Jyotirmoy V. Deshmukh
Klaus Havelund
Ivan Perez (Eds.)

Formal Methods

NASA
Formal Methods

14th International Symposium, NFM 2022
Pasadena, CA, USA, May 24-27, 2022
Proceedings

LNCS 13260

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Bernhard Steffen®, Germany
Wen Gao, China Moti Yung@®, USA

Formal Methods

Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK
Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle Mclver, Macquarie University, Sydney, NSW, Australia
Peter Miiller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands
Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

13260

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Jyotirmoy V. Deshmukh -
Klaus Havelund - Ivan Perez (Eds.)

NASA
Formal Methods

14th International Symposium, NFM 2022

Pasadena, CA, USA, May 24-27, 2022
Proceedings

@ Springer

Editors

Jyotirmoy V. Deshmukh Klaus Havelund
University of Southern California Jet Propulsion Laboratory
Los Angeles, CA, USA California Institute of Technology

Pasadena, CA, USA
Ivan Perez

National Institute of Aerospace
Hampton, VA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-06772-3 ISBN 978-3-031-06773-0 (eBook)

https://doi.org/10.1007/978-3-031-06773-0

© Springer Nature Switzerland AG 2022, corrected publication 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8815-464X
https://orcid.org/0000-0001-7079-0472
https://orcid.org/0000-0002-9998-0269
https://doi.org/10.1007/978-3-031-06773-0

Preface

The NASA Formal Methods (NFM) Symposium is a forum to foster collaboration
between theoreticians and practitioners from NASA, academia, and industry, with the
goal of identifying challenges and providing solutions to achieve assurance in
mission-critical and safety-critical systems. The NASA Formal Methods Symposia
welcome submissions on cross-cutting approaches that bring together formal methods
and techniques from other domains. Topics covered by NFM 2022 included, but were
not limited to, the following:

Advances in formal methods

Interactive and automated theorem proving
SMT and SAT solving

Model checking

Static analysis

Runtime verification

Automated testing

Specification languages, textual and graphical
Refinement

Code synthesis

Design for verification and correct-by-design techniques
Requirements specification and analysis

Integration of formal methods techniques

Use of machine learning and probabilistic reasoning in formal methods
Integration of formal methods into software engineering practices
Combination of formal methods with simulation and analysis techniques
Formal methods and fault tolerance, and self-healing systems

Formal methods and graphical modeling languages such as SysML, UML
Formal methods and autonomy

Formal methods in practice

Experience reports of application of formal methods on real systems
Use of formal methods in systems engineering

Use of formal methods in education

Reports on negative results in the application of formal methods
Usability of formal method tools, and application in industry
Challenge problems for the formal methods community.

This volume contains the papers presented at NFM 2022, the 14th NASA Formal

Methods Symposium, held at the California Institute of Technology (Pasadena, CA,
USA) during May 24-27, 2022, and organized by JPL, the University of Southern
California, the Formal Methods group at NASA Langley Research Center, and the

vi Preface

California Institute of Technology. NFM 2021 and NFM 2020 were held virtually and
were organized by, respectively, the NASA Langley Research Center and the NASA
Ames Research Center. Prior symposia were held in Houston, TX (2019), Newport
News, VA (2018), Moffett Field, CA (2017), Minneapolis, MN (2016), Pasadena, CA
(2015), Houston, TX (2014), Moffett Field, CA (2013), Norfolk, VA (2012), Pasadena,
CA (2011), Washington, DC (2010), and Moffett Field, CA (2009). The series started
as the Langley Formal Methods Workshop, and was held under that name in 1990,
1992, 1995, 1997, 2000, and 2008.

Papers were solicited for NFM 2022 under two categories: regular papers describing
fully developed work and complete results, and short papers describing tools, experi-
ence reports, or work-in-progress with preliminary results. The symposium received
118 submissions for review, of which 93 were full papers and 25 were short papers.
A total of 39 papers were accepted for publication: 33 full papers and six short papers.
The submissions went through a rigorous review process where each paper was
independently reviewed by at least three reviewers and then subsequently discussed by
the Program Committee (PC).

In addition to the paper presentations, the symposium featured seven invited key-
note speakers: Dines Bjerner (Technical University of Denmark, Denmark), Steve
Chien (JPL, USA), Daniel Jackson (MIT, USA), Julia Lawall (Inria Paris, France),
Sriram Sankaranarayanan (University of Colorado Boulder, USA), Alex Summers
(University of British Columbia, Canada), and Emina Torlak (University of Wash-
ington, USA). The first day of the symposium included four tutorials presented by
Edwin Brady (University of St. Andrews, UK), Ankush Desai (Amazon Web Services,
USA), Anastasia Mavridou (KBR Inc./NASA Ames, USA), and Leonardo de Moura
(Microsoft Research, USA) and Sebastian Ullrich (Karlsruhe Institute of Technology,
Germany). Keynote speakers and tutorial presenters were invited to submit papers,
which are also included in the proceedings.

The PC chairs are especially grateful to Richard Murray, our Local Chair, for
making it possible to hold the symposium at the California Institute of Technology, as
well as Monica Nolasco, for help with local arrangements. We would also like to thank
our scientific advisor, Mani Chandy (California Institute of Technology), and the
application advisors, Robert Bocchino (JPL), John Day (JPL), Maged Elasaar (JPL),
Amalaye Oyake (Blue Origin), Nicolas Rouquette (JPL), and Vandi Verma (JPL).

The organizers are grateful to the authors for submitting their work to NFM 2022
and to all invited speakers for sharing their insights. NFM 2022 would not have been
possible without the work of the outstanding Program Committee and additional
reviewers, the support of the Steering Committee, the support of the California Institute
of Technology, JPL, the University of Southern California, and the NASA Langley
Research Center, and the general support of the NASA Formal Methods community.

The NFM 2022 website can be found at https://nfm2022.caltech.edu.

April 2022 Jyotirmoy V. Deshmukh
Klaus Havelund
Ivan Perez

https://nfm2022.caltech.edu

Program Chairs

Jyotirmoy V. Deshmukh
Klaus Havelund

Ivan Perez

Local Organizer

Richard M. Murray

Program Committee

Erika Abraham
Natalia Alexandrov
Nikos Arechiga
Julia Badger
Stanley Bak

Dirk Beyer

Sylvie Boldo
Borzoo Bonakdarpour
Betty H. C. Cheng
Alessandro Cimatti
Misty Davies

John Day

Ewen Denney
Aaron Dutle
Riidiger Ehlers
Yli¢s Falcone
Chuchu Fan
Marie Farrell
Martin Feather

Lu Feng
Jean-Christophe Filliatre
Bernd Finkbeiner

Alwyn Goodloe

Kim Guldstrand Larsen
Arie Gurfinkel
Constance Heitmeyer

Organization

University of Southern California, USA

Jet Propulsion Laboratory, California Institute
of Technology, USA

National Institute of Aerospace, USA

California Institute of Technology, USA

RWTH Aachen University, Germany

NASA, USA

Toyota Research Institute, USA

NASA, USA

Stony Brook University, USA

Ludwig-Maximilians-Universitit Miinchen, Germany

Inria and Université Paris-Saclay, France

Michigan State University, USA

Michigan State University, USA

Fondazione Bruno Kessler, Italy

NASA, USA

Jet Propulsion Laboratory, California Institute of
Technology, USA

NASA, USA

NASA, USA

Clausthal University of Technology, Germany

Université Grenoble Alpes/Inria Grenoble, France

MIT, USA

Maynooth University, Ireland

Jet Propulsion Laboratory, California Institute of
Technology, USA

University of Virginia, USA

CNRS, France

CISPA Helmholtz Center for Information Security,
Germany

NASA, USA

Aalborg University, Denmark

University of Waterloo, Canada

Naval Research Laboratory, USA

viii Organization

Kerianne Hobbs
Gerard Holzmann
Bardh Hoxha
Marieke Huisman
Susmit Jha

Rajeev Joshi

Guy Katz

Martin Leucker
Michael Lowry
Leonardo Mariani
Anastasia Mavridou
Natasha Neogi
Dejan Nickovic
Corina Pasareanu
Doron Peled
Pavithra Prabhakar
Giles Reger

Nicolas Rouquette

Kristin Yvonne Rozier
Anne-Kathrin Schmuck
Johann Schumann
Cristina Seceleanu
Yasser Shoukry

Julien Signoles

Oleg Sokolsky
Marielle Stoelinga
Carolyn Talcott
Marcel Verhoef
Willem Visser
Huafeng Yu

Additional Reviewers

Anand, Ashwani
Andrés, Léo

Backeman, Peter
Barnat, Jiri

Bhayat, Ahmed
Borca-Tasciuc, Giorgian
Chawla, Abhinav
Chien, Po-Chun
Conrad, Esther

Das, Spandan

Air Force Research Laboratory, USA

Nimble Research, USA

Toyota Research Institute North America, USA

University of Twente, The Netherlands

SRI International, USA

Amazon Web Services, USA

The Hebrew University of Jerusalem, Israel

University of Luebeck, Germany

NASA, USA

University of Milano Bicocca, Italy

KBR/NASA Ames, USA

NASA, USA

Austrian Institute of Technology, Austria

CMU/KBR/NASA Ames, USA

Bar Ilan University, Israel

Kansas State University, USA

Amazon Web Services, USA, and University of
Manchester, UK

Jet Propulsion Laboratory, California Institute of
Technology, USA

Towa State University, USA

Max-Planck-Institute for Software Systems, Germany

KBR/NASA Ames, USA

Mailardalen University, Sweden

University of California, Irvine, USA

CEA List/Université Paris-Saclay, France

University of Pennsylvania, USA

University of Twente, The Netherlands

SRI International, USA

European Space Agency, The Netherlands

Amazon Web Services, USA

Boeing Research and Technology, USA

Dawson, Charles

Dobe, Oyendrila
Dolan, Sydney

Dross, Claire

Dureja, Rohit

Ferlez, James
Garcia-Contreras, Isabel
Girol, Guillaume
Goorden, Martijn
Grosen, Thomas M.

Gu, Rong

Guedri, Wissal
Hamilton, Nathaniel
Hansen, Jonas

Hsu, Tzu-Han
Jacquemin, Maxime
Johannsen, Chris
Kallwies, Hannes
Katis, Andreas
Kauffman, Sean
Kempa, Brian
Kochdumper, Niklas
Kolb, Christina

Lal, Ratan

Lammich, Peter

Lee, Nian-Ze
Lopuhad-Zwakenberg, Milan
Mainhardt, Ana Maria
Marre, Bruno

Mata, Andrew

Meng, Yue

Neider, Daniel
Paskevich, Andrei
Prakash Nayak, Satya

Organization

Priya, Siddharth
Roussanaly, Victor
Rubbens, Robert
Sachenbacher, Martin
Schmitt, Frederik
Schmitz, Malte
Sheikhi, Sanaz
Slagel, Joseph
Slagel, Tanner
Soueidi, Chukri
Spiessl, Martin
Strub, Pierre-Yves
Su, Yusen

Thoma, Daniel
van den Bos, Petra
van Dijk, Tom

Vediramana Krishnan, Hari Govind

Wendler, Philipp
Winter, Stefan

Wu, Changshun

Xu, Kathleen

Yang, Xiaodong
Zhang, Songyuan
Zimmermann, Martin

ix

Abstracts of Invited Tutorials

Total Functional Programming in Idris:
A Tutorial

Edwin Brady

School of Computer Science, University of St Andrews, Scotland, UK
ecbllO@st-andrews.ac.uk
https://type-driven.org.uk/edwinb

Abstract. Idris is a pure functional programming language with dependent
types. The type system allows precise specification and reasoning about program
properties. Idris also supports fotality checking. A total function is a function
which returns a finite, non-empty prefix of a (possibly infinite) result in finite
time. The analysis is necessarily incomplete, but Idris uses syntactic and
semantic checks to check which functions are guaranteed to be total. In this
tutorial, I will discuss total programming in Idris [2], both to show its practical
benefits in writing robust and secure code, and to show how to write total
programs in practice.

Overview

The tutorial is in two parts. In the first part, I show how to write total programs using
recursion and corecursion. Recursive programs are checked for totality by checking
how the size of inputs changes through recursive calls, using the size-change principle
[3]. Corecursive functions are checked for totality by ensuring that all corecursive calls
are guarded by a constructor. By combining recursive and corecursive functions and a
notion of “fuel” [4], we have a Turing-complete language where individual compo-
nents are guaranteed total. I also show how views, a concept enabled by dependent
types [5], make total programming powerful and accessible. I illustrate these concepts
with an example of a concurrent server program. In the second part, I show how to
define and implement the views we have used to describe common patterns of recur-
sion. This involves an accessibility predicate which we can use to prove that recursive
functions reduce to a base case. In particular, I demonstrate domain predicates [1] in
Idris, a method for proving termination of general recursive functions.

References

1. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct. in
Comp. Science 15, 671-708 (2002). https://doi.org/10.1017/S0960129505004822

2. Brady, E.: Idris 2: quantitative type theory in practice. In: Meller, A., Sridharan, M. (eds.)
35th European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 194, pp. 9:1-9:26. Schloss Dagstuhl —

https://orcid.org/0000-0002-9734-367X
https://doi.org/10.1017/S0960129505004822

Xiv E. Brady

Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.
ECOOP.2021.9, https://drops.dagstuhl.de/opus/volltexte/2021/14052

3. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termina-
tion. SIGPLAN Not. 36(3), 81-92 (2001). https://doi.org/10.1145/373243.360210

4. McBride, C.: Turing-completeness totally free. In: Hinze, R., Voigtlidnder, J. (eds.) MPC
2015. LNCS, vol. 9129, pp 257-275. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-19797-5_13

5. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1), 69-111 (2004).
https://doi.org/10.1017/S0956796803004829, http://www.journals.cambridge.org/abstract_
S0956796803004829

https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://drops.dagstuhl.de/opus/volltexte/2021/14052
https://doi.org/10.1145/373243.360210
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1017/S0956796803004829
http://www.journals.cambridge.org/abstract_S0956796803004829
http://www.journals.cambridge.org/abstract_S0956796803004829

The Lean 4 Theorem Prover
and Programming Language: A Tutorial

Leonardo de Moura' and Sebastian Ullrich?

! Microsoft Research
leonardo@microsoft.com
2 Karlsruhe Institute of Technology
sebastian.ullrich@kit.edu

Lean 4' is an implementation of the Lean interactive theorem prover (ITP) and pro-
gramming language in Lean itself. It addresses many shortcomings of the previous
versions and contains many new features. Lean 4 is fully extensible: users can modify
and extend the parser, elaborator, tactics, decision procedures, pretty printer, and code
generator. The new system has a hygienic macro system custom-built for ITPs. It
contains a new typeclass resolution procedure based on tabled resolution, addressing
significant performance problems reported by the growing user base. Lean 4 is also an
efficient functional programming language based on a novel programming paradigm
called functional but in-place. Efficient code generation is crucial for Lean users
because many write custom-proof automation procedures in Lean itself.

The main goal of this tutorial is to introduce Lean 4 to potential users. Participants
are assumed to have only a basic grounding in logic and (functional) programming.
The tutorial is based on the book “Theorem Proving in Lean” and examples from the
“Lean 4 Language Manual™.

' http://leanprover.github.io/.
2 https://leanprover.github.io/theorem_proving_in_lean4/title_page.html.
3 https://leanprover.github.io/lean4/doc/.

http://leanprover.github.io/
https://leanprover.github.io/theorem_proving_in_lean4/title_page.html
https://leanprover.github.io/lean4/doc/

Formally Reasoning about Distributed Systems
using P

Ankush Desai

Amazon
ankushpd@amazon.com

Abstract. Distributed systems are notoriously hard to get right. Programmers
need to reason about numerous control paths resulting from the myriad inter-
leaving of messages and failures. Moreover, it is extremely difficult to sys-
tematically test distributed systems, most control paths remain untested, and
serious bugs can lie dormant for months or even years after deployment. These
bugs can be in the design of the system itself or a gap between design and its
implementation. Hence, there is need for tools and techniques that can enable
developers to reason about correctness of their system in different phases of the
development cycle, from design, to implementation and testing, and also after
deployment in production.

To address these challenges, we have been developing P, a unified framework
for reasoning about distributed systems. P is a state machine based programming
language for modeling and specifying distributed systems. P supports several
backend analysis engines (like model checking and symbolic execution) to
check that the distributed system modeled in P satisfies the desired correctness
specifications. Not only can a P program be systematically tested (e.g., model
checking), but it can also be compiled into executable code. Essentially, P
unifies modeling, specifying, implementing, and testing into one activity for the
programmer. P is currently being used extensively inside Amazon (AWS) for
analysis of complex distributed systems. P is also being used in academia for
programming safe robotic systems. P was first used to implement and validate
the USB device driver stack that ships with Microsoft Windows 8 and Windows
Phone.

In this short informal article, we provide a quick overview of the challenges
and key features in P that we believe helped in its adoption. Finally, we
encourage the formal methods and distributed systems community to use and
contribute to the open source P framework.

Keywords: Model checking - Formal methods - Distributed systems

1 Challenge: Programming Reliable Distributed Systems

Programming reliable distributed systems is challenging because of the need to reason
about correctness in the presence of myriad possible interleaving of messages and

Formally Reasoning about Distributed Systems using P xvii

failures. Unsurprisingly, it is common for developers to uncover correctness bugs after
deployment. Formal methods (FM)' can play an important role in addressing this
challenge. But the key requirement for success, especially, in an industrial setting,
would be the ability to integrate FM in all the phases of development process, from
system design, to implementation, to unit and integration testing, and even in pro-
duction through runtime monitoring. Moreover, for most of the known applications of
formal techniques for distributed systems in industrial setup, analysis performed during
design phase (e.g., TLA+ [1]) has not been connected to popular techniques for
validation/testing of the implementation (e.g., Jepsen [2], Chaos Monkey [3]). It is
crucial for the adoption of formal methods that efforts invested in writing specifications
during the design verification phase must not get wasted and should play an important
role in the later phases of the software life cycle, e.g., during testing of implementation.

To summarize, there is a need to build an unified framework that can be used to
perform analysis of distributed systems at design, implementation, and even in pro-
duction with the capability to reuse developers efforts (e.g., artifacts like models and
specifications) across different phases of the development cycle.

2 P Framework

P [4] is a state machine-based programming language for modeling and specifying
complex distributed systems. The P framework has three important parts: (1) a
high-level state machine-based programming language, allowing programmers to
specify their system design as a collection of communicating state machines. P being a
programming language (rather than a mathematical modeling language) has been one
of the key reasons for its large-scale adoption; Developers find it easy to create formal
models in a programming language with familiar syntax. The syntactic sugar of state
machines, allows them capture the protocol as state machines which is how they
normally think about complex system design. (2) it supports scalable analysis engines
to check that the distributed system modeled in P satisfy the desired correctness
specifications. P can also leverages distributed compute to scale exploration to large
system design and has helped find critical bugs in complex systems. (3) we are actively
developing automated to check code conformance and take steps towards bridging the
gap between design models/specifications and the actual implementation. Each of these
features have played an important role in the adoption of P.

In our limited experience of using P inside industry and academia, we have
observed that P has helped developers in three critical ways: (1) “P as a thinking tool”:
Writing formal specifications in P forced developers to think about their system design
rigorously, and in turn helped in bridging gaps in their understanding of the system.
A large fraction of the bugs were eliminated in the process of writing specifications

! Formal Methods is used leniently to refer to the wide area of techniques from model checking, to
property-based testing, to runtime monitoring. Essentially, approaches that can be easily integrated
into development process but does require engineers to create formal models and specifications
of their system.

Xviii A. Desai

itself; (2) “P as a bug finder”: Model checking helped find corner case bugs in system
design that were missed by stress and integration testing; (3) “P helped boost
developer velocity”: After the initial overhead of creating the formal models, future
updates and feature additions could be rolled out faster as these non-trivial changes are
rigorously validated before implementing them. P is an open source project and we
encourage the formal methods and distributed systems community to use and con-
tribute to the framework.

Acknowledgements. P has always been a collaborative project between industry and
academia. We sincerely thank all the contributors to P framework over the years.

References

1. TLA+. https://lamport.azurewebsites.net/tla/tla.html.

2. Jepsen. https://jepsen.io/.

3. Chaos Monkey. https:/netflix.github.io/chaosmonkey/.
4. P. https://p-org.github.io/P/.

https://lamport.azurewebsites.net/tla/tla.html
https://jepsen.io/
https://netflix.github.io/chaosmonkey/
https://p-org.github.io/P/

Contents

Invited Keynotes

Steve A. Chien

An Essence of Domain Engineering: A Basis for Trustworthy
Aeronautics and Space Software L L L L 14
Dines Bjorner

Concept Design MOVeSot 52
Daniel Jackson

Automating Program Transformation with Coccinelle 71
Julia Lawall and Gilles Muller

The Prusti Project: Formal Verification for Rust 88
Vytautas Astrauskas, Aurel Bily, Jonds Fiala, Zachary Grannan,
Christoph Matheja, Peter Miiller, Federico Poli,
and Alexander J. Summers

Xin Chen and Sriram Sankaranarayanan

Regular Submissions

Towards Better Test Coverage: Merging Unit Tests for Autonomous
Systems’ ... 133
Josefine B. Graebener, Apurva Badithela, and Richard M. Murray

Quantification of Battery Depletion Risk Made Efficient 156
Holger Hermanns and Gilles Nies

Hierarchical Contract-Based Synthesis for Assurance Cases 175
Timothy E. Wang, Zamira Daw, Pierluigi Nuzzo, and Alessandro Pinto

Verified Probabilistic Policies for Deep Reinforcement Learning. 193
Edoardo Bacci and David Parker

NNLander-VeriF: A Neural Network Formal Verification Framework
for Vision-Based Autonomous Aircraft Landing 213
Ulices Santa Cruz and Yasser Shoukry

XX Contents

The Black-Box Simplex Architecture for Runtime Assurance of

Autonomous CPS e 231
Usama Mehmood, Sanaz Sheikhi, Stanley Bak, Scott A. Smolka,
and Scott D. Stoller

Case Studies for Computing Density of Reachable States for Safe
Autonomous Motion Planning L L o 251
Yue Meng, Zeng Qiu, Md Tawhid Bin Waez, and Chuchu Fan

Towards Refactoring FRETish Requirements 272
Marie Farrell, Matt Luckcuck, Oisin Sheridan, and Rosemary Monahan

Neural Network Compression of ACAS Xu Early Prototype Is Unsafe:
Closed-Loop Verification Through Quantized State Backreachability 280
Stanley Bak and Hoang-Dung Tran

ZoPE: A Fast Optimizer for ReLU Networks with

Low-Dimensional Inputs 299
Christopher A. Strong, Sydney M. Katz, Anthony L. Corso,
and Mykel J. Kochenderfer

Permutation Invariance of Deep Neural Networks with ReLUs 318
Diganta Mukhopadhyay, Kumar Madhukar, and Mandayam Srivas

Configurable Benchmarks for C Model Checkers 338
Xaver Fink, Philipp Berger, and Joost-Pieter Katoen

Assume-Guarantee Reasoning with Scheduled Components 355
Cong Liu, Junaid Babar, Isaac Amundson, Karl Hoech, Darren Cofer,
and Eric Mercer

Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata
Learning 373
Andrea Pferscher and Bernhard K. Aichernig

From Verified Scala to STIX File System Embedded Code

Using Stainlessot e e 393
Jad Hamza, Simon Felix, Viktor Kuncak, Ivo Nussbaumer,
and Filip Schramka

On the Termination of Borrow Checking in Featherweight Rust 411
Etienne Payet, David J. Pearce, and Fausto Spoto

More Programming Than Programming: Teaching Formal Methods in a

Software Engineering Programme 431
James Noble, David Streader, Isaac Oscar Gariano,
and Miniruwani Samarakoon

Contents XXi

Zone Extrapolations in Parametric Timed Automata 451
Johan Arcile and Etienne André

Exemplifying Parametric Timed Specifications over Signals with Bounded
Behavior 470
Etienne André, Masaki Waga, Natuski Urabe, and Ichiro Hasuo

Timed Automata Learning via SMT Solving 489
Martin Tappler, Bernhard K. Aichernig, and Florian Lorber

Asynchronous Composition of Local Interface LTL Properties 508
Alberto Bombardelli and Stefano Tonetta

Elucidation and Analysis of Specification Patterns in Aerospace System

Telemetry.o e 527
Zachary Luppen, Michael Jacks, Nathan Baughman, Muhamed Stilic,
Ryan Nasers, Benjamin Hertz, James Cutler, Dae-Young Lee,
and Kristin Yvonne Rozier

Robust Computation Tree Logic 538
Satya Prakash Nayak, Daniel Neider, Rajarshi Roy, and Martin
Zimmermann

On-the-Fly Model Checking with Neural MCTS 557
Ruiyang Xu and Karl Lieberherr

Requirements-Driven Model Checking and Test Generation for

Comprehensive Verification 576
Devesh Bhatt, Hao Ren, Anitha Murugesan, Jason Biatek, Srivatsan
Varadarajan, and Natarajan Shankar

Operational Annotations: A New Method for Sequential Program
Verification 597
Paul C. Attie

Towards Formal Verification of HotStuff-Based Byzantine Fault Tolerant

Consensus in Agda 616
Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo,
and Lisandra Silva

DSV: Disassembly Soundness Validation Without Assuming a Ground

Xiaoxin An, Freek Verbeek, and Binoy Ravindran

Probabilistic Hyperproperties with Rewards 656
Oyendrila Dobe, Lukas Wilke, Erika Abraham, Ezio Bartocci,
and Borzoo Bonakdarpour

XXil Contents

Hypercontractst 674
Inigo Incer, Albert Benveniste, Alberto Sangiovanni-Vincentelli,
and Sanjit A. Seshia

Monitorability of Expressive Verdicts 693
Felipe Gorostiaga and César Sanchez

BDDs Strike Back: Efficient Analysis of Static and Dynamic Fault Trees ... 713
Daniel Basgdze, Matthias Volk, Joost-Pieter Katoen, Shahid Khan,
and Marielle Stoelinga

Approximate Translation from Floating-Point to Real-Interval Arithmetic. ... 733
Daisuke Ishii, Takashi Tomita, and Toshiaki Aoki

Synthesis of Optimal Defenses for System Architecture Design Model in

MaxSMT . . . 752
Baoluo Meng, Arjun Viswanathan, William Smith, Abha Moitra, Kit Siu,
and Michael Durling

Certified Computation of Nondeterministic Limits. 771
Michal Konecny, Sewon Park, and Holger Thies

The Power of Disjoint Support Decompositions in Decision Diagrams. 790
Lieuwe Vinkhuijzen and Alfons Laarman

Incremental Transitive Closure for Zonal Abstract Domain. 800
Kenny Ballou and Elena Sherman

Proof Mate: An Interactive Proof Helper for PVS (Tool Paper). 809
Paolo Masci and Aaron Dutle

Runtime Verification Triggers Real-Time, Autonomous Fault Recovery on
the CySat-I. 816
Alexis Aurandt, Phillip H. Jones, and Kristin Yvonne Rozier

Correction to: From Verified Scala to STIX File System Embedded Code

Using Stainlessot e Cl1
Jad Hamza, Simon Felix, Viktor Kuncak, Ivo Nussbaumer,
and Filip Schramka

Author Index e 827

Invited Keynotes

®

Check for
updates

Formal Methods for Trusted Space
Autonomy: Boon or Bane?

Steve A. Chien®)

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109-8099, USA
steve.a.chien@jpl.nasa.gov
https://ai.jpl.nasa.gov

Abstract. Trusted Space Autonomy is challenging in that space sys-
tems are complex artifacts deployed in a high stakes environment with
complicated operational settings. Thus far these challenges have been
met using the full arsenal of tools: formal methods, informal methods,
testing, runtime techniques, and operations processes. Using examples
from previous deployments of autonomy (e.g. the Remote Agent Experi-
ment on Deep Space One, Autonomous Sciencecraft on Earth Observing
One, WATCH on MER, IPEX, AEGIS on MER, MSL, and M2020, and
the M2020 Onboard planner), we discuss how each of these approaches
have been used to enable successful deployment of autonomy. We next
focus on relatively limited use of formal methods (both prior to deploy-
ment and runtime methods). From the needs perspective, formal meth-
ods may represent the best chance for reliable autonomy. Testing, infor-
mal methods, and operations accommodations do not scale well with
increasing complexity of the autonomous system as the number of text
cases explodes and human effort for informal methods becomes infeasi-
ble. However from the practice perspective, formal methods have been
limited in their application due to: difficulty in eliciting formal speci-
fications, challenges in representing complex constraints such as metric
time and resources, and requiring significant expertise in formal methods
to apply properly to complex, critical applications. We discuss some of
these challenges as well as the opportunity to extend formal and informal
methods into runtime validation systems.

Keywords: Verification and validation - Flight software - Space
autonomy - Artificial intelligence

1 Introduction

From the dawn of the space era, software has played a key role in the advance-
ment of spaceflight. In the Apollo program, flight software in the Apollo Guid-
ance Computer [16] enabled the astronauts to safely land on the Moon despite
a radar configuration switch being set incorrectly.

© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 3-13, 2022.
https://doi.org/10.1007/978-3-031-06773-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_1&domain=pdf
http://orcid.org/0000-0003-1023-9480
https://doi.org/10.1007/978-3-031-06773-0_1

4 S. A. Chien

Yet even with this success, the Apollo flight software development process
encountered tremendous challenges [31], many of which would be quite familiar
to flight software teams of today:

— inadequate memory available for software to meet stated requirements,

— evolving requirements,

— unit software being delivered to integration without any unit testing,

— late software deliveries jeopardizing project schedule (even the launch dates),
and

— challenges in coordination between the teams distributed at NASA (Houston,
TX and Huntsville, AL) and MIT (Cambridge, MA).

The Apollo program mitigated these challenges using methods that would
be familiar to current flight software teams:

— revolutionary use of an interpreted “higher order language” rather than
machine or assembly code

— requirements driven software development,

— reduction in scope of the software (reducing the fidelity of the Earth model
used in lunar orbit, some attitude maneuver computations),

— development of significant infrastructure to support significant software test-
ing (e.g. hardware and software simulations),

— institution of change control boards to restrict scope changes, and

— mitigating the distributed teams by having key personnel spend time co-
location with other team elements.

In the end, the Apollo flight software delivered spectacularly, in no small
part because of the tremendously talented team. The lessons learned from the
Apollo flight software effort [31] would also come as no surprise to current flight
software practitioners:

documentation is crucial,

— verification must proceed through several levels,
requirements must be clearly defined and carefully managed,
— good development plans should be created and executed, and
— more programmers do not mean faster development.

The Apollo flight software can be considered the “first” space autonomy flight
software. The verification and validation process for this consisted primarily of
extensive unit and system level testing. Although it is not described explicitly
as such [31], informal methods must also have been heavily used in the form of
code reviews and algorithm reviews.

But if we are to realize the incredible promise of autonomy in future space
missions [10], which relies on reliable, trusted, autonomy flight software, what are
the prospects for such software moving forward? We argue that all three major
elements of validation and verification techniques will be critical as we move into
an era of greater autonomy flight software: formal methods, informal methods,

Formal Methods for Trusted Space Autonomy: Boon or Bane? 5

and testing. More precisely defined, verification typically refers to ensuring that
the software meets a specification and validation ensuring that the software
meets the customer/user needs. For the purposes of our discussion, the focus is
on verification but some elements of user studies, acceptance testing and informal
design reviews would also address validation. Also for the purposes of this paper
we use the following informal definitions.

Testing - exercising software artifacts - units, combinations of units, and system
level on inputs both within and beyond the design specifications.

Formal Methods - analytical and search based methods intended to prove spe-
cific positive or negative properties of software or algorithms. Examples formal
methods include model checking and static code analyzers.

Informal Methods - includes design reviews, code reviews, safety analysis, and
coding guidelines. Informal methods tend to be people and knowledge intensive
which is both a strength and a weakness. Some application of Formal Methods
that requires expert translation or re-implementation of an algorithm into a
different modelling language might best be considered hybrid formal/informal
methods with the manual translation being an informal method.

In the remainder of this paper, we first describe major autonomy software
that has been flown in space (including development of Mars 2020 Autonomy
Flight Software scheduled for deployment in 2023) and discuss the use of informal
methods, formal methods, and testing to Verify and Validate said software.

We then discuss the promise and the challenges in growing the role of formal
methods in developing increasingly robust, verified and validated autonomy flight
software.

2 Past Verification and Validation of Autonomy Flight
Software

While only a small fraction of space missions include significant autonomy flight
software, because of the large number of space missions there have been numer-
ous flights of autonomy software. In this section we survey prior flights of auton-
omy/artificial intelligence software and describe the use of testing, informal
methods, and formal methods in their deployment.

2.1 Remote Agent Experiment

The Remote Agent Experiment (RAX) [30] flew a planner-scheduler, task execu-
tive, and mode identification and recovery software onboard NASA’s Deep Space
One mission for two periods totaling approximately 48h in 1999. RAX repre-
sented the first spaceflight of significant Al software. RAX made extensive use

6 S. A. Chien

of multiple software and hardware testbeds of varying fidelity [4] to Verify and
Validate the RAX software.

The verification and validation of the onboard planner used novel methods for
testing including definitions of test coverage, use of a logical domain specification
to check plans for correctness (derived from the planner model) and also checks
automatically derived from flight rules [13,33].

RAX was not only a significant advance in autonomy but also demonstrated
significant use of formal methods for verification. Specifically, the executive was
verified pre-flight using the SPIN model checker which identified several con-
currency bugs [18]. Additionally, when an anomaly occurred during flight, an
experiment was conducted to use formal methods to isolate the issue in a java
surrogate for the flight code [17]. These successes are an excellent indicator of
the utility of formal methods for AI/Autonomy software.

2.2 Autonomous Sciencecraft on Earth Observing One

The Autonomous Sciencecraft (ASE) flew onboard the Earth Observing One
(EO-1) Mission and enables significant science-driven autonomy [9,27]. ASE
flew the CASPER onboard planning system, the Spacecraft Command Language
(SCL) task executive, and also Onboard Data Analysis software (including Sup-
port Vector Machine Learning). ASE later flew the Livingston 2 (L2) Mode Iden-
tification and Recovery software as a further flight experiment but L2 was not
used operationally [19,20]. ASE enabled onboard analysis of acquired imagery
and modification of the future mission plan to acquire more images based on
image analysis. ASE originally was slated as a 6 month technology demonstra-
tion, but was so successful that it was approved for continued operational usage
and was the primary missions operation software for EO-1 for the remainder of
the mission 2004—2017 (over a dozen years). ASE represented flight of a con-
siderable code base (over 100K source lines of code (SLOC), primarily in C++
and C. Preparing this large code base for flight required overcoming significant
software issues including memory allocation and code image size [34].

ASE was verified and validated using a combination of informal methods,
formal methods, and testing [11]. Significant testing was performed on a range of
software and hardware platforms of varying fidelity and included: requirements-
based testing, unit testing, system-level testing, and scenario-based testing -
including nominal, off nominal, and extrema scenarios.

ASE made heavy use of informal methods as well. A safety review was con-
ducted studying over 80 potential ways in which incorrect operations could harm
the spacecraft. ASE used a layered software and operations architecture with
multiple redundant layers of: operations procedures, planner, executive, base
flight software, and hardware. Therefore every layer could be used to redun-
dantly enforce flight rules to protect the spacecraft. This layered architecture
was very effective in enabling reliable operations.

ASE Verification and Validation had limited use of formal methods. Multiple
static code checkers were used to check all ASE code. Automated code gener-
ation was used to generate of SCL checks from CASPER activity and resource
specifications (this could be considered a form of runtime validation).

Formal Methods for Trusted Space Autonomy: Boon or Bane? 7

For a description of anomalies encountered during ASE operations and causes
see [35]. It is worth noting that the majority of these anomalies could be con-
sidered systems engineering issues that were manifested in software, not core
software errors (like pointer de-referencing or memory allocation issues).

2.3 WATCH/SPOTTER on Mars Exploration Rovers

WATCH/SPOTTER is image analysis software that was operationally qualified
on the Mars Exploration Rovers (MER) mission [5] (WATCH is the MER soft-
ware module name and SPOTTER is the name designated in publication(s)).
WATCH was tested at the unit and subsystem level on testbeds ranging from
workstation to the actual MER ground rover testbed. Informal methods were
also used: coding guidelines, code walkthroughs, and software design document
reviews. Standard code static analyzers were also applied as part of the project
standard software process.

2.4 AEGIS on MER, MSL, and M2020

AEGIS is software used on the MER, MSL, and M2020 rover missions that
allows the rover to acquire wide FOV imagery, find targets according to user
specified science criteria, and target with narrow FOV sensors. AEGIS was orig-
inally developed for the MER mission Mini-TES and Pancam instruments® [12],
updated for MSL with the Chemcam instrument [14], and is now in use on M2020
with the SuperCam instrument. AEGIS represents a significant code base at just
under 30K lines of source code (SLOC).

Prior to deployment on all three rover missions, AEGIS was subjected to
testing on testbeds ranging from workstations to actual ground rover testbeds.
Informal methods were also applied such as code walkthroughs, software module
reviews, and requirements analysis. Formal methods static code analyzers were
also used as part of the normal software development process.

2.5 MSL FSW

While technically not all autonomy software, the Mars Science Laboratory
(MSL) flight software development practices are worth considering as they rep-
resent the state of the practice for flight software development [21].

MSL heavily used a range of informal methods to ensure software quality
including:

— risk-based coding rules (such as assertion density),
— design and code walkthroughs, and
— documentation requirements and reviews.

! Unfortunately the Mini-TES instrument failed before AEGIS-MER operational qual-
ification so AEGIS was never able to be used with Mini-TES on MER on Mars.

8 S. A. Chien

Notably, the MSL project automated checking of the above software require-
ments.

MSL also conducted an extensive testing program on testbeds ranging from
WSTS/linux workstation to flight testbeds.

Finally, MSL used formal methods in several ways. First, the SPIN model
checker was used to search for concurrency issues in critical multithreaded code
[21]. Second, significant amounts of code were automatically generated from
higher-level specifications (such as controllers from statecharts). Third, MSL
used the Coverity, Codesonar, Semmle, and Uno static code analyzers.

2.6 Intelligent Payload Experiment (IPEX)

IPEX [7] was a cubesat technology demonstration mission that demonstrated
high throughput onboard processing for the HyspIRI Intelligent Payload Module
(IPM) concept [8]. IPEX used the CASPER planner, a linux shell-based task
executive, and numerous onboard instrument analysis software modules.

IPEX followed the same software processes as ASE. However, because IPEX
was a much less complex spacecraft than EO-1 (specifically no active attitude
control) the overall operations constraints were less complex. For IPEX the
flight processor was running linux. This simplified the Verification and Vali-
dation process because there was very little difference between workstation and
flight testbed environments - greatly facilitating testing. As with ASE, unit and
system level testing, including nominal, off nominal, and extrema cases were
performed. Informal methods included code, software module, and safety-based
walkthroughs and reviews. Use of formal methods was limited to static code
analyzers.

3 Current Validation of Autonomy Software: Onboard
Planner for M2020

The Mars 2020 Mission is deploying an onboard scheduler to the Perseverance
rover as this paper goes to press (Spring 2022) with a target operational date in
2023. This onboard scheduler would control most of the activities of the rover
- including rover wake/sleep [28,32]. This onboard scheduler must be fit within
limited rover computing resources [15]. The onboard scheduler also utilizes flexi-
ble execution (which can be viewed as taking on the role of an executive) [1] and
also supports a limited form of disjunction in plans [2]. The onboard planner rep-
resents a sizeable, complex code base at approximately 56K source lines of code
(SLOC). The ground-based version of the automated scheduler [36] also has an
explanation capability [3] to assist the ground operations team in understanding
possible plans and outcomes.

The onboard planner is being verified using a combination of testing, infor-
mal methods, and formal methods. Testing includes unit test, systems test, and
scenario tests. Specifically scenario testing includes approximately 1 year of oper-
ations data of the Perseverance rover since landing. Informal methods includes

Formal Methods for Trusted Space Autonomy: Boon or Bane? 9

code walkthroughs, coding guidelines and rules (see MSL above), as well as
design reviews and software documentation. Finally, formal methods include the
use of static code analyzers as part of the M2020 software development process.

4 Discussion of Competing Verification and Validation
Methods

In some sense, formal methods may be seen as more promising to achieve robust
Verification and Validation to large scale, complex, autonomous systems. Con-
sider the weaknesses of Testing and Informal Methods.

4.1 Limitations of Testing and Informal Methods

Testing can only reveal bugs, it cannot prove a software artifact bug-free. Resid-
ual defect rate refers to the defect rate in released software (e.g. post validation).
Even the highly verified NASA space shuttle avionics software experienced 0.1
residual defects per KLOC [26] and leading-edge software companies experi-
ence a residual defect rate of 0.2 residual defects per KLOC [25]. A more broad
reliability survey showed a residual defect rate of 1.4 per KLOC [29] and a Mil-
itary system survey [6] showed a residual defect rate of 5-55 residual detects
per KLOC. Additionally, testing can be extremely expensive both in terms of
infrastructure (test drivers, simulators, oracles to evaluate tests) as well as time
and computing power.

Informal methods can leverage significant human expert knowledge but are
also incredibly time, labor, and expertise intensive and therefore add considerable
expense to the software validation process.

4.2 Limitations of Formal Methods

Given the considerable weaknesses of testing and informal methods, one might
consider why formal methods are not used. However consider the following chal-
lenges for application of formal methods to validation of autonomous space sys-
tems.

The Formal Specification Problem. Typically in order to apply formal
methods, one needs three formal specifications: the target artifact, the algo-
rithm/semantics, and the conditions to check. For example, when analyzing a
computer program for race conditions, the target artifact is the program itself,
the algorithm/semantics are the semantics of the programming language, and
the conditions would be a formal specification of the “race conditions” one wishes
to identify. If one is validating that a space system planner will generate valid
plans, the target artifact might be the planner model, the algorithm/semantics
might be the target planner algorithm for generating plans, and the conditions
might be some specification of soundness or termination. The challenge of this

10 S. A. Chien

approach is twofold. First, it is a tremendous amount of effort to derive the
second and third specification, whose primary purpose is to enable the applica-
tion of the formal methods analysis. Second, even if one is able to derive these
specifications, they themselves are suspect and the process is only as good as
these input specifications. E.g. recursively one might require a Verification and
Validation process on these inputs as well.

The Representation Problem. Formal methods are challenged by expressive
representations. Specifically, space applications are demanding in their require-
ments for: complex spatial representations of location, free space, pointing and
geometry; mixed discrete and continuous quantities and resources; and use of
multiple, variable resolution time systems. Any one of these presents consid-
erable challenges for formal methods, space applications often include most if
not all of these representational challenges simultaneously. On the other hand,
practical problems are typically propositional (or at least bounded instances) so
that the truly general representations (such as first order predicate logic) are
not strictly required. Still, in order for formal methods to make further headway
in Verification and Validation of space autonomous systems, further advances in
domain modelling capability are needed.

The Tractability Problem. A formal methods proof that a property holds
often is achieved by exhaustive search of some execution space (such as proving
non concurrency of two elements may require searching the entire space of ele-
ment orderings). For many space autonomy problems complete search of such a
problem space is computationally intractable.

In some cases static source code analysis and logic model checking can been
used to study the dual problem. Instead of exhaustively searching a problem
space to prove a property, one searches in the problem space for violations of the
property. In this way, even partial search can identify issues in the code [23]. This
in some ways is more akin to testing but can achieve much greater coverage more
rapidly (e.g. this approach can be considered a more efficient means of testing).
Unfortunately, such approaches suffer similar drawbacks as testing - e.g. that
they can only find issues and cannot (without complete search) indicate that no
such issues exist.

Note also that increasing computing capabilities and swarm-based dis-
tributed methods of validation [22,24] spread computational difficulties of these
approaches may be mitigated. However, because many of these search problems
scale exponentially om problem specification (e.g. code size) progress can be
elusive.

The Expertise Problem. Because of the above challenges, it often requires
considerable expertise to apply formal methods to good effect. For example, the
MSL concurrency analysis was performed by world class experts in formal meth-
ods. Because of the challenges described, one must not only be able to develop

Formal Methods for Trusted Space Autonomy: Boon or Bane? 11

formal specifications, but one must understand how to build specifications that
model the correct aspects of the application and are amenable to efficient analy-
sis (e.g. this deeper application of formal methods is far from out of the box static
code analyzers). In many respects, this is analogous to the situation with auton-
omy for space applications, in which considerable expertise in software, space,
and operations is needed to develop and deploy critical autonomy software.

5 Conclusions

This paper has discussed prospects for an increasing role for formal methods
in the verification and validation of autonomy flight software. We first surveyed
a number of prior and ongoing developments of autonomy flight software and
described their use of testing, informal methods, and formal methods. In all of
these cases, the bulk of the effort consisted of testing and informal methods. With
only a few notable exceptions (such as MSL code generation and Model checking
of critical code), usage of formal methods was restricted to use of static code
analyzers. We then discussed several challenges in application of formal methods
that restrict its usage: The Formal Specification Problem, The Representation
Problem, The Tractability Problem, and The Expertise Problem. Yet because of
the inherent limitations of testing and informal methods, we are still optimistic
and believe that formal methods are an essential tool in the development of space
autonomy software in the future.

Acknowledgments. This work was performed at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

References

1. Agrawal, J., Chi, W., Chien, S.A., Rabideau, G., Gaines, D., Kuhn, S.: Analyzing
the effectiveness of rescheduling and flexible execution methods to address uncer-
tainty in execution duration for a planetary rover. Robot. Auton. Syst. 140 (2021)
103758 (2021). https://doi.org/10.1016/j.robot.2021.103758

2. Agrawal, J., et al.: Enabling limited resource-bounded disjunction in scheduling.
J. Aerosp. Inf. Syst. 18(6), 322-332 (2021). https://doi.org/10.2514/1.1010908

3. Agrawal, J., Yelamanchili, A., Chien, S.: Using explainable scheduling for the mars
2020 rover mission. In: Workshop on Explainable Al Planning (XAIP), Interna-
tional Conference on Automated Planning and Scheduling (ICAPS XAIP), October
2020. https://arxiv.org/pdf/2011.08733.pdf

4. Bernard, D.E., et al.: The remote agent experiment. In: Deep Space One Technol-
ogy Validation Symposium, Pasadena, CA, February 1999. https://ntrs.nasa.gov/
api/citations/20000116204/downloads/20000116204.pdf

5. Castano, A., et al.: Automatic detection of dust devils and clouds at mars. Mach.
Vis. Appl. 19(5-6), 467482 (2008)

6. Cavano, J., LaMonica, F.: Quality assurance in future development environments.
IEEE Softw. 4, 26-34 (1987)

https://doi.org/10.1016/j.robot.2021.103758
https://doi.org/10.2514/1.I010908
https://arxiv.org/pdf/2011.08733.pdf
https://ntrs.nasa.gov/api/citations/20000116204/downloads/20000116204.pdf
https://ntrs.nasa.gov/api/citations/20000116204/downloads/20000116204.pdf

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.

25.
26.
27.

S. A. Chien

Chien, S., et al.: Onboard autonomy on the intelligent payload experiment (IPEX)
CubeSat mission. J. Aerosp. Inf. Syst. (JAIS) 14(6), 307-315 (2016). https://doi.
org/10.2514/1.1010386

Chien, S., Mclaren, D., Tran, D., Davies, A.G., Doubleday, J., Mandl, D.: Onboard
product generation on earth observing one: a pathfinder for the proposed Hyspiri
mission intelligent payload module. IEEE JSTARS Special Issue on the Earth
Observing One (EO-1) Satellite Mission: Over a decade in space (2013)

Chien, S., et al.: Using autonomy flight software to improve science return on earth
observing one. J. Aerosp. Comput. Inf. Commun. (JACIC) 2, 196-216 (2005)
Chien, S., Wagstaff, K.L.: Robotic space exploration agents. Sci. Robot. (2017).
https://www.science.org/doi/10.1126 /scirobotics.aan4831

Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G., Sherwood, R.: Validating
the autonomous EO-1 science agent. In: International Workshop on Planning and
Scheduling for Space (IWPSS 2004), Darmstadt, Germany, June 2004

Estlin, T., et al.: AEGIS automated targeting for the MER opportunity rover.
ACM Trans. Intell. Syst. Technol. 3(3), 1-19 (2012). Article No.: 50. https://doi.
org/10.1145/2168752.2168764

Feather, M.S., Smith, B.: Automatic generation of test oracles—from pilot studies
to application. Autom. Softw. Eng. 8(1), 31-61 (2001)

Francis, R., et al.: AEGIS autonomous targeting for ChemCam on Mars Science
Laboratory: deployment and results of initial science team use. Sci. Robot. 2
(2017). https://doi.org/10.1126/scirobotics.aan4582

Gaines, D., Rabideau, G., Wong, V., Kuhn, S., Fosse, E., Chien, S.: The Mars
2020 on-board planner: balancing performance and computational constraints. In:
Flight Software Workshop, February 2022

George, A.: Margaret Hamilton led the NASA software team that landed
astronauts on the moon (2019). https://www.smithsonianmag.com/smithsonian-
institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-
180971575/. Accessed 25 Mar 2022

Havelund, K., et al.: Formal analysis of the remote agent before and after flight.
In: Lfm 2000: Fifth NASA Langley Formal Methods Workshop (2000)

Havelund, K., Lowry, M., Penix, J.: Formal analysis of a space-craft controller
using spin. IEEE Trans. Softw. Eng. 27(8), 749-765 (2001)

Hayden, S.C., Sweet, A.J., Christa, S.E.: Livingstone model-based diagnosis of
earth observing one. In: ATAA Intelligent Systems Technical Conference. ATAA
(2004). https://doi.org/10.2514/6.2004-6225

Hayden, S.C., Sweet, A.J., Shulman, S.: Lessons learned in the livingstone 2
on earth observing one flight experiment. In: ATAA Infotech@Aerospace. ATAA
(2005). https://doi.org/10.2514/6.2005-7000

Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64-73 (2014)

Holzmann, G.J.: Cloud-based verification of concurrent software. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 311-327. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_15

Holzmann, G.J.: Test fatigue. IEEE Softw. 37(4), 11-16 (2020)

Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans.
Softw. Eng. 37(6), 845-857 (2010)

Jones, C.: Applied Software Measurement. McGraw-Hill, New York (1991)

Joyce, E.: Is error free software possible? Datamation 35(18), 749-765 (1989)
JPL-Artificial-Intelligence-Group: Autonomous sciencecraft web site (2017).
https://ai.jpl.nasa.gov/public/projects/ase/. Accessed 25 Mar 2022

https://doi.org/10.2514/1.I010386
https://doi.org/10.2514/1.I010386
https://www.science.org/doi/10.1126/scirobotics.aan4831
https://doi.org/10.1145/2168752.2168764
https://doi.org/10.1145/2168752.2168764
https://doi.org/10.1126/scirobotics.aan4582
https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/
https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/
https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/
https://doi.org/10.2514/6.2004-6225
https://doi.org/10.2514/6.2005-7000
https://doi.org/10.1007/978-3-662-49122-5_15
https://ai.jpl.nasa.gov/public/projects/ase/

28.

29.

30.

31.

32.

33.

34.

35.

36.

