limited energy budget and number of logic gates, the soft microprocessor runs
at 20 MHz and is equipped with only 1 kB data and instruction caches. The
system is under soft realtime constraints – missing interrupts means losing sci-
entific data. The complete system processes up to 800’000 events per second and
outputs a telemetry data stream of at most 700 bits per second.

The flight software is a self-contained C program, which is statically linked
to the real-time operating system RTEMS [7]. To work around known bugs
in the CPU a special, patched, GCC version is used to compile the software.
The 36’418 non-comment code lines compile to 370 KB binary code. The flight
software does not perform any dynamic memory allocation to prevent memory
fragmentation. All data structures sizes are statically allocated at compile time.
During development, several techniques were used to increase the robustness of
the flight software: compiler warnings were enabled, static code analysis tools
were run regularly, manual testing, automated end-to-end test scripts and unit-
tests for certain subsystems were used.

Our verification efforts focused on the file system which manages the data
stored on the 16 GB flash memory.

3 Background on Stainless Verifier

In this section, we highlight key features of Stainless verifier that we used to
perform verification and, subsequently, code generation. Stainless was derived
from Leon verification and synthesis system, which was originally designed to
verify first-order recursive purely functional programs [36]. It was subsequently
extended to support higher-order functions [37] and simple non-shared mutable
data verified via a translation to functional code [5,6]. Foundations and sound-
ness of a substantial fragment of Stainless, including function termination, was
presented using an expressive dependent type system, whose soundness is shown
using a set-of-terms model [18]. When given Scala code, Stainless can process it
in the verification pipeline. The typical deployment of Stainless programs (until

398 J. Hamza et al.

the work in this paper) has been to compile them using Scala compiler and run
on the Java Virtual Machine.

The verification pipeline of Stainless transforms high-level abstractions in
the input program to simpler functional programming constructs which can be
handled by our internal type-checker [18]. Our type-checker is not a typical type-
checker in the sense that it not only ensures that “standard” types (such as int)
are respected, but it also supports user-annotated assertions, and function pre-
and postconditions in the form of boolean-typed expressions, which are encoded
using refinement types.

The type-checker generates verification conditions for all annotations, which
are formulas with recursive functions. All verification conditions must be checked
to be true to ensure that assertions are indeed true for all possible function inputs
respecting preconditions, and that function preconditions are respected at call-
sites in all cases. In Stainless, verification conditions are checked using Inox2,
a solver for formulas written as functional programs with recursive functions,
and which uses function unfolding [36] and SMT solvers (Z3 [16], CVC4 [3],
Princess [34]) as backends.

4 Adapting the Verifier for Embedded Software

Despite the fact that Stainless was used to verify tens of thousands of lines
of Scala code before, it was not suitable initially for verification of imperative
embedded code.

4.1 Circumventing Stainless Aliasing Restrictions

When transforming away imperative features in the verification pipeline, Stain-
less checks that there is no aliasing, i.e. no two pointers to the same object. This
greatly simplifies the transformation into a functional program, and therefore
makes verification tractable for the solver.

The original file system code was written in a way that there could be several
pointers to the same control blocks in the file system. Stainless would detect
the aliasing and not transform the code. We made some adjustments to the
STIX code ported to Scala in order to circumvent this restriction. Namely, all
control blocks are stored in a global array, and wherever we needed to store a
control block, we stored the index in the array instead. All control blocks accesses
therefore go through the global array and there is no more aliasing.

4.2 Early Return Statements

The STIX code that we ported has early return statements in several places.
We added a phase (ReturnElimination) in the verification pipeline to trans-
form return statements into functional code. An often-used idea to translate

2 https://github.com/epfl-lara/inox.

https://github.com/epfl-lara/inox

From Verified Scala to STIX File System Embedded Code Using Stainless 399

imperative code into functional code is to use a form of continuation monad in
order to know, at each point of the code (e.g. after a loop iteration), whether the
code has already returned or not. To prove correctness in while loops containing
return statements, we added the ability to specify a noReturnInvariant, which
is an invariant that holds after each loop iteration except after a return.

5 Scala to C Translation for Embedded Software

To enable the deployment of embedded code, we incorporated the C code gen-
erator from the Leon system [2] into Stainless and used it as the starting point
for our source-to-source generator. The code generation pipeline need not trans-
form away imperative features into functional ones. For example, assignments
and while loops remain mostly untranslated, as they can be directly mapped
to their equivalents in C. The code generation pipeline shares some of the early
phases with the verification pipeline, for example resolving method overrides and
Scala class inheritance (MethodLifting). After that, we transform the program
to an internal representation, where we perform some more transformations to
produce a C program:

– GhostElimination removes all the ghost code specific verification,
– Normalisation flattens the block structure of a program, to avoid blocks

within expressions (supported by Scala but not by C),
– Referencing adds references and dereferences where appropriate, as objects

are passed by references in Scala, without explicit references,
– IR2C transforms classes to structs and enums.

In this section, we describe improvements we made in the C code generation
pipeline [2] after porting it from the Leon system. These changes are what made
it possible to write realistic components of the file system and generate C code
with expected memory use and runtime behavior.

5.1 Unsigned Integers of Various Bit Lengths

The existing C code makes extensive use of several unsigned integer types (uint8,
uint16, uint32), which were not supported by Stainless at the beginning of the
project. The reason is that the Java Virtual Machine does not have support for
native unsigned integers, and therefore, neither does Scala.

On the other hand, the used SMT backends support arbitrary-length bitvec-
tors with signed and unsigned operations. We thus decided to add a Stainless
library for signed and unsigned integers of arbitrary length (1 to 256), which is
mapped in the verification pipeline to SMT bitvectors, and in the compilation
pipeline to C signed/unsigned types, for bit lengths natively supported by C.

The library supports converting between signed and unsigned types, as well
as narrowing and widening the bit length. These operations include appropriate
checks (which can be locally or globally disabled) to detect overflows.

400 J. Hamza et al.

5.2 Mutable Global State

The verification pipeline of Stainless does not support verifying code with muta-
ble global variables. We used a common Scala idiom to simulate global state:
implicitly passing extra mutable objects to functions that need to read or write
the global state. We split the global state into several groups of mutable vari-
ables, and each object has its own case class definition and corresponds to one
such group. This has the benefit of explicitly showing in the function signature
which parts, if any, of the global state are accessed by this function, and could
be viewed as an effect system [22].

In the code generation pipeline, we remove these extra parameters from func-
tions, and we leave three options to the user:

a. (default) Add a global declaration in the generated C code with a default
value for each field of the case class. Additional annotations in Scala code,
e.g. static or volatile, are carried over.

b. Add a global declaration in the generated C code without an initial value
(implicitly zero-initialized), or

c. Do not add a global declaration. This is useful to refer to an existing variable
declared in the existing C code, unknown to Stainless.

To ensure that this transformation is correct, we perform the following checks
in the Scala code, for each case class S representing a global state portion. 1)
Functions can take as argument at most one parameter of type S. 2) One function
which does take such an argument is allowed to create instances of S, with default
values, and pass it to other functions. 3) Instances of S can only be read, written
to, or passed to other functions; instances cannot be copied or let-bound. These
checks ensure that it is safe to remove parameters typed S and compile their
read and write accesses to global C variables accesses.

5.3 Specifications and Ghost Elimination

We write the properties that we want to verify as preconditions (require), post-
conditions (ensuring), and code assertions (assert). Stainless is able to prove
simple properties automatically, but more complex properties (e.g. sortedness of
an array) require additional annotations in the form of:

a. functions to describe the property,
b. functions (lemmas) to prove that the property is maintained after an opera-

tion (e.g. insertion of an element in the array),
c. calls to these lemmas in the places where we need to prove the property.

During compilation, the preconditions (except in exported functions), post-
conditions, assertions, and additional annotations are eliminated in a ghost elim-
ination phase. As such, they do not incur any performance overhead in the final
executable.

In general, preconditions of exported functions are transformed into runtime
assertions in C. For specific preconditions, the user can use the require keyword

From Verified Scala to STIX File System Embedded Code Using Stainless 401

from stainless.lang.StaticChecks to denote that this precondition should
not be compiled, even in an exported function. In general, this is unsafe as we
do not know whether external function calls will respect these preconditions, but
still useful for preconditions that may be too expensive to check at runtime (see
one example Sect. 6.1), or preconditions that use Stainless features which are
supported by the verification pipeline but not supported by the code generation
pipeline.

5.4 Declarations Followed by memset

The following is a common idiom in C to initialize structures:

myStruct s;
memset(&s, 0, sizeof(s));

In Scala, this corresponds to declaring a variable s of (case) class myStruct,
with all fields set to 0. When some fields have arrays, which themselves con-
tains structs with other arrays inside, a single statement declaration in Stain-
less of such a struct would be complex and would contain expressions such as
Array.fill that are in general not supported by our translation to C. In the
particular case where we encounter a complex declaration in Stainless that con-
tains only zeroes (or Array.fill’s with zeroes), we generate the idiom above
instead.

In Scala, we can access array lengths, which we translate to structs containing
a pointer, and an integer length (bounded pointers) in C. However, when an array
is part of a struct, this makes the memset idiom above unusable, because memset
would just set the pointer to 0 instead of setting the pointer to a preallocated
memory region. In our case study, the length of arrays contained in structs are
known at compile-time, and we compile them to fixed-length arrays, without
storing the length as an extra variable, as shown in Fig. 2, so the memset idiom
is applicable.

5.5 Pure Functions

Because of the aliasing restrictions that we discussed in Sect. 4.1, Stainless con-
tains an effect analysis that is able to determine which parts of the code mutate
global state, and which parts are pure. We use this analysis during code gen-
eration to output purity annotations in the C code. Such annotations trigger
additional optimizations in GCC, for example replacing deterministic function
calls with constant values.

6 Experience with Case Study

We next present our experience in porting parts of the file system code from C
to the subset of Scala supported by Stainless, and annotating it to prove the
absence of run-time errors that Stainless always checks for, as well as proving
additional invariants, preconditions, and postconditions.

402 J. Hamza et al.

case class MyStruct(ar: Array[Int]) {
require(ar.length == 100)

}

typedef struct {
int ∗underlying;
int length;

} array int;

typedef struct {
array int ar;

} MyStruct;

typedef struct {
int ar[100];

} MyStruct;

Fig. 2. Top: a case class in Scala containing an array whose length is specified using
a class invariant to be constant. Left: The generated C struct contains both a pointer
and an array length when the class invariant is missing. Right: When a constant array
length is specified as class invariant, the generated C struct contains a fixed-length
array member instead.

6.1 Verified Properties and Statistics

The ported parts of the file system consist of around 6’000 lines of Scala code.
This code contains 5’220 explicit and implicit verification conditions, all of which
are proven (see Table 1). Initial verification takes 2’562 s3, but verification com-
pletes in 86 s when using cached results from previous runs.

All of our data structures are array-based. Consequently, Stainless generates
verification conditions for all array accesses and has to prove that all indices
are within array bounds. To make verification of these bound checks feasible,
we had to add invariants about the array lengths in function preconditions and
in structures containing arrays, and we added invariants on integer indices in
while loops. We show below a few examples of other higher-level properties we
verified.

Insertion into a Sorted Array. The file system manages some data in a
(fixed-length) sorted array. Insertion in this array uses an insertion sort that
(1) looks for the index i where to insert an element by dichotomy, (2) shift all
elements with lower priority to make place in the array, (3) assign the element
to insert at index i.

As explained in Sect. 4.1, the verification pipeline that we use for imperative
code only supports limited forms of aliasing. Therefore, shifting mutable elements
in an array is not possible, because an assignment of the form ar(i+1) = ar(i)
creates two aliases to the object initially stored in ar(i). This problem led to
the introduction of a new swap(ar, i, i+1) operation that swaps two mutable
elements in an array without creating aliases. We were able to prove strong
3 Measured on a MacBook Pro, Intel Core i9 2.3 GHz 8-Core, 32 GB RAM.

From Verified Scala to STIX File System Embedded Code Using Stainless 403

Table 1. Summary of the verification conditions.

enough invariants in the while loops implementing the steps (1) and (2) above
to show that the array remains sorted after insertion of new elements.

Counting Blocks with a Specific Status. The flash memory managed by the
file system is organized in blocks, each containing 256 kB data. During system
initialization, each Flash block transitions from the initial state to one of the
following states: free, used, error, or bad. Blocks in state error contain bit flips
which are not correctable with the employed error correction codes. Those blocks
can be reused for new data in the future. In extreme cases, the Flash hardware
itself can fail due to aging or radiation. This leads to bad blocks, which should
never be used anymore.

Instrument operators want to know how many blocks are in which state to
assess the state of the flash memory. We store the number of blocks in each state
in global counters. It is therefore natural to define an invariant that states that
these global counters actually correspond to the number of control blocks with
a specific status.

We defined the invariant using the recursive function countStatus that
counts the blocks with a given status. Proving the invariant further required
proving lemmas that explain how countStatus changes after updating the sta-
tus of a block, which is not trivial given the recursive nature of countStatus.
Specifically, it requires proving additional lemmas, which state the desired prop-
erties as postconditions, and which are themselves defined recursively following
the countStatus pattern to simulate proofs by induction on the executions of
countStatus.

6.2 General Improvements to Stainless

During the project, we continuously improved Stainless, either by fixing bugs, or
implementing new features. In total, we merged around 150 pull requests related
to this project in the public Stainless code base, and around 25 in the public
code base of Inox, our backend solver.

404 J. Hamza et al.

To deal with a project this size we had to make performance improvements,
for instance by supporting more recent backend SMT solvers (Z3 4.8.12 with
its experimental “new core” option, CVC4 1.8), or by reducing the amount of
duplication in the generated verification conditions.

To make solving of some verification conditions possible, we had to extend
the opaque keyword to control at each call-site whether function bodies are
visible to the solver4. Before, Stainless only supported the opaque keyword with
per-function granularity.

6.3 Identified Bugs in the STIX File System Code

During this project we identified a number of implementation bugs in the existing
file system code, of which we highlight two examples. First, we uncovered a
potential buffer overflow due to an off-by-1 error in a data structure. The way
the buffer was used prevented this problem from ever surfacing, but otherwise
innocent changes might trigger the bug in the future, if left unfixed. Second, the
type system of Scala helped identify a case where an incompatible enum type was
returned by a function. Even though these bugs have no real-world ramifications,
we patched the in-orbit instrument in December 2021.

6.4 Using Stainless Without Prior Formal Verification Experience

Our team consists of experts that worked on the original file system imple-
mentation, and verification experts that were concerned with improvements to
Stainless verification and code generation, as well as help in specification and
verification.

Our experience with Stainless confirmed the expectation that formal verifi-
cation of code is challenging without prior experience in the field.

First, it takes time to get accustomed to the language, in this case Scala sub-
set supported by Stainless. For example, programmers cannot use the standard
Scala class libraries or certain high-level abstractions, because they are unver-
ified or rely on dynamic memory allocation. Instead, to write embedded code
in Scala, basic data structures must be implemented first. The resulting code is
similar to the C implementation, but benefits from a richer type system. With
these building blocks in place, we quickly adjusted to the way some constructs
have to be expressed (e.g. enumerations, pass by reference, global variables).

A bigger challenge is specifying correct and verifiable properties. Some prop-
erties are straightforward to express or have proof obligations even generated
automatically, like absence of arithmetic overflows or out of bound accesses.
Other properties require recursive lemmas to encode inductive proofs in Stain-
less. The examples in Sect. 6.1 were only verifiable with assistance by the formal
verification experts in the group.

4 Thanks to Georg Stefan Schmid for an implementation idea of this feature.

From Verified Scala to STIX File System Embedded Code Using Stainless 405

The file callgraph.pdf hasn’t been created from callgraph.dot yet.
Run ‘dot -Tpdf -o callgraph.pdf callgraph.dot’ to create it.
Or invoke LATEX with the -shell-escape option to have this done automatically.

Fig. 3. Flight Software using the file system (top), and the hardware drivers (bottom)
were not modified. Only the file system was ported to Scala. Bridge functions, written
in C, connect the two implementations when function signatures differ.

static array uint8 toGenCArray(const void∗ x, int len) {
return (array uint8) { (uint8 t∗)x, len };

}
void stream write(MemStream s∗ s, void∗ buf, uint32 t bytes) {

stream write scala(s, toGenCArray(buf, bytes));
}

Fig. 4. Converting raw pointers to bounded arrays is trivial, due to the low level of C
code. GCC optimizes these conversions, making it a zero-cost abstraction.

6.5 Integration into the Existing C Code Base

In most cases, the generated C code can be integrated trivially in the existing
C code base, because it has identical signatures. However, some concepts can be
expressed in multiple ways in C. For example, the existing C code freely mixes
arrays, raw pointers and bounded pointers, whereas the generated C code rep-
resents arrays as structs. Similarly, the existing code exploits the liberal C type
system and preprocessor macros, which the generated code does not do. In such
cases, it becomes necessary to convert between different representations at the
interfaces. The required conversions are implemented as small, inlined functions
with negligible overhead (Fig. 4). The call graph in Fig. 3 of the FSWrite func-
tion shows the STIX flight software and hardware drivers written in C, the file
system in Scala, and how the bridge functions act as interfaces in-between.

6.6 Generated Code Performance, Memory, and Code Size Impact

In this case study we generate approximately 1 kLOC of C code from around
6 kLOC of Scala code (for implementation, specification and proof hints), which
replaces a similar number of original C code. We compared the original flight soft-
ware C code to the generated C code quantitatively and qualitatively. We focus
our attention on file system metadata operations and microbenchmarks. The
measurements were performed on an engineering model of the flight hardware.
The engineering model contains 62’022 files in 7 partitions. During boot, the file
system initialization code reads and processes all flash blocks. The next three
tests operate on a particular file in the file system. A file is read, deleted, and
finally written again. These operations perform a name-based lookup internally.
Finally, we perform in-memory data microbenchmarks: endianness conversion

406 J. Hamza et al.

Table 2. Quantitative comparison between the original, hand-written C code and
automatically generated C code. The reported sizes include the benchmark code. We
report averaged results from 250 runs.

Original C Generated C

Code size 513 072 bytes 514 368 bytes (+0.3%)

Data size 21 824 bytes 21 744 bytes (−0.4%)

Boot time 539 288 ms 560 305 ms (+3.9%)

Read file (32 kb) 183 ms 176 ms (−3.8%)

Write file (32 kb) 238 ms 242 ms (+1.7%)

Delete file 5 ms 9 ms (+55.6%)

Little-Endian decoding (224 kb) 404 ms 199 ms (−50.7%)

Little-Endian encoding (224 kb) 797 ms 1006 ms (+26.2%)

Compression (106 samples) 20 506 ms 20 566 ms (+0.3%)

and sample compression. It is important to note that we compare the generated
C code to a hand-tuned C implementation. The performance is comparable to
the original C code for high-level operations (Table 2).

Significant increases in code size would not be acceptable: The CPU instruc-
tion cache has a limited capacity of only 256 instructions and significant perfor-
mance drops occur when inner loops exceed this limit. Measurements confirm
that the code and data sizes stayed almost identical. This is expected, as we
carefully declared the data structures to correspond exactly to their existing C
counterparts to ensure interoperability. The small data size reduction is caused
by the replacement of a look-up table in the C version with an equivalent look-up
function in Scala. The manual inspection of the resulting assembly code shows
that GCC produces virtually identical outputs for inner loops in both cases.

We found that minor, innocent differences between the original and gener-
ated C code can have significant performance effects. For example, the extreme
performance gaps observed in the Endian conversion microbenchmarks are not
a result of major differences in the original and generated C code, but instead
the result of different inlining decisions of the GCC compiler.

For quick operations, like file deletion, the performance overhead of bridge
functions (see previous chapter) can become significant. However, the overhead
is acceptable in the context of the overall system for our use case.

7 Discussion and Conclusions

We have presented an approach for verifying embedded software implementa-
tions. The approach can be used to incrementally verify software by rewriting
parts of it in a memory safe language and using source-to-source translation to
produce C code that integrates into a large software ecosystem written in C.

To make this approach work, we needed to make substantial improvements
to the original verifier, which was initially aimed at functional programs with

From Verified Scala to STIX File System Embedded Code Using Stainless 407

memory allocated on the heap. We improved support for bitvector data types,
including unsigned data types not present on the JVM. Furthermore, we added
supported non-local return from functions, translating such code to compute a
value of Either type (disjoint sum) encoding normal or early return outcome. We
introduced new specification constructs for loops with such early returns.

A substantial change was to accommodate the use of global, statically allo-
cated memory. We preserved the design of Stainless where developers must use
parameters to pass mutable parts of the heap and thus document function side
effects. The design is convenient in Scala because function parameters can be
declared implicit and omitted at the function call sites. To ensure that generated
code uses only statically allocated memory that is appropriately initialized, we
proposed a model that specifies initial values of fields of cases classes. Our code
generator also recognizes data structure invariants that constrain Scala array
sizes to be compile-time reducible to a constant; it maps such arrays to C arrays
of constant size.

The executable Scala code we wrote in our case study has imperative flavor,
so one may ask whether the use of Scala and Stainless was justified. We argue
that it is justified, for several reasons. The first reason is the ability to use Scala
as a unified memory-safe Scala notation for both code and specifications. Indeed,
even in imperative code of our case study, all control structures we used remain
valid Scala; the language remains memory safe by design. Moreover, majority
of lines of code in the case study is non-executable Scala code used to express
preconditions, post-conditions, invariants, and proof hints (such as intermediate
assertions and recursive functions expressive inductive proofs). These specifica-
tion (ghost) constructs widely use functional programming idioms with recursive
functions and recursive data types. Ghost code never executes in the resulting
system: Stainless proves it correct and eliminates it during code generation.
The net result is that executable code is efficient, yet the developer has used
constructs that belong to the same language for both code and specifications.
In particular, for aspects of code that are purely functional, Scala functions
serve as their own specification. This in contrast to verification systems where
implementation and specification live in separate domains, which often results
in unnecessary specification effort and a steeper learning curve for users.

Using our approach we verified components of the file system on the STIX
instrument of the Solar Orbiter satellite. In this process we have identified and
corrected several errors in the original system. We then established that the
ported component of the code is free of run-time errors and that it satisfies basic
invariants. The code size and performance of the generated code were on par
with the original C code. We thus hope we presented a piece of evidence for
feasibility of formal verification in embedded system domain.

One possibly misleading aspect of our case study is that we started with
an existing C code base, so one may be tempted to attribute a necessary cost
to porting C to Scala. Of course, having an existing C code is not necessary
for developing new systems: they can be written in Scala and Stainless to start
with, taking verification goal into consideration from the beginning. Developing

408 J. Hamza et al.

libraries of verified Stainless code in the future would thus make formally verified
approach more cost effective and avoid the danger of errors in existing or interface
code. Our work thus may help realize the vision [19] of using Scala broadly as
a modern language for for mission critical systems, creating synergies with the
other uses of Scala in runtime monitoring [35], simulation [29], and probabilistic
safety assessment [10].

References

1. Amani, S., et al.: Cogent: verifying high-assurance file system implementations.
In: Conte, T., Zhou, Y. (eds.) Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2016, Atlanta, GA, USA, 2–6 April 2016, pp. 175–188. ACM (2016).
https://doi.org/10.1145/2872362.2872404

2. Antognini, M.: Extending Safe C Support In Leon. Master’s thesis, EPFL (2017).
http://infoscience.epfl.ch/record/227942

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

4. Beckert, B., Moskal, M.: Deductive verification of system software in the verisoft
XT project. Künstliche Intell. 24(1), 57–61 (2010). https://doi.org/10.1007/
s13218-010-0005-7

5. Blanc, R.W., Kneuss, E., Kuncak, V., Suter, P.: An overview of the Leon verifica-
tion system: verification by translation to recursive functions. In: Scala Workshop
(2013)

6. Blanc, R.W.: Verification by Reduction to Functional Programs. Ph.D. the-
sis, EPFL, Lausanne (2017). https://doi.org/10.5075/epfl-thesis-7636, http://
infoscience.epfl.ch/record/230242

7. Bloom, G., Sherrill, J.: Scheduling and thread management with RTEMS. ACM
Sigbed Rev. 11(1), 20–25 (2014)

8. Bornholt, J., Kaufmann, A., Li, J., Krishnamurthy, A., Torlak, E., Wang, X.:
Specifying and checking file system crash-consistency models. In: Conte, T., Zhou,
Y. (eds.) Proceedings of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS 2016,
Atlanta, GA, USA, 2–6 April 2016, pp. 83–98. ACM (2016). https://doi.org/10.
1145/2872362.2872406

9. Bornholt, J., Kaufmann, A., Li, J., Krishnamurthy, A., Torlak, E., Wang, X.: Spec-
ifying and checking file system crash-consistency models. In: Proceedings of the
Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 83–98 (2016)

10. Buyse, M., Delmas, R., Hamadi, Y.: ALPACAS: a language for parametric assess-
ment of critical architecture safety. In: Møller, A., Sridharan, M. (eds.) 35th
European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 194, pp. 5:1–5:29. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://
doi.org/10.4230/LIPIcs.ECOOP.2021.5

11. Chajed, T., Chen, H., Chlipala, A., Kaashoek, M.F., Zeldovich, N., Ziegler, D.:
Certifying a file system using crash Hoare logic: correctness in the presence of
crashes. Commun. ACM 60(4), 75–84 (2017). https://doi.org/10.1145/3051092

https://doi.org/10.1145/2872362.2872404
http://infoscience.epfl.ch/record/227942
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/s13218-010-0005-7
https://doi.org/10.1007/s13218-010-0005-7
https://doi.org/10.5075/epfl-thesis-7636
http://infoscience.epfl.ch/record/230242
http://infoscience.epfl.ch/record/230242
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://doi.org/10.1145/3051092

From Verified Scala to STIX File System Embedded Code Using Stainless 409

12. Chajed, T., Tassarotti, J., Theng, M., Jung, R., Kaashoek, M.F., Zeldovich, N.:
GoJournal: a verified, concurrent, crash-safe journaling system. In: Brown, A.D.,
Lorch, J.R. (eds.) 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, 14–16 July 2021, pp. 423–439. USENIX Association
(2021). https://www.usenix.org/conference/osdi21/presentation/chajed

13. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, 17–20
August 2009. Proceedings. Lecture Notes in Computer Science, vol. 5674, pp. 23–
42. Springer (2009). https://doi.org/10.1007/978-3-642-03359-9 2

14. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

15. Daněk, M., Kafka, L., Kohout, L., Sỳkora, J., Bartosiński, R.: The LEON3 proces-
sor. In: UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs, pp. 9–14.
Springer (2013). https://doi.org/10.1007/978-1-4614-2410-9

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Haller, P., Loiko, A.: LaCasa: lightweight affinity and object capabilities in Scala.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 272–291. Asso-
ciation for Computing Machinery, New York, NY, USA (2016). https://doi.org/
10.1145/2983990.2984042

18. Hamza, J., Voirol, N., Kunčak, V.: System FR: formalized foundations for the
Stainless verifier. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.
org/10.1145/3360592

19. Havelund, K., Bocchino, R.: Integrated modeling and development of component-
based embedded software in Scala. In: Margaria, T., Steffen, B. (eds.) Leverag-
ing Applications of Formal Methods, Verification and Validation - 10th Interna-
tional Symposium on Leveraging Applications of Formal Methods, ISoLA 2021,
17–29 October 2021, Rhodes, Greece, Proceedings. Lecture Notes in Computer
Science, vol. 13036, pp. 233–252. Springer (2021). https://doi.org/10.1007/978-3-
030-89159-6 16

20. Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated Full-
System verification. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pp. 165–181. USENIX Association, Broomfield,
CO, October 2014. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/hawblitzel

21. Inria, C., contributors: Early history of coq. https://coq.inria.fr/refman/history.
html (2021)

22. Jouvelot, P., Gifford, D.K.: Algebraic reconstruction of types and effects. In: Wise,
D.S. (ed.) Conference Record of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Orlando, Florida, USA, 21–23 January 1991,
pp. 303–310. ACM Press (1991). https://doi.org/10.1145/99583.99623

23. Kim, S., Xu, M., Kashyap, S., Yoon, J., Xu, W., Kim, T.: Finding bugs in file
systems with an extensible fuzzing framework. ACM Trans. Storage 16(2), 10:1–
10:35 (2020). https://doi.org/10.1145/3391202

https://www.usenix.org/conference/osdi21/presentation/chajed
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-1-4614-2410-9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2983990.2984042
https://doi.org/10.1145/2983990.2984042
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1007/978-3-030-89159-6_16
https://doi.org/10.1007/978-3-030-89159-6_16
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://coq.inria.fr/refman/history.html
https://coq.inria.fr/refman/history.html
https://doi.org/10.1145/99583.99623
https://doi.org/10.1145/3391202

410 J. Hamza et al.

24. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

25. Krucker, S., et al.: The spectrometer/telescope for imaging X-rays (STIX).
Astronom. Astrophys. 642, A15 (2020)

26. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementa-
tion of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2014, 20–21
January 2014, San Diego, CA, USA, pp. 179–192. ACM (2014). https://doi.org/
10.1145/2535838.2535841

27. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

28. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

29. Mehlitz, P., Shafiei, N., Tkachuk, O., Davies, M.: RACE: building airspace simu-
lations faster and better with actors. In: 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pp. 1–9 (2016). https://doi.org/10.1109/DASC.2016.
7777991

30. Moore, J.S.: Milestones from the Pure Lisp theorem prover to ACL2. For-
mal Aspects Comput. 31(6), 699–732 (2019). https://doi.org/10.1007/s00165-019-
00490-3

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002). https://doi.org/
10.1007/3-540-45949-9 5

32. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL. Formal
Aspects Comput. 31(6), 675–698 (2019). https://doi.org/10.1007/s00165-019-
00492-1

33. Robby, Hatcliff, J.: Slang: the Sireum programming language. In: Margaria, T.,
Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA), pp. 253–273. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-89159-6 17

34. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

35. Shafiei, N., Havelund, K., Mehlitz, P.C.: Actor-based runtime verification with
MESA. In: Deshmukh, J., Nickovic, D. (eds.) Runtime Verification - 20th Interna-
tional Conference, RV 2020, 6–9 October 2020, Los Angeles, CA, USA, Proceed-
ings. Lecture Notes in Computer Science, vol. 12399, pp. 221–240. Springer (2020).
https://doi.org/10.1007/978-3-030-60508-7 12

36. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 23

37. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Scala Symposium (2015)

https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/DASC.2016.7777991
https://doi.org/10.1109/DASC.2016.7777991
https://doi.org/10.1007/s00165-019-00490-3
https://doi.org/10.1007/s00165-019-00490-3
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/978-3-030-89159-6_17
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-030-60508-7_12
https://doi.org/10.1007/978-3-642-23702-7_23

On the Termination of Borrow Checking
in Featherweight Rust

Étienne Payet1 , David J. Pearce2(B) , and Fausto Spoto3

1 LIM, Université de La Réunion, Saint Denis, France
etienne.payet@univ-reunion.fr

2 Victoria University of Wellington, Wellington, New Zealand
david.pearce@ecs.vuw.ac.nz

3 Dipartimento di Informatica, Università di Verona, Verona, Italy

fausto.spoto@univr.it

Abstract. A distinguished feature of the Rust programming language is
its ability to deallocate dynamically-allocated data structures as soon as
they go out of scope, without relying on a garbage collector. At the same
time, Rust lets programmers create references, called borrows, to data
structures. A static borrow checker enforces that borrows can only be
used in a controlled way, so that automatic deallocation does not intro-
duce dangling references. Featherweight Rust provides a formalisation for
a subset of Rust where borrow checking is encoded using flow typing [40].
However, we have identified a source of non-termination within the calcu-
lus which arises when typing environments contain cycles between vari-
ables. In fact, it turns out that well-typed programs cannot lead to such
environments—but this was not immediately obvious from the presen-
tation. This paper defines a simplification of Featherweight Rust, more
amenable to formal proofs. Then it develops a sufficient condition that
forbids cycles and, hence, guarantees termination. Furthermore, it proves
that this condition is, in fact, maintained by Featherweight Rust for well-
typed programs.

Keywords: Borrowing · Type checking · Rust · Termination

1 Introduction

The Rust programming language is seeing widespread use in areas such as sys-
tem programming [1,6,9,27], blockchain systems [15,36], smart contracts [2,57]
and more [3,7]. A key feature of Rust is its ability to automatically deallo-
cate dynamically allocated data when it goes out of scope. This differs from
most other programming languages, that either: require programmers to free
data structures explicitly (e.g., C/C++); or, rely on garbage collection to free

Work supported by the SafePKT subproject of the LEDGER MVP Building Pro-
gramme of the European Commission. Goal of the project is the analysis of Rust code
used in the PKT blockchain (https://pkt.cash).

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 411–430, 2022.
https://doi.org/10.1007/978-3-031-06773-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_22&domain=pdf
http://orcid.org/0000-0002-3519-025X
http://orcid.org/0000-0003-4535-9677
http://orcid.org/0000-0003-2973-0384
https://pkt.cash
https://doi.org/10.1007/978-3-031-06773-0_22

412 É. Payet et al.

unreachable data (e.g., Java, C#, etc.). The former approach is error prone
(e.g., use-after-free or free-after-free errors), whilst the latter is safe but costly
(garbage collection consumes resources and data may not be released in a timely
fashion).

In Rust, each data structure is owned by a variable [46]. Once that variable
goes out of scope, the data is freed as well. Rust also allows data to be lent
temporarily (e.g., as a function parameter) using borrows, which can be seen as
pointers in traditional programming languages (but without ownership). Since
borrows are access paths into data structures, the type checker of Rust must
enforce strict rules on their creation and lifetime. For example, a location cannot
be mutated as long as a borrow to it exists. To support this, data is divided into
two categories: that which can be copied (e.g., primitives); and that which must
be moved (e.g., mutable borrows). For the latter, assignments result in a transfer
of ownership from rightvalue to leftvalue. The Rust compiler performs borrow
checking to statically check that borrows are used safely (i.e. that automatic
deallocation does not create dangling pointers, that multithreaded code does
not generate race conditions, etc.).

Featherweight Rust (FR) formalises a subset of Rust and includes a proof
of correctness for borrow checking [40]. In particular, borrow checking is for-
malised as a flow-sensitive type system, whose types include primitives (such as
int), dynamically allocated data structures (collectively represented by a boxing
operator) and borrows of leftvalues, both for reading (immutable borrows) and
writing (mutable borrows). The type system rules are given by structural induc-
tion on the syntax of the Rust source code, and are hence well-founded. However,
they use, internally, a procedure to type leftvalues. Since borrows include other
leftvalues, we have discovered this procedure may enter an infinite loop and, in
such case, the borrow checker would not terminate.

Contribution. This paper provides a sufficient condition which ensures that the
borrow checker for Featherweight Rust terminates [40]. Our insight is that, for
well-typed programs, this condition already holds for typing environments cre-
ated during borrow checking. Hence, this is not a bug in Featherweight Rust
per se, but rather an important condition which was left implicit. Our approach
shows that data structures are linearizable at run time and, hence, that our
condition holds for the specific kind of type environments the borrow checker
builds during execution. This result is important in order to increase confidence
in the borrow checker of Rust. Moreover, it provides a notion of well-foundness
for the recursion used in the borrow checker, that future work can exploit in
order to prove other properties by induction. For example, this is a necessary
step towards a mechanical proof of Featherweight Rust.

2 Overview

This section illustrates various aspects of Rust related to memory allocation and
borrowing, and provides an initial connection with Featherweight Rust (FR). A
more detailed introduction to Rust can be found elsewhere [46,47].

On the Termination of Borrow Checking in Featherweight Rust 413

Rust deallocates the data owned by a variable as soon as that variable goes
out of scope. Consider the following, where the Box::new(13) allocates a new
box (i.e. location) on the heap which contains the integer 13:

1 fn deallocate1() -> i32 { // accepted by the borrow checker
2 let x = Box::new(13);
3 return 17;
4 }

Local variable x goes out of scope at the end of the function, hence Rust deallo-
cates the box there, automatically. Assignments move the ownership of a value
to their leftvalue. Consider the following:

1 fn deallocate2() { // rejected by the borrow checker
2 let x = Box::new(13);
3 {
4 let y = x;
5 }
6 println!("{}", x);
7 }

The assignment moves ownership of the box from x to y. Since y goes out of
scope when the inner block ends, the box is deallocated there. Consequently,
the print statement is trying to use deallocated data, i.e. it is trying to access
a dangling pointer. Correctly, the borrow checker of Rust rejects this. Consider
the following function now:

1 fn ok1() -> Box<i32> { // accepted by the borrow checker
2 let x = Box::new(13);
3 return x;
4 }

Here, ownership of the box is transferred from x to the return value, and sub-
sequently to the caller of the function. When variable x reaches the end of its
scope it no longer owns a value and, hence, Rust does not deallocate anything
inside ok1.

Things become more complicated if borrows of data structures exist. For
instance, the following function tries to return a borrow of a data structure that
has been already deallocated:

1 fn dangling() -> &Box<i32> { // rejected by the borrow checker
2 let i = Box::new(13);
3 let result = &i;
4 return result;
5 }

Local variable i owns the box and, when it goes out of scope at the end of the
function, the box is deallocated. Variable result takes an immutable borrow of i
(roughly a pointer to i without ownership). Thus, when the box is deallocated,
result becomes a dangling pointer which cannot safely be returned. Again,

414 É. Payet et al.

Rust rejects this function. Roughly, the borrow checker for FR [40] computes
the following typing (or type environment) at the end of the function:

{i → � int, result → &i}
For simplicity, FR uses int to collectively represent integer types in Rust

(e.g., i32, i64, etc.). Likewise, �T corresponds with Box<T> and provides the
only form of dynamically allocated data in FR. Finally, &w (resp. &mut w),
where w is a leftvalue, is the type of an immutable (resp. mutable) borrow.
Furthermore, since the borrow checker allows arbitrary leftvalues here (i.e. not
just variables), we can have types such as &∗∗y.

Mutable borrows are a sort of temporary ownership of a value. As a con-
sequence, that value can be modified only through the borrow, for the whole
duration of the borrow. Any other attempt to modify the value is rejected. Con-
sider for instance the following function:

1 fn writes_to_borrowed() { // rejected by the borrow checker
2 let v = 13;
3 let w = 17;
4 let mut y = &v;
5 let x = &y;
6 y = &w;
7 println!("{}{}{}{}", x, y, v, w);
8 }

Here, the y=&w statement is trying to modify the leftvalue y that, however, has
been borrowed at the previous line. Correctly, the borrow checker rejects this
function. It computes the following typing just before the y=&w statement:

{v → int, w → int, y → &v, x → &y}
from where it is apparent that y is borrowed and, therefore, the subsequent
assignment y=&w is rejected.

Borrows in previous examples are immutable: the borrowed value can be read
from them, but cannot be modified from them. Borrows can also be mutable,
meaning that they allow one to modify the borrowed value, with the dereference
operator *. In this sense, a mutable borrow takes full responsibility about the
borrowed value, for its whole lifetime. When a mutable borrow to a value exists,
that value cannot be written nor read from any other path. Consider for instance
the following function:

1 fn reads_mutably_borrowed() { // rejected by the borrow checker
2 let mut z = 13;
3 let y = &mut z;
4 let x = z;
5 println!("{}{}{}", x, y, z);
6 }

On the Termination of Borrow Checking in Featherweight Rust 415

The statement x=z tries to read z, that has been mutably borrowed at the
previous line. Hence, the borrow checker rejects this function. It computes the
typing

{z → int, y → &mut z}
just before x=z, from where it is apparent that z is mutably borrowed there.
Furthermore, if line 4 above was replaced with let x=&z, the program would
still be rejected.

3 Preliminaries

This section provides a formal, simplified presentation of Featherweight Rust
(FR) [40]. This retains the key features of FR relevant to our discussion but, for
brevity, omits other aspects. Roughly speaking, the main simplifications are:

– Compatibility. The original formulation of FR supports a notion of partial
type. This allows the “shadow” of a variable’s type to be retained in the
environment after it has been moved, such that subsequent re-assignments
can be checked for compatibility. Since this is not important here, we reduce
these shadow types to a single “dangling” type.

– Borrows. The original formulation of FR models borrows using sets of leftval-
ues. This allows FR to be easily extended with control-flow constructs, but is
not strictly necessary for the core calculus. Since this makes our presentation
more complex without adding anything significant, we restrict borrows to a
single leftvalue.

– Misc. We have transformed some definitions, originally given as typing rules,
into functions (such as type and move later). This makes them more compact
and simplifies proofs involving them.

Definition 1 (LVals). We assume a set of variables Vars. A context κ ⊆ Vars
is a finite set of variables in scope. The set LVκ of leftvalues over κ is:

w :: = x | ∗w,where x ∈ κ.

The root of a leftvalue is then defined as:

root(x) = x if x ∈ Vars

root(∗w) = root(w).

Definition 2 (Expressions). The set of expressions e is defined as follows
where i ranges over integer literals:

e :: = i | w | &w | &mut w | box e

Definition 3 (Terms). We assume a set Lifetimes of lifetimes l which decorate
blocks of code. The set of terms t is defined as (where x ∈ Vars and l ∈ Lifetimes):

t :: = w = e | let mut x = e | { t1 ; . . . ; tn }l

416 É. Payet et al.

Intuitively, variables declared in a block with lifetime l have lifetime l and are
deallocated at the end of the block. Lifetimes are important for the borrow
checker to ensure borrows do not outlive their referents and become dangling.
The following illustrates a simple (invalid) program:

{ let mut x = 0; let mut p = &x; { let mut y = 1; p = &y; }m }l

This program creates a dangling reference when the inner block completes and,
hence, is rejected by the borrow checker.

The types used in FR are a simplification of those found in Rust, and include
only primitive types (such as int) or structures dynamically allocated in memory
(collectively represented by a box), but can also refer to a borrow or mutable
borrow of a leftvalue.

Definition 4 (Types). The set of types over a context κ is defined as follows
(where w ∈ LVκ):

Tκ :: = int | &w | &mut w | � Tκ | dangling

Here, type dangling is given to a variable whose value has been moved, that
is, assigned to another owner.1 Consequently, the value exists but cannot be
accessed from that variable anymore.

Definition 5 (Declared Types). The set of declared types, T l, over κ asso-
ciates types with lifetimes. We define |T l| = T and lifetime(T l) = l.

Rust distinguishes types with copy semantics and types with move seman-
tics. Values whose type has copy semantics are copied upon reading, while val-
ues whose type has move semantics are moved instead, in the sense that their
original container loses the ownership to the value. Only mutable borrows and
dynamically allocated data (i.e. boxes) have move semantics.

Definition 6 (Copy and Move). Let T ∈ Tκ. Then T has move semantics,
and we write move(T), if and only if T = &mut w or T = �T ′ for some T ′. In
all other cases, T has copy semantics, and we write copy(T).

Another useful notion is that of full types. They are types that do not contain
dangling. This notion is important because, as we will see in Sect. 4, only values
with full type can be borrowed in Rust.

Definition 7 (Full type). A type T ∈ Tκ is full if and only if dangling does
not occur inside T . We write it as full(T).

We define now the typings, or type environments, that is, information about
the types of the variables in scope at a given program point, with their lifetime.

1 This is a simplification of the dangling(T) type in [40], that embeds the shadow type
T of a value that has been moved away.

On the Termination of Borrow Checking in Featherweight Rust 417

Definition 8 (Typing). Given a context κ, a typing τ over κ is a map from
each variable v ∈ κ to a type T and a lifetime l. We write this as τ(v) = T l.

The types used in a typing can include borrows and mutable borrows. The
basic idea of the borrow checker is that the root of the borrowed leftvalues
(mutable or not) can only be used in a restricted way [40].

Definition 9 (Read/Write Prohibited). Let κ be a context and τ a typing
over κ. Then w ∈ LVκ is read prohibited in τ , written as readProhibited(w, τ), if
root(w) occurs in a mutable borrow inside τ . Moreover, w is write prohibited in
τ , written as writeProhibited(w, τ), if root(w) occurs in a borrow or in a mutable
borrow inside τ .

A typing provides type and lifetime information for variables in scope, and
this naturally extends to leftvalues. The following is a translation2 of Def. 3.11
in [40]. It can be seen as a recursive algorithm for typing leftvalues and, as such,
it is heavily used in the borrow checker. The algorithm queries the typing when
the leftvalue is actually a variable, and dereferences borrows and boxes when
the leftvalue contains one or more * operations, further recurring in the case
of borrows. Types int and dangling cannot be dereferenced, hence the algorithm
fails on them.

Definition 10 (LVal Typing). Given a context κ, a typing τ over κ and
w ∈ LVκ, the partial function type(w, τ) yields the type and lifetime of w in τ :

type(x, τ) = τ(x)

type(∗w, τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined if type(w, τ) is undefined
undefined if |type(w, τ)| = dangling

undefined if |type(w, τ)| = int

type(w′, τ) if |type(w, τ)| = &w′

type(w′, τ) if |type(w, τ)| = &mut w′

T l if type(w, τ) = (�T)l.

Definition 10 is clearly recursive, both on the structure of w and on the leftvalues
contained in the borrows or mutable borrows that occur in the typing. In general,
that recursion is not well-founded. In algorithmic terms, this means that this
algorithm for typing leftvalues might not terminate. Consider for instance the
typing {x → &∗x}: the definition of type(∗x, τ) ends in an infinite loop. This
example can be arbitrarily complicated, through the use of more involved cycles
that pass through more variables. As a consequence, the natural question is to
understand when the recursion in Definition 10 is well-founded and if that is
always the case when it is used by the borrow checker of Featherweight Rust.

2 This definition is given as a type system in [40] and as a recursive function here.

418 É. Payet et al.

4 Borrow Checking

The borrow checker is formalized as a flow-sensitive type system [39] whose rules
bind the typing τ before the evaluation of a term t to the typing τ ′ after that
evaluation. We write this as τ, l � t � τ ′, where l is the enclosing lifetime of t
(i.e. that of the enclosing block). On expressions, the typing rules provide the
inferred type T of the expression as well: τ, l � e : T � τ ′.

4.1 Typing Expressions

T-Const. This rule applies to integer constants. Their evaluation yields a value
of type int and does not modify the typing:

τ, l � i : int � τ

T-Copy. This rule applies to leftvalues whose type has copy semantics. Their
evaluation yields their value, while the typing remains unchanged. The rule
requires that the leftvalue can be accessed for reading:

Tm = type(w, τ) copy(T) ¬readProhibited(w, τ)
τ, l � w : T � τ

T-Move. This rule applies to leftvalues whose type has move semantics. Their
evaluation yields their value, but the ownership of the value is moved away from
the leftvalue. Because of this, the typing gets modified, by letting the old con-
tainer of the value get the dangling type (i.e. so it cannot be used anymore). As
a consequence, reading, from a leftvalue, a value with move semantics amounts
to writing into its old container and requires write permission:

Tm = type(w, τ) move(T) ¬writeProhibited(w, τ)
τ, l � w : T � move(w, τ)

where the move function modifies the binding for the root of w:

move(w, τ) = τ [root(w) �→ strike(w, τ(root(w)))]

with

strike(x, T l) = danglingl

strike(∗w, (�T)l) = (� |strike(w, T l)|)l.

The function strike is undefined otherwise. We note also there are no cases for
borrows since one cannot move out of a borrow in Rust.

T-ImmBorrow. The evaluation of a borrow expression requires the borrowed
leftvalue to be readable and have full type (only values with full type can be
borrowed in Rust):

full(|type(w, τ)|) ¬readProhibited(w, τ)
τ, l � &w : &w � τ

On the Termination of Borrow Checking in Featherweight Rust 419

T-MutBorrow. The evaluation of a mutable borrow expression requires the bor-
rowed leftvalue to be writable and have full type (only values with full type can
be borrowed in Rust). Moreover, Rust requires that the borrowed leftvalue never
traverses an immutable borrow:

full(|type(w, τ)|) ¬writeProhibited(w, τ) mutable(w, |τ(root(w))|, τ)
τ, l � &mut w : &mut w � τ

where

mutable(x, T, τ) = true
mutable(∗w,�T, τ) = mutable(w, T, τ)

mutable(∗ ∗ · · · ∗︸ ︷︷ ︸
n

x,&mut w, τ) = mutable(∗ · · · ∗︸ ︷︷ ︸
n

w, |τ(root(w))|, τ).

T-Box. The evaluation of a box expression simply recurs on the boxed expression:

τ, l � e : T � τ ′

τ, l � box e : �T � τ ′

4.2 Typing Terms

T-Block. The execution of a block of statements simply recurs on each statement.
At the end, the variables declared inside the block get dropped away. We assume
that variables cannot be redefined inside a block, hence there is no risk of a name
clash.

τ, l � t1 � τ1 . . . τn−1, l � tn � τ ′

τ, l � {t1; . . . ; tn}m � drop(m, τ ′)

where

drop(m, τ) = {x → T l | x ∈ dom(τ), τ(x) = T l and l 	= m}.

T-Declare. The declaration of a fresh variable x evaluates its initialization expres-
sion e and binds x to the type of e, decorated with the lifetime of the block of
code where the declaration is evaluated:

x 	∈ dom(τ) τ, l � e : T � τ ′

τ, l � let mut x = e � τ ′[x → T l]

T-Assign. The assignment of a value to a leftvalue w requires w to be writable.
In that case, the assigned expression is evaluated and assigned to w. This is
modelled through the write function below. Since w can be more complex than
a single variable, the assignment might actually update a variable in a mutable
borrow reachable from the root of w. This is reflected in the (quite complex)
definition of write, that we take from [40] where more details can be found:

τ, l � e : T � τ ′ τ ′′ = write(τ ′,w, T) ¬writeProhibited(w, τ ′′)
survives(T, lifetime(type(w, τ)), τ ′)

τ, l � w = e � τ ′′

420 É. Payet et al.

where
write(τ, ∗ · · · ∗︸ ︷︷ ︸

n

x, T) = apply(x, update(τ, n, |τ(x)|, T))

where

update(τ, 0, T ′, T) = 〈τ, T 〉
update(τ, n + 1,�T ′, T) = expand(update(τ, n, T ′, T))

update(τ, n + 1,&mut w, T) = 〈write(τ, ∗ · · · ∗︸ ︷︷ ︸
n

w, T),&mut w〉

and

apply(y, 〈τ, T 〉) = τ [y → T l] where lifetime(τ(y)) = l

expand(〈τ, T 〉) = 〈τ,�T 〉.

It is important to observe that if write modifies a type, it is that of x or that of
variables inside the mutable borrows in τ .

Function survives(T,m, τ) determines if all leftvalues contained in the borrows
or mutable borrows inside the type T have a type whose lifetime is m or is larger
than m. Hence they survive to the end of the lifetime m. The motivation of this
constraint in rule T-Assign is to guarantee that, when a variable v can reach
another variable v′, the lifetime of v′ is equal or larger than the lifetime of
v. Otherwise, the deallocation of v′ (at the end of its lifetime) would leave a
dangling reference reachable from v.

Consider for instance the following illegal program.

{let mut x = box 0; let mut y = &mut ∗x; ∗x = 1}l

Let us apply the typing rules above starting from τ1 = {}.

– (T-Const) τ1, l � 0 : int � τ1.
– (T-Box) τ1, l � box 0 : � int � τ1.
– (T-Declare) As x 	∈ dom(τ1), for τ2 = τ1[x → (� int)l] = {x → (� int)l} we

have τ1, l � let mut x = box 0 � τ2.
– (T-MutBorrow) By Definition 10, we have type(x, τ2) = τ2(x) = (� int)l,

hence type(∗x, τ2) = intl, so |type(∗x, τ2)| = int. Therefore, |type(∗x, τ)| is full
because dangling does not occur in it. Moreover, ¬writeProhibited(∗x, τ2) holds
because root(∗x) = x does not occur in a borrow nor in a mutable borrow
inside τ2. Finally, mutable(∗x, |τ2(root(∗x))|, τ2) = mutable(∗x, |τ2(x)|, τ2) =
mutable(∗x,� int, τ2) = mutable(x, int, τ2) = true. Consequently, we have
τ2, l � &mut ∗x : &mut ∗x � τ2.

– (T-Declare) As y 	∈ dom(τ2), for τ3 = τ2[y → (&mut ∗x)l], we have τ2, l �
let mut y = &mut ∗x � τ3.

– (T-Const) τ3, l � 1 : int � τ3.
– (T-Assign) We have write(τ3, ∗x, int) = apply(x, update(τ3, 1, |τ3(x)|, int)) =

apply(x, update(τ3, 1,� int, int)). Moreover, we have update(τ3, 1,� int, int) =

On the Termination of Borrow Checking in Featherweight Rust 421

expand(update(τ3, 0, int, int)) = expand(〈τ3, int〉) = 〈τ3,� int〉. Consequently,
write(τ3, ∗x, int) = apply(x, 〈τ3,� int〉) = τ3[x → (� int)l] = τ3. However,
¬writeProhibited(∗x, τ3) does not hold because root(∗x) = x occurs in the
mutable borrow &mut ∗x inside τ3. Therefore, (T-Assign) cannot be applied.

5 Termination

This section provides a sufficient condition for the termination of the typing
algorithm for leftvalues in Definition 10. It is based on the idea that the Rust
type system forces programmers to build linear data structures. This translates
into a notion of linearization for typings, meaning that they map variables in a
way that does not allow cycles: each variable is mapped into a type that only
contains variables of strictly lower ranks.

The same condition, with a similar proof, can be used to prove that the other
recursive functions used in the typing rules in Sect. 4 terminate, namely, mutable
and write. The proof is identical and we have chosen type as a representative.

Definition 11. A typing τ over a context κ is linearizable if there exists an
injective function φ : κ → N such that, for every x ∈ κ, if v occurs in τ(x) then
φ(x) > φ(v). We say that φ(y) is the φ-rank of y, or just the rank of y when φ
is clear from the context.

As an example, suppose κ = {x, y} where τ = {x → &yl, y → intl}, then
φ = {x → 1, y → 0} is a suitable linearisation. A linearizable typing induces an
ordering between leftvalues: either the number of dereferences decreases, or the
rank of their roots decreases.

Definition 12. Given a context κ and a linearizable typing τ over κ, the relation
> between leftvalues is the minimal relation such that

1. ∗w > w for every w ∈ LVκ, and
2. w1 > w2 if φ(root(w1)) > φ(root(w2)), for every w1,w2 ∈ LVκ.

Proposition 1. The relation > from Definition 12 is well-founded.

Proof. Assume by contradiction that > is not well-founded. Then there is an
infinite sequence of leftvalues s = w0 > w1 > · · · > wn > · · · . Since, in the first
rule of Definition 12, it is root(∗w) = root(w) and consequently φ(root(∗w)) =
φ(root(w)), we conclude that the rank of the root of the leftvalues decreases
at most |κ| times in s or remains constant. Hence, there is a finite k such that
φ(root(wk)) = φ(root(wk+i)) for all i ≥ 0. This means that, from k onwards, only
rule 1 of Definition 12 applies. But that rule strictly decreases the size of the
leftvalues and consequently cannot be applied indefinitely. This is incompatible
with the hypothesis that s is infinite. �

Since > is well-founded, it can be used in proofs by induction, as below.

422 É. Payet et al.

Proposition 2. If a typing τ over κ is linearizable, then the algorithm for com-
puting type in Definition 10 terminates.

Proof. We actually prove a stronger statement, namely that, given w ∈ LVκ:

1. type(w, τ) terminates;
2. if a variable v occurs in type(w, τ) then φ(root(w)) > φ(v).

We proceed by induction on w.

– The base case is when w is actually the variable x of lowest rank. By
Definition 10, it is type(x, τ) = τ(x) hence it terminates and no variable
occurs in it, since (Definition 11) the rank of those variables should be even
lower, which is impossible.

– Assume now that both 1 and 2 hold for all leftvalues w′′ such that w > w′′.
If w is a variable x, then type(x, τ) = τ(x) hence type(w, τ) terminates and
every variable v that occurs in τ(x) is such that φ(x) > φ(v) (Definition 11).
Hence both 1 and 2 hold for w as well. If, instead, w = ∗w′′ for a suitable
w′′, then w > w′′ (Definition 12) and by inductive hypothesis we know that 1
and 2 hold for w′′. The computation of type(∗w′′, τ) first recurs on type(w′′, τ)
(Definition 10).

• In the first, second and third case of Definition 10, also the computation
of type(∗w′′, τ) terminates and property 2 is vacuously true.

• In the sixth case of Definition 10, the computation of type(∗w′′, τ) ter-
minates and |type(w′′, τ)| = � |type(∗w′′, τ)|. Since w′′ and ∗w′′ have the
same root, condition 2 lifts from w′′ to ∗w′′.

• In the fourth and fifth case of Definition 10, by inductive hypothesis we
know that 2 holds for w′′ and consequently the root of w′ in Definition 10
has lower rank than the root of w′′. That is, w′′ > w′. By inductive
hypothesis, both 1 and 2 hold for w′. Hence type(w′, τ) terminates and
type(∗w′′, τ) terminates and yields type(w′, τ). Every variable that occurs
in type(w′, τ) has lower rank than root(w′′) = root(w). Therefore, both 1
and 2 hold for w also in this case. �

6 Preservation of Linearizability

This section proves that the rules from Sect. 4 preserve linearizability: when
applied from a linearizable typing τ , they can only lead to a linearizable typing
τ ′. By Proposition 2, this means that the recursion used for typing leftvalues in
those rules is well-founded, hence a borrow checker that implements those typing
rules terminates (assuming that it starts from the empty, linearizable typing).
The proof proceeds by rule induction.

Some rules from Sect. 4 obviously preserve linearizability, since they do not
modify the typing (for them, τ = τ ′). This is the case of rules T-Const, T-Copy,
T-ImmBorrow and T-MutBorrow. Rule T-Box preserves linearizability by a simple
application of rule induction.

On the Termination of Borrow Checking in Featherweight Rust 423

For rule T-Move, it is τ ′ = move(w, τ). The intuition is that strike can only
make the set of variables in the right-hand side of the typing smaller. Therefore,
it can never make τ ′ non-linearizable. This is proved below.

Lemma 1. If T-Move is applied from a linearizable typing τ and leads to a
typing τ ′, then also τ ′ is linearizable.

Proof. By definition of move, the only difference between τ and τ ′ is at r =
root(w). The variables that occur in τ ′(r) are included in those that occur in
τ(r) (strike can only strike away part of the type τ(r)). Hence the same function
φ that exists for τ (Definition 11) shows that τ ′ is linearizable. �

Rule T-Block is used at the end of a block of code, where the set S of local
variables declared in the block goes out of scope. It removes the type bindings
for the variables in S from the initial typing τ , through function drop. Therefore,
T-Block preserves linearizability, by rule induction and by the following result,
whose intuition is that the removal of bindings from a typing can never make it
non-linearizable.

Lemma 2. If drop is applied from a linearizable typing τ and leads to a typing
τ ′, then also τ ′ is linearizable.

Proof. The difference between τ and τ ′ is that τ ′ is missing some bindings for
some variables that have been projected away. Therefore, the same function φ
that exists for τ (Definition 11) can be used to show that τ ′ is linearizable. �

Rule T-Declare models the declaration of a new variable x, bound to an
expression e. The evaluation of e leads to a typing τ ′ that, by rule induction, is
linearizable. As a final step, this rule enlarges τ ′ with a binding for x. Since x
is fresh (x 	∈ dom(τ)), variable x does not occur in the right-hand side of that
binding. Namely, the rule leads to a new typing τ ′′ = τ ′[x → T l] where T l is
the type of e, such that x does not occur in T . Therefore, the next result entails
that T-Declare preserves linearizability.

Lemma 3. Let τ be a linearizable typing for the context κ; let x 	∈ κ, T ∈ Tκ

(hence x does not occur in T) and l be a lifetime. Then τ ′ = τ [x → T l] is
linearizable as well.

Proof. Consider the function φ that shows that τ is linearizable (Definition 11).
Let us extend φ into an injective function φ′ that gives x the highest rank:

φ′ = φ

[

x → 1 + max
y∈κ

φ(y)
]

.

Given y ∈ κ, it is φ′(y) = φ(y) > φ(v) if there is v that occurs in τ(y) = τ ′(y).
Since x is fresh, v is distinct from x and we conclude that φ′(y) > φ′(v) if v occurs
in τ ′(y). Since x does not occur in T , it is φ′(x) = 1+maxy∈κ φ(y) > φ(v) = φ′(v)
if v occurs in T l = τ ′(x). �

424 É. Payet et al.

Rule T-Assign computes the type T of the value of the assigned expression
e, which leads to a typing τ ′. By rule induction, τ ′ is linearizable. Then the
rule writes that value into a leftvalue w. It performs this by computing τ ′′ =
write(τ ′,w, T). The following result shows that τ ′′ is linearizable as well.

Lemma 4. Let τ be a linearizable typing for the context κ; let w ∈ LVκ and
T ∈ Tκ. Let τ ′ = write(τ,w, T) be the application of function write in rule T-
Assign, used there to assign the type T to w. Then τ ′ is linearizable as well.

Proof. The function write modifies a set of variables v1, . . . , vn in τ to compute
τ ′. The type of the other variables remains unchanged from τ to τ ′. Since the
type system guarantees that borrowed variables are not modified [40], this means
that v1, . . . , vn do not occur in the borrows in τ . Moreover, the variables in
the borrows in T do not contain v1, . . . , vn, because such variables are either
x = root(w), and the rule T-Assign forbids the presence of x in the borrows in
T (¬writeProhibited in rule T-Assign); or they are inside mutable borrows in τ
(last case of update), in which case they would be mutably borrowed and the
type system would have forbidden to read mutably borrowed variables in order
to compute the type T (see rule T-MutBorrow). This means that such v1, . . . , vn

only occur in the left-hand side of the bindings of τ ′. Consider now the function φ
that shows that τ is linearizable (Definition 11). Let us extend φ into an injective
function φ′ that gives v1, . . . , vn the highest ranks:

φ′ = φ

[

vi → i + max
y∈κ\{v1,...,vn}

φ(y)
∣
∣
∣
∣ 1 ≤ i ≤ n

]

.

For every y ∈ κ \ {v1, . . . , vn}, it is φ′(y) = φ(x) > φ(v) = φ′(v) if v occurs in
τ(y) = τ ′(y). Moreover, by construction, φ′(vi) > φ(v) = φ′(v) if v occurs in
τ ′(vi). That is, φ′ is linearizable as well. �

7 Related Work

Reed provided an early formalisation of Rust called “Patina” which shares some
similarities with FR [43]. For example, it employs a flow-sensitive type system for
characterising borrow checking which operates over a “shadow” heap. However,
the scope was significantly larger and, as such, soundness was not established.
Likewise, Wang et al. presented a formal, executable operational semantics for
Rust called KRust [51]. This was defined in K—a rewrite-based executable
semantic framework particularly suited at developing operational semantics [45].
A large subset of Rust was defined in this way and partially validated against
the official Rust test suite. Another example is that of Weiss et al., who pre-
sented an unpublished system called Oxide which bears striking similarity with
FR [54]. Oxide was also inspired by Featherweight Java to produce a relatively
lean formalisation of Rust. Again, it includes a far larger subset of Rust than
FR (perhaps making it more middleweight than featherweight). There are also
differences, as Oxide doesn’t model boxes explicitly and has no clear means

On the Termination of Borrow Checking in Featherweight Rust 425

to model heap-allocated memory. The comprehensive work of Jung et al. pro-
vides a machine-checked formalisation for a realistic subset of Rust [18]. This
includes various notions of concurrency and extends to libraries using unsafe
features by identifying library-specific verification conditions which must be sat-
isfied to ensure overall safety. However, concessions were understandably neces-
sary given the enormity of this formalisation task (which, in fact, amounts to
roughly 17.5KLOC of Coq). For example, the system presented does not resemble
the surface syntax of Rust but, rather, is more akin to the Mid-level Interme-
diate Representation (MIR) used within the Rust compiler. Underpinning this
development is Iris—a framework for high-order concurrent separation logic [20–
22]. This enables, for example, a notion of borrow propositions which correspond
with borrowing in Rust. Later work also adapted RustBelt to account for relaxed
memory operations and, in the process, uncovered a previously unknown data
race in Arc [10]. Separately, Jung et al. explored compiler optimisations in the
context of unsafe code [19]. This is challenging because, within unsafe code, the
usual guarantees provided by Rust may not hold (e.g., multiple mutable borrows
of the same location can exist). The proposed system, Stacked Borrows, provides
an operational semantics for memory accesses in Rust. This introduces a strong
notion of undefined behaviour such that a compiler is permitted to ignore the
possibility of such programs when applying optimisations (roughly in line with
how C compilers handle undefined behaviour [35]).

The potential hazards of unsafe code have been a considerable focus of aca-
demic work and, indeed, numerous bugs and security advisories have already
been uncovered in real-world programs [5,56]. Large-scale studies indicate the
potential effects of unsafe code can propagate widely [14] and that, whilst unsafe
code is typically small and self-contained, it is most often used for interoper-
ability with external systems [4]. As such, interest has been growing in using
state-of-the-art verification tools here. For example, Rudra employs a straight-
forward static analysis to scan for bug patterns related to error handling [5].
Nevertheless, the tool identified 74 new CVE’s (including two in the standard
library). In a similar vein, MirChecker employs a mixed-domain static anal-
ysis to track both numeric and symbolic values and operates directly on Rust’s
Mid-level Intermediate Representation (MIR) [30]. Amongst other things, for
this example, this tool can detect integer overflows and use-after free errors in
unsafe code. Another good example is SMACK [8,11] which translates LLVM IR
to Boogie/Z3 and was recently extended to Rust [7]. CRUST [48] is similar, but
uses CBMC [24] as the backend. CRUST specifically focuses on memory safety
violations (such as multiple mutable references to the same data). An interesting
feature is support for automatically deriving “proof drivers” using a technique
reminiscent of that for test case generation [38]. KLEE employs symbolic exe-
cution and was also extended to support Rust [31,32]. Unlike CRUST this tool
considers a larger number of errors, including arithmetic overflow and buffer
overruns (i.e., not just those related to memory unsafety). Prusti exploits auto-
mated theorem proving as the core technique, building on Viper [3]. This makes
Prusti more comparable with tools such as Dafny [25,26] and Whiley [41,42,49]

426 É. Payet et al.

which require additional programmer annotations to verify memory-safety prop-
erties (e.g. adding specifications to clarify method side-effects, etc.). However,
Prusti exploits aliasing information inherent in Rust programs to avoid much of
this. Instead, programmers can focus on specifying properties of interest, such as
the absence of arithmetic overflow or buffer overruns. Unfortunately, Prusti does
not consider unsafe code (though it presumably could be managed with further
specification). Other relevant tools here include Miri [19,37] (a partially symbolic
interpreter for MIR), RustHorn [34] (a specialised verifier based on Constrained
Horn Clauses) and Rupair (a tool for detecting buffer overflows) [16]. We also
note verification techniques developed to tackle specific features of Rust, such as
closures [55] and trait objects [50]. Several works have also focused on dynamic
approaches which typically limit the effect unsafe code can have. For example,
XRust partitions the heap such that memory accessed in unsafe code is isolated
from that of safe code [33]. Similarly, Galeed preserves the memory safety guar-
antees of Rust in using (unsafe) C++ code [44]. Again, this works by isolating
the heap accessible in Rust from that accessible within C++. Wang et al. also
employ segregated heaps for Rust/C++ applications within the secure enclave
capability offered by Intel SGX [52,53].

Finally, researchers have been exploring the use of Rust’s type system for stat-
ically enforcing strong guarantees. For example, Levy et al. report on experiences
developing an Embedded OS in Rust [29]. They argued that “At first examina-
tion, Rust seems perfectly suited for this task”. Unfortunately, they were hindered
by ownership in Rust preventing otherwise safe resource sharing. For example,
an interrupt handler could not retain a mutable borrow of a shared resource
(e.g., a network stack). Such situations are not safe in general. However, in their
particular setting this was safe due to guarantees provided by the OS and, to
workaround, they instead relied on unsafe code. In subsequent work, they fur-
ther reduced this unsafe code to a single trusted primitive, TakeCell [27,28].
This is similar to Cell but instead of copying values out as Cell does (which
can introduce overhead), it provides a mechanism for code to execute “within”
the cell with, effectively, zero overhead. As such, it provides a form of mutual
exclusion. Similarly, Jespersen et al. describe a library for implementing session
types in Rust which was an adaptation of communication patterns in Servo [17].
Session types require a linear usage of channels which naturally fits with the
ownership in Rust and, as such, afforded some safety guarantees [23]. It is also
interesting to note that Rust is the primary language used to develop Mozilla’s
experimental rendering engine, Servo, and accounts for some 800KLOC.
Anderson et al. examined how the use of Rust here addresses many common
security issues [1]. For example, the use of uninitialised memory has led to prob-
lems in Firefox. They argue many aspects of Rust (e.g., good interoperation with
C) make it well suited here, but found situations where its ownership model was
problematic, such as for data structures which do not assume a single owner “in
order to provide multiple traversal APIs without favoring the performance of one
over the other”. In a similar vein, Emre et al. consider the problem of automati-
cally translating C programs into safer Rust programs [13]. Whilst noting many

On the Termination of Borrow Checking in Featherweight Rust 427

challenges, their aim, amongst other things, was to minimise the use of unsafe
code and mut annotations. Finally, Dewey et al. focus on the integrity of the
Rust type checker itself as this underlies many of the safety guarantees provided
by Rust [12]. By leveraging techniques from constraint logic programming, they
managed to fuzz test the Rust compiler using over 900M automatically generated
programs and, in the process, uncovered numerous bugs.

8 Conclusion

This paper has provided a proof of termination for the borrow checker of Feath-
erweight Rust. As a consequence, it supports the use of that framework for the
specification and analysis of the behaviour of Rust programs. The proof is based
on the particular property of Rust, that imposes a strict discipline to program-
mers, so that only linearizable data structures can be constructed at run time.
In this sense, the proof sheds more light on the reason of such design choice of
the language.

References

1. Anderson, B., et al.: Engineering the servo web browser engine using Rust. In:
Proceedings of the ICSE, pp. 81–89 (2016)

2. Ashouri, M.: Etherolic: a practical security analyzer for smart contracts. In: Pro-
ceedings of the SAC, pp. 353–356. ACM Press (2020)

3. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for mod-
ular specification and verification. In: Proceedings of the OOPSLA, page Article
147 (2019)

4. Astrauskas, V., Matheja, C., Poli, F., Müller, P., Summers, A.J.: How do program-
mers use unsafe Rust? In: Proceedings of the OOPSLA, pp. 136:1–136:27 (2020)

5. Bae, Y., Kim, Y., Askar, A., Lim, J., Kim, T.: RUDRA: finding memory safety
bugs in Rust at the ecosystem scale. In: Proceedings of the SOSP (2021, to appear)

6. Balasubramanian, A., Baranowski, M.S., Burtsev, A., Panda, A., Rakamari, Z.,
Ryzhyk, L.: System programming in Rust: beyond safety. OS Rev. 51(1), 94–99
(2017)

7. Baranowski, M., He, S., Rakamarić, Z.: Verifying Rust programs with SMACK. In:
Proceedings of the ATVA, pp. 528–535 (2018)

8. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

9. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value stor-
age node in Amazon S3. In: Proceedings of the SOSP, pp. 836–850. ACM Press
(2021)

10. Dang, H.-H., Jourdan, J.-H., Kaiser, J.-O., Dreyer, D.: RustBelt meets relaxed
memory. In: Proceedings of the POPL, page Article 34 (2020)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-78800-3_24

428 É. Payet et al.

12. Dewey, K., Roesch, J., Hardekopf, B.: Fuzzing the Rust typechecker using CLP
(t). In: Proceedings of the ASE, pp. 482–493. IEEE (2015)

13. Emre, M., Schroeder, R., Dewey, K., Hardekopf, B.: Translating C to safer Rust,
pp. 1–29 (2021)

14. Evans, A.N., Campbell, B., Soffa, M.L.: Is Rust used safely by software developers?
In: Proceedings of the ICSE, pp. 246–257. ACM Press (2020)

15. Hjálmarsson, F.Þ., Hreiðarsson, G.K., Hamdaqa, M., Hjálmtýsson, G.: Blockchain-
based e-voting system. In: Proceedings of the CLOUD, pp. 983–986 (2018)

16. Hua, B., Ouyang, W., Jiang, C., Fan, Q., Pan, Z.: Rupair: towards automatic buffer
overflow detection and rectification for Rust. In: Proceedings of the ACSAC, pp.
812–823. ACM Press (2021)

17. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for Rust. In: Pro-
ceedings of the Workshop on Generic Programming (WGP), pp. 13–22 (2015)

18. Jung, R., Jourdan, J., Krebbers, R., Dreyer, D.: RustBelt: securing the foundations
of the Rust programming language. In: Proceedings of the POPL, pp. 1–34 (2018)

19. Jung, R., Dang, H.-H., Kang, J., Dreyer, D.: Stacked borrows: an aliasing model
for Rust. In: Proceedings of the POPL, page Article 41 (2020)

20. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
Proceedings of the ICFP, pp. 256–269. ACM Press (2016)

21. Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. JFP 28, e20 (2018)

22. Kaiser, J.-O., Dang, H.-H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for
weak memory: reasoning about release-acquire consistency in iris. In: Proceedings
of the ECOOP, vol. 74, pp. 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017)

23. Kokke, W.: Rusty variation: deadlock-free sessions with failure in Rust. In: Pro-
ceedings of the ICE, pp. 48–60 (2019)

24. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

25. Rustan, K., Leino, M.: Developing verified programs with Dafny. In: Joshi, R.,
Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, p. 82. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27705-4 7

26. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

27. Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., Levis, P.: The case for
writing a kernel in Rust. In: Proceedings of the APSYS, pp. 1:1–1:7 (2017)

28. Levy, A., et al.: Multiprogramming a 64kb computer safely and efficiently. In:
Proceedings of the SOSP, pp. 234–251. ACM Press (2017)

29. Levy, A.A., et al.: Ownership is theft: experiences building an embedded OS in
Rust. In: Proceedings of the Workshop on Programming Languages and Operating
Systems, pp. 21–26 (2015)

30. Li, Z., Wang, J., Sun, M., Lui, J.C.S.: MirChecker: detecting bugs in Rust programs
via static analysis. In: Proceedings of the CCS, pp. 2183–2196. ACM Press (2021)

31. Lindner, M., Aparicius, J., Lindgren, P.: No panic! Verification of Rust programs
by symbolic execution. In: Proceedings of the INDIN, pp. 108–114 (2018)

https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-27705-4_7
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

On the Termination of Borrow Checking in Featherweight Rust 429

32. Lindner, M., Fitinghoff, N., Eriksson, J., Lindgren, P.: Verification of safety func-
tions implemented in Rust - a symbolic execution based approach. In: Proceedings
of the INDIN, pp. 432–439 (2019)

33. Liu, P., Zhao, G., Huang, J.: Securing unsafe Rust programs with XRust. In:
Proceedings of the ICSE, pp. 234–245. ACM Press (2020)

34. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for
rust programs. In: ESOP 2020. LNCS, vol. 12075, pp. 484–514. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44914-8 18

35. Memarian, K., et al.: Exploring C semantics and pointer provenance. In: Proceed-
ings of the POPL, pp. 67:1–67:32 (2019)

36. Ning, P., Qin, B.: Stuck-me-not: a deadlock detector on blockchain software in
Rust. Procedia Comput. Sci. 177, 599–604 (2020)

37. Olson, S.: Miri: an interpreter for Rust’s mid-level intermediate representation.
Technical report (2016)

38. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java. In:
Proceedings of the OOPSLA (Companion), pp. 815–816 (2007)

39. Pearce, D.J.: Sound and complete flow typing with unions, intersections and nega-
tions. In: Proceedings of the VMCAI, pp. 335–354 (2013)

40. Pearce, D.J.: A lightweight formalism for reference lifetimes and borrowing in Rust.
ACM TOPLAS 43(1), Article 3 (2021)

41. Pearce, D.J., Groves, L.: Designing a verifying compiler: lessons learned from devel-
oping Whiley. In: SCP, pp. 191–220 (2015)

42. Pearce, D.J., Utting, M., Groves, L.: An introduction to software verification with
Whiley. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430,
pp. 1–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3 1

43. Reed, E.: Patina: a formalization of the Rust programming language. Technical
report (2015)

44. Rivera, E., Mergendahl, S., Shrobe, H.E., Okhravi, H., Burow, N.: Keeping safe
Rust safe with Galeed. In: Proceedings of the ACSAC, pp. 824–836. ACM Press
(2021)

45. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. JLAP 79(6),
397–434 (2010)

46. Rust Team: The Rust programming language. doc.rust-lang.org/book/. Accessed
05 Jan 2016

47. Rust Team: The rustonomicon - the dark arts of advanced and unsafe Rust pro-
gramming. doc.rust-lang.org/nomicon/. Accessed 31 Mar 2020

48. Toman, J., Pernsteiner, S., Torlak, E.: Crust: a bounded verifier for Rust. In:
Proceedings of the ASE, pp. 75–80 (2015)

49. Utting, M., Pearce, D.J., Groves, L.: Making Whiley Boogie! In: Proceedings of
the IFM, pp. 69–84 (2017)

50. VanHattum, A., Schwartz-Narbonne, D., Chong, N., Sampson, A.: Verifying
dynamic trait objects in Rust. In: Proceedings of the ICSE-SEIP (2022, to appear)

51. Wang, F., Song, F., Zhang, M., Zhu, X., Zhang, J.: KRust: a formal executable
semantics of Rust. In: Proceedings of the TASE, pp. 44–51 (2018)

52. Wang, H., et al.: Towards memory safe enclave programming with Rust-SGX. In:
Proceedings of the CCS, pp. 2333–2350. ACM Press (2019)

53. Wang, P., et al.: Building and maintaining a third-party library supply chain for
productive and secure SGX enclave development. In: Proceedings of the ICSE-
SEIP, pp. 100–109. ACM Press (2020)

54. Weiss, A., Patterson, D., Matsakis, N.D., Ahmed, A.: Oxide: The essence of Rust
(2019)

https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-17601-3_1
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/nomicon/

430 É. Payet et al.

55. Wolff, F., B́ılý, A., Matheja, C., Müller, P., Summers, A.J.: Modular specification
and verification of closures in Rust. In: Proceedings of the OOPSLA, pp. 1–29
(2021)

56. Xu, H., Chen, Z., Sun, M., Zhou, Y.: Memory-safety challenge considered solved?
An empirical study with all Rust CVEs. CoRR, abs/2003.03296 (2020)

57. Zhang, F., et al.: The Ekiden platform for confidentiality-preserving, trustworthy,
and performant smart contracts. IEEE S&P 18(3), 17–27 (2020)

More Programming Than Programming:
Teaching Formal Methods in a Software

Engineering Programme

James Noble(B) , David Streader, Isaac Oscar Gariano ,
and Miniruwani Samarakoon

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand
kjx@comp.vuw.ac.nz

http://ecs.vuw.ac.nz/∼kjx

Abstract. Formal methods for software correctness are critical to the future of
software engineering—and so must be an essential part of software engineer-
ing education. Unfortunately, formal methods are often resisted by students due
to perceived difficulty, mathematicity, and practical irrelevance. We redeveloped
our software correctness course by taking a programming intensive approach,
using the solver-aided language Dafny to provide instant formative feedback via
automated assessment. Our redeveloped course increased student retention and
resulted in the best evaluation for the course for at least ten years.

Keywords: Formal methods · Software engineering · Education · Dafny

1 Introduction

In the last 20 years, formal methods for software verification have moved from an
esoteric research topic [38] to a set of increasingly practical tools, and from doctoral
study to undergraduate degrees. Victoria University of Wellington’s Computer Science
and Software Engineering programmes include a course, SWEN324 “Software Cor-
rectness” that teaches software verification. We often call this course “Programming
Made Hard” because 100 students repeat the assignments they completed years ago in
introductory programming courses, but now must specify those programs’ behaviour
and verify that their implementations meet those specifications. In 2020 we redesigned
SWEN324 using the solver-aided Dafny language, supported by Leino’s Dafny text-
book [36]; we are just finishing teaching the 2021 version of the course at time of writ-
ing. Students and teaching staff found the use of Dafny very positive: the 2020 course
offering received the highest overall evaluation for at least ten years.

Although very positive overall, students found Dafny difficult to learn and to use,
and our informal observations as teachers are that many of these difficulties stem
from “accidental” complexity introduced by the Dafny tool. This accidental complexity
obscures the “essential” complexity of learning the fundamentals of software verifica-
tion, and then applying those techniques to verifying simple programs [9]. In this paper
we reflect on our experience teaching SWEN324, focusing particularly on our course
design and issues with formal tooling.
c© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 431–450, 2022.
https://doi.org/10.1007/978-3-031-06773-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_23&domain=pdf
http://orcid.org/0000-0001-9036-5692
http://orcid.org/0000-0002-4881-0999
https://doi.org/10.1007/978-3-031-06773-0_23

432 J. Noble et al.

2 Background

Formal verification of software systems has been a significant research topic for in com-
puter science for 50 years or more [28]. Tools such as Dafny, SAW, SPIN are increas-
ingly mature enough to support industrial application [23,47] but the main barrier to
adoption remains a lack of software engineers trained in their use [20]. To address this
problem, there have been a number of studies on the usability of formal methods, and
tools that support formal verification. Beckert and Grebing [6] for example used the
Cognitive Dimensions framework [22] to evaluate the usability of the KeY proof tool;
Grebing and Ulbrich [21] followed this up with a user study.

Tools have also been (re)designed to better support programmers in the task of ver-
ifying their programs. Whereas the Dafny tool, although interactive, requires program-
mers to verify their whole program statically, Gradual Dafny [18] allows programmers
to choose between static (“assert”) and dynamic (run time “assume”) verification for
each invariant. Other gradual verification approaches have shown similar promise at
partial verification, but with choices embodied in the tools themselves [3,5,45,48].
Coming at the problem from the other side, Müller & Ruskiewicz [41] demonstrated
how standard program debuggers could be used to debug verification failures, by gen-
erating a modified program that reproduced the failure when run, and Christakis [12]
integrated concolic testing tools and lower level solver debuggers into Dafny’s IDE.

More recently, some of the most interesting recent program verification work has
been using the Rust language [8]. Eschewing garbage collection, Rust has an own-
ership types system that is used to manage memory allocation, object lifetimes, and
permissible inter-object references. Program verification tools such as Prusti [4] and
RustBelt [29] leverage ownership information to support verification without needing
memory structures to be described separately.

Finally, as formal methods’ industrial use has increased, so has their relevance to
education [10,15,17,30]; Zhumagambetov [50] offers a relatively recent systematic lit-
erature review. Aceto and Ingolfsdottir [1], for example, have described a recent course
at the University of Reykjavik, where students can participate in a three week inten-
sive formal methods course at first year. Yatapanage [49] describes a recent second
year course taught at De Montfort University that applied formal methods to concur-
rent programming—although the paper’s title highlights most students’ concerns when
approaching this topic “Students Who Hate Maths and Struggle with Programming”.
Kamburjan and Gratz [30] showed how a custom interactive proof tool can generate a
positive effect on student engagement; Körner and Krings [32] describe how pedagogi-
cal changes to inquiry-based learning can support the user of formal tools. In some ways
closest to the approach we present here, Ettinger describes how Dafny has been used
for six years at Ben-Gurion University to support teaching refinement-style “correct-by-
construction” programming [16], and Blazy describes a similar course based on Why3
[7]. Güdemann describes how verification tools can even support similar learning strate-
gies even in applied computer science courses taught using C [24].

More Programming Than Programming 433

3 SWEN324 Software Correctness

Formal methods have been taught as part of Computer Science and Software Engineer-
ing programmers at VUW since 1984. Unfortunately, formal methods are often resisted
by students due to perceived difficulty, mathematicity, and practical irrelevance—and
SWEN324 had similar problems. In 2021 we had the opportunity to redevelop the
course, as a companion to a relatively new course SWEN326 “Safety Critical Systems”,
that focused on correct software engineering in a wider context, including software pro-
cesses, testing, and abstract modelling (based on Alloy). This meant that we were able
to refocus SWEN324 specifically on formal methods for software correctness based on
program proof.

Traditional Formal Course: We initially considered staying with a relatively straight-
forward, “traditional” formal methods course, introducing students to propositional and
predicate logic, then working up through weakest preconditions to Hoare logics and
their application in describing and reasoning about software systems, culminating in
pencil-and-paper proofs. After some debate, it was decided that this was not appro-
priate for several reasons. In particular, our students have already taken compulsory
courses including Boolean algebra and logic (as mathematics) and discrete logic (as
physics) during first year: we do not want students to regard this as “another maths or
physics course”—our earlier experience with such courses suggested that such a course
would not be popular [42]. On the other hand, our programme is heavily based around
programming, with all engineering majors requiring a full first year computer science
programme, and software engineering majors keen to take practical elective courses to
develop programming skill and experience [42,43].

Abstract Formal Modelling: We also considered taking an approach based on abstract
formal modelling. High-level tools, such as TLA+ [33], Alloy [27] or SPIN [26], sup-
port reasoning and mechanised checking of systems’ properties, based on abstract mod-
els of those systems, rather than actual programming and source code. It is clear that
these kinds of abstract formal models can play an important role in software engineer-
ing projects, at least in project’s the early stages, supporting design validation before a
single line of code has been written. Indeed, we had earlier taught a first-year course
(SWEN102) that attempted to give a gentle introduction to formal methods within a
more general context of software modelling, beginning with UML and moving through
to Alloy [42]. The idea was to present formal and informal approaches as different
points in a spectrum of approaches to describing software systems, rather than being
totally different subjects. We also wanted to ensure that students see software modelling
as a useful way of understanding systems, rather than just an exercise in learning new
notations, so we felt it was important that any formal notation we used be supported by
tools which allowed students to explore the consequences of the models they created.
This course was mostly successful on its own terms: even first year students were gen-
erally capable of domain modelling using Alloy, of translating functional requirements
into Alloy properties, and then able to analyse the Alloy models to demonstrate that the
requisite properties held (or explain why they did not).

434 J. Noble et al.

Unfortunately, our SWEN102 course was never widely popular: for better or for
worse, our cohort, privilege programming, over pretty much every other software engi-
neering activity or practice. For the SWEN102 approach to work, we first had to suc-
cessfully “sell” modelling, and then second to “sell” the advantage of formal models
over informal ones—where students simply did not see the relevance of the models to
the programming/software engineering tasks the expected to undertake. On the other
hand: SWEN102 demonstrated that even our early undergraduate students were capa-
ble of learning formal tools, constructing formal models, and handling propositional
and predicate logic.

Formalism as Programming: For this reason, we decided to base our SWEN324 course
redesign on the reverse of the traditional approach. Rather than progressing bottom up
from propositional logic to predicate logic, Hoare logic, and eventually perhaps exper-
imenting with a practical tool, we aimed to progress top down: starting with program-
ming language based tool, and then using that high-level tool as a context in which
we can present and teach the key concepts of software correctness—while offering the
majority of students an experience that feels like programming, rather than like doing
mathematics.

The latest version of this course—SWEN324 “Software Correctness” – adopted the
Dafny programming language and associated toolset, based on the Z3 solver and the
Visual Studio Code. Dafny provides what Leino has called “auto-active” verification
[37] in which verification is seamlessly incorporated into development practices and the
toolchain. It may be clearer to think of this approach as implicit verification where pro-
grammers annotate their programs with preconditions, postconditions, variants, invari-
ants, as in Eiffel [40], and do not interact directly with formal models or e.g. proof
trees. This is in contrast to explicit verification technologies such as Coq [11,44] where
programmers must interact with solvers by directly building proofs and proof trees,
potentially even extracting programs from those proofs. Dafny’s implicit approach still
offers many guarantees: Dafny attempts to prove programs totally correct by default, so
recursive methods and loops often require programmers to give variants to prove termi-
nation, and loops in particular generally require invariants to prove correctness. Array
and pointer accesses typically require invariants, assertions, or preconditions to ensure
all accesses are within bounds and variables are initialised and non-null. This means
that Dafny programmers (and thus students) interact with Dafny’s underlying prover
indirectly, at arm’s length, in terms of definitions in their programs and constructs in
the Dafny language, rather than having to learn explicit representations of proof.

Choice of Dafny: Dafny was selected for a number of pragmatic reasons: it is well
supported by a team in Amazon’s Automated Reasoning Group led by Rustan Leino,
has substantial publicly available on-boarding and tutorial material, including a full
book by Leino [36], an online playground at Rise4Fun, documentation available online,
and a developing academic community—and, frankly, because what little experience
the course staff had with suitable tools seemed most transferable to Dafny. Based on
our earlier experience, we hoped Dafny would offer a number of advantages over Alloy,
or more sophisticated tools like Coq [44] or Why3 [7]. First, Dafny offers a concrete,
ASCII-compliant syntax—being restricted to ASCII means students should feel some
familiarity with the notation: students would not need to learn how to type, let alone

More Programming Than Programming 435

pronounce, relatively esoteric characters such as α, δ, or o (little were we to know how
familiar alpha, delta, and omicron would become). Dafny’s syntax and semantics being
based on C� and Java should also be familiar. Students can use the development toolsets
they already know, such as VS Code, Eclipse, Git—particularly important for students
who need tools such as screen readers, magnifiers, or voice control to complete their
work.

Second, because Dafny is well supported by a toolset, we are able to rely on Dafny
itself to provide students rapid formative feedback—simply by requiring students to
submit their solutions via the Dafny verifier. In a very real sense, we are able to leverage
the “essential difficulty” of formal verification of correctness—that no only must stu-
dents implement a correct program, but they must also convince the Dafny prover that
their implementation is correct—to aid the students in that task. In simple cases, where
students’ focus on implementing programs, we can directly supply students with the
Dafny specifications and the tool itself will provide feedback: either their program ver-
ifies against the specification, or it does not. Where students’ focus is on writing speci-
fications, we can allow students to verify their solutions against hidden “oracle” speci-
fications, and again Dafny can check that the students’ specifications capture important
properties described by the oracles, or more straightforwardly, that the students’ speci-
fications and the oracles are mutually consistent [19].

Finally, because Dafny is relatively mature, there is a fair amount of material avail-
able online, which students are able to access as necessary. We were also able to use a
draft version of Leino’s Program Proofs textbook [36].

Continuous Automated Feedback: The ability for Dafny to provide feedback, and
that this course was targeted at third-year students—experienced both in programming
and in tertiary study—lead us to make this automated feedback a central feature of
the course. Again based on our department’s practice in teaching programming—with
which our students are very familiar!—we provide that feedback in two ways.

First, our “lectures” are centred around a weekly series of small “mastery” questions
about Dafny and verification, served from a simple website. This is similar to the exist-
ing Dafny Rise4Fun website, but simpler: we discuss this further in the next section.
The weekly questions are released at the start of each week, and students may discuss
the questions, may work in groups, ask for answers, and make any number of attempts
at answering them—but are expected to answer the vast bulk of these questions cor-
rectly. The time in “lectures” allows students to discuss any of the questions with the
class, lead by the course staff—in practice, the website lets us know which questions
students are currently finding difficult, and so we use that to guide choices. Because
of the very liberal rules around answering the mastery questions, we can work out the
solution to any weekly question in class, and even demonstrate the correct answer and
show it verifying: if students choose to pay little attention and just copy the provided
answer, so be it.

Second, we also incorporate automated feedback into larger summative individ-
ual assignments (again, we provide examples in the next section). Students can sub-
mit answers to the assignments as many times as necessary: by running each sub-
mission through the Dafny verifier, students then get immediate feedback about their
submission. This feedback is quite terse (just the number of assertions verified, or not
verified) because it is not intended to replace students’ use of IDEs or to substitute

436 J. Noble et al.

for their own attempts at verification—rather it is so students can judge their progress
through the course, and in particular, to know when they have completed each part of
each assignment. We are careful to ensure that every important concept required by the
summative assignments are covered by weekly questions before the assignment is due.
Thus, while we can discuss the summative assignments only in broad outline, we can
(and do) refer students to the relevant weekly questions which we can discuss in as
much detail and at as much length as necessary.

Course Design: As with all VUW engineering courses, SWEN324 is offered in one
twelve week semester, generally split into two six-week half-semesters. Figure 1 shows
the ideal course plan (for COVID reasons, an extra week’s break was substituted at
week 9 in 2020 and week 3 in 2021). There are four main topics in the course: learning
Dafny as a programming language; writing Dafny (method) specifications; verifying
those specifications against Dafny programs; and handling objects with mutable state.

Fig. 1. SWEN324 course plan.

Course Content: The resulting course covers most of the content Leino’s Programs
Proofs [36], although it does not explicitly address the foundational material. In more
detail: we address essentially all the “core” features of Dafny circa 2020, i.e. Dafny ver-
sion 2.3.0. This included Dafny methods and classes (imperative, and mutable); func-
tions and inductive datatypes (immutable, finitary); pre and postconditions; predicates
(Boolean functions); assumptions and assertions; compiled vs ghost code, well-founded
recursion and explicit termination measures, pattern matching, destructors; built-in col-
lections (arrays, sets, maps); loops, invariants, and variants; recursive specifications of
iterative programs (including transformations between general recursion, tail recursion,
and iteration); and representation invariants for dynamic data structures.

There are only two chapters of material from Program Proofs that we intentionally
overlook. Chapter 2 presents the mathematical foundations of Dafny’s program logic,

More Programming Than Programming 437

based on Hoare Logic and Weakest Preconditions. Where necessary, we discuss Dafny’s
semantics informally: we have not needed to refer the formal definitions. Chapter 5
presents the notion of proof and Dafny’s constructs (function lemmas, calc blocks)
that can support programmers in making explicit proofs. Perhaps more surprisingly we
have not needed this material either. Because Dafny is an implicit verification system,
students do not need to build proof objects, and they are not even able to see what proofs
Dafny’s solver many have constructed!

Course Assessment: The overall assessment of the course is shown in Fig. 2. A sig-
nificant fraction of the assessment supports the formative mastery questions, with the
balance taken up by four summative assignments, one for each part, and a reflective
essay. Each part of the course is addressed by around 25 weekly formative mastery
questions. Students who complete all the mastery questions and the first assignment are
well on the way to obtaining a bare pass; students who are hoping for an “excellent”
grade must complete most of the assignments correctly.

Fig. 2. SWEN304 assessment items.

These assessment weights also guide students time. VUW courses of this size (15
points) are rated at 150 h over the whole trimester—nominally 10 h per week over 15
weeks—12 lecture weeks and a three-week assessment period at the end. Allowing
approx. 25 h (2 h per week) to attend lectures, and another 25 h for background read-
ing, installing software, navigating Git, etc., that leaves 100 h of assessed work. The
assessment percentages offer a rough guide to the amount of time students should aim
to spend on each piece of work.

Course Objectives: The resulting course objectives are that, by the end of the course,
students should be able to:

1. Explain what it means for a system to be correct, what engineering techniques we
can use to increase confidence in correctness, and why this is important.

2. Use formal structures such as sets, functions, relations and sequences to model soft-
ware systems.

3. Use formal notations to specify desired properties of software systems, such as asser-
tions, pre- and postconditions, variants, and invariants.

4. Use formal tools to check that systems correctly implement their desired properties.
5. Use formal reasoning to explain why a particular system is correct with respect to a

specification.

The first objective is primarily tested by the essay: the other objectives by the assign-
ments and mastery questions.

438 J. Noble et al.

4 Assessment

To quote Tom Angelo [2], “most students are going to try to ‘study to the test.’”. What is
assessed is what we can expect students to (try to) learn. This is why we have restructured
SWEN324 around questions and assignments with automated feedback, rather e.g. than
traditional lecture content. In this section we present examples of the assessment items
we designed for SWEN324, to demonstrate the kind of problems students are able to
solve during the course.

4.1 Weekly Overview Questions

As discussed above, 20% of the assessment in SWEN324 is in the form of formative
weekly questions. Students can choose to answer any question at any time, and make
repeated attempts to answer each question. The point is formative, to support learn-
ing, rather than summative evaluation—although the system records when each student
successfully answers each question. Students can repeat completed questions (e.g. to
experiment with alternative solutions)—the question stays listed as completed.

Figure 3 shows the rudimentary web system that presents these questions to stu-
dents. The left-hand pane shows some Dafny code including a place-holder “[???]”;
this placeholder is replaced by whatever students type in to the right-hand pane. This
system was originally built by our colleague Marco Servetto to help students revise
their Java knowledge, and is well integrated with the other systems which we use in the
school: we have re-purposed this tool for Dafny.

The question in Fig. 3 (titled “First Past the Post”) is addressing a basic definition
of Boolean algebra: what is Dafny’s Boolean “exclusive-or” operator. This question
shows the advantage of the placeholder mechanism: potential solutions are necessarily
restricted to fit within the syntactic context of the placeholder. The solution to this
question is Dafny’s “!=” operator.

Fig. 3. Web interface for weekly questions.

More Programming Than Programming 439

Figure 4 shows the course-wide overview of the summary questions, showing how
many students have completed each question. This proved very used in tracking stu-
dents’ progress through the course overall, and in choosing lecture topics (i.e. which
questions we will discuss and then answer in lectures). Generally we aim to pick ques-
tions where that top 10–20% of students have answered successfully (we can lure them
into the discussion of their solutions) but the bulk of the class has not (so that they are
interested in learning how to solve those questions). This also allows us to choose not to
revisit questions that the vast majority of the class has already answered, even if some
stragglers have not—rather than taking up everyone’s class time with well understood
topics. Rather, we can direct stragglers e.g. to the recordings of the lectures where we
have answered those questions, or arrange to provide individual support.

Fig. 4. Overview of student progress.

It is worth reiterating that these questions are at least as important as resources
or content or prompts for lecture sessions, as questions that students must answer by
themselves. Fairly early on, for example, there is a relatively simple question that most
students get wrong:

//complete the following method which returns the "real"
//sum and product of its two real arguments
method SumAndDifference(a : real, b : real) [???]

//Hint: https: //www.youtube.com/watch?v=kqFPDrDWAHs

The point of this question is that the question title (“We’ll look at them together then
we’ll take them apart”) and method name (“SumAndDifference”) are inconsis-
tent with the comment on the method (“//.."real" sum and product”). This
inconsistency was originally introduced in error, however we kept it because of the valu-
able in-class discussion it engendered, about how comments can be misleading, as can

440 J. Noble et al.

method names, or alternatively tests or specifications can be incorrect. As it happens,
here the comment is wrong: the automated test indeed requires sum and difference not
sum and product.

The “First Past the Post” question illustrates how we use Dafny to revise Boolean
algebra. The questions get rather more sophisticated as the course progresses. For exam-
ple, the “Very Logical, Mr Spock” question also tests Boolean algebra, but requires stu-
dents to understand how a method’s control flow and assignments are summarised by
postconditions (“ensures”):

method logical(a : bool, b : bool, c : bool) returns (t : bool)
ensures [???]

{
t := false;
if (b) {

if (a) { t := true; } } else { t := false; }
if (c) { t := a; }

}

The “How many leaves” question requires students to write a recursive function to
calculate the size of a tree:

datatype Tree = Leaf | Node(left: Tree, right: Tree)
function method Size(t: Tree): nat
[???]

method Main() {
var tl: Tree := Leaf;
var tc: Tree := Node(Node(Leaf, Leaf),Leaf);
assert Size(tl) = 1;
assert Size(tc) = 3;
print " ",Size(tl)," ",Size(tc), "\n";

}

The “Hopalong” question requires students to define a termination measure, as
Dafny programs are total by default:

//insert a decreases clause so Dafny can prove termination
function hopalong(q: int, x : int, y : int, z : int) : int
[???]

{
var modulo := (x + y + z) % 3;

q + if (y ≤ 0) ∨ (z ≤ 0) ∨ (x ≤ 0) then 0 else
if (modulo = 0) then (hopalong(q+1, x + 3, y - 1, z + 2))

else if (modulo = 1) then (hopalong(q+3, x - 3, y , z - 1))
else (hopalong(q+5, x + 2, y, z - 10))

}

Our final example is an excerpt of the last of the weekly questions—the full exam-
ple presents 90 lines of code to students; another 30 lines of code for method imple-
mentations are omitted. This question is rather more complex, requiring students to

More Programming Than Programming 441

implement both the “Valid()” predicate to describe the class invariant of a complex
mutable object, and to manipulate the “Repr” ghost field that must track the auxiliary
implementation objects owned by the stack:

datatype StackModel = Empty | Push(val : int, prev : StackModel)

class Stack {
var values : array<int>
var capacity : nat
var size : nat

ghost const Repr : set<object>

//Define these two methods so that the hidden code below works
// constructor(capacity_ : nat)
// predicate Valid()
[???]

method push(i : int)
requires Valid()
ensures Valid()
modifies Repr
ensures capacity = old(capacity)

/*omitted*/

4.2 Assignments

The four Dafny assignments are very similar to the overview questions in spirit—but
with two main differences: they are undertaken using whichever Dafny IDE students
choose (usually Visual Studio Code); and students must upload complete Dafny files
into the school’s standard submission system, rather than using a specialised web inter-
face. Assignment questions are significantly larger than weekly questions. Whereas the
overview questions typically aim to teach one single verification concept or Dafny con-
struct, the assignments typically require students to combine techniques and link con-
cepts together. To guide students’ work, we again ensure rapid feedback by reporting
the results of Dafny attempting to verify each submission, and we allow students to
submit work any number of times. Space does not permit us to include full details of
assignment questions here—however some of the more interesting questions included:

1. Add annotations to the code of a vector sum (A1) or small sorting network (A1).
2. Print out the text of the song “Ten Green Bottles” (exactly as supplied, 1743 charac-

ters) but with a program shorter than 750 characters (A1).
3. Calculate the income tax payable by an individual New Zealander (A1).
4. Calculate with Carolingian duodecimal currency or interval arithmetic (A2).
5. Verify functional implementations of sets, lists, and maps (A2, A3).
6. Test if a string is a Palindrome (A4).
7. Implement search trees (A3), tries (A3), or balanced trees (A4).
8. Implement an object-oriented mutable map (A4).

442 J. Noble et al.

These questions obviously get harder as they go along. The first questions either
ask students to annotate existing code, or write code without specifications to introduce
students to the language. Even here, however, apparently simply programs such as “Ten
Green Bottles” (which we do not verify against any external specifications) still require
significant verification effort to be accepted by Dafny—at least four or five lines of
annotation out of a 25-line solution. Dafny needs to prove termination, and that all array
accesses are in bounds, and this necessitates preconditions constraining arguments on
all subsidiary methods and functions. The final assignment questions are as complex as
the final data structure examples from Program Proofs.

4.3 Essay

A reflective essay provides the last 20% of the course. This is the final assessment com-
ponent that students complete—although due to VUW’s regulations, it is due together
with the fourth Dafny assignment, as late as possible in the term. The core rubric for the
essay is straightforward: to write no more than 750 words reflecting on students’ “expe-
rience with verified programming in Dafny to ensure software correctness’, in the style
of a blog post aimed to communicate to other students, developers, or software engi-
neers. Students are invited to select a problem (typically from the final assignment, but
“in case of emergency” they may choose any programming problem) and then explain
how they used Dafny to specify, implement, and verify their chosen problem; to discuss
which features of Dafny made this easier (or harder); and if they had to do it again, what
they would do differently and why.

This essay fulfills two important purposes in the course design. Towards higher
marks, a VUW “A−” grade is 80%: a student who completes all the assignments per-
fectly but chose not to attempt the essay would get that grade. The essay thus enables
us to distinguish the truly outstanding “A+” students from the merely excellent “A” or
“A−”: students. At the other end of the grade distribution, reasonable attempts at the
weekly questions and the first two assignments should yield 40%: an essay that demon-
strates merely “adequate evidence of learning” is then sufficient to pass the course.

5 Experience with Dafny

Mathematics may still be taught via pencil and paper (or LATEX) but these days teaching
programming is impossible without a toolchain: a language implementation, a devel-
opment environment, and the other accoutrements students expect. Our course design
teaches verification as a specially intense kind of programming (“More programming
than programming is our motto” [46])—this requires a toolchain that is reliable, scal-
able, and supported enough to cope with daily use by hundreds of students. Luckily,
we found the current versions Dafny were certainly good enough for our purposes: we
were able to spend the vast majority of our efforts in teaching the practices and princi-
ples of verification, rather than working around problems and bugs in the tools. While
we encountered roughly one serious bug during each course offering so far, the Dafny
project team resolved them assiduously. Our overall experience with Dafny was very
positive.

More Programming Than Programming 443

Probably the biggest issue we encountered was just finding the resources – notably
staff time and effort—to support rapid feedback via automated marking of the weekly
questions and the assignments. The problem was not so much the necessary infras-
tructure, which is essentially a one-off cost, but the advance preparation needed for
automated marking of every assignment. Basically, marking must be complete before
an assignment can be released, rendering it no longer possible to write underspecified
assignments which point students in a general direction, wait until the assignment dead-
line, and then take as much time as necessary after the students have submitted their
work to work out the marks, the desired solutions, or even whether solutions are possi-
ble. All this work must now be completed beforehand.

That said, we did strike three more technical issues that could be addressed via
changes to Dafny’s design:

Program Testing: We encourage students to start by testing their implementations,
because it is easier to verify code that is correct than it is to verify incorrect code:-).
Dafny’s tight integration of proving and programming unfortunately means that pro-
grams cannot easily be tested until they are fully verified. We observed students contin-
ually “commenting out” assertions and preconditions to be able to test their programs,
and then undoing those comments to undertake verification. There are four related prob-
lems here.

First, Dafny’s requirements to prove all memory accesses safe, and that all programs
terminate, often mean even simple programs have to be heavily annotated just to com-
pile. A method to swap two array elements will require array reads and writes to be
in bounds; the obvious (and best practice) solution is to define method preconditions
which ensure method arguments are in bounds: but now all callers of the method must
themselves do enough to meet those preconditions.

Second, while annotations, assumptions, and non-totality declarations etc. can be
used to remove the need for some of these checks, they still require students to annotate
their programs explicitly, i.e. so students always have to deal with the checks even if
just to tell Dafny to ignore them!

Third, while Dafny does support command line options to e.g. ignore verification
and compile and run programs directly, verification is an all-or-nothing, static affair:
either verification is attempted for the whole program, or all specification and verifica-
tion constructs are ignored.

Fourth (and finally) the options to control verification are buried in the command
line, and are not surfaced in the Visual Studio Code IDE.

Following the example of Gradual Dafny [18] and Gradual Verification [3,5,48]
more generally should make testing easier. Ideally students would be able to run pro-
grams in a “test mode” where Dafny checks as many assertions, assumptions, and pre-
and postconditions as possible dynamically. Students could then express a series of unit
tests as Dafny assertions: if the program verifies, well and good; but if not, they would
still have the option of running the program and using print statements or host debug-
gers to interrogate program state. Recent Dafny releases [34] now support an expect
statement that does Gradual Dafny style dynamic checking: implementing this option
may be as simple as translating Dafny’s verification condition as expects rather than
asserts.

444 J. Noble et al.

Verification Debugging: Much of the work of verifying Dafny programs involves stu-
dents annotating their code—adding require and ensure clauses and assertions until the
verifier has enough information to discharge its proof obligations. Students find this
hard because it is not obvious what Dafny “knows” at any given program point: which
assertions Dafny is able to prove, which assertions Dafny is able to refute, and which
assertions Dafny is unable to answer (i.e. where the prover times out). We also observed
cases where Dafny is unable to verify an assertion because it does not have enough
information about variable values—this is particularly prevalent in code where e.g. stu-
dents have forgotten to write method postconditions, or have not realised a particular
postcondition is necessary. This manifests as Dafny being unable to verify an asser-
tion about a method’s return value, and simultaneously unable to verify the negation of
that same assertion. Even good students find this situation intensely frustrating. Ideally
Dafny would be able to give programmers more information about what it knows, e.g.
by querying its underlying solver [12].

Mutable Object Structure: Dafny is one of the few tools that can verify programs built
from composite structures of mutable objects using class invariants and representa-
tion sets. In practice, this requires either explicit definitions of “Valid” and “Repr”
attributes [36] which are verbose and complex, or implicit definitions generated via
the “autocontracts” attribute [35] which are concise but opaque. Few students were
able to use either mechanism effectively. Perhaps by building on work verifying Rust
programs, such as Prusti [4] and RustBelt [29], it should be possible to add ownership
annotations to fields and parameters, to check those annotations as with Rust’s bor-
row checker [14,31,39] and thus extend the implicit definitions already generated by
autocontracts.

We also encountered a number of pragmatic issues that arose with Dafny, but which
appear to be consequences of Dafny’s design choices, and as such are less amenable to
technical fixes.

Idiosyncrasies: Dafny’s syntax is sometimes idiosyncratic, which students found hard
to follow. To give just one example, here are a method and function to add two numbers:

method addM (a : int, b : int) returns (c : int) { c := a + b; }
function method addF (a : int, b : int) : int { a + b }

The syntax for declaring the return values are different (returns vs :); the syntax
for actually returning the results are different; a final semicolon is mandatory in the
method and forbidden in the function. Adding insult to injury, methods and functions
then perform very differently in the verifier:

0 var m := addM(x,y);
1 var f := addF(x,y);
2 assert m = x + y; //Fails to verify
3 assert f = x + y; //Verifies

More Programming Than Programming 445

Dafny verifies the assertion on line 4, because functions are incorporated into the veri-
fication context. Dafny fails to verify the assertion on line 3, however, because methods
are always abstracted by their postconditions, and the declaration of addM omits post-
conditions. There are reasons for these choices, but they do make the language more
difficult to learn.

Implicit vs. Explicit Verification: We have described as taking an implicit (aka “auto-
active” [37]) approach to verification. Our students, or Dafny programmers in general,
do not construct proofs explicitly, in some verification domain that reflects on the base
domain of the program: rather they work in an extended programming language domain.
That is, students focus on programs, and program verification, but not on the founda-
tions of logic, programming languages, and critically, not on proof. Our teaching prac-
tice builds on this implicit approach: students definitely need an implicit understanding
of the underlying formal concepts—because they will be incapable of completing any
work without that understanding—but we present those concepts completely within the
programming approach: we don’t discuss the semantics of programming languages,
weakest preconditions, the kind of inferences Dafny’s underlying solver is making, let
alone how it works. We approach software verification in the same way that most soft-
ware engineering courses approach statically-typed languages: students can understand
the benefits, and use the type systems, but could not give a type-theoretic explanation
for why their programs don’t compile.

Arguably the biggest weakness of this implicit approach is that it sidesteps the ques-
tion of proof. Dafny does not illustrate proofs of programs (other than symbolic dumps
designed for debugging Dafny). As a result, we do not expose students to formal proofs,
and in fact students never need to understand what a proof is.

We do teach that Dafny assertions can be used as “hints” to the verifier checker; we
also show how Dafny (ghost) functions can be used within specifications or assertions to
embody lemmas that Dafny cannot find itself. In the latter part of the course, questions
require (ghost) data and methods to model the state of imperative objects. We mention
Dafny’s calc statement that supports line-by-line reasoning only in passing.

We consider this a trade-off worth making: the course stays focused on program
verification, through a programming lens, and we use the time to allow students to
complete more significant examples with more complex verification constructs, rather
than teaching proof and necessarily working on smaller examples.

6 Evaluation

As part of VUW’s quality assurance process, we conducted a standard evaluation
of SWEN324. Under the terms of that process, we can only report the quantitative
results here. The quantitative questions employed a 5-point Likert scale (“Strongly
Agree/Agree/Neither Agree nor Disagree/Strongly Disagree” unless otherwise noted)
and employ both objective and affective questions. We received 19 questionnaires from
88 students nominally enrolled in the course when the evaluations where conducted.

Based on the quantitative feedback, over 70% of students either agreed or strongly
agreed that the course was well organised, and that its objectives were communicated

446 J. Noble et al.

well. 70% of students considered the workload “about right”, although of the balance,
20% considered the workload “too much” or “far too much” while only 5% considered
that it was “too little”.

Considering quality measures, most students considered the course overall as “very
good” (58%) or “excellent” (21%)—although one outlier did rank the course as “poor”.
Apart from that outlier, all evaluated students agreed or strongly agreed that what they
had learned in the course had been valuable, and over half that the course had stimulated
interest in the subject “a great deal”. This results in a median overall score or 2.0 “very
good”. Compared with other courses in the faculty, that is a slightly worse median (1.9),
but perhaps more relevant are comparisons with earlier offerings of more traditional
versions of the course. Over the last ten years, across many iterations of the course,
these have ranged from 3.8 “Poor” to 2.3 (approaching “Good”) with most offerings
around 2.6–2.7—i.e. this version seems substantially better.

Finally, given the focus of our course design on online tools and automatic marking
to provide rapid feedback, it is gratifying that 80% of students agreed or strongly agreed
that the “online components of the course contributed to my learning”. Over 90% agreed
or strongly agreed that “Assessment tasks have helped me to learn” and that “I received
helpful feedback on my progress.” This is about as strong evidence for the benefits of
the “programming style” approach we adopted in SWEN324, and the use of automated
marking and feedback, that one is ever likely to receive.

Overall we consider the experiment of our redesign of SWEN324 a success. Fol-
lowing this programming-centric approach, almost all students were able to demon-
strate enough engagement with practical software verification to pass the course, and
those students who chose to put in the necessary time and effort were able to complete
quite significant verification tasks. In spite of the “mastery” approach taken in much of
the course, the final assignments and essays, were sufficient to ensure a good spread of
grades across the course.

We are aware that the practical, pragmatic, programming focus of this approach
has some trade-offs and costs. While students are able to program with Dafny, their
knowledge of logic and indeed of formal methods and software verification is latent,
i.e. implicit. For example, students would be able to propose preconditions for a given
Dafny function (e.g. to avoid array bounds errors or invalid computation), and given
interaction with a Dafny IDE, to write preconditions that Dafny could verify: many
students could argue informally about why such preconditions were necessary. Because
the knowledge is not explicit, they would not be able to present the formal rationale
for those preconditions, to derive them from e.g. weakest preconditions, or to produce
a formal proof that those preconditions would definitively rule out crashes at run time.
We had hoped that these topics could be addressed in a follow-on fourth-year course,
however it seems we will not have that opportunity.

The other costs were essentially resources: all students needed access to the Dafny
tool at all times; technical support from tutors thus needed to be provided whenever
possible. Automated marking (both weekly questions and assignments) was essential
to maintaining that programming focus, and directly supported learning. Preparing the
automated questions, and then validating them by verifying several different solutions
also required significant time and effort, by both tutors and academic staff. Some of

More Programming Than Programming 447

this effort (e.g. weekly questions) could be amortised over multiple offerings of the
course, but most institutions would need to refresh the main assignments for each course
offering—at least in institutions without very strong honour code traditions that prevent
sharing solutions across cohorts.

7 Conclusion

Getting code to work is one thing.
Proving it does what it’s supposed to is something else.
Convincing Dafny you’ve proved it does what it’s supposed to

is something else entirely.

“Motto for a Software Correctness Course”
Thomas J. “Tad” Peckish (attrib.), twitter, Oct 4 2020

Formal methods are becoming more popular in software engineering practice, and
accordingly more common in software engineering education course work. This shift
has implications for how we teach: a course that aims to ensure every computer science
or software engineering student has understanding of formal methods, and some basic
exposure to formal tools, must necessarily be different to a course that (explicitly or
implicitly) aims to prepare students for graduate work. We have described our expe-
rience in redeveloping our formal methods course to be for the many, not the few; by
employing tool and strategies typically used to teach programming, rather than those
of mathematics. So far, this approach has been fruitful: most students who enroll in
the course are able to pass it; are able to actually complete some small problems using
Dafny; and overall consider the course worthwhile. The key factors supporting this out-
come were the Dafny tool, which is now sufficiently mature to be used at this scale, and
the necessary time and effort to prepare weekly questions and assignments in advance to
support feedback via automatic marking. We hope to continue with work, both to inte-
grate formal methods ever more tightly into teaching programming, and to investigate
how tools such as Dafny can best support this approach.

Acknowledgements. Thanks to Rustan Leino and James Wilcox for all their help with Dafny;
to our colleagues Marco Servetto for the “marcotron” weekly question system, to Royce Brown,
Christo Muller, and the ECS technical staff for their support with the course automation; to
Lindsay Groves, longtime custodian of Formal Methods at VUW through various iterations
(COMP202, SWEN202, SWEN224, SWEN324); to the reviewers for their helpful comments;
and above all to the students who choose to stay with SWEN324 in spite of everything.

This work was supported in part by the Royal Society of New Zealand Marsden Fund Grant
VUW1815, and by a gift from Agoric.

448 J. Noble et al.

References

1. Aceto, L., Ingólfsdóttir, A.: Introducing formal methods to first-year students in three inten-
sive weeks. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122,
pp. 1–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 1

2. Angelo, T.: A teacher’s dozen-fourteen general research-based principles for improving
higher learning. AAHE Bulletin (1993)

3. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The gradual verifier. In:
Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 313–327. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06200-6 27

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for modular speci-
fication and verification. Proc. ACM Program. Lang. 3(OOPSLA), 1–30 (2019)

5. Bader, J., Aldrich, J., Tanter, É.: Gradual program verification. In: VMCAI 2018. LNCS, vol.
10747, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 2

6. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems. In:
COMPARE, pp. 3–17. Citeseer (2012)

7. Blazy, S.: Teaching deductive verification in Why3 to undergraduate students. In: Dongol,
B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 52–66. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32441-4 4

8. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value storage node in
amazon S3. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pp. 836–850 (2021)

9. Brooks, F., Kugler, H.: No silver bullet, April 1987
10. Cerone, A., Roggenbach, M. (eds.): FMFun 2019. CCIS, vol. 1301. Springer, Cham (2021).

https://doi.org/10.1007/978-3-030-71374-4
11. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Introduction to the

CoQ Proof Assistant. MIT Press, Cambridge (2013)
12. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment for diagnos-

ing verification errors. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 424–441. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 25

13. Cook, B.: Formal reasoning about the security of amazon web services. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 3

14. Dietl, W., Dietzel, S., Ernst, M.D., Muşlu, K., Schiller, T.W.: Building and using pluggable
type-checkers. In: Proceedings of the 33rd International Conference on Software Engineer-
ing, pp. 681–690 (2011)

15. Dongol, B., Petre, L., Smith, G. (eds.): FMTea 2019. LNCS, vol. 11758. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32441-4

16. Ettinger, R.: Lessons of formal program design in Dafny. In: Ferreira, J.F., Mendes, A.,
Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122, pp. 84–100. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91550-6 7

17. Ferreira, J.F., Mendes, A., Menghi, C. (eds.): FMTea 2021. LNCS, vol. 13122. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-91550-6

18. Figueroa, I., Garcı́a, B., Leger, P.: Towards progressive program verification in Dafny. In:
Proceedings of the XXII Brazilian Symposium on Programming Languages, pp. 90–97
(2018)

19. Flannery-Dailey, F., Wagner, R.L.: Wake up! Gnosticism and Buddhism in the Matrix. J.
Religion Film 5(2), 4 (2001)

20. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In: ter Beek,
M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58298-2 1

https://doi.org/10.1007/978-3-030-91550-6_1
https://doi.org/10.1007/978-3-319-06200-6_27
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.1007/978-3-030-32441-4_4
https://doi.org/10.1007/978-3-030-71374-4
https://doi.org/10.1007/978-3-662-49674-9_25
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-030-32441-4
https://doi.org/10.1007/978-3-030-91550-6_7
https://doi.org/10.1007/978-3-030-91550-6
https://doi.org/10.1007/978-3-030-58298-2_1

More Programming Than Programming 449

21. Grebing, S., Ulbrich, M.: Usability recommendations for user guidance in deductive program
verification. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.) Deductive
Software Verification: Future Perspectives. LNCS, vol. 12345, pp. 261–284. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64354-6 11

22. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a ‘cogni-
tive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

23. Greengard, S.: The Internet of Things. MIT Press, Cambridge (2021)
24. Güdemann, M.: Online teaching of verification of C programs in applied computer science.

In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122, pp. 18–34.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 2

25. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed systems.
Commun. ACM 60(7), 83–92 (2017)

26. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston (2003)

27. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge
(2006)

28. Jones, C.B., Misra, J.: Theories of Programming: The Life and Works of Tony Hoare. Morgan
& Claypool, Williston (2021)

29. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the foundations of the
rust programming language. Proc. ACM Program. Lang. 2(POPL), 1–34 (2017)

30. Kamburjan, E., Grätz, L.: Increasing engagement with interactive visualization: formal meth-
ods as serious games. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS,
vol. 13122, pp. 43–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-
6 4

31. Klabnik, S., Nichols, C.: The Rust Programming Language (Covers Rust 2018). No Starch
Press, San Francisco (2019)

32. Körner, P., Krings, S.: Increasing student self-reliance and engagement in model-checking
courses. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol. 13122,
pp. 60–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 5

33. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Pearson, London (2002)

34. Leino, K.R.M.: Dafny 3.0.0 release. https://github.com/dafny-lang/dafny/-releases/tag/v3.0.
0

35. Leino, K.R.M.: Developing verified programs with Dafny. In: 2013 35th International Con-
ference on Software Engineering (ICSE), pp. 1488–1490. IEEE (2013)

36. Leino, K.R.M.: Program Proofs. Available from Lulu.com (2020)
37. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-

shop (UV10) (2010)
38. Rustan, K., Leino, M., Nelson, G.: An extended static checker for modula-3. In: Koskimies,

K. (ed.) CC 1998. LNCS, vol. 1383, pp. 302–305. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0026441

39. Markstrum, S., Marino, D., Esquivel, M., Millstein, T., Andreae, C., Noble, J.: JavaCOP:
declarative pluggable types for java. ACM Trans. Program. Lang. Syst. (TOPLAS) 32(2),
1–37 (2010)

40. Meyer, B.: Touch of Class. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
92145-5

41. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification attempts. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21437-0 8

42. Noble, J., Pearce, D.J., Groves, L.: Introducing Alloy in a software modelling course. In: 1st
Workshop on Formal Methods in Computer Science Education (FORMED) (2008)

https://doi.org/10.1007/978-3-030-64354-6_11
https://doi.org/10.1007/978-3-030-91550-6_2
https://doi.org/10.1007/978-3-030-91550-6_4
https://doi.org/10.1007/978-3-030-91550-6_4
https://doi.org/10.1007/978-3-030-91550-6_5
https://github.com/dafny-lang/dafny/-releases/tag/v3.0.0
https://github.com/dafny-lang/dafny/-releases/tag/v3.0.0
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-540-92145-5
https://doi.org/10.1007/978-3-642-21437-0_8

450 J. Noble et al.

43. Pang, A., Anslow, C., Noble, J.: What programming languages do developers use? A theory
of static vs dynamic language choice. In: 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 239–247. IEEE (2018)

44. Paulin-Mohring, C.: Introduction to the Coq proof-assistant for practical software verifica-
tion. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 45–95. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-6 3

45. Pearce, D.J., Groves, L.: Designing a verifying compiler: lessons learned from developing
Whiley. Sci. Comput. Program. 113, 191–220 (2015)

46. Scott, R.: Blade runner. Motion Picture (1982)
47. Wayne, H.: Temporal logic. In: Practical TLA+, pp. 97–110. Apress, Berkeley (2018).

https://doi.org/10.1007/978-1-4842-3829-5 6
48. Wise, J., Bader, J., Wong, C., Aldrich, J., Tanter, É., Sunshine, J.: Gradual verification of

recursive heap data structures. Proc. ACM Program. Lang. 4(OOPSLA), 1–28 (2020)
49. Yatapanage, N.: Introducing formal methods to students who hate maths and struggle with

programming. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) FMTea 2021. LNCS, vol.
13122, pp. 133–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91550-6 10

50. Zhumagambetov, R.: Teaching formal methods in academia: a systematic literature review.
In: Cerone, A., Roggenbach, M. (eds.) FMFun 2019. CCIS, vol. 1301, pp. 218–226. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71374-4 12

https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/978-1-4842-3829-5_6
https://doi.org/10.1007/978-3-030-91550-6_10
https://doi.org/10.1007/978-3-030-71374-4_12

Zone Extrapolations in Parametric Timed
Automata

Johan Arcile(B) and Étienne André

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

johan.arcile@univ-lorraine.fr

Abstract. Timed automata (TAs) are an efficient formalism to model
and verify systems with hard timing constraints, and concurrency. While
TAs assume exact timing constants with infinite precision, parametric
TAs (PTAs) leverage this limitation and increase their expressiveness, at
the cost of undecidability. A practical explanation for the efficiency of
TAs is zone extrapolation, where clock valuations beyond a given con-
stant are considered equivalent. This concept cannot be easily extended
to PTAs, due to the fact that parameters can be unbounded or can take
arbitrary rational values. In this work, we propose several definitions of
extrapolation for PTAs based on the M -extrapolation, and we study their
correctness. Our experiments show an overall decrease of the computa-
tion time and, most importantly, allow termination of some previously
unsolvable benchmarks.

Keywords: Parametric timed automata · Abstraction · Parameter
synthesis · Reachability · Liveness · IMITATOR

1 Introduction

Timed automata (TAs) [1] represent an efficient and expressive formalism to
model and verify systems, able to specify both hard timing constraints and con-
currency; TAs are one of the most expressive decidable formalisms with timing
constraints. However, TAs assume exact timing constants with infinite precision,
which may not be realistic in practice; in addition, they assume full knowledge
of the model, preventing verification at an early development phase. Parametric
timed automata (PTAs) leverage these limitations, by allowing unknown timing
constants in the model—at the cost of undecidability: the mere emptiness of the
parameter valuations set for which a given (discrete) location is reachable (called
reachability emptiness) is undecidable [2].

A practical explanation for the efficiency of TAs for reachability properties
is (zone) extrapolation, where clock valuations beyond a given constant are con-
sidered to be equivalent. Since the seminal work [1], several works improved the

This work is partially supported by the ANR-NRF French-Singaporean research pro-
gram ProMiS (ANR-19-CE25-0015).

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 451–469, 2022.
https://doi.org/10.1007/978-3-031-06773-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_24&domain=pdf
http://orcid.org/0000-0001-8473-9555
https://www.loria.science/ProMiS/
https://doi.org/10.1007/978-3-031-06773-0_24

452 J. Arcile and É. André

quality and efficiency of zone extrapolation, by considering different constants
per clock [12,13] or extending extrapolation to liveness properties [23,25]. This
concept cannot be easily extended to PTAs, due to the fact that parameters can
be unbounded, or converge toward infinitely small values.

Extrapolation in TAs. Daw and Tripakis first introduced the extrapolation
abstraction in [18] as a mean to obtain a finite simulation of the state space
of TAs. The extrapolation abstraction preserves reachability properties and is
based on the largest constant appearing in any state of the model, which can be
computed syntactically from the constants present in its guards and invariants.
In [12] Behrmann et al. redefine this abstraction with individual clock bounds
(i.e., the largest constant is computed for each clock) and will later refer to it
in [13] as the M -extrapolation. Experiments are performed using Uppaal [22].
Tripakis [25] showed that the M -extrapolation is correct for checking emptiness
of timed Büchi automata, i.e., checking for accepting cycles in TAs.

Parameter Synthesis for PTAs. Most non-trivial decision problems are undecid-
able for PTAs (see [3] for a survey). As a consequence exact synthesis is usually
out of reach, except for small numbers of clocks or of parameters (see, e.g.,
[2,14,17]). For general subclasses (without bound on the number of variables),
exact synthesis results are very scarce. Some fit in the L/U-PTAs subclass1 [20],
and notably in the subclasses called U-PTAs (resp. L-PTAs) [16], where each tim-
ing parameter is constrained to be always compared to a clock as an upper (resp.
lower) bound, i.e., of the form x ≤ p (resp. p ≤ x). The only known situations
when exact reachability-synthesis (i.e., synthesis of all parameter valuations for
which a given location is reachable) can be achieved for subclasses of PTAs are
i) for U-PTAs (resp. L-PTAs) over integer-valued timing parameters [16]; ii) for
the whole PTA class, over bounded and integer-valued parameters (which reduces
to TAs) [21]; and iii) for reset-update-to-parameters-PTAs (“R-U2P-PTAs”), in
which all clocks must be updated (possibly to a parameter) whenever a clock is
compared to a parameter in a guard [7]. On the negative side, even L/U-PTAs
show negative results for synthesis: while reachability-emptiness is decidable for
L/U-PTAs [20], reachability-synthesis is intractable (its result cannot be repre-
sented using a finite union of polyhedra) [21]; and even in the very restricted
subclass of U-PTAs without invariant, TCTL-emptiness (i.e., emptiness of the
parameter valuations set for which a TCTL formula is valid) is undecidable [6].

We performed a first attempt to define an extrapolation for PTAs in [8]:
we adapted the M -extrapolation to the context of PTAs, although restricted to
bounded parameter domains only. No implementation was provided. In [15], the
authors also define an extrapolation very similar to [8]. Compared to [8], we reuse
here some of the definitions of [8], and we significantly extend the definition of
extrapolations; we also consider several subclasses of models, as well as liveness
properties; we also conduct an experimental evaluation.

1 While “L/U” means in both cases “lower-upper (bound)”, L/U-PTAs are a com-
pletely different concept from LU-extrapolation for (P)TAs.

Zone Extrapolations in Parametric Timed Automata 453

Contributions. We propose several definitions of extrapolation for PTAs, and
study their correctness. In the context of bounded parameter domains, we
extend the parametric M -extrapolation from [8] to individual clock bounds.
Those extrapolations are combined with results from [16] to cope with the issue
raised by unbounded parameters. We notably consider variants of the U-PTAs
and L-PTAs. We show that, on the subclass of (unbounded) PTAs on which
they apply, those abstractions preserve not only reachability-synthesis but also
cycle-synthesis (“liveness”). We conduct experiments using the parametric timed
model checker IMITATOR [4], including on the most general class (rational-
valued, possibly unbounded parameters). With the aforementioned negative the-
oretical results in mind, our evaluation focuses on evaluating the speed enhance-
ment, and the increase of termination chances for our case studies. We show that,
overall, extrapolation decreases the verification time and, most importantly, can
effectively help solving previously unsolvable benchmarks.

Outline. We introduce the necessary preliminaries in Sect. 2. The M -
extrapolation in the bounded context (partially reusing results from [8]) is stud-
ied in Sect. 3. Section 4 adapts the M -extrapolation to the unbouded context
for reachability properties. Liveness properties are discussed in Sect. 5. Finally,
Sect. 6 benchmarks the abstractions, and Sect. 7 concludes the paper.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R+. We write �0 for the clock valuation assigning 0 to all clocks. Given
d ∈ R+, w + d denotes the valuation s.t. (w + d)(x) = w(x) + d, for all x ∈ X.
Given R ⊆ X, we define the reset of a valuation w, denoted by [w]R, as follows:
[w]R(x) = 0 if x ∈ R, and [w]R(x) = w(x) otherwise.

We assume a set P = {p1, . . . , pK} of parameters, i.e., unknown constants. A
parameter valuation v is a function v : P → Q. Given two valuations v1, v2, we
write v1 ≥ v2 whenever ∀p ∈ P, v1(p) ≥ v2(p).

In the following, we assume �� ∈ {<,≤,=,≥, >}. A constraint C over X ∪ P

is a conjunction of inequalities of the form lt �� 0, where lt is a linear term over
X ∪ P of the form

∑
1≤i≤H αixi +

∑
1≤j≤K βjpj + d, with xi ∈ X, pj ∈ P, and

αi, βj , d ∈ Z. We also refer to constraints as their geometrical representation,
i.e., of convex polyhedron. We denote by ⊥ the constraint over P corresponding
to the empty set of parameter valuations.

Given a parameter valuation v, v(C) denotes the constraint over X obtained
by replacing each parameter p in C with v(p). Likewise, given a clock valu-
ation w, w(v(C)) denotes the expression obtained by replacing each clock x
in v(C) with w(x). We say that v satisfies C, denoted by v |= C, if the set of
clock valuations satisfying v(C) is nonempty. Given a parameter valuation v and
a clock valuation w, we denote by w|v the valuation over X ∪ P such that for
all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use the

454 J. Arcile and É. André

notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that C is
satisfiable if ∃w, v s.t. w|v |= C.

We define the time elapsing of C, denoted by C↗, as the constraint over X

and P obtained from C by delaying all clocks by an arbitrary amount of time.
That is, w′|v |= C↗ iff ∃w : X → R+,∃d ∈ R+ s.t. w|v |= C ∧ w′ = w + d.

Given R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint
obtained from C by resetting the clocks in R, and keeping the other clocks
unchanged. We denote by C↓P the projection of C onto P, i.e., obtained by
eliminating the variables not in P (e.g., using Fourier-Motzkin [24]).

A simple clock guard is an inequality of the form x ��
∑

1≤i≤K αipi + z, with
pi ∈ P, and αi, z ∈ Z. A clock guard is a constraint over X ∪ P defined by a
conjunction of simple clock guards. Given a clock guard g, we write w |= v(g)
if the expression obtained by replacing each x with w(x) and each p with v(p)
in g evaluates to true.

PTAs. Parametric timed automata (PTAs) extend timed automata with param-
eters within guards and invariants in place of integer constants [2].

Definition 1 (PTA). A PTA A is a tuple A = (Σ,L, �0, LF ,X,P,D, I, E),
where: i) Σ is a finite set of actions, i) L is a finite set of locations, iii) �0 ∈ L
is the initial location, iv) LF ⊆ L is a set of accepting locations, v) X is a finite
set of clocks, vi) P is a finite set of parameters, vii) D : P → (Q∪{−∞})× (Q∪
{+∞}) is the parameter domain, viii) I is the invariant, assigning to every � ∈ L
a clock guard I(�), ix) E is a finite set of edges e = (�, g, a,R, �′) where �, �′ ∈ L
are the source and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset,
and g is a clock guard.

Let G(A) denote the set of all simple clock guards of the PTA A, i.e., all
simple clock guards being a conjunct within a guard or an invariant of A. Given
a clock x ∈ X, we denote by G

x(A) ⊆ G(A) the set of simple clock guards
where x appears, i.e., is bound by a non-0 coefficient. A clock x of A is said to
be a parametric clock if it is compared to at least one parameter (with a non-0
coefficient) in at least one guard of Gx(A).

The parameter domain of a PTA is the admissible range of the parameters.
Given p, given D(p) = (b−, b+), D−(p) denotes b− while D

+(p) denotes b+. The
admissible valuations for p are therefore [D−(p),D+(p)] (the domain is closed
unless on the side of an infinite bound). A bounded parameter domain assigns
to each parameter a minimum and a maximum rational bound. In that case,
D

−(pi) > −∞ and D
+(pi) < +∞. A bounded parameter domain can be seen

as a hyperrectangle in K dimensions. Any parameter that is not bounded is
unbounded. Note that an unbounded parameter can still have a lower bound or
an upper bound ∈ Q. A PTA is bounded if its parameter domain is bounded;
otherwise, it is unbounded.

Given a parameter valuation v, we denote by v(A) the non-parametric struc-
ture where all occurrences of a parameter pi have been replaced by v(pi). We
denote as a timed automaton any structure v(A), by assuming a rescaling of the

Zone Extrapolations in Parametric Timed Automata 455

constants: by multiplying all constants in v(A) by the least common multiple of
their denominators, we obtain an equivalent (integer-valued) TA [1].

0 1

x ≤ 1

x ← 0

1 < y ∧ x < p

(a) A bounded PTA (0 ≤ p ≤ 5).

(0, x = y ≤ 1)

(0, y ≤ x + 1 ∧ x ≤ 1 ∧ x ≤ y) (1, 0 < p ≤ 5)

(0, y ≤ x + i ∧ x ≤ 1 ∧ x ≤ y)

(b) Simplified state space

Fig. 1. A bounded PTA and its infinite state space.

Example 1. Figure 1a displays a bounded PTA. We have G(A) = {x ≤ 1, 1 <
y, x < p}, G

x(A) = {x ≤ 1, x < p}, and G
y(A) = {1 < y}. The valuation

of p can be any rational value in [0, 5]. Therefore, this PTA can be seen as the
abstract representation for an infinite number of TAs.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, �0, LF ,X,P,
D, I, E) and a parameter valuation v, the concrete semantics of v(A) is given by
the timed transition system (S, s0,→), with

– S = {(�, w) ∈ L × R
H
≥0 | w |= v(I(�))}, s0 = (�0,�0),

– → consists of the (continuous) delay and discrete transition relations:
• delay transitions: (�, w) d�→ (�, w + d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (�, w +

d′) ∈ S;
• discrete transitions: (�, w) e�→ (�′, w′), if (�, w), (�′, w′) ∈ S, and there

exists e = (�, g, a,R, �′) ∈ E, such that w′ = [w]R, and w |= v(g).

Moreover, we write (�, w)
(d,e)−→ (�′, w′) for a combination of a delay and dis-

crete transition if ∃w′′ : (�, w) d�→ (�, w′′) e�→ (�′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A run of v(A) is an alternating sequence of
concrete states of v(A) and pairs of edges and delays starting from the initial
state s0 and is of the form s0, (d0, e0), s1, · · · si, (di, ei), · · · with i = 0, 1, . . . ,

ei ∈ E, di ∈ R≥0 and si
(di,ei)−→ si+1. The set of all (finite or infinite) runs of

a TA v(A) is Runs(v(A)). Given a concrete state s = (�, w), we say that s is
reachable in v(A) (and by extension that � is reachable, or that v(A) visits �) if
s appears in a run of v(A). An infinite run is accepting if it visits infinitely often
(at least) one location � ∈ LF .

456 J. Arcile and É. André

Symbolic Semantics of PTAs. Let us now recall the symbolic semantics of
PTAs (see e.g., [5,20]). A symbolic state is a pair (�, C) where � ∈ L is a location,
and C is a constraint over X ∪ P called its associated parametric zone.

Definition 3 (Symbolic semantics). Given a PTA A = (Σ,L, �0, LF ,X,P,
D, I, E), the symbolic semantics of A is the labeled transition system called para-
metric zone graph PZG = (E,S, s0,⇒), with

– S = {(�, C) | C ⊆ I(�)}, s0 =
(
�0, (

∧
1≤i≤H xi = 0)↗ ∧ I(�0) ∧

∧
1≤j≤K D

−(pj) ≤ pj ≤ D
+(pj)

)
, and

–
(
(�, C), e, (�′, C ′)

) ∈ ⇒ if e = (�, g, a,R, �′) ∈ E and C ′ =
(
[(C ∧ g)]R ∧

I(�′)
)↗ ∧ I(�′), with C ′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs
are labeled by edges of the original PTA. Given (s, e, s′) ∈ ⇒, we write s′ =
Succ(s, e). Given a concrete state s = (�, w) and a symbolic state s = (�′, C), we
write s ∈ s whenever � = �′ and w |= C.

Example 2. Figure 1b displays the parametric zone graph of the PTA in Fig. 1a.
Blue states represent an infinite sequence (i being the number of times the
looping transition was taken).

Computation Problems. Given a class of decision problems P (reachability,
etc.), we consider the problem of synthesizing the set (or part of it) of parameter
valuations v such that v(A) satisfies ϕ. Here, we mainly focus on reachability
(i.e., “does there exist a run that reaches some given location?”) and liveness
(i.e., “does there exist a run that visits a given location infinitely often?”).

3 M - and �M -extrapolation for Bounded PTAs

3.1 Recalling M-extrapolation

In this subsection, we recall some results from [8,13], where the classical “k-
extrapolation” used for the zone-abstraction of TAs is adapted to PTAs. While
this part is not clearly a contribution of the current manuscript, we redefine
some concepts from [8], and provide several original examples.

The maximal constant M is the maximum value that can appear in the
guards and invariants of the PTA. When those constraints are parametric expres-
sions, we compute the maximum value that the expression can take over any
parameter valuation within the (bounded) parameter domain D (this maximal
value is unique since expressions are linear).

Given a simple clock guard g of the form x ��
∑

1≤i≤K αipi + z we define
Cmaxg(g) =

∑
1≤i≤K αiγi + z where i) γi = D

−(pi) if αi < 0, ii) γi = D
+(pi) if

αi > 0, and iii) γi = 0 otherwise.

Example 3. Consider the simple clock guard g : x ≤ 2p1 − p2 + 1 and p1 ∈ [2, 5],
and p2 ∈ [−3, 4]; then Cmaxg(g) = 2 × 5 − (−3) + 1 = 14.

Zone Extrapolations in Parametric Timed Automata 457

y

x

0

1

0 1 5

(a) A convex clock zone.

y

x

0

1

0 1 5

(b) Its non-convex extrapolation.

Fig. 2. Example illustrating the non-convex parametric extrapolation.

Definition 4 (Maximal constant). Given a bounded PTA A, for any
clock x ∈ X, the maximal constant for clock x is Cx

max (A) =
maxg∈Gx(A) Cmaxg(g) furthermore, the maximal constant of the PTA is
Cmax (A) = maxg∈G(A) Cmaxg(g).

Example 4. Consider again Fig. 1a. Then, Cx
max (A) = 5 and Cy

max (A) = 1.

Let us recall from [13] the notion of bisimulation based on M :

Lemma 1 ([13, Lemma 1]). Let A be a TA. Given clock x, let M(x) be an inte-
ger constant greater than or equal to Cx

max (A). Let w,w′ be two clock valuations.
Let ≡M be the relation defined as w ≡M w′ iff ∀x ∈ X: either w(x) = w′(x) or
(w(x) > M(x) and w′(x) > M(x)). The relation R =

{(
(�, w), (�, w′)

) | w ≡M

w′} is a bisimulation relation.

Example 5. Let us recall the motivation for the use of an extrapolation, through
the PTA A in Fig. 1a. After i times through the loop, we get constraints in �0 of
the form y−x ≤ i. The maximal constant is Cmax (A) = 5. After five loops, y can
be greater than 5. Therefore, we can apply on y the classical k-extrapolation used
for TAs (from [13]) of the corresponding zone. More specifically, we consider that
when y > k, the bounds on y can be ignored. The obtained polyhedron is non-
convex, but can be split into two convex ones, one where y ≤ k (the part without
extrapolation) and one with y > k (the part with extrapolation). This is depicted
in Fig. 2 where Fig. 2a is the original clock zone (y ≤ x + 5 ∧ x ≤ 1 ∧ x ≤ y) and
Fig. 2b is its non-convex extrapolation ((x ≤ y ≤ 5∧x ≤ 1)∨(y ≥ 5∧0 < x ≤ 1)).

Let us now formally recall from [8] the concept of M -extrapolation for PTAs.
First, we recall the cylindrification operation, which consists in unconstraining x.

Definition 5 (Cylindrification [8]). For a polyhedron C and variable x, we
denote by Cylx(C) the cylindrification of C along variable x, i.e., Cylx(C) = {w |
∃w′ ∈ C,∀x′ �= x,w′(x′) = w(x′) and w(x) ≥ 0}.

The (M,x)-extrapolation is an operation that splits a polyhedron into two
polyhedra such that clock x is either less than or equal to M , or is strictly greater
than M while being independent from the other variables.

Definition 6 ((M,x)-extrapolation [8]). Let C a polyhedron. Let M ∈ N and
x be a clock. The (M,x)-extrapolation of C, denoted by ExtMx (C), is defined as:

ExtMx (C) =
(
C ∩ (x ≤ M)

) ∪ (
Cylx

(
C ∩ (x > M)

) ∩ (x > M)
)
.

458 J. Arcile and É. André

Algorithm 1: EEF(A, s, T,P)
input : A PTA A, a symbolic state s = (�, C), a set of target locations T , a

set P of passed states on the current path
output: Constraint K over the parameters

1 if � ∈ T then K ← C↓P ;
2 else
3 K ← ⊥;
4 if s /∈ P then
5 for each outgoing e from � in A do
6 K ← K ∪ EEF

(A,ExtMX
(
Succ(s, e)

)
, T,P ∪ {s})

;

7 return K

Given s = (�, C), we write ExtMx (s) for ExtMx
(
C

)
.

We can now consistently define the M -extrapolation operator.

Definition 7 (M-extrapolation [8]). Let M ∈ N and X be a set of clocks.
The (M,X)-extrapolation operator ExtM

X
is defined as the composition (in any

order) of all ExtMx , for all x ∈ X. When clear from the context we omit X and
only write M -extrapolation.

[8, Lemma 1] shows that the order of composition of (M,x)-extrapolation
does not impact its results, i.e., ExtMx

(
ExtMy (C)

)
= ExtMy

(
ExtMx (C)

)
, and [8,

Lemma 5] shows that given a symbolic state s of a PTA and a non-negative
integer M greater than Cmax (A), for any clock x and parameter valuation v such
that (�, w) ∈ v(ExtMx (s)) is a concrete state, there exists a state (�, w′) ∈ v(s)
such that (�, w) and (�, w′) are bisimilar.

3.2 Synthesis with Extrapolation

We now recall the reachability-synthesis algorithm, formalized in [21], and then
enhanced with extrapolation (and “integer hull”—unused here) in [8]. We adapt
here to our notations a version of reachability-synthesis with the extrapolation.

The goal of EEF given in Algorithm 1 (“E” stands for “extrapolation”, “EF”
denotes reachability) is to synthesize valuation solutions to the reachability-
synthesis problem. EEF proceeds as a post-order traversal of the symbolic reach-
ability tree, and collects all parametric constraints associated with the target
locations T . In contrast to the classical reachability-synthesis algorithm EF for-
malized in [21], it recursively calls itself (line 6) with the extrapolation of the
successor of the current symbolic state (this difference is highlighted in yellow
in Algorithm 1).

Algorithm 1 is correct (i.e., sound and complete):2

Theorem 1. Let A be a PTA with initial symbolic state s0, and T ⊆ L a set of
target locations. Assume EEF(A, s0, T, ∅) terminates. We have:
2 The proofs of all our results are in a technical report [10].

Zone Extrapolations in Parametric Timed Automata 459

1. Soundness: If v ∈ EEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ EEF(A, s0, T, ∅).

3.3 Extending the M-extrapolation to Individual Bounds

Our first technical contribution is to extend the extrapolation from [8] to individ-
ual clock bounds, instead of a global one, in the line of what has been proposed
for non-parametric TAs [13].

Definition 8 (�M-extrapolation). Let �M = {M(x1), . . . , M(xH)} be a set of
non-negative integer constants. The �M -extrapolation, denoted by Ext

�M
X

, is the
composition (in any order) of all ExtM(x)

x for all x ∈ X.

All we need to do for the results from [8] to hold on the �M -extrapolation is
to adapt [8, Lemmas 1 and 5].

Lemma 2. For all polyhedra C, integers M(x),M(x′) ≥ 0 and clock variables
x and x′, we have ExtM(x)

x

(
Ext

M(x′)
x′ (C)

)
= Ext

M(x′)
x′

(
ExtM(x)

x (C)
)
.

We now extend [8, Lemma 5] to Ext
�M :

Lemma 3 (�M and bisimilarity). Let A be a PTA and s be a symbolic state
of A. Let x be a clock, M(x) ∈ N greater than or equal to Cx

max (A), v be a
parameter valuation and (�, w) ∈ v(ExtM(x)

x (s))) be a concrete state. There exists
a state (�, w′) ∈ v(s) such that (�, w) and (�, w′) are bisimilar.

Given M ∈ N, given a vector �M , note that, whenever �M(x) ≤ M for all
x ∈ X, then the �M -extrapolation is necessarily coarser than the M -extrapolation.

Let �M be such that, for all x, �M(x) = Cx
max (A). Let �EEF denote the modifi-

cation of EEF where ExtM
X

is replaced with Ext
�M
X

(line 6 in Algorithm 1). That is,
instead of computing the M -extrapolation of each symbolic state, we compute
its �M -extrapolation. Figure 3 illustrates its effect on the state space of Fig. 1a.

Proposition 1. Let A be a PTA with initial symbolic state s0, and T ⊆ L a set
of target locations. Assume �EEF(A, s0, T, ∅) terminates. We have:

1. Soundness: If v ∈ �EEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ �EEF(A, s0, T, ∅).

4 �M -extrapolation on Unbounded PTAs

In this section, we extend the �M -extrapolation to subclasses of (unbounded)
PTAs. This requires to be able to identify for each clock x ∈ X a constant M(x)
such that given a symbolic state s and a parameter valuation v, for any concrete
state in v(ExtM(x)

x (s)) there exists a bisimilar state in v(s), i.e., Lemma 3 holds.
We will consider (i) L-PTAs and U-PTAs (Sect. 4.1), (ii) bounded PTAs with
additional unbounded lower-bound or upper-bound parameters (Sect. 4.2), and
(iii) the full class of PTAs to which we apply extrapolation only on bounded
parameters (Sect. 4.3).

460 J. Arcile and É. André

(0, x = y ≤ 1)

(0, x ≤ y ≤ x + 1 ∧ x ≤ 1) (1, 0 < p ≤ 5)

(0, x ≤ y ≤ x + 2 ∧ x ≤ 1)

(0, x ≤ y ≤ x + 3 ∧ x ≤ 1)

(0, x ≤ y ≤ x + 4 ∧ x ≤ 1)

x ≤ y ≤ 5 ∧ x ≤ 1
0, ∪

5 < y ∧ 0 < x ≤ 1

x ≤ y ≤ 5 ∧ x ≤ 1
0, ∪

5 < y ∧ x ≤ 1

(a) Simplified state space of Fig. 1a
with M -extrapolation.

(0, x = y ≤ 1)

x ≤ y ≤ 1
0, ∪

1 < y ∧ 0 < x ≤ 1
(1, 0 < p ≤ 5)

x ≤ y ≤ 1
0, ∪

1 < y ∧ x ≤ 1

(b) Simplified state space of Fig. 1a
with M -extrapolation where M(x) = 5
and M(y) = 1. As M -extrapolation
differentiates the maximal constant of
each clock, the extrapolation is applied
on y after only one loop.

Fig. 3. Comparison between M -extrapolation and �M -extrapolation.

4.1 �M-extrapolation on Unbounded L-PTAs and U-PTAs

Definition 9 (L-PTA and U-PTA [16]). A PTA A is an L-PTA (resp. U-
PTA) if, for each guard x ��

∑
1≤i≤K αipi + z of G(A), for all i with αi �= 0:

– αi > 0 and �� ∈ {≥, >} (respectively �� ∈ {<,≤}), or
– αi < 0 and �� ∈ {<,≤} (respectively �� ∈ {≥, >}).

L-PTAs and U-PTAs feature a well-known monotonicity property: enlarging
a parameter valuation in a U-PTA (resp. decreasing in an L-PTA) can only add
behaviors, as recalled in the following lemma:

Lemma 4 ([16]). Given a U-PTA (resp. L-PTA) A, given two valuations v1, v2
with v1 ≤ v2 (resp. v1 ≥ v2), then Runs(v1(A)) ⊆ Runs(v2(A)).

For any L-PTA A, as per [16, Theorem 3], there exists a constant bound N ,
such that for all valuations v1, v2 with v1 ≥ v2 ≥ vN (where vN denotes the
parameter valuation assigning N to each parameter), if v2(A) provides an infinite
accepting run then so does v1(A). A dual result is shown for U-PTAs. Formally:

Lemma 5 ([16, Theorems 3 and 6]). Given a U-PTA (resp. L-PTA) A with
N the constant bound defined in [16], given two valuations v1 ≥ vN and v2 ≥ vN ,
there exists an infinite accepting run in v1(A) iff there exists an infinite accepting
run in v2(A).

Zone Extrapolations in Parametric Timed Automata 461

0 1

x ≤ 1 y ≤ p

x = 1; x ← 0

y ≥ 1

(a) Unbounded U-PTA

0 1

x ≤ 1

x ← 0

1 < y ∧ x = p

(b) Unbounded PTA

0 1

x ≤ 1 ∧ y ≤ p

x = 1;x ← 0
a b

y ≤ p

(c) Unbounded U-PTA

Fig. 4. Three toy PTAs

Computation of N̂ . Given an L-PTA (respectively U-PTA) A, the value given
in [16] is N = k(R + 1) + c + 1 (respectively N = 8k(R + 1) + c + 1), where k is
the number of parametric clocks of A, R is the number of clock regions obtained
when the parameter valuation is 0 for all parameters, and c is the greatest non-
parametric constant in absolute value among all linear expressions. More pre-
cisely, all linear expression being of the form

∑
1≤i≤H αixi +

∑
1≤j≤K βjpj +d ��

0, c is the maximum over all |d|. Although k and c are obtained syntactically, R
needs to be computed. As N acts as a lower bound, using an over-approximation
of R would still guarantee the correctness of Lemma 5. From [1, Lemma 4.5],
the number of clock regions is bounded by R̂ = 2|X||X|!∏x∈X

(2cx + 2) with X

the set of clocks and cx the greatest constant over x (either as a upper or lower
bound)—which can both be obtained syntactically. We define N̂ as the constant
defined in [16] for an L-PTA (resp. U-PTA) A, where we use R̂ instead of R.

Formal Results. We first adapt Lemma 5 to our new constant N̂ :

Lemma 6. Given a U-PTA (resp. L-PTA) A, given two valuations v1 ≥ v
̂N

and v2 ≥ v
̂N , there exists an infinite accepting run in v1(A) iff there exists an

infinite accepting run in v2(A).

Proof. From the fact that we use in the computation of N̂ an over-approximation
on the number of clock regions (with R ≤ R̂), giving N ≤ N̂ .

We can now prove the correctness of extrapolation for unbounded L-PTAs
and U-PTAs. Let M̂ = {M(x1), . . . , M(xH)} such that M(xi) is the maximal
constant of clock xi when bounding all unbounded parameters with N̂ . Let ÊEF
denote the modification of EEF where ExtM

X
is replaced with Ext

̂M
X

.

Example 6. Figure 5 illustrates the effects of the M̂ -extrapolation on the
unbounded U-PTA of Fig. 4a. Figure 5a displays its (simplified) infinite state
space. The valuation of p can be any value in Q+. Figure 5b shows the state
space obtained with the M̂ -extrapolation. Note that the state space is now finite.

Proposition 2. Let A be an L-PTA or U-PTA with initial state s0, and T ⊆ L
a set of target locations. Assume ÊEF(A, s0, T, ∅) terminates. We have:

1. Soundness: If v ∈ ÊEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ ÊEF(A, s0, T, ∅).

462 J. Arcile and É. André

(0, x = y ≤ 1) (1, p ≥ 1)

(0, y = x + 1 ∧ x ≤ 1) (1, p ≥ 1)

(0, y = x + i ∧ x ≤ 1) (1, p ≥ i)

(a) Simplified state space of
Fig. 4a.

(0, x = y ≤ 1) (1, p ≥ 1)

(0, y = x + 1 ∧ x ≤ 1) (1, p ≥ 1)

(0, y = x + 1033 ∧ x ≤ 1) (1, p ≥ 1033)

y = 1034 ∧ x = 0
0, ∪

y > 1034 ∧ 0 < x ≤ 1
1, p ≥ 1034

0, y > 1034 ∧ x ≤ 1 1, p > 1034

(b) Simplified state space of Fig. 4a with the M -extrapolation where M(x) = 1
and M(y) = 1034, computed using N . The dashed link represents a succession
of 1031 intermediate states where the value of y grows from x + 1 to x + 1033.

Fig. 5. Example of an unbounded PTA generating an infinite state space.

4.2 �M-extrapolation on PTAs with Unbounded Lower or Upper
Bound Parameters

The method described previously can be adapted to a subclass of PTAs that can
be turned into L-PTAs or U-PTAs (only) for the sake of computing the constant
bound N̂ . Let us first define this subclass:

Definition 10 (bPTA+L and bPTA+U). Let A be a PTA. A is a bounded
PTA with unbounded lower-(resp. upper-)bound parameters, or bPTA+L (resp.
bPTA+U), if for each guard x ��

∑
1≤i≤K αipi + z of G(A), for all i:

– D(pi) ∈ Q × Q (i.e., pi is bounded), or αi = 0, or
– αi > 0 and �� ∈ {≥, >} (respectively �� ∈ {<,≤}), or
– αi < 0 and �� ∈ {<,≤} (respectively �� ∈ {≥, >}).

Let A be a bPTA+L (resp. bPTA+U). We denote by A the L-PTA (resp.
U-PTA) obtained from A by valuating the bounded parameters as follows: we
replace each bounded parameter pi within a guard or invariant with its lower
bound D

−(pi) if it appears negatively (αi < 0) or with its upper bound D
+(pi)

otherwise. Formally:

Definition 11 (Bounded valuation of a bPTA+L or bPTA+U). Let A
be a bPTA+L (resp. bPTA+U). Let A be the modification of A where for each
guard x ��

∑
1≤i≤K αipi + z ∈ G(A), for each bounded pi ∈ P, i) if αi < 0, pi is

replaced by D
−(pi),ii) if αi > 0, pi is replaced by D

+(pi), and iii) pi is replaced
with 0 otherwise.

Example 7. To illustrate Definition 10 we modify Fig. 4a by adding a bounded
parameter. Figure 6a is a bPTA+U A with q bounded between 1 and 2, and p

Zone Extrapolations in Parametric Timed Automata 463

0 1

x ≤ 1 y ≤ p

x = 2 − q
x ← 0

y ≥ q

(a) bPTA+U A (1 ≤ q ≤ 2)

0 1

x ≤ 1 y ≤ p

x = 1
x ← 0

y ≥ 2

(b) Bounded valuation A of A

Fig. 6. A bPTA+U and its bounded valuation.

unbounded. Figure 6b is the bounded valuation A′ of A, as defined in Definition
11. Note that in this example A′ does not describe a behavior that belongs to A,
as parameter q is valuated to 1 in the guard where it occurs with a negative
sign, while it is valuated to 2 in the guard where it occurs with a positive sign.
It will nevertheless be useful to exhibit a constant bound for A.

Correctness of the Transformation. Clearly, if A is a bPTA+L
(resp. bPTA+U) then A is an L-PTA (resp. U-PTA).

Lemma 7. Let A be a bPTA+L (resp. bPTA+U). Then A is an L-PTA
(resp. U-PTA).

Proof. Assume A is a bPTA+L (resp. bPTA+U). When building A, any occur-
rence of a bounded parameter is replaced by its constant bounds. In addition, all
unbounded parameters from A are, by Definition 10, lower-bound (resp. upper-
bound) parameters. Therefore, the only remaining parameters in A are lower-
bound (resp. upper-bound) parameters. Therefore, A is an L-PTA (resp. U-
PTA).

Method. Our method is then as follows: given a bPTA+L (resp. bPTA+U) A,
i) we construct the L-PTA (resp. U-PTA) A, and ii) we then compute the
bound N̂ on the obtained L-PTA (resp. U-PTA) A (using the technique given
in Sect. 4.1). Let N denote the computed bound.

Let M = {M(x1), . . . , M(xH)} such that M(xi) is the maximal constant of
clock xi when bounding in A all unbounded parameters with N . Let EEF denote
the modification of EEF where ExtM

X
is replaced with ExtM

X
.

Proposition 3. Let A be a bPTA+L or bPTA+U with initial state s0, and
T ⊆ L a set of target locations. Assume EEF(A, s0, T, ∅) terminates. We have:

1. Soundness: If v ∈ EEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ EEF(A, s0, T, ∅).

Lemma 8. The bounded valuation A of a PTA A guarantees for each constraint
in the model to give the greatest possible constant bound for all valuations in the
set of bounded parameters of A.

464 J. Arcile and É. André

Proof. In any given guard, as each upper bounded parameter of positive sign is
set to its upper bound and each lower bounded parameter of negative sign is set
to its lower bound, there can be no other valuation of bounded parameters such
that any guard or invariant displays a greater constant part.

Recall that A might not even be in the set of PTAs obtained when setting
values for bounded parameters, as it is possible that a given parameter is replaced
by its lower bound in some guard, and by its upper bound in some other. It
guarantees, however, that the value of the constant bound for any of the PTA
obtained by valuating bounded parameters is no greater than N .

We can proceed with the proof of Proposition 3:

Proof. Let A′ be any bounded valuation of A. By definition, A′ is either an L-
PTA or a U-PTA. From Lemma 8, we know that N is greater than the constant
bound of A′. By Proposition 2, we know that the extrapolation of A′ is sound
and complete when defining M(x) as the maximal constant of clock x when
bounding all unbounded parameters with N̂ . As N > N̂ , the extrapolation is
still sound and complete for any valuation in the set of bounded parameters
of A.

4.3 Partial �M-extrapolation on General PTAs

Finally, it is possible to perform a partial extrapolation on any PTA A, by
extrapolating only the clocks that are only compared to the set of bounded
parameters Pbound of A. That is, for a given guard or invariant g of the form
x ��

∑
1≤i≤K αipi + z, the maximum value Cmaxg(g) =

∑
1≤i≤K αiγi + z where

i) γi = D
−(pi) if αi < 0, ii) γi = D

+(pi) if αi > 0, and iii) γi = 0 otherwise.
Note that γi may be ∞ or −∞ if pi is not an unbounded parameter. As a result,
the maximal constant of any clock xi ∈ X compared to unbounded parameter
is equal to ∞. Therefore, M(xi) ∈ �M = ∞—which amounts to never applying
extrapolation on xi. A (simple) formal result is given in [10].

Example 8. In Fig. 4b, x is compared to p which is neither a lower bound nor an
upper bound parameter. Therefore, this PTA is not in any of the previous classes
on which it is possible to compute a constant bound. However, we can apply a
partial extrapolation, i.e., the extrapolation is only applied on y, for which there
exists a maximal constant Cy

max (A) < ∞. The analysis using IMITATOR returns
quickly (in < 0.1 s) the expected result 0 ≤ p ≤ 1, while it cannot be solved
without extrapolation (i.e., the algorithm would not terminate).

5 Beyond Reachability in bPTA+L and bPTA+U

We saw in Sect. 4 that it was possible to apply extrapolation on unbounded
L-PTAs and U-PTAs with additional bounded parameters. However, we only
proved correctness for reachability properties. In this section, we study liveness.

Zone Extrapolations in Parametric Timed Automata 465

In the context of unbounded parameters, the M̂ -extrapolation cannot be used
directly to check liveness properties, as it might produce false positives. The U-
PTA in Fig. 4c exemplifies why the parametric extrapolation is not correct for
cycle synthesis on unbounded PTAs. With this automaton, the state space is
infinite with y growing without bound: after i loops, we have y = x + i ≤ p.
The expected result of a cycle synthesis is ⊥ (no valuation yields a cycle), but
an exploration of the state space would not terminate. If we try applying the
M̂ -extrapolation, we obtain M(x) = 1 and M(y) = 522 as greatest constants,
computed using N̂ (Sect. 4.1). After 522 loops, the valuation of y can be greater
than M(y), and we obtain a self-looping state where y > 522 and p > 523.
As a result, the M̂ -extrapolation will synthesize a cycle for p > 523, while there
should be none. This behavior is due to the invariant y ≤ p being removed by the
cylindrification of clock y. Note that this is not possible with bounded parameters
(or general TAs) because any invariant y ≤ t, with t a given constant, would
necessarily contradict the constraint y > M . Indeed, M being by definition the
greatest constant of clock y, M ≥ t and thus y > M ∩ y ≤ t = ∅.

A solution to fix that issue is to ensure the invariant is not ignored, by bound-
ing p by the constant N̂ (522 in this case). In general, bounding all parameters
by N̂ ensures no false positive are present, but might include false negative in the
form of upper bounds (those we introduced to bound the parameters). However,
we know from [16, Theorems 3 and 6] that in an L-PTA or a U-PTA, if there is
an infinite accepting run for a parameter valuation v with v(p) ≥ N̂ , then this
run exists for all valuations v′ with v(p) ≥ N̂ . Therefore, in a U-PTA, the upper
bound on p can be removed on any results that contains “p = N̂”. This method
can be applied on the classes of models on which we have defined a extrapolation
using the constant bound N̂ (i.e., bPTA+L and bPTA+U).

In the case of our example from Fig. 4c, this means constraining the model
with p ≤ 522. As a result, the M̂ -extrapolation will synthesize no cycles, which
is correct. Now, imagine a model with the same constant bound over parameter
N̂ = 522, but such that the expected result is 400 < p. The M̂ -extrapolation on
the constrained model will synthesize 400 < p ≤ 522—which contains p = 522.
We can then remove the upper bound on p and obtain the correct result, i.e.,
400 < p.

6 Experiments

We implemented the aforementioned extrapolation in IMITATOR [4]; all
operations on parametric zones are computed by polyhedral operations,
using PPL [11]. We consider the full class of PTAs, over (potentially
unbounded) rational-valued parameters. We applied the extrapolation on the
bPTA+L/bPTA+U subclass from Sect. 4.2 when it was possible, and the par-
tial �M -extrapolation from Sect. 4.3 otherwise (i.e., extrapolation is applied to

466 J. Arcile and É. André

each clock whenever possible). We conducted experiments on a library of stan-
dard PTA benchmarks [9]. We used an Intel Core i5-4690K with 4 GHz.3

We tabulate our results in Table 1. The first and main outcome is the two
lines for “all models” (in bold): on the entire benchmark set (119 models and
177 properties), the average execution time is 954 s without extrapolation, and
824 s with; in addition, the normalized average (always taking 1 for the slowest
of both algorithms and rescaling the second one accordingly) is 0.89 without and
0.91 with. Both metrics are complementary, as the average favors models with
large verification times, while normalized average gives the same weight to all
models, including those of very small verification times. The outcome is that the
extrapolation decreases the average time by 14 %, and increases the normalized
average time by 1.5 %, which remains near-to-negligible.

We only tabulate in Table 1 results with the most significant difference, i.e.,
with a gap of more than 1 s with a ratio min

max > 2 (and only one property per
model). Put it differently, other models show little difference between both ver-
sions. “reach” denotes reachability synthesis; “liveness” denotes the synthesis
of valuations leading to at least one infinite run.

Recall that, even on the most restrictive syntactic subclass of PTAs we con-
sidered (L-PTAs and U-PTAs), no exact algorithm for reachability-synthesis
over rational-valued parameters is known, and therefore our algorithms (includ-
ing with extrapolation) come with no guarantee of termination. On the entire
benchmarks set, 39 properties (over 33 models) do not terminate without extrap-
olation; this figure reduces to 33 properties (over 29 models) when applying
extrapolation. (No analysis terminating without extrapolation would lead to
non-termination when adding extrapolation.)

On the models where there is a significant difference between with and with-
out extrapolation, tabulated in Table 1, the extrapolation is sometimes signif-
icantly faster, sometimes significantly slower. Most importantly, extrapolation
allows termination of some so far unsolvable models. The slower cases are due
to the fact that our implementation in IMITATOR needs to keep each symbolic
state convex—this is required by the internal polyhedral structure. Therefore,
when a clock is extrapolated, this increases the number of states in the state
space (a given extrapolated symbolic state can be potentially split into up to
2|X| new symbolic states via a single outgoing transition).

All in all, our experiments suggest that, despite a few models (tabulated in
Table 1) where the presence or absence of extrapolation has a significant differ-
ence of execution time, adding extrapolation remains overall harmless, with even
an average decrease of 14 % in the execution time. Most importantly, it allows
to solve so far unsolvable benchmarks—which we consider as the main outcome.
This suggests to use extrapolation by default for synthesis in PTAs.

3 Source, benchmarks, raw results and full table are available at
doi.org/10.5281/zenodo.5824264. We used a fork of IMITATOR 3.1 “Cheese Arti-
choke” extended with extrapolation functions (exact version: v3.1.0+extrapolation).

https://doi.org/10.5281/zenodo.5824264
https://github.com/imitator-model-checker/imitator/releases/tag/v3.1.0%2Bextrapolation

Zone Extrapolations in Parametric Timed Automata 467

Table 1. Execution times for our experiments. T.O. denotes an execution unfinished
after 3,600 s. (We use this value for means computation.) Normalized mean is the ratio
to the worst execution times. Cells color represents the difference in performance for a
given row: the lighter the better.

Model Property No extrapolation (s) M-extrapolation (s)

FischerPS08-4 reach 10.6 4.8

FMTV 2 reach 0.7 2.3

fischerPAT3 reach 1.9 0.8

SLAF14 5 reach 12.6 74.4

spsmall reach 0.4 19.3

SSLAF13 test2 reach 2869.8 1399.1

synthRplus reach T.O. 0.2

Cycle1 liveness T.O. 0.001

infinite-5 liveness T.O. 0.006

infinite-5 6 liveness T.O. 0.004

exU noloop liveness 1.1 7.7

Mean (models from Table 1 only) 1572.5 137.1

Normalized mean (models from Table 1 only) 0.697 0.490

Mean (all models) 954.4 823.8

Normalized mean (all models) 0.891 0.905

7 Conclusion and Perspectives

We proposed several definitions of zone extrapolation for parametric TAs. We
proposed a first implementation (in IMITATOR), and showed that, while extrap-
olation is harmless for most models, it can also decrease the computation time
of larger models and, most importantly, can lead to termination (exact synthe-
sis) of previously unsolvable benchmarks. Considering the difficulty of parameter
synthesis for timed models, we consider it a non-trivial and promising step.

A limitation of our implementation (discussed in Sect. 6) is that it only
handles convex zones. Using the non-convex polyhedral structures offered by
PPL [11] may dramatically reduce the number of symbolic states. However, they
are much more costly than their convex counterparts—this should be experimen-
tally compared.

Another perspective concerns the computation of the constant bounds N̂ ,
for which one needs to compute the number R of clock regions. Our current
implementation uses its over-approximation R̂. Computing the actual number
of clock regions before applying the extrapolation may considerably reduce the
analysis time for larger models.

Finally, we plan to go beyond this work by adapting the LU -extrapolation
from [13] to PTAs, a theoretically coarser abstraction for which implementation
is not trivial. Algorithms from [19] may prove useful to this purpose.

Acknowledgements. The authors would like to thank the reviewers for their com-
ments, and Dylan Marinho for his help in providing the models and automation tools
that were used for the benchmarking presented in this paper.

468 J. Arcile and É. André

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994).
https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM,
New York (1993). https://doi.org/10.1145/167088.167242

3. André, É.: What’s decidable about parametric timed automata? Int. J. Softw.
Tools Technol. Transfer 21(2), 203–219 (2017). https://doi.org/10.1007/s10009-
017-0467-0

4. André, É.: IMITATOR 3: synthesis of timing parameters beyond decidability. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 552–565. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 26

5. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for paramet-
ric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://
doi.org/10.1142/S0129054109006905

6. André, É., Lime, D., Ramparison, M.: TCTL model checking lower/upper-bound
parametric timed automata without invariants. In: Jansen, D.N., Prabhakar, P.
(eds.) FORMATS 2018. LNCS, vol. 11022, pp. 37–52. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00151-3 3

7. André, É., Lime, D., Ramparison, M.: Parametric updates in parametric timed
automata. LMCS 17(2), 13:1–13:67 (2021). https://doi.org/10.23638/LMCS-17(2:
13)2021

8. André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded paramet-
ric timed automata. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP. LNCS,
vol. 9328, pp. 7–19. Springer (2015). https://doi.org/10.1007/978-3-319-24537-9

9. André, É., Marinho, D., van de Pol, J.: A benchmarks library for extended para-
metric timed automata. In: Loulergue, F., Wotawa, F. (eds.) TAP 2021. LNCS,
vol. 12740, pp. 39–50. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79379-1 3

10. Arcile, J., André, É.: Zone extrapolations in parametric timed automata. Technical
Report abs/2203.13173, arXiv (2022). https://arxiv.org/abs/2203.13173

11. Bagnara, R., M., H.P., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

12. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 18

13. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006). https://
doi.org/10.1007/s10009-005-0190-0

14. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 6

15. Bezděk, P., Beneš, N., Barnat, J., Černá, I.: LTL parameter synthesis of para-
metric timed automata. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS,
vol. 9763, pp. 172–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41591-8 12

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1007/978-3-030-00151-3_3
https://doi.org/10.23638/LMCS-17(2:13)2021
https://doi.org/10.23638/LMCS-17(2:13)2021
https://doi.org/10.1007/978-3-319-24537-9
https://doi.org/10.1007/978-3-030-79379-1_3
https://doi.org/10.1007/978-3-030-79379-1_3
https://arxiv.org/abs/2203.13173
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/978-3-319-41591-8_12
https://doi.org/10.1007/978-3-319-41591-8_12

Zone Extrapolations in Parametric Timed Automata 469

16. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. FMSD 35(2), 121–151 (2009). https://doi.org/10.1007/s10703-
009-0074-0

17. Bundala, D., Ouaknine, J.: On parametric timed automata and one-counter
machines. Inf. Comput. 253, 272–303 (2017). https://doi.org/10.1016/j.ic.2016.
07.011

18. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

19. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016). https://doi.org/10.1016/j.ic.2016.07.
004

20. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52-53, 183–220 (2002). https://doi.org/10.
1016/S1567-8326(02)00037-1

21. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. TSE 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445

22. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997). https://doi.org/10.1007/s100090050010

23. Li, G.: Checking timed büchi automata emptiness using LU-abstractions. In: Ouak-
nine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 228–242.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0 18

24. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
25. Tripakis, S.: Checking timed Büchi automata emptiness on simulation graphs.

ACM Trans. Comput. Logic 10(3), 15:1–15:19 (2009). https://doi.org/10.1145/
1507244.1507245

https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1016/j.ic.2016.07.011
https://doi.org/10.1016/j.ic.2016.07.011
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-04368-0_18
https://doi.org/10.1145/1507244.1507245
https://doi.org/10.1145/1507244.1507245

Exemplifying Parametric Timed
Specifications over Signals with Bounded

Behavior

Étienne André1(B) , Masaki Waga2 , Natuski Urabe3 ,
and Ichiro Hasuo3,4

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
eandre93430@lipn13.fr

2 Kyoto University, Kyoto, Japan
3 National Institute of Informatics, Tokyo, Japan

4 The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

Abstract. Specifying properties can be challenging work. In this paper,
we propose an automated approach to exemplify properties given in the
form of automata extended with timing constraints and timing parame-
ters, and that can also encode constraints over real-valued signals. That
is, given such a specification and given an admissible automaton for each
signal, we output concrete runs exemplifying real (or impossible) runs for
this specification. Specifically, our method takes as input a specification,
and a set of admissible behaviors, all given as a subclass of rectangu-
lar hybrid automata, namely timed automata extended with arbitrary
clock rates, signal constraints, and timing parameters. Our method then
generates concrete runs exemplifying the specification.

Keywords: Specification · Timed automata · Hybrid automata ·
Signals

1 Introduction

Model checking has had a lot of successes in the last decades (see, e.g., [27]).
Still, its use in the industry can be seen as slightly disappointing, considering
its high advantages in providing system designers with formal guarantees in the
correctness of their system. This is especially true for quantitative model check-
ing, that considers systems extended with quantities such as probabilities, time,
costs... Among the explanations, one reason is the high expertise required by
model checking users to master the model, the specification and their seman-
tics. Even domain experts may do manual errors, leading to specifications with
a completely different behaviors from the expectations. These issues may then
only be solved using a tedious debugging phase.

This work is partially supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST and by the ANR-NRF French-Singaporean
research program ProMiS (ANR-19-CE25-0015).

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 470–488, 2022.
https://doi.org/10.1007/978-3-031-06773-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_25&domain=pdf
http://orcid.org/0000-0001-8473-9555
http://orcid.org/0000-0001-9360-7490
http://orcid.org/0000-0002-1554-6618
http://orcid.org/0000-0002-8300-4650
https://www.loria.science/ProMiS/
https://doi.org/10.1007/978-3-031-06773-0_25

Exemplifying Parametric Timed Specifications over Signals 471

Fig. 1. Examples of PTAS

Fig. 2. An example of SBA

Contribution. In this work, we propose an approach to exemplify concrete con-
tinuous evolutions of signals over time, according to a specification. We introduce
as a specification formalism parametric timed automata with signals (PTASs) as
an extension of (parametric) timed automata [2,3]: our PTASs use the full power
of timed automata, with clocks compared to constants, and add the possibility
to specify signal (linear) constraints, such as “s1 ≥ 3 × s2”. This allows us to
easily express specifications of the form “whenever signal s1 is larger than 50,
then within at most 15 time units, it holds that s1 ≥ 3 × s2 and then, within
at most 20 more time units, both signals are equal (s1 = s2)”. Figure 1a depicts
the PTAS encoding this specification (where c is a clock, while s1 and s2 are sig-
nals), i.e., �T is reachable whenever the specification is met for some execution.
In addition, we allow for timing parameters (unknown constants), thus enabling
parametric specifications mixing discrete actions, signal constraints and timing
parameters all together, such as “after a first sensing (action sense) occurring
within [5, p], it holds that s1 = s2, and after a second sensing occurring within
[5, p], it holds that s1 < s2

2 ”, where p is a timing parameter. The PTAS encod-
ing this specification is given in Fig. 1b. In this latter case, the exemplification
comes in the form of a concrete valuation for p and an evolution of the signals
satisfying the specification.

In order to bound the possible signal behaviors, we introduce as additional
input signal bounding automata (SBA), i.e., automata bounding the admissible
behaviors of the signals. These SBAs can be gathered from a (rough) knowledge
from the system under consideration; they can also be used to search among
the widely variety signals satisfying the specification e.g., driving with/without
acceleration/deceleration. In addition, thanks to the SBAs, we avoid generating
irrelevant signals, e.g., signals with unrealistically large value change even in
the negative example generation. Our SBAs assign signals an arbitrary (but
piecewise constant) derivative, according to some guards. For example, an SBA
could allow signal s to alternate between slowly (ṡ = 1) and rapidly (ṡ = 3)
growing—or decreasing; this latter SBA is depicted in Fig. 2.

472 É. André et al.

Fig. 3. Concrete runs for Fig. 1a and Fig. 2

Fig. 4. Positive and negative runs for
Fig. 1b

Fig. 5. Formalisms

We generate not only positive (“correct”) exemplifications, but also negative
(“incorrect”, i.e., that do not match the specification). The crux behind this
is that, in order to illustrate a specification, we may need both positive and
negative examples that are close to the boundary. See Fig. 4 for an example.

Example 1. Let A be the PTAS in Fig. 1a; let A1 be the SBA in Fig. 2, and
let A2 be the SBA in Fig. 2 where s1 is replaced with s2. We assume initially
s1, s2 ∈ [0, 10]. Given the PTAS A and the 2 SBAs A1 and A2 bounding the
behavior of s1 and s2, our framework automatically generates several signal evo-
lutions satisfying the specification; we give 3 of them in Fig. 3. Observe that they
present 3 very different evolutions of the signals, with different initial valuations,
evolution rates, and final valuations.

Our approach is given in Fig. 6. More specifically, our contributions are:

1. We introduce three formalisms, all being subclasses of rectangular hybrid
automata [22], namely parametric timed automata with signals (PTASs) to
express specifications, signal bounding automata (SBAs) to bound the behav-
ior of each signal, and parametric linear multi-rate automata (PLMAs) that
will be used for the parallel composition of the aforementioned formalisms;
the relationship between these classes is given in Fig. 5;

2. We equip PLMAs with both a concrete and a symbolic semantics;
3. We propose an exemplification algorithm for PLMAs, yielding concrete

parameter valuations together with positive and negative runs;
4. We implement our framework into the IMITATOR model checker [5];
5. We show the applicability of our approach on a set of specifications.

Exemplifying Parametric Timed Specifications over Signals 473

Fig. 6. Our general approach

Outline. Section 2 reviews related works. Section 3 recalls the necessary prelim-
inaries. Then, Sect. 4 introduces the general class of parametric linear multirate
automata (PLMAs), as well as two subclasses used in the subsequent approach.
Section 5 formally defines our specification exemplification problem. Section 6 is
the core of our contribution, proposing to exemplify specifications using tech-
niques to exhibit parameter valuations and concrete runs for reachability prop-
erties in PLMAs. Section 7 exemplifies our approach on a set of specifications.
Section 8 concludes and proposes future works.

2 Related Works

There are several works [14,23,33,35] to visualize counterexamples of a formal
specification. One of the closest works to ours is STLInspector [35]. Given a
signal temporal logic (STL) [28] formula ϕ, STLInspector generates a signal s
differentiating ϕ and a mutated formula ϕ′. Similarly, in [33], concrete traces
are automatically generated, that satisfy or violate an STL formula. Such sig-
nals are generated by SMT. A difference between [33] and [35] is that [33] con-
siders linear (as opposed to rectangular) predicates. Another related work is
ShapEx [14]. Given a shape expression [31] ϕ, ShapEx generates signals rep-
resented by ϕ based on a sampling-based algorithm. Compared with most of
these related works, the main difference with our approach is the use of signal
bounding automata: since most of the existing techniques generate a signal with-
out bounding the admissible behaviors, an unrealistic signal may be generated.
Another difference, especially from SMT-based approaches, is that it is easy for
our automata-based approach to generate various signals by covering various
paths of the automaton. In contrast, for example, [33] requires an additional
constraint, called a blocking constraint, to generate various signals. Neverthe-
less, the use of SMT in the analysis of an automaton (much like nuXmv [17]) is
future work. In addition, most of these works utilize MITL [29], STL [28], or an
extension of regular expressions. Our approach takes as input a more general,
automata-based formalism (using notably timing parameters and multi-rate vari-
ables), not restricted to a given logic. We note that one can translate a formula
in most of these logics to a timed automaton, which our formalism captures. See
e.g., [11,15] for translation of such logical expressions to timed automata.

474 É. André et al.

In [32], a method is proposed for visualizing counterexamples for function
block diagrams, of properties expressed in LTL. Both the model and the prop-
erty can be animated. In [18], the focus is explaining the violation of a property
against a concrete run. The property is given in the low-level “control flow tem-
poral logic” (CFTL). An originality is the notion of severity, explaining by how
much a timing constraint is violated (which shares similarities with robustness).
The approach is implemented into VyPR2. A main difference with our approach
is that [18] targets the explanation of one particular run violation, whereas we
seek arbitrary exemplifications of a property (both positive and negative), inde-
pendently of a run. Visualization of specifications was also considered, e.g., for
Z specification [26] and for a DSL based on Event-B [36].

Another direction to tackle the difficulty of specification writing is translation
of a natural language description to a temporal logic formula, e.g., [21].

Finally, our new notion of signal bounding automaton, used to bound the
possible behavior of the signals, can be reminiscent of the recent model-bounded
monitoring framework, which we introduced in [37]. In that paper, we used
a rough over-approximation to bound the possible behaviors while performing
monitoring of a black-box system. Similar idea is also used in [13] to bound the
signal space in the falsification problem by a timed automaton [2].

The main originality of our work is i) the use of quantitative specifications
(involving notably continuous time, timing parameters and signals), and ii) the
use of signal bounding automata to bound the admissible behaviors.

3 Preliminaries: Constraints and Rect. Hybrid Automata

We assume a set V = {v1, . . . , vH} of real-valued continuous variables. Dif-
ferent from timed automata “clocks” [2], our variables (closer to hybrid sys-
tems’ “continuous variables”) can have different rates, and turn negative. A
variable valuation is μ : V → R. We write 0 for the variable valuation assign-
ing 0 to all variables. Given d ∈ R, and a flow (or rate) function f : V → Q

assigning each variable with a flow (i.e., the value of its derivative), we define
the time elapsing function te as follows: te(μ, f, d) is the valuation such that
∀v ∈ V : te(μ, f, d)(v) = μ(v) + f(v) × d. Given R ⊆ V, we define the reset of a
valuation μ, denoted by [μ]R, as follows: [μ]R(v) = 0 if v ∈ R, and [μ]R(v) = μ(v)
otherwise.

We assume a set P = {p1, . . . , pM} of (timing) parameters. A parameter
valuation λ is λ : P → Q+. We assume �� ∈ {<,≤,=,≥, >}. A parametric
linear term over V ∪ P is of the form

∑
1≤i≤H αivi +

∑
1≤j≤M βjpj + d, with

vi ∈ V, pj ∈ P, and αi, βj , d ∈ Q. A parametric linear inequality is plt �� 0,
where plt is a parametric linear term. A parametric linear constraint C (i.e., a
convex polyhedron) over V∪P is a conjunction of parametric linear inequalities.
Given C, we write μ |= λ(C) if the expression obtained by replacing each v
with μ(v) and each p with λ(p) in C evaluates to true.

Let I(R) denote the set of all intervals over R. We first recall rectangular
hybrid automata (RHAs), a subclass of hybrid automata. Our definition involves

http://cern.ch/vypr

Exemplifying Parametric Timed Specifications over Signals 475

(timing) parameters; parameters could be seen as syntactic sugar for a subset
of variables (i.e., variables of arbitrary initial value and of zero rate throughout
the automaton), but we still add them explicitly as they will explicitly appear
in subsequent subclasses of RHAs.

Definition 1 (RHA). A rectangular hybrid automaton (RHA) A is a tuple
A = (Σ,L, �0, F,V, V0,P, I, f, E), where: 1) Σ is a finite set of actions,2) L is
a finite set of locations, 3) �0 ∈ L is the initial location, 4) F ⊆ L is the set
of accepting locations, 5) V is a finite set of variables, 6) V0 : V → I(R) is
the initial set of variable valuations, 7) P is a finite set of parameters, 8) I is
the invariant, assigning to every � ∈ L a parametric linear constraint I(�) over
V ∪ P, 9) f is the flow (or rate), assigning to every � ∈ L and v ∈ V a flow
f(�, v) ∈ I(R), 10) E is a finite set of edges e = (�, g, a,R, �′) where �, �′ ∈ L are
the source and target locations, a ∈ Σ, R ⊆ V is a set of variables to be reset,
and g is a parametric linear constraint over V ∪ P.

Parallel Composition. RHAs can be composed using synchronized product (see
e.g., [34, Definition 4]) in a way similar to finite-state automata. The synchro-
nized product of n RHAs Ai, i ∈ {1, . . . , n}, denoted by A1 ‖ A2 ‖ · · · ‖ An,
is an RHA [20]. Of importance is that, in a composed location, the global flow
constraint is the intersection of the local component flow constraints.

We do not give the concrete semantics of this formalism, as we will manipulate
a subclass called parametric linear multi-rate automaton (PLMA).

4 Parametric Linear Multi-rate Automata

Timed automata extend finite-state automata with clocks (i.e., real-valued vari-
ables evolving at the same constant rate 1), that can be compared with integer
constants along transitions (“guards”) or within locations (“invariants”). Para-
metric timed automata (PTAs) extend TAs with parameters within guards and
invariants in place of integer constants [3], i.e., allowing inequalities of the form
v �� p (simple guards) or sometimes v − v′ �� p (diagonal constraints), where
v, v′ ∈ V and p ∈ P. Here, we extend PTAs notably with: i) multi-rate clocks
(called variables), i.e., each clock can have an arbitrary (but constant) rational
rate in each location; and ii) linear constraints over variables and parameters,
instead of the usual definition v �� p. We first define parametric linear multi-rate
automata (PLMA) with their syntax (Sect. 4.1) and semantics (Sect. 4.2); we
then propose two other subformalisms of RHAs (Sect. 4.3) used subsequently in
this paper.

4.1 Syntax

We extend (P)TAs with (constant) flows; in the absence of timing parameters,
this formalism is usually called multi-rate timed automata [1,19]. Also note that,
different from TA clocks, our variables can possibly turn negative. In addition,
we extend the usual syntax of clock guards to our aforementioned definition of
parametric linear constraints.

476 É. André et al.

�1
v̇1 = 2
v̇2 = 3

�2
v̇1 = 1
v̇2 = 0

�3
v̇1 = 1
v̇2 = 1

v1 ≤ 10 v1 ≤ 3

v1 ← 0

v2 ← [−2, 2]

2 × v1 > v2 + 2
a1

v1 ← 0

v1 = 3
∧p − 3 ≤ v2 ≤ p + 1

a2

Fig. 7. A PLMA example

Definition 2 (PLMA). An RHA A = (Σ,L, �0, F,V, V0,P, I, f, E) is a para-
metric linear multi-rate automaton (PLMA) if: ∀� ∈ L,∀v ∈ V : f(�, v) ∈ Q.

That is, a PLMA is an RHA where all flows are constant. Observe that
the flow is taken in Q, which includes negative rates and zero-rates (also
called stopwatches [16]). A PLMA is strongly deterministic if ∀� ∈ L,∀a ∈
Σ, |{(�′

1, g
′, a′, R′, �′

2) ∈ E | �′
1 = � ∧ a′ = a}| ≤ 1.

Example 2. Consider the PLMA in Fig. 7. In the PLMA figures, we use notation
v̇i = d in location �j to denote f(�j , si) = d. This PLMA contains two variables
v1 and v2, and one parameter p. �1 is the initial location, while �3 is the (only)
accepting location. We have V0(v1) = [0, 0] and V0(v2) = [−2, 2].

Given λ, we denote by λ(A) the non-parametric structure where all occur-
rences of a parameter pi have been replaced by λ(pi). We call such a struc-
ture a linear multi-rate automaton (LMA). Note that, whenever all rates are 1
(∀� ∈ L,∀v ∈ V, f(�, v) = 1), all guards and invariants are of the form v �� d,
d ∈ Q+, and all variables are initially 0 (i.e., ∀v ∈ V : V0(v) = {0}), then the
resulting structure is a timed automaton [2].

4.2 Semantics

Concrete Semantics of LMAs. The semantics of LMAs is close to that of
multi-rate automata, extended with linear constraints over variables.

Definition 3 (Semantics of an LMA). Given a PLMA A = (Σ,L, �0, F,
V, V0,P, I, f, E), and a parameter valuation λ, the semantics of λ(A) is given by
the timed transition system (TTS) (S, S0,→), with

– S = {(�, μ) ∈ L × R
H | μ |= λ(I(�))},

– S0 = {(�0, μ) | μ |= λ(I(�0)) ∧ ∀v : μ(v) ∈ V0(v)},
– → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (�, μ) e�→ (�′, μ′), if (�, μ), (�′, μ′) ∈ S, and there exists
e = (�, g, a,R, �′) ∈ E, such that μ′ = [μ]R, and μ |= λ(g).

2. delay transitions: (�, μ) d�→ (�, te(μ, f(�), d)), with d ∈ R+, if ∀d′ ∈
[0, d], (�, te(μ, f(�), d′)) ∈ S.

Moreover we write (�, μ)
(d,e)−→ (�′, μ′) for a delay transition followed by a

discrete transition if ∃μ′′ : (�, μ) d�→ (�, μ′′) e�→ (�′, μ′).

Exemplifying Parametric Timed Specifications over Signals 477

Given an LMA λ(A) with concrete semantics (S, S0,→), we refer to the states
of S as the concrete states of λ(A). A concrete run of λ(A) is an alternating
sequence of concrete states of λ(A) and pairs of edges and delays starting from
an initial state s0 ∈ S0 of the form s0, (d0, e0), s1, · · · with i = 0, 1, . . . , ei ∈ E,

di ∈ R+ and si
(di,ei)−→ si+1. Given s = (�, μ), we say that s is reachable in λ(A)

if s appears in a run of λ(A). By extension, we say that � is reachable. A run ρ
is said to be accepting if there exists � ∈ F such that � is reachable along ρ.

A negative run of λ(A) is an alternating sequence of states (�i, μi) and pairs of
edges and delays of the form (�0, μ0), (d0, e0), (�1, μ1), · · · with i = 0, 1, . . . , ei ∈
E and di ∈ R+, which is not a concrete run of λ(A). That is, there exists some i

such that (�i, μi) is not a concrete state of λ(A), or (�i, μi)
(di,ei)−→ (�i+1, μi+1)

does not belong to the semantics of λ(A). To distinguish from negative runs, we
will sometimes refer to concrete runs as positive runs.

Example 3. Consider again the PLMA A in Fig. 7, and let λ be such that
λ(p) = 12. Consider the following run ρ of λ(A): (�1, (0,−2)), (e1, 3.8),
(�2, (0, 9.4)), (e2, 3), (�3, (3, 9.4)), where e1 is the edge from �1 to �2 in Fig. 7, and
e2 is the edge from �2 to �3. (As an abuse of notation, we write (�0, (0,−2)) for
(�0, μ0) where μ0(v1) = 0 and μ0(v2) = −2.) Observe that, after 3.8 time units
in �1, we have v1 = 2×3.8 = 7.6 (which satisfies invariant v1 ≤ 10) while v2 = 9.4;
therefore, guard 2 × v1 > v2 + 2 evaluates to 15.2 > 11.4, and therefore the tran-
sition to �2 can be taken. After 3 time units in �2, not modifying the value of v2 as
f(�2, v2) = 0, the guard to �3 is satisfied as 9.4 ∈ [9, 13] (recall that λ(p) = 12). ρ
is accepting as it ends in �3.

Now consider the following alternative sequence ρ′: (�1, (0, 0)),
(e1, 5), (�2, (0, 15)), (e2, 3), (�3, (3, 15)). This sequence is a negative run of λ(A), as
the transition via e2 cannot be taken for this valuation (15 /∈ [9, 13]). However, ρ′

is a positive run of λ′(A), where λ′(p) = 14.5.

A graphical representation of (positive and negative) runs focusing on
the evolution of the variables over time can be obtained directly from the
runs. This graphical representation is made of H lines (where H denotes the
variables cardinality) obtained as follows: given a (positive or negative) run
(�0, μ0), (d0, e0), (�1, μ1), · · · , given a variable v, the initial point is (0, μ0(v)).
That is, each variable v defines graphically a non-necessarily differentiable piece-
wise linear function.

Example 4. Consider the first run ρ from Example 3. Its associated graphical
representation is given in Fig. 8.

Symbolic Semantics. Let us now define the symbolic semantics of PLMAs,
as an extension of the semantics of PTAs (see e.g., [8,24,25]) to multi-rates and
linear constraints.

478 É. André et al.

t1 2 3 4 5 6 7−2
0
2
4
6
8

v1

v2

Fig. 8. Graphical run

�1
0 ≤ v1 ≤ 10∧

−4 ≤ 3 × v1 − 2 × v2 ≤ 4
∧p ≥ 0

�2
0 ≤ v1 ≤ 3∧

−2 < v2 ≤ 17
∧p ≥ 0

�3
v1 ≥ 3

∧ − 5 < v2 − v1 ≤ 14∧
p − 6 ≤ v2 − v1 ≤ p − 2

∧p ≥ 0

e1 e2

Fig. 9. A parametric
zone graph

Constraints. We first need to define operations on constraints. Given a parameter
valuation λ and a variable valuation μ, we denote by μ|λ the valuation over V∪P

such that for all variables v, μ|λ(v) = μ(v) and for all parameters p, μ|λ(p) =
λ(p). Given a parametric linear constraint C, we use the notation μ|λ |= C to
indicate that μ |= λ(C). We say that C is satisfiable if ∃μ, λ s.t. μ|λ |= C. We will
often use geometrical concepts for constraints; in particular, whenever μ|λ |= C,
then the valuation μ|λ can be seen as a point belonging to the polyhedron C.

We define the time elapsing of C w.r.t. flow f : V → Q, denoted by te(C, f),
as the constraint over V and P obtained from C by delaying all variables by an
arbitrary amount of time according to f . That is, μ′|λ |= te(C, f) iff ∃μ : V →
R,∃d ∈ R s.t. μ|λ |= C ∧ μ′ = te(μ, f, d).

Given R ⊆ V, we define the reset of C, denoted by [C]R, as the constraint
obtained from C by resetting to 0 the variables in R, and keeping the other vari-
ables unchanged. We denote by C↓P the projection of C onto P, i.e., obtained by
eliminating the variables not in P (e.g., using Fourier-Motzkin. The application
of these operation to a linear constraint yields a linear constraint; this can be
computed efficiently using operations on polyhedra [12].

A symbolic state is a pair (�,C) where � ∈ L is a location, and C is a linear
constraint called a parametric zone.

Definition 4 (Symbolic semantics). Given a PLMA A = (Σ,L, �0, F,V,
V0,P, I, f, E), the symbolic semantics of A is the labeled transition system called
parametric zone graph PZG(A) = (E,S, s0,⇒), with

– S = {(�,C) | C ⊆ I(�)}, s0 =
(
�0, te((

∧
1≤i≤H vi ∈ V0(vi)), f(�0)) ∧ I(�0)

)
,

–
(
(�,C), e, (�′,C′)

) ∈ ⇒ if e = (�, g, a,R, �′) ∈ E and C′ = te(
(
[(C ∧ g)]R ∧

I(�′)
)
, f(�′)) ∧ I(�′) with C′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs
are labeled by edges of the original PLMA. Observe that, as in PTAs, a symbolic
state contains all the valuations after time elapsing (instead of just the valuations
after a discrete transition).

If
(
(�,C), e, (�′,C′)

) ∈ ⇒, we write Succ(s, e) = (�′,C′), where s = (�,C).
By extension, we write Succ(s) for ∪e∈ESucc(s, e).

A symbolic run r of A is an alternating sequence of symbolic states of A
and edges starting from the initial state s0 of the form s0, e0, s1, · · · with i =
0, 1, . . . , ei ∈ E, and Succ(si, ei) = si+1. (The symbolic runs of A are the runs
of PZG(A).) edgeAt(r, k) denotes ek, and stateAt(r, k) denotes sk. When r is

Exemplifying Parametric Timed Specifications over Signals 479

finite, |r| denotes its length, i.e., its number of edges (therefore, a finite symbolic
run contains |r + 1| symbolic states).

Example 5. Consider again the PLMA A in Fig. 7. Then, PZG(A) (limited to its
reachable states) is given in Fig. 9. The constraints in each location give both the
admissible valuations for p for which this location is reachable, and a condition
over the continuous variables v1 and v2 to remain in this location. Note that
(the reachable part of) this PZG is finite, which is not necessarily the case in
general.

4.3 Two Other Subclasses of RHAs: PTASs and SBAs

Definition 5. An RHA A = (Σ,L, �0, F,V, V0,P, I, f, E) is a parametric timed
automaton with signals (PTAS) if:

1. the set of variables is partitioned into V = C�S, where C is a set of standard
TA clocks (i.e., variables with rates 1), and S is a set of signals;

2. all clock rates are 1, i.e., ∀� ∈ L,∀c ∈ C, f(�, c) = 1;
3. signals satisfy the following constraints:

(a) all signal rates are unconstrained, i.e., ∀� ∈ L,∀s ∈ S, f(�, s) = R;
(b) a signal cannot be reset, i.e., ∀(�, g, a,R, �′) ∈ E,∀v ∈ R : v /∈ S; and
(c) each parametric linear inequality in guards and invariants cannot involve

both a standard clock from C and a signal from S (i.e., comparisons of
the form c �� s, with c ∈ C and s ∈ S, are not allowed).

Observe that, since the signal rates are = R, the formalism of PTAS is not a
subclass of PLMAs (see Fig. 5), as this latter formalism imposes f(�, s) = d for
some d ∈ Q. However, in practice, a PTAS will always be composed (using syn-
chronized product) with a set of PLMAs (actually SBAs, see below) constraining
the rate of signals (see Lemma 1 below).

Example 6. Consider the PTAS in Fig. 1b. Its clock set is C = {c} while its
signal set is S = {s1, s2}. The set of parameters is P = {p}. We have f(�1, c) =
f(�2, c) = f(�T , c) = 1 (not explicitly depicted in Fig. 1b).

Second, we define a signal bounding automaton as a special LMA used to
constrain the admissible behaviors of a signal. Therefore, it contains a single
variable (actually a signal), no parameter, and no reset.

Definition 6. A PLMA A = (Σ,L, �0, F,S,P, I, f, E) is a signal bounding
automaton (SBA) if: 1) P = ∅; 2) |S| = 1; and 3) no resets are allowed, i.e.,
∀(�, g, a,R, �′) ∈ E,R = ∅.
Example 7. An example of SBA is given in Fig. 2, where S = {s1}. In the SBA
figures, we use notation ṡ1 = d in location � to denote f(�, s1) = d.

Lemma 1. Let A be a PTAS with n signals. Let Ai, i ∈ {1, . . . , n} be n SBAs
such that Ai contains a signal variable si. Then A ‖ A1 ‖ · · · ‖ An is a PLMA.

In practice, SBAs can also involve clocks, e.g., to mesure time between signal
changes. This is both harmless in theory, and allowed by our implementation.

480 É. André et al.

Algorithm 1: Main algorithm exemplify(A)
input : A PLMA with symbolic initial state s0 and accepting locations F
output : A set of negative runs and positive runs

1 Explore PZG(A) until a state (�T ,C) is found, for some �T ∈ F and some C
/* Pick a run r from s0 to (�T ,C) */

2 r ← PickSymbRun(PZG, s0, (�T ,C))
3 return exemplify3 (A, r)

5 Problem

Expressing Specifications over Signals. In our work, we consider as first
input a PTAS featuring a set of n signals, and acting as a specification automaton.
Given a parameter valuation λ and a specification expressed as a PTAS A with
accepting locations F , the specification is satisfied iff F is reachable in λ(A).

Bounding Signal Behaviors. In order to define the admissible behaviors of
the signals, we also consider an SBA for each of the signals used in the PTAS.

Since the specification (given by a PTAS) is parametric, we first aim at
deriving concrete parameter valuations for which the specification is valid, i.e.,
for which one accepting state is reachable. Second, for a given concrete valuation,
we aim at deriving concrete accepting positive runs, as well as negative runs.

Specification exemplification problem:
Input: A PTAS A featuring n signals, and n SBAs Ai, i ∈ {1, . . . , n}
Problem: Exhibit a set of parameter valuations λ and a set of concrete
accepting positive runs and negative runs of λ((A ‖ A1 ‖ · · · ‖ An))

Recall that our general approach is given in Fig. 6. In our approach, we make
the following assumption (only required when computing negative runs):

Assumption 1. The PTAS and SBAs must be strongly deterministic.

6 Exemplifying Bounded Signal Specifications

We propose in this section a heuristics-based method to exemplify runs for an
arbitrary PLMA. The entry point is exemplify in Algorithm 1. We first explore
the PZG until a target state is found (line 1). Then, we exhibit a symbolic
run from the initial state s0 to the target state (line 2). Finally, Algorithm 1
calls exemplify3 , given in Algorithm 2, that returns (up to) 3 concrete runs: one
positive run together with a concrete parameter valuation, one negative run for
a different parameter valuation, and one negative run for the same parameter
valuation. Let us explain these steps.

Exemplifying Parametric Timed Specifications over Signals 481

Algorithm 2: exemplify3 (A, r): Exemplifying 3 concrete runs
input : A PLMA A, a symbolic run r from s0 to (�T ,C)
output : A set R of concrete negative runs and positive runs

1 R ← ∅
/* Part 1: positive run */

2 μ|λ ← exhibitPoint(C)
3 ρ ← reconstructPos(A, r, |r|, (�T , μ|λ)) ; R ← R ∪ {ρ}

/* Part 2a: negative run (different parameter valuation) */

4 if hasPdeadlock(r) then
5 (λi, (�i,Ci)) ← findPdeadlock(r) ; μi ← exhibitPoint(λi(Ci))
6 ρpref ← reconstructPos(A, r, i, (�i, μi|λi))
7 ρsuf ← constructNeg(A, r, i, |r|, μi|λi)
8 ρ ← ρpref + ρsuf ; R ← R ∪ {ρ}

/* Part 2b: negative run (same parameter valuation) */

9 if hasVdeadlock(r) then
10 (μi, (�i,Ci)) ← findVdeadlock(r, λ)
11 ρpref ← reconstructPos(A, r, i, (�i, μi|λ))
12 ρsuf ← constructNeg(A, r, i, |r|, μi|λ)
13 ρ ← ρpref + ρsuf ; R ← R ∪ {ρ}
14 return R

6.1 Exploration and Symbolic Run Exhibition

The construction of the PZG is made on-the-fly, using Defintion 4. In our imple-
mentation, this is done using a breadth-first search (BFS) manner.

Then, the function PickSymbRun takes as argument the PZG PZG, the ini-
tial state s0, and the target state (here (�T ,C)), and returns a symbolic run
from s0 to (�T ,C) in PZG. The actual function (not given in this paper) is
implemented in a straightforward manner in our toolkit using a backward anal-
ysis in PZG from (�T ,C) to s0. The exhibited symbolic run is not necessarily
unique and, as heuristics, we use a shortest run (again, not necessarily unique),
with “shortest” to be understood as the number of discrete steps. Alternative
definitions could be used (e.g., minimal-time run [7]).

After exhibiting a symbolic run, our next step is to derive concrete runs from
that symbolic run. This is the purpose of exemplify3 (A, r), given in Algorithm 2.

We first explain Algorithm 2 as a whole, and then proceed to subfunctions
in the following. The first step in exemplify3 is to exhibit a “point”, i.e., a
concrete variable and parameter valuation in the target state constraint C (line
2). Since C is a polyhedron, we use a dedicated function exhibitPoint(C). There
is no theoretical difficulty in exhibiting a concrete point in a polyhedron; however,
our dedicated function must both be efficient and yield a valuation which is
as “human-friendly” as possible, i.e., avoiding random rational numbers and
avoiding as much as possible to select “0” if another suitable valuation exists.
The body of our function exhibitPoint is given in [10].

482 É. André et al.

6.2 Exhibiting Concrete Example Runs

We then reconstruct a concrete positive run (line 3 in Algorithm 2) from the point
μ|λ that was just exhibited in the final constraint. This function reconstructPos
poses no specific theoretical difficulty, but yields some practical subtleties, dis-
cussed in [10]. Note that it is always possible to reconstruct a concrete run from
a symbolic run.

The second part of Algorithm 2 (line 4–line 8) consists in exhibiting a negative
run (based on r) for a different parameter valuation than the one (λ) exhibited
in the first part of the algorithm. The heuristics we use is to (try to) exhibit
a parameter valuation that cannot take one of the transitions of the symbolic
run r: this is a parametric deadlock. If such a valuation exists, then the projection
onto the parameters of some constraints along the run r is shrinked, i.e., this run
is possible for some parameter valuations up to some state, and then possible
for less parameter valuations.

Parametric deadlock checking was studied in, e.g., [4,9], and findPdeadlock
is basically based on these former works, except that we used the symbolic
semantics of PLMAs instead of PTAs. findPdeadlock attempts at exhibiting a
parameter valuation that cannot pass one of the edges of a symbolic run r.
findPdeadlock is given in [10].

The third part of Algorithm 2 (line 9–line 13) consists in exhibiting a negative
run for the same parameter valuation as the one (λ) exhibited in the first part
of the algorithm. Our heuristics is as follows: we try to find a transition within r
for which some variable valuation (for the parameter valuation λ) cannot take
this transition. This can come from an unsatisfied guard or invariant: this is a
non-parametric deadlock.

findVdeadlock attempts to exhibit a variable valuation μ and a symbolic
state s of a symbolic run r such that there exists a deadlock after s for μ,
i.e., μ cannot take the edge following s along r, even after elapsing some time.
findVdeadlock is given in [10].

6.3 Exhibiting Negative Concrete Example Runs

The reconstruction of a negative run fragment is given in Algorithm 3. It takes
as arguments the start (i) and end (j) positions of the symbolic run r, as well
as the concrete valuation μi|λi to start from at position i. Algorithm 3 simply
starts from the valuation μi|λi, and takes the same discrete actions as in the
symbolic run, but with an (arbitrary) duration 1: that is, for each k from i to j,
we add a transition (edgeAt(r, k), 1) (where 1 denotes the duration), and we add
the updated valuation (μi|λi + (k − i)), which is equal to (μi|λi incremented
by the number of transitions computed so far (k − i)). Note that it would be
possible to take any other duration than 1, and apply the resets as in the symbolic
run. The fact that this concrete run is an invalid run comes from the fact that
the valuation μi|λi is known to be unable to take the immediately following
transition, as it is called at lines 7 and 12 of Algorithm 2 where a parametric
(resp. non-parametric) deadlock was exhibited.

Exemplifying Parametric Timed Specifications over Signals 483

Algorithm 3: constructNeg(A, r, i, j, μi|λi): Reconstruct a negative run
from a symbolic run fragment
input : A PLMA A ; A symbolic run r from s0 to (�T ,C) ; Start position i

and end position j ; Starting valuation μi|λi

output : A concrete negative run fragment
1 ρ ← μi|λi

2 for k = i to j do ρ ← ρ,
(
edgeAt(r, k), 1

)
,
(
μi|λi + (k − i)

)
;

3 return ρ

6.4 Formal Result

Exemplifying runs for parametric timed formalisms is a very hard problem, as
the mere existence of a parameter valuation for which a location is reachable
in a PTA is undecidable [3]. While our method is mostly heuristics-based, we
prove that, provided at least one parameter valuation allows to reach an accepting
location, then our method is able to infer at least one (positive) concrete run.

Proposition 1. Let A be a PLMA with accepting locations F . Assume ∃λ :
λ(A) reaches some �T ∈ F . Then, assuming a BFS computation of PZG(A),
exemplify(A) terminates, and outputs at least one positive run.

Our algorithm has no guarantee to exhibit negative runs for several reasons:
notably, we use only heuristics, here based on deadlocks: there could be other
negative runs than those exhibited based on a (parametric) deadlocks. Still, one
can guarantee the following:

Proposition 2. Let A be a PLMA and r be a symbolic run of λ(A) with a
parameter valuation λ. Assume there is a concrete negative run due to paramet-
ric (resp. non-parametric) deadlock with the same discrete actions as r. Then,
assuming a BFS computation of PZG(A), exemplify3 (A, r) outputs a concrete
negative run due to parametric (resp. non-parametric) deadlock.

7 Proof of Concept

We implemented our exemplification algorithm in IMITATOR [5] (v.3.3-alpha
“Cheese Caramel au beurre salé”).1

All polyhedral operations are implemented using PPL [12]. The approach
takes as input a network of PLMAs, and attempts to output a set of runs and
parameter valuations. As a heuristics, we try to call up to 6 times Algorithm 1,
i.e., we try to exhibit up to 6 symbolic runs, and then for each of them, following
Algorithm 2, we derive one parameter valuation and a concrete run, followed by
a negative run for a different parameter valuation (if any) and a negative run
for the same valuation (if any). All analyses terminate within a few seconds,
including graphics generation.
1 Source code, models and results are available at 10.5281/zenodo.6382893.

https://github.com/imitator-model-checker/imitator/releases/tag/v3.3.0-alpha
https://www.doi.org/10.5281/zenodo.6382893

484 É. André et al.

Fig. 10. A non-parametric specification over Boolean predicates

Fig. 11. Positive and negative runs for Fig. 10

All outputs are textual (in a JSON-like format); however, IMITATOR also
automatically outputs basic graphics. The figures in this paper were however
(manually) redrawn using LATEX.

Extensions. Thanks to the expressive power of IMITATOR, we can go beyond
the formalism presented here. Notably, arbitrary updates (not necessarily to 0,
but to parameters, or other variables) are allowed; also, Boolean variables can
encode predicates, which can be seen as a simpler setting than signals (see below).

A Non-parametric Specification over Booleans. Assume the following specifica-
tion: “whenever action a1 occurs, then following a non-0 time, predicate P1 must
hold; then, strictly less than 3 time units later, a2 occurs and predicate P2 must
not hold”. The PTAS encoding this specification is given in Fig. 10a; the SBA
in Fig. 10b simply allows both predicates to switch anytime between true and
false.

We give two positive runs in Fig. 11a and 11b and one negative run in Fig. 11c.
Observe that the run in Fig. 11c violates the specification because action a2

occurs exactly in 3 time units (instead of < 3 time units) after check .

A Non-parametric Specification over Signals. Recall the motivating specification
from Example 1 with the PTAS from Fig. 1a and the SBA in Fig. 2. We assume
that initially s1, s2 ∈ [0, 10] (such non-deterministic assignment is allowed by
our framework, from V0 in Definition 2). Three concrete runs are given in Fig. 3,
while all six outputs by IMITATOR are given in [10].

A Parametric Specification over Signals. Now recall the parametric specification
from Fig. 1b. Our approach derives a parameter valuation p = 10, for which this

Exemplifying Parametric Timed Specifications over Signals 485

specification can be satisfied, as well as the concrete run in Fig. 4a. Then, our
approach derives a parameter valuation p = 5 for which the specification may
be violated, with a negative run in Fig. 4b: this run is not valid because the two
sense actions are separated by < 5 time units. Finally, our approach derives a
second negative run, this time for p = 10, given in Fig. 4c: again, this run is not
valid because two sense actions occur in a time 10

3 < 5.

8 Conclusion

We presented a first approach to exemplify specifications over signals (as real-
valued continuous variables with a piecewise-constant rate), also using regu-
lar TA clocks and timing parameters. Our approach’s originality is twofold:
expressive quantitative specifications (involving notably continuous time, tim-
ing parameters and signals), and the use of newly introduced signal bounding
automata to limit the admissible continuous behavior. Our implementation in
IMITATOR makes the process fully automated.

While we do not expect our exemplifying approach to allow for users com-
pletely unfamiliar with model checking and timed formalisms to suddenly
become experts in these methods, we believe our approach is a first step towards
helping users with a low expertise to increase the confidence they have in their
specifications.

Future Work. A first future work is to study the theoretical background of our
specification formalism, and notably its expressiveness. Also, we so far consid-
ered only reachability properties, and our framework shall be extended to live-
ness/fairness, e.g., using the recent liveness synthesis algorithms for PTAs [6,30].
The strong determinism assumption (Assumption 1) is required by our algo-
rithms, but shall eventually be lifted.

Another direction is to allow more flexible formalisms (e.g., rectangular
hybrid automata) to bound the signals.

One of the future directions is to extend our framework to exemplify a more
widely used formalism, e.g., LTL, MITL [29], or STL [28]. At least theoretically,
this would be straightforward thanks to the high expressiveness of PTASs. In this
latter case, we can also benefit from the positive run exemplification to exhibit
negative runs, by taking as input the PTAS corresponding to the negation of the
original formula.

Further, providing some “coverage” guarantees, with a sufficient number of
positive and negative runs, is on our agenda.

One longer-term future work is to use and evaluate our framework to teach
students or engineers who are not familiar with formal specifications.

486 É. André et al.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. TCS 138(1), 3–34
(1995). https://doi.org/10.1016/0304-3975(94)00202-T

2. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994).
https://doi.org/10.1016/0304-3975(94)90010-8

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM,
New York (1993). https://doi.org/10.1145/167088.167242

4. André, É.: Parametric deadlock-freeness checking timed automata. In: Sampaio,
A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 469–478. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46750-4 27

5. André, É.: IMITATOR 3: synthesis of timing parameters beyond decidability. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 552–565. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 26

6. André, É., Arias, J., Petrucci, L., Pol, J.: Iterative bounded synthesis for effi-
cient cycle detection in parametric timed automata. In: TACAS 2021. LNCS, vol.
12651, pp. 311–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72016-2 17

7. André, É., Bloemen, V., Petrucci, L., van de Pol, J.: Minimal-time synthesis for
parametric timed automata. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 211–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17465-1 12

8. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for paramet-
ric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://
doi.org/10.1142/S0129054109006905

9. André, É., Lime, D.: Liveness in L/U-parametric timed automata. In: Legay,
A., Schneider, K. (eds.) ACSD, pp. 9–18. IEEE (2017). https://doi.org/10.1109/
ACSD.2017.19

10. André, É., Waga, M., Urabe, N., Hasuo, I.: Exemplifying parametric timed spec-
ifications over signals with bounded behavior. Technical report abs/2203.13247,
arXiv (2022). https://arxiv.org/abs/2203.13247

11. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002). https://doi.org/10.1145/506147.506151

12. Bagnara, R., M., H.P., Zaffanella, E.: The parma polyhedra library: toward a com-
plete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

13. Barbot, B., Basset, N., Dang, T., Donzé, A., Kapinski, J., Yamaguchi, T.: Falsifi-
cation of cyber-physical systems with constrained signal spaces. In: Lee, R., Jha,
S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp.
420–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 25

14. Basset, N., Dang, T., Gigler, F., Mateis, C., Ničković, D.: Sampling of shape expres-
sions with ShapEx. In: Arun-Kumar, S., Méry, D., Saha, I., Zhang, L. (eds.) MEM-
OCODE, pp. 118–125. ACM (2021). https://doi.org/10.1145/3487212.3487350

15. Brihaye, T., Geeraerts, G., Ho, H.-M., Monmege, B.: MightyL: a compositional
translation from MITL to timed automata. In: Majumdar, R., Kunčak, V. (eds.)
CAV 2017. LNCS, vol. 10426, pp. 421–440. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63387-9 21

https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/978-3-319-46750-4_27
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1109/ACSD.2017.19
https://doi.org/10.1109/ACSD.2017.19
https://arxiv.org/abs/2203.13247
https://doi.org/10.1145/506147.506151
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-030-55754-6_25
https://doi.org/10.1145/3487212.3487350
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.1007/978-3-319-63387-9_21

Exemplifying Parametric Timed Specifications over Signals 487

16. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 12

17. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with timed transition systems and timed temporal properties. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 376–386. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 21

18. Dawes, J.H., Reger, G.: Explaining violations of properties in control-flow temporal
logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 202–
220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 12

19. Daws, C., Yovine, S.: Two examples of verification of multirate timed automata
with Kronos. In: RTSS, pp. 66–75. IEEE Computer Society (1995). https://doi.
org/10.1109/REAL.1995.495197

20. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems
by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS,
vol. 864, pp. 223–237. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58485-4 43

21. He, J., Bartocci, E., Ničković, D., Isakovic, H., Grosu, R.: From English to Signal
Temporal Logic. Technical report abs/2109.10294, arXiv (2021), https://arxiv.org/
abs/2109.10294

22. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE
Computer Society (1996). https://doi.org/10.1109/LICS.1996.561342

23. Hoxha, B., Mavridis, N., Fainekos, G.: VISPEC: a graphical tool for elicitation
of MTL requirements. In: IROS, pp. 3486–3492. IEEE (2015). https://doi.org/10.
1109/IROS.2015.7353863

24. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002). https://doi.org/10.
1016/S1567-8326(02)00037-1

25. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. TSE 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445

26. Kim, S.K., Carrington, D.A.: Visualization of formal specifications. In: APSEC, pp.
102–109. IEEE Computer Society (1999). https://doi.org/10.1109/APSEC.1999.
809590

27. Kurshan, R.P.: Transfer of model checking to industrial practice. In: Handbook
of Model Checking, pp. 763–793. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 23

28. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

29. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340 20

30. Nguyen, H.G., Petrucci, L., van de Pol, J.: Layered and collecting NDFS with
subsumption for parametric timed automata. In: Lin, A.W., Sun, J. (eds.)
ICECCS, pp. 1–9. IEEE Computer Society, December 2018. https://doi.org/10.
1109/ICECCS2018.2018.00009

31. Ničković, D., Qin, X., Ferrère, T., Mateis, C., Deshmukh, J.: Shape expressions for
specifying and extracting signal features. In: Finkbeiner, B., Mariani, L. (eds.) RV
2019. LNCS, vol. 11757, pp. 292–309. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32079-9 17

https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/978-3-030-25540-4_21
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1109/REAL.1995.495197
https://doi.org/10.1109/REAL.1995.495197
https://doi.org/10.1007/3-540-58485-4_43
https://doi.org/10.1007/3-540-58485-4_43
https://arxiv.org/abs/2109.10294
https://arxiv.org/abs/2109.10294
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/IROS.2015.7353863
https://doi.org/10.1109/IROS.2015.7353863
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/APSEC.1999.809590
https://doi.org/10.1109/APSEC.1999.809590
https://doi.org/10.1007/978-3-319-10575-8_23
https://doi.org/10.1007/978-3-319-10575-8_23
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/11867340_20
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1007/978-3-030-32079-9_17
https://doi.org/10.1007/978-3-030-32079-9_17

488 É. André et al.

32. Pakonen, A., Buzhinsky, I., Vyatkin, V.: Counterexample visualization and expla-
nation for function block diagrams. In: INDIN, pp. 747–753. IEEE (2018). https://
doi.org/10.1109/INDIN.2018.8472025

33. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal temporal
logic. In: RTSS, pp. 208–217. IEEE Computer Society (2018). https://doi.org/10.
1109/RTSS.2018.00038

34. Raskin, J.F.: An introduction to hybrid automata. In: Hristu-Varsakelis, D.,
Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems, pp.
491–518. Birkhäuser (2005)

35. Roehm, H., Heinz, T., Mayer, E.C.: STLInspector: STL validation with guarantees.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 225–232.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 11

36. Tikhonova, U., Manders, M., Boudewijns, R.: Visualization of formal specifications
for understanding and debugging an industrial DSL. In: Milazzo, P., Varró, D.,
Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 179–195. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50230-4 13

37. Waga, M., André, É., Hasuo, I.: Model-bounded monitoring of hybrid systems. In:
Maggio, M., Weimer, J., Farque, M.A., Oishi, M. (eds.) ICCPS, pp. 21–32. ACM
(2021). https://doi.org/10.1145/3450267.3450531

https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/RTSS.2018.00038
https://doi.org/10.1109/RTSS.2018.00038
https://doi.org/10.1007/978-3-319-63387-9_11
https://doi.org/10.1007/978-3-319-50230-4_13
https://doi.org/10.1145/3450267.3450531

Timed Automata Learning via SMT
Solving

Martin Tappler1,2(B), Bernhard K. Aichernig1, and Florian Lorber3

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{martin.tappler,aichernig}@ist.tugraz.at

2 Silicon Austria Labs, TU Graz – SAL DES Lab, Graz, Austria
3 Aalborg University, Aalborg, Denmark

florber@cs.aau.dk

Abstract. Automata learning is a technique for automatically inferring
models of existing systems, that enables formal verification of black-box
systems. In this paper we propose a way of learning timed automata,
extended final state machines that can measure the progress of time.
We make use of SMT solving to learn timed automata consistent with
the observations in a set of timed traces, which can be gathered via
active testing or passive monitoring. By imposing a set of restrictions to
the learnt models, we ensure that our solutions are not overly general.
The presented SMT encoding of the problem allows for two ways of
incremental solving and different search orders. We present a prototype
implementation with results from case studies and randomly generated
timed automata of varying size and complexity. We perform an extensive
evaluation over six SMT solvers, using different theories and exploration
strategies, as well as incremental and non-incremental solving.

1 Introduction

Automated inference of models is a challenging area researched under the names
of process mining [27], specification mining [15], automata learning [13] and
model learning [1]. The common goal is to derive a formal model for a black-box
system or process, which is used to reason about and verify the system.

Model-based verification techniques such as model-checking are the core of
formal verification. However, the used models suffer from three major issues:
time and effort needed to create the models, the possible gap between the mod-
elled system and the model, and the error proneness of manually created mod-
els. Automated learning of models can significantly aid in these issues. While
some supervision and selection of suitable parameters is needed, manual effort
is still comparably low. The gap between the system under learning (SUL) and
the model is significantly reduced, as the model is built directly from the sys-
tem observations. Correctness of the model is not guaranteed by passive model
learning techniques that rely on recorded data, as these data might not cover all
behaviour. However, by providing more data, the model can be further refined.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 489–507, 2022.
https://doi.org/10.1007/978-3-031-06773-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_26&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_26

490 M. Tappler et al.

For real-time systems the verification of properties, such as the adherence
to deadlines, is especially crucial. These systems are often modelled as timed
automata (TA) [2], which are finite state machines extended by clocks to measure
the progress of time. Several tools exist for the verification of TA [14].

In this work, we propose an approach to learn TA via SMT solving, on
the basis of timed traces. The approach is passive, i.e., we use existing traces
and do not interact with the SUL. We consider TA satisfying three conditions:
determinism, isolated outputs, and k-urgency. That is, we expect to learn systems
where a trace always leads to the same distinct location, no two outputs are ever
enabled at the same time, and outputs are fired within k steps of being enabled.
By imposing these restrictions, we avoid overly general solutions, as locations in
learnt automata need to split until all restrictions are met.

We present our encoding of the SMT formula created for learning from timed
traces, a detailed evaluation of the model learning using three case studies from
previous work and several randomly generated automata of differing sizes. We
provide extensive results for different SMT solvers, used theories, search orders
and incremental solving, thus evaluating the capabilities of different solvers as
well as the proposed learning approach. Our contribution is the novel applica-
tion of SMT solving to the learning of TA, the presentation of an encoding of
the problem in a highly adaptive and parameterized manner, and a thorough
evaluation based on different configurations and SMT solvers.

Structure. After related work, we discuss preliminaries in Sect. 2. Section 3 shows
the SMT encoding of the problem. Then, we discuss the implementation and
evaluation in Sect. 4 and 5. Finally, we conclude the paper in Sect. 6.

Related Work. Various types of timed models have been studied in model learn-
ing. An et al. [4] and Verwer et al. [29] learn real-time automata, automata with
only one clock which is reset on every transition. Sen et al. [22] learn continuous-
time labeled Markov chains. Vaandrager at al. [28] learn Mealy machines with
timers.

In comparison, TA are more expressive and offer good tool support for
verification. Approaches for learning TA [3,9,19] have previously mostly been
restricted to subclasses of TA, such as event recording automata [10,16] where
each event is connected to a clock that is reset when the event is triggered or
one-clock timed automata [3]. Tappler et al. [26] learn automata with several
clocks, but forbid timing non-determinism via output urgency.

Different technologies are applied for learning, including the L∗ algorithm [4],
genetic programming [26] and state merging via k-tails [19]. For untimed systems
also SAT solving [5,12,20] and SMT solving [23] have been used.

The presented approach builds upon the idea of using SMT solving for model
learning [23], but applies it to TA. The restrictions we impose on our models
are very close to the ones by Tappler et al. [26], only the urgency of outputs
has been slightly relaxed to allow for more expressiveness. Thus, the presented
approach newly combines the learning of TA with SMT solving, and eases the
restrictions on the learned models compared to previous work.

Timed Automata Learning via SMT Solving 491

2 Preliminaries

TA are finite automata enriched with real-valued clock variables [2]. Clocks mea-
sure the progress of time while an automaton resides in some location. Transi-
tions can be constrained based on clock values and may reset clocks. We denote
the set of clocks by C and the set of guards over C by G(C). Guards are con-
junctions of constraints of the form c ⊕ k, with c ∈ C,⊕ ∈ {>,≥,≤, <}, k ∈ N.
Transitions are labelled by input and output actions, denoted by ΣI and ΣO

respectively, with Σ = ΣI ∪ΣO. Input labels are suffixed by ? and output labels
with !. A TA is a tuple 〈L, l0, C, Σ, Inv , E〉, where L is a finite non-empty set
of locations, l0 ∈ L is the initial location, C are clocks, Σ are discrete actions,
Inv is the mapping from locations to location invariants, and E is the set of
edges. Location invariants are conjunctions of the form c ≤ d and c < d. Edges
E ⊆ L × Σ × G(C) × 2C × L are five-tuples (l, g, a, r, l′). We write l

g,a,r−−−→ l′ for
an edge (l, g, a, r, l′) ∈ E with guard g, label a, and clock resets r.

Example 1 (Train model). Figure 1 shows a TA modelling a train at a
gate, with C = {c}, L = {l0, . . . , l5}, ΣI = {start?, stop?, go?}, ΣO =

{appr !, enter !, leave!}, Inv = {l1 �→ c ≤ 5, . . .} and E = {l0
�,start?,{c}−−−−−−−−→ l1, . . .}.

We underline invariants to distinguish them from guards. From initial location
l0, the train accepts the input start?, resetting clock c. After that, it can pro-
duce the output appr ! if c ≥ 2, i.e., the train may approach after 2 time units.
The invariant forces appr ! to be produced within a duration of 3 time units, i.e.,
while c ≤ 5.

l0l1

c ≤ 5

l2
c ≤ 15

l3

l4c ≥ 10 l5 c ≥ 6

start?
{c}c ≥ 2

appr !
{c}

stop?
{c}

c ≥ 12
enter !
{c}

go?
{c}

c ≥ 7
enter !
{c}

c ≥ 3
leave!
{}

Fig. 1. Train TA.

The semantics of a TA T is given by a timed
transition system (TTS) �T � = 〈Q, q0, Σ, T 〉, with
states Q = L × R≥0

C , initial state q0, and tran-
sitions T ⊆ Q × (Σ ∪ R≥0) × Q, where we write
q

e−→ q′ if (q, e, q′) ∈ T . A state q = (l, ν) consists
of a location l and a clock valuation ν : C → R≥0

that assigns a real value to every clock c ∈ C.
For r ⊆ C, ν[r] denotes resets of clocks in r, i.e.
∀c ∈ r : ν[r](c) = 0 and ∀c ∈ C \ r : ν[r](c) = ν(c).
Let (ν + d)(c) = ν(c) + d for d ∈ R≥0, c ∈ C
denote the progress of time, ν |= φ denote that
valuation ν satisfies formula φ and ν |= Inv(l)
denote that ν satisfies the invariant of l. Finally,
0 is the valuation assigning zero to all clocks. The
initial state q0 of the TTS �T � underlying a TA
T = 〈L, l0, C, Σ, Inv , E〉 is (l0,0). Transitions of the TTS are all delay transi-
tions (l, ν) d−→ (l, ν + d) for a delay d ∈ R≥0 such that ν + d |= Inv(l), and all
discrete transitions (l, ν) a−→ (l′, ν[r]) for an edge l

g,a,r−−−→ l′ such that ν |= g and
ν[r] |= Inv(l′).

Timed Traces & Language Inclusion. A timed trace tt is an alternating sequence
of delays and actions of length |tt |, i.e., tt = d1 · a1 · · · dn · an ∈ (R≥0 × Σ)∗. The

492 M. Tappler et al.

language L(T) of a TA T is the largest set of timed traces tt such that for every
tt there is a path in the TTS �T � with the same sequence of actions and delays.

3 Model Learning via SMT Solving

The main idea behind our approach is to encode the properties of the timed
automaton we want to learn as an SMT formula. Solving the SMT formula
yields a model encoding a timed automaton.

3.1 Setting

We consider the challenging setting of learning from only positive traces, because
negative traces showing illegal behaviour are rarely available for black-box SULs.
However, learning in this setting is generally impossible even for deterministic
finite automata [6]. For this reason, we place common restrictions on TA, which
we list below, helping to avoid learning overly general TA.

Assumptions on Timed Systems. Testing based on TA often places assumptions
related to determinism on TA [11,24]. We introduce similar assumptions and
describe these assumptions on the level of semantics. We use s

a−→ to denote
∃s′ : s

a−→ s′ and s �a−→ for �s′ : s
a−→ s′:

1. Determinism. A TA is deterministic iff for every state s = (l, ν) and every
action a ∈ Σ, whenever s

a−→ s′, and s
a−→ s′′ then s′ = s′′.

2. Isolated Outputs. A TA has isolated outputs iff whenever an output may
be executed, then no other output is enabled, i.e., for every state s = (l, ν)

∀o, o′ ∈ ΣO s
o−→ and s

o′
−→ implies o = o′.

In addition to these two assumptions related to deterministic behaviour, it is
necessary to place restrictions on the sojourn time in locations. For this purpose,
we introduce a relaxed version of output urgency [11] that we coin k-urgency.
Strict output urgency requires an output to be fired immediately when it is
enabled. The presented form of k-urgency adds timing uncertainty, by limiting
the sojourn time in locations where outputs are possible to at most k time units:

3. k-Urgency. A TA is k-urgent if ∀l ∈ L,∀ν ∈ R≥0
C ,∀o ∈ ΣO, (l, ν) o−→ implies

�d > k : (l, ν) d−→ (l, ν + d).

The train gate shown in Fig. 1 is k-urgent with k = 3.
Based on that, we can define our learning objective. Given a set of timed

traces S sampled from a black-box SUL, our goal is to learn a timed automa-
ton T such that S ⊆ L(T), i.e., we approximate language inclusion between
the SUL and T on a finite set S. For a large enough set S, this converges to
L(SUL) ⊆ L(T). The above restrictions ensure that we do not produce overly
general automata when we only have access to sampled (positive) traces that
should be accepted. Determinism and assuming k-urgency, provide us with neg-
ative traces that should not be accepted, e.g., traces with too large delays. Other

Timed Automata Learning via SMT Solving 493

Algorithm 1. Iterative SMT-Based Learning
Input: T S, Lmax, Emax,MN, k, el
Output: learned timed automaton or no solution
1: for Ln ← 2 to Lmax do
2: En ← Ln · el
3: if En > Emax then return no solution
4: constraints ← CreateConstraints(T S, Ln, En,MN, k)
5: (result, model) ← Solve(constraints)
6: if result then return CreateTA(model)

7: return no solution

techniques derive knowledge about negative and positive traces differently, e.g.,
by querying a teacher [4]. Determinism is also an important feature in model-
based testing to decide the set of enabled actions after a trace [8]. Hence, our
approach enables regression testing based on learned models.

3.2 Main Algorithm

Our SMT formulas consist of three types of constraints: (1) general properties
of the considered class of timed automata, like determinism, (2) bounds on the
automaton size, (3) language inclusion of timed traces given as training data.
In this section, let T S be an ordered sequence of timed traces with one-based
indexed access to select ttj = T S[j].

In common with other approaches to SMT-based learning [23], we try learn-
ing TA of bounded size, where the size is determined in terms of the number of
locations and edges. We iteratively increase the size until learning is successful
or we hit the upper size bound. To simplify searching for an appropriate pair of
edge bound En and location bound Ln, we define En w.r.t. Ln via En = Ln · el,
where el is a constant that can be defined for each experiment. In addition. MN

denotes an upper limit for the constants in clock constraints.
The iterative learning is outlined in Algorithm 1, which takes the timed trace

training data, the max. bounds, the upper limits for constants MN, the bound
for k-urgency and el as fixed parameters. In each iteration, the SMT-solver
searches for suitable values satisfying all constraints (lines 4 and 5). If they are
not satisfiable, we increase the bound constraints unless we hit the upper bounds
Lmax or Emax (lines 1 to 3). A model of satisfiable constraints encodes a timed
automaton consistent with all traces, which is returned in Line 6. The following
subsections will focus on these parts and explain the encoding.

3.3 Encoding of the Learnt Timed Automaton

In a single learning iteration with a fixed size bound, we aim to learn a TA
A = 〈C, Σ, L, l0, Inv , E〉, with a given number of locations |L| = Ln and edges
|E| = En. Without loss of generality, we limit ourselves to one clock in the
following presentation. Each location l is assigned an invariant, represented by

494 M. Tappler et al.

an upper bound I(l). A guard on an edge e is defined by inclusive upper and
exclusive lower limits denoted as gup(e) and glo(e), respectively. Additional clocks
could be added by adding additional copies of I, gup and glo for each new clock.
Restricting Timing Constraints for Efficiency. Guards encode admissible time
intervals for each edge. To enable efficient SMT solving, we restrict guards to
encode intervals [glo, gup) that are left-closed and right-open, i.e., guards contain
a lower-bound constraint c ≥ glo and an upper-bound constraint c < gup, where
gup may be set arbitrarily large. If no upper bound is defined we set gup = MN.

This enables a more efficient SMT encoding and allows covering the com-
plete range of clock values. Under a probabilistic interpretation of dense real
time that assumes a non-discrete distribution of delays, these types of intervals
do not impose a limitation. The probability of observing an event at an exact
point in time is generally equal to zero, thus delays do not occur at the inter-
val boundaries. Similarly, we restrict location invariants to use only non-strict
inequalities.

Variables and Constants. We represent edges, locations, and action symbols by
integers in the intervals [1 . . Ln], [1 . . En], and [1 . . |Σ|]. The determinism con-
straints are defined solely as constraints over integer constants and uninterpreted
functions, whereas we introduce variables to specify constraints related to lan-
guage inclusion. These variables connect the individual timed steps in a timed
trace. For step i and timed trace ttj = T S[j], we introduce:

– ej,i . . . edge taken by step i of ttj
– lj,i . . . source location of the edge taken by step i of ttj
– cj,i . . . clock valuation before the delay in step i of ttj
– cdj,i . . . clock valuation after delaying the delay in step i of ttj

Uninterpreted Functions. We define the following uninterpreted functions to
specify constraints, where GN = [0 . . MN] are the ranges for guards and invari-
ants. The integer intervals LN = [1 . . |Ln|] and EN = [1 . . |En|] are the admissible
ranges for locations and edges, respectively.

source : EN → LN target : EN → LN

label : EN → [1 . . |Σ|] reset : EN → B

glo : EN → GN gup : EN → GN ∪ {∞}
I : LN → GN ∪ {∞} isOutput : EN → B

The first three encode the mapping of an edge to its source location, target
location and label, respectively. The next three map from an edge to its clock
reset, the lower bound, and the upper bound of its guard. The invariant I maps
from a location to its upper time bound. Finally, the last uninterpreted function
is a helper function that returns true if the given edge is labelled with an output.

Timed Automata Learning via SMT Solving 495

3.4 Constraints

We can now define the constraints on timed automata. They can be grouped
into constraints on (1) determinism, (2) size bounds, and (3) language inclusion.

Determinism. We have two types of determinism constraints: (1) standard deter-
minism, which specifies that at most one transition can be enabled for every
action at every point in time, (2) isolated outputs, which specifies that no two
output transitions can be enabled simultaneously. We express these constraints
by specifying that guards of all edges ei and ej must be disjoint via:

∀i, j ∈ EN , i �= j :
(source(i) = source(j) ∧ label(i) = label(j)) =⇒

(gup(i) ≤ glo(j) ∨ gup(j) ≤ glo(i)) determinism
and

(source(i) = source(j) ∧ isOutput(i) ∧ isOutput(j)) =⇒
(gup(i) ≤ glo(j) ∨ gup(j) ≤ glo(i)) isolated outputs

These constraints rely on the guards defining left-closed, right-open intervals.

Bound Constraints. Bound constraints predicate on (1) the number of locations
and edges and (2) the ranges of guards and intervals. They are defined as:

∀j : 1 ≤ j ≤ |T S| ∀i : 1 ≤ i ≤ |T S[j]| + 1: 1 ≤ lj,i ≤ Ln

∀j : 1 ≤ j ≤ |T S| ∀i : 1 ≤ i ≤ |T S[j]| : 1 ≤ ej,i ≤ En

∀e : 1 ≤ e ≤ En : 0 ≤ glo(e) ≤ GN

∀e : 1 ≤ e ≤ En : 0 < gup(e) ≤ GN ∨ gup(e) ≥ M∞
∀l : 1 ≤ l ≤ Ln : 0 ≤ I(l) ≤ GN ∨ I(l) ≥ M∞

The bound constraints for locations range one step further than the respec-
tive constraints on edges to ensure that the location reached by the final action
in a trace is valid. The constraints gup(e) ≥ M∞ and I(l) ≥ M∞ specify the
absence of upper guard bounds and invariant constraints, respectively. Since
SMT solvers do not support encoding ∞ by default, we set M∞ to a sufficiently
large value, such as, the maximal sum of delays in a timed trace. The guard
bounds and invariant bounds improve efficiency, but are not strictly necessary,
thus a conservative choice of GN is possible if little domain knowledge is avail-
able.

Language Inclusion. Each step in a timed trace is encoded into a set of con-
straints. These constraints are defined over location and edge variables, which
help to connect consecutive steps in a timed trace.

A trace tt ∈ T S is a series of delays and actions. When building the formulas,
we look at one step of a trace at a time. In step sj,i = (dj,i, aj,i), the first index j
denotes the trace and the second index i denotes the step. The edge and location

496 M. Tappler et al.

taken by a step sj,i are encoded as ej,i and lj,i, respectively. All traces start from
the initial location, encoded as the integer 1, with the clock value 0.

∀j : lj,1 = 1 ∀j : cj,1 = 0

Each step sj,i = (dj,i, aj,i) adds the following constraints to our SMT formula:

cdj,i = cj,i + dj,i cdj,i ≤ I(lj,i) (1)

source(ej,i) = lj,i target(ej,i) = lj,i+1 (2)
label(ej,i) = aj,i (3)

cdj,i ≥ glo(ej,i) cdj,i < gup(ej,i) (4)

resetj,i =⇒ cj,i+1 = 0 ¬resetj,i =⇒ cj,i+1 = cdj,i (5)

cj,i+1 ≤ I(lj,i+1) aj,i ∈ ΣO =⇒ I(lj,i) ≤ glo(ej,i) + k (6)

First, we encode the delay by dj,i time units and enforce that the invariant of
the current location holds after delaying (1). Next we encode that the source
location and target location of the edge ej,i taken by the current step are lj,i
and lj,i+1 (2), respectively. These constraints connect the individual steps, since
lj,i+1 will be the source location of the next step. The next constraint ensures
that the label of the current edge is correct. In other words, Constraint 2 and
Constraint 3 ensure that for every timed trace tt there is a connected path in
the learned automaton with edges labelled by the actions of tt. Hence, these
constraints enforce the discrete portion of language inclusion. The following two
constraints ensure that the clock valuations satisfy the guard (split into lower
and upper bound). The next two constraints update the clock of the next step
based on the clock reset. The final two constraints predicate on invariants, where
the first ensures the invariant of the next location is satisfied after potentially
resetting the clock in Constraint 5. If the current edge is an output, we restrict
the invariant of the source location to the lower guard bound of the current edge
plus k, enabling a window of at least k time units for an output to be produced.
That is, we enforce k-urgency as defined in Sect. 3.1.

3.5 Creating the Learned Timed Automaton

If all constraints specified above are satisfiable, an SMT solver will produce
a model that defines all uninterpreted functions and values for all variables. To
create a timed automaton from a model (Line 8 in Algorithm 1), we only process
the function definitions, since they completely specify all edges, locations, and
invariants. Basically, we create a TA with L = LN = [1 . . Ln], l0 = 1, and
E = EN = [1 . . En] and use the uninterpreted function definitions to define the
invariants and edges, e.g., using the source function to define source locations.

There may be superfluous locations or edges if Ln or En is larger than neces-
sary. If there is valid TA with less than En, the SMT solver may choose arbitrary
values for some mappings. We account for that by simulating all timed traces
from T S on the learned model while checking which locations and edges are
traversed. By removing edges and locations that are not traversed, we simplify
the learned timed automaton while ensuring that it still satisfies all constraints.

Timed Automata Learning via SMT Solving 497

4 Implementation

The constraints described in Sect. 3 are sufficient to specify a timed automaton
that accepts the given training data. However, various implementation aspects,
such as the choice of SMT solver, greatly affect the efficiency of SMT solving [7,
17]. As we will show, seemingly innocuous changes can result in significant speed-
ups. In this section, we discuss implementation details that affect performance.

Our implementation uses JavaSMT [7] for interfacing with SMT solvers. This
library allows us to seamlessly choose among different solvers for a thorough
evaluation. Different SMT solvers support different theories to model guard val-
ues and clock valuations. We evaluated three different combinations of theories.
Finally, incremental solving, i.e., stepwise adding of constraints to a stack inter-
leaved with satisfiability checks, affects performance. The complete implemen-
tation and all results from the experiments discussed in Sect. 5 are available in
a public git repository at https://github.com/mtappler/smt-ta-learning.

4.1 Theories

The constraints formulated in Sect. 3 predicate on variables and uninterpreted
functions of three different data types. These data types comprise (1) discrete
structure data, including locations, edges, and action labels, (2) integral tim-
ing bounds in guards and intervals, and (3) real-valued clock valuations. We
identified three combinations of theories that work well to encode these types.

– Real & Integer. We use the theory of real numbers for clock valuations and
the theory of integers for discrete data and integer-valued timing bounds.

– Only Integers. In this encoding, we use the theory of integers for all types of
data. To handle real-valued delays, we multiply every delay with an integer-
valued rounding factor r and round it to the nearest integer. We generally set
r = 100 for our experiments.

– Only Bitvectors. The bitvector encoding works just like the integer encoding,
but with fixed-size bitvectors instead of integers.

The first encoding is generally preferable since it does not introduce additional
imprecision. However, the support of specific theories and efficiency of the imple-
mentation varies between solvers, therefore we investigate different encodings.

4.2 Incremental Solving

Our implementation supports incremental learning with two non-orthogonal con-
figuration options, search order and discrete first, as well as non-incremental
learning, where all constraints are pushed and checked at the same time. In
any configuration, the guard-bound constraints and determinism constraints are
pushed onto the solver stack first.

https://github.com/mtappler/smt-ta-learning

498 M. Tappler et al.

Search Order. When processing timed traces, we process a single step at a time,
thus to process all traces we iterate over all traces and over the length of every
trace. The order of iteration leads to two different incremental-solving strategies:

– Depth-first. In depth-first processing, we iterate over the traces and create
constraints for all steps of a trace at once, pushing the constraints trace by
trace. After every trace, we perform a satisfiability check.

– Breadth-first. In breadth-first processing, we iterate over the step index from
one to the maximum trace length. For a given index i, we create constraints
for step i of all traces and push them onto the stack. After processing all steps
at index i, we perform a satisfiability check.

Incremental-solving strategies may be faster than non-incremental solving by
dividing the learning problem into smaller subproblems. Additionally, they might
terminate a learning iteration early if an intermediate satisfiability check fails.

Discrete First. In discrete first processing, we perform two passes over the train-
ing data. In the first pass, we push constraints involving discrete data onto the
stack, such as, the size-bound constraints and source(ej,i) = lj,i. In the sec-
ond pass, we add all constraints related to timing, such as cdj,i ≥ glo(ej,i). The
intuition behind this strategy is that we allow the SMT solver to find potential
solutions for the discrete part first. Refining these solution by adding timing
constraints may be easier than solving everything at once.

5 Evaluation

In this section, we discuss experiments, where we evaluate the different imple-
mentation options and configurations discussed in Sect. 4.

5.1 Experiment Subjects

Our experiments were performed on three cases from previous work [26], and ran-
domly generated automata of varying sizes. The three cases are a light switch,
a train gate and a car alarm system (CAS). The car alarm system was split
into two communicating components. The first component (CAS-Arming) has 9
locations and 18 edges and models arming of the CAS. The second one (CAS-
Alarm) has 7 locations and 9 edges and models the switching on and off of the
optical and audible alarm. The light switch (Light) and train gate (Train) are
models with 5/6 locations and 10/13 edges, respectively. They are the same as
in previous work, apart from introducing k-urgent outputs with k = 3. Previ-
ous work allowed no uncertainty in output timing, i.e., k = 0. The 40 random
automata range from 3 to 6 locations, with 6 to 10 edges, two input symbols and
two output symbols. For each number of locations, we generated 10 automata.

In the evaluation experiments, we treat the original automata as black-box
SULs. The training data for learning are timed traces sampled from the SULs
using Uppaal [14]. For the manually created automata, we sample 50 traces

Timed Automata Learning via SMT Solving 499

and for the randomly generated automata, we sample l · 10 traces, where l is the
number of locations of the corresponding automaton. We generally set the learn-
ing parameter el, which controls the ratio of edges to locations (Algorithm 1),
to 2. We set the maximum guard constant GN to a value higher than the largest
guard constant used by the SUL and we set k = 3 to enforce k-urgent outputs.

5.2 Performance Criteria

We perform all learning experiments with the SMT solvers Boolector, Cvc 4,
MathSAT 5, SMTInterpol, Yices 2, and Z3, in turn evaluating the applica-
bility of these solvers on our kind of problem, with respect to the used theories
and support/benefit of incremental solving and different search orders.

We use the learning runtime and the quality of learned models as performance
criteria. In order to determine the quality of the learnt models, we simulate
randomly generated timed traces on them. As test data serve both, 200 positive
and 200 negative traces, i.e., traces that are accepted or rejected by the SUL,
to check whether the learned model accepts them. Their simulation provided us
with the typical classification results based on true positives (i.e., the trace was
a positive trace and could be simulated on the model), false positives (i.e., the
trace was a negative trace but could be simulated on the model), true negatives,
and false negatives. This allows us to calculate precision, recall, and F1-score,
the harmonic mean of precision and recall, for our experiments. For every set
of randomly generated automata with a fixed number of locations, we report
runtimes and quality metrics averaged over all automata in the set.

Table 1. Model quality metrics for learning random TA of varying sizes with Boolec-
tor and the theory of bitvectors and Yices 2 and the theories of integers and reals.

Model Metric Boolector (BV) Yices 2 (Integer) Yices 2 (Real)

3 Locations Precision 0.93 0.97 0.94

Recall 0.89 0.89 0.98

F1 0.91 0.93 0.96

4 Locations Precision 0.97 0.98 0.97

Recall 0.90 0.86 0.97

F1 0.93 0.92 0.97

5 Locations Precision 0.93 0.96 0.96

Recall 0.94 0.86 0.99

F1 0.93 0.91 0.97

5.3 Experiments

In the first analysis, we will mainly look at the model quality metrics, whereas
in all other analyses we investigate learning efficiency in terms of runtime.

500 M. Tappler et al.

Model Quality. To investigate the quality of learned models, we examine pre-
cision, recall, and F1-score of models learned of random automata with 3 to 5
locations. Since discretization affects these metrics we use Boolector for con-
straints over the bitvector theory, Yices 2 and the integer theory, and Yices 2
combined with real-valued delays.

Table 1 contains the results from our experiments on model quality. We can
see that the learned models approximate the SULs quite well, as they achieve an
F1-score larger than 0.9 in general. On the one hand, we see a high precision for
learning from discretized delays and real-valued delays. Hence, the learned mod-
els are not overly general. The determinism constraints and k-urgency prevent
coarse overapproximations. On the other hand, discretization negatively affects
recall by increasing the number of false negatives. By employing a rounding fac-
tor of r = 100, we effectively increase the resolution of guard constraints, which
increases the likelihood of erroneously rejecting unseen data. We might counter
this issue by increasing the amount of training data. By learning from twice
as many timed traces with Boolector, we were able to increase the recall
for 5-location automata from 0.94 to 0.97 (not included in the table). Unfor-
tunately, this increased the runtime by a factor of about 3.5. The differences
between bitvectors and integers also result from underspecification that could
be mitigated through additional training data.

Table 2. Runtime (in minutes) for learning random timed automata with 3 locations
with Cvc 4, Z3, and Yices 2 applying incremental and non-incremental solving.

CVC4
(inc)

CVC4
(non-inc)

YICES
(inc)

YICES
(non-inc)

Z3
(inc)

Z3
(non-inc)

Mean 0.74 Timeout 0.08 0.62 7.42 0.06

Maximum 1.15 Timeout 0.21 0.78 18.51 0.07

Minimum 0.11 Timeout 0.01 0.29 0.03 0.02

Incremental vs. Non-incremental Solving. In our experiments we observed
major differences in how different SMT solvers handle incremental solving. We
want to exemplify the potential extent of these differences by discussing runtime
measurements for learning 3-location random automata with the three SMT
solvers Cvc 4, Z3, and Yices 2. Table 2 shows the average, min., and max.
runtime for the learning. We use the theory of integers to encode delays in these
experiments, but similar observations can be made for other encodings as well.

Both, Cvc 4 and Yices 2, show the expected behavior of benefitting from
incremental solving. For Yices 2, we can observe a speedup of approximately
7.75 on average, while Cvc 4 even requires incremental solving to learn in reason-
able time. Our Cvc 4 experiments without incremental solving did not terminate
within 10 h, which we indicate with timeout in the table. In contrast, Z3 suffers
from incremental solving, where learning takes more than 100 times as long as

Timed Automata Learning via SMT Solving 501

in non-incremental mode. A potential explanation is that the incremental solver
implementation used by Z3 may be more general and use different solving tactics
than the standard integer solver1. It may be possible to improve the runtime of
solving integer constraints as well by manually specifying certain solver tactics
and implementing incremental solving via assumptions. Given the already large
configuration space, we opted to use all SMT solvers in their default configu-
ration. Interestingly, incremental solving of bitvector constraints with Z3 is 5
times as fast as non-incremental solving (results are not shown in the table, but
are available online). Table 2 also shows that the difference between maximum
and average runtime is larger in incremental solving than in non-incremental
solving. This results from the fact that incremental solving may stop early if
some intermediate subset of all constraints is already unsatisfiable.

Solver Performance. Next, we will examine the difference between individual
solvers for learning random timed automata with 3 and 4 locations, respectively.
In cases where multiple theories are available and perform differently, we report
measurement results for multiple theory-solver configurations. We generally use
incremental solving if it is more efficient and non-incremental solving otherwise.

Figure 2 depicts the average runtime of every solver-theory combination.
The four missing bars indicate that the respective combination is not avail-
able. Although Yices 2 supports bitvectors, we could not run experiments due
to an interface-related issue. We truncated the bar for the combination of Cvc 4
with bitvectors, because its average runtime of 18 min would have distorted the
chart. We can see that the choice of theory and solver can make a substantial
difference in runtime. The fastest combination requires only 0.33% of the slowest
combination. In general, Z3 with discretization and Yices 2 performed best in
the runtime measurements. Considering the lower model quality resulting from
discretization, Yices 2 with real-valued delays should be preferred.

Boolector Cvc 4 MathSAT 5 SMTInterpol Yices 2 Z3
0

1

2

3

4

0
.2
8

1
.6
1

7
·1

0
−

2

0
.7
4

0
.7
9

2
.3
9

8
· 1

0
−

2

6
· 1

0
−

2

0
.8
3

0
.5
4 1

.1
3

0
.1

3
.1
6

ru
n
ti
m
e
[m

in
]

Bitvectors

Integers

Reals

Fig. 2. Average runtimes (minutes) for 3-location random TA for diff. solvers/theories.

1 Issue # 1459 on GitHub (https://github.com/Z3Prover/z3/issues/1459 discusses a
similar case involving the floating point theory.

https://github.com/Z3Prover/z3/issues/1459

502 M. Tappler et al.

Boolector Cvc 4 MathSAT 5 SMTInterpol Yices 2 Z3
0

20

40

0
.9
3

1
4
.9
4

1
.4
2

2
4
.8

9
.2
4

3
6
.9

0
.5
1

0
.2
4

3
6
.8
4

2
.9
4ru

n
ti
m
e
[m

in
]

Bitvectors

Integers

Reals

Fig. 3. Average runtimes (minutes) for 4-location random TA for diff. solvers/theories.

Let us examine experiments involving the 4-location random automata to see
whether observation from the previous experiments carry over. Figure 3 shows
the corresponding average runtime measurements. The four bars that exceed
the y-axis limit result from timeouts where the experiments did not terminate
within 10 h. We can observe that the runtime increased substantially, at least
by factor of three. The relative ordering of solvers combined with discretized
delays is mostly the same as in Fig. 2, except that MathSAT 5 and Cvc 4
switched places. Using the theory of reals now requires much more time in com-
parison with discretized delays. This results from one timed automaton being
particularly hard to learn. The eighth automaton took Yices 2–19 min, while
the mean and median runtime were 2.94 and 0.57 min. This high runtime results
from numerical issues that actually necessitated learning a 5-location automa-
ton. The higher resolution of guards in the discrete encoding of delays enabled
more efficient learning of an automaton with four locations.

Table 3. Average runtime for learning random timed automata with 3 to 5 locations
using Yices 2 in different modes of incremental learning. All values in minutes.

BFS
DF = True

BFS
DF = False

DFS
DF = True

DFS
DF = False

3 Locations 0.10 0.14 0.10 0.24

4 Locations 2.94 9.22 17.82 26.84

5 Locations 1.57 5.32 2.48 8.64

Timed Automata Learning via SMT Solving 503

Table 4. Results from learning timed automata from all case-study subjects using
Yices 2 and incremental solving with BFS and discrete-first constraint solving.

CAS

(Arming)

CAS

(Alarm)

Light Train 3 Loc. 4 Loc. 5 Loc. 6 Loc.

Runtime [min] Mean 362.21 124.19 23.10 382.99 0.10 2.94 1.57 235.56

Max. 0.16 18.98 6.52 1446.69

Min 0.02 0.03 0.04 0.29

F1 Mean 0.57 0.92 0.98 1 0.96 0.97 0.97 0.97

Max. 1 1 1 1

Min 0.88 0.92 0.98 0.93

Search-Order and Discrete-First Solving. Next, we want to look at the
effect of the four different modes of incremental solving, i.e., the combinations of
search order (BFS or DFS) and whether discrete-first (DF) constraint processing
is enabled. For this purpose, we learn random timed automata with three to five
locations using Yices 2 and real-valued delays.

Table 3 contains the average learning runtimes measured in these experi-
ments. We can see that the order of solving indeed makes a difference, except
when learning the relatively simple 3-location automata. For learning the 4-
location automata, where one is particularly difficult to learn, and the 5-location
automata, discrete-first solving with BFS performed best. Comparing the first
and second column and the third and fourth column, we can see that especially
discrete-first solving improves efficiency leading to a speed up of more than a
factor of three. Concerning the other options, BFS appears to be faster than
DFS, but the picture is not as clear, especially for the 5-location automata.

Fastest Configuration. Now that we have covered various learning configu-
rations, we conclude the presentation of experimental results by looking at the
performance of Yices 2 on all case-study subjects. Due to the favourable quality
of learned models, we use real-valued delays, and we apply incremental solving.

Table 4 contains the gathered data comprising the runtime and the F1-score
for all models, with minimum, maximum, and mean values for random automata.
As in Table 1, which overlaps with Table 4, the F1-score is high in most cases.
This means that we can learn models with high precision and recall with the
available training data. The CAS-Arming model is an exception with a low F1-
value due to a low recall, while its precision is 0.82, as the learned model rejects
more traces than it should. A manual analysis reveals that two locations reached,
which are after arming the CAS, are merged with the initial location. Additional
training data may help to distinguish the merged locations, but learning already
takes six hours. Still, the learned automaton models the inputs required to arm
the CAS. Unfortunately, we also see a steep increase in runtime when going from
three to four locations and from five-location automata to six-location automata,
which include the train and the alarm model of the CAS. Learning models with
six locations can take up to 24 h. The runtimes required to learn five-location
automata appear to be an outlier in this trend.

504 M. Tappler et al.

2 3 4 5 6 7 8

100

101

102

103

104

105

locations

le
ar
ni
ng

ti
m
e
[s
ec
]

Fig. 4. Scatter plots of learning times from learning all case-study subjects using
Yices 2 and incremental solving with BFS and discrete-first constraint solving.

To get a better overview of how learning times are distributed, we show a
scatter plots of learning times with Yices 2 in Fig. 4. The x-axis displays the
number of locations of the learned timed automata and the y-axis shows the
required learning time in seconds in logarithmic scale. We can see that there is
an exponential growth trend of the learning time with respect to the number of
locations. However, the manually modelled car alarm system component with
8 locations seems to be an exception. We also see that for a fixed number of
locations, there is a large variance in learning times. In all cases, expect for
learned automata with two locations, there is at least an order of magnitude
separating the fastest and the slowest learning time.

Threats to Validity. Using the default parameters for each solver might not
achieve a fair comparison between the solvers, as the comparison might dif-
fer if every solver was called with optimal parameters. There is great potential
in exploring different solver configurations and solving tactics, but we leave this
as future work.

We have chosen to compare different SMT solvers rather than to competing
learning techniques due to different assumptions on SULs, where some techniques
assume knowledge or restrictions concerning resets [4,29] and others require
strict output urgency [26,28]. If these assumptions hold, these techniques may
perform better than the proposed approach.

6 Conclusion

We have proposed an approach for SMT-based learning of timed automata from
a given set of timed traces. We presented the encoding and demonstrated that

Timed Automata Learning via SMT Solving 505

the approach is feasible and what factors affect performance. For this purpose, we
compared six different SMT solvers in several settings. Our experiments showed
that learned models achieve a high F1-score, i.e., they accept the language of
the SUL with high probability, while rejecting timed traces that are not part of
the language. Currently, learning is restricted to models with about 6 locations.
It may be possible to learn larger models, like the arming model of the CAS,
but we have not seen consistent performance for them. Despite this limitation,
model learning for practically relevant systems may be feasible if, for instance,
a specific property shall be investigated. Case studies on deterministic learning
showed that learned models of communication protocols may have only a few
states [21,25]. Alternatively, learning can be enabled by decomposition, which
we demonstrate by learning two models of different functionalities of a CAS.

Considering the large runtime differences (up to two orders of magnitude)
between different solvers, theories, and ways of processing constraints shown in
Fig. 2, Fig. 3, Table 2, and Table 3, we see our results as promising. Future devel-
opments in SMT solving may improve runtime in a similar way, thus pushing
the limit to 7 or 8 locations. As briefly discussed, it may already be possible
to improve efficiency by deriving solving tactics specialized to learning timed
automata with a specific solver. Furthermore, restricting the expressiveness of
the class of hypothesis models may improve efficiency. For instance, real-time
automata [29] may be simpler to learn. In this paper, we aimed to examine a large
variety of solver implementation to get a broad picture and to conservatively
place restrictions on the hypothesis class. Exploring implementation tactics tai-
lored toward specific configurations, solvers, and classes of timed automata are
potential venues for future work. Additionally, the integration of our approach
into existing tools, such as the automata learning library AALpy [18], may ease
extending and applying our technique.

Acknowledgments. This work has been supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems.

References

1. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed
automata. In: TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 25

4. An, J., Wang, L., Zhan, B., Zhan, N., Zhang, M.: Learning real-time automata. Sci.
China Inf. Sci. 64(9), 1–17 (2021). https://doi.org/10.1007/s11432-019-2767-4

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/s11432-019-2767-4

506 M. Tappler et al.

5. Avellaneda, F., Petrenko, A.: FSM inference from long traces. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 93–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 6

6. Avellaneda, F., Petrenko, A.: Inferring DFA without negative examples. In: Inter-
national Conference on Grammatical Inference, pp. 17–29. PMLR (2019)

7. Baier, D., Beyer, D., Friedberger, K.: JavaSMT 3: interacting with SMT solvers in
java. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 195–208.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 9

8. Clemente, L., Lasota, S., Piórkowski, R.: Determinisability of register and timed
automata. CoRR abs/2104.03690 (2021). https://arxiv.org/abs/2104.03690

9. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.
2010.07.008

10. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.
1007/11817949 29

11. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-
time test case generation using UPPAAL. In: Petrenko, A., Ulrich, A. (eds.) FATES
2003. LNCS, vol. 2931, pp. 114–130. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24617-6 9

12. Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir.
Softw. Eng. 18(4), 825–856 (2013). https://doi.org/10.1007/s10664-012-9222-z

13. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

14. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1), 134–152 (1997)

15. Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and
diagnosis. In: Sapatnekar, S.S. (ed.) Proceedings of the 47th Design Automation
Conference, DAC 2010, Anaheim, California, USA, 13–18 July 2010, pp. 755–760.
ACM (2010). https://doi.org/10.1145/1837274.1837466

16. Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for
learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24372-1 35

17. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 2

18. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5

19. Pastore, F., Micucci, D., Mariani, L.: Timed k-tail: automatic inference of timed
automata. In: 2017 IEEE International Conference on Software Testing, Verifica-
tion and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017, pp. 401–411.
IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.43

https://doi.org/10.1007/978-3-319-95582-7_6
https://doi.org/10.1007/978-3-030-81688-9_9
https://arxiv.org/abs/2104.03690
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/978-3-540-24617-6_9
https://doi.org/10.1007/s10664-012-9222-z
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1145/1837274.1837466
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1109/ICST.2017.43

Timed Automata Learning via SMT Solving 507

20. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C.: From passive to active FSM
inference via checking sequence construction. In: Yevtushenko, N., Cavalli, A.R.,
Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 126–141. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67549-7 8

21. De Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security
15, Washington, D.C., USA, 12–14 August 2015. pp. 193–206. USENIX Asso-
ciation (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

22. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time Markov chains
from sample executions. In: First International Conference on the Quantitative
Evaluation of Systems, 2004. QEST 2004. Proceedings, pp. 146–155. IEEE (2004)

23. Smetsers, R., Fiterău-Broştean, P., Vaandrager, F.: Model learning as a satisfiabil-
ity modulo theories problem. In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 182–194. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77313-1 14

24. Springintveld, J., Vaandrager, F.W., D’Argenio, P.R.: Testing timed automata.
Theor. Comput. Sci. 254(1-2), 225–257 (2001). https://doi.org/10.1016/S0304-
3975(99)00134-6

25. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communi-
cation via active automata learning. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17
March 2017, pp. 276–287. IEEE Computer Society (2017). https://doi.org/10.
1109/ICST.2017.32

26. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn–learning
timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019.
LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29662-9 13

27. Turner, C.J., Tiwari, A., Olaiya, R., Xu, Y.: Process mining: from theory to
practice. Bus. Process. Manag. J. 18(3), 493–512 (2012). https://doi.org/10.1108/
14637151211232669

28. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning Mealy machines with one timer.
In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021.
LNCS, vol. 12638, pp. 157–170. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-68195-1 13

29. Verwer, S., De Weerdt, M., Witteveen, C.: An algorithm for learning real-time
automata. In: Benelearn 2007: Proceedings of the Annual Machine Learning Con-
ference of Belgium and the Netherlands, Amsterdam, The Netherlands, 14–15 May
2007

https://doi.org/10.1007/978-3-319-67549-7_8
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1108/14637151211232669
https://doi.org/10.1108/14637151211232669
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13

Asynchronous Composition of Local
Interface LTL Properties

Alberto Bombardelli(B) and Stefano Tonetta(B)

Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo TN, Italy
{abombardelli,tonettas}@fbk.eu

Abstract. The verification of asynchronous software components is very
challenging due to the non-deterministic interleaving of components and
concurrent access to shared variables. Compositional approaches decou-
ple the problem of verifying local properties specified over the compo-
nent interfaces from the problem of composing them to ensure some
global property. In this paper, we focus on symbolic model checking
techniques for Linear-time Temporal Logic [24] (LTL) properties on asyn-
chronous software components communicating through data ports. Dif-
ferently from event-based composition, the local properties can specify
constraints on the input provided by other components, making their
composition more complex.