Formal Methods for Trusted Space Autonomy: Boon or Bane? 13

JPL-Artificial-Intelligence-Group: Mars 2020 onboard planner web site (2017).
https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/. Accessed 25 Mar 2022
Musa, J., et al.: Software Reliability: Measurement, Prediction, Application.
McGraw-Hill, New York (1990)

Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote agent: to boldly go
where no Al system has gone before. Artif. Intell. 103(1-2), 5-47 (1998)

NASA: Chapter two: Computers on board the apollo spacecraft. In: Computers in
Spaceflight: The NASA Experience. NASA. https://history.nasa.gov/computers/
Ch2-6.html?mod=article_inline. Accessed 27 Mar 2022

Rabideau, G., et al.: Onboard automated scheduling for the Mars 2020 rover. In:
Proceedings of the International Symposium on Artificial Intelligence, Robotics
and Automation for Space, i-SAIRAS 2020, European Space Agency, Noordwijk,
NL (2020)

Smith, B.D., Feather, M.S., Muscettola, N.: Challenges and methods in testing the
remote agent planner. In: AIPS, pp. 254-263 (2000)

Tran, D., Chien, S., Rabideau, G., Cichy, B.: Flight software issues in onboard auto-
mated planning: Lessons learned on EO-1. In: International Workshop on Planning
and Scheduling for Space (IWPSS 2004), Darmstadt, Germany, June 2004. https://
ai.jpl.nasa.gov/public/papers/tran_iwpss2004.pdf

Tran, D., Chien, S., Rabideau, G., Cichy, B.: Safe agents in space: pre-
venting and responding to anomalies in the autonomous sciencecraft exper-
iment. In: Safety and Security in Multi Agent Systems Workshop (SASE-
MAS), Autonomous Agents and Multi-Agent Systems Conference (AAMAS
2005), Utrecht, Netherlands, July 2005. https://ai.jpl.nasa.gov/public/papers/
tran_sasemas2005_PreventingResponding.pdf

Yelamanchili, A., et al..: Ground-based automated scheduling for opera-
tions of the Mars 2020 rover mission. In: Proceedings Space Operations
2021, May 2021. https://spaceops.iafastro.directory/a/proceedings/SpaceOps-
2021/SpaceOps-2021/6 /manuscripts/SpaceOps-2021,6,x1385.pdf

https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/
https://history.nasa.gov/computers/Ch2-6.html?mod=article_inline
https://history.nasa.gov/computers/Ch2-6.html?mod=article_inline
https://ai.jpl.nasa.gov/public/papers/tran_iwpss2004.pdf
https://ai.jpl.nasa.gov/public/papers/tran_iwpss2004.pdf
https://ai.jpl.nasa.gov/public/papers/tran_sasemas2005_PreventingResponding.pdf
https://ai.jpl.nasa.gov/public/papers/tran_sasemas2005_PreventingResponding.pdf
https://spaceops.iafastro.directory/a/proceedings/SpaceOps-2021/SpaceOps-2021/6/manuscripts/SpaceOps-2021,6,x1385.pdf
https://spaceops.iafastro.directory/a/proceedings/SpaceOps-2021/SpaceOps-2021/6/manuscripts/SpaceOps-2021,6,x1385.pdf

)

Check for
updates

An Essence of Domain Engineering

A Basis for Trustworthy Aeronautics and Space Software

Dines Bjgrner!-2(&=0)
! DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
bjorner@gmail.com
2 Technical University of Denmark, Fredsvej 11, 2840 Holte, Denmark
https://www.imm.dtu.dk/"dibj

Abstract. Before software can be designed one must have a reason-
able grasp of its requirements. Before requirements can be prescribed
one must have a reasonable grasp of the domain in which the software is
to serve. So we must study, analyse and describe the application domain.
We shall argue that domain science & engineering is a necessary prerequi-
site for requirements engineering, and hence software design. We survey
elements of domain science & engineering — and exemplify some elements
of domain descriptions. We finally speculate on the relevance of domain
engineering in the context of and aeronautics and space.

Keywords: Formal methods + Philosophy * Software -+ Domain
engineering * Requirements engineering

1 Introduction

A monograph has been published: [11, Domain Science and Engineering]. We
immodestly claim that the contents of that monograph “heralds” a new, an initial,
phase of software development—a new area of study within the exact sciences.

An aim of the present paper is to propagate awareness of the aim & objectives
of that book and hence of this new field, also, of computer science — as labeled
by the book title.

Another side-aim is to also introduce the possibility of a Philosophy of Infor-
matics'. This, we think, is a first for computer & computing science, to be

! We take informatics to be an amalgam of mostly mathematical nature: computer &
computing science and mathematics. Another such amalgam is /T which we consider
as mostly of technological nature: electronics, plasma and quantum physics, etc.
Informatics, to us, is a universe of intellectual quality: meeting customers expectations,
correct wrt. specifications, etc. /T is then a universe of material quantity: smaller,
bigger, faster, less costly, etc. The products of informatics [must] satisfy laws of
mathematics, in particular of mathematical logic. The products of /T [must] satisfy
the laws of physics.

Invited paper for the The 14th NASA Formal Methods Symposium, https://nfm2022.
caltech.edu, May 24-27, 2022, Pasadena, California, USA.
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 14-51, 2022.
https://doi.org/10.1007/978-3-031-06773-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_2&domain=pdf
https://nfm2022.caltech.edu
https://nfm2022.caltech.edu
https://doi.org/10.1007/978-3-031-06773-0_2

An Essence of Domain Engineering 15

“endowed” with a philosophy, as is mathematics [40], physics [13], life sciences
[74], etc. Yes, we are aware of previous attempts? to include considerations of spe-
cific, detailed, technical issues of theoretical computer science as being of philo-
sophical nature. But what we are suggesting, is, perhaps immodestly expressed,
of a more foundational kind. In our treatment of a possible philosophy of infor-
matics we shall “dig deeper”, as directed by [65-68].

The first four lines of the abstract expresses a dogma — the Triptych® dogma.
In those lines we used the term ‘reasonable’. By ‘reasonable’ we mean that we
can rationally reason about the domain — as do physicists and mathematicians.
To us that means that domain descriptions are expressed in some notation that
allows logical reasoning. Here we shall use RSL, the Raise? Specification Language
[27,28]. To express the analysis and description calculi of this paper we shall use
an informal extension of RSL, one whose description functions yield RSL texts,
RSL* Text.

This paper thus serves to propagate the dogma that software development
proceeds from the study, analysis and informal and formal domain descriptions,
via the “derivation” of requirements prescriptions from domain descriptions, to
software design, “derived” from requirements prescriptions.

The paper presents a capsule view of the monograph. For the reasoning
behind the various concepts and the technical details of the domain engineering
method, its principles, techniques and tools, we refer to [11].

By a method we shall understand a set of principles and procedures for
selecting and applying a number of techniques and tools for constructing an
artifact. By a formal method we shall understand a method whose techniques
and tools are given a mathematical understanding. By a formal software devel-
opment method — in the context of the triptych dogma —we shall understand a
formal method which is “built upon”, i.e., utilizes, one or more formal specifica-
tion languages, i.e., languages with formal syntax, formal semantics and proof
systems, that are the used to describe, prescribe and design domain descrip-
tions, requirements prescriptions and software — allowing formal tests [33], for-
mal model checks [19] and formal proofs in order to verify these specifications
and their transformations.

1.1 What Is a Domain ?

By a domain we shall understand a rationally describable® area of a discrete dynam-
ics segment of a human assisted reality, i.e., of the world, its solid or fluid entities:
natural [“God-given”] and artefactual [“man-made”] parts, and its living species
entities: plants and animals including, notably, humans [11, Sect. 4.2, Defn. 27].
In this paper we shall not cover the ‘living species’ aspects.

2 https://en.wikipedia.org/wiki/Philosophy _of _computer_science.

3 Triptych: a picture (such as an altarpiece) or carving in three panels side by side, or
something composed or presented in three parts or sections especially, like a trilogy.

4 Raise: Rigorous approach to industrial software engineering.

5 By ‘rationally describable’ we mean that the specification, in this case the descrip-
tion, must allow for formal, i.e., logical reasoning.

https://en.wikipedia.org/wiki/Philosophy_of_computer_science

16 D. Bjgrner

1.2 Structure of Paper

There are four main sections of this paper. Section?2 discusses the problem
of what must, unavoidably, be in any domain description. It does so on the
background of the quest of philosophers — since antiquity — for understanding
the world around us. Sections 3-4 summarise, respectively exemplify, a domain
analysis & description method. The two sections go hand-in-hand. They have,
sequentially, ‘near-identical’ subsections and paragraphs. Where some aspects of
the method may be omitted in Sect. 3, Sect. 4 may exemplify also those aspects.
Section 5 ‘speculates’ on further perspectives of domain science & engineering.
Tts potential for application in aeronautics and space!

2 Philosophy: What Must be in any Domain Description?

Philosophy, since the ancient Greeks, have pondered over the question: which
are the absolutely necessary conditions for describing any world?, that is: what, if
anything, is of such necessity, that it could under no circumstances be otherwise?,
or: which are the necessary characteristics of any possible world? We take these
three as one-and-the-same question.

Philosophers, from Aristotle (384-322BC) to Immanuel Kant (1724-1804),
and onwards, have contributed to understanding this set of questions. We shall
draw upon the works of the Danish Philosopher Kai Sgrlander (1944) [65-68]. We
shall therefore base our search for techniques and tools with which to analyse &
describe domains in Sgrlander’s findings. This, in effect means, that we suggest a
philosophy-basis for domain analysis & description! Next we shall therefore first
summarise two thousand five hundred years of trying to answer the question
with which we opened this section.

2.1 The Search

We shall focus only on one aspect of the philosophies of the very many philoso-
phers that are mentioned below—namely their thinking wrt. ontology® and epis-
temology”; for many of these philosophers — from Plato onwards — this is, but a
mere fraction of their great thinking.

This section borrows heavily from [68]. That book is only published in Danish.
So the next three pages, till Sect. 3, is a terse summary of the first 130 pages of
[68].

The Ancient Greeks. The quest for understanding the world around us appears
to have started in ancient Greece. Thales of Miletus [51] (624/623-548/545 BC)
claimed that everything originates from water. Anaximander [20] (610-546 BC)
counter-claimed that ‘apeiron’ (the ‘un-differentiated’, ‘the unlimited’) was the
origin. Anaximenes [50] (586-526 BC) counter-counter-claimed that air was the

5 Ontology is the study of concepts such as existence, being, becoming, and reality.
" Epistemology is the study of properties, origin and limits for human knowledge.

An Essence of Domain Engineering 17

basis for everything. Heraklit of Efesos [1] (540-480 BC) suggested that fire was
the basis and that everything in nature was in never-ending ‘‘battle’’.
Empedokles [75] (490-430 BC) synthesized the above into the claim that there
are four base elements: fire, water, air and soil. Parminedes [31] (515-470BC)
meant that everything that exists is eternal and immutable. Demokrit [1]
(460-370BC) argues that all is built from atoms. These were [some of] the
natural philosophers, the pre-Socrates philosophers, the ontologists, of Ancient
Greece.

The Sofists. Then came a period of so-called sofists. They maintained that we
cannot reach understanding of the world through common sense. For a time they
thus broke philosophical tradition. It was not their task to reach an understand-
ing of that which exists. Such an understanding, they claimed, was an illusion;
in that they seem to agree with today’s modernism and post-modernism.

Socrates, Plato and Aristotle. Socrates (470-399 BC) [2] broke rank with this.
For him it was a fundamental error to give up on the obligation of common,
universal sense. Socrates, instead of reflecting on the general aspects of ontol-
ogy, put the human in centrum. Plato [3] (427-347 BC) established a Theory of
Ideas of “universal concepts” as of highest reality, that, however, seems to raise
more questions than answering some. Aristotle [4] (384-322BC) turned Plato’s
thinking upside-down: “concrete things” have primary existence and the uni-
versal concepts are abstractions. Aristotle made precise relations between the
modalities of the necessary, the real and the possible, and suggested a list, [4,
Categories|, of ten categories: substance, quantity, quality, relation, place,
time, position, possession, acting and suffering.

The “Middle Ages”. Philosophical thinking — in the European sphere — from
about 300 BC till about 1600 AC was dominated by religious thought — till
shortly after the time of Martin Luther. From ontological arguments philosophy
turned in the direction of epistemological arguments.

From Descartes to Hume. Then a number of philosophical schools succeeded
one another. Sgrlander shows that the philosophies of Descartes [23] (1596—
1650), Spinoza [69] (1632-1677), Leibniz [45] (1646-1716), Locke [47] (1632~
1704), Berkeley [7] (1685-1753) and Hume [38] (1711-1776) are individually
inconsistent, and must thus be rejected.

Historicism. Sgrlander also rejects the ‘historicism’ philosophies, after Immanuel
Kant, i.e., those of Fichte [42] (1762-1814), Schelling [6] (1775-1854) and Hegel
[30] (1770-1831) as likewise individually inconsistent.

From Aristotle to Kant and Onwards Sgrlander builds on the thinking of Aris-
totle [4] (384-322) and Immanuel Kant [43] (1724-1804). In doing so, Sgrlander

18 D. Bjgrner

takes up a thread, lost for two hundred years of ‘“radical meaninglessness, loss
of religion, the disappearance of [proper| philosophy — lost in the “historicism”
of the 19th century and the “modernism” of the 20th century, in postmod-
ernism’s rejection of universal values, the possibility of objective knowledge,
or solid foundation for human existence.” ... “In this post-modern age nothing
seems to be absolutely valid, there is no sharp boundary between fiction and
science, everything is dissolved into uncertainty and individual interpretation”
No, says Sgrlander, and builds a Philosophy based on rational reasoning. The
current author, obviously, subscribes to the above!

Philosophies of Sciences. The science breakthroughs, in the late 1800s s and
the early-to-mid 1900s,s, in mathematics, physics and biology, brought with it,
independent of the ‘historicism’ of philosophy, philosophical investigations of
these sciences.

Peano (1858-1932) [44] showed that some of mathematics could be under-
stood axiomatically, i.e., logically. Frege (1848-1925) [25] contributed signifi-
cantly to attempts to build an axiomatic basis for all of mathematics. On the
basis of similar axiom systems non-Euclidean Geometries were then put for-
ward®. Principia Mathematica [71, Whitehead & Russell] “grandiosely” attempted
to axiomatise all of mathematics. Gédel’s (1906-1978) [29] first incompleteness
theorem states that in any formal system F within which a certain amount of
arithmetic can be carried out, there are statements of the language of F which
can neither be proved nor disproved in F. According to the second incompleteness
theorem, such a formal system cannot prove that the system itself is consistent
(assuming it is indeed consistent). These results have had a great impact on the
philosophy of mathematics and logic.

Within physics, Maxwell (1831-1879) [48] Planck (1858-1947) [53] originated
quantum mechanics. Einstein? (1879-1955), in 1905-1916 changed the study of
physics with his special and general theories of relativity. Bohr'® (1885-1962) [24]
contributed with his understanding of the structure of atoms and with quantum
theory. Heisenberg (1901-1976) [32] contributed further to quantum theory and
is known for the uncertainty principle.

Darwin (1809-1882) [21, Origin of Species], Wallace (1823-1913) [70], and
Mendel (1822-1884) [49] — as did Planck, Einstein, Bohr, Heisenberg, et al. for
physics — founded modern life sciences.

These advances in mathematics and the natural sciences spurred some
philosophers on to renewed studies — “as from Kant!”

The 20th Century. The phenomenology of Husserl (1859-1938) [39], is the study
of structures of consciousness as experienced from the first-person point of view

8 https://en.wikipedia.org/wiki/Non-Euclidean_geometry.
9 https://en.wikipedia.org/wiki/Religious_and_philosophical views_of_Albert_-
Einstein#Philosophical_beliefs.
10 https://plato.stanford.edu/entries/qm-copenhagen /.

https://en.wikipedia.org/wiki/Non-Euclidean_geometry
https://en.wikipedia.org/wiki/Religious_and_philosophical_views_of_Albert_-Einstein#Philosophical_beliefs
https://en.wikipedia.org/wiki/Religious_and_philosophical_views_of_Albert_-Einstein#Philosophical_beliefs
https://plato.stanford.edu/entries/qm-copenhagen/

An Essence of Domain Engineering 19

[Wikipedia]. Our consciousness, claims Husserl, is characterised by intentional-
ity: an elementary directedness. Husserl’s phenomenology appears to be incon-
sistent in the way it requires a study of our consciousness from “within”, for
example in the a-priory requirements that these concepts are introduced, not as
a result of the study, but “beforehand”.

It appeared then that philosophical studies along the lines “what must
inevitably be in any description of any domain” additionally required consideration
of our use of language. Wittgenstein (1889-1951) [72,73] and the Logical Atomism
[52] of Russell (1872-1970) [59-62], made attempts in this direction, but failed.
Wittgenstein realised that in his [73, “Philosophisces Untersuchungen”]. Logical
atomism failed in not finding examples of propositions if they have to be logically
independent of one another.

Logical Positivism, “coming out of” Vienna in the 1920s-1930s, rejected Rus-
sell’s logical atomism and concentrated on the meaning of a sentence as being
[the conditions for| its truth-value: one must be able to describe the circum-
stances under which the sentence can be verified. To them, in the early days,
meaningful propositions, say, in any of the sciences, must have a common lin-
guistic base. Eventually those theses also failed: Neither the verification-criteria,
of, for example Carnap (1891-1970) [14-17], could be verified, nor could the
falsification-criteria of Popper (1902-1994) [54-57] be falsified.

2.2 Sgrlander’s Findings

Three Cornerstones. We can claim that Sgrlander bases his philosophical
analyses on three “cornerstones”: (A) an analysis and a conclusion of “what it
means to be rational”; (B) an analysis and a conclusion of what it means to speak
abut “the meaning of a word”; and (C) an analysis and a conclusion of the base
point from which to start the philosophical inquiry into “what must inevitably be

in any domain description”. We shall now review these three bases.

A: Rational Thinking. The following is adapted from [66, Chapter II, Sects. 4-5
Common Sense and Motivation]. Humans are physical entities. Thus we are char-
acterisable by the causal conditions for moving around with purpose. To do so
requires three conditions: We can sense our immediate situation. We have feel-
ings that may result in incentives (encouragements). We have motoric apparatus
that satisfy physical laws. These were the causal conditions for purposeful move-
ments. Further: We possess languages by means of which to express propositions
as to what we sense, our feelings and actions. We express propositions which
reflect that we know, i.e., have knowledge, Finally we have memory from which
we build experience. The above factors, after some further analysis, leads us to
conclude that humans are rational beings.

B: The Implicit Meaning-Theory. The following is adapted from [67, Chapter III,
especially Sect.9 The Meaning of a Word, Pages 121-122]. On the basis of some
simple considerations of what it means to express oneself by means of language,
i.e., linguistically, Sgrlander reaches the interdependence criterion. In saying, or

20 D. Bjgrner

writing, something, a choice is made. The chosen statement may be inconsis-
tent with something else that one could have chosen to state. That means, that
possible statements stand in consistence relations. What determines such rela-
tions? We can, firstly, say that these relations are determined by the meaning,
of the designations used in the statements. Secondly we can say that meaning of
the designations used in several statements which (thus must) stand in mutual
consistence-relations. It is thus that we arrive at the necessary condition, inter-
dependence criterion, also referred to as the implicit meaning theory, that there
is a mutual dependence between the meaning of designations and the consistence
relations between statements.

For computer scientists, this interdependence criterion is quite familiar.
When defining an abstract data type—that is, its values and operations, as is, for
example typical in algebraic semantics [63]—one states a number of propositions.
They constrain values and operations, and, together, express their meaning.

C: The Possibility of Truth. The following is adapted from [68, Part III,
Chapter 2 “Basis & Method for the Philosophy”]. Where Kant built on human
self-awareness, Sgrlander builds on the possibility of truth. One cannot deny that
a proposition may be false. And one cannot accept that a proposition is both
true and false. Hence the possibility of truth.

Building a Foundation

Logic, Relations, Transcendental Deduction, Space and Time. On the basis of
the principle of contradiction and the implicit meaning theory. Kai Sgrlander then
motivates the logical connectives and, from these, the associative, symmetry and
transitive relations, and, based on these, by transcendental deduction, reasons that
space and time follows, not as, with Immanuel Kant, empirical facts, but as logical
necessities.

Multiple, Uniquely Identifiable Entities and States. Again, in a rational manner,
Sgrlander, motivates that there must be an indefinite number of entities, that
these are uniquely identifiable, and that they endure in possibly changing states.

Newton’s Laws. Again, in a rational manner, Sgrlander, motivates movement and
causality, and, from these, again by transcendental deductions, Newton's Laws.

2.3 The Basis

The above, i.e., the rational deductions of what must be in any domain descrip-
tion, is then the foundation on which [11] and the present paper base their
domain analysis & description approach.

An Essence of Domain Engineering 21

3 Elements of Domain Science and Engineering

We embark on introducing a number of domain analysis predicates. These are
not mathematical functions. They are informal in the sense of being applied
by human domain analysers cum describers. They can not be formalised. That
would require that we have a formal model of “the world” ! Our domain analysis
& description endeavour seeks such models! So the reader must bear with me:
The delineations (cum definitions, characterisations) of the domain concepts
that now follow must unavoidably be informal, yet sufficiently precise. Most are
drawn from The Shorter Oxford Dictionary of the English Language [46, 2 vols.,
1987].

3.1 Phenomena, Entities, Endurants and Perdurants

A phenomenon, ¢, is an entity, is_entity(¢), if it can be observed, i.e., be seen
or touched by humans, or that can be conceived as an abstraction of an entity;
alternatively, a phenomenon is an entity if it exists, it is “being”, it is that which
makes a “thing” what it is: essence, essential nature [46, Vol.I, pg.665]. If a
phenomenon cannot be so described it is not an entity.

There are an indefinite number of entities in any domain. This follows from
philosophic-analytic reasoning outlined by the philosopher Kai Sgrlander [65—
68]. We refer to [11, Sect.2.2.3] for a summary.

By an endurant, is_endurant (e), we shall understand an entity, e, that can
be observed, or conceived and described, as a “complete thing” at no matter
which given snapshot of time; alternatively an entity is endurant if it is capable
of enduring, that is persist, “hold out” [46, Vol.I, pg.656]. Were we to “freeze”
time we would still be able to observe the entire endurant.

By a perdurant, is_perdurant (e), we shall understand an entity, e, for which
only a fragment exists if we look at or touch them at any given snapshot in time.
Were we to freeze time we would only see or touch a fragment of the perdurant
[46, Vol. 11, pg. 1552].

External qualities of endurants of a manifest domain are, in a simplifying
sense, those we, for example with our eyes blinded, can touch, hence manifestly
“observe”, and hence speak about abstractly.

Internal qualities of endurants of a manifest domain are those we, with our
eyes open and with instruments, can measure.

3.2 Endurants
Figure 1 presents a graphic structure of the domain concepts such as we have

and shall unveil them.

External Qualities. Our treatment of endurants “follow” the upper ontology
of Fig. 1 in a left-to-right, depth-first traversal of the endurant “tree” (of Fig.1).

22 D. Bjgrner

Phenomena of Natural and Artefactual Universes of Discourse

= Describables Indescribables

Endurants perdurants Perdurants

Endurants

ActiorS Evgnts
L

® Fluid Actors

' £ M Describer "states”

hysical Parts Structures hannels Behavinursf

Transcendense

Atomic Part

KP: Composite Part

gle Sort Part Sets

,,Z,,,o,, transcendental injection of endurants into perdurants

Fig. 1. A domain description ontology

Analysis Predicates. Endurants, e [is_endurant(e)], are either solid [is_-
solid(e)]; or fluid [is_fluid(e)] (such as liquids, gases and plasmas). Solid
endurants appears to be the “work-horse” of the domains we shall be concerned
with. Fluids are presently further un-analysed. A solid, e, is either a part [is_-
part(e)]; or a structure [is_structure(e)]; or a living species [is_living -
species(e)]. A part, p, is either an atomic part [is_atomic_part(p)];or a com-
pound part [is_compound_part (p)]. An atomic part, by definition, has no proper
sub-parts. It is the domain analyser cum describer who decides which parts are
atomic and which not. Atomic parts are further characterised by their internal
qualities. A compound part is either a composite part [is_composite(p)]; or a
part set [is_part_set(p)], A part set is either a single sort part set of parts of the
same sort [is_single_sort_set(p)]; or an alternative sort part set of parts of
two or more distinct sorts [is_altermative_sort_set(p)] — with two or more
parts possibly being of the same sort.

A composite part consists of two or more parts (and could be modeled as a
Cartesian of these). A structure is like a compound part but we omit recording
its internal qualities'!'. A living species is either an animal [is_animal(e)]; or a
plant [is_plant(e)]. An animal is either a human [is_human(e)]; or other.

' We could omit the concept of structure altogether and just allow compounds
that do not have internal qualities.

An Essence of Domain Engineering 23

Observers. Given a compound part we can observe its sub-parts and their sorts.
We formulate these observers in RSL™ Text.

We remind the reader that the analysis and description processes are necessarily
informal. That is, that it is the decision of the domain analyser cum describer
as to whether an entity is an endurant or other, a part or other, etc. Next, in
outlining, ever so briefly, the observer (cum describer) “functions”, the describer
must, repeatedly, decide that endurants are of definite sorts, and must, like-
wise repeatedly, choose names for endurant sorts. [11, Sect.4.14] discusses that
process in some detail. In reality, to determine, distinctness and names of sorts
require a depth-first analysis, that is, one that analyses the internal qualities of
the sort under investigation, then the external followed by internal qualities of
possible sub-parts, et cetera, till atomic parts or fluids have been analysed, etc.
In this section we first analyse external qualities. Analysis of internal qualities
follow subsequently.
o o o

The next three observer functions reflect analyses pre-requisite to the subsequent
description functions. In the formulas below we introduce two notions: The name
of a type, say type E, as nE, and the RSL text, of a type name, “E”. nE is an
identifier whose value is “E .

Observe Single Sort Part Sets.
Observing a part, p : P, which is a set of endurants of the same sort, yields a
pair of a set of endurants and the name of the endurant type.

value
obs_single_sort_set: P — E-set x nE

where E is to be further analysed and described.

Observe Alternative Sorts Part Sets.
Observing a part, p : P, which is a set of endurants of the possibly different sorts,
yields a Cartesian of representative pairs'? of endurants and names of their type.

value
obs_alternative_sort_set: P — (E1 xnE1)x(E2 xnE2)x ... x(Em xnEm)

where each Ei is to be further analysed and described.

Observe Composite Part.
Observing a part, p : P, which is a composite of endurants of [it is assumed]
different sorts, yields a pair Cartesians of endurants, respectively their type.

value
obs_composite: P — (E_1xE_2x...xE_m) x (nE_-1xnE_2x...xnE_m)
where each E_i is to be further analysed and described.

12 By ‘representative Cartesian of pairs’ we mean that there is a pair of any part (of
the set) and its type for every possible part type in the Cartesian.

24 D. Bjgrner

Description Functions. There are three compound-part description functions.
These are summarised in the RSLT Text form next.

We advocate first narrating all formal texts. The literal type prefix type and
sort definitions. The literal value prefix predicate and function signatures and
definitions. Proof obligations are required where sorts are expressed in terms
of concrete types that may define something meaningless if not properly con-
strained.

Caveat: We remind the reader that the above description functions, really, are
not mathematical functions: They are, in a sense, procedural guide-lines to be
followed by domain analysers cum describers: they have to decide on which kind
of parts they are dealing with, of which, already “discovered” or new sorts, hence
sort names to ascribe these, etc.

The External Qualities Frames. The three frames next contain part descriptors
for single sort sets, alternative sort sets, and composites.

describe_single.sort_set(p) as —— describe_alternative_sorts_set(p) as — describe_.composite(p) as
let (_,nE) = obs.single_sort_set(p) in let ((_,nE-1),..., (_mE-n)) let (_,({nEL,....nEm})) =
“Narration: = obs.alternative_sorts_set(p) in = obs_composite(p) in
.. onsorts ... “Narration: “Narration:
.. on sort observers on alternative sorts onsorts ...
.. on axioms/proof obligations on sort observers on sort observers ...
Formalisation: ... on axioms/proof obligations on axiom/proof obligations ...
type Formalisation: Formalisation:
E type type
Ps = P-set Ea=E1l|...|En ELl, ..., Em
value E1:EL ..., value
obs.Ps: E — Ps " El== ..., ..., obs_Ei: E — Ei [i:{1..m}]
end value proof obligation
pre: is_single_sort_set(p) obs_E.i: E — E.i [i=1,..., n] [disjoint endurant sorts] "
proof obligation end

[disjointness of alt. sorts

pre: is.composite(p)

end

pre: is_alternative_sorts_set(p)

Initial Endurant State. An endurant state is any set of domain endurants.

Taxonomy. The taxonomy of a domain is given by the set of endurants sorts
and their observers. A taxonomy can be given a graphic rendition such as shown
in Fig. 2 on page 20.

Internal Qualities. Internal qualities of endurants of a manifest domain are,
in a simplifying sense, those which we may not be able to see or “feel” when
“touching” an endurant, but they can, as we now ‘mandate’ them, be reasoned
about, as for unique identifiers and mereologies, or be measured by some physi-
cal/chemical means, or be “spoken of” by intentional deduction, and be reasoned

An Essence of Domain Engineering 25

about, as we do when we attribute properties to endurants. We refer to [11,
Sects. 2.2.3—4, 3.8, and 5.2-5.3] for a fuller discussion of the concepts and unique
identification and mereology.

Unique Identifiers. With each part sort P we associate a further undefined
unique identifier sort IT and a similarly further undefined unique identifier
observer uid_P such that for all distinct parts p,p’,...,p"” of sort P, uid_P(p),
uid_P(p'), ..., uid_P(p"), yield distinct unique identifiers (m, 7', ..., 7").

We refer to the leftmost of the three internal qualities frames on Page 13.

Mereology. “Mereology (from the Greek pepos ‘part’) is a theory of part-hood
relations: of the relations of part to whole and the relations of part to part within
a whole” 13,

The mereology relations are here expressed in terms of the unique part
identifiers. Let p:P (p of sort P) be a part with unique identifiers m. Let
{p1: P1,p2: Ps,...;pm : P} be the set of parts (or respective sorts) to which
p is [mereologically] related. We can express this by stating that mereo_P(p) =
{m : I, mo : I3, ..., 7y : I, }, or value mereo P: P—Ul-set — i.e., as a set of
unique identifiers. mereo_P is the mereology observer.

We shall deploy mereology practically. That is, we are not studying mere-
ology. We are using the ideas of mereology for experimental research and engi-
neering purposes.

For natural endurants, a typical relation is that of the topological “next-to”.
For artefactual endurants typical relations, in addition to topological mereolo-
gies, make explicit how the designers of these artefacts intended their logical,
not necessarily geographical relationship, to be: “next-to”, ‘“to-be-part-of”, “as-
an-element-of-a-set”, et cetera.

We refer to the middle of the three internal qualities frames on Page 13.

Attributes. Whereas unique identification and mereology are both of abstract,
existential, logic nature, attributes are of concrete nature: physical, biological or
historical nature. Attributes have values and attribute values are of types. Two
or more endurants that all have sets of attribute values of the same type, as well as
the same unique identifier type and mereology types, are of the same sort. This is
the endurant sort-determining mantra.

From any part, p:P, we can thus identify a set of attribute type names,
{Ap,, Ap,, ... Ap, }, informally:

— attrs P(a) as {nAp,,nAp,,....,nAp,}.

Given a p: P, attr_A obtains the value of attribute A. The attr_A,, s are attribute
observers of p;:P;.
We refer to the rightmost of the three internal qualities frames on Page 13.
Michael A. Jackson [41] has suggested a hierarchy of attribute categories.

13 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and
[18].

http://plato.stanford.edu/entries/mereology/

26 D. Bjgrner

— Static attributes: values do not change.

— Dynamic attributes: values can change.
Within the dynamic attribute category there are sub-categories.

e [nert attributes: values are not determined by the endurant, but by “an

outside” (e.g., other endurants).

e Or reactive attributes: values which, if they change, change in response to

external stimuli.

e Or active attributes: values which change of the “own volition” of the part.
We can define sub-categories of dynamic attributes.
* Autonomous attributes: values which change only on the “own voli-

tion” of the part.

* Biddable attributes: values, values that may be prescribed!'4, but may
fail to attain the prescribed value.
x And programmable attributes: values which are prescribed.

For our purposes we

STA|MON|PRO:

“reduce”

— static [STA], (static values),
— monitorable [MON] (dynamic, except the programmable values), and the

— programmable (values) [PRO].

these six categories to three, CAT =

The Internal Qualities Frames. The three frames next contain part descriptors

for unique identifiers, mereologies, and attributes.

unique-identifier-observer(p) as
“Narration:
on unique identifier sort Ul ...
on unique identifier observer ...
on uniqueness of identifiers ...
Formalisation:
type
ul
value
uid-P: P — Ul
axiom

[disjoint Uls wrt. all sorts | "

mereology.observer(p) as

“Narration:
on mereology type ...
on mereology observer ...
on mereology type constraints ...
Formalisation:
type
MT = M(Ul;,...,.Ulg)
value
mereo_P: P — MT
axiom [Well—formed Mereology |

A(MT): well—formed "

describe_attributes(p) as

14 _ by the transcendent part behaviour.

let {nAy,..., nAm } = attrs_P(p) in
“Narration:
on attribute sorts ...
on attribute sort observers ...
attribute sort proof obligations ...
Formalisation:
type
Al oo Am
value
attrAy: P—Aj,

attr-Ap: P—Ag,

attr-Ap: P—Agy,

proof obligation [Disjointness]
let P be any part sort in
let a:(Aq|...|Am) in
isA,i(a)¢is,Aj (a) [i#), ij:[1..m]]
end end "

end

An Essence of Domain Engineering 27

Intentional Pull. The concept of intentional “pull” is a concept which “parallels”,
we claim, the gravitational pull concept of physics.

For artefacts one can claim that certain parts p:P are created in order to
“serve” other parts ¢:Q, and vice versa: roads serve to convey transport, and
automobiles serve to transport goods.

Historical events time-stamp record interactions between such parts p and
g. So a historical attribute of p records its interaction with ¢, and a historical
attribute of ¢ records its interaction with p, and “one cannot have one without
the other”, and this is what we mean by intentional “pull”!

Since we can talk about such events we can also model them as attributes. So
introducing historical attributes for a sort P usually entails also introducing his-
torical attributes for another sort @, et cetera. And this consequentially implies
that the domain analyser cum describer must express a necessary intentional
“pull” axiom that expresses that “one cannot have one without the other”.

A classical example of intentional pull is found in double bookkeeping which
states that every financial transaction has equal and opposite effects in at least
two different accounts. It is used to satisfy the accounting equation: Assets =
Liabilities + Equity.

3.3 Transcendental Deduction

“A transcendental argument is an argument which elucidates the conditions for
the possibility of some fundamental phenomenon, whose existence is unchal-
lenged or uncontroversial in the philosophical context in which the argument is
propounded” [5, Anthony Brueckner, page 808]. “Such an argument proceeds
deductively, from a premise of asserting the existence of some basic phenomenon
(such as a meaningful discourse, conceptualisation of objective states of affairs, or
the practice of making promises), to a conclusion asserting the existence of some
interesting, substantive enabling conditions for that phenomenon” [5, Anthony
Brueckner, page 808].

An example of a transcendental deduction is that of “morphing”, for exam-
ple, automobile endurants into automobile perdurants. That is: There is the auto-
mobile as, for example, shown at the dealer. It represents a part, an endurant.
And there is the automobile “speeding” down the road. It represents a behaviour,
a perdurant. The automobile as listed in the manufacturer’s and car dealer’s cat-
alogues represents an attribute of manufacturers and dealers.

3.4 Perdurants

The emphasis is now on the transcendental deduction of parts into behaviours.
To explain what we mean by behaviours we first introduce actions and events.
Channels will be introduced as a consequence of interacting, that is, communicat-
ing behaviours.
This section is necessarily a mere capsule view of Chapter7 of [11].
Section 4.2, of the main example of this paper, should rectify some lacunae.

28 D. Bjgrner

Actions, Events and Behaviours

Actions. By an action we shall understand something that occurs in time, lasting,
however, no time, or, at least, we ignore time — considering actions as indivisible,
taking place as the result of a “willed” [other] action, and usually changing the
state &:21°.

The action may, or may not be based on some argument value.

value action: [VAL] — £ 5 =

FEvents. By an event we shall understand something that occurs in time, lasting,
however, no time, taking place spontaneously, not as the result of a “willed”
action, but possibly as the result of another event, and usually changing the
state £:=.

The event is usually not based on any argument value. The literal Unit can
here be understood as a no argument value.

value event: Unit — = — =

Behaviours. By a behaviour we shall then understand a set of sequences of
actions, events and [other, sub-] behaviours, some of which relate to, i.e., inter-
act with one another. Behaviours are uniquely identified, subject to the part
mereology, and otherwise based on static (constant) attribute argument values,
dynamic monitorable (variable) attribute argument values, dynamic programmable
(variable) attribute argument values, and channels (for their interaction).

Behaviour Deduction, I: Signature

value behaviour: Uid x Mereo x StaticZVAL* x Mon_Attr_Name*
— Prgr.VAL* — in|out|in out ch... Unit

The literal Unit will here be understood as defining a never-ending behaviour.
The signature, with Unit, expresses that if the process terminates no value is
returned.

Channels. Interactions — between behaviours — are, as we model them, in RSL
— as inspired by CSP [34-36,36,58,64], expressed in terms of CSP-like channel
(ch) input/outputs: chfindex] ?, respectively chfindex] ! value, where values [based
on internal qualities] are communicated over indexed channels.

A domain defines a number of mereologies, one for each part (of the state).
These mereologies determine the channels to be declared. Given that any inter-
esting, i.e., to us relevant, domain always consists of an indefinite, larger than 1,

15 We shall forego explaining the state concept =Z.

An Essence of Domain Engineering 29

number of parts, the common channel for all behaviours is an index-able channel
16.

array™®:

Channel Deduction

channel {ch[{ij}]]i,j:Ul*{i,j}C [mereologies of the domain]}:M

where M is the type of the values communicated.

Part Behaviours. Parts exist in a context of several parts. (The taxonomy, for
example graphically represented, as in Fig.2 on page 20, reflects these parts.)
Part behaviours can therefore be expected to interact, i.e., to synchronise and
communicate. A part behaviour can, consequently, be expected to alternate
between either (a) doing an internal non-deterministic choice ([]) of 0, 1 or
more “own work” behaviours, or (b) external non-deterministic choice ([]) offer-
ing [to accept] values from an alternative of 0, 1 or more other part behaviours.
We can, schematically, summarise (a-b) as follows:

Behaviour Deduction, II: Part Behaviour Definition Structure

value
: part_behav(...)(...) =
(a) |D| { own_behav_i(...)(...) | i € {1..p} }

(b) [] { ext-behav_j(...)(...) |j€{1l..q} }
where: p+q > 0

The [| and [] operators are the usual CSP operators on behaviours. The || oper-
ator is like an “or” operator on behaviours. The [], || and [] operators are com-
mutative. We shall refer to either of the alternatives of the part_behav definition
body as a part_alternative.

From Internal Qualities to Behaviour Arguments. By arguments of transcen-
dental nature we shall assign unique part identifiers as static arguments of
behaviours, part mereologies as determining channel communication, and part
attributes as either static or dynamic arguments of behaviours.

Behaviour Deduction, Ill: Signature, Part p:P

value
behaviourp: Pl x mereo_P x Stat_Attr_Vals_P x Mon_Attr_Names
— Prgr_Attr_Vals_.P —
— in|out|in out {ch[{ij}] [i.j € mereology of P]} Unit

16 RSL does not have channel arrays. So this is a deviation from RSL.

30 D. Bjgrner

Mon_Attr_Names makes use of attrs_P.

Part Alternative Behaviours. We shall express behaviours in terms of usually
never-ending functions, behaviour!'” That is:
Behaviour Deduction, IV: Alternative Part Definition, Part p:P

value
alt_behav(uid_P(p),mereo_P(p),Stat_Attr_Vals_P(p),Mon_Attr_Names(p))
(Prgr_Attr_Vals_P(p)) =
let ui=uid_P(p), me=mereo_P(p), sta=Stat_Attr_Vals_P(p),
mnl=Mon_Name_list(p), prgr=Prgr-Attr_Vals_P(p) in
let prgr’ = alt_behav_body(ui,me,sta,mnl)(prgr) in
part_behav(ui,mereo,sta,mnl)(prgr') end end

Behaviour Clauses: Expressions and Statements. Further: alt_behav_body is a
sequence of one or more action, event and sub-behaviour clauses — usually ending
with an expression:

value
behaviour_body(uid,mereo,sta_var)(prgr-var) = clause_1 ; clause_2 ; ... ; clause_m

Clauses are either

— s, simple statements, or

— chl...] ! expression, output statement, or

— let pattern!® = expression in ... end, value decompositions, or
- e, expressionslg7 or

— clause_a [] clause_b, internal non-deterministic clauses, or

— clause_a [] clause_b, external non-deterministic clauses, or

— clause_a || clause_b, either/or non-deterministic clauses, or

— clause_a || clause_b, parallel clauses, or

— skip, skip clause, or

— stop, abort function invocation.

Values of monitorable attributes, of name nA?°, of parts p:P, are expressed as
attr_val(uid)(o) where attr_val is defined as:

value
attrval: Pl - nA — X — VAL
attr_val(pi)(nA)(o) = attr_A(retr_P(pi)(o))

17 Parts — being the bases for behaviours — persist, endure.

'8 where pattern — typically is a “grouping expression” over [free] identifiers.

19 ch[{ui,uj}] 7 is an expression.

20 The type of attribute A names (a single element type) is nA, and the value is “A”.
The type of all attribute names is nA.

An Essence of Domain Engineering 31

where o is the endurants state:

type

Y = (P|Q]...|R)-set
value

retr.P: Pl — %

retr_P(pi)(c) = let p:P « p € o + uid_P(pi) in p end

Initial System. Given a[n endurant| state, cf. Page1l, one can then define
[a corresponding perdurant] behaviour, namely the parallel (]|) composition of
an invocation of all the corresponding behaviours. This is exemplified as from
Item 69 on page 29.

3.5 The Domain Analysis and Description Process

1. There is the RSLT Text to be developed.

2. There is the Domain.

3. The analyse_and_describe_domain process applies to a Domain and yields, line
12 an RSL*Text. That process proceeds “sequentially”:

first external qualities, then 9. behaviour signatures,
unique identifiers, 10
mereologies,
attributes,

channels 12. a complete RSLT Text?!.

. behaviour definitions, and

11. initial system — yielding

O NSO

type

1. RSL* Text

2.D

value

3. analyse_and_describe_domain: D — > RSL* Text

3. analyse_and_describe_domain(d) =

let es = analyse_and_describe_external_qualities(d) i
5. let is = analyse_and_describe_unique_identifiers(es)(d) in
6. let ms = analyse_and_describe_mereologies(esWwis)(d) i

7

8

>

1m
let as = analyse_and_describe_attributes(esWiswms)(d) in
let cs = analyse_and_describe_channels(esiswmsidas)(d) in
9. let ss = analyse_and_describe_signatures(eswistmswasldcs)(d) in
10. let bs = analyse_and_describe_behaviours(esWiswmsWastcsss)(d) in
11. let si = analyse_and_describe_initial_system(esWiswmsWastcssswbs)(d)(s)
12. inesWismsWastWcsWsstwbswsi end end end end end end end end

21 The & operator merges RSL™ Texts

32 D. Bjgrner

4 An Example Domain Description

Initial Remark: We shall illustrate core elements of a domain description of a
road transport system. In doing so we really do not rely on the reader having
already an idea as to what the terms of this road transport system mean — as we
“slowly” unfold it. But at any stage, before the final, the informal meaning that
You, the reader may ascribe to these terms, is not what the formulas express!
At any stage, up to the point of the formal specification that we are unfolding,
this specification denotes a space of meanings according to the RSL semantics
[26]. Initially that space is very large. As we proceed the further formulas narrow
down, restrict, the space. When, at the end, we think we have specified all that
we need specify, the formulas define “exactly” what we mean by a road transport
system. We shall continue this remark at the very end of this section, i.e., just
before Sect. 5.

The sectioning/paragraph structure of this section follows that of Sect. 3.

4.1 Endurants
External Qualities

13. We start by identifying and naming the universe of discourse, here a road
transport system.

14. In aroad transport system we can observe a structure of a composite in which
we observe an aggregate of a road net and an aggregate of automobiles.

15. Road nets are here seen as structures of composites of aggregates of road
links?? and road hubs?.

16. Link and Hub aggregates are set structures of Links, respectively Hubs.

17. Links and Hubs are considered atomic.

18. Automobile aggregates are set structures of automobiles.

19. Automobiles are considered atomic.

type value

13. RTS 14. obs_.RN: RTS — RN
14. RN, AA 14. obs_AA: RTS — AA
15. LS, HS 15. obs_LS: RN — LS
16. Ls = L-set, Hs = H-set 15. obs_HS: RN — HS
17. L, H 16. obs_Ls: LS — Ls
18. As = A-set 16. obs_Hs: HS — Hs
19. A 18. obs_As: AA — As
State

20. The state, o,
21. of a road transport system rts consists of

22 A link is a street segment delineated by street intersections.
23 A hub is a street intersection of one or more links.

An Essence of Domain Engineering 33

(a) the road net aggregate, (d) the hubs,
(b) the automobile aggregate,
(c) the links, (e) the automobiles.

22. For later use we also define the union of all links and hubs.

value 2lc. s = obs_Ls(obs_LS(rn))
21. rts:RTS 21d. hs = obs_Hs(obs_HS(rn))
20. 0:X = {rn}U{aa}UlsUhsUas 2le. as = obs_As(aa)

21a. rn = obs_RN(rts)

21b. aa = obs_AA(rts) 22, us:(L|H)-set = Ils U hs

Taxonomy. Figure 2 presents a graphic rendition of the taxonomy of road trans-
port systems.

rts

aq

_MI12 Imhth2 hn YS

Fig. 2. Road transport system taxonomy

Internal Qualities

Unique Identifiers. Road traffic systems, aggregates of links and hubs, and sets
of links, hubs and automobiles are endurant structures, hence have no internal
qualities??.

23. Road nets have unique identification,
24. automobile aggregates likewise,
25. links, hubs and automobiles also !

24 _ 30 we have decided !.

34 D. Bjgrner

type 23. uid_RN: RN — RNI
23. RNI 24. uid_AA: AA — AAI
24. AAl 25. uid_L: L—LlI
25. LI, HU, Al 25. uid_H:H—HI
value 25. uid_A:A—Al

Uniqueness of Parts.

26. All parts (of the state o) have unique identification. This means that the
number of state components equal the number of [their] unique identifiers.

value

26. rni = uid_RN(rn), aai=uid_AA(aa),
26. lis = {uid_L(I)|l:L+l€ I},

26. his = {uid_H(h)|h:Hehe hs},

26. ais = {uid_A(a)|a:Asa€ as},

26. ouis = {rnitU{aai}UlisUhisUais
axiom

26. card o = card ouis

Retrieving Endurants.

27. Given any unique identifier, ui, in ouis, the “corresponding” endurant, e, can
be retrieved from o.

value

27. retrE: Ul - ¥ — E
27. retr_E(ui)(c) = let e:E « e € o A uid_E(e) = ui in e end

Mereology.

28. The mereology of a road net aggregate is a pair of the unique identifier of
the automobile aggregate of the road transport system of which the road net
is an aggregate, and a pair of sets of the unique identifiers of the links and
hubs of the road transport system of which the road net is an aggregate.

29. The mereology of an automobile aggregate is a pair of the unique identi-
fiers of the road net aggregate of the road transport system of which the
automobile aggregate net is a part, and a set of unique identifiers of auto-
mobiles of the automobile aggregate of the road transport system of which
the automobile aggregate is a part.

30. The mereology of a link is a pair of a two element set of hub identifiers and
a set of identifiers of the automobiles that are allowed onto the link — such
that the hub and automobile identifiers are of the road transport system.

31. The mereology of a hubs is a pair of a set of link identifiers and a set of
identifiers of the automobiles that are allowed into the hub — such that the
link and automobile identifiers are of the road transport system.

An Essence of Domain Engineering 35

32. The mereology of an automobile is a pair of the identifier of its automobile
aggregate and the set of identifiers of the links and hubs — of the road net
aggregate of the road transport system of which the automobile is a part it
is allowed to travel on.

33. The slanted texts above hint at axiomatic constraints.

type 28. let (aai,(lis,his)) = mereo_RN(rn) in

28. RNM = AAI x (LI-set x Hl-set) 28. aai = aai A lis = lis A his = his end

29. AAl = RNI x Al-set 29. let (rni,ais) = mereo_AA(aa) in

30. LM = Hl-set x Al-set 29. rni = rni A ais C ais end

31. HM = Ll-set x Al-set 30. VILelels=

32. AM = AAI x (LI|RI)-set 30. let (his,ais) = mereo_L(l) in

value 30. his C his A ais C ais end

28. mereo_.RN: RN — RNM 3. YVhiHeh € hs =

29. mereo_AA: AA — AAM 3L let (lis,ais) = mereo_H(h) in

30. mereo L: L — LM 31. lis C lis A ais C ais end

31. mereo.H: H — HM 32. Va:Aeacas=

32. mereo A: A — AM 32. let (aai,ris) = mereo_H(a) in

axiom 32. aai = aai A ris C lisUhis end
Routes.

34. The observed road net defines a possibly infinite set of finite length routes:
Basis Clauses:

35. The null sequence, (), of no links or hubs is a route.

36. Any one link or hub, u, of a road net forms a route, (u), of length one.
Inductive Clauses:

37. Let 7, (u;) and (u;)"r; be two finite routes of a road net.

38. Let u;,, and u;,, be the unique identifiers for w;, respectively u;.

39. Let the road (hub or link) identifiers of mereology of u; be wis and of u; be
ujs. If u;,, is in uis and w;,, is in ujs,

40. then 7;"(u;, u;)"r; is a route of the road net.
Extremal Clause:

41. Only such routes which can be formed by a finite number of applications of
the clauses form a route.

type

34. R = (L|H)*

value

34 routes: RN = R-infset

34 routes(rn) =

35 let rs = {()}

36 U {{u)|u:(L|H)eu € us} U

40 U {ri™ (i)™ (uj)"rj | ui,uj:(LH) « {ui,uj} C us
37 A i {ui), (uj) "R o {ri™(ui), (uj)"rj} Crs
38,39 A ui_ui = uid_U(ui) A ui_ui € xtr_Uls(ui)

36 D. Bjgrner

38,41 A uj_ui = uid_U(uj) A uj-ui € xtr_Uls(uj)} in
35 rs end

xtr_Uls: (L|H) — Ul-set, xtr_Uls(u) = let (uis,_)=mereo_(L|H)(u) in uis end

rs is the smallest [fixed point] set of finite routes that satisfy the equation 35.

42. We can also model routes, as identifier routes, IR, in terms of link and hub
identifiers.

43. Given a road net we can examine whether it is strongly connected, i.e.,
whether any link or hub can be reached from any other link or hub.

44. Et cetera!

type

42. IR = (LI[HI)*

value

42. i_routes: RN — IR-infset

42. i_routes(rn) =

42. let rs = routes(rn) in

42, { (uid_(L|H)(r[i]) | iNat « 1<i<lenr) |rRer € rs } end

43. is_connected_RN: RN — Bool

43. is_connected_RN(rn) =

43. let rs = routes(rn) in

43, Vuu:(LH) « {uu'}ClsUhs =3I rRerecrsand {uu'} C elems r
43. end

Attributes. We treat attributes only for atomic sorts. And we show only a very

few attribute examples.
Links.

45. Links have lengths.

46. Links have states — sets of zero, one or two pairs of hub identifiers — of their
hub mereology?®°.

47. Links have state spaces: a set of all relevant link states — the link state must
at any time be in its link state space.

type

45. LEN

46. LY = (HIxHI)-set
47. L2 = LY -set
value

25 — zero expresses that the link is [currently] closed for traffic, one if it is [cur-

rently] a one way link, in one or the other direction as indicated by the con-
necting hub identifiers, or two if it is [currently] a two way link.

An Essence of Domain Engineering 37

45. attr_LEN: L — LEN

46. attrLX: L — LY

47. attr Lf2: L — L2

axiom

46. ViILel€els =

46. let (lo,lw)=(attr_LX attr_L2)(1) in lo € lw A

46. Y (hi’,hi”):(HIxHI) « (hi’,hi")e€lo = {hi’,hi”"}Chis end

Hubs.

48. Hubs have states: a set of pairs of link identifiers — of its mereology.2%
49. Hubs have state spaces: the set of all relevant hub states — the current hub
state must at any time be in its hub state space.

type

43. HX = (LIxLI)-set

49. H{ = HX-set

value

48. attr HY: H — HY

49. attr.H2: H — HP?

axiom

48. VhiHeh € hs =

49. let (ho,hw)=(attr_.HX attr H2)(h) in ho € hw A
49, v (I 17):(LIx L) « (IV,1i")eho = {II"li"}Clis end

Automobiles.

50. Automobiles have positions on links or in hubs (programmable attributes).
(a) An automobile on a link position is a triplet of (1) a link identifier of
the road net, (2) and ordered pair of two hub identifiers of the link
mereology, and (3) a real number properly between 0 and 1.27
(b) An automobile at a hub position is a pair of (1) a hub identifier hi of the
road net, and (2) an ordered pair of two link identifiers i and 1i"” of the
hub mereology.?®
51. Automobiles have a (programmable attribute) history of appearing, at times,
at hubs or on links?.
53c Automobiles have (monitorable attribute) speed and acceleration (plus or
minus).

6 — each pair, (li;,li) expressing that automobiles may [currently] enter the
hub from the links identified by li; and leave the hub to the links identified
by lik.

— expressing the fraction along the designated link between the two designated hubs.
The type constructor :: is “borrowed” from VDM [22].

— expressing that the automobile at hub hi is on its way between links designated
by Ii" and Ii".

29 We shall define that attribute in items 53c on the facing page.

27

28

38 D. Bjgrner

52. Etc.

type

50. APos = onL | atH

50a. onL :: LI x (HIxHI) x F

50a. F = Real, invariant: V f:F « 0<f<1
50b. atH :: HI x (LIxLI)

53c. AHist
51. Vel, Acc
52.

value

50. attr_.APos: A — APos

51. attr_Vel: A — Vel, attr_Acc: A — Acc
52.

axiom

50. VaAeacas=

50. let apos = attr_APos(a) in

50. case apos:

50a. onL(li,(fhi,thi),_) —

50a. li € lis A let (his,_) = mereo_L(retr_L(li)(¢)) in {fhi,thi}Chis end
50b. atH(hi,(fli,th)) —

50b. hi € his A let (lis,_) = mereo_H(retr_H(hi)(c)) in {fli,tli}Clis end
51.,52.

50. end end

Intentional Pull. We simplify the link, hub and automobile histories — aiming
at just showing an essence of the intentional pull concept.

53. With links, hubs and automobiles we can associate history attributes.
(a) Link history attributes time-stamp record, as an ordered list, the pres-
ence of automobiles.
(b) Hub history attributes time-stamp record, as an ordered list, the pres-
ence of automobiles.
(c) Automobile history attributes time-stamp record, as an ordered list,
their visits to links and hubs.

type value

53a. LHist = Al,;»TIME* 53a. attr_LHist: L — LHist

53b. HHist = Al,—~TIME* 53b. attr_HHist: H — HHist
53c. AHist = (LIHI) ,»TIME* 53c. attr_AHist: A — AHist

Wellformedness of Event Histories.
Some observations must be made with respect to the above modelling of time-
stamped event histories.

An Essence of Domain Engineering 39

54. Each 7, : TIME" is an indefinite list. We have not expressed any criteria for
the recording of events: all the time, continuously ! (?)

55. Each list of times, 7, : TIME*, is here to be in decreasing, continuous order
of times.

56. Time intervals from when an automobile enters a link (a hub) till it first
time leaves that link (hub) must not overlap with other such time intervals
for that automobile.

57. If an automobile leaves a link (a hub), at time 7, then it may enter a hub
(resp. a link) and then that must be at time 7/ where 7’ is some infinitesimal,
sampling time interval, quantity larger that 7. Again we refrain here from
speculating on the issue of sampling!

58. Altogether, ensembles of link and hub event histories for any given automo-
bile define routes that automobiles travel across the road net. Such routes
must be in the set of routes defined by the road net.

As You can see, there is enough of interesting modelling issues to tackle!
Formulation of an Intentional Pull.

59. An intentional pull of any road transport system, rts, is then if:
(a) for any automobile, a, of rts, on a link, ¢ (hub, h), at time 7,
(b) then that link, ¢, (hub h) “records” automobile a at that time.
60. and:
(c) for any link, ¢ (hub, h) being visited by an automobile, a, at time 7,
(d) then that automobile, a, is visiting that link, ¢ (hub, h), at that time.

axiom

59a. VaAscacas=

59a. let ahist = attr_AHist(a) in
59a. Y ui:(LI|HI) « ui € dom ahist =

59b. V 7 TIME « 7 € elems ahist(ui) =

59b. let hist = is_LI(ui) — attr_LHist(retr_L(ui))(o),
59b. _ — attr_HHist(retr_H(ui))(o) in
59b. 7 € elems hist(uid_A(a)) end end

60. A

60c. V u:(L|H) « u € lsUhs =
60c. let uhist = attr(L|H)Hist(u) in
60d. Y ai:Al « ai € dom uhist =

60d. V 7 TIME « 7 € elems uhist(ai) =
60d. let ahist = attr_AHist(retr_A(ai))(o) in
60d. 7 € elems uhist(ai) end end

4.2 Perdurants

Behaviours. We show only the signature and definition of one aspect of one
behaviour. That of an automobile at a hub. We refer to [11, Examples 82-83,
pages 183-184] for the full set of signatures and definitions for link, hub and
automobile behaviours.

40 D. Bjgrner

Signatures.

61. automobile:
(a) there is the usual “triplet” of arguments: unique identifier, mereology
and static attributes;
(b) then there are two programmable attributes: the automobile position
(cf. Ttem 50 on page 24), and the automobile history (cf. ITtem 53¢ on page
25);
(¢) and finally there are the input/output channel references allowing com-
munication between the automobile and the hub and link behaviours.
We deviate from RSL in expression these signatures. The deviation amounts
to a form of dependent types [37].
62. Similar signatures can be given for
(a) link and
(b) hub behaviours.

We omit the modelling of monitorable attributes.

value
61,61a automobile: ai:Alx(_,uis):AMx...
61b — (apos:APos x ahist:AHist)

6lc — in out {ch[{ai,ui}]|ai:Al,ui:(HI|LI) * aicais A ui € uis} Unit

62a link: li:LIx (his,ais):LMxL{2

62a — LY

62a — in out {ch[{li,ui}][li:Ll,ui:(Al|HI)-set « aicais A li €lisUhis} Unit

62b hub: hi:HIx(_ais):HMxH2
62b — HY
62b — in out {ch[{ai,ui}]|hi:Hl,ai:Al « aicais A hi € uis} Unit

We omit the pre-conditions.

Definitions: Automobile at a Hub.

63. We abstract automobile behaviour at a Hub (hi).
(a) Either the automobile remains in the hub,

or, internally non-deterministically,

leaves the hub entering a link,

or, internally non-deterministically,

b)
)
)
) stops.
)
)
)
)

—~ \/-\’ S

or, internally non-deterministically,

decides to communicate with the department of vehicles,
or, externally non-deterministically,

is contacted by department of vehicles,

¢
d
e
f
g
h

—~ —~

(i

We omit the definition of department_of_vehicle (i.e., automobile aggregate)
behaviour.

An Essence of Domain Engineering 41

63 automobile(ai,(aai,uis),...)(apos:atH(fli, hi,tli),ahist) =

63a (automobile_remains_in_hub(ai,(aai,uis),...)(apos:atH(fli, hi,tli),ahist)
63b

63c automobile_leaving_hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)
63d]

63e automobile_stop(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist)

63f ||

63g automobile_contacts_dv(ai,(aai,uis),...)(apos:atH(fli, hi,tli),ahist))
63h]

63i dv_contacts_automobile(ai,(aai,uis),...)(apos:atH(fli, hi,tli),ahist)

64. [63a] The automobile remains in the hub:
(a) the automobile remains at that hub, “idling”,
(b) informing (“first”) the hub behaviour.

64 automobile_remains_in_hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) =
64 let 7 = record_TIME() in

64b ch[aihi] ! 7;

64a automobile(ai,(aai,uis),...)(apos,upd_hist(7,hi)(ahist))

64 end

64a upd_hist: (TIMExI) — (AHist|LHist|HHist) — (AHist|LHist|HHist)
64a upd_hist(7,i)(hist) = hist [i — (7) " hist(i)]

65. [63c] The automobile leaves the hub entering a link:
(a) tli, whose “next” hub, identified by thi, is obtained from the mereology
of the link identified by tli;
(b) informs the hub it is leaving and the link it is entering,
(¢) “whereupon” the vehicle resumes (i.e., “while at the same time” resum-
ing) the vehicle behaviour positioned at the very beginning (0) of that
link.

65 automobile_leaving_hub(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) =

65a (let ({fhi,thi} ais) = mereo_L(retr_L(tli)(c)) in assert: fhi=hi

65b (chlai,hi] 7 || chlaitli] ! 7);

65¢ automobile(ai,(aai,uis),...)

65¢ (onL(tli,(hi,thi),0),upd_hist(rtli)(upd_hist(r,hi)(ahist))) end)

66. [63e] Or the automobile “disappears—off the radar” !

66 automobile_stop(ai,(aai,uis),...)(apos:atH(fli,hi,tli),ahist) = stop

Similar behaviour definitions can be given for automobiles on a link, for links and
for hubs. Together they must reflect, amongst other things: the time continuity of
automobile flow, that automobiles follow routes, that automobiles, links and hubs
together adhere to the intentional pull expressed earlier, et cetera. A specification
of these aspects must be proved to adhere to these properties.

42 D. Bjgrner

Initial System. The initial system is the parallel composition of

67. the road net aggregate behaviour,
68. the automobile aggregate behaviour,
69. all automobile behaviours,

70. all link behaviours, and

71. all hub behaviours.

value

67. dept_of_roads(uid_RN(rn),mereo_RN(rn),...)(...)

68. || dept_of_vehicles(uid_-AA(aa),mereo_AA(aa),...)(...)

69. || {automobile(uid_A(a),mereo_A(a),...)(attr_Apos(a),attr_AHist(a))|a:A*acas}

70. || {link(uid-_L(I1),mereo_L(1),(attr_.LEN(I),attr_L£2(1)))(attr-.LX(1),attr_LHist(l))|l:Lel€ls}
71. || {hub(uid_H(h),mereo_H(h),attr_.H§2(h))(attr_-HX'(h),attr_HHist(h))|h:Hehchs}

That’s all folks! Neat!?

Initial Remark Reviewed: Initially the narratives of the domain description were
scant and their counterpart formalisations left many possible interpretations as
to what these formal types and function signatures really meant. As the domain
description proceeded — now with perdurants: channels and action, event and
behaviour signatures and definitions — these meanings were narrowed down, con-
siderably — focusing, finally, on yielding the properties that are deemed necessary
and sufficient.

5 Relevance to Aeronautics and Space

The specific relevance of domain engineering to aeronautics and space will be
the subject of this section.

5.1 But First

As a preamble for briefly discussing the relevance of domain engineering to aero-
nautics and space, we 'complete’ our treatment of domain engineering with three
small notes.

Domain Modelling Experiments. It is appropriate to mention that the
method, i.e., the principles, techniques and tools of domain analysis & descrip-
tion, has been “tuned & honed” by extensive “laboratory work”. That is, there
has been experimentally researched and developed a number of less-or-more
“complete” domain models. In reverse chronological order we mention some:

— 2021: Assembly Lines, September, 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/assembly /assembly-line.pdf

www.imm.dtu.dk/~{}dibj/2021/assembly/assembly-line.pdf

An Essence of Domain Engineering 43

— 2021: Shipping, April 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021 /ral/ral.pdf

— 2021: Rivers and Canals, March 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/Graphs/Rivers-and-Canals.pdf

— 2021: A Retailer Market, January 2021. Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/2021/Retailer/BjornerHeraklit27January2021.pdf

— 2019: Container Terminals, ECNU, Shanghai, China
www.imm.dtu.dk/~dibj/2018 /yangshan /maersk-pa.pdf

— 2018: Documents, TongJi Univ., Shanghai, China
www.imm.dtu.dk/~dibj/2017/docs/docs.pdf

— 2017: Urban Planning, TongJi Univ., Shanghai, China
www.imm.dtu.dk/~dibj/2018 /BjornerUrbanPlanning24Jan2018.pdf

— 2017: Swarms of Drones, Inst. of Softw., CAS, Peking, China
www.imm.dtu.dk/~dibj/2017 /swarms/swarm-paper.pdf

— 2013: Road Transport, Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/road-p.pdf

— 2012: Credit Cards, Uppsala, Sweden
www.imm.dtu.dk/~dibj/2016/credit /accs.pdf

— 2012: Weather Information, Bergen, Norway
www.imm.dtu.dk/~dibj/2016 /wis/wis-p.pdf

— 2010: Web-based Transaction Processing, Techn. Univ. of Vienna, Austria
www.imm.dtu.dk/~dibj/widftp.pdf

— 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan
www.imm.dtu.dk/~db/todai/tse-1.pdf, www.imm.dtu.dk/~db/todai/tse-2.
pdf

— 2009: Pipelines, Techn. Univ. of Graz, Austria
www.imm.dtu.dk/~dibj/pipe-p.pdf

— 2007: A Container Line Industry Domain, Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/container-paper.pdf

— 2002: The Market, Techn. Univ. of Denmark
www.imm.dtu.dk/~dibj/themarket.pdf

— 1995-2004: Railways, Techn. Univ. of Denmark - a compendium
www.imm.dtu.dk/~dibj/train-book.pdf

Requirements Engineering. If our objective for having a domain description
is that it serves as a basis for software development, then a [next] phase of
development is that of requirements engineering. Chapter 9 of [11] shows how to
systematically develop requirements from a domain description.

As we did for domain analysis & description, Sect. 3.5 on page 18, we can do
for requirements development: present an informal, but precise specification of
the requirements analysis & description process.

The “formalisation” below reveals an essence of [11, Chapter 9]. Namely that
the requirements development consists of three major stages: domain require-
ments, DR — which in turn consists of five steps, interface requirements, IR,
and machine requirements, MR. The stages of domain and interface require-
ments development can be further ‘decomposed’ into steps. The pseudo proce-
dure names these steps. For details we refer to [11, Chapter 9]

www.imm.dtu.dk/~{}dibj/2021/ral/ral.pdf
www.imm.dtu.dk/~{}dibj/2021/Graphs/Rivers-and-Canals.pdf
www.imm.dtu.dk/~{}dibj/2021/Retailer/BjornerHeraklit27January2021.pdf
www.imm.dtu.dk/~{}dibj/2018/yangshan/maersk-pa.pdf
www.imm.dtu.dk/~{}dibj/2017/docs/docs.pdf
www.imm.dtu.dk/~{}dibj/2018/BjornerUrbanPlanning24Jan2018.pdf
www.imm.dtu.dk/~{}dibj/2017/swarms/swarm-paper.pdf
www.imm.dtu.dk/~{}dibj/road-p.pdf
www.imm.dtu.dk/~{}dibj/2016/credit/accs.pdf
www.imm.dtu.dk/~{}dibj/2016/wis/wis-p.pdf
www.imm.dtu.dk/~{}dibj/wfdftp.pdf
www.imm.dtu.dk/~{}db/todai/tse-1.pdf
www.imm.dtu.dk/~{}db/todai/tse-2.pdf
www.imm.dtu.dk/~{}db/todai/tse-2.pdf
www.imm.dtu.dk/~{}dibj/pipe-p.pdf
www.imm.dtu.dk/~{}dibj/container-paper.pdf
www.imm.dtu.dk/~{}dibj/themarket.pdf
www.imm.dtu.dk/~{}dibj/train-book.pdf

44 D. Bjgrner

value
requirements_analysis_description: RSL* Text— D —
(DxDx...xD) — RSLT Text
requirements_analysis_description(rsl_txt)(d)(d1,...,dm) =
DR: let dr=(let drp = domain_projection(rsl_txt)(d) in
let dri = domain_requirements_instantiation(drp)(d) in
let drd = domain_requirements_determination(dri)(d) in
let dre = domain_requirements_extension(drd)(d) in
let drf = domain_requirements_fitting(dre)((d1,...,dm),d)
in drf end end end end end) in
IR: let irp = interface_requirements(drf)(d) in
MR: let mrp = machine_requirementsn(irp)(d)
in mrp end end end

Here (d1,...,dm) are the “other” requirements with which ((dre),(...,d)) is to be
fitted; mrp then represents the full set of requirements from which to develop, in
a next phase, the software.

Software Design. The three monographs cum textbooks [8-10] show how to
develop software from requirements prescriptions.

5.2 Air Traffic Control, ATC

On the background of the domain to requirements transformation, [11, Chapter
9], and a similar requirements to software design transformation [10], we now
claim to have a rigorous path of development from domains to trustworthy soft-
ware.

An domain, “close”, informally speaking, to that of NASA’s concerns, is air
traffic control, ATC.

Future ATCs. Today’s ATC is primarily radar-based and human-operated.
Tomorrow’s ATC appears headed for satellite-orientation and automation.°
We suggest, in this paper, that major US and European efforts for formulat-
ing the next generation ATCs be supported by pre-domain modeling experiments.
Models of proposed ATCs are neither domain models nor requirements mod-
els. They are models of virtual ATCs, as [12] formulates a family of models
of automobile assembly lines. Such a family can be used to determine values
of future ATC “parameters”: which ATC components should undertake which

30 We refer to:

— ICAO: https://www.icao.int/airnavigation/documents/ganp-2016-interactive.pdf
— US: https://www.faa.gov/nextgen/
— Europe: https://www.easa.curopa.eu/domains/air-traffic-management

https://www.icao.int/airnavigation/documents/ganp-2016-interactive.pdf
https://www.faa.gov/nextgen/
https://www.easa.europa.eu/domains/air-traffic-management

An Essence of Domain Engineering 45

tasks, etc. Their modelling process can also, and this is something new, help
experiment with alternative ATC-component or procedure proposals, as a form
of “sounding boards”.

A Model for Current ATC. In order to develop models for families of ATCs
we suggest to first develop a model of the existing, worldwide ATC. A basis for
such a model is illustrated in Fig. 3.

ch[{...}]:GAIAG ch[{--}1:GAJAG

ch[{..}]:AT|TA ch[{..}]:AT|TA

ch[{..}]:AR|IRA ch[{..}]:AR|IRA

Gr Area i nd
Control Control Control
Tow Ceptre Ceptre Tow er

1.m.r
chi{...}]:RC|CR
chi{...}J:RC|CR

ch[{...}]:GCICG chl{..}l:CC ch[{...}]:GCICG

<> behaviour infout . ,1:
' This right 1/2 is a "mirror image" of left 1/2 of the figure

Fig. 3. Conventional air traffic control

Thus we challenge the reader to analyse & describe external qualities (as basi-
cally shown in Fig.3), and states, then internal qualities, first unique identi-
fiers, mereologies, and attributes; then external qualities, first channels, then
behaviour signatures and definitions, and finally an initial state.

Now the modellers are well prepared for modelling future ATCs.

The above suggests that domain modelling problems related to aeronautics and
space might also be a good idea!

5.3 An Aeronautics and Space Domain

To properly understand the domain of aeronautics &3 space we must first analyse
various facets of the domain as we see it today. Aeronautics & space, as an
endeavour, is pursued in order to explore space, with space exploration missions
“divided” into stages, deploying a variety of technologies, and satellites.??

31 We shall use the ampersand, &, instead of ‘and’, to emphasize that we speak of one,
consolidated topic, not two!.

32 The following text is adapted from various NASA Web pages found under: https://
WWW.nasa.gov.

https://www.nasa.gov
https://www.nasa.gov

46 D. Bjgrner

[I] Types of Space Exploration. There are many kinds of space exploration: earth
observation satellites, spy satellites, communications satellites, military satellites,
satellite navigation, space telescopes, space exploration and space tourism.

[II] Stages of Space Exploration. There are common stages of missions: the launch
phase (assembly, test, and launch operations), the cruise phase, the encounter
phase and depending on the state of spacecraft health and mission funding, the
extended operations phase.

[III] Space Technologies. There are different kinds of space technologies: space-
craft, satellites, space stations and orbital launch.

[IV] Types of Satellites and Applications. And there are many types of satellites
and applications: remote sensing satellites, navigation satellites, geocentric orbit
type satellites, global positioning systems, geostationary satellites, drone satellites,
ground satellites and polar satellites.

A[n Aeronautics &] Space Control, ASC, Sketch.

An Analysis. Air traffic control, ATC, hinted at in Sect. 5.2, can, in contrast to
a perceived aeronautics & space monitoring, communication and control, i.e., an
air space control, ASC, it seems, be primarily characterised as follows: (a) ATC is
concerned with only one kind of moveable entities: passenger and cargo aircraft
whereas an ASC would have to deal with quite a variety of moveable entities; (b)
ATC is independent of the multitude of national and international air carriers,
whereas, it seems, today’s national aeronautics & space efforts and their moni-
toring, communications and controls are fragmented into national agencies who
are also the [main] stakeholders in the monitored, etc., space efforts; (c) ATC can,
today, be partly identified in terms of aircraft (one, unifying concept), ground
control towers, terminal controls, area controls and continental controls; and (d)
ATC responsibility is shared by many (overflown) nations.

There is today an estimated 3.500 man-made space objects “up there”, right
now ! Each such space “mission” lasting for up to many years. In contrast there
is, today, an estimated 10.000 aircraft in flight at any moment. Each such flight
lasting between 1/2h and 144 hours. We proceed, therefore, on the assumption
that a global, multi-nation co-ordinated ASC is required.

An Essence of Domain Engineering 47

The As Yet Unknowns. The above rather terse and simplified analysis left open a
number of issues: (i) Can a perceived, “single”, ASC be devised to handle all facets
of space exploration, applications and technologies 7 (ii) Can a perceived ASC, of a
next future, be “pinned down” to two or more separate physical, stationary parts
(and behaviours) such as the aircraft, ground control towers, terminal controls, area
controls and continental controls? (iii) Is it too early to consolidate matters?
That is, do political concerns and technological advances stand in the way of
consolidation ?

A Suggestion. It is therefore suggested that the concepts of domain science &
engineering be applied to the issues of whether («) a national and/or an inter-
national, or a global, ASC; () one or several distinct ASCs, one per type of space
exploration ([I]) or satellite ([IV]) or application ([IV]); and (v) in case () rec-
ommends several, typed, ASCs, how to coordinate these.

In doing so domain science & engineering is being used not to model an exist-
ing, but a contemplated domain! Thus the modelling may involve modelling a
variety of choices. In [12], the authors show how domain modelling can be for-
mulated such that optimisation of assembly line production can be investigated.
Similar possibilities could be investigated in connection with modelling proposed
aeronautic & space control. Domain science & engineering may cast a new kind
of light on these issues.

Thus it is suggested that the US Government FAA and NASA, and, in Europe,
the EUROCONTROL and ESA, separately or jointly, and these in cooperation with
many other space agencies®®, co-operate on researching and experimentally
developing domain models for aeronautics & space.

6 Conclusion

The title of this paper had the prefix ‘An Essence of'. The ‘An’, rather than a
‘The’, shall indicate that there are many essential aspects of domain engineering.
Some essences of domain science & engineering are (i) a basis in philosophy; (ii)
an interpretation of transcendental deduction; (iii) intentional pull, an interpre-
tation of ‘gravitational pull” being a core property of domains; and (iv) that
domain analysis & description ‘wavers’ between science and engineering, being
conducted in a context of more-or-less following formal method principles, tech-
niques and tools — yet searching and deciding informally for the entities to analyse
& describe.

33 1CAO (UN), Roscosmos (Russia), CNSA (China), ISRO (India), JAXA (Japan),
AEB (Brazil), CSA (Canada), ASA (Australia) and others.

48 D. Bjgrner

There may be other ‘essences’!** We refer to [11] for other aspects.
The proposed domain modelling method of this paper, and hence [11], raises
a great many research issues:

— The issue of intentional pull is also only briefly sketched, paragraph Intentional
Pull Sect., 3.2 on page 14.

— There is the issue of the modelling of continuity, illustrated in paragraph Inten-
tional Pull of Sect. 4.1 on page 25. In modelling aeronautics & space there is a
more general need for modelling continuity. ‘Formal Methods’, so far, has yet
to “deliver” on this: the ability to freely alternate between discrete, logical
models and continuous, say differential and integral calculus-based models.

— There is a carefully thought out and apparently complete analysis & descrip-
tion calculus for endurants, but there is no analysis & description calculus for
perdurants!?

Acknowledgments. The front matter preface of [11] ends with an extensive list of
acknowledgments. For this paper I repeat acknowledging three persons: Kai Sgrlander
from whose philosophical works and from our personal interaction I have benefited; my
editor at Springer, Ronan Nugent, whose steadfast and tireless work also lies behind [11];
and Klaus Havelund for being a great discussion partner over now many years. I also
thank the NASA Formal Methods Symposium for the invitation which has afforded me
the possibility to correct, clarify and simplify a number of issues wrt. RSL, RSL™T Text,
and domain analysis and description methodology: its principles, techniques and tools.

References

1. Aaronson, S.: Quantum Computing since Democritus. Cambridge University Press,
Cambridge (2013)

2. Ahbel-Rappe, S.: Socrates: A Guide for the Perplexed. A&C Black (Bloomsbury)
(2011). ISBN 978-0-8264-3325-1

3. Ross, W.D., et al.: Plato’s Theory of Ideas. Oxford University Press, Oxford (1963)

4. Aristotle: Categories. On Interpretation. Prior Analytics. Harvard University Press
[Loebb Classical Library, translated by H.P. Cooke and Hugh Tredenick] (1938)

5. Audi, R.: The Cambridge Dictionary of Philosophy. Cambridge University Press,
Cambridge (1995)

34 It appears to have become fashionable to include the idea of ‘essence’ in the title of
methods or books:

— https://essence.ivarjacobson.com/services/what-essence: The Essence of Software
Engineering. The SEMAT kernel. Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon,
Tan Spence, and Svante Lidman. ACM Queue, October 24, 2012, Volume 10, issue
10.

— https://press.princeton.edu/books/hardcover/9780691225388 /the-essence-of-
software: The Essence of Software: Why Concepts Matter for Great Design. Daniel
Jackson, Nov.16, 2021.

https://essence.ivarjacobson.com/services/what-essence
https://press.princeton.edu/books/hardcover/9780691225388/the-essence-of-software
https://press.princeton.edu/books/hardcover/9780691225388/the-essence-of-software

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

An Essence of Domain Engineering 49

Berger, B., Whistler, D.: The Schelling Reader. Bloomsbury Publishing PLC, Lon-
don (2020)

Berkeley, G.: Philosophical Works, Including the Works on Vision. Everyman edi-
tion, London (1975). (1713)

Bjgrner, D.: Software Engineering, Vol. 1: Abstraction and Modelling. TTCS.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31288-9

Bjgrner, D.: Software Engineering, Vol. 2: Specification of Systems and Languages.
TTCS. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33193-3.
Chapters 12—-14 are primarily authored by Christian Krog Madsen

Bjgrner, D.: Software Engineering, Vol. 3: Domains, Requirements and Software
Design. TTCS. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33653-
2

Bjgrner, D.: Domain Science & Engineering - A Foundation for Software Develop-
ment. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-73484-8

Bjgrner, N., Levatich, M., Lopes, N.P., Rybalchenko, A., Vuppalapati, C.: Super-
charging plant configurations using Z3. In: Stuckey, P.J. (ed.) CPAIOR 2021.
LNCS, vol. 12735, pp. 1-25. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-78230-6_1

Butterfield, J., Earmann, J. (eds.): Philosophy of Physics. Handbook of The Phi-
losophy of Science. Elsevier (2006)

Carnap, R.: Der Logische Aufbau der Welt. Weltkreis, Berlin (1928)

Carnap, R.: The Logical Syntax of Language. Harcourt Brace and Co., New York
(1937)

Carnap, R.: Introduction to Semantics. Harvard University Press, Cambridge
(1942)

Carnap, R.: Meaning and Necessity, A Study in Semantics and Modal Logic. Uni-
versity of Chicago Press, Chicago (1947, 1956)

Casati, R., Varzi, A.C.: Parts and Places: The Structures of Spatial Representation.
MIT Press, Cambridge (1999)

Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

Couprie, D.L., Kocandrle, R.: Anaximander: Anaximander on Generation and
Destruction. Briefs in Philosophy Series. Springer

Darwin, C.: Origin of Species. Penguin Putnam (2003). Introduction by Sir Julian
Huxley

Dawes, J.: The VDM-SL reference guide, vol. 18. Pitman, London (1991)
Descartes, R.: Discours de la méthode. Texte et commentaire par Etienne Gilson.
Vrin, Paris (1987)

Henry Folse, J.F. (ed.): Niels Bohr and the Philosophy of Physics: Twenty-First-
Century Perspectives. Bloomsbury Academic (2019)

Frege, G. (ed.): Begriffsschrift - “a formula language, modelled on that of arith-
metic, for pure thought”. Verlag von Louis Nebert, Halle (1879)

George, C., Haxthausen, A.E.: The logic of the RAISE specification language.
Comput. Artif. Intell. 22(3-4), 323-350 (2003). http://www.sav.sk/index.php?
lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#
abstract_2729

George, C.W., et al.: The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead (1992)

https://doi.org/10.1007/3-540-31288-9
https://doi.org/10.1007/978-3-540-33193-3
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/978-3-030-73484-8
https://doi.org/10.1007/978-3-030-78230-6_1
https://doi.org/10.1007/978-3-030-78230-6_1
https://doi.org/10.1007/978-3-319-10575-8
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#abstract_2729
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#abstract_2729
http://www.sav.sk/index.php?lang=en&charset=ascii&doc=journal&part=list_articles&journal_issue_no=882#abstract_2729

50

28.

29.

30.
31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

D. Bjgrner

George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead (1995)

Godel, K.: Uber formal unentscheidbare Sétze der Principia Mathematica und
verwandter Systeme I. Monatshefte fiir Mathematik Physik 38, 173-198 (1931).
[English translation in van Heijenoort 1967, 596-616, and in Godel, 1986, 144-195]
Hegel, G.W.F.: Wissenschaft der Logik. Hofenberg (2016). (1812-1816)
Heidegger, M.: Parminedes. Indiana University Press, Bloomington (1998)
Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science.
Harper Perennial Modern Classics (2007)

Hierons, R.M., Bowen, J.P., Harman, M. (eds.): Formal Methods and Testing.
LNCS, vol. 4949. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science, Prentice-Hall International (1985)

Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in
Computer Science. Prentice-Hall International (1985). published electronically:
usingcsp.com/cspbook.pdf (2004)

Hofmann, M.: Syntax and semantics of dependent types. In: Extensional Con-
structs in Intensional Type Theory. DISTDISS, pp. 13-54. Springer, London
(1997). https://doi.org/10.1007/978-1-4471-0963-1_2

Hume, D.: Enquiry Concerning Human Understanding. Squashed Editions, Win-
ster (2020). (1758)

Husserl, E.: Ideas. General Introduction to Pure Phenomenology. Routledge, Mil-
ton Park (2012)

Irvine, A.D. (ed.): Philosophy of Mathematics. Elsevier Science & Technology
(2006)

Jackson, M.A.: Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices. ACM Press, Addison-Wesley, Reading (1995)

James, D., Zoller, G.: Cambridge Companion to Fichte. Cambridge University
Press, Cambridge (2016)

Kant, I.: Critique of Pure Reason. Penguin Books Ltd, London (2007). (1787)
Kennedy, H.C. (ed.): Selected works of Giuseppe Peano, with a biographical sketch
and bibliography. Allen & Unwin, London (1973)

Leibniz, G.W.: The Philosophical Writings of Leibniz. Hassell Street Press, Stoke-
on-Trent (2021)

Little, W., Fowler, H., Coulson, J., Onions, C.: The Shorter Oxford English Dic-
tionary on Historical Principles. Clarendon Press, Oxford (1973, 1987). Two vols
Locke, J.: An Essay Concerning Human Understanding. Penguin Classics, London
(1998). (1689)

Maxwell, J.C.: A Treatise on Electricity and Magnetism, 3rd edn., vol. 1-2. Dover
reprint, Garden City (1954). (1892)

Mendel, G., Bateson, W. (eds.): Mendel’s Principles of Heredity. Franklin Classics
Trade Press, Minneapolis (2018)

Mercer, J.E.: The Mysticism of Anaximenes and the Air. Kessinger Publishing,
LLC, Whitefish (2010)

O’Grady, P.: Thales of Miletus. Western Philosophy Series. Routledge, Milton Park
(2002)

https://doi.org/10.1007/978-3-540-78917-8
https://doi.org/10.1007/978-3-540-78917-8
https://doi.org/10.1007/978-1-4471-0963-1_2

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

75.

An Essence of Domain Engineering 51

Pears, D.: Russell’s Logical Atomism. Fontana Collins (1972)

Planck, M.: Eight Lectures on Theoretical Physics. Dover Publications, Garden
City (2003). (1915)

Popper, K.R.: Logik der Forschung. Julius Springer Verlag, Vienna, Austria (1934).
(1935). english version [56]

Popper, K.R.: The Logic of Scientific Discovery. Hutchinson of London, 3 Fitzroy
Square, London W1, England (1959,... 1979), translated from [55]

Popper, K.R.: Conjectures and Refutations. The Growth of Scientific Knowledge.
Routledge and Kegan Paul Ltd. (Basic Books, Inc.), 39 Store Street, WC1E 7DD,
London, England (New York, NY, USA) (1963,...,1981)

Popper, K.R.: A Pocket Popper. Fontana Pocket Readers, Fontana Press, England
(1983). An edited collection, Ed. David Miller

Roscoe, A.W.: Theory and Practice of Concurrency. C.A.R. Hoare Series in
Computer Science. Prentice-Hall (1997). http://www.comlab.ox.ac.uk/people/bill.
roscoe/publications/68b.pdf

Russell, B.: On denoting. Mind 14, 479-493 (1905)

Russell, B.: The Problems of Philosophy. Home University Library, London (1912).
oxford University Press paperback, 1959 Reprinted, 1971-2

Russell, B.: Introduction to Mathematical Philosophy. George Allen and Unwin,
London (1919)

Russell, B.: “Preface”. Our Knowledge of the External World. G. Allen & Unwin
Ltd, London (1952)

Sannella, D., Tarlecki, A.: Foundations of Algebraic Semantics and Formal Software
Development. Monographs in Theoretical Computer Science, Springer, Heidelberg
(2012)

Schneider, S.: Concurrent and Real-Time Systems — The CSP Approach. World-
wide Series in Computer Science. Wiley, Chichester (2000)

Segrlander, K.: Det Uomggengelige - Filosofiske Deduktioner [The Inevitable - Philo-
sophical Deductions, with a foreword by Georg Henrik von Wright]. Munksgaard -
Rosinante (1994). 168 pages

Sgrlander, K.: Under Evighedens Synsvinkel [Under the viewpoint of eternity].
Munksgaard - Rosinante (1997). 200 pages

Sgrlander, K.: Den Endegyldige Sandhed [The Final Truth]. Rosinante (2002). 187
pages

Sgrlander, K.: Indfgring i Filosofien [Introduction to The Philosophy]. Informations
Forlag (2016). 233 pages

Spinoza, B.: Ethics, Demonstrated in Geometrical Order. The Netherlands (1677)
Wallace, A.R.: The Annotated Malaysian Archipelago. National University of Sin-
gapore Press, Singapore (2014). Edited by John Van Wyhe

Whitehead, A.N., Russell, B.: Principia Mathematica, 3 vols (1962). Cambridge
University Press (1910, 1912, and 1913), second edition, 1925 (Vol. 1), 1927 (Vols
2, 3), also Cambridge University Press

Wittgenstein, L.J.J.: Tractatus Logico-Philosophicus. Oxford University Press,
London (1961). (1921)

Wittgenstein, L.J.J.: Philosophical Investigations. Oxford University Press, Oxford
(1958)

Wolfe, C.T., Huneman, P., Reydon, T.A. (eds.): History, Philosophy and Theory
of the Life Sciences. Springer, Heidelberg (2013)

Wright, M.: Empedokles: The Extant Fragments. Hackett Publishing Company,
Inc. (1995)

http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

)

Check for
updates

Concept Design Moves

Daniel Jackson®™

Massachusetts Institute of Technology, Cambridge, MA, USA
dnj@mit.edu

Abstract. Great designs are rarely inventions without precedent; more often they
are skillful adaptations of earlier designs. Designers work by recognizing struc-
tures they have previously seen, and taking steps they have taken before. By
making such patterns and design moves explicit, we can educate designers more
effectively and promote good design. This paper explains concepts, a modular
structure for describing software behavior that allows patterns to be recognized,
and proposes three pairs of design moves for software design, illustrating their
application in some widely used products.

Keywords: Software design - Design patterns - Design moves - Software
concepts - Modularity

1 Introduction: Codifying Design Expertise

Accounts of design as a creative process often give the impression that design is mostly
about coming up with entirely novel ideas. The fashionable term “ideation” reinforces
this view, and suggests that insights emerge ex nihilo in the designer’s mind. With the
assumption that little can be done to make any individual designer more imaginative or
creative, we tend to turn to a collaborative process to improve the outcome, for example
by encouraging earlier prototyping, or by brainstorming with a diverse group of people.
Such practices are helpful, but they are tangential to the substance of design.

1.1 Designers Bring Prior Knowledge

Instead, we might look to how experienced designers think, and try to make explicit
(and learnable) the insights that they have gained over years of experience. From my
own experience watching software designers in action, and from analyzing the occasions
on which I have had design insights myself, I have concluded that design ideas do not
appear in a vacuum, but are usually drawn from prior experience. This does not mean that
the experienced designer is not creative. Precedents rarely match exactly, so identifying
them demands insight (often in the form of an analogy or abstraction), and applying them
requires adaptation and skill. Design is thus less about sudden inspiration and more about
patient analogizing and adjustment. Innovation is no less important, but becomes less
visible, being found not in a wholesale replacement of old ideas with new ones, but
rather in subtle (and sometimes unexpected) details of reworking and refinement.

© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NEM 2022, LNCS 13260, pp. 52-70, 2022.
https://doi.org/10.1007/978-3-031-06773-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_3

Concept Design Moves 53

Design expertise, codified in an applicable form, can offer a shortcut to inexperienced
designers, who can benefit from the accumulated wisdom of the community, and it
can amplify the skills of experienced designers. In a sense, such codification is what
thoughtful education in all practical areas seeks: to learn by doing, but where much of
the doing has already been done (by others, in the past).

1.2 Standard Solutions and Moves

Different kinds of expertise might be codified, including: (a) standard solutions or pat-
terns, which can be adopted in different contexts; (b) design moves, in which the solution
is not provided, but instead a standard transformation from one solution to another; and
(c) methods for applying these, e.g. for identifying relevant solutions or moves, and
making whatever adjustments are needed to apply them in a new situation.

The first two categories of reusable expertise have been articulated in a variety of
design fields. Notable examples include Alexander’s design patterns [2, 3], which offer
standard solutions in architecture and urban/landscape design, and Altshuller’s TRIZ
[26], which codified 40 design moves extracted from a study of thousands of patents
for physical devices. The third category is addressed tangentially in some of the pattern
literature, but has yet to be fully explored.

In software engineering, patterns have been formulated and widely adopted in many
areas, including object-oriented programming [10], software architectures [23], enter-
prise applications [9], and user interfaces [27]. While many pattern collections are avail-
able, collections of design moves are harder to come by. Code refactoring [12] is a notable
exception. Some of the most influential ideas about program structure might also be seen
as design moves, most notably information hiding [21] and decoupling [22].

1.3 Design vs. Engineering

All of these examples in the software realm start from the point at which the observable
behavior of the software has already been determined, and the problem is how to realize
that behavior in code. The most far-reaching decisions—what the functions of the soft-
ware will be, and how those functions will be organized—have already been made. The
user’s experience has been set; all that remains is the task of ensuring that the system
will deliver its functions reliably and efficiently.

That task, of course, comprises all of programming and software architecture, and
arguably user interface design also, so its importance should not be minimized. Never-
theless, our field has tended to focus on it at the expense of the more fundamental task
of shaping the software’s behavior. As Fred Brooks put it [5]: “The essence of a soft-
ware entity is a construct of interlocking concepts... I believe the hard part of building
software to be the specification, design, and testing of this conceptual construct, not the
labor of representing it.”

54 D. Jackson

For this reason, I believe it’s helpful to distinguish the terms software design and
software engineering, reserving the first for the shaping of behavior and the second for
structuring its implementation. This usage would accord with the way the term “design”
is used in other fields. Adopting it is not a mere philological exercise, but a serious
attempt to recognize the importance of design in its own right. As Mitchell Kapor wrote
(paraphrasing slightly): “When you go to design a house you talk to an architect first,
not an engineer. Why is this? Because the criteria for what makes a good building fall
outside the domain of engineering. Similarly, in computer programs, the selection of the
various components and elements of the application must be driven by the conditions of
use. How is this to be done? By software designers.” [20].

This paper proposes some design moves for software design. These moves depend
on expressing the function of a software system using structures that I call concepts.
I will explain first what concepts are, and then present the design moves, along with
examples of their application. The idea of concepts is presented more fully in a recently
published book [15], which also explains the design criteria on which the design moves
are based, and includes many of the examples used in this paper—but does not articulate
explicitly the idea of design moves.

Concepts are not the first attempt to identify patterns in software design prior to
implementation. This work was inspired and influenced in particular by Michael Jack-
son’s problem frames [18] and Martin Fowler’s analysis patterns [8]. Patterns in data
models have also been explored [13].

2 Concept Structuring

The behavior of a software system can be modeled as a set of interacting concepts. Each
concept has its own state and a set of actions that update the state. Importantly, and in
contrast to modules in the code, both the state and the actions are visible to the user.

The formulation of a concept’s behavior is not novel. To a practitioner of formal
methods, a concept is just a state machine, conventionally used to define entire systems
in languages such as Alloy [16, 17], B [1], VDM [19] or Z [24]. To a software architect,
a concept can be viewed as a service with a public API, like a microservice but smaller
(perhaps a “nanoservice”), or as a domain (in the sense of domain-driven design [7]), with
the state comprising a context that is even more “bounded” than usual. To a psychologist
or social scientist, a concept is a little behavioral protocol that a user engages in, just
like the protocols we use in everyday life (for example, in the way we add items to a
shopping list and then check them off as we find the items in the store).

The Label concept (Fig. 1), for example, provides the functionality associated with
labeling items and subsequently retrieving them through their labels. Some details of
the description to note:

1. The term Label is overloaded to refer to the name of the concept (in the first line)
and the set of labels (elsewhere). The concept is parameterized by Item, the type of
items to be labeled.

2. The state and actions are defined using Alloy notation, augmented with a C-style
update operator (and implicit frame conditions). Thus, for example, the formula

Concept Design Moves 55

i.labels + = [in the add_label action says that the set of labels of the item i has /
added to it.

3. The clear_labels action removes all the labels from an item, effectively removing
the item from the concept’s state.

4. The operational principle is one or more scenarios that demonstrate how the concept
fulfills its purpose. In this case, the first says that if label / is added to item i and not
removed, then performing a find on that label will return a set of items that includes
i; the second says that if no addition of such a label occurs for an item, it will not be
returned in a find on that label. The operational principle is intended to explain the
basic operation of the concept and not all the details. Thus, it does not explain, for
example, that a find on a set of labels returns the items that have all those labels, nor
does it mention the clear_labels actions.

1 concept Label [Item]

2 purpose

3 classify items into overlapping categories

4 state

5 labels: Item -> set Label

6 actions

7 add_label (i: Item, I: Label)

8 i.labels +=1

9 remove_label (i: Item, I: Label)

10 i.labels -=

11 clear_labels (i: Item)

12 i.labels := none

13 find (Is: set Label): set Item

14 return {i: Item | Is in i.labels}

15 operational principle

16 if add_label (i, I) and no remove_label (i, I),
17 find (I) returns items including i

18 if no add_label (i, I), then find (I) returns items not including i

Fig. 1. An example concept: Label.

As another example, the Todo concept (Fig. 2) provides the basic functionality of
a todo list, namely adding tasks to be displayed and marking them as done. Note that
the Task type is not treated as a type parameter; the assumption is that task objects are
generated by this concept, and that their details are not specified here. In the simplest
case, a task would be just a text string.

56 D. Jackson

concept Todo
purpose
track status of tasks
state
pending, done: set Task
actions
add_task (t: Task)
pending +=t
remove_task (t: Task)
t in pending + done
pending -=
done -=
complete_task (t: Task)
tin pending
done +=t
pending -=
uncomplete_task (t: Task)
tin done
done -=t
20 pending +=t
21 operational principle
22 following add_task (t), t is in pending until complete_task(t),
23 after which t is in done

© 0 N o A W N =

e L i O
© ® N o O~ W N = O

Fig. 2. An example concept: Todo.

2.1 Concept Independence

Two important properties characterize concepts, distinguishing them from other behav-
ioral structures (such as features [4] or object-oriented classes). First, each concept is
self-contained: its behavior is defined without reference to other concepts, and concepts
do not “use” each other in the way that one module or microservice in the code of a
software system may use another, for example by making calls to it.

Second, concepts are purposive: each brings its own benefit that can be defined and
evaluated without reference to another. These properties are different but nonetheless
related; one can think of them both as forms of independence, the former in the realm
of behavior and the latter in the realm of the needs or requirements that the behavior is
intended to satisfy.

To achieve these properties, concept boundaries have to be drawn in certain ways,
and not all increments of function can be described as concepts. In marked contrast,
features can be used to organize the codebase of a system in almost arbitrary units.
The rationale for the more restrictive notion of concept is that it ensures that concepts
can be understood independently of one another, simplifying the user’s mental model.
Indeed, this independence of elements of a mental model is essential for its cognitive
“robustness” [6]. It also allows the same concept to be instantiated in different systems,
which brings benefits to both user (in terms of familiarity) and designer (in terms of
reuse of design knowledge).

Concept Design Moves 57

These properties are illustrated by the Label concept (Fig. 1). Self-containment means
first that it includes the end-to-end functionality associated with labels: not only adding
and removing labels, but actually using the labels to find items. It also means that, as
reflected in the polymorphism of the concept, it relies on no properties of items except
that they exist and can be distinguished, so it has no reliance on any other concept.

2.2 Concept Synchronization

Concepts are composed together to form an application. Since no concept uses the
services of another, and every concept’s behavior must be visible and intelligible to
the user, traditional procedure call is not a suitable composition mechanism. Instead,
we’ll compose concepts by running them in parallel, synchronizing their actions where
needed.

Synchronizations have the form “when action A/ happens in concept C/, action A2
happens in concept C2.” An action in one concept can lead to any number of actions
in other concepts. Synchronizations may also be conditioned on the states of the con-
cepts. Synchronization is thus similar to the mechanism of an event-driven architec-
ture, but there is an important distinction. A concept can refuse an action, and in that
case a synchronization that would lead to that action must be blocked in its entirety. A
synchronization is thus a kind of transaction, and its execution is all or nothing.

app todo-with-labels

include
Todo
Label [Todo.Task]

sync Todo.remove_task (t)
Label.clear_labels (t)

sync Todo.add_task (t)
Label.add_label (t, PENDING)

sync Todo.complete_task (t)
Label.remove_label (t, PENDING)

sync Label.remove_label (t, PENDING)
Todo.complete_task (t)

sync Label.add_label (t, PENDING)
Todo.uncomplete_task (t)

© 0o N o g R W N e

bR B Rl
2 W N », O

Fig. 3. An example synchronization.

This composition mechanism is borrowed from CSP [14]. In CSP, actions in two
processes are synchronized when they have the same name, and in the resulting com-
position, a single shared action occurs for both processes. When process actions with
different names are to be synchronized, a renaming operator is first applied. For con-
cepts, it makes more sense to allow actions with different names to be synchronized,
and for a single synchronization to result in multiple actions in the various participating
concepts.

Despite this difference, a fundamental property of CSP is retained. Suppose a concept
C has a specification S(C), which you can think of as the set of permitted histories of

58 D. Jackson

actions (called traces in CSP). Let’s say that an app conforms to the specification of C
if every history of actions of the app, when restricted to those actions relevant to C, is a
permitted history in S(C). Then given two concepts C/ and C2, any composition C/ |
C2 will conform to both specifications S(C1) and S(C2). In other words, composition of
concepts implements conjunction of specifications.

This is hardly surprising. Synchronization can never make a concept do an action it
would not otherwise allow, and can therefore only restrict which actions happen. If this
were not the case, a concept, once embedded in an app, might behave in an unfamiliar
way, compromising the user’s understanding of that concept as a distinct and separable
unit of functionality.

In the absence of synchronization, a concept’s actions are unconstrained, and may
occur in any order consistent with the concept behavior. In practice, a user interface
will limit which actions are available at any time, typically by offering certain groups
of actions on certain pages, with traversal actions to navigate from page to page. Such
limitations are rarely fundamental, however, and are unlikely to be imposed by the
service layer that lies behind the user interface. They could in theory be described as
synchronizations, but in most cases (especially for non-critical software) the effort of
specifying them carefully will not be worthwhile, and they would be better addressed in
the context of wireframing.

We can assemble a little application that combines the two concepts we defined
earlier, allowing the user to add labels to tasks, using the label PENDING for tasks that
are pending (Fig. 3). Some details to note:

1. The instantiation of the Label concept passes in the Task type of the Todo concept
as a parameter, thus ensuring that the items manipulated by the Label concept are
the tasks of the Todo concept.

2. The implicational structure of synchronizations is implicit. Thus, the first synchro-
nization, for example, says that when a remove_task action happens in the Todo
concept for task #, a corresponding clear_labels action happens in the Label concept
for the same task.

3. The first synchronization is just a bit of book-keeping, ensuring that when a task
is removed from the Todo concept, it doesn’t remain as a labeled item in the Label
concept. If it did, the removed task might appear when the user tries to find tasks by
label.

4. The four remaining synchronizations bring a little magic: when a task is added, it
automatically gets the PENDING label; and when the task is completed, the label is
removed. Conversely, adding and removing the label changes the task status. This
allows a user to filter tasks by their labels and by their task status at once, since the
latter is now expressible with labels. (For simplicity, I've only included a PENDING
label, but of course we could add a COMPLETED label too allowing the user to find
completed tasks as well as PENDING tasks.)

The synchronizations of actions between the two concepts preserve an invariant: that
the tasks classified as pending in the Todo concept are labeled as PENDING in the
Label concept. You might think at first that this redundancy brings little benefit. But
actually there’s a valuable synergy at play. With the task classification now reflected

Concept Design Moves 59

in the labeling, the user can use the Label concept to perform filterings that might
otherwise have needed additional functionality in the Todo concept. Imagine a user
interface for this app: a button that filters tasks to those that are pending would, prior to
this synchronization, have required a special implementation as a query over the state
of the Todo concept, but now it can be implemented using the find action of Label. The
benefit would be even greater if (as would occur in practice) the Label concept were
extended to a rich query language, so that the PENDING status could be combined with
other labels in conjunction and disjunction.