We propose a new LTL rewriting that translates a local property into
a global one taking into account interleaving with other processes. We
demonstrate that for every possible global trace, the local LTL prop-
erty is satisfied by its projection on the local symbols if and only if the
rewritten LTL property is satisfied by the global trace. This rewriting
is then optimized, reducing the size of the resulting formula and leav-
ing it unchanged when the temporal property is stutter invariant. We
also consider an alternative approach where the local formulas are first
translated into fair transition systems and then composed. This work has
been implemented inside the contract-based design model checking tool
OCRA as part of the contract refinement verification suite. Finally, the
different composition approaches were compared through an experimen-
tal evaluation that covers various types of specifications.

1 Introduction

Software model checking [1,26] is an algorithmic approach used the verification of
programs. It combines different methods based on deductive reasoning, abstrac-
tion, and state space exploration. Model checking typically specifies the property
to be verified in a temporal logic. One of the most common logic used to express
properties of programs is first-order Linear-time Temporal Logic (LTL) [24].

A general problem of model checking is the state space explosion problem.
The scalability of the method is exacerbated when considering the asynchronous
composition of programs, due to the non-deterministic interleaving of compo-
nents and concurrent access to shared variables. Compositional approaches usu-
ally alleviate the problem by decoupling the problem of verifying local properties
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 508–526, 2022.
https://doi.org/10.1007/978-3-031-06773-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_27&domain=pdf
http://orcid.org/0000-0003-3385-3205
http://orcid.org/0000-0001-9091-7899
https://doi.org/10.1007/978-3-031-06773-0_27

Asynchronous Composition of Local Interface LTL Properties 509

specified over the component interfaces from the problem of composing them to
ensure some global property. However, the asynchronous composition of local
temporal properties may be tricky when considering software components com-
municating through data ports.

In this paper, we define the asynchronous composition of local LTL properties
based on a rewriting Rc that maps the local constraints on the input/output
data of a component c on the global points in which the component is active.
In this case, the formulas can be rewritten to take into account interleaving
and conjoined with additional constraints ψconstr to encode for example the
persistence of variables that are not written by the active process. In this way, it
is possible to verify whether a global property φ is satisfied by the composition
of local properties, by checking the validity of an following LTL formula in the
form:

∧
c∈C Rc(φc) ∧ ψconstr → φ.

We define the rewriting Rc for quantifier-free first-order LTL with the “next”
operator. In particular, the rewriting of “next”, which is important to express
input/output properties, needs the use of event-freezing functions, introduced
in [28] to relate variables across different time points. We prove that the rewriting
is correct, i.e., that for every possible global trace, the local LTL property is
satisfied by its projection on the local symbols if and only if the rewritten LTL
property is satisfied by the global trace. The main contribution of the paper is an
optimized version of the rewriting that takes into account the frame conditions
on output data and the stutter invariance of other operators to reduce the size of
the resulting formula. We also consider an alternative approach where the local
formulas are first translated into fair transition systems and then composed.

The proposed approach has been implemented inside OCRA, which supports
a rich extension of LTL and uses a state-of-the-art model checking algorithm
implemented in nuXmv [6] as back-ends to check satisfiability. We validated the
approach empirically by evaluating the local property and the rewritten one on
local traces and their extension with stuttering of local variables. We evaluated
the approach on various kind of formulas and components, and compared the
different approaches in terms of scalability.

Summarizing, the main contribution of the paper is a rewriting of LTL for-
mulas with the following features:

– it allows to check compositional rules for asynchronous components commu-
nicating through input/output data ports;

– it supports compositional reasoning for first-order LTL properties with next
and event-freezing functions;

– it is optimized to reduce the size of the resulting formula;
– it has been validated and evaluated on various benchmarks.

The rest of the paper is organized as follows: in Sect. 2, we compare the proposed
solution with related works; in Sect. 3, we give some preliminary definitions; in
Sect. 4, we formalize the problem; in Sect. 5, we define the rewriting, its opti-
mized version, and the alternative approach based on compilation into transition
systems; in Sect. 6, we report on the experimental validation and evaluation;
finally, in Sect. 7, we draw the conclusions and some directions for future works.

510 A. Bombardelli and S. Tonetta

2 Related Works

When dealing with temporal logics such as LTL for asynchronous systems, one of
the main references is the work of Leslie Lamport on Temporal Logic of Action
(TLA) [17], later enriched with additional operators [18] and to component-
based models in [27]. In fact, we adopt the (quantifier-free) first-order version
of LTL [20] with the “next” function which is used to specify the succession
of actions of a program. TLA natively supports the notion of stuttering for
composing asynchronously programs so that the composition is simply obtained
by conjoining the specifications. We focus instead on local properties that are
specified independently from how the program is composed so that “next” and
input/output data refer only to the local execution. To the best of our knowl-
edge, this paper first addresses the asynchronous composition of local first-order
LTL properties. In fact, we rewrite “next” terms using the “at next” operator
introduced in [28] to take into account interleaving by referring to the value of
variables at the next point in time where the component is not stuttering.

As for propositional LTL, the composition of specifications is studied in var-
ious papers on assume-guarantee reasoning (see, e.g., [11,16,21,23]) for both
synchronous and asynchronous composition. In the case of asynchronous sys-
tems, most works focus on fragments of LTL without the next operator, where
formulas are always stutter invariant. Other studies investigated how to tackle
down state-space explosion for that scenario usually employing techniques such
as partial order reduction [4]. However, our work covers a more general setting,
where also the presence of input variables makes formulas non stutter invariant.

Similarly to our work, [4] considers a rewriting for LTL with events to map
local properties into global ones with stuttering. In [3], a related rewriting is
used within an asynchronous version of HyperLTL. However, contrary to this
paper, these works do not consider input variables (nor first-order extension)
and assume that every variable does not change during stuttering, resulting in
a simpler rewriting. In [15], a temporal clock operator is introduced to express
properties related to multiple clocks and, in principle, can be used to interpret
formulas over the time points in which a component is not stuttering. Its rewrit-
ing is indeed similar to the basic version defined in this paper, but is limited
to propositional LTL and has not been conceived for asynchronous composition.
The optimization that we introduce to exploit the stutter invariance of subformu-
las results in simpler formulas easy to be analyzed as shown in our experimental
evaluation.

The rewriting of asynchronous LTL is similar to the transformation of asyn-
chronous symbolic transition systems into synchronous ones described in [10].
The work considers connections based on events where data are exchanged only
upon synchronization (allowing optimizations as in shallow synchronization [5]).
Thus, it does not consider components that read from input variables that may
be changed by other components. Moreover, [10] is not able to transform tem-
poral logic local properties in global one as in this paper.

Asynchronous Composition of Local Interface LTL Properties 511

3 Background

3.1 Linear Temporal Logic

In this paper we consider LTL [20] extended with past operators [19] as well as
“if-then-else” (ite) and “at next” (@F̃), and “at last” (@P̃) operators from [28].
For simplicity we refer to it simply as LTL.

We work in the setting of Satisfiability Modulo Theory (SMT) [2] and LTL
Modulo Theory (see, e.g., [9]). First-order formulas are built as usual by propo-
sition logic connectives, a given set of variables V and a first-order signature Σ,
and are interpreted according to a given Σ-theory T . We assume to be given
the definition of M,μ |=T ϕ where M is a Σ-structure, μ is a value assignment
to the variables in V , and ϕ is a formula. Whenever T and M are clear from
contexts we omit them and simply write μ |= ϕ.

LTL Syntax

Definition 1. Given a signature Σ and a set of variables V , LTL formulas ϕ
are defined by the following syntax:

ϕ := �|⊥|pred(u1, . . . , un)|¬ϕ1|ϕ1 ∨ ϕ2|Xϕ1|ϕ1Uϕ2|Y ϕ1|ϕ1Sϕ2

u := c|x|func(u1, . . . , un)|next(u1)|ite(ϕ, u1, u2)|u1@F̃ϕ|u1@P̃ϕ

where c, func, and pred are respectively a constant, a function, and a predicate
of the signature Σ and x is a variable in V .

Apart from @F̃ and @P̃ , the operators are standard. u@F̃ϕ represents the
value of u at the next point in time in which ϕ holds. Similarly, u@P̃ϕ represents
the value of u at the last point in time in which ϕ holds.

LTL Semantic. LTL formulas are interpreted over traces, i.e., infinite sequences
of assignments to the variables in V . We denote by Π(V) the set of all possible
traces over the variable set V . Given a trace π = s0s1 · · · ∈ Π(V) and a Σ-
structure M , the semantic of a formula ϕ is defined as follows:

– π,M, i |= pred(u1, . . . , un) iff predM (πM (i)(u1), . . . , πM (i)(un))
– π,M, i |= ϕ1 ∧ ϕ2 iff π,M, i |= ϕ1 and π,M, i |= ϕ2

– π,M, i |= ¬ϕ iff π,M, i �|= ϕ
– π,M, i |= ϕ1Uϕ2 iff there exists k ≥ i, π,M, k |= ϕ2 and for all l, i ≤ l <

k, π,M, l |= ϕ1

– π,M, i |= ϕ1Sϕ2 iff there exists k ≤ i, π,M, k |= ϕ2 and for all l, k < l ≤
i, π,M, l |= ϕ1

– π,M, i |= Xϕ iff π,M, i + 1 |= ϕ
– π,M, i |= Y ϕ iff i > 0 and π,M, i − 1 |= ϕ

where the interpretation of terms πM (i) is defined as follows:

512 A. Bombardelli and S. Tonetta

– πM (i)(c) = cM

– πM (i)(x) = si(x) if x ∈ V
– πM (i)(func(u1, . . . , un)) = funcM (πM (i)(u1), . . . , πM (i)(un))
– πM (i)(next(u)) = πM (i + 1)(u)
– πM (i)(u@F̃ (ϕ)) = πM (k)(u)if there exists k > i such that, for all l, i < l <

k, π,M, l � ϕ and π,M, k |= ϕ;
πM (i)(u@F̃ (ϕ)) = defu@F̃ϕ otherwise.

– πM (i)(u@P̃ (ϕ)) = πM (k)(u)if there exists k < i such that, for all l, i > l >
k, π,M, l � ϕ and π,M, k |= ϕ;
πM (i)(u@F̃ (ϕ)) = defu@P̃ϕ otherwise.

– πM (i)(ite(ϕ, u1, u2)) =

{
πM (i)(u1) if π,M, i |= ϕ

πM (i)(u2) otherwise

and the predM , funcM , cM are the interpretation M of the symbols in Σ, and
defu@F̃ϕ and defu@P̃ϕ are some default values in domain of M .

Finally, we have that π,M |= ϕ iff π,M, 0 |= ϕ.
In the following, we assume to have a background theory such that the sym-

bols in Σ are interpreted by an implicit structure M (e.g., theory of reals, inte-
gers, etc.). We therefore omit M to simplify the notation, writing π, i |= ϕ and
π(i)(u) instead of respectively π,M, i |= ϕ and πM (i)(u).

Moreover, we use the following standard abbreviations: ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨
¬ϕ2), ϕ1Rϕ2 := ¬(¬ϕ1U¬ϕ2) (ϕ1 releases ϕ2), Fϕ := �Uφ (sometime in the
future ϕ), Gϕ := ¬F¬ϕ (always in the future ϕ), Oϕ := �Sϕ (once in the
past ϕ), Hϕ := ¬O¬ϕ (historically in the past ϕ), Zϕ := ¬Y ¬ϕ (yesterday ϕ
or at initial state), Xnϕ := XXn−1ϕ with X0ϕ := ϕ, Y nϕ := Y Y n−1ϕ with
Y 0ϕ := ϕ, Znϕ := ZZn−1ϕ with Z0ϕ := ϕ, F≤nϕ := ϕ ∨ Xϕ ∨ · · · ∨ Xnϕ,
G≤nϕ := ϕ ∧ Xϕ ∧ · · · ∧ Xnϕ, O≤nϕ := ϕ ∨ Y ϕ ∨ · · · ∨ Y nφ, H≤nϕ := ϕ ∧ Zϕ ∧
· · · ∧ Znϕ.

Since this paper heavily relies on the release operator, we explicitly define its
semantics as follows:

π,M, i |= ϕ1Rϕ2 iff for all l ≥ i, π,M, l |= ϕ2 or there exists k ≥ i, π,M, k |=
ϕ1 and for all i ≤ l′ ≤ k, π,M, l′ |= ϕ2

3.2 Interface Transition Systems

In this paper, we represents I/O components as Interface Transition Systems, a
symbolic version of interface automata [13] that considers I/O variables instead
of I/O actions.

Definition 2. An Interface Transition System (ITS) M is a tuple
M = 〈VI , VO, VH , I, T ,F〉 where:

– VI is the set of input variables, VO is the set of output variables, VH is the
set of internal variables where VI ∩ VO = ∅, VI ∩ VH = ∅ and VO ∩ VH = ∅.

– V := VI ∪ VO ∪ VH denotes the set of the variables of M

Asynchronous Composition of Local Interface LTL Properties 513

– I is the initial condition, a formula over VO ∪ VH ,
– T is the transition condition, a formula over V ∪ V ′

O ∪ V ′
H where V ′

O and V ′
H

are respectively the primed versions of VO and VH

– F is the set of fairness constraints, a set of formulas over V .

A symbolic transition system M = 〈V, S, I, T ,F〉 is an interface transition sys-
tem without input/output variables (i.e., 〈∅, ∅, V, S, I, T ,F〉).

Definition 3. A trace π of an ITS M is a trace π = s0s1s2 · · · ∈ Π(V) such
that s0 |= I, for all i, si ∪ s′

i+1 |= T , and for all f ∈ F , for all i, there exists
j > i, sj |= f . The language L (M) of an interface transition system M is the
set of all traces of M. Given an LTL formula ϕ, M |= ϕ iff, for all traces π of
M, π |= ϕ.

The asynchronous composition of two ITS is an ITS where the transitions
of the two original ITS occurs concurrently. To compose two interface transition
systems, their variables must be compatible.

Definition 4. Two ITS M1,M2 are compatible iff they share respectively only
input with output (i.e. V 1 ∩ V 2 = (V 1

O ∩ V 2
I) ∪ (V 1

I ∩ V 2
O))

The asynchronous composition of ITS should allow certain ITS to run their
transitions while the other transition systems freeze. To encode this behaviour
symbolically, the composition adds one stuttering variable for each interface
transition system. A stuttering variable is a Boolean variable that tells whether
a specific component is frozen or if it is executing its transition. We denote stM

as the stuttering variable of the ITS M.
Moreover, we introduce new transition conditions ψM

cond to express the fact
that an ITS M inside a composition do not change their output and inter-
nal variables when their stuttering variables are true. Formally, for all ITS M:
ψM

cond = stM →
∧

v∈VO∪VH
(v = v′)

Definition 5. Let M1 and M2 be two compatible interface transition systems.
M1 ⊗ M2 = 〈VI , VO, VH , I, T ,F〉 where:

– VI = V 1
I ∪ V 2

I \ ((V 1
I ∩ V 2

O) ∪ (V 1
O ∩ V 2

I))
– VO = V 1

O ∪ V 2
O \ ((V 1

I ∩ V 2
O) ∪ (V 1

O ∩ V 2
I))

– VH = V 1
H ∪ V 2

H ∪ {stM1 , stM2} ∪ ((V 1
I ∩ V 2

O) ∪ (V 1
O ∩ V 2

I))
– I = I1 ∧ I2

– T = (¬stM1 → T 1) ∧ (¬stM2 → T 2) ∧ ψM1
cond ∧ ψM2

cond

– F = {¬stM1 ,¬stM2} ∪ {ϕ1 ∧ ¬stM1 |ϕ1 ∈ F1} ∪ {ϕ2 ∧ ¬stM2 |ϕ2 ∈ F2}

The definition can be easily generalized to n ITSs M1 ⊗ ... ⊗ Mn

Definition 6. Let M = M1 ⊗ M2 be the asynchronous composition of two
ITS M1 and M2, let π = s0s1 . . . be a trace of M. A pair of consecutive
assignments to states si, si+1 of π is called stuttering transition w.r.t. M1, M2

iff si |= stM1 , stM2 respectively.

514 A. Bombardelli and S. Tonetta

Definition 7. Let π = s0s1 . . . be a trace of an ITS M and V ′ ⊆ V a set of
symbols of M. We denote si(V ′) as the restriction of the assignment si to the
symbols of V ′; moreover, we denote π|V ′ := s0(V ′)s1(V ′) . . . as the restriction
of all the state assignments of π to the symbols of V ′. Furthermore, we denote
L (M)|V ′ = {π|V ′ |π ∈ L (M)} as the restriction of all the traces of the language
of an ITS M to a set of symbols V ′ ⊆ V .

Definition 8. Let π = s0s1 . . . be a trace of the asynchronous composition of
n ITS M1, . . . ,Mn. By fairness constraints on stuttering there are infinitely
many points i0, i1, . . . such that for all j : π, ij |= ¬stMh and for all k, ij < k <
ij+1.π, k |= stMh . We define the projection of trace π over a component Mh as
follow:

PrMh
(π) = si0(Vh), si1(Vh) . . .

Definition 9. Let M = M1 ⊗ · · · ⊗ Mn, let π be a trace of Mh. We define the
inverse operator of Pr, denoted by Pr−1.

Pr−1
Mh

(π) = {π′|PrMh
(π′) = π}

4 Formal Problem

4.1 Asynchronous Composition of Properties of ITS

Compositional verification proves the properties of a system by proving the local
properties on components and by checking that the composition of the local
properties satisfy the global one (see [25] for a generic overview). This reasoning
is expressed formally by inference 1, which is parametrized by a function γS

that combines the components’ implementations and a related function γP that
combines the local properties.

Inference 1. Let M1,M2, . . . ,Mn be a set of n components, ϕ1, ϕ2, . . . , ϕn be
local properties on each component, γS is a function that defines the composition
of M1,M2, . . . ,Mn, γP combines the properties depending on the composition
of γS and ϕ a property. The following inference is true:

M1 |= ϕ1,M2 |= ϕ2, . . . ,Mn |= ϕn

γS(M1,M2, . . . ,Mn) |= γP (ϕ1, ϕ2, . . . , ϕn) γP (ϕ1, ϕ2, . . . , ϕn) |= ϕ

γS(M1,M2, . . . ,Mn) |= ϕ

In our setting, the components M1, . . . ,Mn are represented by ITSs (see
Definition 2) and γS is defined as the generalization of the asynchronous com-
position of Definition 5 for n ITS: γS(M1, . . . Mn) = M1 ⊗ · · · ⊗ Mn.

The problem we address in this paper is to define γP such that the above infer-
ence rule is correct. In order to asynchronously combine the local properties, each
property must be rewritten considering stuttering transitions and, evaluating
input variables only in active transitions. Formally, we want that for all trace π of
γS(M1, . . . ,Mn), P rM1(π) |= ϕ1 ∧ · · · ∧PrMn

(π) |= ϕn ⇔ π |= γP (ϕ1, . . . , ϕn).
Thus, we require a rewriting function that maps local properties into their global

Asynchronous Composition of Local Interface LTL Properties 515

counterparts. This requirement is expressed as follows. For each trace π of an
ITS M, for each global trace πST ∈ Pr−1(π): π |= ϕ iff πST |= R∗(ϕ) where
ϕ is a local LTL property in the language of M. As for the event based TS,
we need some conditions Ψcond that we call frame condition to guarantee per-
sistency of output variables and to guarantee fairness on components activity.
Ψcond(M1, . . . ,Mn) := ψM1

cond ∧ · · · ∧ ψMn

cond ∧ GF¬stM1 ∧ · · · ∧ GF¬stMn where
ψcond is from Definition 5. The final result in this case would be

γP := R∗(ϕ1) ∧ · · · ∧ R∗(ϕn) ∧ Ψcond(M1, . . . ,Mn)

Example 1. Let M1 be an ITS with c2 as input variable, c1 as output variable
and ϕ1 : c1 = 0 ∧ G((c1 < c2 ∧ c′

1 = c1 + 1) ∨ (c1 ≥ c2 ∧ c′
1 = c1)) as its local

property. Let M2 be another ITS with c1 as input variable, c2 as output variable,
p as parameter and ϕ2 : c2 = p ∧ G((c′

2 = c2 − 1)U(c2 = 0 ∧ c′
2 = c1)) as its

local property. Suppose that we want to prove that the composition of the two
properties satisfies the global property ϕ : GF (c1 = c′

1). To check if ϕ holds we
check the validity of R∗

M1
(ϕ1) ∧ R∗

M2
(ϕ2) ∧ Ψcond(M1,M2) → ϕ.

In this example, c1 is increased only when c1 is lower than c2. When consid-
ering asynchronous composition, c2 might change while M1 is stuttering. In this
case, the challenge in finding a correct R∗ is that since c2 might change while
M1 is stuttering, then the rewriting must evaluate c2 only when M1 is active.

4.2 Asynchronous Composition of Properties of Event Based TS

For completeness, we compare the problem defined above with the case of a
event-based asynchronous composition, where the transition systems run con-
currently with only shared events used for synchronization. If we consider the
asynchronous composition of event based TS to represent the function γS , we
can use the LTL rewriting function T defined in [4] on each ϕ1, . . . , ϕn inside γP

to compose the properties. T simply rewrites events and X operators and leaves
the other parts of formulas unchanged. We apply T to each ϕi, then, we put these
rewritten properties in conjunction with a constraint Ψ that ensures that vari-
ables do not change during stuttering transitions and that events do not occur
during stuttering transition. Ψ =

∧
1≤i≤n(G(stMi →

∧
v∈V i v = v′ ∧

∧
e∈Ei))

where V i and Ei are the sets of respectively variables and events of each Mi.
Finally, γP (M1, . . . ,Mn) = T (ϕ1) ∧ · · · ∧ T (ϕn) ∧ Ψ In this case, the compo-
sition is limited to components with synchronous event communications. Thus,
no input variable that is updated by other components can be considered in this
model of composition.

5 Rewriting

1This section contains the main contributions of this paper. First, a rewriting
R∗

M that transform local LTL properties into their global counterparts. Second,
1 The proofs of the theorems and lemmas of this section can be found in the appendix

of the completed version of the paper at: https://es-static.fbk.eu/people/
bombardelli/papers/nfm22/nfm-extended.pdf.

https://es-static.fbk.eu/people/bombardelli/papers/nfm22/nfm-extended.pdf
https://es-static.fbk.eu/people/bombardelli/papers/nfm22/nfm-extended.pdf

516 A. Bombardelli and S. Tonetta

an optimised version of R∗
M, Rθ∗

M, which exploits the concept of stutter toler-
ance (see Definition 14) to reduce the size of the generates formula. Finally, an
alternative approach that transforms the local LTL formulas into ITS and then
composes the ITS asynchronously.

We introduce the map function; a function that maps the position of a state
in a local trace to its position in a global trace.

To simplify the notation, we assume to be given an ITS M, a trace π of M, a
local property ϕ and a local term u. For brevity, we refer to mapst

πST ,RM, R∗
M,

Rθ
M, Rθ∗

M, Pr−1
M and stM as respectively mapπST , R, R∗, Rθ, Rθ∗,Pr−1 and

st.

Definition 10. For all πST ∈ Pr−1(π), for all k ∈ N : ¬stπ
ST

occ (k) :=
j s. t. πST , j |= ¬st and for all k ≤ l < j : πST , l |= st. ¬stπ

ST

occ (k) denotes
the position of the first occurrence of ¬st from point k. We also define map as
follows: For all i:

mapπST (i) :=

{
¬stπ

ST

occ (0) if i = 0
¬stπ

ST

occ (mapπST (i − 1) + 1) if i > 0

5.1 R Rewriting

As we mentioned in Sect. 4.1, we want a rewriting that is able to map each local
property ϕ into its global counterpart. In this case, each global property must
be satisfied in Pr−1(π) iff ϕ is satisfied in π. We start by proposing a rewriting
that maps an LTL formula to another formula such that the augmented traces
satisfy the rewritten formula in the active transitions if and only if the original
traces satisfy them in the same transitions.

Definition 11. We define R as the following rewriting function:

1. R(a) := a
2. R(ϕ ∨ ψ) := R(ϕ) ∨ R(ψ)
3. R(¬ϕ) := ¬R(ϕ)
4. R(Xψ) := X(¬stR(st ∨ R(ψ)))
5. R(ϕUψ) := (st ∨ R(ϕ))U(¬st ∧ R(ψ))
6. R(Y ϕ) := Y (stS(¬st ∧ R(ϕ)))
7. R(ϕSψ) := (st ∨ R(ϕ))S(¬st ∧ R(ψ))
8. R(func(ψ1, ..., ψn)) := func(R(ψ1), ...,R(ψn))
9. R(pred(ψ1, ..., ψn)) := pred(R(ψ1), ...,R(ψn))

10. R(ite(ψ,ψ1, ψ2)) := ite(R(ψ),R(ψ1)R(ψ2))
11. R(next(ψ) := ψ@F̃¬st
12. R(ψ@F̃ψ1) := R(ψ)@F̃ (R(ψ1) ∧ ¬st)
13. R(ψ@P̃ψ1) := R(ψ)@P̃ (R(ψ1) ∧ ¬st)

Asynchronous Composition of Local Interface LTL Properties 517

The property of R is defined in the following lemma:

Lemma 1. For all π, for all πST ∈ Pr−1(π), for all i:

π, i |= ϕ ⇔ πST ,mapπST (i) |= R(ϕ) π(i)(u) = πST (mapπST (i))(R(u))

Lemma 1 shows that R guarantees that satisfiability is preserved in the active
transitions of the global traces. However, mapπST (0) is not always granted to
be equal to 0 (see Definition 9), and thus, we need to find a rewriting that
guarantees that satisfiability is preserved also in the first transition.

Definition 12. We define R∗ as R∗(ϕ) := ¬stR(st ∨ R(ϕ))

Lemma 2. For all π, for all πST ∈ Pr−1(π) : πST ,mapπST (0) |= R(ϕ) ⇔
πST , 0 |= R∗(ϕ))

Using Lemma 1 and Lemma 2 together we obtain the following theorem:

Theorem 1. For all π, for all πST ∈ Pr−1(π) : π |= ϕ ⇔ πST |= R∗(ϕ)

Theorem 1 shows that R∗ is able to translate a local LTL property into a
global property without changing its semantics in term of traces. Using R∗ is
possible to transform local properties with I/O variables.

Definition 13. Let M1, . . . ,Mn be n ITS and ϕ1, . . . , ϕn be LTL formulas
on the language of each Mi. We define γP (ϕ1, . . . , ϕn) = R∗

M1
(ϕ1) ∧ · · · ∧

R∗
Mn

(ϕn) ∧ Ψcond(M1, . . . ,Mn)

Corollary 1. Using γP from Definition 13, γS from Sect. 4.1, for all compat-
ible ITS M1, . . . ,Mn, for all local properties ϕ1, . . . , ϕn over the language of
respectively M1, . . . ,Mn, for all global properties ϕ: Inference 1 holds.

Example 2. Consider the specifications of Example 1. Through R∗ we can define
the asynchronous parallel composition of ϕ1 and ϕ2:

– R∗
M1

(ϕ1) : ¬stM1R(st ∨ (c1 = 0 ∧ G(stM1 ∨ (c1 < c2 ∧ c1@F̃¬stM1 =
c1 + 1 ∨ c1 ≥ c2 ∧ c1@F̃¬stM1 = c1)))

– R∗
M2

(ϕ2) : ¬stM2R(stM2 ∨ c2 = p ∧ G(stM2 ∨ ((stM2 ∨ c2@F̃¬stM2 = c2 −
1)U(¬stM2 ∧ c2 = 0 ∧ c2@F̃¬stM2 = c1))))

– Ψcond(M1,M2) = G(¬stM1 ∨ c1 = c′
1) ∧ GF¬stM1 ∧ G(¬stM2 ∨ c2 = c′

2) ∧
GF¬stM2

Each next operator is rewritten as an at next (@F̃). The intuition is that we
want to evaluate the variable only in the next transition that does not stutter.
c1 and c2 are evaluated at the first non stuttering transition, the intuition is that
the local initial state is not necessary the global initial state. Finally, using γP we
can compose ϕ1 and ϕ2 asynchronously permitting us to check whether or not ϕ
holds. It should be noted that the correctness of the rewriting is guaranteed also
removing the constraints on output variables, however this constraint is desirable
since it guarantees persistence of data which is a rather realistic property.

518 A. Bombardelli and S. Tonetta

5.2 Optimization

The rewriting R∗ is general and works for all the LTL formulas. However, this
rewriting increases the size of the formula and consequently, the time required to
verify the final specification. There are common cases where it is not necessary
to rewrite part of the specification. For example GFϕ is rewritten as G(st ∨
F (¬st ∧ R(ϕ))) while it could be rewritten as GF (¬st ∧ R(ϕ)) (as for fairness
constraints). X of a local variable Xϕ is rewritten as X(¬stRR(ϕ)) while by
Ψcond of Sect. 4 it could remain unchanged. This section identifies, formalizes
and demonstrates the cases where such optimization can be applied.

We introduce the concept of stutter-tolerance. A formula is said stutter-
tolerant if it keeps the same value when rewritten through R in all consecutive
stuttering transitions.

Definition 14. An LTL formula ϕ is said stutter-tolerant w.r.t. R iff:
For all π, for all πST ∈ Pr−1(π), for all i : for all mapπST (i − 1) < j <
mapπST (i) :

πST , j |= R(ϕ) ⇔ πST ,mapπST (i) |= R(ϕ)

Lemma 3. Until, yesterday and at last formulas are stutter-tolerant w.r.t. R

Definition 15. An LTL formula ϕ is syntactically stutter-tolerant iff one of the
following condition holds:

– ϕ is an until formula or a yesterday formula or an at last formula
– ϕ = ψ1 ∨ ψ2 and ψ1 and ψ2 are syntactically stutter-tolerant
– ϕ = ¬ψ and ψ is syntactically stutter-tolerant
– ϕ = s and s ∈ VO ∪ VH

Lemma 4. Syntactically stutter-tolerant formulas are stutter-tolerant w.r.t R

Using the notion of syntactically stutter-tolerant formula, we define a new opti-
mized rewriting. If the sub-formulas of ϕ are syntactically stutter-tolerant, then
the ϕ is not rewritten according to R. To demonstrate the correctness of the
rewriting, we provide two lemmas that construct the main theorem.

Definition 16. We define Rθ as follows:

1. Rθ(s) = R(s) if s ∈ V
2. Rθ(ϕ ∨ ψ) = Rθ(ϕ) ∨ Rθ(ψ)
3. Rθ(¬ϕ) = ¬Rθ(ϕ)

4. Rθ(Xψ) =

{
X(Rθ(ψ)) if ψ is synt. st.tol.
X(¬stR(st ∨ Rθ(ψ))) otherwise

5. Rθ(ϕUψ) =

{
Rθ(ϕ)URθ(ψ) if ψ is synt. st.tol.
(st ∨ Rθ(ϕ))U(¬st ∧ Rθ(ψ)) otherwise

6. Rθ(Y ψ) = Y (stS(¬st ∧ Rθ(ψ)))

7. Rθ(ϕSψ) =

{
Rθ(ϕ)SRθ(ψ) if ψ is synt. st.tol
(st ∨ Rθ(ϕ))S(¬st ∧ Rθ(ψ)) otherwise

Asynchronous Composition of Local Interface LTL Properties 519

8. Rθ(func(ψ1, ..., ψn)) = func(Rθ(ψ1), ...,Rθ(ψn))
9. Rθ(pred(ψ1, ..., ψn)) = pred(Rθ(ψ1), ...,Rθ(ψn))

10. Rθ(ite(ψ,ψ1, ψ2)) = ite(Rθ(ψ),Rθ(ψ1),Rθ(ψ2))

11. Rθ(next(ψ)) =

{
next(Rθ(ψ)) if ψ is synt. st.tol.
Rθ(ψ)@F¬st otherwise

12. Rθ(ψ@Fψ1) =

{
Rθ(ψ)@FRθ(ψ1) if ψ is synt. st. tol.
Rθ(ψ)@F (¬st ∧ Rθ(ψ1)) otherwise

13. Rθ(ψ@P̃ψ1) = Rθ(ψ)@P̃ (¬st ∧ Rθ(ψ1))

Lemma 5. For all π, for all πST ∈ Pr−1(π), for all i:

π, i |= ϕ ⇔ πST ,mapπST (i) |= Rθ(ϕ) π(i)(u) = πST (mapπST (i))(Rθ(u))

Definition 17. We define Rθ∗ as follows:

Rθ∗
(ϕ) :=

{
Rθ(ϕ) if ϕ is synt. st.tol.
¬stR(st ∨ Rθ(ϕ)) otherwise

Lemma 6. For all π, for all πST ∈ Pr−1(π) : πST ,mapπST (0) |= Rθ(ϕ) ⇔
πST , 0 |= Rθ∗(ϕ)

.

Theorem 2. For all π, for all πST ∈ Pr−1(π) : π |= ϕ ⇔ πST |= Rθ∗(ϕ)

Example 3. Consider the specifications of Example 1. As for Example 2 we can
define the asynchronous parallel composition of ϕ1 and ϕ2 using Rθ∗:

– Rθ∗
M1

(ϕ1) : c1 = 0 ∧ G(stM1 ∨ (c1 < c2 ∧ c′
1 = c1 + 1 ∨ c1 ≥ c2 ∧ c′

1 = c1)))
– Rθ∗

M2
(ϕ2) : c2 = p ∧ G((stM2 ∨ c′

2 = c2 − 1)U(¬stM2 ∧ c2 = 0 ∧ c′
2 = c1))

This example shows how much the optimization can reduce the size of the for-
mula. Since c1 = 0 is an output formula and since G is an until operator, Rθ∗

removes the initial ¬stR(st ∨ Rθ(ϕ). Furthermore, thanks to Ψcond, both next
expressions can be optimized. Another applied optimization is that the rewrit-
ing of ϕ2 does not need to add stuttering disjunction on G since until is a
syntactically stutter formula. However, since ϕ1 and ϕ2 are not stutter invariant
formulas, both specifications are partially modified by Rθ∗. In particular, inside
ϕ1 Rθ∗ applies the rewriting of G since next formulas are not stutter tolerant,
the same happens with ϕ2 where U is rewritten according to R.

520 A. Bombardelli and S. Tonetta

5.3 Alternative Approach for Asynchronous Composition

In this section, we consider an alternative approach based on the asynchronous
composition of ITS. We exploit the transformation from LTL formula to tran-
sition system of [12] to generate ITS to be asynchronously composed. ITS have
limited expressibility for initial and transition conditions (see Definition 2). Ini-
tial conditions cannot refer to input formula while transition conditions cannot
refer to next input formulas. Since LTL does not suffer from this limitation, it is
necessary to adapt the ITS construction to fully express all possible LTL prop-
erties. Thus, we introduce internal variables that mimic the values of the input
variables at each transition; exploiting the asynchronous composition, during
stuttering transitions these variables will guess the value of the input variables
at the next occurrence of not stutter.

Definition 18. Let M be an ITS and let ϕ be an LTL formula over its symbols.
We define LTL2IntTS(M, ϕ) := 〈VI , VO, VH

′, I, T ,Fϕ〉 where:

– LTL2TS(ϕ) = 〈Vϕ, Iϕ, Tϕ,Fϕ〉 is the transition system generated from ϕ
– VH

′ = VH ∪ V guess ∪ (Vϕ \ V)
– I = Iϕ�VI/V guess�
– T = Tϕ�VI

′/V guess′� ∧
∧

v̄∈V guess(v̄ = v)
– V guess = {v̄|v ∈ VI} where each v̄ is a copy of each v

Lemma 7. Let M be an ITS, let ϕ be an LTL property over the language of
M.

Mϕ = LTL2IntTS(M, ϕ) is a valid ITS and Mϕ |= ϕ

Lemma 7 ensures that LTL2IntTS generates an ITS that satisfy the property ϕ.
Thus, using LTL2IntTS with the asynchronous composition of ITS of Definition
5 we generate the composed ITS.

The remainder of this section demonstrates the equivalence between the
this approach with the rewriting techniques. The following lemma ensures that
a trace π is part of the language of the composition of the ITS defined by
LTL2IntTS if and only if the projections of the traces over the local transition
systems satisfy the local properties

Lemma 8. Let M1, . . . ,Mn be n compatible ITS with function γS defined
according to Sect. 4.1; ϕ1, . . . , ϕn be local properties of respectively M1, . . . Mn

and π ∈ Π(V) be a trace over the symbols of M = γS(M1, . . . ,Mn):

PrM1(π) |= ϕ1 ∧ · · · ∧ PrMn
(π) |= ϕn ∧ π |= Ψcond(M1, . . . ,Mn) ⇔ π ∈

L (γS(Mϕ1 , . . . ,Mϕn
))|V

Asynchronous Composition of Local Interface LTL Properties 521

where Mϕ1 , . . . ,Mϕn
are respectively the ITS generated applying LTL2IntTS

to the symbols of M1, . . . ,Mn and the properties ϕ1, . . . , ϕn.

From Lemma 8 we derive the following theorem which states that this app-
roach is equivalent with the one based on rewriting.

Theorem 3. Let M1, . . . ,Mn be n compatible ITS, ϕ1, . . . , ϕn be local prop-
erties of respectively M1, . . . Mn and π ∈ Π(V) be a trace over the symbols of
M = γS(M1, . . . ,Mn):

π |= γP (ϕ1, . . . , ϕn) ⇔ π ∈ L (γS(Mϕ1 , . . . ,Mϕn
))|V

where Mϕ1 , . . . Mϕn
are respectively the ITS generated applying LTL2IntTS to

the symbols of M1, . . . ,Mn and the properties ϕ1, . . . , ϕn.

6 Experimental Evaluation

2The techniques of this paper are implemented inside the contract based design
tool OCRA [7] and have been validated through an empirical verification of
the rewriting theorems. We implemented a technique that applies Pr and Pr−1

to lazo-shaped traces generated from LTL formulas to verify the theorems of
the rewritings. Moreover, we also checked that the alternative approach was
equivalent to the one proposed for LTL. The validation have been conducted
on all LTL specifications of the discrete time example models of OCRA (∼300
formulas) and on 100 randomly generated formulas.3 We also confronted the
approaches with an experimental evaluation.

For completeness, the experimental evaluation considers another technique
based on the rewriting of [4] that was already implemented in OCRA and men-
tioned in Sect. 4.2. We call this rewriting output-only rewriting. Output-only
rewriting considers only specifications with local variables and synchronization
events. While, to keep the notation readable we did not mention events inside our
rewriting, we handle events in our implementation similarly to next operators. To
force synchronisation between events, we augment Ψcond to enable shared events
only when its components do not stutter. Due to the limitations of output-only
rewriting, the experimental evaluation have been applied only to a sub-set of
models. The experiments were run in parallel on a cluster with nodes with Intel
Xeon CPU running at 2.27GHz with 8CPU, 48GB. The timeout for each run
was four hours and the memory cap was set to 1GB.

The evaluation was applied on different type of models: asynchronous ver-
sions of OCRA models, Dwyer LTL patterns [14] parametrized on the number
of components and on components with parametrized nested X formulas. The

2 The tar files of the experimental evaluation results can be found at: https://es-static.
fbk.eu/people/bombardelli/papers/nfm22/expeval.tar.gz.

3 The detailed algorithms of the validation can be found in the appendix of the
extended version of this paper at:
https://es-static.fbk.eu/people/bombardelli/papers/nfm22/nfm-extended.pdf.

https://es-static.fbk.eu/people/bombardelli/papers/nfm22/expeval.tar.gz
https://es-static.fbk.eu/people/bombardelli/papers/nfm22/expeval.tar.gz
https://es-static.fbk.eu/people/bombardelli/papers/nfm22/nfm-extended.pdf

522 A. Bombardelli and S. Tonetta

one based on Dwyer LTL patterns [14] considered 3 LTL patterns: response,
precedence chain and universality patterns. The models compose the pattern
formulas in two ways: as a sequence of n components linked in a bus and as
a set of components that tries to write on the output port concurrently. Since
the output-only rewriting does not support input port, in the models used in
the comparison with the output-only rewriting replace input data readings with
synchronizing event exchanging such data.

Each model have been tested with two symbolic model checking algorithms:
ic3ia [8] and one based on bdd [22] (only for finite state models) that we will call
bdd for brevity; however, due to the limited space we show only plots with the
ic3ia algorithm. Figure 1 shows the results of response pattern model with events,
universality sequence pattern model with input port and precedence chain model
where each component concurrently writes to the global output port.

Fig. 1. Pattern experimental evaluations

Asynchronous Composition of Local Interface LTL Properties 523

Fig. 2. Nested X experimental evaluation

The experimental evaluation based on nested X sequence considered 2
parameters: the number of nested X of the global property and the number of
components. In this scenario, we confront the approach based on asynchronous
composition of ITS with the optimized temporal rewriting. The global property
is defined as: G(G≤n∗st → F≤n∗sr) where n is the number of nested X, s is the
number of components in the system and t and r are two boolean formulas. Local
properties are defined as G(G≤nt → F≤nr) where n. Figure 2a shows the over-
all results of the experimental evaluation, where the y-axis represents the time
required to check x global properties while Fig. 2b shows the result restricted to
models with n = 2 and with s = 2.

Figure 3 shows the overall results with scatter plots that confronts the opti-
mized rewriting with the other approaches. In these plots, the y coordinate
represents the time to verify the validity of each instance with the optimized
rewriting while the x coordinate represents the time to verify the validity of each
instance with the adversarial approach. If a point is above the dashed line, then
the adversarial method performed better; otherwise, the optimized rewriting was
faster in verifying the validity of that instance. The optimized rewriting (Rθ∗)
outperforms the non optimized one (R∗) in almost every model. Intuitively, Rθ∗

generates formulas that are smaller than those produced by R∗ (see Example 3
for a comparison between the rewritten formulas). When dealing with nested X,
the approach based on asynchronous composition performs better than the opti-
mized rewriting when there are only two components; this is outlined in Fig. 2b.
However, even if ltl2IntTS sometimes performs better, in general the optimized

524 A. Bombardelli and S. Tonetta

rewriting is faster and is able to solve more instances. The comparison between
optimized rewriting and output-only rewriting shows that in general the opti-
mized rewriting is faster. This happens because Rθ∗ exploits the absence of input
data port to minimize the rewritten formula. Thus, compared with the output-
only, Rθ∗ is both more general and efficient. To summarize: the optimization
significantly improves the performance of the rewriting, the optimization is in
general faster than the output-only rewriting, and, apart from certain cases, the
optimized rewriting is faster than the approach based on the compilation into
interface transition systems.

Fig. 3. Scatter plots on all the experiments

7 Conclusions

In this paper, we considered the problem of compositional reasoning for asyn-
chronous systems with LTL properties over input and output variables. We pro-
posed a new rewriting of LTL formulas that allows for checking compositional
rules with temporal satisfiability solvers. We provided an optimized version and
an alternative solutions based on the compilation of the LTL formulas into transi-
tion systems. We finally compare these rewritings con various benchmarks show-
ing the scalability of the approach.

In the future, we will consider various directions for extending the frame-
work including real-time and hybrid specifications, optimizations based on the
scheduling of components and other communication mechanisms such as buffered
communication, and the application of the proposed rewriting in an extension
of Asynchronous HyperLTL [3].

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, pp. 825–885. IOS Press, January 2009

Asynchronous Composition of Local Interface LTL Properties 525

3. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

4. Benes, N., Brim, L., Cerná, I., Sochor, J., Vareková, P., Buhnova, B.: Partial order
reduction for state/event LTL. In: IFM (2009)

5. Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model checking of hybrid systems
using shallow synchronization. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE
-2010. LNCS, vol. 6117, pp. 155–169. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13464-7 13

6. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

7. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement
of temporal contracts, pp. 702–705, November 2013

8. Cimatti, A., Griggio, A.: Software model checking via IC3. In: CAV, pp. 277–293
(2012)

9. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: SMT-based satis-
fiability of first-order LTL with event freezing functions and metric operators. Inf.
Comput. 272, 104502 (2019)

10. Cimatti, A., Mover, S., Tonetta, S.: HyDI: a language for symbolic hybrid systems
with discrete interaction, pp. 275–278, August 2011

11. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Programm. 97, 333–348 (2015). Object-Oriented
Programming and Systems (OOPS 2010) Modeling and Analysis of Compositional
Software (papers from EUROMICRO SEAA 12)

12. Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Technical report, USA (1994)

13. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE, pp.
109–120. ACM (2001)

14. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: Proceedings - International Conference on Software Engi-
neering, February 1970

15. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The def-
inition of a temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 67

16. Jonsson, B., Tsay, Y.-K.: Assumption/guarantee specifications in linear-time tem-
poral logic. Theor. Comput. Sci. 167, 47–72 (1996)

17. Lamport, L.: Temporal logic of actions. ACM Trans. Programm. Lang. Syst.
(TOPLAS) 16(872–923), 6 (1994)

18. Lamport, L.: The operators of TLA, June 1997
19. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Logics of Programs,

pp. 196–218 (1985)
20. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems -

specification. Springer (1992). https://doi.org/10.1007/978-1-4612-0931-7
21. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L.,

Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48153-2 30

22. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD
- Foundations and Applications, January 1998

https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45061-0_67
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/3-540-48153-2_30

526 A. Bombardelli and S. Tonetta

23. Păsăreanu, C.S., Dwyer, M.B., Huth, M.: Assume-guarantee model checking of
software: a comparative case study. In: Dams, D., Gerth, R., Leue, S., Massink,
M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 168–183. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48234-2 14

24. Pnueli, A.: The temporal logic of programs, pp. 46–57, September 1977
25. Roever, W.-P.: Concurrency Verification: Introduction to Compositional and Non-

compositional Methods, January 2001
26. Rozier, K.Y.: Linear temporal logic symbolic model checking. Compu. Sci. Rev.

5(2), 163–203 (2011)
27. Rysavy, O., Rab, J.: A formal model of composing components: the TLA+ app-

roach. Innov. Syst. Softw. Eng. 5, 139–148 (2009)
28. Tonetta, S.: Linear-time temporal logic with event freezing functions. In: Gand,

A.L.F. (ed.) vol. 256. EPTCS, pp. 195–209 (2017)

https://doi.org/10.1007/3-540-48234-2_14

Elucidation and Analysis of Specification
Patterns in Aerospace System Telemetry

Zachary Luppen1(B) , Michael Jacks2 , Nathan Baughman2 , Muhamed Stilic2 ,
Ryan Nasers2 , Benjamin Hertz3 , James Cutler4 , Dae-Young Lee2 ,

and Kristin Yvonne Rozier2

1 Space Exploration Technologies Corp., Hawthorne, CA 90250, USA
zachary.luppen@spacex.com,zluppen@gmail.com

2 Iowa State University, Ames, IA 50010, USA
3 Collins Aerospace, Cedar Rapids, IA 52498, USA

4 University of Michigan, Ann Arbor, MI 48109, USA

Abstract. Experimental aerospace projects often require flight vehicle platforms
for testing, such as high-altitude balloons, sounding rockets, unmanned aerial sys-
tems (UAS), and CubeSats. The system telemetry transmitted by these vehicles
is crucial to understanding overall performance. A growing desire to implement
greater levels of system autonomy and AI-enhanced control into these systems
merits introducing rigorous safety analysis from formal methods techniques, such
as Runtime Verification (RV). RV depends heavily upon the accuracy and robust-
ness of the specifications it reasons over, and the task of developing a comprehen-
sive set of system specifications often poses a significant challenge. To aid spec-
ification development for new systems, we provide an analysis on the process of
implementing RV into four real aerospace systems of increasing complexity. We
design and validate fourteen formal specifications for a real high-altitude balloon
mission and draw on three past formal specification efforts on a sounding rocket,
UAS Traffic Management (UTM) system, and CubeSat to compare specification
patterns and overlapping system needs. We identify four common temporal logic
subformulas for specifications within and between these systems, providing met-
rics on development resources, frequency, and perceived automation difficulty.
We generalize our results and discuss considerations for automatically generat-
ing formal specifications in aerospace projects.

Keywords: Runtime verification · Temporal logic · System health monitoring ·
Formal specification · R2U2 · High-altitude balloon · Sounding rocket · UAS ·
CubeSat · Satellite

This project/material is based upon work supported by the Iowa Space Grant Consortium under
NASA Award No. 80NSSC20M0107. Work partially supported by NSF CAREER Award CNS-
1552934, NASA ECF NNX16AR57G, and NSF PFI: BIC grant CNS-1257011. Thanks to Kaili
Henry and Yang He for their work on specification development and Matthew Nelson for pro-
viding resources from HABET. Reproducibility artifacts are available at http://temporallogic.org/
research/AerospaceSystems-NFM22/.
Z. Luppen—The work in this manuscript was performed for the completion of a master’s degree
prior to Mr. Luppen’s employment at SpaceX. The data referenced herein is not related to nor
gathered from any SpaceX resources.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 527–537, 2022.
https://doi.org/10.1007/978-3-031-06773-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_28&domain=pdf
http://orcid.org/0000-0003-0704-843X
http://orcid.org/0000-0002-1680-4535
http://orcid.org/0000-0003-1217-2267
http://orcid.org/0000-0002-0184-9925
http://orcid.org/0000-0003-2114-062X
http://orcid.org/0000-0003-1627-9715
http://orcid.org/0000-0002-6984-6851
http://orcid.org/0000-0002-6083-1805
http://orcid.org/0000-0002-6718-2828
http://temporallogic.org/research/AerospaceSystems-NFM22/
http://temporallogic.org/research/AerospaceSystems-NFM22/
https://doi.org/10.1007/978-3-031-06773-0_28

528 Z. Luppen et al.

1 Introduction

Academic, industrial, commercial, and amateur entities profoundly use small aerospace
systems to perform small-scale, experimental research [23,29,44,45]. The intended
experiments and mission goals for these projects vary greatly, from testing experimental
hardware to evaluating cosmic radiation levels at progressive altitudes in Earth’s atmo-
sphere [33]. The process of building, designing, and flying these systems is a non-trivial
task despite their benefits of low cost and fast turnaround times. In practice, many devel-
opers meet unforeseen challenges and setbacks that can occur at practically any stage
of a given mission [3,25,46]. Conceivable problems are documented and well-known,
but developers generally have the means only to develop a baseline working system due
to limited resources, engendering a need for greater system autonomy.

Enabling small aerospace systems to monitor system faults automatically and in real
time provides the ability to trigger mitigation actions and optimize performance. Run-
time verification (RV) specializes in identifying fault signatures and provides a deeper
understanding of a given system’s behavior [34,35]. Recent studies have explored the
integration of RV into autonomous aerospace systems, like sounding rockets [14],
unmanned aerial systems (UAS) [6,13,28], and CubeSats [2,12,32]. However, there
have been few efforts to understand the similarities and differences, along with scaled
complexity, in applying formal specification and RV to these systems [39]. It is cru-
cial to understand how mission needs compare within and across each system to elicit
formal specifications automatically for real-time verification of future designs.

We examine four real aerospace systems designed, developed, and flown/launched
independently: a high-altitude balloon, a sounding rocket, a UAS Traffic Management
(UTM) system, and a CubeSat. We contribute (1) formal high-altitude balloon specifi-
cations and successful RV on the real dataset using the R2U2 RV engine [40], (2) a com-
parative analysis and identification of patterns in aerospace system specifications, and
(3) a map for auto-generating formal specifications. The remainder of this paper is orga-
nized as follows. In Sect. 2, we discuss the syntax and formal semantics of Mission-time
Linear Temporal Logic (MLTL), the common specification language of these studies.
Section 3 briefly outlines each of the four aerospace vehicles and their mission profiles
and discusses their respective telemetry data collections. Section 4 describes develop-
ment and validation of formal specifications for a high-altitude balloon system and scal-
ing to larger systems. We provide metrics and comparisons of formal specifications and
patterns identified in all four aerospace systems in Sect. 5. In Sect. 6, we discuss lessons
learned and conclude with plans for developing more automated techniques to generate
formal specifications.

2 MLTL Syntax and Semantics

We utilize mission-time linear temporal logic (MLTL) for all specifications developed
for the aerospace systems [17,37]. MLTL employs closed interval time bounds over
a set of bounded natural numbers on all temporal operators, rather than literal time
increments.

Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry 529

Definition 1. (MLTL Syntax) The syntax of a given MLTL formula φ comprised of
atomic propositions AP is recursively defined as such:

φ :: = true | false | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | �Iφ | ♦Iφ | φ1UIφ2 | φ1RIφ2

where p ∈ AP is a Boolean and all φ are atomic propositions. The symbols utilized
in this syntax stand for the following: ¬ is not, ∧ is logical and, ∨ is logical or, �I is
globally, ♦I is eventually, UI is until, RI is release. I is an interval [lb,ub] from a lower
to an upper bound, where lb ≤, ub, and lb, ub ∈ N [17,37].

As MLTL is derived from linear temporal logic (LTL), a majority of the semantics
are identical: false ≡ true, φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), ¬(φ1UIφ2) ≡ (¬φ1RI¬φ2)
and ¬♦Iφ ≡ �I¬φ. Note that unlike LTL, MLTL does not possess the next X operator
because it is logically equivalent to �1,1φ [17].

Definition 2. (MLTL Semantics) A MLTL formula φ, over a set of propositions AP , by
a computation/trace π starting from position i (denoted as π, i |= φ) has satisfaction
recursively defined as follows:

– π, i |= true
– π, i |= p iff p ∈ π[i]
– π, i |= ¬φ iff π, i � φ
– π, i |= φ1 ∧ φ2 iff π, i |= φ2

– π, i |= phi1 Ulb,ubφ2 iff |π| ≥ i + lb and, there exists j ∈ [i + lb, i + ub] such that π,
j |= φ2 and for every k < j, k ∈ [i + lb, i + ub], π, k |= φ1.

3 Aerospace Systems

We analyze and compare formal specifications for four separate aerospace systems:
a high-altitude balloon, a sounding rocket, a UTM, and a CubeSat. This section
briefly describes each system and the exigence for applying formal methodologies.
We note that, while each system here is progressively more complex than the last,
this is not indicative of aerospace systems as a whole. Additional information and
visuals of the telemetry datasets are available at http://temporallogic.org/research/
AerospaceSystems-NFM22/.

3.1 High-Altitude Balloon

The Make 2 Innovate (M:2:I) Laboratory, located at Iowa State University (ISU), devel-
oped a high altitude balloon as part of its High Altitude Balloon Experiments in Tech-
nology (HABET) series [19]. The goal of this program is to design, build, fly, and
recover small payloads developed entirely by undergraduate students at ISU [19,20].
This launch tested the functionality and accuracy of a SparkFun NEO-M9N GPS mod-
ule for use on future HABET projects. While the GPS module proved capable, a hand-
ful of extraneous measurements were made that provided ground station operators with
inaccurate readings while the balloon remained almost stationary on the ground. While

http://temporallogic.org/research/AerospaceSystems-NFM22/
http://temporallogic.org/research/AerospaceSystems-NFM22/

530 Z. Luppen et al.

not utilized during this launch, some balloon launch teams include on-board mecha-
nisms to pop, vent, or detach the balloon at a defined altitude (often either for experi-
mentation or to prevent further drift in upper atmospheric winds) measured by the GPS
[4,10,22,24,31]. If such a mechanism had been used on this project, extraneous mea-
surements may have led to prematurely popping the balloon and thereby ending the
mission. Studies of this system do not exist in current literature.

3.2 Sounding Rocket

The Cyclone Rocketry team at ISU developed a sounding rocket called Nova Somnium.
Nova Somnium flew at the 2019 Spaceport America Cup near Las Cruces, NewMexico
[8,14]. Originally designed to reach an apogee altitude of 10,000 ft AGL, it carried
a telemetry system for data transmission back to a dedicated ground station, and an
aerobraking control system (ACS). During the launch, the ACS actuated prematurely
and resulted in a critical failure of the system. Development of formal specifications
and RV analysis of this system is described in greater detail in [14].

3.3 UAS Traffic Management System (UTM)

The UAS considered in the UTM project is an AeroVironment (formerly produced by
Pulse Aerospace) VAPOR 55 and is owned and operated by the University of Iowa’s
Operator Performance Laboratory (OPL) in Iowa City, IA [1,6]. UAS are quickly inte-
grating into the National Air Space (NAS) over the United States, and the Federal Avi-
ation Administration (FAA) expects their use to “expand rapidly” in the coming years.
Given that this increased air traffic will likely produce congestion and safety concerns,
there is a growing need to integrate UAS with intelligent, automated systems for UAS
Traffic Management. Previous studies mapped out RV implementations for three sep-
arate aspects of the UTM framework: onboard the VAPOR 55, each ground control
system, and within the UTM cloud-based framework [6,13].

3.4 CubeSat

The CubeSat, called the GEO-CAPE ROIC In-Flight Performance Experiment (GRI
FEX), was developed by the Michigan eXploration Lab (MXL) [16]. Launched in
December 2015 from Vandenberg Air Force Base in California, GRIFEX is a 3U Cube-
Sat carrying a NASA Jet Propulsion Laboratory (JPL)-developed all-digital in-pixel
high frame rate read-out integrated circuit (ROIC) being tested for use on future space-
craft [5,16,26,30,36]. Although CubeSats generally have mission lifetimes between
6months to two years, GRIFEX has been in operation for over five years. Such an abnor-
mally long lifetime provides developers with unique data regarding performance degra-
dation due to solar and cosmic radiation. The majority of GRIFEX operations involve
manual processes and was not subject to rigorous formal methodologies during its devel-
opment phase [16]. Recent efforts characterized the CubeSat’s performance degradation
to provide further insight on methods for updating formal specifications for a dynami-
cally changing system [18].

Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry 531

4 Methodology

The four aerospace systems described above are reactive to their environments and
possess well-defined operational timelines; this merits a specification logic like Lin-
ear Temporal Logic (LTL) to provide finite-bounded reasoning for each system [21].
Mission-time Linear Temporal Logic (MLTL) encodes the system requirements generi-
cally with integer-bounded time steps that provide ease of mapping to real mission data,
providing optional integer bounds on temporal operators [17,37]. MLTL has been used
in many industry-based research projects [2,6,7,11,13–15,18,27,37,38,41–43].

Past studies utilized a similar methodology to develop runtime specifications for
aerospace systems [6,13,14,18]. We employ these techniques in developing specifi-
cations for the high-altitude balloon, constructing requirements in English from known
mission parameters and tracking system coverage to capture as many system constraints
as possible. We organize our specifications into the categories defined in [39]: operating
ranges (RNG), rates of change (RAT), relationships (REL), control sequences (CTRL),
and consistency checks (CHE). Our specification validation and debugging uses previ-
ously described methods [14].

Fig. 1. R2U2 RV engine [40] monitoring for specification RAT3 of the HABET high-altitude bal-
loon. (a) The high altitude balloon’s measured altitude throughout the flight. Half of the duration
shown here is when the balloon was secured to the ground for final checkouts. (b) RV output from
the R2U2 tool, correctly identifying two faults when the change in altitude between time steps
exceeds more than 20m. The GPS status for the first fault was reported as high-integrity but is
clearly an incorrect measurement. The second fault occurred during balloon burst and descent.

To demonstrate the validity of this approach, we examine two specifications and
the resulting RV output, produced using R2U2 [40], from the HABET telemetry data
obtained during the balloon’s mission. Figure 1 shows multiple instances of off-nominal
altitude delta measurements. The altitude delta spike seen at the beginning of the time

532 Z. Luppen et al.

series data occurred while the balloon was affixed to the ground and risked the bal-
loon’s systems popping itself, thinking apogee had been reached. The out-of-bounds
measurements of the balloon’s humidity sensor appear in Fig. 2.

Fig. 2. R2U2 monitoring for specification RNG6 of the HABET high-altitude balloon. (a) The
high altitude balloon’s measured relative humidity throughout the flight. (b) RV output from the
R2U2 tool, correctly identifying two prolonged durations when the humidity data is not consid-
ered accurate per the sensor’s datasheet bounds.

With runtime specification development efforts performed for each of the four aero-
space systems, comparing these separate processes is now possible. We primarily want
to understand how each system’s complexity affects the efforts needed to develop for-
mal specification sets and highlight four critical metrics: (1) specification number and
(2) type, (3) estimated development time, and a (4) measure of the perceived level of dif-
ficulty in generating a specification. This latter metric, which we refer to as the Automa-
tion Level (AL) provides a general subjective understanding of how easily a specifica-
tion is elicited and consists of three separate rankings. These ranks are a simplified
version of the automation levels defined in past literature [9]. Specifications ranked AL
1 require a brief examination of a datasheet to generate and are comparatively easy to
extract and formalize. Additionally, most specifications with this ranking are depen-
dent only on component data sheets (rather than mission-specific parameters), and are
therefore easily applicable to other systems. One example of this rank would be a spec-
ification that dictates a temperature sensor must operate within its operating minimum
and maximum; this information is readily available in the component’s datasheet. Spec-
ifications with rank AL 2 require a small degree of user/developer input. These spec-
ifications require a minor parameter or range adjustment but are still reasonably easy
to generate. An example of this rank would be a specification describing the minimum
and/or maximum altitudes that an aerospace system should experience; these require-
ments vary by system. Lastly, specifications with rank AL 3 require a significant level

Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry 533

of user interaction. These specifications are the most difficult to produce. Generally,
specifications describing control sequences or mission phase durations fall under this
category. Table 1 displays the key metrics of the formal specifications developed for
each of the four aerospace systems.

5 Results

We identify four separate generalized temporal logic patterns from the analysis of the
aerospace system specifications. The atomic propositions in each pattern can take on
varying levels of complexity, ranging from a simple equality check to propositional
logic formulas containing multiple sub propositions (e.g., a0 : !a1 → (a2 || a3), where
a1, a2, a3 are defined from system variable comparisons). Table 2 details metrics on
each of these patterns and their occurrences within the aerospace system specifications.
The first specification pattern, written as G[0,M](a0), appears the most frequently in
all four subsystems. The M bound specifies that the specification should hold true for
every time step of the entire mission. Specifications with this pattern are well suited to
enforcing operating ranges, bounding rates of change, specifying relationships between
variables, and checking for logical inconsistencies. Most G[0,M](a0) specifications
are AL 1.

Table 1. Specification development summary for the high-altitude balloon, sounding rocket,
UTM, and CubeSat examined in this study. Development time estimates account for time spent
debugging and validating. The Automation Level (AL) metric provides a measure 1–3 of the
difficulty in eliciting specifications for each pattern.

Aerospace system MLTL spec category Count Estimated development time AL 1 AL 2 AL 3

Balloon All specifications 14 13 person-hours 6 2 8

RNG Specifications 7 4 person-hours 6 0 1

RAT Specifications 6 8 person-hours 0 6 0

REL Specifications 1 0 person-hours 0 0 0

CTRL Specifications 0 0 person-hours 0 0 0

CHE Specifications 0 1 person-hours 0 0 1

Sounding rocket All specifications 19 50 person-hours 4 7 8

RNG Specifications 6 14 person-hours 2 3 1

RAT Specifications 6 15 person-hours 2 4 0

REL Specifications 0 0 person-hours 0 0 0

CTRL Specifications 7 21 person-hours 0 0 7

CHE Specifications 0 0 person-hours 0 0 0

UTM All specifications 124 69 person-hours 30 87 7

RNG Specifications 80 12 person-hours 27 53 0

RAT Specifications 18 18 person-hours 3 15 0

REL Specifications 18 18 person-hours 2 9 7

CTRL Specifications 8 21 person-hours 2 6 0

CHE Specifications 0 0 person-hours 0 0 0

Cube satellite All specifications 265 77 person-hours 180 25 60

RNG Specifications 149 39 person-hours 68 25 56

RAT Specifications 112 32 person-hours 112 0 0

REL Specifications 4 6 person-hours 0 0 4

CTRL Specifications 0 0 person-hours 0 0 0

CHE Specifications 0 0 person-hours 0 0 0

534 Z. Luppen et al.

The second pattern, G[0,M]F [0, N](a0), states that a0 must be true at least
once every N time steps, where N < M . This specification pattern is identical to
G[0,M](a0) when N = 0, but when N > 0 allows a0 to be periodically violated
without violating the specification. This provides the flexibility to handle anticipated
stochastic or cyclic behavior. These specifications usually fall into AL 2 or 3 due to the
value of N typically needing human definition.

The third pattern, G[0,M](a0 → F [0, N]a1), represents a temporal relationship
between a condition (a0) and a behavior (a1). Specifications with this pattern primarily
encode control sequences. The sounding rocket ACS and UTM system provide air and
spacecraft control, so these specification sets benefit most from this pattern. Most of
these specifications are AL 3 due to the need for higher knowledge of mission event
sequencing and coordination with other systems.

The final pattern we identify, G[0,M](a0 → a0 U [0, N]a1), places a temporal
constraint a1 on a0. Whenever the a0 condition is met, a0must continue to hold until a1
occurs, and a1 must occur within N time steps of a0 first being met. Like the previous
pattern, this pattern primarily encodes control sequences and typically falls into AL 3.

Table 2. Metrics on the generalized specification forms described in Sect. 5. Under “Aerospace
System” we tabulate the number of specifications of each pattern for each aerospace system case
study.

Aerospace system

Specification pattern Typical AL Balloon Sounding rocket UTM CubeSat

G[0,M](a0) 1 8 8 77 265

G[0,M]F [0, N](a0) 2 6 4 35 0

G[0,M](a0 → F [0, N]a1) 3 0 5 6 0

G[0,M](a0 → a0U [0, N]a1) 3 0 2 0 0

6 Conclusion

The four common temporal logic subformulas we identify in the aerospace systems are
quickly and easily realizable as formal specifications. However, such aerospace systems
generally do not see the level of formal reasoning and validation that larger projects do,
owing to time and resource constraints. To fully bridge this gap, we suggest a tool that
will, given a list of parts/components on a designed mission, reference a database and
return a set of temporal logic specifications in the forms of the identified patterns; parts
databases already exist for common components and sensors. Development of this tool
would be non-trivial but would significantly aid formal specification development for
system developers who are not familiar with formal methods.

References

1. AeroVironment, I.: Vapor uas: Helicopter drone with drop delivery (2021). https://www.
avinc.com/uas/vapor

https://www.avinc.com/uas/vapor
https://www.avinc.com/uas/vapor

Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry 535

2. Aurandt, A., Jones, P., Rozier, K.Y.: Runtime verification triggers real-time, autonomous
fault recovery on the CySat-I. In: Proceedings of the 14th NASA Formal Methods Sympo-
sium (NFM 2022). Springer, Caltech, California, USA, May 2022

3. Balloonnews, Balloonnews: 10 ways that a high altitude balloon flight can go
wrong August 2014. https://balloonnews.wordpress.com/2014/04/10/10-ways-that-a-high-
altitude-balloon-flight-can-go-wrong/

4. Basta, T., Miller, S., Clark, R.T.: Weather Balloon Altitude Control System. Montana State
University (2014–2015)

5. Bekker, D.L., et al.: Grifex payload data system architecture for on-orbit focal plane array
evaluation. In: Proceedings of the American Geophysical Union, Fall Meeting 2012 (2012)

6. Cauwels, M., Hammer, A., Hertz, B., Jones, P.H., Rozier, K.Y.: Integrating runtime verifi-
cation into an automated UAS traffic management system. In: Muccini, H., Avgeriou, P.,
Buhnova, B., Camara, J., Caporuscio, M., Franzago, M., Koziolek, A., Scandurra, P., Tru-
biani, C., Weyns, D., Zdun, U. (eds.) ECSA 2020. CCIS, vol. 1269, pp. 340–357. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59155-7 26

7. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous
real-time system architecture. In: AIAA Scitech 2021 Forum, p. 0566, January 2021. https://
doi.org/10.2514/6.2021-0566

8. ESRA Board of Directors: 2019 spaceport america cup (2019). http://www.soundingrocket.
org/2019-sa-cup.html

9. Fisher, M., Mascardi, V., Rozier, K.Y., Schlingloff, B.-H., Winikoff, M., Yorke-Smith, N.:
Towards a framework for certification of reliable autonomous systems. Auton. Agent. Multi-
Agent Syst. 35(1), 1–65 (2020). https://doi.org/10.1007/s10458-020-09487-2

10. Garg, K.: Autonomous Navigation System for High Altitude Balloons. Ph.D. thesis, Luleå
Technical University, Graphic Production 2019 (2019)

11. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and bayesian network reasoners
on-board FPGAs: flight-certifiable system health management for embedded systems. In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 215–230. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 18

12. Gross, K.H., et al.: Formally Verified Run Time Assurance Architecture of a 6U CubeSat
Attitude Control System, pp. 1–15. AIAA Infotech (2020). https://doi.org/10.2514/6.2016-
0222, https://arc.aiaa.org/doi/abs/10.2514/6.2016-0222

13. Hammer, A., Cauwels, M., Hertz, B., Jones, P., Rozier, K.Y.: Integrating runtime verification
into an automated UAS traffic management system. Innovations in Systems and Software
Engineering: A NASA Journal, July 2021. https://doi.org/10.1007/s11334-021-00407-5

14. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket
control system. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM
2021. LNCS, vol. 12673, pp. 151–159. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-76384-8 10

15. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding Online Run-
time Verification for Fault Disambiguation on Robonaut2. In: Proceedings of the 18th Inter-
national Conference on Formal Modeling and Analysis of Timed Systems (FORMATS).
Lecture Notes in Computer Science (LNCS), vol. TBD, p. TBD. Springer, Vienna, Austria
(September 2020). TBD, http://research.temporallogic.org/papers/KZJZR20.pdf

16. eXploration Lab, T.M.: Grifex (2021). https://exploration.engin.umich.edu/blog/?page
id=2684

17. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time LTL. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 3–22. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25543-5 1

https://balloonnews.wordpress.com/2014/04/10/10-ways-that-a-high-altitude-balloon-flight-can-go-wrong/
https://balloonnews.wordpress.com/2014/04/10/10-ways-that-a-high-altitude-balloon-flight-can-go-wrong/
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.2514/6.2021-0566
https://doi.org/10.2514/6.2021-0566
http://www.soundingrocket.org/2019-sa-cup.html
http://www.soundingrocket.org/2019-sa-cup.html
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.2514/6.2016-0222
https://doi.org/10.2514/6.2016-0222
https://arc.aiaa.org/doi/abs/10.2514/6.2016-0222
https://doi.org/10.1007/s11334-021-00407-5
https://doi.org/10.1007/978-3-030-76384-8_10
https://doi.org/10.1007/978-3-030-76384-8_10
http://research.temporallogic.org/papers/KZJZR20.pdf
https://exploration.engin.umich.edu/blog/?page_id=2684
https://exploration.engin.umich.edu/blog/?page_id=2684
https://doi.org/10.1007/978-3-030-25543-5_1
https://doi.org/10.1007/978-3-030-25543-5_1

536 Z. Luppen et al.

18. Luppen, Z., Jacks, M., Baughman, N., Stilic, M., Nasers, R., Lee, D.Y., Rozier, K.Y., Cutler,
J.: Runtime verification of the dynamic performance degradation of the grifex cubesat (under
review). In: NASA Formal Methods. Springer International Publishing (2022)

19. M2I: Make to innovate (m:2:i) (2021). https://m2i.aere.iastate.edu/
20. M2I: Project goals (habet) (2021). https://m2i.aere.iastate.edu/habet/project-goals-and-

scope-of-work/
21. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New

York (2012). https://books.google.com/books?id=lfIGCAAAQBAJ
22. Marshall, R.: Cutdown mechanisms, March 2021. https://sites.google.com/site/ki4mcw/

Home/cutdown-mechanisms
23. Merkert, R., Bushell, J.: Managing the drone revolution: a systematic literature review into

the current use of airborne drones and future strategic directions for their effective control. J.
Air Transp. Manage. 89, 101929 (2020). https://doi.org/10.1016/j.jairtraman.2020.101929.
https://doi.org/10.1016/j.jairtraman.2020.101929

24. Meyer, J.J., Flaten, J.A., Candler, G.V.: Pdf, April 2021
25. Tolmasoff, M., Santos, R.D., Venturini, C.: Improving mission success of cubesats. In: Pro-

ceedings of the U.S. Space Program Mission Assurance Improvement Workshop, May 2007
26. Moldwin, M., Sharma, S., Deshmukh, A., Scott, C., Cutler, J.: Machine learning algorithms

for spacecraft magnetic field interference cancellation: enabling satellite magnetometry with-
out a boom. Earth and Space Science Open Archive, p. 1 (2019). https://doi.org/10.1002/
essoar.10500304.1. https://www.essoar.org/doi/abs/10.1002/essoar.10500304.1

27. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of security
threats for unmanned aerial systems. Formal Methods Syst. Design 51(1), 31–61 (2017).
https://doi.org/10.1007/s10703-017-0275-x

28. Muñoz, C., Carreño, V., Dowek, G.: Formal analysis of the operational concept for the small
aircraft transportation system. In: Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna,
E. (eds.) Rigorous Development of Complex Fault-Tolerant Systems. LNCS, vol. 4157, pp.
306–325. Springer, Heidelberg (2006). https://doi.org/10.1007/11916246 16

29. NASA CubeSat Launch Initiative: CubeSat 101, 1st edn. California Polytechnic State Uni-
versity, San Luis Obispo (Cal Poly) CubeSat Systems Engineer Lab (2017)

30. Norton, C.D., Pasciuto, M.P., Pingree, P., Chien, S., Rider, D.: Spaceborne flight valida-
tion of nasa esto technologies. In: 2012 IEEE International Geoscience and Remote Sensing
Symposium, pp. 5650–5653 (2012). https://doi.org/10.1109/IGARSS.2012.6352330

31. Papp, D.: Archery release becomes reusable balloon cutdown mechanism, March 2021.
https://hackaday.com/2021/03/27/archery-release-becomes-reusable-balloon-cutdown-
mechanism/

32. Peng, Z., Lu, Y., Miller, A., Johnson, C., Zhao, T.: A probabilistic model checking app-
roach to analysing reliability, availability, and maintainability of a single satellite system.
In: 2013 European Modelling Symposium, pp. 611–616, November 2013. https://doi.org/10.
1109/EMS.2013.102

33. Phillips, T., et al.: Space weather ballooning. Space Weather 14(10), 697–703 (2016). https://
doi.org/10.1002/2016SW001410. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2016SW001410

34. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A hard real-time runtime monitor. In:
Proceedings of the 1st International Conference on Runtime Verification. LNCS, Springer
(November 2010), preprint available at https://leepike.github.io/pub pages/rv2010.html

35. Pike, L., et al.: Copilot - realtime programming language and runtime verification framework,
March 2022. https://copilot-language.github.io/

36. Pingree, P., et al.: Cove, marina, and the future of on-board processing (obp) platforms for
cubesat science missions, December 2012

https://m2i.aere.iastate.edu/
https://m2i.aere.iastate.edu/habet/project-goals-and-scope-of-work/
https://m2i.aere.iastate.edu/habet/project-goals-and-scope-of-work/
https://books.google.com/books?id=lfIGCAAAQBAJ
https://sites.google.com/site/ki4mcw/Home/cutdown-mechanisms
https://sites.google.com/site/ki4mcw/Home/cutdown-mechanisms
https://doi.org/10.1016/j.jairtraman.2020.101929
https://doi.org/10.1016/j.jairtraman.2020.101929
https://doi.org/10.1002/essoar.10500304.1
https://doi.org/10.1002/essoar.10500304.1
https://www.essoar.org/doi/abs/10.1002/essoar.10500304.1
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/11916246_16
https://doi.org/10.1109/IGARSS.2012.6352330
https://hackaday.com/2021/03/27/archery-release-becomes-reusable-balloon-cutdown-mechanism/
https://hackaday.com/2021/03/27/archery-release-becomes-reusable-balloon-cutdown-mechanism/
https://doi.org/10.1109/EMS.2013.102
https://doi.org/10.1109/EMS.2013.102
https://doi.org/10.1002/2016SW001410
https://doi.org/10.1002/2016SW001410
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016SW001410
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016SW001410
https://leepike.github.io/pub_pages/rv2010.html
https://copilot-language.github.io/

Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry 537

37. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 24

38. Rozier, K.Y., Schumann, J., Ippolito, C.: Intelligent Hardware-Enabled Sensor and Software
Safety and Health Management for Autonomous UAS. Technical Memorandum NASA/TM-
2015-218817, NASA, NASA Ames Research Center, Moffett Field, CA 94035, USA, May
2015

39. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In:
Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48869-1 2

40. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: Proceedings of International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Ver-
ification Tools (RV-CUBES). vol. 3, pp. 138–156. Kalpa Publications, Seattle, WA, USA,
September 2017. TBD. https://easychair.org/publications/paper/Vncw

41. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of security
threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-
3 15

42. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime analysis with R2U2: a tool exhibi-
tion report. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 504–509.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 35

43. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.:
Towards real-time, on-board, hardware-supported sensor and software health management
for unmanned aerial systems. Int. J. Prognostics Health Manage. (IJPHM) 6(1), 1–27 (2015)

44. Science, H.A.: Intro to weather balloons (2021). https://www.highaltitudescience.com/pages/
intro-to-weather-balloons

45. Seibert, G.: The history of sounding rockets and their contribution to European space
research. ESA History Study Reports, November 2006

46. Wong, K.: Nasa’s deuce-carrying rocket fails to collect data due to technical glitch, Novem-
ber 2017. https://www.aerospace-technology.com/news/newsnasas-deuce-carrying-rocket-
fails-to-collect-data-due-to-technical-glitch-5962942

https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-319-48869-1_2
https://easychair.org/publications/paper/Vncw
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-46982-9_35
https://www.highaltitudescience.com/pages/intro-to-weather-balloons
https://www.highaltitudescience.com/pages/intro-to-weather-balloons
https://www.aerospace-technology.com/news/newsnasas-deuce-carrying-rocket-fails-to-collect-data-due-to-technical-glitch-5962942
https://www.aerospace-technology.com/news/newsnasas-deuce-carrying-rocket-fails-to-collect-data-due-to-technical-glitch-5962942

Robust Computation Tree Logic

Satya Prakash Nayak1(B) , Daniel Neider1,2 , Rajarshi Roy1 ,
and Martin Zimmermann3

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
{sanayak,neider,rajarshi}@mpi-sws.org

2 Safety and Explainability of Learning Systems Group, Carl von Ossietzky
Universität Oldenburg, Oldenburg, Germany

3 Aalborg University, Aalborg, Denmark
mzi@cs.aau.dk

Abstract. It is widely accepted that every system should be robust
in that “small” violations of environment assumptions should lead to
“small” violations of system guarantees, but it is less clear how to make
this intuition mathematically precise. While significant efforts have been
devoted to providing notions of robustness for Linear Temporal Logic
(LTL), branching-time logics, such as Computation Tree Logic (CTL)
and CTL*, have received less attention in this regard. To address this
shortcoming, we develop “robust” extensions of CTL and CTL*, which
we name robust CTL (rCTL) and robust CTL* (rCTL*). Both extensions
are syntactically similar to their parent logics but employ multi-valued
semantics to distinguish between “large” and “small” violations of the
specification. We show that the multi-valued semantics of rCTL make
it more expressive than CTL, while rCTL* is as expressive as CTL*.
Moreover, we devise efficient model checking algorithms for rCTL and
rCTL*, which have the same asymptotic time complexity as the model
checking algorithms for CTL and CTL*, respectively.

Keywords: Robustness · Computation tree logic · Linear temporal
logic · Model checking

1 Introduction

Specifications for reactive systems are typically written as an implication Φ ⇒ Ψ
where Φ is an environment assumption, and Ψ is a system guarantee. However,
the specification Φ ⇒ Ψ is satisfied if the environment assumption Φ is violated,
no matter how the system behaves. This is clearly inadequate since the environ-
ment assumptions will inevitably be violated in the real world: the true environ-
ment where the system will be deployed is often not entirely known at design
time and, thus, can not be accurately and fully formalized by the formula Φ.

The work was partly funded by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) grant number 434592664, by Villum Investigator Grant S4OS
held by Kim G. Larsen, and by the Danish National Research Center DIREC.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 538–556, 2022.
https://doi.org/10.1007/978-3-031-06773-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_29&domain=pdf
http://orcid.org/0000-0002-4407-8681
http://orcid.org/0000-0001-9276-6342
http://orcid.org/0000-0002-0202-1169
http://orcid.org/0000-0002-8038-2453
https://doi.org/10.1007/978-3-031-06773-0_29

Robust Computation Tree Logic 539

To prevent systems from behaving arbitrarily when the environment assump-
tion is violated, there have been concentrated efforts on improving the speci-
fications for reactive systems by making them robust to the violations of the
environment assumption. For instance, the works of Bloem et al. [2], Tarraf
et al. [18], Doyen et al. [4], Ehlers et al. [5], and Tabuada et al. [15,16] have pro-
vided different ways of introducing robustness for specifications in Linear Tem-
poral Logic (LTL). All these approaches require some additional assumptions
or additional quantitative information from the designer. This has motivated
Tabuada and Neider [17] to introduce a new logic, called robust LTL (rLTL),
which provides robustness without relying on any additional assumptions or
input from a designer beyond an LTL formula. Inspired by this logic, the works
of Neider et al. [13] introduced robust extensions for Prompt-LTL and Linear
Dynamic Logic.

Most work on robustness has been directed at LTL. Branching-time logic,
such as Computation Tree Logic (CTL) and CTL*, have received less attention
in this regard, with a few exceptions. For instance, the work of French et al. [9]
introduces a logic called RoCTL, but they use additional operators that require
manual quantification of the violations.

To address this shortcoming, we develop robust extensions of CTL and CTL*,
which we call robust CTL (rCTL) and robust CTL* (rCTL*). These logics are
inspired by rLTL. Similar to rLTL, our new logics employ multi-valued semantics
to track the degree of violations of a specification and are guided by two objec-
tives: first, the syntax of rCTL and rCTL* is similar to the syntax of CTL and
CTL*, respectively; second, the notion of robustness in these logics is intrinsic
rather than extrinsic, i.e., robustness does not rely on the designers to provide
quantitative information about the specification such as the number of violations
permitted, ranks, cost, etc.

To demonstrate how our notion of robustness works, consider a specifica-
tion Φ ⇒ Ψ for a robot deployed in an office-like environment. The environment
assumption Φ = ∀ ¬H states that humans never visit the initial location of
the robot. On the other hand, the robot guarantee Ψ = ∀ ∃ R states the fol-
lowing: “for all trajectories, regardless of the robot’s current position, the robot
can return to its initial location in one time step” (Note that such a specification
can not be expressed in LTL). Ideally, we would then want the following:

• if humans satisfy the assumption Φ, then the robot should also satisfy the
guarantee Ψ ;

• however, if humans violate the assumption by visiting the initial location
a finite number of times before realizing their mistake and eventually not
visiting it anymore, i.e., if they only satisfy ∀ ¬H, then rather than
behaving arbitrarily, the robot should also satisfy ∀ ∃ R, i.e., the robot
eventually should be able to return to its initial location from any point;

• similarly, if humans violate the assumption by not visiting the initial loca-
tion only infinitely often (or finitely often), i.e., if they satisfy ∀ ¬H (or
∀ ¬H), then the robot should satisfy ∀ ∃ R (or ∀ ∃ R, respec-
tively).

540 S. P. Nayak et al.

Later in this paper, we show that such a notion of robustness is indeed captured
by the semantics of rCTL and rCTL*.

The first two contributions of the paper are robust variants of the logics
CTL and CTL*, namely rCTL and rCTL*, respectively. Their semantics rely on
a many-valued truth system that captures the various degrees of violation of a
specification.

Second, we study the expressive power of rCTL and rCTL* and compare
them to existing logics such as LTL, rLTL, CTL, and CTL*. The key results
here are that rCTL is more expressive than CTL, while rCTL* has the same
expressive power as CTL*.

Third, to demonstrate that rCTL and rCTL* specifications can be effectively
used for verification, we provide efficient algorithms for model checking proper-
ties specified in these logics. We establish that the time complexity of rCTL and
rCTL* model checking is linear and exponential, respectively, in the size of the
formula, which is the same as the time complexity of CTL and CTL* model
checking, respectively. Thus, robustness can be added to branching-time logics
for free.

All proofs omitted due to space restrictions can be found in the full ver-
sion [12].

2 Notation and Review of Computation Tree Logic

In this section, we review the syntax and semantics of CTL, which expresses
properties of Kripke structures.

Throughout this paper, we fix a finite set P of atomic propositions. A (finite)
Kripke structure M = (S, I,R, L) over P consists of a finite set of states S, a set
of initial states I ⊆ S, a transition relation R ⊆ S × S such that for all states s
there exists a state s′ satisfying (s, s′) ∈ R, and a labeling function L : S → 2P .
The set post(s) = {s′ ∈ S | (s, s′) ∈ R} contains all successors of s ∈ S. A path
of the Kripke structure M is an infinite sequence of states π = s0s1 · · · such that
si+1 ∈ post(si) for each i ≥ 0. For a state s, let paths(s) denote the set of all
paths starting from s. And for a path π and i ≥ 0, let π[i] denote the i-th state
of π, and π[i..] denotes the suffix of π from index i on.

Syntax. CTL formulas are classified into state and path formulas. Intuitively,
state formulas express properties of states, whereas path formulas express tem-
poral properties of paths. For ease of notation, we denote state formulas and
path formulas by Greek capital letters and Greek lowercase letters, respectively.
CTL state formulas over P are given by the grammar

Φ:: = p | Φ ∨ Φ | Φ ∧ Φ | ¬Φ | Φ ⇒ Φ | ∃ϕ | ∀Φ,

where p ∈ P and ϕ is a path formula. CTL path formulas are given by the
grammar

ϕ:: = Φ | Φ | Φ | Φ U Φ | Φ W Φ,

where , , , U, and W denote the operator next, eventually, always, until,
and weak until, respectively.

Robust Computation Tree Logic 541

Semantics. Slightly deviating from the usual notation, we define the CTL seman-
tics using a mapping VCTL that maps a state/path and a CTL formula to a truth
value in B = {0, 1}. Given a state s and state formulas Φ, Ψ , CTL semantics is
defined as follows:

• VCTL(s, p) =

{
0 if p �∈ L(s); and
1 if p ∈ L(s).

• VCTL(s, Φ ∨ Ψ) = max{VCTL(s, Φ), VCTL(s, Ψ)}.
• VCTL(s, Φ ∧ Ψ) = min{VCTL(s, Φ), VCTL(s, Ψ)}.
• VCTL(s,¬Φ) = 1 − VCTL(s, Φ).
• VCTL(s, Φ ⇒ Ψ) = max{1 − VCTL(s, Φ), VCTL(s, Ψ)}.
• VCTL(s,∃ϕ) = maxπ∈paths(s) VCTL(π, ϕ).
• VCTL(s,∀ϕ) = minπ∈paths(s) VCTL(π, ϕ).

Similarly, for a path π, the CTL semantics of path formulas is defined as given
below:

• VCTL(π, Φ) = VCTL(π[1], Φ).
• VCTL(π, Φ) = maxi≥0 VCTL(π[i], Φ).
• VCTL(π, Φ) = mini≥0 VCTL(π[i], Φ).
• VCTL(π, ΦUΨ) = maxj≥0 min{VCTL(π[j], Ψ),min0≤i<j VCTL(π[i], Φ)}.
• VCTL(π, ΦWΨ) = minj≥0 max{VCTL(π[j], Φ),max0≤i≤j VCTL(π[i], Ψ)}.

Note that this definition is equivalent to the usual semantics of CTL [1].

3 Robust Computation Tree Logic

In this section, we robustify CTL by generalizing the ideas underlying robust
LTL to CTL, obtaining the logic rCTL. We describe the syntax and semantics of
rCTL and discuss the relation and differences between rCTL and other temporal
logics.

As discussed in the robot example in the introduction, we want to capture the
notion of robustness in CTL by ensuring that a small violation in environment
assumptions leads to a small violation of system guarantees. To achieve that, we
introduce robust semantics for CTL. Following arguments given by Tabuada and
Neider [17], we first motivate the semantics of rCTL using an example. Consider
the CTL path formula p, where p is an atomic proposition. The formula can
be satisfied in only one way, namely when p holds at every step (i.e., state) of the
path. In contrast, the formula can be violated in several ways. Intuitively, p is
violated in the worst manner when p fails to hold at every step. Then, we would
prefer a case where p holds for finitely many steps. Even better would be the
case when p holds at infinitely many steps. Finally, among all possible ways p
can be violated, we would prefer the situation where p fails to hold for at most
finitely many steps. Our robust semantics is designed to distinguish between
satisfaction and these four different degrees of violation of p. However, as
convincing as this argument might be, a question persists: in which sense can
we regard these five alternatives as canonical?

542 S. P. Nayak et al.

We answer this question by interpreting the satisfaction of p as a count-
ing problem. Recall that the semantics of p for a path π is given by
VCTL((π, p) = mini≥0 VCTL(π[i], p). Now, observe that the truth value of
the CTL formula p for a path π only depends on the number of occurrences
of 0’s and 1’s in the infinite word α = VCTL(π[0], p)VCTL(π[1], p) · · · ∈ B

ω but not
on their order. From this perspective, p is violated in the worst manner when
p fails to hold at every step, which corresponds to the number of occurrences
of 1 in α being zero. The next degree of violation of p in which p holds at
finitely many steps corresponds to having a finite number of 1’s. Similarly, the
next degree of violation corresponds to having an infinite number of 1’s and an
infinite number of 0’s. Among all the ways in which p is violated, the most
preferred way corresponds to having finitely many 0’s. Finally, the satisfaction
of p corresponds to having zero 0’s. Note that the position where 0’s and
1’s occur is irrelevant for our argument. Furthermore, note that by successively
applying permutations that swap position i with position i + 1 and leave all the
remaining elements of N unaltered, one can transform any α ∈ B

ω into words of
one of the following five forms: 1ω, 0k1ω, (01)ω, 1k0ω, 0ω. It is not hard to verify
that the five cases of violations of p that we discussed above amount to the
words of the five forms given above. We thus conclude the need for five truth
values to describe five different ways of counting 0’s and 1’s that correspond to
five different canonical forms of violations of p.

According to our motivating example p, the desired semantics should have
one truth value corresponding to true and four truth values corresponding to the
different shades of false. It is instructive to think of truth values as elements of
B
4. To ease notation, we denote such values by b = b1b2b3b4 or b = (b1, b2, b3, b4)

with bi ∈ B. We denote the set of truth values as B4, which consists of the
five truth values {0000, 0001, 0011, 0111, 1111}. The value 1111 corresponds to
true, and the others correspond to different shades of false. The truth values are
ordered naturally as 0000 < 0001 < 0011 < 0111 < 1111.

Syntax. Similar to the syntax of CTL, formulas of rCTL are also classified into
state and path formulas. Furthermore, we equip every temporal operator with
dots to distinguish the robust operators from the normal ones. rCTL state for-
mulas over P are formed according to the grammar

Φ:: = p | Φ ∨ Φ | Φ ∧ Φ | ¬Φ | Φ ⇒ Φ | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. rCTL path formulas are formed according
to the grammar

ϕ:: = Φ | Φ | Φ | Φ U Φ | Φ W Φ.

Semantics. We now discuss the motivation behind our many-valued semantics for
rCTL. The notion of a triangular-norm summarizes all the desirable properties
of a many-valued conjunction (see P. Hájek [11] for details), and it is natural to
model conjunction and disjunction in B4 by min and max, respectively. Moreover,
as in intuitionistic logic, we define the implication, denoted by a → b on the level

Robust Computation Tree Logic 543

of truth values, such that c ≤ a → b if and only if c ∧ a ≤ b for every c ∈ B4.
This leads to

a → b =

{
1111 if a ≤ b; and
b otherwise.

However, the negation, denoted by a on the level of truth values, defined
by a → 0000 as in intuitionistic logic, is not compatible with our interpretation
that all elements in B4\{1111} represent different shades of false and, thus, their
negation should be 1111. Therefore, we follow the ideas introduced by rLTL and
use da Costa algebras to define the negation (see Priest and Graham [14] for
details):

a =

{
0000 if a = 1111; and
1111 otherwise.

In other words, “true” (1111) gets mapped to “false” (0000), while “shades of
false” get mapped to “true”.

It should be mentioned that working with a five-valued semantics has its
price. As in intuitionistic logic, a may not be equal to a as evidenced by taking
a = 0111. Although it is still true that a → a. Interestingly, we can think of
double negation as quantization in the sense that true is mapped to true and all
the shades of false are mapped to 0000 (false). Hence, double negation quantizes
the five different truth values into two truth values (true and false) in a manner
that is compatible with our interpretation of truth values.

Similar to the semantics of CTL, we define the semantics of rCTL by a
mapping V , called valuation, that maps an rCTL formula and a state/path to
an element of B4. For an atomic proposition p ∈ P, it is defined classically:

V (s, p) =

{
0000 if p �∈ L(s); and
1111 if p ∈ L(s).

Following the semantics of rLTL, we define the semantics for boolean connectives
in rCTL using da Costa algebras, as follows:

V (s, Φ ∨ Ψ) = max
{

V (s, Φ), V (s, Ψ)
}

.

V (s, Φ ∧ Ψ) = min
{

V (s, Φ), V (s, Ψ)
}

.

V (s,¬Φ) = V (s, Φ)
V (s, Φ ⇒ Ψ) = V (s, Φ) → V (s, Ψ)

For existential path quantification, we want V (s,∃ϕ) ≥ b if there exists a path π
from s such that V (π, ϕ) ≥ b. Similarly, we want V (s,∀ϕ) ≥ b if for all paths π
from s holds that V (π, ϕ) ≥ b. This leads to:

544 S. P. Nayak et al.

V (s,∃ϕ) = max
π∈paths(s)

V (π, ϕ) and V (s,∀ϕ) = min
π∈paths(s)

V (π, ϕ).

Now, for path formulas, we formalize the intuition above in the semantics of the
temporal operators. Using the counting interpretation as discussed earlier, we
define the semantics of by

V (π, Φ) =

(
min
i≥0

V1(π[i], Φ),max
j≥0

min
i≥j

V2(π[i], Φ),min
j≥0

max
i≥j

V3(π[i], Φ),max
i≥0

V4(π[i], Φ)

)
,

where V�(π, ϕ) denotes the �-th entry of V (π, ϕ) for 1 ≤ � ≤ 4.
The semantics of Φ mimics the classical semantics in that the truth value

of Φ on π is the maximal truth value of Φ that is assumed at any position of
π.

V (π, Φ) = max
i≥0

V (π[i], Φ).

Using a similar approach, the semantics for other temporal operators are
defined as follows:

V (π, Φ) = V (π[1], Φ).
V (π, Φ U Ψ) = maxj≥0 min

{
V (π[j], Ψ),min0≤i<j V (π[i], Φ)

}
.

V (π, Φ W Ψ)=(minj≥0 W1,maxk≥0 minj≥k W2,mink≥0 maxj≥k W3,maxj≥0

W4) where

Wl = max
{

Vl(π[j], Φ), max
0≤i≤j

Vl(π[i], Ψ)
}

.

Example 1. Having defined the rCTL semantics, let us recall the example of
the specification for a robot given in Sect. 1: Φ ⇒ Ψ , where Φ = ∀ ¬H is
the environment assumption that humans never visit the initial location, and
Ψ = ∀ ∃ R is the robot guarantee that from any state in a path there exists
a way for the robot to return to its initial location in one time step. The robust
version of this formula is ∀ ¬H⇒∀ ∃ R. Let us see if this formula captures
the robustness property as discussed in Sect. 1.

Now, coming back to our example, suppose Φ1 = ¬H and Φ2 = ∃ R. Let
us assume ∀ Φ1⇒∀ Φ2 evaluates to 1111 for some Kripke structure. Then
the following hold.

• If humans never visit the initial location, then in any path, Φ1 holds at every
state. Hence, ∀ Φ1 evaluates to 1111. Then by the semantics of ⇒, the
formula ∀ Φ2 also must evaluate to 1111. That means, in any path, Φ2

also holds at every state. Therefore, from any state of a path, the robot can
return to its initial location in one time step. Hence, the desired behavior
of the system is retained when the environment assumption holds with no
violation.

Robust Computation Tree Logic 545

• If humans violate the assumption by visiting the initial location finitely many
times and eventually not visiting it anymore, then for any path, Φ1 holds
eventually at every state. Hence, ∀ Φ1 evaluates to 0111. Then, by the
rCTL semantics, ∀ Φ2 evaluates to 0111 or higher. Hence, in any path, Φ2

also needs to hold eventually at every state. That means, from any state in a
path, the robot can return to its initial location eventually.

• Similarly, if Φ1 holds at infinitely (finitely) many states in every path, then
Φ2 needs to hold at infinitely (finitely) many states in every path.

Hence, whenever the formula ∀ Φ1⇒∀ Φ2 evaluates to 1111, its semantics
captures the intended robustness property by which a weakening of the assump-
tion ∀ Φ1 leads to a weakening of the guarantee ∀ Φ2.

Now, a natural question arises: does the formula still provide useful informa-
tion when its value is lower than 1111. It follows from the semantics of impli-
cation that ∀ Φ1⇒∀ Φ2 evaluates to b < 1111 only when ∀ Φ1 evaluates
to a higher value than b, whereas ∀ Φ2 evaluates to b. So, the desired system
guarantee is not satisfied. However, the value of ∀ Φ1⇒∀ Φ2 still describes
which weakened guarantee follows from the environment assumption. This can
be seen as another measure of robustness: despite ∀ Φ2 not following from
∀ Φ1, the system’s behavior is not arbitrary, a value of b is still guaranteed.

3.1 Expressiveness of rCTL

In this section, we compare the expressiveness of rCTL with other temporal
logics such as CTL, LTL, and rLTL. We show that the five truth values of rCTL
make it more expressive than CTL. More precisely, there are properties that one
can express in rCTL but not in CTL. However, the expressiveness of rCTL and
LTL are incomparable; and the same also holds for rCTL and rLTL.

We compare the expressiveness of two classes of logics by comparing the
expressiveness of their formulas. For logics A and B, we say A is as expressive
as B if for every formula in B there is an equivalent formula in A. Moreover,
we say A is more expressive than B if A is as expressive as B but the converse
is not true. Furthermore, we say A and B have incomparable expressiveness if
neither of A and B is as expressive as the other one. For branching time logics,
we only consider the state formulas when comparing the expressiveness.

Now the question is what it means for two formulas to be equivalent. Intu-
itively speaking, equivalent means “express the same thing”. Formally, we define
the equivalence of two formulas using their satisfaction sets. For a given Kripke
structure, and a state formula Φ, we define the satisfaction set Sat(Φ, b) of an
rCTL formula Φ and with value b ∈ B4 to be the set of states s such that
V (s, Φ) ≥ b. Since the satisfaction sets of an rCTL (state) formula are always
associated with a truth value in B4, we always associate a truth value with an
rCTL formula when comparing its expressiveness.

For two rCTL state formulas Φ1, Φ2 and two truth values b1, b2 ∈ B4, we say
Φ1 with truth value b1 is equivalent to Φ2 with truth value b2 if for every Kripke
structure it holds that Sat(Φ1, b1) = Sat(Φ2, b2). Similarly, an rCTL formula Φ1

546 S. P. Nayak et al.

with truth value b1 is equivalent to a CTL formula Φ2 if for every Kripke structure
it holds that Sat(Φ1, b1) = SatCTL(Φ2), where SatCTL(·) denotes the satisfaction
sets for CTL formulas. The equivalence between an rCTL formula and LTL
formula is defined analogously.

Now, comparing the semantics of CTL and rCTL, an induction over the
structure of formulas shows that the CTL semantics of a formula containing no
implication can be recovered from the first bit of the rCTL semantics. Recall
that VCTL and V1 are the CTL valuation and the first bit of the rCTL valuation,
respectively.

Lemma 1. For any CTL state formula Φ containing no implication, let Φr be
the rCTL state formula obtained by dotting all temporal operators in Φ. Then
for any state s, it holds that VCTL(s, Φ) = V1(s, Φr). Consequently, it holds that
SatCTL(Φ) = Sat(Φr, 1111).

As we know that Φ ⇒ Ψ is equivalent to ¬Φ ∨ Ψ in CTL, hence, one can
rewrite any CTL formula into a formula containing no implication. Therefore,
by using Lemma 1, rCTL is at least as expressive as CTL.

However, the converse is not true, i.e., there exist rCTL formulas that have
no equivalent CTL formula. For example, consider the rCTL formula Φ = ∀ p
with truth value 0111. For a state s, we have s ∈ Sat(Φ, 0111) if and only if
for each π ∈ paths(s), there exists j such that p ∈ L(π[i]) for all i ≥ j, which
is equivalent to each path π ∈ paths(s) satisfying the LTL formula p.
However, as we know, the formula p can not be expressed in CTL (see
Baier and Katoen [1] for details). Therefore, there is no CTL formula Ψ such
that Sat(Φ, 0111) = SatCTL(Ψ). In total, we obtain the following result.

Theorem 1. rCTL is more expressive than CTL.

It is known that the expressiveness of LTL and CTL is incomparable, i.e.,
there exist CTL formulas (i.e., ∀ ∀ p) for which there is no equivalent LTL
formula, and there exist LTL formulas (i.e., (p ∧ p)) for which there is
no equivalent CTL formula (see Baier and Katoen [1] for details). The same
holds for the expressiveness of LTL and rCTL. As we just saw that the first
bit of the rCTL semantics captures the CTL semantics (for a formula with no
implication), it follows that for the rCTL formula ∀ ∀ p (with value 1111),
there is no equivalent LTL formula. Furthermore, it is easy to see that the five-
valued semantics does not help in expressing ϕ = (p ∧ p). Hence, using
the proof of inexpressibility of ϕ in CTL, it can be shown that ϕ can not be
expressed by any rCTL formula either. Intuitively, a Kripke structure satisfies
the formula ϕ if all paths contain a pair of consecutive states where p holds.
This property is inexpressible in rCTL as all path formulas are guarded with an
existential or universal operator. One can express “all paths contain a state such
that p holds at that state and at all (or some) of its successor” in rCTL, which is
not the same as the property we want. Therefore, we obtain the following result.

Theorem 2. rCTL and LTL have incomparable expressiveness.

Robust Computation Tree Logic 547

In the paper on rLTL [17], Tabuada and Neider showed that LTL and rLTL
are equally expressive. Hence, a direct corollary of Theorem 2 is the following:

Corollary 1. rCTL and rLTL have incomparable expressiveness.

3.2 rCTL Model Checking

The classical CTL model checking problem asks whether all executions of a
system satisfy a given property. However, in the context of rCTL, this question
is more involved due to rCTL’s many-valued semantics. A natural generalization
is whether all executions satisfy a given property with at least a given value
b0 ∈ B4. Formally, the rCTL model checking problem is: for a given Kripke
structure M = (S, I,R, L), an rCTL formula Φ and a truth value b0 ∈ B4,
does V (s, Φ) ≥ b0 hold for all initial states s ∈ I? Our rCTL model checking
procedure is shown as pseudocode in Algorithm 1. It is similar to the standard
CTL model checking algorithm in that it recursively computes the satisfaction
sets Sat(Ψ, b) for each subformula1 Ψ ∈ Sub(Φ) and each truth value b ∈ B4. To
check whether all paths of the Kripke structure starting in an initial state satisfy
Φ, it is then enough to check whether all initial states belong to Sat(Φ, b0). Note
that Sat(Ψ, 0000) = S since every state satisfies any rCTL formula Ψ with truth
value 0000.

Algorithm 1. rCTL Model Checking
Input : Kripke structure M , rCTL formula Φ and a truth value b0 ∈ B4

for all Ψ ∈ Sub(Φ) in increasing size do
Sat(Ψ, 0000) = S
for all b = 1111 to 0001 do

Compute Sat(Ψ, b) as characterized in Table 1

return I ⊆ Sat(Φ, b0)

The key idea of Algorithm 1 is to recursively compute the satisfaction sets
using a dynamic programming technique. More precisely, we compute the satis-
faction sets by induction over the construction of Φ as shown in Table 1. Since
Sat(Ψ, 0000) = S for any rCTL formula Ψ , Table 1 only shows the case b > 0000.
To simplify the following presentation of these cases, we split the discussion
into three categories: atomic propositions, boolean connectives, and temporal
operators.

Atomic Propositions. The valuation for atomic propositions is defined classically,
as in the case of CTL. Hence, the satisfaction set Sat(p, b) of an atomic proposi-
tion p ∈ P with a value b > 0000 is the set of all states whose label contains p.

Boolean Connectives. The computation of the satisfaction sets for the boolean
connectives closely follows the semantic definition based on the da Costa alge-
bra. Conjunction and disjunction are implemented using the usual intersection
1 The set of subformulas is defined as for CTL. See Baier and Katoen [1] for details.

548 S. P. Nayak et al.

Table 1. Characterization of the satisfaction sets

Symbol Sat(·, ·) for formulas Φ, Ψ and value b ∈ B4 \ {0000}
p ∈ P Sat(p, b) = {s ∈ S | p ∈ L(s)}
∨ Sat(Φ ∨ Ψ, b) = Sat(Φ, b) ∪ Sat(Ψ, b)

∧ Sat(Φ ∧ Ψ, b) = Sat(Φ, b) ∩ Sat(Ψ, b)

¬ Sat(¬Φ, b) = S \ Sat(Φ, 1111)

⇒ Sat(Φ ⇒ Ψ, 1111) =
⋂

b Sat(Ψ, b) ∪ (S \ Sat(Φ, b))

Sat(Φ ⇒ ψ, b) = Sat(Φ ⇒ Ψ, 1111) ∪ Sat(Ψ, b) for any b ≤ 0111

Sat(∃ Φ, b) = {s ∈ S | post(s) ∩ Sat(Φ, b)
= ∅}
Sat(∀ Φ, b) = {s ∈ S | post(s) ⊆ Sat(Φ, b)}
Sat(∃ Φ, b) = μT.F∃

(
T, Sat(Φ, b), S

)
Sat(∀ Φ, b) = μT.F∀

(
T, Sat(Φ, b), S

)
Sat(∃ Φ, 1111) = νT.F∃

(
T, ∅, Sat(Φ, 1111)

)
Sat(∃ Φ, 0111) = μT1.νT2.G∃(T1, T2, ∅, Sat(Φ, 0111))

Sat(∃ Φ, 0011) = νT2.μT1.G∃(T1, T2, ∅, Sat(Φ, 0011))

Sat(∃ Φ, 0001) = μT.F∃
(
T, Sat(Φ, 0001), S

)
Sat(∀ Φ, 1111) = νT.F∀

(
T, ∅, Sat(Φ, 1111)

)
Sat(∀ Φ, 0111) = μT1.νT2.G∀(T1, T2, ∅, Sat(Φ, 0111))

Sat(∀ Φ, 0011) = νT2.μT1.G∀(T1, T2, ∅, Sat(Φ, 0011))

Sat(∀ Φ, 0001) = μT.F∀
(
T, Sat(Φ, 0001), S

)
U Sat(∃(Φ U Ψ), b) = μT.F∃

(
T, Sat(Ψ, b),Sat(Φ, b)

)
Sat(∀(Φ U Ψ), b) = μT.F∀

(
T, Sat(Ψ, b),Sat(Φ, b)

)
W Sat(∃(Φ W Ψ), 1111) = νT.F∃

(
T,Sat(Ψ, 1111), Sat(Φ, 1111)

)
Sat(∃(Φ W Ψ), 0111) = μT1.νT2.G∃(T1, T2, Sat(Ψ, 0111), Sat(Φ, 0111))

Sat(∃(Φ W Ψ), 0011) = νT2.μT1.G∃(T1, T2, Sat(Ψ, 0011), Sat(Φ, 0011))

Sat(∃(Φ W Ψ), 0001) = μT.F∃
(
T,Sat(Ψ, 0001) ∪ Sat(Φ, 0001), S

)
Sat(∀(Φ W Ψ), 1111) = νT.F∀

(
T,Sat(Ψ, 1111), Sat(Φ, 1111)

)
Sat(∀(Φ W Ψ), 0111) = μT1.νT2.G∀(T1, T2, Sat(Ψ, 0111), Sat(Φ, 0111))

Sat(∀(Φ W Ψ), 0011) = νT2.μT1.G∀(T1, T2, Sat(Ψ, 0011), Sat(Φ, 0011))

Sat(∀(Φ W Ψ), 0001) = μT.F∀
(
T,Sat(Ψ, 0001) ∪ Sat(Φ, 0001), S

)

and union of sets, respectively. The set Sat(¬Φ, b) is the complement of all
states on which Φ evaluates to 1111 (recall that we assume b > 0000). Finally,
the implementation of the implication is more involved. By definition, the set
Sat(Φ ⇒ Ψ, 1111) is the set of states s for which V (s, Φ) is less than V (s, Ψ); in set
notation, this is expressed by the intersection of the sets Sat(Ψ, b)∪(S\Sat(Φ, b))
for each b ∈ B4. For any other truth value b ≤ 0111, Sat(Φ ⇒ Ψ, b) consists of
all states where the implication evaluates to 1111 or Ψ evaluates to at least b.

Temporal Operators. For all temporal operators, we compute the satisfaction sets
for existential and universal path formulas individually.

A state s satisfies the formula ∃ Φ with a value of at least b if one of its
successors satisfies Φ with a value of at least b. Hence, the set Sat(∃ Φ, b) is

Robust Computation Tree Logic 549

the set of states s such that one of its successors is in Sat(Φ, b). Similarly, the set
Sat(∀ Φ, b) is the set of states s such that all of its successors are in Sat(Φ, b).

Next, a state s satisfies the formula ∃ Φ with a value of at least b if
there exists a path from s containing a state that satisfies Φ with a value of
at least b. By applying expansion laws similar to those of CTL (see Baier and
Katoen [1] for details), this statement is equivalent to s satisfying Φ with a
value of at least b or one of its successors satisfying ∃ Φ with a value of at
least b. Hence, as in CTL, Sat(∃ Φ, b) is the smallest subset T of S satisfying
Sat(Φ, b) ∪ {s ∈ S | post(s) ∩ T �= ∅} ⊆ T . Equivalently, this set equals the least
fixed point of the function

F∃(T, S1, S2) = S1 ∪ {s ∈ S2 | post(s) ∩ T �= ∅},
where S1 = Sat(Φ, b), S2 = S, and T is the fixed-point variable. To simplify our
notation, we use standard notation for fixed points and write μT.F (T, ·), and
νT.F (T, ·), respectively for the least and greatest fixed point of a function F(T,·)
with fixed-point variable T (which is unique for all functions we consider).

Similarly, a state s satisfies the formula ∀ Φ with a value of at least b if
every path starting from s contains a state satisfying Φ with value at least b.
Hence, the set Sat(∀ Φ, b) is the least fixed point μT.F∀(T,Sat(Φ, b), S) of the
function

F∀(T, S1, S2) = S1 ∪ {s ∈ S2 | post(s) ⊆ T}.

The characterization of the set Sat(∃ Φ, b) is more complex, and we discuss
each truth value separately. Firstly, a state s satisfies ∃ Φ with value 1111 if
there exists a path from s on which every state satisfies Φ with value 1111. By
applying expansion laws similar to those of CTL, this statement is equivalent to
s satisfying Φ with value 1111 and one of its successors satisfying ∃ Φ with
value 1111. Hence, the set Sat(∃ Φ, 1111) equals νT.F∃(T, ∅,Sat(Φ, 1111)).

Next, a state s satisfies ∃ Φ with a value of at least 0111 if there exists a
path from s on which eventually every state satisfies Φ with a value of at least
0111. It is not hard to verify that the set Sat(∃ Φ, 0111) is equal to the nested
fixed point μT1.νT2.G∃(T1, T2, ∅,Sat(Φ, 0111)) of the function

G∃(T1, T2, S1, S2) = {s | post(s) ∩ T1 �= ∅} ∪ S1 ∪ {s ∈ S2 | post(s) ∩ T2 �= ∅}.
The greatest fixed point of the function containing the last two terms (on the
right side) of the above equation represents a property of a path that all states
on that path satisfy Φ with a value of at least 0111 and then the least fixed
point of the function ensures that there exists a path that has a suffix with that
property.

Similarly, a state s satisfies ∃ Φ with a value of at least 0011 if there exists
a path from s on which there exist infinitely many states satisfying Φ with a
value of at least 0011. Note that the property that a path contains infinitely
many states satisfying Φ (with a value b) is the dual of the property that a path
contains finitely many states satisfying Φ (with a value b). Hence, similar to the
last case, it is not hard to see that

Sat(∃ Φ, 0011) = νT2.μT1.G∃(T1, T2, ∅,Sat(Φ, 0011)).

550 S. P. Nayak et al.

Finally, a state s satisfies ∃ Φ with a value of at least 0001 if there exists
a path from s containing a state that satisfies Φ with a value of at least 0001,
which is equivalent to satisfying ∃ Φ with a value of at least 0001. Hence,
Sat(∃ Φ, 0001) is the set μT.F∃(T,Sat(Φ, 0001), S), as above.

Analogously, one can characterize ∀ Φ using the fixed points of the func-
tions F∀ and G∀, where

G∀(T1, T2, S1, S2) = {s | post(s) ⊆ T1} ∪ S1 ∪ {s ∈ S2 | post(s) ⊆ T2}.

Characterizations for Φ U Ψ and Φ W Ψ can be obtained similarly. In total,
we obtain the result given below.

Theorem 3. Let M = (S, I,R, L) be a Kripke structure. Then for rCTL for-
mulas Φ and truth values b ∈ B4 \ {0000}, one can compute the sets Sat(Φ, b)
recursively as specified in Table 1.

Algorithm 1 computes 5 · |sub(Φ)| satisfaction sets following the subformula
ordering. Using the standard fixed-point iterations, which take linear time in the
number of the states, each fixed point can be computed in linear time. Similarly,
one can compute the nested fixed points in quadratic time in the number of
states. Thus, we obtain the following.

Theorem 4. The rCTL model checking problem can be solved in time O(N2|Φ|),
where N is the number of states of the given Kripke structure, and Φ is the given
rCTL specification.

As we know, the CTL model checking algorithm also takes linear time in the
size of the formula [1]. Hence, both model checking problems are in PTIME.

3.3 rCTL Satisfiability

This section considers the satisfiability problem for rCTL, which is: for a given
rCTL formula Φ and truth value b0 ∈ B4, does there exist a Kripke structure M =
(S, I,R, L) such that I ⊆ Sat(Φ, b0)? The rCTL satisfiability can be solved by
translating the given rCTL formula and the given truth value into an equivalent
μ-calculus formula (see Bradfield and Walukiewicz [3] for definitions) of linear
size and then checking the resulting formula for satisfiability. This is always
possible relying on the fixed point characterizations described in Sect. 3.2 (see
Table 1). Since the satisfiability problem for μ-calculus is EXPTIME-complete [3],
rCTL satisfiability is in EXPTIME. A matching lower bound already holds for
CTL [6].

Theorem 5. The satisfiability problem for rCTL is EXPTIME-complete.

4 Robust CTL*

In this section, we present the robust version of CTL*, named robust CTL*,
which combines the features of rCTL and rLTL. We show that rCTL* is more
expressive than both and then present an algorithm for rCTL* model checking.

Robust Computation Tree Logic 551

Syntax. Like CTL*, robust CTL* allows path quantifiers ∃ and ∀ to be arbitrarily
nested with temporal operators. The syntax of rCTL* state formulas is the same
as in rCTL. Moreover, rCTL* path formulas are similar to rLTL formulas, with
the only difference being the use of arbitrary rCTL* state formulas as atoms.
rCTL* state formulas over P are formed according to the grammar

Φ:: = p | Φ ∨ Φ | Φ ∧ Φ | ¬Φ | Φ ⇒ Φ | ∃ϕ | ∀ϕ,

where p ∈ P and ϕ is a path formula. rCTL* path formulas are formed according
to the grammar

ϕ:: = Φ | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ϕ ⇒ ψ | ϕ | ϕ | ϕ | ϕ U ψ | ϕ W ψ.

Semantics. As in CTL*, the semantics for rCTL* state and path formulas are
analogous to rCTL and rLTL semantics, respectively. Let M be a Kripke struc-
ture and Φ, Ψ be rCTL* state formulas and ϕ, ψ be rCTL* path formulas. Then
for a state s, the rCTL* semantics V (s, Φ) is the same as the rCTL semantics.
For a path π, the semantics is analogous to rLTL semantics, as defined below.

• V (π, Φ) = V (π[0], Φ)
• V (π,¬ϕ) = V (π, ϕ)
• V (π, ϕ) = V (π[1..], ϕ)
• V (π, ϕ ∨ ψ) = max

{
V (π, ϕ), V (π, ψ)

}
• V (π, ϕ ∧ ψ) = min

{
V (π, ϕ), V (π, ψ)

}
• V (π, ϕ ⇒ ψ) = V (π, ϕ) → V (π, ψ)

• V (π, Φ) = maxi≥0 V (π[i], Φ)
• V (π, Φ) = (mini≥0 V1(π[i], Φ),maxj≥0 mini≥j V2(π[i], Φ),

minj≥0 maxi≥j V3(π[i], Φ),maxi≥0 V4(π[i], Φ))
• V (π, ϕ U ψ) = maxj≥0 min

{
V (π[j..], ψ),min0≤i<j V (π[i..], ϕ)

}
• V (π, ϕ W ψ) = (minj≥0 W1,maxk≥0 minj≥k W2,mink≥0 maxj≥k W3,

maxj≥0 W4) where

Wl = max
{

Vl(π[j..], ϕ), max
0≤i≤j

Vl(π[i..], ψ)
}

Example 2. Having defined the rCTL* semantics, let us see how the rCTL* for-
mula ∀(Φ1 ⇒ Φ2) is different from ∀ Φ1 ⇒ ∀ Φ2, where Φ1 = ¬H
states that humans are not at the robot’s initial location and Φ2 = ∃ R states
that the robot can return to its initial location in one time step, as described
in Sect. 1. Assume ∀(Φ1 ⇒ Φ2) evaluates to 1111. Then the formula

Φ1 ⇒ Φ2 must evaluate to 1111 for each path. Hence, the following holds:

• If Φ1 holds at every state in a path π, then V (π, Φ1) evaluates to 1111.
Hence, by the rCTL* semantics, V (π, Φ2) must also evaluate to 1111. That
means, Φ2 also holds at every state in π. Hence, in any path, if humans never
visit the initial location, then from every state, the robot can return to its
initial location in one time step.

552 S. P. Nayak et al.

• Similarly, if Φ1 holds eventually always for some path π, then V (π, Φ1)
evaluates to 0111. Then, by the rCTL* semantics, V (π, Φ2) evaluates to
0111 or higher. Hence, Φ2 also needs to hold eventually always in π. Therefore,
if humans visit the initial location a few times and never visit it again in a
path, then from any state in that path, the robot can return to its initial
location eventually.

• Similarly, if Φ1 holds at infinitely (finitely) many states in some path π, then
Φ2 needs to hold at infinitely (finitely) many states in π.

As we can see, the semantics of ∀(Φ1 ⇒ Φ2) captures the robustness prop-
erty for every path separately, whereas the rCTL formula ∀ Φ1 ⇒ ∀ Φ2

captures the robustness property jointly for all paths starting from a state.

To understand the difference, let us consider the Kripke structure M with
initial state s0 as shown in Fig. 1 (where transitions are depicted by edges).
Suppose the set of states that satisfy (with value 1111) the state formulas Φ1

and Φ2 are {s0, s1} and {s0, s2}, respectively (as shown by the labels in the
figure).

There are only two paths starting from s0, i.e., π1 = s0s1s1 · · · and π2 =
s0s2s2 · · · . Since Φ1 holds at every state in the path π1, we have V (π1, Φ1) =
1111. Moreover, since Φ1 holds only at the first state in the path π2, we
have V (π2, Φ1) = 0001. Hence, V (s0,∀ Φ1) = mini∈{1,2} V (πi, Φ1) =
0001. Similarly, since Φ2 holds only at the first state of each path, we have
V (π1, Φ2) = V (π2, Φ2) = 0001. Hence, V (s0,∀ Φ2) = 0001. Therefore,
it holds that V (s,∀ Φ1 ⇒ ∀ Φ2) = 1111.

However, as we have V (π1, Φ2) = 0001 < V (π1, Φ1), it holds that
V (π1, Φ1 ⇒ Φ2) = 0001. Similarly, we have V (π2, Φ1 ⇒ Φ2) =
1111. Hence, we have

V (s,∀(Φ1 ⇒ Φ2)) = 0001 �= V (s,∀ Φ1 ⇒ ∀ Φ2).

This is the case because both of the paths do not satisfy Φ1 ⇒ Φ2 with
value 1111 individually, but collectively, the state s0 satisfies ∀ Φ1 ⇒ ∀ Φ2.

4.1 Expressiveness of rCTL*

The satisfaction sets and the equivalence between two formulas in rCTL* are
defined as for rCTL. Now, as we can see, rCTL* is an extension of both rCTL
and rLTL. Therefore, it subsumes both rCTL and rLTL (and hence, it also
subsumes LTL). Furthermore, using the discussion in Sect. 3.1, it is easy to see
that the rCTL* formula

(∀ ∀ p
) ∨ (

p ⇒ q
)

can not be expressed
in rLTL or rCTL. In total, we obtain the following result:

Theorem 6. rCTL* is more expressive than rLTL, rCTL, and LTL.

Now, using the same idea as in Lemma 1, one can recover the CTL* seman-
tics of a formula with no implication from the first component of the rCTL*

Robust Computation Tree Logic 553

s0

{Φ1, Φ2}

s1

{Φ1}

s2

{}

Fig. 1. Example of a Kripke structure

semantics. Conversely, using the same arguments as for the analogous result for
rLTL [17, Proposition 5], one can translate each rCTL* formula into four CTL*
formulas that captures the four components of the rCTL* semantics. Hence, we
obtain the following result.

Theorem 7. CTL* and rCTL* are equally expressive.

4.2 rCTL* Model Checking

The model checking problem for rCTL* is analogous to that of rCTL, which is:
for a given Kripke structure M = (S, I,R, L), an rCTL* formula Φ and a truth
value b0 ∈ B4, does V (s, Φ) ≥ b0 hold for all initial states s ∈ I? As we will
see, to solve the rCTL* model checking problem, one can use a combination of
rCTL and rLTL model checking. This is similar to CTL* model checking, which
combines CTL and LTL model checking.

As in rCTL, for the rCTL* model checking, we use the characterization
of the satisfaction sets. Sat(Φ, b) can be computed using Table 1 for every state
formula Φ which is either an atomic proposition or can be expressed as a boolean
combination (conjunction, negation, etc.) of two subformulas. Otherwise, we use
an rLTL model checking algorithm to compute Sat(Φ, b) for a state formula
starting with a path quantifier.

Let us first go through the basic concepts of rLTL and its model checking
algorithm. As we have described earlier, rCTL* is an extension of rLTL. Both
rCTL* path formulas and rLTL formulas are defined using the same grammar,
with the only difference being the use of state formulas as atoms in rCTL*.
Moreover, the valuation V for rLTL formulas is defined the same way as it is
defined for rCTL* path formulas. Furthermore, given a Kripke structure M , an
rLTL formula ϕ, and a set of truth values B ⊆ B4, the rLTL model checking
problem is to determine whether for all paths π starting from an initial state
in M , it holds that V (π, ϕ) ∈ B. To solve the rLTL model checking, Tabuada
and Neider [17] have provided an algorithm to compute a generalized Büchi
automaton (see Grädel et al. [10] for definition) recognizing all paths satisfying
a given formula with a value b ∈ B for a given set B ⊆ B4, as formalized below.

Lemma 2 (Tabuada and Neider [17]). Given an rLTL formula ϕ, and a set
of truth values B ⊆ B4, one can construct a generalized Büchi automaton Aϕ,B

with O(5|ϕ|) states and O(|ϕ|) accepting sets that recognizes all paths π such that
V (π, ϕ) ∈ B.

554 S. P. Nayak et al.

Then, one can solve the rLTL model checking problem by translating M into a
Büchi automaton and determining the emptiness of L(M) ∩ L(Aϕ,B4\B).

Coming back to computing Sat(Φ, b) for Φ starting with a path quantifier,
let us consider Φ = ∀ϕ. Observe that s ∈ Sat(∀ϕ, b) if and only if V (s,∀ϕ) ≥ b.
Further, V (s,∀ϕ) ≥ b if and only if V (π, ϕ) ≥ b for all π ∈ paths(s). The basic
idea is now to replace all maximal proper state subformulas Ψ of ϕ by fresh
atomic propositions aΨ and use the rLTL model checking algorithm to compute
all the states from which all paths satisfy the rLTL formula ϕ with value at
least b. However, we need to make a minor modification in the construction of the
Büchi automaton of Lemma 2 such that for each aΨ , it holds that V (s, aΨ) ≥ b
whenever s ∈ Sat(Ψ, b) and V (s, aΨ) < b whenever s �∈ Sat(Ψ, b). This can be
done by initializing these atomic propositions with the required truth value.

Similarly, we compute Sat(∃ϕ, b) by the rLTL model checking algorithm using
the observation that s �∈ Sat(∃ϕ, b) if and only if V (π, ϕ) < b for all π ∈ paths(s).

Now, one can solve the rCTL* model checking problem using Algorithm 1.
However, the time complexity of the algorithm is not the same as in rCTL since
the computation of Sat uses the rLTL model checking algorithm, which takes
exponential time in the size of the formula (Tabuada and Neider [17]). Hence,
the time complexity of the rCTL* model checking algorithm is dominated by
the time complexity of the rLTL model checking algorithm.

Altogether, our algorithm runs in polynomial space (as rLTL model checking
is in PSPACE [17]). A matching lower bound already holds for CTL* [7].

Theorem 8. The rCTL* model checking problem is PSPACE-complete.

As we know, CTL* model checking problem is also PSPACE-complete [7].
Hence, both CTL* and rCTL* model checking problems have the same asymp-
totic complexity.

4.3 rCTL* Satisfiability

This section considers the satisfiability problem for rCTL*, which is: for a given
rCTL* formula Φ and truth value b0 ∈ B4, does there exist a Kripke structure
M = (S, I,R, L) such that I ⊆ Sat(Φ, b0)? One can solve rCTL* satisfiability
by translating the given rCTL* formula and the truth value into an equivalent
CTL* formula using Theorem 7 and then solving CTL* satisfiability. Since CTL*
satisfiability is 2EXPTIME-complete, so is rCTL* satisfiability.

Theorem 9. The satisfiability problem for rCTL* is 2EXPTIME-complete.

5 Conclusion

Inspired by robust LTL, we first developed robust extensions of the logics CTL
and CTL*, named rCTL and rCTL*, respectively. Second, we showed that rCTL
is more expressive than CTL, while rCTL* is as expressive as CTL*. Third, we

Robust Computation Tree Logic 555

showed that the rCTL and rCTL* model checking problem lie in PTIME and
PSPACE, respectively, as do the CTL and CTL* model checking problem.

Tabuada and Neider [17] described quality as the dual of robustness. To illus-
trate this point, consider the CTL formula Φ ⇒ Ψ . According to the motto
“more is better” we would prefer the system to guarantee the stronger property

Ψ whenever the environment satisfies the stronger property Ψ . And
similarly, Φ should lead to Ψ and Φ should lead to Ψ . Then,
a natural question that arises for further research is whether there is an exten-
sion of CTL (and CTL*) that can be used to reason about both robustness and
quality.

Another promising direction is to study the synthesis problem for rCTL and
rCTL*. One approach would be to extend bounded synthesis (see Schewe and
Finkbeiner [8] for details) to rCTL*.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
2. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust

systems. In: Proceedings of 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas,
USA, pp. 85–92. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351139

3. Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
871–919. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 26

4. Doyen, L., Henzinger, T.A., Legay, A., Nickovic, D.: Robustness of sequential cir-
cuits. In: Gomes, L., Khomenko, V., Fernandes, J.M. (eds.) 10th International
Conference on Application of Concurrency to System Design, ACSD 2010, Braga,
Portugal, 21–25 June 2010, pp. 77–84. IEEE Computer Society (2010). https://doi.
org/10.1109/ACSD.2010.26

5. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reac-
tive synthesis. In: Fränzle, M., Lygeros, J. (eds.) 17th International Conference
on Hybrid Systems: Computation and Control (Part of CPS Week), HSCC 2014,
Berlin, Germany, 15–17 April 2014, pp. 203–212. ACM (2014). https://doi.org/10.
1145/2562059.2562128

6. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985). https://
doi.org/10.1016/0022-0000(85)90001-7

7. Emerson, E.A., Lei, C.: Modalities for model checking: branching time logic strikes
back. Sci. Comput. Program. 8(3), 275–306 (1987). https://doi.org/10.1016/0167-
6423(87)90036-0

8. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5–6), 519–539 (2013). https://doi.org/10.1007/s10009-012-0228-z

9. French, T., McCabe-Dansted, J.C., Reynolds, M.: A temporal logic of robustness.
In: Konev, B., Wolter, F. (eds.) Frontiers of Combining Systems, 6th International
Symposium, FroCoS 2007, Liverpool, UK, 10–12 September 2007, Proceedings. Lec-
ture Notes in Computer Science, vol. 4720, pp. 193–205. Springer (2007). https://
doi.org/10.1007/978-3-540-74621-8 13

https://doi.org/10.1109/FMCAD.2009.5351139
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1109/ACSD.2010.26
https://doi.org/10.1109/ACSD.2010.26
https://doi.org/10.1145/2562059.2562128
https://doi.org/10.1145/2562059.2562128
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-540-74621-8_13
https://doi.org/10.1007/978-3-540-74621-8_13

556 S. P. Nayak et al.

10. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001],
Lecture Notes in Computer Science, vol. 2500. Springer (2002). https://doi.org/10.
1007/3-540-36387-4

11. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer (1998).
https://doi.org/10.1007/978-94-011-5300-3

12. Nayak, S.P., Neider, D., Roy, R., Zimmermann, M.: Robust computation tree logic.
arXiv 2201.07116 (2022), https://arxiv.org/abs/2201.07116

13. Neider, D., Weinert, A., Zimmermann, M.: Robust, expressive, and quantitative
linear temporal logics: pick any two for free. In: Leroux, J., Raskin, J. (eds.) Pro-
ceedings Tenth International Symposium on Games, Automata, Logics, and Formal
Verification, GandALF 2019, Bordeaux, France, 2–3rd September 2019. EPTCS,
vol. 305, pp. 1–16 (2019). https://doi.org/10.4204/EPTCS.305.1

14. Priest, G.: Dualising intuitionictic negation. Principia: Int. J. Epistemol. 13(2),
165–184 (2009). https://doi.org/10.5007/1808-1711.2009v13n2p165

15. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: Jerraya, A., Carloni, L.P., Maraninchi, F.,
Regehr, J. (eds.) Proceedings of the 12th International Conference on Embedded
Software, EMSOFT 2012, part of the Eighth Embedded Systems Week, ESWeek
2012, Tampere, Finland, 7–12 October 2012, pp. 217–226. ACM (2012). https://
doi.org/10.1145/2380356.2380396

16. Tabuada, P., Caliskan, S.Y., Rungger, M., Majumdar, R.: Towards robustness for
cyber-physical systems. IEEE Trans. Autom. Control 59(12), 3151–3163 (2014).
https://doi.org/10.1109/TAC.2014.2351632

17. Tabuada, P., Neider, D.: Robust linear temporal logic. In: Talbot, J., Regnier, L.
(eds.) 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
August 29 - September 1, 2016, Marseille, France. LIPIcs, vol. 62, pp. 10:1–
10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/
10.4230/LIPIcs.CSL.2016.10

18. Tarraf, D.C., Megretski, A., Dahleh, M.A.: A framework for robust stability of sys-
tems over finite alphabets. IEEE Trans. Autom. Control 53(5), 1133–1146 (2008).
https://doi.org/10.1109/TAC.2008.923658

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-94-011-5300-3
https://arxiv.org/abs/2201.07116
https://doi.org/10.4204/EPTCS.305.1
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.1145/2380356.2380396
https://doi.org/10.1145/2380356.2380396
https://doi.org/10.1109/TAC.2014.2351632
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.1109/TAC.2008.923658

On-the-Fly Model Checking with Neural
MCTS

Ruiyang Xu(B) and Karl Lieberherr

Khoury College of Computer Sciences, Northeastern University,
Boston, MA 02115, USA

{xu.r,k.lieberherr}@northeastern.edu

Abstract. Recent progress in AI, which combines deep learning with
classical search algorithms, has shown remarkable performance improve-
ments for several challenging board games, such as Go and Chess. In this
paper, we propose a method to apply this new technique to model check-
ing problems. In particular, we leverage the game-theoretical semantics
of logic expressions (recursive first-order logic in our case) to turn a
model checking problem into a two-player perfect information win-lose
game. The game can then be played and learned by a deep learning
and search algorithm (neural MCTS). The existence of a winning strat-
egy of a player indicates that either the model-checked property can be
verified or there is a counterexample. We modified the classical neural
MCTS algorithm to ensure it can handle cycles when searching in state
space. We also propose a way to incorporate fairness constraints into the
learning and search process. We test our idea on two labeled transition
systems (one is from a numerical game, and the other is the classical
Dining Philosophers problem). Our experimental results show an out-
performance of our method compared with reinforcement-learning-based
model checking approaches.

Keywords: Neural MCTS · Model checking · On-the-fly

1 Introduction

The world has entered a new era where large distributed concurrent systems
have been developed to serve numerous clients worldwide. Those systems cover
a large part of our daily life, such as finance and transportation. A tiny mistake
in the design could potentially incur a severe security issue and cause economic
losses. Therefore, it is crucial to keep the design of those systems correct. That is
why model-checking deserves to be paid more attention to nowadays. However,
the model-checking community has long been troubled by the state explosion
problem [7], namely as the number of state variables in the system increases, the
size of the system state space grows exponentially.

The past few years have witnessed a combination of search algorithms and
machine learning (ML) techniques (i.e., neural MCTS) showing a remarkable

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 557–575, 2022.
https://doi.org/10.1007/978-3-031-06773-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_30&domain=pdf
http://orcid.org/0000-0002-4973-8458
http://orcid.org/0000-0002-1158-0413
https://doi.org/10.1007/978-3-031-06773-0_30

558 R. Xu and K. Lieberherr

performance improvement when dealing with games that have large state spaces,
such as Go and Chess [22–25]. Because states information is learned and stored
by neural networks, those algorithms’ memory usage can be considered con-
stants. Being motivated by the recent progress of AI in gameplay, we came up
with an alternative approach to tackle the state explosion problem. Specifically,
it has been known for decades that the game-theoretical semantics [13], which
shows a duality between logic and game, can be utilized for model-checking [27].
Although the goal of model-checking is to find errors that can appear in some
rare cases, the game-theoretical semantics allows one to reduce the problem of
verifying a property into a two-player semantic game defined on the logic used
to describe that property. Such a reduction (or gamification) allows one to apply
a self-play-based ML algorithm to learn from the game and eventually solve the
problem.

A high-level view of the Neural MCTS algorithm for an interpreted sentence
φ for some logic L with game-semantics is given by the following loop:
Repeat

– Find faulty predictions (TRUE or FALSE) for φ and its sub-formulas, called
curriculum(φ), through self-play of Game(L, φ).

– Learn from the faulty predictions curriculum(φ), which gives negative reward
information based on winning/losing predictions and self-play outcomes.

– Update approximation to value function, which predicates the winning/losing
chance, and policy functions, which approximate a serial of Skolem functions
used as a strategy to prove or disprove the formula.

Until convergence: there are no faulty predictions for φ and its sub-formulas.

Learning based on self-play is basically a process of finding faulty predictions
for each player. A faulty prediction is one where the prediction of the game
outcome (from the value function) contradicts the actual outcome. Since the
game is zero-sum with no draws, the two players will continuously compete by
mutually creating curricula for each other to learn until there is no faulty predic-
tion anymore. Consequently, a winning strategy learned by an ML algorithm for
that game shows how to verify/falsify that property. It should be noted that even
when the two players agree with each other, their prediction might still be wrong
because the agreement on a truth value might be based on weak players. This is a
common issue for all ML-based model checkers because ML algorithms are prob-
abilistic, and 100% correctness is not guaranteed. Therefore, “they should favor
the discovery of errors rather than focusing on guaranteeing correctness” [8].
That is also the reason why learning a strategy to falsify a property is especially
useful when constructing a counterexample from the model-checking problem.

Leveraging such a duality, in this paper, we show an approach to adapt neural
MCTS to on-the-fly model-checking through semantic-game-based gamification.
In particular, we use recursive first-order logic as our model specification lan-
guage, which provides us with a novel approach to generate state representations.
In addition to that, we also propose a method to impose fairness constraints
by concatenating a normalized counter vector to the state representation. We

On-the-Fly Model Checking with Neural MCTS 559

test our approach on two problems: model-checking an alternating reachability
property on a numeric game and a liveness property on the well-known dining
philosopher problem. Our preliminary experimental results show that turning
model-checking problems into games and solving them with cutting-edge game-
play AI technology might be a promising research direction.

2 Preliminary

2.1 Model Checking with Lµ

Modal μ-calculus (Lμ) has been used broadly in model checking, a logic used
to describe properties of the target labeled transition system (LTS). An LTS
is defined as a tuple (S, I,A, T), where S is a set of states, I is a nonempty
subset of S of initial states, A is a set of actions, and relation T formulates
transitions among different states, which are labeled with actions. With an LTS,
one can abstract and model the possible development of a system. The problem
of model-checking a Lμ formula on a transition system is to decide whether the
LTS satisfies the formula.

The syntax of Lμ is:

Φ := True | False | X | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | [A]Φ | 〈A〉Φ | νX.Φ | μX.Φ,

where X ranges over a set of variables, regarded as names of predicates. We
also use σX.Φ to stand for either νX.Φ or μX.Φ. The semantics of Lμ can be
represented with Monadic Second-order Logic (MSOL) since it has been proved
that Lμ is the bisimulation invariant fragment of MSOL [15]. To be specific,
let Φ[x] be the MSOL translation of a Lμ formula Φ, with one free variable x.
Then a Lμ formula can be translated into an MSOL formula recursively in the
following way:

X[x] = X(x)
(Φ1 ∧ Φ2)[x] = Φ1[x] ∧ Φ2[x]
(Φ1 ∨ Φ2)[x] = Φ1[x] ∨ Φ2[x]
(¬Φ)[x] = ¬Φ[x]
〈A〉Φ[x] = ∃y ∈ S. (xTy) ∧ Φ[y]
[A]Φ[x] = ∀y ∈ S. (xTy) → Φ[y]
μX.Φ[x] = ∃X ⊆ S. (∀y ∈ S. Φ[y] → X(y)) ∧ X(x)
νX.Φ[x] = ∃X ⊆ S. (∀y ∈ S. X(y) → Φ[y]) → X(x)

(1)

where X(x) means for some set X ⊆ S, x ∈ X.
It is to be noted that the definition of fix-point operator LFP and GFP

is intricate, for which we use the explanation from [28]. To put it simply, let
Φ(x;X) be any MSOL predicate parameterized on some set X. And suppose
SX = {x|Φ(x;X)}, then a MSOL predicate actually also defines a function which
maps X to SX . The fix-point of the function can be computed by recursively

560 R. Xu and K. Lieberherr

calling the function with its output. To be specific, the LFP of a predicate
Φ(x;X) is derived by a sequence of function calls:

S0 = {x|Φ(x; ∅)}, S1 = {x|Φ(x;S0)}, ..., Sn = {x|Φ(x;Sn)}
LFP. Φ(x;X) := Sn,

and similarly, the GFP of a predicate Φ(x;X) can be derived by the sequence:
Φ(x;X) is derived by a sequence of function calls:

S0 = {x|Φ(x;S)}, S1 = {x|Φ(x;S0)}, ..., Sn = {x|Φ(x;Sn)}
GFP. Φ(x;X) := Sn.

As a result, the fix-point operators and the two modal operators make it possible
to express the finite or infinite temporal properties of an LTS.

2.2 Game Theoretical Semantics

Game theoretical semantics is an approach that rebuilds the logical concepts with
game-theoretic concepts. A logical formula is interpreted as a game between two
players, one in the Proponent role and the other in the Opponent role. The
game runs recursively on the computational order of the logical operators. The
game ends when a primitive predicate is achieved, and the Proponent wins if the
formula evaluates to true; otherwise, the Opponent wins. A winning strategy can
be represented by a finite sequence of Skolem functions (which are useful tools
to improve the system design) corresponding to the moves made by the player
relative to those played by the other one [21].

To better understand the concept, we first introduce the game theoretical
semantics of first-order logic (FOL) [13,21]. A semantic game is represented as
a tuple (Ψ, P, OP), where the Ψ is a formula interpreted by a structure M . P
and OP denote the game role for each of the two players, and, initially, player-1
plays the P role. The game rule can be summarized in Table 1.

Table 1. The game semantics for a FOL formula ϕ. In this table, OP stands for
Opponent, and P stands for Proponent. The game ends at an atomic predicate ϕ. It is
to be noted that the negation switches the role of the two players; namely, strategies
for P in a game for ¬Ψ are strategies for OP in the game for Ψ .

Formula Operation Subgame

∀x ∈ A : Ψ(x) OP picks x0 from A (Ψ [x/x0], P, OP)

∃x ∈ A : Ψ(x) P picks x0 from A (Ψ [x/x0], P, OP)

Ψ ∧ χ OP picks Θ ∈ {Ψ, χ} (Θ, P, OP)

Ψ∨ χ P picks Θ ∈ {Ψ, χ} (Θ, P, OP)

¬Ψ N/A (Ψ, OP, P)

ϕ N/A N/A

On-the-Fly Model Checking with Neural MCTS 561

The concept of game theoretical semantics can also be extended to Lμ

[12,20,27]. However, since Lμ is involved with a transition system, the game
rule is more complex (Table 2). Even though the modal operators [A] and 〈A〉
resemble the quantifiers in FOL, the fix-point operator is utterly distinct, which
actually grants Lμ more expressiveness than FOL [18]. As a result, the win-
ning condition is no longer as simple as the one with FOL. Instead of deciding
whether a formula can be evaluated as true or false, one may encounter situa-
tions where one of the players cannot pick any transition in the system because
of a deadlock. Alternatively, one may encounter situations where the game is
just running forever because of a cycle in the transition system. In summary, the
updated winning condition can be summarized as the following [27]:

– Proponent wins, when either
• within finitely many moves, the formula can be evaluated to true for the

underlying transition system.
• within finitely many moves, the Opponent gets into a deadlock where no

transition is available.
• the game can run forever because of a greatest fix-point operator νX.Ψ ,

which indicates that a safety property can always hold.
– Opponent wins, when either

• within finitely many moves, the formula can be evaluated to false for the
underlying transition system.

• within finitely many moves, Proponent gets into a deadlock where no
transition is available.

• the game can run forever because of a least fix-point operator μX.Ψ ,
which indicates that a liveness property can never hold.

Table 2. The game semantic for a Lµ formula ϕ with underlying transition system
state S, where X � σX.Ψ means X is bound by σX.Ψ . Notice that the game might not
always end at a primitive predicate. Due to the nature of Lµ, it may end at a deadlock
or just run forever.

Configuration Operation Subgame

([A]Ψ)[x] OP picks a transition x
a∈A−−−→ y (Ψ [y], P, OP)

(〈A〉Ψ)[x] P picks a transition x
a∈A−−−→ y (Ψ [y], P, OP)

(Ψ ∧ χ)[x] OP picks Θ ∈ {Ψ, χ} (Θ[x], P, OP)

(Ψ∨ χ)[x] P picks Θ ∈ {Ψ, χ} (Θ[x], P, OP)

(¬Ψ)[x] N/A (Ψ [x], OP, P)

(σX.Ψ)[x] N/A (Ψ [x], P, OP)

X[x] N/A (Ψ [x], P, OP), X � σX.Ψ

ϕ[x] N/A N/A

The game semantics of Lμ gives a local view on the model checking prob-
lem, while the MSOL semantics of Lμ provides a global view. Typically those

562 R. Xu and K. Lieberherr

fix-point operators, from a global view, define a closure of LTS state in which
certain temporal property always holds; yet from a local view, they describe
recursive behaviors so that the evolution of LTS forms a cycle. The local view,
acquired from game semantics, turns out to be more intuitive to help us under-
stand or design a Lμ property. For instance, νX.Φ defines a “good” cycle which
means something good should always happen; otherwise, the system is not well
designed; while μX.Φ specify a “bad” cycle which means, eventually something
good should happen; otherwise the system is not well designed.

2.3 Learning with Neural MCTS

Fig. 1. The workflow of the neural MCTS algorithm.

MCTS has been applied to solving combinatorial games for a long time [6],
while recently, combining deep neural networks with MCTS showed success in
improving solver competence in many practical combinatorial games. The con-
cept of neural MCTS was proposed independently in Expert Iteration [1], and
AlphaZero [25]. In a nutshell, neural MCTS uses the neural network as policy
and value approximators. During each learning iteration, it carries out multiple
rounds of self-plays. Each self-play runs several MCTS simulations to estimate
an empirical policy at each state, then sample from that policy, take a move, and
continue. After each round of self-play, the game’s outcome is backed up to all
states in that game episode. Those game episodes generated during self-play are
then stored in a replay buffer, which is used to train the neural network (Fig. 1).

During one self-play episode, for a given state, the neural MCTS runs a
given number of simulations on a game tree, rooted at that state to generate
an empirical policy. Each simulation, guided by the policy and value networks,
passes through 4 phases:

1. SELECT: At the beginning of each iteration, the algorithm selects a path
from the root (current game state) to a leaf (either a terminal state or an

On-the-Fly Model Checking with Neural MCTS 563

unvisited state) according to an upper confidence boundary (UCB, [3,4,17]).
Specifically, suppose the root is s0. The UCB determines a sequence of states
{s0, s1, ..., sl} by the following process:

ai = arg max
a

⎡
⎢⎢⎢⎣Q(si, a) + απθ(si, a)

√∑
a′ N(si, a′)

N(si, a) + 1︸ ︷︷ ︸
U(si,a)

⎤
⎥⎥⎥⎦

si+1 = move(si, ai)
Q(si, a) = N(si, a) = 0, if si+1 is unvisited

(2)

where α is a tunable parameter, N(s, a) counts the times of visiting (s, a)
during the MCTS simulations, and Q(s, a) is a state-action value estimator.
The UCB is also guided by a policy estimator πθ(s, a). It has been proved in
[9] that selecting actions using Eq. 2 is equivalent to optimize the empirical
policy

π̂(s, a) =
1 + N(s, a)

|A| +
∑

a′ N(s, a′)

where |A| is the size of the action space, so that it approximates the solution
of a regularized policy optimization problem. As a result, MCTS simulation
can be regarded as a regularized policy optimization [9]. As long as the value
network is accurate, the MCTS simulation will optimize the output policy to
maximize the action value output while minimizing the change to the policy
network.

2. EXPAND: Once the selected phase ends at an unvisited state sl, the state
will be fully expanded and marked as visited. During the next selection iter-
ation, all its child nodes will be considered leaf nodes.

3. ROLL-OUT: The roll-out is carried out for any unvisited state sl. If sl is a
terminal state, the game outcome R(sl) will be used as the state value backup
for the BACKUP phase, otherwise, the algorithm will use a value network
to estimate the result of the game (from current state sl) and use that value
Vθ(sl) for BACKUP.

4. BACKUP: This is the last phase of an MCTS simulation in which the
algorithm backs up the state value and updates the state-action value esti-
mator for each node in the selected states sequence. To illustrate this process,
suppose the selected states and corresponding actions and players are

{(s0, a0, p0), (s1, a1, p1), ...(sl−1, al−1, pl−1), (sl, , pl)}
Let vl be either the actual game outcome R(sl) or the estimated outcome
Vθ(si). The value is then backed up in the following way

{(s0, a0, p0, v0), (s1, a1, p1, v1), ...(sl−1, al−1, pl−1, vl−1), (sl, , pl, vl)},

where vi = (−1)|pi+1−pi|vi+1. In other words, for any two-player game, the
leaf state value vl is backed up in a fashion such that states play by the same

564 R. Xu and K. Lieberherr

player as the leaf state will be assigned the same value vl, while states play
by another player will be assigned the opposite value −vl. The backed up
state values are then be used to update the counter N and state-action value
estimator Q:

N(st, at) ← N(st, at) + 1

Q(st, at) ← Q(st, at) +
Vθ(sr) − Q(st, at)

N(st, at)
(3)

Once the given number of simulations has been reached, the algorithm returns
the empirical policy π̂(s) for the current state s. An action is then sampled from
π̂(s), and the game moves to the next state by playing that action. In this way,
MCTS generates the players’ states and actions alternately until the game ends
with some outcome R after T steps, which gives an episode for the game. Each
episode is defined as a sequence of tuples (si, pi, π̂i, vi), where si is the game
state at step i, pi is the player at step i, π̂i is the empirical policy generated
at step i, and vi = (−1)|pi−pT |R is the value signal from the outcome, which
will become a contradictory signal once the prediction from the value network
is faulty. After a given number of self-plays, all episodes will be stored into a
replay buffer so that it can be used to train and update the value network Vθ

(with all vi’s) and policy network πθ (with all π̂i’s).

3 Methodology

3.1 Recursive-FOL

In this work, we use recursive first-order logic (recursive-FOL) for model checking
a finite LTS. The recursive FOL is essentially an extension of FOL with fix-
point operators, which allows a predicate to be defined by referring back to
itself. However, unlike Lμ, which defines properties functionally, recursive-FOL
provides us more flexibility and allows us to describe model checking properties in
a modular way so that a property can be defined with multiple sub-components,
which is used later for deriving vector representations (see Sect. 3.2). To be
specific, a recursive-FOL property can be defined by the following grammar:

〈property〉 |= 〈predicates〉
〈predicates〉 |= 〈predicate〉 | 〈predicate〉 ; 〈predicates〉
〈predicate〉 |= LFP.X(s) := 〈fol-expr〉

| GFP.X(s) := 〈fol-expr〉
| X(s) := 〈fol-expr〉

〈fol-expr〉 |= True | False | ϕ(s) | X(s) | ¬〈fol-expr〉
| 〈fol-expr〉 ∨ 〈fol-expr〉
| 〈fol-expr〉 ∧ 〈fol-expr〉
| ∃a ∈ As. X(sa)
| ∀a ∈ As. X(sa)

On-the-Fly Model Checking with Neural MCTS 565

where ϕ ranges over all primitive predicates, X ranges over the identifiers of the
predicates, s is the LTS state variable for each predicate, As is the action space
for the current state, and sa is the successor state that s

a−→ sa.
The motivation of applying recursive-FOL to model checking comes directly

from the MSOL interpretation of Lμ (see Sect. 2.1). However, different from
MSOL, which implies fix-point operator intrinsically, adding a fix-point operator
to FOL is tricky and error-prone [11]. Specifically, suppose we have a FOL predi-
cate Φ(x;P), parameterized by a variable x and another predicate P (x). To make
sure an extended FOL formula (say LFP.Φ(x;P)) is well-formed, the function
F (P) = {x|Φ(x;P)} must be monotone, which means either F (P) ⊆ {x|P (x)}
or F (P) ⊇ {x|P (x)}. It is to be noted that, in general, whether a FOL pred-
icate Φ(x;P) is monotone is undecidable. Nevertheless, one can still construct
monotone predicates by forcing each occurrence of P in Φ(x;P) to be positive
[10]. In this work, we assume the user always defines a well-formed formula. This
assumption comes from a practical consideration that any two-player extensive
form game can be abstractly described as:

LFP.Φ(s, p;P) := Q(s, p) ∨ ∃a ∈ Ap
s . ¬P (sa, p̄),

where sa is the state following s
a−→ sa, p̄ is the opposite player of p, Q(s, p)

means that the game ends at s and player p wins the game, and Φ(s, p;P)
means that given the current game state s and player p, the current player p
will eventually win the game. As a result, the predicate is defined by the formula
and the underlying structure of the game states. In other words, if the game can
generate infinitely many states, then the formula above is not well-formed.

Next, we show how to transform a Lμ formula to recursive-FOL. Since a
modular approach is used to define a predicate, we need to first decompose a Lμ

formula into different predicates. For example, suppose the given formula is

νZ.(p ∨ μX.(q ∨ [A]X)) ∧ 〈A〉Z, (4)

we can rewrite it into two individual fix-point predicates, with a distinct state
variable s as:

GFP.Z(s) := (p[s] ∨ X[s]) ∧ (〈A〉Z)[s]
LFP.X(s) := q[s] ∨ ([A]X)[s].

After decomposing every fix-point operator into individual predicates, we finish
by transforming recursively with the following rules:

p[x] = p(x)
(Φ1 ∧ Φ2)[x] = Φ1[x] ∧ Φ2[x]
(Φ1 ∨ Φ2)[x] = Φ1[x] ∨ Φ2[x]
(¬Φ)[x] = ¬Φ[x]
(〈A〉Φ)[x] = ∃a ∈ Ax. Z[xa]
([A]Φ)[x] = ∀a ∈ Ax. Z[xa],

(5)

566 R. Xu and K. Lieberherr

where p means a primitive predicate that can always be evaluated, given the
current state variable x. Ax is the set of all legal actions of an LTS at state x,
and xa represents the state such that x

a−→ xa.
The game semantics of recursive-FOL is almost the same as FOL’s, except

that the winning condition of the Lμ semantic game has been applied. However,
it should be pointed out that since the variables of fix-point operators in Lμ

have been transformed to unique fix-point predicates, there is no need to track
bounded variables anymore. Consequently, the semantic game plays on a group
of predicates and jumps from one to another if necessary.

3.2 State Representation

The state representation of any game state for a recursive-FOL semantic game
is a vector [i, p, ξ, ζ], where i is an integer ID number for each predicate (in this
case, i(Z) = 0, i(X) = 1), and p ∈ {−1, 1} is the player ID. ξ and ζ are two
vector components, where ξ is the vectorized representation of the current LTS
state s, and ζ is an encoding of the action sequence on the syntax tree, which is
initialized to all −1 for each predicate.

The entrance of a semantic game is always a predicate, which can be repre-
sented as a syntax tree. Once evaluated step by step, each node is either a logic
operator or a predicate. A predicate indicates a leaf node for the current tree,
but it also points to an entrance of another tree. We use a preorder traversal
to identify each node and vectorize the action sequence on the tree structure,
namely ζ.

For illustration, let’s use the transformed recursive-FOL formula from Eq. 4,
which contains two fix-point predicates:

GFP.Z(s) := (p(s) ∨ X(s)) ∧ (∀a ∈ As. Z(sa))
LFP.X(s) := q(s)s ∨ (∃a ∈ As. X(sa)),

where p and q are primitive predicates. The syntax trees of the two predicates
can be drawn out as:

Z

∧

∨

p X

∀

Z

X

∨

q ∃

X

To better understand how to generate ζ properly, let’s see the example above.
The preorder indexes for each node in the two trees are:

[Z : 0,∧ : 1,∨ : 2, p : 3,X : 4,∀ : 5, Z : 6]
[X : 0,∨ : 1, q : 2,∃ : 3,X : 4],

On-the-Fly Model Checking with Neural MCTS 567

which means we can use a length-seven vector to completely encode any action
sequences on these two trees during gameplay. All we need is to store the action
taken on each node to the corresponding position in the vector. For instance,
starting from some Z(s), if a player took the left branch of the ∧ operator at
position 1, and then the other player took the right branch of the ∨ operator at
position 2, then the vector ζ at leaf node X becomes:

[0, 0, 1,−1,−1,−1,−1].

Furthermore, if the game continued from predicate X, and one of the players
picked the right branch of the ∨ operator at position 1, and then chose some
move m ∈ As on the ∃ operator at position 3, then the vector ζ at leaf node X
becomes:

[0, 1,m,−1,−1,−1,−1].

3.3 MCTS with Fix-point Predicates

Applying neural MCTS to a recursive-FOL semantic game looks straightforward.
However, it turns out to be non-trivial. Specifically, a semantic game might have
an infinite game sequence composed of a set of states in a cycle. However, one
of the players can still win the game as long as we can track the type of the
leading fix-point operator (namely, the starting point of a cycle). On the other
hand, the neural MCTS algorithm was not designed to handle an infinite game
that uses looping states as a winning condition. As a result, we propose some
modifications to the previous design to deal with this new situation.

Our method is motivated by the bounded game semantics on Lμ [12]. During
the self-play and MCTS simulation, we maintain a stack L and a counter C to
track the number of visits of each fix-point predicate along a game sequence. To
be specific, for a given game state s, if s is the root node of some predicate’s
syntax tree, and also that predicate is a fix-point predicate, then we check if s is
in the stack L. If it is already there, then we continuously pop from the stack the
top state t and set C[t] = 0 until we hit s, then set C[s] = C[s] + 1; otherwise, we
just push s to L and set C[s] = 1. After updating the stack, we check if C[s] > Γ
for some given integer bound Γ . s is considered to be a winning state for the
Proponent/Opponent only if C[s] > Γ and s is the root node of a GFP/LFP
predicate.

After updating L and C, we concatenate the visiting time of the predicate to
the state representation of the corresponding state in the search tree. In other
words, each tree node represents a tuple (s,C[s.root]), where s.root is the root
state of a predicate’s syntax tree that state s is affiliated to. In this manner,
neural MCTS no longer needs to deal with a potentially infinite game sequence,
but it can still detect a cycle in the state space.

3.4 Fairness as a Challenge

Fairness is an essential concept in model-checking. Informally speaking, the fair-
ness constraint requires that, in a multi-process system, each process should get

568 R. Xu and K. Lieberherr

an equal chance to run when it is able to run. This requirement is crucial, espe-
cially when searching for a counterexample of a liveness property. Since a model
checking algorithm also decides how to schedule the running of each process, it
is trivial for it to fabricate an unrealistic “counterexample” when ignoring the
fairness constraint.

Classical model-checking algorithms solve this problem with a global method,
which searches for all possible strongly connected components (SCCs) in the
state space, then verify each component to see if it satisfies the fairness con-
straint. However, for a large LTS, the global method becomes intractable because
of the state explosion issue.

With that being said, the main motivation to use neural MCTS in model-
checking is its ability to handle large state space through a local search. We
propose here a local approach to the fairness problem by maintaining a list
of process access counter F. Therefore F[p] means process with id number p
has been accessed F[p] times. The counter list F is then be concatenated with
state representation. During self-play and MCTS simulation, we check if, at
the current state, |max(F) − min(F)| > K for some integer constant K. If
so, then the current player loses the game immediately. It should be pointed
out that F needs to be normalized before it is used as an input to the neural
network. Consequently, neural MCTS is forced to learn to access every process
in a balanced way.

4 Experiments

4.1 Highest Safe Rung Problem

The Highest Safe Rung (HSR) problem is a well-known puzzle [26]. The problem
can be described as follows:

Consider throwing jars from a specific rung of a ladder. The jars could either
break or not. If a jar is unbroken after a trial, it can be used next time. The
highest safe rung is the rung that the jar will break for any trial performed above
it. Given three positive numbers k , q , and n , can we always be able to locate the
highest safe rung on a n-rung ladder with at most k jars and q trials? (assuming
the jars are identical with each other).

The above problem can actually be solved by playing an alternating reach-
ability game [12] between two players, Alice and Bob. In the beginning, Alice
claims that within q trials, she would be able to locate the highest safe rung
on a n-rung ladder by using at most k jars, or noted as HSR(k, q, n). Alice
first makes a move during the gameplay by selecting a rung m (1 ≤ m < n)
and performing one trial on that rung. And Bob then decides whether the jar
will break or not. If the jar is broken, Alice would only have to check rungs
below rung m; otherwise, she needs to check rungs above m. As a result, Alice
either claims HSR(k − 1, q − 1,m) if Bob says “break”, or HSR(k, q − 1, n − m)
if Bob says “safe”. The game will end if either Alice wins by claim something
like HSR(k, q, 1) where (k ≥ 0 ∧ q ≥ 0), or Bob wins by forcing Alice to claim

On-the-Fly Model Checking with Neural MCTS 569

something like HSR(k, q, n) where ((k ≤ 0 ∨ q ≤ 0) ∧ n > 1). The original HSR
problem can be solved if and only if Alice has a winning strategy.

Finding a winning strategy can be regarded as a model checking problem to
verify a reachability property on an LTS. The LTS can be generated by applying
the above game rule to a given initial state (k, q, n) (see Fig. 2 for an example).
The property can be described as starting from the initial state, Alice will
eventually win the game . We formulate this property with recursive-FOL
predicates:

LFP.X(s) := p(s) ∨ ∃a ∈ As. Y (sa)
Y (s) := q(s) ∧ ∀a ∈ As. X(sa)
p(s) := s.n = 1
q(s) := s.n = 1 ∨ (s.k > 0 ∧ s.q > 0)

Fig. 2. The LTS for HSR(2, 2, 4) where solid edges are actions taken by Alice, dashed
edges are actions taken by Bob. The gray nodes are terminal states where Alice wins.

We carry out our experiment with HSR(8, 8, 256) and HSR(3, 8, 93). For each
instance, we run five experiments. In each experiment, we record the number
of Proponent’s (Alice’s) winning games during 100 self-plays. As the hyper-
parameters, we set the number of MCTS simulations to 25, exploration coef-
ficient α is 4. We use a four-layer multi-layer perceptron (MLP) network with
shape [256, 256, 256, 256] for the policy and value neural network. The neural
network is trained with the Adam optimizer, with learning being 0.001. The
mini-batch size is set to 64, and the training epoch is set to 10. We run the
experiment until one of the players consistently wins during the self-play, indi-
cating that a winning strategy has been learned against the other player. We
executed these experiments with a Core i7-9750H 4.5 GHz CPU, 16 GB Mem-
ory, and a GTX 1650 GPU. It can be seen from the experimental result (Fig. 3)
that the neural MCTS can learn a winning strategy for the Proponent in 25
iterations (each iteration takes 10 min on average). Besides, we have also verified
the correctness of the learned strategy with the ground truth solution using the
Bernoulli Triangle in [29].

570 R. Xu and K. Lieberherr

Fig. 3. Experimental results for HSR(8,8,256) (left) and HSR(3,8,93) (right). There
are five trials. Each trial has 25 iterations. And each iteration contains 100 self-play.
We show the wins of Alice (the Proponent) among 100 games in each iteration. It can
be seen from the figure above that Alice has a U-shape learning curve in both cases,
which indicates that the two players competed and learned from each other.

4.2 Dining Philosopher Problem

Our model for the dining philosopher problem is straightforward. N philosophers
sit around a table with N forks among them, N ≥ 3. At a philosopher’s initial
state, he can randomly choose the fork either on his right or left if another
philosopher has not taken it. After taking the fork, he checks the availability of
the fork on the other side. If unavailable, he concedes, releases the fork possessed,
and returns to the initial state. If available, he picks it up and enters the eating
state. After finishing his meal, he randomly releases one fork first, then releases
the other fork before returning to the initial state. The model is parametric in the
number of philosophers, where each philosopher model has ten states (Fig. 4). It
is to be noted that we intentionally make our model imperfect so that when all
philosophers follow this scheme, some of them may starve. We expect the model
checking process to capture this design fallacy by showing us a counterexample.

In this experiment, we are interested in model-checking the property that if
philosopher 0 is hungry, then eventually the philosopher will eat. This
property can also be rewritten as the following recursive-FOL:

GFP.Z(s) := (¬p(s) ∨ X(s)) ∧ ∀a ∈ As. Z(sa)
LFP.X(s) := q(s) ∨ ∀a ∈ As. X(sa)
p(s) := in s, philosopher 0 is hungry.
q(s) := in s, philosopher 0 is eating.

The recursive-FOL expression is a bit complex. There are two fix-point predicates
nested within each other. The first fix-point predicate Z(s) means that starting
from state s, it is always true that if philosopher 0 is hungry, he
will eventually eat. While the second fix-point predicate X(s) means that
starting from state s, no matter how the system evolves, philosopher
0 will eventually eat.

The experiment is conducted with eight instances, parameterized with N
equal to 3 to 10. For each instance, we run five trials. We take down the number of

On-the-Fly Model Checking with Neural MCTS 571

Fig. 4. The LTS for a single philosopher. State 0 is the initial state. State 1 and 2 are
first picking attempts, either left or right. A philosopher will stay at one of these two
states if he cannot obtain the first fork. After successfully picking his first fork, at state
3 or 4, he will try to pick the second fork. If he cannot obtain the second fork, he will
go to either state 5 or 6 to release the fork picked. Otherwise, the philosopher can go
to state 7, the eating state. After eating, he releases one of the forks and goes to either
state 8 or 9, where he will release the other fork and go back to the initial state.

transitions required in each trial before finding a counterexample. As the hyper-
parameters, we change the number of MCTS simulations to 5 and the exploration
coefficient α to 1. The MLP networks with shape [128, 128, 128, 64] are used for
both the policy and value neural network. We run the experiment until the
Opponent discovers a counterexample. It should also be noted that fairness is
not negligible since we are dealing with a liveness property. We use the approach
mentioned in Sect. 3.4 to add fairness constraints to our system, where we set
K to be 50. The experimental results are listed in the table below (Table 3).
Even though it takes time for neural MCTS to self-play and learn, the running
time to find a counterexample is proportional to the number of transitions in
the path, while each transition takes 50 ms on average. It can be seen that
our results outperform the ones from a reinforcement learning (Q-learning to be
precise) based method [5], which takes more running time but only finds a longer
path. Moreover, we have also tested this problem with two off-the-shelf model
checkers, SPIN [14], and PRISM [19]. Due to the state explosion issue, SPIN
can only run up to N=7 on our computer (Table 4), while PRISM only runs up
to N= 5 (since PRISM does not support generating of a counterexample for the
CTL property in the form of A [G (“hungry” => F “eating”)]), we cannot show
the path length in this case).

572 R. Xu and K. Lieberherr

Table 3. Number of transitions required to find a counterexample for model-checking
the given dining philosopher model. For each instance, we run 5 experiments. The
number in the parentheses is the cycle lengths of the found counterexample.

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 27 (14) 27 (17) 102 (54) 342 (271) 1046 (59) 838 (124) 3676 (553) 4742 (4405)

2 55 (48) 77 (63) 344 (309) 597 (547) 300 (154) 1217 (308) 2519(1980) 2727 (1226)

3 113 (39) 186 (175) 204 (37) 679 (509) 2248 (922) 1744 (164) 4664 (728) 2636 (1592)

4 76 (35) 98 (54) 579 (391) 344 (179) 976 (211) 1024 (831) 1956 (1017) 3480 (2350)

5 49 (37) 70 (50) 289 (268) 287 (168) 294 (60) 1218 (582) 1488 (1086) 3651 (1370)

Table 4. Model-checking the dining philosopher model with SPIN [14]. It can be
seen that, even though SPIN tends to find shorter cycles, the running time increases
exponentially because of the state explosion. As a result, SPIN can only model-check
the problem up to N = 7.

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

Length 2504 (18) 2165 (8) 2760 (28) 2959 (14) 9660 (12) N/A

Time(s) 0.03 0.09 0.3 3.84 643 1.93E+03

States 5236 37302 113680 2.09E+06 2.03E+08 5.37E+08

5 Related Work

Model-checking through games was first proposed in [27], where the author
applied a game-theoretical semantics to Lμ so that a model-checking problem
is transformed into a two-player game. However, unlike our method, the author
proposed to solve the game by a pure search algorithm with backtracking tech-
niques. Another limitation to their method is that their system cannot handle
fairness. It is to be noted that the work in [12], which is quite similar to the pre-
vious one, is more theoretical oriented rather than providing a concrete model
checking algorithm. To our knowledge, we are the first work to apply modern
gameplay AI to model-checking-problem-derived semantic games.

Applying machine learning to model checking for searching counterexamples
has only been found in [2] and [5], both of which are reinforcement learning
(Q-learning) based. They both use Büchi Automata to transform the model-
checking problem into a graph search problem, which can be solved by reinforce-
ment learning after formulating the graph search problem as a Markov Decision
Process (MDP). Our method can treat as a complement to the study in this
direction. However, unlike the Q-learning approach, which treats an on-the-fly
model-checking task as a single MDP, we use a game-centric system that makes
it possible to leverage the power of neural MCTS. We show that our method is
superior to the approach from [5], but not the other one. However, [2] is only
designed for liveness property, which allows it to encode state space efficiently,
therefore mitigating the state explosion problem. Besides, we propose to use
recursive-FOL as our model specification language, which is very close to Lμ. As

On-the-Fly Model Checking with Neural MCTS 573

a result, our method supports a more expressive specification than the ones in
[5], which only supports LTL.

6 Conclusion

This paper highlights a likely promising approach for model checking systems
with large state spaces. Our method is mainly based on two lines of develop-
ment in computer science: the first one is from the formal methods and logic
community, where we use the game-theoretical semantics of a logic to turn a
logic expression into a two-player semantic game; the second one is from the AI
and machine learning community, where we adapt the neural MCTS, a robust
gameplay algorithm based on searching and learning, to play the semantic game
derived from the logic specification. In this way, we can solve the classical model-
checking problems by leveraging cutting-edge AI techniques. Besides, we propose
recursive-FOL as our specification language, which is powerful in expressiveness.
We also introduce a way to build fairness constraints in the game process. We
compared our result with other model-checker tools and machine learning-based
approaches and showed that it outperforms them.

In future work, we also plan to test our method on a more practical set of
benchmarks, such as ones from the hardware model checking competition. We
also work on improving the efficiency of Neural MCTS by using a meta-learning
approach to build the neural network in incremental steps [16].

Finally, it is worth pointing out that, like other ML-based-model-checking
methods, since the learned strategy might only win against a potentially sub-
optimal strategy of the opponent, our method should only be applied to error-
detection (i.e., finding counterexamples) instead of certifying the correctness.
Although there are some limitations to our approach, the potential of the com-
bination of search and learning is still considerable.

References

1. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning
and tree search. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS 2017, pp. 5366–5376 (2017)

2. Araragi, T., Cho, S.M.: Checking liveness properties of concurrent systems by
reinforcement learning. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt 2006.
LNCS (LNAI), vol. 4428, pp. 84–94. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74128-2 6

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235–256 (2002)

4. Auger, D., Couëtoux, A., Teytaud, O.: Continuous upper confidence trees with
polynomial exploration – consistency. In: Blockeel, H., Kersting, K., Nijssen, S.,
Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 194–209.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2 13

https://doi.org/10.1007/978-3-540-74128-2_6
https://doi.org/10.1007/978-3-540-74128-2_6
https://doi.org/10.1007/978-3-642-40988-2_13

574 R. Xu and K. Lieberherr

5. Behjati, R., Sirjani, M., Nili Ahmadabadi, M.: Bounded rational search for on-
the-fly model checking of LTL properties. In: Arbab, F., Sirjani, M. (eds.) FSEN
2009. LNCS, vol. 5961, pp. 292–307. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11623-0 17

6. Browne, C., et al.: A survey of monte Carlo tree search methods. IEEE Trans.
Comput. Intellig. AI Games 4(1), 1–43 (2012)

7. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

8. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

9. Grill, J.B., et al.: Monte-Carlo Tree Search as Regularized Policy Optimization.
arXiv:abs/2007.12509 (2020)

10. Gurevich, Y.: Toward logic tailored for computational complexity. In: Börger, E.,
Oberschelp, W., Richter, M.M., Schinzel, B., Thomas, W. (eds.) Computation and
Proof Theory. LNM, vol. 1104, pp. 175–216. Springer, Heidelberg (1984). https://
doi.org/10.1007/BFb0099486

11. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. In: 26th Annual
Symposium on Foundations of Computer Science (SFCS 1985), pp. 346–353 (1985)

12. Hella, L., Kuusisto, A., Rönnholm, R.: Bounded game-theoretic semantics for
modal mu-calculus and some variants. In: Proceedings 11th International Sym-
posium on Games, Automata, Logics, and Formal Verification, GandALF 2020,
Brussels, Belgium, September 21–22, 2020. EPTCS, vol. 326, pp. 82–96 (2020)

13. Hintikka, J.: Game-theoretical semantics: insights and prospects. Notre Dame J.
Formal Logic 23(2), 219–241 (1982)

14. Holzmann, G.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

15. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 60

16. Kadam, P., Xu, R., Lieberherr, K.J.: Dual Monte Carlo Tree Search. CoRR
abs/2103.11517 (2021)

17. Kocsis, L., Szepesvári, C.: Bandit based monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

18. Kolaitis, P.G.: On the expressive power of logics on finite models. In: Finite Model
Theory and Its Applications. Texts in Theoretical Computer Science an EATCS
Series, pp. 27–123. Springer, Heidelberg (2007). https://doi.org/10.1007/3-540-
68804-8 2

19. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46002-0 5

20. Niwinski, D., Walukiewicz, I.: Games for the mu-Calculus. Theor. Comput. Sci.
163(1&2), 99–116 (1996)

21. Rebuschi, M.: Extended game-theoretical semantics. In: Trobok, M., Mǐsčević, N.,
Žarnić, B. (eds.) Between Logic and Reality. Logic, Epistemology, and the Unity
of Science, vol. 25, pp. 161–182. Springer, Dordrecht (2012). https://doi.org/10.
1007/978-94-007-2390-0 9

https://doi.org/10.1007/978-3-642-11623-0_17
https://doi.org/10.1007/978-3-642-11623-0_17
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
http://arxiv.org/abs/2007.12509
https://doi.org/10.1007/BFb0099486
https://doi.org/10.1007/BFb0099486
https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/3-540-68804-8_2
https://doi.org/10.1007/3-540-68804-8_2
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1007/978-94-007-2390-0_9
https://doi.org/10.1007/978-94-007-2390-0_9

On-the-Fly Model Checking with Neural MCTS 575

22. Schmid, M., et al.: Player of Games. CoRR abs/2112.03178 (2021)
23. Schrittwieser, J., et al.: Mastering Atari, go, chess and shogi by planning with a

learned model. Nature 588, 604–609 (2020)
24. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,

et al.: Mastering the game of go with deep neural networks and tree search. Nature
529, 484 (2016)

25. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
et al.: Mastering the game of go without human knowledge. Nature 550, 354 (2017)

26. Sniedovich, M.: OR/MS games: 4. the joy of egg-dropping in Braunschweig and
Hong Kong. Inf. Trans. Edu. 4(1), 48–64 (2003)

27. Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054166

28. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoret. Com-
put. Sci. 275(1), 311–346 (2002)

29. Xu, R., Lieberherr, K.J.: Learning self-play agents for combinatorial optimization
problems. Knowl. Eng. Rev. 35, e11 (2020)

https://doi.org/10.1007/BFb0054166
https://doi.org/10.1007/BFb0054166

Requirements-Driven Model Checking
and Test Generation for Comprehensive

Verification

Devesh Bhatt1(B), Hao Ren1, Anitha Murugesan1, Jason Biatek1,
Srivatsan Varadarajan1, and Natarajan Shankar2(B)

1 Honeywell Aerospace, Plymouth, USA
Devesh.Bhatt@honeywell.com

2 SRI International, Palo Alto, USA

shankar@csl.sri.com

Abstract. In this paper, we present a novel approach that seamlessly
integrates requirements-based testing and model checking. Given a set
of functional requirements and properties, both generic attributes and
application specific constraints, expressed in our CLEAR requirements
notation, our approach and the associated tool suite simultaneously gen-
erates an extensive set of requirements-based test cases using equivalence
classes and synthesizes requirement models. The synthesized models sup-
port formal analysis of the properties using state-of-the-art model check-
ers that serves as a rigorous evidence of the quality and adequacy of
the requirements. Further, the result of executing the test cases gener-
ated from those high-quality requirements on the implementation, helps
ensure that those requirements are indeed met in the implementation.
This comprehensive requirements-based approach to verification lever-
ages automation and reduces defects in evidence generation for design
assurance as outlined in guidance such as DO-178C and DO-333. We use
the ArduCopter, an open-source platform, to illustrate our approach.

1 Introduction

Aerospace design assurance practices ARP4754A [20] and associated guidance
regarding software aspects of certification DO-178C [18] are used by the aviation
industry and regulators as a primary means of compliance with airworthiness
regulations for airborne software. One of the key principles of such certification
is the use of requirements-based testing along with coverage metrics to show that
the tests sufficiently cover the code structure with bidirectional traceability.

With the publication of DO-333 [19], a formal methods supplement to DO-
178C, the use of formal methods has become a recognized means of compli-
ance, streamlining the process for aircraft manufacturers to obtain certification

Supported by DARPA under agreement number FA8750-20-C-0226. The views, opin-
ions and/or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S.
Government.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 576–596, 2022.
https://doi.org/10.1007/978-3-031-06773-0 31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_31&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_31

Requirements-Driven Model Checking and Test Generation 577

credit. Faster model checkers and theorem-provers and their widespread adop-
tion in industry have meant an opportunity for more scalable and comprehensive
formal-methods based software verification pipeline that utilizes them to show
with high confidence, a more exhaustive assessment showing also the absence
of errors, whereas testing can just reveal the presence of errors and cannot
prove that a software never violates desired property. But testing is still essen-
tial to the test-like-you-fly certification philosophy which emphasizes verification
through testing be performed on the actual software implementation executed on
flight platforms and to reduce defect discovery late during operation with dire
consequences. Formal verification of a model of the software implementation,
however, runs the risk of abstraction divergence between model of the software
and software implementation potentially invalidating any verification evidence
derived from those models. This abstraction divergence between formal model
and the implementation could arise for a plethora of reasons including error
in requirements specifications, incorrect implementation of software from those
requirements, invalid architectural assumptions and/or platform characteristics.

In this paper, we propose an integrated, belt-and-suspender approach using
formal methods-based requirements-driven model checking and testing, that lever-
ages the benefits of both verification strategies to meet the certification compli-
ance objectives of DO-178C and DO-333. The cornerstone of this approach is our
requirements notation called CLEAR (Constrained Language Enhanced App-
roach to Requirements) [4,7], that provides natural language flavored constructs
to specify a wide range of logical, relational, temporal and arithmetic aspects
of system behaviors. CLEAR was exclusively defined with formal syntax and
semantics to enable the use of formal-methods based automation tools for early
discovery of requirement errors. Text2Test, a novel verification tool developed
by Honeywell [3], automatically performs static analysis of the CLEAR require-
ments to ensure their consistency and completeness. Text2Test also simultane-
ously synthesizes formal models in a logical notation that can be used with a
model checker, namely Sally [22], to verify properties, as well as automatically
generates test cases for verifying behavior of the implementation. This simulta-
neous co-synthesis of the model and tests from the same underlying requirements
ensures no model abstraction gap with respect to implementation arise because
properties verified on the model through model checking can be confirmed on
the implementation through testing.

Note that, showing absence of misinterpretation of design intent in require-
ments formalization and construction may often involve human judgment and
review, and/or substantial high-fidelity simulations, thereby being a non-trivial
validation process itself especially when translating natural language requirement
documents into formalized requirement language. This intent validation process
is beyond the scope of this paper, which focuses on internal defect analysis of
the intrinsic aspect of the requirements. Along with formalized textual require-
ments, we also formally specify first-class property constructs (e.g. safety, live-
ness, invariants) for software which are subsequently exploited by a model checker
for verification of those properties. While requirements describe specific behav-
iors for facilitating software design and implementation, properties serves as con-
straints on the software behavior and preferred evolution of system behavior.

578 D. Bhatt et al.

Some properties could also be carefully crafted for the purpose of validating the
design intent. These twin specifications allow designers to systematically exploit
the complementarity of model checking and testing to satisfy some verification
objective and achieve higher confidence.

The main contribution of this paper is two-fold: (a) the novel integrated two-
pronged specification-verification approach and, (b) the orchestration of appro-
priate formal notation and tools. The CLEAR notation uniquely allows cap-
turing the detailed behavioral description as well as properties (or invariants)
of system; The orchestrated tool-chain Text2Test-Sally allows comprehensive
requirement-based static analysis, test generation and model checking without
expert human intervention. Further, we use the Advanced Fail Safe module of
the ArduCopter rotorcraft to illustrate our approach. Through these contribu-
tions, we advance the state-of-the-art practice in certification by proposing a
framework that, firstly, eliminates ambiguities and errors in intent specification
through requirement formalism, its analysis and strengthened with additional
specification of formal properties in a novel manner which has hitherto not been
done. Next, the framework reduces adhoc-ness and informality in the verification
process by automatically synthesizing both the formal models, on which prop-
erties are then verified, and tests that are then systematically shown to be both
complete and adequate. Finally, the framework maintains strong bidirectional
traceability links between requirements/properties and the evidence from the
verification campaign to guarantee strict coverage.

The paper is organized as follows. In Sect. 2, we provide an overview of our
integrated verification approach, followed by an outline of the case example
in Sect. 3. In Sects. 4 and 5, we explain our requirements notation, and model
synthesis, formal analysis and test generation. Finally, we conclude in Sect. 6.

2 Comprehensive and Integrated Verification Approach

Fig. 1 presents our comprehensive verification strategy that combines two verifi-
cation tracks (i) Formal methods based property checking of a synthesized model
directly from requirements thereby ensuring software code that faithfully imple-
ments the requirements then also implicitly inherits verified properties of the
model which is an abstraction of the implementation, and (ii) Explicit testing
of the actual software code implementation that executes on the aircraft with
automatically generated tests from the same model to ensure that there is no
divergence between model abstraction and implementation as well as delivering
a more complete array of tests that are synthesized in a principled manner to
ensure comprehensive requirements coverage.

Also observe that in Fig. 1 we start the verification early and directly from the
intent specification of the software i.e. software requirements and hence explic-
itly synthesize both models and tests from those requirements and use that to
independently verify software design implementation and code which is typically
managed through an independent manual process. The CLEAR notation with
formal semantics for requirements is the foundation of this approach—enabling

Requirements-Driven Model Checking and Test Generation 579

Fig. 1. Verification using requirements emantics, property checking, and testing

model-checking of requirements’ properties as well as principled testing of code
against the requirements.

The requirements for a software component are developed in the context of
system requirements, hazard specifications, and architecture (note: discussion of
these is outside the scope of this paper). This context also serves as the basis
for deriving either generic properties, that the set of software requirements must
satisfy in terms of quality (e.g. error free specifications) as it will serve as the
foundation to build upon, or application-specific properties, that must be satisfied
in order to meet some particular aspect of system requirements or to mitigate
some hazard. In essence, as shown in Table 1, the requirements and properties
are complementary: requirements are statements describing specific behaviors
whereas properties (e.g. safety, liveness, invariants) are behavioral constraints
that must not be violated by the software component. Thus, the composite
behavior specified by the requirements must also not violate the properties.

Table 1. Verification of both intent specifications: requirements and properties

Behavioral Properties: What the system ought to do/not to do

Requirements Safety Liveness Invariants

Purpose Specific functional

behaviors that the

system shall do

Something bad

will never happen

Something good will

eventually (or in

bounded time) occur

Desired system

constraints

Verification

Approach

Testing Model Checking Testing and Model

Checking

Testing and Model

Checking

Exemplars from

case study in

Sect. 3

If the remaining

battery power is

critically low, the

system shall

initiate emergency

landing

Once the system

is in insufficient

battery state,

then system shall

never transition

back to normal

battery state

The system shall

reach its destination

in normal battery

state (within x secs)

Emergency

landing is always

initiated

when/after

systems reached

insufficient

battery state

580 D. Bhatt et al.

As shown in Fig. 1, the formal semantics of the CLEAR notation allows
the creation of a Semantic Synthesis Model (SSM) from the requirements that
includes state transition semantics and temporal behaviors. SSM directly enables
static analysis, model checking, and test generation. SSM is then translated into
inputs script for Sally [13,22], a state of the art model checker, which verifies
specific properties against the model. Then by proxy we can infer that the set
of requirements also satisfies these properties (see Sect. 5.2).

Note that current bounded model checking (BMC) and k-induction proof
techniques are very effective but they are usually not fully automatic, as a human
expert must provide auxiliary lemmas that may be intricate and difficult to dis-
cover as well encode their insight order of clauses being checked to prove prop-
erties. Sally supports several SMT solvers with improvements for improvements
and scalability and extensions to verification algorithms BMC, k-induction and
IC3 methods that significantly simplify the verification of infinite systems - they
are fully automatic and do not require an expert to provide auxiliary invariants
whereby IC3 discovers the “right” state invariants on its own based on novel
inference techniques from abstract interpretations [12]. Sally native specification
language (MCMT), like it’s predecessor SAL on which it is derived from, is natu-
rally expressive to handle state-machine models and it’s flexibility also allows for
modular composition and selective translations of the overall model. These key
Sally capabilities enable automatic translation and thus automatic verification
possible in our framework with minimal human interventions.

The CLEAR semantics also enable requirement analysis to verify generic
properties such as: all requirements in the set are accurate, verifiable, free of gaps,
and consistent (free of conflicts) (see Sect. 5.1). Test generation is also based on
these semantics to create comprehensive tests to verify that the code satisfies all
behavioral aspects of the requirements including state transitions, boundary con-
ditions, and time-dependent behavior (see Sect. 5.3). The integrated verification
argument is summarized as follows:

1. The software behavior and constraints are specified using two complementary
means: 1) requirements of specific behaviors in the CLEAR notation, and 2)
application-specific properties that are constraints on the behavior.

2. Show that the requirements reflect the proper system intent and are correct:
– Requirements analysis is performed to verify that the requirements are

accurate and free of gaps and conflicts.
– A state-transition system model is created from the requirements that is

used for formal model checking to verify the set of requirements satisfies
the application-specific properties.

3. Tests are created and executed on the code to verify that the implementation
comprehensively satisfies the behavioral aspects of the requirements.

4. Summary argument: Given 1, 2, and 3 above, one can conclude that software
component correctly implements the its behavioral intent in the system.

Requirements-Driven Model Checking and Test Generation 581

3 ArduCopter Case Study

We use the open source ArduCopter rotorcraft flight system [1] platform as
a case study. The mission goal for the ArduCopter is to perform autonomous
surveillance, taking off from a home/launch location, following a sequence of
waypoints and returning to the launch location and finally landing there. It
is restricted to fly within a pre-configured operational safety perimeter called
Geofence - defined with altitude, range, and polygon. There are also a set of pre-
defined locations called rally points as safe-back up landing or loiter locations.
Among the several ArduPilot’s functional components, we focus on the Advance
Fail Safe (AFS) runtime monitor software component that checks if the flight
correctly executes the mission plan and initiates contingency recovery actions
when any violations are detected.

Table 2. AFS high level functional description

Contingency Recovery action

1 Insufficient
Battery

If battery level is low and sufficient to return to launch, then return
to launch and terminate mission. If battery level is critically low
then land immediately and terminate mission

2 GPS Lock
Loss

If GPS is lost, then hover at the current location. If GPS recovered
within 5 s then resume mission. Otherwise go to last waypoint
using IMUs only, land there and terminate mission

3 Max
Altitude
Geofence
breach

If altitude breach is detected, try to drop to the target altitude
within 5 s. If desired altitude is achieved, continue with mission.
Otherwise, land current location and terminate mission

4 Range
Geofence
breach

If range breach is detected, try to drop to Target Position within
5 s. If Target Position is achieved, continue with mission. Other-
wise, land immediately and terminate mission

5 Polygon
Geofence
breach

If polygon breach is detected, try to reach target Position within
Boundary within 5 s. If Target Position is achieved, continue with
mission. Otherwise, land immediately and terminate mission

6 Ground
Station
Communi-
cation
Loss

Go to the closest rally point and hover. Attempt to re-establish
communication without loss for 5 s. If re-established, complete the
remaining mission and record the disruption count. Otherwise,
return to launch and terminate mission. If disruption count> n,
return to launch and terminate mission

For illustrating our approach, we consider a subset of AFS functions, namely
six contingency (off-nominal) situations and the desired recovery response
actions, as listed in their precedence order in Table 2. Readers can find in [21]
details of the formal architectural specifications of the overall system, the prop-
erties inherited by the individual software component due to the architectural

582 D. Bhatt et al.

paradigm when the system and associated software components strictly adhere
to the specification and the controlled build process assembles the requisite soft-
ware component modules with integration guarantees to ensure architectural
specification tightly matches with implementation execution on the platform.

4 Requirement Specification and Model Synthesis

4.1 CLEAR: Constrained Language Enhanced Approach
to Requirements

Requirements specification, formalization, and analysis have been addressed by
several frameworks and tools; most of these provide patterns and templates for
specifying conditions and temporal behaviors. VARED [2] uses NLP techniques
to translate natural language to linear temporal logic (LTL) for further analysis,
however, without attributing formal semantics for the translation. SpeAR [14]
allows writing requirements in a natural-language like specifications using a small
set of temporal patterns; requirements are translated into a Lustre [16] model for
further formal analysis and proofs. The ASSERT platform [11] provides the lan-
guage SRL for writing requirements using conditions and a small set of temporal
patterns, providing some analysis and test generation capabilities but no trans-
lation to formal semantics for property proofs. FRETish [10] provides a more
general approach to temporal behavior specification, with formal semantics for
translation to metric temporal logic (MTL) formulas.

The current methods [10,14] provide quite reasonable approaches for speci-
fying temporal behaviors, but that is not sufficient for specifying complex algo-
rithmic aspects of avionic systems behaviors. CLEAR has been driven to sup-
port full-scale development for complex avionics application domains (e.g., flight

Fig. 2. Snippets of AFS requirements in CLEAR notation

Requirements-Driven Model Checking and Test Generation 583

control, navigation, flight management, and displays), where complex behaviors
include both temporal and algorithmic aspects. CLEAR has a blended notion of
temporal and algorithmic behaviors which allows more flexible composition of
time-triggered, state based, and event-based behaviors with algorithmic aspects
such as set manipulation/selection, interval arithmetic, and mathematical func-
tions. All such aspects are integrated in the underlying semantic synthesis model
(SSM) that is used for formal analysis and test generation.

As an example, the CLEAR requirements in Fig. 2 are snippets taken from
two sets of requirements: GPS Lock Loss and Insufficient Battery contingencies.
Each requirement captures a single specific intent, such as how to respond when
a GPS fix is regained after being lost. Multiple requirements together consti-
tute a requirement set corresponding to a system function. Automated checks
on these requirements ensure that gaps in the requirement set can be identified
and fixed. ‘While’ clauses specify conditions based on states, and ‘When’ clauses
specify events such as a value crossing a threshold or a particular time interval
passing. Events, states, and time intervals can be composed to create conditions
that blend different behaviors together, with all elements appearing in the syn-
thesized model. Enumerated values are indicated by single quotes, so ‘Lost’ and
‘Available’ are possible values for the variable GPS Fix, and ‘Flight Terminated
due to GPS Loss’ is a possible value for AFS State.

CLEAR has a rich expression syntax which also allows user-defined phrases
for higher-level concepts, one example of which can be seen in a requirement
in the ‘distance between’ expression. In this example, copter position and
last way point are of type XYZVector, a built-in structure consisting of X, Y,
and Z coordinates. Custom phrases can also be defined and extended natively
in CLEAR. The distance between phrase in CLEAR calculates the Euclidean
distance between two such vectors. By providing native support for such con-
cepts, a requirement can more clearly convey the intent. While it is possible
to generate the same model using the same exponent and addition operators
that underly ‘distance between’, the higher-level phrase better conveys what is
meant by this requirement. User-defined phrases can be also created for a vari-
ety of computations over time-intervals such as filtered sensor values, moving
averages over time. Such temporal phrases can be combined with mathematical
phrases—e.g.: “While the 30 s simple moving average of the distance between
Coord1 and Coord2 is greater than 400 ft ... ”. Additionally, for a proper factor-
ing of intent in complex behaviors, CLEAR also provides constructs to define
named expressions and sets that can be parameterized and nested.

Finally, to support a variety of application domains, CLEAR provides
over 150 behavior operators including: Boolean, relational, arithmetic, time-
dependent (timers, filters, integrators), math functions (basic algebraic, tran-
scendental, and special functions), and multi-dimensional interpolation tables [4].

584 D. Bhatt et al.

4.2 Tool Architecture Overview and SSM Creation

Fig. 3. Verification automation by Text2Test and sally tools

Text2Test is a comprehensive tool that automates several verification activi-
ties as shown in Fig. 3. Text2Test takes as inputs the CLEAR requirement
set as well as type specifications such as variable data types, units, and defi-
nitions of other ontic characteristics of the inputs. It then parses the textual
requirements, applies requirement-level semantics, and then creates a semantic-
equivalent internal diagram for the requirement set called Semantic Synthesis
Model (SSM). Note that, in HiLiTE, SSM is a direct import and translation
of a MATLAB/Simulink model. Text2Test borrows from HiLiTE’s underlying
definition of SSM elements, and constructs SSM from textual requirements and
type definitions (the yellow shape in Fig. 3 shows the HiLiTE capabilities used).
This SSM forms the basis for model static analysis, test generation (Subsect. 5.3),
requirement analysis against generic properties (Subsect. 5.1), and translation to
formal model for model checking (Subsect. 5.2). The model static analysis func-
tion [5] analyzes SSM to determine range constraints and untestable/anomalous
behavior – providing a foundation for requirements analysis and tests genera-
tion. While other state-of-the-art formal requirement analysis frameworks (such
as FRETish [10]) focus on directly translating structured natural language into
temporal logic formulas, Text2Test bridges two ends with a graphical model
SSM, allowing a full suite of model-based analysis and test generation. Together
with the property-based verification capability using Sally, our tool suite can
generate comprehensive and consistent assurance evidence.

Tool Maturity and Scalability: Text2Test capability is constructed upon the
model analysis and test generation engine of Honeywell’s HiLiTE tool [3,5,6]
that has been used extensively in several avionics product certifications includ-
ing Boeing 787 flight controls and Airbus A350 environment control. HiLiTE
has been qualified under DO-178C and DO-330 (Tool Qualification supplement)

Requirements-Driven Model Checking and Test Generation 585

for performing model static analysis and generating comprehensive tests from
requirements expressed in models. Text2Test tool itself has been matured by
usage in many industrial avionics product programs using hundreds of require-
ments.

4.2.1 From Requirement Set to Semantic Synthesis Model (SSM)
Text2Test first parses requirement texts into functional nodes and data-flow
edges, forming a raw model of the entire requirement set while preserving the
semantics of individual requirements as well as creating traceability. Text2Test
then performs a system-level aggregation through multiple structural merging
processes. Structural merge is based on graph search and pattern recognition,
aiming to fuse low level primitive nodes into those of richer semantics, as well as
to eliminate redundancy and preserve traceability. These result in a minimum-
scale but semantic-equivalent optimized model for the requirement set called
Semantic Synthesis Model (SSM) with full traceability.

For instance, a state transition behavior consists of initialization, and a tran-
sition function that determines the current state value from the previous state
value and/or external transition trigger conditions (triggers for short). The state
only updates at active trigger(s), otherwise remain the same as its previous value
(user specified state has inertia behavior) through a feedback path. The “while”
clause is to specify the previous (source) state value and the “when” clause is
to specify the non-state triggering condition, followed by the clause that sets
the current (destination) state value. The left side of Fig. 4 shows the partial
raw model representing an example of state transition behavior with n trig-
gers, specified across upto n individual requirements in CLEAR. The raw model
contains primitive blocks explicitly mapping to CLEAR functional and logical
keywords (e.g., switch block to “While/When”, not block to “not”), as well as
a Combiner block as a routing hub node aggregating all state value set and get
for the common state variable. An initialization requirement is simply converted
to a constant block input to the Combiner. Then proper connection is added,
forming a feedback loop and other paths.

Fig. 4. State transition subgraph before and after merge.

586 D. Bhatt et al.

When the state transition block merge starts, the Combiner block is firstly
replaced by a StateTransitionBlock (STB) block whose functionality is defined by
an (initially empty) inherent transition matrix. Next, each feedback path is ana-
lyzed to identify the associated non-state trigger and the source state value(s),
which assign the row elements of the state transition matrix (for semantic rich-
ness), thus the entire feedback path is removed (for simplicity), while the non-
state trigger is reconnected directly to the STB block input. Requirement ID is
also recorded as row info (for traceability). The Invalid block is removed (for
execution), since the transition matrix is presumptive to be input-complete.
The input completeness will be formally verified as a generic property after
merge. Lastly, a feedback path of unit delay is added outside STB (for tem-
poral correctness), providing the state value memory for the merged state
transition subgraph. The initialization path in the raw model is also removed
(for simplicity), after initializing unit delay accordingly, rendering the STB
itself as a memoryless non-time dependent block.

Note that, SSM allows null node(s) for input-incomplete requirement set.
Despite the fact that a null node does not execute or propagate value/range
through, the model analysis and test generation can still be performed on sce-
narios that do not require active values from the null node, generating verifica-
tion artifacts of partial coverage to the best extent. This novel “as-is” modeling
provides great flexibility in requirement creation and verification of the rapid pro-
totyping and diagnosis scheme. Further, when a requirement set has defect(s),
the corresponding SSM truthfully interprets that. The defect(s) as well as their
diagnosis traces will be detected by model analysis and systematically reported.

5 Verification Activities and Techniques

In this section, we describe our approach to (a) generic property verification, (b)
model checking of application specific properties, and (c) requirements-based
test case generation, as outlined in Fig. 1. The artifacts generated by these three
verification approaches serve as evidences in assuring the safety of the system in
consideration.

5.1 Requirements Analysis for Generic Properties

Generic properties are fundamental attributes irrespective of the system under
consideration. The Text2Test tool utilizes public domain SMT Solvers to per-
form all the following generic property analyses automatically without having
to specify them explicitly for each output variable in a requirement set:

1) Consistency is a check for conflicts within a set of requirements. While
most formal tools [9,15,17] are built to analyze the logical consistency among for-
mal requirements, there is no notion of precedence among requirements. Rather,
precedence is often baked into each requirement specification (such as a num-
ber of negated conditions in the antecedents) masking the intent of precedence
in the minds of the specifier. However, the CLEAR notation provides explicit

Requirements-Driven Model Checking and Test Generation 587

constructs such as ‘order of precedence’, that the specifier can use before a set
of requirements to obviously indicate the order of its precedence. Consequently,
Text2Test’s consistency check is uniquely designed to account for this precedence
construct. For example, among the three breach contingencies to be mitigated
by the AFS (Table 2), when more than one occurs at the same time, the response
had to be ordered based on the severity and impact of each contingency (per
the concept of operations). Though one could have specified this precedence by
combinatorially adding the absence of other breaches in each requirement, it not
only make the requirements very long, but also masks the intent. However, by
using the CLEAR’s precedence construct, we concisely specified the mitigation
of each breach in order of its severity (as shown in Fig. 5) and Text2Text was
able to analyze consistency accordingly.

Fig. 5. Requirements with precedence construct

In general, if a requirement is considered as a condition-response pair, given
a set of condition-response pairs {(condp1, resp

p
1), . . . , (cond

p
n, resp

p
n)} for output

variable v with the same priority level p, Text2Text’s consistency is formulated
as

(⊕ (condp1, . . . , cond
p
n)

)∨ (¬∨
(condp1, . . . , cond

p
n)

)
, where the first disjunctive

clause is to ensure that only one condition holds at a time and the second clause
relaxes that logic to allow the case where no condition holds.

2) Input and Output Completeness identifies missing combinations of
input conditions and unspecified output values that is crucial to assess the ade-
quacy of requirements. Let {(cond1, resp1), . . . , (condm, respm)} be the set of
condition-response pairs for a variable v at all priority levels. In Text2Test,
the SMT formulation for the input-completeness check is: ∨(cond1, . . . , condm).
Output completeness check is performed by comparing the specified output vari-
able range and the range propagated through the SSM by model static analysis.
Text2Test tool meticulously discovers and displays the gaps to the user in a
formatted HTML report. When analyzing the AFS communication loss require-
ments that have a number of conditions in their antecedents, the tool reported
a number of missing input combinations and unspecified values of the output.
While the resolution to specify more requirements was specific to the case exam-
ple, the tool was helpful in rigorously quantifying the requirements’ adequacy.

3) Mode-thrashing analysis aims to prevent the system from a hazardous
metastable phenomenon, i.e., unintended switching back-and-forth between two
states (general case: cycle through multiple states), often associated with con-
tinuous value triggered mode switches at the absence of safe margins. This is

588 D. Bhatt et al.

an advanced analysis that comes into play when the requirement set specifies
maximum input sensing fluctuation parameter, denoted by fluc. The sensed
continuous input insensed subject to sensing fluctuation on top of the ground
truth reference inref , i.e., insensed ∈ [inref − fluc, inref + fluc], may be used
in mutual-exclusive boolean triggering conditions for some downstream state s
mode switch. One simple statement of the absence of potential mode-thrashing
for an ON/OFF mode switch is that: stable input subject to noise shall not cause
unintended contradicting mode switching triggers in consecutive time steps. Its
general logic is:

(
(inref = REF) ∧ X(inref = REF)

) ⇒ ¬(
(condON

s ∧ XcondOFF
s) ∨ (condOFF

s ∧ XcondON
s)

)

for any possible stable (constant) reference value REF, where X is the standard
temporal operator denoting the “next” time step, and condON

s and condOFF
s are

Boolean conditions that set the state s to be ON and OFF respectively. Note
that, Text2Test supports above concept and logic are as well as their extension to
multiple-mode switches. While no such fluctuation related errors were reported
in the subset of requirements we considered for AFS, we have found this generic
analysis very useful in many large scale systems where engineers unintentionally
missed specifying safety margins among mutual-exclusive triggering conditions
through timers, debounces, or hysteresis.

5.2 Sally Integration and Application Specific Property Verification

Sally [13,22] is a model checker for transition systems with both bounded model
checking (BMC) and k-induction engines. Users can alternate the verification
engines as needed. Integrating Sally with Text2Test provides advanced capabil-
ity of specific property verification other than the generic ones, given that the
requirement set can be modeled as a transition system. In our tool chain, the
integration is achieved by translating Text2Test internal SSM to Sally model.
This subsection introduces the model translation process, as well as the enhanced
capability enabled by the tools integration and the extension.

5.2.1 From SSM to Sally Model

Model translation: Sally model is a script model with inputs, states, and state
transitions. On the other hand, SSM is a functional data-flow graph model which
may or may not possess intended state transition behavior. But because of the
underlying periodic execution with discrete time steps (each requirement set can
have a specified distinct execution period), SSM essentially can be remodeled as
a transition system that responds to instantaneous changes. In this translation
process, nodes/structures of the SSM are converted to the Sally script segments
(declaration, initialization, and state transition), following the rules in Table 3.

Requirements-Driven Model Checking and Test Generation 589

Table 3. SSM to Sally Model Translation.

Case I: A system input node

Sally counterparts: 1) System input declaration: A system input
variable

2) State declaration: An auxiliary input state
variable

3) State initialization: None

4) State transition: Next step value of the
input state equals to input

Note: All states update simultaneously lagging by one
step of system input(s)

Case II: An STB node and the associated unit delay and output node

Sally counterparts: 1) State declaration: A Sally state variable

2) State initialization: Same value as the unit
delay ’s initial value

3) State transitions: Transition matrix in
Sally language

Note: This structure as a whole corresponds to one
single Sally state

Case III: A time-dependent node

Sally counterparts: 1) State declaration: A Sally state variable

2) State initialization: Same value as the
node’s initial value

3) State transitions: Transfer function in Sally
language

Note: Case III excludes the unit delay node instances
from Case II category

Case IV: A non-time-dependent node

Sally counterparts: 1) State declaration: A Sally state variable

2) State initialization: None

3) State transitions: Node’s math/logical
function in Sally language

Note: A memoryless state has no initialization

SSM responds to system input(s) instantaneously, while in Sally model
states’ update responds to system input(s) one time step delay. To eliminate
the response delay at the system inputs interface, an auxiliary input state vari-
able is created to be one time step delay of the corresponding system input in
Sally model. Thus, the auxiliary input state(s) update simultaneously with the
rest of the system, all states as a whole exhibiting equivalent behavior of the
SSM.

590 D. Bhatt et al.

5.2.2 Checking Application Specific Properties Against Sally Model

Overview: The bottom part of Fig. 3 shows the flow for checking a Specific Prop-
erty against a Sally model. The Sally integration with Text2Test tool uses the
Sally model checker tool taking generic Sally query as input. Meanwhile, the
integration supports input and temporal extensions to query formula expres-
siveness through automatically converting the syntax-richer extended queries to
generic Sally queries, as described in the following paragraph and Sect. 5.2.3
respectively.

Specifying Properties With System Inputs: In the generic Sally query .mcmt file,
an input condition cannot be directly encoded as part of the query formula, as
most other model checkers do. Instead, Sally tool supports an input assumption
annex. But it is verbose and more importantly cannot deal with properties con-
taining input-state relationship (such as “State s is always greater than input
x.”). Our solution in the translated Sally model is to introduce an auxiliary
input state for each system input (as shown in Table 3 Case I). Therefore, the
integrated tool chain is more flexible with encoding the input state in the query
formula.

An Example of Application Specific Property: For the AFS runtime monitor
ground station (GS) communication component, a safety property is given as
“After the initial step, if the current GS communication disruption count is more
than 3, then AFS state shall not be Normal Flight (value 0)”. The corresponding
Sally query (in SMT2 format) is

(query AFS (⇒ (and not initial step (> GS Comm Dis Count 3))(not (= AFS State 0)))),

where AFS is the system name, and other variables are self-explanatory.

5.2.3 Temporal Extension to Sally Query

Motivation: Generic Sally query does not allow basic temporal operators such
as “next.” and “pre.”, although “next.” is used in the Sally model script to
denote the next time step. Queries are checked at all time steps without an
explicit temporal operator. This is to say, one cannot write a generic query
formula about a state s in specific future or past time step(s). This is due to
limitation of implementation rather than that of reasoning engines’ power. To
enrich temporal logic semantics and take most advantage of the reasoning power,
temporal extension to Sally query is developed as part of the tools integration.

Approach: Two basic temporal operators X and F, denoting “next” and “even-
tually” respectively, and time step syntax sugar are introduced to augment the
query language. Let t and t′>t denote the beginning and end time of the temporal
domain, and generic pred be an SMT Lib 2.0 format Boolean predicate of the
state variables from the generic Sally model, we have the following general form
of temporal extended predicates below:

Requirements-Driven Model Checking and Test Generation 591

– X(t, t′][generic pred]— meaning that “generic pred holds for all time steps
in between t (not included) to t′ (included).”

– F(t, t′][generic pred]— meaning that “generic pred holds for any time step in
between t (not included) to t′ (included).”

Note that both t and t′ are integer multiple of the system period. They can
be negative, 0, or positive numbers, corresponding to past, current, or future
time respectively. A temporal extended predicate can be embedded in a larger
query formula the same way a generic predicate does. For the AFS emergency
landing component, a safety property is given as “If the battery level is below the
low threshold, then the system state shall become 0 within 0.2 s.” Its temporal
formulation is:

(query AFS (⇒ (< bat lvl low thresh) F[0, 0.2][(= s 0)])). (1)

Property Translation and Sally Model Augmentation: A temporal extended prop-
erty is translated into an equivalent generic Sally query before Sally tool takes
it as input. The translation is a straightforward process of temporal unfolding
and (often) shifting. G10 Hz frequency, Formula 1 is unfolded to

(query AFS (⇒ (< bat lvl low thresh) (or (= s 0)(= next s 0)(= next2 s 0)))), (2)

where next s and next2 s are auxiliary state variables denoting 1 and 2 time
steps forward shifts of s respectively. Note the difference between the prefix
“next ” in the auxiliary state variable name and the temporal operator “next.”.
In case that the temporal operator is X instead of F, Formula 1 is unfolded to

(query AFS (⇒ (< bat lvl low thresh) (and (= s 0)(= next s 0)(= next2 s 0)))).

Each newly created auxiliary state variable needs to be declared and given a
state transition in the Sally model. The state transition is given by the form of
assigning the next time step state value. While an auxiliary state variable of the
past time step can be easily assigned as “(= next.prev s state.s)”, it is not easy
to assign a future state variable without introducing more auxiliary variables
than what are needed in the property. Naturally, entire Formula 2 can be shifted
2 time steps towards past, resulting in the plain Sally query in the generic form:

(query AFS (⇒ (< prev2 bat lvl prev2 low thresh)

(or (= prev2 s 0)(= prev s 0)(= s 0)))), (3)

where prev s and prev2 s are auxiliary state variables denoting 1 and 2 time
steps backward shifts of s respectively.

Now, all state variables in Formula 3 are either on current or past time step.
Their declarations and state transitions can be added to the original Sally model
without introducing further more auxiliary state variables. The augmented Sally
model is thereby a property-specific Sally model, because the choice of auxiliary
state variables are property-specific. The entire process is done in an automatic
fashion. Lastly, Sally tool verifies the property-specific Sally model against the
plain Sally query. The complete data flow is summarized in Fig. 3.

592 D. Bhatt et al.

5.3 Test Generation from Requirements

Testing is inherently incomplete and cannot be formalized in logic. The chal-
lenge is to make testing more rigorous and bring some notions of sufficiency
and “completeness” for covering all relevant aspects of the behaviors expressed
in the requirements. To this end, our approach is to base the testing upon the
behavioral operators embedded in requirements – these are the nodes in the SSM
created by the Text2Test tool, as described in Sect. 4.2.1. An equivalence class
(of tests values) is pre-defined for each specific behavioral aspect of an operator,
such that any single set of test operand/result values falling in the equivalence
class is sufficient to test that behavior aspect.

To ensure that all behavioral operators present in the requirement set are
covered sufficiently by testing, the test generation creates two sets of artifacts:

1. Test Oracles: A set of test oracles (test obligations) are created for each
instance of a behavior operator in the SSM. A test oracle doesn’t encode spe-
cific input/output values; rather it symbolically specifies the equivalence-class
definition of operands and result values for a specific aspect of the operator’s
behavior. Figure 7 provides an example of equivalence-class specification for
the switch operator.

2. Tests: A test created to satisfy a test oracle chooses specific value for the
operands and results of the operator that satisfy the equivalence-class def-
inition in the test oracle and then propagates these values to component’s
inputs/outputs as shown in Fig. 8. A test satisfies a particular test oracle if:
1) the components input values in the test, as propagated to the particular
operator in the SSM graph, match the oracle’s equivalence-class definition,
and 2) the operator result value in the oracle, as propagated with observability
to the component output, matches the test’s expected value.

Creation of Test Oracles’s Equivalence-Class Definitions. We use the
well-established guidance in DO-178C [18] to base the testing criteria of the
test oracles as in Fig. 6. These criteria have been matured over industrial prod-
uct certifications such that the generated tests can detect several classes of
design/coding error such as omissions and substitutions of operands, opera-
tors, and variable. To support a variety of application domains, Text2Test pro-
vides over 150 behavior operators including: Boolean, relational, arithmetic,
time-dependent (timers, debounces, filters, integrators), a comprehensive library
of basic algebraic, transcendental, and special math functions, and multi-
dimensional interpolation tables. Text2Test tool configuration includes a for-
mal definition of test oracles in the Test Oracle Specification Language for each
behavioral operator. A test oracle is essentially an equivalence class specification
where only one test case is required in each equivalence class. The language allows
specification of boundary values, time-based behavior, and range constraints on
values.

Requirements-Driven Model Checking and Test Generation 593

Fig. 6. Test oracle criteria for testing behavioral operators of requirements

Figure 7 shows the test oracle definition for the switch operator which rep-
resents the behavior of the “while ... otherwise ...” clause. Note that the equiv-
alence class formula specifies that the values at the two input operands of the

Fig. 7. Definition of Test Oracles for the Switch Operator

Fig. 8. Example of creation of test oracles and tests from requirements

594 D. Bhatt et al.

switch (x and y in the requirement) need to be different so as to verify that the
proper branch in the code was chosen. Such test will detect the type of variable
substitution error in the code shown in the figure.

Figure 8 shows examples of derivation of test oracles from a requirement
set. As aforementioned in Sect. 4.2.1 and Fig. 3, semantic transformations are
applied to requirements to create the SSM. The nodes in SSM are the behavioral
operators—each having a set of test oracles.

Creation of Tests. The tests are created by iterating over all the operators
(nodes) in the SSM, considering one operator under test at a time. The test
oracles of the operator under test are enumerated by evaluating each test oracle
definition in the embedding context of this operator within the SSM. This yields
constraints on the inputs values and expected output values of the operator
for the test oracle. The next step is the backward and forward propagation of
these constraints and values within the SSM to the component’s inputs and out-
puts, using principles of controllability and observability [8]. Figure 8 shows the
backward and forward propagation for the Sqrt 1 operator’s test oracle which
require input value 17 and produces result value 4.12. The backward propaga-
tion occurs through the sum, square, and subtract operators, yielding {x,y,z}
coordinate values for the two inputs. The forward propagation follows the prin-
ciples of observability—i.e., the unique impact of the operator result should be
reflected in the observed output. As shown in the figure, this entails also prop-
agating through connected operators including timers, state-transition, Boolean
operators to set up input values for several previous steps.

Figure 9 shows some test vectors for Insufficient Battery requirements. Note
the reference to the specific test oracle before each set of vectors. Test vectors
for the last test oracle require multiple time steps to set up before the behavior
result is reached.

Fig. 9. Test vector snippets for insufficient battery requirements

Compared to other test generation tools such as ASSERT [11], our app-
roach is much more comprehensive, with a rigorous notion of coverage for all

Requirements-Driven Model Checking and Test Generation 595

behaviors expressed in the requirements. For example, ASSERT mentions “con-
dition, equivalence class, and boundary value analysis”, but without imparting
any notions of rigor or completeness across all behavior operators. Furthermore,
approach for state/time related behaviors and observability is not provided.

6 Future Work and Conclusions

In this paper, we described our approach to formally analyze and generate test-
cases from requirements in an integrated manner. In our approach, we use the
CLEAR notation to unambiguously capture requirements. The Text2Test tool
is then used to automatically (a) perform formal analysis of generic proper-
ties of the requirements, (b) synthesize requirements models, and (c) generate
requirements-based test cases based on equivalence class testing theory. Fur-
ther, we leverage the Sally tool to model check if the generated model meets
the application-specific properties. We used the Advanced Fail Safe (AFS) mod-
ule of the ArduCopter rotorcraft to illustrate our approach. Our future work is
focused on expanding the definition of CLEAR language to specify ontic data
types with annotations, application-specific behavioral properties, and security
and safety requirements and properties. We also plan to specify formal semantics
for CLEAR constructs and their translation to SSM, supported by PVS proofs.

References

1. ArduPilot. https://ardupilot.org/ (2020)
2. Badger, J., Throop, D., Claunch, C.: Vared: verification and analysis of require-

ments and early designs. In: 2014 IEEE 22nd International Requirements Engi-
neering Conference (RE), pp. 325–326 (2014). https://doi.org/10.1109/RE.2014.
6912279

3. Bhatt, D., Chattopadhyay, A., Li, W., Oglesby, D., Owre, S., Shankar, N.:
Contract-based verification of complex time-dependent behaviors in avionic sys-
tems. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp.
34–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 3

4. Bhatt, D., et al.: Constrained Language Enhanced Approach to Requirements
(CLEAR) Requirements-Driven Model Checking and Test Generation 19 User
Guide. Technical report, Honeywell International, ARCOS Program Tech Report,
August 2021

5. Bhatt, D., Madl, G., Oglesby, D.: System architecture driven software design anal-
ysis methodology and toolset. Technical report, SAE Technical Paper (2012)

6. Bhatt, D., Madl, G., Oglesby, D., Schloegel, K.: Towards scalable verification of
commercial avionics software. In: Proceedings of the AIAA Infotech@ Aerospace
Conference (2010)

7. Bhatt, D., Murugesan, A., Hall, B., Ren, H., Jeppu, Y.: The clear way to transpar-
ent formal methods. In: 4th Workshop on Formal Integrated Development Envi-
ronment - FLoC 2018 (2018)

8. Certification Authorities Software Team (CAST) and others: rationale for accept-
ing masking MC/DC in certification projects. Position Paper 6, Technical report
(2001)

https://ardupilot.org/
https://doi.org/10.1109/RE.2014.6912279
https://doi.org/10.1109/RE.2014.6912279
https://doi.org/10.1007/978-3-319-40648-0_3

596 D. Bhatt et al.

9. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 44

10. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A compo-
sitional proof framework for FRETish requirements (2022)

11. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and anal-
ysis in assert (tm). In: 2017 IEEE 25th International Requirements Engineering
Conference (RE), pp. 283–291. IEEE (2017)

12. Dutertre, B., Jovanovic, D., Navas, J.: Advanced symbolic analysis tools for fault-
tolerant integrated distributed systems. NASA/CR-2018-21934, May 2018

13. Dutertre, B., Jovanović, D., Navas, J.A.: Verification of fault-tolerant protocols
with sally. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol.
10811, pp. 113–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77935-5 8

14. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp.
420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 30

15. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specify-
ing and analyzing early requirements in tropos. Requirements Eng. 9(2), 132–150
(2004)

16. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proc. IEEE 79(9), 1305–1320 (1991)

17. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

18. RTCA Inc.: RTCA DO-178C, Software Considerations in Airborne Systems and
Equipment Certification (2011)

19. RTCA Inc.: RTCA DO-333, Formal Methods Supplement to DO-178C and DO-
278A (2011)

20. SAE: ARP4754A: Guidelines for Development of Civil Aircraft and Systems. SAE
International (2010)

21. Shankar, N., et al.: DesCert: design for certification, DARPA automated rapid cer-
tification of software (ARCOS), technical area 1 (TA-1), Phase 1 Report. Technical
Report, SRI International (October 21 2021), provided upon request at https://
github.com/SRI-CSL/DesCert/tree/master/Reports/Phase1Report

22. SRI International’s Computer Science Laboratory: Sally Model Checker. https://
github.com/SRI-CSL/sally

https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-319-77935-5_8
https://doi.org/10.1007/978-3-319-77935-5_8
https://doi.org/10.1007/978-3-319-57288-8_30
https://github.com/SRI-CSL/DesCert/tree/master/Reports/Phase1Report
https://github.com/SRI-CSL/DesCert/tree/master/Reports/Phase1Report
https://github.com/SRI-CSL/sally
https://github.com/SRI-CSL/sally

Operational Annotations

A New Method for Sequential Program Verification

Paul C. Attie(B)

School of Computer and Cyber Sciences, Augusta University, Augusta, Georgia

PATTIE@augusta.edu

Abstract. I present a new method for specifying and verifying the par-
tial correctness of sequential programs. The key observation is that, in
Hoare logic, assertions are used as selectors of states, that is, an assertion
specifies the set of program states that satisfy the assertion. Hence, the
usual meaning of the partial correctness Hoare triple {f} P {g}: if exe-
cution is started in any of the states that satisfy assertion f , then, upon
termination, the resulting state will be some state that satisfies asser-
tion g. There are of course other ways to specify a set of states. Given
a program α, the post-states of α are the states that α may terminate
in, given that α starts executing in an arbitrary initial state. I intro-
duce the operational triple [α] P [β] to mean: if execution of P is started
in any post-state of α, then upon termination, the resulting state will
be some post-state of β. Here, α is the pre-program, and plays the role
of a pre-condition, and β is the post-program, and plays the role of a
post-condition.

Keywords: Program verification · Hoare logic

1 Introduction

I present a system for verifying partial correctness of sequential programs. In con-
trast to Floyd-Hoare logic [6,10], I do not use pre-conditions and post-conditions,
but rather pre-programs and post-programs. An assertion is essentially a means
for defining a set of states: those for which the assertion evaluates to true. Hence
the usual Hoare triple {f}P {g} means that if execution of P is started in any
of the states that satisfy assertion f , then, upon termination of P , the resulting
state will be some state that satisfies assertion g. Another method of defining a
set of states is with a sequential program α which starts execution in any state,
i.e., with precondition true. The set of states in which α terminates (taken over
all possible starting states) constitues the set of states that α defines. I call these
the post-states of α.

I introduce the operational triple [α]P [β], in which α is the pre-program, β is
the post-program, and P is the program being verified. The meaning of [α]P [β]
is as follows. Consider executions of α that start in any state. From the final
state of every such execution, P is executed. Let ϕ be the set of resulting final
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 597–615, 2022.
https://doi.org/10.1007/978-3-031-06773-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_32&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_32

598 P. C. Attie

states of P . That is, ϕ results from executing P from any post-state of α. Also,
let ψ be the set of post-states of β, i.e., the set of final states that result from
executing β starting in any state. Then, [α]P [β] is defined to mean ϕ ⊆ ψ. That
is, the post-states of α;P are a subset of the post-states of β.

Contributions of the Paper. This paper makes the following contributions:

– Code derivation/synthesis via trading : Starting with a pre-program α and
post-program β, parts of α can be “traded” into the actual program P , since
they are both written in code. This gives a method of deriving program code
from specification code, e.g., unwinding an outer loop of the pre-program
and then trading it into the program can give initial code for a loop body of
the program. This technique is illustrated in Sect. 6. Trading gives flexibility
in developing both the program and the pre-program, as code can be freely
moved between the program and the pre-program, and in some cases there
is benefit to moving code from the program back into the pre-program; see
[1] for examples of this. The Trading tactic is not available in logic-based
verification methods, e.g., Floyd-Hoare logic [6,10] and separation logic [25].

– Separation effect : To deal with pointer-based structures required the exten-
sion of Hoare logic to separation logic [25]. For example, in the in-place rever-
sal of a linked list, a key requirement is that the initial list not contain cycles.
This requirement is expressible in my framework by a pre-program which a
priori constructs an acyclic linked list. Section 6 gives such a pre-program: it
declares an array n of Node objects (thereby making them all distinct) and
then scans the array setting n[i] to point to n[i + 1] (thereby constructing an
acyclic linked list).

– Practical application: Since the pre-program α and the post-program β are
not actually executed, they can be written without concern for efficiency, and
they can refer to any well defined expression, e.g., δ[t] for the shortest path
distance from a designated source s to node t. Nevertheless, being expressed
as code, they may be easier for developers to write than logic specifications,
since code is a formalism that developers are already well familiar with.

2 Related Work

The use of assertions to verify programs was introduced by Floyd [6] and Hoare
[10]: a precondition f expresses what can be assumed to hold before execution of
a program P , and a postcondition g expresses what must hold afterwards. The
“Hoare triple” {f}P {g} thus states that if f holds when execution of P starts,
then g will hold upon termination of P . If termination is not required, this is
known as partial correctness, and if termination is required we have total correct-
ness. Both precondition and postcondition are expressed as a formula of a suit-
able logic, e.g., first order logic. Subsequently, Dijkstra introduced the weakest
precondition predicate transformer [5]: wp(P, g) is the weakest predicate f whose
truth before execution of P guarantees termination of P in a state satisfying g.
He then used weakest preconditions to define a method for formally deriving

Operational Annotations 599

a program from a specification, expressed as a precondition-postcondition pair.
Later, Hoare observed that the Hoare triple can be expressed operationally, when
he wrote “{p} q {r} � p; q < r” in [11], but he does not seem to have developed
this observation into a proof system.

The formalization of specifications and program correctness has lead to a
rich and extensive literature on program verification and refinement. Hoare’s
original rules [10] were extended to deal with non-determinism, fair selection,
and procedures [7]. Separation logic [25] was devised to deal with pointer-based
structures.

A large body of work deals with the notion of program refinement [2,20]: start
with an initial artifact, which serves as a specification, and gradually refine it into
an executable and efficient program. This proceeds incrementally, in a sequence
of refinement steps, each of which preserves a “refinement ordering” relation �,
so that we have P0 � . . . � Pn, where P0 is the initial specification and Pn is the
final program. Morgan [20] starts with a pre-condition/post-condition specifica-
tion and refines it into an executable program using rules that are similar in spirit
to Dijkstra’s weakest preconditions [5]. Back and Wright [2] use contracts, which
consist of assertions (failure to hold causes a breach of the contract), assump-
tions (failure to hold causes vacuous satisfaction of the contract), and executable
code. As such, contracts subsume both pre-condition/post-condition pairs and
executable programs, and so serve as an artifact for the seamless refinement of
a pre-condition/post-condition specification into a program.

A related development has been the application of monads to programming
[18,19]. A monad is an endofunctor T over a category C together with a unit
natural transformation from 1C (the identity functor over C) to T and a multi-
plication natural transformation from T 2 to T . The Hoare state monad contains
Hoare triples (precondition, program, postcondition) [12], and a computation
maps an initial state to a pair consisting of a final state and a returned value.
The unit is the monadic operation return, which lifts returned values into the
state monad, and the multiplication is the monadic operation bind, which com-
poses two computations, passing the resulting state and returned value of the
first computation to the second [28]. The Dijkstra monad captures functions from
postconditions to preconditions [12,27]. The return operation gives the weakest
precondition of a pure computation, and the bind operation gives the weakest
precondition for a composition of two computations.

Hoare logic and weakest preconditions are purely assertional proof methods.
Monads combine operational and assertional techniques, since they provide oper-
ations which return the assertions that are used in the correctness proofs. My
approach is purely operational, since it uses no assertions (formula in a suitable
logic) but rather pre- and post-programs instead. My approach thus represents
the operational endpont of the assertional–operational continuum, with Hoare
logic/weakest preconditions at the other (assertional) endpoint, and monads
somewhere in between.

600 P. C. Attie

3 Syntax and Semantics of the Programming Language

I use a basic programming language consisting of primitive types, arrays, and
reference types, assignments, if statements, while loops, for loops, procedure def-
inition and invocation, class definition, object creation and referencing. I assume
standard primitive types (integers, boolean etc.) and the usual semantics for ref-
erence types: object identifiers are pointers to the object, and the identity of
an object is given by its location in memory, so that two objects are identical
iff they occupy the same memory. Parameter passing is by value, but as usual
a passed array/object reference allows the called procedure to manipulate the
original array/object.

My syntax is standard and self-explanatory. I also use [] to denote non-
deterministic choice between two commands [9]. For integers i, j with i � j,
I use x := [i : j] as syntactic sugar for x := i [] · · · []x := j, i.e., a random
assignment of a value in i, . . . , j to x. This plays the role of the range assertion
i � x � j in Hoare logic. I use tt for true, ff for false, and skip for the statement
that terminates immediately with no change of state.

My proof method relies on (1) the axioms and inference rules introduced in
this paper, and (2) an underlying method for establishing program equivalence.
Any semantics in which the above are valid can be used. For concreteness, I
assume a standard small-step (SOS) operational semantics [24,26].

An execution of program P is a finite sequence s0, s1, . . . , sn of states such
that (1) si results from a single small step of P in state si−1, for all i ∈ 1, . . . , n,
(2) s0 is an initial state of P , and (3) sn is a final (terminating) state of P . A
behavior of program P is a pair of states (s, t) such that (1) s0, s1, . . . , sn is an
execution of P , s = s0, and t = sn. Write {|P |} for the set of behaviors of P .

4 Operational Annotations

I use a sequential program to specify a set of states. There is no constraint on
the initial states, and the specified set is the set of all possible final states. If
any initialization of variables is required, this must be done explicitly by the
program.

Definition 1 (Post-state set). For a terminating program P ,

post(P) � {t | (∃ s : (s, t) ∈ {|P |})} .

That is, post(P) is the set of all possible final states of P , given any initial state.
Infinite (nonterminating) executions of P do not contribute to the post-state set.
The complete state set is specified by the program skip, and the empty state set
by the program while (tt) skip. The central definition of the paper is that of
operational triple [α]P [β]:

Definition 2 (Operational triple). Let α, P , and β be programs. Then

[α]P [β] � post(α;P) ⊆ post(β).

Operational Annotations 601

Recall the meaning of [α]P [β]: every terminating execution of α;P ends in a
state that is also a final state of some terminating execution of β. Thus [α]P [β]
specifies partial correctness, since it deals only with terminating executions, and
permits P to have non-terminating executions. Even α and β can have non-
terminating executions; these do not change the meaning of the specification,
since they do not change the post-state set. If α (β) has only nonterminating
executions then post(α) = ∅, (post(β) = ∅), which is akin to a false precondi-
tion (postcondition). So if α or P (or both) has only nonterminating executions,
then [α]P [β] is vacuously true. If β has only nonterminating executions, then
[α]P [β] is false, unless α or P (or both) has only nonterminating executions.

4.1 Program Ordering and Equivalence

The next section presents a deductive system for establishing validity of opera-
tional triples. The rules of inference use three kinds of hypotheses: (1) operational
triples (over “substatements” as usual), and (2) program ordering assertions
P � Q, and (3) program equivalence assertions P ≡ Q.

Definition 3 (Program ordering, �). P � Q � post(P) ⊆ post(Q).

Here P is “stronger” than Q since it has fewer post-states (w.r.t., the pre-
condition tt , i.e., all possible pre-states), and so P produces an output which
satisfies, in general, more constraints than the output of Q. This is not the same
as the usual program refinement relation, since the mapping from pre-states to
post-states induced by the execution of P is not considered. Also, the “direction”
of the inclusion relation is reversed w.r.t. the usual refinement ordering, where
we write Q � P to denote that “P refines Q”, i.e., P satisfies more specifications
than Q.

The operational triple is expressible as program ordering, since by Defini-
tion 3, [α]P [β] � α;P � β.

If one increases the set of states in which a program can start execution, then
the set of states in which the program terminates is also possibly increased, and
is certainly not decreased. That is, the set of post-states is monotonic in the
set of pre-states. Since prefixing a program α with another program γ simply
restricts the states in which α starts execution, I have the following.

Proposition 1. γ;α � α.

Definition 4 (Program equivalence, ≡). Programs P and Q are equivalent
iff they have the same behaviors: P ≡ Q � {|P |} = {|Q|}.
That is, I take as program equivalence the equality of program behaviors. Note
that equivalence is not ordering in both directions. This discrepancy is because
ordering is used for weakening/strengthening laws (and so post-state inclusion
is sufficient) while equivalence is used for substitution, and so, for programs at
least, equality of behaviors is needed.

Any method for establishing program ordering and equivalence is sufficient
for my needs. The ordering and equivalence proofs in this paper are informal, and

602 P. C. Attie

based on obvious concepts such as the commutativity of assignment statements
that modify different variables/objects.

Future work includes investigating proof systems for program equivalence
[3,4,13,22,23]. Some of these are mechanized, and some use bisimulation and
circular reasoning. I will look into using these works for formally establishing
program equivalence hypotheses needed in my examples (which are then akin to
Hoare logic verification conditions), and to adapting these systems to establish
program ordering, e.g., replace bisimulation by simulation.

5 A Deductive System for Operational Annotations

Table 1 presents a deductive system for operational annotations. Soundness of
the system is formally established in the full version of the paper [1]. I do not
provide a rule for the for loop, since it can be easily turned into a while . The
following are informal intuition for the axioms and inference rules.

Sequence Axiom. If P executes after pre-program α, the result is identical to
post-program α;P , i.e., the sequential composition of α and P . This gives an
easy way to calculate a post-program for given pre-program and program. The
corresponding Hoare logic notion, namely the strongest postcondition, is easy to
compute (in closed form) only for straight-line code.

Empty Pre-program. Program P is “doing all the work”, and so the resulting
post-program is also P . Having skip as a pre-program is similar to having tt as
a precondition in Hoare logic.

Empty Program. This is analogous to the axiom for skip in Hoare logic:
{f} skip {f}, since skip has no effect on the program state.

Trading Rule. Sequential composition is associative: α; (P1;P2) ≡ (α;P1);P2.
By Definitions 1, 4: post(α; (P1;P2)) = post((α;P1);P2). Hence, if the program
is a sequential composition P1;P2, I can take P1 and add it to the end of the pre-
program α. I can also go in the reverse direction, so technically there are two rules
of inference here. I will refer to both rules as (Trading). This seamless transfer
between program and pre-program has no analogue in Hoare logic, and provides
a major tactic for the derivation of programs from operational specifications.

Append Rule. Appending the same program γ to the program and the post-
program preserves the validity of an operational triple. This is useful for append-
ing new code into both the program and the post-program.

Substitution Rule. Since the definition of operational annotation refers only to
the behavior of a program, it follows that one equivalent program can be replaced
by another. This rule is useful for performing equivalence-preserving transfor-
mations, such as loop unwinding.

Operational Annotations 603

Table 1. Axioms and rules of inference

[α] P [α; P] (Sequence Axiom)

[skip] P [P] (Empty Pre-program)

[α] skip [α] (Empty Program)

[α] P1; P2 [β] iff [α; P1] P2 [β] (Trading)

[α] P [β]

[α] P ; γ [β; γ]
(Append)

α ≡ α′ P ≡ P ′ β ≡ β′ [α] P [β]

[α′] P ′ [β′]
(Substitution)

α � α′ [α′] P [β]

[α] P [β]
(Pre-program Strengthening)

[α] P [β′] β′ � β

[α] P [β]
(Post-program Weakening)

[α] P1 [β] [β] P2 [γ]

[α] P1; P2 [γ]
(Sequential Composition)

[α′] P [α]

[α]while(B) P elihw [β]
α′ ∼= (α, B), β ∼= (α, ¬B) (While)

[α′] P [γ; α]

[α]while(B) P elihw [β]
α′ ∼= (α, B), β ∼= (α, ¬B) (While Consequence)

[α′] P1 [β] [α′′] P2 [β]

[α] if B then P1 else P2 fi [β]
α′ ∼= (α, B), α′′ ∼= (α, ¬B) (If)

[α′] P [β] α′′ � β

[α] if B then P fi [β]
α′ ∼= (α, B), α′′ ∼= (α, ¬B) (One-way If)

Pre-program Strengthening. Reducing the set of post-states of the pre-program
cannot invalidate an operational triple.

Post-program Weakening. Enlarging the set of post-states of the post-program
cannot invalidate an operational triple.

604 P. C. Attie

Sequential Composition. The post-state set of β serves as the intermediate state-
set in the execution of P1;P2: it characterizes the possible states after P1 exe-
cutes and before P2 executes.

While Rule. Given [α]P [α], I wish to conclude [α]while(B) P elihw [β] where
β is a “conjunction” of α and ¬B, i.e., the post-states of β are those that are
post-states of α, and also that satisfy assertion ¬B, the negation of the looping
condition. Also, I wish to weaken the hypothesis of the rule from [α]P [α] to
[α′]P [α], where α′ is a “conjunction” of α and B, i.e., the post-states of α′ are
those that are post-states of α and that also satisfy assertion B, the looping
condition. I therefore define the “conjunction” of a program and an assertion as
follows. Let α′, α be programs and B a Boolean expression. Then define α′ ∼=
(α,B) � post(α′) = post(α)∩{s | s(B) = tt}. Note that this definition does not
produce a unique result, and so is really a relation rather than a mapping. The
construction of α′ is not straightforward, in general, for arbitrary assertions B.
Fortunately, most looping conditions are simple, typically a loop counter reaching
a limit. I therefore define the needed program α′ by the semantic condition given
above, and leave the problem of deriving α′ from α and B to another occasion.

Given a while loop while(B) P elihw and pre-program α, let α′ be a program
such that α′ ∼= (α,B), and let β be a program such that β ∼= (α,¬B). The
hypothesis of the rule is: execute α and restrict the set of post-states to those
in which B holds. That is, have α′ as a pre-program for the loop body P . First
assume that B holds initially. Then, after P is executed, the total resulting effect
must be the same as executing just α. So, α is a kind of “operational invariant”.
Given that this holds, and taking α as a pre-program for while(B) P elihw ,
then upon termination, we have α as a post-program. On the last iteration of
the while loop, B is false, and the operational invariant α still holds. In case B
is initially false, the while loop terminates immediately with no change of state.
Hence α holds, since it held initially, and B is false. Hence in both cases I can
assert β as a post-program for the while loop.

While Rule with Consequence. By applying Proposition 1 and (Post-program
Weakening) to (While), I obtain (While Consequence), which states that the
operational invariant can be a “suffix” of the actual post-program of the loop
body. This is often convenient, in practice.

If Rule. Let α be the pre-program. Assume that execution of P1 with pre-
program α′ ∼= (α,B) leads to post-program β, and that execution of P2 with
pre-program α′′ ∼= (α,¬B) also leads to post-program β. Then, execution of
if B then P1 else P2 fi with pre-program α leads to post-program β.

One-Way If Rule. Assume that execution of P1 with pre-program α′ ∼= (α,B)
leads to post-program β. Also assume that any post-state of α is also a post-state
of β. Then execution of if B then P1 fi with pre-program α always leads to
post-program β.

Operational Annotations 605

A notable omission from the above rules is an assignment axiom. Letting
P be x := e in (Sequence Axiom), I obtain [α]x := e [α;x := e]. This can be
regarded as the operational analogue of the Hoare Logic assignment axiom. The
post-program α;x := e can then be further manipulated, e.g., by equivalence
transformations, or by being a pre-program for the statement following x := e.

6 Example: In-Place List Reversal

I now illustrate the use of operational annotations to derive a correct algorithm
for the in-place reversal of a linked list. The full version [1] also contains exam-
ples of deriving selection sort, Dijkstra’s shortest path algorithm, and binary
search tree node insertion, from operational specifications. (Trading) is used
heavily in all these examples. Throughout, I use informal arguments for pro-
gram equivalence, based on well-known transformations such as eliminating the
empty program skip, and unwinding the last iteration of a for loop. Pre/post-
programs are written in bold red italics, and regular programs are written in
typewriter.

The input is a size � + 1 array n of objects of type Node, where � � 3, and
indexed from 0 to � − 1. The last element is set to nil and serves as a sentinel.
Node is declared as follows: class Node{Node p; other fields . . .}. Element i is
referred to as ni instead of n[i], and contains a pointer ni.p, and possibly other
(omitted) fields. The use of this array is purely for specification purposes, so
that I can construct the initial linked list from elements n0, . . . , n�−1. An array
also ensures that there is no aliasing: all elements are distinct, by construction.
Array n is created by executing Node[] n := new Node[� + 1];n.� := nil. The
pre-program and post-program both start with code to declare Node, followed
by the above line to create array n. I omit this code as including it would be
repetitive and would add clutter.

I start by applying (Empty Program), which gives the following:

i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i + 1) nj .p := nj−1rof ;
r := ni+1 ; s := ni+2 ; t := ni+3

skip
i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i + 1) nj .p := nj−1rof ;
r := ni+1 ; s := ni+2 ; t := ni+3

The pre (and post) programs do three things: (1) construct the linked list by
setting nj .p to point to the next node nj+1, including the last “real” node n�−1,
which points to the sentinel n�, and (2) reverse part of the list, up to position
i+1, by setting nj .p to point to the previous node nj−1, for j from i+1 down to
the second node n1, and (3) maintain 3 pointers, into positions i + 1, i + 2, and
i+3. The pre (post) programs are simple enough that I take their correctness for

606 P. C. Attie

granted. The topic of writing correct specifications is of course a major concern
of software engineering [29]. One of the possible post-states of the pre (post)
programs has t = n�; this is the termination state for the overall algorithm,
as we will see. Now unwind the last iteration of the second for loop of the
pre-program. So, by (Substitution)

i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i) nj .p := nj−1rof ;
ni+1 .p := ni ;
r := ni+1 ; s := ni+2 ; t := ni+3

skip
i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i + 1) nj .p := nj−1rof ;
r := ni+1 ; s := ni+2 ; t := ni+3

Now introduce r := ni ; s := ni+1 ; t := ni+2 into the pre-program. Since r, s, t
are subsequently overwritten, and not referenced in the interim, this preserves
equivalence of the pre-program with its previous version. So, by (Substitution)

i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i) nj .p := nj−1rof ;
r := ni ; s := ni+1 ; t := ni+2 ;
ni+1 .p := ni ;
r := ni+1 ; s := ni+2 ; t := ni+3

skip
i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i + 1) nj .p := nj−1 ; rof ;
r := ni+1 ; s := ni+2 ; t := ni+3

Now apply (Trading) to move the last two lines of the pre-program into the
program, and remove the skip since it is no longer needed.

i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i) nj .p := nj−1rof ;
r := ni ; s := ni+1 ; t := ni+2

ni+1.p := ni;
r := ni+1; s := ni+2; t := ni+3

i := [0 : � − 3];
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i + 1) nj .p := nj−1rof ;
r := ni+1 ; s := ni+2 ; t := ni+3

Operational Annotations 607

To avoid repetitive text, and to anticipate the development of the operational
invariant for the while loop that goes through the linked list, I define the abbre-
viations

inv �
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i) nj .p := nj−1rof ;
r := ni ; s := ni+1 ; t := ni+2

and

inv ′ �
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to i) nj .p := nj−1rof ;
r := ni+1 ; s := ni+2 ; t := ni+3

Since r := ni ; s := ni+1 immediately precedes ni+1.p := ni, I can replace
ni+1.p := ni by s.p := r while retaining equivalence. So, by (Substitution)

i := [0 : � − 3]; inv
s.p := r;
r := ni+1; s := ni+2; t := ni+3

i := [0 : � − 3]; inv ′

Since s := ni+1 precedes r := ni+1 and s is not modified in the interim, I can
replace r := ni+1 by r := s while retaining equivalence. Likewise, since t := ni+2

precedes s := ni+2, and t is not modified in the interim, I can replace s := ni+2

by s := t. So, by (Substitution) applied twice, I obtain

i := [0 : � − 3]; inv
s.p := r;
r := s; s := t; t := ni+3

i := [0 : � − 3]; inv ′

From for (j = 0 to � − 1) nj .p := ni+1rof , I have ni+2 .p := ni+3 , and I
observe that ni+2.p is not subsequently modified. Also I have t := ni+2 occur-
ring before the program, and t is not modified until t := ni+3, so I can replace
t := ni+3 by t := t.p. Hence by (Substitution)

i := [0 : � − 3]; inv
s.p := r;
r := s; s := t; t := t.p
i := [0 : � − 3]; inv ′

Now apply (While) to obtain the complete program, while also incrementing
the loop counter i at the end of the loop body.

for (j = 0 to � − 1) nj .p := nj+1rof
r := n0; s := n1; t := n2

608 P. C. Attie

i := 0 ; inv
while (i �= � − 2)

i := [0 : � − 3]; inv
s.p := r;
r := s; s := t; t := t.p
i := [0 : � − 3]; inv ′

i := i + 1;
i := [1 : � − 2]; inv

elihw
i := � − 2 ; inv

Upon termination, i := � − 2 expresses the negation of the looping condi-
tion, and so forms part of the post-program of the while loop, together with
the operational invariant inv . I add i := i + 1 at the end of the loop body
to re-establish the invariant. The justification for this is equivalence between
i := [0 : � − 3]; inv ′; i := i + 1 and i := [1 : � − 2]; inv , i.e., between (1) the
range for i before incrementing, followed by the “modified” invariant inv ′, fol-
lowed by the increment of i, and (2) the range for i after incrementing, followed
by the invariant inv .

The loop terminates when t reaches the sentinel, i.e., when t = n�. Since
t := ni+2 in the operational invariant, this requires i = �− 2. The post-program
of the loop then gives for (j = 1 to � − 2) nj .p := nj−1rof , which means that
the last node’s pointer is not set to the previous node, since the list ends at index
� − 1. Hence we require a final assignment that is equivalent to n�−1.p := n�−2.

The post-program also gives i := � − 2 ; r := ni ; s := ni+1 ; t := ni+2 , which
yields i := � − 2 ; r := n�−2 ; s := n�−1 ; t := n�. Hence the last assignment can be
rendered as s.p := r. Also, the loop termination condition can be rewritten as
t �= nil, since t becomes nil when it is assigned n�, which happens exactly when
i becomes � − 2. Hence, using (Substitution) and (Post-program Weakening), I
obtain

for (j = 0 to � − 1) nj .p := nj+1rof
r := n0; s := n1; t := n2
i := 0 ; inv
while (t �= nil)

i := [0 : � − 3]; inv
s.p := r;
r := s; s := t; t := t.p
i := [0 : � − 3]; inv ′

i := i + 1;
i := [1 : � − 2]; inv

elihw;
i := � − 2 ; inv
s.p := r
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to � − 1) nj .p := nj−1rof

Operational Annotations 609

Now, as desired, the “loop counter” i is no longer needed as a program
variable, and can be converted to an auxiliary (“ghost”) variable. The result is

for (j = 0 to � − 1) nj .p := nj+1rof
r := n0; s := n1; t := n2
i := 0 ; inv
while (t �= nil)

i := [0 : � − 3]; inv
s.p := r;
r := s; s := t; t := t.p
i := [1 : � − 2]; inv

elihw;
i := � − 2 ; inv
s.p := r
for (j = 0 to � − 1) nj .p := nj+1rof ;
for (j = 1 to � − 1) nj .p := nj−1rof

Upon termination, s points to the head of the reversed list. The post-program
is quite pleasing: it constructs the list, and then immediately reverses it!

7 Operational Annotations for Procedures

Let pname be a non-recursive procedure with parameter passing by value, and
with body pbody . Let a denote a list of actual parameters, and let f denote a
list of formal parameters. An actual parameter is either an object identifier or
an expression over primitive types, and a formal parameter is either an object
identifier or a primitive-type identifier.

Let r be an identifier matching the return type of pname, and not occur-
ring in pbody . To avoid complex substitutions I assume that: (1) all local vari-
ables/objects in pbody do not have the same identifier as any variable/object in
the calling context and (2) there is only a single return statement, which is the
last statement of pbody . These assumptions are not fundamental; they can be
removed at the price of somewhat more complex rules.

pname(a) ≡ f := a; pbody [skip/return] (Equiv Nonrecursive V oid)

r := pname(a) ≡ f := a; pbody [r := e/return(e)] (Equiv Nonrecursive)

Equiv Nonrecursive Void handles calls where the returned value does not exist
(void return type). Equiv Nonrecursive handles assignment of the returned value
to r by textually replacing return(e) by r := e in the procedure body. Consider
the linked list reversal algorithm above, packaged as a procedure:

Node Procedure listRev(Node h) {
r := h; s := h.p; t := h.p.p;
while (t �= nil)

s.p := r;

610 P. C. Attie

r := s; s := t; t := t.p
elihw;
s.p := r;
return(s)

}

Now consider a call v := listRev(�) where � is the head of a linked list. By
(Equiv Nonrecursive), I have:

v := listRev(�) ≡ {
h := �;
r := h; s := h.p; t := h.p.p;
while (t �= nil)

s.p := r;
r := s; s := t; t := t.p

elihw;
s.p := r;
v := s
}

This gives the correct effect for the procedure call listRev(�), namely that v
points to the head of the reversed list. In particular, both primitive and reference
types (as parameters) are handled correctly, and need not be distinguished in
the above rules.

For recursive procedures, an inductive proof method is needed, as usual. I
use an inductive rule to establish the equivalence between a sequence of two
procedure calls and a third procedure call. These correspond, respectively, to
the pre-program, the program, and the post-program. The method is as follows:

1. Let α, P, β be recursive procedures which give, respectively, the pre-program,
program, and post-program

2. To establish α;P ≡ β I proceed as follows:
(a) Start with α;P , replace the calls by their corresponding bodies, and then

use a sequence of equivalence-preserving transformations to bring any
recursive calls α′;P ′ next to each other

(b) Use the inductive hypothesis for equivalence of the recursive calls α′;P ′ ≡
β′ to replace α′;P ′ by β′

(c) Use more equivalence-preserving transformations to show that the result-
ing program is equivalent to β

The appropriate rule of inference is as follows:

α′;P ′ ≡ β′ � α;P ≡ β

α;P ≡ β
(Equiv Recursive) (1)

where � means “is deducible from”. Thus, if we prove α;P ≡ β (pre-program
followed by program is equivalent to post-program) by assuming α′;P ′ ≡ β′ (a

Operational Annotations 611

recursive invocation of the pre-program followed by a recursive invocation of the
program is equivalent to a recursive invocation of the post-program), then we
conclude, by induction on recursive calls, that α;P ≡ β.

The following example verifies the standard recursive algorithm for node
insertion into a binary search tree (BST). Each node n consists of three fields:
n.key gives the key value for node n, n.� points to the left child of n (if any), and
n.r points to the right child of n (if any). The constructor Node(k) returns a new
node with key value k and null left and right child pointers. I assume that all
key values in the tree are unique. For clarity, I retain red italics for specification
code and black typewriter for program code. Procedure insert(T, k) gives the
standard recursive algorithm for insertion of key k into a BST with root T.

insert(T, k)::

if (T = nil) T := new Node(k);
else if (k < T.key) insert(T.�, k);
else insert(T.r, k);

To verify the correctness of insert(T, k), I define two recursive procedures
ct(T , ψ) and cti(T , ψ, k). ct(T , ψ) takes a set ψ of key values, constructs a
random binary search tree containing exactly these values, and sets T to point
to the root of this tree. x := select in ψ selects a random value in ψ and assigns
it to x. cti(T , ψ, k) takes a set ψ of key values and a key value k �∈ ψ, constructs
a random binary search tree which contains exactly the values in ψ together
with the key k, and where k is a leaf node, and sets T to point to the root of
this tree.

ct(T , ψ)::

if (ψ = ∅) T := nil;
else

x := select in ψ;
ψ := ψ − x ;
Node T := new Node(x);
ct(T .�, {y | y ∈ ψ ∧ y < x});
ct(T .r , {y | y ∈ ψ ∧ y > x})

cti(T , ψ, k)::

if (ψ = ∅) T := new Node(k);
else

x := select in ψ;
ψ := ψ − x ;
Node T := new Node(x);
if (k < x)

cti(T .�, {y | y ∈ ψ ∧ y < x} , k);
ct(T .r , {y | y ∈ ψ ∧ y > x})

612 P. C. Attie

else
ct(T .�, {y | y ∈ ψ ∧ y < x})
cti(T .r , {y | y ∈ ψ ∧ y > x} , k)

I now verify

[ct(T , ϕ)] insert(T, k) [ct(T , ϕ ∪ k)]. (∗)

That is, the pre-program creates a random BST with key values in ϕ and sets
T to the root, and the post-program creates a random BST with key values in
ϕ ∪ k and sets T to the root. Hence, the above operational triple states that the
result of insert(T, k) is to insert key value k into the BST rooted at T. I first
establish

cti(T , ϕ, k) � ct(T , ϕ ∪ k). (a)

Intuitively, this follows since cti(T, ϕ, k) constructs a BST with key values in
ϕ ∪ k, and where k must be a leaf node, while ct(T, ϕ ∪ k) constructs a BST
with key values in ϕ∪k, with no constraint of where k can occur. A formal proof
proceeds by induction on the length of an arbitrary execution π of cti(T, ϕ, k),
which shows that π is also a possible execution of ct(T, ϕ ∪ k). The details are
straightforward and are omitted. In the sequel, I show that

[ct(T , ϕ)] insert(T, k) [cti(T , ϕ, k)] (b)

is valid. From (a,b) and (Post-program Weakening), I conclude that (*) is valid,
as desired. To establish (b), I show

ct(T , ϕ); insert(T, k) ≡ cti(T , ϕ, k). (c)

from which (b) follows immediately by Definitions 2 and 4.
I establish (c) by using induction on recursive calls. I replace the above calls

by the corresponding procedure bodies, and then assume as inductive hypothesis
(c) as applied to the recursive calls within the bodies. This is similar to the Hoare
logic inference rule for partial correctness of recursive procedures [7].

To apply the inductive hypothesis, I take ct(T , ϕ); insert(T, k), replace each
call by the corresponding procedure body, and then “interleave” the procedure
bodies using commutativity of statements, which preserves equivalence. Then
I bring the recursive calls to ct and to insert together, so that the inductive
hypothesis applies to their sequential composition, which is then replaced by the
equivalent recursive call to cti . This gives a procedure body that corresponds to
a call of cti , which completes the equivalence proof. The result is as follows (see
[1] for full details):

if (ϕ = ∅) T := new Node(k)
else

x := select in ϕ;
ϕ := ϕ − x ;
Node T := new Node(x);

Operational Annotations 613

if (k < T.val)
cti(T .�, {y | y ∈ ϕ ∧ y < x} , k);
ct(T .r , {y | y ∈ ϕ ∧ y > x});

else
ct(T .�, {y | y ∈ ϕ ∧ y < x});
cti(T .r , {y | y ∈ ϕ ∧ y > x} , k)

and is the procedure body corresponding to the call cti(T , ϕ, k). By (Equiv
Recursive), I conclude ct(T , ϕ); insert(T, k) ≡ cti(T , ϕ, k), which is (c) above.
This completes the proof.

8 Conclusions

I presented a new method for verifying the correctness of sequential programs.
The method does not use assertions, but rather pre-/post-programs, each of
which define a set of post-states, and can thus replace an assertion, which also
defines a set of states, namely the states that satisfy it. Since pre-/post-programs
are not executed, they can be inefficient, and can refer to any mathematically
well-defined quantity, e.g., shortest path distances in a directed graph. I illus-
trated my method using as examples in-place list-reversal and an abbreviated
BST node insertion. The full version of the paper [1] also presents derivations
of selection sort and Dijkstra’s shortest path algorithm, as well as giving full
details for BST node insertion.

My approach is, to my knowledge, the first which uses purely operational
specifications to verify the correctness of sequential programs, as opposed to
pre- and post-conditions and invariants in a logic such as Floyd-Hoare logic and
separation logic, or axioms and signatures in algebraic specifications [30]. The
use of operational specifications is of course well-established for the specification
and verification of concurrent programs. The process-algebra approach [8,16,17]
starts with a specification written in a process algebra formalism such as CSP,
CCS, or the Pi-calculus, and then refines it into an implementation. Equivalence
of the implementation and specification is established by showing a bisimula-
tion [16,21] between the two. The I/O Automata approach [14] starts with a
specification given as a single “global property automaton” and shows that a
distributed/concurrent implementation respects the global property automaton
by establishing a simulation relation [15] from the implementation to the speci-
fication. Future work includes more examples and case studies, and in particular
examples with pointer-based data structures. I am also investigating program
refinement in the context of operational annotations, and the extension of the
operational annotations approach to the verification of concurrent programs.

References

1. Attie, P.C.: Operational annotations: A new method for sequential program veri-
fication. CoRR abs/2102.06727 (2021). https://arxiv.org/abs/2102.06727

https://arxiv.org/abs/2102.06727

614 P. C. Attie

2. Back, R., von Wright, J.: Refinement Calculus - A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer (1998). https://doi.org/10.1007/978-1-
4612-1674-2

3. Ciobâcă, Ş, Lucanu, D., Rusu, V., Roşu, G.: A language-independent proof sys-
tem for full program equivalence. Formal Aspects Comput. 28(3), 469–497 (2016).
https://doi.org/10.1007/s00165-016-0361-7

4. Crole, R.L., Gordon, A.D.: Relating operational and denotational semantics for
input/output effects. Math. Struct. Comput. Sci. 9(2), 125–158 (1999). http://
journals.cambridge.org/action/displayAbstract?aid=44797

5. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

6. Floyd, R.: Assigning meanings to programs. In: Mathematical Aspects of Computer
Science. Proceedings of Symposium on Applied Mathematics, pp. 19–32. American
Mathematical Society (1967)

7. Francez, N.: Program verification. Addison-Wesley, International computer science
series (1992)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
9. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686

(1987). https://doi.org/10.1145/27651.27653
10. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580, 583 (1969)
11. Hoare, T.: Laws of programming: the algebraic unification of theories of concur-

rency. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 1–6.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 1

12. Jacobs, B.: Dijkstra and Hoare monads in monadic computation. Theor. Comput.
Sci. 604, 30–45 (2015). https://doi.org/10.1016/j.tcs.2015.03.020

13. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. Formal Aspects
Comput. 27(4), 701–726 (2014). https://doi.org/10.1007/s00165-014-0319-6

14. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI-
Quarterly 2(3), 219–246 (1989), centrum voor Wiskunde en Informatica, Ams-
terdam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
November 1988

15. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. Untimed
systems. Inf. Comput. 121(2), 214–233 (1995). https://doi.org/10.1006/inco.1995.
1134

16. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

17. Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge Uni-
versity Press (1999)

18. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific
Grove, California, USA, 5–8 June, 1989, pp. 14–23. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39155

19. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

20. Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall International
series in computer science, Prentice Hall (1994)

21. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/s00165-016-0361-7
http://journals.cambridge.org/action/displayAbstract?aid=44797
http://journals.cambridge.org/action/displayAbstract?aid=44797
https://doi.org/10.1145/27651.27653
https://doi.org/10.1007/978-3-662-44584-6_1
https://doi.org/10.1016/j.tcs.2015.03.020
https://doi.org/10.1007/s00165-014-0319-6
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309

Operational Annotations 615

22. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45699-6 8

23. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that
dynamically create local names, or: What’s new? In: Borzyszkowski, A.M.,
Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-57182-5 8

24. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic
Methods Program. 60–61, 17–139 (2004)

25. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS 2002, pp. 55–74. IEEE Computer Society, Washington, DC (2002). http://
dl.acm.org/citation.cfm?id=645683.664578

26. Schmidt, D.A.: Programming language semantics. In: Gonzalez, T.F., Diaz-
Herrera, J., Tucker, A. (eds.) Computing Handbook, Third Edition: Computer
Science and Software Engineering, pp. 69: 1–19. CRC Press (2014)

27. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F. In: Bodik, R., Majumdar,
R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20–22, 2016, pp. 256–270. ACM (2016). https://doi.org/10.1145/2837614.
2837655

28. Swierstra, W.: A hoare logic for the state monad. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 440–451.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 30

29. Wing, J.M.: Hints to specifiers. Teaching and learning formal methods, pp. 57–78
(1995)

30. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics, pp. 675–
788. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-1.
50018-4

https://doi.org/10.1007/3-540-45699-6_8
https://doi.org/10.1007/3-540-57182-5_8
http://dl.acm.org/citation.cfm?id=645683.664578
http://dl.acm.org/citation.cfm?id=645683.664578
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1007/978-3-642-03359-9_30
https://doi.org/10.1016/b978-0-444-88074-1.50018-4
https://doi.org/10.1016/b978-0-444-88074-1.50018-4

Towards Formal Verification
of HotStuff-Based Byzantine Fault

Tolerant Consensus in Agda

Harold Carr1, Christa Jenkins2, Mark Moir3(B), Victor Cacciari Miraldo4,
and Lisandra Silva5

1 Oracle Labs, Burlington, MA, USA
harold.carr@oracle.com

2 University of Iowa, Iowa City, USA
cwjnkins@uiowa.edu

3 Oracle Labs, Wellington, New Zealand
mark.moir@oracle.com

4 Tweag, Utrecht, The Netherlands
victor.miraldo@tweag.io

5 Runtime Verification, Champaign-Urbana, IL, USA

lisandra.silva@runtimeverification.com

Abstract. LibraBFT is a Byzantine Fault Tolerant (BFT) consensus
protocol based on HotStuff. We present an abstract model of the pro-
tocol underlying HotStuff/LibraBFT, and formal, machine-checked
proofs of their core correctness (safety) property and an extended condi-
tion that enables non-participating parties to verify committed results.
(Liveness properties would be proved for specific implementations, not
for the abstract model presented in this paper.)

A key contribution is precisely defining assumptions about the behav-
ior of honest peers, in an abstract way, independent of any particular
implementation. Therefore, our work is an important step towards prov-
ing correctness of an entire class of concrete implementations, without
repeating the hard work of proving correctness of the underlying proto-
col. The abstract proofs are for a single configuration (epoch); extending
these proofs across configuration changes is future work. Our models and
proofs are expressed in Agda, and are available in open source.

1 Introduction

There has been phenomenal interest in decentralized systems that enable coor-
dination among peers that do not necessarily trust each other. This interest has
largely been driven in recent years by the emergence of blockchain technology.
When the set of participants is limited by permissioning or proof of stake [1,2],
Byzantine Fault Tolerant (BFT) [3] consensus—which tolerates some byzantine
peers actively deviating from the protocol—is of interest.

This is an extended version of a conference paper with the same title in the proceedings
of the 14th NASA Formal Methods Symposium (NFM 2022). It contains additional
details and proof overviews.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 616–635, 2022.
https://doi.org/10.1007/978-3-031-06773-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_33&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_33

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 617

Due to attractive properties relative to previous BFT consensus protocols,
implementations based on HotStuff [4] are being developed and adopted. For
example, the Diem Foundation (formerly Libra Association) was until recently
developing LibraBFT based on HotStuff [5,6]. (LibraBFT was renamed to
DiemBFT before being discontinued; other variants are emerging.)

Many published consensus algorithms, including some with manual correct-
ness proofs, have been shown to be incorrect [7,8]. Therefore, precise, machine-
checked formal verification is essential, particularly for new algorithms being
adopted in practice. Some of the papers on HotStuff/LibraBFT include brief
correctness arguments, but they lack many details and are not machine checked.
Furthermore, LibraBFT uses data structures, messages and logic, that differ
significantly from versions on which those informal proofs were based.

Our contributions are as follows:

– a precise, abstract model of the protocol underlying HotStuff/LibraBFT;
– precise formulation of assumptions; and
– formal, machine-checked proofs of core correctness (safety) properties, plus a

novel extended condition that enables additional functionality.

Proving correctness for an abstraction of the protocol enables verifying any
concrete implementation by proving that its handlers ensure the assumptions of
our abstract proofs. Our contribution is thus an important step towards proving
correctness for an entire class of concrete implementations. However, this class
does not include all possible variants. In particular, DiemBFT recently added
an option for committing based on 2-chains, rather than 3-chains, as our work
assumes (see Sect. 3.1). Adapting our techniques to accommodate 2-chain-based
implementations is future work.

This paper focuses on the metatheory around an abstraction of a system
of peers participating in the HotStuff/LibraBFT protocol, and assumptions
about which peers can participate, rules that honest peers obey, and the inter-
section of any two quorums containing at least one honest peer. We state and
prove key correctness properties, such as that any two committed blocks do not
conflict (i.e., they belong to the same ordered chain of committed blocks).