3 Design Moves: Mechanical Analogues

To introduce the concept design moves in an intuitive way, I’ll use some familiar mechan-
ical analogues. There are six design moves, organized into three pairs of duals. Each
pair embodies some design tradeoffs; a move in one direction benefits some property P
at the cost of some other property P’, with its dual in the other direction benefitting P’
at the cost of P.

3.1 Split/Merge

The split/merge pair (Fig. 4) trade off simplicity and directness of usage on the one hand
with flexibility on the other. The first photocopier machines offered a single concept,
Photocopy say. Today’s all-in-one printers also provide photocopying, but no longer as
its own concept. Instead, there are two distinct concepts, Print and Scan, each with its
own collection of controls and customizations. By splitting the Photocopy concept into
Print and Scan, the user now has more flexibility. Photocopying is still available as a
synchronization of the two, but it is marginally less convenient.

printer + scanner

photocopier

merge
~_

o)
flashlight + battery + charger
emergency flashlight

Fig. 4. Split-merge design moves.

For the dual, consider the emergency flashlight, whose single concept merges the dis-
tinct concepts of Flashlight, Battery and Charger. The merging brings a loss of flexibility:
you can’t use the batteries in another device, for example. But the gain in simplicity is
significant, which is important especially for a device designed for use in emergencies.
The merged concept also permits some special functionality, for example automatically
turning the flashlight on when an outlet in which it has been charging loses power.

60 D. Jackson

general-purpose lens

macro lens

Fig. 5. Unify-specialize design moves.

tighten
\ R
light pull / door lock airplane toilet lock
—J » j loosen D

. ” rotary dimmer switch
dimmers with separate controls

Fig. 6. Tighten-loosen design moves.

3.2 Unify/Specialize

The unify/specialize pair (Fig. 5) trade off generality and specificity. The invention of the
adjustable wrench (in the mid-19th century) solved the problem of needing a collection of
wrenches to handle nuts of different sizes; one single concept replaced multiple variants.
Of course the generality comes at a cost in specificity, since the adjustable wrench isn’t
quite as good a fit for a given nut as a plain wrench of the exact size.

A macro lens is specialized for taking close-ups. A general purpose lens can be used
for close-ups, but not so effectively: both its closest focus distance and smallest aperture
are typically larger than for the specialized lens. On the other hand, a macro lens is
usually less suitable for other applications (such as portraits), since its widest aperture
is typically smaller.

3.3 Tighten/Loosen

The tighten/loosen pair (Fig. 6) trade off automation and control. In an aircraft toilet,
the light and the door lock are synchronized tightly: you can’t turn on the light without
locking the door. The loss in flexibility (of a cleaner being able to keep the light on and
door open) comes with the benefit of a passenger avoiding embarrassment of the door
being opened while using the toilet.

Concept Design Moves 61

The dual move, in which concept synchronization is loosened, can be seen in modern
dimmer switches. The earliest switches coupled together the basic light switch concept
and the dimmer concept: to turn the light off you had to first dim it all the way down. In
modern designs, the two concepts can be operated independently, so that a light can be
turned on and off while retaining the brightness setting.

4 Concept Design Moves: Software Examples

I’ll now illustrate each of the design moves with an example from software, showing
how the move was applied successfully in a familiar software product.

4.1 Split: Emergence of a Concept in Keynote

The Fullscreen concept (Fig. 7) has had a slow emergence. Initially, certain apps used
full screen mode only for certain functions. Presentation apps such as Powerpoint and
Keynote, in particular, would go full screen when the user switched from editing to
presenting. Later, apps began to offer a full screen mode as an option during regular
use. The final step came during the COVID-19 pandemic, when users began to make
slide presentations in Zoom meetings, and needed a way to present without going full
screen (so they could continue to see the other participants). Finally, Fullscreen became
a concept in its own right that can be fully controlled independently of other concepts.

Zoom > Play Slideshow

Show Warnings
In Fullscreen

v In Window

Show Sync Status

Enter Full Screen
Record Slideshow...

Rehearse Slideshow

Customize Presenter Display...

Fig. 7. Keynote’s fullscreen for edit (left) and non-fullscreen for play (right).

4.2 Merge: The Yellkey URL Shortener

The ShortURL and Expiry concepts have been known for a long time, although they
weren’t typically combined. Most URL shortening services generated a short URL that
was permanent. The Expiry concept is used in a variety of contexts, and is often under
user control (for example, to allow you to limit the access period for a shared document).
The Yellkey URL shortener (Fig. 8) brought these two concepts together so tightly that
they no longer appear to have any independent existence: when you request a short URL,
you enter the long URL and an expiry time. No other action is provided, except of course
the redirection in which short URLs are expanded. The benefit of this integration is that,
by ensuring very short lifetimes for short URLs, a common word can be used in place
of an unreadable sequence of random characters.

62 D. Jackson

yellkey

enter url and length of time for key to exist

generate yellkey

your key is: move.

go to wwwyellkey.com/move to use.

Fig. 8. Yellkey URL shortener.

4.3 Unify: MITs Moira Service

My own university offers a service for mailing lists called Moira (Fig. 9). The owner
of a mailing list can be a single user, but it can also be a group of users. This is handy,
because it permits the burden of maintaining the group to be spread amongst multiple
administrators; it also supports the common case of a professor delegating control to an
assistant.

In a deft design move, Moira’s designers chose to reuse the mailing list concept for
administrative groups too. Essentially, there is only a single concept, List say, which
unifies two concepts, MailingList and AdminGroup, which might have been separated,
but which share several key actions (notably adding and removing members). The uni-
fication simplifies the user interface and its implementation, and also offers the ability
to treat an administrative group as a mailing list (so you can provide an email address
for the administrators of a list to those who want to join or leave).

WebMoira List Manager : Daniel Jackson Help | MyLists | Undo Log (1)
List Name: dnj-play1
Description: none
Attributes: active, moira mailing list
Permissions: private, visible
Last Modified: by dnj with moiraws on 22-mar-2022 09:39:00
[Edit]
Members Administrators
Add Member: Add Owner: dnj-play2 (List)
Leave List: | Remove Me Change Owner: Change
MIT Users Add Administrator: Add

Daniel Jackson (dnj) remove Leave Owner List: |Remove Me|

Email Addresses MIT Users

daniel@dnj.photo remove Daniel Jackson (dnj) fSmove;

Fig. 9. MIT’s Moira mailing list service.

But, as with all unifications, the move is not free of costs. A mailing list can include
two types of members: internal users (who have MIT accounts, and are identified by
their MIT user names) and external users (who do not have accounts, and are identified
by their full email addresses). Because all administrative functions require login with an
MIT user name, an external user cannot administer a mailing list. If you assign as the

Concept Design Moves 63

owner of a list a group comprising only external members, nobody can edit the list! It
is also possible to create cyclic ownership—two mailing lists each of which serves as
the administrative group for the other. Because the system is used by a relatively small
community of mostly expert users, however, these problems do not appear to matter
much in practice.

4.4 Specialize: Three Similar Concepts in Lightroom

Intentional specializations are harder to find in software, since software designers tend
to favor unification over specialization, often to reduce implementation effort.

In Adobe Lightroom, there are three distinct concepts that all serve the purpose of
classifying photos into a small number of fixed categories (Fig. 10). The Rating concept
lets you rate a photo with some number of stars between zero and five; the Flag concept
lets you mark a photo as picked or rejected (or neither); the ColorLabel concept lets
you assign one of a few colors to a photo. These three distinct concepts are applied by
Lightroom users mostly in one particular scenario: marking uploaded photos by quality
prior to deleting some of them.

There are various differences between the concepts. The colors of the ColorLabel
concept are not ordered; the Rating concept, in contrast, allows you to filter for photos
with more than one star (for example). The Flag concept has a rather baroque built-in
action called refine whose effect is to cause unflagged photos to be flagged as rejected,
and picked photos to be unflagged. There is also a delete-rejected action which can then
be applied to delete the photos that are now marked as rejected (and were previously the
ones not picked).

0862:06 | Canon EOS 10D photo1847-06 | Canon EOS 40D ,
WZmmY| 1/125 sec at f/ 56,150 200 40 mm | 11100 sec at f/ 5.6, 1SO 200

Fig. 10. Lightroom ratings, flags and color labels.

In an early version of Lightroom, ratings and color labels were associated with files
(so that if a photo belonged to multiple collections, any change in its rating or label
would be seen in all of them), but flags were scoped by collection, so the same photo
could have a flag in one collection but not another. This was a feature with legitimate
uses, but it was removed, and flags were brought into line with ratings and color labels,
presumably because users found it confusing that flag metadata was not saved to file.

Whether three distinct concepts are necessary here is not clear, but the cost of the
additional complexity seems minor, and users seem to appreciate the choice.

64 D. Jackson

4.5 Tighten: Page Scheduling in Hugo

Traditional blogging platforms such as WordPress and SquareSpace offer a Schedule
concept that allows a blogger to author a post now but schedule it for publication at
some date in the future. Blog posts also have metadata that includes a date which is
often set by default to the date on which the post was created, and thus need not match
the publication date.

In the Hugo static website generator, in contrast, scheduling is implicit. Files are
written in markdown and contain a preamble giving the value of various metadata fields.
The date field determines the date of publication, so all a user need do to schedule a post
in the future is to enter the desired date in the file. Every file is treated uniformly, so any
file on the website—not just a blog post—can be scheduled in this way.

This mechanism is a synchronization of Hugo’s Metadata and Schedule concepts.
The Metadata concept in its general form lets you associate properties with an object,
retrieve them and sometimes also sort and filter collections of objects by their properties.
In this design, the date field of a file is playing two roles: one (the basic Metadata role) is
to show the date of a post on the website, and to sort posts by their dates in index pages;
the other (the Schedule role) is to determine the date on which the post becomes visible.
In fact, many of the other metadata fields in Hugo play additional roles of this sort via
synchronization.

While elegant and flexible, the design is not without problems. Because the publica-
tion date of any file can be set in this way, it is possible if one is not careful to introduce
inconsistencies in which a file and the files it references are published at different times,
leading to broken links.

4.6 Loosen: Expert Control in ProCamera

Most digital cameras offer a rich Focus concept, often with many modes and settings,
that sets the focal distance of the lens automatically, and an Exposure concept that sets
the exposure (the aperture, shutter speed and sometimes also the ISO speed). In most
cameras, the Focus concept offers an option in which the user can select a focal point
somewhere in the image, and move it around (for example with a little joy stick on the
back of the camera). In more advanced cameras, exposure can either be set by averaging
over the scene, or by sampling a particular point (allowing the photographer to ensure
that a face, for example, is correctly exposed). In almost all cameras, the Exposure point
coincides with the Focus point.

Sometimes, however, the photographer wants to focus at one point and set exposure
at another. In most cameras, this can be achieved by moving the focus point to the first
point and setting “focus lock,” and then moving it to the second point to set the exposure
(or vice versa, using “exposure lock™).

In ProCamera, a camera app for the iPhone, this complexity is eliminated by loosen-
ing the synchronization between the Focus and Exposure concepts. Unlike the conven-
tional design, in which the target point of the Focus concept is used as the target point
of the Exposure concept, each concept has its own point, so that focus and exposure can
be sampled independently.

Concept Design Moves 65

5 Solving Problems with Design Moves

To show how design moves might be used to fix design problems, let’s consider some
troubled designs.

5.1 Aspect Ratio in Fujifilm Cameras

Fujifilm makes a range of digital cameras that are widely admired for their physical
design. Their cameras have been lauded especially for their manual controls, which allow
almost all adjustments to be made directly by turning a dial or ring, and without having to
navigate through menus. This is especially significant because, as in most cameras, the
user interface design for the virtual controls is not as refined as the mechanical design.

One example can be found in the way one selects the aspect ratio (which can only
be done by menu). Most mirrorless cameras (and some digital SLRs too) let you choose
an aspect ratio that differs from the sensor’s native ratio. This means wasting pixels, but
allows a photographer to employ a different framing, and to visualize that framing in
the viewfinder. The most common non-standard ratio is probably 1:1, since it matches
Instagram’s preferred ratio.

On Fujifilm cameras (Fig. 11), the ratio is set in the Image Size menu (whose name
already suggests a problematic design). This menu is used also to set JPEG resolution.
Thus, if you want a 1:1 ratio, for example, the menu offers three options for that ratio,
combining it with L, M and S settings (for large, medium and small numbers of pixels in
the recorded JPEG). A separate menu, called Image Quality, lets you choose to record
just a raw file, or just a JPEG file, either in fine or normal quality, or to record both raw
and JPEG, with either of the two JPEG quality options.

Fig. 11. Fujifilm image quality menu (left) and image size menu (right).

If you choose the option to store only raw files, and no JPEGs, the Image Size menu
is greyed out, and the aspect ratio reverts to the default. You might imagine that this is
because custom ratios are achieved by cropping the JPEG in-camera (which is true), and
that they cannot therefore play a role for raw files (which is false). In fact, these cameras
helpfully store a non-destructive crop in the raw file. But because of the strange design,
if you want only raw files but with a custom ratio, you need to switch to the option to
store JPEGs too, and then throw them away.

66 D. Jackson

The remedy here seems straightforward. Ratio is not a proper concept in its own
right; it has been merged into the Image Size concept as an additional feature. This is
what I call “overloading by piggybacking”: it seems as if the developer needed to find a
place to insert the ratio feature and “piggybacked” it onto another concept. Applying a
split and making Ratio a concept in its own right, so that the user could select the ratio
independently of the JPEG size, would eliminate the problem of having to generate spu-
rious JPEGs. It would also allow Fujifilm to support a larger number of ratios. Users are
always asking for more (and there is even an online petition) but Fujifilm is presumably
reluctant to do so, because of the combinatorial explosion it would produce in the Image
Size menu (with its current design).

The Image Quality menu has a bad smell too in its mixing the choice of format
(JPEG vs raw) and JPEG quality. There seems to be an opportunity to rework the entire
menu system of digital cameras in a more systematic, concept-structured way.

5.2 Message Filters in Apple Mail

Apple Mail, the default mail client on macOS, includes several strongly related concepts:
Rule, which lets you define a processing rule that when matched on a message performs
some action (such as moving it to a given mailbox); Search, which lets you search for
messages from particular senders or with certain subjects (amongst other things); and
SmartMailbox, which lets you define a mailbox containing messages that meet certain
criteria.

All three concepts involve filtering a set of messages using defined criteria. For Rule,
the set comprises either incoming messages (by default), or the messages in a specified
mailbox; for Search, the set comprises either all messages or the messages in selected
mailboxes; and for SmartMailbox, it comprises all messages.

There is no fundamental reason (as far as I can tell) that this filtering should be
specialized to the three concepts. And yet each concept has not only its own user interface,
but also its own filtering options, and these options are incomparable. Thus, only Rule
lets you filter on whether messages are encrypted or not; only Search lets you select
messages in a mailbox whose name contains a given string; and only SmartMailbox lets
you choose messages by the date when last viewed. Furthermore, Rule and SmartMailbox
let you conjoin or disjoin multiple conditions; Search does not.

Applying the unify move to create a single, general filtering concept might improve
this design. It would allow a single user interface for the filtering aspect of all three
concepts, and it would allow more powerful filtering (especially for Search, which is
very limited). It would also support converting a search into a rule or a smart mailbox. As
with all unifications, there would be rough edges to handle: most notably, some warning
would be desirable when a rule is applied only to incoming messages but contains a
condition that does not apply to them (such as belonging to a given mailbox, or having
been viewed already).

5.3 Event Deletion in Calendars

Calendar apps such as Apple Calendar and Google Calendar synchronize two concepts
together: an Event concept (which lets you store and view upcoming events) and an

Concept Design Moves 67

Invitation concept (which lets you send a request to a group of participants and receive
replies). Obviously, the two concepts need to work in concert together, but in practice
the synchronization has sometimes been too tight.

For years, Apple Calendar’s predecessor iCal suffered from an amusing problem—
although hardly amusing to users. If an event had an associated invitation, then deleting
it would automatically send a reply that the invitation had been declined. This created
a Catch-22 when you receive calendar spam: if you deleted the spam event, the reply
would reveal to the spammer that your email address was legitimate, but if you left it, your
calendar could fill up with spurious events. Various workarounds (such as moving the
spam events to a new calendar and deleting the calendar in its entirety) were developed
until Apple solved the problem by loosening the synchronization and offering users the
option of deleting an event without declining the associated invitation.

This problem seems to have persisted longer in Google Calendar. A few years ago,
seminars in our lab would routinely appear to be canceled, only for the organizer to
assure people that the seminar was in fact going ahead. The problem, it turned out was
that members of the lab mailing list received the seminar announcement in their email
client, which in some cases automatically installed the event in their calendar. If someone
then deleted their copy of the event, a message saying the event was canceled was sent to
all (nearly 1,000!) members of the seminar mailing list, which was specified as a single
participant in the seminar event.

It’s unclear whether this problem remains in Google Calendar. In the official doc-
umentation for “Delete an event,” there is no mention of deleting without canceling or
sending a notification. Google Calendar does seem to present a “delete without notify”
option in some cases, but according to one forum thread, only if the deletion is being
requested by the owner of the event/invitation and not if by a recipient.

W Raise Hand

Fig. 12. Zoom reaction options.

5.4 Sticky Hands in Zoom

Finally, here is an example that seems to call for a tighten move. In Zoom, the RaisedHand
concept operates entirely independently of other concepts, notably the Mute concept.
And yet a common protocol for meetings has participants mute themselves until they
want to talk; then raise their hand; then unmute when called upon. Unfortunately, people
often forget to lower their hands, so the moderator is uncertain of whether or not to call
on them again.

68 D. Jackson

Introducing some synchronization here might help. One possibility would be to offer
a special meeting mode in which only one participant who is not a host can be unmuted
at a time; participants raise their hands to speak, and when a host selects someone, they
are simultaneously unmuted, their hand is lowered, and the previous speaker muted.

The key point here is not that the design move is obvious or trivial. On the contrary,
there are many pitfalls in designing this kind of behavior while trying to maintain a
balance between simplicity and flexibility. What the design move offers is not a panacea
but a way to frame the design space, by encouraging the designer to separate the design
of the concepts and their actions from the way in which those actions are synchronized. A
slightly different view of this problem is possible. In the current user interface of Zoom,
the “raise hand” option appears when you click the “Reactions” button, along with other
options such as displaying a clapping emoji (Fig. 12). This suggests that RaisedHand
is not in fact a concept in its own right, but is a feature (comprising just the raise-hand
action) that is subsumed by the Reaction concept. In this case, the appropriate design
move might be first to apply a split so that RaisedHand is made a concept in its own
right. That would allow a raised hand to have different behavior from a reaction. For
example, a host might choose the next person to speak by clicking a button that changes
their raised hand to a different icon (in contrast to reactions, which are controlled solely
by the participant).

6 Discussion

The design moves described here should be viewed as an initial proposal. They are
undoubtedly incomplete; they do not include, for example, some arguably even more
fundamental moves (such as adjusting a novel concept to bring it into alignment with a
familiar, existing concept). The distinctions between the moves are not always as clear
as they might be. For example, while the general ideas of split and loosen are easy to
distinguish, we saw in the context of the Zoom problem that whether one or the other
applied depended on whether the raised-hand feature were viewed as a concept in its
own right or just part of a Reaction concept.

I have also been a bit sloppy in identifying the exact boundaries of concepts. In
the Apple Mail filtering case, for example, it seems likely that the unify design move
would apply only to the filtering aspect of each of the three concepts Rule, Search and
Smart-Mailbox, each of which would be composed with a unified Filter concept but
would retain its own distinct identity. The same treatment might apply to the Moira case,
so that instead of seeing the design as a unifying of MailingList and AdminGroup, it is
seen as the factoring out of a unified (and shared) List concept.

Although much remains to be done, my hope is that this initial effort will inspire
others to think about design in this way. Design will always remain a creative and
uncertain activity, but a good design language and design structures can empower us to
work with greater confidence and clarity.

Acknowledgments. Thank you to Geoffrey Litt, Joshua Pollock and Michael Jackson for helpful
discussions about design moves, and to Akiva Jackson, Rachel Jackson and Rebecca Jackson for

Concept Design Moves 69

sharing their experiences and insights about troubled concepts. The author’s research was sup-
ported in part by the National Science Foundation, under the Secure and Trustworthy Cyberspace
(SATC) and Designing Accountable Software Systems (DASS) programs.

References

11.
12.
13.
14.
15.

16.

18.
19.
20.
21.
22.

23.

. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,

Cambridge (2005)

. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press,

Oxford (1977)

. Alexander, C.: Timeless Way of Building. Oxford University Press, Oxford (1979)
. Batory, D., O’Malley, S.: The design and implementation of hierarchical software systems

with reusable components. ACM Trans. Softw. Eng. Methodol. 1(4), 355-398 (1992)

. Brooks, F.P.: No silver bullet—essence and accident in software engineering. In: Proceedings

of the IFIP Tenth World Computing Conference, pp. 1069-1076 (1986)

. de Kleer, J., Brown, J.S.: Mental models of physical mechanisms and their acquisition. In:

Anderson, J.R. (ed.) Cognitive Skills and Their Acquisition, pp. 285-309. Lawrence Erlbaum
(1981)

. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-

Wesley, Hoboken (2004)

. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley Professional,

Hoboken (1997)

. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Professional,

Hoboken (2002)

. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional, Hoboken (1994)

Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the time). In:
Proceedings of Computer Human Interaction (CHI 2008), April 2008

Griswold, W., Notkin, D.: Automated assistance for program restructuring. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 2(3), 228-269 (1993)

Hay, D.C.: Data Model Patterns. Dorset House (2011)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken (1985)
Jackson, D.: The Essence of Software: Why Concepts Matter for Great Design. Princeton
University Press, Princeton (2021)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge
(2012)

. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun. ACM 62(9),

66-76 (2019). https://cacm.acm.org/magazines/2019/9/238969-alloy

Jackson, M.: Problem Frames: Analysing & Structuring Software Development Problems.
Addison-Wesley Professional, Boston (2000)

Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall, Hoboken (1990)
Kapor, M.: A software design manifesto. Reprinted as Chapter 1 of [28]

Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15(12), 1053-1058 (1972)

Parnas, D.L.: Designing software for ease of extension and contraction. IEEE Trans. Softw.
Eng. 5,2 (1979)

Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Pearson (1996)

https://cacm.acm.org/magazines/2019/9/238969-alloy

70

24.
25.
26.

27.
28.

D. Jackson

Spivey, J.M.: The Z Notation: A Reference Manual. International Series in Computer Science,
2nd edn. Prentice Hall (1992). https://spivey.oriel.ox.ac.uk/wiki/files/zrm/zrm.pdf
Tognazzini, B.: First Principles of Interaction Design, revised & expanded (2014). https://ask
tog.com/atc/principles-of-interaction-design

TRIZ (Wikipedia article). https://en.wikipedia.org/wiki/TRIZ

User Interface Design Patterns. https://ui-patterns.com

Winograd, T., Bennett, J., De Young, L., Hartfield, B. (eds.): Bringing Design to Software.
Addison-Wesley, Boston (1996)

https://spivey.oriel.ox.ac.uk/wiki/files/zrm/zrm.pdf
https://asktog.com/atc/principles-of-interaction-design
https://en.wikipedia.org/wiki/TRIZ
https://ui-patterns.com

®

Check for
updates

Automating Program Transformation
with Coccinelle

Julia Lawall®® and Gilles Muller

Inria, Paris, France
{julia.lawall,gilles.muller}@inria.fr
https://coccinelle.gitlabpages.inria.fr/website/

Abstract. Coccinelle is a program matching and transformation engine
for C code. This paper introduces the use of Coccinelle through a collec-
tion of examples targeting evolutions and bug fixes in the Linux kernel.

Keywords: Linux kernel - Coccinelle - Program transformation

1 Introduction

It is the dream of every programmer to have a tool that will automatically tra-
verse their software and make any kind of changes that the programmer wants.
Early efforts include sed and awk that permit developers to write simple search-
and-replace patterns involving regular expressions [10,11]. Such tools are pow-
erful, but regular expressions are hard to write, are error prone, have a lim-
ited view of the code, and are not aware of the programming language syntax.
Tools designed according to the Visitor pattern [6], such as CIL [20], have been
developed, but these require the user to become familiar with the visitor’s cho-
sen internal representation for the programming language. Must easier to use,
common semantics-preserving changes, known as refactorings, were classified by
Fowler [5], and are provided as a collection of black-box tools within integrated
development environments such as Eclipse [3]. But in real software development,
it is often necessary to perform changes that do not fit within a tidy collection
of common refactorings. These include repetitive bug fixes, that intrinsically
change the semantics of the code, and changes that respect the invariants that
the developer knows, but that are difficult to automatically recover from the
code base.

Coccinelle is a program matching and transformation engine for C code
[15,22]. The goal of Coccinelle is to make it easy for software developers to
express code transformations and apply these transformations across a large C
code base. Coccinelle’s transformation specification language SmPL (Semantic
Patch Language) allows transformations to be expressed using code fragments,
annotated with — and +, for lines to remove and add, respectively, mirroring the

Gilles Muller passed away before the writing of this paper. He initiated the Coccinelle
project in 2004 and supported its development over the next 17 years.
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 71-87, 2022.
https://doi.org/10.1007/978-3-031-06773-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_4&domain=pdf
http://orcid.org/0000-0002-1684-1264
http://orcid.org/0000-0002-0000-8569
https://doi.org/10.1007/978-3-031-06773-0_4

72 J. Lawall and G. Muller

familiar patch syntax [18]. Such pattern-matching rules can include scripts writ-
ten in Python or OCaml, for greater expressiveness. Coccinelle was originally
designed for updating Linux kernel device drivers to take into account evolu-
tions in Linux kernel internal APIs [22], and accordingly supports a very large
portion of the C language. It has been used in over 9000 Linux kernel commits,
and is used in other C software projects, such as wine [25,27], systemd [26], and
git [7].

Previous works on Coccinelle have presented the design of the tool [22], the
semantics of its transformation language SmPL [1], the use of Coccinelle for
finding bugs in Linux kernel code [16,23], and a retrospective after 10years
of use, including an enumeration and assessment of the design decisions [15].
Tutorials on Coccinelle have been presented at developer conferences, some of
which are available as videos [12-14]. This paper takes advantage of the written
format to make a deep dive into SmPL, to describe the reasoning that goes into
constructing a semantic patch: how to identify a problem for which Coccinelle
can be appropriate, how to sketch a solution for such a problem using SmPL,
and how to iteratively make that solution more powerful and more automatic.
Our examples focus on the Linux kernel, but should be applicable to other kinds
of C software.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on the Linux kernel, its development challenges, and the opportunities
that it raises for automatic program transformation. Section 3 presents a simple
and classic example, the transformation of a call to the kernel memory alloca-
tion function kmalloc, followed by a zeroing call to memset, into a single call
to the zeroing kernel memory allocation function kzalloc. Section4 scales this
kind of transformation up to the detection of memory leaks involving kernel
device_node structures. Section 5 considers detection of anomalies in the use of
the Linux kernel memory allocation flags, GFP_KERNEL and GFP_ATOMIC. Each
of these examples emphasizes the aspect of exploration facilitated by Coccinelle
— the use of Coccinelle scales naturally from simple rules with a limited scope
that may have false positives, but get the job done, to more complex rules that
capture a wider variety of conditions in a more accurate way. It is hoped that
this work can serve as a reference for a developer who wants to use Coccinelle
for the first time or who wants to explore some of its more advanced features.

2 Background

The original and primary target of Coccinelle is the Linux kernel. The Linux
kernel poses a huge maintenance challenge. It amounts to over 21 million lines
of code in Linux v5.16 (January 2022), accepts contributions from over 4000
developers per year, and undergoes frequent and large-scale changes, motivated
by security, performance, new hardware features, etc. As part of the Linux ker-
nel’s evolution, it often occurs that some API function is found to be unsuitable,
the function is redefined in some way, and then the uses of the function have
to be modified across the kernel. These modifications may involve changes in

Automating Program Transformation with Coccinelle 73

Table 1. Usage of common functions in the files of Linux 5.16, drivers/usb/atm. v’
indicates that the given API function is called at least once in the given file.

cxacru.c | speedtch.c| ueagle-atm.c | usbatm.c | xusbatm.c
atm usbatm_usb_probe v v v - v
usb interface_to_usbdev |V v v v v
specific | usb_submit_urb v v v v -
usb_set_intfdata - v - v v
kernel |request_firmware v v v - -
generic |\ wait_for_completion|v’ - - v -
mutex_lock v - v v -
init_timer v v - v -
kzalloc v v v v -

the arguments and return values, triggering the need for further changes in the
usage context.

Intuitively, sustaining the high rate of development on the huge code base
of the Linux kernel may seem like an impossible task. Indeed one may think
of one’s own small software projects, where often one decides to just live with
some unsuitable code structure to avoid the need to do all of the work required
to change it. Scaling this work up to 21 million lines of code, and managing to
make all the changes correctly is a real challenge.

A mitigating factor is that the Linux kernel code base contains a lot of rep-
etition [2]. For example, consider the kernel API functions (Table 1) used in the
various files of the Linux v5.16 directory drivers/atm, containing Asynchronous
Transfer Mode (ATM) network device drivers. Many of the key kernel APT func-
tions are used in many of the drivers. This commonality occurs at all levels —
we see functions that are specific to ATM drivers, functions that are generic
to USB drivers, and functions that are generic to the entire kernel, including
kzalloc for memory allocation, which we use as an initial case study in Sect. 3.
This pattern raises hope that not only may these functions be reused across the
various drivers, but they may also be used in similar ways. If this is the case,
then it may be possible to automate any needed changes in their usage.

Repetitive API usages raise the opportunity for using a tool to script API
usage changes. That is, rather than manually collecting the relevant files (e.g.,
with grep) and then tracking down the relevant usage contexts (e.g., with search
in an editor), it could be faster and more reliable to write a transformation rule
and then leave the job of finding the relevant code and making the changes to a
transformation tool. This is the role of Coccinelle, that is the focus of this paper.

3 Coccinelle in a Nutshell, Illustrated by kzalloc

Coccinelle offers a pattern-based language for matching and transforming C
code. It has been under development since 2005 and open source since 2008. An

74 J. Lawall and G. Muller

important goal of Coccinelle is to fit with the habits of Linux kernel developers.
The Linux kernel follows an email-based development model, where develop-
ers exchange patches describing their proposed changes, and thus developers
are used to creating, reading, and applying them. Accordingly, Coccinelle was
designed to allow code changes to be expressed using patch-like code patterns.
We refer to these as semantic patches, because they are like patches, but their
application takes into account the program control flow, and thus part of its
semantics.

A common use of Coccinelle is to reorganize a collection of one or more API
functions. Accordingly, to present Coccinelle, we consider a simple example, the
merging of uses of the kernel memory allocation function kzalloc followed by a
zeroing of the allocated memory with memset, into a single call to the kernel zero-
ing memory allocation function kzalloc. An example of this change is shown, as
a patch, in Fig. 1. The change itself is simple: replace kmalloc by kzalloc and
drop the now redundant call to memset. Still, finding the opportunities for the
change is complex: The calls to kmalloc and memset are typically not contigu-
ous — as illustrated in Fig. 1, there is often at least some error-handling code in
between them. Furthermore, some kmallocs have no following memsets and some
memsets have no preceding kmallocs, so simply using grep to find calls to one
or the other will return many irrelevant code locations. Finally, some memsets
may serve to reinitialize a structure rather than initialize a just-allocated one.
Even though calls to both kmalloc and memset are present, we do not want to
create a call to kzalloc in these cases. Coccinelle is designed to help with these
challenges.

100 -1348,9 +1348,8 @@
2 - fh = kmalloc (sizeof (struct zoran_fh), GFP_KERNEL);
3+ fh = kzalloc(sizeof (struct zoran_fh), GFP_KERNEL);
if ('fh) {
dprintk (1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));
return -ENOMEM;

IS

© w N o

10 }
11 - memset (fh, 0, sizeof (struct zoran_fh));

Fig. 1. An instance of the conversion of kmalloc and memset to kzalloc.

3.1 First Steps

To develop a kmalloc-memset semantic patch that is widely applicable across
the Linux kernel code base, we take the patch of Fig.1 as a starting point, and
consider how it can be made more generic.

The first step is to consider what parts of the patch in Fig.1 are generic
to the change, and what parts are specific to a particular instance. For the
kmalloc-memset transformation, it is necessary to have a call to kmalloc fol-
lowed by a call to memset, where the second argument to memset should be 0.

Automating Program Transformation with Coccinelle 75

These terms will thus appear in the semantic patch exactly as they appear in
Fig. 1. On the other hand, some other terms in the patch of Fig. 1 are important,
not for their specific content, but for their relationship to other terms appearing
in the affected code. This is the case for 1) the return value of kmalloc (i.e., fh)
and the first argument of memset, which must be the same expression, 2) the
first argument of kmalloc (the size of the allocated region), that becomes the
first argument of the call to kzalloc and should be the third (size) argument
of memset, and 3) the second argument of kmalloc that becomes the second
argument of kzalloc. These terms appear in the semantic patch as metavari-
ables, i.e., variables that can match against any term in the source code, but
that must be matched consistently. The metavariables are declared between the
initial pair of @@, at the place of the affected line numbers in the standard patch.
The metavariables are furthermore declared with their types; all of the metavari-
ables that are relevant to this change have type expression. Finally, some terms
are not important to the change, such as the if statement between the calls to
kmalloc and memset. Such terms are removed, and replaced by “...7.1 «...”
matches any control-flow path from a source code term matchlng the pattern
before the “...” to a source code term matching the pattern after the “...”.
Furthermore, by default, all such execution paths that do not lead to an error
return must satisfy these constraints.

The resulting semantic patch is shown in Fig.2. It makes six changes in
Linux v5.16, with no false positives. Figure3 shows one change, in which the
code separating the kmalloc and memset is more complex than a single if. All
of the generated patches have been submitted to the Linux kernel. One received
the feedback that a different zeroing function should be used (kcalloc). Four
have been applied unchanged in linux-next as of March 25, 2022.

1 0@
2 expression res, size, flag;
3 0@
4 - res = kmalloc (size, flag);
5+ res = kzalloc(size, flag);

6 “ee
7 - memset (res, 0, size);

Fig. 2. A first attempt at a kmalloc and memset to kzalloc semantic patch.

3.2 A Refinement

While our experiment with the semantic patch in Fig. 1 was completely success-
ful on Linux v5.16, the semantic patch is not fully reliable. Figure4 shows a
false positive in net/sunrpc/auth_gss/gss_krb5_keys.c, in Linux v5.2. Here
a kmalloc is indeed followed by a memset, according to our pattern, but the
memset is used to reinitialize the data to 0 (just before freeing the data, for
security reasons), rather than to initialize the data to 0 as done by kzalloc.

! To prevent misreading, in the text, we always enclose SmPL ... in quotes.

76 J. Lawall and G. Muller

- port = kmalloc(sizeof (xport), GFP_KERNEL);
+ port = kmalloc (sizeof (*port), GFP_KERNEL);
if (!port) {
rc = -ENOMEM;
goto __error;

B oW N e

}
rc = snd_seq_create_kernel_client(NULL, ...);
if (rc < 0)
goto __error;
10 system_client = rc;
11 - memset (port, 0, sizeof (¥port));

© ®w N o«

Fig. 3. A successful change in sound/core/seq/oss/seq-oss_init.c.

1 - inblockdata = kmalloc (blocksize, gfp_mask);

2+ inblockdata = kzalloc(blocksize, gfp_mask);

3 if (inblockdata == NULL)

4 goto err_free_cipher;

5

6 inblock.data = (char *) inblockdata;

7 inblock.len = blocksize;

8 N

9 if (in_constant->len == inblock.len) {

10 memcpy(inblock.data, in_constant ->data, inblock.len);
11} else {

12 krb5_nfold(in_constant ->len * 8, in_constant ->data,
13 inblock.len * 8, inblock.data);
14)

16 - memset (inblockdata, 0O, blocksize);
17 kfree(inblockdata);

Fig. 4. An false positive for the kmalloc and memset semantic patch.

Indeed, by simply replacing the code between the kmalloc and the memset
by “...”, we have eliminated any constraints on the code found in the execution
path between them. To limit the matches to the cases where the memset repre-
sents an initialization, we can add constraints on the matching of “...” using
the keyword when. For inspiration, we consider how the allocated data is used in
the false positive of Fig. 4. The data allocated by the call to kmalloc on line 1 is
used in the right side of an assignment on line 6, creating an alias through which
it is subsequently initialized on line 10 or 12. If such an assignment appears in
the region matched by “...”, then the memset is performing a reinitialization
and should not be removed. This constraint is written ase = <+... res ...+>
(Fig. 5, line 7), to indicate that the value returned by kmalloc, res, should not
appear anywhere on the right-hand side of the assignment. Analogous to this
example use, we also add constraints to ensure that the allocated data is not
assigned to directly (line 8), or passed to another function (line 9), likely with
the purpose of initializing it. Finally, we forbid loops, as the memset may be used
to reinitialize the data on each iteration (lines 10-11). Figure 5 shows the result-
ing more robust semantic patch. On Linux v5.16, this semantic patch makes the
same changes as the original one found in Fig. 2.

Automating Program Transformation with Coccinelle 7
100
2 expression res, size, flag, e, f;
3 statement S;
4 Q0
5 - res = kmalloc (size, flag);
6+ res = kzalloc(size, flag);
7 ... when != e = <+... res Lot
8 when != (<+... res +>) = e
9 when != f(...,<+... res ...+>,)
10 when != for(...;...;...) S
11 when != while(...) S
12 - memset (res, 0, size);

Fig.5. A more robust kmalloc and memset to kzalloc semantic patch. Lines 3 and

7—-11 are new.

3.3 A Second Refinement

Our semantic patch requires that the allocated data size be expressed in the
same way in both the call to kmalloc (first argument) and the call to memset
(third argument), to ensure that the sizes are the same. However, there are two
common ways of indicating data sizes in the Linux kernel: sizeof (T), where T
is the type referenced by the data pointer, and sizeof (*x), where x is the data
pointer itself. Figure 6 shows a more flexible semantic patch allowing either style

or a mixture.

1@

2 expression flag, e,

3 statement S;

Y

4 type T;

5T *res;

6 Q0@

7 res =

8 - kmalloc

9 + kzalloc

10 (\(sizeof (T)\|sizeof (xres)\), flag);
11 when != e = <+... res ...+>

12 when != (<+... res ...+>) = e

13 when != f(...,<+... res ...+>,...)
14 when != for(...;...;...) S

15 when != while(...)

16 - memset (res,

Fig.6. A more flexible kmalloc
7-10, and 16 are new.

0, \(sizeof (T)\|sizeof (*res)\));

and memset to kzalloc semantic patch. Lines 4-5,

This semantic patch illustrates several new features:

- and + need not be applied to complete lines of code (lines 7-10). The

matching and transformation process is independent of any whitespace in the

semantic patch.

An expression metavariable can be declared to have a specific type (line 5).

This can be a C-language type, or, as illustrated here, a type metavariable.

78 J. Lawall and G. Muller

— A disjunction, here written as \ (. ..\|...\), allows specifying a selection of
patterns that can be allowed to match. The first match is chosen. A disjunc-
tion can also be written as (...|...), where the (, |, and) are in column 0.

This semantic patch finds two more opportunities for kzalloc, as compared to
the one in Fig. 5, however it overlooks two opportunities as well, in which the
size is not expressed as a single sizeof expression. For greater flexibility, we can
create a single semantic patch consisting of Fig. 5 followed by Fig.6, to find a
larger set of transformation opportunities.

4 A Second Example: of node _put

We next present a case study related to bug finding and fixing. Bug finding
and fixing was not the original target of Coccinelle [22], but it can also involve
searching for patterns of code and making repetitive changes accordingly, and
thus Coccinelle can be useful in this case. While the previous example reorganizes
a collection of API calls, this one finds the need for an API call that is missing,
in a specific context. This example also illustrates how one instance of a change
can be scaled up to many variants.

4.1 The Problem

We consider the case of iterators over collections of device node structures.
These structures are managed using reference counts. Forgetting to decrement
a reference count when needed prevents the structure from ever being freed,
causing a memory leak. As a concrete example, we consider the use of the for_—
each_child _of node iterator. Each iteration visits a device_node structure. To
simplify the code, this iterator increases the reference count of the current node
before executing the body of the loop, and then decreases the reference count of
that node before moving on to the next iteration. Figure7 shows a typical use
of the iterator that benefits from these hidden reference count operations.

But, out of sight, out of mind. By hiding the management of the reference
count in the normal case, the iterator hides the fact that explicit management
of the reference count is needed in exceptional cases. Specifically, in the example
of Fig. 8, if there is a jump out of the loop body via the return (line 7), the
increment of the reference count is performed, but the decrement (of node_put),
that is performed by the iterator at the end of a loop iteration, is not executed.
The solution is to add a call to of node_put (line 6).

1 for_each_child_of_node(parent, child)
2 pnv_php_reverse_nodes(child);

Fig.7. A simple use of for_each child of node, from drivers/pci/hotplug/-
pnv_php.c, Linux v5.16.

Automating Program Transformation with Coccinelle 79

for_each_child_of_node(phandle->parent, node) {
alias_id = of_alias_get_id(node, clk_name);
if (alias_id >= 0 && alias_id < cmdq->gce_num) {

AW o e

if (IS_ERR(cmdq->clocks[alias_id].clk)) {
+ of _node_put(node);
return PTR_ERR (cmdq->clocks[alias_id].clk);
¥
¥
}

C © N w

=

Fig. 8. A use of for_each_child_of node that may case a memory leak, from dri-
vers/mailbox/mtk-cmdg-mailbox.c, Linux v5.16, slightly simplified for conciseness.

The issue occurs not only for jumps via return, but also for goto and break.
The jump out of the loop body can occur anywhere within the loop body and
there may be multiple such jumps. There is also a large set of relevant iterators.

4.2 The Semantic Patch

Figure9 shows the semantic patch for the case of for_each_child_of _node and
return. This semantic patch uses “...” (line 9) to trace through each possi-
ble execution path in the loop body to find those where the reference count is
decremented (line 11), where the device node variable may be stored in some
more global way that requires the reference count to remain raised (lines 13-17),
and where there is a jump out of a loop (line 20). It is on the latter that an
of node_put should be inserted (line 19).
The semantic patch illustrates some more features of SmPL:

— Iterators: Iterators are not part of the C language, but are rather defined by
the Linux kernel as macros. While many macros can be parsed as function
calls, this is not possible for iterators, because an iterator amounts to a loop
header. Accordingly, SmPL provides a special notation for declaring them.
iterator name (line 2) allows declaring the name of a specific iterator, which
is then parsed similarly to a while loop. iterator (line 5) allows declaring
a metavariable that can match any iterator.

— Local variables: local idexpression (line 3) declares a metavariable that
only matches a variable declared in the current function. This feature is impor-
tant in this semantic patch, to ensure that the device_node does not escape
the loop.

— Disjunction: (|) in the leftmost column indicates a choice between a selec-
tion of patterns. The 7 on the last pattern indicates that the return is
optional; as in Fig. 7, some paths may not match any of the patterns.

80 J. Lawall and G. Muller

1 0@

2 iterator name for_each_child_of_node;
3 local idexpression n;

4 expression e,el;

5 iterator i1l;

6 statement S;

7 Q@

8 for_each_child_of_node(e,n) {

9

10 (

11 of _node_put(n);
12 |

13 el = n

14 |

15 return n;

16 |

17 i1t(...,n,...) S

18 |

19+ of_node_put(n);
207 return ...;

21)

22 ... when any

23 }

Fig. 9. for_each _child of node with no of node_put before a return out of the loop.

— When any: By default, “...” matches a path that does not contain a match
of any pattern appearing just before or after the “...”. when any allows such
matches. The effect of the when any on the second “...” is that the disjunc-
tion pattern matches the first instance of the pattern along each execution
path through the loop body.

4.3 Scaling Up

In the previous semantic patch rule, the jump out of the loop is performed by
a return. goto and break each introduce minor specific issues, and one can
create a rule for each case. A second point of variation is the iterator name, and
indeed new iterators can be introduced over time. The semantic patch in Fig. 10
addresses this issue, for a small selection of iterators, using a pair of rules.

The first rule (lines 1-20), named r (line 1), matches the complete loop
in two ways, using a conjunction (&), analogous to the disjunction introduced
previously. The first conjunct lists the names of specific iterators to match, while
the second uses metavariables to capture the name of the iterator (i) and the
number of arguments (len) before the device node typed index variable. Note
that the position of this index variable varies depending on the iterator.

The second rule (lines 22-44) then inherits from rule r the metavariables i
(denoted r.1i), representing the iterator name, and len, representing the offset
of the index variable (denoted r.len). These inherited metavariables can then
be used freely, like any other metavariable.

When applied to a given file, the semantic patch matches the first rule across
the file, and collects possible bindings of the set of metavariables. The second
rule is triggered once for each unique set of bindings of the metavariables that

Automating Program Transformation with Coccinelle 81

Qra@

local idexpression n;

expression e;

iterator name for_each_child_of_node, for_each_available_child_of_node,
for_each_node_with_property;

iterator i;

statement S;

expression list [len] es;

@@

10 (

11 (

12 for_each_child_of_node(e,n) S

13 |

14 for_each_available_child_of_node(e,n) S

15 |

16 for_each_node_with_property(n,e) S

17)

18 &

19 i(es,n,...) S

20)

© 0N U W N

22 @@

23 local idexpression n;

24 expression el;

25 iterator r.i,il;

26 expression list [r.len] es;
27 statement S;

28 @@

29 i(es,n) {

30

31 (

32 of _node_put(n);
33 |

34 el = n

35 |

36 return n;

37 |

38 i1t(...,n,...) S
39 |

40+ of_node_put(n);
417 return ...;

42)

43 ... when any

44)

Fig. 10. for_each_child_of node with no of _node_put before a jump out of the loop.

it inherits. Thus, the second rule will be applied to the entire file up to three
times, depending on how many of the iterators mentioned in r are used in the
file, and thus the number of bindings of rule r’s i and len metavariables.

4.4 TImpact

Figure 11 shows the number of files in each release of the Linux ker-
nel between v4.0 (April 2015) and v5.16 (January 2022) that are miss-
ing an of node_put() within a use of one of the iterators for_each node -
by_name, for_each node_by_type, for_each_compatible node, for_each -
matching node, for_each matching node_and match, for_each_child_of_-
node, for_each_available_child_of _node, or for_each node_with_property.

82 J. Lawall and G. Muller

We collected this information using the for_each_child.cocci semantic patch
that has been part of the Linux kernel distribution since v5.10 (December 2020).

—
o
o

affected files
t
S

AR U S I S S SRS S U U AR S SRR |Iobiohinlindind Inbiobia) in) Ie NN
B i i i i B B S S G Sy Sy
e
Fig.11. Number of files missing uses of of_node_put as detected by the for_each_-
child.cocci semantic patch found in the Linux kernel.

Over most of the time shown (April 2015-January 2022), the number of
affected files has slowly increased, as, for example, new files have been added that
do not contain the required code. The large dips from version v4.3 to version
v4.4 and then from version v5.2 to version v5.4 were due in part to the use
of Coccinelle to add the needed calls at a large scale. In recent years, there
has been a steady decline, starting with Linux v5.10, in which a semantic patch
addressing the need for of _node_put was added into the Linux kernel. Developers
and continuous integration tools can use this semantic patch to add the missing
calls even before the code is integrated into a mainline Linux kernel release,
breaking the steady upward trend seen in previous releases.

5 A Third Example: Inconsistent Atomicity Flags

Our final example shows how Coccinelle can be used to collect information across
a complete code base, and to report anomalies in the collected information
as potential bugs. Similar reasoning has been used effectively in various prior
approaches for mining APT usage rules [4,8,17]. We how this idea can be used in
a lightweight way with Coccinelle. A challenge is that Coccinelle works on one
file at a time, and within each file on one function (or other top-level declara-
tion) at a time. We show how Coccinelle’s scripting language interface, allowing
the use of scripts written in OCaml or Python, makes collecting and processing
information across an entire code base possible.

5.1 The Problem

Our example relates to the use of the Linux kernel flags GFP_KERNEL and GFP_-
ATOMIC that are commonly passed to memory allocation functions to indicate
whether the function may sleep or not to wait for memory to be available,
respectively. Essentially, GFP_KERNEL should be used when no lock is held, and

Automating Program Transformation with Coccinelle 83

GFP_ATOMIC should be used when a lock is held. The challenge is that holding
a lock is an interprocedural property; taking a lock in one function means that
the lock is held in the execution of all called functions, until the lock is released.
Detecting whether a caller may hold a lock is particularly difficult for function
pointers, which the Linux kernel uses extensively. Figure 12 shows an example,
representing an interface to a network device driver. The choice of GFP_KERNEL
or GFP_ATOMIC depends on whether locks are held at the call sites of these func-
tion pointers. Such call sites are typically located in other files, and thus are
not accessible to Coccinelle when processing the file that contains this interface
definition and the definitions of the referenced functions. The call sites may be
subject to further interprocedural locking effects that are difficult to analyze.

1 static struct platform_driver moxart_mac_driver = {
2 .probe = moxart_mac_probe,

3 .remove = moxart_remove,

4 .driver = {

5 .name = "moxart-ethernet",
6 .of _match_table = moxart_mac_match,
7 },

81}

Fig. 12. Collection of function pointers representing an interface to the MOXA ART
Ethernet (RTL8201CP) driver (drivers/net/ethernet/moxa/moxart_ether.c).

5.2 The Solution

Rather than search for the function-pointer call sites and the contexts in which
they occur, we instead explore what information we can infer by assuming that
the function stored in a particular structure member is always called in the same
way. This assumption implies that if no locking code is present in the function
itself, then either GFP_KERNEL will always be used by all functions stored in a
given structure member, or GFP_ATOMIC will always be used. A mixture would
imply that either our hypothesis is false, and the function pointer is called in
different contexts, or that the function is using an incorrect flag.

The structure of the semantic patch is roughly as follows. First, it will pass
over the code base to collect the names of all functions containing a reference
to GFP_KERNEL and the names of all functions containing a reference to GFP_-
ATOMIC. In each case, it identifies the structure member storing the function,
if any. Finally, after collecting this information across the entire code base, for
each structure member, it compares the number of functions in each category.
If there is a large number of functions in one category and a small number of
functions in the other, it is possible that inappropriate flags are being used, and
the relevant code should be further investigated.

The semantic patch starts as shown below, by defining some hash tables to
collect information from across the code base. This rule is indicated as initial-
ize:ocaml (line 1), meaning that it is run before the treatment of any files, and

84 J. Lawall and G. Muller

that it contains OCaml script code. Such script code is passed directly to the
OCaml interpreter, and is not processed by Coccinelle in any way.

1Q@initialize:ocaml@

2 @@
3let atbl = Hashtbl.create 101 (* collect functions using GFP_ATOMIC *)
4let ktbl = Hashtbl.create 101 (* collect functions using GFP_KERNEL x*)

Next, the semantic patch matches uses of GFP_KERNEL and GFP_ATOMIC, first
identifying a use, then detecting whether the containing function is stored in a
structure member, and finally, if so, storing the location of the reference in the
appropriate hash table. The rules for each flag are independent, and are thus
shown in parallel in Fig. 13, although in the actual semantic patch, one sequence
of rules comes after the other. The first rule in the GFP_ATOMIC case (lines 1-14
on the right of Fig.13) is more complex than the first rule in the GFP_KERNEL
(lines 1-5 on the left of Fig. 13); in the former case we have to ensure that the
code is not executed when a lock is locally held, which is verified by ensuring that
there is no subsequent lock release before the taking of another lock is optionally
reached (lines 8-14), considering some common lock functions.