Our ongoing work [9] aims to use the results presented in this paper to verify
a concrete Haskell implementation that we have developed based on the Diem
Foundation’s open-source Rust implementation [10]. We have built a system
model that can be instantiated with data types and handlers, yielding a model of
a distributed system in which honest peers execute those handlers and byzantine
ones are constrained only by being unable to forge signatures of honest peers. We
have ported this implementation to Agda, using a library we have developed [11]
to enable the ported code to closely mirror the original, thus reducing the risk
of error. We have made substantial progress towards proving that the resulting
Agda port satisfies the assumptions established in this paper.

LibraBFT supports configuration changes (also known as epoch changes),
whereby parameters such as the number and identities of participating peers can
be changed. The contribution described in this paper is an abstract model for
a single epoch and formal, machine-checked proofs of its correctness conditions.
Stating and proving cross-epoch properties is future work. Nevertheless, the

618 H. Carr et al.

Haskell implementation we are verifying supports epoch changes, and our verifi-
cation infrastructure is prepared for multiple epochs. In particular, our abstract
modules are parameterized by an “epoch configuration” structure.

Our models, definitions and proofs are expressed in Agda [12,13], a
dependently-typed programming language and proof assistant. We chose Agda
for this work because its syntax is similar to Haskell’s, making it easier to develop
and have confidence in a model of the implementation we aim to verify. This
paper is intended to be reasonably self contained and does not require the reader
to know Agda. To that end, we will explain Agda-specific features and syntax
that are important for following the paper. We encourage interested readers to
explore the open source proofs in detail, and we hope that this paper will provide
a useful overview and guide that will make them more accessible. For readers
who would like to learn about Agda, we recommend starting with the tutorial
in [14].

In Sect. 2, we overview salient aspects of HotStuff/LibraBFT to motivate
our approach to abstractly modeling the protocol and formally verifying correct-
ness properties. In Sect. 3, we present the definitions used to develop the formal
abstract model of a system of peers participating in the protocol, and to define
traditional and extended correctness properties. We also describe their proofs,
which are available in open source [9]. Related work is summarized in Sect. 4
and concluding remarks and future work appear in Sect. 5. Additional proof
overviews are included in the extended version of this paper [15].

2 An Overview of HOTSTUFF/LIBRABFT

The following overview does not fully describe HotStuff and LibraBFT: it
highlights aspects that our abstraction must accommodate to enable our proofs.
Details are in the relevant papers and repositories [4–6,9,10].

Peers participating in the HotStuff/LibraBFT protocol repeatedly agree
to extend a chain of blocks that is initially empty (represented by a genesis
record). Each block identifies (directly or indirectly) the block that it extends
(or the genesis record if none) via one or more cryptographic hashes. This com-
mon hash chaining [16] technique ensures that each block uniquely identifies its
predecessor, unless an adversary finds a hash collision (e.g., two different blocks
that hash to the same value); it is a standard assumption that a computationally
bounded adversary cannot do so [17, Chapter 9].

We require that two (honest) peers that faithfully follow the protocol cannot
be convinced to extend the chain in conflicting ways: if honest peer p1 (resp.,
p2) determines that block b1 (resp. b2) is in the chain, then the chain up to one
of the blocks extends the chain up to the other. This must hold even if some
(byzantine) peers (up to some threshold, as discussed below) actively misbehave.

A peer can propose to add a new block to a chain, and others can vote to
support the proposal. A proposed block can include a special reconfiguration
(epoch change) transaction, which would change the set of peers participating
and/or other parameters. To prevent impersonation, messages are signed.

A valid proposal contains or identifies a quorum certificate that represents a
quorum of votes supporting the previous block. Based on assumptions discussed

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 619

below, we can be sure that any two quorums each contain a vote from at least one
honest peer in common. An honest participant will refuse to vote for a proposal
if the requirements for the quorum certificate and previous blocks are not met.
This ensures that the quorum certificate associated with each block in a chain
satisfies these requirements, even though some peers that contributed votes to
the quorum certificates may be dishonest. The conditions for committing a block
are designed to ensure that honest peers never contribute votes to two quorums
that cause conflicting blocks to be committed.

If a byzantine proposer sends different proposals to different peers, a quorum
of votes for the same proposal may not be generated. In this case, waiting peers
may time out, and initiate a new effort to extend the chain; this can result in
competing proposals to extend the same chain with different blocks. To distin-
guish between proposals, each proposed block has an associated round, which
must be larger than that of the block that it extends. Because competing pro-
posals are possible, peers collectively build a tree of records, and follow specified
rules to determine when a given proposal has been committed. The essence of
the protocol is in the rules that honest peers must follow, and what information
a peer must verify before committing a proposal.

The goal of this work is an abstract model of the protocol that is independent
of all these details, capturing just enough detail to prove that, if the assumptions
are not violated, then honest peers will not commit conflicting proposals.

3 Correctness Properties and Proofs

We prove our high-level abstract correctness properties in module
LibraBFT .Abstract .Properties (in file LibraBFT/Abstract/Properties.agda),
which receives several module parameters that can be instantiated in order to
relate a particular implementation to the abstract machinery.

module LibraBFT .Abstract .Properties
(E : EpochConfig) (UID : Set)

(
?
=UID : (u0 u1 : UID) → Dec (u0 ≡ u1))

(V : VoteEvidence E UID)
where . . .

We first describe EpochConfig ; the other module parameters are explained
later. EpochConfig represents configuration information for an epoch, including:
how many peers participate in the epoch (authorsN), their identities (toNodeId),
and their public keys (getPubKey), as well as requirements such as each member
having a different public key (PK--inj). Members are identified by values of type
Fin authorsN : the natural numbers less than authorsN ; for example, we have
getPubKey : Member → PK where Member = Fin authorsN .

An EpochConfig also provides IsQuorum, a predicate indicating what
the implementation considers to be a quorum. The type of IsQuorum is
List Member → Set ; Set is Agda’s way of representing an arbitrary type.
This definition is then used to define another important field of an EpochConfig :

620 H. Carr et al.

bft--assumption : ∀ {xs ys } → IsQuorum xs → IsQuorum ys
→ ∃[a](a ∈ xs × a ∈ ys × MetaHonestPK (getPubKey a))

Here, bft--assumption requires that the intersection of any two quorums con-
tains at least one honest peer.1

Agda supports implicit arguments, listed in curly braces, which need not be
provided explicitly if their values can be inferred from context, e.g., IsQuorum xs
implies that xs is of type List Member . The ∃[a]· notation says that there is an
a which satisfies the condition—a product of three conditions, in this case. The
type of a must be implied by context; here, a ∈ xs implies that a is of type
Member .

To inherit the correctness properties we prove, an implementation must pro-
vide an EpochConfig as a module parameter. Part of constructing it is proving
bft--assumption based on whatever assumptions and definition of IsQuorum the
implementation uses. One common approach is to assume n peers with equal
“voting power”, at most f of which are byzantine, and to ensure that n > 3f ;
in this case, a set of peers is a quorum iff it contains at least 2n/3 distinct
peers. LibraBFT .Abstract .BFT contains a lemma that can be used to prove
that such assumptions imply bft--assumption. The lemma is sufficiently general
to accommodate LibraBFT’s approach of assigning (potentially non-uniform)
voting power to peers, and considering a set of peers to be a quorum iff its
combined voting power exceeds two thirds of the total voting power.

The remainder of this section is in context of a single EpochConfig called E .

3.1 Abstract Records and RecordChains

A Record can be a Block , a quorum certificate (QC) or the epoch’s genesis
(initial) Record ; precise definitions are below. (These are abstract records that
may not correlate closely to data structures and message formats used by an
implementation; for example, in LibraBFT, blocks contain the previous QC.)
HotStuff-based algorithms grow a tree of Records rooted at the epoch’s genesis

genesis b0 q0 b1 q1

b2 q2

b3 q3

b4 q4

b5 q5

b6 q6

Tree of Records

RecordChain (Q q6)

Fig. 1. A tree of Records with a RecordChain from genesis to abstract Record Q q6 .

1 MetaHonestPK is a predicate representing whether a peer owning a key behaves
honestly. The Meta prefix identifies this as being part of the formal model and not
accessible to implementations, which must not depend on knowing who is honest.

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 621

record, where nodes contain a Block or a QC . Paths (called RecordChains) from
the root begin with the genesis record and then alternate between Blocks and
QC s. For example, the existence of a path from the root to a record r is captured
by the type RecordChain r being inhabited. Figure 1 illustrates a tree of Records.

While typical implementations carry more information, abstractly, a Block
comprises its round number, an identifier of type UID for itself and for the quo-
rum certificate it extends, if any (a value of type Maybe UID is either nothing or
just x for some x of type UID). UID can be any type that has decidable equality,
as represented by the second and third module parameters; these are passed to
other modules in the Abstract namespace as needed. Definitions below are in
modules LibraBFT .Abstract .Records and LibraBFT .Abstract .RecordChain.

Typical implementations obtain a Block ’s id by applying a cryptographic
hash function to some or all of its contents; thus identifiers may not be unique.
Our correctness properties are therefore proved modulo “injectivity failures” on
(supposedly) unique ids. We do not assume that such injectivity failures do
not exist, which would make our proofs meaningless because they can occur in
practice, however unlikely. We elaborate below and in Sects. 4 and 5.

Abstractly, a Vote is by a member of the epoch, for a round and Block id.

record Block : Set where
constructor mkBlock
field bRound : Round

bId : UID
bPrevQC : Maybe UID

record Vote : Set where
constructor mkVote
field vRound : Round

vMember : Member
vBlockUID : UID

A quorum certificate (QC) represents enough Votes to certify that a Block
has been accepted by a quorum of members. It includes the Block ’s id and round,
and a list of Votes and evidence that the QC is “valid” (representing properties
that honest peers verify before accepting the QC), i.e.:

1. The list of voting Members represents a quorum.
2. All Votes are for the Block ’s id.
3. All Votes are for the same round.

Honest peers accept a (concrete) Vote only if it satisfies implementation-specific
conditions captured by the module parameter V of type VoteEvidence E UID , an
implementation-specific predicate on abstract Votes. To enable proofs to access
the verified conditions, we add a fourth coherence clause to QCs:

4. For each Vote in the QC , there is evidence that a message was sent con-
taining a concrete representation of the (abstract) Vote that satisfies the
implementation-specific conditions.

622 H. Carr et al.

Putting this all together, we have:

record QC : Set where
constructor mkQC
field qRound : Round

qCertBlockId : UID
qVotes : List Vote
qVotes--C1 : IsQuorum (List--map vMember qVotes)
qVotes--C2 : All (λ v → vBlockUID v ≡ qCertBlockId) qVotes
qVotes--C3 : All (λ v → vRound v ≡ qRound) qVotes
qVotes--C4 : All V qVotes

All (from the Agda standard library) accepts a predicate and a list, and
requires that each element of the list satisfies the predicate.

Next, we define a Record to be either a Block , a QC , or the spe-
cial genesis record I . There is a constructor for each case, and the B and
Q constructors take arguments of the appropriate type to form a Record .

data Record : Set where
I : Record
B : Block → Record
Q : QC → Record

We then say that a record r ′ extends another record r , denoted r ← r ′,
whenever one of the following conditions is met:

1. r is the genesis Record and r ′ is a Block for round greater than 0 and not
identifying any previous Block .

2. r is a QC and r ′ is a Block with a round higher than r ’s and with a bPrevQC
field identifying r .

3. r is a Block and r ′ is a QC certifying r .

We capture these conditions in the following Agda datatype; ← indicates that
← is an infix operator with two arguments. Values of this type can be con-
structed using one of three constructors (I←B , Q←B or B←Q), each of which
requires several arguments to establish a value of ← for a pair of Records.

data ← : Record → Record → Set where
I←B : ∀ {b} → 0 < getRound b → bPrevQC b ≡ nothing

→ I ← (B b)
Q←B : ∀ {q b} → getRound q < getRound b

→ just (qCertBlockId q) ≡ bPrevQC b
→ Q q ← B b

B←Q : ∀ {b q } → getRound q ≡ getRound b → bId b ≡ qCertBlockId q
→ B b ← Q q

RecordChains are in the reflexive, transitive closure of ← , starting at the
genesis record I . Sometimes, we reason about paths starting at records other
than

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 623

I ; we therefore define RecordChain using the more specific RecordChainFrom.

data RecordChainFrom (o : Record) : Record → Set where
empty : RecordChainFrom o o
step : ∀ {r r ′ } → RecordChainFrom o r

→ r ← r ′

→ RecordChainFrom o r ′

RecordChain : Record → Set
RecordChain = RecordChainFrom I

Next, we present definitions needed to specify when a Block can be commit-
ted. For k > 0, a K--chain is a sequence of k Blocks, each of which is extended
by a QC , such that each Block (except the first) extends the QC that extends
the previous Block . Furthermore, each adjacent pair of Blocks must satisfy the
relation R, which can be instantiated with Simple (which holds for any pair of
Blocks) or Contig (which holds only if the rounds of the two Blocks are con-
tiguous: the second Block ’s round is one greater than that of the first; the first
parameter to R enables a definition of Contig that does not require a predecessor
for the first Block ; see module LibraBFT .Abstract .RecordChain). K--chains are
defined as follows.

data K--chain (R : N → Record → Record → Set)
: (k : N) {o r : Record } → RecordChainFrom o r → Set where
0--chain : ∀ {o r } {rc : RecordChainFrom o r } → K--chain R 0 rc
s--chain : ∀ {k o r } {rc : RecordChainFrom o r } {b : Block } {q : QC }

→ (r←b : r ← B b) → (prf : R k r (B b))
→ (b←q : B b ← Q q) → K--chain R k rc
→ K--chain R (suc k) (step (step rc r←b) b←q)

Block b0 (and those preceding it) are committed if b0 is the head of a con-
tiguous 3-chain: there is a RecordChain that contains b followed by blocks b1
and b2 , such that the rounds of blocks b0 , b1 and b2 are consecutive. This is
called a CommitRule (kchainBlock n c3 is the nth Block from the end of c3):

data CommitRuleFrom {o r : Record }
(rc : RecordChainFrom o r) (b : Block) : Set where

commit--rule : (c3 : K--chain Contig 3 rc) → b ≡ kchainBlock 2 c3
→ CommitRuleFrom rc b

3.2 First Correctness Property: thmS5

We can now explain the first high-level property we prove for our abstract model,
thmS5 . (Because our work has been influenced by versions of the HotStuff [4]
and LibraBFT papers [5,6], some of our properties are named after proper-
ties presented informally in those papers. For example, thmS5 is named after
Theorem S5 in [5].) It states that, if two blocks b and b′ are committed via
CommitRule rc b and CommitRule rc′ b′, respectively, then one of the blocks

624 H. Carr et al.

is contained in the record chain of the other. This property ensures that all
committed Blocks are on a single non-branching path in the tree of Records.

thmS5 : ∀ {q q ′ } → {rc : RecordChain (Q q)} → AllInSys rc
→ {rc′ : RecordChain (Q q ′)} → AllInSys rc′

→ {b b′ : Block } → CommitRule rc b → CommitRule rc′ b′

→ Either NonInjective--≡ (Either ((B b) ∈RC rc′) ((B b′) ∈RC rc))

AllInSys rc means that each record in rc is “in” the abstract system accord-
ing to an implementation-specific predicate over abstract Records called InSys,
which is provided as a module parameter. For purposes of AllInSys, a record r
being “in” a record chain rc is captured by a simple recursive definition: if rc is
formed by extending record chain rc′ by record r ′, then r is “in” rc iff r = r ′

or r is “in” rc′. On the other hand, as explained in Sect. 3.4, ∈RC represents a
more complicated notion of a record being “in” a record chain.

Note that thmS5 requires that either NonInjective--≡ holds or one of the
committed Blocks is in a RecordChain ending at the other. The NonInjective--≡
disjunct—which is shared by many of the properties discussed below—reflects
that we prove thmS5 modulo injectivity of Block ids, as discussed above.

In Sect. 3.6, we explain how we refine the definition of thmS5 and other
properties in order to relate our abstract proofs to the security properties of
a concrete implementation that is proved correct using them. For now, how-
ever, we can think of the following simplified definition of NonInjective--≡:

NonInjective--≡ : Set
NonInjective--≡ = Σ (Block × Block)

(λ {(b0 , b1) → b0 �≡ b1 × bId b0 ≡ bId b1 })

The Σ notation is similar to the ∃[·]· notation introduced earlier, except that
it specifies the type of the existentially quantified value (not just a name, as with
∃[·]·) and the condition on the value of that type is expressed as a predicate on
that type. Thus, a value of type NonInjective--≡ comprises a pair of (abstract)
Blocks—b0 and b1—that are different but have the same id.

3.3 Precisely Defining Protocol Rules

Module LibraBFT .Abstract .RecordChain.Properties contains the proof of
thmS5 , which requires module parameters representing assumptions about
Records that are InSys. These assumptions capture the key properties that an
implementation must ensure. Part of our contribution is to precisely define these
assumptions in an abstract way, independent of any particular implementation.

Implementations described in various papers [4–6] are all based on the same
core ideas, but differ substantially in detail. None of these papers gives a precise
definition of the core protocol. Early versions of the LibraBFT papers [5] come
closest, providing explicit statements of two “voting constraints”.

These voting constraints (“Increasing Round” and “Preferred Round”) were
a starting point for us, but they are not entirely suitable for our purposes.
For example, the “Increasing Round” constraint is originally stated as: An

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 625

honest node that voted once for B in the past may only vote for B ′ if
round (B) < round (B ′). However, to interpret this as a protocol rule, we
would need to define precisely what it means to have “voted in the past”. Our
proof efforts revealed that it suffices to require that an honest peer does not sign
and send different (abstract) votes for the same round (regardless of order):

VotesOnlyOnceRule : Set �
VotesOnlyOnceRule = (a : Member) → MetaHonestMember a

→ ∀ {q q ′ } → InSys (Q q) → InSys (Q q ′)
→ (v : a ∈QC q) (v ′ : a ∈QC q ′)
→ vRound (∈QC--Vote q v) ≡ vRound (∈QC--Vote q ′ v ′)
→ ∈QC--Vote q v ≡ ∈QC--Vote q ′ v ′

For generality, InSys is assumed to return a type from some arbitrary uni-
verse [18] with level �. The v parameter is evidence that there is a Vote by
member a represented in q (a QC), and ∈QC--Vote q v is that (abstract) Vote.
Thus, VotesOnlyOnceRule requires that, if there are two Votes for the same
round by an honest member a in QC s in the system, then the Votes are equal.

The second constraint—PreferredRoundRule—is more complicated. It is
based on the voting constraint called “Locked Round” in early versions of the
LibraBFT paper [5]; similar constraints on voting are followed by HotStuff [4]
and by later versions of LibraBFT [6]. The essence of this rule is that, if an
honest peer contributes a Vote to q (a QC) that commits a Block (c3 is essen-
tially a CommitRule that commits the Block identified by kchainBlock 2 c3),
then it does not vote in a higher round for a Block unless the round of the pre-
vious Block is at least that of the committed Block . This is a key requirement
to avoid voting to commit another Block that conflicts with the first.

PreferredRoundRule : Set �
PreferredRoundRule

= ∀ a {q q ′ } → MetaHonestMember a → InSys (Q q) → InSys (Q q ′)
→ {rc : RecordChain (Q q)} {n : N} → (c3 : K--chain Contig (3 + n) rc)
→ (v : a ∈QC q) (rc′ : RecordChain (Q q ′)) (v ′ : a ∈QC q ′)
→ vRound (∈QC--Vote q v) < vRound (∈QC--Vote q ′ v ′)
→ Either NonInjective--≡

(getRound (kchainBlock (suc (suc zero)) c3) � prevRound rc′)

3.4 The Proof of thmS5

Our proof of thmS5 is similar to the manual proof presented an early version
of the LibraBFT paper [5]. However, a formal, machine-checked proof must
address many details that are glossed over in the manual proof. Furthermore, as
discussed in Sect. 3.3, making our assumptions about honest peers’ Votes precise
and implementation-independent required somewhat different assumptions.

To help the reader approach the formal, machine-checked proofs in our open-
source development [9], we describe below some of its key proofs and properties.

626 H. Carr et al.

We first introduce two key lemmas. Roughly speaking, lemmaS2 states that
there can be at most one certified Block per round. Its proof depends on the
bft--assumption: for two QC s, there is some honest peer with Votes in each. By
the assumption that honest peers obey VotesOnlyOnceRule, if the blocks certified
by the two QC s have the same round, then both Votes are for the same BlockId .
However, this does not imply the QC s certify the same Block . For this reason,
the conclusion of lemmaS2 is that either bId is non-injective or b0 ≡ b1 .

lemmaS2 : ∀ {b0 b1 : Block } {q0 q1 : QC } → InSys (Q q0) → InSys (Q q1)
→ (p0 : B b0 ← Q q0) (p1 : B b1 ← Q q1)
→ getRound b0 ≡ getRound b1
→ Either NonInjective--≡ (b0 ≡ b1)

Similarly, lemmaS3 makes the PreferredRoundRule apply to QC s.

lemmaS3 : ∀ {r2 q ′ } {rc : RecordChain r2 } → InSys r2
→ (rc′ : RecordChain (Q q ′)) → InSys (Q q ′)
→ (c3 : kchain Contig 3 rc) → round r2 < getRound q ′

→ Either NonInjective--≡ (getRound (kchainBlock (suc (suc zero)) c3)
� prevRound rc′)

The proof of thmS5 depends on a non-symmetric variant of it called propS4 :

propS4 : ∀ {q q ′ } {rc : RecordChain (Q q)} → AllInSys rc
→ (rc′ : RecordChain (Q q ′)) → AllInSys rc′

→ (c3 : K--chain Contig 3 rc)
→ getRound (kchainBlock (suc (suc zero)) c3) � getRound q ′

→ Either NonInjective--≡ (B (kchainBlock (suc (suc zero)) c3) ∈RC rc′)

Recall that ∈RC is a specific representation of what it means for a Record
to be “in” a RecordChain that is precisely defined later, and note that c3 is a
K--chain Contig 3 rc, for some rc, i.e., a CommitRule.

Proof overviews for thmS5 and propS4 are in the extended paper [15].

Finally, we explain what it means for a Block to be “in” a RecordChain, as
captured by the ∈RC predicate. It is tempting to think that, if RecordChains rc
and rc′ both end at block b, then the requirements of ← ensure that rc and rc′

are the same RecordChain. However, suppose we have q ← b and q ′ ← b, where
q and q ′ are QC s. The definition of ← requires that just (qCertBlockId q) ≡
bprevQC b ≡ just (qCertBlockId q ′). This does not imply that q ≡ q ′ because
q and q ′ may include different Votes, reflecting the reality that two peers may
be convinced to extend the same Block by two different valid QC s.

Therefore, we need a notion of equivalent RecordChains that contain the same
Blocks and equivalent QC s: two QCs are equivalent iff they certify the same
Block (i.e., their qCertBlockId components are equal). These notions are cap-
tured by ≈RC (defined in LibraBFT .Abstract .RecordChain), which requires the
two RecordChains to be “pointwise equivalent” meaning that the corresponding
Records in the two RecordChains are equivalent. A lemma RC--irrelevant shows

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 627

that, if two record chains rc and rc′ end at the same Record , then they are
equivalent (i.e., rc ≈RC rc′), unless there is an injectivity failure.

The K--chain--∈RC property used in the proof of propS4 states that, if a
RecordChain rc1 ends at a block b that is in a K--chain based on another
record chain rc, then another Block that is earlier in the K--chain is also “in”
rc1 . To enable proving this, ∈RC must allow for the possibility that the other
Block is contained in an equivalent RecordChain. The definition of ∈RC there-
fore has an additional constructor beyond the two obvious ones, which enables
the Record in question to be “transported” from an equivalent RecordChain:

data ∈RC {o : Record } (r0 : Record) :
∀ {r1 } → RecordChainFrom o r1 → Set where

here : ∀ {rc : RecordChainFrom o r0 } → r0 ∈RC rc
there : ∀ {r1 r2 } {rc : RecordChainFrom o r1 } → (p : r1 ← r2)

→ r0 ∈RC rc → r0 ∈RC (step rc p)
transp : ∀ {r } {rc0 : RecordChainFrom o r } {rc1 : RecordChainFrom o r }

→ r0 ∈RC rc0 → rc0 ≈RC rc1 → r0 ∈RC rc1

3.5 Traditional and Extended Correctness Properties

Our core correctness property CommitsDoNotConflict is thmS5 without the
NonInjective--≡ disjunct. It is proved in LibraBFT .Abstract .Properties, which
receives an additional module parameter no--collisions--InSys providing evidence
that there are no injectivity failures between Blocks that satisfy InSys. Note
that, if an implementation reaches a state in which this does not hold, then
there is an injectivity failure between concrete Records at the implementation
level; for a typical implementation, this signifies a collision for a cryptographic
hash function among Records that are actually in the system, contradicting the
standard assumption that a computationally bounded adversary is unable to find
such collisions. To prove CommitsDoNotConflict , we invoke thmS5 and then use
no--collisions--InSys to eliminate the possibility of an injectivity failure.

To invoke CommitsDoNotConflict for a particular implementation, we need
to provide AllInSys rc, where rc is the RecordChain for the first CommitRule
(and similarly for rc′). To enable this, honest voters in typical implementations
will vote to extend a Block only after verifying that the Block extends a QC (or
the initial Record) that the peer already knows is in the system. Thus, a peer
that verifies a CommitRule based on a record chain rc that ends in a QC (q)
knows that every Record in rc is “in the system”: AllInSys rc.

Extended Correctness Condition. We are also interested in enabling parties that
do not participate in the protocol to verify commits. Suppose a peer p provides
to a client c the contents of a CommitRule that c can verify. In this case, c
cannot invoke CommitsDoNotConflict (or thmS5), because it does not know the
RecordChain on which the CommitRule is based.

For this purpose, we define and prove a variant of CommitsDoNotConflict
called CommitsDoNotConflict′. This condition ensures that even a party that

628 H. Carr et al.

does not participate in consensus can confirm commits and will not confirm
conflicting commits.

CommitsDoNotConflict′ : ∀ {o o′ q q ′ }
→ {rcf : RecordChainFrom o (Q q)} → AllInSys rcf
→ {rc′ : RecordChainFrom o′ (Q q ′)} → AllInSys rc′

→ {b b′ : Block } → CommitRuleFrom rcf b → CommitRuleFrom rcf′ b′

→ Either Σ (RecordChain (Q q ′)) ((B b) ∈RC)
Σ (RecordChain (Q q)) ((B b′) ∈RC)

CommitsDoNotConflict′ does not require CommitRules based on full
RecordChains; instead, CommitRuleFroms based on RecordChainFroms suffice.
This property shows that a party can validate just the Records required to form
a CommitRuleFrom, and confirm that the Block it claims to commit has indeed
been committed, and that there cannot be another commit that conflicts with
it. Here, (B b) ∈RC is a predicate over values of type RecordChain (Q q ′),
so CommitsDoNotConflict′ says that, if there are two CommitRuleFroms based
on RecordChainFroms that end with a QC and have all of their Records in the
system, then (unless there is an injectivity failure), one of committed Blocks is
in a RecordChain that contains the other.

To prove this property, we require an additional assumption about the imple-
mentation, which is provided as a module parameter ∈QC⇒AllSent, of type
Complete InSys, where:

Complete : ∀ {�} → (Record → Set �) → Set �
Complete ∈sys = ∀ {a q } → MetaHonestMember a

→ a ∈QC q → ∈sys (Q q)
→ ∃[b] (Σ (RecordChain (B b)) AllInSys × B b ← Q q)

Here, Record → Set � is a predicate on (abstract) Records representing
what Records an implementation considers to be “in the system”.

This assumption (indirectly) requires that an honest peer sends a Vote for a
Block id (which may subsequently be represented in a QC) only if it knows that
there is a Block with that id and a RecordChain up to that Block whose Records
are all “in the system” (for example the peer may have validated all of those
Records itself, or it may have validated sufficient information to be confident
that all of them have been validated by some honest peer, unless there is a hash
collision among Records that are in the system).

The extended version of this paper [15] includes proof overviews for
CommitsDoNotConflict′, and for a lemma crf⇒cr on which it depends.

3.6 Relating Non-injectivity to Security Properties

Recall from Sect. 3.2 that we prove our abstract properties modulo injectivity of
Block ids. However, the simplified NonInjective--≡ disjunct used in the property
definitions presented so far is insufficient. The reason is that it is trivial to
construct two different abstract Blocks with the same id, meaning that we could

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 629

prove thmS5 with a single-line proof, independent of the actual protocol. Worse,
we could accidentally do the same in context of legitimate-looking proofs.

The issue is that the abstract Blocks we could trivially construct bear no
relation to any real Blocks and ids produced in the execution of a concrete
implementation. To resolve this problem, we strengthen the first disjunct of
thmS5 to NonInjective--≡--InSys, defined as follows:

NonInjective--≡--InSys : Set
NonInjective--≡--InSys =

Σ NonInjective--≡ λ {((b0 , b1) , ,) → InSys (B b0) × InSys (B b1)}

This definition requires that the proof not only provides different Blocks
b0 and b1 with the same id, but also proof that the implementation considers
the Records B b0 and B b1 to be “in the system”. The meaning of “in the
system” is specified by the implementation-provided predicate InSys and is thus
beyond the scope of this paper. However, in ongoing work, we are proving a
real implementation correct using the results presented here. In that broader
context, we instantiate InSys with a predicate that holds only for Blocks that
are contained in network messages that have actually been sent. In this way, from
the perspective of that concrete implementation, we ensure that our correctness
properties hold unless and until an adversary actually finds a hash collision and
introduces it into the system. We contrast this approach to some related efforts
in Sect. 4.

The NonInjective--≡ and NonInjective--≡--InSys definitions stated above are
actually simplified versions of more general definitions we use in our proofs;
details are available in our open source development [9]. These more general
definitions are required because, at different stages of our proofs, we use different
predicates to capture evidence collected so far about the conflicting Blocks, so
that we can build up to the proof for thmS5 that both Blocks satisfy InSys.

4 Related Work

4.1 HOTSTUFF/LIBRABFT

Before open sourcing our work in December 2020 [9], we were not aware of
any formal verification work related to the HotStuff/LibraBFT protocols
beyond manual proof sketches [4–6]; these are useful and have influenced our
work significantly, but are far from detailed, precise proofs. We have since learned
of two other pieces of work involving mechanical proofs of correctness of variants
of the HotStuff/LibraBFT algorithm, and one involving model checking.

Librachain [19] is a Coq-based model of the data structures used in
LibraBFT. It contains a single commit from May 2020, described as “exper-
imental”; we are not aware of any paper describing this work. The Librachain
model commits to some structural details that are not central to the core pro-
tocol. For example, it assumes that the QuorumCert that a new Block extends
is included in the Block record; this is one implementation choice, but certainly

630 H. Carr et al.

not fundamental. Furthermore, the proofs assume various conditions have been
validated for the data structures, and are thus intimately tied to the particular
implementation types. In contrast, we model an abstraction of the core protocol,
and establish precise requirements for any implementation to enjoy the correct-
ness properties we prove. The Librachain development also uses a hypothesis
that the hash function used is injective, which is not true of hash functions that
are used in practice. Our properties are proved to hold unless and until a spe-
cific injectivity failure exists between (abstract) Records that are actually “in
the system” (see Sect. 3.6); when instantiated with implementations that use
cryptographic hash functions to assign ids, this ensures that the result holds
unless and until a peer succeeds in finding a specific hash collision, violating the
assumption that a computationally bounded adversary cannot do so.

More recently, Leander [20] has described work modeling and proving correct-
ness for one specific, simplified variant of HotStuff. Hashes are not explicitly
modeled, but the way the relationship between blocks is modeled amounts to an
assumption that hashing is injective. Leander modeled this simplified variant in
TLA+ and Ivy, and the paper is focused on comparing the tools for this purpose.

Kukharenko et al. [21] use TLA+ [22] to model check basic HotStuff, but
not the more practical chained variant used by LibraBFT. Again, our work
applies to an abstraction of the protocol that can be instantiated for all versions
of HotStuff and LibraBFT, as well as variants that may not yet exist.

Model checking has the advantage of requiring less work (defining a model
and correctness properties and then “pushing the button”) than developing pre-
cise, machine-checked correctness proofs. It can also provide insight into errors
found. Kukharenko et al. ran one of their models with seven participants of
which three are byzantine (correctness is not guaranteed in this case), and found
a counterexample showing how the byzantine peers can violate correctness.

To limit the state space, Kukharenko et al. developed a restricted model,
in which a node (analogous to our Block) can be extended only by one of two
nodes, and a more general model in which any node can extend any other (from
some fixed set). The restricted model, with just four peers (one byzantine), took
over seven hours to check. The more general model took over 17 d. Our approach
imposes no such limitations, and Agda checks our proofs in under one minute.
Finally, for the more general model, TLA+ estimates an “optimistic” probability
of 0.3 that it has in fact not explored the entire state space due to hash collisions
on states, leaving open the possibility of an unfound bug even for this minimal
configuration. We consider that Kukharenko et al.’s work complements ours, but
does not obviate the need for the machine-checked correctness proofs.

4.2 Other BFT Consensus Protocols

P̂ırlea and Sergey present Toychain [23,24], which models Nakamoto consen-
sus [25] and proves correctness properties about it using Coq [26]. Although
Nakamoto consensus differs substantially from HotStuff/LibraBFT, Toy-
chain is the closest prior work to ours in terms of modeling structures (collections
of trees of records) and reasoning about their properties. Their model can be

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 631

instantiated with different implementation components, and they prove that any
implementation that provides components satisfying certain requirements is cor-
rect. In contrast, each of the LibraBFT-related efforts mentioned above [19–21]
proves properties about one particular model of HotStuff/LibraBFT.

While Toychain indeed establishes some generality by enabling instantiation
with specific components, we impose no structure whatsoever on an implemen-
tation: if the externally visible behaviour of honest peers for a given implemen-
tation complies with two precisely stated rules, then that implementation can
inherit the correctness properties we have proved of the abstract model.

Toychain initially assumed an injective hash function, which requires trust-
ing that the proofs do not abuse the power granted by a false assumption. Inter-
estingly, subsequent versions of Toychain addressed this issue by removing the
assumption that the hash function used is injective. The bulk of Chap. 3 of
P̂ırlea’s thesis [24] is devoted to describing the complexity that this undertaking
involved, reporting that every proof had to be changed, and citing an example
of one proof that grew from 10 lines to 150 to accommodate this enhancement!

In contrast, as described in Sect. 3.6, we have taken a different approach. Our
abstract model is aware only of ids assigned to Blocks that an implementation
considers to be “in the system”, not hash functions. We too rested our initial
development on an unsound foundation by assuming that ids were injective.
However, because our abstraction freed us from reasoning about hash functions
in our correctness proofs, it was not particualrly disruptive to later augment our
proofs to provide evidence of specific injectivity failures when necessary, tying
those injectivity failures to Records that the implementation considers to be in
the system.

The work that is perhaps closest to our broader project is Velisarios [27],
which uses the Coq theorem prover [26] and provides a framework for modeling
distributed systems with byzantine peers, analogous to our system model. It is
based on a Logic of Events [28] approach, in contrast to our state transition
system approach. Velisarios is instantiated with definitions modeling PBFT [29]
to prove PBFT correct. Coq supports extraction to OCaml, enabling an imple-
mentation to be derived from the PBFT model. Agda has support for extracting
to Haskell or Javascript. However, we have not experimented with this. The goal
of our ongoing work is to model our practical Haskell implementation in Agda
and prove correctness for that model using the results presented in this paper.

Alturki et al. [30] use Coq to formally verify correctness of Algorand’s [31]
consensus protocol. Their correctness condition is slightly different as Algorand’s
protocol seeks to ensure that exactly one block is certified per round, implying a
total order on all certified blocks. Crary [32] reports on work towards verifying
correctness for the consensus mechanism of Hashgraph [33] in Coq. Losa and
Dodds [34] describe formal verification of safety and liveness properties for the
Stellar consensus protocol using Ivy and Isabelle/HOL. Alturki et al. [35] use
Coq to formally verify properties for Gasper [2]—Ethereum 2.0’s Proof of Stake
consensus mechanism. Rather than assuming that any two quorums intersect
on at least one honest node, they prove that, if (using our terminology) two

632 H. Carr et al.

conflicting blocks are committed, then there exist two quorums whose common
members can have their stake slashed. This property would be satisfied if only
the first offense results in slashing; presumably, a stronger property that ties the
conflicting blocks to specific quorums related to those blocks could be proved.

There is also work model checking other BFT consensus protocols. For exam-
ple, Tholoniat and Gramoli [8] have used ByMC [36] to model check RedBelly’s
consensus algorithm [37]; ByMC is a model checker designed to mitigate the
state space blowup for algorithms in which processes wait for a threshold of
messages. While basic HotStuff may fit this structure, chained HotStuff
does not.

Braithwaite et al. [38] report on work in progress towards model checking
Tendermint [39] using TLA+; so far, they have gained useful insight into the
algorithm using very small configurations, and have found and fixed some speci-
fication bugs as a result. Nonetheless, their experience again highlights the chal-
lenges of model checking related to state space and execution time.

5 Concluding Remarks and Future Work

We have presented a formal model of the essence of a Byzantine Fault Toler-
ant consensus protocol used in several existing implementations, and proved
its safety properties—including one that enables non-participants to verify
commits—for a single epoch, during which configuration does not change.
Extending our proofs to accommodate epoch changes (reconfiguration) is future
work.

Our contributions include precisely defining implementation assumptions and
correctness conditions, and developing formal, machine-checked proofs of correct-
ness properties for any implementation satisfying the assumptions. Our model,
definitions, and proofs are all expressed in Agda, and are available in open source.

Our approach enables verifying implementations by proving only that honest
peers obey the rules established by our abstract assumptions, without repeating
the hard work of proving the underlying protocol correct each time.

Our thmS5 property establishes correctness unless it can provide evidence
of a specific injectivity failure between Blocks that are in the system. Thus our
proofs are independent of how specific implementations assign Block ids, and
ensure that they hold unless and until an injectivity failure actually occurs. In
this way, our abstract proofs support proving that implementations that use cry-
potgraphic hash functions to assign ids behave correctly, based on the standard
assumption that a computationally bounded adversary cannot produce a hash
collision.

In our broader project [9], we have defined a system model in which mes-
sages can be lost, duplicated and arbitrarily delayed, and dishonest peers are
constrained only by their inability to forge signatures of honest peers. We have
ported our Haskell implementation to Agda using a library we have devel-
oped [11], instantiated our system model with its types and handlers, and made
substantial progress towards proving that it satisfies the required assumptions.

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 633

Beyond that, extending our system model to support proofs of liveness in
the partial synchrony model [40] is future work. A pragmatic intermediate point
is to prove within our existing system model that, from any reachable state
that has Blocks available to commit, there is some execution in which another
Block is committed (called plausible liveness by Buterin and Griffith [41]). These
liveness properties would pertain to a model of a specific implementation; liveness
properties do not make sense for the abstract model presented in this paper.

References

1. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). web.archive.org/web/20171211072318/peercoin.net/assets/paper/peercoin-
-paper.pdf

2. Buterin, V., et al.: Combining GHOST and Casper (2020). https://doi.org/10.
48550/ARXIV.2003.03052, arxiv.org/abs/2003.03052

3. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229

4. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, pp. 347–356.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3293611.3331591

5. Baudet, M., et al.: State machine replication in the Libra blockchain (2019).
developers.diem.com/papers/diem-consensus-state-machine-replication-in-the
-diem-blockchain/2019-06-28.pdf

6. The LibraBFT Team: State machine replication in the Libra blockchain, May 2020.
developers.diem.com/papers/diem-consensus-state-machine-replication-in-the
-diem-blockchain/2020-05-26.pdf

7. Cachin, C., Vukolic, M.: Blockchain consensus protocols in the wild. CoRR
abs/1707.01873 (2017). arxiv.org/abs/1707.01873

8. Tholoniat, P., Gramoli, V.: Formal verification of blockchain byzantine fault tol-
erance (2019). https://doi.org/10.48550/ARXIV.1909.07453, arxiv.org/abs/1909.
.07453

9. BFT consensus in Agda, December 2021. github.com/oracle/bft-consensus-agda/
releases/tag/nasafm2022

10. diem.com: Diem github repository (2021). github.com/diem/diem
11. Carr, H., Jenkins, C., Miraldo, V.C., Moir, M., Silva, L.: An approach to

translating Haskell programs to Agda and reasoning about them, March 2022.
github.com/oracle/bft-consensus-agda/docs/README.md

12. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04652-0 5

13. Agda 2.6.1.1 documentation, May 2021. agda.readthedocs.io/en/v2.6.1.1
14. Wadler, P., Kokke, W.: Programming language foundations in Agda (2009).

https://doi.org/10.1016/j.scico.2020.102440
15. Carr, H., Jenkins, C., Moir, M., Miraldo, V.C., Silva, L.: Towards formal veri-

fication of HotStuff-based byzantine fault tolerant consensus in Agda: Extended
version (2022). arxiv.org/abs/2203.14711

http://www.web.archive.org/web/20171211072318/peercoin.net/assets/paper/peercoin-paper.pdf
http://www.web.archive.org/web/20171211072318/peercoin.net/assets/paper/peercoin-paper.pdf
https://doi.org/10.48550/ARXIV.2003.03052
https://doi.org/10.48550/ARXIV.2003.03052
http://arxiv.org/org/abs/2003.03052
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
http://www.developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2019-06-28.pdf
http://www.developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2019-06-28.pdf
http://www.developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
http://www.developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
http://arxiv.org/org/abs/1707.01873
https://doi.org/10.48550/ARXIV.1909.07453
http://arxiv.org/org/abs/1909.07453
http://arxiv.org/org/abs/1909.07453
http://www.github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022
http://www.github.com/oracle/bft-consensus-agda/releases/tag/nasafm2022
http://www.github.com/diem/diem
http://www.github.com/oracle/bft-consensus-agda/docs/README.md
https://doi.org/10.1007/978-3-642-04652-0_5
http://www.agda.readthedocs.io/en/v2.6.1.1
https://doi.org/10.1016/j.scico.2020.102440
http://arxiv.org/org/abs/2203.14711

634 H. Carr et al.

16. Spreitzer, M.J., Theimer, M.M., Petersen, K., Demers, A.J., Terry, D.B.: Dealing
with server corruption in weakly consistent, replicated data systems. In: Proceed-
ings of the 3rd Annual ACM/IEEE International Conference on Mobile Computing
and Networking, MobiCom 1997, pp. 234–240. ACM, New York (1997). https://
doi.org/10.1145/262116.262151

17. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press Inc., USA (1996)

18. Wikipedia: Universe (mathematics), February 2021. en.wikipedia.org/wiki/
Universe (mathematics)

19. Garillot, F., Siles, V.: Librachain, May 2020. github.com/novifinancial/LibraChain
20. Jehl, L.: Formal verification of HotStuff. In: Peters, K., Willemse, T.A.C. (eds.)

FORTE 2021. LNCS, vol. 12719, pp. 197–204. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-78089-0 13

21. Kukharenko, V., Ziborov, K., Sadykov, R., Rezin, R.: Verification of HotStuff BFT
consensus protocol with TLA+/TLC in an industrial setting. SHS Web Conf. 93,
01006 (2021). https://doi.org/10.1051/shsconf/20219301006

22. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. Electron. Proc.
Theor. Comput. Sci. 310, 50–62 (2019). https://doi.org/10.4204/EPTCS.310.6

23. P̂ırlea, G., Sergey, I.: Mechanising blockchain consensus. In: Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2018, pp. 78–90. Association for Computing Machinery, New York (2018). https://
doi.org/10.1145/3167086

24. P̂ırlea, G.: Toychain formally verified blockchain consensus, April 2020.
pirlea.net/papers/toychain-thesis.pdf

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). www.bitcoin.
org/bitcoin.pdf

26. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer Publishing
Company, Incorporated (2010)

27. Rahli, V., Vukotic, I., Völp, M., Esteves-Verissimo, P.: Velisarios: byzantine fault-
tolerant protocols powered by Coq. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol.
10801, pp. 619–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89884-1 22

28. Bickford, M., Constable, R.L., Rahli, V.: Logic of events, a framework to rea-
son about distributed systems. In: 2012 Languages for Distributed Algorithms
Workshop, Philadelphia, PA (2012). www.nuprl.org/documents/Bickford/LOE-
LADA2012.html

29. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI 1999,
pp. 173–186. USENIX Association, USA (1999)

30. Alturki, M.A., et al.: Towards a verified model of the algorand consensus protocol
in Coq. In: Sekerinski, E., et al. (eds.) FM 2019 International Workshops. LNCS,
vol. 12232 pp. 362–367 (2020). https://doi.org/10.1007/978-3-030-54994-7 27

31. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP 2017, pp. 51–68. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3132747.3132757

32. Crary, K.: Verifying the hashgraph consensus algorithm (2021). arxiv.org/abs/
2102.01167

https://doi.org/10.1145/262116.262151
https://doi.org/10.1145/262116.262151
http://www.en.wikipedia.org/wiki/Universe_(mathematics)
http://www.en.wikipedia.org/wiki/Universe_(mathematics)
http://www.github.com/novifinancial/LibraChain
https://doi.org/10.1007/978-3-030-78089-0_13
https://doi.org/10.1007/978-3-030-78089-0_13
https://doi.org/10.1051/shsconf/20219301006
https://doi.org/10.4204/EPTCS.310.6
https://doi.org/10.1145/3167086
https://doi.org/10.1145/3167086
http://www.pirlea.net/papers/toychain-thesis.pdf
www.bitcoin.org/bitcoin.pdf
www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
www.nuprl.org/documents/Bickford/LOE-LADA2012.html
www.nuprl.org/documents/Bickford/LOE-LADA2012.html
https://doi.org/10.1007/978-3-030-54994-7_27
https://doi.org/10.1145/3132747.3132757
http://arxiv.org/org/abs/2102.01167
http://arxiv.org/org/abs/2102.01167

Towards Formal Verification of HotStuff-Based BFT Consensus in Agda 635

33. Baird, L.: The Swirlds hashgraph consensus algorithm: fair, fast, byzantine
fault tolerance. Technical report SWIRLDS-TR-2016-01 (2016). www.swirlds.com/
downloads/SWIRLDS-TR-2016-01.pdf

34. Losa, G., Dodds, M.: On the formal verification of the Stellar consen-
sus protocol. In: 2nd Workshop on Formal Methods for Blockchains (2020).
drops.dagstuhl.de/opus/volltexte/2020/13422/pdf/OASIcs-FMBC-2020-9.pdf

35. Alturki, M.A., et al.: Verifying Gasper with dynamic validator sets in Coq (2020).
github.com/runtimeverification/beacon-chain-verification/blob/master/casper/
report/report.pdf

36. Konnov, I., Widder, J.: ByMC: byzantine model checker. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018, Part III. LNCS, vol. 11246, pp. 327–342. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03424-5 22

37. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: DBFT: efficient leaderless byzan-
tine consensus and its application to blockchains. In: 2018 IEEE 17th Interna-
tional Symposium on Network Computing and Applications (NCA), pp. 1–8 (2018).
https://doi.org/10.1109/NCA.2018.8548057

38. Braithwaite, S., et al.: Formal specification and model checking of the Ten-
dermint blockchain synchronization protocol. In: 2nd Workshop on Formal
Methods for Blockchains (2020). drops.dagstuhl.de/opus/volltexte/2020/13423/
pdf/OASIcs-FMBC-2020-10.pdf

39. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus (2018).
https://doi.org/10.48550/ARXIV.1807.04938, arxiv.org/abs/1807.04938

40. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988). https://doi.org/10.1145/42282.42283

41. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR abs/1710.09437
(2017). arxiv.org/abs/1710.09437

www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
http://www.drops.dagstuhl.de/opus/volltexte/2020/13422/pdf/OASIcs-FMBC-2020-9.pdf
http://www.github.com/runtimeverification/beacon-chain-verification/blob/master/casper/report/report.pdf
http://www.github.com/runtimeverification/beacon-chain-verification/blob/master/casper/report/report.pdf
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1109/NCA.2018.8548057
http://www.drops.dagstuhl.de/opus/volltexte/2020/13423/pdf/OASIcs-FMBC-2020-10.pdf
http://www.drops.dagstuhl.de/opus/volltexte/2020/13423/pdf/OASIcs-FMBC-2020-10.pdf
https://doi.org/10.48550/ARXIV.1807.04938
http://arxiv.org/org/abs/1807.04938
https://doi.org/10.1145/42282.42283
http://arxiv.org/org/abs/1710.09437

DSV: Disassembly Soundness Validation
Without Assuming a Ground Truth

Xiaoxin An(B), Freek Verbeek, and Binoy Ravindran

Virginia Tech, Blacksburg, USA
{xxan15,freek,binoy}@vt.edu

Abstract. Disassembly is a crucial step in binary security, reverse engi-
neering, and binary verification. Various studies in these fields use dis-
assembly tools and hypothesize that the reconstructed disassembly is
correct. However, disassembly is a challenging and undecidable problem.
Even state-of-the-art industrial disassemblers suffer from issues rang-
ing from incorrectly recovered instructions to incorrectly assessing which
addresses belong to instructions and which to data. We thus present
DSV: a systematic and automated approach to validate whether the
output of a disassembler is sound with respect to the binary. No source
code, debugging information, or annotations are required. We apply DSV
to 102 binaries of Coreutils with eight different state-of-the-art disassem-
blers from academia and industry. DSV is able to find soundness issues in
the output of all these disassemblers. Using DSV to validate the output
of a disassembler increases trust in any research effort built on top of it.

Keywords: Reverse engineering · Disassembly soundness · Concolic
execution · Bounded model checking

1 Introduction

Disassembly is a crucial part of many reverse engineering and related sub-
disciplines such as decompilation, binary analysis, binary verification, and binary
rewriting. Practitioners have a plethora of tools available [1–4] to recover assem-
bly instructions from an executable binary. Still, disassembly is not a solved
problem: new techniques are developed based on, among others, machine learn-
ing [5], advanced heuristics, and inference [1–3]. These new techniques improve
accuracy and soundness.

In most of the reverse engineering work, practitioners implicitly take the
premise that the disassembly process is trustworthy. This premise is based on
well-developed commercial and open-source disassemblers. For example, Ram-
blr [6] uses static binary rewriting to implement binary reassembling. The devel-
opers take angr [2] as the base platform to disassemble the binary and to rebuild
the control flow graph (CFG), which means the correctness of Ramblr highly

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 636–655, 2022.
https://doi.org/10.1007/978-3-031-06773-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_34

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 637

relies on the correctness of angr. As an other example, Ghidra [3] is a state-of-
the-art tool for decompilation. Its capabilities include control-flow reconstruc-
tion, type-inference, and pointer-analysis. However, all the functionalities are
based on the assumption that disassembly is done correctly.

Disassembly, however, is by its very nature inherently an untrustworthy pro-
cess. It is an undecidable problem [7,8]. In a context where only the binary is
available (e.g., legacy systems or third-party proprietary software), there is no
ground truth as to what the “correct” assembly instructions are. Even state-of-
the-art disassemblers suffer from issues when, e.g., instructions are overlapping,
data and instructions are mixed, indirect jump/call targets are unresolved, or
a security vulnerability leads to unexpected control flow. Although mainstream
disassemblers, such as objdump, Hopper, and IDA Pro, are developed by numerous
researchers and are elaborately tested, different kinds of issues of these disas-
semblers have been discovered and reported [9,10].

In this paper, we propose a formal definition for the soundness of disassembly.
Based on this definition, we implement a tool called DSV (short for Disassembly
Soundness Validation) to validate whether a binary has been soundly disassem-
bled or not. DSV takes a binary file and the assembly file disassembled from the
binary file as inputs, generates “sound” or “unsound” as output, and reports
all the “unsound” disassembled instructions. A key characteristic is that DSV
does not assume a ground truth; in other words, DSV does not presume the
availability of source code or debug information.

Essentially, DSV performs a recursive traversal starting at the binary’s
entry point while validating all reached instructions. DSV over-approximates
the semantics of the binary under investigation in two ways. First, the semantics
of various instructions are over-approximated by treating their effects on certain
state parts as unknown. Second, the jumps and paths that can be traversed
at runtime are statically over-approximated. DSV needs to deal with three key
problems: unbounded loops, pointer aliasing, and indirect-branch instructions.
In order to deal with loops, we employ bounded model checking (BMC) [11].
To handle the pointer aliasing problem and indirect branches, we use concolic
execution [12].

We apply DSV to all the binaries of Coreutils library for eight different dis-
assemblers. Soundness issues are found in each of them. Some examples include:

1. Incorrectly recovering instructions, e.g., Ghidra [3] disassembles 49 0f a3 c8
to bt rax,rcx while the correct result should be bt r8,rcx;

2. Incorrectly recovering immediate values in operands, e.g., Dyninst [13] trans-
lates 48 b8 ff ff ff ff ff to mov rax, 0x4611686018427387903, how-
ever, the valid instruction is movabs rax,0x3fffffffffffffff;

3. Missing instructions due to underapproximating indirect control flow trans-
fers.

The contribution of this paper consists of:

1. A formal definition for the soundness of disassembly.

638 X. An et al.

2. An automated methodology called DSV (for: Disassembly Soundness Valida-
tion) for validating whether the output of a black-box disassembler is sound
w.r.t. a binary.

3. The application of this methodology to 102 binaries of Coreutils, each for
eight different disassemblers: angr 8.19.7.25 [2], BAP 1.6.0 [4], Ghidra 9.0.4 [3],
objdump 2.30, radare2 3.7.1 [1], Dyninst 10.2.1 [13], IDA Pro 7.6, and Hopper
4.7.3.

Paper Organization. We discuss past and related work in Sect. 2. In Sect. 3,
we introduce a soundness definition for the disassembly process and discuss
the definition’s validity. Section 4 illustrates DSV’s implementation details. We
discuss soundness issues in existing disassemblers detected by DSV in Sect. 5.
Section 6 reports experimental results obtained by applying DSV to the Coreutils
library. We conclude in Sect. 7.

2 Past and Related Work

We first discuss the main approaches to disassembly. Then, the approaches for
validation of disassembly are discussed.

2.1 Disassembly Techniques

Linear sweep and recursive traversal are the major techniques behind the binary
disassembly process. PSI [14] and objdump are typical linear-sweep disassemblers.
These disassemblers handled the byte sequences in the binaries sequentially.
Linear-sweep disassemblers have superior performance under certain circum-
stances. For example, some linear sweep disassemblers fulfilled a 100% correct-
ness on SPEC CPU2006 benchmarks generated by gcc and clang [10]. However,
linear sweep disassemblers have poor performance to handle special situations
such as overlapping instructions, inline data, and jump tables.

On the other hand, disassemblers such as IDA pro, Dyninst [13], Ghidra [3], and
Hopper were implemented using recursive traversal. These disassemblers decoded
the instructions following the execution path of the sequential and branching
instructions and tried to resolve the indirect jump addresses. Essentially, they
reconstructed the control flow on-the-fly in order to perform disassembly. Recur-
sive traversal handles overlapping instructions and inline data in a more reliable
way than linear sweep disassemblers.

2.2 Soundness Validation

Andriesse et al. [10] checked the false positive and false negative rates for nine
mainstream disassemblers using SPEC CPU2006 and Glibc-2.22 as the bench-
marks. The researchers gave a comprehensive comparison between different dis-
assemblers on five critical criteria, including instruction recovery, function start-
ing address relocation, function signature restoration, control flow graph (CFG),

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 639

and callgraph reconstruction. They used the ground truth information derived
from LLVM analysis, DWARF debugging information, and some manual ancil-
lary work. These ground truths provided critical information for the five criteria.

Paleari et al. [15] developed a methodology called n-version disassembly to
apply differential analysis on verifying the correctness of different x86 disassem-
blers. The writers employed various disassemblers to recover the instruction from
the same string of bytes and compared the results to find out the divergences.
This paper validates the correctness of single-instruction disassembly, whereas
our paper focuses on a complete disassembly process.

Pang et al. [16] manually evaluated the code base of various disassemblers
and discussed the algorithm and heuristics used by these disassemblers. They
also studied 3,788 binaries from different sources on nine main-stream disas-
semblers to evaluate the instruction recovery, cross-reference accuracy, function
starting point, and CFG construction. They reported incorrectly disassembled
cases existing in these disassemblers. The ground truths were automatically col-
lected in the compiling and linking procedures when generating binaries with a
method similar to the technique used by Andriesse et al. [10].

3 Definition of Disassembly Soundness

In this section, we provide a definition of the soundness of a disassembly process.
Moreover, we discuss a crucial assumption required to ensure that this definition
reflects the correctness of a disassembly process without ground truth.

3.1 Soundness Definition

To formulate a formal notion of disassembly soundness, we first introduce the
types and notations used in the definition. An element of type Nword is a bit
vector with size N. Given a bit vector w, notation |w| provides the size of the bit
vector. The type Instruction indicates the type of valid x86-64 instructions. In
our soundness definition, an instruction is represented by, among other things,
an opcode mnemonic, its operands with size directives, and possibly certain
prefixes.

The definition of soundness is based on three components: a function
read bytes that reads bytes from a binary file, a function bytes of that assembles
a single instruction into bytes, and an abstract transition relation →A.

The first function read bytes reads, given an address and a size, a byte
sequence from the binary file. In all the following definitions, the type of the
address is expressed as 64word, and the type of byte is 8word. Then the type
annotation of read bytes is represented as:

read bytes : 64word �→ N �→ [8word]

Function bytes of maps a single instruction to the corresponding byte
sequence representation, which is the essential work of any assembler. Although

640 X. An et al.

the bytes of function represents an assembly process, our soundness definition
does not consider any specific implementation of an assembler. Function bytes of
is type-annotated as:

bytes of : Instruction �→ [8word]

Let →C denote a deterministic concrete transition relation over concrete
addresses, and →∗

C represents the transitive closure of this transition relation.
Modeling this concrete transition relation is impossible: the relation depends
on the current state of registers, memory, and flags, but also on the state of
peripherals, the OS, etc. Let a0 be a binary’s entry address. An instruction
address a is reachable at run-time, if and only if:

a0 →∗
C a

The soundness definition is based on an over-approximative abstraction of this
concrete transition relation, which is defined as →A. This is a non-deterministic
transition relation over addresses: →A is of type 64word �→ {64word}. This
transition relation solely concerns the 64-bit value of the instruction pointer rip
of the concrete state and produces a set of next instruction addresses.

Definition 1. Transition relation →A is a proper abstraction of concrete tran-
sition relation →C , if and only if, for any reachable concrete states s and s′:

s →C s′ =⇒ rip(s) →A rip(s′)

We use →∗
A to indicate the transitive closure of →A.

Finally, the input of our soundness definition is the output of a disassembler.
This output essentially is a partial mapping from byte sequence to instructions.
It is denoted as disasm. We also define an auxiliary function disasm n. Function
disasm n returns, given the current address, the size of bytes that are to be
disassembled for the next single instruction. The two functions are of type:

disasm : [8word] �→ Instruction

disasm n : 64word �→ N

Definition 2. Let a0 be a binary’s entry address and let disasm be some disas-
semblers’ output. Output disasm is sound, if and only if:

∀a · a0 →∗
A a =⇒ bytes of(disasm(β)) = β

where β = read bytes(a, disasm n(a))

Definition 2 indicates that for all reachable addresses a inside a binary file, the
bytes β of the disassembled instruction disasm(β) located at address a are equal
to the actual bytes that are read from the binary. If there exist some reachable
instructions whose bytes are not equal to those in the binary, the disassembler
is unsound.

This definition is independent of the inner mechanism of a disassembler.
Whether a disassembler is implemented using recursive traversal, linear sweep,
or machine-learning is irrelevant since we only try to validate the consistency
between a binary file and the output of the disassembler.

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 641

3.2 Loose Comparison of Instruction Bytes

For each reachable instruction address, Definition 2 compares the bytes pro-
duced by reassembling a disassembled instruction with the original bytes from
the binary. However, a strict byte-by-byte comparison may incorrectly classify a
disassembler as unsound. Consider Fig. 1. The original assembly process is mod-
eled as a asm function, which maps an instruction to the corresponding bytes.
This function is part of the trust base, but it is not available.

asm : Instruction �→ [8word]

The ground truth is the original instruction i0 , assembled by the original
assembler asm to b0 . Both i0 and asm are assumed to be unavailable. The black-
box disassembler disasm produces an instruction i1 from b0 . Definition 2 suggests
that it suffices to reassemble instruction i1 into bytes b1 and then strictly com-
pare b0 and b1 to validate the soundness.

instruction (i0) bytes (b0)

instruction (i1)

bytes (b1)

instruction (i2)

Ground truth

asm

disasm bytes of disasm

Fig. 1. Comparison per instruction. The dashed box indicates that the ground truth,
i.e., the original instruction and original assembler, are unavailable. The disassembler
under investigation (disasm) is black-box.

This, however, is not necessarily correct for two reasons. First, the function
disasm may produce an instruction different from i0 but with the same semantics.
In such a case, reassembling may not reproduce the same bytes. Second, function
bytes of may be different from the original assembler asm (since that function is
unavailable). Thus, even if the disassembler under investigation disasm was able
to reproduce the exact instruction i0 , a strict comparison between b0 and b1
may still fail in the soundness validation.

Listing 1.1. An example that does not satisfy the soundness definition.

objdump(0f1f440000) = nop DWORD PTR [rax+rax*1+0x0]

gcc(nop DWORD PTR [rax+rax*1+0x0]) = 0f 1f 04 00

objdump(0f1f0400) = nop DWORD PTR [rax+rax*1]

For example, we employ gcc as the assembler and objdump as the disassembler
and get the example in Listing 1.1. In this example, b0 is 0f 1f 44 00 00, b1 is

642 X. An et al.

0f 1f 04 00. They are not equivalent. If we solely compare b0 and b1 , we will
make the wrong declaration that the disassembly process carried out by objdump
is not sound. However, the disassembled result is sound since nop DWORD PTR
[rax+rax*1+0x0] and nop DWORD PTR [rax+rax*1] are semantically equiva-
lent. The reason behind this situation is that gcc would automatically apply
optimization when it encounters certain types of instructions.

Thus, instead of a strict comparison, we will use a loose comparison of bytes.
The bytes b1 produced by reassembling are again disassembled. This produces
instruction i2. We will consider b0 and b1 loosely equal if these instructions are
equal after normalization. The normalization is executed by a normalize function,
which rewrites an instruction to a normalized format following rules such as re-
formatting assembly code from AT&T format to Intel, removing *1 and +0, and
normalizing the representation of memory accesses. The normalized instruction
is ensured to be semantically equivalent to the original instruction.

Definition 3. Let β0 and β1 be two byte-sequences. They are loosely equivalent,
notation β0 � β1, if and only if:

β0 = β1 ∨ normalize(i0) = normalize(i1)
where i0 := disasm(β0),

i1 := disasm(β1)

We can now summarise a fundamental part of the TCB of our approach.
Since there is no ground truth, this must be assumed and cannot be proven.
Assumption 1. For any instruction i0:

asm(i0) � bytes of(disasm(asm(i0)))

implies that instruction i0 has been correctly disassembled by function disasm.

4 Validation Algorithm

In Sect. 3, we define the soundness of the output of a disassembler w.r.t. the
original binary file. According to that definition, there are three components
that must be implemented: read bytes, bytes of, and the abstract step function
→A.

The first two are straightforward. For read bytes, we employ the readelf util-
ity to get the binary segment information and implement a Python program to
read a byte sequence from a binary file directly. To implement function bytes of,
we need to translate a single instruction to its byte-sequence representation. The
choice of the assembler, whether gcc, clang, or some other, is independent of the
disassembler under investigation and of the type of the source binary file.

The third component, an abstract transition relation →A, is more involved.
A perfect and exact implementation of this component does not exist since it
is undecidable which addresses are reachable from the entry point [7]. It is also
undecidable to distinguish instructions from raw data [8]. Implementation of →A

requires, among other things, dealing with indirect jumps and calls, jump tables,
data inlined in code, and overlapping instructions. Specifically, predicting where
an indirect branch jumps to is a major challenge for all existing disassemblers.

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 643

4.1 Consequences of an Inexact Abstract Transition Relation

We thus, necessarily, implement an inexact abstract transition relation. We will
use �A to denote this inexact implementation of the hypothetical exact abstract
transition relation →A. We introduce the following terminology (here a0 denotes
the binaries’ entry point):

–White. An instruction address a is white if it is deemed reachable by the imple-
mentation �A, i.e.:

a0 �∗
A a

We can now rephrase the notions of false positive and false negative w.r.t.
this terminology. A false positive occurs when disassembler-output is deemed
sound by DSV, whereas it is incorrect. We define a false positive as the exis-
tence of an incorrectly disassembled reachable instruction that is not white. It
is thus reachable at runtime and deemed unreachable (and therefore missed) by
the implementation �A. A false negative, then, is an incorrectly disassembled
unreachable instruction that is white. In other words, it is deemed reachable by
the implementation �A, but unreachable at runtime.

A false positive can happen if the implementation �A under-approximates
the concrete transition relation →C . In other words, it can happen if it is possible
that a reachable instruction is not white. We aim for an implementation that
does not suffer from false positives, and therefore require the implementation
to be proper (see Definition 1): any reachable instruction is visited. In the case
of proper over-approximation, a false negative can happen, i.e., an unreachable
instruction may be white.

Finally, we would like to note that there is no decidable way to determine
whether an instruction address is reachable or not. There is no ground truth and
no reliable way of establishing reachability without source code. In practice, how-
ever, it is possible to establish the unreachability of certain parts of the binary.
For example, in the current implementation, functions called inside an external
cxa atexit function are not considered to be reachable (e.g., deconstructors).

We thus use the following terminology:

Black. An instruction address is black if it is not white and it can be established
(e.g., with conservative manual inspection) that it is unreachable.

Grey. An instruction address is grey if it is not white and it is not black, i.e., if
it cannot be established whether it is reachable or not.

Given an over-approximative implementation �A, all instruction addresses
reported by some disassembler are either white, black, or grey. The aim is to
construct an implementation �A that minimizes the number of grey instruc-
tions. Only the case where DSV finds an issue in a grey instruction constitutes
a false negative.

4.2 DSV Overview

In essence, DSV employs a standard forward BMC exploration loop. At all times,
three parameters are maintained:

644 X. An et al.

s: the current state. A symbolic state is maintained that contains symbolic
expressions for registers, flags, and memory. The initial state solely consists
of an assignment of some concrete values to the stack pointer rsp and the
instruction pointer rip.

π: the current path constraint. A symbolic predicate is maintained that
contains the branching conditions of the current path. Its purpose is to prune
inconsistent paths (we check the consistency using the Z3 SMT Solver [17]).
Initially, this constraint is true.

Σ: the stored states. A key-value mapping with as keys instruction addresses
and as values symbolic states. This mapping allows DSV to keep track of
which addresses have been visited and to reduce the traversed state space.
Initially, this mapping is empty.

DSV first fetches the instruction i as disassembled by the disassembler under
investigation and validates that instruction (see Sect. 3.2). It then updates Σ
by adding the current state σ. It may be the case that the current instruction
address was already visited. In that case, a merge must happen between the
current state s and the stored state. If the current state s and the merged
state agree (intuitively: they contain the same information), then no further
exploration is necessary. If the instruction address was unvisited, the current
state is simply inserted into Σ. DSV then concolically executes instruction i
to the merged state sm, given the current path constraint π. This provides a
set of pairs of symbolic states and path constraints; one instruction may induce
multiple paths. Each of these pairs is explored.

4.3 State and Memory Model

The state consists of assignments of symbolic expressions to flags, registers, and
memory. Symbolic expressions consist of expressions with a standard set of oper-
ators (e.g., +, −, . . .) and as base operands either immediate values, registers, or
flags. Most notably, a symbolic dereference operator is supported that reads data
from memory. An operand may also be an unconstrained universally quantified
variable. We will use vf to denote a fresh variable. The symbolic expressions
used by DSV are close to that used in existing literature [18].

Since the bit length of all registers is fixed, we model general-purpose registers
as a 64-bit Z3 bit-vector and deal with register aliasing accordingly. We set the
initial values of all the registers, except for rip and rsp, to symbolic values and
modify the values of registers according to the semantics of instructions. The
value of each register can be either symbolic or concrete.

There are different techniques to model memory. To design a space-efficient
memory model that simulates the memory changes during the execution of a
binary, we model memory as a function mem of type 64word �→ ([8word],N).
This function maps memory addresses to byte sequences and the size of the
region starting at the given address. Function mem is partial, which means that
not all addresses at the memory have explicit content. At all times, all regions
in the range of mem are separate.

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 645

Since we keep the stack pointer concrete, all local variables correspond to
memory regions with concrete addresses. The same holds for global variables.
Moreover, the Glibc functions malloc and calloc are modeled in such a way that
they return a concrete address that does not overlap with any existing region
in the memory. This concretizes the majority of addresses. Theoretically, this
approach may lead to unsoundness issues: for example, if a program successfully
allocates memory using malloc, then branches are taken based on whether that
(non-null) pointer is greater than some immediate value. To the best of our
knowledge, such behavior is undefined according to the C standard.

Assumption 2. We assume that the control flow of a binary does not depend on
the concrete values returned by memory allocation functions or on the concrete
value of the stack pointer.

However, not all memory addresses are concrete: symbolic addresses occur
when pointers are returned by external functions that are not linked statically.
In these cases, reading from a symbolic memory region returns a fresh symbol.
Writing to such a memory region will remove all heap-related regions from the
memory but will keep the local stack frame intact.

4.4 Merging and Agreeing

If the address of the current state s was already visited, the current state s and
the visited state sold are merged (see Algorithm 1). If the current value v at
a key k in s is symbolic, then v is possible to represent any value, and we do
not need to change it. However, if the current value v is concrete, we need to
compare v with vold at the same key k in sold to decide how to merge v and vold
to get the new result.

Algorithm 1. Merging algorithm.
1: function merge(sold, s)
2: snew ← copy(s)
3: for all (k, v) ∈ s do
4: vold ← sold[k]
5: if v is a concrete value then
6: if vold is a concrete value then
7: if v �= vold then
8: snew[k] ← fresh variable
9: end if

10: else
11: snew[k] ← fresh variable
12: end if
13: end if
14: end for
15: return snew

16: end function

646 X. An et al.

The current state s is not explored if state s and merged state sm contain the
same information, i.e., if the two state agree. Two states agree if they have the
same keys and for any key-value pair (k, e) in s and (k, em) in sm the expression e
and em agree.

Definition 4. Let fresh(e) denote the set of fresh variables in symbolic expres-
sion e. Two expressions e0 and e1 agree if and only if there exists a bijection β
between fresh(e0) and fresh(e1), such that e0 and e1 are syntactically equal if all
fresh variables vf in e0 are replaced with β(vf).

Example 1. Consider a loop in which register rax is incremented with 4 every
iteration. Let the visited state sold = {rax := vf0 , rdi := vf0 + 100}. After one
loop iteration, the current state s = {rax := vf0 + 4, rdi := vf0 + 100}. The
merged state will be sm = {rax := vf1 , rdi := vf0 + 100} and will be stored.
States sm and s do not agree and exploration will continue. However, after one
more iteration, we will obtain state s′ = {rax := vf1 + 4, rdi := vf0 + 100}.
States s′ and state sm will be merged, resulting in s′

m = {rax := vf2 , rdi :=
vf0 + 100}. States sm and s′

m do agree, and therefore the loop is not unrolled
further.

4.5 Instruction Semantics

There is no need to set up complete semantics for all instructions. In our imple-
mentation, instruction semantics is constructed to change the value of the rip
register to guide the symbolic execution. We only need to build up semantics for
instructions that – be it directly or indirectly – influence the rip register. We
will call this the set of relevant instructions.

The set of relevant instructions include push, pop, mov, lea, call, ret, simple
arithmetic instructions, logical instructions, bitwise instructions, jump instruc-
tions, etc. According to the statistics taken in some literature [19], these instruc-
tions would make up over 96% of instructions in multiple C/C++ applications
and web browsers. Advanced instructions such as floating-point instructions and
SIMD extensions typically do not impact register rip. It is not necessary to
construct specific semantics for these instructions.

For all the irrelevant instructions, we use unknown semantics by assigning
fresh variables any time an irrelevant instruction is executed. In most cases,
an instruction has an opcode and different operands, and the content of the
destination operand is modified by the instruction. For irrelevant instructions,
the semantics assigns some fresh variable vf to the destination operand, repre-
senting that the current status of the corresponding register, flag, or memory is
undefined or undetermined. The fresh variables are handled using the symbolic
execution rules in our DSV SE engine.

4.6 Concolic Execution

As discussed in Sect. 4.3, we make use of concolic execution that concretizes
memory addresses as much as possible while leaving the remainder as symbolic as

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 647

possible. As such, the branching conditions that are taken are generally symbolic.
In the case of a conditional jump based on a symbolic flag value, both paths are
taken (sequential execute and jump). This over-approximates reachability.

A key challenge is to resolve indirect-branch addresses. An indirect branch
is a control flow transfer (jump or call) where the target is computed instead
of an immediate. Indirect branches happen, e.g., in the case of compiled switch-
statements, function callbacks, or virtual tables. Three cases may arise:

1. The current state is sufficiently concrete that the computation can be
resolved. In this case, exploration continues.

2. The expression that computes the next value of rip is symbolic, but the
current state and the path constraint contain sufficient information to both
bind and over-approximate the set of next addresses. In this case, exploration
continues to all next addresses.

3. The current state does not contain sufficient information to bind the set of
next addresses; the expression that computes rip contains unbounded sym-
bolic values. An error message is produced, and we manually investigate how
to resolve the issue. Generally, we need to trace back and see which irrelevant
instructions need to be considered relevant. This situation is infrequent since
we have modelled the semantics of the most common instructions based on
their usage rate.

With the state model for registers, flags, and memory, we carry out the con-
colic execution to construct a CFG for the machine code. Concolic execution
is overapproximative. The vast majority of branches are taken due to the sym-
bolic conditions. Meanwhile, rsp is always concrete, and therefore local variables
in the stack frame can be read/written. Besides, addresses are concrete in the
memory allocation functions. The concrete addresses prevent memory aliasing
issues.

In the construction of CFG, indirect jump, indirect call, and return instruc-
tions pose a challenge of how to resolve the indirect-branch addresses. The path
constraint provides a bound on the set of next addresses. Besides, we introduce
a trace-back model to fix the problem of unimplemented instruction semantics.
We also implement an algorithm [20] to solve the challenge of jump table without
determined upperbound. However, these still exists unresolved indirect-branch
addresses in the concolic execution since it is an undecidable problem.

5 Soundness Issues Exposed by DSV

This section summarises some of the soundness issues found by DSV. We mainly
focus on instructions that are erroneously recovered by different disassemblers.

In Sect. 6.1, we use DSV to evaluate the disassembly results generated by
eight disassemblers on the Coreutils library. Even though most of the reachable
instructions for these disassemblers are correctly recovered, there are few excep-
tions where the disassembled instruction is incorrect w.r.t. the byte sequence.
We report on some cases found by DSV, that are inappropriately disassembled

648 X. An et al.

by certain disassemblers. Table 1 summarises the found results, which are dis-
agreed for different disassemblers. Some of the disagreements (row 1, 2 of the
table) are trivial and can be argued not to impact soundness. Row 3, 4, 5, and
6 of the table consists of actual soundness issues.

Table 1. Examples of instruction recovery results for different disassemblers. All the
results are normalized to Intel format.

bytes objdump radare2 angr Hopper BAP IDA Pro Ghidra Dyninst

f3c3 repz ret ret rep ret rep retn ret rep ret

4881a4249000

0000fffbffff

and qword ptr [rsp+0x90], 0xfffffffffffffbff and qword ptr [rsp+ 0x90],0xfffffbff

4899 cqo cdq rax

4d0fa3f7 bt r15,r14 bt rdi,r14 bt r15,r14

48be00000000

00f0ffff

movabs rsi,0xfffff00000000000 mov rsi,0xfffff00000000000 mov rsi,0x-17592186044416

64488b042528

000000

mov rax,qword ptr fs:[0x28] mov rax,0x28

Row 1 and 2 of Table 1 mainly concerns different representations of the
same semantical intent. There are cases where the operands of an instruction
are not represented since default behavior is assumed. For instance, both Ghidra
and Dyninst (correctly) assume that immediates are sign-extended to fit the
destination operand, if necessary. However, minor differences may be relevant.
For example, the instructions repz ret and ret have the same semantical intent
but their execution time may differ for certain architectures.

Row 3, 4, 5, and 6 concerns semantically different recovered instructions. For
instance, Dyninst disassembles 4899 to cdq rax, which is not a valid instruction
in x86-64 ISA (note that cdq performs sign-extension to 64 bits, whereas cqo
performs sign-extension to 128 bits). An example is shown where Ghidra misrep-
resents a register (rdi instead of r15). Besides, a 64-bit immediate is wrongly
disassembled by Dyninst. Finally, Dyninst sometimes seems to omit representa-
tions of segment registers such as ds and fs.

Except for the examples listed in Table 1, there are some ambiguous cases
for different disassemblers. The outputs generated by Dyninst do not have any
ptr operator to indicate the operand size of a memory operand, which leads
to ambiguous semantical behavior. For example, 49837c242800 is translated to
cmp [r12 + 0x28],0x0 by Dyninst while the other disassemblers’ result is cmp
qword ptr [r12 + 0x28],0x0. Without the qword ptr specifying the size of
the operand as 64-bit, we cannot determine what the exact value reading from
the memory is. Thus the result of the cmp instruction is undetermined.

6 Experimental Results

In Sect. 6.1, we apply DSV on eight different disassemblers: objdump 2.30, radare2
3.7.1, angr 8.19.7.25, BAP 1.6.0, Hopper 4.7.3, IDA Pro 7.6, Ghidra 9.0.4, and

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 649

Dyninst 10.2.1, using 102 test cases from Coreutils-8.31. Here, we evaluate the
performance of DSV.

All these experiments are carried out on a machine with Intel Core i7-7500U
CPU @ 2.70 GHz × 4 and 16 GB RAM. The OS is Ubuntu 20.04.2 LTS, and
the Coreutils-8.31 library is compiled using gcc 7.5.0 through the standard build
process.

6.1 Coreutils Library

We apply DSV on 102 test cases in the Coreutils library, which are disassembled
using eight disassemblers. For each test case, we report the number of instruc-
tions: total, white, gray, and black. The definition of white, black, or grey instruc-
tions are given in Sect. 4.1. Roughly speaking, white indicates instructions that
are proven to be reachable by DSV, and black illustrates unreachable instruc-
tions. The grey instructions are those that are reported by the disassembler but
are not visited by DSV; the reachability of these instructions is unknown. Table 2
shows the results of basename, expand, mknod, realpath, and dir test cases in
the Coreutils library for different disassemblers. These 5 test cases are selected
based on the number of total instructions and the diversity of various instruction
types.

Instruction Recovery. Most disassemblers are capable to correctly disassem-
ble all the reachable instructions. As shown in Fig. 2, for most of test cases in
Coreutils library, objdump, angr, BAP, and IDA Pro achieve an accuracy rate of
100% for single-instruction recovery. Meanwhile, Ghidra and Dyninst make some
errors in the disassembly process for some test cases, and the accuracy would
decrease to around 97.5%.

Control Flow Recovery. For all test cases, there exists a gap between the num-
ber of white instructions, which are reachable instructions detected by DSV, and
the number of total instructions; in other words, the number of black instructions
can be relatively high. This can be accounted for two reasons.

The first reason is that different disassemblers consider different parts of
the binary. For example, BAP generates the instructions from sections .symtab,
.debug line, .debug ranges, and so on, while some disassemblers may solely gen-
erate instructions from .text, .plt, and .plt.got sections.

The second reason lies in the technique that DSV employs to handle external
functions. DSV treats external functions as black boxes and does not go inside
the external functions to execute them. Internal functions that are called by
external functions may be considered black. For example, the internal function
close stdout is called by the external function cxa atexit (it calls the close
function after program exit). Thus, the close stdout function is considered
black. Some exceptions include libc start main and pthread create. These
two external functions execute the function pointer passed through the rdi reg-
ister, and the internal functions pointed to are not executed by DSV. Broader

650 X. An et al.

coverage, i.e., less black instructions, can be reached by providing semantics to
external functions that call internal ones.

Fig. 2. Ratio of correctly disassembled vs. the white disassembled instructions.

The ratio of grey vs. white instruction is an indication of how accurate con-
trol flow has been recovered. If the ratio is low (zero), then the disassembler
highly accurately decided which instructions are reachable and which is not.
If it becomes higher, this may indicate either that the disassembler coarsely
overapproximated which instructions are reachable (many grey instructions), or
that the disassembler missed instructions. The ratio is on average about 4%. As
shown in Fig. 3, BAP usually has the highest ratio since the instructions whose
addresses are stored in indirect jump tables are missed by BAP due to lack of
support for indirect branching. Meanwhile, objdump and angr have similar ratio
for most of test cases , as we use angr to statically generate a CFG (CFGFast)
and to disassemble a binary file, which have similar outputs as objdump.

The amount of white instructions per disassembler is an indication of how
many instructions have been reached. objdump, radare2, angr, and Ghidra have
similar numbers of white instructions. Meanwhile, BAP has smaller results in
all these test cases since it does not employ any heuristics to solve the indi-
rect branch problem caused by jump table. The results for Dyninst are unstable
because there are some instruction-recovery errors in the disassembly results.

Soundness Results. Most disassemblers are sound for most of the test cases.
We find that Ghidra sometimes incorrectly recovers instructions. There are three
other major exceptions.

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 651

Fig. 3. Ratio of grey instructions to white for different disassemblers.

First, BAP does not resolve indirect branches. Since BAP essentially reports
an empty set of next addresses for indirect jump tables – whereas DSV wants
to continue exploration – DSV reports a soundness issue. We marked these as
missing instructions: the issue is not that BAP incorrectly recovers instructions,
but that it misses instructions by “under-approximating” control flow.

Additionally, radare2 sometimes translates instructions to data. For example,
in dir test case, radare2 disassembles the bytes ff2552c72100 at address 3888
to data .qword 0x90660021c75225ff, which should be translated to a call
instruction to malloc. This kind of mis-translation leads to missing instructions.

In some situations, Hopper is not capable to correctly determining the instruc-
tion boundaries. For example, in dir test case, at address 0xf2a8, the disassem-
bler should generate an instruction sub r12d,0x1. However, Hopper classifies it
as data and continues the disassembly process from address 0xf2a9.

Another exception is Dyninst. There are various examples showing that
Dyninst involves errors on instruction recovery. These errors may cascade since
incorrectly recovering instructions may also lead to incorrectly assessing which
instruction addresses are to be disassembled. For instance, Dyninst cannot recover
control flow for the seq test case from the Coreutils library since incorrectly
recovered instructions lead to unrealistic paths.

652 X. An et al.

Table 2. Execution results for Coreutils library on different disassemblers. Only 5 of
102 binaries are shown.

Number

of total

Number

of white

Number

of grey

Number

of black

Ratio of

grey vs.

white

Number

of

indirects

Missing

instr

Sound

objdump basename 3310 2217 18 1075 0.01 59

expand 3928 2742 112 1074 0.04 79

mknod 4101 2775 216 1110 0.08 65

realpath 5828 2644 89 3095 0.03 72

dir 19029 12751 417 5861 0.03 230

radare2 basename 3409 2217 18 1174 0.01 59

expand 4027 2742 111 1174 0.04 79

mknod 4200 2775 214 1211 0.08 65

realpath 5927 2644 86 3197 0.03 72

dir 19124 12900 320 5904 0.02 231 × ×
angr basename 3415 2217 18 1180 0.01 59

expand 4033 2742 111 1180 0.04 79

mknod 4206 2775 214 1217 0.08 65

realpath 5933 2644 86 3203 0.03 72

dir 19134 12751 413 5970 0.03 230

BAP basename 5894 826 114 4954 0.14 37 ×
expand 7373 1320 205 5848 0.16 56 ×
mknod 7022 1282 162 5578 0.13 43 ×
realpath 11368 1251 108 10009 0.09 46 ×
dir 28906 5718 667 22521 0.12 150 × ×

Hopper basename 3250 2217 18 1015 0.01 59

expand 3845 2742 111 992 0.04 79

mknod 4022 2775 68 1179 0.02 65

realpath 5636 2644 86 2906 0.03 72

dir 18292 12607 350 5335 0.03 230 × ×
IDA Pro basename 3221 2217 18 986 0.01 59

expand 3820 2742 111 967 0.04 79

mknod 3995 2775 68 1152 0.02 65

realpath 5607 2644 87 2876 0.03 72

dir 18220 12751 268 5201 0.02 230

Ghidra basename 3256 2217 18 1021 0.01 59

expand 3826 2742 99 985 0.04 79

mknod 4029 2775 68 1186 0.02 65

realpath 5658 2644 86 2928 0.03 72

dir 18303 12751 267 5285 0.02 230 ×
Dyninst basename 3269 2222 16 1031 0.01 60 ×

expand 3874 2707 123 1044 0.05 79 ×
mknod 4058 2747 214 1097 0.08 64 ×
realpath 5724 2609 85 3030 0.03 71 ×
dir 18694 12845 329 5520 0.03 230 ×

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 653

7 Conclusion

Disassembly is a challenging and undecidable problem that lies at the base of
various research in reverse engineering, formal verification, binary hardening,
and security analysis. Even state-of-the-art disassemblers that have been elabo-
rately designed and tested have soundness issues, such as whether a disassembly
accurately reflects the semantical behavior of the binary under investigation. We
propose a definition for soundness of the output of a disassembler w.r.t. the orig-
inal binary. Moreover, we propose DSV, a tool for validating whether a binary
has been correctly disassembled. DSV finds incorrectly disassembled instruc-
tions and assesses whether the disassembler under investigation could determine
at which addresses instructions need to be recovered correctly.

DSV does not assume the existence of ground truth in the form of source
code, an LLVM representation, or debugging information. We, therefore, neces-
sarily make assumptions and aim to provide an explicit insight into the trusted
codebase. The trusted codebase of DSV contains two key assumptions. First,
we assume that the proposed way of loosely comparing byte sequences allows
DSV to decide whether a single byte sequence correctly corresponds to a single
instruction. Second, DSV employs concolic execution leaving certain parts, such
as the stack pointer, concrete. It is assumed that leaving these parts concrete
does not influence the reachability of instruction addresses.

DSV has been applied to validate the output of eight state-of-the-art disas-
sembler tools on 102 binaries of Coreutils library. Soundness issues were exposed,
ranging from incorrect instruction recovery to incorrectly recovered control flow
of the binary (leading to missing instructions).

Future Work: DSV essentially is a binary exploration tool. We argue that
DSV demonstrates that the combination of bounded model checking and concolic
execution is very applicable in the context of stripped binaries as it mitigates the
complexity of some fundamental issues. Even though its current version solely
focuses on the validation of disassembly, we aim to use the core algorithm and
concepts of DSV for other binary exploration efforts. For example, We aim to
use DSV for validating the correctness of generated control flow and call graphs,
and generally for exposing “weird” edges [21] and security vulnerabilities in
binaries. Currently, DSV is restricted to binaries with the x86-64 format. Since
our formal definition is general, we intend to extend our implementation and
validation efforts to other ISAs, such as ARM.

Source Code Availability. The complete source code, benchmarks, and
experimental results are open-sourced and available at the project website:
https://ssrg-vt.github.io/DSV. The source code artifact is archived with a DOI
link at: https://doi.org/10.5281/zenodo.6380975.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments which greatly improved the paper. This work is supported by the Defense
Advanced Research Projects Agency (DARPA) under Agreement No. HR00112090028
and contract N6600121C4028, and the US Office of Naval Research under grants
N00014-17-1-2297 and N00014-18-1-2665.

https://ssrg-vt.github.io/DSV
https://doi.org/10.5281/zenodo.6380975

654 X. An et al.

References

1. Radare2: Unix-like reverse engineering framework. https://github.com/radareorg/
radare2 (2021)

2. Shoshitaishvili, Y., et al.: Sok:(state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
138–157. IEEE (2016)

3. Rohleder, R.: Hands-on ghidra-a tutorial about the software reverse engineering
framework. In: Proceedings of the 3rd ACM Workshop on Software Protection, pp.
77–78 (2019)

4. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 37

5. Park, J., Xu, X., Jin, Y., Forte, D., Tehranipoor, M.: Power-based side-channel
instruction-level disassembler. In: 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC), pp. 1–6. IEEE (2018)

6. Wang, R., et al.: Ramblr: making reassembly great again. In: NDSS (2017)
7. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.

Trans. Am. Math. Soc. 74(2), 358–366 (1953)
8. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M.: Shingled graph disassem-

bly: finding the undecideable path. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen,
A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8443, pp. 273–285.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06608-0 23

9. Meng, X., Miller, B.P.: Binary code is not easy. In: Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis, pp. 24–35 (2016)

10. Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 583–600 (2016)

11. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking (2003)

12. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. ACM
SIGSOFT Softw. Eng. Notes 30(5), 263–272 (2005)

13. Bernat, A.R., Miller, B.P.: Anywhere, any-time binary instrumentation. In: Pro-
ceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools, pp. 9–16 (2011)

14. Zhang, M., Qiao, R., Hasabnis, N., Sekar, R.: A platform for secure static binary
instrumentation. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, pp. 129–140 (2014)

15. Paleari, R., Martignoni, L., Fresi Roglia, G., Bruschi, D.: N-version disassembly:
differential testing of x86 disassemblers. In: Proceedings of the 19th International
Symposium on Software Testing and Analysis, pp. 265–274 (2010)

16. Pang, C., et al.: Sok: all you ever wanted to know about x86/x64 binary disassembly
but were afraid to ask. arXiv preprint arXiv:2007.14266 (2020)

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp.
209–224 (2008)

https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-319-06608-0_23
http://arxiv.org/abs/2007.14266
https://doi.org/10.1007/978-3-540-78800-3_24

DSV: Disassembly Soundness Validation Without Assuming a Ground Truth 655

19. Akshintala, A., Jain, B., Tsai, C.C., Ferdman, M., Porter, D.E.: X86–64 instruction
usage among c/c++ applications. In: Proceedings of the 12th ACM International
Conference on Systems and Storage, pp. 68–79 (2019)

20. Cifuentes, C., Van Emmerik, M.: Recovery of jump table case statements from
binary code. Sci. Comput. Program. 40(2–3), 171–188 (2001)

21. Shapiro, R., Bratus, S., Smith, S.W.: Weird machines in ELF: a spotlight on the
underappreciated metadata. In: 7th USENIX Workshop on Offensive Technologies
(WOOT 13) (2013)

Probabilistic Hyperproperties
with Rewards

Oyendrila Dobe1, Lukas Wilke2, Erika Ábrahám2, Ezio Bartocci3,
and Borzoo Bonakdarpour1(B)

1 Michigan State University, East Lansing, MI, USA
borzoo@msu.edu

2 RWTH Aachen University, Aachen, Germany
3 Technische Universität Wien, Vienna, Austria

Abstract. Probabilistic hyperproperties describe system properties that
are concerned with the probability relation between different system
executions. Likewise, it is desirable to relate performance metrics (e.g.,
energy, execution time, etc.) between multiple runs. This paper intro-
duces the notion of rewards to the temporal logic HyperPCTL by extend-
ing the syntax and semantics of the logic to express the accumulated
reward relation among different computations. We demonstrate the
application of the extended logic in expressing side-channel timing coun-
termeasures, efficiency in probabilistic conformance, path planning in
robotics applications, and recovery time in distributed self-stabilizing
systems. We also propose a model checking algorithm for verifying
Markov Decision Processes against HyperPCTL with rewards and report
experimental results.

Keywords: Markov models · Hyperproperties · Rewards · Model
checking · Policy

1 Introduction

Stochastic phenomena appear in many systems such as those that interact with
the physical environment (e.g., due to environmental uncertainties, thermal fluc-
tuations, random message loss, and processor failure). Traditionally, the specifi-
cation of systems that deal with uncertainties are expressed in some form of prob-
abilistic temporal logic such as PCTL and PCTL∗ [5]. These logics can express the
properties of single probabilistic computation trees. The temporal logic HyperPCTL [2]
generalizes PCTL to express probabilistic hyperproperties by allowing quantification over
multiple computation trees and expressing the probability relation among them. For

This research was partially supported by the United States NSF SaTC Award 2100989,
WWTF ICT19-018 grant ProbInG and the DFG Research and Training Group
UnRAVeL.
O. Dobe and L. Wilke—First co-authors.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 656–673, 2022.
https://doi.org/10.1007/978-3-031-06773-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_35&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_35

Probabilistic Hyperproperties with Rewards 657

s0
5

s1
6

s2
2

s3
2

s4
2

s5
1

s6
1

{init} {init}

{a}

{a}

∅ ∅

∅

0.4 0.2

0.4

0.7 0.3

1 0.8 0.2 1

1 1

(a) A DTMCR.

s0
3{h>0} s1

3 {h≤0}

s2
1

{
l=1
end

} s3
1

{
l=2
end

}

α

3
4

1
4

β
1
2

1
2

α
2
3

1
3

β
1
2 1

2

τ 1τ 1

(b) An MDPR.

s0
3{h>0} s1

2 {h≤0}

s2
1

{
l=1
end

}
s3
1

{
l=2
end

}
3
4

1
4

2
3

1
3

1 1

(c) An induced DTMCR.

Fig. 1. Example Markov models.

instance, consider the Markov Decision Process (MDP) in Fig. 1b. The HyperPCTL
formula

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(
(h > 0)ŝ ∧ (h ≤ 0)ŝ′

)
⇒

(
P (l = 1)ŝ = P (l = 1)ŝ′

)

requires that the probability of reaching a state with proposition l = 1 from any pair
of states ŝ and ŝ′ labeled by h > 0 and h ≤ 0 respectively, should be equal for the
Discrete Time Markov Chain (DTMC) induced by any scheduler σ̂.

In addition to the probability relation between certain events and computations, it
is natural to analyze the average behavior of Markov models as well as the interrelation
of average behaviors in different executions. For example:

– Service-level agreements (e.g., average system response time and uptime) are gen-
erally concerned with average performance metrics of a system among a set of
executions. This is, of course, a system-wide performance requirement rather than
the property of individual executions.

– Side-channel timing leaks can potentially reveal sensitive information through exe-
cution time of a function call. The execution time can be captured as a reward
model where each instruction is associated with a cost and the probabilistic hyper-
property expresses that every pair of executions should exhibit the same expected
execution cost.

– Distributed algorithms often use randomization to break symmetry in order to
tackle impossibility results. Although one can reason about the expected perfor-
mance of a randomized distributed algorithm by the traditional reward models,
from a design perspective, it is desirable to determine and mitigate states from
where convergence to the objective of the algorithm takes much longer than oth-
ers.

These examples clearly motivate the need to somehow augment probabilistic hyper-
properties with reward constraints.

With this motivation, our first contribution in this paper is to make the connec-
tion between reward models and probabilistic hyperproperties. In the context of a
hyperproperty, analogous to the probability relation between multiple executions in
a HyperPCTL formula, a reward mechanism should be able to express the expected
reward relation along different quantified computation trees. To this end, we extend
the syntax and semantics of HyperPCTL by allowing arithmetic functions over expected
rewards and comparing them over multiple executions. For instance, for the MDP in

658 O. Dobe et al.

Fig. 1b one may express whether there exist two schedulers such that starting from
any two states, labeled with h>0 and h≤0, resp., the expected reward of reaching an
end-labeled state is the same using the following property:

∃σ̂1.∃σ̂2.∀ŝ(σ̂1).∀ŝ′(σ̂2).
(
(h>0)ŝ ∧ (h≤0)ŝ′

)
→

(
Rŝ(endŝ) = Rŝ′(endŝ′)

)

In the MDP in Fig. 1b, if we instantiate ŝ with s0, and choose the action α, we collect a
reward of (3+ 3

4
× 1+ 1

4
× 1) = 4, on reaching s2 and s3 with label end. Similarly, if we

instantiate ŝ′ with s1, and choose the action α, we collect a reward of (3+ 2
3
×1+ 1

3
×1) =

4, on reaching s2 and s3 with label end. Hence, we can prove the existence of schedulers
that satisfy the above property in the MDP in Fig. 1b. On a closer look, no matter which
action we choose at s0 and s1, the property is always satisfied. Also, if we instantiate
ŝ and ŝ′ with any other states different from s0 resp. s1, the property is vacuously
true. On the contrary, if we replace the equality of rewards with inequality then the
property is false as there are no such schedulers. Besides comparing reward values,
our HyperPCTL extension offers further expressive power to e.g. measure accumulated
rewards in an execution until an observable property, say termination, gets satisfied in
another one.

Our second contribution in this paper is an algorithm for model checking Hyper-
PCTL formulas with rewards for MDPs. Since the general verification problem is known
to be undecidable [2], we focus on memoryless non-probabilistic schedulers which yields
a decidable problem, for which we propose a model checking algorithm based on log-
ical problem encoding and SMT solving. We have implemented a prototype of our
method and analyzed it experimentally on three case studies: (1) side-channel timing
attacks, (2) probabilistic performance conformance, and (3) randomized path planning
for multi-agent robotics applications.

Organization. In Sect. 2, we present preliminary concepts. We introduce our proposed
extension of HyperPCTL with rewards in Sect. 3 and discuss its applications in Sect. 4.
We present our model checking algorithm and associated experimental results in Sects. 5
and 6, respectively. Related work is discussed in Sect. 7. Finally, we conclude in Sect. 8.

2 Preliminaries

By R (R≥0) we denote the real (non-negative real) numbers, and by N the natural
numbers including 0. For any domain D and any v = (v0, . . . , vn−1) ∈ Dn, we define
v[i] = vi for i ∈ {0, . . . , n−1}. The concepts below have been adapted from [5] and
extended to work for hyperlogics.

2.1 Discrete-time Markov Models with Rewards

When defining costs or rewards for Markov models, we can assign rewards to states or
transitions. In this work we limit to the assignment of non-negative rewards to states
and support multi-dimensional reward vectors.

Definition 1. A Discrete Time Markov Chain with (k-ary) rewards (DTMCR) is a
tuple D = (S, P,AP, L, rew) with (1) a non-empty set of states S, (2) a transition
function P : S ×S → [0, 1] ⊆ R with

∑
s′∈S P (s, s′) = 1 for all s ∈ S, (3) a finite set of

atomic propositions AP, (4) a labeling function L : S → 2AP and (5) a reward function
rew : S → R

k
≥0.

Probabilistic Hyperproperties with Rewards 659

Figure 1a shows an example DTMCR with unary rewards. Assume a DTMCR D =
(S, P,AP, L, rew). An infinite path is a sequence of states π = s0s1 . . . ∈ Sω with
P (si, si+1) > 0 for all i ∈ N. A non-empty prefix of an infinite path is a finite path
π = s0 . . . sn−1 ∈ S+ of length |π| = n ∈ N \ {0}. Let PathsD

s (fPathsD
s) be the set of

all infinite (finite) paths starting in s ∈ S. A state t ∈ S is reachable from s ∈ S if
there exists a path in fPathsD

s ending in t. A state s ∈ S is absorbing iff P (s, s) = 1.
For a finite path π ∈ fPathsD

s , we define its cylinder set CylD(π) as the set of all
infinite paths with π as a prefix. The probability of the cylinder set of π ∈ fPathsD

s

is defined as PrD
s (CylD(π))=Π

|π|−1
i=0 P (si, si+1). For sets R⊆fPathsD

s we have PrD
s (R)=∑

π∈R′ PrD
s (π), where R′ contains all finite paths from R that have no extensions in

R. These notions induce for each s ∈ S the probability space,

(
PathsD

s ,
{ ⋃

π∈R
CylD(π) | R ⊆ fPathsD

s

}
, PrD

s

)
.

Note that the cylinder sets of two finite paths starting in the same state are either
disjoint or one is contained in the other.

For a reward function rew : S → R
k
≥0 and i ∈ {0, . . . , k−1} we define rewi : S → R≥0

to assign the ith state reward rewi(s) = rew(s)[i] to all s ∈ S. The ith cumulative
reward for a finite path, π = s0s1 . . . sn−1 is defined as rewi(π) =

∑n−1
j=0 rewi(sj). Note

that non-negative rewards assure monotonic increase of cumulative rewards with path
extensions.

To argue about simultaneous runs across two DTMCRs, we define their parallel
composition.

Definition 2. Assume two DTMCRs Di = (Si, Pi,APi, Li, rewi) with ki-ary rewards,
i ∈ {1, 2}. We define the parallel composition D1×D2 = (S1×S2, P,AP1 ∪AP2, L, rew)
with (k1+k2)-ary rewards, such that for all (s1, s2), (s′

1, s
′
2) ∈ S × S:

(1) P
(
(s1, s2),(s

′
1, s

′
2)

)
= P1(s1, s

′
1)·P2(s2, s

′
2), (2) L((s1, s2)) = L1(s1)∪L2(s2) and

(3) rew((s1, s2)) = (rew1(s1), rew2(s2)).

Next, we extend the probabilistic nature of DTMCRs with non-determinism.

Definition 3. A Markov Decision Process with k-ary rewards (MDPR) is a tuple
M = (S, Act, P,AP, L, rew) with (1) a non-empty set of states S, (2) a non-empty
finite set of actions Act, (3) a transition function P : S × Act × S → [0, 1] ⊆ R

such that for each s ∈ S we have
∑

s′∈S P (s, α, s′) ∈ {0, 1}. For all α ∈ Act, there
is at least one action that can be chosen in each state, such that α ∈ Act(s) = {α ∈
Act | ∑s′∈S P (s, α, s′) = 1} and for α ∈ Act \Act(s),

∑
s′∈S P (s, α, s′) = 0, (4) a finite

set of atomic propositions AP, (5) a labeling function L : S → 2AP, and (6) a reward
function rew : S → R

k
≥0.

Figure 1b shows an example MDPR. In each state, for the next execution step,
any of the enabled actions can be chosen non-deterministically. Schedulers are used to
eliminate this non-determinism.

Definition 4. A scheduler for an MDPR M = (S, Act, P,AP, L, rew) is a tuple σ =
(Q, act, mode, init) with (1) a countable set of modes Q, (2) a function act : Q × S ×
Act → [0, 1] ⊆ R such that for every s ∈ S and q ∈ Q,

∑
α∈Act(s)

act(q, s, α) = 1 and
∑

α∈Act\Act(s)
act(q, s, α) = 0 ,

(3) a mode transition function mode : Q × S → Q and (4) init : S → Q assigning to
each state of M a starting mode.

660 O. Dobe et al.

Let ΣM be the set of all schedulers for M. A scheduler is finite-memory if Q is finite,
memoryless if |Q| = 1, and non-probabilistic if act(q, s, α) ∈ {0, 1} for all q ∈ Q, s ∈ S
and α ∈ Act.

Definition 5. Assume an MDPR M = (S, Act, P,AP, L, rew) with k-ary rewards and
a scheduler σ = (Q, act, mode, init) for M. Then M and σ induce the DTMCR with
k-ary rewards Mσ = (Sσ, P σ,AP, Lσ, rewσ), where Sσ = Q × S,

P σ((q, s), (q′, s′)) =

{∑
α∈Act(s) act(q, s, α) · P (s, α, s′) if q′ = mode(q, s)

0 if q′ �= mode(q, s) ,

with Lσ(q, s) = L(s) and rew σ(q, s) = rew(s), for all q ∈ Q and s ∈ S.

If σ is memoryless, we sometimes omit its mode and write (s) instead of (q, s). For
the MDPR in Fig. 1b and a scheduler that chooses action α in states s0, s1 and action
τ in states s2, s3, the induced DTMCR is shown in Fig. 1c.

Different executions in several models can be seen as executions in the composition
of the models. To simplify notation, in this paper we restrict ourselves to comparing
executions in the same model, leading to the notion of self-composition.

Definition 6. Assume an MDPR M = (S, Act, P,AP, L, rew) and a sequence σ =
(σ0, . . . , σn−1) ∈ (ΣM)n of schedulers for M. For i ∈ {0, . . . , n−1}, let Mi =
(S, Act, P,APi, Li, rew) with APi = {ai | a ∈ AP}, and Li : S → 2APi with Li(s) =
{ai | a ∈ L(s)}. We define the n-ary self composition of M under σ as the DTMCR
Mσ = (Sσ , P σ ,APσ , Lσ , rewσ) = Mσ0

0 × . . . × Mσn−1
n−1 .

In the above definition, Mσi
i is the DTMCR induced by Mi and σi. Note that the

reward of a state s = ((q0, s0), . . . , (qn−1, sn−1)) ∈ Sσ in the n-ary self-composition
Mσ is the sequence rewσ (s) = (rew(s0), . . . , rew(sn−1)), i.e. the ith state reward in
the jth execution is rewσ

j,i(s) = rewi(sj). For a finite path π in Mσ , we denote its

cumulative ith reward in the jth execution as rewj,i(π) =
∑|π|−1

k=0 rewj,i(π[k]).

3 HyperPCTL with Rewards

3.1 HyperPCTL Syntax

ϕq ::= ∀σ̂.ϕq | ∃σ̂.ϕq | ϕsq

ϕsq ::= ∀ŝ(σ̂).ϕsq | ∃ŝ(σ̂).ϕsq | ϕnq

ϕnq ::= true | aŝ | ϕnq ∧ ϕnq | ¬ϕnq | ϕar ∼ ϕar

ϕar ::= P(ϕpath) | Rŝ,i(ϕpath) | f(ϕar, . . . , ϕar)
ϕpath ::= ϕnq | ϕnq U ϕnq | ϕnq U [k1,k2] ϕnq

Fig. 2. HyperPCTL syntax

Hyperproperties of execu-
tions in an MDPR can
be specified using the logic
HyperPCTL. As shown in
Fig. 2, a quantified formula
ϕq starts with a sequence
of quantifiers over sched-
uler variables σ̂ ∈ Σ̂, fixing
the schedulers under which executions are considered. Inside, a state-quantified formula
ϕsq defines a sequence of quantifiers over state variables ŝ ∈ Ŝ, where each quantifier
specifies a new execution from a given state under a given scheduler. Note that different
executions might use the same scheduler.

Probabilistic Hyperproperties with Rewards 661

In the scope of these quantifiers is a non-quantified state formula ϕnq, which can be
the constant true, an atomic proposition indexed with a state variable, a conjunction,
a negation, or a relational constraint comparing two arithmetic expressions via ∼∈ {>
, ≥, =, �=, <, ≤}. Arithmetic expressions are constructed from probability expressions,
reward expressions or applying arithmetic function symbols (e.g., addition, subtraction,
multiplication, etc., where constants are 0-ary functions) to arithmetic expressions.
Note that the reward operator R is indexed with a state variable ŝ specifying the
execution for which we consider the reward, and an integer i specifying the reward
component; for models with unary rewards, like in our examples, we skip the second
index (as it is always 0). Finally, the parameters of probabilistic and reward expressions
are path formulas, which apply one of the temporal operators, next (), unbounded
until (U), or bounded until (U [k1,k2], k1 ≤ k2 ∈ N≥0) to non-quantified state formulas.

A HyperPCTL formula is a quantified formula in that every occurrence of an indexed
atomic proposition aŝ is in the scope of a state quantifier for ŝ(σ̂), which in turn is in
the scope of a scheduler quantifier for σ̂. W.l.o.g., in the following we assume that each
scheduler or state variable is quantified at most once.

In addition to standard syntactic sugar ∨, →, , , . . ., we can express expected
cumulative reward over the next t ∈ N steps and expected reward in the state reached
after t steps as follows:

Rŝ,i(Ct) = Rŝ,i(trueU [t,t]
true) and Rŝ,i(It) =

{Rŝ,i(Ct) − Rŝ,i(Ct−1) if t>0
Rŝ,i(Ct) else .

3.2 HyperPCTL Semantics

HyperPCTL formulas are evaluated recursively in the context of an MDPR M, a
sequence σ of actions and a sequence s of states, both of the same length. Intuitively,
the length of these sequences says how many executions we run in parallel, and the
ith elements in these sequences specify the ith execution of the scheduler and the ini-
tial state in the induced DTMCR, respectively. An MDPR M satisfies a HyperPCTL
formula ϕ (written M |= ϕ) iff M, (), () |= ϕ.

In the semantic rules below, the substitution ϕ[σ̂�σ] remembers the instantiation
of a scheduler variable σ̂ by a scheduler σ = (Q, act, mode, init) through syntactically
transforming in ϕ each ∀ŝ(σ̂) and ∃ŝ(σ̂) into ∀ŝ(σ) and ∃ŝ(σ), resp. When instantiating
the nth state quantifier ∀ŝ(σ) or ∃ŝ(σ) by a state s, we “start” an nth execution in
state (init(s), s) of Mσ, which corresponds to extending the previously (n−1)-ary self-
composition of M to arity n. We remember this by adding σ and s at the end of
the corresponding sequences in the context (using concatenation ◦), and applying the
substitution ϕ[ŝ�n] to replace each indexed atomic proposition aŝ and each reward
operator Rŝ,i in ϕ by an and Rn,i, respectively.1 We recall from [2] the semantics of
constructs that are not related to rewards:

1 Instead of syntactical substitutions, we could also use binding functions to map
scheduler variables to schedulers and state variables to indices in the state sequence
in the context.

662 O. Dobe et al.

M, σ, s |= ∀σ̂.ϕ iff M, σ, s |= ϕ[σ̂�σ] for all σ ∈ ΣM

M, σ, s |= ∃σ̂.ϕ iff M, σ, s |= ϕ[σ̂�σ] for some σ ∈ ΣM

M, σ, s |= ∀ŝ(σ).ϕ iff M, σ ◦ σ, s ◦ (init(s), s) |= ϕ[ŝ�|σ|] for all s∈S
M, σ, s |= ∃ŝ(σ).ϕ iff M, σ ◦ σ, s ◦ (init(s), s) |= ϕ[ŝ�|σ|] for some s∈S
M, σ, s |= true

M, σ, s |= ai iff ai ∈ Lσ (s)
M, σ, s |= ϕ1 ∧ ϕ2 iff M, σ, s |= ϕ1 and M, σ, s |= ϕ2

M, σ, s |= ¬ϕ iff M, σ, s �|= ϕ
M, σ, s |= ϕar

1 ∼ ϕar
2 iff �ϕar

1 �M,σ ,s ∼ �ϕar
2 �M,σ ,s

�P(ϕpath)�M,σ ,s = PrMσ ({π ∈ PathsMσ

s | M, σ, π |= ϕpath}
)

�f(ϕar
1 , . . . , ϕar

k)�M,σ ,s = f
(
�ϕar

1 �M,σ ,s , . . . , �ϕar
k �M,σ ,s

)

We are left with the semantics for Rj,i(ϕ
path) (note that instantiating a state quan-

tifier for ŝ(σ) replaces each Rŝ,i occurrence by Rj,i, where j is the position of the
quantifier). The value of Rj,i(ϕnq) is the current ith reward plus the expected ith
reward of the successor state in the jth execution, if the probability that the successor
state satisfies ϕnq is 1; otherwise, the value is undefined. The value of Rj,i(ϕ

nq
1 U ϕnq

2)
is the expected cumulative ith reward in the jth execution, accumulated until the first
time a (global self-composition) state is reached that satisfies ϕnq

2 , in case the prob-
ability of satisfying ϕnq

1 U ϕnq
2 is 1; otherwise, the value is undefined. The semantics

of Rj,i(ϕ
nq
1 U [k1,k2] ϕnq

2) is similar, but the rewards are accumulated until the first
satisfaction of ϕnq

2 within time [k1, k2]. Formally, the semantics for �Rj,i(ϕ
path)�M,σ ,s

is as follows, given that �P(ϕpath)�M,σ ,s = 1. If that is not the case, �Rj,i(ϕ
path)�M,σ ,s

is undefined.

fPathsMσ

s (ϕnq
1 U ϕnq

2) = {s0 . . . sn ∈ fPathsMσ

s | M, σ, sn |= ϕnq
2 and

M, σ, si |= ϕnq
1 ∧ ¬ϕnq

2 for i = 0, . . . , n−1}
fPathsMσ

s (ϕnq
1 U [k1,k2]ϕnq

2) = {s0 . . . sn ∈ fPathsMσ

s | k1 ≤ n ≤ k2 and
M, σ, sn |= ϕnq

2 and
M, σ, si |= ϕnq

1 for i = 0, . . . , k1−1 and
M, σ, si |= ϕnq

1 ∧ ¬ϕnq
2 for i = k1, . . . , n−1}

�Rj,i(ϕnq)�M,σ ,s = rewσ
j,i(s) +

∑
s′∈Sσ P σ (s, s′) · rewσ

j,i(s
′)

�Rj,i(ϕ
nq
1 U ϕnq

2)�M,σ ,s =
∑

π∈fPathsMσ
s (ϕ

nq
1 U ϕ

nq
2)(Prσ (π) · rewσ

j,i(π))

�Rj,i(ϕ
nq
1 U [k1,k2]ϕnq

2)�M,σ ,s =
∑

π∈fPathsMσ
s (ϕ

nq
1 U [k1,k2]ϕ

nq
2)(Prσ (π) · rewσ

j,i(π))

Since adding rewards to HyperPCTL causes arithmetic values to be potentially
undefined, we need to extend the above semantics to handle the propagation of unde-
fined values. For each syntactic case, the above semantics remains unchanged if all
involved statements used in the definition are defined. It would be an easy job to set
the values in all other cases to undefined. However, even if some of the arguments are
undefined, we still might be able to conclude a defined value. For example, if one of the
operands in a conjunction is false then the conjunction is inevitably false, even if the
other operand is undefined. In extension to the above semantics for the cases when all
terms used in the definition are defined, below we fix the semantics for the remaining
cases with the objective to reduce the occurrence of undefined values.

We extend the Boolean domain of true (1) and false (0) with undefined (⊥). We
use the |= relation as before when all sub-expressions (and thus the formula) are known
to be defined, and use �·�· otherwise. Logical constants as well as atomic propositions
are always defined. The value of a conjunction is undefined iff none of the operands is
false and not both operands are true, whereas a negation is undefined iff the negated
formula is undefined.

Probabilistic Hyperproperties with Rewards 663

The value of a universally state-quantified formula ∀ŝ(σ).ϕ is undefined if the value
of ϕ is undefined for at least one instantiation of the formula with a state and is not
false for any other instantiation. Likewise, the value of an existentially state-quantified
formula ∃ŝ(σ).ϕ is undefined if the value of ϕ is undefined for at least one instantiation
of the formula with a state and is not true for any other instantiation. The undefinedness
of scheduler quantifiers is analogous.

Row �ϕ1� �ϕ2� p �ϕ�

1 * 1 * 1

2 0 0 * 0

3 ⊥ 0 0 0

4 ⊥ 0 �= 0 ⊥
5 1 0 * p

6 0 ⊥ * ⊥
7 ⊥ ⊥ * ⊥
8 1 ⊥ 1 1

9 1 ⊥ �= 1 ⊥

Table 1. Semantics
of ϕ = P(ϕ1 U ϕ2),
partly depending on
p =

∑
s′∈Sσ P (s, s′) ·

�ϕ�M,σ ,s′ ∈ [0, 1]∪
{⊥}. Here, �.� is short for
�.�M,σ ,s .

Also the domain of arithmetic values gets extended
with the undefined value ⊥. Arithmetic function applica-
tions f(ϕ1, . . . , ϕk) and arithmetic constraints ϕ1 ∼ ϕ2 are
undefined iff any of their parameters are undefined. How-
ever, for probabilistic until ϕ = P(ϕ1 U ϕ2) we can exploit
available information to increase the number of defined
cases, even if the satisfaction of one of the operands is
undefined in the current state, as shown in Table 1. The
information we exploit for the semantics in a state s are the
probabilistic until values in the successor states, or more
precisely, the value of p =

∑
s′∈Sσ P (s, s′) · �ϕ�M,σ ,s′ ∈

[0, 1] ∪ {⊥}, which we consider undefined iff one of the
successor probabilities is undefined.

Table 1 extends the original probabilistic until seman-
tics from above with the undefined cases, using ∗ to denote
an arbitrary (defined or undefined) arithmetic value. This
table is split into three parts. The first part states that if
ϕ2 is true then the formula value is 1. The second part
covers the case where ϕ2 is false, where the violation of ϕ1

leads to the violation of the formula, and if ϕ1 is true then
the formula probability equals the value of p. An interesting case in the second block is
when ϕ1 is undefined: though in most cases the formula is also undefined, if we know
that the probability to satisfy the until formula in the future is 0 then we can safely
state that the probability to satisfy the same in the current state is also 0. Similarly
in the third block, if ϕ1 is true in the current state and the probability to satisfy the
until formula in the future is 1 then, irrelevant of the value of ϕ2, the probability to
satisfy the until formula from the current state is always 1.

Reward expressions are undefined if the respective path property is not satisfied
with probability 1. For the reward expression Rj,i(ϕ), this is the only case in which
it is undefined. To evaluate ϕ = Rj,i(ϕ1 U ϕ2), if ϕ2 is true in the current state then
we need to know only the current state’s reward; in this case the reward is defined
independent of the successor states. If ϕ2 is false currently then the reward is computed
from the current state reward plus the expected successor ϕ-values, thus undefinedness
of the reward expression in a successor state causes undefinedness in the current state.
However, if ϕ2 is undefined in the current state then we do not know which of these
two cases apply; the only case where this does not matter is if the reward expression
evaluates in all successor states to 0, namely then the value of ϕ is the current state
reward. Thus if ϕ2 is undefined in the current state then the reward expression is
undefined in all but this special case, even if the probability of the until formula is 1.

The definedness of bounded until formulas is similar to the unbounded case for
both probability and reward expressions, except that we now also need to account for
the bounds.

However, with these definitions, we only exploit some but not all information, to
determine the definedness of a property. Assume, for example, the property that from

664 O. Dobe et al.

a state s, the probability to eventually satisfy ϕ is less than p. It might be the case
that in some states reachable from s the value of ϕ is undefined, triggering the above
probability to be undefined by our algorithm. However, ϕ might be reachable along
another path with a probability larger than p, in which case we could have safely stated
that it is at least p. Hence, it can be a direction of future research to find a tighter
bound on the definedness of a property.

4 Applications of HyperPCTL with Rewards

4.1 Timing Attacks

1 void mexp () {
2 c = 0 ; d = 1 ; i = k ;
3 whi le (i >= 0){
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f (b (i) = 1){
7 c = c+1;
8 d = (d∗a) % n ;
9 }

10 }
11 }

Side-channel timing leaks can potentially reveal sen-
sitive information. For example, RSA uses the modu-
lar exponentiation algorithm on the right to compute
ab mod n, where a is the message and b is the encryp-
tion key. This implementation is flawed because of
the if in line 6. Due to the lack of an else branch, its
execution will take longer if b contains more 1-bits.
An attacker could therefore run a thread in parallel
to measure the execution time of the algorithm to
derive the number of 1-bits in the encryption key.
To prevent such vulnerabilities, we would like the execution time to be independent of
the bit values in the encryption key, which is captured by assigning a reward of 1 to
each state in the MDPR. Here, each state represents the current position in the code
and loop iteration. This results in the following HyperPCTL formula:

∀σ̂1.∀σ̂2.∀ŝ(σ̂1).∀ŝ′(σ̂2). (initŝ ∧ initŝ′) → (Rŝ(endŝ) = Rŝ′(endŝ′)) .

4.2 Probabilistic Conformance

The aim here is to ensure that an implementation conforms with the system it is sim-
ulating [2]. We consider the implementation of a 6-sided die with repeated tossing of
a fair coin using the Knuth-Yao algorithm [22]. For conformance, the probabilistic dis-
tribution of reaching the 6 sides of a die should be equal in both cases. We model this
problem with an MDP consisting of two components: the first component describes
the die and its states represent the faces of the die after being rolled. The second
component describes the multiple coin tosses and its states represent the unique com-
bined results of the tosses. Extending this model with rewards allows us to synthesize
efficient implementations: if we assign to every state, except the absorbing states, a
reward of 1, the expected reward on reaching one of the absorbing states in the coin
implementation will be equal to the expected number of coin tosses in it. If we limit
the rewards collected in such a path, we can filter the implementations with minimum
intermediate states. The following formula specifies that the expected number of coin
tosses in such an implementation must be less than 4:

∃σ̂.∀ŝ(σ̂).∃ŝ′(σ̂).dieInitŝ →
(

ϕ ∧ Rŝ′((
6∨

l=1

(die = l)ŝ′)) < 4

)

with ϕ = coinInitŝ′ ∧ ∧6
l=1 (P((die = l)ŝ) = P((die = l)ŝ′)).

Probabilistic Hyperproperties with Rewards 665

4.3 Cost Analysis in Multi-Agent Path Planning

Fig. 3. The maze on the left satisfies ϕtarget, while
on the right it violates ϕtarget.

We consider the examples
in Fig. 3 where two robots
R1, R2 aim to reach the tar-
get cell end starting their jour-
ney from two different ini-
tial cells (start1, start2). The
robots’ behavior is modeled
as an MDPR where each cell
occupied represents a state.
Nondeterministic actions rep-
resent all possible moves of the robot from each cell, while the successful maneuvering
after having executed an action is captured by a probability distribution.

Fences prevent a robot to move in a certain direction disabling possible actions in
a particular cell, while the presence of ramps or uneven terrain can increase/decrease
the probability of correct robot maneuvers. The occupancy of each state has a cost
in terms of energy consumption modeled as a positive reward. We want to check that
for all possible (memoryless) schedulers, when robots R1, R2 start their mission from
their respective initial conditions and they can both reach the target state with proba-
bility 1, then the expected energy consumption for robot R1 is less than the expected
energy consumption for robot R2. This can be expressed as the following probabilistic
hyperproperty:

ϕtarget = ∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).ψ →
(
Rŝ(endŝ) < Rŝ′(endŝ′)

)
, where

ψ =
(
start1ŝ ∧ start2ŝ′ ∧ P(endŝ) = 1 ∧ P(endŝ′) = 1

)
.

4.4 Probabilistic Self-stabilizing Systems

In distributed systems, randomization is often used to break symmetry between pro-
cesses to tackle impossibility results. For instance, self-stabilizing token circulation in a
ring is impossible in a non-probabilistic setting but Herman’s algorithm [20] (see Fig. 4)
uses randomization to ensure recovery to a stable state (i.e., there is only one token
circulating) with probability one. In such an algorithm, from certain initial states, con-
vergence to a stable state may be faster than others and if faults hit those states with a
higher probability, it reduces the average convergence time significantly. Thus, design-
ers of self-stabilizing algorithms often use state encodings to tackle slow recovery [11].
The following formula intends to check whether there exists a state from which the
convergence time is twice slower than from some other state:

∀σ̂.∃ŝ(σ̂).∃ŝ′(σ̂).
(
Rŝ(stableŝ) > 2 · Rŝ′(stableŝ′)

)

Note that Herman’s algorithm yields a DTMCR and, thus, the choice of scheduler
quantification is irrelevant.

666 O. Dobe et al.

1: Variable: xi : boolean ∈ {0, 1}
2: Guarded Commands:

xi = xi−1 −→ p : xi := 0 + (1 − p) : xi := 1;
xi �= xi−1 −→ 1 : xi := xi−1;

π0

x0=0

π1

x1=0
π2

x2=0

=⇒

π0

x0=0

π1

x1=1
π2

x2=1

Fig. 4. Herman’s algorithm [20] for process i and example for three processes.

5 Model Checking Algorithm for Reward Operators

HyperPCTL provides an increased level of expressiveness over PCTL and PCTL∗, causing
the model checking problem for MDPRs to be undecidable even without rewards, as
shown in [2]. To achieve decidability for HyperPCTL without rewards, in [2] we restricted
the domain of scheduler quantification to memoryless non-probabilistic schedulers. For
this restricted domain, the model checking problem is NP-complete (or coNP-complete)
when the scheduler quantification is existential (or universal). We provided a model
checking algorithm by logically encoding HyperPCTL satisfaction problems as linear
real-arithmetic formulas and use an SMT solver to check the encodings for satisfiability.
Elaborate explanations of encoding non-reward operators can be found in [2].

After adding rewards, the model checking problem restricted to finite memoryless
schedulers is still decidable. Similar to the standard model checking problem for Markov
Reward Models, computing the expected reward earned until a certain set of states is
reached, has a polynomial time complexity in the size of the MDP: the problem can
be solved by determining a linear real-arithmetic equation system via graph reacha-
bility analysis and solving it. This means adding rewards does not change the class of
complexity of the model checking problem as identified in [2].

However, adding rewards to the problem requires a major adaption of the logical
encoding. The reason is that expected reward values might be undefined, and undefined-
ness might propagate from the inner sub-formulas to the formula value. The main contri-
butions of this section are (1) to extend the model checking algorithm from [2] to encode
the semantics of reward-related HyperPCTL expressions and (2) to modify the previous
encodings to model undefinedness propagation for the remaining language components.
To ease understanding, in the following we consider unary-reward models and a single
existential scheduler quantifier in our properties; extension to multi-dimensional rewards
and several scheduler quantifiers without quantifier alternation is doable by little mod-
ifications to the algorithms. Given their finite domain, support for scheduler quantifier
alternation is possible, too, but it would require more involved extensions.

Algorithm 1: Main SMT encoding algorithm
Input: M = (S, Act, P,AP, L, rew): MDPR;

ϕ: HyperPCTL formula.
Output: Whether M satisfies ϕ.

1 Function
Main(M, ϕ = ∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq):

2 E :=
∧

s∈S(
∨

α∈Act(s) σs = α)

3 E := E ∧ Semantics(M, ϕnq, n)
4 T := E ∧ Eval(M, ϕ, {1})
5 U := E ∧ Eval(M, ϕ, {⊥, 1})
6 if check(T) = SAT then return TRUE
7 else if check(U) = SAT then return UNDEF
8 else return FALSE

Assume as input an MDPR
model M and a HyperPCTL for-
mula ϕ. In [2] we used Boolean
variables holdss,ϕ to encode the
truth value of a Boolean-valued
formula ϕ in state s. In this
work, we replace the two-valued
domain for these variables by
a three-valued domain over the
values true (1), false (0) and
undefined (⊥). Furthermore, we
use variables vals,ϕ to store the

Probabilistic Hyperproperties with Rewards 667

Algorithm 2: SMT encoding for the meaning of an input formula
Input: M = (S, Act, P,AP, L, rew): MDPR; ϕ: quantifier-free HyperPCTL

formula or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in n-ary self-composition of M.

1 Function Semantics(M, ϕ, n):
2 if ϕ is true then E :=

∧
s∈Sn holdss,ϕ=1

3 else if ϕ is aŝi then
4 E := (

∧
s∈Sn, a∈L(si)

(holdss,ϕ=1)) ∧ (
∧

s∈Sn, a�∈L(si)
(holdss,ϕ=0))

5 else if ϕ is ¬ϕ′ then
6 E := Semantics(M, ϕ′, n) ∧ ∧

s∈Sn(holdss,ϕ′=0 → holdss,ϕ=1)∧
7

∧
s∈Sn(holdss,ϕ′=1 → holdss,ϕ=0) ∧ ∧

s∈Sn(holdss,ϕ′=⊥ → holdss,ϕ=⊥)

8 else if ϕ is ϕ1 ∧ ϕ2 then E := SemanticsConjunction(M, ϕ, n)
9 else if ϕ is ϕar

1 ∼ ϕar
2 then E := SemanticsComp(M, ϕ, n)

10 else if ϕ is f(ϕar
1 , . . . , ϕar

k) then E := SemanticsArithmetic(M, ϕ, n)
11 else if ϕ is P(ϕ′) then E := SemanticsNext(M, ϕ, n)
12 else if ϕ is P(ϕ1 U ϕ2) then E := SemanticsUnboundedUntil(M, ϕ, n)

13 else if ϕ is P(ϕ1 U [k1,k2]ϕ2) then E := SemanticsBoundedUntil(M, ϕ, n)
14 else E := RewSemantics(M, ϕ, n)
15 return E

numerical value of an arithmetic expression ϕ in state s. To also encode the definedness
of arithmetic values, we introduce additional Boolean variables defs,ϕ which should be
true iff the corresponding value is defined. Finally, to encode a scheduler, we use for
each state of M a variable σs to store the chosen action.

The starting point of the encoding is Algorithm 1, which begins by encoding the
scheduler choice2 in line 2. The semantics of the non-quantified inner formula ϕnq

under a given scheduler choice in each of the states is encoded in line 3. This basic
encoding E is extended in two directions: formula T encodes that ϕ can be made
true by some suitable quantifier instantiation, whereas U encodes that ϕ can be made
true or undefined. Only if none of these two cases apply (i.e. if both formulas are
unsatisfiable), we conclude that M does not satisfy ϕ. Not listed in the algorithm is
the case of a universal scheduler quantifier, where we use negation to get an existential
formula, apply the listed algorithm, and negate the answer.

The semantics of formulas is encoded by Algorithm 2. We omit the pseudocode
of sub-algorithms that were needed also without rewards; these are similar to those
in [2] but get extended with the encoding of definedness as explained in Sect. 3.2.
Relevant for rewards is line 14, calling the method RewSemantics in Algorithm 3 to
encode the semantics of the reward operators. In the case of rewards over the next
operator ϕ = Rŝi(ϕ′), we first encode the probability P(ϕ′); ϕ is undefined if this
probability is not 1 (line 5). If the probability is defined, then the reward is the expected
reward of the successors in the ith execution (line 7).

2 For n scheduler quantifiers, we would simply need to include such a scheduler encod-
ing for each of the schedulers σ1, . . . , σn, and in the rest of the encoding, refer to the
respective schedulers σi instead of σ.

668 O. Dobe et al.

Algorithm 3: SMT encoding for the meaning of reward operators
Input: M = (S, Act, P,AP, L, rew): MDPR; ϕ: quantifier-free HyperPCTL

formula or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in n-ary self-composition of M.

1 Function RewSemantics(M, ϕ, n):
2 if ϕ is Rŝi(ϕ′) then
3 E := Semantics(M,P(ϕ′), n)
4 foreach s = (s1, . . . , sn) ∈ Sn do
5 E := E ∧ ((vals,P(ϕ′) �= 1 ∨ ¬defs,P(ϕ′)) ↔ ¬defs,ϕ)

6 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do
7 E := E ∧ ([defs,ϕ ∧ ∧n

j=1 σsj = αj] → [vals,ϕ = rew(si) +∑
s′∈supp(α1)×...×supp(αn)((

∏n
j=1 P (sj , αj , s

′
j)) · rew(s′

i))])

8 else if ϕ is Rŝi(ϕ1 U [k1,k2]ϕ2) then

9 E := SemanticsBoundedUntil(M,P(ϕ1 U [k1,k2]ϕ2), n)
10 E := E ∧ RewardBoundedUntil(M, ϕ, n)

11 else if ϕ is Rŝi(ϕ1 U ϕ2) then
12 E := SemanticsUnboundedUntil(M,P(ϕ1 U ϕ2), n)
13 E := E ∧ RewardUnboundedUntil(M, ϕ, n)

14 return E

Algorithm 4: SMT encoding for reward of unbounded until
Input: M = (S, Act, P,AP, L, rew): MDPR; ϕ: HyperPCTL unbounded until

formula of the form Rŝi(ϕ1Uϕ2); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition of M.