10ri1@ 1 identifier f;

2 identifier f; 2 position p;

3 position p; 300

4 0@ 4fep(...,GFP_ATOMIC,...)

5 f@p(...,GFP_KERNEL,...) 5 ... when !'= spin_unlock(...)

6 6 when != spin_unlock_irqgrestore(...)
7Q@s1@ 7 when != spin_unlock_bh(...)
8 identifier i,j,fn; 8 (

9 identifier f1 9 spin_lock(...);

10 script:ocaml(ril.p) 10 |

11 {f1=(List.hd p).current_element}; 11 spin_lock_irgsave(...);

12 @@ 12 |

13 struct i j = { .fn = f1, }; 13 ?spin_lock_bh(...);

14 14)

15 @script:ocaml@ 15

16 @€s20
17 identifier i,j,fn;
18 identifier f1

16p << rl.p;
171 << sl.i;
18 fn << sl1l.fn;

19 @@ 19 script:ocaml(r2.p)
20 Common . hashadd ktbl (i,fn) p 20 {fi1=(List.hd p).current_element};
21 @@

22 struct i j = { .fn = f1, };
23

24 @script:ocaml@

25p << r2.p;

26 1 << s2.1i;

27 fn << s2.fn;

28 @@

29 Common . hashadd atbl (i,fn) p

Fig. 13. Collection of information about occurrences of GFP_KERNEL and GFP_ATOMIC.

The semantic patch concludes with a straightforward finalize:ocaml rule
that iterates over one of the hash tables, and for each structure member compares
the number of pointed functions using GFP_KERNEL or GFP_ATOMIC. The output
can be freely tailored to be more complete, possibly including false positives, or to
only include the most likely anomalies, possibly creating false negatives. Among

Automating Program Transformation with Coccinelle 85

the results, we observe that, in Linux 5.16, 7 functions in the probe member
of a platform driver structure, as illustrated in Fig. 12, use GFP_ATOMIC, while
2627 use GFP_KERNEL. Checking the 7 cases reveals that they should be converted
to use GFP_KERNEL. Patches making these changes have been submitted to the
Linux kernel, and appear in the 1inux-next version of March 10, 2022.

6 Related Work

Automated program transformation has a long history. We focus on work specif-
ically related to Coccinelle. Lawall and Muller give an overview of the design
decisions of Coccinelle, its impact, and closely related work [15]. Martone and
Lawall provides a tutorial in using Coccinelle, similar to that presented here,
but targeting high-performance computing [19]. Kang et al. [9] explore the use
of Coccinelle for Java. Outside of the Coccinelle team, Nielsen et al. [21] pro-
pose a transformation system something like Coccinelle to meet the needs of
JavaScript programs. Some Coccinelle-like features have recently been added to
the Java source-code analysis and transformation tool Spoon [24].

7 Conclusion

Coccinelle has facilitated thousands of lines of changes in the Linux kernel and
other software projects. By making it possible to easily write complex patterns,
describing code fragments and their context, Coccinelle enables an alternate,
cross cutting view of a large code base. Coccinelle has been a source of fun
and pride for its developers. We hope that the reader will have a chance to try
Coccinelle, and will enjoy using it too.

Awailability: Coccinelle is available from many Linux distributions, and from the
Coccinelle website: https://coccinelle.gitlabpages.inria.fr/website/

Acknowledgments. Yoann Padioleau and René Rydhof Hansen were postdocs work-
ing on Coccinelle in its earliest days, and contributed greatly to the design and imple-
mentation. Nicolas Palix has also maintained parts of Coccinelle over the years. Recent
interns who contributed greatly to the code base include Jaskaran Singh and Keisuke
Nishimura. The initial work on Coccinelle was funded in part by the French ANR and
the Danish FTP. Recently, Inria has supported the continued maintenance of Coc-
cinelle, with the help of Sébastien Hinderer and then Thierry Martinez. We are also
deeply grateful for the feedback and support from the Linux kernel developer commu-
nity. Keisuke Nishimura and Michele Martone also gave helpful feedback on drafts of
this paper. We thank the organizers of NFM22 for the invitation to present this work.

References

1. Brunel, J., Doligez, D., Hansen, R.R., Lawall, J., Muller, G.: A foundation for
flow-based program matching using temporal logic and model checking. In: POPL,
pp. 114-126, January 2009

https://coccinelle.gitlabpages.inria.fr/website/

86

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Lawall and G. Muller

Casazza, G., Villano, U., Merlo, E., Antoniol, G., DiPenta, M.: Identifying clones
in the Linux kernel. In: Proceedings First IEEE International Workshop on Source
Code Analysis and Manipulation (2001)

Eclipse (2022). https://www.eclipse.org/ide/

Engler, D.R., Chen, D.Y., Chou, A.: Bugs as deviant behavior: a general approach
to inferring errors in systems code. In: Marzullo, K., Satyanarayanan, M. (eds.)
SOSP, pp. 57-72. ACM (2001)

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (2002)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

Git, September 2021. https://github.com/git/git/tree/master/contrib/coccinelle
Le Goues, C., Weimer, W.: Specification mining with few false positives. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 292-306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_26
Kang, H.J., Thung, F., Lawall, J., Muller, G., Jiang, L., Lo, D.: Semantic patches
for Java program transformation (experience report). In: ECOOP. LIPIcs, vol. 134,
pp. 22:1-22:27 (2019)

Kernighan, B.: UNIX: A History and a Memoir. Kindle Direct Publishing (2019)
Kernighan, B.W., Pike, R.: The UNIX Programming Environment. Prentice Hall,
Hoboken (1984)

Lawall, J.: An introduction to Coccinelle bug finding and code evolution
for the Linux kernel. Suse Labs (2014). https://www.youtube.com/watch?
v=buZrNd6XkEw

Lawall, J.: Keynote: Inside the mind of a coccinelle programmer. Linux Security
Summit (2016). https://www.youtube.com/watch?v=xA5FBvuCvMs

Lawall, J.: Coccinelle: 10 years of automated evolution in the Linux kernel. Linaro
Connect (2019). https://www.youtube.com/watch?v=LOsluY TzdMg

Lawall, J., Muller, G.: Coccinelle: 10 years of automated evolution in the Linux
kernel. In: USENIX ATC, pp. 601-614 (2018)

Lawall, J.L., Brunel, J., Palix, N., Hansen, R.R., Stuart, H., Muller, G.: WYSI-
WIB: exploiting fine-grained program structure in a scriptable API-usage protocol-
finding process. Softw. Pract. Exp. 43(1), 67-92 (2013)

Li, Z., Zhou, Y.: PR-Miner: Automatically extracting implicit programming rules
and detecting violations in large software code. In: ESEC-FSE (2005)
MacKenzie, D., Eggert, P., Stallman, R.: Comparing and Merging Files With Gnu
Diff and Patch. Network Theory Ltd, January 2003. Unified Format section. http://
www.gnu.org/software/diffutils/manual /html_node/Unified-Format.html
Martone, M., Lawall, J.: Refactoring for performance with semantic patching: case
study with recipes. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds.) ISC
High Performance 2021. LNCS, vol. 12761, pp. 226-232. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90539-2_15

Necula, G.C., McPeak, S.; Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213-228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5_16

Nielsen, B.B., Torp, M.T., Mgller, A.: Semantic patches for adaptation of
JavaScript programs to evolving libraries. In: ICSE, pp. 74-85. IEEE (2021)
Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating
collateral evolutions in Linux device drivers. In: EuroSys 2008, Glasgow, Scotland,
pp. 247-260. ACM, March 2008

https://www.eclipse.org/ide/
https://github.com/git/git/tree/master/contrib/coccinelle
https://doi.org/10.1007/978-3-642-00768-2_26
https://www.youtube.com/watch?v=buZrNd6XkEw
https://www.youtube.com/watch?v=buZrNd6XkEw
https://www.youtube.com/watch?v=xA5FBvuCvMs
https://www.youtube.com/watch?v=LOsluYTzdMg
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
https://doi.org/10.1007/978-3-030-90539-2_15
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16

23.

24.
25.

26.

27.

Automating Program Transformation with Coccinelle 87

Palix, N., Thomas, G., Saha, S., Calves, C., Lawall, J., Muller, G.: Faults in Linux
2.6. ACM Trans. Comput. Syst. 32(2), 4:1-4:40 (2014)

Spoon, March 2022. https://github.com/INRIA /spoon

Stefaniuc, M.: Coccinelle scripts for Wine, September 2021. https://github.com/
mstefani/coccinelle-wine

Systemd, February 2022. https://github.com/systemd/systemd/tree/main/
coccinelle

WineHQ: Static analysis, February 2016. https://wiki.winehq.org/Static_Analysis

https://github.com/INRIA/spoon
https://github.com/mstefani/coccinelle-wine
https://github.com/mstefani/coccinelle-wine
https://github.com/systemd/systemd/tree/main/coccinelle
https://github.com/systemd/systemd/tree/main/coccinelle
https://wiki.winehq.org/Static_Analysis

l‘)

Check for
updates

The Prusti Project: Formal Verification
for Rust

Vytautas Astrauskas!, Aurel Bily', Jon4s Fiala!, Zachary Grannan?,

Christoph Matheja3, Peter Miiller!, Federico Poli!,
and Alexander J. Summers?(®™)

! Department of Computer Science, ETH Zurich, Zurich, Switzerland
2 University of British Columbia, Vancouver, Canada
alex.summers@ubc.ca
3 Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. Rust is a modern systems programming language designed
to offer both performance and static safety. A key distinguishing feature
is a strong type system, which enforces by default that memory is either
shared or mutable, but never both. This guarantee is used to prevent
common pitfalls such as memory errors and data races. It can also be used
to greatly simplify formal verification, as we demonstrated by developing
the Prusti verifier, which can verify rich correctness properties of Rust
programs with a very modest annotation overhead. In this paper, we
provide an overview of the Prusti project. We outline its main design
goals, illustrate examples of its use, and discuss important outcomes from
the perspectives of a user, a verification expert, and a tool developer.

Keywords: Rust - Deductive verification - Separation logic

1 Introduction

Systems programming languages have traditionally had one dominating design
goal: performance. To achieve this goal they give programmers maximum free-
dom in organising their code and data. They allow unrestricted aliasing and
freely bypassing the safety checks of the language, for instance through unchecked
type casts. This freedom enables the development of highly efficient programs,
but also makes it all too easy to introduce errors and vulnerabilities, such as
buffer overflows, memory errors, data races, and subtle functionality bugs.
Rust is a modern systems programming language that is built on a different
premise: it is designed to maximise both performance and static safety. Rust
employs a strong type system that prevents many common errors at compile
time. In particular, it eradicates memory errors (e.g. accessing uninitialised or
freed memory), various sources of program crashes (e.g. null-dereferencing), and
data races. In cases where the type system is too restrictive, programmers can
escape into unsafe Rust, which permits direct pointer manipulation like in tradi-
tional systems programming languages. However, according to Rust’s design phi-
losophy [25,32], unsafe operations are typically confined to libraries and encap-
sulated behind safe abstractions, while client code is written in safe Rust [5,30].

© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 88-108, 2022.
https://doi.org/10.1007/978-3-031-06773-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_5

The Prusti Project: Formal Verification for Rust 89

This design makes Rust a promising target for program verification. Not
only does Rust’s type system prevent certain errors, such that verification need
not deal with them, but it also provides strong compiler-enforced restrictions
on aliasing and mutable state, which can be leveraged to simplify verification.
There is also an important social motivation: Rust is often chosen for projects
with high safety and security requirements, whose members are likely open to
program verification as an additional means of achieving these requirements.

To explore this opportunity, we started the Prusti project in 2017. Prusti [6]
is a general-purpose deductive verifier for Rust. We had three key design goals:

1. Enable the verification of expressive program properties. These go beyond
the absence of exceptions (called panics in Rust, e.g. due to overflows or
out-of-bounds accesses) to include invariants of data types, and more-general
functional correctness properties. We initially focused on safe Rust code, but
a designated goal of the Prusti project has been to generate self-contained
proofs that are valid independently of the guarantees of safe Rust. For the
properties guaranteed by safe Rust, this so-called core proof is redundant
(assuming Rust’s type system is sound), but it forms a reusable basis for lay-
ering correctness arguments for more complex properties on top, and (even-
tually) extending verification to common usages of unsafe code.

2. Reduce the annotation burden for programmers by leveraging Rust’s design.

Prusti addresses this goal along two dimensions. First, it reduces the complex-
ity of annotations. Safe Rust’s restrictions on aliasing and mutations allow
Prusti to use annotations based on Rust expressions, without the need to
expose programmers to non-trivial logics such as separation logic [39,43].
The resulting annotations are similar to classical contracts [35], but enable
sound, modular verification of heap-manipulating programs.
Second, Prusti reduces the amount of necessary annotations. Mainstream
verification techniques such as separation logic or dynamic frames [29] require
a large upfront investment to declare and manipulate predicates and ghost
state that describe the shape of data structures, and to prove memory safety
as the basis for more advanced properties. In contrast, Prusti extracts this
information automatically from Rust’s type system, allowing programmers to
focus immediately on the functional properties they care about.

3. Integrate smoothly into the workflow of Rust programmers. Integrating verifi-
cation tools into development workflows is widely regarded as a major obstacle
for their adoption [18]. Prusti simplifies integration in two ways:

First, since Prusti requires no upfront investment, it enables a workflow where
programmers can incrementally write more annotations to obtain stronger
guarantees. It offers a mode that does not check panic freedom, such that
it can be run on unannotated Rust programs. Panic freedom can generally
be proved by adding a small (often zero) number of simple annotations (e.g.
function preconditions); richer properties can be expressed and proved by
adding postconditions and invariants.

Second, Prusti integrates smoothly into the compiler infrastructure. It oper-
ates on the same representations of programs that the Rust compiler uses.
This avoids discrepancies with the compiler (which, in the absence of a

90 V. Astrauskas et al.

formal language specification serves as a working definition) and makes sure
the verifier does not drift out of sync as the Rust language and compiler
evolve. It also gives a unified view on potential errors: verification issues are
reported in the same way as compilation errors.

In this paper, we give an overview of the Prusti verifier and discuss the central
design decisions and relevant outcomes so far from the perspective of a user
(Sect. 2), a verification expert (Sect. 3), and a tool developer (Sect. 4). We
discuss related work (Sect. 5) and conclude with some directions for future work
(Sect. 6).

2 Prusti from a User’s Perspective

We first consider the Prusti verifier from a Rust progammer’s perspective. Prusti
builds upon the standard Rust compiler rustc. The command prusti-rustc
can be used as a drop-in replacement for rustc to verify individual files; the
command cargo prusti uses Rust’s package manager cargo to run Prusti on
Rust projects. Alternatively, Prusti can be used through an extension for Visual
Studio Code (VSCode), which is a popular editor for Rust programming [49].

A key feature of Prusti is that it supports incremental verification with an
initial annotation effort of (almost) zero: developers get guarantees beyond those
of safe Rust and useful feedback by just running Prusti on their code; they can
then choose to invest more effort to obtain more powerful guarantees. We will
illustrate Prusti’s capabilities by proving increasingly complex properties for safe
Rust programs. Further details and examples are available online [47].

2.1 (Almost) Zero-Cost Verification

By default, Prusti checks that a Rust program will not panic (terminate with
an unrecoverable error) at runtime, whether due to an explicit panic! (...) callt
or e.g. due to bounds-checks and integer overflows. Prusti can perform these
checks directly on the input program, with no modification and no user-supplied
annotations; in particular, it does not require the specifications of data structures
and side-effects required as upfront investment by verification techniques for
other imperative languages. For many examples, the checks for panic freedom
succeed immediately; others require a small amount of simple annotations. In
the following, we present examples for both cases.

As a first example, consider the Rust function in Fig. 1, which performs a
binary search for a value key on a slice of integers a, i.e. a contiguous subsequence
of the elements in a collection. Compiling this function with rustc produces no
errors. However, running prusti-rustc reveals a potential bug: the statement
let mid = (low+high)/2 on line 7 might overflow for a very large slice a. This
automatically detected bug is non-trivial: it remained undetected for years in a
similar implementation provided by the Java standard library [9].

! or its siblings unreachable! (), unimplemented! (), assert! (false), etc.

The Prusti Project: Formal Verification for Rust 91

1 fn search(a: &[i32], key: i32)
2 -> Option<usize> {
3 let mut low = O;
4 let mut high = a.len(); > prusti-rustc search.rs
5 while low < high { error: [Prusti: verification error]
6 // Addition may overflow assertion might fail with attempt to
7 let mid = (low+high) / 2; add with overflow
8 // Bound check at runtime --> search.rs:7:5
9 let mid_val = a[mid]; |
10 if mid_val < key { 7 | let mid = (low+high) / 2;
11 low = mid + 1; [
12 } else if mid_val > key {
13 high = mid; 5 while low < high {
14 } else { 6 body_invariant! (high <= a.len());
15 return Some (mid) ; 7 let mid = low + ((high-low) / 2);
16 } 8 assert! (mid < high);
17 } 9 let mid_val = a[mid];
18 return None; // ...
19 } 17}
Fig. 1. Buggy binary search. Fig. 2. Reported error and fixed loop.

Whenever Prusti fails to verify the absence of panics, it reports potential
issues like compiler errors, as in Fig. 2 (upper half); these naturally benefit from
any IDE highlighting of errors. Programmers can understand and handle such
warnings as if Prusti were a stricter compiler for Rust.

We can fix the bug by rewriting line 7 to let mid = low + ((high-low)/2).
Now Prusti is able to infer both that high-low cannot underflow (from the loop
guard: low < high) and that low + ((high-low)/2) cannot overflow.

While this property can be proved without any help from the programmer,
others require annotations. Prusti verifies loops according to the guarantees of
the Rust type system and any user-provided loop invariants. After fixing the
overflow error in our example, Prusti cannot show that, in every loop iteration,
the slice access a[mid] (line 9) is within bounds. To establish this it suffices to
add a simple loop invariant? stating that, during every iteration, high <= a.len()
holds just inside the loop body. The annotated code accepted by Prusti is shown
in Fig. 2 (lower half). Prusti proves that the loop invariant holds (inductively);
the invariant, along with the loop guard mid < high and the (implicit) unsigned
types of these index variables, allows Prusti to prove that al[mid] is safe).

This simplest way of using Prusti requires almost no user annotation: Prusti’s
underlying reasoning accounts for path conditions, value ranges and (not shown
here) non-aliasing guarantees implied by rustc’s type-checking. Additional local
properties of interest can be added with standard Rust assert macros (e.g. line 8
in Fig. 2), and checked statically with Prusti rather than (only) at runtime; the
initial friction in using Prusti this way is as low as for using a code linter.

2 In slight contrast to classical loop invariants, a body_invariant!(...) need only
hold for every loop iteration reaching this location inside the loop body.

92 V. Astrauskas et al.

2.2 Modular Verification of User-Specified Contracts

After using Prusti for proving panic freedom, developers may decide to invest
annotation effort step-by-step to obtain stronger correctness guarantees about
their Rust code. To this end, every function can be annotated with a contract: a
specification consisting of pre- and postconditions. Functions are verified mod-
ularly against these contracts: when verifying calls to the function, only its
contract and type signature are used, not its concrete implementation. Besides
facilitating scalability and supporting recursion, a modular approach enables
decoupling verification of client code from e.g. specific library implementations.
Continuing our example from Fig. 1, consider the following contract:

1 #[requires(a.len() < usize::MAX / 2)]

2 #[ensures(if let Some(idx) = result { idx < a.len() && alidx] == key }
3 else { true })]

4 fn search(a: &[i32], key: i32) -> Option<usize> { /* ... */ }

Specifications in Prusti consist of (a large subset of) side-effect free Rust expres-
sions with a few carefully chosen extensions, as we discuss below. The above
postcondition ensures(...) uses the special Prusti variable result to refer to the
function’s return value3. It specifies that whenever search returns some position
idx, then the value a[idx] equals the search key. Prusti checks this property and
also that the slice access a[idx] in the postcondition is in bounds.

The precondition requires(...) states that search can be called only on slices
whose length is at most half of the largest number of type usize—Prusti will
report an error if a caller attempts to pass a longer slice. Under this precondition,
the original overflow bug could never be triggered, and Prusti can also verify the
unmodified code from Fig. 1 (for calls allowed by the precondition).

2.3 The Prusti Specification Language

We will now explain and illustrate numerous features of Prusti’s specification
language via its usage on a binary search tree (BST), given by:

// A binary search tree data structure (elements should be sorted)
pub enum Tree<T: Ord> {

Node (T, Box<Tree<T>>, Box<Tree<T>>),

Empty,
}

[, S O B CR

Every element of a Tree is either an Empty leaf or a Node storing pointers to its
left and right subtree, and a value of (generic) type T; the bound on T requires
that this type must implement the 0rd trait so that values can be compared. We
assume that this BST represents a set, i.e. duplicate entries will never be stored.

Prusti’s specification syntax (e.g. for pre- and postconditions) reuses Rust
expressions as far as possible. Not all Rust expressions are accepted: the evalua-
tion of expressions used in specifications must not have side-effects (specifications

3 The if let construct is standard Rust, branching on whether the value can be
pattern-matched against Some (idx) (taking the second branch if not, i.e. for None).

The Prusti Project: Formal Verification for Rust 93

should not affect program execution), and must be deterministic and terminate,
to ensure that specifications have an intuitive meaning for programmers (a clear
mathematical interpretation for the verifier). Prusti identifies a pure subset of
Rust with the above properties allowed in specifications, including dereferencing,
branching, pattern-matching etc.., as used in our search postconditions above.

Importantly, Prusti allows calls to functions within specifications, if they
have the Prusti-specific attribute #[pure]. The body of a function labelled as pure
must fall into Prusti’s pure Rust fragment described above. As of now, Prusti
checks that pure functions have no side-effects and are deterministic (termination
checking is not yet performed, but will be added in the near future).

A common case of pure functions are queries (or getters) of a data structure,
such as the contains function below, which often appear in specifications.

1 impl<T: 0rd> Tree<T> {

2 #[pure]

3 pub fn contains(&self, find_value: &T) -> bool {

4 // ... with the natural (recursive) definition in Rust ...

This function is implemented as a straightforward recursive traversal over the
BST [48], naturally satisfying the requirements for a pure function?. As contains
is declared pure, Prusti will treat it analogously to a mathematical function and
unroll its definition (in a bounded way, to avoid non-termination) instead of
relying solely on the function’s contract (as for ordinary methods). Annotating
the function as pure suffices for proving simple code such as the following:

1 let v = 0;
2 let t = Tree::Node(v, Box::new(Tree::Empty), Box::new(Tree::Empty));
3 assert!(t.contains(&v));

While it is reassuring that such unit-test-like programs can be statically verified
automatically, the real power of pure functions is that they provide API-specific
building blocks for defining richer functional specifications, as we show next.

Type Invariants. Our next goal is to specify that Tree objects maintain a funda-
mental invariant, namely that they model binary search trees. Assume, for the
moment, that we already have a specification of the search tree property given by
a pure method bst_invariant(&self) -> bool. Prusti’s #[invariant(...)] anno-
tation then allows us to directly attach the invariant to the Tree type:

1 #[invariant(self.bst_invariant())]
2> pub enum Tree<T: Ord> {

Now, Prusti will ensure that whenever a Tree instance is passed as function argu-
ment or return value, the invariant is guaranteed; it is correspondingly assumed
for function parameters (by the callee) and return values (by the caller).

* Values of generic type T are compared with the library function cmp from trait Ord,
which is specified to satisfy the standard properties of total orders using an external
specification; this Prusti feature is explained in Sect. 2.4.

94 V. Astrauskas et al.

predicate! {
pub fn bst_invariant (&self) -> bool {
if let Tree::Node(value, left, right) = self {
forall(|i: &T| left.contains(i) ==
(matches! (i.cmp(value), Less) && self.contains(i)))
&& forall(|i: &T| right.contains(i) ==
(matches! (i.cmp(value), Greater) && self.contains(i)))
} else { true }
}

© W N O oA W N =

}

o
(=]

Fig. 3. Predicate expressing the invariant of a binary search tree.

Quantifiers and Predicates. Our invariant bst_invariant needs to capture
the following informal search tree property: any value v of type T in the
left (resp. right) subtree of a BST instance t with root value v’ is smaller
(resp. greater) than v’ according to T’s ordering. Rather than implementing
this property as a pure function in Rust, the above description suggests quanti-
fying over all values. Prusti specifications may contain both universal (syntax:
forall(lvars| expr)) and existential (syntax: exists(|vars| expr)) quantifiers,
where the declaration of quantified variables vars is analogous to declaring Rust
closure parameters.

We can now precisely define our intended invariant with this powerful mix of
logical quantifiers and pure functions denoting data-structure-specific abstrac-
tions. However, since quantifiers are not Rust expressions, the invariant itself
cannot be defined in a Rust function. Instead, Prusti provides the feature of
predicates, which are similar to (pure) Rust functions whose bodies can be any
expression allowed in Prusti’s specification language. Our formal Prusti spec-
ification of the invariant is shown in Fig.3. Prusti checks that predicates are
only ever invoked in specifications; they cannot be called from executable code
(general quantifiers need not have an executable semantics).

Old Expressions. Now that we have established the search tree property as an
invariant of Tree, we may decide to add further contracts to functions working
with trees. For instance, Fig.4 shows a method insert that inserts a new value
into a binary search tree; it is equipped with a simple postcondition (line 1)
stating that, once the function terminates, the tree contains the new value.
Since insert mutates the given tree, we may also want to make sure that, apart
from adding the new value, no other values have been added or removed. Prusti
specifications can include old(...) expressions in postconditions to refer to the
memory before execution of the function’s body. As shown in lines 2-3, we can
then specify that, for all values except the new one, the function contains returns
the same result when executed on the tree before and after running insert.

Pledges. One of the most advanced specification features Prusti adds to its
base language of Rust expressions tackles specification of reborrowing: func-

The Prusti Project: Formal Verification for Rust 95

1 #[ensures(self.contains (&new_value))]

2 #[ensures(forall(|i: &T| !matches! (new_value.cmp(i), Equal)

3 ==> self.contains (i) == old(self).contains(i)))]
4 pub fn insert(&mut self, new_value: T) {

5 if let Tree::Node(value, left, right) = self {

6 match new_value.cmp(value) {

7 Equal => (),

8 Less => left.insert(new_value),

9 Greater => right.insert(new_value),

10 }

11 } else {

12 *self = Tree::Node(new_value,

13 Box: :new(Tree: :Empty), Box::new(Tree::Empty))
14 }

15 }

Fig. 4. Insertion into a binary search tree.

tions that both take and return mutable references. An example is the function
get_root_value below, which hands out a reference to the root value of the tree.

1 pub fn get_root_value(&mut self) -> &mut T {
2 if let Tree::Node(value, _, _) = self { value } else { panic!() }
3 }

Rust’s type system (generally forbidding the combination of usable aliases and
mutability) makes the reference self blocked after calling this function, until
the returned reference’s lifetime expires (it is no longer used). This creates an
interesting challenge if (as we did for Prusti) one wants a specification language
which is in-keeping with both Rust expression syntax and its typing rules, to aid
programmer understanding. The key challenges [6] are: (1) one wants to specify
guarantees that will be true for self once it becomes accessible again, but in the
post-state of the call one cannot (according to the type system) talk about the
blocked reference to self, and (2) some facts that one cares about cannot even
be determined in the post-state of this call, since the value that the root will
have when the reborrow expires is not yet known: it depends on what the caller
does with the returned reference to this root value.

Prusti solves both problems with pledges [6], a novel specification feature
which allows one to express specifications about points in the future of this call,
when the returned reborrow expires. Pledges use two specification constructs:
after_expiry(e) (which describes what e’s value will be once the returned ref-
erence expires), and before_expiry(e) (which describes e’s value just before
the returned reference expires). Using these constructs, one can write e.g. a
postcondition after_expiry(self.contains(before_expiry(result))), to express
that once the returned reference result expires, the BST self is guaranteed to
contain whatever value result stores by the time it expires. More examples are
discussed in our earlier paper [6].

96 V. Astrauskas et al.

1 #[requires(matches! (self, Tree::Node(..)))]

2 #[assert_on_expiry(

3 // Must hold before result can expire

4 if let Tree::Node(_, left, right) = old(self) {

5 forall(li: &T| left.contains(i)

6 ==> matches! (i.cmp(result), Less)) &&
7 forall(li: &T| right.contains(i)

8 ==> matches! (i.cmp(result), Greater))
9 } else { false },

10 // A postcondition of ‘get_root_value‘ after result expires
11 if let Tree::Node(ref value, _, _) = self {

12 matches! (value.cmp(before_expiry(result)), Equal)

13 } else { false }

14)]

15 pub fn get_root_value (&mut self) -> &mut T {
16 if let Tree::Node(value, _, _) = self { value } else { panic!() }
17 }

Fig. 5. A rich specification combining many Prusti and Rust features.

Given our desired BST invariant, client code should modify the root’s value
only in a way that guarantees to preserve the BST invariant. This can be enforced
with the more-advanced pledge construct assert_on_expiry(e’,e). This con-
struct expresses after_expiry(e) and, in addition, asserts e’ at the point where
the reborrowed reference expires. To demonstrate the expressiveness of these
features combined, we show a very general specification for get_root_value in
Fig. 5, which exploits the power of Prusti’s specifications to combine pledges,
old expressions, pure functions, quantifiers along with standard Rust features.
Notably, the constraint on the reborrowed reference result relates only its (sin-
gle) value to the old version of the tree: the rest of the tree structure is guaranteed
immutable while the reborrow is live, and Prusti’s underlying separation logic
proof (discussed in the next section) captures this directly.

2.4 Incremental Verification in Practice

As illustrated above, Prusti’s design enables developers to verify a codebase by
incrementally trading annotation effort for stronger guarantees. In this subsec-
tion, we report on preliminary experiences from an ongoing project in which
Prusti is used this way to analyse the ibc [21] crate, an implementation of the
Interblockchain Communication Protocol [19] containing >20,000 lines of code.

At the time of our first experiments, Prusti could run on roughly 70% of
the functions in the two crates (495/716 and 545/738) analysed; the remain-
der used features unsupported by the verifier. Without specifications the vast
majority of these functions were proved panic-free automatically. Prusti identi-
fied a small number of potential panics, due to manual assert! calls (conceptu-
ally expressing preconditions) or potential overflows due to expressions such as

The Prusti Project: Formal Verification for Rust 97

self.revision_height + delta where delta was a u64 function parameter. Mak-
ing manual assert!s into preconditions (which are then checked at call sites!) is
easy since Prusti’s specifications can be Rust expressions; adding preconditions
to rule out overflows was also simple, e.g. this precondition for the case above:

1 #[requires(u64::MAX - self.revision_height >= delta)]
2 pub fn add(&self, delta: u64) -> Height { /* ... */ }

This ruled out language-level panics for all supported functions, but (as is com-
mon) the code also uses standard library functions such as Option.unwrap(),
which panic at runtime if called incorrectly. To extend Prusti’s reach to uncov-
ering such panics, we need to add a precondition for Option.unwrap(), but since
this is standard library code, we also can’t (and don’t want to) edit it.

For this purpose, Prusti offers the external specifications (extern_spec) fea-
ture, which allows attaching contracts to functions (including library functions)
separately from their implementation®. Such specifications look like a regular
implementation block for a Rust type except that functions have no bodies
(mimicking Rust’s trait declaration syntax).

For instance, the following external specification makes sure that calls to
Option.unwrap() won’t cause panics, which is naturally expressed as a Prusti
specification by identifying is_some as a pure method:

As a user, one can take an incre-

#[extern_spec] mental approach to adding such spec-
impl<T> std::option::0Option<T> { ifications to called functions, adding
#[pure] those which are most worthwhile for
fn is_some(&self) -> bool; the user’s goals. For our panic-freedom

pass, we pragmatically focused on the
most widely used functions known to
panic (from Option<T> and Result<T>),
which already gave us stronger guaran-
tees than our initial run with no such
specifications.

After ruling out (most) panics in this way, we added specifications to check
important domain-specific requirements, for example, that the height and time
of each block in the blockchain increases monotonically. We used Prusti to verify
that various functions in the ibc crate maintain these monotonicity invariants.

Inevitably for such a large codebase, we found functions that use currently
unsupported language features. We can still attach contracts to such functions,
which will subsequently be used by Prusti to deal with calls. We can tell Prusti
not to check these specifications with a #[trusted] annotation. For example, in
ibc, some time-related functions, such as from_nanos below, relied on unsup-
ported types exposed by the chrono [28] crate and were marked as #[trusted].
The specification below expresses that from_nanos returns a valid result (rather
than the error case of Result) if the u64 parameter nanos fits within an 164, but
Prusti does not check the function’s body to verify that the specification holds.

#[requires(self.is_some())]
fn unwrap(self) -> T;
}

® N o oA W N e

5 External specifications can also be used for functions inside the same crate, allowing
developers to apply Prusti without modifying source files, if desired.

98 V. Astrauskas et al.

#[trusted]

#[ensures(nanos <= i64::MAX as u64 ==> result.is_ok())]

pub fn from_nanos(nanos: u64) -> Result<Timestamp, TryFromIntError> {
let nanos = nanos.try_into()7?;
Ok(Timestamp {time: Some(Utc.timestamp_nanos(nanos))l})

o oA W N R

}

While trusted specifications must be written carefully, they enable developers
to pragmatically focus on specifying and proving those properties they consider
most relevant without imposing an excessive verification burden.

These features provide a further degree of freedom in the verification work-
flow: developers may initially use many #[trusted] annotations in a first itera-
tion, and later attempt to reduce the number of trusted functions in subsequent
iterations. As such, both trusted functions and external specifications further
facilitate the incremental verification of realistic Rust code using Prusti.

3 Prusti from a Verification Expert’s Perspective

At the heart of Prusti lies the core proof, i.e. a memory safety proof writ-
ten in separation logic [23,39,43], the de-facto standard for verifying resource-
manipulating programs. Conceptually, the Prusti project explores three main
questions, upon which we will reflect in this section:

1. To what extent can intuitive reasoning about most Rust programs be captured
by an off-the-shelf separation logic?

2. To what extent can the generation of core proofs be automated?

3. To what extent can core proofs be leveraged for verifying interesting func-
tional correctness properties?

3.1 Core Proofs in an Off-the-Shelf Separation Logic

Separation logic nowadays comes in numerous flavours, ranging from simple log-
ics for verifying sequential heap-manipulating code to highly specialised variants
targeting intricate concurrency or weak-memory models (cf. [39]). It is thus not
surprising (but still very challenging!) that one can construct some separation
logic which allows precise reasoning about all aspects of Rust’s memory model;
RustBelt [27] is the most impressive attempt in that direction so far.

By contrast, the Prusti project aims to enable intuitive formal reasoning
about most Rust code. We believe that this approach matches Rust’s design
philosophy of enabling “fearless programming”: safe Rust code, i.e. code without
any direct usages of unsafe language features should be understandable, without
low-level concerns. Recent studies [5,16] confirm that Rust code in the wild
largely adheres to this philosophy: the vast majority of function implementations
are written in safe Rust; they may call functions that are implemented using
unsafe features, but shield clients from these details through encapsulation.

More concretely, Prusti embeds an annotated Rust program (cf. Sect.2) in
the Viper intermediate verification language [38], which is based on Implicit

The Prusti Project: Formal Verification for Rust 99

Dynamic Frames (IDF)—a variant of traditional separation logics with a clear
formal connection to standard separation logic [40]. Building upon an off-the-
shelf logic has the advantage that the overall soundness of the embedding is
analogous to soundness arguments that are well-understood for separation logic
reasoning; it also allows us to draw on substantial prior work and expertise,
particularly when it comes to proof automation.

The original Prusti paper [6] describes the embedding in detail. Overall, we
found that the read and write capabilities governed by Rust’s flow sensitive
type system have almost identical properties to the assertions governing heap
accesses in IDF. In particular, Rust structs can be modelled as (possibly nested
and recursive) predicates representing unique access to a type instance. More-
over, moves and simple usages of Rust’s shared and mutable borrows resemble
ownership transfers in the permission reading of separation logic assertions [10];
reborrowing is modelled directly by magic wands: when a reborrowed reference is
passed back to a caller, it comes with a magic wand representing the ownership
of all borrowed-from locations not currently in the proof.

Prusti’s underlying logic champions simplicity and fits well into Rust’s overall
design philosophy: at every point in Prusti’s core proof, there is direct representa-
tion of ownership in separation logic terms. This is different from RustBelt [27],
where ownership and the connection between reborrowed and borrowed-from
locations is handled via an indirection through a custom lifetime logic designed to
express general semantic requirements on how lifetimes are manipulated, includ-
ing via ad hoc manual policies implemented by unsafe code.

However, the simplicity of Prusti’s underlying logic has also made some (safe)
Rust features harder to incorporate. One key example is struct types with explicit
lifetime parameters (used to accommodate reference-typed fields), for which it
is sometimes convenient to treat the struct as a single resource, and sometimes
convenient to consider it as multiple individual resources borrowed for a certain
lifetime. RustBelt achieves this via the more fine-grained resources of its lifetime
logic; it is unclear whether this complexity is inevitable.

3.2 Full Automation of Core Proofs for Type-Checked Rust

As explained above, Prusti’s underlying model introduces nested and potentially
recursive predicates to model instances of Rust types. However, general reasoning
about such separation logic predicates is known to be undecidable [3,22]. Verifiers
such as Viper require additional annotations to guide reasoning about predicates,
e.g. by inserting explicit statements to unfold and fold predicate definitions
into a Viper program. For example, when a field of a struct is accessed in the
Rust program, this requires unfolding the predicate modelling the capabilities
for accessing the struct; the obtained capabilities cannot always be re-folded into
a predicate since the field might be borrowed or moved-out.

While fold and unfold statements cannot be inferred automatically for arbi-
trary code with recursive predicates, Prusti infers them automatically for type-
correct Rust code. The essential point is that the Rust compiler, when enforcing
the flow-sensitive typing rules for the language, requires book-keeping similar to

100 V. Astrauskas et al.

that of unfolding and folding our predicates. For example, enforcing the check
that fields moved out from a struct are (all) moved back in before the struct can
be returned is conceptually analogous to refolding its corresponding predicate
definition in Prusti’s model.

Prusti performs a pass over the encoded Rust program to add the neces-
sary fold and unfold operations: essentially it performs a symbolic execution,
tracking the accessible places at each program point and their current depth of
unfolding (differentiating, say, between a struct being accessible and its fields
being accessible). In addition to fold/unfold annotations, Prusti also infers all of
the necessary Viper annotations for reasoning about magic wands [45] modelling
reborrows. In all, the annotations required make up a large chunk of the gener-
ated Viper code, but they are generated fully automatically for all Rust programs
supported by Prusti. This degree of automation is challenging to achieve but (we
believe) an important objective for a tool that tries to raise the conceptual level
at which a user interacts with a verifier. It ensures that Prusti users do not have
to understand the sometimes intricate logical encoding of their programs. To our
knowledge, Prusti was the first tool to be able to automatically produce formal
proofs about a substantial fragment of Rust that could be automatically checked
by a program verifier.

3.3 Incorporating Rich Functional Specifications

Prusti’s underlying logic is Viper’s dialect of Implicit Dynamic Frames. Although
closely related to separation logic, a key feature of this logic is that one can con-
join functional specifications concerning heap values directly onto the resources
such as permissions and predicate instances. In this sense, once the core proof
is in place, layering functional specifications on top comes essentially for free.

Our first versions of Prusti exploited this technical feature to embed all
aspects of user-written specifications (i.e. Rust annotations) into correspond-
ing expressions in the generated Viper code, i.e. the core proof. A more-recent
extension of Prusti’s core model equips each predicate instance with a snapshot:
a value used as a mathematical identity for the current state of the (possibly
composite) portion of the program memory accessible via this predicate. This
technique originates (we believe) from the implementation of the VeriFast pro-
gram verifier [24], and is also used extensively in Viper’s symbolic execution
engine [46]. RustHornBelt [33] uses a similar technique to layer functional spec-
ification on top of RustBelt [27] predicates. Snapshots simplify encoding prop-
erties guaranteed by reasoning methodologies other than the basic separation
logic framing built into Prusti’s core proofs. For example, (in work with Fabian
Wolff) we use the flexibility provided by snapshots to layer guarantees about
the heap on top of the core proof to extend Prusti’s support for a rich class of
specifications about Rust closures [52].

The Prusti Project: Formal Verification for Rust 101

! .
| Local crate, untyped Local crate, typed : : Prusti | Encoding : Viper program :
: (Sect. 4.3) : : | (Sect. 4.4) | 1
i ro 1 l 1
| : | | | |
| AST Types I ! : Domains 1
| | | Pue | | |
1] | | |
' |Embedding (Sect. 4.2) 9 HIR ! : : ! F . 3
Y g —>| :_)‘ | ? unctions |
I g ‘ I I I I
3 Desugared AST / \ : : 3 : :
|

I Unopt. MIR : I I ‘ Predicates :
: | ! | Impure 1 :
|] | &) | |
| : | = : | |
: Polonius facts : : /A I Methods 1
| I - B 1 :
F:::::::::::::::::: ::::::::::::::::‘ : § : 77777777777777
 External crates, S : ! 5 |
| Standard library] Types ! }) {
! s A N w

+ —> e Y.
i Dependencies —1 9 \ Oot. MI : : i | :
: E pt. MIR : : : | Verification server }

I I I

! | |] | |

Fig. 6. Overview of Prusti’s encoding process.

4 Prusti from a Tool Engineer’s Perspective

Prusti targets real-world code in Rust, itself a mature and complex language.
Accordingly, Prusti is designed to reuse existing functionality from the Rust
compiler whenever possible, in order to reduce the implementation burden and
faithfully maintain compatibility with the constantly-evolving Rust ecosystem.

4.1 Architecture and Design Overview

Prusti is implemented as a compiler driver, reusing the standard rustc compiler
extensively; its overall workflow is presented in Fig. 6. Prusti launches and inter-
acts with a full instance of rustc, used both for its program representations and
analysis results (second column; cf. Sect. 4.3). To have Prusti-specific specifica-
tion features (Sect. 2.3) type-checked analogously to regular Rust expressions
(including error-reporting), Prusti performs a specification embedding, reusing
existing Rust features whose type-checking rules are analogous (top-left; cf.
Sect. 4.2). Prusti has rustc map the sources for both the program and (embed-
ded) specifications down to rustc’s mid-level representations as for standard
compilation. Prusti performs its own analyses (third column), and assimilates
all necessary information to generate a Viper program (last column) that it sends
to a further Prusti component which performs verification through a Viper wrap-
per. If verification fails, Prusti maps the Viper errors to user-readable Rust errors
reported via the compiler API.

The compiler driver architecture is used by popular tools such as Clippy [11]
and Miri [36]; it has two main advantages. First, it raises confidence that the

102 V. Astrauskas et al.

semantics used by Prusti is faithful. Prusti directly obtains a control-flow graph
(CFG) representation of any parsed Rust function from the compiler, instead of
inventing its own representation, which could lead to errors or semantic differ-
ences over time. The CFG-based representation used by Prusti, called unopti-
mised MIR, has a simple order-of-execution semantics and a limited number of
statements; at this stage, many of the more-subtle aspects of Rust’s evaluation
semantics have been already handled by the compiler. For example, Prusti does
not need to be aware that Rust uses short-circuiting semantics for Boolean oper-
ators, because Boolean expressions are already transformed by the compiler into
multiple statements evaluating individual operators. Unoptimised MIR main-
tains all type-checker information, along with back-links that allow the compiler
(and thus also Prusti) to translate error messages back to the source code.

Second, the above architecture enables Prusti to reuse compiler components.
Besides building upon unoptimised MIR, Prusti reuses the compiler’s type and
borrow checker to ensure that user-written Prusti annotations follow typing
rules analogous to regular Rust expressions, as explained in Sect. 4.2. Simi-
larly, Prusti reuses the Rust compiler’s error reporting component to display
verification errors. This way, the default syntax of the reports is familiar to Rust
programmers and the compiler can be configured to report machine-readable
errors. The latter simplifies integrating Prusti with other tools. For example,
IDE extensions like the official Prusti Assistant extension for Visual Studio Code,
but even Prusti-unaware tools such as Rust-analyzer [44], can be configured to
report Prusti verification errors generated by running cargo-prusti instead of
cargo check.

4.2 Specification Embedding

Prusti-specific annotations (e.g. method contracts) are implemented with pro-
cedural macros [1]. These macros are defined to generate nothing when com-
piled using the regular Rust compiler. However, when compiled with Prusti,
a specification embedding is performed: to make the compiler both type-check
and translate (to MIR) these specifications, corresponding methods are added
to the program. For Prusti-specific constructs the specification embedding is
more involved, replacing them with usages of Rust features which have the right
type-checking requirements. For example, quantifiers (Sect. 2.3) are embedded
as closures.

Prusti uses a Pratt parser [41] to perform the embedding of Prusti-specific
constructs, before invoking the syn [13] Rust parser on the result, yielding an
AST representation. The resulting specification expressions are embedded into
the bodies of methods with unique names. Prusti constructs a mapping between
these generated methods (called specification items) and the relevant construct
in the original source code (e.g. for a precondition, the method it is a precon-
dition of). By feeding the program augmented with specification items through
the compiler, we both check that the specifications type-check and can obtain
corresponding MIR representations of the specifications. The type-checking and
evaluation semantics reflected by this translation to MIR are those of standard

The Prusti Project: Formal Verification for Rust 103

rustc; this approach reuses the standard semantics of the Rust language for
specification checking and compilation.

4.3 Compiler Interface

Prusti obtains various information from rustc’s data structures, as illustrated in
the second column of Fig. 6. Given how Rust compilation works, different infor-
mation is available (and used by Prusti) for the local crate (i.e. the crate being
compiled/verified) and external crates (the dependencies of the local crate).

Local Crate. For the local crate, Prusti obtains a high-level AST representation
(HIR), the type definitions, the unoptimised CFGs of the functions (MIR), and
borrow-checker information (Polonius facts), defining the compiler-determined
lifetimes of references. Prusti uses HIR, in which function names have already
been associated to their definition, to retrieve specifications embedded in speci-
fication items, as described in Sect. 4.2. Prusti uses type definitions to generate
Viper predicate definitions for the core proof (cf. Sect. 3), while unoptimised
MIR is used to generate the corresponding Viper code itself (cf. Sect. 4.4).

The compiler offers various versions of MIR at different stages during the
compilation process. Prusti uses the unoptimised version because it is the only
one on which the borrow-checker runs. This also has a semantic advantage, since
we do not need to worry whether compiler optimisations preserve the strong
type properties that Prusti exploits®. Prusti uses the results from the Polonius
borrow-checker, also called facts, to automate the generation of annotations such
as folding and unfolding of Viper predicates (cf. Sect. 3.2).

Previously, the compiler API did not expose Polonius facts, but the com-
piler developers were very supportive in accepting our proposed additions to the
APT [4]. Our changes have since been used by at least one other static analysis
tool, Flowistry [12], to access precise aliasing information.

External Crates. For external crates, the compiler offers strictly less informa-
tion than for the local one, primarily for performance reasons. Type definitions
and optimised MIR are available (Prusti uses the former to encode calls), but
the HIR, the unoptimised MIR, and the Polonius facts are not present. Since
Prusti’s overall methodology is modular, the only real limitation this imposes is
that any Prusti specifications written in an external crate will not be seen. As
explained in Sect. 2.4, Prusti supports external specifications to be applied to
these functions from the local crate. Nonetheless, following the example of the
MIRALI static analyser [17], we believe that, in the future, previously-compiled
Prusti specifications could be recovered for external crates from a combination
of the optimised MIR and persisting some information to disk between compi-
lations.

5 See for example https://github.com/rust-lang/rust /issues,/46420 for an optimisation
that used to copy non-duplicable mutable references.

https://github.com/rust-lang/rust/issues/46420

104 V. Astrauskas et al.

4.4 Encoding to Viper

Finally, Prusti uses the information assembled from the Rust compiler to encode
an annotated Rust program to a Viper program for verification. As shown in the
right half of Fig. 6, there are two different encodings: a pure encoding to Viper
expressions and an impure encoding to Viper statements.

Pure Encoding. Prusti’s pure encoding is used for specifications and pure
functions (which may be invoked from within specifications), and is necessary as
Viper specifications must be Viper expressions (which are side-effect-free, unlike
statements, which are a distinct notion in Viper).

Pure Rust expressions (cf. Sect. 2.3) are encoded to Viper expressions using
a backwards symbolic execution through their CFG, starting from the variable
which stores the final result (easily determined in MIR); the steps are reminiscent
of a standard weakest-precondition calculation.

To represent Rust values in pure code, Prusti uses the snapshot technique
presented in Sect. 3.3. Snapshots are encoded to Viper domains; that is, abstract
type definitions with uninterpreted functions and axioms that describe the rela-
tion between the snapshot of a type and the snapshot of its inner instances (e.g.
variants of an enumeration or fields of a structure). These are computed from
the compiler’s type definitions.

Impure Encoding. Like the pure encoding, the impure encoding processes the
unoptimised MIR and analyses the CFG of a method. However, in the impure
case, the output is a Viper method containing heap-mutating statements. Viper
methods can also contain goto statements, which allows us to encode the MIR
CFG without having to reconstruct loops or standard control flow structures.
To encode mutable references, Prusti needs to know the program point at
which references expire and which places receive the no-longer-borrowed owner-
ship, such that magic wands that encode the ownership flow can be applied in
the right order to form the core proof. To do so, Prusti elaborates the borrow-
checker facts to automatically compute a directed acyclic graph (DAG) of the
borrowing relations for each program point: each node with exit edges represents
a reference and each edge points to the places that it blocks. When a set of ref-
erences expire, a topological sort of the DAG determines the order in which the
magic wands associated to the edges should be applied. This Reborrowing DAG
is generalised to appropriately account for conditional paths through the CFG.

5 Related Work

RustBelt [27] is a long-standing verification project for Rust. RustBelt focuses
on proving that abstractions provided by internally unsafe libraries are safe;
verification is performed in Coq [8] over a simplified language based on Rust. By
contrast, Prusti is designed for general-purpose verification (with an emphasis
on safe Rust), and directly uses the representations in the Rust compiler.
Several verification approaches have been developed which avoid explicitly
modelling Rust’s memory (and aliasing) for safe Rust (only). Electrolysis [50]

The Prusti Project: Formal Verification for Rust 105

applied purification of such programs to convert them to functional programs
to be verified in Lean [37]. More recently, RustHorn [34] and Creusot [14] lever-
age Rust’s ownership semantics to model mutable references using a technique
similar to prophecy variables [2] rather than explicitly modelling the heap. The
soundness of the approach was shown in RustHornBelt [33], a unification of
RustBelt and RustHorn. To our knowledge, automatic generation of core proofs
in these underlying models remains an open problem. Although not for Rust,
the Move Prover [15] employs a reborrowing DAG similar to Prusti’s, although
it then employs techniques similar to purification to eliminate heap reasoning.

Several automated static analysers have been developed for Rust, including
the abstract interpreter MIRAI [17]. The Kani Rust Verifier [51] applies bounded
model-checking. Other tools analyse the generated LLVM: e.g. Klee Rust per-
forms symbolic testing [31], Smack applies bounded verification [7], Project Oak
[42] provides an evolving portfolio of complementary tools. None of these tools
use the ownership guarantees of the type system, to our knowledge.

Stacked Borrows [26] is another formal model for Rust aiming to precisely
define notions of undefined behaviour for the Rust language; it is accompanied
by the interpreter Miri [36], which can be used to dynamically check for rule
violations. We are not aware of corresponding static tools based on this model.

6 Conclusions and Future Work

We have presented the Prusti project, and reflected on its key features and most-
notable design decisions from three different perspectives: for users, verification
experts, and authors of other Rust analysis tools. From a user’s perspective,
notable features include the close relationship between specifications and Rust
expressions, and the flexible trade-offs between annotation effort and richness of
guarantees, which supports incremental usage of the tool on large-scale projects.
For verification experts, a notable goal is the reuse of long-standing program
reasoning techniques for reasoning about (primarily) safe Rust code. For tool
builders, the extensive reuse of compiler data structures, analyses and error
reporting mechanisms has proven powerful; these techniques are largely reusable.

A key goal for future work to benefit users is to enable richer specifications
(when desired), via built-in types (such as mathematical sets) and add dedi-
cated features for ghost code, as well as improving verification performance. Of
more interest to verification experts, we are exploring the adaptation of Prusti’s
core model and proofs to both structs with lifetime parameters and some usages
of unsafe code. On the tooling front, we aim to support persistence of com-
piled Prusti specifications, and offering built-in specifications for common Rust
libraries.

Acknowledgements. We warmly thank Nicholas D. Matsakis, Nick Cameron, Derek
Dreyer and Ralf Jung for extensive discussions and feedback in the early stages of this
project, and are very grateful to Florian Hahn for his work on a precursor to Prusti [20],
as well as numerous Master’s and undergraduate students who have since contributed
via projects.

106 V. Astrauskas et al.

This work was partially funded by the Swiss National Science Foundation (SNSF)
(Grant No. 200021-169503), the Natural Sciences and Engineering Research Council
of Canada (NSERC) (ref. RGPIN-2020-06072), Amazon Research Awards, Meta (then
Facebook) Research and the Interchain Foundation.

References

1. Procedural macros documentation (2022). https://doc.rust-lang.org/reference/
procedural-macros.html

2. Abadi, M., Lamport, L.: The existence of refinement mappings. In: Proceed-
ings of the 3rd Annual Symposium on Logic in Computer Science, pp. 165-175,
July 1988. https://www.microsoft.com/en-us/research/publication/the-existence-
of-refinement-mappings/, 1ICS 1988 Test of Time Award

3. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411-425. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7_27

4. Astrauskas, V.: Enable compiler consumers to obtain MIR: Body with Polonius
facts. https://github.com/rust-lang/rust/pull /86977

5. Astrauskas, V., Matheja, C., Poli, F., Miiller, P., Summers, A.J.: How do program-
mers use unsafe Rust? Proc. ACM Program. Lang. 4(OOPSLA), 1-27 (2020)

6. Astrauskas, V., Miiller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 147:1-
147:30 (2019). https://doi.org/10.1145 /3360573

7. Baranowski, M., He, S., Rakamari¢, Z.: Verifying rust programs with SMACK. In:
Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 528-535. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_32

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment: Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical
Computer Science. An EATCS Series, pp. XXV-472. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

9. Bloch, J.: Extra, extra - read all about it: Nearly all binary searches and merge-
sorts are broken, June 2006. https://ai.googleblog.com/2006/06/extra-extra-read-
all-about-it-nearly.html

10. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 259-270 (2005)

11. Clippy developers: Clippy: A collection of lints to catch common mistakes and
improve your Rust code. https://github.com/rust-lang/rust-clippy

12. Crichton, W.: Flowistry: Information flow for Rust. https://github.com/
willerichton /flowistry

13. Tolnay, D.: Parser for Rust source code (2021). https://crates.io/crates/syn

14. Denis, X., Jourdan, J.H., Marché, C.: The Creusot environment for the deductive
verification of Rust programs (2021)

15. Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E.: Fast and reli-
able formal verification of smart contracts with the Move prover. arXiv preprint
arXiv:2110.08362 (2021)

16. Evans, A.N., Campbell, B., Soffa, M.L.: Is rust used safely by software develop-
ers? In: 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), pp. 246-257. IEEE (2020)

https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://doi.org/10.1007/978-3-642-54830-7_27
https://github.com/rust-lang/rust/pull/86977
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10.1007/978-3-662-07964-5
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://github.com/rust-lang/rust-clippy
https://github.com/willcrichton/flowistry
https://github.com/willcrichton/flowistry
https://crates.io/crates/syn
http://arxiv.org/abs/2110.08362

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

The Prusti Project: Formal Verification for Rust 107

Facebook: MIRAI: an abstract interpreter for the Rust compiler’s mid-level inter-
mediate representation. https://github.com/facebookexperimental/MIRAI
Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In:
ter Beek, M.H., Nickovié¢, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3-609.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_1

Goes, C.: The interblockchain communication protocol: an overview. arXiv preprint
arXiv:2006.15918 (2020)

Hahn, F.: Rust2Viper: building a static verifier for Rust. Master’s thesis, ETH
Zurich (2015)

Informal Systems Inc. and ibc-rs authors: Rust implementation of the Inter-
Blockchain Communication (IBC) protocol (2021). https://docs.rs/ibc

Tosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201-218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6-15

Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL, pp. 14-26. ACM (2001)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41-55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
54

Jung, R.: The scope of unsafe, January 2016. https://www.ralfj.de/blog/2016/01/
09/the-scope-of-unsafe.html

Jung, R., Dang, H.H., Kang, J., Dreyer, D.: Stacked borrows: an aliasing model
for Rust. Proc. ACM Program. Lang. 4(POPL), 1-32 (2019)

Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the Rust programming language. Proc. ACM Program. Lang. 2(POPL),
1-34 (2017)

Seonghoon, K., et al.: Chrono: Date and Time for Rust (2021). https://docs.rs/
chrono

Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267-289
(2011)

Klabnik, S., Nichols, C.: Unsafe Rust (2022). https://doc.rust-lang.org/book/ch19-
01-unsafe-rust.html

Lindner, M., Aparicius, J., Lindgren, P.: No panic! Verification of Rust programs
by symbolic execution. In: 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), pp. 108-114. IEEE (2018)

Matsakis, N.D.: Unsafe abstractions (2016). http://smallcultfollowing.com/
babysteps/blog/2016 /05 /23 /unsafe-abstractions

Matsushita, Y.: Extensible functional-correctness verification of rust programs by
the technique of prophecy. Master’s thesis, University of Tokyo (2021)
Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for Rust programs. In: ESOP, pp. 484-514 (2020)

Meyer, B.: Design by contract. In: Mandrioli, D., Meyer, B. (eds.) Advances in
Object-Oriented Software Engineering, pp. 1-50. Prentice Hall (1991)

Miri developers: Miri: An interpreter for Rust’s mid-level intermediate representa-
tion. https://github.com/rust-lang/miri

https://github.com/facebookexperimental/MIRAI
https://doi.org/10.1007/978-3-030-58298-2_1
http://arxiv.org/abs/2006.15918
https://docs.rs/ibc
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-319-11936-6_15
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
https://docs.rs/chrono
https://docs.rs/chrono
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
http://smallcultfollowing.com/babysteps/blog/2016/05/23/unsafe-abstractions
http://smallcultfollowing.com/babysteps/blog/2016/05/23/unsafe-abstractions
https://github.com/rust-lang/miri

108

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

V. Astrauskas et al.

de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378-388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

Miiller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41-62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

O’Hearn, P.: Separation logic. Commun. ACM 62(2), 86-95 (2019)

Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. Log. Methods Comput. Sci. 8(3:01), 1-54 (2012)

Pratt, V.R.: Top down operator precedence. In: Proceedings of the 1st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 41-51 (1973)

Reid, A., Church, L., Flur, S., de Haas, S., Johnson, M., Laurie, B.: Towards
making formal methods normal: meeting developers where they are. arXiv preprint
arXiv:2010.16345 (2020)

Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55-74. IEEE (2002)

Rust-analyzer developers: Rust-analyzer: A Rust compiler front-end for ides.
https://github.com/rust-analyzer/rust-analyzer

Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an auto-
matic verifier. In: 29th European Conference on Object-Oriented Programming
(ECOOP 2015), vol. 37, pp. 614-638. Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik (2015)

Schwerhoff, M.H.: Advancing automated, permission-based program verification
using symbolic execution. Ph.D. thesis, ETH Zurich (2016)

The Prusti Team: Prusti User Guide (2020). https://viperproject.github.io/prusti-
dev/user-guide/

The Prusti Team: Prusti NFM 2022 Online Appendix (2022). https://github.com/
viperproject/prusti-dev/tree/master/prusti-tests/tests/verify overflow /pass/
nfm22

The Rust Survey Team: Rust survey 2019 results: Rust blog, April 2020. https://
blog.rust-lang.org/2020/04/17/Rust-survey-2019.html

Ullrich, S.: Simple verification of Rust programs via functional purification. Mas-
ter’s thesis, Karlsruher Institut fiir Technologie (KIT) (2016)

VanHattum, A., Schwartz-Narbonne, D., Chong, N., Sampson, A.: Verifying
dynamic trait objects in Rust (2022)

Wolff, F., Bily, A., Matheja, C., Miiller, P., Summers, A.J.: Modular specification
and verification of closures in Rust. Proc. ACM Program. Lang. 5(O0OPSLA), 1-29
(2021)

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
http://arxiv.org/abs/2010.16345
https://github.com/rust-analyzer/rust-analyzer
https://viperproject.github.io/prusti-dev/user-guide/
https://viperproject.github.io/prusti-dev/user-guide/
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://github.com/viperproject/prusti-dev/tree/master/prusti-tests/tests/verify_overflow/pass/nfm22
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html

®

Check for
updates

Reachability Analysis for Cyber-Physical
Systems: Are We There Yet?

Xin Chen' and Sriram Sankaranarayanan®®®
! University of Dayton, Dayton, USA
2 University of Colorado Boulder, Boulder, USA
srirams@colorado.EDU

Abstract. Reachability analysis is a fundamental problem in verification that
checks for a given model and set of initial states if the system will reach a given
set of unsafe states. Its importance lies in the ability to exhaustively explore
the behaviors of a model over a finite or infinite time horizon. The problem of
reachability analysis for Cyber-Physical Systems (CPS) is especially challenging
because it involves reasoning about the continuous states of the system as well as
its switching behavior. Each of these two aspects can by itself cause the reachabil-
ity analysis problem to be undecidable. In this paper, we survey recent progress
in this field beginning with the success of hybrid systems with affine dynamics.
We then examine the current state-of-the-art for CPS with nonlinear dynamics
and those driven by “learning-enabled” components such as neural networks. We
conclude with an examination of some promising directions and open challenges.

1 Introduction

Formal verification techniques attempt to exhaustively explore the behaviors of com-
putational models that include finite state machines that model sequential circuits and
network protocols; push-down machines that model function calls/returns in software;
Petri-net models of concurrent systems or timed automata that model the execution of
real-time systems. In each of the instances above, the reachability problem asks given a
model, an initial set of configurations and a target unsafe set, whether the system start-
ing at some initial state can reach an “unsafe” state in some finite number of steps. A
reachability analyzer will either provide a proof that the unsafe set is not reachable or a
witness execution that shows how to reach an unsafe state starting from an initial state.

Reachability analysis has been a powerful tool for checking properties of hard-
ware circuits and software programs with success stories arising from their ability
to discover bugs in these systems or prove their absence through exhaustive verifica-
tion [20,26,27,40,42,48,68,69,75,117]. Since the early 90s, the formal methods and
control theory communities have investigated so-called “hybrid” or “Cyber-Physical
Systems” (CPS), that model computation interacting closely with a physical environ-
ment. Such systems have been mathematically captured by formalisms such as hybrid
automata, that combine the evolution of continuous states through ordinary differen-
tial equations (ODEs) with discrete mode switches modeled using finite state automata.
CPS include systems from a variety of safety-critical areas such as medical devices,
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 109-130, 2022.
https://doi.org/10.1007/978-3-031-06773-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_6

110 X. Chen and S. Sankaranarayanan

control systems that help fly airplanes, power systems and autonomous vehicles. Mod-
eling these systems and reasoning about the set of all reachable states can go a long way
towards guaranteeing safe operation during deployment.

)

(mgfc
G (mg/di)

Fig. 1. Reachable sets (in gray) showing the possible blood glucose levels of a patient controlled
by two different instantiations of an automated insulin infusion algorithm taken from Chen et
al. [34]. Simulation trajectories are shown in black. The analysis proves for instance (a) that the
blood glucose levels remain below 260 mg/dl over a 24 h period, whereas for instance (b) it is
unable to establish that bound.

Consider the block dia-
gram of an insulin infusion
control system for patients

. . Exercise J Meals
with type-l diabetes taken

from our previous work [34]. b(t){} U‘lf)SU‘idL;N u(®) | Homan | G() f?ésh?[l; ﬁ
Here, b(t) represents exter- LT

nal user commanded insulin, G (b)
u(t): the insulin infused to ue(t) CONTROL

patient, G(t), blood glucose ALGORITHM ®

level of the patient, n(t): sen-

sor measurement error (noise),
G, (t): glucose level estimated/ Fig. 2. Block diagram of an insulin infusion control system.
reported by sensor, and u.(t):
insulin infusion commanded by the algorithm. The patient’s blood glucose level is
modeled using nonlinear human insulin-glucose model coupled with a controller that
switches between various levels of insulin, based on the sensed blood glucose level of
the patient. The reachable set estimates computed using the tool Flow* [33] establishes
bounds the possible blood glucose levels over a 24 h time period. Such a flowpipe can
be used to establish upper and lower bounds on the value of the blood glucose levels as
shown in Fig. 1. Further details are available from our ARCH 2017 paper [34] (Fig.2).
In this paper, we present a brief overview of reachability analysis for Cyber-Physical
Systems. We begin by formulating the problem in a formal manner and discuss cases
when the problem is known to be decidable along with a brief mention of the broad
class of approaches taken to solve the reachability problem. We focus on set-based tech-
niques for systems with linear dynamics wherein powerful tools such as SpaceEx [56]

Reachability Analysis for Cyber-Physical Systems 111

and Hylaa [18] have pushed the state of the art to large hybrid systems with thousands
of state variables. We then present some of the approaches for nonlinear systems, while
illustrating why the problem is much more challenging when the dynamics are non-
linear. We discuss emerging areas of interest, including reachability analysis for neural
networks. This paper is not meant to be an exhaustive survey of results in this area. A
recent survey by Althoff et al. is recommended for the reader who wishes to learn more
about set-based techniques [4]. The main purposes of this article are to (a) illustrate why
the problem is important but challenging; (b) highlight some important approaches to
the problem; and (c) highlight a few emerging areas where efficient and precise reach-
ability analysis techniques will play an important role.

2 Hybrid Systems and Reachability Analysis

In this section, we will briefly review some of the fundamental concepts that include (a)
models of hybrid (Cyber-Physical) systems; (b) the reachability analysis problem; (c)
decidable cases for the problem and (d) a brief overview of existing approaches.

A Brief History: The formal study of hybrid (Cyber-Physical) systems was initiated
in the early 1990s from the computer science and the control communities. In the con-
trols community, the consideration of hybrid control systems began in the late 1980s as
an attempt to formalize supervisory control wherein discrete-event systems are used to
represent “higher level” decision making which may switch between multiple “lower
level” control strategies to interact with a continuous plant [13]. Early modeling efforts
for such systems include the work of Peleties and DeCarlo [97], Gollu and Varaiya [64]
and Benveniste and Le Guernic [22]. In the computer science community, the prob-
lem of modeling and reasoning about reactive systems naturally led to the considera-
tion of timed systems followed by hybrid systems [88]. The timed-automaton model of
Alur and Dill augments automata with finitely many clocks that can trigger transitions
between states which may in turn reset these clocks [10, 11]. Hybrid systems can then
be modeled augmenting these further with physical quantities that evolve according to
simple differential equations [8, 89, 96].

The hybrid automaton model was proposed in order to unify the continuous evolu-
tion of state variables with switching due to mode changes within a single formalism.
Detailed descriptions are available elsewhere [7,84,114].

Example 1. Figure3 illustrates a hybrid automaton with four modes {m, ..., my},
continuous state variables {x1, 2, 3} and an external time-varying disturbance input
w lying in the range [—0.25, 0.25]. The dynamics inside each mode and the transitions
between modes are also shown. The transitions are defined by guards and reset maps, as
shown in the figure. The figure also shows 5000 trajectories with randomly sampled ini-
tial conditions starting from mode m; and z; € [0.3,0.5], z2 € [0.2,0.4], 23 € [0,0.4]
with the disturbance in the range [—0.25, 0.25]. Each mode is shown in a different color.
We note that only 6 out of the 5000 trajectories reach mode mo (green).

The example above shows the need for exhaustive simulations, since “corner case
behaviors” that violate safety properties are often a concern. We have encountered more

112 X. Chen and S. Sankaranarayanan

(Mode: ms) Mode: m4
1 = —0.5z1 + x2 + 0.2w 1 = 0.5z1 —z2 + 0.1w I
Zro = —x1 + 0.2z3 — 0.2w 2o = x1 — 0.223 — 0. 1w I 3
T3 = T2 +T1 —w X3 =xTo —x1 +W I 2
t1,t3-()_tz,t4 11,t12-(!.tg,tw 1
~ ‘ \‘\'\'\-. l 0
Mode: my Mode: mo
71 = 0.521 — x2 — 0.5w ;= —0.521 + 2 + 0.2w ‘ 20
o = —x1 + 0.2z3 + 0.2w o = —x1 + 0.223 — 0.2w S— 15
Ty = —Tg — T — W T3 = —xo +x1] — W ;‘\\‘ D
~ t15, e 00 o5 T Lo
v 10 - 05
15 0.0
W
IDs | Guard Reset IDs | Guard Reset
ti,t11|Tze > 1 none to,tg |2 <1 none
t3,t12 T2 S 0 T = 1.9,.T3 =0 t4,t1() X2 2 2 T2 = 0‘1,.163 =0
t5,t13 T Z 1 none t7,t15 Tl S 1 none
t@,tl4 T S 0 X1 = 1.9,173 =0 ts,tu‘, X1 2 2 X1 = 0.1,:63 =0

Fig. 3. Description of hybrid automaton and randomly simulated trajectories.

realistic systems wherein nearly 100 million random simulations do not expose a safety
violation that can be discovered quite easily by a more exhaustive approach [121].

2.1 Reachability Analysis

Rather than rely on finitely many simulations, we wish to exhaustively explore the set
of reachable states of a hybrid system, in order to decide if a given set of unsafe states
is reachable starting from a set of initial conditions. This is known as the reachability
analysis problem.

Definition 1 (Reachability Problem). Given a hybrid system H, initial set of states
Xy, unsafe set X,, and time horizon T, is there any trajectory that starts from some
state in Xy and reaches some state in X, within the given time horizon T'?

The reachability analysis problems can be finite time horizon problems where T is
finite, or infinite time horizon problems if T' = oco. Naturally, the latter class of problems
are harder than the former. Although a finite time horizon seems restrictive, there are
many reasons why it is important: (a) often, it is known that failures would manifest
within a finite time horizon if at all; (b) in many cases the reachability analysis problem
has uncertain time varying parameters that makes the model invalid for infinite time
horizons; or (c) the infinite time horizon problem is often harder to solve than the finite
time horizon problem.

Reachability analysis is a fundamental verification problem for hybrid systems.
Important correctness properties of hybrid systems are naturally posed as safety prop-
erties. Reachability analysis can also be used as a primitive step for reasoning about

Reachability Analysis for Cyber-Physical Systems 113

more complex liveness properties. Therefore, the question of decidability of reachabil-
ity problem is of great interest. Unfortunately, it is known that the reachability analysis
problem is undecidable for all but the simplest classes of hybrid systems.

Asarin, Maler and Pnueli showed that hybrid systems with piece-wise constant
dynamics (the simplest dynamics possible) already have an undecidable reachability
problems for systems with 3 or more state variables [15]. Specifically, their model con-
siders a partitioning of the state-space by convex polyhedra where each partition has its
dynamics of the form Z = ¢ for a fixed ¢. At the same time, the reachability analysis
problem is undecidable for non-linear dynamical systems without any switching [94].
The finite time horizon reachability problem for linear dynamical systems (also known
as the “continuous Skolem-Pisot problem” [21]) has been shown to be decidable pro-
vided an open number-theoretic conjecture called the Schaunel conjecture is true [36].
Broadly, we note that undecidability arises separately from the presence of switching
between modes even if the dynamics are simple, or just from the continuous dynamics
themselves without switching. The reachability problem for systems combining both
switching and linear/non-linear dynamics is thus a computationally hard problem.

In the past three decades since these results, a number of sub-classes of hybrid
automata have been identified for which the reachability problem is decidable, start-
ing with Henzinger et al. [71] who defined the class of initialized rectangular hybrid
automata. Subsequently, O-minimal hybrid systems that allow for a more general class
of dynamics in each mode were introduced by Laffarriere et al. [82]. These have been
generalized by Vladimerou et al. [118]. In general, decidability results place restrictions
on the form of transitions between modes as well as the dynamics in each mode. These
restrictions ensure that the resulting system has a finite bisimulation quotient which can
be used to check any temporal logic property. However, such restrictions are often not
met by the systems which we are interested in reasoning about. As a result, numerous
approaches attempt to solve the reachability problem by over-approximating the reach-
able set of states, or proposing a semi-algorithm that may not terminate in the worst
case. The former class of approaches can help us conclude that the unsafe states are
not reachable but fail to provide concrete counterexamples, whereas the latter class of
approaches can fail by exhausting computational resources. We will now summarize a
few approaches for solving the reachability analysis problem.

Abstraction-Based Techniques: The goal is to construct a finite-state abstraction that
can be refined, possibly using counterexamples. Once the abstraction is constructed,
we solve the reachability problem on this abstraction. If the unsafe set in the abstract
state-space cannot be reached, we conclude the same for the original system. However,
abstract counterexamples can be spurious: i.e., they need not correspond to a real exe-
cution of the concrete system. This can be addressed by refining the abstraction to rule
away such counterexamples [9,12,41,61]. Interestingly, the abstractions need not nec-
essarily be finite state. For instance, Prabhakar et al. present an approach that considers
rectangular hybrid automata as abstractions [102]. Hybridization is yet another app-
roach that relies on locally abstracting nonlinear dynamics by linear dynamics while
accounting for the error [46]. Abstraction-based approaches are quite versatile since
they can be applied to a large class of hybrid systems with nonlinear dynamics. How-

114 X. Chen and S. Sankaranarayanan

ever, these approaches typically resort to tiling the state-space into discrete cells in order
to handle complex nonlinear dynamics. This often limits the number of state variables
that can be treated by these techniques.

Dynamic Programming (Hamilton-Jacobi) Approaches: In this approach, the more
general problem of controlling a hybrid system (with control and disturbance inputs) is
considered as a game between two players. The goal is to characterize a controllable
region (termed as the viability kernel), a subset of the state-space which excludes the
undesired set of states, such that the controller can keep the system within this region
no matter what disturbance signal is applied. This approach was proposed by Lygeros,
Tomlin and Sastry [85], and leads to a partial differential equation (PDE) that needs
to be solved in order to compute the controllable region. Subsequent work by Mitchell
and Tomlin uses level-set methods to solve this PDE [92,93]. The dynamic program-
ming approach is quite powerful: it applies to nonlinear systems and can compute a
set of control strategies for guaranteeing safety. We note, however, that the reachability
problems we have considered thus far do not involve control inputs. However, solving
PDEs requires expensive numerical methods whose complexity can be exponential in
the number of state variables.

Deductive Approaches: Deductive approaches are based on proving that the unsafe
states are unreachable from the initial set by obtaining (positive) invariant sets of the
hybrid system, and proving that these sets contain the initial set but exclude the unsafe
set. Such invariants can be synthesized automatically using techniques from optimiza-
tion and algebraic geometry [60,103,110,115]. However, invariant construction tech-
niques are quite limited in the kind of systems that can be proven correct. In general,
they play a supporting role inside a theorem prover that is built on top of a logic that
supports reasoning about hybrid systems. The work of Platzer et al. has constructed the
rich framework of differential dynamic logic [99, 101] and integrated this inside a theo-
rem prover Keymaera [98,100]. In general, deductive approaches can prove that unsafe
sets are not reachable. It is incumbent upon the user to deduce how the failure of a proof
can lead to the construction of a counterexample.

Set-Propagation: Set propagation approaches rely on a chosen family of sets to repre-
sent sets of states (examples include ellipsoids, polyhedra, Taylor models) [4]. At each
step, the reachable set is represented as a union of sets in this family. These algorithms
propagate these sets for a small time step A so that an approximation that is valid for
time up to ¢ is now valid for time up to ¢t + A. By repeatedly iterating this process, an
over-approximation of the reachable sets up to a finite time horizon 7T is produced. Set
propagation techniques have been investigated extensively for linear systems beginning
with the pioneering work on the tool HyTech for rectangular hybrid automata [70] and
followed by a quick succession of approaches for richer classes of hybrid systems per-
mitting nonlinear dynamics [14, 112]. Currently, set propagation techniques are capable
of analyzing linear dynamical systems with more than a billion state variables [19],
linear hybrid systems with hundreds of state-variables [56] and nonlinear systems with

Reachability Analysis for Cyber-Physical Systems 115

tens of state variables [33]. Due to the over-approximate nature of these techniques,
they are unable to produce concrete counter-example. Furthermore, these approaches
are mostly restricted to finite time horizon problems.

However, there are successful reachability analysis techniques that fail to fit neatly
into any of the categories above, or deserve to be described on their own.

Constraint Solving Approaches: An important class of approaches uses constraint
solvers to show that no counterexample trace with a given length/time bound exists for
a reachability problem. Ratschan and She achieve this by constructing an abstraction
that is refined using ideas borrowed from constraint programming [105]. Franzle et al.
use a bounded-model checking approach that encodes the reachability problem as a set
of constraints [55,72]. More recently, Kong et al. build on top of their previous work
on the dReal solver for nonlinear constraints [57] to build a reachability analyzer called
dReach [80]. An important advantage of constraint solvers lies in their ability to search
in a non chronological manner. L.e, they can search for counterexamples or prove their
absence without necessarily having to start from time ¢ = 0. However, the same factors
that make the problem challenging hamper their performance. For one, the ability to
reason about dynamical systems inside a constraint solver is a challenge. dReach uses
other reachability analysis tools for nonlinear dynamical systems to approximate the
solution to ODEs. Another challenge lies in choosing how to iteratively subdivide a
large state-space during constraint solving in order to zero in on a counterexample or
rule out counterexamples altogether.

Falsification: Whereas most approaches cited so far focus on verification, which is
typically defined as “the process of establishing the truth, accuracy, or validity of some-
thing”, approaches for falsification focus on disproving correctness by searching for
a counterexample that establishes that an unsafe state is reachable starting from some
initial state. Recently, there have been many approaches towards falsification based on
using robustness of trajectory (its minimum distance to the unsafe set) as a fitness func-
tion that is minimized repeatedly using optimization [1]. Although they do not have
guarantees of exhaustiveness, falsification techniques have been more successful in the
industry wherein they provide a form of “smart fuzz-testing” for CPS [49,78].

3 Set-Propagation Approaches

In this section, we present the so-called set propagation approach for solving the reach-
ability analysis problem. These approaches construct an over-approximation of the
reachable set by (a) choosing a family of set representations such as ellipsoids to over-
approximate sets of states; and (b) iteratively propagating the reachable state over-
approximation forward in time according to the semantics of the hybrid automaton.
Rather than attempt an exhaustive survey, we will briefly describe these approaches
and highlight some of the successes. As mentioned earlier, a comprehensive survey of
many of these techniques is available elsewhere [4]. Set-propagation approaches are
analogous to techniques such as symbolic model checking and abstract interpretation
that are commonly used for verifying digital circuits and computer software [16,45].

116 X. Chen and S. Sankaranarayanan

3.1 Linear Hybrid Systems

Linear Hybrid Systems (LHS) are characterized by multiple modes (also known as loca-
tions) and continuous states . A configuration, also called a state, of an LHS is denoted
by a pair (#, £) such that Z is the current valuation of the state variables and ¢ is the cur-
rent location. Starting from an initial state, an LHS evolves in the following way.

jump from £ to £,

invariant of the location £/

initial set in £,

invariant of the location #;

y 4 _.vi'i‘wariant of the location £';

jump from £ to £

Fig. 4. Flowpipe construction for LHS.

Continuous Evolution. The state variable values change continuously within the loca-
tion invariant under the continuous dynamics which is a linear ODE in the form of
& = AZ + Buw associated with the current location. The parameters « are used to
represent range-bounded uncertainties if there is any, and the invariant is defined by a
conjunction of linear constraints over Z. In a continuous evolution, the location of the
system does not change, and the values of Z should satisfy the invariant.

Discrete Jump. The discrete dynamics of an LHS is defined by a set of transitions. The
system instantly updates its current location according to the specification of a transi-
tion. More precisely, a transition can be made by satisfying the following requirements:
(a) The current and new locations should be the start and end locations respectively of
the transition; (b) The current state variable values should satisfy the transition guard
which is defined by a conjunction of linear constraints over Z. A transition may also
update the state variables & according to its linear reset rule.

Set-propagation approaches for LHS compute reachable sets for a bounded time
horizon [0, T']'. We illustrate the main algorithm in Fig. 4. Starting from a given initial
state set Xy, the algorithm first over-approximates the reachable set by a convex set
{2y in the time interval of [0, §] which is called the first time step according to a given
step size 0 > 0. Next, we iteratively compute the sets {21, ..., {2x_1, that are over-
approximations of the reachable sets over the time intervals [d, 2], ..., [(IN —1)d, N¢],
respectively, until N6 > T. This step is usually done by repeatedly computing the
flowpipes using the recurrent relation £2; = ¢4%(2; 1 @ V wherein V is a convex set
containing the impact from all uncertainties in a one-step evolution. When there is an
invariant associated to the location, the flowpipes should also be intersected with it in
order to exclude the unreachable states outside of the invariant. Finally, we compute
over-approximations for the reachable sets under all possible discrete jumps, which

! Such reachable sets are often called flowpipes following the early work of Feng Zhao [120].

Reachability Analysis for Cyber-Physical Systems 117

themselves form initial sets in new locations. The algorithm repeatedly performs the
three steps mentioned above, until all of executions in the time horizon are explored.

In order to represent sets, existing approaches use geometric objects such as poly-
topes [39,66,70, 109], zonotopes [62] and ellipsoids [81], or symbolic representations
for convex sets such as support functions [83]. These representations are closed under
key operations that are performed by the reachability algorithms, including linear trans-
formation and Minkowski sum in computing the recurrence relation. However, it is
still challenging to handle discrete jumps, the main difficulty comes from the compu-
tation of the intersection with transition guards. Although a few of the representations
such as polytopes are closed under intersections with sets defined by linear constraints,
no representation can efficiently perform all the required set operations. Hence, much
effort has been devoted to developing effective and efficient over-approximation algo-
rithms for various intersection types, including ellipsoid/ellipsoid intersections [106],
zonotope/hyperplane intersections [63], zonotope/polyhedron [3,5], and support func-
tion/support function [65]. The approaches are integrated into verification tools such as
SpaceEx [56] and CORA [2].

Besides the above set-based approaches, a novel approach by Duggirala et al.
focuses on producing approximations at discrete time points using numerical simu-
lations and the super-position principle for linear dynamics [51]. Such a technique is
used in the tool Hylaa [18].

3.2 Nonlinear Hybrid Systems

NonLinear Hybrid Systems (NLHS) have an anal-
ogous structure to LHS except that the continuous
dynamics may be defined by nonlinear ODEs, the
guards and invariants may be defined by nonlin-
ear constraints, and the reset rules of the jumps
may also be nonlinear. Due to these nonlineari-
ties, the reachability analysis on NLHS calls for
a different class of approaches. The challenges
are from answering the following two questions:
(i) How to compute the flowpipes for nonlin-
ear ODEs? and (ii) How to compute nonlinear
flowpipe/guard intersections? We may categorize
existing approaches as follows:

VX €D,.(f(F) € A, + Uy

Conservative Linearization of ODEs: It has VT €D, (f(F) AT 4Ty

already been shown that flowpipes for nonlinear

ODEs can be effectively computed by repeatedly ~Fig- 5. lllustration of conservative lin-
calling the following steps: (1) Conservatively lin- €arization for nonlinear ODEs
earizing the ODE to a range-bounded linear differential inclusion in the form of
Z € AZ + U in a local neighborhood in the state space; (2) Computing the flowpipes
for the linear differential inclusion in the neighborhood. The algorithm goes to the step
(1) with the last flowpipe which almost exceeds the neighborhood.

118 X. Chen and S. Sankaranarayanan

Althoff et al. [6] presented a framework that computing the reachable sets for a
nonlinear system by conservatively linearizing the ODE on the fly. The linearization
error is controlled by splitting the reachable sets. A more complex framework for over-
approximating a nonlinear ODE by an LHS, which is also called hybridization, is pre-
sented by Dang et al. [46,47]. The approach computes bounded state subspaces which
are called hybridization domain along the system executions, and linearizes the dynam-
ics in those subspaces. Then the flowpipes can be obtained using an existing method for
linear dynamics. Figure 5 illustrates hybridization approach. The flowpipes for the non-
linear ODE Z = f(&) are computed based on two linear differential inclusions, each of
which is an over-approximation of the nonlinear dynamics in its hybridization domain.

Verified Set-Valued Integration: Verified integration are set-based techniques which
were introduced to provide guaranteed solutions for initial value problems: i.e., find
Z(t) for some time ¢ > 0 for an ODE defined by & = f(&,t) with an initial condi-
tion Z(0) € Xj. The main idea of the techniques is to iteratively compute a reach-
able set over-approximation over a time step. In each integration step, starting from
the over-approximation set obtained at the end of the previous step, a new set which
is guaranteed to contain the reachable set in the current step is computed by a set-
based arithmetic such as interval arithmetic, and then verified by ensuring the con-
tractiveness of the Picard operator over the set [91]. Several well-developed interval-
based integration methods have already been implemented and released as tools such
as VNODE-LP [95] and CAPD [77]. In order to better control the overestimation, Berz
and Makino [25,87] developed the Taylor model-based integration approach. A Taylor
Model (TM) is denoted by a pair (p, I) such that p is a polynomial and I is an interval
remainder. A function f(Z) is over-approximated by a TM (p(Z), I) over an interval
domain, if for all ¥ € D, we have that f(Z) € p(Z) + I. Verified integration methods
are also used in some constraint solving-based verification tools such as iSAT [54] and
dReach [58].

Although the nonlinear continuous dynamics of an NLHS can be handled by the
above methods, it is still very challenging to deal with the flowpipe/guard intersections
since the guards may be defined by nonlinear constraints. Many reachability analysis
frameworks or tools compute these intersections by constraint solving. Ariadne [23,24]
uses intervals which are obtained from merging the interval solutions of the con-
straints defining the guard and flowpipes. In [104], Ramdani and Nedialkov described
a method to compute an intersection by solving a constraint satisfiability problem, and
use branch-and-prune to find the solution boxes. The method developed by Chen et
al. [32] uses a combination of domain contraction and range over-approximation to
over-approximate a TM flowpipe/guard intersection by a TM, and it is later imple-
mented in the tool Flow* [33].

Besides, some other approaches such as the technique implemented in the tool
C2E2 [50] which uses set propagation method under the hood but simulates trajectories
to construct discrepancy functions.

We have briefly described reachability analysis techniques based on set-propagation
in this section. Whereas the approaches for linear hybrid systems can now be considered
mature by most reasonable standards, the same cannot be said for general nonlinear

Reachability Analysis for Cyber-Physical Systems 119

hybrid systems. For instance, our own tool Flow* supports many different heuristic
strategies for computing reachable sets efficiently. The choice of such a strategy requires
setting time steps, polynomial orders, aggregation heuristics and many other details
that are internal to the algorithm. However, different choices of these parameters yield
vastly different results in terms of computation speed and the overestimation error in
the results. Understanding the interplay between these parameters will help improve
the usability of nonlinear reachability analysis techniques.

4 Scaling up Reachability Analysis

In this section, we briefly describe some novel approaches that have been applied to
scale up reachability analysis, especially for nonlinear systems. As discussed previ-
ously, the work of Bak et al. cleverly exploits the sparsity in the system’s dynamics as
well as the properties of the initial and unsafe sets to compute the projections of the
reachable sets over linear systems with billions of state variables [19]. In this section,
we will discuss some recent work on scaling up reachability analysis.

Exploiting Monotonicity: Monotone systems are those where there is a partial order
between states in the state-space such that if Z(0) < ¢(0) for two initial states, then
Z(t) < 7(t) for the respective trajectories encountered starting from these initial states.
Monotonicity is natural in many types of systems such as traffic networks. Coogan
and Arcak show how monotone systems lend themselves to efficient computation of
abstractions that can be used to solve reachability analysis problems [43,44]. In fact,
their work also extends the classic notion of monotonicity to apply to a wider class of
systems. Under these monotonicity assumptions, it can be shown that the reachable set
for a hyper-rectangular set is obtained precisely by simulating two diagonally opposite
corner points. As a result, it is possible to solve verification problems for monotone
systems with large state spaces.

Exploiting Symmetries: Another approach that exploits special structure in the sys-
tem concerns symmetries in the system description. These symmetries can be discrete
symmetries wherein permutations of the state variables can lead to the original system
back. The permutations define an equivalence class amongst the state variables, and
therefore, a smaller system can be obtained by “lumping” system variables together in
a natural manner. This approach has been shown to work for nonlinear systems derived
from gene regulatory networks [28]. However, its application requires that the initial
conditions of the lumped variables agree with each other. Another approach considers
continuous (Lie) symmetries, including invariance of the system’s dynamics to trans-
lations and rotations of the coordinate frames. This is a powerful approach that can
be exploited to speed up reachability analysis. Maidens and Arcak exploit symmetries
for backward reachability in order to synthesize controllers using the dynamic pro-
gramming framework [86]. A different approach to ensuring efficiency by exploiting
symmetry is considered by Sibai et al. [111], particularly for the case when a system
involves multiple agents. Their approach uses previously caches reachable set compu-
tations: for instance, some set X A is reachable from some other set X; in time A.

120 X. Chen and S. Sankaranarayanan

Symmetry allows us to reuse this information for a different set Y that may not be the
same as X; but related to it through a transformation. An almost identical approach
was also adopted (independently) by the second author jointly with Chou and Yoon,
wherein they show how reachable sets can be pre-computed offline in order to sup-
port rapid table lookups to perform predictive runtime monitoring [38]. This approach
was designed specifically to exploit invariance to rotation and translations for vehicle
models.

Decompositions Based on System Structure: Decompositions are a very promising
approach to reducing reachability problems for systems over higher dimensional state-
spaces into problems that involve multiple systems over a subset of the state variables.
The key idea is to consider how the state-variables in the dynamics depend on each
other through a dependency graph.

Figure 6 shows an example of
a Dubin’s vehicle with a “sampled-

data” control strategy where the i = v cos(y)

control inputs u;, ug are computed y = v sin(y)

using the state at a previous time ¥ = us e'.@ @
step. Therefore, for the duration of U = ug @"# @
a time step A, they may be thought w1 (¢ ()Y

+ A) = fi(z(t),y
)5y

uz(t+A) = fa(z(t),y(t))

of as a constant. Thus, instead
of considering 4 state variables

)

together, the reachability algorithm
can separately integrate the sub-
systems for ¢, v and use these in
turn to separately compute reach-

Fig. 6. A 2 dimensional Dubin’s vehicle model and its
dependency graph. The dashed line shows feedback
from the vehicle position at a previous time step to the
control inputs at the subsequent time step.

able set estimates for x,y. These
are effectively systems with a sin-
gle state variable. This idea was considered independently by Mo Chen et al. [29,30] in
the context of the Hamilton-Jacobi approach and by the authors of this paper in the con-
text of nonlinear set-based reachability [35]. In both cases, a dependency graph is con-
structed and decomposed into strongly connected components. Furthermore, our work
also focused on approximate methods by “cutting” continuous feedback loops. Decom-
position methods are very powerful in that they allow us to treat “loosely coupled” sys-
tems with hundreds of state variables. Recently, Sankaranarayanan used a tree-width
decomposition approach to consider overlapping partitions of the system variables. The
system is then projected into multiple abstract subsystems each involving one of the par-
titions. The key idea is that the partitions can exchange information using an algorithm
inspired by belief propagation [108].

Although, we have presented a few promising approaches to scaling up reachabil-
ity analysis, there are currently numerous challenges that require new approaches. We
mention a few promising areas for future work.

Model Order Reductions: The reachability problem for large CPS often involve safety
properties that are expressed over very few system variables. It is thus interesting to con-

Reachability Analysis for Cyber-Physical Systems 121

sider techniques akin to model-order reductions that can speed up reachability analysis.
Model-order reductions have been explored in the past by using standard approaches
in that area to reduce the dimensionality of the state-space [37,67]. However, these
approaches do not preserve soundness. Recent approaches that have exploited the fact
that initial conditions and unsafe sets involve a few of the system variables with great
success and without sacrificing soundness for linear dynamical systems [19]. A new
general approach to such reductions that allows us to avoid computing reachability
information for “unnecessary” state variables in a sound manner is needed.

Koopman Operator-Based Linearization: Another promising approach is to convert
linear systems into nonlinear systems in a higher dimensional space through the theory
of Koopman operators [90]. The key idea here is to consider a new state-space in terms
of functions {f1(Z), ..., fn(Z)} wherein the derivative of each f; can be written as
an affine function of the other functions. This helps us abstract the trajectories of the
system by a linear system. Reachability analysis over this system gives us reachable
set over-approximations of the original nonlinear systems. The key here is to discover
appropriate basis functions f; (so-called Koopman invariant subspace), and there is no
guarantee that these functions will be polynomials. Earlier work by Sankaranarayanan
explored an iterative approach to discovering a basis where f; are all polynomials [107].
However, there is no guarantee that such a basis would exist. More recently, Bak et
al. present an algorithm that assumes that a Koopman-invariant subspace is known or
approximated through techniques such as dynamic mode decomposition. It then shows
how the resulting reachability analysis problem can be solved [17]. In general, ideas
such as Koopman operator-based linearization provide alternatives to existing ways of
abstracting nonlinear dynamics which could be an interesting way forward to make
reachability analysis more scalable.

S Neural Network Controlled Systems

With the rapid development of machine learning techniques, more and more CPS are
using learning-enabled components such as neural networks for making decisions in
strategic situations. Since most of such learning-enabled CPS are safety-critical, it is
important to develop new methods for ensuring their safety. However, most of the ver-
ification methods developed for pure discrete or even hybrid systems can hardly be
applied due to the complex system behavior produced by the interaction between the
learning-enabled components and the others.

Recently, a great amount of work has been devoted to developing new formal meth-
ods for verifying neural network controlled systems (NNCS) which are a basic class of
learning-enabled CPS but very challenging to verify. Figure 7 shows the formal model
of NNCS. It is a class of sampled-data systems in which the plant, i.e., the continuous
dynamics, is defined by an ODE over the state variable(s) x and the control input(s) u,
while the controller is a Feed-forward Neural Network (FNN). Given a control step size
0. > 0, at the time t = kd,. forevery k = 0, 1, ..., the controller reads the current state
of the plant and computes the control input which will be used immediately for §.-time,
i.e., in the current control step, by the plant. Since a control input is obtained from the

122 X. Chen and S. Sankaranarayanan

FNN, the computation time is ignored in the system execution due to the fast response
of neural networks.

controller x(1) % %

X, = D(xp, kS,):

/- g = k() = K(®(xg, k5,))

X7 Seell.- .
i = £t 1) = 6, K(@(x,K6,)
0 k6, (k+ 16,
Fig. 7. Model of NNCS Fig. 8. Dependency on the initial state

NNCS are continuous systems but not necessarily differentiable due to the non-
differentiable activation functions such as ReLU in the neural networks. Given an
NNCS, the system execution from an initial state z is deterministic and can be defined
by a flow map function ® such that ®(x¢,t) denotes the system state at a future time
t > 0. According to the behavior of NNCS, for k = 0,1,..., z; = ®(xo, kd.) is the
initial state of the (k+1)-st control step, and the control input used in that step is derived
as ux, = k(x) wherein k(-) denotes the input-output mapping of the FNN controller.
Hence, not only the reachable states but also the control inputs in a system execution
are determined by the initial state xg. Figure 8 illustrates the dependency between a
reachable state and the initial state. In the case of a set Xy of initial states, the exact
reachable set at a time ¢ > 0 is denoted by ® (X,) = {®(zo,t) | xo € X}, and the
set of the control inputs used in the (k + 1)-st step is given by U, = (X)) wherein
Xk = ®(Xo, kd..). The core technique in a reachability analysis approach for NNCS is
an algorithm to over-approximate the range of the flow map ® over a time interval w.r.t.
a given set of initial states.

Most of the existing reachability analysis methods use a set-propagation scheme to
compute over-approximate reachable set segments, i.e., flowpipes, over a finite number
K of control steps. Starting with a given initial set Xy = X, the main algorithm
repeatedly performs the following two steps to compute the flowpipes in the (k + 1)-st
control step for k =0,1,..., K — 1:

(i) Computing the output range of the controller. In this step, a set U, which is guar-
anteed to contain all of the control inputs in Uy, is computed.

(ii) Flowpipe computation for the plant. The step computes the flowpipes for the plant
ODE & = f(x,u) with the local initial set X and the control input range u € Us.
Then the local initial set of the next iteration is computed as X k+1 Which is an
over-approximation of ®(Xy, (k + 1)d.).

They can be classified as follows, based on the over-approximation schemes.

Directly Over-Approximating Reachable Sets. A reachability analysis algorithm on
NNCS can be developed as a combination use of a method for computing FNN output

Reachability Analysis for Cyber-Physical Systems 123

ranges and an existing flowpipe construction technique for ODEs. To do so, one may
need to use a uniform set representation for FNN output ranges and ODE flowpipes.
Many FNN output ranges analysis techniques [53,59,74,79,116,119] can be extended
and work cooperatively with the existing reachability tools for ODEs [2,33,95]. The
main advantage of this scheme is twofold. Firstly, there is no need to develop a new
technique from scratch, and the correctness of the composed approach can be proved
easily based on the correctness of the existing methods. Secondly, the performance of
the approach is often good since it can use well engineered tools as primitives. However,
on the other hand, the relationship between the control inputs and the plant states (see
Fig. 8) are not explicitly represented in this approach. This may lead to a overestima-
tion when the plant dynamics is nonlinear or the initial set is large, making the resulting
bounds less useful in proving properties of interest.

Over-Approximating Flow Map Functions. More accurate over-approximations can be
obtained if a reachability method tries to over-approximate the flow map function ®
instead of its image. It is well-known that functional over-approximations such as TMs
have an apparent advantage in accuracy over the pure range over-approximation meth-
ods for nonlinear dynamical systems [31]. Recent work has applied interval, polynomial
and TM arithmetic to obtain over-approximations for NNCS flow maps [52,73,76].
Those techniques are often able to compute more accurate flowpipes than the meth-
ods in Category (A). On the other hand, the functional over-approximation methods
are often computationally expensive due to the computation of nonlinear multivariate
polynomials for tracking the dependencies.

Neural Network Control Systems are an emerging area that has seen an explosion
of interest in the recent years. Persistent challenges include the need to handle ever
larger networks and also the need to integrate rich sensor inputs from sensors such as
camera and LiDAR. This poses a hard modeling challenge that requires us to link the
state of the system with the possible inputs that these sensors may provide. The work of
Shoukry et al. presents an interesting case for solving this challenge when the system’s
operating environment is known [113]. This paper represents a very promising line of
work that can benefit from further investigation.

6 Conclusions

We have thus far introduced a wide variety of techniques that have been explored for
solving the reachability analysis of CPS, integrating ideas from diverse disciplines,
ranging from Logic to control theory. We have also briefly surveyed exciting new fron-
tiers, including the emerging topic of verifying safety of systems controlled by neural
networks. While it is clear that the research on reachability analysis techniques have
come a long way, numerous challenges remain. For one, many of the techniques remain
inaccessible to control engineers due to many reasons. There is a gap between the rich
expressive modeling formalisms that are used by engineers such as Simulink/Stateflow,
and the capabilities of existing reachability analysis tools that work on hybrid automata
models. The translation from one to another is not simple. Tools like C2E2 are seek-
ing to bridge this gap by allowing model specifications inside Stateflow [50], but more

124 X. Chen and S. Sankaranarayanan

needs to happen along this front before such tools can be said to be developer friendly.
Besides these practical concerns, there are numerous open challenges and new frontiers.
One such area that has not been mentioned in this survey concerns the reachability anal-
ysis of stochastic hybrid systems. Another open area concerns reachability analysis for
systems whose feedback control inputs are specified in an implicit manner: i.e., they are
specified as minimizers of some cost functions. Such systems arise from many domains
such as model-predictive control algorithms or physics-based models that are described
using potential fields.

To conclude, we revisit the question in the title “Are we there yet?”. Briefly, we
would conclude at this time that reachability analysis of CPS has gone places without
yet arriving at a destination!