1 Function RewardUnboundedUntil(M, ϕ = Rŝi(ϕ1Uϕ2), n):
2 ϕ′ := P(ϕ1 U ϕ2); E := true

3 foreach s = (s1, . . . , sn) ∈ Sn do
4 E := E ∧ (holdss,ϕ2 = 1 → (vals,ϕ = rew(si) ∧ defs,ϕ))

5 E := E ∧ ((vals,ϕ′ �= 1 ∨ ¬defs,ϕ′) → ¬defs,ϕ)

6 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do
7 E := E ∧ ((vals,ϕ′ = 1 ∧ defs,ϕ′ ∧ holdss,ϕ2 �= 1 ∧ ∧n

j=1 σsj = αj) →
8 [vals,ϕ =

rew(si) +
∑

s′∈supp(α1)×...×supp(αn)((
∏n

i=1 P (sj , αj , s
′
j)) · vals′,ϕ)∧

9 (¬defs,ϕ ↔ [(
∨

s′∈supp(α1)×...×supp(αn) ¬defs′,ϕ)∨
10 (holdss,ϕ2 = ⊥ ∧ vals,ϕ �= rew(si))])])

11 return E

To encode the reward of unbounded until formulas, we first need to encode the prob-
ability of the until formula, since this probability needs to be 1 for a defined reward
value. Then we call the RewardUnboundedUntil method from Algorithm 4, which imple-
ments the semantics of the reward of unbounded until from Sect. 3.2. Undefinedness is
covered in line 5, when the probability of the unbounded until is either not defined or

Probabilistic Hyperproperties with Rewards 669

Table 2. Experimental results. VR: Verification result. TA: Timing attack. PC: Prob-
abilistic conformance. RO: Robotics example. HS: Herman’s algorithm. IJ: Israeli-
Jaflon’s algorithm. �: the result is true. ×: the result is false.

Case study VR Running time (s) #SMT formulas #sub formulas #states #transitions

Encoding Solving Total Variables

TA 1-bit key × 0.11 0.01 0.12 344 1008 8 10

16-bit key × 16.41 3.69 20.10 19244 49728 68 100

30-bit key × 143.49 44.64 188.13 62868 160160 124 184

45-bit key × 774.53 1304.98 2079.51 137448 348080 184 274

PC s = (0) � 5.03 2.03 7.06 7281 34681 20 186

s = (0,1,2) � 6.66 8.91 15.57 7281 61631 20 494

s = (0,. . .,4) � 8.82 35 43.82 7281 88581 20 802

s = (0,. . .,6) � 11.64 53.05 64.69 7281 115531 20 1110

RO 3 × 3 � 0.87 0.05 0.92 2179 7622 18 66

3 × 3 × 0.93 0.05 0.98 2179 7622 18 66

4 × 4 � 3.55 0.28 3.83 6561 21572 32 160

4 × 4 × 3.43 0.25 3.68 6561 21476 32 148

5 × 5 � 13.07 0.5 13.57 15651 48302 50 250

5 × 5 × 13.19 0.98 14.17 15651 48302 50 250

6 × 6 � 44.52 1.04 45.56 32041 96096 72 398

6 × 6 × 44.65 7.48 52.13 32041 96096 72 398

HS n = 3 � 0.1 0.01 0.11 489 4655 8 28

n = 5 � 0.95 0.13 1.08 2369 7047 32 244

IJ n = 3 � 0.08 0.01 0.09 169 698 7 21

n = 4 � 0.24 0.04 0.28 601 2194 15 56

n = 5 � 0.89 0.33 1.22 2233 7010 31 140

n = 6 � 3.93 19.39 23.32 8569 23362 63 336

not 1, and in the lines 9–10, when the probability of the unbounded until is 1, ϕ2 is not
true and either a successor reward is undefined, or ϕ2 is undefined and the successor
rewards are not zero. The method RewardBoundedUntil for reward expressions with
bounded until, not shown here, is similar to the unbounded case, but needs additional
bookkeeping about the time interval within which ϕ2 needs to be satisfied.

6 Evaluation

Algorithm 5: Encoding certain formula values
Input: M = (S, Act, P,AP, L, rew): MDPR;

ϕ: HyperPCTL formula; v⊆{0, 1,.
Output: Encoding that

M, (), () |= ∃σ̂.Q1ŝ1. . . . Qnŝn.(ϕnq ∈ v).
1 Function Eval(M, ϕ = ∃σ̂.Q1ŝ1. . . . Qnŝn.ϕnq,

v):
2 foreach i = 1, . . . , n do
3 if Qi = ∀ then Bi := ”

∧
si∈S ” else

Bi := ”
∨

si∈S ”

4 return B1 . . . Bn (holds(s1,...,sn),ϕnq ∈ v)

We have implemented a proto-
type of the presented algorithm
by extending our tool Hyper-
Prob [10] to support rewards.
The implementation has been
coded in Python using the
libraries Lark [24] for parsing the
input formula, and Stormpy [26]
for parsing the input MDPR.
The generated constraints are
then solved by the SMT solver
Z3 [25]. Our implementation
cannot handle all possible cases

670 O. Dobe et al.

of undefinedness. We currently do not calculate the extent of partial definedness of a
property in a model. We check whether the states queried in the property are reachable
with a probability of one and proceed in calculation of rewards in such cases. Hence,
we have evaluated case studies, where the reachability probabilities are always one.

The concept of rewards have eased the modeling of case studies with respect to
counting of expected steps needed to reach a state. Hence, for timing attack and prob-
abilistic conformance case studies, the number of transitions and states are less when
compared to the models used in [2]. The implementation also returns a witness/coun-
terexample whenever possible, allowing us to synthesize schedulers. Note that, though
the ensemble of schedulers in the executions (i.e. σ in the semantical context) define
a scheduler in the self-composition, not all schedulers of the self-composition can be
defined this way, posing a major difference between scheduler synthesis for PCTL and
for HyperPCTL.

For the TA case study, we have modeled the problem with {1, 16, 30, 45}-bit
encryption keys. We have verified the HyperPCTL formula described in Sect. 4.1. The
property does not hold on the given model and our implementation finds this bug.
Since our implementation can handle only one scheduler quantifier, we have added a
second copy of the model to the input MDPR such that the single scheduler can assign
different actions to the states in the two copies of the model.

For the PC case study, we have verified the property described in Sect. 4.2. We have
started with a model with all possible transitions, represented non-deterministically,
from the initial state s0. For all other states, we allowed only the transitions that will
give us a correct solution. We challenged our implementation to synthesize a scheduler
that will satisfy the required probabilities within the given reward bound. We scaled
the model by incrementally allowing all possible combination of transitions using non-
deterministic actions in each state and limited the expected coin tosses to be 4 for each
experiment. For all the cases, our implementation was successful in finding a solution,
which we verified manually as correct.

For the RO case study, we have verified the property described in Sect. 4.3. We
have scaled the model in terms of maze size and verified both positive and negative
cases of path finding. On self-stabilizing systems, we have verified several properties and
described one of them in Sect. 4.4. This property is satisfied and we have successfully
found a witness. We have reported the timing data for this property in Table 2. We have
verified the property in models representing both Herman’s (HS) and Israeli-Jaflon’s
(IJ) [21] algorithms. Since, Herman’s algorithm is only valid for odd processes, we
tried verification over {3, 5} processes. For Israeli-Jaflon’s, we tried it over {3, 4, 5, 6}
process.

The experiments have been performed in a Docker container running on a system
with 2.3 GHz i7 processor and 32 GB of RAM. Because of the incomplete implementa-
tion of handling of undefined values, which would add a significant number of additional
constraints, the reported execution times are lower than they would normally be. From
Table 2, it is clear that the execution times for even relatively small MPDRs are large.
This is because of the inherent complexity of the problem, to which reward operators
add a new dimension of complexity.

7 Related Work

The classical temporal logics for probabilistic systems [19], for example PCTL and its
extension with reward operators [17,23], cannot express probabilistic hyperproperties,

Probabilistic Hyperproperties with Rewards 671

because they can only refer to a single path at a time. There has been considerable work
to overcome this shortcoming for non-probabilistic hyperlogics in terms of automated
verification [8,14–16] and monitoring [4,6,7,12,13,18,27] of HyperLTL specifications.
However, none of these are relevant to probabilistic systems. The work in [3] over-
comes this limitation by introducing HyperPCTL, a temporal logic that can express
probabilistic hyperproperties over discrete-time Markov chains. In [1] we addressed the
problem of computing the regions of parameter configurations of discrete-time Markov
chains satisfying/violating a formula ϕ in a fragment of HyperPCTL. In [2], we enriched
the syntax and semantics of HyperPCTL with the possibility to quantify simultaneously
over schedulers and probabilistic computation trees. However, reasoning about rewards
was not supported in [2], while it is considered in this paper for the first time.

An orthogonal attempt to solve the model checking problem has been addressed
in [9], where the authors present the temporal logic PHL that allows quantification
over schedulers, but path quantification of the induced DTMC is achieved by using
HyperCTL∗. To overcome the undecidability problem of model checking with their
logics, the authors provide two approximate methods for proving and refuting only
universally quantified formulas in PHL for memoryful schedulers. However, this work
does not handle reward models as well.

Other works related to probabilistic hyperproperties comprises of approaches
based on statistical model checking (SMC) [28,29] using an extension of HyperPCTL
that allows explicit path quantification over the probability operator. However, these
approaches do not consider the use of rewards either.

8 Conclusion

In this paper, we studied probabilistic hyperproperties with rewards. To this end, we
extended the temporal hyperlogic HyperPCTL with reward operators that associates
quantified computation trees with interrelated accumulated rewards. We also proposed
an SMT-based algorithm for model checking these formulas for MDPRs. We have cre-
ated a prototypical implementation and used it to analyze a few case studies. Due
to the high complexity of the problem, more efficient model checking algorithms are
greatly needed. An orthogonal solution is to design less accurate and/or approximate
algorithms such as statistical model checking that scale better and provide certain prob-
abilistic guarantees about the correctness of verification. Another interesting direction
is using counterexample-guided techniques to manage the size of the state space.

References

1. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Parameter synthesis for
probabilistic hyperproperties. In: Proceedings of LPAR 2020: The 23rd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning.
EPiC Series in Computing, vol. 73, pp. 12–31. EasyChair (2020). https://doi.org/
10.29007/37lf

2. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Probabilistic hyperproper-
ties with nondeterminism. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS,
vol. 12302, pp. 518–534. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59152-6 29

https://doi.org/10.29007/37lf
https://doi.org/10.29007/37lf
https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-030-59152-6_29

672 O. Dobe et al.

3. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic
hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024,
pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 2

4. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties in
HyperLTL. In: Proceedings of CSF 2016: The IEEE 29th Computer Security Foun-
dations, pp. 239–252. IEEE Computer Society (2016). https://doi.org/10.1109/
CSF.2016.24

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

6. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03421-4 2

7. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free HyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 5

8. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

9. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov
decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 27

10. Dobe, O., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: HyperProb: a model
checker for probabilistic hyperproperties. In: Huisman, M., Păsăreanu, C., Zhan,
N. (eds.) FM 2021. LNCS, vol. 13047, pp. 657–666. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-90870-6 35

11. Fallahi, N., Bonakdarpour, B., Tixeuil, S.: Rigorous performance evaluation of self-
stabilization using probabilistic model checking. In: Proceedings of SRDS 2013: The
32nd IEEE International Conference on Reliable Distributed Systems, pp. 153–162.
IEEE Computer Society (2013). https://doi.org/10.1109/SRDS.2013.24

12. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

13. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Meth. Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/s10703-
019-00334-z

14. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

15. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security policies in
multi-agent workflows with loops. In: Proceedings of CCS 2017: The 15th ACM
Conference on Computer and Communications Security (CCS). ACM (2017).
https://doi.org/10.1145/3133956.3134080

16. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1109/SRDS.2013.24
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3

Probabilistic Hyperproperties with Rewards 673

17. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

18. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

19. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 102–111 (1994). https://doi.org/10.1007/BF01211866

20. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990).
https://doi.org/10.1016/0020-0190(90)90107-9

21. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of PODC 1990: The Ninth Annual
ACM Symposium on Principles of Distributed Computing, pp. 119–131 (1990).
https://doi.org/10.1145/93385.93409

22. Knuth, D., Yao, A.: The complexity of nonuniform random number generation. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press
(1976)

23. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

24. LARK. https://lark-parser.readthedocs.io/
25. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of TACAS

2008, pp. 337–340 (2008)
26. STORMpy. https://moves-rwth.github.io/stormpy/
27. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of

hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

28. Wang, Y., Nalluri, S., Bonakdarpour, B., Pajic, M.: Statistical model checking
for hyperproperties. In: Proceedings of CSF 2021: The IEEE 34th Computer Secu-
rity Foundations, pp. 1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.
00009

29. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyper-
properties for cyber-physical systems. ACM Trans. Embed. Comput. Syst. 18(5s),
92:1–92:23 (2019). https://doi.org/10.1145/3358232

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/BF01211866
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1145/93385.93409
https://doi.org/10.1007/978-3-540-72522-0_6
https://lark-parser.readthedocs.io/
https://moves-rwth.github.io/stormpy/
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1109/CSF51468.2021.00009
https://doi.org/10.1109/CSF51468.2021.00009
https://doi.org/10.1145/3358232

Hypercontracts

Inigo Incer1(B), Albert Benveniste2, Alberto Sangiovanni-Vincentelli1,
and Sanjit A. Seshia1

1 University of California, Berkeley, USA
inigo@berkeley.edu

2 INRIA/IRISA, Rennes, France

Abstract. Contract theories have been proposed to formally support
distributed and decentralized system design while ensuring safe system
integration. We propose hypercontracts, a general model with a richer
structure for its underlying model of components, subsuming simulation
preorders. While general, the new model provides a richer algebra for
its notions of refinement, parallel composition, and quotient. Further,
it allows the introduction of new operations. Building on top of these
foundations, we propose conic hypercontracts, which are still generic but
come with a finite description.

1 Introduction

The need for compositional algebraic frameworks to design and analyze reactive
systems is widely recognized. In these frameworks, distributed and decentralized
system design and verification are based on a proper definition of interfaces that
support the specification of subsystems having a partially specified context of
operation, and subsequently guaranteeing safe system integration. Over the last
few decades, we have seen the introduction of several algebraic frameworks: inter-
face automata [7,10–12,22], process spaces [24], modal interfaces [4,19–21,29],
assume-guarantee (AG) contracts [5], rely-guarantee reasoning [9,15,17,18], and
their variants. The interface specifications state (i) what the component guaran-
tees and (ii) what it assumes from its environment in order for those guarantees
to hold, i.e., all these frameworks implement a form of assume-guarantee reason-
ing.

These algebraic frameworks share a notion of a component, of an environ-
ment, and of a specification called a contract to stress the give-and-take dynamics
between the component and its environment. They all have notions of satisfaction
of a specification by a component, and of contract composition. To unify many
contract frameworks, high-level theories have been proposed of which existing
contract theories are instantiations. Bauer et al. [3] describe how to build a con-
tract theory if one has a specification theory available. Benveniste et al. [6] pro-
vide a meta-theory that builds contracts starting from an algebra of components.
Here, several operations on contracts are proposed. Further, it has been shown

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 674–692, 2022.
https://doi.org/10.1007/978-3-031-06773-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_36&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_36

Hypercontracts 675

how this meta-theory can describe, among others, interface automata, assume-
guarantee contracts, modal interfaces, and rely-guarantee reasoning. This meta-
theory is, however, low-level, specifying contracts as unstructured sets of envi-
ronments and implementations. As a consequence, important concepts such as
parallel composition and quotient of contracts are expressed in terms that are
considered too abstract—see [6], Chap. 4. For example, no closed form formula
is given for the quotient besides its abstract definition as adjoint of parallel com-
position. This paper introduces a theory, called hypercontracts, that will address
these drawbacks.

Assume-guarantee (AG) contracts [5] require users to state the assumptions
and guarantees of the specification explicitly, while interface theories express a
specification as a game played between the specification environments and imple-
mentations. Experience tells that designers find the explicit expression of a con-
tract’s assumptions and guarantees natural (see [6] Chap. 12), while interface the-
ories are perceived as a less intuitive mechanism for writing specifications; how-
ever, interface theories in general come with the most efficient algorithms, mak-
ing them excellent candidates for internal representations of specifications. Some
authors ([6] Chap. 10) have therefore proposed to translate contracts expressed
as pairs (assumptions, guarantees) into some interface model, where algorithms
are applied. This approach has the drawback that results cannot be traced back
to the original (assumptions, guarantees) formulation.

Further, AG contracts only support environments and implementations that
can be expressed using trace properties; while many attributes of interest can
be expressed using trace properties, there are important system attributes, such
as non-interference [14], that are hyperproperties [8], falling outside the class of
trace properties. Hypercontracts allow environments and implementations to be
expressed using arbitrary hyperproperties.

To elaborate on this point, the most basic definition of a property in the for-
mal methods community is “a set of traces.” This notion is based on the behav-
ioral approach to system modelling, in which we assume an underlying set of
behaviors B, and properties are defined as subsets of B. In this approach, design
elements or components are also defined as subsets of B. The difference between
components and properties is semantics: a component collects the behaviors that
can be observed from that component, while a property collects the behaviors
meeting some criterion of interest. Then, a component M satisfies a property P ,
written M |= P , when M ⊆ P , that is, when each behavior of M is in the set of
behaviors satisfying P . Properties of this sort are called trace properties. Several
important design requirements can be expressed with properties, for example,
safety. But there are system characteristics such as mean response times, secu-
rity attributes, and reliability that can only be determined by analyzing multiple
traces. The theory of hyperproperties [8] was introduced to express these more
general design attributes.

Formally, hyperproperties are subsets of 2B. Recall that each element of
2B defines a semantically-unique component. Thus, a component M satisfies

676 I. Incer et al.

a hyperproperty H if M ∈ H. An assume-guarantee theory that supports the
expression of arbitrary hyperproperties is a major contribution of this paper.

As we present our theory, we will use the following running example.

Example 1 (Running example). Consider the digital system shown in Fig. 1a1.
Here, we have an s-bit secret data input S and an n-bit public input P . The
system has an output O. There is also an input H that is equal to “zero” when
the system is being accessed by a user with low-privileges, i.e., a user not allowed
to use the secret data, and equal to “one” otherwise. We wish the overall system
to satisfy the following requirement: for all environments with H = 0, the imple-
mentations can only make the output O depend on P , the public data, not on
the secret input S.

A prerequisite for writing this requirement is to express: “the output O
depends on P , the public data, but not on the secret input S”. We claim that
this requirement cannot be captured by a trace property. Suppose for the sake
of simplicity that all variables are 1-bit-long. A trace property that may express
the independence from the secret for O = P is

P =

⎧
⎪⎪⎨

⎪⎪⎩

(P = 1, S = 1, O = 1),
(P = 0, S = 1, O = 0),
(P = 1, S = 0, O = 1),
(P = 0, S = 0, O = 0)

⎫
⎪⎪⎬

⎪⎪⎭

.

A valid implementation M ⊆ P is the following set of traces:

M =
{
(P = 1, S = 1, O = 1),
(P = 0, S = 0, O = 0)

}

.

However, the component M leaks the value of S in its output. We conclude that
independence does not behave as a trace property, and therefore, neither does
non-interference. To overcome this, simply list all the subsets of P that satisfy
the independence requirement:

⎧
⎪⎪⎨

⎪⎪⎩

(P=1, S=1, O=1),
(P=0, S=1, O=0),
(P=1, S=0, O=1),
(P=0, S=0, O=0)

⎫
⎪⎪⎬

⎪⎪⎭

,

{
(P=1, S=1, O=1),
(P=1, S=0, O=1)

}

,

{
(P=0, S=1, O=0),
(P=0, S=0, O=0)

}

This precisely defines a subset of 2B, i.e., a hyperproperty.
In our development, we will use hypercontracts first to express this top-level,

assume-guarantee requirement, and then to find a component that added to a
partial implementation of the system results in a design that meets the top-level
specification. ��

1 This system is similar to those presented in [23,28] to illustrate the non-interference
property in security.

Hypercontracts 677

Fig. 1. (a) A digital system with a secret input S and a public input P . The overall
system must meet the requirement that the secret input does not affect the value of
the output O when the signal H is de-asserted (this signal is asserted when a privileged
user uses the system). Our agenda for this running example is the following: (b) we
will start with two components C1 and C2 satisfying respective hypercontracts C1 and
C2 characterizing information-flow properties of their own; (c) the composition of these
two hypercontracts, Cc, will be derived. Through the quotient hypercontract Cq, we
will discover the functionality that needs to be added in order for the design to meet
the top-level information-flow specification C.

Contributions. We provide a theory called hypercontracts which generalizes
existing theories of AG contracts while treating assumptions and guarantees as
first-class citizens. This new AG theory supports arbitrary structured hyper-
properties, including non-interference and robustness.

Our theory of hypercontracts is built in three stages. We begin with a
theory of components. Then we state what are the sets of components that
our theory can express; we call such objects compsets—compsets boil down to
hyperproperties in behavioral formalisms [23]. From these compsets, we build
hypercontracts. We provide closed-form expressions for hypercontract manip-
ulations. Then we show how our hypercontract theory applies to two specific
cases: downward-closed hypercontracts and interface hypercontracts (equivalent
to interface automata). The main difference between hypercontracts and the
meta-theory of contracts [6] is that hypercontracts are more structured: the
meta-theory of contracts defines a theory of components, and uses these compo-
nents to define contracts. Hypercontracts use the theory of components to define
compsets, which are the types of properties that we are interested in represent-
ing in a specific theory. Hypercontracts are built out of compsets, not out of
components.

To summarize, our key contributions are the following: (i) a new model of
hypercontracts possessing a richer algebra than the metatheory of [6] and capable
of expressing any lattice of hyperproperties and (ii) a calculus of conic hyper-
contracts offering finite representations of downward-closed hypercontracts.

2 Preliminaries

Many concepts in this paper will be inherited from preorders. We recall that
a preorder (P,≤) consists of a set P and a relation ≤ which is transitive (i.e.,
a ≤ b and b ≤ c implies that a ≤ c for all a, b, c ∈ P) and reflexive (a ≤ a for all

678 I. Incer et al.

a ∈ P). A partial order is a preorder whose relation is also antisymmetric (i.e.,
from a ≤ b and b ≤ a we conclude that a = b).

Our preorders will come equipped with a partial binary operation called
composition, usually denoted ×. Composition is often understood as a means of
connecting elements together and is assumed to be monotonic in the preorder,
i.e., we assume composing with bigger elements yields bigger results: ∀a, b, c ∈
P. a ≤ b ⇒ a×c ≤ b×c. We will also be interested in taking elements apart. For
a notion of composition, we can always ask the question, for a, b ∈ P , what is
the largest element b ∈ P such that a× b ≤ c? Such an element is called quotient
or residual, usually denoted c/a. Formally, the definition of the quotient c/a is

∀b ∈ P. a × b ≤ c if and only if b ≤ c/a, (1)

which means that the quotient is the right adjoint of composition (in the sense
of category theory). A synonym of this notion is to say that composing by a
fixed element a (i.e., b 	→ a × b) and taking quotient by the same element (i.e.,
c 	→ c/a) form a Galois connection. A description of the use of the quotient in
many fields of engineering and computer science is given in [16].

A partial order for which every two elements have a well-defined LUB (aka
join), denoted ∨, and GLB (aka meet), denoted ∧, is a lattice. A lattice in which
the meet has a right adjoint is called Heyting algebra. This right adjoint usually
goes by the name exponential, denoted →. In other words, the exponential is
the notion of quotient if we take composition to be given by the meet, that is,
for a Heyting algebra H with elements a, c, the exponential is defined as

∀b ∈ H. a ∧ b ≤ c if and only if b ≤ a → c, (2)

which is the familiar notion of implication in Boolean algebras.

3 The Theory of Hypercontracts

Our objective is to develop a theory of assume-guarantee reasoning for any kind
of attribute of reactive systems. We do this in three steps:

1. we consider components coming with notions of preorder (e.g., simulation)
and parallel composition;

2. we discuss the notion of a compset and give it substantial algebraic
structure—unlike the unstructured sets of components considered in the
metatheory of [6];

3. we build hypercontracts as pairs of compsets with additional structure—
capturing environments and implementations.

In this section we describe how this construction is performed, and in the next
we show specialized hypercontract theories.

Hypercontracts 679

3.1 Components

In the theory of hypercontracts, the most primitive concept is the component.
Let (M,≤) be a preorder. The elements M ∈ M are called components. We say
that M is a subcomponent of M ′ when M ≤ M ′. If we represented components
as automata, the statement “is a subcomponent of” is equivalent to “is simulated
by.”

There exists a partial binary operation, ‖: M,M → M, monotonic in both
arguments, called composition. If M ‖ M ′ is not defined, we say that M and M ′

are non-composable (and composable otherwise). A component E is an environ-
ment for component M if E and M are composable. We assume that composition
is associative and commutative.

Example 2 (running example, cont’d). In order to reason about possible decom-
positions of the system shown in Fig. 1a, we introduce the internal variables O1

and O2, as shown in Fig. 1b. They have lengths o1 and o2, respectively. The
output O has length o. For simplicity, we will assume that the behaviors of the
entire system are stateless. In that case, the set of components M is the union
of the following sets:

– For i ∈ {1, 2}, components with inputs H, S, P , and output Oi, i.e., the sets
{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2s × 2n → 2oi). Oi = f(H,S, P)}.

– Components with inputs H, S, P , O1, O2, and output O, i.e., the set
{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2s × 2n × 2o1 × 2o2 → 2o). O =
f(H,S, P,O1, O2)}. We also consider components any subset of these compo-
nents, as these correspond to restricting inputs to subsets of their domains.

In this theory of components, composition is carried out via set intersection. So
for example, if for i ∈ {1, 2} we have functions fi ∈ (21 × 2s × 2n → 2oi) and
components Mi = {(H,S, P,O1, O2, O) | Oi = fi(H,S, P)}, the composition of
these objects is

M1 ‖ M2 =
{

(H,S, P,O1, O2, O)
∣
∣
∣
∣
O1 = f1(H,S, P)
O2 = f2(H,S, P)

}

,

which is the set intersection of the components’s behaviors. ��

3.2 Compsets

CmpSet is a lattice whose objects are sets of components, called compsets.
Thus, compsets are equivalent to hyperproperties when the underlying compo-
nent theory represents components as sets of behaviors. In general, not every set
of components is necessarily an object of CmpSet.

CmpSet comes with a notion of satisfaction. Suppose M ∈ M and H is a
compset. We say that M satisfies H or conforms to H, written M |= H, when
M ∈ H. For compsets H,H ′, we say that H refines H ′, written H ≤ H ′, when
M |= H ⇒ M |= H ′, i.e., when H ⊆ H ′.

680 I. Incer et al.

Since we assume CmpSet is a lattice, the greatest lower bounds and least
upper bounds of finite sets are defined. Observe, however, that although the par-
tial order of CmpSet is given by subsetting, the meet and join of CmpSet are
not necessarily intersection and union, respectively, as the union or intersection
of any two elements are not necessarily elements of CmpSet.

Example 3 (Running example: non-interference). Non-interference, introduced
by Goguen and Meseguer [14], is a common information-flow attribute, a pro-
totypical example of a design quality which trace properties are unable to cap-
ture [8]. It can be expressed with hyperproperties, and is in fact one reason
behind their introduction.

Suppose σ is one of the behaviors that our system can display, understood
as the state of memory locations through time. Some of those memory locations
we call privileged, some unprivileged. Let L0(σ) and Lf (σ) be the projections of
the behavior σ to the unprivileged memory locations of the system, at time zero,
and at the final time (when execution is done). We say that a component M
meets the non-interference hyperproperty when

∀σ, σ′ ∈ M. L0(σ) = L0(σ′) ⇒ Lf (σ) = Lf (σ′),

i.e., if two traces begin with the unprivileged locations in the same state, the
final state of the unprivileged locations matches.

Non-interference is a downward-closed hyperproperty [23,28], and a 2-safety
hyperproperty—hyperproperties called k-safety are those for the refutation of
which one must provide at least k traces. In our example, to refute the hyper-
property, it suffices to show two traces that share the same unprivileged initial
state, but which differ in the unprivileged final state.

Regarding the system shown in Fig. 1a, we require the top level component
to generate the output O independently from the secret input S. We build our
theory of compsets by letting the set 2M be the set of elements of CmpSet. This
means that any set of components is a valid compset. The components meet-
ing the top-level non-interference property are those belonging to the compset
{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2n → 2o). O = f(H,P)}, i.e., those compo-
nents for which H and P are sufficient to evaluate O. This corresponds exactly
to those components that are insensitive to the secret input S. The join and
meet of these compsets is given by set union and intersection, respectively. ��

Composition and Quotient. We extend the notion of composition to
CmpSet:

H ‖ H ′ =

{
M ‖ M ′

∣∣∣∣∣ M |= H, M ′ |= H ′, and
M and M ′ are composable

}
. (3)

Composition is total and monotonic, i.e., if H ′ ≤ H ′′, then H ‖ H ′ ≤ H ‖ H ′′.
It is also commutative and associative, by the commutativity and associativity,
respectively, of component composition.

Hypercontracts 681

We assume the existence of a second (but partial) binary operation on the
objects of CmpSet. This operation is the right adjoint of composition: for
compsets H and H ′, the residual H/H ′ (also called quotient), is defined by
the universal property (1). From the definition of composition, we must have

H/H ′ = {M ∈ M | {M} ‖ H ′ ⊆ H } . (4)

Downward-closed Compsets. The set of components was introduced with
a partial order. We say that a compset H is downward-closed when M ′ ≤ M
and M |= H imply M ′ |= H, i.e., if a component satisfies a downward-closed
compset, so does its subcomponent. Section 4.2 treats downward-closed compsets
in detail.

3.3 Hypercontracts

Hypercontracts as pairs (environments, closed-system specification). A hypercon-
tract is a specification for a design element that tells what is required from the
design element when it operates in an environment that meets the expectations
of the hypercontract. A hypercontract is thus a pair of compsets:

C = (E ,S) = (environments, closed-system specification).

E states the environments in which the object being specified must adhere to
the specification. S states the requirements that the design element must fulfill
when operating in an environment which meets the expectations of the hyper-
contract. We say that a component E is an environment of hypercontract C,
written E |=E C, if E |= E . We say that a component M is an implementation
of C, written M |=I C, when M ‖ E |= S for all E |= E . We thus define the set
of implementations I of C as the compset containing all implementations, i.e.,
as the quotient:

implementations = I = S/E .

A hypercontract with a nonempty set of environments is called compatible; if it
has a nonempty set of implementations, it is called consistent. For S and I as
above, the compset E ′ defined as E ′ = S/I contains all environments in which
the implementations of C satisfy the specifications of the hypercontract. Thus,
we say that a hypercontract is saturated if its environments compset is as large as
possible in the sense that adding more environments to the hypercontract would
reduce its implementations. This means that C satisfies the following fixpoint
equation: E = S/I = S/(S/E).

At a first sight, this notion of saturation may seem to go against what for
assume-guarantee contracts are called contracts in canonical or saturated form,
as we make the definition based on the environments instead of on the imple-
mentations. However, the two definitions for AG contracts and hypercontracts
agree. Indeed, for AG contracts, this notion means that the contract C = (A,G)
satisfies G = G ∪ ¬A. For this AG contract, we can form a hypercontract as
follows: if we take the set of environments to be E = 2A (i.e., all subsets of A)

682 I. Incer et al.

and the closed system specs to be S = 2G, we get a hypercontract whose set
of implementations is 2G∪¬A, which means that the hypercontract (2A, 2G) is
saturated.

Hypercontracts as pairs (environments, implementations). Another way to inter-
pret a hypercontract is by telling explicitly which environments and implementa-
tions it supports. Thus, we would write the hypercontract as C = (E , I). Assume-
guarantee theories can differ as to the most convenient representation for their
hypercontracts. Moreover, some operations on hypercontracts find their most
convenient expression in terms of implementations (e.g., parallel composition),
and some in terms of the closed system specifications (e.g., strong merging).
The lattice Contr of hypercontracts. Just as with CmpSet, we define Contr as
a lattice formed by putting together two compsets in one of the above two ways.
Not every pair of compsets is necessarily a valid hypercontract. We will define
soon the operations that give rise to this lattice.

Preorder. We define a preorder on hypercontracts as follows: we say that C
refines C′, written C ≤ C′, when every environment of C′ is an environment of
C, and every implementation of C is an implementation of C′, i.e., E |=E C′ ⇒
E |=E C and M |=I C ⇒ M |=I C′. We can express this as

E ′ ≤ E and S/E = I ≤ I ′ = S ′/E ′.

Any two C, C′ with C ≤ C′ and C′ ≤ C are said to be equivalent since they have
the same environments and the same implementations. We now obtain some
operations using preorders which are defined as the LUB or GLB of Contr. We
point out that the expressions we obtain are unique up to the preorder, i.e., up
to hypercontract equivalence.
GLB and LUB. From the preorder just defined, the GLB of C and C′ sat-
isfies: M |=I C ∧ C′ if and only if M |=I C and M |=I C′; and E |=E

C ∧ C′ if and only if E |=E C or E |=E C′.
Conversely, the least upper bound satisfies M |=I C ∨C′ if and only if M |=I

C or M |=I C′, and E |=E C ∨ C′ if and only if E |=E C and E |=E C′.
The lattice Contr has hypercontracts for objects (up to contract equiva-

lence), and meet and join as just described.

Parallel Composition. The composition of hypercontracts Ci = (Ei, Ii) for
1 ≤ i ≤ n, denoted ‖i Ci, is the smallest hypercontract C′ = (E ′, I ′) (up to
equivalence) meeting the following requirements:

– any composition of implementations of all Ci is an implementation of C′; and
– for any 1 ≤ j ≤ n, any composition of an environment of C′ with implemen-

tations of all Ci (for i �= j) yields an environment for Cj .

Hypercontracts 683

These requirements were stated for the first time by Abadi and Lamport [1].
Using our notation, this composition principle becomes

C ‖ C′ =
∧ ⎧⎨

⎩ (E ′, I′)

∈ Contr

∣∣∣∣∣∣
⎡
⎣I1 ‖ . . . ‖ In ≤ I′, and

E ′ ‖ I1 ‖ . . . ‖ Îj ‖ . . . ‖ In ≤ Ej

for all 1 ≤ j ≤ n

⎤
⎦

⎫⎬
⎭

=
∧ {

(E ′, I′)

∈ Contr

∣∣∣∣∣
[I1 ‖ . . . ‖ In ≤ I′, and

E ′ ≤ ∧
1≤j≤n

Ej

I1‖...‖Îj‖...‖In

]}
, (5)

where the notation Îj indicates that the composition I1 ‖ . . . ‖ Îj ‖ . . . ‖ In

includes all terms Ii, except for Ij .

Example 4 (Running example, parallel composition). Coming back to the exam-
ple shown in Fig. 1, we want to state a requirement for the top-level component
that for all environments with H = 0, the implementations can only make the
output O depend on P , the public data. We will write a hypercontract for the
top-level. We let C = (E , I), where

E = {M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.H = 0}
I ={M ∈ M | ∃f∈(2n → 2o).∀(H,S, P,O1, O2, O) ∈ M.H = 0 → O=f(P)}.

The environments are all those components only defined for H = 0. The imple-
mentations are those such that the output is a function of P when H = 0.

Let f∗ : 2n → 2o. Suppose we have two hypercontracts that require their
implementations to satisfy the function Oi = f∗(P), one implements it when
S = 0, and the other when S �= 0. For simplicity of syntax, let s1 and s2 be
the propositions S = 0 and S �= 0, respectively. Let the two hypercontracts be
Ci = (Ei, Ii) for i ∈ {1, 2}. We won’t place restrictions on the environments for
these hypercontracts, so we obtain Ei = M and

Ii ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.si → Oi=f∗(P)}.

We now evaluate the composition of these two hypercontracts: Cc = C1 ‖
C2 = (Ec , Ic), yielding Ec = M and

Ic ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.

(s1 → O1=f∗(P)) ∧ (s2 → O2=f∗(P))}.

Mirror or Reciprocal. We assume we have an additional operation on hyper-
contracts, called both mirror and reciprocal, which flips the environments and
implementations of a hypercontract: C−1 = (E , I)−1 = (I, E) and C−1 =
(E ,S)−1 = (S/E ,S). This notion gives us, so to say, the hypercontract obeyed
by the environment. The introduction of this operation assumes that for every
hypercontract C, its reciprocal is also an element of Contr. Moreover, we assume
that, when the infimum of a collection of hypercontracts exists, the following
identity holds:

(
∧

i Ci)
−1 =

∨
i Ci

−1. (6)

684 I. Incer et al.

Hypercontract Quotient. The quotient or residual for hypercontracts C =
(E , I) and C′′ = (E ′′, I ′′), written C′′/C, has the universal property (1), namely
∀C′. C ‖ C′ ≤ C′′ if and only if C′ ≤ C′′/C. We can obtain a closed-form expression
using the reciprocal:

Proposition 1. The hypercontract quotient obeys C′′/C =
(
(C′′)−1 ‖ C)−1.

Proof.

C′′/C =
∨

{C′ | C ‖ C′ ≤ C′′ } =
∨

⎧
⎨

⎩
(E ′, I ′)

∣
∣
∣
∣
∣
∣

⎡

⎣
I ‖ I ′ ≤ I ′′,
E ′′ ‖ I ≤ E ′, and
E ′′ ‖ I ′ ≤ E

⎤

⎦

⎫
⎬

⎭

=

⎛

⎜
⎝

⎛

⎝
∨

⎧
⎨

⎩
(E ′, I ′)

∣
∣
∣
∣
∣
∣

⎡

⎣
I ‖ I ′ ≤ I ′′,
E ′′ ‖ I ≤ E ′, and
E ′′ ‖ I ′ ≤ E

⎤

⎦

⎫
⎬

⎭

⎞

⎠

−1
⎞

⎟
⎠

−1

(6)
=

⎛

⎝
∧

⎧
⎨

⎩
(I ′, E ′)

∣
∣
∣
∣
∣
∣

⎡

⎣
I ‖ I ′ ≤ I ′′,
E ′′ ‖ I ≤ E ′, and
E ′′ ‖ I ′ ≤ E

⎤

⎦

⎫
⎬

⎭

⎞

⎠

−1

=

⎛

⎝
∧

⎧
⎨

⎩
(I ′, E ′)

∣
∣
∣
∣
∣
∣

⎡

⎣
E ′′ ‖ I ≤ E ′,
I ′ ‖ I ≤ I ′′, and
I ′ ‖ E ′′ ≤ E

⎤

⎦

⎫
⎬

⎭

⎞

⎠

−1

=
(
(C′′)−1 ‖ C)−1

.

Example 5 (Running example, quotient). We use the quotient to find the spec-
ification of the component that we need to add to the system shown in Fig. 1c
in order to meet the top level contract C. To compute the quotient, we use
(10), as the hypercontracts we state consist of subset-closed compsets. We let
C/Cc = (Eq, Iq) and obtain Eq = E ∧ Ic and

Iq ={M ∈ M | ∃f ∈ (2n → 2o)∀(H,S, P,O1, O2, O)
∈ M. ((s1 → O1=f∗(P)) ∧ (s2 → O2=f∗(P))) → (H = 0 → O=f(P))}.

We can refine the quotient by lifting any restrictions on the environments, and
picking from the implementations the term with f = f∗. Observe that f∗ is a
valid choice for f . This yields the hypercontract C3 = (E3, I3), defined as E3 = M

and

I3 ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M.

((s1 → O1=f∗(P)) ∧ (s2 → O2=f∗(P))) → O=f∗(P)}.

A further refinement of this hypercontract is Cr = (Er, Ir), where Er = M and

Ir ={M ∈ M | ∀(H,S, P,O1, O2, O) ∈ M. ((s1 → O=O1) ∧ (s2 → O=O2))}.

By the properties of the quotient, composing this hypercontract, which knows
nothing about f∗, with Cc will yield a hypercontract which meets the non-
interference hypercontract C. Note that this hypercontract is consistent, i.e.,

Hypercontracts 685

it has implementations. As hypercontract refinements have smaller compsets of
implementations, it is possible for a refined hypercontract to lack implementa-
tions. ��

Merging. The composition of two hypercontracts yields the specification of a
system comprised of two design objects, each adhering to one of the hyper-
contracts being composed. Another important operation on hypercontracts is
viewpoint merging, or merging for short. It can be the case that the same design
element is assigned multiple specifications corresponding to multiple viewpoints,
or design concerns [5,25] (e.g., functionality and a performance criterion). Sup-
pose C1 = (E1,S1) and C2 = (E2,S2) are the hypercontracts we wish to merge.
Two slightly different operations can be considered as candidates for formalizing
viewpoint merging:

– A weak merge which is the GLB; and
– A strong merge which states that environments of the merger should be envi-

ronments of both C1 and C2 and that the closed systems of the merger are
closed systems of both C1 and C2. If we let C1 • C2 = (E , I), we have

E = ∨{E ′ ∈ CmpSet | E ′ ≤ E1 ∧ E2 and ∃ C′′ = (E ′′, I ′′) ∈ Contr. E ′ = E ′′}

I = ∨
{

I ′ ∈ CmpSet

∣
∣
∣
∣
∣

I ′ ≤ (S1 ∧ S2)/E and
(E , I) ∈ Contr

}

.

The difference is that, whereas the commitment to satisfy S2 survives under
the weak merge when the environment fails to satisfy E1, no obligation survives
under the strong merge. This distinction was proposed in [30] under the name
of weak/strong assumptions.

3.4 An Example on Robustness

Now we explore assume-guarantee specifications of autonomous vehicles. We
will deal with their safety and the robustness of their perception components.
In order to consider the perception components, we will build our model using
a pair (X,O), where X ∈ S is the input image, belonging to a set S of images,
and O ∈ CS is the classification of the image X, an element of the classification
space CS . To deal with safety, we will consider pairs (v,Δs), where v represents
the state of the vehicle with domain SP , and Δs is the maximum amount of time
that it takes the vehicle to come to a full stop. Thus, every component M ∈ M

is of the form

M =
{
(X,O, v,Δs) ∈ S × CS × SP × R

+ | ∃f ∈ S → CS. O = f(X)
}

.

As discussed in Seshia et al. [33], certain robustness properties of data-driven
components are hyperproperties. Robustness properties usually take the form

686 I. Incer et al.

d(x, y) < δ ⇒ D(f(x), f(y)) < ε, where d and D are distance functions. The
property says that points that are close should have similar classifications. As
two points are needed to provide evidence that a function is not robust, these
are 2-safety hyperproperties. We will state a specification for our vehicles that
requires their perception components to be robust. Suppose the input space S
is partitioned in sets Si. We want our vehicle to meet the following top-level
specification:

C =

⎛

⎝M,

⎧
⎨

⎩
M ∈ M

∣
∣
∣
∣
∣
∣

∀(xk, ok, vk,Δsk), (xl, ol, vl,Δsl) ∈ M.
∧

i

xk, xl ∈ Si → |ok − ol| ≤ ε

⎫
⎬

⎭

⎞

⎠ .

Suppose our vehicle obeys the specification Ca given by

Ca =

⎛

⎝M,

⎧
⎨

⎩
M ∈ M

∣
∣
∣
∣
∣
∣

∀(xk, ok, vk,Δsk), (xl, ol, vl,Δsl) ∈ M.
∧

i

xk, xl ∈ Si → |ok − ol| ≤ εi

⎫
⎬

⎭

⎞

⎠ .

This specification says that the perception component in each region Si should
have a robustness εi. Suppose that there is a j ∈ N such that εi ≤ ε for all i ≤ j
and εi > ε otherwise. The contract quotient is Cq = (Eq, Iq), where Eq = Ia and

Iq =

⎧
⎨

⎩
M ∈ M

∣
∣
∣
∣
∣
∣

∀(xk, ok, vk,Δsk), (xl, ol, vl,Δsl) ∈ M.
∧

i

xk, xl ∈ Si → |ok − ol| ≤ ε

⎫
⎬

⎭

⎧
⎨

⎩
M ∈ M

∣
∣
∣
∣
∣
∣

∀(xk, ok, vk,Δsk), (xl, ol, vl,Δsl) ∈ M.
∧

i

xk, xl ∈ Si → |ok − ol| ≤ εi

⎫
⎬

⎭

,

where we used the horizontal bar to denote the compset quotient. By the defini-
tion of the contract quotient, any refinement of Cq is a solution to our problem,
namely, what is the specification that we have to compose with a specification
Ca in order for the result to meet a goal specification C. We thus compute a
refinement of the quotient that we just obtained:

Cb =

⎛

⎜
⎝M,

⎧
⎪⎨

⎪⎩
M ∈ M

∣
∣
∣
∣
∣
∣
∣

∀(xk, ok, vk,Δsk), (xl, ol, vl,Δsl) ∈ M.
∧

i>j

xk, xl ∈ Si → |ok − ol| ≤ ε

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠ .

Observe how using the quotient we were able to obtain a specification Cb

that contains exactly what needs to be fixed in the component adhering to
hypercontract Ca in order for it to meet the top-level specification C. Moreover,
the specification Cb does not contain any information about Ca.

One of the uses of hypercontracts is in handling multiple viewpoints. Suppose
that the robust perception specification is given to a vehicle on top of other
specifications, such as safety. For example, suppose there is a specification that

Hypercontracts 687

says that if the state of the vehicle v is inside a safety set T , then the amount
of time Δs that it takes the vehicle to come to a full stop is a most P . We can
write the spec

Cs = (v ∈ T,Δs < P) .

By using strong merging, we can get into a single top-level hypercontract the
specification of the perception and the safety viewpoints, as follows:

⎛

⎝v ∈ T,

⎧
⎨

⎩
M ∈ M

∣
∣
∣
∣
∣
∣

∀(xk, ok, vk,Δsk), (xl, ol, vl,Δsl) ∈ M.

Δsk,Δsl < P ∧
∧

i

xk, xl ∈ Si → |ok − ol| ≤ ε

⎫
⎬

⎭

⎞

⎠ .

This specification summarizes the perception and safety viewpoints of the vehi-
cle. As robustness is a hyperproperty, we cannot use AG contracts to reason
about the specifications in this example, but hypercontracts enable us to do so.

4 Behavioral Modeling

In the behavioral approach to system modeling, we start with a set B whose
elements we call behaviors. Components are defined as subsets of B. They contain
the behaviors they can display. A component M is a subcomponent of M ′ if M ′

contains all the behaviors of M , i.e., if M ⊆ M ′. Component composition is
given by set intersection: M × M ′ def= M ∩ M ′. If we represent the components
as M = {b ∈ B | φ(b)} and M ′ = {b ∈ B | φ′(b)} for some constraints φ and φ′,
then composition is M × M ′ = {b ∈ B | φ(b) ∧ φ′(b)}, i.e., the behaviors that
simultaneously meet the constraints of M and M ′. This notion of composition
is independent of the connection topology: the topology is inferred from the
behaviors of the components.

We will consider two contract theories we can build with these components.
The first is based on unconstrained hyperproperties; the second is based on
downward-closed hyperproperties.

4.1 General Hypercontracts

The most expressive behavioral theory of hypercontracts is obtained when we
place no restrictions on the structure of compsets and hypercontracts. In this
case, the elements of CmpSet are all objects H ∈ 22

B
, i.e., all hyperproperties.

The meet and join of compsets are set intersection and union, respectively, and
their composition and quotient are given by (3) and (4), respectively. Hyper-
contracts are of the form C = (E , I) with all extrema achieved in the binary
operations, i.e., for a second hypercontract C′ = (E ′, I ′), the meet, join, and
composition (5) are, respectively, C∧C′ = (E∪E ′, I∩I ′), C∨C′ = (E∩E ′, I∪I ′),
and C ‖ C′ =

(
E′
I ∩ E

I′ , I ‖ I ′
)
. From these follow the operations of quotient,

and merging.

688 I. Incer et al.

4.2 Conic (or Downward-Closed) Hypercontracts

We assume that CmpSet contains exclusively downward-closed hyperproperties.
Let H ∈ CmpSet. We say that M |= H is a maximal component of H when H
contains no set bigger than M , i.e., if ∀M ′ |= H. M ≤ M ′ ⇒ M ′ = M .

We let H be the set of maximal components of H:

H = {M |= H | ∀M ′ |= H. M ≤ M ′ ⇒ M ′ = M } .

Due to the fact H is downward-closed, the set of maximal components is a unique
representation of H. We can express H as

H =
⋃

M∈H 2M .

We say that H is k-conic if the cardinality of H is finite and equal to k, and we
write this

H = 〈M1, . . . ,Mk〉, where H = {M1, . . . ,Mk}.

Order. The notion of order on CmpSet can be expressed using this notation
as follows: suppose H ′ = 〈M ′〉M ′∈H

′ . Then

H ′ ≤ H if and only if ∀M ′ ∈ H
′ ∃M ∈ H. M ′ ≤ M.

Composition. Composition in CmpSet becomes

H × H ′ =
⋃

M∈H
M ′∈H

′
2M∩M ′

= 〈M ∩ M ′〉 M∈H
M ′∈H

′
. (7)

Therefore, if H and H ′ are, respectively, k- and k′-conic, H × H ′ is at most
kk′-conic.

Quotient. Suppose Hq satisfies

H ′ × Hq ≤ H.

Let Mq ∈ Hq. We must have

Mq × M ′ |= H for every M ′ ∈ H
′
,

which means that for each M ′ ∈ H
′

there must exist an M ∈ H such that
Mq × M ′ ≤ M ; let us denote by M(M ′) a choice M ′ 	→ M satisfying this
condition. Therefore, we have

Mq ≤ ∧
M ′∈H

′ M(M ′)
M ′ , (8)

Clearly, the largest such Mq is obtained by making (8) an equality. Thus, the
cardinality of the quotient is bounded from above by kk′

since we have

Hq =
〈∧

M ′∈H
′ M(M ′)

M ′

〉

M(M ′)∈H

∀M ′∈H
′

. (9)

Hypercontracts 689

Contracts. Now we assume that the objects of CmpSet are pairs of downward-
closed compsets. If we have two hypercontracts C = (E , I) and C′ = (E ′, I ′), their
composition and quotient are, respectively,

C ‖ C′ =
(E

I ′ ∧ E ′

I , I × I ′
)

and C/C′ =
(

E × I ′,
I
I ′ ∧ E ′

E
)

. (10)

5 Conclusions

We proposed hypercontracts, a general model of contracts providing a richer
algebra than the metatheory of [6]. We started from a generic model of compo-
nents equipped with a simulation preorder and parallel composition. On top of
them, we considered compsets (or hyperproperties, for behavioral formalisms),
which are lattices of sets of components equipped with parallel composition and
quotient; compsets are our generic model formalizing “properties.” Hypercon-
tracts are then defined as pairs of compsets specifying the allowed environ-
ments and either the obligations of the closed system or the set of allowed
implementations—both forms are useful.

We specialized hypercontracts by restricting them to conic hypercontracts,
whose environments and closed systems are described by a finite number of com-
ponents. Conic hypercontracts include assume-guarantee contracts as a special-
ization. We illustrated the versatility of our model on the definition of contracts
for information flow in security and robustness of data-driven components.

The flexibility and power of our model suggests that a number of direc-
tions that were opened in [6], but not explored to their end, can now be re-
investigated with more powerful tools: contracts and testing, subcontract syn-
thesis (for requirement engineering), contracts and abstract interpretation, con-
tracts in physical system modeling.2 In particular, as monitoring hyperproperties
[13] is more tractable than model checking them, hypercontracts are a promising
tool to enable compositional testing of hyperproperties in reactive systems.

Furthermore, results on contracts were recently obtained in the domain
of control systems. In particular, Phan-Minh and Murray [26,27] introduced
the notion of reactive contracts. Saoud et al. [31,32] proposed a framework of
assume-guarantee contracts for input/output discrete or continuous time sys-
tems. Assumptions vs. guarantees are properties stated on inputs vs. outputs.
With this restriction, reactive contracts are considered and an elegant formula
is proposed for the parallel composition of contracts. Bartocci et al. [2] recently
introduced information-flow interfaces, a theory that enables assume-guarantee
reasoning over information-flow properties. Hypercontracts are complementary
to this theory, as they support arbitrary classes of hyperproperties. These recent

2 Simulink and Modelica toolsuites propose requirements toolboxes, in which require-
ments are physical system properties that can be tested on a given system model,
thus providing a limited form of contract. This motivates the development of a
richer contract framework to help requirement engineering in Cyber-Physical Sys-
tems design.

https://www.mathworks.com/products/simulink.html
https://openmodelica.org/

690 I. Incer et al.

developments offer the opportunity of exploring further avenues of research to
link these new concepts.

Acknowledgments. We are very grateful to our reviewers for their comments. This
work was supported by NSF Contract CPS Medium 1739816, by the DARPA LOGiCS
project under contract FA8750-20-C-0156, and by the Chateaubriand Fellowship of the
Office for Science & Technology of the Embassy of France in the United States.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73–132 (1993)

2. Bartocci, E., Ferrère, T., Henzinger, T.A., Nickovic, D., da Costa, A.O.:
Information-flow interfaces. In: International Conference on Fundamental
Approaches to Software Engineering, pp. 3–22 (2020)

3. Bauer, S.S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_3

4. Bauer, S.S., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: A modal spec-
ification theory for components with data. Sci. Comput. Program. 83, 106–128
(2014)

5. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-
2_9

6. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2–3), 124–400 (2018)

7. Bujtor, J., Vogler, W.: Error-pruning in interface automata. In: 40th International
Conference on Current Trends in Theory and Practice of Computer Science SOF-
SEM 2014, pp. 162–173, Novy Smokovec, Slovakia, 26-29 January 2014

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

9. Coleman, J.W., Jones, C.B.: A structural proof of the soundness of rely/guarantee
rules. J. Log. Comput. 17(4), 807–841 (2007)

10. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-9,
pp. 109–120. ACM New York, NY, USA (2001)

11. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–
165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45449-7_11

12. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: Proceedings of the 8th ACM & IEEE International conference
on Embedded software, EMSOFT 2008, pp. 79–88, Atlanta, GA(2008)

13. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Meth. Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/s10703-
019-00334-z

https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z

Hypercontracts 691

14. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20, Oakland, CA, USA, 1982. IEEE Computer Society (1982)

15. Hayes, I.J., Jones, C.B.: A guide to rely/guarantee thinking. In: Bowen, J.P., Liu,
Z., Zhang, Z. (eds.) SETSS 2017. LNCS, vol. 11174, pp. 1–38. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02928-9_1

16. Incer, I., Mangeruca, L., Villa, T., Sangiovanni-Vincentelli, A.L.: The quotient in
preorder theories. In: Raskin, J.-F., Bresolin, D. (eds.) Proceedings 11th Interna-
tional Symposium on Games. Automata, Logics, and Formal Verification, Brussels,
Belgium, September 21–22, 2020, volume 326 of Electronic Proceedings in Theo-
retical Computer Science, pp. 216–233. Open Publishing Association, Brussels,
Belgium (2020)

17. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332, Paris, France (1983)

18. Jones, C.B.: Wanted: a compositional approach to concurrency. In: McIver, A.,
Morgan, C. (eds), Programming Methodology, pp. 5–15, New York, NY, 2003.
Springer, New York. https://doi.org/10.1007/978-0-387-21798-7_1

19. Larsen, K.G., Nyman, U., Wąsowski, A.: Interface input/output automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_7

20. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_6

21. Larsen, K.G., Nyman, U., Wąsowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_8

22. Lüttgen, G., Vogler, W.: Modal interface automata. Logic. Meth. Comput. Sci.
9(3) (2013)

23. Mastroeni, I., Pasqua, M.: Verifying bounded subset-closed hyperproperties. In:
Podelski, A. (ed.) Static Analysis. pp, pp. 263–283. Springer International Pub-
lishing, Cham (2018)

24. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,
vol. 1877, pp. 199–213. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44618-4_16

25. Passerone, R., Incer, I., Sangiovanni-Vincentelli, A.L.: Coherent extension, compo-
sition, and merging operators in contract models for system design. ACM Trans.
Embed. Comput. Syst. 18(5s) (2019)

26. Phan-Minh, T.: Contract-Based Design: Theories and Applications. PhD thesis,
California Institute of Technology (2021)

27. Phan-Minh, T., Murray, R.M.: Contracts of Reactivity. Technical report, California
Institute of Technology (2019)

28. Rabe, M.N.: A temporal logic approach to information-flow control. PhD thesis,
Universität des Saarlandes (2016)

29. Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal interfaces: Unifying interface automata and modal specifications. In: Pro-
ceedings of the Seventh ACM International Conference on Embedded Software,
EMSOFT 2009, pp. 87–96. ACM New York, NY, USA (2009)

30. Sangiovanni-Vincentelli, A.L., Damm, W., Passerone, R., Frankenstein, T.:
Contract-based design for cyber-physical systems. Eur. J. Control 18(3), 217–238
(2012)

https://doi.org/10.1007/978-3-030-02928-9_1
https://doi.org/10.1007/978-0-387-21798-7_1
https://doi.org/10.1007/11813040_7
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/978-3-540-74407-8_8
https://doi.org/10.1007/3-540-44618-4_16
https://doi.org/10.1007/3-540-44618-4_16

692 I. Incer et al.

31. Saoud, A., Girard, A., Fribourg, L.: On the composition of discrete and continuous-
time assume-guarantee contracts for invariance. In: 16th European Control Con-
ference, ECC, 12–15 June 2018, pp. 435–440, Limassol, Cyprus. IEEE (2018)

32. Saoud, A., Girard, A., Fribourg, L.: Assume-guarantee contracts for continuous-
time systems. working paper or preprint. Automatica 134, 109910 (2021)

33. Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K.,
Wang, C. (eds.) Automated Technology for Verification and Analysis. pp, pp. 20–
34. Springer International Publishing, Cham (2018)

Monitorability of Expressive Verdicts

Felipe Gorostiaga1,2,3 and César Sánchez1(B)

1 IMDEA Software Institute, Madrid, Spain
{felipe.gorostiaga,cesar.sanchez}@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain
3 CIFASIS, Rosario, Argentina

Abstract. Online runtime verification is a formal dynamic technique
that studies how to monitor formal specifications incrementally against
an input trace. Often, an observed prefix of a behavior is not enough
to emit a definite verdict and the monitor must wait to receive more
information. Monitorability classifies the set of properties depending on
the feasibility to obtain a verdict after a finite observation. Havelund and
Peled [20] classified LTL properties according to whether an observation
can be extended to a definite answer.

In this paper we present a framework that extends the classification
of Havelund and Peled to verdict domains that are richer than Booleans,
obtaining a monitorability setting under which some of the verdicts (but
not others) can be discarded after a sequence of observations. We study
two instances of this setting, quantitative temporal logics and partially
ordered domains for stream runtime verification, and we illustrate using
examples the different elements of the taxonomy. Finally, we also consider
how assumptions on the set of behaviors can improve monitorability, and
how imprecise observations can impair monitorability.

1 Introduction

Runtime verification (RV) is a dynamic formal technique for system reliability
that studies how events, emitted from a system under study, adhere to a given
formal specification. Runtime verification focuses on two main problems: (1) how
to generate a monitor from a given specification, and (2) algorithms that take a
monitor and process a sequence of input events produced by the system, typically
in a incremental manner, attempting to produce a definite verdict. In this paper
we use behavior to refer to the trace of the system—that is, one infinite sequence
of events that a system can produce—and observation as the finite sequence of
events that monitor receives.

Static formal verification techniques like model checking [14,28] attempt to
prove that every behavior of the system satisfies a given specification. In contrast,
in runtime verification monitors must decide based on observations. Runtime
verification sacrifices completeness to provide an applicable formal extension of
testing and debugging. See [19,26] for surveys on runtime verification and the
recent book [4].
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 693–712, 2022.
https://doi.org/10.1007/978-3-031-06773-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_37&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_37

694 F. Gorostiaga and C. Sánchez

Early specification languages studied for runtime verification were based on
temporal logics, typically LTL [6,13,21], regular expressions [32], timed regular
expressions [2], rules [3], or rewriting [30]. Since monitors only see an observation
and not a complete behavior, the semantics of temporal logic must be adapted
for finite traces. One solution is to adapt the semantics for finite traces [13] that
provide a definite answer upon the “termination” of the trace. Another solution
is to give a definite answer only if all the behaviors that extend the observation
satisfy the specification (declaring satisfaction), or if all such extensions violate
the specification (declaring violation). Otherwise, the monitor can produce a
temporary “I don’t know” verdict [6], with the hope to later refine it into a
conclusive verdict. The idea of producing an inconclusive verdict was already
introduced in the context of stream runtime verification [11] and later used in
variants of LTL for finite traces, like LTLf [12] and MLTL [29].

A basic soundness criteria states that monitors should never give a ver-
dict that can be later reverted by an extended observation [7]. However, sound
monitors can still switch from an indecisive verdict into a definite verdict. The
soundness requirement is semantic, in the sense that it is based on the seman-
tics of the logic itself by considering all possible traces that are compatible with
the given observation. Monitors can be formally understood as an implementa-
tion of a computational function that maps observations into verdicts [20,33,34]
that respects the soundness requirement. Therefore, monitoring algorithms cor-
respond to an incremental execution of the monitor as a function. From this
perspective monitorability corresponds to the question of the existence of such
a computable function.

One of the first definitions of monitorability, given by Pnueli and Zaks [27],
establishes that an LTL property is monitorable after an observation u if there
is an observation u′ that extends u for which the verdict is definitely a violation
or there is an observation u′ that is an extension of u for which the verdict is a
satisfaction. There are properties that are always monitorable for violation, in
the sense that every violating behavior has a finite prefix (observation) that is
sufficient to determine the violation. For a second class of properties this witness
only exists for some behaviors, and for the rest of the properties there is never
such a witness observation (these definitions are analogous replacing violation
by satisfaction). Havelund and Peled present in [20] a complete taxonomy for
LTL, introducing the terms AFR (always finitely refutable), SFR (sometimes
finitely refutable) and NFR (never finitely refutable). Their counterparts for a
satisfaction verdict are AFS, SFS and NFS. In this paper we study extensions
of this taxonomy for more expressive (non-Boolean) verdicts.

It is useful for specification engineers to have very expressive logics to define
their properties, but additional expressiveness usually comes at the price of
higher complexity in the decision problems and more inefficient algorithms.
Since the early languages used in RV were borrowed from static verification
where decidability is crucial, these languages only allowed Boolean verdicts. How-
ever, runtime verification solves a simpler problem than model-checking so some
researchers have been extending the expressivity of RV specification languages.

Monitorability of Expressive Verdicts 695

Examples include logics that can quantify over the data in the events [5,20],
extensions of automata with the ability to store and compare data [9], and
quantitative semantics for temporal logics [15]. Another direction to extend the
expressivity of monitors is Stream Runtime Verification [10,11,16,18,31] that
abstract the data used in the monitoring algorithms in temporal logics to arbi-
trary data. In this paper we extend the Havelund and Peled notions of monitora-
bility to the setting of richer verdicts by studying whether a subset of the possible
verdicts can be discarded after witnessing a finite trace. In [12] the monitora-
bility necessarily refers to the ability to give a conclusive verdict after a finite
observation, but the logics we consider are defined over infinite traces. In con-
trast, LTLf [12] and similar logics are interpreted over finite traces. Also, logics
that guarantee that verdicts are obtained after a finite number of steps (by the
semantics of the logic or some assumption on the input trace), like MLTL [29],
are immediately in AFS and AFR.

The standard monitoring studies monitors that are correct for any system
under observation, which is considered unknown during the generation of the
monitor. However, one can often monitor more effectively for particular systems
or under assumptions about what the system can do. For example, [36] improves
LTL monitoring using a model of the system to prune the set of possible future
observations, and [33] considers how to improve the monitoring of hyperprop-
erties using approximations of the system. Similarly, [22] illustrates properties
that are not monitorable but become monitorable if one assumes that the input
observation satisfies a given LTL formula. In practice, the events obtained from
the system may not be perfect, which can affect the monitoring. For example,
in [25] the authors study the possibility that events or event values are unknown,
so the monitor must deal with the set of possible observations, therefore emit-
ting sets of verdicts. In [23], the authors define the concept of trace mutations to
capture divergences between observations and behaviors, and study how differ-
ent mutations affect the monitorability of a property. We present in Sect. 5 an
example of a system and monitoring with richer verdicts that can be monitored
under assumptions and event uncertainties, and instantiate the monitorability
landscape for the properties monitored. This paves the way for a systematic
analysis of monitoring of rich verdicts under assumptions and uncertainties.

In summary, the contributions of the paper are: (1) an extension of the
Havelund and Peled taxonomy of monitorability to richer verdicts and in par-
ticular to totally and partially ordered domains; and (2) an instantiation of the
taxonomy to quantitative temporal logics and to partially ordered domains based
on stream runtime verification.

Finally, note that our taxonomy of properties, like the one introduced by
Havelund and Peled, is based on the ability of monitors to produce verdicts.
Other taxonomies of properties exist. For example, [8] classifies properties based
on the use of the temporal operators involved.

The rest of the paper is structured as follows. Section 2 includes the prelimi-
naries. Section 3 introduces the generalization of the monitorability framework to
expressive verdicts. This is instantiated to quantitative temporal logics in Sect. 4,

696 F. Gorostiaga and C. Sánchez

where the set of verdicts is totally ordered, and to partially ordered domains in
Sect. 5. Finally, Sect. 6 contains some final remarks.

2 Preliminaries

We use streams (infinite sequences) to represent the behavior exhibited by a
system. A stream of type D is an infinite sequence of values of D, and we denote
the type of the streams of type D as Dω. We will usually use record types to
represent the information of different aspects of the system under study. The
type 〈p0 ::D0, . . . , pn ::Dn〉 represents a record that contains a finite number of
entries and assigns a value of type Di to every variable pi for 0 ≤ i ≤ n. For
example, s

def= (〈p : true〉 〈p : true〉 〈p : false〉ω) ∈ 〈p ::Bool〉ω is the stream of
〈p ::Bool〉 values where p starts with two true values and remains false thereafter.
Given a record value r

def= 〈p0 : v0, . . . , pn : vn〉 we use r(pi) to refer to vi for
0 ≤ i ≤ n. Given a stream σ ∈ Dω and a natural number i ∈ N0 we use σ(i) to
refer to the element of type D at position i in σ. Similarly, we use σi to refer
to the stream (σ(i) σ(i + 1) . . .). For example, s(0)(p) = true, s(50)(p) = false,
and s1 = (〈p : true〉 〈p : false〉ω).

We use finite sequences to represent observations of the behavior of a pro-
gram. A sequence of type D is a finite sequence of values of D, and we denote
the type of the sequences of type D as D∗. The length of a sequence ls is the
number of elements in ls, written as |ls|. For example, l

def= [〈p : true〉 〈p :
true〉 〈p : false〉 〈p : false〉 〈p : false〉] ∈ [〈p ::Bool〉] is the stream of assignments
of Boolean values to p, which starts with two true values and is succeeded by
three false values. We say that a sequence ls ∈ D∗ of length |ls| = n is a prefix
of a stream s ∈ Dω and write ls ≺ s if the first n elements of s coincide with the
n elements of ls. We also say that s is a continuation of ls. We say that ls ∈ D∗

is a subsequence of a stream s ∈ Dω and write ls � s if there is an index i such
that ls ≺ si. We also say that s is an expansion of ls. For example, |l| = 5, l ≺ s
(this is, s is a continuation of ls), and obviously l � s (this is, s is an expansion
of ls). The sequence [〈p : false〉 〈p : false〉 〈p : false〉] is also a subsequence of s,
because it is a prefix of s2.

Let AP = {p0, . . . , pn} be a finite set of atomic propositions and R
def=

〈p0 ::Bool, . . . , pn ::Bool〉 the record type that assigns a Boolean value to each
atomic proposition in AP. The syntax of LTL is:

ϕ ::= T
∣
∣ a

∣
∣ ϕ ∨ ϕ

∣
∣ ¬ϕ

∣
∣ ◯ ϕ

∣
∣ ϕ U ϕ

where a is an atomic proposition, ∨ and ¬ are the usual Boolean disjunction and
negation, and◯ and U are the next and until temporal operators. The semantics
of LTL associate behaviors σ ∈ Rω with formulas as follows:

σ |= T always σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

σ |= a iff σ(0)(a) = true σ |= ¬ϕ iff σ �|= ϕ
σ |=◯ϕ iff σ1 |= ϕ
σ |= ϕ1 U ϕ2 iff for some j ≥ 0 σj |= ϕ2, and for all 0 ≤ i < j, σi |= ϕ1

Monitorability of Expressive Verdicts 697

Common derived operators are ϕ1 ∧ ϕ2
def= ¬(ϕ1∨ϕ2), ϕ1Rϕ2

def= ¬(¬ϕ1U¬ϕ2),
◇ϕ

def= T U ϕ and ◻ϕ
def= ¬◇¬ϕ.

2.1 LTL Property Classification

In [20], the authors give a property classification according to the capability of a
monitor to reach a verdict witnessing a finite trace. The original definitions are
the following. For a given property ϕ:

Safety/Always Finitely Refutable (AFR). When ϕ does not hold on a
behavior, a failed verdict can be identified after a finite prefix.

Guarantee/Always Finitely Satisfiable (AFS). When ϕ is satisfied on a
behavior, a satisfied verdict can be identified after a finite prefix.

Liveness/Never Finitely Refutable (NFR). When ϕ does not hold on a
behavior, a refutation can not be identified after a finite prefix.

Morbidity/Never Finitely Satisfiable (NFS). When ϕ is satisfied on a
behavior, satisfaction can not be identified after a finite prefix.

The authors define two extra property classes that are not given a name:

Sometimes Finitely Refutable (SFR). For some behaviors that violate ϕ,
a refutation can be identified after a finite prefix; while for other behaviors
violating ϕ, a refutation cannot be identified with a finite prefix.

Sometimes Finitely Satisfiable (SFS). For some behaviors that satisfy ϕ,
satisfaction can be identified after a finite prefix; while for other behaviors
satisfying the property, satisfaction cannot be identified with a finite prefix.

Figure 1 shows the landscape of property classes along with an example LTL
property for every class.

We can see, for example, that◇p belongs to Guarantee and Liveness. This
property is NFR because given any finite prefix of a trace where the property
does not hold, we can construct an alternative continuation where it does hold,
simply making the next value of p be true. The property is also AFS because we
can find the first index when p becomes true and any continuation of that prefix
makes the property true.

3 A Richer View of Monitorability

In this section we generalize the framework of Havelund and Peled in [20] to
consider richer verdicts (beyond Boolean values). Similar to the approach in [20],
we base our work on the ability of a monitor to reach a verdict witnessing a finite
observation. Note that the finite satisfiability of a property means that with a
finite observation we can dismiss the value false as the result, and the finite
refutability of a property means that with a finite observation we can dismiss
the value true as the result. The main intuition is to focus on the dismissibility
of verdict values.

698 F. Gorostiaga and C. Sánchez

Quaestio SafetyLiveness

Guarantee

Morbidity

Quaestio SFR ∩ SFS

SFR ∩ NFS

SFR ∩ SFSNFR ∩ SFS AFR ∩ SFS

SFR ∩ AFSNFR ∩ AFS AFR ∩ AFS

NFR ∩ NFS AFR ∩ NFS

p

pp ∧q

p ∨q p ∨q

p ∧q

(p ∨p) ∧q

p

p

Fig. 1. Landscape of property classes according to [20].

Consider a formalism whose semantics [[·]] is defined over behaviors of type
Iω and that assigns verdicts of type D. For example, classical LTL is defined
over records of Boolean values and its semantics assigns Boolean verdicts.

We say a value v ∈ D is Finitely Dismissible for a formula ϕ and a behavior
s ∈ Iω if there is an observation ls ∈ I∗, ls ≺ s such that for all s′ continuation
of ls, [[ϕ]](s′) �= v. We say a value v ∈ D is Finitely Admissible for a formula ϕ
and a behavior s ∈ Iω if there is an observation ls ∈ I∗, ls ≺ s such that for all
possible continuations s′ ∈ Iω (this is, all the streams s′ ∈ Iω such that ls ≺ s′),
[[ϕ]](s′) = v. Notice that the only value that can be Finitely Admissible for ϕ
over s is [[ϕ]](s).

We say that a set of values D′ ⊆ D is None Finitely Dismissible (NFD) for a
formula ϕ and a behavior s if every v ∈ D′ is not Finitely Dismissible for ϕ and
s. Analogously, we say that a set of values D′ ⊂ D is All Finitely Dismissible
(AFD) for a formula ϕ and a behavior s if every v ∈ D′ is Finitely Dismissible
for ϕ and s. Notice that the empty set is both NFD and AFD. We say that a set
of values D′ ⊂ D is Some Finitely Dismissible (SFD) if it is not AFD nor NFD.

We can extend the definition of Finite Admissibility to sets of values but
they are of little use in our work.

Lemma 1. If v is Finitely Admissible for a formula ϕ and a behavior s then
D\{v} is AFD for ϕ and s.

Proof. Since v is Finitely Admissible for ϕ and s, there is a finite sequence ls ≺ s
such that for every continuation s′ of ls, [[ϕ]](s) = v. We can therefore dismiss
any value in D\{v} with the finite prefix ls. �
The converse holds for finite domains.

Monitorability of Expressive Verdicts 699

Lemma 2. If D\{v} is AFD for a formula ϕ and a behavior s and D is finite,
then v is Finitely Admissible for ϕ and s.

Proof. There is an index for every element v′ in D\{v} that indicates the shortest
length of the finite prefix after which v′ can be dismissed for ϕ over s. After
a prefix of the maximum length of those indexes (which are finite), we will
have dismissed every v′ �= v in D, and as a consequence the semantics of any
continuation over ϕ is v. �
However, if D is infinite, Lemma 2 does not hold.

Lemma 3. If D\{v} is AFD for a formula ϕ and a behavior s and D is infinite,
then it is not necessarily the case that v is Finitely Admissible for ϕ and s.

Proof. Let there be a property ϕ that assigns the maximum value of the field p
(of type N) in the behavior if it exists, and ∞ otherwise. The verdict is of type
N ∪ {∞} and for the behavior s

def= (〈p : 1〉 〈p : 2〉 〈p : 3〉 . . .), the semantics
of ϕ is [[ϕ]](s) = ∞, any natural number is finitely dismissible and yet ∞ is
not finitely admissible: we can simply repeat the last value of a prefix forever,
creating a continuation whose semantics over ϕ is a natural number. �
We will show two more (counter) examples for bounded, dense verdict domains
in Sects. 4.2 and 4.3.

4 Boolean and Quantitative Totally Ordered Domains

In this section we generalize the classification of Havelund and Peled to totally
ordered sets, according to the dismissibility of values with respect to the result.
Note that this is the same criterion as in the original definitions.

4.1 Property Classes

If the type D of the verdicts of a formalism is a totally ordered set equipped
with an order relation (D,≤), we can classify the properties according to their
value-dismissibility as follows. Let v = [[ϕ]](σ) be the semantics of the property
ϕ for behavior σ. We use v< for the set of values lower than v and v> the set of
values greater than v, that is v<

def= {v′|v′ < v} and v>
def= {v′|v′ > v}. We say

a property is AFD> if the set of values greater than its verdict for any behavior
is AFD. We define AFD<, NFD> and NFD< analogously. A property is SFD> if
for some executions, some values greater than its verdict are finitely dismissible
while other are not. The definition of SFD< is analogous. With these definitions
we can redefine the property classes for rich, totally ordered domains as follows:

Safety/AFD>. We say that a property is a Safety property if the set v> is
All Finitely Dismissible for any behavior σ (this is, the monitor can dismiss
every value greater than the result with a prefix). In other words, if you set
a maximum tolerable threshold t and the result is below the threshold, you
will know it after a finite prefix.

700 F. Gorostiaga and C. Sánchez

Quaestio SafetyLiveness

Guarantee

Morbidity

Quaestio SFD> ∩ SFD<

SFD> ∩ NFD<

SFD> ∩ SFD<NFD> ∩ SFD< AFD> ∩ SFD<

SFD> ∩ AFD<NFD> ∩ AFD< AFD> ∩ AFD<

NFD> ∩ NFD< AFD> ∩ NFD<

Fig. 2. Landscape of property classes for totally ordered domains

Guarantee/AFD<. We say that a property is a Guarantee property if the set
v< is All Finitely Dismissible for any behavior σ (this is, the monitor can
dismiss every value lower than the result with a prefix). In other words, if
you set a minimum score t and the result is higher than it, you will know it
with a finite prefix.

Liveness/NFD>. We say a property is a Liveness property if the set v> is
None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value greater than the result processing any prefix). In other
words, if you set a maximum tolerable threshold t and the result is below it,
you will not know it with a finite prefix.

Morbidity/NFD<. We say a property is a Morbidity property if the set v< is
None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value lower than the result with a prefix). In other words, if you
set a minimum score t and the result is higher than it, you will not know it
with a finite prefix.

We define two additional sets of properties:

SFD>. In some traces the monitor can dismiss some values higher than the
result with a prefix, but not others.

SFD<. In some traces, the monitor can dismiss some values lower than the
result, but not others.

Figure 2 shows the landscape of property classes for rich, totally ordered domains.
Note that the definitions of Safety and Liveness are incompatible for verdict
domains with more than one element, and so are the definitions of Guarantee
and Morbidity, which means that a property cannot be both a Safety and a

Monitorability of Expressive Verdicts 701

Liveness property, nor can it be both a Guarantee and a Morbidity property.
However, it is possible that a property belongs to two classes, and also that a
property does not belong to any of the classes described above.

We see that our definitions maintain the classification of the original prop-
erties presented in [20] if we consider the Boolean domain with the usual order
relation false < true. Recall that according to our definitions, a Safety property
is one such that a monitor can always dismiss the values greater than the result
with a finite prefix. This is equivalent to say, in the Boolean ordered set, that
if the result is false then a monitor can always dismiss the set {true} with a
prefix. Since the domain is finite, Lemma 2 implies that the value false is always
Finitely Admissible, and thus, a failed verdict can be identified after a finite
prefix. A similar analysis can be made for the rest of the classes.

In the following sections we will give a witness for every class and sensible
multiclass for different formalisms and domains.

4.2 Quantitative LTL

In [15] the authors define quantitative semantics for LTL, which generalize the
semantics from Boolean to a richer type. Input streams are streams of real num-
bers in the range [0, 1]. The syntax is the same as for classic LTL. The semantics
is given recursively over the terms and assigns a value in the range [0, 1] for every
term with respect to a behavior that assigns a real number in the range [0, 1] to
every proposition, this is, in QLTL, R

def= 〈p0 :: R[0,1], . . . , pn :: R[0,1]〉.

[[T]](σ) def= 1 [[ϕ ∨ ψ]](σ) def= [[ϕ]](σ) � [[ψ]](σ)
[[a]](σ) def= σ(0)(a) [[¬ϕ]](σ) def= 1 − [[ϕ]](σ)
[[◯ϕ]](σ) def= [[ϕ]](σ1)
[[ϕ U ψ]](σ) def= supi≥0([[ϕ]](σ0) · · · [[ϕ]](σi−1) [[ψ]](σi))

where x y
def= min(x, y) and x � y

def= max(x, y).
Following the syntax of the derived operators, their semantics in QLTL are

[[ϕ ∧ ψ]](σ) def= [[ϕ]](σ) [[ψ]](σ), [[◇ϕ]](σ) def= supi≥0[[ϕ]](σi), and [[◻ϕ]](σ) def=
inf i≥0[[ϕ]](σi).

Since the generalization of the property classes to quantitative values pre-
sented in Sect. 4.1 is consistent with the generalization of the semantics of LTL
to quantitative values in QLTL, the formulae presented in Sect. 2.1 belong to the
same classes.

Lemma 4. The following hold:

– The property ◇p belongs to Guarantee and Liveness,
– the property ◻p belongs to Safety and Morbidity,
– the property ◯p belongs to Safety and Guarantee,
– the property ◻◇ p belongs to Morbidity and Liveness,
– the property p ∧◇q only belongs to Guarantee,

702 F. Gorostiaga and C. Sánchez

– the property ◻p ∨◇q only belongs to Liveness,
– the property p ∨◻q only belongs to Safety, and
– the property ◇p ∧◻q only belongs to Morbidity.

Proof. We show the proof that ◇p belongs to Guarantee and Liveness. ◇p
is NFD> because given any finite prefix of a trace where the supremum is v �= 1,
we can construct an alternative continuation where it is greater than v simply
making the next value 1. If the verdict is v = 1, the complement set would be
trivially NFD. It is AFD< because the verdict v is the minimum element greater
or equal than the infinite values of p throughout the trace. Let v′ < v. If no
element in (v′, v] occur in the trace, then the result would be v′. Otherwise, the
occurrence of such value would dismiss v′ as a possible result. �

The verdict of a QLTL property is a real number in the range [0, 1], i.e. an
infinite set, and thus it is subject to the case where the set of values different
from the result is AFD but the result itself is not Finitely Admissible.

Lemma 5. There is a QLTL property ϕ and a behavior s such that v = [[ϕ]](s)
is not Finitely Admissible, but [0, 1]\{v} is AFD.

Proof. Consider the property (◇p ∧ q) and a behavior s such that, at every
instant i, the value of q is 1

2 and the value of p is
∑i

n=0
1

4×2n , this is, p produces
values closer to 1

2 , but never 1
2 exactly. Then, in QLTL, [[◇p]](s) = 1

2 , the
set [0, 1

2) ∪ (12 , 1] is All Finitely Dismissible, but the result 1
2 is not Finitely

Admissible. �

4.3 Discounting in LTL

The temporal logic DiscLTL[D] generalizes LTL by adding discounting temporal
operators [1]. According to the authors, the logic is in fact a family of logics,
each parameterized by a set D of discounting functions. A function η : N → [0, 1]
is a discounting function if limi→∞ η(i) = 0, and η is strictly decreasing. Input
streams are Boolean, as in classic LTL, but verdicts are real numbers in the
range [0, 1].

For a given a set of discounting functions D, the logic DiscLTL[D] adds to
LTL the operator ϕ Uη ϕ. The semantics of this logic is given recursively over
the terms and assigns a value in the range [0, 1] for every term with respect to a
behavior, assigning 0 to an input value of false and 1 to an input value of true.

[[T]](σ) def= 1 [[ϕ ∨ ψ]](σ) def= max{[[ϕ]](σ), [[ψ]](σ)}
[[a]](σ) def=

{

1 if σ(0)(a) = true
0 otherwise

[[¬ϕ]](σ) def= 1 − [[ϕ]](σ)

[[◯ϕ]](σ) def= [[ϕ]](σ1)
[[ϕ U ψ]](σ) def= sup

i≥0
{min{[[ψ]](σi), min

0≤j<i
{[[ϕ]](σj)}}}

[[ϕ Uη ψ]](σ) def= sup
i≥0

{min{η(i)[[ψ]](σi), min
0≤j<i

{η(j)[[ϕ]](σj)}}}

Monitorability of Expressive Verdicts 703

Property Classification. The properties in Sect. 4.2 belong to the same cat-
egories, which is reasonable because they do not use discounting functions. For
the same reason, and since the observations are Boolean values, the possible
values are {0, 1} and thus the semantics and the property classes coincide with
those of classic LTL.

Lemma 6. Properties of the form ϕ Uη ψ belong to Safety and Guarantee.

Proof. Let v = sup
i≥0

{min{η(i)[[ψ]](σ(i)), min
0≤j<i

{η(j)[[ϕ]](σ(j))}}} for a trace σ.

Let v′ ∈ (v, 1] (if the set (v, 1] is empty, it can be trivially dimissed). Since
both [[ψ]] and [[ϕ]] are in the range [0, 1] at any index, then there is an index
k such that η(k) < v′. After index k and since no value greater than v′ ever
happened (it would be greater than the verdict and thus the supremum), v′ can
be dismissed as a verdict.

Let v′ ∈ [0, v) (if the set [0, v) is empty, it can be trivially dimissed). Following
the same reasoning, there is an index k after which η(k) < v. At index k, v is
guaranteed to be the result. �

DiscLTL[D] provides us with another example where the set of non-verdicts
is All Finitely Dismissible but the correct result is not Finitely Admissible.

Lemma 7. There is a DiscLTL[D] property ϕ and a behavior s such that v =
[[ϕ]](s) is not Finitely Admissible, but [0, 1]\{v} is AFD.

Proof. Consider a behavior s such that p is always false, and the DiscLTL[D]
property ϕ =◇ηp(s). The temporal operator◇η is defined as◇ηϕ

def= T Uη ϕ.
From the semantics of U and T , we see that

[[ϕ]](s) = sup
i≥0

{min{η(i).σ(i)(p), min
0≤j<i

{η(j).1)}}}

= sup
i≥0

{min{η(i).0, min
0≤j<i

{η(j))}}} = sup
i≥0

{ min
0≤j<i

{η(j))}}}

Then, [[ϕ]](s) = 0, the set (0, 1] is All Finitely Dismissible, but the result 0 is not
Finitely Admissible. �

5 Towards Partially Ordered Domains

In this section we generalize the property classes definitions presented so far to
partially ordered domains. We also introduce the notions of assumptions (via
gray box monitoring) and imprecise observability to capture different relations
between behaviors and observations, and we see how these notions impact in
property classification in a concrete example.

704 F. Gorostiaga and C. Sánchez

5.1 Property Classes for Partially Ordered Domains

We first generalize the definitions of the property classes presented in Sect. 4.1. If
the type of the verdicts of a formalism is a partially ordered set, we still classify
the properties according to their value-dismissibility. Let v = [[ϕ]](σ), v� the set
of values in D not greater or equal than v and v� the set of values in D not

lower or equal than v, that is v�
def= {v′|v′

� v} and v�
def= {v′|v′

� v}. We
now redefine the property classes for rich, partially ordered domains:

Safety/AFD�. We say a property is a Safety property if the set v� is All
Finitely Dismissible for any behavior σ (this is, the monitor can dismiss
every value not lower or equal than the result with a prefix).

Guarantee/AFD�. We say a property is a Guarantee property if the set v� is
All Finitely Dismissible for any behavior σ (this is, the monitor can dismiss
every value not greater than the result with a prefix).

Liveness/NFD�. We say a property is a Liveness property if the set v� is
None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value not lower or equal than the result with a prefix).

Morbidity/NFD�. We say a property is a Morbidity property if the set v� is
None Finitely Dismissible for any behavior σ (this is, the monitor can never
dismiss any value not greater or equal than the result with a prefix).

Again, we also define two additional sets of properties:

SFD�. In some traces the monitor can dismiss some values not lower or equal
than the result with a prefix, but not others.

SFD�. In some traces, the monitor can dismiss some values not greater or equal
than the result, but not others.

It is easy to see that for totally ordered domains the set of values not greater or
equal than a value is equal to the set of values lower than it, hence these new
definitions simply extend the classifications presented in Sect. 4.1 to partially
ordered sets. The landscape of the new property classification is the same as
the one in Fig. 2, but with the subscripts > replaced by � and the subscripts <
replaced by �.

5.2 Gray Box Monitoring (Assumptions)

So far we have considered that any stream of states is a possible behavior of the
system, following a black box approach in which the monitor has no information
about the conduct of the system. However, trace analysis for value dismissibility
must only take into account plausible behaviors of the system under scrutiny and
thus we can use assumptions to limit the set of behaviors contemplated. We call
this a gray box approach. An assumption, as defined in [22], is a set of behaviors
that contains the traces that comply with the assumption. Assumptions can

Monitorability of Expressive Verdicts 705

make properties fit into the categories presented in the previous section that
would otherwise be uncategorizable.

For example, we saw in Sect. 2.1 that the LTL property◻p ∨◇q only belongs
to the Liveness property class. However, under the assumption that ◻(p ∨ q),
the property becomes a tautology and thus, it is trivially both a Safety and
Guarantee property. The same LTL property ◻p ∨◇q becomes a Safety
property under the assumption that once q becomes false, it will remain false
forever, i.e., ◻(¬q → ◻¬q).

Recall that a value v is finitely dismissible (resp. admissible) if the semantics
of a property for every continuation of an observation is different from (resp.
equal to) v. When we use assumptions, we only need to consider the continuations
of the observation ls that intersect the assumption A: {s′ ∈ Iω ∩ A|ls ≺ s′}.

5.3 Imprecise Observations

Sometimes observations are imperfect, in the sense that some parts of the obser-
vation are missing. In practice, this could be due to technical impossibility, bad
instrumentation, privacy concerns, faulty communication, or because the mon-
itor is incorporated to an already running system. Up to this point we have
considered observations to be a prefix of the behavior, but in this section we
generalize the relationship between observations and behaviors via an abstrac-
tion function obs, which indicates the different ways a behavior can be observed.

The observation function is a representation about how a behavior can be
perceived by the monitor. The choice of the observation function has an impact
on property classification. For example, we saw in Sect. 2.1 that the LTL prop-
erty ◯p is a Safety and Guarantee property, but it becomes a Liveness and
Morbidity property under loss or corruption of events, stuttering, or incorrect
event order arrival.

In the example shown in Sect. 5.4 below, our obs function captures the error
(mutation in the terminology of [23]) of losing a prefix of the behavior, as a way
to represent the scenario in which we start to monitor a system that is already
running and thus the initial state is unknown. We also show a set of obs functions
that implement a controlled corruption mutation in which events of a certain kind
are replaced by a no-value event, representing the situation in which the system
under analysis is not properly instrumented or privacy concerns prevent the
monitor from detecting specific events, and thus some events are unobservable.

5.4 Example: Resource Sharing

This example illustrates that if assumptions are present, sometimes it is possible
to effectively monitor liveness and safety properties. The monitors considered in
this example try to compute a verdict value at every time instant, instead of a
single verdict corresponding to the valuation of a formula at the initial position
for the input trace observed. We model these streams of valuations in stream
runtime verification [31] where the output of the verdict stream provides the
sequence of verdict values for each time instant.

706 F. Gorostiaga and C. Sánchez

In the scenarios presented so far, the monitor gains information about the
behavior by incrementally observing a prefix of the behavior. That is, the monitor
observes the set of finite prefixes of a trace, which acts as the abstraction function
of a behavior. In other words, the observations of the monitor is computed from
a behavior s as obs≺(s) def= {ls | ls ≺ s}. However, property classification can
also be applied to scenarios where the beginning of a trace is unknown, that is,
where observations miss a prefix. We can represent this case, considering that
observations ls ∈ D∗ are not prefixes of behaviors s ∈ Dω but subsequences
of them. The behavior abstraction we consider in this situation is the function
that returns each of the (finite) subsequences of a stream, this is, obs�(s) def=
{ls | ls � s}.

Consider for example a monitor that observes the lock/free operations of
semaphores of a concurrent program. Our task is to study a monitor that pro-
duces a verdict indicating, at every point in time and for every resource, which
process is the holder of the lock (if any). We start by introducing some interme-
diate definitions and properties before we describe the monitor.

The input stream e ∈ EventTω indicates the successive events that take place
during the execution of the concurrent program. In [17] the authors show how
to represent event-based systems using a synchronous language. As proposed in
that work, we use a special constant nop to represent the absence of an event in
an instant. We assume that at most one event can happen at every instant. Let
ProcessT be the set of processes in the system, and let ResourceT be the set of
resources. A process can lock or free a resource.

The output (verdict) stream acquired ∈ AcquiredTω is calculated from e and
computes which process is holding which resource at every instant keeping a map
that assigns a process to a resource. Formally, the types EventT and AcquiredT
are defined as:

EventT def= {nop} ∪ (ProcessT × ResourceT × {lock, free})

AcquiredT def= ResourceT �→ ProcessT

A nop event represents that no event happened in an instant. A (p, r, o) event
indicates that process p has performed operation o over resource r. The resources
that are not a key of the map in AcquiredT are unlocked, and we define maps as
sets of key-value pairs with at most one value associated with a key.

We define a partial order relation between maps: for two maps m and m′,
we say that m ≤ m′ iff every key-value pair in m is in m′. Formally, m ≤ m′ def=
∀(k, v) ∈ m, (k, v) ∈ m′. For example, the empty map ∅ is lower or equal than
any map. The maps m0 = {(0, 10)} and m1 = {(1, 20)} are not comparable
(i.e., m0 � m1 and m0 � m1) but they have a supremum which is the map

m2
def= {(0, 10), (1, 20)} (this is, m0 ≤ m2, m1 ≤ m2 and also for every other m′

2

such that m0 ≤ m′
2 and m1 ≤ m′

2, then m2 ≤ m′
2). On the other hand, the maps

{(0, 10)} and {(0, 20)} are not comparable and they do not have a supremum.

Monitorability of Expressive Verdicts 707

By observing lock events the monitor can dismiss some values that are not
lower than the verdict, and by observing free events the monitor can dismiss
some values that are not greater than the verdict. We will see why in Lemma 8.

We classify the property of resource ownership using gray box monitoring and
with respect to system assumptions. We first define two possible assumptions
about the system:

willFree def= ◻((p, r, lock) →◇(p, r, free))
willLock def= ◻(r /∈ keys(acquired) →◇(, r, lock))

The assumption willFree limits the traces to those in which whenever a process
locks a resource, then at some point in the future the process will free the
resource. Similarly, willLock restricts to traces in which whenever a resource
is available, some process will eventually lock it.

Let us also consider two functions that override events.

noLock(e) def=

{

nop if e = (, , lock)
e otherwise.

noFree(e) def=

{

nop if e = (, , free)
e otherwise.

The function noLock overrides lock events with nop events, while the function
noFree overrides free events with nop events.

We can use the functions noLock and noFree in the observability abstraction
obs to represent the inability of the monitor to perceive lock or free events. We
define three functions that abstract behavior to observations using mapS to map
a function over a set of observations and mapL to map a function over a finite
sequence of events:

obsnoLock(s)
def= mapS (mapL noLock) (obs�(s))

obsnoFree(s)
def= mapS (mapL noFree) (obs�(s))

obsblind(s)
def= mapS (mapL (noLock ◦ noFree)) (obs�(s))

An observation of a behavior using obsnoLock is a finite subsequence of the behav-
ior where all the lock events have been replaced by nop. Analogously, obsnoFree
represents the inability of the monitor to perceive free events, and obsblind rep-
resents the inability of the monitor to perceive both lock and free events.

Lemma 8. The property acquired can belong to any class depending on the
assumptions of the system and on the events the monitor can actually perceive.

Proof. We sketch here the proof that acquired is a Guarantee property under
the assumption willFree with observation function obs�. Let m be the map at
the beginning of the monitoring, and let m′

� m. This means that there is a
(r, p) ∈ m which is not in m′. In other words, there is a resource r which has been
acquired by a process p and has not yet been freed. Due to the assumption, the
process p will eventually free r, conveying the information that (r, p) was part
of the initial map and at that point the monitor can dismiss m′ as a candidate.

708 F. Gorostiaga and C. Sánchez

Quaestio SafetyLiveness

Guarantee

Morbidity

Quaestio SFD> ∩ SFD<

obsnorelease, ∅

obs�, ∅obsnolock, ∅

obsblind, ∅ obsnorelease,
{willLock}

obs�,
{willLock}

obsnolock,
{willRelease} {willRelease}

obs�,
{willRelease,

obs�,

willLock}

Fig. 3. Classifications of acquired with respect to observability and assumptions

We will see that the property is SFD� under the assumption willFree. Let
m be the map at the beginning of the monitoring, and let m′

� m. This means
that there is a (r, p) ∈ m′ which is not in m. If the monitor witnesses the lock
of r, it can dismiss m′, but it cannot dismiss maps m′

� m that contain as keys
resources that are not locked after the monitoring starts. �

We explain now the classification of the property acquired based on value-
dismissibilty with respect to obs and system assumptions (see Fig. 3).

– acquired is a Guarantee property under the assumption willFree. Let m be
the map at the beginning of the monitoring, and let m′

� m. This means
that there is a (r, p) ∈ m which is not in m′. In other words, there is a
resource r which has been acquired by a process p and not yet released.
Due to the assumption, the process p will eventually release r, conveying
the information that (r, p) was part of the initial map and at that point the
monitor can dismiss m′ as a candidate. The property is SFD� under the
assumption willFree: let m be the map at the beginning of the monitoring,
and let m′

� m. This means that there is a (r, p) ∈ m′ which is not in m. If
the monitor witnesses the lock of r, it can dismiss m′, but it cannot dismiss
maps m′

� m that contain as keys resources that are not locked after the
monitoring starts.

– acquired is a Safety property under the assumption willLock. The proof is
analogous to the previous one. Let m be the map at the beginning of the
monitoring, and let m′

� m. This means that there is a (r, p) ∈ m′ which
is not in m. Due to the assumption, some process will eventually lock r,
conveying the information that (r, p) was not part of the initial map and

Monitorability of Expressive Verdicts 709

at that point the monitor can dismiss m′ as a candidate. We will see that
the property is SFD� under the assumption willLock. Let m be the map at
the beginning of the monitoring, and let m′

� m. This means that there
is a resource r locked in m which is not so in m′. If the monitor witnesses
the release of r it can dismiss m′, but it cannot dismiss maps m′

� m that
contain as keys resources that were locked before monitoring started and are
not released after that.

– acquired is in both a Safety and Guarantee property if both assumptions
hold, but it does not belong to any of the classes if there are no assumptions
regarding lock behavior. The reasoning follows from previous classifications.

– If the observability function is obsnoFree and thus the monitor cannot detect
free events, it cannot dismiss values not greater or equal than the result and
belongs to the class Morbidity. Let m be the map at the beginning of the
monitoring, and let m′

� m. This means that there is a resource r locked in
m which is not so in m′. Since the monitor cannot witness the release of r, it
cannot dismiss m′. The property is SFD�: let m be the map at the beginning
of the monitoring, and let m′

� m. There exists an (r, p) ∈ m′ which is not
in m. If the monitor witnesses the lock of r it can dismiss m′, but it cannot
dismiss maps m′

� m with resources that are not locked after the monitoring
starts.

– If the observability function is obsnoLock the property belongs to the class
Liveness. Let m be the map at the beginning of the monitoring, and let
m′

� m. This means that there is a (r, p) ∈ m′ which is not in m. Since the
monitor cannot witness the lock of r, it cannot dismiss m′. The property is
SFD�: let m be the map at the beginning of the monitoring, and let m′

� m.
This means that there is a resource r locked in m which is not so in m′. If
the monitor witnesses the release of r it can dismiss m′, but it cannot dismiss
maps m′

� m with resources that were locked before monitoring started and
are not released after that.

– If the observability function is obsblind and thus the monitor can detect nei-
ther lock nor free events, it cannot dismiss any map and belongs to both
Morbidity and Liveness. This follows from the reasoning of the previous
items.

– acquired is a Liveness and Guarantee property under assumption willFree
with the observability function obsnoLock because obsnoLock makes the prop-
erty a Liveness property, and the assumption makes it a Guarantee prop-
erty.

– acquired is Safety and Morbidity under the assumption willLock if the
observability function is obsnoFree because obsnoFree makes the property a
Morbidity property, and the assumption makes it a Safety property.

6 Conclusion

In this paper we have presented a generalization of the classification of Havelund
and Peled [20] to expressive verdicts. We have introduced general definitions for

710 F. Gorostiaga and C. Sánchez

admissibility and dismissibility of verdicts and instantianted these to totally
ordered and partially ordered domains. Then we have illustrated the taxon-
omy to quantitative logics like quantitative LTL and discounting LTL. Future
work includes studying other quantitative logics like Counting LTL [24], where
the semantics distinguish the steps necessary until satisfactions, and Robust
LTL [35]. We also plan to extend our framework to general verdicts in the setting
of stream runtime verification.

References

1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 424–439. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 37

2. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

5. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 1–45 (2015)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

7. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

8. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55719-9 97

9. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

10. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

11. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of the 12th International Symposium of Temporal Representation and
Reasoning (TIME 2005), pp. 166–174. IEEE CS Press (2005)

12. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2014), pp. 854–860. AAAI Press (2013)

13. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6 3

https://doi.org/10.1007/978-3-642-54862-8_37
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3

Monitorability of Expressive Verdicts 711

14. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85, pp. 169–181. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-
10003-2 69

15. Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic.
Electron. Notes Theoret. Comput. Sci. 220(3), 61–77 (2008). Proceedings of the
Sixth Workshop on Quantitative Aspects of Programming Languages (QAPL 2008)

16. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

17. Gorostiaga, F., Danielsson, L.M., Sánchez, C.: Unifying the time-event spectrum
for stream runtime verification. In: Deshmukh, J., Ničković, D. (eds.) RV 2020.
LNCS, vol. 12399, pp. 462–481. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60508-7 26

18. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

19. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69149-5 40

20. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237,
pp. 90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 7

21. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

22. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 3–18. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60508-7 1

23. Kauffman, S., Havelund, K., Fischmeister, S.: What can we monitor over unreliable
channels? Int. J. Softw. Tools Technol. Transf. 23(4), 579–600 (2021). https://doi.
org/10.1007/s10009-021-00625-z

24. Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In: Proceedings of the
2010 17th International Symposium on Temporal Representation and Reasoning
(TIME 2010), pp. 51–58. IEEE (2010)

25. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 273–291. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9 16

26. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr.
Program. 78(5), 293–303 (2009)

27. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

28. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7 22

https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-60508-7_26
https://doi.org/10.1007/978-3-030-60508-7_26
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/s10009-021-00625-z
https://doi.org/10.1007/s10009-021-00625-z
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22

712 F. Gorostiaga and C. Sánchez

29. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 24

30. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

31. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

32. Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions.
ENTCS 89(2), 226–245 (2003)

33. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

34. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties with an application to privacy. Form. Methods Syst. Des. 58, 1–34
(2021). https://doi.org/10.1007/s10703-020-00358-w

35. Tabuada, P., Neider, D.: Robust linear temporal logic. In: Proceedings of the 25th
EACSL Annual Conference on Computer Science Logic (CSL 2016), vol. 62 of
LIPIcs, pp. 10:1–10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

36. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/s10703-020-00358-w
https://doi.org/10.1007/978-3-642-28891-3_37

BDDs Strike Back
Efficient Analysis of Static and Dynamic Fault Trees

Daniel Basgöze1, Matthias Volk2(B) , Joost-Pieter Katoen1,2 ,
Shahid Khan1 , and Marielle Stoelinga2,3

1 Software Modeling and Verification, RWTH Aachen University,
Aachen, Germany

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
m.volk@utwente.nl

3 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. Fault trees are a key model in reliability analysis. Classical
static fault trees (SFT) can best be analysed using binary decision dia-
grams (BDD). State-based techniques are favorable for the more expres-
sive dynamic fault trees (DFT). This paper combines the best of both
worlds by following Dugan’s approach: dynamic sub-trees are analysed
via model checking Markov models and replaced by basic events captur-
ing the obtained failure probabilities. The resulting SFT is then anal-
ysed via BDDs. We implemented this approach in the Storm model
checker. Extensive experiments (a) compare our pure BDD-based analy-
sis of SFTs to various existing SFT analysis tools, (b) indicate the ben-
efits of our efficient calculations for multiple time points and the assess-
ment of the mean-time-to-failure, and (c) show that our implementation
of Dugan’s approach significantly outperforms pure Markovian analy-
sis of DFTs. Our implementation Storm-dft is currently the only tool
supporting efficient analysis for both SFTs and DFTs.

1 Introduction

Fault trees [47,51,54] are a common formalism in reliability engineering and
required by standards in a broad range of industries [27,33,51]. A fault tree rep-
resents a Boolean function and models how overall system failures depend on
the failure of basic system components. Fault tree analysis (FTA) is commonly
performed by translating a fault tree into a binary decision diagram (BDD)
and calculating the relevant metrics on this BDD [43,50]. BDDs yield compact
representations of fault trees enabling the analysis of large systems [17]. Ongo-
ing improvements in BDD tools such as parallelisation [20] allow for modern
implementations of FTA via BDDs.

This work has been partially funded by NWO under the grant PrimaVera number
NWA.1160.18.238, European Union’s Horizon 2020 research and innovation programme
under the Marie Sk�lodowska-Curie grant agreement No. 101008233 (Mission), and the
ERC Consolidator Grant 864075 (CAESAR). Khan is funded by a HEC-DAAD stipend.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 713–732, 2022.
https://doi.org/10.1007/978-3-031-06773-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_38&domain=pdf
http://orcid.org/0000-0002-3810-4185
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-5549-7809
http://orcid.org/0000-0001-6793-8165
https://primavera-project.com
https://doi.org/10.1007/978-3-031-06773-0_38

714 D. Basgöze et al.

T

K

G H S

A B C D E F

⇒

T

K

G H′ S′

A B

⇒

xS′

xB

xA

xH′

1 0

Fig. 1. DFT modularisation

Fault trees are static in nature and their expressiveness is limited. Dynamic
fault trees (DFT) [21] support ordered failures, spare management and func-
tional dependencies. The flexibility and increased expressiveness of DFTs how-
ever requires more involved analysis methods. BDDs cannot represent DFTs
directly as DFTs consider failure sequences instead of Boolean combinations. A
common approach is to translate DFTs into Markov models [10,22,56]. Gulati
and Dugan [31] proposed a modular DFT analysis approach combining several
analysis techniques. It divides the DFT into independent sub-parts which are
analysed individually. Modularisation thus allows to use the best of both worlds:
Markov models for dynamic parts and BDDs for static parts.

The idea of modularisation is depicted in Fig. 1. First, dynamic modules,
i.e., sub-trees containing dynamic elements, are identified (the blue boxes in the
left-most tree). Each dynamic module is analysed independently with state-of-
the-art analysis techniques for Markov models [56]. Afterwards, each dynamic
module is replaced by a single basic event which represents the corresponding
failure probabilities (tree in the middle). The remaining (static) fault tree is then
translated into a BDD (right most part) and is analysed by BDD techniques.
Modularisation works especially well when the dynamic parts are contained at
the bottom of the fault tree and the static parts are on top. As dynamic parts
commonly model single components, this structure is present in most DFTs.

Related Work. FTA via BDDs was first presented in [43] and [17], and succes-
sively improved in [25,50]. BDD-based analysis of static fault trees (SFTs) is
supported by academic tools such as Scram [40], Xfta [45] and SHARPE [55],
as well as commercial tools, e.g., RiskSpectrum [3]. We refer to [47] for a
detailed overview on BDD-based FTA.

For DFTs, various analysis techniques exist. Common approaches translate
DFTs into models such as Markov models [10,22,56], Bayesian networks [38]
and Petri nets [39], or are based on Monte-Carlo simulation [15,41]. There also
exist analysis techniques based on extensions of BDDs such as sequence deci-
sion diagrams [44], sequential BDDs [58], multiple-valued decision diagrams [36]

Faster Fault Tree Analysis Using BDDs 715

or conditional BDDs [60]. These approaches use BDDs to enumerate all failure
sequences leading to a system failure so as to compute the overall system unreli-
ability. To the best of our knowledge, no tool support exists for any of the BDD
approaches for DFTs and their scalability for large DFTs remains unclear.

For SD fault trees [35]—another extension of static fault trees with limited
dynamic behaviour—efficient analysis techniques exist via minimal cut sets [35]
and abstraction [4]. However, expressiveness of SD fault trees is limited compared
to DFTs as they only allow dynamic behaviour in basic system components.

Our DFT approach is based on modularisation [31] which was first imple-
mented in the DIFtree tool [23] and its successor Galileo [53]. However, both
tools are not available anymore for more than a decade. Recent work [56] has
implemented modularisation for DFTs but is limited to independent sub-trees
that must be direct children of the top event. In addition, [56] analyses static
FTs by translation to Markov models.

Implementation. We implemented the BDD translation for static fault trees
(SFTs) in the Storm model checker [32] and use the multi-core BDD library
Sylvan [20]. Our implementation Storm-dft supports computing minimal cut
sets (MCS), the unreliability and several importance measures such as the Birn-
baum index [8]. Storm-dft exploits vectorisation and thus enables to compute
a metric for multiple time bounds at once. In addition, we support the calcu-
lation of the mean-time-to-failure (MTTF) via approximation. For DFTs, we
implemented the modularisation approach exploiting both the BDD translation
and our efficient DFT analysis via Markov models [56].

Evaluation. Experiments on a benchmark set of 215 SFTs and 124 DFTs yield:

– On SFTs, Storm-dft is competitive compared to existing tools such as
Scram [40] and Xfta [45] and is significantly faster when analysing mul-
tiple time points due to vectorisation.

– The variable ordering in Storm-dft is not yet optimal and can lead to larger
BDDs and subsequently longer run times.

– On DFTs, our BDD-based modularisation is significantly faster than both
plain Markov-model analysis [56] and an existing realisation of (top-down)
modularisation [56] based on pure Markov-model analysis.

Our implementation is publicly available in the open-source tool Storm-
dft1. We also provide an artifact of the experimental evaluation containing the
scripts, tool configurations and fault tree models2.

Contributions. In summary, the main contributions of this paper are:

– A competitive implementation of SFT analysis via BDDs in Storm [32].
– Vectorisation for multiple time bounds and an approximation for MTTF.
– A fast implementation of a modern version of modularisation using BDDs.

Our implementation Storm-dft is the only state-of-the-art analysis tool for
both static and dynamic fault trees.
1 https://www.stormchecker.org/.
2 https://doi.org/10.5281/zenodo.6390998.

https://www.stormchecker.org/
https://doi.org/10.5281/zenodo.6390998

716 D. Basgöze et al.

(a) BE

. ..

(b) AND

. ..

(c) OR

k

. ..

(d) VOTk

≤

. ..

(e) PAND

≤

(f) POR

p

(g) PDEP

→→
. ..

(h) SEQ

. ..

(i) SPARE

Fig. 2. Node types in ((a)–(d)) static and (all) dynamic fault trees.

Structure of the Paper. We introduce fault trees and binary decision diagrams
in Sect. 2. Section 3 presents the analysis of (static) fault trees using BDDs.
We evaluate the approach in Sect. 4. Section 5 presents the analysis of dynamic
fault trees via modularisation and using BDDs for static parts. We evaluate the
approach in Sect. 6. We conclude in Sect. 7 and present future work.

2 Preliminaries

2.1 Fault Trees

Fault trees (FTs) model how failures can occur and propagate in systems [47,51,
54]. FTs are directed acyclic graphs in which the leaves are called basic events
(BEs) and intermediate nodes are called gates. A BE represents an (atomic)
system component which fails according to a given failure distribution. Failures
of BEs are propagated through the system according to the gates and eventually
lead to a failure of the unique root of the graph, the top event. Dynamic fault
trees (DFTs) [21] are the most prominent extension of fault trees and their
additional gates allow for more realistic modelling. Note that we do not consider
repairs.

Definition 1 (Dynamic fault tree). A dynamic fault tree (DFT) is a tuple
F = (V, σ,Type, top, Θ) where

– V is a finite set of nodes.
– σ : V → V ∗ defines the ordered children of a node (also called the inputs).
– Type : V → {BE,AND,OR,VOTk} ∪ {PAND,POR,PDEP,SEQ,SPARE}

defines the type of a node.
– top ∈ V is the top event.
– Θ : {v ∈ V | Type(v) = BE} → Ω maps each BE to a failure distribution from

Ω the set of probability distributions.

A VOTk-gate satisfies 1 ≤ k ≤ |σ|. A static fault tree (SFT) is a DFT where the
node types Type are restricted to {BE,AND,OR,VOTk}. In DFTs, we restrict
the failure distributions of BEs to exponential distributions to allow for analysis
based on Markov models. We say a “DFT F is failed” if top is failed.

We shortly introduce the different node types; the precise semantics is given
in [34]. The graphical representation of each node type is given in Fig. 2.

Basic events (BEs) fail according to their associated failure distributions.
Commonly, an exponential failure distribution with a failure rate λ is used.

Faster Fault Tree Analysis Using BDDs 717

Static gates represent Boolean logic functions. The AND-gate fails if all its
inputs fail. The OR-gate fails if at least one input fails. The VOTk-gate is a
generalisation and fails if at least k inputs fail.

Priority gates extend the static gates with the additional constraint that the
inputs have to fail in order from left to right. Failures out of this order render
the gate fail-safe and it can never fail. The PAND-gate fails if all inputs fail from
left to right. The POR-gate fails if the leftmost child fails before all other gates.

Dependencies encode functional dependencies of the system. If the first child
of the PDEPp fails, all other children fail with probability p.

Sequence enforcers ensure that children only fail in order from left to right.
Spare gates model spare management. Initially, the first child is used. If it

fails, the next child is claimed and used, and so forth. The SPARE fails if all
its children failed. Children can be shared by multiple SPAREs, but can only
be used exclusively by one SPARE. Using a child activates the corresponding
components and can increase the associated failure rate.

Example 1 (Fault tree). Consider the DFT on the left of Fig. 1. The top event T
fails for example if both BEs A and B fail. The DFT also fails if B and PAND
H fail. The PAND only fails if the first child C fails before D.

Fault Tree Analysis. Fault trees are analysed w.r.t. the failure of the top event.
Common metrics are the unreliability within a given time bound and the mean-
time-to-failure (MTTF). For SFTs, the minimal cut sets play an important role.
Cut sets with only a few elements for example indicate system vulnerabilities.

Definition 2 (Minimal cut sets). Let F be a static fault tree. A minimal
cut set (MCS) for F is a set M ⊆ BE such that:

1. the failure of all BEs in M leads to the failure of F , and
2. M is minimal, i.e., no subset M ′ � M leads to the failure of F .

2.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) [1,13] are graphs based on the Shannon expan-
sion [48]. We introduce BDDs by example and refer to [14] for more details.

A BDD B encodes a Boolean function f over variables x1, . . . , xn. Nodes in
B represent variables of f and follow a given variable ordering. Outgoing edges
of a node x represent the two possible assignments of variable x: the solid line
represents x = 1, the dashed line x = 0. Leaves represent functions 1 and 0.

Example 2 (BDD). Consider the BDD on the right of Fig. 1. The BDD represents
the function f = xS′ ∨ (xB ∧ (xA ∨ xH′)). The satisfying assignments of f are
obtained by following all paths from the root to the 1-leaf.

3 SFT Analysis via BDD

Translation from SFT into BDD. An SFT F is translated into a BDD by simply
calculating the BDD-representation of the propositional formula representing the

718 D. Basgöze et al.

T

2

G H

F

A B

C D E

(a) Sample SFT

xA

xB

xC xC

xD xD

xE

1 0

(b) BDD with DFS

xC

xD xD

xE

xA

xB

1 0

(c) BDD with TDLR

Fig. 3. SFT and corresponding BDDs for different variable orders

failure behaviour of F [43]. The algorithm follows a simple recursive bottom-up
approach which combines the BDDs of sub-trees according to the logic gates.
The VOTk-gate is translated by exploiting the Shannon decomposition [48].

Variable Ordering. The variable ordering employed for the BDD is important
as different orderings can result in significantly different BDD sizes [2,49]. Com-
mon variable orderings are depth-first search (DFS) [43] and top-down left-right
(TDLR) [2]. Finding optimal variable orderings is still ongoing research [11,42].

Example 3 (BDDs for SFT). Consider the SFT depicted in Fig. 3(a). The cor-
responding BDD for the DFS ordering xA <Var xB <Var xC <Var xD <Var xE

has 7 nodes and is given in Fig. 3(b). The BDD for variable ordering TDLR
xC <Var xD <Var xE <Var xA <Var xB has 6 nodes and is depicted in Fig. 3(c).

3.1 Computing Minimal Cut Sets

Minimal cut sets are a common metric for SFTs. Several approaches exist to
compute MCS [47], and we focus on the BDD-based approach [43]. We are
interested in all paths of the BDD that reach the 1-leaf, i.e., lead to a failure of
the SFT. All variables reached by the 1-edge on such a path form a solution of
the BDD. Each solution is a cut set. The aim is to compute all minimal solutions,
i.e., solutions whose proper subsets are not a solution.

A näıve approach computes the solutions for each (sub-)BDD in a bottom-
up way. The solutions of a node v are then the union of the solutions of the
1-successor of v extended with v, and the solutions of the 0-successor. However,
the resulting solutions are not necessarily minimal [6,43].

The algorithm of [43] exploits the fact that SFTs can only encode monotonic
switching functions (a.k.a. coherent FTs). From the original BDD B, a new
BDD B′ is constructed whose solutions are exactly the minimal solutions of B.

Faster Fault Tree Analysis Using BDDs 719

This construction uses the ‘without’-operator on BDDs to exclude parts of the
1-successor which are already included in the 0-successor; see [6,43] for details.

3.2 Computing Unreliability

Let X by the random variable representing the failure of BE x. We use Pt(fx) :=
P(X ≤ t) to denote the probability that x fails within time bound t. A common
metric is the unreliability Pt(F) := Pt(ftop), i.e., the probability that the SFT
F with TLE top fails within time bound t. This metric can easily be computed
on the BDD by employing Shannon decomposition: Pt(f) = Pt(fx) ·Pt(f |x=1)+
(1 − Pt(fx)) · Pt(f |x=0). The algorithm works independently of the calculation
for Pt(fx) and can therefore be applied to any failure distribution of the BEs.

Computing Sensitivity Measures. Importance measures [47,54] are used to assess
how sensitive the overall system is w.r.t. sub-systems. The Birnbaum importance
index [8] is a prominent metric. For BE e in SFT F at time t, the Birnbaum
index is given by the conditional probabilities BIt(F , e) := Pt(F | e)−Pt(F | ¬e),
where ¬e represents that e has not failed. The calculation is done on the BDD
corresponding to F , cf. [25]. Additional metrics are computed based on the Birn-
baum index [25], e.g., the critical importance factor, the Vesely-Fussell impor-
tance factor [28], the risk achievement worth and the risk reduction worth [16].

Vectorisation for Multiple Time Bounds. Investigating the unreliability over
time requires computing the unreliability for a large number of different time
bounds. The calculation for multiple time bounds can easily be parallelised,
because the computations are independent: the failure probability of the top
event within time bound t only depends on the failure probabilities of the
BEs within t. We employ vectorisation [26] where multiple probabilities—
corresponding to different time bounds—are stored within a single vector and
computed concurrently. Vectorisation exploits both temporal and spatial locality
in modern CPU caches as well as SIMD instructions (single instruction multiple
data) which operate on arrays of values at once.

3.3 Computing the MTTF

Vectorisation naturally leads to approximation methods as we can efficiently
evaluate many time bounds at once. We exploit this for the mean-time-to-failure
(MTTF), i.e., the expected time point the SFT F fails at. It is calculated by∫ ∞
0

Pt(F) dt. We numerically approximate the improper integral by sampling a
large number of time bounds on the BDD obtained for the SFT. We use two
different methods from [18]. The first method, proceeding to the limit, computes
a sequence of integrals

∫ ri+1

ri
Pt(F) dt until the result of an integral is less than a

given error ε. Our implementation uses varying steps sizes which start at 10−10

and a default error of ε := 10−12. The second method, change of variable, aims
to “squeeze” the unbounded interval [0,∞) into the bounded interval [0, 1) using
integration by substitution. The latter method always uses the same number of
samples (default 106) and works good for functions slowly approaching zero.

720 D. Basgöze et al.

The former method uses a variable number of samples and performs better for
functions which approach zero relatively fast or change rapidly; see [6] for details.

3.4 Implementation

We implemented the SFT analysis in the Storm-dft3 tool based on the Storm
model checker [32] and use the multi-core library Sylvan [20] for creating and
handling BDDs. We list the main implementation details in the following.

Multi-core BDD. Sylvan natively enables multi-core computations on
BDD [19]. Storm-dft exploits this when performing the translation from SFT
to BDD.

Complement Edges. The implementation uses complement edges [12] which
negate the corresponding function and it allows to use a single terminal node.

Variable Ordering. The implementation uses the order of BEs given in the
input file (in Galileo format4) as the variable ordering for the BDD. That way,
we support arbitrary variables orderings which can be explicitly given by either
the user or a pre-processing step. Currently, Storm-dft supports the DFS and
TDLR variable orderings via pre-processing steps.

Caching. During the translation, intermediate BDDs are not cached in order to
reduce the memory consumption. Caching can be explicitly enabled for specific
events if needed.

Vectorisation. Storm-dft uses the Eigen library [30] for vectorisation. The
chunk-size, i.e., the number of time points computed in parallel, can be config-
ured from the command-line. We refer to [6] for details on the optimal chunk-size.

Properties. Apart from standard metrics presented before, our implementa-
tion supports properties defined in a fragment of continuous stochastic logic
(CSL) [5]. More precise, Storm-dft supports (time-bounded) reachability for-
mulas of the form P=?(♦≤tφ) for state formula φ and time bound t.

4 Evaluation of SFT Approach

We evaluate the fault tree analysis via BDDs as implemented in Storm-dft on
a range of benchmarks and compare with existing tools. For reproducibility, we
provide an artifact online5 which contains the analysis scripts, tool configurations
and fault tree models used in our experimental evaluation.

4.1 Configurations

We use Storm-dft version 1.6.3. In the default configuration, Storm-dft is
single-threaded, uses a chunk-size of 1024 for vectorisation and uses the DFS
variable ordering. We also evaluate Storm-dft in a configuration using the
TDLR variable ordering and in configurations using multiple cores.
3 https://www.stormchecker.org/.
4 https://dftbenchmarks.utwente.nl/galileo.html.
5 https://doi.org/10.5281/zenodo.6390998.

https://www.stormchecker.org/
https://dftbenchmarks.utwente.nl/galileo.html
https://doi.org/10.5281/zenodo.6390998

Faster Fault Tree Analysis Using BDDs 721

Table 1. SFT benchmark sizes

Aralia Sprinkler Railway Industry Random Random (large)

#BEs 25–1567 31 22–54 36–184 150 500

#Gates 20–1622 35 69–259 21–67 70–122 261–316

We compare the SFT analysis in Storm-dft with two existing tools:
Scram6 (version 0.16.2) and Xfta7 (version 2.0.1).

Scram [40] is an open-source probabilistic risk analysis tool which supports
the Open-PSA Model Exchange format [52]. It performs SFT analysis using
BDDs and supports metrics such as MCS, unreliability and importance mea-
sures. Before analysis, Scram simplifies the SFT’s graph structure. The BDD
variable ordering then follows the topological ordering on the simplified SFT.

Xfta [45] is a free-to-use tool for the analysis of fault trees and similar
models. It is hosted by the AltaRica Association. Xfta uses its own object-
oriented design language S2ML+SBE as input, but also supports the Open-PSA
format. The analysis is performed by either generating the MCS and calculating
the metrics on them or by creating a BDD and computing the metrics via the
BDD. For the variable ordering, the children of gates are sorted beforehand and
then the DFS ordering is used.

4.2 Benchmarks

We use the following collection of SFT benchmarks for our evaluation:

– 40 examples from the Aralia benchmark set8. We excluded 3 non-coherent
SFTs containing a negation-gate as Storm-dft does not support them.

– 3 models of wet-pipe fire sprinkler systems in Australian shopping centres [37]
– 8 examples modelling train routing options w.r.t. infrastructure failures in

railway station areas [57].
– 3 industrial models for components of a lock used in water navigation.
– 161 randomly generated SFTs using a script provided by the Scram tool.

128 of the random SFTs have 150 BEs and 33 are large SFTs with 500 BEs.

We provide statistics on the benchmarks in Table 1. We give the minimal and
maximal number of BEs and gates for each benchmark set.

We analyse each fault tree w.r.t. four queries: all minimal cut sets (MCS), the
unreliability at time point t = 1, the unreliability for 10 000 time points that are
uniformly distributed within the interval [0, 10], and the Birnbaum importance
index at time point t = 1.

6 https://github.com/rakhimov/scram.
7 https://altarica-association.org/members/arauzy/Software/XFTA/XFTA2.html.
8 https://github.com/rakhimov/scram/tree/develop/input/Aralia.

https://github.com/rakhimov/scram
https://altarica-association.org/members/arauzy/Software/XFTA/XFTA2.html
https://github.com/rakhimov/scram/tree/develop/input/Aralia

722 D. Basgöze et al.

1
0

1
0
0

1
k

1
0
k

1
0
0
k

1
M

10

100

1k

10k

100k

1M

O
o
R

OoR

Scram

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(a) BDD sizes Storm-dft DFS vs Scram
1
0

1
0
0

1
k

1
0
k

1
0
0
k

1
M

10

100

1k

10k

100k

1M

O
o
R

OoR

Scram

St
o
r
m
-d

ft
w
.
Sc

r
a
m

or
de

r

Aralia
Sprinkler
Railway
Industry
Random

(b) BDD sizes Storm-dft using variable
ordering from Scram vs Scram

Fig. 4. Comparison of BDD sizes for different variable orderings for MCS

4.3 Results

We ran Storm-dft, Scram and Xfta on all 215 examples w.r.t. the four dif-
ferent queries. We ran the experiments on a desktop machine with an AMD
Ryzen™ 9 5950X and 32 GB of RAM running Arch Linux. In the multi-core con-
figuration, we used 16 cores. The timeout was set to 5 min and the memory was
limited to 30 GB. We asserted that the obtained results are the same for all three
tools. In the following, we provide detailed comparisons of the tools. Additional
results and details can be found in the extended version of this paper [7].

We present the comparisons as scatter plots such as in Fig. 5. All scatter plots
are in log-log scale and indicate—in most cases—the time (in seconds) it took
each tool to compute a query. Line OoR indicates out of resources and represents
either a timeout or memory out. All points below the diagonal indicate examples
which Storm-dft could solve faster than the other tool. All points below the
first (second) dashed line correspond to SFTs for which Storm-dft was one
(two) order(s) of magnitude faster than the other tool. Similarly, for every point
above the diagonal, the other tool was faster.

BDD Sizes. First, Fig. 4 compares the number of nodes in the BDDs which
provides an idea of the respective memory consumption. Figure 4(a) compares
the sizes of the BDDs obtained by Storm-dft and Scram. The largest BDDs
which could be analysed contain more than a million nodes. In general, Scram
yields smaller BDDs, for larger BDDs even by more than one order of magnitude.
The main reason is that Scram uses a slightly different variable ordering which
seems to yield smaller BDDs.

The influence of the variable ordering is further investigated in Fig. 4(b).
Here, we extract the variable ordering from Scram and employ it in Storm-
dft. We see that using the Scram variable ordering in Storm-dft improves
upon the default DFS ordering and yields smaller BDD sizes—in particular
for larger SFTs. However, Scram still yields smaller BDDs than Storm-dft.

Faster Fault Tree Analysis Using BDDs 723

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Scram

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(a) Runtime Storm-dft vs Scram

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Xfta

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(b) Runtime Storm-dft vs Xfta

0
.0

1

1 1
0
0

0.01

1

100
O
o
R

OoR

Storm-dft TDLR

St
o
r
m
-d

ft
D
F
S

Aralia
Sprinkler
Railway
Industry
Random

(c) Runtime Storm-dft using variable
orderings DFS vs TDLR

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Storm-dft single-core

St
o
r
m
-d

ft
m
ul
ti
-c
or
e

Aralia
Sprinkler
Railway
Industry
Random

(d) Runtime single- vs multi-core

Fig. 5. Comparisons for the computation of MCS

Reasons for the discrepancy could be that the BDD implementation in Scram
is specifically tailored to SFTs or that the self-reported number of BDD nodes
in both tools are computed in different ways.
Using good heuristics for the variable ordering is crucial for a small memory
footprint; the heuristics in Storm-dft can be further improved.

MCS. We compare the runtimes for computing the MCS in Fig. 5. Figure 5(a)
compares Storm-dft and Scram. We first see that the SFTs corresponding to
the sprinkler, railway and industry case studies can be solved within 1 s by both
tools. This also holds for other tools/configurations and metrics. As these SFTs
are not a challenge, we focus on the Aralia benchmark and random SFTs in the
remainder. Storm-dft is faster than Scram in nearly all cases. One possible
reason is that Scram outputs the MCS in an XML format which requires more
I/O-operations than the simple list output of Storm-dft.

When comparing Storm-dft with Xfta (cf. Fig. 5(b)), the picture is more
diverse. Xfta is faster than Storm-dft on most examples which can be solved
within 1 s. This is mostly due to the overhead resulting from initializing the

724 D. Basgöze et al.

Sylvan BDD library within Storm. For some of the medium-sized Aralia exam-
ples, Xfta performs better than Storm-dft. However, for larger examples,
Storm-dft prevails on all the random SFTs and nearly all Aralia benchmarks.
For MCS, Storm-dft is faster than both Scram and Xfta for larger SFTs.

Figure 5(c) compares the runtimes of Storm-dft for different variable order-
ings DFS and TDLR. While both variable orderings do not make much of a
difference for most examples, DFS performs better for some of the fault trees
and even allows to handle an FT which is OoR for TDLR.

Figure 5(d) shows that using 16 cores (instead of a single core) for the BDD
operations as supported by the Sylvan library has only a minor influence on
the runtime. One reason is that most operations performed on the BDDs are
fairly basic and therefore do not profit much from parallelization. However, for
some large examples, the configuration with multiple cores allows to handle SFTs
which were OoR for the single core.

Unreliability. Figure 6 shows the runtimes for computing the unreliability.
Figure 6(a) compares Storm-dft and Scram. For most examples, both tools
compute the unreliability within 1 s. For larger benchmarks, Scram outper-
forms Storm-dft. The main reason is that Storm-dft builds larger BDDs
than Scram, cf Fig. 4(a). Xfta is faster than Storm-dft on the small exam-
ples, cf. Fig. 6(b). However, for larger SFTs, Storm-dft outperforms Xfta. For
all tools, computing the unreliability is significantly faster than computing the
MCS.

Figure 6(c) compares the performance of Storm-dft and Scram when com-
puting the unreliability for 10 000 different time points. Storm-dft performs
vectorisation with a chunk-size of 1024 and thus computes 1024 time points
at once. This dedicated support yields a clear performance gain compared to
Scram which computes each time point sequentially. For larger SFTs, Storm-
dft is more than one order of magnitude faster. The same holds true when
comparing to Xfta, cf. Fig. 6(d).
Storm-dft is slower when computing the unreliability for one time bound, but
is significantly faster than Scram and Xfta for multiple time bounds.

Importance Measures. Last, we consider the computation of the Birnbaum
importance index for all BEs in a SFT. We omit the results for Scram as Scram
needs to compute the MCS for computing the Birnbaum importance index for
all BEs. As Storm-dft does not need this computation, the comparison would
be unfair. We provide the results in the extended version of this paper [7].

Figure 7(a) compares the runtime for Storm-dft and Xfta when comput-
ing the Birnbaum importance index for all BEs at a single time point. We see that
most examples are solved within 1 s. Xfta performs better on the larger exam-
ples. Figure 7(b) compares both tools when computing the Birnbaum importance
index for 1000 time points. Here, Storm-dft is orders of magnitude faster than
Xfta and provides results where Xfta runs out of resources.
When computing the Birnbaum importance index for all BEs, Xfta is faster for
single time points whereas Storm-dft is orders of magnitude faster for multiple
time points.

Faster Fault Tree Analysis Using BDDs 725

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Scram

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(a) Runtime Storm-dft vs Scram

0
.0

1

1 1
0
0

0.01

1

100
O
o
R

OoR

Xfta

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(b) Runtime Storm-dft vs Xfta

0
.0

1

1 1
0
0

0.01

1

100
O
o
R

OoR

Scram

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(c) Runtime Storm-dft vs Scram
for multiple time points

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Xfta

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(d) Runtime Storm-dft vsXfta for
multiple time points

Fig. 6. Comparisons for the computation of the unreliability

5 DFT Analysis via BDD and Modularisation

Dynamic fault trees extend SFTs by capturing dynamic failure behaviour such
as ordered failures, spare management or functional dependencies. Analysis of
DFTs therefore needs to keep track of the history of failures and BDDs cannot be
easily used. In this approach, we combine SFT and DFT analysis using modular-
isation [31]. Modularisation is a “divide-and-conquer”-approach which splits the
DFT into modules, i.e., independent sub-trees. Each module is analysed indepen-
dently and the corresponding results are combined in the end. Modularisation
thus allows to exploit the “best” analysis technique for each module individually.