Acknowledgments. We thank Klaus Havelund for helpful comments and suggestions. Sankara-
narayanan gratefully acknowledges support from the NSF through award numbers 1815983,
1836900 and 1932189. Chen gratefully acknowledges the support from the US Air Force
Research Laboratory (AFRL) under contract FA8650-16-C-2642. All opinions are those of the
authors and not necessarily of NSF or AFRL.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic tem-
poral logic falsification of cyber-physical systems. ACM Trans. Embedded Comput. Syst.
(TECS) 12(12s), 95 (2013)

2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of ARCH 2015, EPiC Series
in Computer Science, vol. 34, pp. 120-151. EasyChair (2015)

3. Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems using
a combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst 4(2), 233-249
(2010)

4. Althoft, M., Frehse, G., Girard, A.: Set propagation techniques for reachability analysis.
Annu. Rev. Control Robot. Auton. Syst. 4, 369-395 (2021)

5. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability anal-
ysis of hybrid systems. In: Proceedings of HSCC 2012, pp. 45-54. ACM (2012)

6. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncer-
tain parameters using conservative linearization. In: Proceedings of CDC 2008, pp. 4042—
4048. IEEE (2008)

7. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)

8. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P-H.: Hybrid automata: an algorith-
mic approach to the specification and verification of hybrid systems. In: Grossman, R.L.,
Nerode, A., Ravn, A.P,, Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209-229.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

9. Alur, R., Dang, T., Ivanci¢l, F.: Counter-example guided predicate abstraction of hybrid
systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208-223.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_15

10. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP
1990. LNCS, vol. 443, pp. 322-335. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0032042

11. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183-235
(1994)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-36577-X_15
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/BFb0032042

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Reachability Analysis for Cyber-Physical Systems 125

Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid sys-
tems. Proc. IEEE 88(7), 971-984 (2000)

Antsaklis, P.J., Passino, K.M., Wang, S.J.: An introduction to autonomous control systems.
IEEE Control Syst. Mag. 11(4), 5-13 (1991)

Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365-370. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_30

Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoret. Comput. Sci. 138, 35-66 (1995)

Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bak, S., Bogomolov, S., Duggirala, P.S., Gerlach, A.R., Potomkin, K.: Reachability of
black-box nonlinear systems after Koopman operator linearization. In: Analysis and Design
of Hybrid Systems (ADHS), IFAC-PapersOnLine, vol. 54, pp. 253-258. Elsevier (2021)
Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reachability
for linear systems. In: Proceedings of HSCC 2017, pp. 173-178. ACM (2017)

Bak, S., Tran, H.-D., Johnson, T.T.: Numerical verification of affine systems with up to
a billion dimensions. In: HSCC 2019, pp. 23-32. Association for Computing Machinery,
New York (2019)

Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static anal-
ysis. In: POPL 2002: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 1-3. ACM, New York (2002)

Bell, P.C., Delvenne, J.-C., Jungers, R.M., Blondel, V.D.: The continuous Skolem-Pisot
problem. Theoret. Comput. Sci. 411(40), 3625-3634 (2010)

Benveniste, A., Le Guernic, P.: Hybrid dynamical systems theory and the signal language.
IEEE Trans. Autom. Control 35(5), 535-546 (1990)

Benvenuti, L., et al.: Reachability computation for hybrid systems with Ariadne. In: Pro-
ceedings of the 17th IFAC World Congress. IFAC Papers-OnLine (2008)

Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Ariadne: domi-
nance checking of nonlinear hybrid automata using reachability analysis. In: Finkel, A.,
Leroux, J., Potapov, 1. (eds.) RP 2012. LNCS, vol. 7550, pp. 79-91. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33512-9_8

Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliable Comput. 4, 361-369 (1998)

Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST.
STTT 9(5-6), 505-525 (2007)

Blanchet, B., et al.: A static analyzer for large safety-critical software. In: Programming
Language Design & Implementation, pp. 196-207. ACM Press (2003)

Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of dif-
ferential equivalences. ACM SIGPLAN Not. 51, 137-150 (2016)

Chen, M., Herbert, S.L., Vashishtha, M.S., Bansal, S., Tomlin, C.J.: Decomposition of
reachable sets and tubes for a class of nonlinear systems. arXiv e-prints (2017)

Chen, M., Herbert, S., Tomlin, C.: Exact and efficient Hamilton-Jacobi-based guaranteed
safety analysis via system decomposition. In: IEEE International Conference on Robotics
and Automation (ICRA) (2017). arXiv:1609.05248

Chen, X.: Reachability analysis of non-linear hybrid systems using Taylor models. Ph.D.
thesis, RWTH Aachen University (2015)

Chen, X., Abrahém, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
linear hybrid systems. In: Proceedings of the 33rd IEEE Real-Time Systems Symposium
(RTSS 2012), pp. 183-192. IEEE Computer Society (2012)

https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/978-3-642-33512-9_8
http://arxiv.org/abs/1609.05248

126

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

X. Chen and S. Sankaranarayanan

Chen, X., Abrahdm, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid
systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258-263.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

Chen, X., Dutta, S., Sankaranarayanan, S.: Formal verification of a multi-basal insulin infu-
sion control model. In: Workshop on Applied Verification of Hybrid Systems (ARCH), p.
16. Easychair (2017)

Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems.
In: IEEE Real Time Systems Symposium (RTSS), pp. 13-24. IEEE Press (2016)

Chonev, V., Ouaknine, J., Worrell, J.: On the skolem problem for continuous linear dynam-
ical systems. In: ICALP 2016, LIPIcs, vol. 55, pp. 100:1-100:13. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik (2016)

Chou, Y., Chen, X., Sankaranarayanan, S.: A study of model-order reduction techniques
for verification. In: Abate, A., Boldo, S. (eds.) NSV 2017. LNCS, vol. 10381, pp. 98-113.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63501-9_8

Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehicle mod-
els using Bayesian estimation and reachability analysis. In: International Conference on
Intelligent Robots and Systems (IROS), pp. 2111-2118. IEEE Press (2020)

Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for dynamic
systems. In: Proceedings of IEEE CDC. IEEE Press (1998)

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24730-2_15

Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification
of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel,
H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192-207. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X_14

Edmund, M., Clarke, O.G., Peled, D.A: Model Checking. MIT Press, Cambridge (1999)
Coogan, S.: Mixed monotonicity for reachability and safety in dynamical systems. In: 2020
59th IEEE Conference on Decision and Control (CDC), pp. 5074-5085. IEEE Press (2020)
Coogan, S., Arcak, M.: Efficient finite abstraction of mixed monotone systems. In: Girard,
A., Sankaranarayanan, S. (eds.) HSCC 2015, pp. 58-67. ACM (2015)

Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)

Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Pro-
ceedings of HSCC 2010, pp. 11-20. ACM (2010)

Dang, T., Testylier, R.: Hybridization domain construction using curvature estimation. In:
Proceedings of HSCC 2011, pp. 123-132. ACM (2011)

Delmas, D., Souyris, J.: Astrée: from research to industry. In: Nielson, H.R., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 437-451. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74061-227

Donzé, A.: BreachFlows: simulation-based design with formal requirements for industrial
CPS (extended abstract). In: Workshop on Autonomous Systems Design (ASD 2020). Ope-
nAccess Series in Informatics (OASIcs), vol. 79, pp. 5:1-5:5 (2020)

Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for state-
flow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68-82.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of linear
systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 477-494.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_26

Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback sys-
tems using regressive polynomial rule inference. In: Ozay, N., Prabhakar, P. (eds.) Proceed-
ings of HSCC 2019, pp. 157-168. ACM (2019)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-63501-9_8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/3-540-36577-X_14
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-319-41528-4_26

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Reachability Analysis for Cyber-Physical Systems 127

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feed-
forward neural networks. In: Dutle, A., Muifioz, C., Narkawicz, A. (eds.) NFM 2018.
LNCS, vol. 10811, pp. 121-138. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77935-59

Eggers, A., Ramdani, N., Nedialkov, N., Frinzle, M.: Improving SAT modulo ODE for
hybrid systems analysis by combining different enclosure methods. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172-187. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24690-6_13

M. Frénzle, C. Herde, S. Ratschan, T. Schubert, Teige, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex Boolean structure. JSAT-J. Satisfiability
Boolean Model. Comput. 1, 209-236 (2007). Special Issue on SAT/CP Integration

Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379-395. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1_30

Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208-214. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo odes. In: Proceedings of FMCAD
2013, pp. 105-112. IEEE (2013)

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: Pro-
ceedings of S& P 2018, pp. 3—18. IEEE Computer Society (2018)

Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking positive
invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst. Struct. 47, 19-43
(2017)

Ghosh, R., Tomlin, C.J.: Symbolic reachable set computation of piecewise affine hybrid
automata and its application to biological modeling: Delta-Notch protein signaling. IEE
Trans. Syst. Biol. 1(1), 170-183 (2004)

Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele,
L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291-305. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31954-2_19

Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems reach-
ability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp.
215-228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_16
Gollu, A., Varaiya, P.: Hybrid dynamical systems. In: Proceedings of the 28th IEEE Con-
ference on Decision and Control, vol. 3, pp. 2708-2712 (1989)

Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540-554. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_40

Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear
relation analysis. Formal Methods Syst. Des. 11(2), 157-185 (1997)

Han, Z., Krogh, B.: Reachability analysis of hybrid control systems using reduced-order
models. In: Proceedings of the American Control Conference, vol. 2, pp. 1183-1189, Jan-
uary 2004

Harrison, J.: Formal methods at Intel - an overview. In: Proceedings of the Second NASA
Formal Methods Symposium (NFM) (2010)

Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA PathFinder. Int.
J. Softw. Tools Technol. Trans. 2(4), 366-381 (2000)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-642-24690-6_13
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-540-78929-1_16
https://doi.org/10.1007/978-3-642-02658-4_40

128

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.
85.

86.

87.

88.

X. Chen and S. Sankaranarayanan

Henzinger, T.A., Ho, P.-H.: HyTech: the Cornell hybrid technology tool. In: Antsaklis, P.,
Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 265-293. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3_14

Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.. What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57(1), 94-124 (1998)

Herde, C., Eggers, A., Franzle, T., Teige, M.: Analysis of hybrid systems using HySAT. In:
Third International Conference on Systems 2008. ICONS 2008, pp. 13-18. IEEE (2008)
Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis of neural-
network controlled systems. ACM Trans. Embed. Comput. Syst. 18(5s), 106:1-106:22
(2019)

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural net-
works. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3-29.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

Ivanci¢, F., Shlyakhter, ., Gupta, A., Ganai, M.K.: Model checking C programs using f-soft.
In: ICCD, pp. 297-308. IEEE Computer Society (2005)

Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, 1.: Verifying the safety of
autonomous systems with neural network controllers. ACM Trans. Embed. Comput. Syst.
20(1), 7:1-7:26 (2021)

Kapela, T., Mrozek, M., Pilarczyk, P., Wilczak, D., Zgliczynski, P.. CAPD - a rigorous
toolbox for computer assisted proofs in dynamics. Technical report, Jagiellonian University
(2010)

Kapinski, J., Deshmukh, J.V., Jin, X, Ito, H., Butts, K.R.: Simulation-guided approaches for
verification of automotive powertrain control systems. In: American Control Conference,
ACC 2015, Chicago, IL, USA, 1-3 July 2015, pp. 4086—4095. IEEE (2015)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9.5

Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: §-reachability analysis for hybrid systems.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200-205. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch,
N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202-214. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46430-1_-19

Lafferriere, G., Pappas, G., Sastry, S.: O-minimal hybrid systems. Math. Control Sig. Syst.
13, 1-21 (2000)

Guernic, C.L., Girard, A.: Reachability analysis of linear systems using support functions.
Nonlinear Anal. Hybrid Syst. 4(2), 250-262 (2010). IFAC World Congress 2008

Lygeros, J.: Lecture notes on hybrid systems (2004). Notes for ENSIETA short course
Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid
systems. Automatica 35(3), 349-370 (1999)

Maidens, J., Arcak, M.: Exploiting symmetry for discrete-time reachability computations.
IEEE Control Syst. Lett. 2(2), 213-217 (2018)

Makino, K., Berz, M.: Remainder differential algebras and their applications. In: Berz, M.,
et al. (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 63-75.
SIAM (1996)

Maler, O.: Amir Pnueli and the dawn of hybrid systems. In: Proceedings of the Hybrid
Systems: Computation and Control, pp. 293-295. Association for Computing Machinery
(2010)

https://doi.org/10.1007/3-540-60472-3_14
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/3-540-46430-1_19

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Reachability Analysis for Cyber-Physical Systems 129

Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: de Bakker, J.W., Huiz-
ing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 447-484.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0032003

Mauroy, A., Mezié, 1., Susuki, Y. (eds.): The Koopman Operator in Systems and Control.
LNCIS, vol. 484. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35713-9
Meiss, J.D.: Differential Dynamical Systems. SIAM Publishers (2007)

Mitchell, I.: Toolbox of level-set methods. Technical report, UBC Department of Computer
Science Technical Report TR-2007-11 (2007)

Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In: Lynch,
N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310-323. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46430-1-27

Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64,
2354-2357 (1990)

Nedialkov, N.S.: Implementing a rigorous ode solver through literate programming. In:
Rauh, A., Auer, E. (eds.) Modeling. Design, and Simulation of Systems with Uncertain-
ties, volume 3 of Mathematical Engineering, chapter Mathematical Engineering, pp. 3-19.
Springer, Berlin Heidelberg (2011)

Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis
of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-
1992. LNCS, vol. 736, pp. 149-178. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57318-6_28

Peleties, P., DeCarlo, R.: A modeling strategy with event structures for hybrid systems. In:
Proceedings of the 28th IEEE Conference on Decision and Control, vol. 2, pp. 1308-1313
(1989)

Platzer, A.: Logical Foundations of Cyber-Physical Systems, 1st edn. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

Platzer, A., Clarke, E.: Computing differential invariants of hybrid systems as fixedpoints.
Formal Methods Syst. Des. 35(1), 98-120 (2009)

Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems (sys-
tem description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IICAR 2008. LNCS
(LNAI), vol. 5195, pp. 171-178. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7_-15

Platzer, A., Quesel, J.-D.: Logical verification and systematic parametric analysis in train
control. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 646-649.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_55

Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR
for rectangular hybrid systems. Formal Methods Syst. Des. 46(2), 105-134 (2015). https:/
doi.org/10.1007/s10703-015-0225-4

Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates.
In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477-492. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32

Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear hybrid
systems using interval constraint-propagation techniques. Nonlinear Anal. Hybrid Syst.
5(2), 149-162 (2011)

Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based
abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
573-589. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_37
Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion.
IEEE Trans. Syst. Man Cybern. Part B 32(4), 430442 (2002)

Sankaranarayanan, S.: Change of basis abstractions for non-linear hybrid systems. Nonlin-
ear Anal. Hybrid Syst 19, 107-133 (2016)

https://doi.org/10.1007/BFb0032003
https://doi.org/10.1007/978-3-030-35713-9
https://doi.org/10.1007/3-540-46430-1_27
https://doi.org/10.1007/3-540-57318-6_28
https://doi.org/10.1007/3-540-57318-6_28
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-78929-1_55
https://doi.org/10.1007/s10703-015-0225-4
https://doi.org/10.1007/s10703-015-0225-4
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-540-31954-2_37

130

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

X. Chen and S. Sankaranarayanan

Sankaranarayanan, S.: Reachability analysis using message passing over tree decompo-
sitions. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 604-628.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_30
Sankaranarayanan, S., Dang, T., Ivanci¢, F.: Symbolic model checking of hybrid systems
using template Polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 188-202. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78800-3_14

Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems.
Formal Methods Syst. Des. 32(1), 25-55 (2008)

Sibai, H., Mokhlesi, N., Fan, C., Mitra, S.: Multi-agent safety verification using symmetry
transformations. In: TACAS 2020. LNCS, vol. 12078, pp. 173-190. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45190-5_10

Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of hybrid
dynamical system using checkmate. In: ADPM 2000 (2000). http://www.ece.cmu.edu/
~webk/checkmate

Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled autono
mous systems. In: HSCC, pp. 147-156. ACM (2019)

Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer,
New York (2009). https://doi.org/10.1007/978-1-4419-0224-5

Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R., Pap-
pas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600-614. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24743-2_40

Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 3-17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8_1

Visser, W., Havelund, K., Brat, G., Park, S.J., Lerda, F.: Model checking programs. Autom.
Softw. Eng. 10(2), 203-232 (2003)

Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.: STORMED hybrid sys-
tems. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ing6lfsdéttir, A.,
Walukiewicz, 1. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 136-147. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70583-3_12

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural
networks using symbolic intervals. In: Proceedings of USENIX Security 2018, pp. 1599—
1614. USENIX Association (2018)

Zhao, F.: Automatic analysis and synthesis of controllers for dynamical systems based on
phase-space knowledge. Ph.D. thesis (1998)

Zutshi, A., Sankaranarayanan, S., Deshmukh, J., Jin, X.: Symbolic-numeric reachability
analysis of closed-loop control software. In: Hybrid Systems: Computation and Control
(HSCC), pp. 135-144. ACM Press (2016)

https://doi.org/10.1007/978-3-030-53288-8_30
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-030-45190-5_10
http://www.ece.cmu.edu/~webk/checkmate
http://www.ece.cmu.edu/~webk/checkmate
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.1007/978-3-540-24743-2_40
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-540-70583-3_12

Regular Submissions

®

Check for
updates

Towards Better Test Coverage: Merging
Unit Tests for Autonomous Systems'

Josefine B. Graebener®™) | Apurva Badithela, and Richard M. Murray

California Institute of Technology, Pasadena, CA 91125, USA
{jgraeben, apurva,murray}@caltech.edu

Abstract. We present a framework for merging unit tests for
autonomous systems. Typically, it is intractable to test an autonomous
system for every scenario in its operating environment. The question of
whether it is possible to design a single test for multiple requirements of
the system motivates this work. First, we formally define three attributes
of a test: a test specification that characterizes behaviors observed in a
test execution, a test environment, and a test policy. Using the merge
operator from contract-based design theory, we provide a formalism to
construct a merged test specification from two unit test specifications.
Temporal constraints on the merged test specification guarantee that
non-trivial satisfaction of both unit test specifications is necessary for a
successful merged test execution. We assume that the test environment
remains the same across the unit tests and the merged test. Given a test
specification and a test environment, we synthesize a test policy filter
using a receding horizon approach, and use the test policy filter to guide
a search procedure (e.g. Monte-Carlo Tree Search) to find a test policy
that is guaranteed to satisfy the test specification. This search procedure
finds a test policy that maximizes a pre-defined robustness metric for the
test while the filter guarantees a test policy for satisfying the test specifi-
cation. We prove that our algorithm is sound. Furthermore, the receding
horizon approach to synthesizing the filter ensures that our algorithm is
scalable. Finally, we show that merging unit tests is impactful for design-
ing efficient test campaigns to achieve similar levels of coverage in fewer
test executions. We illustrate our framework on two self-driving examples
in a discrete-state setting.

Keywords: Testing of autonomous systems - Assume-guarantee
contracts + Receding horizon synthesis

1 Introduction

Rigorous test and evaluation of autonomous systems is imperative for deploy-
ing autonomy in safety-critical settings [25]. In the case of testing self-driving

J. B. Graebener and A. Badithela—Contributed equally to this work.

The code for examples given in this paper can be found at: https://github.com/jgraeb/
MergeUnitTests.

© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 133155, 2022.
https://doi.org/10.1007/978-3-031-06773-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_7&domain=pdf
https://github.com/jgraeb/MergeUnitTests
https://github.com/jgraeb/MergeUnitTests
https://doi.org/10.1007/978-3-031-06773-0_7

134 J. B. Graebener et al.

cars, operational tests are constructed manually by experienced test engineers
and can be combined with test cases generated in simulators using falsification
techniques [11]. In addition, operational testing of self-driving cars on the road
is expensive, and would need to be repeated after every design iteration [13].
In this paper, we pose the question of whether it is possible to check multiple
requirements in a single test execution. Addressing this question is the first step
towards optimizing for the largest number of test requirements checked in as few
operational tests as possible.

The study of principled approaches to testing, verification and validation is
a relatively young but growing research area. In the formal methods commu-
nity, falsification is the technical term referring to the study of optimization
algorithms, typically black-box, and sampling techniques to search for inputs
that result in the system-under-test violating its formal requirements on input-
output behavior [1,2,8,9,12,24]. Falsification algorithms require a metric defined
over temporal logic requirements to quantitatively reason about the degree to
which a formal requirement has been satisfied. Assuming that the design of the
autonomous system is black-box, falsification algorithms seek to find inputs that
minimize the metric associated with satisfying formal requirements. The reason-
ing here is that minimizing this metric brings the system closer to violating its
requirements, thus being a critical test scenario [14]. Formal methods literature
uses falsification and testing interchangeably. In addition to manually construct-
ing operational tests, falsification is used to find critical scenarios in simulation
and the test environment parameters characterizing these critical scenarios are
used for operational testing [11]. Falsification aims to find parameters of the test
environment that lead the system to violate its requirements. However, our app-
roach is different in that we construct a test with respect to a test specification,

Simulation model Defines system Characterizes the difficulty
of the system behavior of the test trace
System System Robustness
Desired behavior Model Specification Metric
that shall
be observed ‘
during the test \ l /
I:I Merge Test Test Filter Guided Test g
Unit Test i 0 | 0 — o :
Specifications Synthesis Policy Search Reactive Test

Specifications Policy

1 G

Test
Environment

Defines test track layout
and test agents

Fig. 1. Overview of the proposed framework. The blocks the left represent the inputs
to the algorithm that define the unit tests, the blocks on the top represent inputs
describing the system under test, the building blocks of our approach are shown in the
blue shaded box, and the test policy is the result of the algorithm. (Color figure online)

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 135

which characterizes a set of desired test executions. For example, consider an
autonomous car on a test track. The requirement for the autonomous car is to
drive around the track and follow traffic rules while the human drivers of the test
vehicles are instructed to drive in a specific fashion (ex: maintaining some dis-
tance between each other). These guidelines given to the test drivers constitute
the test specification, which is not known to the system-under-test. Instead of
considering all possible test environment policies, the test specification restricts
the space of scenarios that our test policy search algorithm searches over. It also
leverages reactivity: test scenarios are not planned in advance, but the test envi-
ronment agents will react depending on the actions taken by the system under
test.

Our contributions are the following. First, we formally characterize a test
by three attributes, a test specification, a test environment and a test policy.
Second, we leverage the merge operator from assume-guarantee contract theory
to merge two unit test specifications into a merged specification, resulting in a
single test that checks the test specifications of both unit tests. Furthermore, if
necessary, we characterize temporal constraints on the merged test specification.
Finally, we use Monte Carlo Tree Search (MCTS) to search for a test environment
policy corresponding to the test specification, and use receding horizon synthesis
techniques to prevent the search procedure from exploring policies that violate
the test specification. This framework is illustrated in Fig. 1.

2 Background

In this work, we choose Linear Temporal Logic (LTL) to represent the system
and test specifications. LTL is a temporal logic language for describing linear-
time properties over traces of computer programs and formally verifying their
properties [23]. Although first introduced to formally describe properties of com-
puter programs, LTL has been used for formal methods applications in control
such as temporal logic synthesis of planners and controllers [15,17,26].

Definition 1 (Linear Temporal Logic (LTL) [3]). Given a set of atomic propo-
sitions AP, the syntaz of LTL is given by the following grammar:

pu=truela|pi Apa| | Op|pilhps (1)

where a € AP is an atomic proposition, A (and) and — (not) are logic operators,
and O (next) and U (until) are temporal operators. Other temporal operators
such as O (always), ¢ (eventually), (0O (always eventually), and QI (eventu-
ally always) can be derived. Let ¢ be an LTL formula over the set of atomic
propositions AP. The semantics of LTL are inductively defined over an infinite
sequence of states o = sps182 ... as follows: i) If p € AP, s; = p iff p evaluates
to true at s;, ii) s; |~ iff s; & @, i) 85 = 1 A iff 55 = o1 A s |E pa,
iv) s; = Qo iff si11 = ¢, v) si = p1ldps iff 37 > i such that for all k& € [4, j),
sk = 1 and s; = @o. An infinite sequence o = sgs1 . .. satisfies an LTL formula
©, denoted by o = ¢, iff sg = .

136 J. B. Graebener et al.

In our framework, we consider a fragment of LTL specifications in the class of
generalized reactivity of rank 1 (GR(1)) [22]. GR(1) specifications are expressive
for capturing safety (O), liveness (Q), and recurrence (J¢) requirements that are
relevant to several autonomous systems [17,26]. A GR(1) formula ¢ is as follows,

@ = (M ADp; ADOOR!) — (M A DR AOOR!), (2)

where the subscript s refers to the robotic system for which a reactive controller
is being synthesized, and '™t (2, and OO, define respectively, the initial
requirements, safety requirements and recurrence requirements on the system
denoted by s. Similarly, ¢, Op?, and OO¢?, define requirements on the envi-
ronment e of the system s. Furthermore, synthesis for GR(1) formulas has time

complexity O(|V]?), where |V| is the size of the state space [22].

Assume-Guarantee Contracts. Contract-based design was first developed
as a formal modular design methodology for analysis of component-based soft-
ware systems [7,18,19], and later applied for the design and analysis of complex
autonomous systems [10,20]. In this work, we adopt the mathematical framework
of assume-guarantee contracts presented in [5,21].

Definition 2 (Assume-Guarantee Contract). Let A be an alphabet and B(A)
be the set of all behaviors over A. A component M over the alphabet A is
defined as M C B(A). Then an assume-guarantee contract C is defined as a pair
C = (A, G), where A is a set of behaviors for assumptions on the environment
in which the component operates, and G is a set of behaviors for the guarantees
that the component provides, assuming its assumptions on the environment are
met. M is an implementation of a contract, M |= C, if and only if M C GA—-A <
MAAAN-G) =0 [4].

In this work, the assumptions and guarantees constituting assume-guarantee
contracts are LTL formulas. To facilitate the contract algebra, we will consider
contracts in their saturated form, where a contract is defined as C = (4, A — Q).
In Sect. 3 we define system and test specifications with LTL and borrow operators
from assume-guarantee contract theory in Sect. 4.1 to formally define the merge
of two unit tests.

3 Problem Setup

First we define the system under test, which we will refer to as system for
brevity, and its corresponding system specification. We assume that the system,
the system specification, and the controller are provided by the designer of the
system and cannot be modified when designing the test.

Definition 3 (Transition System). A transition system is a tuple 7 := (Q, —),
where () is a set of states and — C) X (J is a transition relation. If 3 a transition
from g1 € Q to g2 € Q, we write g1 — ¢o.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 137

Definition 4 (System). Let Vg be the set of system variables, and let Qgys
be the set of all possible valuations of V. A system S is a transition system
Tays = (Qsys, —sys), where the transition relation —ys is defined by the dynamics
of the system.

Definition 5 (System Specification). A system specification @gys is the GR(1)
formula,

Poys = (st N Doy ADOPLe) = (P10 A D3 ADORL,), (3)
where <pisr}’,ist is the initial condition that the system needs to satisfy, @5, encode

system dynamics and safety requirements on the system, and g@sfys specifies recur-
rence goals for the system. Likewise, @Bt s and go{est represent assumptions
the system has on the test environment.

The system is evaluated in a test environment, which comprises of both the
test track and test agents. A test is characterized by the test environment, a test
specification, and a test policy. Our approach differs from falsification in that we
are not generating a test strategy to stress test the system for wé‘;‘; A Opgys A
D(}(pgys. Instead, we synthesize a test for a new concept—a test specification—
which describes the set of behaviors we would like to see in a test. For example,
an informal version of a test specification is requiring test agents to “drive around
the test track at a fixed speed while maintaining a certain distance from each
other”.

Definition 6 (Test Environment). Let Vs be the set of test environment vari-
ables, and let Qest be the set of all possible valuations of Vie. A test environ-
ment T is a transition system Ties; = (Qtest, —test), Where the transition relation
—rtest 18 defined by the dynamics of the test agents.

Definition 7 (Test Specification). A test specification @iest is the GR(1) for-
mula,

Prest = (‘pégét/\mwjysADO@gys) - (‘Pégsl‘f/\D@:est/\ljogotfest/\Dw‘fest/\ljowgesz))’

4
where goé%t, @gys and <psfys, <p§gg‘§, Piest and go{est are propositional formulas from
Eq. (3). Additionally, Ovyg. . and D(}d){est describe the safety and recurrence for-
mulas for the test environment in addition to the dynamics of the test environ-
ment known to the system. Note that the system is unaware of these additional
specifications on the test environment, and the test specification is such that
the system is allowed to satisfy its requirements. Defining the test specification
in this manner allows for i) synthesizing a test in which the system, if prop-
erly designed, can meet gy, and ii) specifying additional requirements on the
test environment, unknown to the system at design time. We assume that test
specifications are defined a priori; we leave finding relevant test specifications
to future work.

138 J. B. Graebener et al.

Let Tprod = (Qprod; —prod) be a turn-based product transition sys-
tem constructed from Zgys and Tiest, where Qprod = Qsys X Qtest, and
—prodC Qprod X Qprod- In particular, for every transition (s,s’) €—gys, We
have ((s,t),(s',t)) €—proa Where t € Qies¢. Similarly, for every transition
(t,t") E—test, we have ((s,t),(s,t")) €E—=prod Where s € Qgys.

Definition 8 (Game Graph). Let Vi and Viesy be copies of the states Qproa-
Let E,ys denote the set of transitions ((s,t), (s',t)) €E—prod, and let Ficg denote
the set of transitions ((s,t), (s,t')) E—proa for some s, s’ € Qsys and ¢, € Qyest-
Then the game graph G = (V, E) is a directed graph with vertices V := Viys U
Viest and edges F := Egyg U Eyest.

Definition 9 (Policy). On the game graph G, a policy for the system is a func-
tion mgys : V*Viys — Viest such that (s, meys(w - 8)) € Egys, where s € Vyyg and
w € V*. Similarly defined, ey denotes the test environment policy, where * is
the Kleene star operator.

Definition 10 (Test Execution). A test execution o = vgv1ve ... starting from
vertex vp € V is an infinite sequence of states on the game graph G. Since G
is a turn-based game graph, the states in the test execution alternate between
Viys and Viest, so if Vi € Viyg, then vip1 = meys(vo ... V1), Let or smen (S0)
be the test execution starting from state sy € Viys for policies mgys and meest.
Let X' denote the set of all possible test executions on G. A robustness metric
p: X — Ris a function evaluated assigning a scalar value to a test execution.

Problem 1. Given system and environment transition systems, Zqys and ZTiest,
two unit test specifications @iest,1 and @est,2, and a robustness metric p, find a
test policy .., such that

* —
Thest ~— arg max P(Uwsysxmest)

Ttest (5)
s.t. O—ﬂ'SySXTrtest): (Sotcst,l A Cptcst,2) 9 V 7Tsys): (Psys,

Running Example—Lane Change. Consider the example of lane change
illustrated in Fig. 2. The system (red car) must merge into the lower lane before
the track ends, and must not collide with the test environment agents (blue
cars). Thus, the liveness requirement of changing lanes, gogys = (Ysys = 2), and
the safety requirement of not colliding with test agent ¢, =(ysys = Yrest,i A Tsys =
Ttest,i) € apgys, constitute part of the system specification ¢gys. In the two unit
tests, we have the system changing into the other lane in front of and behind
a tester car, respectively, and in the merged test, it finished its lane change
maneuver in between the tester cars.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 139

Fig. 2. Lane change example with initial (left) and final (right) configurations. The
z-coordinates are numbered from left to right, and y-coordinates are numbered top
to bottom, starting from 1. The system (red) is required to merge into the lower lane
without colliding. Merging in front of (top), behind (center), or in between (bottom)
tester agents (blue). (Color figure online)

4 Merging Unit Tests

In this section, we will outline our main approach for merging unit tests. First,
we define the notion of a merged test and use the merge operator for merging
test specifications and add temporal constraints to the test specification, if nec-
essary. Then, we construct an auxiliary graph corresponding to the merged test
specification and describe the synthesis of the test policy filter on this auxiliary
graph using a receding horizon approach.

4.1 Merging Test Specifications

The merge, also known as strong merge, operator of two contracts C; and Cs is
defined as follows,

C1-C2 = (a1 Nag, (a1 AN az) — [(a1 — g1) A (a2 — g2)]) (6)

In addition to strong merge, contract theory defines other operators over a pair of
contracts such as composition and conjunction [5,21]. Among all these operators,
strong merge is the only operator that requires assumptions from both unit
contracts (and as a result, unit test specifications) to hold true. Thus, we choose
the strong merge operator to derive the merged test specification. Given two
unit test specifications, @iest,1 and @iest,2, We can construct the corresponding
contracts C; = (a1,a1 — ¢1) and Cy = (ag,a2 — ¢2), where a; = (gogfgt A
Ogye A OO0@L,.) being the assumptions on the system (under test), and g; =
(‘Pigsztt,z A Dcpfest,i A DO@{est,i A Dw‘fest,i A Dowtfest,i) being the guarantees for unit
test <.

Remark 1. We make the following modifications to guarantees g; for brevity.
First, we assume that the only recurrence requirements in the test specification

140 J. B. Graebener et al.

is Dowtfesm, which is not a part of the system’s assumptions on the environment.
Second, we assume that the merged test environment Tiegt p, is & simple product
transition system of the unit test environments, Ziest,1 and Ziest,2. On the merged
test environment, we assume that the initial conditions goégslttl and goiggttQ are
equivalent, and test environment dynamics pi.; and @i o are equivalent.
Therefore, in merging the two unit specifications, we refer to the test guarantees

as gt = Dwé;est,i A Dow{est,i'

Definition 11 (Merged Test). From the merged contract C,, := (am,am —
gm) = C1 - Co, the specification @iest,m = @m — gm, wWhere a,, = a1 A ag, and
gm = [(a1 = g1) A (a2 — g2)] is the merged test specification. A test environment
policy Test,m for merged test specification @iestm results in a test execution

g): QOtest,m~

Lemma 1. Given unit test specifications Qiest,1 and Qiest2 such that iestm =
Gm — Gm 18 the corresponding merged test specification. Then, for every test
execution o = Qiestm Such that o = an,, we also have that o = Yresi1 and

9 ': Ptest,2-

Proof. Suppose C; and C5 are the assume-guarantee contracts corresponding to
unit test specifications @iest.1 and @rest,2. Applying strong merge operator on
contracts C7 and Cy, we get:

C1-Cy =(a1 Naz, (a1 ANaz) — [(a1 — g1) A (a2 — g2)])

(7)

:(a1 A ag,—ar V —ag V(g1 /\92))~

Thus, the merged test specification @iess,m = —a1V-az V(g1 Age) requires either
one of the assumptions to not be satisfied, or for both the guarantees hold. Since
0= am = a1 A ag, and 0 |= Yrest.m, We get that 0 = Qrest,1 and o = prest,2. O

A key point in our framework is that we select ¢g; and go to guide the test
search, that is, we do not allow merged test policies that vacuously satisfy the
merged test specification. This allows the test environment to always give the
system an opportunity to satisfy its specification. If assumptions ever get vio-
lated, that is because of the system, and not the design of the test.

Returning to our lane change example, we define the unit test specifications
as merging behind a car and merging in front of a car. The respective saturated
assume guarantee contracts are defined as C; = (a1,a; — ¢1) and Co = (ag, a2 —
g2) with a; = 2 AOps, ADO(y =2) and g1 = O00(y = y1 = 2Nz =21 +1),
and ay = @ ADps, AOO(y = 2) and go = O0(y = yo = 2 Az = 25 — 1)
being the assumptions and guarantees of the two individual tests. Thus, after
applying the strong merge operation to the two contracts, the guarantee of the
merged test specification for the lane change example is,

gn=00(y=p =2Az=21+ 1) AO0(y=y2=2ANax=22—1). (8)

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 141

4.2 Temporal Constraints on the Merged Test Specification

Definition 12 (Temporally constrained tests). For a test trace o, let oy be the
suffix of the trace, starting at time ¢. Let tg1, g2 be times such that 0., = @rest,1
and o¢g, = Qrest2, and assume there exists a time ¢z such that tp; = min(¢)
for all ¢, t > tg1 such that 04,1 [~ @rest,1 and assume that there exists a time
tpo such that tpo = min(t) for all ¢, t > tgo such that oy,, F @rest,2. Then if
ts1 = tge = t1 and tpy = tpo = to the tests are parallel-merged in the interval
te [tl,tg}. If ts1 < tgo and tp < tpo, OT tg1 > tgo and tpq > tra, the tests are
temporally constrained.

In this section, we will outline when the merged test specification requires a more
constrained temporal structure. To ensure that the test execution will provide
the desired information, we need to make certain that each test specification is
sufficiently checked. For example, consider the lane change example. There exist
many executions in which one of the unit tests is satisfied (i.e. the car merges
in front of a vehicle), but it is not guaranteed that the other specification is
satisfied as well. Therefore these two tests can be parallel-merged. In contrast
to this there exist test specifications where satisfying one will trivially satisfy
the other. Then we are not able to distinguish which specification was checked,
thus these unit tests should not be parallel-merged to ensure that during the
test there is a point in time where each test specification is satisfied individually.

Proposition 1. If for two test specifications piest,1 and Qiest2, and the set of
all test executions X, we have 0 |= Qiest,1 <= 0 = Prest,2 Vo € X, then these
tests cannot be parallel-merged. Instead, the temporal constraint must be enforced
on gi1 and g 2.

Proof. We refine the general specification in Eq. (7), which allows any temporal
structure, to include the temporal constraints in the guarantees. The temporally
constrained merged test specification is thus defined as @{eg ;= @Gm — gy, With

G = (ma1 V =az V (O(ge,1 A ge2) AO(mge1 A ge2) A (g1 A g2)))- 9)

Because any trace o satisfying ¢feg ,,, Will also satisfy Yiest,m, 0 F @lest.m =
0 = Qtest,m. Any test trace satisfying this specification will consist of at least
one occurrence of visiting a state satisfying ¢; 1 and not g; » and vice versa. Thus
the guarantees of the specifications for each unit test, g;; and g;2 are checked
individually during the merged test which satisfies the temporal constraints. O

4.3 Receding Horizon Synthesis of Test Policy Filter

Since the test specification characterizes the set of possible test executions, we
need a policy for the test environment that is consistent with the test specifica-
tion. In this section, we detail the construction of an auxiliary game graph and algo-
rithms for receding horizon synthesis of the test specification on the auxiliary game
graph. This filter will then be used to find the test policy (detailed in Sect. 4.4).

142 J. B. Graebener et al.

Auxiliary Game Graph G.ux. Assume we are given a game graph G = (V, E)
constructed according to Definition (8), and a (merged) test specification @iest,m
in GR(1) form as in Eq. (4). Then, for each recurrence requirement in the test
specification, OO, we can find a set of states Z = {i1,...,in} C V that sat-
isfy the propositional formula ;. For each i € Z, there exists a non-empty sub-
set of vertices V' C V that can be partitioned into {V{, ...,V }. We follow [26]
in partitioning the states; V,i is the set of states in V' that is exactly k steps away
from the goal state ¢. From this partition of states, we can construct a partial
order, P* = ({V¢,...,Vi}, <), such that V} < Vi | for all | € {0,...,n}. This
partial order will be useful in the receding horizon synthesis of the test policy
outlined below [26]. We construct an auxiliary game graph Gaux = (Vaux, Faux)
(illustrated in Fig. 3) to accommodate any temporal constraints on the merged
test specification before proceeding to synthesize a filter for the test policy. With-
out loss of generality, we elaborate on the auxiliary graph construction in the
case of one recurrence requirement in each unit specification, but this approach
can be easily extended to multiple progress requirements. An illustration of the
auxiliary graph is given in Fig. 3. Let ¢test,1 and @iest,2 be the two unit test spec-
ifications, with wtfest,l and @{esm, respectively. First, we make three copies of the
game graph G = (V, E)—Go,... ,vpren. = (Viva, B1v2), Gy = (Vi, E1), and
Gorenrn = (V2, E2). Note that, Viy2, V1 and V5 are all copies of V, but are denoted
differently for differentiating between the vertices that constitute Gaux, and a
similar argument applies to edges of these subgraphs. Let Vi = JV;’ C Vivo
be the set of states in Goy,.., v that satisfy propositional formula 7/’tfest,1~

Likewise, the set of states V§ C Vv satisfy the propositional formula 1/th;st,2.

Prest1 N Prest2

Fig. 3. Auxiliary game graph construction for the merged test specification of unit
test specifications @rest,1 and @rest,2. Subgraphs Gy, .. 1 Vorestar Gorestr AN Gopone
are copies of the game graph G constructed per Definition 8. In Gyyeue 1 Verest.2> the
sets of states at which the progress propositional formulas of test specifications, ptest,1
and @iest,2, are satisfied are shaded yellow and blue, respectively. (Color figure online)

Prest2

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 143

Now, we connect the various subgraphs through the vertices in V§ and V§.
Let (vf,u) be an outgoing edge from a node v§ € V}, and let u; be the vertex
in subgraph Giest,1 that corresponds to vertex u in G, veres.»- Remove edge
(vf,u) and add the edge (v§,u1). Likewise, every outgoing edge from ViU VY in
G pren 1 Vipress.2 18 T€placed by adding edges to G, , and G, ,. On subgraphs
G and G,.,, ,, vertices are partitioned and partial orders are constructed
once again for 7f’tfcst,1 and ¢{cst,2» respectively. From V) defined on the nodes of
the graph Go,.., ., every outgoing edge is replaced by a corresponding edge to
G prenen Vpress.2 - Sbgraph G, ., is connected back to Gy, ;v » I @ similar
manner. The construction of the auxiliary graph G..x and partial order P? is
summarized in Algorithm 2. Our choice of constructing the auxiliary graph in
this manner is amenable to constructing a simple partial order as outlined below.

Ptest,1

Assumption 1. For unit test specifications iest;1 and @est,2 With recur-
rence specifications ¢} and ¢}, respectively, such that ¢} = D(}qptfesm and
oh = DOz/thesm. Suppose there exist partial orders P* = ({Vi,...,V}, <) and
Pk = ({VE,...,VF},<) on G corresponding to wtfest,l and z/thesm, respectively.
Assume that at least one of the following is true: (a) there exists an edge (u1, v2)
where u; € V§ and vy € V]’-C for some j € 1,...,m, (b) there exists an edge
(ug,v1) where ug € V§ and vy € V; for some j €1,...,n.

Lemma 2. If Assumption 1 holds, there exists a partial order on G gy for the
merged recurrence propositional formula, wtfest,mi where w{est,m 1s the propo-
sitional formula that evaluates to true at: (i) all v € Viya such that v |=
77/1{6“71 A 1/1{6“72, (i) all v € V1 such that v |= w{estyl, and (i) all v € Vo such

that v ': w{est,Q'

Proof. Let V" C V,ux denote the non-empty set of states at which @b{ésmm eval-
uates to true. Then, let V]m C Vaux be the subset of states that is at least
J steps away from a vertex in Vj*. Then, we can construct the partial order
P =({V", ..., Vi"}, <), where [is the distance of the farthest vertex connected
to Vi". The subset of vertices (J; VJ" C Vaux is non-empty because Vi is non-
empty. Furthermore, from Assumption 1, if (a) holds, there exists a j € {1,...,1}
such that V" NV} is non-empty. Likewise, if (b) holds, there exists a j € {1,...,1}
such that V" N VE is non-empty. Therefore, for some j € {1,...,1} there exists
a test execution o over the game graph G,y such that o = D()z/thest’m. O

Remark 2. If Assumption 1 is not true, the unit tests corresponding to test
specifications @iest,1 and @est,2 cannot be merged.

Receding Horizon Synthesis on G.ux. We leverage receding horizon syn-
thesis to scalably compute the set of states VW from which the test environment
can realize the test specification on the system in a test execution. Note that we
are not synthesizing a test strategy using the receding horizon approach, instead
using W as a filter on a search algorithm (MCTS) that finds an optimal test

144 J. B. Graebener et al.

policy. Further details on applying receding horizon strategies for temporal logic
planning can be found in [26]. A distinction in our work is that there can be
multiple states in graph G, that satisfy a progress requirement on the test
specification.

For a test specification iest,1 With progress propositional formula D(}qp'tfesm,

let Z be the set of states on Gaux at which w'tfesm evaluates to true. Specifically,
for some goal i € Z, if the product state starts at j steps from i (i.e. v €
Vi,1), the test environment is required to guide the product state to Vi ;. The
corresponding formal specification for the test environment is,

¢ (U € V 741 ANPA D‘Pbys A Dowsy:’) - (DO(U € VJZ:—I) A D‘)D‘fest A Dwtsest A Dé)a

(10)
where @ is the invariant condition that ensures that zb} is realizable. See [26]
for further details on how this invariant can be constructed. Since there are |Z|
different ways to satisfy the goal requirement z/thestyl, and the test specification

requires that we satisfy wtfesm for at least one ¢ € Z. To capture this in the
receding horizon framework the test execution must progress to at least one
i € Z, formally stated as,

UF = Vieg P . (11)

Thus, the set of states from which the test environment has a strategy that
satisfies the specification in Eq. (11) is the short horizon filter, denoted by W]I .
Let jmax denote the supremum of all shortest paths from a vertex v € V' to some
i € Z. Then, overall test policy filter is the union of short-horizon test policy
filters,

Jmax

= {Jwl. (12)

The synthesis of WZ and its use as a test policy filter in the MCTS proce-
dure used to find the test environment policy is outlined in Algorithm 1. Note,
that this receding horizon approach to generating a filter WW can be applied
on any GR(1) specification and its corresponding game graph. For the merged
test spec1ﬁcat10n W7 is generated on Gau where 7 is the set of states cor-
responding to 1/1tegt m, and for simplicity, we apply the following arguments on
Gaux- Let Gyyr = (Viy, Eyy) be the subgraph of G,y induced by W7 such that
Vv = WE C Viaue and Eyy = {(u,v) € Eauxu € WE Av € WELL

On W7 as a Test Policy Filter. Inspired by work on shield synthesis [6], we
use the winning set W7 as a filter to guide rollouts in the Monte Carlo Tree
Search sub-routine for finding the test policy. Since WJI is a disjunction of short-
horizon GR(1) specifications, it is possible that an execution always satisfies WJI
without ever satisfying the progress requirement DthfeSt. This happens when
the test execution makes progress towards some ¢ € Z but never actually reaches

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 145

a goal in Z, resulting in a live lock. Further details addressing this are given in
the Appendix. We assume that the graph is constructed such that there are no
such cycles. In addition to using W7 to ensure that WJI will always be satisfied,
we enforce progress by only allowing the search procedure to take actions that
will lead to a state which is closer to one of the goals i € Z. Thus, the search
procedure will ensure that for every state v; € V;, the control strategy for the
next horizon will end in v; € V,i, such that k < for at least one goal i € 7.

&
./4

Fig. 4. Illustration of the intersection of the winning sets for the unit specification. Viest
are depicted as circles and Vs as rhombi. The black states lie in the intersection and
the filter will ensure that only these states are being searched. The orange intersection
represents the set of traces of the merged test specification.

Theorem 1. Receding horizon synthesis of test filter WZ is such that any test
execution o on Gyz starting from an initial state in Viyy NV satisfies the test
specification in Eq. (4).

Proof. For the recurrence formula of the merged test specification, D(}z[}t];st’m,

suppose there exists a single vertex on G,ux that satisfies w{CSt,m. Then, it is
shown in [26] that if there exists a partial order ({V},...,Vi}, <) on Gaux, we
can find a set of vertices W' C Vuux, such that every test execution o that
remains in W¢, will satisfy the safety requirements g, and (¢, and the
invariant @. Furthermore, given the partial order ({V},...,V§}, <), one can find
a test policy to ensure that the o makes progress along the partial order such
that for some t > 0, oy € Vé. However, in case of multiple vertices in G,ux that
satisfy zﬁest’m, we need to extend the receding horizon synthesis to specification
WJI . We construct the filter WZ and also check that for every test execution
o, there exists i € T such that for every k > 0, ox € Vi and oxy1 € Vi.
Therefore, because the auxiliary game graph is assumed to not have cycles, the
test execution makes progress on the partial order of at least one i € 7 at
each timestep, thus eventually satisfying wtfest’m. Thus every execution of our
algorithm will satisfy Eq. (4). O

146 J. B. Graebener et al.

Algorithm 1. Merge Unit Tests (@rest,1, Ptest,2s Psyss Tsyss Trest, 1, Leest, 25 P)

Input: Unit test specifications @iest,1 and @rest,2, system specification ¢sys, System
Tsys, unit test environments, Tiess,1 and Zrest,2, and quantitative metric of robust-
ness p,

Output: Merged test specification @iest,m, Merged test environment Ztest,m, Merged

test policy Ttest,m

: C1, C2 « Construct contracts for ¢iest,1 and prest,2

t Trest < Trest,1 X Trest,2 Merged test environment

¢ Tprod — ZTsys X Tresy Product transition system

G — Game graph from product transition system 7,04

Cm := (am,@m — gm) < strong merge(C1, C2) Constructing the merged specifica-

tion

6: Qrest,m < am — gm Merged test specification

7: Gaux <— Auxiliary game graph.

8: T ={s € Vaxl|s z/;tfest‘m} Defining goal states and partial orders
9: for i € 7 do

10: P = {(Vi,...,V)} < Partial order for goal i

11: 1/);- < Receding horizon specification for goal 7 at distance j

12: end for

13: WT := {W!} « Test policy filter for goal i at a distance of j

14: Tiest,m — Searching for test policy guided by W*

15: return Sotcst,m, ﬁcst,m, 7thst,rn

4.4 Searching for a Test Policy

To find the merged test policy mieqt,m, we use Monte-Carlo Tree Search (MCTS),
which is a search method that and combines random sampling with the precision
of a tree search. Using MCTS with an upper confidence bound (UCB) was intro-
duced in [16] as upper confidence bound for trees (UCT) which guarantees that
given enough time and memory, the result converges to the optimal solution. We
use MCTS to find m{; ,,, the approximate solution to Problem 1 for the merged
test. We apply the filter that was generated according to the approach detailed
in Sect. 4.3 to constrain the search space as shown graphically in Fig. 4.

Proposition 2. Algorithm 1 is sound.

Proof. This follows by construction of the algorithm and the use of MCTS with
UCB. Given a test policy mest and a system policy mgys, for every resulting
execution o xr.., starting from an initial state in W2 it is guaranteed that
0 = ¢test,m by Theorem 1. This is because for any action chosen by the test
environment according to the policy mest found by MCTS, we are guaranteed to
remain in W? for any valid system policy mys. If WZ = () or the initial state is
not in W2, the algorithm will terminate before any rollout is attempted and no
policy is returned. It can be shown that the probability of selecting the optimal
action converges to 1 as the limit of the number of rollouts is taken to infinity.
For convergence analysis of MCTS, please refer to [16]. O

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 147

Complexity Analysis. The time complexity of GR(1) synthesis is in the order
of O(|N|?), where | N| is the size of the state space. To improve the scalability, our
algorithm uses a receding horizon approach to synthesize the winning sets, which
reduces the time complexity significantly, please prefer to [26]. The complexity
for MCTS is given as O(ijkl) with j the number of rollouts, k the branching
factor of the tree, [the depth of the tree, and i the number of iterations. In our
approach the filter reduces the size of the search space, for a visualization refer
to Fig. 4. The number of rollouts and iterations are design variables, that can be
chosen to ensure convergence. More details on the complexity of MCTS for the
lane change example can be found in the Appendix.

Definition 13 (Coverage). A test execution o covers a test specification @gest if
the test execution non-trivially satisfies the test specification, that is, o = pgest
and o |= @ A Ops o ADOO@L .. A set of test executions T = {o1,...,0,}
covers the set of test specifications @ = {Prest,1,- - -+ Prest,m) iff for each test

specification st € P, there exists a test execution o; € T such that o; covers
Ptest,1-

Optimizing for the smallest set of test executions that cover a set of test
specifications is combinatorial in the number of test specifications. In this work,
we outlined an algorithm for merging two unit tests. In future work, given N unit
tests, we will consider the problem of constructing a smaller set of N’ merged
test specifications with upper bounds on N’/N.

Lemma 3. Given a set of unit test specifications, 1 = {Qiest.1s- - - Prest,N }
such that N test executions are are required to cover @, i.e. one test execution for
each test specification, merging unit tests results in N’ test executions that cover
@ where N’ < N. The equality holds iff no two unit tests in @ can be merged.

Proof. If at least a pair of test specifications in @ can be merged, it is possible
to characterize a set of test specifications @' such that the cardinality of @', N’,
is always smaller than N. If each test specification in @’ has a test execution,
then we have N’ < N test executions. O

5 Examples

We implemented the examples as a discrete gridworld simulation in Python,
where the system controller is non-deterministic and the test agents follow the
test policy generated by our framework. We use the Temporal Logic and Planning
Toolbox (TuLiP) to synthesize the winning sets [27] and online MCTS to find the
test policy. Videos of the results can be found in the linked GitHub repository.

5.1 Lane Change

For our discrete lane change example, we define p(o) as the x-value of the cell in
which the system finished its lane change maneuver. We search for the test policy
that satisfies the test specification in Eq. (8) as explained in Sect.4. Snapshots
of the resulting test execution are depicted in Fig. 5.

148 J. B. Graebener et al.

T-0 T=36
T=12 T=42
T=15 T=43

Fig. 5. Snapshots during the execution of the test generated by our framework. The
system under test (red car) needs to merge onto the lower lane between the two test
agents (blue cars). (Color figure online)

Unprotected Left-Turn at Intersection. Consider the example of an
autonomous vehicle (AV) crossing an intersection with the intention of tak-
ing a left-turn. The test agents are a car approaching the intersection from the
opposite direction and a pedestrian crossing the crosswalk to the left of the AV
under test. The intersection layout can be seen in Fig. 6. The individual tests are
defined to be waiting for a car, and waiting for a pedestrian while taking a left
turn. The unit specification for waiting for the pedestrian are defined according
to Eq. (4), with
Pt = (xs €Is), D0, =0(xs €Ss), DOy = O(xs € Sp Axp € Tp),
(13)
with xg the system coordinates, Ig the initial state of the system, S the set
of desired goal states after the left turn, xp the pedestrian coordinates, and Sp
the states in which the car must wait for the pedestrian if the pedestrian is in
a state in Tp. Similarly we define the specification for waiting for the tester car
(detailed in the Appendix).