Modules containing dynamic elements are analysed by translating the cor-
responding sub-DFT into a Markov model [56]. The state space of the Markov
model is created by exhaustively exploring all possible BE failures of the DFT.
Each transition corresponds to the failure of a BE and the successor state rep-
resents the status of the DFT after the BE failure. The transition rate is given
by the failure rate of the BE. Our translation employs several optimisation tech-

726 D. Basgöze et al.

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Xfta

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(a) Runtime Storm-dft vs Xfta for
single time point

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Xfta

St
o
r
m
-d

ft

Aralia
Sprinkler
Railway
Industry
Random

(b) Runtime Storm-dft vsXfta for
multiple time points

Fig. 7. Comparison for computing the Birnbaum importance index for all BEs

Algorithm 1. DFT analysis via modularisation
Input: DFT F , time bounds t1, . . . , tn
Output: Analysis results Pt1(F), . . . ,Ptn(F)

Compute the modules D = {F1, . . . ,Fk} in F
for Fi ∈ D sorted by decreasing size of Fi do

if Fi \ ⋃
F′ �=Fi

F ′ contains no dynamic gate then
D := D \ Fi

for Fi ∈ D do
Generate Markov model Ci from Fi

Compute failure probabilities p1 = Pt1(Ci), . . . , pn = Ptn(Ci) on Ci

Create BE Bi such that Ptj (Bi) = pj for all 1 ≤ j ≤ n
Replace Fi by Bi in F

Build BDD B from F
Compute results r1 = Pt1(B), . . . , rn = Ptn(B) on B
return r1, . . . , rn

niques to mitigate a state space explosion. The optimisations encompass dis-
carding irrelevant failures and exploiting symmetries, see [56] for the details.

Note that modularisation can only be used for computing probabilities, e.g.,
the unreliability. The MTTF cannot be computed compositionally as combining
expectations is difficult [9]. Thus, other approaches are necessary such as the
approximation from Sect. 3.3 or composing independent Markov models [56].

Algorithm. We shortly describe our implementation of the DFT analysis via
modularisation based on [31]. Algorithm 1 presents the pseudo-code. We use
the DFT in Fig. 1 as an example and compute the unreliability within time
bound t. We start the analysis by identifying the modules in the DFT using the
algorithm of [24]. The algorithm traverses the fault tree in a depth-first left-most
order and stores the order in which nodes are visited. A node v is a root of a
module if all its descendants are visited in-between the first and last visit of v.

Faster Fault Tree Analysis Using BDDs 727

The algorithm runs in linear time and yields a unique list of modules. Minor
adaptions of the algorithm are required to adequately handle SEQ and FDEP,
cf. [6]. Next, we only keep the dynamic modules, i.e., modules containing at
least one dynamic element. We iteratively remove a module if its corresponding
elements not contained in other modules only contain static gates. That way, we
remove modules containing only static elements and modules which are a subset
of dynamic modules. This step results in a unique set of dynamic modules.
The example DFT contains two dynamic modules (indicated by dashed blue
boxes on the left DFT in Fig. 1). Next, each dynamic module is translated to a
Markov model and analysed according to the given metric [56]. The complete
dynamic module is then replaced by a single BE which matches the calculated
failure probabilities. In our example, BE H ′ is chosen such that it has the same
probability to fail within time bound t than the whole module of H. In the end,
the resulting fault tree (on the right in Fig. 1) contains only static elements.
Thus, this SFT can be analysed using the BDD approach presented in Sect. 3.

Static modules could of course also be replaced by corresponding BEs. As
building the BDD is efficient, we opt to directly analyse the resulting SFT
instead. Specific dynamic structures such as the first child of a PAND or SEQ
could also be further modularised following [59]. However, the application of
these modularisation rules is very limited and results in semi-Markov chains.
This approach is therefore not considered here.

Implementation. We implemented the modularisation in Storm-dft using the
BDD implementation described in Sect. 3.4. A DFT is analysed by translating
it into a Markov model as in [56]. While Storm-dft already supports a modu-
larisation, this top-down approach is only applicable to children of the top-level
event. In contrast, the new implementation is applicable to dynamic modules
located anywhere in the DFT. Moreover, the Markov models for dynamic mod-
ules are cached such that multiple queries can be performed on the same model.
This is not possible in the previous implementation which regenerates each model
for a new metric. The caching is in particular useful when computing multiple
time points and exploiting vectorisation on the resulting SFT.

6 Evaluation of DFT Approach

We evaluate the DFT modularisation and compare with existing approaches.

Configurations. We compare the modularisation using BDDs with two existing
approaches within Storm-dft [56]: the translation to a continuous-time Markov
chain (CTMC) and the top-down modularisation.

Benchmarks. We use the following DFT benchmarks:

– 68 DFTs from the FFORT benchmark collection [46].
– 40 DFT obtained by using the SFTs from the Aralia benchmark set and

replacing one BE by the DFT ftpp.1-1 from the FFORT benchmark set.

728 D. Basgöze et al.

Table 2. DFT benchmark sizes

Benchmark set #BEs #Static gates #Dyn. gates #BEs mod. #Static gates mod.

Adapt. SFT 32–1574 26–1628 3 25–1623 21–1623

Adapt. Railway 194–545 153–487 19–54 22–54 40–168

Adapt. VGS 54–99 31–59 6–20 1–79 0–39

FFORT 6–87 1–50 0–44 1–50 0–21

– 8 DFTs modelling infrastructure in railway station areas [57] and slightly
adapted to contain modules.

– 8 DFTs modelling configurations for a vehicle guidance system (VGS) [29]
and adapted by removing irrelevant FDEPs.

Table 2 gives statistics on these benchmarks: the minimal and maximal number
of BEs, static and dynamic gates in the original DFT as well as the numbers for
the SFT after modularisation.

We run the three configurations of Storm-dft on the 124 DFTs. We com-
pute the unreliability at a time bound t either given by the largest bound spec-
ified in FFORT or we use t = 100 otherwise. For multiple time bounds, we use
1000 time bounds uniformly distributed over the interval [0, t]. We used the same
machine and settings (timeout 5 min, 30 GB memory) as in Sect. 4.1.

6.1 Results

Unreliability. Figure 8 compares the computation of the unreliability.
Figure 8(a) compares the modularisation using BDDs with the CTMC approach.
The new BDD approach solves nearly all DFTs within 1 s and outperforms the
CTMC approach by several orders of magnitude. Modularisation is therefore
offering clear performance benefits compared to plain CTMC analysis.

Figure 8(b) compares the new BDD-based modularisation with the existing
top-down modularisation. The new approach prevails for all larger DFTs. The
BDD modularisation solved the adapted SFTs within 0.1 s while the top-down
approach required up to 100 s. On these DFTs, top-down modularisation is not
applicable and thus, the entire DFT must be translated into a CTMC.

The advantage of the BDD modularisation becomes even clearer for multiple
time bounds, cf. Fig. 8(c). The BDD modularisation is significantly faster than
the top-down modularisation for most of the considered DFTs. On most DFTs,
the BDD modularisation is able to compute 1000 time points within 1 s. The
main reasons for the performance improvement on multiple time points are the
caching of the intermediate Markov models and the use of vectorisation on the
resulting BDD, cf. Sect. 3.2.
The BDD-based modularisation is significantly faster than both the plain CTMC
approach and the existing top-down modularisation.

Faster Fault Tree Analysis Using BDDs 729

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Storm-dft CTMC

St
o
r
m
-d

ft
B
D
D

Adapt. SFT
Adapt. Railway
Adapt. VGS
FFORT

(a) BDD vs CTMC

0
.0

1

1 1
0
0

0.01

1

100
O
o
R

OoR

Storm-dft Top-down

St
o
r
m
-d

ft
B
D
D

Adapt. SFT
Adapt. Railway
Adapt. VGS
FFORT

(b) BDD vs Top-down

0
.0

1

1 1
0
0

0.01

1

100

O
o
R

OoR

Storm-dft Top-down

St
o
r
m
-d

ft
B
D
D

Adapt. SFT
Adapt. Railway
Adapt. VGS
FFORT

(c) BDD vs Top-down for multiple time bounds

Fig. 8. Comparisons of runtimes for the computation of the unreliability

7 Conclusion

We presented an implementation for fault tree analysis based on BDDs in the
Storm-dft tool. Our implementation is competitive compared to existing tools
and performs significantly better when computing multiple time points. We also
presented an implementation for DFT analysis based on modularisation. The
modular analysis allows to use the best techniques for each sub-tree and out-
performs existing approaches. Storm-dft is currently the only available tool
supporting modularisation for efficient DFT analysis.

Future Work. Further improvements are needed to obtain smaller BDDs dur-
ing the translation, for example by improving the heuristics for variable order-
ings such as using heuristics from Scram. The modularisation cannot be fully
exploited if large dynamic modules are present. A possible research direction is
to approximate the results for sub-modules, either by smaller fault trees or by
the approximation approach of [56].

730 D. Basgöze et al.

References

1. Akers, S.B., Jr.: Binary decision diagrams. IEEE Trans. Comput. 27(6), 509–516
(1978)

2. Andrews, J.D., Bartlett, L.M.: Efficient basic event orderings for binary decision
diagrams. In: Annual Reliability and Maintainability Symposium, pp. 61–68. IEEE
(1998)

3. Bäckström, O., Gamble, R., Krcal, P., Wang, W.: An experimental assessment of
the MCS BDD algorithm in RiskSpectrum. In: Safety and Reliability-Safe Societies
in a Changing World, pp. 1709–1717. CRC Press (2018)

4. Bäckström, O., Butkova, Y., Hermanns, H., Krčál, J., Krčál, P.: Effective static
and dynamic fault tree analysis. In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds.)
SAFECOMP 2016. LNCS, vol. 9922, pp. 266–280. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45477-1 21

5. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

6. Basgöze, D.: Dynamic fault tree analysis using binary decision diagrams. Bachelor
thesis, RWTH Aachen University (2020)

7. Basgöze, D., Volk, M., Katoen, J., Khan, S., Stoelinga, M.: BDDs strike back:
efficient analysis of static and dynamic fault trees. CoRR abs/2202.02829 (2022)

8. Birnbaum, Z.: On the importance of different components in a multicomponent
system. Multivariate Analysis-II, pp. 581–592 (1969)

9. Bohnenkamp, H., Haverkort, B.: The mean value of the maximum. In: Hermanns,
H., Segala, R. (eds.) PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 37–56. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45605-8 4

10. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensi-
ble framework for dynamic fault tree analysis. IEEE Trans. Dependable Secur.
Comput. 7(2), 128–143 (2010)

11. Bouissou, M., Bruyere, F., Rauzy, A.: BDD based fault-tree processing: a compari-
son of variable ordering heuristics. In: European Safety and Reliability Association
Conference, ESREL (1997)

12. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: DAC, pp. 40–45. IEEE Computer Society Press (1990)

13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

14. Bryant, R.E.: Binary decision diagrams. In: Handbook of Model Checking, pp.
191–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 7

15. Budde, C.E., Ruijters, E., Stoelinga, M.: The dynamic fault tree rare event simu-
lator. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol.
12289, pp. 233–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59854-9 17

16. Cheok, M.C., Parry, G.W., Sherry, R.R.: Use of importance measures in risk-
informed regulatory applications. Reliab. Eng. Syst. Saf. 60(3), 213–226 (1998)

17. Coudert, O., Madre, J.C.: Fault tree analysis: 10/sup 20/prime implicants and
beyond. In: Annual Reliability and Maintainability Symposium, pp. 240–245. IEEE
(1993)

18. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press,
Cambridge (1984)

19. van Dijk, T.: Sylvan: multi-core decision diagrams. Ph.D. thesis, University of
Twente, The Netherlands (2016)

https://doi.org/10.1007/978-3-319-45477-1_21
https://doi.org/10.1007/978-3-319-45477-1_21
https://doi.org/10.1007/3-540-45605-8_4
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-030-59854-9_17
https://doi.org/10.1007/978-3-030-59854-9_17

Faster Fault Tree Analysis Using BDDs 731

20. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017)

21. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:
Annual Reliability and Maintainability Symposium, pp. 286–293 (1990)

22. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

23. Dugan, J.B., Venkataraman, B., Gulati, R.: DIFtree: a software package for the
analysis of dynamic fault tree models. In: Annual Reliability and Maintainability
Symposium, pp. 64–70. IEEE (1997)

24. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996)

25. Dutuit, Y., Rauzy, A.: Efficient algorithms to assess component and gate impor-
tance in fault tree analysis. Reliab. Eng. Syst. Saf. 72(2), 213–222 (2001)

26. Eijkhout, V.: Introduction to High Performance Scientific Computing. lulu.com
(2011)

27. Federal Aviation Administration: System safety handbook (2000)
28. Fussell, J.: How to hand-calculate system reliability and safety characteristics.

IEEE Trans. Reliab. 24(3), 169–174 (1975)
29. Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Safety analysis for

vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186,
37–50 (2019)

30. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
31. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic

fault trees. In: Annual Reliability and Maintainability Symposium, pp. 57–63. IEEE
(1997)

32. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transf. 1–22 (2021). https://
doi.org/10.1007/s10009-021-00633-z

33. ISO: ISO 26262: Road vehicles - Functional safety. Standard, International Orga-
nization for Standardization, Geneva, Switzerland (2011)

34. Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all. In: Khomenko,
V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91268-4 14

35. Krcál, J., Krcál, P.: Scalable analysis of fault trees with dynamic features. In: DSN,
pp. 89–100. IEEE Computer Society (2015)

36. Mo, Y.: A multiple-valued decision-diagram-based approach to solve dynamic fault
trees. IEEE Trans. Reliab. 63(1), 81–93 (2014)

37. Moinuddin, K., Innocent, J., Keshavarz, K.: Reliability of sprinkler system in Aus-
tralian shopping centres-a fault tree analysis. Fire Saf. J. 105, 204–215 (2019)

38. Montani, S., Portinale, L., Bobbio, A., Raiteri, D.C.: Radyban: a tool for reliability
analysis of dynamic fault trees through conversion into dynamic Bayesian networks.
Reliab. Eng. Syst. Saf. 93(7), 922–932 (2008)

39. Raiteri, D.C.: The conversion of dynamic fault trees to stochastic Petri nets, as a
case of graph transformation. Electron. Notes Theor. Comput. Sci. 127(2), 45–60
(2005)

40. Rakhimov, O.: Scram probabilistic risk analysis tool (2018). https://doi.org/10.
5281/zenodo.1146337

41. Rao, K.D., Gopika, V., Rao, V.V.S.S., Kushwaha, H.S., Verma, A.K., Srividya, A.:
Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety
assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009)

http://eigen.tuxfamily.org
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/978-3-319-91268-4_14
https://doi.org/10.5281/zenodo.1146337
https://doi.org/10.5281/zenodo.1146337

732 D. Basgöze et al.

42. Rauzy, A.: Some disturbing facts about depth-first left-most variable ordering
heuristics for binary decision diagrams. Proc. Inst. Mech. Eng. Part O: J. Risk
Reliab. 222(4), 573–582 (2008)

43. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993)

44. Rauzy, A.: Sequence algebra, sequence decision diagrams and dynamic fault trees.
Reliab. Eng. Syst. Saf. 96(7), 785–792 (2011)

45. Rauzy, A.: Probabilistic safety analysis with XFTA. AltaRica Association (2020)
46. Ruijters, E., et al.: FFORT: a benchmark suite for fault tree analysis. In: ESREL.

Singapore: Research Publishing (2019)
47. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in

modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)
48. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Electr. Eng.

57(12), 713–723 (1938)
49. Sinnamon, R.M., Andrews, J.: Improved efficiency in qualitative fault tree analysis.

Qual. Reliab. Eng. Int. 13(5), 293–298 (1997)
50. Sinnamon, R.M., Andrews, J.D.: Fault tree analysis and binary decision diagrams.

In: Annual Reliability and Maintainability Symposium, pp. 215–222. IEEE (1996)
51. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:

Fault Tree Handbook with Aerospace Applications. NASA, Washington, DC (2002)
52. Steven, E., Antoine, R.: Open-PSA Model Exchange Format. The Open-PSA Ini-

tiative (2007)
53. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In:

FTCS, pp. 232–235. IEEE Computer Society (1999)
54. Trivedi, K.S., Bobbio, A.: Reliability and Availability Engineering - Modeling,

Analysis, and Applications. Cambridge University Press, Cambridge (2017)
55. Trivedi, K.S., Sahner, R.A.: SHARPE at the age of twenty two. SIGMETRICS

Perform. Eval. Rev. 36(4), 52–57 (2009)
56. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model

checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)
57. Volk, M., Weik, N., Katoen, J.-P., Nießen, N.: A DFT modeling approach for infras-

tructure reliability analysis of railway station areas. In: Larsen, K.G., Willemse, T.
(eds.) FMICS 2019. LNCS, vol. 11687, pp. 40–58. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-27008-7 3

58. Xing, L., Tannous, O., Dugan, J.B.: Reliability analysis of nonrepairable cold-
standby systems using sequential binary decision diagrams. IEEE Trans. Syst.
Man Cybern. Part A 42(3), 715–726 (2012)

59. Yevkin, O.: An improved modular approach for dynamic fault tree analysis. In:
Annual Reliability and Maintainability Symposium, pp. 1–5. IEEE (2011)

60. Zhou, S., Xiang, J., Wong, W.E.: Reliability analysis of dynamic fault trees with
spare gates using conditional binary decision diagrams. J. Syst. Softw. 170, 110766
(2020)

https://doi.org/10.1007/978-3-030-27008-7_3
https://doi.org/10.1007/978-3-030-27008-7_3

Approximate Translation
from Floating-Point to Real-Interval

Arithmetic

Daisuke Ishii(B), Takashi Tomita, and Toshiaki Aoki

Japan Advanced Institute of Science and Technology, Nomi, Japan
{dsksh,tomita,toshiaki}@jaist.ac.jp

Abstract. Floating-point arithmetic (FPA) is a mechanical represen-
tation of real arithmetic (RA), where each operation is replaced with
a rounded counterpart. Various numerical properties can be verified by
using SMT solvers that support the logic of FPA. However, the scala-
bility of the solving process remains limited when compared to RA. In
this paper, we present a decision procedure for FPA that takes advan-
tage of the efficiency of RA solving. The proposed method abstracts FP
numbers as rational intervals and FPA expressions as interval arithmetic
(IA) expressions; then, we solve IA formulas to check the satisfiability
of an FPA formula using an off-the-shelf RA solver (we use CVC4 and
Z3). In exchange for the efficiency gained by abstraction, the solving
process becomes quasi-complete; we allow to output unknown when the
satisfiability is affected by possible numerical errors. Furthermore, our IA
is meticulously formalized to handle the special value NaN. We imple-
mented the proposed method and compared it to four existing SMT
solvers in the experiments. As a result, we confirmed that our solver was
efficient for instances where rounding modes were parameterized.

Keywords: Floating-point arithmetic · Interval arithmetic · SMT
solvers

1 Introduction

A key technique to perform calculations on reals efficiently is floating-point arith-
metic (FPA; Sect. 3) [15,21], although there will be numerical errors caused by
rounding reals into FP numbers. The decision procedure on the logical theory
of FPA is important for verifying numerical programs, hardware models, etc.,
while accounting numerical errors. Indeed, such a theory and dedicated decision
procedures have been developed and implemented in recent SMT solvers (e.g.
[3]). Many solvers are based on a technique called bit blasting [5,6] that encodes
a satisfiability problem on FPA into that on bit vectors (BVs). Despite the high
performance of SAT solvers and several improvements (Sect. 2), the FPA solvers

This work was partially supported by JSPS (KAKENHI 18K11240).

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 733–751, 2022.
https://doi.org/10.1007/978-3-031-06773-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_39&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_39

734 D. Ishii et al.

are less scalable than the real arithmetic (RA) solvers; especially when solv-
ing instances described by the same arithmetic formulas, the former is slower
(sometimes in orders of magnitude) than the latter.

This paper aims to realize an efficient method by using RA solvers instead of
bit blasting. The proposed method represents an FPA expression with a rational
interval that encloses every valuation in FP numbers for the expression. This
abstraction, which assumes arbitrary rounding modes and mild estimation of
rounding errors, slightly limits the method’s target problem and completeness.
However, we expect to solve practical FPA problems with this approach by
leveraging the efficiency of an off-the-shelf RA solver. In addition, it is interesting
to compare bit blasting with our method, as it explores the optimal decision
procedure at the boundary between Boolean and continuous domains.

The contributions described in this paper are as follows:

– A method to solve FPA formulas by encoding them into formulas on real inter-
vals. We formalize interval arithmetic (IA) for this purpose that handles the
special FP number NaN (not a number) correctly (Sect. 4). A linear function
for error estimation, an interval extension scheme for FPA formulas, and an
encoding method from the FPA logic to the real-interval logic are presented.
Weak and strong modes are used for encoding, and their correspondence with
δ-variants [12] is discussed. The method has been implemented as a tool that
translates between SMT-LIB descriptions for FPA formulas and for RA for-
mulas that embed the interval extension (Sect. 5). We have also implemented
a Z3Py script that solves FPA formulas.

– Experiments to confirm the efficiency of the proposed method by comparison
with four other SMT solvers (Sect. 6). We prepared FPA problem instances
in three sets, in which a set is a typical FPA benchmark and two sets consist
of instances with no rounding mode setting. In the experiments, we obtained
promising results when comparing our method to existing FPA solvers. We
confirmed that our method (the Z3Py script or manual solving with CVC4)
solved the most number of problems for each set except for the FPA bench-
mark. We also confirmed that the number of inconclusive (unknown) results
by our solver were small (<10%) in all but one of the six categories.

Examples. Let f be a real function. Suppose we want to check the satisfiability
of an FPA formula ϕF := fF >F +0F, which is a direct translation of an RA
formula ϕ := f > 0, obtained by replacing every syntactic element in ϕ with an
FPA counterpart (with a rounding mode configuration). We can feed them to an
SMT solver supporting FPA and RA; then, the solving process for ϕF is often
less efficient than solving ϕ. When we can estimate an error bound δ := |f −fF|,
checking variant formulas ϕ− := f > −δ and ϕ+ := f > δ by the RA solver
might be more efficient. If ϕ− is unsat or ϕ+ is sat, then so is ϕF; otherwise,
this method could answer “unknown” (f can be in the δ-neighborhood of zero).
The proposed method in this paper translates f into an expression f based on
an IA, which evaluates to an interval that overapproximates fF assuming any
rounding modes; then, δ is obtained as the width of f .

Approximate Translation from Floating-Point to Real-Interval Arithmetic 735

The case fF evaluates to the special value NaN makes this method compli-
cated. The satisfiability of a negative predicate ϕ′

F
:= ¬(fF ≤F +0F) might be

checked using the same formulas ϕ− and ϕ+. However, if we assume that fF
evaluates to either NaN or other FP numbers, it is not correct; ϕ′

F
is sat regard-

less of other assignments, because NaN ≤F +0F does not hold. Therefore, we use
variant formulas ϕ′− and ϕ′+, prepared specifically for negative predicates. We
define ϕ′− to be true regardless of other assignments if it is not certain that fF
is not NaN; in contrast, satisfiability of ϕ′+ depends on the regular assignments.

2 Related Work

The FPA theory solvers contained in SMT solvers have been actively developed
over the last ten years or so, as summarized in [3,31].

Bit blasting [5,6] is a major approach applied in many SMT solvers including
Z3, CVC4 and MathSAT. It converts an FPA formula to a Boolean formula
by encoding an FP number into a set of Boolean variables and FP operator
circuits into Boolean formulas. Because the size of an encoded formula easily
becomes large, many approximation methods have been studied (e.g. [2,5,14,23,
25]). Brain et al. [3] have implemented a reference bit-blasting engine included
in CVC4. This paper proposes a non-bit-blasting solver based on an RA solver,
with competing results in the experiments. The number of encoded real variables
is proportional to the number of original FP variables, and we confirmed that
memory usage is lower on average than in other solvers.

There are several works that encode FPA in RA. Leeser et al. [17] have
proposed precise FPA embedding in an extended RA. The performance of
their solver Realizer was not competitive in our preliminary trial. Mixed-real-
FPA [23,24] has been proposed to encode FPA, where some formulas are approx-
imated by real formulas with rounding operations removed and other formulas
are left unchanged. Their procedure tries to encode a formula into a mixed for-
mula that has the same solution as the original. Zelj́ıc et al. [30] have proposed an
approximation refinement framework based on a similar idea. In contrast to that
the methods in [23,24,30] approximate FPA by mixed-real-FPA, ours encodes
an overapproximation of FPA formulas in RA; the result of solving the encoded
formula is sound, whereas the above methods require verification after solving.

In decision procedures, IA-based techniques [20,28] play a crucial role in
various ways. For RA logic formulas, there are solvers based on intervals bounded
by FP numbers [10,11,19,22,29]; in contrast, we approximate FPA formulas
using real intervals. IA-based decision procedures tend to be incomplete but can
be δ-complete [12]; the same idea is applied in our encoding method.

IA is used frequently in FPA solvers to accelerate their process by approx-
imating FP numbers. Typically, it is coupled with bit blasting and algorithms
such as CEGAR [5] and non-chronological backtracking [2,14,25]. MathSAT
implements the method in [2]. ObjCP [31,32] and Colibri [18] are CP-based
solvers implementing constraint propagation algorithms and other techniques
e.g. diversification [31] and distance constraints [18]. Bit-blasting solvers and

736 D. Ishii et al.

CP solvers use intervals bounded by FP numbers, whereas ours uses intervals
bounded by rational numbers. Colibri also uses integer and real intervals, but
the details have not been made public.

IA is also used in the static analysis of numerical programs [1,8,9,13,26,27].
It is typically used for abstraction of numerical computation and to compute
bounds for rounding errors. Methods to compute tight bounds [8,26] have been
proposed; our method can adopt these methods to improve the accuracy. In
terms of abstraction of FP expressions, Sect. 4 can be regarded as a variant of
the formalization in e.g. [27]. However, our method differs in that 1) we aim
at efficient solving of FPA logic formulas and 2) we formalize NaN cases that
is essential in the FPA logic. [1] formalizes IA involving special values but it
assumes a limited form of constraints.

Another branch of solvers applies an approach that encodes an axiomatiza-
tion of FP numbers in the theory of reals and integers [4,7,9]. Our method can
be considered to be in line with this approach, except that ours axiomatizes an
interval extension of FPA in which rounding operations are overapproximated.

3 Floating-Point Arithmetic

FP numbers [15,21] are machine-representable approximations of real numbers.
They are represented as BVs, and we consider various sets of FP numbers param-
eterized with the size of BVs (we limit the radix to 2).

Definition 1. Let eb and sb be the sizes of exponent and significand bits,
respectively. An FP number is represented by a pair (M, e) of two integers
such that |M | ≤ 2sb − 1 and e ∈ [emin, emax], where emax = 2eb−1 − 1 and
emin = 1 − emax; it is interpreted as a real number M ×2e−sb+1. In addition,
we use special data. There are two signed zeros −0 and +0 (we denote either of
them by 0 if the difference does not matter). Infinities −∞ and +∞ represent
numbers outside the representable bounds. Another special value NaN represents
the result of exceptional evaluations. Feb,sb and F

∗
eb,sb denote the sets of FP

numbers with fixed bit sizes, where Feb,sb = F
∗
eb,sb \{−∞,+∞,NaN}. We simply

denote F and F
∗ when bit sizes are not important.

For 64-bit double-precision FP numbers, eb = 11 and sb = 53. In a multi-sort
context, we also denote an FP number n by nF.

Definition 2. We consider the sets of extended reals R+ := R∪{−∞,+∞} and
R

∗ := R
+∪{NaN}. We interpret an FP number by mapping to the corresponding

element in R
∗ using the function v : F∗ → R

∗. v(∓0) evaluates to 0.

Approximate Translation from Floating-Point to Real-Interval Arithmetic 737

x
0 0.10.05

0.01

0.02

em

x (Def. 5)

ed
|x|

Fig. 1. Rounding error.

Distribution of FP numbers is not uni-
form, and errors increase as the value increases.
Figure 1 illustrates the errors when x is rounded
to farthest in F4,4. Errors can be estimated
using parameters

ed := 2sb−1 and em := 2emin−sb+1,

which represent the inverse of the slope that
approximates the error function, and the error
bound for subnormal FP numbers such that
|M | < 2sb−1, respectively.

In FPA (arithmetic with FP numbers), we apply four operators ◦ ∈ {+,−,×,
÷}, other operators e.g. absolute value |·|, and comparison operators. Although
their semantics follows from the real interpretation, FP numbers are not closed
under those operations, so the results are rounded to neighboring FP numbers,
causing numerical errors. Each rounded operation should be associated with one
of the six rounding modes, e.g., the mode “round to nearest ties to even (RNE)”
rounds to a closest FP number; when two FP numbers are of the same distance,
one with an even M is chosen. The set of modes are denoted by M. In the SMT-
LIB format, there are two equation operators: fp.eq and =; in the sequel, we
denote them by = and ≡, respectively. fp.eq (=) is usually used in numerical
programming and = (≡) is the bit equality. The main difference between the two
is that NaN = NaN does not hold but NaN ≡ NaN does, and the former does
not distinguish between the zeros but the latter does.

The semantics of FPA is specified in the IEEE-754 standard [15], formal-
ized in several works e.g. [4,7], and mechanically specified by the SMT-LIB
FloatingPoint theory.1 Notably, for the special data, dedicated arithmetic rules
are applied, e.g., +∞ − +∞ and +∞ × 0 evaluate to NaN, and x = NaN does
not hold, where x is an arbitrary FP number.

We consider logic formulas involving FPA predicates.

Definition 3. The grammar of FPA formulas is as follows:

F ::= T
 T | ¬F | F ∨ F

T ::= c | id | uop(T) | bop(rm, T, T)

where
∈ {≡,=,≥, >}, c is a literal of a sort Feb,sb , and id is a variable name.
uop are unary operations −(·) and |·|, which do not require rounding, and bop
are binary operations +, −, × and ÷, associated with a rounding mode.

We assume that formulas are well-sorted, insisting that every subformula is
sorted in Feb,sb with the same eb and sb. In the other sections, we also denote
FPA constructs such as
 and c by
F and cF to indicate the sort.

1 https://smtlib.cs.uiowa.edu/theories-FloatingPoint.shtml.

https://smtlib.cs.uiowa.edu/theories-FloatingPoint.shtml

738 D. Ishii et al.

The SMT-LIB’s FPA theory supports multi-precision FPA and multi-sort
FPA mixed with BV, integers and reals, wherein additional sort-conversion oper-
ators are needed. The theory also provides additional predicates, e.g. fp.isNaN
and fp.isNegative. Our implementation (Sect. 5) supports many of these fea-
tures, but some are left for future work.

4 Abstraction of FPA with Interval Arithmetic

Section 4.1 introduces basics about IA and defines an interval extension of FP
operators. In Sect. 4.2, we consider logic formulas involving interval predicates
and how to convert an FPA formula into that system. Then, the soundness basis
of the proposed method is described.

4.1 Interval Arithmetic

IA [20] is a traditional method for the abstraction of continuous domains e.g.
reals. In this paper, we introduce intervals with rational bounds in R

∗ (the
codomain of v in Definition 2) to approximate FPA.

Definition 4. Intervals are x = [x, x̄] := {x̃ ∈ R
+ | x ≤ x̃ ≤ x̄}, where x, x̄ ∈

Q∪{−∞,+∞}, and x ≤ x̄. Point intervals such that x = x̄ = x are also denoted
by [x]. Furthermore, we consider intervals that additionally contain NaN; they
are denoted either as [x, x̄] ∪ {NaN} or as x when considering generic intervals.
We denote the set of intervals by I

∗.

Interval [−∞,+∞] represents the entire domain R
+ bounded by −∞ and +∞.

Point interval [+∞] represents the set {+∞}. We do not consider the empty set
and {NaN} as intervals to make the analysis simple in return for a slight increase
of abstraction.

To abstract the rounding of a real number x̃ ∈ R
+ to an FP number x ∈ F

+
eb,sb

(with an arbitrary mode), we consider an interval x such that v(x) ∈ x. It is
preferable to have a tight x, but accurate encoding of its bounds will be costly
when later handling with SMT solvers; thus, we use a linear approximation
of rounding operators, at the expense of inaccuracy. They are based on the
numerical error analysis in Sect. 3.

Definition 5. We assume a set of FP numbers x ∈ F
+
eb,sb . The rounding oper-

ators x and �x are defined respectively by:

x :=

{
−∞ if x − |x|

ed − em < minF,

x − |x|
ed − em otherwise,

�x :=

{
+∞ if x + |x|

ed + em > maxF,

x + |x|
ed + em otherwise.

For example, 0.1 = 0.0855469 and �0.1 = 0.114453, assuming F
+
4,4.

Approximate Translation from Floating-Point to Real-Interval Arithmetic 739

Lemma 1. For x̃ ∈ R, its rounded value x ∈ F
+
eb,sb with any mode, and x :=

[x̃,�x̃], x̃ ∈ x and v(x) ∈ x hold.

Given an FPA operator op
F

with n arguments (assumed to be total func-
tions), its interval extension I

∗n → I
∗ evaluates to intervals enclosing the pos-

sible rounded results. In ordinary IA, interval extensions of real functions are
considered (e.g. in [20,28]). In the same way, we consider interval extension for
FPA expressions, but in our case, handling of “NaN cases,” e.g. +∞×F 0, needs
attention. In this regard, we will enclose any FPA expressions that may evaluate
to NaN in an interval containing NaN. Based on the widening operators and the
handling of NaN, we define the interval extensions of FPA operators.

Definition 6. Let op
F

be an n-ary FPA operator M×F
∗n
eb,sb → F

∗
eb,sb , op

R
be an

operator R
∗n → R

∗ (ideal counterpart of op
F

in RA), �x be an interval vector in
I
∗n, S be the set {op

R
(�x) | �x ∈ �x}, S\NaN := S \ {NaN}. The interval extension

of op
F

is defined by

op
I
(�x) := [inf S\NaN,� sup S\NaN] ∪

{
{NaN} if NaN ∈ S,

∅ otherwise.

Given an expression f that conforms to the syntax T in Definition 3, its
interval extension is obtained by inductively applying the interval extension to
every operator in f .

For example (assuming F
+
4,4), [1] ×I [0.5] +I [0,+∞] = [0.435547,+∞]; [0] ×I

[−∞,+∞] = [0] ∪ {NaN}; [1] ÷I [0] = [−∞,+∞]. Efficient methods to compute
[inf S,� sup S] for basic operators, handling only the bounds of the arguments,
have been developed for numerical IA libraries; see [20,28]. In practice, we can
have more accurate interval extensions in various ways as long as the resulting
intervals are sound, e.g., we can evaluate [1]×I [0.5] as [0.5]. The following lemma
summarizes the soundness of interval extensions.

Lemma 2. Consider an FPA operator op
F

and its interval extension op
I
. Let

�x be an interval vector and f be op
I
(�x). We have:

∀m∈M, ∀�x∈�x, v(op
F
(m,�x)) ∈ f .

The lemma is proved using the Why3 tool for our implementation of the four
operators (Sect. 5.4).

4.2 Approximation of FPA Formulas by IA Formulas

This section considers weak and strong abstractions of FPA formulas, based
on the interval extensions. The basic idea here is borrowed from the δ-decision
procedure [12] that formalizes a numerical process, given a bound δ for allowed
numerical errors. We apply the idea to the domain of F∗ and do not specify δ
but let the interval-extended operations determine it.

We introduce IA logic formulas in mode weak (? = −) or strong (? = +).

740 D. Ishii et al.

Definition 7. Let ? be − or + and it be fixed in a formula. The grammar of IA
formulas, denoted by ϕ− or ϕ+, is as follows:

F ::= T
[¬]
? T | F ∧ F | F ∨ F

T ::= c | id | uop(T) | bop(T, T)

where
[¬]
? is parameterized in three ways: 1)
[¬] represents
 or
¬; 2)

∈ {≡,=,≥, >} and
¬∈ {�≡, �=, <,≤}; 3)
? is instantiated as
− or
+.
c and id represent constants (interval literals) and variables in I

∗, and uop and
bop represent interval operators.

Modes − and + are prepared for the soundness of decisions of unsat and sat,
respectively (Lemma 3 and Theorem 1). For the soundness, there is no logical
negation operator as in [12] but we have negated comparison operators in
¬

? .
Two kinds of operators
? and
¬

? handle “positive” and “negative” literals
separately in the encoding process (Definition 8).

The semantics of IA formulas are straightforward, with assignments of free
variables in I

∗ and evaluating interval extensions. However, in the following, we
will modify I

∗ slightly to make a sound satisfiability checking. The interpretation
of inequalities f
[¬]

? g in two modes ? ∈ {−,+} differs in whether or not
to allow uncertain cases such that interval evaluations f and g result in non-
point intervals and intersect. The two groups of operators
? and
¬

? are not
only negated but also different in the way they handle NaN. The semantics of
the comparison operators should be appropriately defined so that the following
lemma holds.

Lemma 3. Consider the following subset of I∗:

I
∗
:= {x∈I

∗ | ∃x̂∈F
∗
eb,sb , x̂ ∈ x}.

Let f and g be interval extensions of m-ary and n-ary FPA expressions f and
g, respectively. We have:

f
− g is unsat ⇒ f
F g is unsat,
f
¬

− g is unsat ⇒ ¬(f
F g) is unsat,

∃(�x, �y) ∈ I
∗m+n
, f(�x)
+ g(�y) ⇒ f
F g is sat,

∃(�x, �y) ∈ I
∗m+n
, f(�x)
¬

+ g(�y) ⇒ ¬(f
F g) is sat.

The lemma is proved using Why3 to confirm that every comparison operators
are correctly defined, but for limited forms of f and g (Sect. 5.4).

Because assignments with intervals that do not contain any FP numbers
(e.g. [0.1]) are possible, we must prohibit them in I

∗
to make a sound deci-

sion for strong interval extension. In an actual encoding, the condition “∃x̂ ∈
F

∗
eb,sb , x̂ ∈ x” can be made simpler and weaker, e.g., as x ≤ x̄ or �x ≤ x̄. In

the decision with weak interval extension, it is sufficient to assume only point
intervals (and point intervals appended with {NaN}) because any FP number

Approximate Translation from Floating-Point to Real-Interval Arithmetic 741

can be represented by a point interval; in addition, an evaluation with point
intervals will give the best approximation.

As an example of the operators, instances of >
[¬]
? , which are >−, ≤− (i.e.

>¬
−), >+ and ≤+ (i.e. >¬

+), when rhs is [0] are defined in a logic on R
∗ as follows:

f >− [0] :⇔ f̄\NaN > 0, f >+ [0] :⇔ NaN �∈ f ∧ f > 0,

f ≤− [0] :⇔ NaN ∈ f ∨ f\NaN
≤ 0, f ≤+ [0] :⇔ f̄\NaN ≤ 0,

where f\NaN denotes f \ {NaN}. Since NaN >F 0 does not hold, NaN cases
are disallowed by >+ for the soundness, whereas they are ignored by >− for
the completeness of the case where f is not NaN. On the other hand, since the
negative literal ¬(NaN >F 0) holds, NaN cases are handled differently by ≤?.

Let f be an interval extension of f , δ be the width of f (i.e. f̄ − f), and δF
be the upward rounded value of δ in Feb,sb . When contrasted with the δ-decision
procedure [12], checking the satisfiability of f
− [0] is equivalent to checking
whether f
 −δF is satisfiable or f
 0F is not satisfiable; likewise, checking
f
+ [0] (with the above conditioning) is equivalent to checking whether f
 0F
is sat or f
 δF is unsat.

Next, we consider translation from FPA into IA. To encode FPA, some
expressions in RA are also used to describe boundary conditions of intervals.

Definition 8. The weak extension ϕ− or strong extension ϕ+ is translated
from an FPA formula ϕ by the following steps:

1. Transform ϕ into a negation normal form.
2. Transform each literal into an interval inequality of the form f
[¬]

? g; posi-
tive (resp. negative) literals are encoded using operators
? (resp.
¬

?), e.g.,
f < g into g >? f and ¬(f < g) into g ≤? f . Other than that, translation
is straightforward (constants to point intervals, operators to their interval
extensions, etc.).

3. When ? = +, each variable x in ϕ is translated into an interval variable x,
appended with a constraint x ≤ x̄ (or �x ≤ x̄). When ? = −, variables are
forced to be a point interval with constraint x = x̄.

From the above definitions and lemmas, the following theorem holds.

Theorem 1. Let ϕ be an FPA formula and ϕ− and ϕ+ be weak and strong
interval extensions of ϕ, respectively.

– If ϕ− is not satisfiable, then so is ϕ.
– If ϕ+ is satisfiable, then so is ϕ.

For example, consider an unsat FPA formula ϕ :⇔ x >F 0 ∧ −x >F 0; ϕ− is
not satisfiable because no point intervals satisfy the two predicates; ϕ+ is also
not satisfiable due to the definition of f >+ [0] (because no interval x satisfies
both x > 0 and −x̄ > 0). An FPA formula ϕ′ :⇔ ¬(x >F 0) ∧ ¬(−x >F 0)
is satisfiable with the assignment x := 0F or x := NaN. Its interval extensions

742 D. Ishii et al.

ϕ′? are of the form x ≤? [0] ∧ −x ≤? [0] (constraint is also appended to ϕ′+ in
Step 3); then, ϕ′− is satisfiable with x := [0] or any x containing NaN; ϕ′+ is
not satisfiable because the auxiliary constraint forbids x := [0] (although it can
be exceptionally allowed).

5 Implementation

We have implemented a solver for FPA formulas via translation into weak and
strong interval extensions; our implementation expresses IA formulas in real
arithmetic (RA) and solves them using an SMT solver (we use CVC4 and Z3).
In addition, we have prepared several benchmark problems for the experiments
(Sect. 6). The process is illustrated in Fig. 2. In the following, we denote “IA
embedded in RA” by RIA. The main process of the proposed solver is twofold:
1) Translation from FPA to RIA; 2) An incremental solving process in which
the FPA precision is gradually improved to accelerate the overall process. For
benchmarking, we prepared two sets of problems in FPA; also, we prepared a
set by translating problems in RA into FPA or RIA.

The artifacts developed in this work are available at https://doi.org/10.5281/
zenodo.6387089.

RA FPA

IA in RA (RIA)

Satisfiability
checking resultLRA bench

Griggio bench

BMC bench
(Sat/Unsat/
 Unknown/
 To/Oom/Error)

Translation
with pySMT

Colibri
CVC4

MathSAT
Z3

Z3Py script

BMC bench CVC4

Fig. 2. Process of experiments. Underlined items are newly developed.

5.1 Encoding IA in RA

Given an FPA formula ϕ, our translator generates RIA descriptions that encode
ϕ− and ϕ+. As long as ϕ consists of linear expressions, the translation is done in
linear RA. Example translation from an FPA formula ×(RNE, 0.1RNE, x) >F 1
is shown in Fig. 3, where 0.1RNE is a rounded value with mode RNE. In the
beginning, Lines 1–38 define the vocabularies of RIA. At Line 2, we prepare
the RInt datatype to represent intervals, defined as tuples of the bounds and a flag
indicating whether NaN is contained. At Lines 12–16, the downward rounding
operator is defined following Definition 5. Placeholders ed and em should be
filled with concrete values. The symbol ri.max_value represents the maximum
representable number prepared for the considered FP sort, and ri.large_value
is constrained as ri.large value > 2 ri.max value and is used to represent
+∞. At Lines 20–30, the interval multiplication operator is defined following

https://doi.org/10.5281/zenodo.6387089
https://doi.org/10.5281/zenodo.6387089

Approximate Translation from Floating-Point to Real-Interval Arithmetic 743

1 ;; Definition of datatype RInt representing I
∗.

2 (declare-datatype RInt ((tpl (ri.l Real) (ri.u Real) (p_nan Bool))))

3

4 ;; ...

5 ;; Definition of �(v).
6 (define-fun ri.r_dn ((v Real)) Real
7 (let ((w (- v (/ (ite (>= v 0) v (- v)) ed) em)))

8 (ite (>= w (- ri.max_value)) w (- ri.large_value))))

9

10 ;; ...

11 ;; Definition of x+ y.
12 (define-fun ri.add ((x RInt) (y RInt)) RInt
13 (let ((l (ri.r_dn (+ (ri.l x) (ri.l y))))

14 (u (ri.r_up (+ (ri.u x) (ri.u y)))))

15 (tpl l u (or (p_nan x) (p_nan y) (and (is_ninf x) (is_pinf y))

16 (and (is_pinf x) (is_ninf y))))))

17

18 ;; ...

19 ;; Definition of x × y.
20 (define-fun ri.mul ((x RInt) (y RInt)) RInt
21 (ite (>= (ri.l x) 0)

22 (ite (= (ri.u x) 0)

23 (ite (and (not (is_ninf y)) (not (is_pinf y))

24 (not (p_nan x)) (not (p_nan y)))

25 ri.zero ;; [x] = [0]

26 ri.zero_nan) ;; [x] = [0] and [y] = -+inf

27 (ite (>= (ri.l y) 0)

28 (ite (= (ri.u y) 0)

29 ;; Other 18 cases are omitted.

30)))))

31

32 ;; ...

33 ;; Definitions of f >− [0] and f >− g.
34 (define-fun ri.gt0 ((f RInt)) Bool
35 (or (is_pinf f) (> (ri.u f) 0)))

36

37 (define-fun ri.gt ((f RInt) (g RInt)) Bool
38 (or (is_pinf f) (is_ninf g) (ri.gt0 (ri.sub_exact f g))))

39

40 ;; ...

41

42 (declare-const x RInt)
43 (assert (= (ri.l x) (ri.u x)))

44 (assert (=> (p_nan x) (= x ri.nan)))

45

46 (assert (ri.gt (ri.mul (ri.of_real (/ 1 10)) x) (ri.exact 1.0)))

Fig. 3. Example of IA encoding in RA (? = −).

744 D. Ishii et al.

Algorithm 1: Incremental solving process.
Input : Precision bound (eb, sb), ? ∈ {−, +}, FPA formula ϕ
Output: unsat, sat or unknown

1 ϕ? := Encode(?, ϕ);
2 for (eb′, sb′) :∈ [(4, 4); (5, 11); (8, 24); (11, 53); (15, 113)] do
3 eb′′ := min{eb, eb′}; sb′′ := min{sb, sb′};

4 r := CheckSatAssuming(ϕ?,DefConstants(eb′′, sb′′));
5 if (? = − ∧ r = unsat) ∨ (? = + ∧ r = sat) then return r end
6 end
7 return unknown;

a typical algorithm, e.g. [16]. If a NaN case may be involved, the functions
compute the bounds of a normal interval obtained for the other cases and set
the flag p_nan; for example, the branch at Line 26 might involve NaN cases,
i.e., x or y contains NaN, or 0 × ∓∞, so it results in the interval [0] ∪ {NaN}.
At Lines 34–38, definitions of comparison operators follow the discussion in
Sect. 4.2. In the definition of function ri.gt, operator ri.sub_exact is used for
subtraction without widening the resulting interval. Finally, at Lines 42–46,
the example formula is specified. The variable x is constrained to be x = x̄
(cf. Step 3 of Definition 8) and to be [−∞] ∪ {NaN} when emulating the NaN
assignment.2

Multi-precision Encoding Scheme. To encode formulas involving multi-precision
FP numbers, we use a modified encoding scheme. It assumes a list of precisions
(ebi, sbi) that appear in a formula (each precision is represented by an integer
i). Then, the scheme uses a set of rounding operators prepared for each precision
and modified operator functions with an additional precision parameter.

5.2 Translators

We have implemented a translator from FPA descriptions to RIA descriptions.
It is realized by extending the implementation of pySMT,3 a Python library
for the SMT format containing a parser, printers, etc. We implemented support
for FPA, intermediate representation of vocabularies of IA, and translation and
printing scripts. Embedding in RA was implemented in the printers. The trans-
lator runs in several ways e.g. for weak or strong mode; it can also generate
formulas in which precisions are abstracted for incremental solving. To facili-
tate the experiments in Sect. 6, we have also implemented translators from RA
to FPA and RIA. The development repository is at https://github.com/dsksh/
pysmt.

2 For simplicity of encoded formulas, we have chosen not to handle the interval {NaN};
instead, we assign the value [−∞]∪{NaN} (for ϕ−) or [−∞, +∞]∪{NaN} (for ϕ+).

3 https://github.com/pysmt/pysmt.

https://github.com/dsksh/pysmt
https://github.com/dsksh/pysmt
https://github.com/pysmt/pysmt

Approximate Translation from Floating-Point to Real-Interval Arithmetic 745

5.3 Solver Script

We have implemented a Python script to solve RIA formulas. The script runs
two processes for mode − or + in parallel; it results in unsat or sat if either of
the processes obtains a sound result; otherwise, it results in unknown. The script
is based on Z3Py 4.8.12.4 It assumes FPA with a precision bound (eb, sb) that
represents the finest precision assumed in ϕ. Encode(?, ϕ) generates an interval
extension ϕ? with the abstract precision mode, which encodes while leaving the
precision parameters (e.g. ed and em) undefined. The main loop of Algorithm1
tries to solve under several precisions configured from coarser to exact ones.
The CheckSatAssuming process invokes the RA solver of Z3 while assuming
a precision bound temporarily.

5.4 Formal Verification Using Why3

We have (partially) verified the correctness of the proposed method using
Why3,5 a verification platform with plugged-in theorem provers. Lemmas 2 and
3 have been verified as follows. We first defined a real interval type and a pred-
icate “x ∈ x” (where x ∈ R

∗ and x ∈ I
∗) in Why3’s input language. Then,

Lemma 2 was verified for the four operators +,−,×, and ÷. For every opera-
tor ◦, we implemented the interval extension as procedure f : I

∗ × I
∗ → I

∗

and verified the Hoare triple {x,y ∈ I
∗} r := f(x,y) {∀m ∈ M, x ∈ x ∧ y ∈

y ⇒ ◦(m,x, y) ∈ r}. It resulted in a number of verification conditions and they
were discharged using the back-end provers i.e. Alt-Ergo6 and Coq.7 Next,
Lemma 3 was verified for the predicates x
[¬]

? [0] and x
[¬]
? y where x and y

are limited to identifiers. We defined the comparison operators as Why3 pred-
icates and their properties (cf. Lemma 3) as Why3 lemmas. The lemmas were
then proved using Alt-Ergo and Coq. Ishii et al. [16] have verified interval
operators, which are an overapproximation of four arithmetic operators in reals.
This work used a similar basic verification process and auxiliary lemmas. The
Why3 description is available at https://github.com/dsksh/fp rint why3.

6 Experiments

We have conducted experiments to answer the following questions: (RQ1) How
efficient is the proposed method when compared to the state-of-the-art FPA
solvers? (RQ2) To what extent does the incompleteness of the method affect the
results in practice? We have experimented using three sets of problem instances.

In the experiments, we solved FPA formulas via encoding into RIA. Formulas
were then solved in three ways: 1) Using the solver script (Sect. 5.3) with non-
incremental setting; 2) With incremental setting; 3) Using CVC4 1.88 with
4 https://github.com/Z3Prover/z3.
5 http://why3.lri.fr.
6 https://alt-ergo.ocamlpro.com/.
7 https://coq.inria.fr/.
8 https://cvc4.github.io.

https://github.com/dsksh/fp_rint_why3
https://github.com/Z3Prover/z3
http://why3.lri.fr
https://alt-ergo.ocamlpro.com/
https://coq.inria.fr/
https://cvc4.github.io

746 D. Ishii et al.

manual selection of conclusive results. We refer to our method with either of
the settings 1–3 as “RIA.” For comparison, we also solved with the exiting
FPA solvers Z3, CVC4 (linked with SymFPU [3]), Colibri v2176 [18], and
MathSAT 5.6.69 (with an ACDCL-based FPA solver enabled). Experiments
were run on a 2.2 GHz Intel Xeon E5-2650v4 with a memory limit of 3 GB. The
timeout was set to 1200 s. We did not measure the time taken for translation,
but only the time taken for the solving process for FPA or RIA formulas.

6.1 Bounded Model Checking

In the first experiment, we performed the bounded model checking (BMC) of
discrete-time dynamical systems as a practical use case. We aimed to prepare
problem instances that require precision and investigate the extent to which the
results become unknown. In BMC with a bound k ∈ N, paths of a target system
of length k were encoded into an FPA formula ϕ in F11,53 (rounding modes
were left unspecified), and we verified whether an output o of a path reaches a
threshold th by checking the satisfiability of ϕ ∧ o ≥ th. As target systems, we
considered a 1D feedback integrator, a 2D second-order filter, and a rotation on
a 2D plane; a transition of the systems involves 2, 5 or 6 arithmetic operations,
respectively.

Fig. 4. Results of BMC. Chart (a) shows required perturbations to make each BMC
conclusive. (b)–(d) show the execution time for unsat (upper) and sat (lower) instances.
“TO” and “OOM” represent executions resulted in timeout and out of memory.

9 https://mathsat.fbk.eu.

https://mathsat.fbk.eu

Approximate Translation from Floating-Point to Real-Interval Arithmetic 747

For each system, we performed BMC with three ks; results are shown in
Fig. 4. We checked for each system and k a boundary threshold t̃h whose pertur-
bation switches the satisfiability. We then obtained the error bounds Δ− <0 and
Δ+>0 such that the proposed method outputs unsat or sat when th := t̃h−Δ?.
Finally, we solved the RIA or FPA formulas encoding the unsat and sat instances
perturbated for Δ− and Δ+. We compared the execution time of the prepared
solvers; wherein, the non-incremental RIA solver (setting 1) was used to have
best results since every instance requires fine precision.

6.2 Benchmark Problems

The second experiment is based on the following two sets of benchmark problems.

– Linear arithmetic (LA) benchmark. For evaluation in a continuous domain,
which is essentially the subject of FPA, we translated instances in the QF_LRA
section of the SMT-LIB benchmarks10 into FPA instances by simply convert-
ing data sorts (from R to F11,53), operators, etc. Each real constant is con-
verted to an exact FP constant if possible, otherwise they are converted to a
rounded value. Since the set is large, we picked the instances whose originals

0.01 0.10 1 10 100 1000
0

10

20

30

40

Time

#
so

lv
ed

RIA
RIA incl. unknowns
Colibri
CVC4
MathSAT
Z3

0.01 0.10 1 10 100 1000
0

20

40

60

80

100

Time

#
so

lv
ed

(a) LA (RIA is with setting 3).

0.01 0.10 1 10 100 1000
0

20

40

60

80

Time

#
so

lv
ed

0.01 0.10 1 10 100 1000
0

20

40

60

80

100

Time

#
so

lv
ed

(b) Griggio (RIA is with setting 2).

Fig. 5. Results on benchmark problems (unsat (upper) and sat (lower) instances).

10 http://smtlib.cs.uiowa.edu/benchmarks.shtml.

http://smtlib.cs.uiowa.edu/benchmarks.shtml

748 D. Ishii et al.

were solvable by Z3 within the 30s.11 Because the proposed method abstracts
the rounding modes of FPA operators, we parameterized the rounding modes
in formulas and represented them by unconstrained variables. Also, every free
and unassigned variable was asserted that it is not NaN.

– Griggio benchmark. The Griggio suite, taken from the SMT-LIB benchmarks,
offers challenging problems for bit-blasting solvers and has been used in sev-
eral experiments [3,18,31]. Here, we use the suite as a standard FPA problem
set to evaluate our solver. Some instances involve multiple precisions and
concrete rounding modes are given in most cases.

Figure 5 shows the cactus plots of the number of solved instances versus
time (with semi-logarithmic scale), assuming each instance is solved in parallel.
For our solver, results counting unknowns are also shown with dotted lines.
The setting 3 (using CVC4) or 2 (incremental) solved more instances than the
others for LA or Griggio, respectively. For instances for which the solution was
previously unknown, the solution obtained by any solvers was assumed to be
correct; two instances of LA were excluded because the outputs did not match
among the solvers.

6.3 Discussions

Regarding RQ1, we obtained results that were better or comparable to those of
other solvers, except for the Griggio benchmark. Our RIA-based method (with
the appropriate settings) solved the most unsat and sat instances for the BMC
and LA sets (in which the rounding modes are not specified). The results for
Griggio, a benchmark that includes instances designed for dedicated solvers,
on the other hand, were dismal. We believe that our method is inefficient for
instances where the decision depends on rounding mode settings or combina-
tions of normal and special FP numbers. Our method can be incorporated with
precise encoding of FP numbers e.g. handling of exact rounded values as in [17].
Development of an efficient method with such a translation is a future challenge.
Overall, our method was able to compete with other dedicated FPA solvers.
Also, no solver performed outstandingly well in all the experiments. For exam-
ple, CVC4 and MathSAT performed well for some BMC instances, but they
resulted in a lot of timeouts and out-of-memory errors. In LA, only the RIA
solver could solve 21 instances.

As for RQ2, unknown results were less than 10% for most of the problem
sets, whereas around 30% were unknowns for unsat instances of LA. From the
results, we consider that the impact of unknowns were rather small because
the impact of execution time on scalability was much greater (cf. the result
of BMC and the fact that many of the instances could not be solved within
1200 s). The main cause was that we inhibit falsifying inequalities f
¬

− g of
the weak extension when f or g can be NaN. This cause can be dealt with by case

11 Instances using the ite function were omitted; many of LassoRanker and
meti-tarski instances were removed to balance the number.

Approximate Translation from Floating-Point to Real-Interval Arithmetic 749

analyses, e.g., detection of assignments to a free variable, and we have actually
implemented some analyses in our translators. Otherwise, unknowns occur more
often as the number of operations increases and by the wrapping effect (cf. the
rotation system in BMC). Reduction of errors using e.g. Affine form instead of
interval vectors will be a future work. In addition, we use rounding operators
in Definition 5 based on a mild estimation of errors. We consider that the use
of linear formulas improved the efficiency of the solving process while providing
sufficient accuracy.

The RIA incremental solver performed better than the non-incremental solver
using Z3 for Griggio; for LA, non-incremental solving using CVC4 was better
than incremental probably due to the performance of CVC4 in solving linear
formulas. In BMC, non-incremental performed better than incremental because
all the instances required double precision. When it is decidable with a coarser
precision and/or the lemmas learned along the way accelerate the solving process,
the incremental solver outperforms.

7 Conclusion

We have proposed an IA logic to approximate FPA formulas and a dedicated
solver using RA solvers of CVC4 and Z3. Despite using an off-the-shelf RA
solver, we obtained experimental results that were competitive with those of
other FPA solvers; we confirmed that our solver is effective for a subset of FPA
(BMC and LA) where rounding modes are parameterized. Although the solver
was shown inefficient for the FPA benchmark Griggio, it solved the most numbers
of instances for two such problem sets.

Future research issues include dealing with unknown cases, improving per-
formance with e.g. ACDCL [2] and distance constraints [18], and to expand the
supported FPA predicates.

References

1. Bagnara, R., Bagnara, A., Biselli, F., Chiari, M., Gori, R.: Correct approximation
of IEEE 754 floating-point arithmetic for program verification. Constraints 308,
1–41 (2022). https://doi.org/10.1007/s10601-021-09322-9

2. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods Syst.
Des. 45(2), 213–245 (2013). https://doi.org/10.1007/s10703-013-0203-7

3. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
79–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 5

4. Brain, M., Tinelli, C., Rüemmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: Symposium on Computer Arithmetic,
pp. 160–167. IEEE (2015). https://doi.org/10.1109/ARITH.2015.26

5. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: FMCAD, pp. 69–76. IEEE (2009)

https://doi.org/10.1007/s10601-021-09322-9
https://doi.org/10.1007/s10703-013-0203-7
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1109/ARITH.2015.26

750 D. Ishii et al.

6. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

7. Conchon, S., Iguernlala, M., Ji, K., Melquiond, G., Fumex, C.: A three-tier strategy
for reasoning about floating-point numbers in SMT. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10427, pp. 419–435. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63390-9 22

8. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- framework for analysis and optimization of numerical programs (tool paper).
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270–287.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 15

9. Daumas, M., Melquiond, G.: Generating formally certified bounds on values and
round-off errors. In: 6th Conference on Real Numbers and Computers, pp. 55–70
(2004)

10. Franzle, M., Herde, C., Ratschan, S., Schubert, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex Boolean structure. JSAT 1,
209–236 (2007)

11. Gao, S., Avigad, J., Clarke, E.M.: δ-Complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3 23

12. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Proceedings
of Symposium on Logic in Computer Science (LICS), pp. 305–314 (2012)

13. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230 3

14. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: FMCAD, pp. 131–140. IEEE (2012)

15. IEEE: 754–2008 - IEEE Standard for Floating-Point Arithmetic (2008)
16. Ishii, D., Yabu, T.: Computer-assisted verification of four interval arithmetic oper-

ators. J. Comput. Appl. Math. 377 (2020). https://doi.org/10.1016/j.cam.2020.
112893

17. Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real: effective
floating-point reasoning via exact arithmetic. In: DATE, pp. 7–10. EDAA (2014).
https://doi.org/10.7873/DATE2014.130

18. Marre, B., Bobot, F., Chihani, Z.: Real behavior of floating point numbers. In:
SMT Workshop, pp. 1–12 (2017)

19. Michel, C., Rueher, M., Lebbah, Y.: Solving constraints over floating-point num-
bers. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 524–538. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45578-7 36

20. Moore, R.E.: Interval Analysis. Prentice-Hall, Upper Saddle River (1966)
21. Muller, J.M., et al.: Handbook of Floating-Point Arithmetic, 2nd edn. Birkhäuser,

Basel (2018)
22. Older, W., Benhamou, F.: Programming in CLP (BNR). In: Position Papers for

the First Workshop on Principles and Practice of Constraint Programming, pp.
239–249 (1993)

23. Ramachandran, J., Wahl, T.: Integrating proxy theories and numeric model lifting
for floating-point arithmetic. In: FMCAD, pp. 153–160 (2016). https://doi.org/10.
1109/FMCAD.2016.7886674

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-63390-9_22
https://doi.org/10.1007/978-3-319-63390-9_22
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3
https://doi.org/10.1016/j.cam.2020.112893
https://doi.org/10.1016/j.cam.2020.112893
https://doi.org/10.7873/DATE2014.130
https://doi.org/10.1007/3-540-45578-7_36
https://doi.org/10.1109/FMCAD.2016.7886674
https://doi.org/10.1109/FMCAD.2016.7886674

Approximate Translation from Floating-Point to Real-Interval Arithmetic 751

24. Salvia, R., Titolo, L., Feliú, M.A., Moscato, M.M., Muñoz, C.A., Rakamarić, Z.:
A mixed real and floating-point solver. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2019. LNCS, vol. 11460, pp. 363–370. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20652-9 25

25. Scheibler, K., Neubauer, F., Mahdi, A., Franzle, M., Teige, T., Bienm, T.: Accurate
ICP-based floating-point reasoning. In: FMCAD, pp. 177–184 (2016). https://doi.
org/10.1109/FMCAD.2016.7886677

26. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
Taylor expansions. ACM Trans. Program. Lang. Syst. 41(1) (2018). https://doi.
org/10.1145/3230733

27. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: Dillig, I.,
Palsberg, J. (eds.) VMCAI 2018. LNCS, vol. 10747, pp. 516–537. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73721-8 24

28. Tucker, W.: Validated Numerics. Princeton University Press, Princeton (2011)
29. Tung, V.X., Van Khanh, T., Ogawa, M.: raSAT: an SMT solver for polynomial

constraints. Formal Methods Syst. Des. 51(3), 462–499 (2017). https://doi.org/
10.1007/s10703-017-0284-9

30. Zeljić, A., Backeman, P., Wintersteiger, C.M., Rümmer, P.: Exploring approxi-
mations for floating-point arithmetic using UppSAT. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 246–262. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 17

31. Zitoun, H., Michel, C., Michel, L., Rueher, M.: An efficient constraint based frame-
work for handling floating point SMT problems (2020). https://doi.org/10.48550/
arXiv.2002.12441

32. Zitoun, H., Michel, C., Rueher, M., Michel, L.: Search strategies for floating point
constraint systems. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 707–722.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 45

https://doi.org/10.1007/978-3-030-20652-9_25
https://doi.org/10.1007/978-3-030-20652-9_25
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1145/3230733
https://doi.org/10.1145/3230733
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/s10703-017-0284-9
https://doi.org/10.1007/s10703-017-0284-9
https://doi.org/10.1007/978-3-319-94205-6_17
https://doi.org/10.48550/arXiv.2002.12441
https://doi.org/10.48550/arXiv.2002.12441
https://doi.org/10.1007/978-3-319-66158-2_45

Synthesis of Optimal Defenses for System
Architecture Design Model in MaxSMT

Baoluo Meng(B) , Arjun Viswanathan, William Smith, Abha Moitra, Kit Siu,
and Michael Durling

GE Research, Niskayuna, NY 12309, USA
{baoluo.meng,arjun.viswanathan,william.d.smith,moitraa,siu,

durling}@ge.com

Abstract. Attack-Defense Trees (ADTrees) are widely used in the secu-
rity analysis of software systems. In this paper, we introduce a novel
approach to analyze system architecture models via ADTrees and to syn-
thesize an optimal cost defense solution using MaxSMT. We generate an
ADTree from the Architecture Analysis and Design Language (AADL)
model with its possible attacks, and implemented defenses. We analyze
these ADTrees to see if they satisfy their cyber-requirements. We then
translate the ADTree into a set of logical formulas, that encapsulate both
the logical structure of the tree, and the constraints on the cost of imple-
menting the corresponding defenses, such that a minimization query to
the MaxSMT solver returns a set of defenses that mitigate all possible
attacks with minimal cost. We provide an initial evaluation of our tool
on a delivery drone system model which shows promising results.

Keywords: AADL system architecture model · Attack-defense tree
analysis · Synthesis of optimal defenses · MaxSMT

1 Introduction

System security has attracted worldwide attention as society has grown increas-
ingly dependent on computer-based systems. To address the security concerns
of systems, many risk analysis techniques have been introduced over the years
in order to identify potential system failure and mitigate risks before the sys-
tem is fielded. Attack trees [15] are a prominent methodology to visually depict
the security vulnerabilities of a system. They have been used in the analysis of
threats against systems in the fields of defense and aerospace. Attack trees cap-
ture attacks in a tree structure, where the root node represents the attacker’s goal
and child nodes refine the goal with details involved in achieving the goal. Attack-
defense trees (ADTrees) [13] extend attack trees with the notion of defenses
against attacks, with the objective of reducing the consequences of attacks. In
an ADTree, defense and attack nodes are distinguished node types, and in addi-
tion to refinements of nodes via children of the same type of node, child nodes
can be counter-measures of the opposite kind of parent node. Such trees are
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 752–770, 2022.
https://doi.org/10.1007/978-3-031-06773-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_40&domain=pdf
http://orcid.org/0000-0002-3284-1969
https://doi.org/10.1007/978-3-031-06773-0_40

Synthesis of Optimal Defenses in MaxSMT 753

able to capture both the attacks and the defenses of a system in an adversarial
model, and as such, can be used to analyze the sufficiency of attack mitigation
techniques of the system.

Implementing defenses requires various amount of effort, time, and money. A
challenging problem is to select a set of defenses that is able to mitigate all threats
while incurring minimal cost of implementation. In this work, we use MaxSMT
solvers to synthesize a set of optimal-cost defenses that mitigate all possible
attacks on a system. A prototype was implemented in a tool called VERDICT—
in conjunction with the model-based architectural analysis (MBAA) component,
model-based architectural synthesis (MBAS) calculates a set of defenses for all
known attacks at minimal cost. We make the following contributions in this
paper.

– We describe an approach that converts an AADL system architecture model
to an attack-defense tree and an evaluation of these ADTrees in terms of a
set of cyber-requirements.

– We encode the ADTree along with the costs of implementing defenses as a
MaxSMT problem so that the solver can find a least-cost defense solution
that satisfies all requirements.

– We present the analysis and synthesis features in the VERDICT toolchain
which provides an implementation of the above functionalities.

– We show an evaluation of the synthesis capability on a high-fidelity AADL
model of a delivery drone system.

Section 2 presents our specifications of attacks, defenses, and attack-defense
trees. Section 3 presents a translation of AADL models to ADTrees and our
method of analyzing whether an ADTree satisfies its requirements. Section 4
describes the interaction with the SMT solver in determining a minimum-cost set
of defenses for the system. Section 5 is an evaluation of the VERDICT toolchain
on an AADL model of a delivery drone system. Section 6 discusses some related
work and Sect. 7 discusses directions our work can move in the future, along with
a summary.

2 Preliminaries

In this section, we formalize our problem and solution space. We consider
attacks from the MITRE Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) library [1] that targets embedded systems and defenses (controls)
from the National Institute of Standards and Technology’s (NIST’s) 800-53 secu-
rity standard [2]. A toy drone example is used through the paper to illustrate
various features.

2.1 Attack and Defense Specification

This work is based on two standards drafted by the Radio Technical Commission
for Aeronautics (RTCA)—DO-326, the Airworthiness Security Process Specifica-
tion [3] and DO-356, the Airworthiness Security Methods and Considerations [4]

754 B. Meng et al.

– both providing guidance against threats to aircraft systems. The standards
specify the acceptable level of risk corresponding to the level of severity of suc-
cessful attacks. The severity of successful attacks is categorized into 5 levels
based on their effects on the aircraft, crew, and passengers: Catastrophic, Haz-
ardous, Major, Minor, and No Effect. These levels, along with the corresponding
levels of risk acceptable in the system, are presented in the first two columns of
Table 1.

Table 1. Mapping between the severity of consequence, acceptable level of risk, design
assurance level (DAL), DAL score (Score) and development objectives (with indepen-
dence).

Severity level Acceptable level of risk DAL Score Objective (W/Independence)

Catastrophic 1 × 10−9 A 9 66 (25)

Hazardous 1 × 10−7 B 7 65 (14)

Major 1 × 10−5 C 5 57 (2)

Minor 1 × 10−3 D 3 28 (2)

No effect 1 E 0 0 (0)

We represent by L the set of severity levels, and by ρ the set of acceptable risk
levels. The top-level event of an ADTree represents the attacker’s goal, which
is measured in terms of confidentiality (C), integrity (I) and availability (A)
of the outports of the system. The attacker’s goal is to sabotage the system by
compromising its components. Attacks on components are ultimately propagated
to the outports of the system through internal connections. The system fails if the
CIAs of its outports are compromised. To mitigate attacks, the system designer
has to implement defenses in components with various degrees of rigor, which
can prevent failure of the system. The previously mentioned standards map the
rigor of defense implementation, called Design Assurance Levels (DALs), to a
security consideration score or DAL score—columns 3 and 4 of Table 1. DAL
A is the highest rigor defense and E is the lowest. DALs originated in DO-178
and were reused in DO-254. These standards were developed to ensure that
software and complex hardware were developed with enough rigor and could
be proved to be absent of bugs with potentially severe consequences. To bring
the system within an acceptable risk level of attacks, and to prevent the system
from failing with the associated severity level, its developers need to implement
the component to the respective DAL score and meet appropriate development
objectives from the fifth column. For example, if the failure of software can
have a Catastrophic consequence, one must show compliance to 66 objectives as
part of the software development process, 25 of which need to be performed by
independent developers. The implementation of defenses incurs efforts and cost,
which increase with the DAL score, and the goal of this work is to synthesize a
set of defenses that mitigate all attacks at an optimal (minimal) cost.

Synthesis of Optimal Defenses in MaxSMT 755

Fig. 1. The AADL structure diagram for the toy drone model

We will use CIA to denote the set consisting of the properties confidentiality
(C), integrity (I) and availability (A) (CIA = {C, I, A}), and DAL, the set of
possible DAL scores (DAL = {0, 3, 5, 7, 9}). We also consider the sets: A of
possible attacks, D of possible defenses, and S of components of a system.

2.2 Attack-Defense Trees

ADTrees are rooted, labeled, finite trees that represent scenarios of security
attacks against a system, and the countermeasures taken against these attacks.
The nodes of an ADTree are either attack nodes—represented as red circles—or
defense nodes—represented as green rectangles, and the nodes are labeled either
with attack or defense goals, or with logical gates that connect these goals. A
node’s children represent either refinements (represented by straight line edges)
of the same node type or countermeasures (dotted line edges) of the opposite
node type. Refinements can either be conjunctive, (denoted in diagrams with
an arc below the parent node) in which case, all the refinements’ goals must
be achieved for the parent’s goal to be achieved; or disjunctive, where at least
one of the refined goals must be achieved for the parent’s goal to be achieved.
Non-refined nodes (leaves) are called basic actions. The root of an ADTree rep-
resents the attacker’s goal, which can be refined down to a logical formula over
the basic actions (leaves) by expanding on the refinements performed by nodes
(conjunctions and disjunctions).

Example 1. Consider the following model that abstracts a simple drone. The
model is represented using an architecture diagram in Fig. 1. A remote con-
trol allows the user to direct the drone. The drone consists of a controller that
implements its logic, and a propeller that helps the drone move. As a security
measure, the drone consists of a backup controller which implements a much
simpler logic than the main controller. The user of the remote may invoke the
single functionality of the backup which brings the drone back to its base.

A wireless connection connects the remote to the controller and to the
backup, both of which have a wired connection to the propeller. Figure 2a shows
the ADTree that models the attacks and defenses of the drone system, supposing
that we care about the integrity of the drone’s propeller, that is, we want the
propeller to move as instructed by the remote, and return back safely to the
owner if that isn’t feasible. Consider the following attacks:

756 B. Meng et al.

Fig. 2. Example toy drone system

1. Physical Theft Attack (CAPEC–507) on the remote.
2. A combination of a Software Integrity Attack (CAPEC–184) on the controller,

and an Identity Spoofing Attack (CAPEC–151) on the backup controller.

Either Physical Access Control or System Access Control of the remote can
defend against Physical Theft, but CAPEC–390 (Bypassing Physical Security)
is a dependent attack that becomes applicable once Physical Access Control is
implemented, and can only be defended against by implementing System Access
Control. Three defenses—Remote Attestation, Memory Protection, and Secure
Boot—are necessary for the controller to mitigate CAPEC-184 and Heterogene-
ity alone implemented on the backup controller can protect it against the identity
spoofing attack. In Fig. 2b, we label the nodes, attacks, and defenses, and also
use the notation from our ADTree definition (Definition 1). We also give label R
for the remote sub-system, C for the controller, and B for the backup controller.
All defenses are implemented to DAL-score 5.

Definition 1. An ADTree T is generated by the following grammar.

T → T A | T D

T A → bA(s, a) | ORA(T A, . . . T A) | ANDA(T A, . . . T A)| CA(T A, T D)

T D → bD(s, d, δ) | ORD(T D, . . . T D) | ANDD(T D, . . . T D)| CD(T D, T A)

Superscripts A and D represent attack and defense entities, respectively. T rep-
resents terms or trees, OR encapsulates disjunctive refinements of a node, AND

Synthesis of Optimal Defenses in MaxSMT 757

represents conjunctive refinements of a node, and C encapsulates the action of a
node and its countermeasure. b represents basic actions—for attack nodes, they
are parameterized by a component and an attack, and for defense nodes, they
are parameterized by a component, a defense, and implemented DAL-score. An
attack tree, denoted T A, is an ADTree with root of type A and a defense tree,
denoted T D, is a tree with root of type D. We define a function root that returns
the root node of an ADTree.

We use an inductive definition of ADTree in Definition 1 from Kordy et
al. [14]. Defenses are implemented to a particular DAL-score, and the defense
nodes (that are basic actions) are parameterized by this DAL-score, along with
the component that they defend and the defense itself. DAL-scores can only take
values from column 4 of Table 1. Although our definition allows for any kind of
ADTree, in practice, we only consider ADTrees with attack root nodes. This
suits our goal of using ADTrees to analyze the attacker’s actions. An interesting
feature of our ADTrees is that we allow repetition of defense and attack nodes.
That is, multiple bA and bD nodes in our trees can have the same label ((s, a) or
(s, d, δ)). The only restriction we place is that when two bA or bD nodes have the
same label, their child-node structure must be identical.

3 ADTree Analysis

In this section, we describe how our tool uses ADTrees to analyze a system archi-
tecture modeled using AADL (Architecture Analysis and Design Language) [10],
which provides a framework and language for early analyses of a system’s
architecture with respect to performance-critical properties. Our tool builds
an ADTree from an AADL model, a specification of possible attacks, possi-
ble defenses, implemented defenses, and cyber-requirements to satisfy. This tree
is evaluated in terms of the likelihood of success of an arbitrary attacker, given
a set of defenses.

3.1 Defense Models

Within VERDICT, the analysis of the AADL model receives information primar-
ily from the Security Threat Evaluation and Mitigation (STEM) component [17].
STEM identifies possible CAPEC attacks, possible NIST-800-53 defenses and
defenses implemented in the components of the system. STEM provides this
data in the form of a defense model M with two types of relations: an imple-
mented defense model MI and an applicable defense model MA.

A defense model M is a relation containing tuples that relate components of
a system to defense–DAL-score pairs, and attack–CIA pairs. Each tuple signifies
the applicability of an attack (if any) to a component, and either the applicability
or implementation of a set of defenses to the same component to respective
DAL-scores. We distinguish 3 types of defense models, and define two of them
as follows. The third, the synthesized defense model, is defined later.

758 B. Meng et al.

1. An implemented defense model MI represents defenses currently implemented
in the system. We say (s, a, γ,Δ) ∈ MI iff in component s, γ attack a is
applicable, and for each (d, δ) ∈ Δ, defense d is implemented to DAL-score δ,
where s ∈ S, a ∈ A, γ ∈ CIA, d ∈ D, δ ∈ DAL.

2. An applicable defense model MA represents defenses applicable in the system.
We say (s, a, γ,Δ) ∈ MA iff in component s, γ attack a is applicable, and for
each (d, δ) ∈ Δ, defense d is applicable to DAL-score δ.

In the defense models that it provides, STEM guarantees that basic action nodes
with the same labels have the same sub-trees, as required by our mechanism in
Sect. 2.2.

Example 2. Consider the ADTree from Example 1 in terms of the following cyber
requirement: q : (dout : I) with Major (1×10−5) severity level. In other words, q
requires the integrity of outport dout to be resilient to attacks of Major severity
level. While the tree from Fig. 2 models the applicable defense model, we show
two different implementations of defenses. The applicable defense model MA

(Fig. 2) consists of the following set of tuples:
{(R,CAPEC–507, I, {(d1, 5)}), (R,CAPEC–507, I, {(d2, 5)}),
(B,CAPEC–151, I, {(d3, 5)}), (C,CAPEC–184, I, {(d4, 5), (d5, 5), (d6, 5)}}.
The implemented defense model MI consists of the following set of tuples.
{(R,CAPEC–507, I, {(d2, 7)}), (C, CAPEC–184, I, {(d4, 9), (d5, 7), (d6, 5)})}
A second implementation is specified using M

′
I
as follows.

{(R,CAPEC–507, I, {(d1, 5)}), {(C,CAPEC–184, I, {(d4, 3)}),

3.2 ADTree Construction

In this subsection, we briefly explain the ADTree construction algorithm ADTree,
without fully specifying it (doing this in an extended version of the paper1).
ADTree operates on the following parameters:

1. mod, the AADL model of a system, that specifies ports P , connections C,
components S, and cyber-relations R between ports of the system, where
cyber relations are internal to a component, and specify how the conjunc-
tions or disjunctions CIA vulnerabilities of inports propagate to the CIA
vulnerabilities of outports. An example cyber relation is in1:I or in2:I =>
out1:I, which states that compromise of the integrity of in1 or in2 would
lead to the compromise of the integrity of out1.

2. Q, the set of cyber requirements, where each cyber-requirement q is a logical
formula over (p, γ) atoms, p ∈ P, γ ∈ CIA, with a corresponding level of
severity l ∈ L.

3. M, a defense model.

1 Extended version of the paper: https://github.com/baoluomeng/2022 NFM/tree/
main/synthesis extended.pdf.

https://github.com/baoluomeng/2022_NFM/tree/main/synthesis_extended.pdf
https://github.com/baoluomeng/2022_NFM/tree/main/synthesis_extended.pdf

Synthesis of Optimal Defenses in MaxSMT 759

and returns an ADTree T corresponding to the requirements in Q on the AADL
model mod considering attacks and defenses in M. The details about the lan-
guage (VERDICT annex) specifying cyber relations and cyber requirements can
be found in Meng et al. [16].

The algorithm constructs an ADTree for each requirement, and combines
them using an ORA node. The tree for each requirement is constructed by back-
tracing through the connections in the model, starting at the relevant outport,
and checking for the CIA property specified by the requirement. During back-
tracing the logical structure of the requirements and cyber-relations are reflected
in the logical structures of the corresponding ADTrees. Finally, the algorithm
also runs through the constructed tree to remove any redundant nodes.

Example 3. Using the cyber requirements Q consisting of the single requirement
q: (dout : I) with Major severity level and the applicable defense model from
Example 1, ADTree can construct the ADTree in Fig. 2b.

3.3 ADTree Evaluation

An ADTree represents the goal of the attacker, and an evaluation of the tree
specifies the likelihood of success of the attacker in achieving this goal. The
evaluation of the ADTree was introduced by Siu et al. [18]. We formalize it as a
recursive function M as follows, and call it measure.

M(T) := match T with

| bA(s, a) → 1

| bD(s, d, δ) → 1e−δ

| ORA(T1, . . . , Tn) → max(M(T1), . . . , M(Tn))

| ORD(T1, . . . , Tn) → min(M(T1), . . . , M(Tn))

| ANDA(T1, . . . , Tn) → min(M(T1), . . . , M(Tn))

| ANDD(T1, . . . , Tn) → max(M(T1), . . . , M(Tn))

| CA(bA(s, a), T D) → min(M(bA(s, a)),M(T D))

| CD(bD(s, d, δ), T A) → max(M(bD(s, d, δ)),M(T A))

Basic attack nodes are always assigned a value of 1 for likelihood of a successful
attack. Assigning a number to the level of attack is quite difficult and would
hold true for only a short period of time, and not for the lifetime of a system.
According to Javaid et al. [12], the issue with deciding the likelihood of various
attacks is that “the risk values may be different for different researchers according
to the information available and level of analysis. Hence, more emphasis should
be put on countermeasures for threats which receive high priority.” Thus, we
chose to assume a worst-case likelihood for attacks (from the point of view of
defending the system) and give more fine-grained scores for defenses.

760 B. Meng et al.

Satisfaction. A cyber-requirement q specifies the severity level l of a CIA of
an outport of the system. A defense model M corresponding to AADL model
mod satisfies q, M � q, if M(Tq) ≤ ρ where Tq = ADTree(mod, q,M) and ρ
is the acceptable level of risk corresponding to l from Table 1. In this case, we
also say that Tq satisfies q, or Tq � q. Intuitively, implementing the defenses
from M in mod results in an ADTree whose attacks are mitigated. Satisfaction
of a requirement by a model (resp. ADTree) is naturally extended to a set of
requirements.

M � Q if ∀q ∈ Q, M � q

A tree constructed from MA satisfies its requirements, by definition, while one
constructed from MI may or may not.

Example 4. The following are the evaluations of the ADTrees from our appli-
cable and implemented defense models. M(ADTree(mod, q,MA)) = 1 × 10−5;
M(ADTree(mod, q,MI)) = 1 × 10−7; M(ADTree(mod, q,M′

I
)) = 1.

Thus, MA and MI satisfy q while M
′
I

does not. An evaluation using the
applicable defense model is always within the level of severity corresponding to
the requirement. The evaluation of M′

I
shows that the implementation does not

succeed in stopping the attacker because the bypassing physical security attack
is not defended at all, and neither of CAPEC–184 and CAPEC–151 are defended
sufficiently. MI, on the other hand, is able to satisfy the requirement.

4 ADTree Synthesis

While the goal of analysis is to construct an ADTree from an AADL model and
determine whether the cyber-requirements are satisfied (alternatively, whether
the attacks corresponding to the ADTree are mitigated), synthesis constructs an
optimal set of defenses based on a cost model for these defenses and (possibly)
on the currently implemented defenses.

We define the concepts of synthesized defense models, and cost models.

Definition 2. Synthesized Defense Model. A synthesized defense model MS

is the set of optimal defenses to implement, output by synthesis. If (s, a, γ,Δ) ∈
MS, then for each (d, δ) ∈ Δ, the implementation of defense d to DAL-score δ
in s is part of the optimal solution to mitigate γ attack a.

Definition 3. Cost Model. The cost model C associates a cost with each
component–defense–DAL-score triple from the tuples in a defense model. Given
defense d, sub-component s, and DAL-score δ, the cost of implementing d in s
to δ is the non-negative real number represented by C(s, d, δ).

C : S × D × DAL → R≥0

We define the cost model of a defense model M as follows.

C(M) = ∀(s, a, γ,Δ) ∈ M,
∑

(d,δ)∈Δ

C(s, d, δ)

Synthesis of Optimal Defenses in MaxSMT 761

The only restriction we place on cost models is that costs must be monotonically
increasing with respect to the DAL-scores, that is, δi > δj → C(s, d, δi) ≥
C(s, d, δj), for any s ∈ S, d ∈ D, and δi, δj ∈ DAL. This reflects the expectation
that higher DALs are more expensive to implement (or at least, not cheaper).
The synthesis problem seeks an optimal solution with respect to C. The cost
may represent financial cost, time required for implementation, or perhaps some
compound or abstract definition of cost. For simplicity, one might consider a cost
model that assigns the DAL-score as the cost of a component–defense–DAL-score
triple, C(s, d, δ) = δ (for arbitrary s, d, and δ).

Example 5. Recollect the requirement q for our example drone system:

q : (dout : I) with Major (1 × 10−5) severity level

As we informally stated in Example 4, one implementation of the defenses doesn’t
satisfy q, another does, and the applicable defenses also satisfy q, by definition.

MA � q

MI � q

M
′
I
�� q

Now, we define a cost model C for the drone system.

C(s, d, δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δ, for (Remote, d1, δ)
2δ, for (Remote, d2, δ)
4δ, for (Backup, d3, δ)
2δ, for (Controller, d4, δ)
2δ, for (Controller, d5, δ)
3δ, for (Controller, d6, δ)
δ, otherwise

�

4.1 Synthesis Problem Statement

The goal of synthesis is to construct a set of defenses to mitigate all attacks with
the least cost. We distinguish 3 cases to synthesize solutions for.

1. Ignore implemented defenses. In this case, the job of synthesis is to synthesize
a defense model MS from scratch such that MS � Q and C(MS) is minimal.
This case finds a globally minimal solution, in the sense that every other
solution which mitigates the attack-defense tree must have a cost greater
than or equal to the cost of C(MS). It resembles the early design phase of a
system, when defenses have not yet been implemented.

2. Use implemented defenses. There are two possible cases to consider here.

762 B. Meng et al.

(a) MI � Q. In other words, all possible attacks are mitigated and the require-
ments in Q are satisfied by the implemented defenses in MI. In this case,
synthesis tries to optimize the implemented defenses. MS is an optimiza-
tion of MI using any combination of:
i. eliminating unnecessary defenses—removing tuples from MI

ii. downgrading current defenses—replacing (s, a, γ, {(d, δi),ΔR}) in MI

with (s, a, γ, {(d, δj),ΔR}) such that δj < δi

This case resembles a situation where successful defenses have already
been implemented, but can be downgraded or removed to save costs.
Here, we restrict addition of new defenses to save costs.

(b) MI �� Q. In other words, the requirements in Q are not satisfied by the
implemented defenses in MI. In this case, synthesis corrects the imple-
mented defenses with the least amount of change possible. MS is a mod-
ification of MI using some combination of:
i. implementing new defenses—adding triples to MI

ii. upgrading current defenses—replacing (s, a, γ, {(d, δi),ΔR}) in MI

with (s, a, γ, {(d, δj),ΔR}) such that δj > δi

A real-life application of this situation is one where defenses have been
implemented, unsuccessfully, and need to be improved to mitigate attacks,
at minimal additional cost. The already implemented defenses are con-
sidered sunk costs that cannot be recovered and thus are not downgraded
or removed.

4.2 MaxSMT Encoding for Synthesis

The problem of optimizing the defense costs is stated as a MaxSMT problem
and sent to Z3’s MaxSMT solver [8]. The input to the MaxSMT solver is an
SMT-LIB [6] script (with some extensions for the optimization commands) that
includes (i) declarations of variables, (ii) assertions of formulas, and, (iii) an
expression over the variables to optimize, given the constraints asserted. Our
MaxSMT encoding depends on the case we are encoding from Subsect. 4.1.

In all 3 cases, we do the following. For each component–defense pair (s, d)
((s, , , {(d,), }) ∈ MA), we declare a variable vs,d which stands for the real
number representing the synthesized cost of implementing defense d in compo-
nent s to a particular DAL δ (for each (s, , , {(d, δ), }) that we care about, we
add a constraint on vs,d, as we will show). Since we allow repeated labels, notice
that during the creation of these vs,d variables, multiple nodes in the tree might
necessitate the creation of the same variable. Some mechanism, such as a hash
table, would have to check that variable declarations aren’t repeated in the SMT
script. Constraints, however, can be repeated.

For each variable vs,d, we assert that the cost is non-negative. Then, we
encode the ADTree(mod,Q,MA) as an assertion, where mod is the AADL model
of the system, Q is the set of requirements, and MA is the applicable defense
model. Since MA satisfies Q, this assertion sets a baseline on the synthesized

Synthesis of Optimal Defenses in MaxSMT 763

model. The following function F converts an ADTree to a quantifier-free first-
order formula, which is asserted.

F (T) := match T with

| ORA(T1, . . . , Tn) → F (T1) ∧ . . . ∧ F (Tn)

| ORD(T1, . . . , Tn) → F (T1) ∨ . . . ∨ F (Tn)

| ANDA(T1, . . . , Tn) → F (T1) ∨ . . . ∨ F (Tn)

| ANDD(T1, . . . , Tn) → F (T1) ∧ . . . ∧ F (Tn)

| CA(bA(s, a), T D) → F (bA(s, a)) ∨ F (T D)

| CD(bD(s, d, δ), T A) → F (bD(s, d, δ)) ∧ F (T A)

| bA(s, a) → ⊥
| bD(s, d, δ) → vs,d ≥ C(s, d, δ)

ORA nodes are translated to conjunctions and ANDA nodes to disjunctions because
the ADTree is concerned with the success of the attacker while the MaxSMT
encoding is concerned with the success of defending any possible attack. If an
attacker needs a conjunction (ANDA) of attacks to succeed, it suffices from the
defender’s point of view to stop at least one of the attacks successfully, and hence
the disjunction in the MaxSMT encoding. The reasoning for using conjunctions
for ORA nodes is similar. Finally, we need to minimize the cost, which is done
by using the minimize command in the SMT-LIB script over the sum of all
variables representing the costs of defenses.

The variables declarations, assertions and the optimization command are
common in all cases. Additions to the assertions are unique to each case of the
problem statement and we consider each of the 3 cases (all assertions must be
added before the optimization command in the script).

Case 1. Since we ignore implemented defenses, the constraint from MA –
(F (ADTree(mod,Q,A,MA))) suffices to restrict the synthesized solution to one
that mitigates all attacks. Additionally, the optimization command assures a
global optimum.
Case 2(a). Since the implemented defenses satisfy the requirements, we assert
constraints from MI—for each (s, , , {(d, δ), }) ∈ MI, assert vs,d ≤ C(s, d, δ).
We also restrict implementation of new defenses—for each (s, a, γ{(d, δ),ΔR})
∈ MA such that there exists no (s, , , {(d,), }) ∈ MI, assert vs,d = 0. Given
the lower bounds from MA, and the upper bounds from MI, the MaxSMT solver
finds the minimal cost solution, without adding any new defenses.
Case 2(b). Since the implemented defenses do not satisfy the requirements
and the cost of implementing them is considered sunk, we assert them as lower
bounds—for each (s, , , {(d, δ), }) ∈ MI, assert vs,d ≥ C(s, d, δ). For defenses
that don’t work, the constraints from MA supersede the lower bound specified
by the constraints from MI.

764 B. Meng et al.

The MaxSMT encoding for each case is summarized as follows.
Case 1:

For each s ∈ S, d ∈ D, declare-var vs,d

For each vs,d, assert vs,d ≥ 0
assert F (ADTree(mod,Q,A,MA))

minimize

s∈S,d∈D∑
vs,d

Case 2(a):

For each s ∈ S, d ∈ D, declare-var vs,d

For each vs,d, assert vs,d ≥ 0
assert F (ADTree(mod,Q,A,MA))
For each (s, d, δ) ∈ MI, assert vs,d ≤ C(s, d, δ)
For each (s, d, δ) �∈ MI, assert vs,d = 0

minimize

s∈S,d∈D∑
vs,d

Case 2(b):

For each s ∈ S, d ∈ D, declare-var vs,d

For each vs,d, assert vs,d ≥ 0
assert F (ADTree(mod,Q,A,MA))
For each (s, d, δ) ∈ MI, assert vs,d ≥ C(s, d, δ)

minimize

s∈S,d∈D∑
vs,d

4.3 SMT Model Evaluation

All our calls to the MaxSMT solver are expected to be satisfiable. A solution
where all possible defenses are implemented to the highest possible DAL would
trivially satisfy the problem (while likely being unnecessarily expensive):

∀(s, a, γ, d, δ) ∈ MA, (s, a, γ, d, 9) ∈ MS

The response from the solver varies in its optimization of defense cost. The
variables vs,d in our SMT encoding model the cost of implementing defense d
in component s to some DAL-score. Thus, when the SMT solver returns an
optimal solution as a model, it returns an optimal cost for each component-
defense pair. We need to build MS from this for which we need the DAL-score for
each component-defense pair. We define the inverse cost function C

−1 that given
a component-defense-cost triple, returns the DAL-score to implement the defense
to in the component. Since a component–defense pair could have the same cost

Synthesis of Optimal Defenses in MaxSMT 765

for multiple DAL-scores (the monotonicity requirement does not prevent this),
the inverse isn’t over an injective function. We break ties by preferring higher
DAL-scores, given equal costs.

C
−1(c, s, d) = max{δi | C(s, d, δi) = c}

Thus, as a minimal cost solution, for each component s and defense d, the SMT
solver returns a cost as the real value of vs,d. MS is then constructed as follows.

∀vs,d,∀a ∈ A, such that (s, a, γ, {(d, δ),ΔR}) ∈ MA,

(s, a, γ, {(d,C−1(vs,d, s, d))}) ∈ MS

This is the minimal cost defense model synthesized by the MaxSMT solver.

Example 6. We construct synthesized defense models from the satisfiable solu-
tion returned by the SMT solver for the toy drone system using the cost model
in Example 5 as follows.

– Case 1. Without any additional restrictions, the SMT solver returns values
0, 10, 20, 0, 0 and 0 respectively, for rd1, rd2, bd3, cd4, cd5 and cd6, which are
its recommended costs for the defenses. Applying the cost inverse function, we
have the following DALs to implement the components to. C−1(0, R, d1) = 0;
C

−1(10, R, d2) = 5; C−1(20, B, d3) = 5; C−1(0, C, d4) = 0; C−1(0, C, d5) =
0; C

−1(0, C, d6) = 0. This is an optimal cost solution unrestricted by any
implementation constraints. The total cost is 30.

– Case 2(a). The SMT solver returns cost 0 for rd1 and bd3, cost 10 for rd2,
cd4, and cd5, and 15 for cd6. Applying the cost inverse function, we have that
d1 and d2 are to be implemented to DAL 0 and 5 in the remote, d3 to DAL
0 in the backup controller, and d4, d5, and d6 all to DAL 5 in the main con-
troller. Here, since the implemented defenses already satisfy the requirement,
new ones aren’t added, and instead, synthesis suggests reductions. The global
optimal solution would choose d3 over d4, d5 and d6, but since the latter are
already implemented, synthesis only suggests DAL reductions where applica-
ble (to d4 and d5). The total cost of the synthesized solution is 45, which is
cheaper than the implementation which costs 61.

– Case 2(b). The SMT solver returns costs 10, 10, 20, 6, 0 and 0 for rd1, rd2,
bd3, cd4, cd5, and cd6 which translate to DALs 5, 5, 5, 3, 0 and 0, respectively.
Since the unsatisfactory defenses have already been implemented, their cost
is considered a sunk cost (16 here). The SMT solver specifies what defenses
need to be added to satisfy the requirements—d2 and d3 in this case. The
total cost of the synthesized solution is 46.

Notice that the same defense can be applicable to a component to defend 2 differ-
ent attacks. For example, system access control defends against both CAPEC–
507 and CAPEC–390. Because our encoding doesn’t take into account attacks
(and it doesn’t need to), once synthesis suggests to implement such a defense, we
add all possible occurrences of it to MS. While this redundance is necessary for

766 B. Meng et al.

soundness of the formalism, it can be ignored during implementation. In fact, it
isn’t necessary to map synthesized defenses to attacks they mitigate at all, we
do it in the formalism just to be able to make synthesized solutions comparable
with applicable and implemented solutions. �

5 Evaluation

A prototype of ADTree-based security analysis and synthesis was implemented
in the VERDICT toolchain [16,19], which is a plugin for the OSATE tool [5].

Fig. 3. The architecture of synthesis module in VERDICT.

The architecture of synthesis module in VERDICT is shown in Fig. 3. The
input to synthesis is a system architecture model in AADL annotated with cyber-
relations and cyber requirements in VERDICT annex. The model will be trans-
lated into an intermediate representation in XML that will be further consumed
by several modules in VERDICT. For synthesis, it will first be converted to the
input to STEM tool, which will identify applicable attacks and also applicable or
implemented defenses depending on the running mode of synthesis. The output
from STEM and the XML model will then be leveraged by the synthesis module
for attack-defense tree analysis and synthesis as described in Sects. 3 and 4.

We perform an evaluation on a high-fidelity architecture model of a delivery
drone to demonstrate the capabilities of the tool. In addition, the tool was lever-
aged by Raytheon Technologies to evaluate on DoD applications development
showing promising results [7]. The VERDICT tool is publicly available2.

A notional architecture for the delivery drone is shown in Fig. 4. The AADL
model3 consists of 12 inter-connected components and is annotated with meta-
level properties, defense properties, cyber relations and cyber requirements.
2 VERDICT Tool GitHub: https://github.com/ge-high-assurance/VERDICT.
3 The Delivery Drone AADL Model: https://github.com/baoluomeng/2022 NFM/

tree/main/DeliveryDrone.

https://github.com/ge-high-assurance/VERDICT
https://github.com/baoluomeng/2022_NFM/tree/main/DeliveryDrone
https://github.com/baoluomeng/2022_NFM/tree/main/DeliveryDrone

Synthesis of Optimal Defenses in MaxSMT 767

Fig. 4. A notional architecture diagram for the delivery drone model.

Meta-level properties such as component type and pedigree, come built-in with
the AADL model. Given this system, the STEM component of the VERDICT
toolchain identifies possible CAPEC attacks and NIST 800-53 defenses. These
attacks and defenses are fed to the synthesis tool for further processing. The
defense property is a numerical DAL-score from δ, and represents the rigor of
implemented defense in each component of the system, and is used to construct
MI. Cyber relations and requirements are declared in an annex language to
AADL – VERDICT. For example, one cyber requirement defines a successful
mission of delivering a package to its destination, while requiring the drone to
be resilient to malicious commands that attempt to obtain an improper delivery
of a package. The requirement depends on the integrity of the output deliv-
ery status, which is used as a starting point from which the system architecture
is traced, to build the ADTree for analysis. Furthermore, the consequence of suc-
cessful attack is Hazardous, requiring corresponding defenses to be implemented
to at least DAL-score 7.

To demonstrate its optimizing capabilities, we invoke the Synthesis tool on
the model for 3 cases (corresponding to the ones specified in Sect. 4.1) using the
default cost model - one where the cost for each defense-DAL pair is the DAL
score itself.

– Case 1. The implemented defenses are ignored, and a global optimal solution
is returned. Synthesis suggest a list of defenses with minimal costs to be
implemented to DAL 7 so that all cyber requirements can be satisfied. The
total cost for the implementation is 273.

– Case 2. Implemented defenses are taken into consideration by Synthesis, and
these don’t satisfy the requirements. Synthesis suggests implementing two
defenses for the deliveryItemMechanism component: Supply Chain Security
and Tamper Protection, both to DAL 7, which would allow for the require-
ments to be satisfied. These would mitigate CAPEC-439 (Manipulation Dur-
ing Distribution) with an additional cost 14.

– Case 3. Once the suggested defenses in case 2 are implemented in the model,
they would be considered by Synthesis sufficient to satisfy all cyber require-

768 B. Meng et al.

ments. In this case, Synthesis does “merit assignment” which is to suggest
downgrades/removals of defenses (Case 2(a) from our problem statement) to
save costs. For the delivery drone model, Synthesis suggest to remove Physical
Access Control from the GPS component to save 7 units of cost.

6 Related Work

In our ADTrees, we use nodes with repeated labels—that is, there can exist
multiple nodes in our tree that have the same label. Bossuat et al. [9] extend
ADTrees to AD-DAGs to deal with repeated labels. In our work, by guaranteeing
that these nodes will have the same child-structure, we are able to maintain the
ADTree formalism, and also maintain soundness by handling repetitions during
our SMT-encoding.

Fila et al. [11] and Kordy et al. [14] find an optimized set of defenses to
mitigate an ADTree using integer linear programming. We use an SMT-based
optimization approach, and also build our trees from AADL models of the sys-
tem. Additionally, we are able to incorporate implementations of defenses that
may or may not satisfy the requirements specified by the ADTree and suggest
solutions based on these variations (cases 2(a) and 2(b) from Sect. 4.1). We use
the formalism of attack-defense trees introduced by Kordy et al. [13] to specify
our ADTrees.

7 Conclusion and Future Work

We propose a security analysis technique for system architecture designs via
attack-defense trees, and a novel technique to synthesize optimal cost defenses
for the components of a model. We translate the AADL model of a system
into an ADTree, and encode this ADTree along with the cost of implementing
its defenses into a MaxSMT query, such that a satisfying model of the SMT
query is a minimum-cost defense for the system, that mitigates all applicable
attacks. We utilize advancements in the ADTree literature and SMT technology,
in building our formalism of the process of converting an AADL model to an
ADTree and then to an optimization query to a MaxSMT solver. We provide an
implementation of our technique as the Synthesis functionality in the VERDICT
tool chain. One potential extension to our formalism and our tool is to allow a
single defense to defend attacks over multiple components and connections –
extensibility of defenses.

Acknowledgement & Disclaimer. Distribution Statement “A” (Approved for
Public Release, Distribution Unlimited). This research was developed with funding
from the Defense Advanced Research Projects Agency (DARPA). The views, opinions
and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S.
Government.

Synthesis of Optimal Defenses in MaxSMT 769

References

1. MITRE Common Attack Pattern Enumeration and Classification (CAPEC).
https://capec.mitre.org/. Accessed 21 Mar 2022

2. National Institute of Standards and Technology 800-53. https://csrc.nist.gov/
publications/detail/sp/800-53/rev-5/final. Accessed 21 Mar 2022

3. Radio Technical Commission for Aeronautics(RTCA) DO326 - Airworthiness Secu-
rity Process Specification. https://www.rtca.org/. Accessed 21 Mar 2022

4. Radio Technical Commission for Aeronautics(RTCA) DO356 - Airworthiness Secu-
rity Methods and Considerations. https://www.rtca.org/. Accessed 21 Mar 2022

5. The OSATE Tool (2021). https://osate.org/about-osate.html
6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB) (2016). www.SMT-LIB.org
7. Barzeele, J., et al.: Experience in designing for cyber resiliency in embedded DOD

systems. In: INCOSE International Symposium, vol. 31, pp. 80–94. Wiley Online
Library (2021)

8. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νz- an optimizing SMT solver. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 14

9. Bossuat, A., Kordy, B.: Evil Twins: Handling Repetitions in Attack–Defense Trees.
In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 17–37.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3 2

10. Feiler, P.H., Lewis, B., Vestal, S., Colbert, E.: An overview of the SAE architecture
analysis & design language (AADL) standard: a basis for model-based architecture-
driven embedded systems engineering. In: Dissaux, P., Filali-Amine, M., Michel,
P., Vernadat, F. (eds.) Architecture Description Languages, pp. 3–15. Springer,
US, Boston, MA (2005)

11. Fila, B., Wide�l, W.: Exploiting attack-defense trees to find an optimal set of
countermeasures. In: 2020 IEEE 33rd Computer Security Foundations Symposium
(CSF), pp. 395–410 (2020). https://doi.org/10.1109/CSF49147.2020.00035

12. Javaid, A.Y., Sun, W., Devabhaktuni, V.K., Alam, M.: Cyber security threat anal-
ysis and modeling of an unmanned aerial vehicle system. In: 2012 IEEE Conference
on Technologies for Homeland Security (HST), pp. 585–590. IEEE (2012)

13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

14. Kordy, B., Wide�l, W.: How well can I secure my system? In: Polikarpova, N.,
Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 332–347. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 22

15. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

16. Meng, B., et al.: Verdict: a language and framework for engineering cyber resilient
and safe system. Systems 9(1), 18 (2021)

17. Moitra, A., Prince, D., Siu, K., Durling, M., Herencia-Zapana, H.: Threat identi-
fication and defense control selection for embedded systems. SAE Int. J. Transp.
Cybersecur. Privacy 3(11-03-02-0005), 81–96 (2020)

https://capec.mitre.org/
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://www.rtca.org/
https://www.rtca.org/
https://osate.org/about-osate.html
www.SMT-LIB.org
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-319-74860-3_2
https://doi.org/10.1109/CSF49147.2020.00035
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-319-66845-1_22
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17

770 B. Meng et al.

18. Siu, K., Herencia-Zapana, H., Prince, D., Moitra, A.: A model-based framework
for analyzing the security of system architectures. In: 2020 Annual Reliability and
Maintainability Symposium (RAMS), pp. 1–6. IEEE (2020)

19. Siu, K., et al.: Architectural and behavioral analysis for cyber security. In: 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE
(2019)

Certified Computation
of Nondeterministic Limits

Michal Konečný1 , Sewon Park2 , and Holger Thies2(B)

1 Aston University, Birmingham, UK
m.konecny@aston.ac.uk

2 Kyoto University, Kyoto, Japan

sewon@kurims.kyoto-u.ac.jp, thies.holger.5c@kyoto-u.ac.jp

Abstract. The computational content of constructive metric complete-
ness is the operator that computes limits of Cauchy sequences. It can
be used to construct certified programs that compute interesting tran-
scendental real numbers from sequences of approximations. The desired
nondeterministic version of it would be to nondeterministically compute
real numbers from nondeterministic approximations. However, it is not
obvious how nondeterministic metric completeness should be formalized.

We extend previous work on the formalization of exact real computa-
tion by primitive properties of nondeterminism. We show that by these
properties, various forms of nondeterministic metric completeness can be
derived without extending the axiomatic structure of constructive real
numbers. We further implement our theory in the Coq proof assistant
and use Coq’s code extraction features to extract efficient exact real com-
putation programs using several forms of nondeterministic computation.

Keywords: Constructive real numbers · Formal proofs · Exact real
number computation · Program extraction · Nondeterminism

1 Introduction

Exact real computation is an elegant approach in which real numbers and other
continuous mathematical structures are treated as basic entities in programming
languages that can be manipulated exactly without introducing rounding errors.
This is often realized by having an abstract data type for real numbers which
keeps track of errors in the background and increases the working precision when
necessary. Algorithm designers therefore can focus solely on the mathematical
problem itself, without thinking about representation issues of real numbers. Of
course this elegance comes at a price and exact real arithmetic is usually less

Holger Thies is supported by JSPS KAKENHI Grant Number JP20K19744. Sewon
Park is supported by JSPS KAKENHI Grant number JP18H03203. This project has
received funding from the EU’s Horizon 2020 research and innovation programme under
the Marie Sk�lodowska-Curie grant agreement No 731143. The authors thank Franz
Brauße and Norbert Müller for helpful discussions.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 771–789, 2022.
https://doi.org/10.1007/978-3-031-06773-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_41&domain=pdf
http://orcid.org/0000-0003-2374-9017
http://orcid.org/0000-0002-6443-2617
http://orcid.org/0000-0003-3959-0741
https://doi.org/10.1007/978-3-031-06773-0_41

772 M. Konečný et al.

efficient than the more common approach of using fixed-length floating point
approximations. Nonetheless, there are many applications where robustness and
reliability are more important than mere efficiency and exact real computation is
a feasible alternative in these cases. Furthermore, optimized implementations of
exact real computation achieve to minimize the overhead in many cases [1,16,21].

In general, the above mentioned properties of exact real computation also
facilitate the process of formal verification as it is not necessary to deal with the
difficulties of formalizing floating point arithmetic [4]. Indeed, there are already
several works dealing with the verification of exact real number computations e.g.
[2,10,22,24,28], and many more and verifying operations like basic arithmetic is
usually straightforward.

On the other hand, the continuous semantics of exact real computation come
with their own difficulties. In particular, the seemingly simple process of making
a decision, that is, choosing one branch of a program if a condition holds and
another if it does not, is often non-trivial as it involves discontinuities.

Consider for example the simple comparison operator < on the reals, usually
chosen to be a function from reals to the Booleans. As the function is not con-
tinuous, there is no way to make this operator computable. More generally, any
total, continuous function from the reals to the Booleans is necessarily constant,
and thus no interesting operation can be computed.

There are essentially two ways to deal with this problem:

(i) Partiality: Consider the partial function < of type R × R ⇀ bool such that
x < y is undefined if x = y. In this case, the semantics are identical to the
usual mathematical interpretation, but programs fail to terminate if two
equal numbers are compared [30, Theorem 4.1.16].

(ii) Nondeterminism: Extend the notion of computation to multivalued func-
tions f : A ⇒ B. The comparison may be replaced by a multivalued soft
comparison x <k y = {tt | x < y + 2k} ∪ {ff | y < x + 2k} [6,19]. That is,
if the two numbers are far enough apart, the correct Boolean value will be
returned, but if the numbers are close, any of the two values can be returned
nondeterministically.

While (i) is a simple solution, non-termination of programs is usually
extremely undesirable. Exact real computation software therefore often imple-
ments primitive operations to construct nondeterministic functions. Examples
include AERN’s select [16], or choose in iRRAM [21] and Ariadne [1,8]. These
frameworks are used to compute highly accurate approximations of numerical
problems and nondeterministic operations have been applied in practical situa-
tions. However, the formal semantics of this kind of nondeterminism has been
less studied.

In recent work [14], we presented a formalization of constructive real num-
bers in a simple dependent type theory. Our formalization was designed as a
framework to extract certified exact real computation programs from construc-
tive proofs, and closely model some of the features of exact real computation
such as nondeterminism. For example, when proving a theorem of the form
Π(x : R). P x → MΣ(y : R). Q x y, a user automatically gets an exact real

Certified Computation of Nondeterministic Limits 773

computation program that for any input x ∈ R such that P (x) holds, nondeter-
ministically computes y ∈ R such that Q(x, y) holds. This is realized by mapping
the axiomatized real number type R in the type theory to the abstract data type
of real numbers in an exact real computation software. In the cited paper, the
practicality of the approach is demonstrated by implementing the axiomatiza-
tion in Coq and mapping to data types and operators in AERN using Coq’s
program extraction mechanism [17,18]. A main goal of our implementation is to
not only provide provably correct but also efficient computation, comparable to
native implementations in exact real computation frameworks.

A unique feature of exact real computation, making it more powerful than
e.g. symbolic or algebraic computation, is the ability to construct real numbers
by limits of certain user-defined sequences [5,23]. While it is clear how the limit
computation should be axiomatized in the logical language [3,7,27], it has been
under debate how to deal with the case when nondeterminism is involved in the
limit computation [11,15]. Note that this situation occurs quite naturally even
for simple operations such as computing square roots of complex numbers.

Early versions of iRRAM therefore already provided a simple nondetermin-
istic limit operation as primitive [21, § 10.3] which the authors of the software
recently suggested to replace by a more generic operation for nondeterministic
limits [11]. However, an important open question that remained is, besides the
practicality, if the nondeterministic limit operation is sound, natural, and primi-
tive, i.e. needs to be introduced as an axiom in the axiomatization of constructive
real numbers or if it can be derived from a more general principle.

Inspired by [11] and personal communication with the authors, we were able
to answer this question: In the current work we specify nondeterministic depen-
dent choice, a simple and natural principle of the nondeterminism itself that
makes the limit operation suggested in [11] and some other forms of nonde-
terministic limits derivable. It automatically ensures that the nondeterministic
limit operations are sound and that they naturally arise due to the characteris-
tics of nondeterminism applied to the ordinary metric completeness. It moreover
suggests that, assuming the computational language is rich enough, there is no
need to introduce a nondeterministic limit primitive in exact real computation.

To demonstrate the practicality, we extended our Coq implentation proposed
in [14] in the suggested way. Our implementation offers a framework where users
can obtain certified programs using nondeterministic limits simulated in the
AERN framework. We present some basic examples, extract AERN programs
from them and show that they behave well in terms of efficiency.

2 Background and Overview

Let us first briefly summarize the theory from [14] and describe some minor
modifications to the original work. Although we mostly have a concrete imple-
mentation in the Coq proof assistant in mind, we formulate our results in a
more general type-theoretic setting and hope that this also makes it accessible
to readers less familiar with Coq. Formal descriptions of dependent type theories
can be found in various literature including [29, Chapter 1].

774 M. Konečný et al.

We assume to work in a dependent type theory with basic types 0, 1, 2,N,Z,
an à la Russel universe of classical propositions Prop, and an à la Russel universe
of types Type (with an implicit type level). We assume that the identity types =
are in Prop and that Prop is a type universe closed under →,×,∨,∃,Π, containing
two types True,False : Prop which are the unit and the empty type respectively.
It is a universe of classical propositions in that for example P ∨Q : Prop denotes
the classical fact that P or Q holds which differs from P + Q : Type the sum
type denoting there to be a computational procedure deciding if P or Q holds.
Similarly, when we have a family of classical propositions P : X → Prop, the
type ∃(x : X). P x : Prop belonging to Prop denotes the classical existence
of x : X satisfying P x while the ordinary dependent pair type (also called Σ-
type), Σ(x : X). P x : Type belonging to Type denotes the constructive existence.
Note that Prop shares the same constructs for function types (implications) →,
product types (conjunctions) ×, and dependent function types, also called Π-
types, (universal quantifiers) Π with Type.

In order to make Prop classical, we assume the (classical) law of excluded
middle Π(P : Prop). P ∨ ¬P (where ¬P :≡ P → False), the (classical)
propositional extensionality Π(P,Q : Prop). (P ↔ Q) → P = Q (where
P ↔ Q :≡ (P → Q) × (Q → P)), and the (classical) countable choice of
the form Π(A : Type). Π(P : N → A → Prop). (Π(n : N). ∃(x : X). P n x) →
∃(f : N → A). Π(n : N). P n (f n). Note the use of the classical ∃, as opposed to
the constructive Σ and that we did not assume countable choice in [14].

We also assume the general functional extensionality Π(A : Type). Π(P : A →
Type). Π(f, g : Π(x : A). P x).

(
Π(x : A). f x = g x

) → f = g and the Markov
principle Π(f : N → Prop).

(
Π(n : N). (f n) + ¬(f n)

) → (∃(n : N). f n) → Σ(n :
N). f n.

From [14], we keep the axiomatization of Kleenean, saying that there is a
type constant K admitting two distinct constants true, false : K. We write 	k
 for
k = true. K denotes semi-decidable decision procedures. For example, we assume
Π(x, y : R). Σ(k : K). 	k
 = (x < y) to say that comparison over the reals is
semi-decidable. Here < of type R → R → Prop is an axiomatized term constant.

We keep all the axioms of real numbers from op. cit. except for classical
completeness. In [14] we had two different formulations of completeness. The
first is constructive completeness saying that for any f : N → R which is a
(fast) Cauchy sequence, there constructively is a real number x : R which is the
limit point of the sequence. The other is classical completeness which says for
any classical predicate P : R → Prop that is classically nonempty and bounded
above, there classically exists the least upper bound. In our modified theory we
can prove that constructive completeness implies classical completeness using
classical countable choice and hence removed the classical completeness axiom.

The soundness of the axioms in [14] is argued by extending a realizability
interpretation in the category of assemblies over Kleene’s second algebra [13,26]
by mapping types into assemblies and terms into morhpisms in the category
[[25], Sect. 4 and Sect. 5]. An assembly over Kleene’s second algebra is a pair of
a set A and a binary relation �A⊆ N

N ×A that is surjective in the sense that for

Certified Computation of Nondeterministic Limits 775

any x ∈ A, there is ϕ ∈ N
N such that (ϕ, x) ∈ �A. The binary relation is often

written in infix notation and ϕ is said to realize x when ϕ �A x holds. Given
two assemblies (A,�A) and (B,�B), a function f : A → B is defined continuous
(computable) if there is a continuous (computable1) partial Baire space function
τ : NN ⇀ N

N that tracks f in the sense that for any (ϕ, x) ∈ �A, it holds that
τ(ϕ) �B f(x). The category of assemblies over Kleene’s second algebra is the
category of such assemblies and computable functions.

In [14], we propose a nondeterminism monad M such that for any type
X : Type, we automatically get a type MX : Type modeling the result of a nonde-
terministic computation in X. Formally speaking, we consider a type transformer
F : Type → Type a monad in our type theory when it is accompanied with

(i) a function lift liftF : Π(X,Y : Type). (X → Y) → (F X) → F Y
(write liftFX,Y for liftF X Y),

(ii) a proof that F and liftF form a functor

liftFX,X(idX) = idF X where idX:Type :≡ λ(x : X). x, and

liftFX,Z(f ◦ g) = (liftFY,Zf) ◦ (liftFX,Y g) where f ◦ g :≡ λ(x : X). f (g x)

for all X,Y,Z : Type, g : X → Y , and f : Y → Z,
(iii) a unit unitF : Π(X : Type). X → F X (we write unitFX for unitF X),
(iv) a proof that the unit is a natural transformation

(liftFX,Y f) ◦ unitFX = unitFY ◦ f

for all X,Y : Type and f : X → Y ,
(v) a multiplication multF : Π(X : Type). (F (F X)) → F X

write multFX for multF X),
(vi) a proof that the multiplication is a natural transformation

multFY ◦ (liftFF X,F Y (liftFX,Y f)) = (liftFX,Y f) ◦ multFX

for all X,Y : Type and f : X → Y , and
(vii) proofs of the three monad coherence conditions

– multFX ◦ unitFF X = idF X

– multFX ◦ (liftFX,F XunitFX) = idF X

– multFX ◦ multFF X = multFX ◦ (liftFF (F X),F XmultFX)

for all X : Type. Note the analogy in the definition with monads in category
theory.

The monad M in the type theory is interpreted as a monad M in the category
of assemblies over Kleene’s second algebra whose action on an assembly (A,�A)
is (P+(A),�MA) where P+(A) is the set of nonempty subsets of A and the
realization relation is defined by

ϕ �MA S :⇔ ∃x ∈ A.ϕ �A x.

1 in the sense of computable analysis [30].

776 M. Konečný et al.

The monad on a function is defined by M(f) := S �→ ⋃
x∈S{f(x)}. Note that

the lifted function is tracked by the same Baire space function that tracks f .
The monad is interesting as it classifies computable nondeterministic functions
in computable analysis.2

The main novel contributions in this work deal with extending the formal-
ization of nondeteterminism from our previous work. We suggest a different set
of axioms for the nondeterminism monad. Our new formalization is expressive
enough to define various notions of nondeterministic completeness useful in prac-
tical applications. The new set of axioms is more expressive in the sense that all
the properties of nondeterminism used in [14] are still derivable.

3 The Nondeterminism Monad

Nondeterminism is expressed by a monad in our type theory such that when
we have a type X : Type, we automatically have a nondeterministic version
MX : Type of it. A term of the nondeterministic type is regarded as the result
of a nondeterministic computation in X. As the underlying set of MX in the
model is the set of non-empty subsets of the underlying set of X, we suggest a
characterization of the monad by relating it with the classical non-empty power-
set monad that we can construct within the type theory:

P+X :≡ Σ(S : X → Prop). ∃(x : X). S x

We can confirm that it forms a monad with function lift, unit, and multiplication:

lift
P+
X,Y f :≡ λ((S,−)).

(
λ(y : Y). ∃(z : X). (y = f z) × (S z),−)

unit
P+
X x :≡ (λ(y : X). x = y,−)

mult
P+
X x :≡ (

λ(y : X). Σ(z : P+X). (π1 z y) × (π1 x z),−)

Here, the occurrences of − represent some classical proof terms. A (dependent)
pair (a, b) such that a : X and b : P a is of type Σ(x : X). P x or ∃(x : X). P x
where the ambiguity is only for the simplicity in our presentation. And, π1 is
the first projection of pairs (Σ-types).

We assume that there is a type constructor M : Type → Type, a function lift
liftM, a unit unitM, and a multiplication multM which form a monad in our type
theory. In order to relate it with the classical non-empty power-set monad, we
assume that there is a submonoidal natural transformation

picture : Π(X : Type). MX → P+X.

which we write pictureX for pictureX. It is a submonoidal natural transformation
in that (i) it is a natural transformation, (ii) for any X : Type, pictureX is monic
Π(x, y : MX). pictureX x = pictureX y → x = y, and (iii) the coherence condi-
tions which on the unit is pictureX ◦ unitMX = unit

P+
X and on the multiplication is

pictureX ◦ multMX = mult
P+
X ◦ pictureP+X ◦ (liftMMX P+XpictureX) hold.

2 Nondeterministic functions are also known as multivalued functions.

Certified Computation of Nondeterministic Limits 777

We call the natural transformation “picture” because we regard pictureX x,
when x : MX is a nondeterministic element, as a classical picture showing the
elements x represents. Let us make the definition

picX : MX → (X → Prop) :≡ λ(x : MX). π1(pictureXx)

which discards the second entry of pictureX x such that we can conveniently use
picX x y : Prop to express that y : X is a possible outcome of x : MX.

We further characterize the nondeterminism by that the classically lifted
picture lift

P+
MX,P+X pictureX : P+(MX) → P+(P+X) constructively admits an

inverse; i.e., Π(X : Type). Σ(i : P+(P+X) → P+(MX)).
(
i ◦ (liftP+

MX,P+X

pictureX) = idP+(MX)

) × (
(liftP+

MX,P+X pictureX) ◦ i = idP+(P+X)

)
holds. The fol-

lowing diagram shows the relation between the two monads.

X MX P+(MX)

P+X P+(P+X)

unitMX

unit
P+
X

pictureX

unit
P+
MX

lift
P+
MX,P+X pictureX∼

unit
P+
P+X

The last building block in relating the two monads is a destruction method.
When we have a nondeterministic object x : MX, we assume that we can obtain
a term of type MΣ(y : X). picX x y. Namely, when we have a nondeterministic
object x, we can nondeterministically get a pair (y, t) where y : X and t is a
reason why y can be nondeterministically obtained from x.

We carry some of the original characterizations of the nondeterministic
monad from [14]. For any two semi-decidable decisions x, y : K, if promised that
either of x or y holds classically, we can nondeterministically decide whether x
holds or y holds:

select : Π(x, y : K). (x
 ∨ 	y
) → M
(x
 + 	y
) .

We further carry over the assumption that if a type X is subsingleton, we can
eliminate the nondeterminism on MX:

elimM : Π(X : Type). (Π(x, y : X). x = y) → (M X) → X.

Remark 1. When we have a nondeterministic object x : MX, regarding it as the
result of some nondeterministic computation, it is desirable to analyze properties
of the possible outcomes of the nondeterministic computation x. For a classical
predicate P : X → Prop, we can express all possible outcomes y : X of x sat-
isfy P y by ΠM(y : x). P y :≡ Π(y : X). picX x y → P y and some possible
outcomes y : X of x satisfy P y by ∃M(y : x). P y :≡ ∃(y : X). (picX x y)× (P y).

778 M. Konečný et al.

3.1 Nondeterministic Dependent Choice

Suppose any sequence of types P : N → Type and a nondeterministic procedure
that runs through the types f : Π(n : N). (P n) → M(P (n + 1)). We can
think of a procedure of repeatedly and indefinitely applying the nondeterministic
procedure: e.g., fn(· · · f2(f1(f0 x0)) · · ·) where x0 : P 0. Though the expression
is not well-typed, intuitively, in the computational point of view, when we apply
it repeatedly, we get, nondeterministically, a sequence that selects through P n.
Starting from x0, we get nondeterministically x1 : P 0 from f 0x0 : M (P 0).
Then, according to the nondeterministic choice x1 : P 0 amongst f 0x0 : M (P 0),
we again get nondeterministically x2 : P 1 from f 1x1 : M (P 1). Repeating this
forever, we get a specific (nondeterministic) sequence where each entry depends
on the nondeterministic choices that have been made in the previous entries.

In our type theory, we already have a tool to express repeated applications,
the primitive recursion N-recλ(n:N). M (P n) which is of type

M (P 0) → (Π(n : N). M (P n) → M (P (n + 1))) → Π(n : N). M (P n).

Given f : Π(n : N). (P n) → M(P (n + 1)) and x0 : P 0, applying the recursion
on unitMP 0x0 and λ(n : N). λ(x : M(P n)). multM(liftM(f n)x) denotes exactly
applying f repeatedly on x0. However, the result of the application does not
preserve any information on the dependency between the sequential nondeter-
ministic choices as we can see that the result is of type Π(n : N). M(P n).

For example, let us consider P n :≡ R and

f nx :≡
{

0 or 1 if n = 0,

x otherwise.

When we repeatedly apply the procedure on 1/2, we expect to have one of the
two sequences 1/2, 0, 0, 0, 0, · · · or 1/2, 1, 1, 1, 1, · · · nondeterministically. How-
ever, when we apply the primitive recursion, all we can get is the sequence of
the nondeterministic real numbers 1/2, (0 or 1), (0 or 1), · · · which is less infor-
mative, forgetting all the information about the dependencies that f creates.
Hence, we need a separate and more expressive principle but with computa-
tional behavior identical to primitive recursion.

Suppose any sequence of types P : N → Type and a sequence of classical
binary relations Q : Π(n : N). P n → P (n + 1) → Prop. The binary relation is
where the dependencies between sequential choices are encoded. For the above
example, Qnxy can be set to n > 0 → x = y. We call a function of type

Π(n : N). Π(x : P n). MΣ(y : P (n + 1)). Qnx y

an M-trace of Q. Note that admitting a trace automatically ensures that Q is a
(classically) entire relation: Π(n : N). Π(x : P n). ∃(y : P (n + 1)). Qnx y.

The nondeterministic dependent choice (M-dependent choice for short) says
that for any M-trace of Q, there is a term of type

MΣ(g : Π(n : N). P n). Π(m : N). Qm (g m) (g (m + 1))

Certified Computation of Nondeterministic Limits 779

satisfying a coherence condition that will be described below. In words: From a
trace of Q, we can nondeterministically get a sequence g that runs through Q.

Given any M-trace f of Q, now there are two different ways of constructing a
term of type Π(n : N). M(P n), forgetting the information on the dependencies.
The first is to naively apply the primitive recursion on f which is shown in the
beginning of this subsection. The second is to apply the following operation

to fiberM(g : MΠ(n : N). P n) :≡ λ(n : N).
(
liftM(λ(h : Π(n : N). P n). h n) g

)

on the M-lifted first projection of the M-dependent choice. The coherence con-
dition states that the two operations of forgetting the information on the paths
are identical (c.f. Fig. 1).

M-dependent
choice to_fiberM

primitive recursion

Fig. 1. Intuitive picture on the coherence condition for the M-dependent choice

We assume that our type theory admits M-dependent choice.

Remark 2. The name nondeterministic dependent choice comes from the obser-
vation that when repeating the above with the double negation monad or the
propositional truncation monad (assuming they are provided by the type theory),
the principle becomes the classical dependent choice and intuitionistic dependent
choice, respectively.

Remark 3. In [14], it was axiomatized that there is a term constant ωlift such
that for any P : N → Type, it holds that ωliftP : (Π(n : N). M (P n)) →
MΠ(n : N). P n is a section of to fiberM. In other words, for any f : Π(n :
N). M (P n), it holds that to fiber (ωlift f) = f . From a computational point of
view, it says, when we have a sequence of nondeterministic computations, we
can nondeterministically choose one sequence of (deterministic) computations.

The property is used to derive an operator computing deterministic limits
from nondeterministic sequences. Observe that the ωlift can be derived from the
M-dependent choice when we simply let Qnxy :≡ True. Hence, we conclude
that the new set of axioms for the nondeterminism presented in this paper is
more expressive than the previous one.

4 Nondeterministic Limits

A defining feature of exact real computation is the ability to compute certain
limits of user-defined sequences. Its counterpart in the axiomatization of real
numbers is the principle of metric completeness.

780 M. Konečný et al.

There are three distinct cases where we need to compute limits: (1) when
a deterministic sequence of real numbers converge to a deterministic point, (2)
when a sequence of nondeterministic real numbers converge to a deterministic
point, and (3) when a sequence of nondeterministic real numbers converge to a
nondeterministic point. The first case is exactly the ordinary metric complete-
ness which is realized by the primitive limit operations in exact real number
computation software.

In this section, we derive the other forms of limits from the ordinary con-
structive completeness and our new more expressive nondeterminism monad.

4.1 Deterministic Limits of Nondeterministic Sequences

Consider the case where there is a single real number we want to obtain and we
have a nondeterministic procedure approximating said number.

Suppose we have a nondeterministic sequence f : N → MR that is a (fast)
Cauchy sequence meaning that

is CauchyM f :≡ Π(n,m : N). ΠM(x : f n). ΠM(y : f m). − 2−n−m ≤ x − y ≤ 2−n−m

(see Remark 1 for the definition of ΠM). That is, any choices of f n and f m will
be at most 2−(n+m) far apart from each other and thus any possible sequence
will be a fast Cauchy sequence, converging to a unique limit point that we define
by the relation

is limitM x f :≡ Π(n : N). ΠM(y : f n). − 2−n ≤ x − y ≤ 2−n.

We can prove that for any nondeterministic Cauchy sequence, there determinis-
tically and constructively exists the limit.

Lemma 1. Within our type theory, we can construct a term of the type

Π(f : N → MR). is CauchyM f → Σ(x : R). is limitM x f.

In words, a nondeterministic sequence converges to a point if all possible candi-
dates of the nondeterministic sequence converge to the point.

In practice, we often already have a classical description of real numbers that
we want to construct. For example, when we compute a square root of a real
number x : R, we first define it classically by S : R → Prop :≡ λ(y : R). x = y ×y
then prove Σ(y : R). S y.

For any real number x : R and a classical description of real numbers S : R →
Prop, define the notation: x ∼n S :≡ ∃(y : R). (S y) × |x − y| ≤ 2−n saying that
x approximates a real number represented by S by 2−n. Then, we can derive the
following version of metric completeness:

(∃!(x : R). S x
) → (

Π(n : N). MΣ(y : R). y ∼n S
) → Σ(y : R). S y.

Here, ∃!(x : X). P x is for the classical unique existence abbreviating ∃(x :
X). (P x) × Π(y : X). P x → x = y.

Certified Computation of Nondeterministic Limits 781

Example 1 (Real square root). Any non-negative real number classically admits
a unique non-negative square root. Consider any real number x : R with a term
of type x ≥ 0. Let S :≡ λ(y : R). (y ≥ 0) × (x = y × y). Of course, the
classical property can be proven in our system which will yield a term of type
∃!(y : R). S y. In [14], we use Heron’s method with nondeterministic scaling to
nondeterministically approximate the non-negative square root. Heron’s method
is a simple and well known method to approximate the square root of a real
number x by the inductively defined sequence x0 := 1 and xi+1 := 1

2

(
xi + x

xi

)
.

The sequence converges quadratically to
√

x in the interval 1
4 ≤ x ≤ 2, meaning

|√x − xi| ≤ 2−2i and thus can be used to construct a fast Cauchy sequence
converging to the square root for any x in said interval. Outside of this interval,
we can nondeterministically find a scaling factor z : Z such that 1

4 ≤ 4zx ≤ 2,
approximate the square root of the scaled number and rescale it appropriately.

Applying the second version of the metric completeness to the defined
sequence, we can obtain

√ : Π(x : R). x ≥ 0 → Σ(y : R). (y ≥ 0) × (x = y × y).

Note that we need to consider the case x = 0 separately, see [14] for details.

4.2 Nondeterministic Limits

Suppose we are given a classical description of real numbers S : R → Prop that
is classically sequentially closed. Define is seq closedS to for the following type:

Π(f : N → R). (Π(n : N). (f n) ∼n S) → ∃(x : R). (S x) × is limitx f.

A nondeterministic refinement procedure is a procedure that for each natural
number n and real number xn with a promise xn ∼n S , nondeterministically
computes a 2−n−1 approximation to some (possibly different) real number in S
which is at most 2−n−1 apart from xn. That is, a nondeterministic refinement
procedure is a function f of type

f : Π(n : N). Π(x : R). x ∼n S → MΣ(y : R).
(|x − y| ≤ 2−n−1

) × (
y ∼n+1 S

)
.

We will show that given such a nondeterministic refinement procedure, we can
apply the M-dependent choice to nondeterministically get a point in S which we
call the limit point of the procedure. To this end, we define

P n :≡ Σ(x : R). x ∼n S and Qnxy :≡ |π1 x − π1 y| ≤ 2−n−1.

See that the refinement procedure f can be easily adjusted to become a M-
trace of Q. The M-dependent choice on it with an initial approximation x0 :
MΣ(y : R). y ∼n S, yields a sequence g : N → R that is consecutively close,
i.e. Π(n : N). |(g n) − (g (n + 1))| ≤ 2−n−1, and converges to S’s elements, i.e.
Π(n : N). g n ∼n S. As S is sequentially closed and we can prove that g is
Cauchy, applying the ordinary limit on S constructively yields a point in S.
Hence, applying the liftM on the procedure and postcomposing it to the result
of the M-dependent choice yields the nondeterministic limit.

782 M. Konečný et al.

Theorem 1. Within our type theory, we can construct a term of type

Π(S : R → Prop). is seq closedS →
MΣ(y : R). y ∼0 S →
(
Π(n : N). Π(x : R). x ∼n S → MΣ(y : R).

(|x − y| ≤ 2−n−1
) × (

y ∼n+1 S
)) →

MΣ(y : R). S y

4.3 Nondeterministic Limits with Additional Information

The nondeterministic refinement in the previous subsection requires to consec-
utively refine any possible previous approximation to a better approximation of
a limit. However, in practice it is often more reasonable to think of the case
where all possible approximations throughout the indefinite refinement proce-
dure share some invariant properties. That is, we only have to consider a subset
of all possible 2−n approximations to be given as inputs of the n’th refinement.

Let us, for example, again consider the nondeterministic function

f nx :≡
{

0 or 1 if n = 0,

x otherwise,

from Sect. 3.1. Starting with 1/2, the function nondeterministically generates
the two sequences 1/2, 0, 0, · · · and 1/2, 1, 1 · · · . Both are Cauchy sequences that
converge to 0 and 1 respectively, thus we would consider 0 and 1 possible limit
points. However, note that f is not an admissible refinement procedure in the
previous sense: When 2−n is given as a 2−n approximation to 0, f returns 2−n

which is not a 2−n−1 approximation to any of 0 or 1. In other words, we lose the
information that when applying f , we only encounter either 0 or 1 when n > 0.

We would like to use the invariant property of f to build a more effective
nondeterministic limit operation. Let S : R → Prop be a classical description
of real numbers that is sequentially closed. We declare an invariant property of
approximations I : N → R → Type that is preserved throughout the refinements.
We can encode I in P at the step of applying the M-dependent choice:

P n :≡ Σ(x : R). (x ∼n S) × I n x.

A similar derivation as in the previous section yields the following more infor-
mative limit operation:

Theorem 2. Within our type theory, we can construct a term of type

Π(S : R → Prop). Π(I : N → R → Type). is seq closedS →
MΣ(y : R). (y ∼0 S) × I 0 y →
(
Π(n : N). Π(x : R). (x ∼n S) × I n x →
MΣ(y : R). (|x − y| ≤ 2−n−1) × (y ∼n+1 S) × (I (n + 1) y)

) →
MΣ(y : R). S y

Certified Computation of Nondeterministic Limits 783

Note that the required nondeterministic refinement procedure accepts addi-
tional information on its input I n x : Type, on which we can do effective reason-
ing as it is indexed through Type. For example, in the above case of 0 and 1, we
can let I n x :≡ n > 0 → (x = 0) + (x = 1) such that in the beginning of each
refinement step n > 0, we can effectively test if x is 0 or 1. The price to pay is
that in each step we have to construct a Boolean term which indicates whether
the refinement is 0 or 1 which then is used in the next refinement step. Figure 2
illustrates this example.

Fig. 2. Using an invariant property of f to define a limit

Remark 4. The iRRAM C++ framework provides a similar operation limit mv.
The operator computes the limit of a nondeterministic sequence using an addi-
tional discrete hint choice that restricts the possible values of the limit [20].

5 Examples

Let us illustrate the use of the limit operations introduced in the previous section
with some examples. Multivalued functions play an important role in complex
analysis and the area therefore provides a multitude of examples including n-th
roots, logarithms and inverse trigonometric functions. In Sect. 5.1, we present
what is perhaps the simplest of these examples, the complex square root.

A second, more theoretical, example where nondeterministic approximation
turns out to be useful, is to show that any two real number types that satisfy
our axioms are isomorphic. We present this example in Sect. 5.2.

5.1 Computing Complex Square Roots

We prove the constructive and nondeterministic existence of square roots of
complex numbers using a simple method described e.g. in [20]. The square root
of a number z ∈ C is a number x ∈ C such that x2 = z. If x is a square root
of z then so is −x and there are no other square roots. Thus, for every z �= 0

784 M. Konečný et al.

there are exactly two square roots. In the case of the square root on nonnegative
reals (Example 1) we could simply choose one of the two square roots to get a
singlevalued branch. However, it is well known that no such continuous choice
exists for the whole complex plane: The square root has a branch point at z = 0
and thus there is no singlevalued, continuous square root function in any region
containing z = 0 as an interior point. We show that we can, however, prove the
nondeterministic existence of a square root constructively in our theory.

In order to express the statement, we first extend our theory to a type of
complex numbers. We define the type as a pair of real numbers, i.e. C :≡ R × R
with its field operations and a maximum norm |·| : C → R.

For any sequence f : N → C that is Cauchy, we can untangle the real and
imaginary parts and obtain the limit point by applying the ordinary limit oper-
ator. Similarly, we can extend the nondeterministic limit operator to C.

Let us now return to the square root operation. The following well-known
algebraic formula can be used to reduce the calculation of complex square roots
to calculating real square roots (see e.g. [9, §6]).

Let z = a + ib, then
√√

a2 + b2 + a

2
+ isgn(b)

√√
a2 + b2 − a

2

is one of the square roots of z. Of course, this function is not computable as sgn
is not continuous in 0. However, if z �= 0, we can nondeterministically choose
one of the cases a < 0, a > 0, b < 0, b > 0 and apply the formula (in case a > 0
or a < 0, a slight adaption of the formula using sgn(a) instead of sgn(b) is used).

Thus, using Example 1, we can show the following restricted version of the
existence of a complex square root

√
0

: Π(z : C). z �= 0 → M(Σ(x : C). x · x = z). (1)

Finally, we apply Theorem 2 to also include the case z = 0. Recall that given
a 2−n approximation xn of a square root of z that satisfies a certain predicate
I that we will define later, we need to choose a 2−(n+1) approximation xn+1 of
a square root of z with |xn+1 − xn| ≤ 2−(n+1) and such that xn+1 satisfies I.
We proceed as follows. In the beginning, at each step n we nondeterministically
choose one of the two cases |z| < 2−2(n+2) or |z| > 0. In the first case, 0 is
a good enough approximation for any square root of z. In the second case, we
know z �= 0 and thus can apply (1) to get the exact value of a square root.
However, once we have selected the second case, for any later elements of the
sequence we just return the previous value xn. Thus, all possible sequences the
refinement procedure returns have the form 0, 0, 0, . . . , 0, x, x, x, . . . , where x is
a square root of z. Further, if we returned 0 at the n-th step, we know that
|z| < 2−2(n+2) and therefore for any square root x, |x| < 2−(n+2) and returning
x at step n + 1 is a valid refinement of the previous approximation.

Thus, the invariant property of the sequence defined in this way is given by
the relation I n x : Type defined by

I n x :≡ (
(|z| ≤ 2−2(n+2)) × (x = 0)

)
+ (x · x = z).

Certified Computation of Nondeterministic Limits 785

Applying Theorem 2 with this I, we get

√ : Π(z : C). M(Σ(x : C). x · x = z).

5.2 Equivalence of Axiomatic Real Numbers

To prove that the set of axioms we devised to express exact real number com-
putation is expressive enough, we prove that any two types R1 and R2 satisfying
the set of axioms are type-theoretically equivalent. As our type theory is exten-
sional, they are equivalent if we can construct the mutually inverse functions
ι1 : R1 → R2 and ι2 : R2 → R1. The basic idea of the construction is similar to
[12] where an effective model-theoretic structure of real numbers is suggested.

From the classical Archimedean principle of real numbers, for any x : R1,
there classically is z : Z which bounds the magnitude of x in the sense that |x| < z
holds. Applying nondeterministically the Markov principle, we can construct the
nondeterministic rounding operator:

round : Π(x : R1). MΣ(z : Z). z − 1 < x < z + 1.

Recall that the usual rounding is not computable due to discontinuity of the clas-
sical rounding function [30, Theorem 4.3.1]. Then, by scaling, we can construct
a term of type

dyadic : Π(x : R1). Π(n : N). MΣ(z : Z). |x − z · 2−n| ≤ 2−n

which nondeterministically approximates the binary magnitude of real numbers.
By using the destruction principle of the nondeterminism and doing some

clerical work, we get the fact that for any real number x : R1, there exists
a sequence of nondeterministic integers f : N → MZ such that every section
g : N → Z of f is an approximation sequence of x in the sense that is limitx (λ(n :
N). (g n) · 2−n) holds.

Note that the description thus far implicitly used the integer embedding in
R1. Taking out the embedding explicitly, we can prove that for any sequence of
integers g : N → Z, if its induced dyadic sequence is Cauchy in one type of real
numbers, it also is Cauchy in the other one. Hence, from f , using the other integer
embedding Z → R2, we can get a sequence of nondeterministic real numbers in
R2 where every section is a Cauchy sequence in R2. Thus, after proving that the
limit points of such sequences is unique, we can apply the deterministic limit of
nondeterministic sequences (Lemma 1) to construct a real number in R2.

Intuitively, we use the space of sequences of nondeterministic integers as an
independent stepping stone connecting the two axiomatic types R1 and R2. In
our axiomatization of nondeterminism we can analyze each section of a sequence
of nondeterministic integers so that we can apply a limit operation in R2.

The other direction R2 → R1 can be constructed analogously, and the two
mappings being inverse to each other can be proved easily, concluding that the
two axiomatic types R1 and R2 are equivalent.

786 M. Konečný et al.

6 Implementation and Experimental Results

All mathematical concepts and results presented in this paper have been fully
formalized in Coq. The formalization is released under the MIT open-source
licence and is included in https://github.com/holgerthies/coq-aern.

Moreover, we extracted Haskell/AERN code from our formalisation of the
complex square root that uses our nondeterministic limit operator. The extrac-
tion mechanism realizes our axioms as appropriate Haskell/AERN terms, includ-
ing axioms for real number operations and the nondeterministic choice operator
as described in [14, Appendix B] adapted for the changes described here. In
particular, M-dependent choice translates to ordinary primitive recursion in the
Haskell translation. This is due to the fact that M itself vanishes, i.e., it becomes
the Haskell’s identity monad, as real number computations in Haskell/AERN
are intrinsically nondeterministic already.

Figure 3 shows the execution times of this extracted code on a sample of
inputs and with various target precisions. We use logarithmic scales to make the
differences easier to see. Slower performance at zero reflects the fact that the limit
computation uses the whole sequence, unlike away from zero where only a finite
portion of the sequence is evaluated and the faster converging Heron iteration
takes over for higher precisions. The closer the input is to zero, the later this
switch from limit to Heron takes place when increasing precision. For very large
inputs, there is a notable constant overhead associated with scaling the input to
the range where Heron method converges. In [14] we evaluated the performance
of our implementation of the real square root and showed that it is comparable to
a hand-written Haskell/AERN implementation. Comparing with the execution
times from Fig. 3, it can be seen that the performance of our complex square
root appears to be comparable to the performance of the real square root and
thus is in turn again comparable to a hand-written implementation.

Approximate Precision (bits)

Ex
ec

ut
io

n
Ti

m
e

(s
)

0.05
0.1

0.5
1

5
10

50

100 1000 10000 100000 1000000

sqrt(0+0i) sqrt(0+2i) sqrt(-2+0i) sqrt(0+i/2^1000) sqrt(0+i2^1000)

Fig. 3. Execution time of the extracted complex square root function

https://github.com/holgerthies/coq-aern

Certified Computation of Nondeterministic Limits 787

7 Conclusion

Nondeterminism and the computation of limits are two central features of exact
real computation. Extending our previous work, in the current work we devised a
sound and powerful framework for formal verification of exact real computation
which allows the use of nondeterministic computation in multiple ways. Follow-
ing recent discussions on the implementation of multivalued limits in exact real
computation frameworks, we concluded that we do not need to include a mul-
tivalued limit as a primitive operation, but can derive several useful forms of
multivalued limit operations from a more natural principle in our theory.

As a simple but important example for a function where nondeterministic
limits turn out to be useful, we proved the existence of a complex square root in
our constructive theory. Of course, there are several other examples of functions
that are necessarily multivalued and we plan to add some of these in future work.
We further plan to extend our framework by polynomial root finding and matrix
diagnonalization which essentially require nondeterministic limits.

References

1. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.: Ariadne: a framework for reachability analysis of hybrid automata.
In: Proceedings 17th International Symposium on Mathematical Theory of Net-
works and Systems. Kyoto (2006)

2. Berger, U., Tsuiki, H.: Intuitionistic fixed point logic. Ann. Pure Appl. Log. 172(3),
102903 (2021). https://doi.org/10.1016/j.apal.2020.102903

3. Bishop, E.A.: Foundations of Constructive Analysis (1967)
4. Boldo, S., Melquiond, G.: Computer Arithmetic and Formal Proofs - Verifying

Floating-point Algorithms with the Coq System. ISTE Press (2017). https://
www.elsevier.com/books/computer-arithmetic-and-formal-proofs/boldo/978-1-
78548-112-3

5. Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential
function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words,
Languages & Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore
(2003), iCWLC 2000, Kyoto, Japan, 14–18 March 2000

6. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex.
14(4), 490–526 (1998). https://doi.org/10.1006/jcom.1998.0488, https://www.
sciencedirect.com/science/article/pii/S0885064X98904885

7. Bridges, D.S.: Constructive mathematics: a foundation for computable
analysis. Theor. Comput. Sci. 219(1), 95–109 (1999). https://doi.org/10.
1016/S0304-3975(98)00285-0, https://www.sciencedirect.com/science/article/pii/
S0304397598002850

8. Collins, P., Geretti, L., Casagrande, A., Zapreev, I., Zivanovic, S.: Ariadne (2005–
20). http://www.ariadne-cps.org/

9. Cooke, R.L.: Classical Algebra: its Nature, Origins, and Uses. John Wiley & Sons
(2008)

https://doi.org/10.1016/j.apal.2020.102903
https://www.elsevier.com/books/computer-arithmetic-and-formal-proofs/boldo/978-1-78548-112-3
https://www.elsevier.com/books/computer-arithmetic-and-formal-proofs/boldo/978-1-78548-112-3
https://www.elsevier.com/books/computer-arithmetic-and-formal-proofs/boldo/978-1-78548-112-3
https://doi.org/10.1006/jcom.1998.0488
https://www.sciencedirect.com/science/article/pii/S0885064X98904885
https://www.sciencedirect.com/science/article/pii/S0885064X98904885
https://doi.org/10.1016/S0304-3975(98)00285-0
https://doi.org/10.1016/S0304-3975(98)00285-0
https://www.sciencedirect.com/science/article/pii/S0304397598002850
https://www.sciencedirect.com/science/article/pii/S0304397598002850
http://www.ariadne-cps.org/

788 M. Konečný et al.

10. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive coq repository
at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 88–103. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27818-4 7

11. Brausse, F., Norbert Müller, R.R.: Intensionality and multi-valued limits. In: Pro-
ceedings 15th International Conference on Computability and Complexity in Anal-
ysis (CCA), p. 11 (2018)

12. Hertling, P.: A real number structure that is effectively categorical. Math. Log. Q.
45, 147–182 (1999). https://doi.org/10.1002/malq.19990450202

13. Hofmann, M.: On the interpretation of type theory in locally cartesian closed
categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–
441. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022273

14. Konečný, M., Park, S., Thies, H.: Axiomatic reals and certified efficient exact real
computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021.
LNCS, vol. 13038, pp. 252–268. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88853-4 16

15. Konečný, M.: Verified exact real limit computation. In: Proceedings 15th Interna-
tional Conference on Computability and Complexity in Analysis (CCA), pp. 9–10
(2018)

16. Konečný, M.: aern2-real: A Haskell library for exact real number computation.
https://hackage.haskell.org/package/aern2-real (2021)

17. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1 12

18. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

19. Luckhardt, H.: A fundamental effect in computations on real numbers. Theor.
Comput. Sci. 5(3), 321 – 324 (1977). https://doi.org/10.1016/0304-3975(77)90048-
2, http://www.sciencedirect.com/science/article/pii/0304397577900482

20. Müller, N.T.: Implementing limits in an interactive realram. In: 3rd Conference on
Real Numbers and Computers, 1998, Paris. vol. 13, p. 26 (1998)

21. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

22. Müller, N.T., Uhrhan, C.: Some steps into verification of exact real arithmetic.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 168–173.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 17

23. Neumann, E., Pauly, A.: A topological view on algebraic computation models. J.
Complex. 44, 1–22 (2018)

24. Park, S., et al.: Foundation of computer (algebra) analysis systems: Semantics,
logic, programming, verification. arXiv e-prints pp. arXiv-1608 (2016)

25. Reus, B.: Realizability models for type theories. Electron. Notes Theor. Comput.
Sci. 23(1), 128–158 (1999)

26. Seely, R.A.G.: Locally cartesian closed categories and type theory. Math.
Proc. Camb. Philoso. Soc. 95(1), 33–48 (1984). https://doi.org/10.1017/
S0305004100061284

27. Specker, E.: Nicht konstruktiv beweisbare Sätze der analysis. J. Symb. Logic 14(3),
145–158 (1949)

https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1002/malq.19990450202
https://doi.org/10.1007/BFb0022273
https://doi.org/10.1007/978-3-030-88853-4_16
https://doi.org/10.1007/978-3-030-88853-4_16
https://hackage.haskell.org/package/aern2-real
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1016/0304-3975(77)90048-2
http://www.sciencedirect.com/science/article/pii/0304397577900482
https://doi.org/10.1007/3-540-45335-0_14
https://doi.org/10.1007/978-3-642-28891-3_17
https://doi.org/10.1017/S0305004100061284
https://doi.org/10.1017/S0305004100061284

Certified Computation of Nondeterministic Limits 789

28. Steinberg, F., Thery, L., Thies, H.: Computable analysis and notions of continuity
in Coq. Logical Meth. Comput. Sci. 17(2) (2021). https://lmcs.episciences.org/
7478

29. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for
Advanced Study (2013)

30. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.
1007/978-3-642-56999-9

https://lmcs.episciences.org/7478
https://lmcs.episciences.org/7478
https://homotopytypetheory.org/book
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

The Power of Disjoint Support
Decompositions in Decision Diagrams

Lieuwe Vinkhuijzen(B) and Alfons Laarman

Leiden University, Leiden, The Netherlands
{l.t.vinkhuijzen,a.w.laarman}@liacs.leidenuniv.nl

Abstract. The relative succinctness and ease of manipulation of dif-
ferent languages to express Boolean constraints is studied in knowledge
compilation, and impacts areas including formal verification and circuit
design. We give the first analysis of Disjoint Support Decomposition
Binary Decision Diagrams (DSDBDD), introduced by Bertacco, which
achieves a more succinct representation than Binary DDs by exploiting
Ashenhurst Decompositions. Our main result is that DSDBDDs can be
exponentially smaller than BDDs.

1 Introduction

Decision Diagrams are data structures for the representation and manipulation
of Boolean functions. They are used for probabilistic reasoning [4,13], verifi-
cation [18,22,36], circuit design [30,31,37,38] and simulation of quantum com-
puting [25,34,35]. Since Bryant [11] popularized the Binary Decision Diagram
(BDD), there has been a proliferation of different decision diagrams which use
different architectures, e.g., ZDD [23], TBDD [12,33], SDD [15], uSDD [32],
FBDD [17]. Darwiche and Marquis [16] analytically compare the succinctness
and tractability of manipulation operations (e.g., computing the logical OR of
two functions) of these different diagrams and other representations such as
CNF, resulting in a knowledge compilation map. In particular, they elucidate
the inherent tradeoff between succinctness and tractability: Some diagrams can
be exponentially more succinct, but do not admit efficient manipulation and/or
query operations, or vice versa (e.g., d-DNNF [16] strictly contains DDs and
allows model counting in polynomial time, but no efficient algorithm for com-
puting the logical OR is known; and SDDs can be exponentially more succinct
than BDDs [10]).

The Disjoint Support Decomposition BDD [6,26] (DSDBDD1) augments
a BDD with disjunctive decompositions (sometimes called Ashenhurst-Curtis
decompositions [1,3]). They are canonical like BDDs and support the same
queries and operations as BDDs (model counting, conjunction, negation, etc.).
DSDBDDs have so far been deployed in only few applications, mostly in circuit

1 No name has been given to this diagram, so we use DSDBDD in accordance with
conventions in the literature.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 790–799, 2022.
https://doi.org/10.1007/978-3-031-06773-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_42&domain=pdf
http://orcid.org/0000-0002-8199-0901
http://orcid.org/0000-0002-2433-4174
https://doi.org/10.1007/978-3-031-06773-0_42

The Power of Disjoint Support Decompositions in Decision Diagrams 791

verification [27]. In order to know whether efforts to deploy them elsewhere are
likely to be fruitful, we make an initial step towards placing DSDBDDs on the
knowledge compilation map. Our main result is that DSDBDDs can be expo-
nentially smaller than BDDs. To this end, we give a function that yields the
separation, drawing on the theory of expander graphs to show that its BDD
cannot be small. As corollaries, we also clarify the relation between other lan-
guages. Finally, we also point out some open questions.

2 Background and Related Work

A Binary Decision Diagram is a data structure used to represent and manipulate
Boolean functions; formally it can be defined as follows.

Definition 1 (Binary Decision Diagram (BDD)). A BDD is a rooted,
directed acyclic graph. It has two leaves, labeled True and False, which rep-
resent the constant True and False functions. A non-leaf node is called a
Shannon node; it is labeled with (the index of) a variable and has two outgoing
edges, called the low edge and the high edge. Each node v represents a Boolean

Fig. 1. (a) and (b): BDDs for the function f � (x1 ⇔ x2) ∧ (x3 ⇔ x4) ∧ (x5 ⇔ x6).
Low (high) edges are drawn as dotted (solid) arcs. The False Leaf and arcs which go
to the False Leaf are not drawn. These two BDDs use different variable orders: (a)
uses x1 < x2 < x3 < x4 < x5 < x6, whereas (b) uses x1 < x3 < x5 < x2 < x4 < x6,
which is why (b) is much bigger than (a). (c): a DSDBDD for the same function. The
root node is a decomposition node, whose kernel and factors are indicated. For sake of
clarity and compactness, in several parts of the figure we have “collapsed” the small
BDD representing xi ⇔ xj by drawing it as a single rectangle (e). (d): a DSDBDD
which represents the function f = ¬x1 ∧ ¬x2 ∨ x1 ∧ ((x2 ⇔ x5) ∧ (x3 ⊕ x4)) and whose
root node is not a Decomposition node.

792 L. Vinkhuijzen and A. Laarman

function [[v]], as follows. If a node v is labeled with variable x and has low edge to
v0 and high edge to v1, then it represents the function [[v]] � ¬x∧ [[v0]]∨x∧ [[v1]].
A BDD is ordered if, on each path from the root to a leaf, each variable appears
at most once and always in the same order. It is reduced if there are no equiva-
lent nodes, representing the same function, and there is no node whose low and
high edges point to the same node. �
Figures 1(a) and (b) show examples of BDDs. The two BDDs represent the same
function, f � (x1 ⇔ x2) ∧ (x3 ⇔ x4) ∧ (x5 ⇔ x6). They have a different shape,
because they employ different variables orders, x1 < x2 < x3 < x4 < x5 < x6

and x1 < x3 < x5 < x2 < x4 < x6, respectively. In fact, if we generalized the
functions and variable orders from n = 6 to n > 6, the corresponding BDD would
stay linearly sized in the first case, but in the latter would become exponentially
sized, in the number of variables. The effect of variable orders in BDDs is well
known [9].

In the figure, the value f(x) of an assignment x can be found by traversing
the diagram as follows. One starts at the root node. A node is labeled with a
variable xi; if xi = 0, we traverse the low (dotted) edge; otherwise, if xi = 1, we
traverse the high (solid) edge, until we arrive at a Leaf. To avoid cluttering the
diagram, edges to the False Leaf are not drawn in the figure.

A reduced and ordered BDD (ROBDD) is a canonical representation of its
corresponding Boolean function [11]. From now on, we assume all BDDs are
ROBDDs. Bryant [11] observed that such BDDs can be queried and manipulated
in polynomial time in the size of the diagrams (number of nodes). For example,
given BDDs f and g, with k and m nodes, respectively, a BDD representing the
function f ∧ g can be constructed and the number of models of f (i.e., �x s.t.
f(x) = 1) can be computed in O(km) and O(k) time, respectively. Layer i in
an ordered BDD, is the set of nodes with variable label xi (possibly empty).

A DSDBDD [5,6,14,21,26–29] augments a BDD by considering the disjoint
support decompositions of its nodes. A disjoint support decomposition of a func-
tion f decomposes it into its kernel k and its factors j1, . . . , jm, as follows:

f(x1, . . . , xn) =k(�1, . . . , �m) with �i � ji(xi,1, . . . , xi,ni
) (1)

Here factor ji takes ni variables as input; the variables �i are “dummy variables”.
The factors have no variables in common, so the numbers ni sum to n. A decom-
position is non-trivial if there are at least two factors, and one factor reads at
least two variables. Ashenhurst [3] was the first to develop a theory of disjoint
support decompositions of Boolean functions and to give an algorithm which
finds the decomposition given f ’s truth table, requiring time exponential in the
number of variables. He showed that by repeatedly decomposing the functions k
and ji, the fixpoint reached is uniquely determined by f , up to complementation
of the factors, and up to permutation of the order in which they appear as inputs
to the kernel. This tree of functions is sometimes called the Ashenhurst-Curtis
decomposition of f .

In [5], Bertacco and Damiani describe and implement an efficient algorithm
to build a DSDBDD as follows. If a Shannon node in a BDD represents a function

The Power of Disjoint Support Decompositions in Decision Diagrams 793

which allows a non-trivial decomposition, this node and its children are replaced
by a dedicated decomposition node pointing to BDDs representing its kernel and
its factors. These factors may themselves be decompositions, allowing ‘nesting’
of decompositions. This process is repeated until no Shannon node is eligible.
Thus, a hybrid diagram is obtained, in which some nodes indicate decomposi-
tions (see Definition 2). Because of Ashenhurst’s unique decomposition theorem
[3], DSDBDDs are canonical like BDDs. The goal is that the new diagram is
smaller than BDD, since this method may remove more nodes than it adds, but
analytically little was known about this up to now.

Definition 2 (Disjoint Support Decomposition Diagram (DSDBDD)).
A DSDBDD is a BDD whose internal nodes are either Shannon nodes or decom-
position nodes. A decomposition node v has an outgoing edge to an internal node
vker called its kernel and outgoing edge to its factors v1, . . . , vm. It represents
the function [[v]] = [[vker]]([[v1]], . . . , [[vm]]), like in Eq. 1. The diagram satisfies the
following three rules:

1. If v is a factor of a decomposition node, then v satisfies [[v]](0, . . . , 0) = 1
2. Two factors [[vi]] and [[vj]] of a decomposition node have disjoint support, i.e.,

vars([[vi]]) ∩ vars([[vj]]) = ∅, for i �= j, where vars(f) denotes the set of
variables on which f depends.

3. The factors v1, . . . , vm of a decomposition node satisfy min vars([[vi]]) <
min vars([[vj]]) for i < j, where min is relative to the diagram’s variable order.

�
Figure 1(c) shows a DSDBDD for the same function f as Fig. 1(a) and 1(b).

Since this function can be expressed as a formula referencing each variable once,
the DSDBDD can easily decompose it, obtaining the kernel k = AND on three
variables. The factors are xi ⇔ xi+1 for i = 1, 3, 5. We remark that this suc-
cinct decomposition is available to a DSDBDD regardless of the variable order,
whereas the BDD may have exponential size unless the right variable order is
found. Figure 1(d) shows that the root of a DSDBDD is not necessarily a decom-
position node.

Let us briefly motivate the three rules in Definition 2, which are similar
to those formulated by Bertacco and Damiani [5]. The purpose of the rules
is to keep the query and manipulation operations tractable, i.e., to prevent
the diagram from becoming more expressive than intended. Notably, without
rule 2, we no longer have efficient algorithms for querying and manipulating
such a diagram; for example, model counting would be NP-hard, because,
a 3-CNF formula may now be represented as a decomposition with kernel
AND, and whose factors are disjunctions on three variables. Rule 1 compen-
sates the fact that, according to Ashenhurst’s Theorem, a decomposition is
unique up to complementation of the factors. For example, if a function f
has a decomposition f = k(�1, . . . , �m) with �i = ji(xi,1, . . . , xi,ni

) as in Eq. 1,
then another decomposition is f = k′(¬�1, . . . ,¬�m), where k′ takes the values
k′(�1, . . . , �m) � k(¬�1, . . . ,¬�m). More generally, for each factor, the comple-
mentation may be chosen independently, leading to exponentially many possible

794 L. Vinkhuijzen and A. Laarman

decompositions. Rule 1 uniquely determines the choice of complementation by
enforcing that, for each factor, ji(0, . . . , 0) = 1. Similarly, rule 3 compensates for
the fact that a decomposition is unique up to permutation of the kernel’s input
variables. For example, we may write the function f above as f = k′′(jm, . . . , j1)
where k′′(�1, . . . , �m) � k(�m, . . . , �1).

Technically, the kernel of a decomposition node takes as input variables that
are not inputs to f . The question which variables of the kernel to identify with
which variables of the DD can be an important design decision for DSDBDD
package implementations, and for obtaining canonicity. The diagram can be
made canonical by imposing additional rules. Since such a canonical diagram
is included in the above definition, a separation between BDDs and Definition 2
implies a separation with the canonical version. Therefore, we omit the strength-
ening of Definition 2 to obtain canonicity for the purposes of this work.

DSDBDDs supports the same queries and manipulation operations as BDDs
(i.e., conjunction, disjunction, negation, model counting, etc.). These algorithms
greedily minimize the DD by checking, whenever a new node is constructed,
whether the node allows a decomposition, and then building this decomposition
before proceeding. The worst-case running times of the algorithms are polyno-
mial in the size of the BDDs (but not necessarily in the size of the DSDBDDs). In
the best case, the running time is much better; in that case, the operands of, e.g.,
Conjoin, are two decompositions whose kernels read exactly the same factors. In
this case the operation can take advantage of the fact that, if j1, . . . , jm are func-
tions such that f1, f2 decompose as f = k1(j1, . . . , jm) and f2 = k2(j1, . . . , jm),
then

f1 ∧ f2 = (k1 ∧ k2)(j1, . . . , jm) (2)

This allows the Conjoin algorithm to work only on k1 and k2, whose diagrams
may be exponentially smaller than the BDDs of f and g. In the worst case,

Fig. 2. The DSDBDD of the function g, in Eq. 4 when n = 3. The permutations used
are π0 = (1)(2)(3), π1 = (1, 2, 3), π2 = (1, 3, 2). The rectangle containing xi ⇔ xj

represents the BDD of the function xi ⇔ xj , as shown in Fig. 1(e).

The Power of Disjoint Support Decompositions in Decision Diagrams 795

however, the decompositions share no factors, so that Conjoin must “unfold”
these decomposition nodes into BDDs and the operation is done on the BDDs;
hence, the running time is polynomial in the size of the BDDs. Bertacco and
Plaza implemented these operations in the publicly available software package
STACCATO [26,27]. They find that their package is competitive with CUDD
both in terms of time and memory, on the task of compiling a Boolean circuit
into a DD.

Similar ideas appear in AND/OR multi-valued DDs (AOMDDs) [20], which
are canonial, and in BDS-Maj diagrams [2]. In BDS-Maj, the kernel is always
chosen to be the Majority function on three inputs, and the factors may share
variables, unlike in a DSDBDD.

3 Succinctness Separation Between DSDBDD and BDD

Theorem 1 shows an example of a separating function g (Eq. 4) which has a
small DSDBDD but exponential-sized BDD, for every variable order. It is based
on three multiplexed copies of the order-parameterized function f , with variable
orders π0, π1, π2. By abuse of notation, we use z both as a bit-string, and as the
integer z ∈ {0, 1, 2} which the bit-string represents in base 2. The function f
is well known to yield exponential BDDs for non-interleaved variable orders, as
our generalized Lemma 1 shows. We state it without proof.

f [π](x1, . . . , xn, y1, . . . , yn) � (x1 ⇔ yπ(1)) ∧ · · · ∧ (xn ⇔ yπ(n)) (3)

g(z, x1, . . . , xn, y1, . . . , yn) � f [πz](x1, . . . , xn, y1, . . . , yn) for z ∈ {0, 1, 2}. (4)

Lemma 1. Let π ∈ Sn and σ be an order over {x1, . . . , xn, y1, . . . , yn} (the
variables f [π]). For 1 ≤ i ≤ n, say that xi and yπ(i) are partners. Let L be the
first n variables according to σ. If k elements in L have their partner outside of
L, then a BDD of f [π] with variable order σ has at least 2k nodes on layer n.

By choosing distinct permutations π, π′, the functions f [π], f [π′] will disagree
on which variables are partners. Theorem 1 shows that there exist many irrecon-
cilable choices for permutations π0−π2 in g, because the corresponding “partner
graph”, connecting two partner variables according to either permutation, is an
expander, i.e., has high connectivity.

Theorem 1. Let π0, π1, π2 be permutations chosen uniformly and indepen-
dently at random from Sn. Then it holds that, with high probability, for every
variable order σ over {x1, . . . , xn, y1, . . . , yn}, at least one of the BDDs for
f [π0], f [π1], f [π2] has size 2Ω(n) and hence the BDD for g is also large.

Proof. Let G be the undirected bipartite graph with nodes V =
{x1, . . . , xn, y1, . . . , yn} and edges E = E0 ∪ E1 ∪ E2 with Ej = {(xi, yπj(i)) |
1 ≤ i ≤ n}. Then G is an expander with high probability by Theorem 4.16 in

796 L. Vinkhuijzen and A. Laarman

[19]. That is, there is a constant ε > 0 (independent of n) such that, with high
probability, for all sets of vertices L ⊂ V , if |L| ≤ n, then

|N(L) \ L|
|L| ≥ ε where N(L) = {w | ∃v ∈ L : (v, w) ∈ E} (5)

Let σ be a variable order of V (the variables of the functions f [πj]), and let L
be the first n variables according σ. Then there are at least ε · n vertices in L
connected to L. Since each vertex is connected to at most 3 edges, it holds that
one of the edge sets Ej is responsible for at least ε ·n/3 edges crossing over from
L to L. Let K = Ej ∩ (L × L) be a set of pairs (xi, yπj(i)) such that xi is in
L, but its partner yπj(i) is L. It follows from Lemma 1 that the corresponding
function f [πj] has a BDD of size at least 2|K| = 2Ω(n). Since g|z:=j = f [πj], and
since a BDD is at least as large as the BDDs of its subfunctions, g also has at
least 2Ω(n) nodes. This holds w.h.p. over the choice of permutations. �

The DSDBDD of g is shown in Fig. 2, for n = 3. For larger n, the DSDBDD
simply has more “rows”, i.e., there are still three decomposition nodes, and they
have n factors. The DSDBDD of g therefore has only O(n) nodes for larger n.

An immediate corollary is that the same relation holds between DSDBDDs
versus ZDDs [23], Tagged BDDs [33] and CBDDs [12], since these decision dia-
grams are all at most a factor n smaller than BDDs on any function.

4 Conclusion and Future Work

We have analyzed the Disjoint Support Decomposition Binary Decision Dia-
gram and found that it strictly dominates BDD and ZDD in terms of memory,
up to polynomial overhead. That is, DSDBDDs can be exponentially smaller
than BDDs. It remains an open question how DSDBDDs relates to other very
expressive DDs; notably, it would be good to know its relation to SDDs, FBDDs,
non-deterministic BDDs (∨-BDD [7,8]) and d-DNNF. In addition, it would be
interesting to map the complexity of DSDBDDs of the different operations con-
sidered by Darwiche & Marquis [16].

To the best of our knowledge, DSDBDDs have not been deployed on large,
real-world problems as encountered, e.g., in model checking and synthesis. Given
that we showed that DSDBDDs can be exponentially more succinct, and they
retain canonicity of BDDs, it could be worthwhile to test the scalability of
DSDBDD in practice. In a similar vein, the integration of disjoint support decom-
positions into other decision diagrams could be considered. Minato [24] shows
how to find the DSDs of the nodes in a ZDD; a next step would be to integrate
this into the Boolean operations of ZDDs, as was done in [26,27], so that the
diagram remains small during compilation. Other promising candidates for inte-
gration with DSDs are FDDs and SDDs; we are not aware of any work in this
direction.

The Power of Disjoint Support Decompositions in Decision Diagrams 797

Acknowledgements. The authors wish to thank Holger Hoos for insightful discus-
sions and for many useful comments on drafts of this paper, and the anonymous NFM
reviewers for helpful feedback.

References

1. Al-Rabadi, A.N., Perkowski, M., Zwick, M.: A comparison of modified recon-
structability analysis and Ashenhurst-Curtis decomposition of Boolean functions,
Kybernetes (2004)

2. Amarú, L., Gaillardon, P.-E., De Micheli, G.: BDS-MAJ: A BDD-based logic syn-
thesis tool exploiting majority logic decomposition. In: Proceedings of the 50th
Annual Design Automation Conference, pp. 1–6 (2013)

3. Ashenhurst, R.L.: The decomposition of switching functions. In: Proceedings of an
International Symposium on the Theory of Switching, April 1957 (1957)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Bertacco, V.: The disjunctive decomposition of logic functions. In: Proceedings of
the International Conference on Computer-Aided Design (ICCAD 1997), Novem-
ber 1997, pp. 78–82 (1997)

6. Bertacco, V., Damiani, M.: Boolean function representation based on disjoint-
support decompositions. In: Proceedings International Conference on Computer
Design. VLSI in Computers and Processors, pp. 27–32. IEEE (1996)

7. Bollig, B., Buttkus, M.: On the relative succinctness of sentential decision diagrams.
Theory Comput. Syst. 63(6), 1250–1277 (2019)

8. Bollig, B., Farenholtz, M.: On the relation between structured d-DNNFs and SDDs.
Theory Comput. Syst. 65(2), 274–295 (2021)

9. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996)

10. Bova, S.: SDDs are exponentially more succinct than OBDDs. In: Thirtieth AAAI
Conference on Artificial Intelligence (2016)

11. Randal, E.: Bryant, Graph-based algorithms for Boolean function manipulation.
IEEE Trans. Computers 35(8), 677–691 (1986)

12. Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 81–98.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 5

13. Dal, G.H., Laarman, A.W., Hommersom, A., Lucas, P.J.F.: A compositional app-
roach to probabilistic knowledge compilation. Int. J. Approximate Reasoning 138,
38–66 (2021)

14. Damiani, M., Bertacco, V.: Finding complex disjunctive decompositions of logic
functions. In: Proceedings of the International Workshop on Logic & Synthesis,
pp. 478–483 (1998)

15. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence-Volume Two, pp. 819–826. AAAI Press (2011)

16. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

17. Gergov, J., Meinel, C.: Efficient Boolean manipulation with OBDDs can be
extended to FBDDs. Universität Trier, Mathematik/Informatik, Forschungs-
bericht, pp. 93–12 (1993)

https://doi.org/10.1007/978-3-319-89960-2_5

798 L. Vinkhuijzen and A. Laarman

18. Hong, X., Ying, M., Feng, Y., Zhou, X., Li, S.: Approximate equivalence checking
of noisy quantum circuits. arXiv preprint arXiv:2103.11595 (2021)

19. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439–561 (2006)

20. Mateescu, R., Dechter, R., Marinescu, R.: And/or multi-valued decision diagrams
(AOMDDs) for graphical models. J. Artif. Intelli. Res. 33, 465–519 (2008)

21. Matsunaga, Y.: An exact and efficient algorithm for disjunctive decomposition. In:
Proceedings of Synthesis and System Integration of Mixed Technologies (SASIMI
1998, Japan), October 1998

22. McMillan, K.L.: Symbolic model checking: an approach to the state explosion
problem, Ph.D. thesis, 1992, UMI No. GAX92-24209

23. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–
277. IEEE (1993)

24. Minato, S.: Finding simple disjoint decompositions in frequent itemset data using
zero-suppressed BDD. In: Proceedings of IEEE ICDM 2005 Workshop on Compu-
tational Intelligence in Data Mining, pp. 3–11 (2005)

25. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs:
efficient quantum function representation and manipulation. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 35(1), 86–99 (2015)

26. Plaza, S., Bertacco, V.: Boolean operations on decomposed functions. In: Proceed-
ings of the 24th International Workshop on Logic & Synthesis, pp. 310–317 (2005)

27. Plaza, S., Bertacco, V.: STACCATO: disjoint support decompositions from BDDs
through symbolic kernels. In: Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, pp. 276–279 (2005)

28. Sasao, T.: FPGA design by generalized functional decomposition. In: Sasao, T.
(ed.) Logic Synthesis and Optimization, The Kluwer International Series in Engi-
neering and Computer Science, vol. 212, pp. 233–258. Springer, Boston (1993).
https://doi.org/10.1007/978-1-4615-3154-8 11

29. Sasao, T., Matsuura, M.: DECOMPOS: an integrated system for functional decom-
position. In: International Workshop on Logic Synthesis, vol. 1998, pp. 471–477
(1998)

30. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. J. Multiple Valued Log. Soft Comput. 18(1), 55–65 (2012)

31. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large
reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26
(2016)

32. Van den Broeck, G., Darwiche, A.: On the role of canonicity in knowledge compi-
lation. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

33. van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: combining reduction rules from
different decision diagram types. In: Proceedings of the 17th Conference on Formal
Methods in Computer-Aided Design, FMCAD Inc, pp. 108–115 (2017)

34. Viamontes, G.F., Rajagopalan, M., Markov, I.L., Hayes, J.P.: Gate-level simulation
of quantum circuits. In: Proceedings of the 2003 Asia and South Pacific Design
Automation Conference, pp. 295–301 (2003)

35. Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD a
decision diagram for simulation of quantum computing including stabilizer states,
arXiv preprint arXiv:2108.00931 (2021)

36. Vinkhuijzen, L., Laarman, A.: Symbolic model checking with sentential decision
diagrams. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 124–
142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2 8

http://arxiv.org/abs/2103.11595
https://doi.org/10.1007/978-1-4615-3154-8_11
http://arxiv.org/abs/2108.00931
https://doi.org/10.1007/978-3-030-62822-2_8

The Power of Disjoint Support Decompositions in Decision Diagrams 799

37. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275
(2009)

38. Zulehner, A., Wille, R.: Improving synthesis of reversible circuits: exploiting redun-
dancies in paths and nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds.) RC 2017.
LNCS, vol. 10301, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59936-6 18

https://doi.org/10.1007/978-3-319-59936-6_18
https://doi.org/10.1007/978-3-319-59936-6_18

Incremental Transitive Closure for Zonal
Abstract Domain

Kenny Ballou(B) and Elena Sherman

Boise State University, Boise, USA
{kennyballou,elenasherman}@boisestate.edu

Abstract. The Zonal numerical domain is an efficient, weakly-relational
abstract domain in static analysis by abstract interpretation. Compared
to the Interval domain, the Zonal domain is capable of discovering weak
relations between two program variables. To reason about Zonal states,
it is imperative that they are transformed into a canonical closed form.
This task is accomplished through the transitive closure operation com-
monly implemented as the all-pairs shortest path algorithm, with O(n3)
complexity, where n is the number of program variables.

In this work, we explore the closed form of Zonal states in the con-
text of a data-flow analysis framework. Also, we present an incremental
transitive closure algorithm that preserves a closed form of an updated
Zonal state. The algorithm reduces the overall analysis complexity to
O(n2). We evaluate our approach by performing intra-procedural Zonal
analysis on 63 real-world programs. The results show an improvement in
runtime, especially on large programs. For example, an hour-long ana-
lyzer run with the traditional Zonal implementation has been reduced to
a minute with the proposed incremental Zonal variant.

1 Introduction

Abstract interpretation (AI) [4] is an essential technique for supporting various
software engineering and programming languages tasks. Used in the context
of data-flow analysis framework [7], AI assists a static analyzer with computing
invariants over program variables. Then areas such as program verification [2,16]
or compiler optimization [1,6] exploit these invariants to accomplish their tasks.

To capture the abstract semantics of a program, AI employs abstract
numerical domains, which vary in their expressive power. The Interval domain
abstracts program variables into a single continuous interval. Relational numer-
ical domains, such as the Zone and Octagon domain [9,10], are more expres-
sive because they represent relations between program variables. However, the
expressiveness of relational numerical domains comes with a higher runtime
cost [9]. The Zonal domain is the most efficient among relational domains, but it
still timeouts on large programs because of its cubic complexity in terms of pro-
gram variables [10]. This complexity comes from the transitive closure algorithm
for computing canonical representations for Zonal states, which is imperative
when comparing Zonal states or identifying infeasible states.
c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 800–808, 2022.
https://doi.org/10.1007/978-3-031-06773-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_43&domain=pdf
http://orcid.org/0000-0002-6032-474X
http://orcid.org/0000-0003-4522-9725
https://doi.org/10.1007/978-3-031-06773-0_43

Incremental Transitive Closure for Zonal Abstract Domain 801

Z0

x1 x2

x3

1

−1
2

−2

3

−1

1

4

2

(a) Graph representation of a Zonal state.
Dashed edges are implicit relations.

⎛
⎜⎜⎜⎝

Z0 x1 x2 x3

Z0 0 −1 −2 2

x1 1 0 −1 3

x2 2 1 0 4
x3 0

⎞
⎟⎟⎟⎠

(b) Difference Bounded Matrix encod-
ing of the graph on the left. Dashed
boxes denote implicit relations.

Fig. 1. A directed graph for x1 = 1, x2 = 2 and x1 − x3 ≤ 3 and the corresponding
difference bounded matrix encoding.

In this work, we investigate the full closure property of Zonal abstract states
in the context of a data-flow static analysis framework. While previous work [10]
defines transfer functions on the Zonal domain regardless of its full closure prop-
erty, we observed that the fixpoint algorithm frequently compares the Zonal
states from the current and previous iterations, which requires invocation of the
closure algorithm. This observation prompted us to explore whether the effi-
ciency of transfer functions for fully closed Zonal states can be improved.

We evaluated three implementations of Zonal states in an intra-procedural
branch-sensitive data-flow analysis framework on 63 real-world programs. We
constructed our experiment to answer the following two research questions:
RQ1: In the context of data-flow analysis, does the propagation of fully closed
Zonal states improve runtime efficiency of the analysis?
RQ2: In the context of data-flow analysis, is the proposed incremental transitive
closure algorithm more efficient than a conventional closure implementation?

Before we answer these questions in Sect. 4, we first present necessary back-
ground on Zonal abstract domain and then proposed algorithm in Sect. 3. We
conclude with the paper’s summary and directions for future work.

2 Zonal Abstract Domain

The Zonal [10] abstract domain is a weakly-relational domain that includes only
constraints of the form x−y ≤ c, where x and y are program variables and c is a
numerical constant, in our case an integer. To represent constraints of the form
x ≤ c in the above canonical form, a special “zero” variable, Z0, is introduced.
Since its value is always 0, the constraint becomes x − Z0 ≤ c. The set of linear
inequalities represents a bounding region of program variables’ possible values.

Representation. The advantages of Zonal domain are that its state can be
efficiently represented as a directed graph, and operations on states reduce to
graph operations. Figure 1a gives a graph example and Fig. 1b the corresponding

802 K. Ballou and E. Sherman

Algorithm 1. Forget operation for a traditional Zonal state
1: function CloseAndForget(k)
2: for i = 0 to N do � Close connected paths
3: for j = 0 to N do
4: if (i �= j ∧ j �= k) then
5: Mij ← min (Mij , Mik + Mjk)
6: end if
7: end for
8: end for
9: for i = 0 to N do � Forget constraints connected to k
10: if i �= k then
11: Mik ← �
12: Mki ← �
13: end if
14: end for
15: end function

encoding as a difference-bounded matrix (DBM) [5]. Here, a constraint x−y ≤ c,
is an edge with weight c from the source node x and the target node y. The
constraints encoded in Fig. 1a (in solid lines) are x1 = 1, i.e., x1 − Z0 ≤ 1 and
Z0 −x1 ≤ −1, x2 = 2 and x1 −x3 ≤ 3. Dashed lines represent implicit relations,
while the absence of edges indicate unbounded relations between variables. Thus,
no edge from x3 to x1 indicates the unbounded relation x3 − x1 ≤ +∞.

The DBM representation places source nodes in rows and target nodes in
columns in the same order, and weights between them are elements of the matrix,
e.g., the x1 row and the x3 column represents the relationship x1 − x3 ≤ 3, and
� values indicate unbounded relations. The values in dashed boxes are implicit
relations that are computed by a transitive closure algorithm.

Canonical Form. To efficiently compare two Zonal states using their DBM
encoding, and perform other essential operations used in a data-flow framework
(e.g., intersection, least-upper bound), it is essential that Zonal states are in
the same canonical representation. In the previous example, the set of constraints
with solid lines and the same set augmented with implicit constraints (dashed
lines) describe the identical bounded region, yet their DBMs are different. Miné
[10] proposed a canonical form by transitively closing the set of constraints in
a Zonal state. That is, the canonical form where all constraints are explicit, no
additional constraints can be inferred. This form is often called fully closed.

Essentially, the transitive closure adds implicit constraints, but also tightens
the constraints represented by the DBM. Thus, given a DBM M , the transitive
closure of M with n = |M | yields the following property: ∀i, j, k ∈ {0, 1, . . . n},
mij ≤ mik + mkj on elements of M . To transform M into this canonical form,
researchers commonly use an all-pairs shortest path algorithm, such as the Floyd-
Warshall algorithm [3]. Unfortunately, it has Θ(n3) complexity. In fact, this
algorithm is primarily the reason for Zonal domain analysis has O(n3) complex-
ity [10].

Operations. A transfer function of a Zonal state interprets semantics of a
statement in terms of removal of existing constraints, i.e., forget operation,

Incremental Transitive Closure for Zonal Abstract Domain 803

Algorithm 2. Incremental Closure Algorithm
1: function IncrementalClosure(s, t, c, M)
2: N ← length(M), W ← {t}
3: if addConstraint(s, t, c) then
4: for i = 0 to N do
5: if addConstraint(s, i, Mst + Mti) then
6: W ← W ∪ {i}
7: end if
8: end for
9: for i = 0 to N do
10: for w ∈ W do
11: addConstraint(i, w, Mis + Msw)
12: end for
13: end for
14: end if
15: end function

and addition of a new constraint, i.e., add operation. The add operation only
requires updating a single element of the state’s DBM.

However, the forget operation for traditional Zonal states requires addi-
tional care, since removing an edge causes all implicit constraints to also disap-
pear, which results in precision loss. Thus, if in Fig. 1a the implicit constraints
x3 ≥ −2 inferred by x1 −x3 ≤ 3 and x1 = 1 is not made explicit before reassign-
ing x1 (which leads to removing all incoming and outgoing edges from the x1

node), then the value of x3 becomes less restricted. As such, the forget operation
has an intermediate path closure step (lines 2–8 of Algorithm 1) that discovers
all implicit paths through the node marked for removal. Afterwards, the algo-
rithm removes all constraints connected to the removed node (lines 9–14). Note,
this operation does not remove the variable, instead it removes the constraints
associated with the variable, thus making it unbounded. Algorithm 1 presents
pseudocode for forget as in previous work [10] and has O(n2) complexity.

If a data-flow framework propagates fully closed Zonal states, however, then
the first part of the algorithm on lines 2–9 becomes unnecessary. Thus, for closed
Zonal states, the complexity of forget operation becomes O(n). This complexity
reduction comes with a cost – the framework should transform states to their
fully closed form (O(n3)). Although, a data-flow framework already requires
closed Zonal states to perform state comparisons, feasibility checks, and other
operations. Hence, the fully closed property of a Zonal state could eliminate
invocation of closure algorithm in the context of the framework.

3 Incremental Closure

Since the data-flow framework favors the fully closed form, we investigate
whether we can modify the transfer function’s operations add and forget such
that for a given fully closed Zonal state they produce a new, fully closed state.

In this case, a constraint removal through forget operation is the same as for
closed Zonal states. If a state is fully closed, then a removal of an edge maintains
such a property since no new inferred constraints could be discovered. But add
operation requires additional considerations. For Zonal states, we propose a novel

804 K. Ballou and E. Sherman

incremental closure algorithm, which after adding a constraint, also discovers
all minimal constraints that can be inferred through that edge. The algorithm
computes edges between the source node’s parents and the target node’s children.

Algorithm 2 presents the pseudocode for the DBM encoding. The parameters
s and t are indices of the closed DBM M for the source and the target nodes,
and c ∈ Z is the constant. If the added constraint is tighter than the existing
one, i.e., AddConstratint returns true, then it proceeds to discover new implicit
constraints. Then the algorithm constructs a worklist of all children which are
affected by the addition of the new constraint (lines 4–8). Using this worklist
and the parents of s, the algorithm computes the minimum constraint between
all the parents of s and the children of t (lines 9–12). The complexity of the
incremental transitive closure algorithm is O(n2) from the two nested loops on
the same lines.

Following is a proof of correctness for Algorithm 2.

Theorem 1. Given a fully closed Zonal state in DBM encoding and a new con-
straint with s, t and c parameters, the IncrementalClosure algorithm computes
a correct, fully-closed DBM.

s

s0 sl

.

t

t0 tm
.

Fig. 2. Example graph representation of M during induction step. The dashed cyan
edge represents the additional edge (s → t); blue edges represent parents of s connecting
to t; magenta edges represent s connecting to children of t; and green edges represent
parents of s connecting to children of t. (Color figure online)

Proof. Let V be a finite set of program variables such that s, t ∈ V .
We prove by induction on the number of edges of M , with the full closure

property as our induction hypothesis.

Incremental Transitive Closure for Zonal Abstract Domain 805

Case 1. Base Case. Our DBM M has k = 0 edges and it is closed. Since
mij = � ∀i, j ∈ {0, 1, . . . |V |}. Therefore, our full closure property, ∀i, j, h ∈
{0, 1, . . . , |V |},mij ≤ mih + mhj , holds.

Case 2. Induction. We assume DBM M with k edges, M is fully closed, and no
edge exists between node s and t, i.e., s − t ≤ �.
Adding edge s → t, we have k + 1 edges.
Let S = parent(s)∪{s} and T = children(t)∪{t}. The edges to be recomputed
consists of edges from sl → tm,∀sl ∈ S and ∀tm ∈ T . We need to show the
full closure property holds.

Case (a) Parents of s connect to t. This case connects to blue edges in
Fig. 2.
∀sl ∈ S, we connect

∗
mslt ← min (mslt,msls + mst)

where
∗

mslt is the new edge weight for edge sl → t.
Case (b) s connects to members of T . This case connects to magenta edges
in Fig. 2.
∀tm ∈ T , we connect

∗
mstm ← min (mstm ,mst + mttm)

where
∗

mstm is the new edge weight for edge s → tm.
Case (c) S connects to T . This case connects to green edges in Fig. 2.
∀sl ∈ S and ∀tm ∈ T , we connect

∗
msltm ← min (msltm ,msls + mst + mttm)

← min
(
msltm ,msls +

∗
mstm

)

where
∗

msltm is the new edge weight for edge sl → tm.
Since either msltm was already constrained by some h or the addition of
edge s → t induced a new minimum which was computed above, therefore,
msltm ≤ mslh + mhtm ,∀h ∈ {0, 1, . . . |V |} holds. ��

4 Evaluations and Results

To evaluate the proposed approaches, we implemented three Zonal branch sensi-
tive intra-procedural analyses: traditional, closed and incremental. We used the
Soot (v. 4.2.1.) data-flow framework [14] that has been extended to support
numerical abstract domains [11]. We evaluated these implementations on real-
world programs and compared their runtimes. We used the obtained data to
answer our two research questions.

Benchmarks. Our benchmark set consists of 63 real-world Java methods with
non-trivial number of integer operations [12]. To better evaluate the scalability

806 K. Ballou and E. Sherman

0.1

1

10

100

1000

10000

100000

1 × 106

1 × 107

small medium large

A
ve

ra
ge

R
un

ti
m

e
(m

s)

Program Size Grouping

Fig. 3. Average runtime grouped by program sizes. Dotted boxes – incremental, solid
boxes – closed, and dashed – traditional Zonal abstract domains.

of Zonal implementations, we partitioned the methods into three (3) groups:
“small”, “medium”, and “large”. The median instruction count for “small”,
“medium”, and “large” is 23, 156, 468, respectively.

Environment. To avoid inconsistencies within JVM startup times and other
experiment supporting operations, we record only the time each analyzer spends
performing fixed-point computations. We run each Zonal implementation five
times on each program and use the average time as data points.

Results. Figure 3 shows runtime results of our experiments as box plots (mil-
liseconds, log scale y-axis) for each benchmark group (x-axis). The data shows
that closed (solid boxes) performs slightly better than traditional (dashed boxes)
Zonal states. Although both Zonal variants invoke the full closure operation at
each statement, closed uses the full closure property to avoid invocation of this
operation at merge and widening points, and when computing branch feasibility.
Moreover, the forget operation for closed has a linear complexity, while the same
operation for traditional has a quadratic complexity.

Thus, these improvements contribute to closed outperforming traditional
implementation. However, after performing a t-test, we found no statistically
significant differences for all program sizes for p ≤ 0.05 (for the large group,
runtimes become significantly different at p ≤ 0.07). This small difference in
closed over traditional is due to the dominating cubic complexity of the transi-
tive closure algorithm. Thus, we see a slight improvement of closed Zonal state
implementation over traditional, which indicates that propagating fully closed
Zonal states is more efficient in the context of data-flow analysis.

Incremental Transitive Closure for Zonal Abstract Domain 807

We observe that incremental is more efficient compared to closed, especially
for the large program group. Also, the growth of incremental is less steep than
the other two variants, because the former is dominated by the quadratic and
the latter by the cubic growth complexity in terms of program variables. The
data for large program supports this difference in complexity, where the median
runtime for incremental is about 103 ms, while for closed is about 104 ms.

T-test analyses show no statistical differences for the small group, but found
them for the other two groups. The p value for incremental vs. closed for the
medium group is 0.004 and for the large group is 0.002. Thus, we can conclude
that our proposed incremental transitive closure algorithm is more efficient than
a conventional closure algorithm in the context of a data-flow framework.

5 Conclusion

In this paper, we analyzed propagation of fully closed Zonal abstract states in
the context of a data-flow static analysis framework. In addition, we proposed
a novel incremental transitive closure algorithm for the Zonal abstract domain
and showed analytically and experimentally that it reduces analysis time by an
order of magnitude, especially on larger programs.

The representation of DBMs are borrowed from previous work in the model
checking community [5,8,15]. This work may be relevant to applications within
model checking techniques that require canonical representation of DBMs. In
future work, we intend to extend the incremental closure algorithm to allow for
more efficient implementations of other canonical forms besides the fully closed
canonical form. For example, a canonical form that eliminates relations between
constant values, or a minimal canonical form [8].

Acknowledgments. The work reported here was supported by the U.S. National
Science Foundation under award CCF-19-42044.

References

1. Abate, C., et al.: An extended account of trace-relating compiler correctness and
secure compilation. ACM Trans. Program. Lang. Syst. 43(4), 1–48 (2021). https://
doi.org/10.1145/3460860

2. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, pp. 196–207. PLDI 2003, Association for Computing Machin-
ery, New York, NY, USA (2003). https://doi.org/10.1145/781131.781153

3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms,
chap. 26.2. Computer science, McGraw-Hill (2009). https://doi.org/10.11708/9446,
https://books.google.com/books?id=aefUBQAAQBAJ

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pp. 238–252. POPL 1977, ACM, New York, NY, USA (1977). https://
doi.org/10.1145/512950.512973

https://doi.org/10.1145/3460860
https://doi.org/10.1145/3460860
https://doi.org/10.1145/781131.781153
https://doi.org/10.11708/9446
https://books.google.com/books?id=aefUBQAAQBAJ
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973

808 K. Ballou and E. Sherman

5. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
Lecture Notes in Computer Science, pp. 197–212 (1990). https://doi.org/10.1007/
3-540-52148-8 17

6. Katz, S.: Program optimization using invariants. IEEE Trans. Softw. Eng. 4(05),
378–389 (1978). https://doi.org/10.1109/TSE.1978.233858

7. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pp. 194–206. POPL 1973, ACM, New York, NY, USA (1973).
https://doi.org/10.1145/512927.512945

8. Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: Proceedings Real-
Time Systems Symposium, pp. 14–24. IEEE Computer Society (1997). https://
doi.org/10.1109/real.1997.641265,https://doi.org/10.1109/REAL.1997.641265

9. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1),
31–100 (2006). https://doi.org/10.1007/s10990-006-8609-1

10. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7 10

11. Sherman, E.: Redesigning soot’s data-flow analysis framework for abstract inter-
pretation. In: Companion Proceedings for the ISSTA/ECOOP 2018 Workshops,
pp. 78–84. ISSTA 2018, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3236454.3236506,https://doi.org/10.1145/
3236454.3236506

12. Sherman, E., Dwyer, M.B.: Exploiting domain and program structure to synthesize
efficient and precise data flow analyses (t). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), November 2015. https://
doi.org/10.1109/ase.2015.41

13. Tange, O.: Gnu parallel 20210722 (’blue unity’), July 2021. https://doi.org/10.
5281/zenodo.5123056,https://doi.org/10.5281/zenodo.5123056, GNU Parallel is a
general parallelizer to run multiple serial command line programs in parallel with-
out changing them

14. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research, p. 13. CASCON
1999, IBM Press (1999)

15. Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W.
(eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65193-4 20

16. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 707–721. PLDI 2018, Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3192366.3192416

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1109/TSE.1978.233858
https://doi.org/10.1145/512927.512945
https://doi.org/10.1109/real.1997.641265
https://doi.org/10.1109/real.1997.641265
https://doi.org/10.1109/REAL.1997.641265
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1145/3236454.3236506
https://doi.org/10.1145/3236454.3236506
https://doi.org/10.1145/3236454.3236506
https://doi.org/10.1109/ase.2015.41
https://doi.org/10.1109/ase.2015.41
https://doi.org/10.5281/zenodo.5123056
https://doi.org/10.5281/zenodo.5123056
https://doi.org/10.5281/zenodo.5123056
https://doi.org/10.1007/3-540-65193-4_20
https://doi.org/10.1145/3192366.3192416

Proof Mate: An Interactive Proof Helper
for PVS (Tool Paper)

Paolo Masci1(B) and Aaron Dutle2

1 National Institute of Aerospace, Hampton, VA, USA
paolo.masci@nianet.org

2 NASA Langley Research Center, Hampton, VA, USA

aaron.m.dutle@nasa.gov

Abstract. This paper presents Proof Mate, an interactive proof helper
for the PVS verification system. The helper is integrated in VSCode-
PVS, the Visual Studio Code extension for PVS. It extends the capabil-
ities of VSCode-PVS by introducing new functionalities for suggesting
proof commands, sketching proof attempts, and repairing broken proofs
during interactive proof sessions. This work further aligns VSCode-PVS
to the functionalities provided by modern development tools, with the
ultimate aim to facilitate the adoption of formal methods in engineering
practices and education.

Tool available at: https://github.com/nasa/vscode-pvs

1 Introduction

The capabilities of formal methods tools have classically been measured by
aspects such as the expressiveness of the specification language, the level of
automation, and the scalability of the analysis when dealing with complex sys-
tems. In recent years, an additional metric started to play an important role,
linked to the usability of the tool front-end. The current generation of proof
engineers, and likely future generations, favor graphical front-ends over com-
mand line versions. Functionalities like auto-completion, integrated help, and
point-and-click interactions are now considered baseline features that any mod-
ern tool front-end is expected to provide.

Developers of formal methods tools are upgrading the front-end of their tools
to meet this new baseline. An example is VSCode-PVS [4], which upgrades the
Emacs front-end of PVS [7] to Visual Studio Code, a mainstream open-source
code editor widely popular in the developer community. VSCode-PVS provides
editor functionalities such as autocompletion, hover information, live diagnostics,
interactive proof tree visualizer and editor, among several others.

This work introduces Proof Mate, a new interactive tool for VSCode-PVS
that further extends the capabilities of the PVS front-end with new functional-
ities for proof development, proof editing and proof repair.

P. Masci—Research by the first author is supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 809–815, 2022.
https://doi.org/10.1007/978-3-031-06773-0_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_44&domain=pdf
https://github.com/nasa/vscode-pvs
https://doi.org/10.1007/978-3-031-06773-0_44

810 P. Masci and A. Dutle

2 Theorem Proving in PVS and VSCode-PVS

The Prototype Verification System (PVS [7]) is an interactive theorem prover
(ITP) based on a sequent calculus for classical higher-order logic, used exten-
sively by NASA Langley Research Center’s formal methods team (see, e. g., [2,
6]). Specifications and properties are written in a human-readable “.pvs” file, but
contrary to many other ITPs, proofs are stored in a separate proof file using an
internal representation [5], and not generally intended for direct reading or edit-
ing. Proofs are constructed interactively in PVS using proof commands, which
are applied to a sequent. A sequent has the structure A1..An � C1..Cn, where
Ai are called antecedent formulas, and Ci are consequent formulas. A proof
command manipulates the sequent (with some commands branching to several
sequents). A branch is closed (i.e., proven) when an antecedent is false, a con-
sequent is true, or the same formula appears in the antecedent and consequent.
An example proof command is assert, which expands and simplifies definitions.
Proofs can consist of many branches and hundreds of proof commands, stored
as a list.

While the original PVS Emacs interface allows for viewing a proof in either
text or tree form, editing a proof in this form is difficult even for expert users,
and cannot be performed during an interactive proof session. VSCode-PVS [4]
is a new front-end that integrates PVS in the Visual Studio Code editor. In
VSCode-PVS, proof commands are entered in the Prover Console and displayed
as a proof tree in a side panel called Proof Explorer (see Fig. 1). Proof Explorer
improves the viewing and navigation of proofs by incorporating a collapsible,
filesystem-like view. Edit operations in Proof Explorer, however, are intentionally
constrained, because the proof tree shown is intended to always reflect the proof
structure computed by PVS. This way, the user knows exactly what will be saved
in the proof file at the end of a proof session.

3 Proof Mate

Proof Mate extends the capabilities of VSCode-PVS by introducing new func-
tionalities for suggesting proof commands, sketching proof attempts, and repair-
ing broken proofs during interactive proof sessions. The tool is integrated in the
front-end as a side panel characterized by interactive tree views, inline actions,
and a toolbar (see Fig. 1). Proof Mate has a similar look and feel to Proof
Explorer, but because it is not tied directly to the proof being attempted, it
offers much more flexibility to experiment with and write proof segments.

Suggesting Proof Commands. Proof Mate provides hints for proof
commands during a proof session, while the proof engineer is proving a theorem.
Hints are selected using heuristics based on common proof patterns in PVS. The
heuristics are encoded into templates which ensure that the selected commands
are applicable. One example is: “if a consequent formula starts with FORALL or
an antecedent starts with EXISTS, then recommend skolemization commands
(i.e., skosimp* or skeep).” Another example is: “if a formula has the form expr

Proof Mate: An Interactive Proof Helper for PVS 811

Fig. 1. Proof Mate (1), Proof Explorer (2), Editor (3) and Prover Console (4)

= IF expr THEN expr ENDIF, recommend commands for lifting the innermost
contiguous branching structure out to the top level (i.e., lift-if).” When none
of the other heuristics are matched, general simplification procedures are recom-
mended (i.e., assert or grind). The hints are automatically computed by Proof
Mate during interactive proof sessions, every time a new sequent is returned by
PVS. A tooltip providing a brief description of the proof command is shown
when hovering the mouse over a recommendation. Point-and-click interactions
can be used to select a recommendation and send it to the prover console for
execution.

Sketching Proof Attempts. Proof Mate provides a sketchpad that can be
used by proof engineers to create and edit proof clips. While the look and feel
of the sketchpad resembles that of Proof Explorer, proof clips shown in the
sketchpad are designed to reflect proof ideas in the mind of the proof engineer
developing the proof, as opposed to mirroring the proof tree that is internally
created by PVS. Because of this, proof clips can be edited freely. Multiple proof
clips can be created and stored in the sketchpad. Each clip is automatically
labeled with a timestamp or a custom name provided by the proof engineer.
Edit operations allowed on sketchpad clips include renaming, addition, deletion,
and copy/paste of proof commands and proof branches. Copy/paste operations
are also allowed between the sketchpad and Proof Explorer. All operations can be
performed with point-and-click interactions. Inline action buttons are provided
for frequent operations. Proof clips are maintained across different proof sessions,
allowing re-use of proof sketches created for other proofs. Interactive controls are
available for executing proof commands and playback of proof clips.

812 P. Masci and A. Dutle

Repairing Broken Proofs. A PVS proof may break for various reasons. The
majority of broken proofs come from changes introduced by the proof engineer
in the PVS specification under development or analysis. This may happen when
a definition used in the proof is updated, which happens frequently in the early
stages of development, or due to simple refactoring of terms. Occasionally, proofs
break due to enhancements or alterations introduced by the PVS developers
in the prover engine. A recent example of this is the release of version 7.0 of
PVS, which caused some proofs to break due to changes in the typechecking
implementation.

When a proof breaks, and PVS attempts to rerun the proof, some fragments
of the proof structure are often discarded1. This may happen when, for example,
a split command previously created 3 branches, but due to some change in the
specification, only 2 branches are now created. Proof Explorer, which is designed
to reflect the proof structure that will be internally stored by PVS, automatically
prunes sections of the proof tree corresponding to the part discarded by PVS. In
the hypothetical example, the proof commands for the missing branch would be
discarded. While this ensures consistency between Proof Explorer and PVS, the
net result is that a fragment of the proof is effectively lost. Proof Mate seamlessly
detects these situations and saves to the sketchpad the proof fragments that
would otherwise be lost. Proof engineers can inspect the fragments saved in the
sketchpad to understand what caused the break and edit/execute the fragments
to repair the proof.

Figure 1 shows a situation where a proof, that was previously complete, broke
during a proof re-run. In the original proof, PVS was generating two sub-goals
(i.e., two branches) after (inst? -1). In the proof re-run, PVS is not generating
sub-goals. In this situation, PVS discards the two branches and, consequently,
Proof Explorer automatically prunes all nodes after (inst? -1). Proof Mate
saves the pruned fragments in the sketchpad, as a clip rooted in (inst? -1)—
this provides a visual cue that can help proof engineers map the content of the
sketchpad with that of Proof Explorer. In this example, the proof was broken
because of a definition change introduced in the PVS specification. The repair
action involved executing the first command in the first branch of the proof clip
(i.e., assert). While the repair in this case was indeed simple, it can occur that
the most difficult branch of a proof is the one that is pruned after being broken,
and Proof Mate makes the repair simple.

4 Architecture and Implementation

The high-level architectural diagram shown in Fig. 2 illustrates how Proof Mate
is integrated in VSCode-PVS and the Language Server Protocol2 (LSP) architec-
ture. Being a front-end module, Proof Mate is part of the client side of the LSP
1 It should be noted that the entire broken proof is retained until a user intention-
ally saves a new version. Even while repairing a broken proof, the repair may be
abandoned without saving and the original (broken) proof will persist.

2 https://microsoft.github.io/language-server-protocol.

https://microsoft.github.io/language-server-protocol

Proof Mate: An Interactive Proof Helper for PVS 813

Fig. 2. Proof Mate Architecture integrated in VSCode-PVS (blocks represent func-
tional components, arrows indicate exchange of data or events between components).

architecture. It communicates with three VSCode-PVS components. VSCode-
PVS Client is used for sending a request to execute a proof command to the
VSCode-PVS server through the LSP connection. The client is also used for
receiving notifications about changes in the proof structure, in particular dele-
tion of nodes and proof branches. These events are used by Proof Mate for seam-
less detection and handling of broken proofs. Proof Explorer provides a shared
clipboard that is used by Proof Mate when performing copy/paste operations
from/to Proof Explorer. Prover Console provides APIs for writing text in the
console. These APIs are used by Proof Mate to provide feedback to the user
when, e.g., point-and-click interactions with Proof Mate trigger the execution of
a command. The VSCode APIs are used by Proof Mate for creating the visual
elements of the view, as well as to link the view to the global command palette
and clipboard of the Visual Studio Code editor.

Implementation. Proof Mate is entirely implemented in TypeScript, a ver-
sion of the JavaScript language annotated with type information that can be
statically checked for type correctness. A class ProofMate implements the func-
tionalities of the module. The class inheritance mechanism is used to define
the class as an extended version of Proof Explorer and build on existing code.
Overall, the implementation of the Proof Mate module includes approximately
2K lines of TypeScript code. Only minor additions were necessary in the other
modules to correctly integrate Proof Mate in the VSCode-PVS front-end.

5 Related Work

Pumpkin [8,9] is a proof repair tool for the Coq proof assistant. The tool pro-
vides a semi-automatic repair-by-example approach to proof repair. The basic
intuition is that a same breaking change may cause similar problems in different
proofs. When a proof breaks, the proof engineer can therefore develop an exam-
ple patched proof, and then use automatic differencing techniques and proof
term transformations to synthesize a template patch candidate that can poten-
tially fix other proofs that were broken in a similar way. While this approach is

814 P. Masci and A. Dutle

specifically designed for Coq, the concept appears to be generally applicable to
other theorem proving systems, including PVS, and will be explored to automate
some of the functionalities of Proof Mate.

Tactician [1] and TacticToe [3] are interactive proof helpers for Coq and
HOL4, respectively. Both tools are designed to suggest proof tactics than can
be used to complete a proof. Patterns are learned from existing proofs using
machine learning techniques. In Proof Mate, a different approach is taken, based
on a direct encoding of expert knowledge into heuristics rules. An attempt is cur-
rently underway to extend the capabilities of Proof Mate with machine learning,
targeted at suggesting lemmas.

PeaCoq [10] is an experimental front-end designed to help novice users
develop a proof. The tool uses a visual diff view to highlight the effects of the
refactoring changes on the proof tree. Color-coded text is used to highlight dif-
ferences between the old and the new version of the proof script. A similar kind
of visualization was considered for VSCode-PVS, where changes in the proof
tree were directly visualized in Proof Explorer using strikethrough text for the
highlighting of deleted fragments. This possible solution was discarded because
of usability issues—the window quickly became cluttered and hard to navigate.

6 Conclusion and Future Work

Proof Mate brings a collection of new capabilities to the users of VSCode-PVS,
by suggesting relevant proof commands, providing a sketchpad for proofs or
proof sections to be assembled outside the interactive prover, and assisting in
repairing broken proofs in a number of ways. In contrast to most other interactive
theorem provers, PVS does not support editing of proofs outside of the sequential
interactive console in a simple way. Proof Mate fills this role and others, providing
a playground for copying, editing, writing, and even suggestion of proof sections
without restriction, and during a live proof session.

Each of the functionalities that Proof Mate provides (suggestion, sketching,
repairing) are ripe for modification and improvement. The current command
suggester is based on pattern matching of particular statements in the sequent.
While this is certain to find a command that will apply, there are more sophis-
ticated methods for finding relevant commands. Future efforts will incorporate
more sophisticated techniques such as machine learning to find commands that
may be more relevant to the user. One example under current development is a
suggester for appropriate lemmas to be used.

The proof sketching functionality in Proof Mate can also be extended in sev-
eral ways. Currently, Proof Mate allows for a block of commands to be selected
and used in the interactive prover console. A small extension would be to facil-
itate a user creating a custom local strategy from these commands, including
variables that could be replaced on use. This is a step toward the larger goal of
making the PVS strategy language more user-friendly and applicable. A much
more ambitious goal is the translation of a natural language proof of a theorem
or statement into a proof inside of PVS. While a full proof is unreasonable to

Proof Mate: An Interactive Proof Helper for PVS 815

expect, a system that could identify and sketch the main skeleton of a proof
from a natural language description could aid in the formal verification.

The proof repair function of Proof Mate takes the pruned branches of a
previous proof attempt and copies it to the sketchpad. While this catches a
large number of broken proofs, there are situations where the sequent diverges
prior to where Proof Mate catches the change, and so repair is more difficult.
For example, if a change in a specification adds a statement to the antecedent,
there can be a long sequence of successful commands (hiding formulas, calling
lemmas, etc.) before the first true “break” in the proof. Adding functionality to
find this divergence point is more difficult, since the proof is stored as a sequence
of commands and does not carry information about the sequent(s) resulting from
a command. Another possible enhancement would be for Proof Mate to save not
just the pruned sequent, but store the actual repair that was used, since a repair
in one proof is often needed in other similar repairs.

References

1. Blaauwbroek, L., Urban, J., Geuvers, H.: The tactician. In: Benzmüller, C., Miller,
B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 271–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53518-6 17

2. Dutle, A., Moscato, M., Titolo, L., Muñoz, C., Anderson, G., Bobot, F.: For-
mal analysis of the compact positionreporting algorithm. Formal Aspects Comput.
33(1), 65–86 (2020). https://doi.org/10.1007/s00165-019-00504-0

3. Gauthier, T., Kaliszyk, C., Urban, J.: Learning to reason with HOL4 tactics. CoRR
abs/1804.00595 (2018), http://arxiv.org/abs/1804.00595

4. Masci, P., Muñoz, C.A.: An integrated development environment for the prototype
verification system. In: Monahan, R., Prevosto, V., Proença, J. (eds.) Proceed-
ings Fifth Workshop on Formal Integrated Development Environment, F-IDE@FM
2019, Porto, Portugal, 7th October 2019. EPTCS, vol. 310, pp. 35–49 (2019).
https://doi.org/10.4204/EPTCS.310.5

5. Muñoz, C.: Batch proving and proof scripting in PVS. NIA/NASA Langley,
NASA/CR-2007-214546, NIA Report No. 2007–03 (2007)

6. Muñoz, C., Narkawicz, A.: Formal analysis of extended well-clear boundaries for
unmanned aircraft. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS,
vol. 9690, pp. 221–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40648-0 17

7. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

8. Ringer, T.: Proof Repair. Ph.D. thesis, University of Washington (2021)
9. Ringer, T., Porter, R., Yazdani, N., Leo, J., Grossman, D.: Proof repair across type

equivalences. In: Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, pp. 112–127 (2021).
https://doi.org/10.1145/3453483.3454033

10. Robert, V.: Front-end tooling for building and maintaining dependently-typed
functional programs. Ph.D. thesis (2018)

https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/s00165-019-00504-0
http://arxiv.org/abs/1804.00595
https://doi.org/10.4204/EPTCS.310.5
https://doi.org/10.1007/978-3-319-40648-0_17
https://doi.org/10.1007/978-3-319-40648-0_17
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1145/3453483.3454033

Runtime Verification Triggers Real-Time,
Autonomous Fault Recovery on the CySat-I

Alexis Aurandt(B) , Phillip H. Jones(B) , and Kristin Yvonne Rozier(B)

Iowa State University, Ames, IA 50010, USA
{aurandt,phjones,kyrozier}@iastate.edu

Abstract. CubeSats are low-cost platforms that are popular for conducting
spaceborne experiments, however they are known to have high failure rates
(∼25% failure rate). In order to improve the likelihood of success of Iowa State
University’s first CubeSat (CySat-I), we integrate Runtime Verification (RV) on
the CySat-I to allow for fault detection at runtime. Although CubeSats have been
previously identified as a possible target for RV, this is the first time that a RV
engine has been deployed on a CubeSat. We utilize the R2U2 runtime verification
engine due to its low overhead; we embed R2U2 directly on the On-Board Com-
puter (OBC) to monitor the current state of the CySat-I. R2U2 continuously mon-
itors the different subsystems on the CySat-I, and R2U2’s fault detection triggers
predefined fault recovery strategies. Since the Electrical Power System (EPS) is
a common source of failure, we specifically focus on this subsystem. We design
a list of twenty-two specifications from English requirements corresponding to
the EPS and translate them into Mission-time Linear Temporal Logic (MLTL).
We perform mock launches on Earth with external fault injection to illustrate
that R2U2 successfully reasons about faults and the CySat-I effectively performs
fault recovery. We demonstrate that the CySat-I can successfully recover from
eight unique EPS faults at runtime in a timely manner with no errors. During our
mock launches, R2U2 discovered a potential error in the manufacturer’s firmware
related to the EPS’s under-voltage event monitoring, and this led to a more in-
depth investigation of the error by the manufacturers.

Keywords: Online runtime verification · R2U2 · Temporal logic · Formal
specification · Fault recovery · CubeSat

1 Introduction

Since the first CubeSat was launched in 2003, the number of CubeSats launched each
year has increased exponentially, and as of December 2021, a total of 1,663 CubeSats
have been launched [12,24,27]. This exponential growth in CubeSats is due to their
low-cost and capability for fast development. CubeSats allow for both academic insti-
tutions and commercial sectors to gain easy space access with limited resources and
time requirements. With the increase in popularity of CubeSats, the technology and

Supported by NSF:CPS Award 2038903. Reproducibility artifacts available at http://
temporallogic.org/research/CySat-NFM22.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 816–825, 2022.
https://doi.org/10.1007/978-3-031-06773-0_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_45&domain=pdf
http://orcid.org/0000-0003-2008-673X
http://orcid.org/0000-0002-8220-7552
http://orcid.org/0000-0002-6718-2828
http://temporallogic.org/research/CySat-NFM22
http://temporallogic.org/research/CySat-NFM22
https://doi.org/10.1007/978-3-031-06773-0_45

Runtime Verification Triggers Real-Time Fault Recovery on the CySat-I 817

research behind CubeSats has also advanced. This has lead to a decrease in failure rate
over the years, but the failure rate is still troubling at approximately 25% [27].

Failure within CubeSats is common due to a lack of proper integration and system
testing before launching [14,24,25]. Furthermore, universities tend to have higher fail-
ure rates than their commercial counterparts due to more constrained resources and
development schedules [13,14,24,26]. If more time is dedicated to integration and
system testing, most causes of failure could be discovered before the satellite is ever
launched. Since fast development time is one of the attributes that make CubeSats
attractive, most CubeSats will never have fully exhaustive integration and system testing
before becoming spaceborne. Runtime Verification (RV) provides a unique mitigation.
RV adds an independent check for real-time triggering of appropriate fault recovery
strategies. Additionally, RV is a useful tool for finding errors in the system during test-
ing on Earth; it provides different coverage than traditional system testing to allow for
finding difficult errors with less effort.

Most CubeSat failures originate in the Electrical Power System (EPS), Attitude
Determination and Control System (ADCS), and the communications system [2,13,24].
These subsystems are mission-critical; if any of these subsystems fail, the entire satellite
experiences failure. A recent study formally verified a CubeSat’s ADCS at design time
to provide runtime assurance [8]. Also, [15] provides a case study of deploying runtime
verification on a simulated CubeSat communications system. We focus on the EPS as
it has never been evaluated for formal verification and it contributes to approximately
one-third of CubeSat failures [13].

The CySat-I’s Onboard Computer (OBC) has strict real-time constraints as it is
responsible for commanding and monitoring all the other subsystems. The OBC is
also restricted to 2MB of program memory [6]. The Realizable, Responsive, Unob-
trusive Unit (R2U2) is a unique RV engine in that it requires little overhead and has
a fast response time [18,21]. In addition, R2U2 has been previously deployed on sev-
eral resource-constrained hard real-time systems [3,9,10]. The CySat-I team selected
R2U2 as the RV engine due to its configurability for resource-constraints, real-time
verdict streaming, and proven unobtrusive monitoring of other real-time systems, e.g.,
[4,10,19]. Our implementation of fault recovery with the aid of R2U2 is currently
planned to launch onboard the CySat-I in October 2022.

We contribute (1) elicitation of twenty-two realistic EPS specifications from English
requirements translated into Mission-time Linear Temporal Logic (MLTL), (2) external
fault injection to demonstrate that the CySat-I autonomously recovers from eight unique
EPS faults in real-time, and (3) firmware error discovery during testing with the help of
R2U2. Our categorization technique for the elicitation of EPS specifications is general-
izable for application to other mission-critical systems. The remainder of the paper is

818 A. Aurandt et al.

organized as follows. Section 2 outlines the CySat-I architecture. Section 3 details the
implementation of R2U2 on the CySat-I. Section 4 describes the development of the
twenty-two specifications. Our mock launch setup with external fault injections appears
in Sect. 5. We analyze the mock launch results and plot data revealing a firmware error
in Sect. 6. In Sect. 7, we draw conclusions and explore future plans.

2 System Description

Fig. 1. Exploded view of the CySat-I and all of its
components

The CySat-I is a 3U CubeSat
(10 cm × 10 cm × 30 cm) that was
designed by students at Iowa State
University through the Aerospace
Department’s Make to Innovate pro-
gram [17]. The CySat-I is com-
posed of a mix of commercial off-
the-shelf (COTS) and custom com-
ponents interconnected in a stack
by PC/104 connectors as shown in
Fig. 1. The OBC, EPS, and UHF are
COTS components from Endurosat.
The OBC hosts a STM32F427 ARM
Cortex processor [6] serving as the
brain of the satellite; it is responsi-
ble for coordinating the other sub-
systems. The EPS manages how the
solar panels charge the batteries and
manages when different power buses and subsystems are powered on/off. The Ultra-
High Frequency Radio (UHF) is responsible for deploying the antenna and commu-
nicating with the ground station. The ADCS, a COTS component from CubeSpace,
is responsible for orientating the satellite towards Earth. The boost board is a custom
component that amplifies the 5 V produced by the EPS to the 7.4 V required by the
ADCS. The payload is another custom component, and it consists of a FPGA that hosts
a Linux-based software defined radio (SDR). The payload’s SDR reads measurements
from an array of low-noise amplifiers (LNAs) to measure soil moisture on Earth [16].

Runtime Verification Triggers Real-Time Fault Recovery on the CySat-I 819

3 Implementation

Fig. 2. R2U2 Integration. Specification binary files are loaded into R2U2 from a SD card. EPS
data is gathered and processed during “Signal Processing”, and this outputs the signals (σ) that
are inputted into R2U2. Based on the loaded specifications, R2U2 supplies the output verdict (ϕ)
for each of the inputs (σ). The output verdicts (ϕ) are used by the OBC’s “Fault Recovery” to
autonomously trigger the applicable EPS mitigation action. The power supply lines are indicated
by dashed lines.

We deploy R2U2 directly onto the OBC of the CySat-I using the STM32CubeIDE [22].
The C version of R2U2 requires 16 KB of the OBC’s 2 MB program memory (0.8%),
which leaves plenty of room for the CySat-I mission software (180 KB). We translated
the CySat-I mission requirements from the Endurosat EPS user manual [5,7] and the
CySat-I concept of operations manual [11] into MLTL specifications. MLTL concisely
captures the strict temporal mission requirements and is a native language of R2U2
[18,21]. We compiled the specifications and loaded the specification binaries onto the
OBC’s SD card. The OBC loads the specifications once into R2U2 upon initial boot-
up. FreeRTOS, a real-time operating system, manages the OBC’s tasks [1]. FreeRTOS
launches a five second periodic task that will gather and process status information from
the EPS, input the signals into R2U2, and store the false output verdicts produced by
R2U2 into an array. The OBC evaluates this array, and whenever a false output ver-
dict occurs (i.e., a specification is violated), a predefined mitigation strategy is triggered.
Figure 2 illustrates this integration of R2U2 into the CySat-I.

820 A. Aurandt et al.

4 Runtime Specification Development

We elicit specifications according to the categorization scheme presented in [20] and
used, e.g., in [3], including patterns for “operating range,” “rate of change,” “control
sequence,” and “physical model relationship” specifications.1

Satellite power up. During the first thirty minutes after launch from the International
Space Station (ISS), it is strictly required by the ISS that a CubeSat can only have
its EPS and OBC subsystems powered on. Specification (1) captures this require-
ment. Since the FreeRTOS task that runs R2U2 is launched every five seconds, the
G[0,360] part of this specification covers the first thirty minutes of the mission (i.e., 5 s *
360 = 30 min). During this time, all power buses (except for the 3.3 V bus required for
the OBC) and all enable signals must be in the off/disabled state.

G[0,360]{¬5V Bus Enabled ∧ ¬LUP 5V Bus Enabled ∧
¬LUP 3.3V Bus Enabled ∧ ¬ADCS Active

∧¬Payload Enabled ∧ ¬UHF Enabled ∧
¬Boost Board Enabled} (1)

Power bus requirement. Specification (2) captures that any time the UHF is enabled
at least thirty minutes after launch, then the latch-up protected (LUP) 3.3 V bus must
also be enabled. The LUP 3.3 V bus is a UHF input required for proper operation.
The G[360,M] part of the specification established that this specification must hold from
thirty minutes after launch till the end of the mission indicated by M . Corresponding
requirements for the boost board and payload form specifications (3) and (4).

G[360,M]{UHF Enabled → LUP 3.3V Bus Enabled} (2)

G[360,M]{Boost Booard Enabled → 5V Bus Enabled} (3)

G[360,M]{Payload Enabled → 5V Bus Enabled} (4)

Under-voltage Event. Whenever the EPS’s output power buses fall below a given volt-
age threshold, the EPS’s lifetime under-voltage event counter increments [5]. Specifi-
cation (5) uses this information to compare the current value (value at mission time i)
of this status value to its previous value (value at mission time i − 1). If these are not
equal, then an under-voltage event has occurred. In this specification, G[0,M] checks
that the requirement holds from the beginning to the end of the mission.

G[0,M]{Num Under V oltagei == Num Under V oltagei−1} (5)

1 All twenty-two specifications with categorization appear here: http://temporallogic.org/
research/CySat-NFM22.

http://temporallogic.org/research/CySat-NFM22
http://temporallogic.org/research/CySat-NFM22

Runtime Verification Triggers Real-Time Fault Recovery on the CySat-I 821

I2C Communication. The OBC communicates with the EPS over an I2C bus inter-
face. It was documented in [2] that I2C communication errors can cause EPS failure.
To mitigate this mode of failure, we instrumented the OBC’s I2C driver to report and
accumulate communication errors (e.g., NACKs, transaction timeouts). Specification
(6) detects whenever a new I2C error occurs. If the total number of I2C errors at the
current mission-time does not equal the total number of errors at the previous mission
time, then this specification does not hold. In the event that R2U2 detects the failure of
this specification, it triggers the fault mitigation action of resetting the I2C bus.

G[0,M]{Num I2C Errorsi == Num I2C Errorsi−1} (6)

5 Evaluation Methodology

Fig. 3. Mock Launch. Left: The physical CySat-I PC/104 stack without the external structures
(e.g., solar panels) and its setup during the mock launches. Right: Mock launch sequence.

We conduct mock launches to evaluate the correct implementation of our specifica-
tions, deployment of R2U2 within the CySat-I, and implementation of our fault recov-
ery mechanisms. Within the CySat-I PC/104 stack, the EPS communicates with the
OBC via an I2C bus. The EPS also has a UART connection available over a USB port.
Endurosat provides a GUI that can interact with the EPS’s UART interface while the
EPS is plugged into the PC/104 stack. This setup is depicted in Fig. 3. We leverage this
GUI during mock launches to inject power bus faults by turning buses on/off and sub-
system enable faults by enabling/disabling different subsystems. As shown in Fig. 3, a
mock launch consists of: 1) powering on the EPS and OBC (i.e., emulating the CySat-
I being launched from the ISS), 2) FreeRTOS on the OBC starting the R2U2 task that
runs every five seconds, 3) FreeRTOS starting simplified tasks for the other subsystems,
and 4) all subsystem tasks waiting thirty minutes before starting modified operation. We

822 A. Aurandt et al.

record and analyze the input status signals of R2U2 and the output verdicts generated
by R2U2 during the mock launch fault-injection campaigns. These logs allow us to
determine if faults are being detected as expected and if fault mitigation strategies are
being appropriately triggered.

6 Results and Analysis

Fig. 4. EPS fault recovery. (a) The power status of the 5 V, LUP 5 V, and LUP 3.3 V buses. (b)
The enable status of the ADCS, payload, UHF, and boost board. An ‘X’ marker indicates an
injection of an external fault. (c)–(f) Output from R2U2 correctly determining the current state of
specification (1), (2), (3), and (4) respectively. A shaded region indicates a time range where the
OBC does not care about the output of R2U2 within its fault recovery.

R2U2 is a stream-based RV engine that reevaluates specifications at each time step
creating an implicit global operator. Therefore, we reduce our specifications that we
instruct R2U2 to reason over as depicted in Figs. 4 and 5. Recall that specification (1)
is only applicable for the first thirty minutes after launch, specifications (2), (3), and
(4) are only applicable after the first thirty minutes, and specifications (5) and (6) are
always applicable. In order to apply a specification for a certain time interval, the OBC
monitors the current time step of R2U2. If not within the applicable time interval for
a specification, the OBC does not care what R2U2 is outputting and does not apply a
mitigation action, which is indicated by the shaded region in Fig. 4.

Figure 4 illustrates an approximately hour-long mock launch with fault recovery for
four unique specification faults (i.e., specification (1), (2), (3), and (4)).2 Within the

2 All eight specification faults appear here: http://temporallogic.org/research/CySat-NFM22.

http://temporallogic.org/research/CySat-NFM22

Runtime Verification Triggers Real-Time Fault Recovery on the CySat-I 823

first thirty minutes, none of the plotted power buses or subsystem enables are allowed
to be enabled. During this period, we inject power bus and subsystem enable faults.
Each time a fault is injected, two actions are observed: 1) R2U2 indicates a fault by
providing a false verdict for specification (1), and 2) our fault recovery mechanism
is triggered shown by the violating enable being disabled autonomously by the next
time step. After the initial thirty minutes, we inject faults that either enable a subsystem
before its required power bus is powered on or we disable a power bus while its cor-
responding subsystem is still enabled. In both cases, a mitigation strategy enabled the
appropriate power bus by the next time step. While the time steps observed by R2U2
are five seconds, the response time of our fault recovery (i.e., time from fault detection
to correction) is approximately 7 ms.

Figure 5 depicts the discovery of an error within the EPS firmware, which provides
a real-world example of the benefit of using RV during testing. During a mock launch,
R2U2 detected the number of under-voltage events changing. Upon closer examination,
the value spikes from a value of ten (the expected value during this mock launch) to a
value of 2308 briefly before returning back to a value of ten. After discovering this
erroneous behavior with the EPS’s firmware, we contacted the manufacturer who is
currently investigating the issue.

Fig. 5. Potential EPS Firmware Error. (a) The value of the under-voltage event counter. (b) Output
from R2U2 correctly determining the current state of specification (5) to indicate a change in the
under-voltage event counter.

7 Conclusion

In order to increase the CySat-I’s chance for having a successful mission, we deployed
R2U2 on the CySat-I to trigger fault recovery and monitor for errors during testing.
R2U2 was able to successfully reason over twenty-two MLTL specifications and detect
faults in real-time. R2U2 and our fault recovery mechanisms will ensure that several
faults that could occur during the CySat-I’s mission can be successfully recovered
from. Additionally, if R2U2 had not been deployed on the CySat-I, we would have
never uncovered the EPS firmware bug concerning the under-voltage event counter.
The ability to perform fault recovery in real-time during the mission of the CySat-I is
advantageous for the other mission-critical subsystems onboard (e.g., the ADCS and
UHF); appropriate fault recovery for these subsystems can reduce the failure rate of

824 A. Aurandt et al.

future CubeSats. In future work, the R2U2 engine can trigger appropriate fault mitiga-
tion strategies for all mission-critical subsystems of a CubeSat, and RV can continue to
be explored for CubeSat testing on Earth to assist in discovering elusive errors. We are
also pursuing to publish our twenty-two EPS specifications as a benchmark to a public
database (e.g., StarExec [23]).

References

1. Amazon Web Services: The FreeRTOSTM Reference Manual (2017)
2. Bouwmeester, J., Langer, M., Gill, E.: Survey on the implementation and reliability of Cube-

Sat electrical bus interfaces. CEAS Space J. 9(2), 163–173 (2016). https://doi.org/10.1007/
s12567-016-0138-0

3. Cauwels, M., Hammer, A., Hertz, B., Jones, P., Rozier, K.Y.: Integrating runtime verification
into an automated UAS traffic management system, pp. 340–357 (09 2020). https://doi.org/
10.1007/978-3-030-59155-7 26

4. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-
time system architecture. In: Proceedings of SciTech Forum, 2021–0566, AIAA, January
2021. https://doi.org/10.2514/6.2021-0566

5. EnduroSat: Electrical Power System (EPS I & EPS I Plus) - I2C Protocol User Manual
(2019)

6. EnduroSat: Onboard Computer (OBC) Type II - User Manual (2019)
7. EnduroSat: Electrical Power System (EPS I & EPS I Plus) User Manual (2020)
8. Gross, K.H., et al.: Formally verified run time assurance architecture of a 6u CubeSat attitude

control system. In: AIAA Infotech Aerospace, p. 0222 (2016)
9. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket

control system. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM
2021. LNCS, vol. 12673, pp. 151–159. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-76384-8 10

10. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime
verification for fault disambiguation on Robonaut2. In: Bertrand, N., Jansen, N. (eds.) FOR-
MATS 2020. LNCS, vol. 12288, pp. 196–214. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-57628-8 12

11. Kilcoin, M., Kempa, B., Goldenberg, J., Nelson, M., Gonzalez-Torres, T.: Cysat-1 concept
of operations (2020). https://iastate.box.com/s/zf6xbwwc3jb9hwshc6hc52evx2e60s13

12. Kulu, E.: Nanosatellite & CubeSat database. https://www.nanosats.eu/database
13. Langer, M., Bouwmeester, J.: Reliability of CubeSats - statistical data, developers’ belief,

and the way forward. In: Proceedings of the 30th Annual AIAA/USU Conference on Small
Satellites (2016)

14. Langer, M., Weisgerber, M., Bouwmeester, J., Hoehn, A.: A reliability estimation tool for
reducing infant mortality in CubeSat missions. In: 2017 IEEE Aerospace Conference (2017).
https://doi.org/10.1109/AERO.2017.7943598

15. Luppen, Z.A., Lee, D.Y., Rozier, K.Y.: A case study in formal specifications and runtime
verification of a CubeSat communications system. In: AIAA SciTech Forum (2021). https://
doi.org/10.2514/6.2021-0997

16. Nelson, M.E.: Implementation and evaluation of a software defined radio based radiometer.
Master’s thesis (2016)

17. Nelson, M.E., Lee, D.Y., Kilcoin, M., Gordon, L., Brown, W.: Preparing CySat-1: a look
at Iowa state university’s first CubeSat. In: Proceedings of the 34th Annual Small Satellite
Conference (2020)

https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.2514/6.2021-0566
https://doi.org/10.1007/978-3-030-76384-8_10
https://doi.org/10.1007/978-3-030-76384-8_10
https://doi.org/10.1007/978-3-030-57628-8_12
https://doi.org/10.1007/978-3-030-57628-8_12
https://iastate.box.com/s/zf6xbwwc3jb9hwshc6hc52evx2e60s13
https://www.nanosats.eu/database
https://doi.org/10.1109/AERO.2017.7943598
https://doi.org/10.2514/6.2021-0997
https://doi.org/10.2514/6.2021-0997

Runtime Verification Triggers Real-Time Fault Recovery on the CySat-I 825

18. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 24

19. Rozier, K.Y.: R2U2 in space: system and software health management for small satellites. In:
Spacecraft Flight Software Workshop (FSW), December 2016. https://www.youtube.com/
watch?v=OAgQFuEGSi8

20. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In:
Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48869-1 2

21. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: RV-CuBES 2017. An International
Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools. Kalpa Publications in Computing, vol. 3, pp. 138–156. Easy-
Chair (2017). https://doi.org/10.29007/5pch

22. STMicroelectronics: STM32CubeIDE User Manual (2020)
23. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic

solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol.
8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 28

24. Swartwout, M.A.: The first one hundred CubeSats: a statistical look (2013)
25. Venturini, C., Braun, B., Hinkley, D., Berg, G.: Improving mission success of CubeSats. In:

Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites (2018)
26. Venturini, C.C.: 8 steps improving small set mission success. https://aerospace.org/article/8-

steps-improving-small-sat-mission-success
27. Villela, T., Costa, C.A., Brandão, Alessandra, M., Bueno, F.T., Leonardi, R.: Towards the

thousandth CubeSat: a statistical overview. Int. J. Aerosp. Eng. 2019 (2019). https://doi.org/
10.1155/2019/5063145

https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.29007/5pch
https://doi.org/10.1007/978-3-319-08587-6_28
https://aerospace.org/article/8-steps-improving-small-sat-mission-success
https://aerospace.org/article/8-steps-improving-small-sat-mission-success
https://doi.org/10.1155/2019/5063145
https://doi.org/10.1155/2019/5063145

Correction to: From Verified Scala to STIX
File System Embedded Code Using Stainless

Jad Hamza, Simon Felix , Viktor Kunčak , Ivo Nussbaumer,
and Filip Schramka

Correction to:
Chapter “From Verified Scala to STIX File System Embedded
Code Using Stainless” in: J. V. Deshmukh et al. (Eds.):
NASA Formal Methods, LNCS 13260,
https://doi.org/10.1007/978-3-031-06773-0_21

In the original version of this paper, Fig. 3 was not displayed as it should have been. It
is now included in this erratum.

The original version of this chapter can be found at
https://doi.org/10.1007/978-3-031-06773-0_21

© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, p. C1–C2, 2022.
https://doi.org/10.1007/978-3-031-06773-0_46

http://orcid.org/0000-0002-3979-128X
http://orcid.org/0000-0001-7044-9522
https://doi.org/10.1007/978-3-031-06773-0_21
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_46&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_21
https://doi.org/10.1007/978-3-031-06773-0_46

Legend

Flight Software FSWrite

write1 markBlockAsBadBlockCommon_crc16_0

FSWrite_Sc

markBlockAsBadBlock_fromScala

markBlockAsBB_toCwrite1_toC

write1_fromScala

MemFilesystemWrite_0

toPartition_0searchForFile_0

writeFile_0

compare_0

equals_FindMode_0

equals_SearchMode_0

findFile_0

find_1

findInner_0 hashFunc_0

markBlockAsBB_toBridge setBlockAsOccupied_0

updateStatsBlockTransition_0write1_toBridge

writeOnce_0

ScalaBridgeC

Fig. 3. Flight Software using the file system (top), and the hardware drivers (bottom) were not
modified. Only the file system was ported to Scala. Bridge functions, written in C, connect the
two implementations when function signatures differ.

C2 J. Hamza et al.

Author Index

Ábrahám, Erika 656
Aichernig, Bernhard K. 373, 489
Amundson, Isaac 355
An, Xiaoxin 636
André, Étienne 451, 470
Aoki, Toshiaki 733
Arcile, Johan 451
Astrauskas, Vytautas 88
Attie, Paul C. 597
Aurandt, Alexis 816

Babar, Junaid 355
Bacci, Edoardo 193
Badithela, Apurva 133
Bak, Stanley 231, 280
Ballou, Kenny 800
Bartocci, Ezio 656
Basgöze, Daniel 713
Baughman, Nathan 527
Benveniste, Albert 674
Berger, Philipp 338
Bhatt, Devesh 576
Biatek, Jason 576
Bílý, Aurel 88
Bjørner, Dines 14
Bombardelli, Alberto 508
Bonakdarpour, Borzoo 656

Carr, Harold 616
Chen, Xin 109
Chien, Steve A. 3
Cofer, Darren 355
Corso, Anthony L. 299
Cutler, James 527

Daw, Zamira 175
Dobe, Oyendrila 656
Durling, Michael 752
Dutle, Aaron 809

Fan, Chuchu 251
Farrell, Marie 272
Felix, Simon 393

Fiala, Jonáš 88
Fink, Xaver 338

Gariano, Isaac Oscar 431
Gorostiaga, Felipe 693
Graebener, Josefine B. 133
Grannan, Zachary 88

Hamza, Jad 393
Hasuo, Ichiro 470
Hermanns, Holger 156
Hertz, Benjamin 527
Hoech, Karl 355

Incer, Inigo 674
Ishii, Daisuke 733

Jacks, Michael 527
Jackson, Daniel 52
Jenkins, Christa 616
Jones, Phillip H. 816

Katoen, Joost-Pieter 338, 713
Katz, Sydney M. 299
Khan, Shahid 713
Kochenderfer, Mykel J. 299
Konečný, Michal 771
Kunčak, Viktor 393

Laarman, Alfons 790
Lawall, Julia 71
Lee, Dae-Young 527
Lieberherr, Karl 557
Liu, Cong 355
Lorber, Florian 489
Luckcuck, Matt 272
Luppen, Zachary 527

Madhukar, Kumar 318
Masci, Paolo 809
Matheja, Christoph 88
Mehmood, Usama 231
Meng, Baoluo 752

828 Author Index

Meng, Yue 251
Mercer, Eric 355
Miraldo, Victor Cacciari 616
Moir, Mark 616
Moitra, Abha 752
Monahan, Rosemary 272
Mukhopadhyay, Diganta 318
Muller, Gilles 71
Müller, Peter 88
Murray, Richard M. 133
Murugesan, Anitha 576

Nasers, Ryan 527
Nayak, Satya Prakash 538
Neider, Daniel 538
Nies, Gilles 156
Noble, James 431
Nussbaumer, Ivo 393
Nuzzo, Pierluigi 175

Park, Sewon 771
Parker, David 193
Payet, Étienne 411
Pearce, David J. 411
Pferscher, Andrea 373
Pinto, Alessandro 175
Poli, Federico 88

Qiu, Zeng 251

Ravindran, Binoy 636
Ren, Hao 576
Roy, Rajarshi 538
Rozier, Kristin Yvonne 527, 816

Samarakoon, Miniruwani 431
Sánchez, César 693
Sangiovanni-Vincentelli, Alberto 674
Sankaranarayanan, Sriram 109
Santa Cruz, Ulices 213
Schramka, Filip 393

Seshia, Sanjit A. 674
Shankar, Natarajan 576
Sheikhi, Sanaz 231
Sheridan, Oisín 272
Sherman, Elena 800
Shoukry, Yasser 213
Silva, Lisandra 616
Siu, Kit 752
Smith, William 752
Smolka, Scott A. 231
Spoto, Fausto 411
Srivas, Mandayam 318
Stilic, Muhamed 527
Stoelinga, Marielle 713
Stoller, Scott D. 231
Streader, David 431
Strong, Christopher A. 299
Summers, Alexander J. 88

Tappler, Martin 489
Thies, Holger 771
Tomita, Takashi 733
Tonetta, Stefano 508
Tran, Hoang-Dung 280

Urabe, Natuski 470

Varadarajan, Srivatsan 576
Verbeek, Freek 636
Vinkhuijzen, Lieuwe 790
Viswanathan, Arjun 752
Volk, Matthias 713

Waez, Md Tawhid Bin 251
Waga, Masaki 470
Wang, Timothy E. 175
Wilke, Lukas 656

Xu, Ruiyang 557

Zimmermann, Martin 538

	Preface
	Organization
	Abstracts of Invited Tutorials
	Total Functional Programming in Idris: A Tutorial
	The Lean 4 Theorem Prover and Programming Language: A Tutorial
	Formally Reasoning about Distributed Systems using P
	Contents
	Invited Keynotes
	Formal Methods for Trusted Space Autonomy: Boon or Bane?
	1 Introduction
	2 Past Verification and Validation of Autonomy Flight Software
	2.1 Remote Agent Experiment
	2.2 Autonomous Sciencecraft on Earth Observing One
	2.3 WATCH/SPOTTER on Mars Exploration Rovers
	2.4 AEGIS on MER, MSL, and M2020
	2.5 MSL FSW
	2.6 Intelligent Payload Experiment (IPEX)

	3 Current Validation of Autonomy Software: Onboard Planner for M2020
	4 Discussion of Competing Verification and Validation Methods
	4.1 Limitations of Testing and Informal Methods
	4.2 Limitations of Formal Methods

	5 Conclusions
	References

	An Essence of Domain Engineering
	1 Introduction
	1.1 What Is a Domain?
	1.2 Structure of Paper

	2 Philosophy: What Must be in any Domain Description?
	2.1 The Search
	2.2 Sørlander's Findings
	2.3 The Basis

	3 Elements of Domain Science and Engineering
	3.1 Phenomena, Entities, Endurants and Perdurants
	3.2 Endurants
	3.3 Transcendental Deduction
	3.4 Perdurants
	3.5 The Domain Analysis and Description Process

	4 An Example Domain Description
	4.1 Endurants
	4.2 Perdurants

	5 Relevance to Aeronautics and Space
	5.1 But First
	5.2 Air Traffic Control, ATC
	5.3 An Aeronautics and Space Domain

	6 Conclusion
	References

	Concept Design Moves
	1 Introduction: Codifying Design Expertise
	1.1 Designers Bring Prior Knowledge
	1.2 Standard Solutions and Moves
	1.3 Design vs. Engineering

	2 Concept Structuring
	2.1 Concept Independence
	2.2 Concept Synchronization

	3 Design Moves: Mechanical Analogues
	3.1 Split/Merge
	3.2 Unify/Specialize
	3.3 Tighten/Loosen

	4 Concept Design Moves: Software Examples
	4.1 Split: Emergence of a Concept in Keynote
	4.2 Merge: The Yellkey URL Shortener
	4.3 Unify: MITs Moira Service
	4.4 Specialize: Three Similar Concepts in Lightroom
	4.5 Tighten: Page Scheduling in Hugo
	4.6 Loosen: Expert Control in ProCamera

	5 Solving Problems with Design Moves
	5.1 Aspect Ratio in Fujifilm Cameras
	5.2 Message Filters in Apple Mail
	5.3 Event Deletion in Calendars
	5.4 Sticky Hands in Zoom

	6 Discussion
	References

	Automating Program Transformation with Coccinelle
	1 Introduction
	2 Background
	3 Coccinelle in a Nutshell, Illustrated by kzalloc
	3.1 First Steps
	3.2 A Refinement
	3.3 A Second Refinement

	4 A Second Example: of_node_put
	4.1 The Problem
	4.2 The Semantic Patch
	4.3 Scaling Up
	4.4 Impact

	5 A Third Example: Inconsistent Atomicity Flags
	5.1 The Problem
	5.2 The Solution

	6 Related Work
	7 Conclusion
	References

	The Prusti Project: Formal Verification for Rust
	1 Introduction
	2 Prusti from a User's Perspective
	2.1 (Almost) Zero-Cost Verification
	2.2 Modular Verification of User-Specified Contracts
	2.3 The Prusti Specification Language
	2.4 Incremental Verification in Practice

	3 Prusti from a Verification Expert's Perspective
	3.1 Core Proofs in an Off-the-Shelf Separation Logic
	3.2 Full Automation of Core Proofs for Type-Checked Rust
	3.3 Incorporating Rich Functional Specifications

	4 Prusti from a Tool Engineer's Perspective
	4.1 Architecture and Design Overview
	4.2 Specification Embedding
	4.3 Compiler Interface
	4.4 Encoding to Viper

	5 Related Work
	6 Conclusions and Future Work
	References

	Reachability Analysis for Cyber-Physical Systems: Are We There Yet?
	1 Introduction
	2 Hybrid Systems and Reachability Analysis
	2.1 Reachability Analysis

	3 Set-Propagation Approaches
	3.1 Linear Hybrid Systems
	3.2 Nonlinear Hybrid Systems

	4 Scaling up Reachability Analysis
	5 Neural Network Controlled Systems
	6 Conclusions
	References

	Regular Submissions
	Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems
	1 Introduction
	2 Background
	3 Problem Setup
	4 Merging Unit Tests
	4.1 Merging Test Specifications
	4.2 Temporal Constraints on the Merged Test Specification
	4.3 Receding Horizon Synthesis of Test Policy Filter
	4.4 Searching for a Test Policy

	5 Examples
	5.1 Lane Change

	6 Conclusion and Future Work
	7 Appendix
	7.1 Construction of the Partial Order
	7.2 Live Lock
	7.3 Example: Lane Change
	7.4 Example: Unprotected Left Turn

	References

	Quantification of Battery Depletion Risk Made Efficient
	1 Introduction
	2 Battery Kinetics
	3 Algorithms
	3.1 Static Discretization
	3.2 Adaptive Discretization
	3.3 Percentile Propagation

	4 Evaluation
	5 Conclusion
	References

	Hierarchical Contract-Based Synthesis for Assurance Cases
	1 Introduction
	2 Hierarchical Contract Networks
	2.1 Contract Networks and Library
	2.2 Conditional Refinement and Hierarchical Contract Networks

	3 Automatic Synthesis
	3.1 Well-Formed Library
	3.2 Synthesis Algorithm

	4 Application: Assurance Cases
	4.1 Assurance Case as a Hierarchical Contract Network
	4.2 Case Study: Assurance Cases for Certification

	5 Conclusion
	References

	Verified Probabilistic Policies for Deep Reinforcement Learning
	1 Introduction
	2 Background
	3 Modelling and Abstraction of Reinforcement Learning
	3.1 Modelling and Verification of Reinforcement Learning
	3.2 Abstractions for Verification of Reinforcement Learning

	4 Template-Based Abstraction of Neural Network Policies
	4.1 Bounded Template Polyhedra
	4.2 Constructing Policy Abstractions
	4.3 Refinement of Abstract States

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

	NNLander-VeriF: A Neural Network Formal Verification Framework for Vision-Based Autonomous Aircraft Landing
	1 Introduction
	2 Problem Formulation
	3 Framework
	4 Neural Network Augmentation
	5 Identifying the Allowable Control Actions Using Symbolic Abstractions
	6 Numerical Example
	7 Conclusion and Future Work
	References

	The Black-Box Simplex Architecture for Runtime Assurance of Autonomous CPS
	1 Introduction
	2 Black-Box Simplex
	2.1 Formal Definition of Black-Box Simplex
	2.2 Safety and Transparency Theorems

	3 Case Studies
	3.1 Multi-robot Coordination
	3.2 Multi-aircraft Collision Avoidance

	4 Related Work
	5 Conclusions
	References

	Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Technical Approaches
	4.1 Data-driven Reachability and Density Estimation
	4.2 Reach Set Probability Estimation
	4.3 Motion Planning Based on Reachability Analysis

	5 Experiments
	5.1 Reachable States and Density Estimation
	5.2 Online Planning via Reachable Set Density Estimation
	5.3 Discussions

	6 Conclusion
	A Car Model Dynamic and Controller Designs
	B Hovercraft Model Dynamic and Controller Designs
	C Nonlinear Programming for Controller Synthesize
	References

	Towards Refactoring FRETish Requirements
	1 Introduction and Background
	2 Refactoring Requirements
	2.1 Analysis: Aircraft Engine Controller Requirements
	2.2 Refactoring Requirements

	3 Towards FRET-Supported Refactoring
	4 Conclusion
	References

	Neural Network Compression of ACAS Xu Early Prototype Is Unsafe: Closed-Loop Verification Through Quantized State Backreachability
	1 Introduction
	2 Background and Problem Formulation
	2.1 Collision Avoidance System Design
	2.2 Assumptions and Plant Model
	2.3 Reachability with AH-Polytopes
	2.4 Safety Problem Formulation

	3 Quantized State Backreachability
	3.1 Partitioning the Unsafe States
	3.2 Backreachability from Each Partition
	3.3 Falsification of Original (Unquantized) System

	4 Evaluation
	4.1 Complete Proof of Safety Attempt
	4.2 Proving Safety in More Limited Operating Conditions
	4.3 Comparison with Other Approaches

	5 Related Work
	6 Conclusion
	References

	ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs
	1 Introduction
	2 Background
	3 Optimization Problems
	4 Approach
	4.1 Optimization with Branch and Bound
	4.2 Split, UpperBound, LowerBound
	4.3 Implementation

	5 Experimental Results
	5.1 ACAS Xu Benchmark
	5.2 Optimizing Convex Functions
	5.3 Maximum Distance Between Compressed and Original Networks

	6 Conclusion
	A Appendix
	A.1 Maximum Distance Between Points in Two Hyperrectangles
	A.2 Verifier Configuration for the Collision Avoidance Benchmark

	References

	Permutation Invariance of Deep Neural Networks with ReLUs
	1 Introduction
	2 Preliminaries
	3 Informal Overview
	3.1 Running Example

	4 Forward and Backward Propagation
	4.1 Forward Propagation Using Tie Classes
	4.2 Backward (Polytope) Propagation
	4.3 Inclusion Checking and Counterexample Propagation
	4.4 Example (continued from Sect.3.1)

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Configurable Benchmarks for C Model Checkers
	1 Introduction
	2 Tool and Code Generation
	2.1 Code Generation

	3 Benchmarking the Open-Source Verifiers
	3.1 Verification Tool Setup
	3.2 Verification Task Creation
	3.3 Benchmarking Setup
	3.4 Experiment I: Effect of Filler Code
	3.5 Experiment II: Effect of Variable Wrapping
	3.6 Experiment III: Loop vs. Straight-line Code
	3.7 Experiment IV: Effect of Code Structure
	3.8 Experiment V: Influence of Floating-point Arithmetic
	3.9 Experiment VI: Effect of Code Size

	4 Epilogue
	5 Artifact
	References

	Assume-Guarantee Reasoning with Scheduled Components
	1 Introduction
	2 Motivating Examples
	3 Overview of the Model
	4 Formal Definitions
	5 Assume-Guarantee Reasoning
	6 AGREE Model
	7 LUSTRE Backend Model
	8 Case Study
	9 Related Work
	10 Conclusion and Future Work
	References

	Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning
	1 Introduction
	2 Preliminaries
	2.1 Bluetooth Low Energy
	2.2 Mealy Machine
	2.3 Automata Learning
	2.4 Fuzzing

	3 Methodology
	3.1 System Interface
	3.2 Automata Learning
	3.3 Stateful Fuzzer

	4 Evaluation
	4.1 General Setup
	4.2 Fuzzing Results
	4.3 Bug Hunt

	5 Related Work
	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future Work

	References
	From Verified Scala to STIX File System Embedded Code Using Stainless
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 STIX Instrument Onboard Solar Orbiter—Background
	3 Background on Stainless Verifier
	4 Adapting the Verifier for Embedded Software
	4.1 Circumventing Stainless Aliasing Restrictions
	4.2 Early Return Statements

	5 Scala to C Translation for Embedded Software
	5.1 Unsigned Integers of Various Bit Lengths
	5.2 Mutable Global State
	5.3 Specifications and Ghost Elimination
	5.4 Declarations Followed by memset
	5.5 Pure Functions

	6 Experience with Case Study
	6.1 Verified Properties and Statistics
	6.2 General Improvements to Stainless
	6.3 Identified Bugs in the STIX File System Code
	6.4 Using Stainless Without Prior Formal Verification Experience
	6.5 Integration into the Existing C Code Base
	6.6 Generated Code Performance, Memory, and Code Size Impact

	7 Discussion and Conclusions
	References

	On the Termination of Borrow Checking in Featherweight Rust
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Borrow Checking
	4.1 Typing Expressions
	4.2 Typing Terms

	5 Termination
	6 Preservation of Linearizability
	7 Related Work
	8 Conclusion
	References

	More Programming Than Programming: Teaching Formal Methods in a Software Engineering Programme
	1 Introduction
	2 Background
	3 SWEN324 Software Correctness
	4 Assessment
	4.1 Weekly Overview Questions
	4.2 Assignments
	4.3 Essay

	5 Experience with Dafny
	6 Evaluation
	7 Conclusion
	References

	Zone Extrapolations in Parametric Timed Automata
	1 Introduction
	2 Preliminaries
	3 M- and "017E M-extrapolation for Bounded PTAs
	3.1 Recalling M-extrapolation
	3.2 Synthesis with Extrapolation
	3.3 Extending the M-extrapolation to Individual Bounds

	4 "017E M-extrapolation on Unbounded PTAs
	4.1 "017E M-extrapolation on Unbounded L-PTAs and U-PTAs
	4.2 "017E M-extrapolation on PTAs with Unbounded Lower or Upper Bound Parameters
	4.3 Partial "017E M-extrapolation on General PTAs

	5 Beyond Reachability in bPTA+L and bPTA+U
	6 Experiments
	7 Conclusion and Perspectives
	References

	Exemplifying Parametric Timed Specifications over Signals with Bounded Behavior
	1 Introduction
	2 Related Works
	3 Preliminaries: Constraints and Rect. Hybrid Automata
	4 Parametric Linear Multi-rate Automata
	4.1 Syntax
	4.2 Semantics
	4.3 Two Other Subclasses of RHAs: PTASs and SBAs

	5 Problem
	6 Exemplifying Bounded Signal Specifications
	6.1 Exploration and Symbolic Run Exhibition
	6.2 Exhibiting Concrete Example Runs
	6.3 Exhibiting Negative Concrete Example Runs
	6.4 Formal Result

	7 Proof of Concept
	8 Conclusion
	References

	Timed Automata Learning via SMT Solving
	1 Introduction
	2 Preliminaries
	3 Model Learning via SMT Solving
	3.1 Setting
	3.2 Main Algorithm
	3.3 Encoding of the Learnt Timed Automaton
	3.4 Constraints
	3.5 Creating the Learned Timed Automaton

	4 Implementation
	4.1 Theories
	4.2 Incremental Solving

	5 Evaluation
	5.1 Experiment Subjects
	5.2 Performance Criteria
	5.3 Experiments

	6 Conclusion
	References

	Asynchronous Composition of Local Interface LTL Properties
	1 Introduction
	2 Related Works
	3 Background
	3.1 Linear Temporal Logic
	3.2 Interface Transition Systems

	4 Formal Problem
	4.1 Asynchronous Composition of Properties of ITS
	4.2 Asynchronous Composition of Properties of Event Based TS

	5 Rewriting
	5.1 R Rewriting
	5.2 Optimization
	5.3 Alternative Approach for Asynchronous Composition

	6 Experimental Evaluation
	7 Conclusions
	References

	Elucidation and Analysis of Specification Patterns in Aerospace System Telemetry
	1 Introduction
	2 MLTL Syntax and Semantics
	3 Aerospace Systems
	3.1 High-Altitude Balloon
	3.2 Sounding Rocket
	3.3 UAS Traffic Management System (UTM)
	3.4 CubeSat

	4 Methodology
	5 Results
	6 Conclusion
	References

	Robust Computation Tree Logic
	1 Introduction
	2 Notation and Review of Computation Tree Logic
	3 Robust Computation Tree Logic
	3.1 Expressiveness of rCTL
	3.2 rCTL Model Checking
	3.3 rCTL Satisfiability

	4 Robust CTL*
	4.1 Expressiveness of rCTL*
	4.2 rCTL* Model Checking
	4.3 rCTL* Satisfiability

	5 Conclusion
	References

	On-the-Fly Model Checking with Neural MCTS
	1 Introduction
	2 Preliminary
	2.1 Model Checking with L
	2.2 Game Theoretical Semantics
	2.3 Learning with Neural MCTS

	3 Methodology
	3.1 Recursive-FOL
	3.2 State Representation
	3.3 MCTS with Fix-point Predicates
	3.4 Fairness as a Challenge

	4 Experiments
	4.1 Highest Safe Rung Problem
	4.2 Dining Philosopher Problem

	5 Related Work
	6 Conclusion
	References

	Requirements-Driven Model Checking and Test Generation for Comprehensive Verification
	1 Introduction
	2 Comprehensive and Integrated Verification Approach
	3 ArduCopter Case Study
	4 Requirement Specification and Model Synthesis
	4.1 CLEAR: Constrained Language Enhanced Approach to Requirements
	4.2 Tool Architecture Overview and SSM Creation

	5 Verification Activities and Techniques
	5.1 Requirements Analysis for Generic Properties
	5.2 Sally Integration and Application Specific Property Verification
	5.3 Test Generation from Requirements

	6 Future Work and Conclusions
	References

	Operational Annotations
	1 Introduction
	2 Related Work
	3 Syntax and Semantics of the Programming Language
	4 Operational Annotations
	4.1 Program Ordering and Equivalence

	5 A Deductive System for Operational Annotations
	6 Example: In-Place List Reversal
	7 Operational Annotations for Procedures
	8 Conclusions
	References

	Towards Formal Verification of HotStuff-Based Byzantine Fault Tolerant Consensus in Agda
	1 Introduction
	2 An Overview of HotStuff/LibraBFT
	3 Correctness Properties and Proofs
	3.1 Abstract hsblue3Records and hsblue3RecordChains
	3.2 First Correctness Property: hsblue5thmS5
	3.3 Precisely Defining Protocol Rules
	3.4 The Proof of hsblue5thmS5
	3.5 Traditional and Extended Correctness Properties
	3.6 Relating Non-injectivity to Security Properties

	4 Related Work
	4.1 HotStuff/LibraBFT
	4.2 Other BFT Consensus Protocols

	5 Concluding Remarks and Future Work
	References

	DSV: Disassembly Soundness Validation Without Assuming a Ground Truth
	1 Introduction
	2 Past and Related Work
	2.1 Disassembly Techniques
	2.2 Soundness Validation

	3 Definition of Disassembly Soundness
	3.1 Soundness Definition
	3.2 Loose Comparison of Instruction Bytes

	4 Validation Algorithm
	4.1 Consequences of an Inexact Abstract Transition Relation
	4.2 DSV Overview
	4.3 State and Memory Model
	4.4 Merging and Agreeing
	4.5 Instruction Semantics
	4.6 Concolic Execution

	5 Soundness Issues Exposed by DSV
	6 Experimental Results
	6.1 Coreutils Library

	7 Conclusion
	References

	Probabilistic Hyperproperties with Rewards
	1 Introduction
	2 Preliminaries
	2.1 Discrete-time Markov Models with Rewards

	3 HyperPCTL with Rewards
	3.1 HyperPCTL Syntax
	3.2 HyperPCTL Semantics

	4 Applications of HyperPCTL with Rewards
	4.1 Timing Attacks
	4.2 Probabilistic Conformance
	4.3 Cost Analysis in Multi-Agent Path Planning
	4.4 Probabilistic Self-stabilizing Systems

	5 Model Checking Algorithm for Reward Operators
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Hypercontracts
	1 Introduction
	2 Preliminaries
	3 The Theory of Hypercontracts
	3.1 Components
	3.2 Compsets
	3.3 Hypercontracts
	3.4 An Example on Robustness

	4 Behavioral Modeling
	4.1 General Hypercontracts
	4.2 Conic (or Downward-Closed) Hypercontracts

	5 Conclusions
	References

	Monitorability of Expressive Verdicts
	1 Introduction
	2 Preliminaries
	2.1 LTL Property Classification

	3 A Richer View of Monitorability
	4 Boolean and Quantitative Totally Ordered Domains
	4.1 Property Classes
	4.2 Quantitative LTL
	4.3 Discounting in LTL

	5 Towards Partially Ordered Domains
	5.1 Property Classes for Partially Ordered Domains
	5.2 Gray Box Monitoring (Assumptions)
	5.3 Imprecise Observations
	5.4 Example: Resource Sharing

	6 Conclusion
	References

	BDDs Strike Back
	1 Introduction
	2 Preliminaries
	2.1 Fault Trees
	2.2 Binary Decision Diagrams

	3 SFT Analysis via BDD
	3.1 Computing Minimal Cut Sets
	3.2 Computing Unreliability
	3.3 Computing the MTTF
	3.4 Implementation

	4 Evaluation of SFT Approach
	4.1 Configurations
	4.2 Benchmarks
	4.3 Results

	5 DFT Analysis via BDD and Modularisation
	6 Evaluation of DFT Approach
	6.1 Results

	7 Conclusion
	References

	Approximate Translation from Floating-Point to Real-Interval Arithmetic
	1 Introduction
	2 Related Work
	3 Floating-Point Arithmetic
	4 Abstraction of FPA with Interval Arithmetic
	4.1 Interval Arithmetic
	4.2 Approximation of FPA Formulas by IA Formulas

	5 Implementation
	5.1 Encoding IA in RA
	5.2 Translators
	5.3 Solver Script
	5.4 Formal Verification Using Why3

	6 Experiments
	6.1 Bounded Model Checking
	6.2 Benchmark Problems
	6.3 Discussions

	7 Conclusion
	References

	Synthesis of Optimal Defenses for System Architecture Design Model in MaxSMT
	1 Introduction
	2 Preliminaries
	2.1 Attack and Defense Specification
	2.2 Attack-Defense Trees

	3 ADTree Analysis
	3.1 Defense Models
	3.2 ADTree Construction
	3.3 ADTree Evaluation

	4 ADTree Synthesis
	4.1 Synthesis Problem Statement
	4.2 MaxSMT Encoding for Synthesis
	4.3 SMT Model Evaluation

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Certified Computation of Nondeterministic Limits
	1 Introduction
	2 Background and Overview
	3 The Nondeterminism Monad
	3.1 Nondeterministic Dependent Choice

	4 Nondeterministic Limits
	4.1 Deterministic Limits of Nondeterministic Sequences
	4.2 Nondeterministic Limits
	4.3 Nondeterministic Limits with Additional Information

	5 Examples
	5.1 Computing Complex Square Roots
	5.2 Equivalence of Axiomatic Real Numbers

	6 Implementation and Experimental Results
	7 Conclusion
	References

	The Power of Disjoint Support Decompositions in Decision Diagrams
	1 Introduction
	2 Background and Related Work
	3 Succinctness Separation Between DSDBDD and BDD
	4 Conclusion and Future Work
	References

	Incremental Transitive Closure for Zonal Abstract Domain
	1 Introduction
	2 Zonal Abstract Domain
	3 Incremental Closure
	4 Evaluations and Results
	5 Conclusion
	References

	Proof Mate: An Interactive Proof Helper for PVS (Tool Paper)
	1 Introduction
	2 Theorem Proving in PVS and VSCode-PVS
	3 Proof Mate
	4 Architecture and Implementation
	5 Related Work
	6 Conclusion and Future Work
	References

	Runtime Verification Triggers Real-Time, Autonomous Fault Recovery on the CySat-I
	1 Introduction
	2 System Description
	3 Implementation
	4 Runtime Specification Development
	5 Evaluation Methodology
	6 Results and Analysis
	7 Conclusion
	References
	Correction to: From Verified Scala to STIX File System Embedded Code Using Stainless
	Correction to: Chapter “From Verified Scala to STIX File System Embedded Code Using Stainless” in: J. V. Deshmukh et al. (Eds.): NASA Formal Methods, LNCS 13260, https://doi.org/10.1007/978-3-031-06773-0_21

	Author Index