The robustness metric is assumed to be the time until the traffic light changes
to red starting the moment the system executes a successful left turn, and min-
imizing this metric results in a difficult test execution. Next, we merge unit test
contracts, and derive the resulting merged test specification. According to Propo-
sition 1, this merged specification needs to include the temporal constraints as
defined in Eq. (9). In this example, waiting for the tester car and waiting for
the pedestrian trivially imply each other in this example. Any execution of the
system waiting at the intersection will satisfy both unit specifications. Thus we
need to find a test where the system waits for just the tester car at some time
during the test execution and waits for the tester pedestrian at another time
during the test execution. We follow the approach detailed in Sect. 4.3 to gener-
ate the auxiliary graph for this example, with the terminal states corresponding

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 149

Fig. 6. Snapshots during the execution of the unprotected left turn test generated by
our framework. The autonomous vehicle (AV) under test (red) should take an unpro-
tected left turn and wait for the pedestrian and the car (blue) individually, which are
agents of the test environment. In the snapshots at time steps 8 and 12, the AV waits
just for the car, and in time step 21 it waits just for the pedestrian. (Color figure online)

to a successful left turn through the intersection after satisfying the temporally
constrained merged test specification. The graph for this example is illustrated
in Fig. 3, with test,1 and test,2 being the subscripts for the first and second
unit test specification. We then generate the test policy filter by constructing
a partial order for the goal states and synthesizing the winning sets with the
receding horizon strategy detailed in Sect.4.3. Finally, applying this test filter
on MCTS to find the test policy. Figure 6 shows snapshots from a test execution
resulting from a test policy generated by Algorithm 1. As expected, we see the
system first waiting for the tester car to pass the intersection. Even after the
tester car passes, the pedestrian is still traversing the crosswalk, causing the
system to wait for the pedestrian, satisfying the temporally constrained merged
test specification.

6 Conclusion and Future Work

In this work, we presented a framework for merging unit test specifications. While
we applied this framework to two discrete-state examples in the self-driving
domain, this framework can be applied to test other autonomous systems as well.
This paper details the mathematical and algorithmic foundation for merging two
unit tests. This technique could be used as a subroutine to optimize for a small
set of tests that cover several unit specifications. The winning set structure of
the unit specifications could be leveraged to decide which unit specifications

150 J. B. Graebener et al.

should be merged. The scalability of our algorithm can be further improved by
symbolic implementations to synthesize the test policy filter. Lastly, we would
like to show the results of this framework on continuous dynamical systems with
a discrete abstraction for which the test policy filter can be synthesized.

Acknowledgements. We thank Dr. Ioannis Filippidis, Dr. Tichakorn Wongpirom-
sarn, fﬁigo Incer Romeo, Dr. Qiming Zhao, Dr. Michel Ingham, and Dr. Karena Cai
for valuable discussions that helped shape this work. The authors acknowledge fund-
ing from AFOSR Test and Evaluation program, grant FA9550-19-1-0302 and National
Science Foundation award CNS-1932091.

7 Appendix

7.1 Construction of the Partial Order

In Algorithm 2 we provide an algorithm to construct the partial order and the
auxiliary game graph.

7.2 Live Lock

Depending on the construction of the partial order, the test could end up in a
live lock. This is a result of planning over a short horizon for a disjunction of
specifications, 1/);:-, each of which specifies progress on different partial orders. An
example of naively applying W7 as a filter is given in Fig. 7b, where an execution
can get stuck in the loop (V3 — Vi — V37 — Vi — ...), where progress towards
goals 1 and 2 happens infinitely often but neither of the goals are reached.
Consider the example of a roundabout, where the system always makes progress
towards one of the exits while driving around the roundabout, even if it never
chooses to take an exit. To address this, we propose removing a goal from Z that
the test execution has stopped making progress towards, and store it in Z’. If 7
becomes empty before one of the goals are reached, we reset Z to have all goals
stored in 7.

Remark 3. This approach to ensuring that the test execution reaches one of the
goals ¢ € 7 requires that eventually, there exists a path.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 151

Algorithm 2. Construction of Partial Order and Auxiliary Graph

Input: Game graph G = (V, E), propositional formulas wtfcsm and 1&{05“‘2 constituting
the progress requirements of unit test specifications
Output: Auxiliary game graph Gaux

1: Gypenp1verest.o := (Vi E) « G Initialize subgraph

2: Gppeses = (Vi, E1) < G Initialize subgraph

3: Goppenr2 := (V2, E2) «+ G Initialize subgraph

4: [,Ptptest 1V¥test, 2’P<Ptesc 1V@test, 2] — Partial Order(G<Ptcst,1V<Ptcst,27 W’{m,p wtfest,Q])

5: P;teat 1 Partial Order(Gchst,l) w{cst,l)

6: P(’;test , — Partial order(Gi,o, 25 Ylest 2)

70 By i1 Veresss & £ Deleting outgoing edges from ViUVE C V within Goprest,1Vorost,2
8 Egens.1Veres . Adding edges from VEUVE C V to subgraphs Gy, , and G, »
9: B © E1 Deleting outgoing edges from V5 C Vi within Ge,,,, ,
10: Eg,... , Adding edges from V5 C Vi to subgraph Go,o., 1 Ve 2
11: E7, ..., C E2 Deleting outgoing edges from V§ C Vs within G, ,
12: Egte“ , Adding edges from V§ C Vs to subgraph Gppest.1Vptest,2

13: Vaux =V U VLUV,
14: Faux = (E\E%egt 1V@test, 2) (E1 \E‘Ptcat 2) (E2 \ E%egt 2) U Egtcat s UES

Ptest,1
a

LPtest,IVWtest,2
151 Gaux = (VauX7Eapx)
16: return Gaux, Py

U

Pk

Pz Pk
test,1VPtest,2? /' Ptest,1VPtest, 27 ' Ptest, 17 7 Ptest,2

'SR
Vi VOZ;
Z
Y oY) Y g e N
v; [vi | v v B CARAR:
' Y \f_j 4 \fl _ ., Y Y
L A A J Vol A A A J vol
i i v v W vi | v v v v
(a) (b)

Fig. 7. Sketch of receding horizon winning set with and without cycle.

7.3 Example: Lane Change

On the lane change example, we analyzed the convergence of MCTS as the search
procedure. Figure 8 shows that the terminal cost (robustness metric) reaches the
maximum value with a relatively low number of rollouts. This is due to the
fact that we are applying our framework to a problem with a relatively small
action space for the test environment, using the test policy filter, and MCTS
as an online policy. Even though the state space of the lane change example
grows significantly with an increase of the track length, the actions that the
testers can take are at maximum four (both move, both stay, one moves/one
stays). With the use of the winning set and depending on the positions of the
system and testers, the number of possible actions can be smaller. Because only

152 J. B. Graebener et al.

Rollouts to Find Test Policy for Track Length = 5 Rollouts to Find Test Policy for Track Length = 10
1.0

0.9

0.8

0.90

e
.

Terminal Cost
o
o

Terminal Cost

0.5

1 2 3 4 5 1 2 3 4 5
Number of Rollouts Number of Rollouts

(a) (b)

Rollouts to Find Test Policy for Track Length = 15

1.0

Terminal Cost

Number of Rollouts

(©)

Fig. 8. The normalized mean terminal cost of the test execution found by our frame-
work shown for a different number of rollouts for the track lengths 5, 10, and 15. The
shaded areas represent the minimum and maximum value (light blue) and the standard
deviation (blue) over 50 runs. (Color figure online)

actions that remain in the winning set for the specification can be chosen, the
search procedure quickly finds a policy that maximizes the cost. The number of
iterations used by the online MCTS depends on the actions of the system and
is upper bounded by the maximum duration of the test. As we find a search
procedure online, every time that the test environment has to take its turn,
MCTS executes the specified number of rollouts to choose the next action, and
this continues until the test is finished.

In Fig. 9 the runtime for the winning set synthesis is shown. We compare the
runtime of the receding horizon approach to the synthesis of the full horizon win-
ning set for each goal location at once. While the runtimes for both approaches
increase significantly, the full horizon approach is already unable to generate a
winning set for a track length of 11 for the same specifications.

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 153

Test Policy Filter Synthesis Runtime

250 1

= Receding Horizon
~ Full Horizon

200 A

150 A

Time [s]

100 1

50 -

5 6 7 8 9 10 11 12 13

Track Length
Fig. 9. The computation time required to generate the winning set filter with the
receding horizon approach and by computing the entire winning set for each possible

goal at once. The experiments were run on a MacBook Pro with a 2.3 GHz Quad-Core
Intel Core i7 processor with 32 GB RAM.

J 7 &

©

Fig. 10. Layout of the unprotected left turn at intersection example. The system starts
in cell (7,4) and wants to reach the goal cell (0,3), while the initial positions of the test
agents are at the beginning of the road and crosswalk. (Color figure online)

7.4 Example: Unprotected Left Turn

The test specification for waiting for the test car is specified according to Eq. (4),
with

init

ol = (xs €1Is), D0@l, =0(xs € Sa), DOVl = O(xs € Se Axc € To),
(14)

154 J. B. Graebener et al.

where the subscript C denotes the tester car. In Fig. 10, the conventions used for
the left turn at intersection example are depicted. The coordinate system starts
in the upper left corner with cell (y,z) = (0,0) and the y-axis facing south and
the z-axis facing east. The crosswalk locations are numbered from north to south,
starting with 0. The initial states of the test agents are x¢ = (0,3) and xp = 0,
and the initial state of the system is xg = (7,4). The goal state for the system
is xg = (0,3). In this example x¢ is the only element in Sg. The states in which
the system needs to wait for the pedestrian and the car, Sp and Sp respectively,
are both x = (4,4) for this layout. The states of the tester car, for which the
system has to wait are given as 7o = {(0,3), (1, 3),(2,3),(3,3)} and the states
of the pedestrian, for which the system has to wait are Sp = {1, 2, 3,4, 5}, which
represent the cells on the crosswalk, that map to grid coordinates. Note that if
the pedestrian is in cell 0, the system is not required to wait for the pedestrian,
as she is too far away from the road. The traffic light sequence is predetermined,
the light will be green for a fixed number of time steps ¢4, followed by ¢, time
steps of yellow and red for ¢, time steps. We are assuming that the system
designer supplied the robustness metric as the time until the traffic light turns
red, resulting in a harder test the closer the light is to red once the system
successfully takes the turn.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivan¢i¢, F., Gupta, A.: Probabilis-
tic temporal logic falsification of cyber-physical systems. ACM Trans. Embedded
Comput. Syst. (TECS) 12(2s), 1-30 (2013)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TALIRO: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254-257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9_21

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

4. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol.
5382, pp. 200—-225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-92188-2_9

5. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2-3), 124-400 (2018)

6. Bloem, R., Konighofer, B., Konighofer, R., Wang, C.: Shield synthesis: In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533-548. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0_51

7. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Commun. ACM 18(8), 453-457 (1975)

8. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63(4), 1031-1053
(2019)

9. Dreossi, T., et al.. VERIFAI: a toolkit for the design and analysis of artificial
intelligence-based systems. arXiv preprint arXiv:1902.04245 (2019)

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-662-46681-0_51
http://arxiv.org/abs/1902.04245

Towards Better Test Coverage: Merging Unit Tests for Autonomous Systems 155

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Filippidis, 1., Murray, R.M.: Layering assume-guarantee contracts for hierarchical
system design. Proc. IEEE 106(9), 1616-1654 (2018)

Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: From
simulation to the real world. In: 2020 IEEE 23rd International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 1-8. IEEE (2020)

Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S., Kapoor, A.: Verifying con-
trollers against adversarial examples with Bayesian optimization. In: 2018 TEEE
International Conference on Robotics and Automation (ICRA), pp. 7306-7313.
IEEE (2018)

Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy
Pract. 94, 182-193 (2016)

Klischat, M., Liu, E.I., Holtke, F., Althoff, M.: Scenario factory: creating safety-
critical traffic scenarios for automated vehicles. In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pp. 1-7. IEEE (2020)
Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287-297
(2008)

Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In: Fiirnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282-293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29
Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370-1381 (2009)
Lamport, L.: Win and sin: predicate transformers for concurrency. ACM Trans.
Programm. Lang. Syst. (TOPLAS) 12(3), 396-428 (1990)

Meyer, B.: Applying’ design by contract’. Computer 25(10), 40-51 (1992)

Nuzzo, P., et al.: A contract-based methodology for aircraft electric power system
design. IEEE Access 2, 1-25 (2013)

Passerone, R., Incer Romeo, f., Sangiovanni-Vincentelli, A.L.: Coherent extension,
composition, and merging operators in contract models for system design. ACM
Trans. Embedded Comput. Syst. (TECS) 18(5s), 1-23 (2019)

Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364-380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773_24

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46-57. IEEE (1977)
Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of the 15th ACM Inter-
national Conference on Hybrid Systems: Computation and Control, pp. 125-134
(2012)

Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. arXiv
preprint arXiv:1606.08514 (2016)

Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Autom. Control 57(11), 2817-2830 (2012)
Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: Proceedings of the 14th
International Conference on Hybrid Systems: Computation and Control, pp. 313—
314 (2011)

https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11609773_24
http://arxiv.org/abs/1606.08514

q

Check for
updates

Quantification of Battery Depletion Risk
Made Efficient

Holger Hermanns and Gilles Nies®)

Universitat des Saarlandes, Saarland Informatics Campus, Saarbriicken, Germany
{hermanns,nies}@cs.uni-saarland.de

Abstract. Rechargeable batteries are the backbone of our mobile
and wireless way of life. In the context of model-based bat-
tery depletion estimation, the kinetic battery model (KiBaM) pairs
modelling convenience with prediction accuracy. This paper pro-
poses algorithms to analyze energy budgets with respect to a
rechargeable stochastic KiBaM with capacity bounds. Concretely, we
present two different approaches to narrowly bound the cumula-
tive depletion risk induced by a sequence of possibly noisy tasks.
One of them enables adaptive discretization of the (provably) rele-
vant portion of the charge space. The other avoids this discretization
by instead propagating charge percentiles iteratively, resulting in safe
bounds on the depletion risk. Both approaches have their particular
strengths with respect to applicability, precision, space and runtime com-
plexity. We provide empirical evidence of their characteristics on the basis
of a representative example.

Keywords: Battery Power * Kinetic Battery Model - Depletion Risk
Estimation - Adaptive Discretization - Percentile Propagation

1 Introduction

Rechargeable battery technology is nowadays built into almost every portable
device, and is the acclaimed enabler of electric mobility. For battery electric vehi-
cles, range anxiety is the fear of the vehicle occupants to get stranded on the way
to a destination due to battery depletion. Efficient and precise methods for model-
based estimation of battery depletion risks are needed in order to outstrip range
anxiety as a major barrier to large scale adoption of all-electric cars. Due to the
omnipresence of rechargeable batteries, estimation methods for battery depletion
risks actually have a much broader application range, from earth-orbiting satel-
lites, to autonomous vacuum robots, to wearable smartwatches, to energy buffers
in power grids. In the context of model-based battery depletion estimation, the
kinetic battery model (KiBaM) [9] pairs modelling convenience with prediction
accuracy and constitutes the premier consensus model relative to the simplistic
linear battery model and much more complex electro-chemical models [8]. As such,
the KiBaM, or one of its many extensions [4,11,14] is often used when investigat-
ing the lifetime of a system [3,11], inferring suitable capacity limits [1], planning
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 156174, 2022.
https://doi.org/10.1007/978-3-031-06773-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_8

Quantification of Battery Depletion Risk Made Efficient 157

and scheduling of tasks [13] and by now has found its way into widely used tools
such as UPPAAL as first-class citizen [7].

Recently proposed extensions to the KiBaM are [6]: (%) the incorporation of
capacity bounds when charging, (i) uncertainty in the initial battery state, use-
ful to reflect manufacturing tolerances and self-discharging while inactive, and
(i11) imprecision or noise in battery loads. These extensions have been motivated
especially by low-Earth orbit applications [5,10,12]. In this setting, it has become
apparent that precise and efficient estimates of battery depletion risks are much
harder to calculate than in a purely deterministic setting. This paper addresses
this challenge.

We start off from the existing, universally applicable discretization algorithm,
which safely approximates the entire battery state distribution [6]. This is
enhanced to an adaptive discretization approach that keeps only a relevant neigh-
borhood of the state of charge space (Section 3.2). This enables the use of
smaller and more focussed representations without altering precision, which in
turn implies better runtime and space efficiency at the cost of a negligible compu-
tational overhead. This improved method inherits all the merits from the previous
version.

Additionally, we propose an approach that avoids discretization of the charge
space entirely. It instead directly estimates the quantity of interest, the depletion
risk (Section 3.3). The computation harvests analytical insights for the computa-
tion of charge percentiles, thereby providing bounds on the depletion risk of the
entire initial charge distribution. The approach however comes with mild restric-
tions on the class of initial charge distributions it supports. Iterative applications
of this so-called percentile propagation scheme, result in arbitrarily tight and pre-
configurable bounding of the true depletion risk.

We discuss both these approaches in great detail, and empirically evaluate
(Section 4) their effectiveness with respect to runtime and memory requirements.
Percentile propagation comes with a precision level configurable a priori and can
play out its strengths especially on scenarios with low noise. On the other hand,
adaptive discretization is conceptually bound to higher space requirements which
pays off for higher noise scenarios, with the precision being revealed a posteriori
only. All experimental results and the code are made available as an artefact.

2 Battery Kinetics

The Kinetic Battery Model (KiBaM) is an energy storage model that models the
state of charge (SoC) of a battery by splitting it into two disjoint portions, namely
(i) the available charge A(t), the portion of stored charge that is directly available
to be consumed or replenished, (i) the bound charge B(t), the portion of stored
charge that is considered chemically bound inside the battery, and is not immedi-
ately available. These quantities can be considered unitless and abstract for math-
ematical and analytical purposes, and we will denote battery states as rowvectors
[a; b], throughout this paper. The battery is strained by a load £(t) that represents
charging and discharging if £(t) < 0 and £(¢t) > 0, respectively. If there is no load
(i.e. £ = 0) we speak of a resting period.

158 H. Hermanns and G. Nies

P —

Fig. 1. The two-wells illustration of the KiBaM.

The principle behind the KiBaM is that one type of charge is converted
into the other over time via diffusion, depending on the amount of each type of
charge currently in the battery. For this reason the KiBaM is often depicted as
two interconnected wells holding fluid as depicted on the right above, as seen
in Figure 1. The model is characterized by two parameters, the first of which
being the width parameter c €]0, 1[. It corresponds to the width of the available
charge well, while 1 — ¢ is the width of the bound charge well. The second
parameter, the diffusion rate parameter p > 0, is the factor of proportionality
of the difference in fluid levels of both wells, namely 4(t)/c and B(1)/1 — ¢, and thus
governs the speed with which bound charge is converted to available charge and
vice-versa. Among other characteristics, these parameters are usually estimated
for a specific battery type, and are likely subject to change as the battery ages.

KiBaM ODE System. Mathematically, the KiBaM state of charge evolves as
indicated by two coupled differential equations given in Equation 1.

A(t) = —L(t) +p (B(t) A(t)>

l1-c ¢

s= o(*2-11)

C

(1)

The dynamics of the KiBaM account for a couple of non-linear effects that can be
observed in real-world batteries, which makes the model at hand highly relevant,
as is made clear by related literature [8].

We denote SoCs by row vectors [a;b], and denote the set of all SoCs by S.
We say that a SoC is in equilibrium iff no diffusion is taking place, i.e ¢ = &.
We interpret operations on SoCs to be componentwise, hence for an arithmetic
operator x, and for any comparison operator > we have

[a 'b]*x': [ao*al;bo*bl] ifx:[al;bl]
OTET T [ag xkibox k] ifz=keR

and

Clol>a1Ab0\>b1 ifJU:[al;b1]
apg>kAbg>k ifz=keR

[ap; bo] > x = {

Quantification of Battery Depletion Risk Made Efficient 159

Load model. The load model we want to investigate is described by tasks and
sequences thereof. A task (A, /) is a pair of a positive time duration A > 0
and a load ¢ with which the battery is strained throughout that time duration,
ie for 0 < t < A, we have {(t) = ¢. We denote the set of tasks by T =
R<g x R. A sequence of tasks thus induces a piecewise constant load sequence.
It is possible to derive a solution of the ODEs at time A, for instance by using
Laplace transforms. We can capture all of the above formally, by introducing
an operator on tasks and SoCs, as a vector valued linear map, taking the initial
available and bound charge ag and by as argument. Thus we denote the successor
SoC of [ag; bo] as application of an operator K, i.e. K(a ¢ lao;bo]. The choice
of piecewise constant load sequences is necessary to enable efficient handling of
depletion and saturation scenarios outlined in the next section. In most practical
cases, like a processor executing an arithmetic operation, the generated load
sequences can be considered piecewise constant, or loads can easily be collapsed
into a single constant load by averaging. However, there are instances in which
the load is inherently non-linear. Charging via solar panels is such an example,
as the panel’s efficiency is highly dependent on temperature, which decreases as
it is hit by sun light. In such cases the load is abstracted into a constant load,
for instance by considering mean efficiencies.

Depletion and Capacity Limits. So far, the operator K is defined on any given
SoC and its evolution potentially spans the entire range of SoCs, including the
negatives. We instead define the region of critically low SoCs in terms of a
given battery depletion level depl, which in turn induces depletion thresholds

on available and bound charge quantities by [a;b] = [c;1 — ¢] - depl. We refer
to a SoC S as safe iff S > [a;b]. Safe SoCs can sustain a discharging task for
a non-zero duration without depleting. We let L = [a;], denote the canonical

depletion SoC. SoC S is depleted if its available charge is lower than the depletion
threshold, i.e. if a < a. For depletion, only the available charge dimension is
decisive, because this is when a battery-powered system stops operating. We
do not differentiate between depleted SoCs, as none of them can support any
further discharging.

Real-world batteries are evidently not infinite energy storage devices. The
KiBaM does not reflect this, since the K-operator can attain arbitrarily large
values. We enforce a capacity limit of cap € Rsgepl, which induces limits
[@;b] == [c; (1 — c)] - cap on available and bound charge. We call a SoC saturated
and over-saturated, iff a = @ and a > @, respectively. Just as for depletion, the
available charge is the decisive quantity for saturation.

Charging and discharging are not fully symmetric: A depleted SoC can no
longer power its task, contrary to a saturated SoC that continues to operate, but
changes its further charging behavior. In this case a sufficiently high charging
load ¢ induces that only the bound charge increases due to diffusion while the
available charge stays at the capacity limit: This is the case if £ < p(by/(1—c) —
cap). Stated differently, the least bound charge to compensate the diffusion given
Lis Pt = %(lfc)qLE. For a sufficient load, the subsequent evolution of the bound
charge is given by BS!(by) = e~F4 - by + (1 — e~F4) - b, with k = p/c(1 — c).
We lift this evolution to an operator on SoCs K** by K}'[a; b] := [a; BSE(b)].

160 H. Hermanns and G. Nies

Evolution across Saturation. Each non-saturated SoC will eventually become
saturated via indefinite charging. We are interested in the time point of sat-

uration, since this is when the dynamics of the battery change. So, with A
identifying the time point at which the first component of K(Z L,)S is exactly @,

and with § :== A — A being the remainder of the task, we can express the SoC of
a KiBaM after powering a given task (A,) by splitting, if needed, the evolution
at A. This results in an operator K,

4, if S=_1 or KpS is depleted
KrS =K oKz,S if KrS is over-saturated

KrS, otherwise

Note that K is invariant with respect to the canonical depletion SoC L (first case),
evenif T is a charging task, reflecting that the battery-powered device can no longer
sustain operation. The correctness of the development in the next sections hinges
on the following two very intuitive properties, both of which can be proven via case
distinctions and investigation of the sign of partial derivatives of K.

Lemma 1. Let A be a positive duration, S, Sy, S1 be SoCs, £y, €1 be loads, and
T be a task. We have

o>l = Kau)S <KuS and Sy <81 = KrS) < KrS.

The computational nature of K is problematic, because A is transcendental [6],
thus we resort to under- and over-approximations. A simplistic approximation is
the interval [0, A], but saturation time points can easily be approximated up to
a chosen width € by an iterative interval halving scheme: Starting from the inter-
val [0, A], we test the exact midpoint of the interval for saturation. The midpoint
becomes the new right endpoint A, if the battery is already over-saturated mid-
way, otherwise it becomes the new left endpoint A;. We repeat this step until the
width of the interval [A;, A|] falls below €, and return the interval.

To enclose the true evolution of the SoC across saturation, we will adjust
the load ¢ we work with so that instead saturation is reached at precisely A,
respectively A;. In order to derive the load reaching saturation from a SoC S
precisely at, say A, we solve K(a ¢S = [a;e] for £ (which is straightforward)
and denote by £ S its solution. With this, we define operators K= and K that
approximate K. They both agree with K unless Ka,0)S is over-saturated for
task (A, ¢) and SoC S, while in that case we define

. _ .
KianS =K oKz 55 and KapS =K oKz z;)5

where §, == A — A, and §; := A — A;. Figure 2 illustrates how we handle the
saturation time point scenario of the K'- and K -operators. Indeed, K* and K'

bound the actual KiBaM SoC evolution: For any SoC S and any task 7' € T we
have K15 < Kp5 < K4.8.

Quantification of Battery Depletion Risk Made Efficient 161

Fig. 2. An illustration of the K ‘-operator (left) and the K '-operator (right). K makes
the available charge (red) hit the saturation limit @ at A; prior to actual saturation
at A, which leads to an ower-approzimation of the SoC, while with K' this happens
afterwards at A}, inducing a SoC under-approzimation, and this order transfers to the
bound charges (blue).

Stochastic Battery Kinetics. In order to treat the KiBaM as a stochastic object,
we consider the initial SoC [ag; bo| as being random, reflecting the real phenomenon
of uncertain initial charge levels, rooted in wear and manufacturing variances [2]
as well as self discharging rates during a battery’s shelf life. The distribution of a
random SoC is described by a triple (f, f, z), where f is a one-dimensional density
function, describing how the bound charge is distributed under the condition that
the battery is saturated, f is a joint density over the non-saturated SoC space, and
finally z € [0, 1] that is the cumulative probability of depletion, i.e. the likelihood
of the battery depleting withing a given time horizon. A random [A; B] is said to be
distributed according to a SoC distribution (f, f, z), and write [4; B] ~ (f, f, z) if
for any measurable set X C S, we have

Pr[S € X] = / /[a;b]ex F(a,b)dadb + / FB)db + 2l1ex

[a;ble X

where I, denotes the indicator function of a condition ¢. In Figure 3a, we visual-
ize a SoC distribution as three stacked heatmaps: On the very top resides a one-
dimensional heatmap depicting f, in the middle sits the two-dimensional density
of the non-saturated safe portion f and on the bottom the accumulated depletion
risk z as a color-coded probability value. The red checkered area represents unsafe
SoCs. In addition, we consider the load ¢ that is imposed on a battery as being
a random quantity as well, reflecting, for example, measurement noise. Thus, the
load on the battery is considered a random variable L, independent of the SoC, dis-
tributed as given by an associated probability density function g. We write L ~ ¢
with g : R — R, and refer to tasks with random load as noisy tasks.

3 Algorithms

Up to this point, most of what has been covered has been presented (possibly
using different notation) in earlier work [6]. We now turn to the question how
to efficiently compute the SoC distribution resulting from a certain sequence of
possibly noisy tasks. This is a problem of major concern in applications.

162 H. Hermanns and G. Nies

b 50 75 b

a

-

available —
P
o

available —

5

35.15409 %

bound — bound —

(a) A SoC distribution. (b) A SoC distribution’s support and its bounding box.

Fig. 3. A SoC distribution, its support and bounding box.

Along the way, we need to refer to the charge portion for which a certain task
is saturating or depleting. For a task T" and available charge level a we call the
set {S | KrS = [a; o]} the a-target boundary of T. Specifically, fixing a := a gives
the depletion boundary of T, and a := @ the saturation boundary. We visualize
these concepts in the SoC space in Figure 4.

Fig. 4. A discharging task’s depletion boundary (left) and charging task’s saturation
boundary (right), with illustrative K-mappings of SoCs.

Assuming a discharging task T, the red line indicates the depletion boundary
of T. Any SoC (represented in the figure as blue dots) above and to the right of
the depletion boundary remains safe after T', while SoCs below and to the left

of the boundary are rendered unsafe. SoCs that are part of the boundary reach
a SoC of the form [g; b], for some b.

Quantification of Battery Depletion Risk Made Efficient 163

Analogously, for a charging task T, the SoCs above and to the right of the
saturation boundary are over-saturated after T, while SoCs below and to the
left of the boundary remain unsaturated. SoCs that are situated exactly on the
boundary end up saturated. As the above example already indicates, the target
boundaries are linear in the SoC space and are strictly monotonically decreasing
(can be shown by investigating the sign of the derivative). We write a%(b) or
bd(a) to denote the target boundary (@ omitted if clear from context). a%(b)
describes the available charge on the boundary as function of the bound charge,
and vice-versa for b%(a). As a consequence, the SoC S on T’s target boundary
that minimizes (maximizes) K75 = [a; ba] is at the left (right) domain boundary.

3.1 Static Discretization

To track SoC distributions along noisy task sequences, past work has discretized
noisy tasks with finite support into discretized noisy tasks and SoC distribu-
tions into discretized SoC distributions [6]. For the former, the task support
is divided into a number of equi-sized chunks. For each chunk, the entirety of
the probability mass contained is concentrated into its left-hand endpoint to
get an over-approximation, and in the right-hand endpoint to get an under-
approximation. The discretization of SoC distributions is similar: One constructs
a two-dimensional N x N grid with equi-sized grid cells on the SoC space between
depletion and saturation limits, and condenses the probability mass of each grid-
cell into the bottom-left (the smallest SoC in the cell) and top-right corners (the
largest SoC in the cell) to under- and over-approximate the original distribution,
respectively. Powering a task then means KT— and Kl—mapping each cell’s appro-
priate corner-point, and rounding the result to the appropriate corner-point of the
cell it landed in, thereby amassing approximation errors proportional to the size of
grid-cells. Given that the grid stays invariant, we call this scheme static discretiza-

tion (SD).

3.2 Adaptive Discretization

In most scenarios, the initial SoC of a battery is located in only a small portion of
the SoC space: This is because the operation of battery-powered systems usually
starts with an (almost) fully charged and equilibrated battery. This leads to just
alocalized neighborhood of grid-cells actually carrying non-zero probability mass,
while much of the rest of the grid is empty. In the following we generalize this dis-
cretization scheme by bounding boxes: Instead of putting a grid on the entire SoC
space, we put a grid only on arectangular, localized neighborhood of the actual sup-
port of the initial SoC distribution, and propagate this neighborhood along a task
sequence, exploiting properties of the K-operators to keep these neighborhoods as
tight as possible. This way, grid-cells remain as small as possible, which entails min-
imal approximation errors with every tasks. We refer to this scheme as adaptive dis-
cretization (AD). In Figure 3b we visualize a bounding box of a SoC distribution.

164 H. Hermanns and G. Nies

Definition 1. A bounding box B of a SoC distribution (f,f,2) is a triple of
intervals (A, B, B) such that

supp(f) € A x B C [a,a] x [b,0] and supp(f) C {a} x B C {a} x [b,0].

In Figure 3b above we display the support (black) and its bounding box (blue)
for the SoC distribution shown before. Before we transform the SoC distribution
according to K, we compute the successor bounding box, denoted by K98, from
task T' and the initial bounding box 2B = (A, B, B). The successor box can be
computed in a modular fashion, meaning that we can combine the successors of
each of the two components Kr[4; B] :== Kr(A, B,0) and KB = Kr(0,0, B)
into a bounding box of the successor SoC distribution. To this end, we start
by introducing the notion of subsumption and closure of bounding boxes, by
essentially lifting the subset relation and the union operation on intervals.

Definition 2 (Subsumption). Let 2B, = (Ao, By, Bo) and
B, = (A1, By, B1) be boxes. We denote by By C B, that By is subsumed by
B, . Subsumption is defined as By C W1 = Ay C A1 AN Bo C By AN By C Bs.

Definition 3 (Closure of boxes). Let B, = (A, By,Bo) and
B, = (A1,B1,B1) be two bozes. The closure of By and B, denoted by
BB is defined componentwise by BoUB, = (AgU Ay, BoU By, Bg U By),
where M U N is defined as [min(M U N),max(M U N)] provided both M and
N are non-empty. Otherwise, M U N returns M if N = 0, or otherwise N. The
closure of countably many boxes Uﬁio B, is defined inductively.

The following properties will in the sequel be used throughout without explicit
reference. For two boxes B, and 2B,;, we have By LU B; C Bj and
B U B, C B,. Furthermore, if (f, f,2) is a SoC distribution with bounding
box B, then each B, with By C 2B, is also a bounding box of <f, fyz).

Successor bounding boz if charging. We now focus on how to compute the suc-
cessor box K798, where T is a charging task, since charging is the most involved
scenario. The basic principle is to track the smallest and the largest SoCs, given
by the left and right endpoints of the box intervals, respectively. By Lemma 1
these SoCs remain the extreme SoCs after T', and therefore the successor box
still accounts for the entire support of the successor SoC distribution. Certain
intermediate SoCs are of specific interest: If the bounding box 2 is cut by T’s
saturation boundary, then a part of the box contributes to the saturated part of
the successor box K9, while the other part remains unsaturated, and thus con-
tributes to the unsaturated part of the successor box K79. Since the saturation
boundary is monotonically decreasing, the left-most intersection point with the
box decides where the unsaturated part of the successor box ends, and where
the saturated part of the successor box starts. The resulting bounding box can
then easily be composed from both parts by Kr[4; B] UKrB.

Quantification of Battery Depletion Risk Made Efficient 165

Definition 4. Let A = [a",a'] and B = [b",b'], then

(0,0, [bzr, bz=]), if ap(d') <a’
Rop(a; 5] — 4 {1 @l 100, b2, 0), if ap(b) > at
(lams, @], [bms, bi], (b3, bm), if bp(a*) € B
(lams, @], (b, bet], [bee, bre]), if ap (D7) € A
where [9:bm] =Kp[a;b'], [azn; bs] = Krla'; '), [o305%] = Krla'; br(a*)]
[o; bz =Koy [a; b*], lapg; brs] = Kelat; 0], [o30] == Ke[ag (b7); b'].

To compute the successor of the saturated part, we need to incorporate the
additional scenario of saturated SoCs temporarily becoming unsaturated due to
diffusion. The decisive value is the least diffusion-compensating bound charge
b7*, which separates the box into a perpetually saturated portion (use K*), and

a transiently unsaturated portion (use K' /KL)

Definition 5. For B = [b',b'] and T = (A, () we define

(0,0, [B2(b"), BR(BY)]), if byt < b
<[am'" am], [bmis, brex], 0), if br(a) > 9
BB e (0,0, [brin m=]), if br(@) < b' A b3t > bt
=ree <[a:“ al, [bnn, b, b, BR (DY), if br (@) € B AbS“EE
©,0 [b:;;", B (bY)]), ifbr(@) <b' Abj € B
(lamin, @), [brn, bl (b, b22]), if bp(a@) € B A b3 > b

where [9:bm0] = K[b'], [ams; o] == Ke[a; '], [0 b.] = Kr[a; br(a)),
[0 o] = Kop[@; b*], [amys brey] = Ko [a; bY).

Note that we use KT and Kl whenever there is saturation, thus the computed
box is slightly larger than the exact one. It however subsumes the latter, and
hence constitutes a valid bounding box.

Successor bounding box if discharging or resting. Essentially the dual idea applies
to discharging: (i) Instead of saturation there might be depletion. Therefore, if the
depletion boundary cuts the box into a depleting part and a non-depleting part, the
left-most intersection point provides the smallest non-depleting SoC and hence the
lower-left corner of the unsaturated part of K7%38. (ii) The saturated part of K138
is empty, and the top-right cornerpoint of the unsaturated part is determined as
the largest among the right endpoint of B, and the top-right cornerpoint of [4; B].
For resting, we can simply propagate the box as is, using K.

Successor bounding box of noisy tasks. Lastly, in order to lift the above from
tasks (4, ¢) to discretized noisy tasks (4, 7), we need to compute the successor
bounding box, for each load instance in the support of v and build their closure,

166 H. Hermanns and G. Nies

i.e. K(Aﬁ)% = Uéesupp(w) K(A}g)%. The fact that this indeed provides a valid
bounding box is witnessed by Lemma 1 and the properties of subsumption.

Algorithm. With all of the above in place, we are ready to formalize an algorithm
that tracks an initial SoC distribution (f, f, z) along a sequence of discretized
noisy tasks (7;)M,. A pseudo-code formulation is given in Algorithm 1. It first
discretizes the initial SoC at hand, and then iteratively propagates discretized
SoC distributions along discretized noisy tasks, by determining the successor box
via the closure of boxes induced by the support of the noisy task loads, placing
a grid into the successor box, and finally mapping the cells of the current grid
onto the cells of the successor grid in an under- and over-approximating fashion.

In : A SoC distribution (f, f,z) with bounding box 9, a sequence of
discretized noisy tasks (Ti)ﬁo and a grid size N.
Out: Two discrete SoC distributions bounding K(Ti)”io (fy [, 2)
B =B, B'=9 ~
2 DY D' = discretizations of (f, f, z) with box 2B
foreach (A,v) € (T3)X, do
B =Ka,)B; B'=Ka,B
Place N x N grid in both " and 28*

D' = KEA 7)DT with box B'; D' = KL\ W)Dl with box B*

=

[T " V]

return D*, D'

~

Algorithm 1: The AD algorithm in pseudo-code.

3.3 Percentile Propagation

The algorithm developed above supports (almost) any initial SoC distribution as
well as load distributions, by appropriate discretization of both. The price of this
generality is that of precision. Due to the permanent rounding of SoCs onto the
grid-cell cornerpoints, estimates diverge the longer the task sequence we apply.
We now discuss a different approach that does not attempt to track the
entire distribution, but aims at a precise estimate of the cumulative depletion
risks induced by a possibly very long task sequence. Often the depletion risk
constitutes the most crucial information of an energy budget analysis of a bat-
tery powered system. By restricting to a certain, relevant, class of initial SoC
distributions we are indeed able to estimate that risk precisely. The idea is to
exploit monotonicity of the operator K (Lemma 1), in the sense that if a SoC S
depletes when strained by a task sequence (T})!_,, then every SoC smaller than
S must also deplete. Additionally, if S is greater than q percent of all the initially
supported SoCs, we can deduce that the depletion risk is at least gq. Dually, if
S does not deplete, then depletion risk is at most g. Since the depletion risk is
bounded by 0 and 1, the idea is to iteratively tighten the bounds around the

Quantification of Battery Depletion Risk Made Efficient 167

depletion risk by probing and propagating certain percentiles of the initial dis-
tribution until the bounds exhibit a difference less than a given €, . We refer to
this paradigm as percentile propagation PP.

However, clearly not all SoCs are pairwise either smaller than or greater than,
because < is not a total order. Therefore we need to restrict this idea to initial
SoC distributions that do not contain two pairwise incomparable SoCs with
respect to <. Luckily, this is not an unrealistic assumption, since batteries that
have had enough time to equilibriate exhibit exactly such initial SoC distribu-
tions. These distributions basically degenerate to one-dimensional distributions,
since each SoC [a;b] is uniquely defined by the sum of its components a + b.

For a cumulative density function (CDF) F the ¢—percentile is given by the
generalized inverse of F', F~1(q) = inf,cr{F(z) > ¢}. The infimum is needed
because F' is not necessarily invertible in the functional sense.

To lift the notion of percentiles to SoCs, we consider distributions over the
total charge stored in a battery, since it uniquely defines SoCs supported by the
SoC distribution with the above restrictions in place.

Definition 6. Let (f, f,z) be a SoC distribution such that ({@} x supp(f)) U
supp(f) is a totally ordered set with respect to <. We define h as follows:

f), ife=a+bAab] € {a} x supp(f)
h(c) =< fla,b), ifc=a+bAla;b] € supp(f)
0, otherwise

Then, the (z 4 q)-percentile of (f, f, 2) is the unique SoC [a;b] such that ¢ = a-+b
is the (conventional) g—percentile of h, for 0 < ¢<1-— z.

The function h essentially constitutes a diagonal sweep of the SoC space, cumu-
latively “picking up” SoCs in the appropriate order. The function is well-defined
if, for every position of the sweep diagonal (red line), it intersects the support of
(f, f,z) (blue) in at most one single SoC, like in the following visual example:

I . B . N

RN

SoC distributions are inherently non-continuous because they are by definition
separated into three distinct parts. In conclusion, SoC percentiles are not unique
without the infimum operation. With a few restrictions, however, we are able
to fulfill all the necessary assumptions to drop the infimum operator. In order
to avoid technical problems, let’s therefore assume that the initial SoC distri-
bution exhibits no initial depletion risk, and that the entire probability mass is
exclusively supported by either f or f. Again these assumptions are not very
restrictive. For instance, a saturated battery (i.e. the entire probability mass is

168 H. Hermanns and G. Nies

in f), or a battery in full equilibrium (i.e. the entire probability mass is situated
on the diagonal of f) are valid scenarios.

Depletion risk approximation. We now give a pseudo-code algorithm to bound
the depletion risk within an interval of arbitrary width, given a sequence of tasks
and an initial SoC distribution meeting the criteria from above.

The algorithm initially bounds the depletion risk z with the interval [0,1]. We
then keep halving the interval [z1, z)] iteratively in the following sense. We look
at ¢, the midpoint of z; and z;, and check whether the g—percentile depletes when
strained with (Tl)f\io using both approximation operators K and K'. If the K*
trace exhibits depletion, we deduce that the depletion risk is at least ¢, and thus
assign z; = q. If the KT trace does not exhibit depletion, we conclude that the
depletion risk is at most ¢, and assign z; := ¢. If the approximations disagree,
we narrow the approximation corridor, by gradually increasing the saturation
time point precision e, until they eventually agree. We keep increasing the
precision by a factor of 0.1 and recompute the approximations until a consensus
is reached, upon which we reset the precision ez to its initial value. If said
consensus is depletion, we update the lower bound z; := ¢, otherwise the upper
bound z; = g, for the same reason as above. Finally, after having narrowed down
the interval surrounding the true depletion risk enough, we return the current
interval.

Algorithm. The function estimate in Algorithm 2 formalizes the above in
pseudo-code. Notably, the estimate function describes a semi-decision proce-
dure. Divergence may happen if the g—percentile currently under investigation
corresponds to the true depletion risk zy, and the task sequence causes battery
saturation at least once. In this case, the KT—, Kl—approximations never reach a
consensus, no matter how precisely we estimate the saturation time points. In all
other cases, the approximations eventually agree, and the algorithm terminates,
because we halve the interval in each iteration, eventually undershooting €, in
width.

To lift this scheme to sequences of noisy tasks we discretize the load dis-
tributions, generate every possible task sequence of non-zero probability, run
estimate on each sequence to find it’s depletion risk interval, and weight the
interval bounds with the probability of actually achieving the sequence at hand.
Finally, the weighted sum of the sequence’s lower and upper bound values defines
the overall lower and upper bound on the depletion risk.

The obvious bottleneck here is the size of the cartesian product. For n tasks,
each supporting k£ loads, the cartesian product has &™ members, for which we
run estimate. For k = 1, the cartesian product degenerates to one single task
sequence. With a generative implementation of the cartesian product, we don’t
need to store every trace in memory, but rather the state of the generator, which
takes O(n) space. Thus, this paradigm excels in space efficiency.

Quantification of Battery Depletion Risk Made Efficient 169

In : SoC distribution (f, f, z), discretized noisy tasks (A, v:) o, € > 0

Out: Interval bounding the depletion risk of K(Aim)fv_o (f, f,2)

1 Function estimate({f, f, 2), (Ti)ZI.V:O, €):

In : A SoC distribution (f, f,2), a task sequence (Ti)évzo and € >0
Out: Interval [z1,z;] of width at most &€ with zx € [z1, 2]
2 [ZTa Zl} = [07 1]
3 while z; — z; > ¢ do
4 q= (2 +21)/2 B
5 [ag; bg] == g—percentile SoC of (f, f, z)
6 Si, S, = K(TTz)f\’:o [ag; bql, K%ﬂt)ﬁio [aq;bg] with precision ex
7 if S; =1 then z; :==¢q
8 else if S| # L then
9 do
10 eg =01 -ex
11 S, 8, =K' n [ag;bg, K" . x [aqg;be] with precision e
(T3)iZo (Ti)i—o
12 while S; # 5,
13 reset ez
14 if 5, =1 =5, then z; =g else 2z, :=¢q
15 | else z,:=g¢
16 | return [z1,z]
17 [z1,2,] = [0,0]

18 foreach (£;)}_, € supp(yo) x -+ x supp(yn) do

19 | p=Tlem ())
20 [21,21] == estimate ((f, f,2), (4A;,4;)} 0, &)
21 =z 4Pz 2 =2 4 pe2)

22 return [z1,z]

Algorithm 2: The PP algorithm in pseudo-code.

4 Evaluation

We now cross-compare the performance of the algorithms presented. All experi-
ments were run on an Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz-2.30 GHz
and 16 GB RAM.

Comparison of SD and AD. In order to achieve a satisfying sample size of task
sequences we synthesize tasks from a Markovian probabilistic load process, to
ensure that the sequences exhibit a minimal degree of structure. The generated
tasks are of duration A ~ U[50, 500], and exhibit loads ¢ ~ U[—30, —5] for charg-
ing, loads ¢ ~ U[5, 30] for discharging and ¢ = 0 for resting. The synthesis excludes
consecutive resting tasks, but allows consecutive charging as well as discharging

170 H. Hermanns and G. Nies

A €[50,500] £=0

Fig. 5. A graph representation of the Markovian load process we used to synthesize
(noisy) task sequences. The edge labels describe jump probabilities, while the state
annotations describe the intervals loads ¢ and durations A are sampled from. Ingoing
arrows into states represent the initial state distribution. The sampled durations and
loads are taken uniformly at random from the annotated intervals. The loads then serve
as the location parameter of a normal distribution.

tasks, albeit with a slight bias against this. Figure 5 provides a graph representa-
tion of the load process, a slightly altered version of the Process introduced in [6]

The battery is instantiated with a capacity of 300 000 J, ¢ = 0.5 (thus,
@ = b = 150000) with a depletion threshold depl = 0.5, and various values for
the diffusion parameter p. Its initial SoC is uniformly distributed on the set
@[0.65,0.75] x [0.65,0.75] b discretized to different grid sizes N. The sampled
load ¢ serves either as a single load, i.e. task, or as the location parameter of a
normal distribution N (£, 1.5) for noisy tasks. In this case, the load distributions
are truncated and discretized into 10 samples.

SD was run on 50 generated task sequences of length 150 with grid sizes
N =500, 750, 1000, 1250 and 1500. For each run, we determine a grid size for AD
that induces a result of the same precision via binary search with the lowest and
the largest grid size being 0 and the grid size used for SD, and report the relative
runtime of AD with the found grid size. The runs producing a singleton interval
(either 0 or 1, i.e. both approximations agree on sure survival or depletion) were
discarded, because AD can find these essentially with a 1x1 grid. The aggregated
results of the evaluation are depicted in Figure 6.

A comparison of the left and the middle plot shows that the faster the dif-
fusion (larger diffusion parameter p), the more efficient AD becomes relative to
SD, both in terms of runtime and grid size. The reason is, that the support of the
SoC distribution is less spread out, and thus occupies a smaller portion of the
bounding box, meaning we have less cells carrying a non-zero probability mass.
The right and middle plot showcase a similar difference, but here the spread is
caused by noise in the task loads.

The results paint a relatively clear picture of overall superiority of AD over
SD, in terms of space as well as runtime efficiency.

Comparison of AD and PP. We first evaluate AD and PP on simple task
sequences. We assume a battery (cap = 300 000J, ¢ = 0.5, p = 0.0005, depl

Quantification of Battery Depletion Risk Made Efficient 171

10 loads, p = 0.00001 10 loads, p = 0.00005 1 load, p = 0.00005

800 : 5 0.8
7001 + 1075
600 Lo.65 2
o Hels) 2
S 5001 0.55 5
- 400 L045 =
= £
#3001 L0352
3

2001 + + H0.25

100 \} Q Q Q NN Q \ Q N 0-15

I N R R AU O T
grid size SD grid size SD grid size SD

Fig. 6. Evaluation of SD vs. AD. Grid size for SD (z-axes) is plotted against mean grid
size needed by AD to produce a similar solution (red squares) and against mean ratio
of runtimes AD/SD for the determined grid (blue bullets).

150 tasks, 1 load 8 tasks, 4 loads 16 tasks, 2 loads

6000 20000 6000 1.2
a
5000 1 5000 1 1T F1.0 A
F 15000 ~
2 4000 1 4000 + Los S
8 2
33000 F 10000 3000 1 065
o)
= 2000 2000 1 1T r04 g
1)
I 5000 =
1000 1000 1 0.2 5
0+— . . —0 0- e S = S 00
S N © N S P N & N P S S
> & 2 Q- N > S Q SN S Q N
Sy ¥ S F O NN
PP precision ex PP precision ex PP precision ex

Fig. 7. Evaluation of PP vs AD. Precision for PP (z-axes) is plotted against mean grid
size that AD needed to produce a similar solution (red squares) and against mean ratio
of runtimes AD/PP for the determined grid (blue bullets).

= 0.5) that is in equilibrium and that is between 60% and 80% full, i.e. on the
set S :=={x-[c;1—c]|x€][0.6,0.8]cap}, and construct the initial SoC distri-
bution (f, f, z) such that f is a uniform distribution on S. Note that < is indeed
a total order on S.

Similar to the previous comparison, we run PP on 50 task sequences of length
150 from the load process with precision levels e; = 0.1,0.075,0.05,0.025 and
0.01. For each run, we determine a grid size for AD that induces a depletion
risk interval that is as narrow or narrower than £, . This can be achieved via
binary search with the lowest and the largest grid size being 0 and 6000, and
report the relative runtime of AD with the found grid size. The boundary of
6000 was chosen for time reasons. It is worth mentioning that AD uses the
simplistic version of the saturation time point algorithm (which allows an efficient
vectorized implementation), while PP uses the iterative version with ex = 0.1.
The runs producing a singleton interval (either 0 or 1) were again discarded.
The aggregated results of the evaluation are depicted in the leftmost plot of
Figure 7. We observe that here PP is up to 4 orders of magnitude faster than

172 H. Hermanns and G. Nies

AD, with the necessary grid size of AD rapidly growing as the precision level of
PP shrinks. Actually, for many runs the maximal AD grid size of N = 6000 did
not suffice to reach the desired precision of 0.01. The reason is the combined
effect of the superior saturation time point estimation by PP as well as the
task sequence length of 150, because AD needs to approximate each cell with
appropriate cornerpoints after each task, which is not necessary for PP. Mean
runtimes for AD reached from around 6 seconds for a precision 0.1 to 140 seconds
with precision level 0.01. PP clearly beats AD with a runtime of 0.0064 seconds
and 0.0083 seconds on these precision levels.

In order to compare PP and AD on noisy task sequences, we chose two con-
figurations, namely sequences of 8 tasks, each supporting 4 loads, as well as
sequences of 16 tasks, each supporting only 2 loads. Both scenarios result in the
same workload of 65 536 possible load sequences for PP. For the former con-
figuration we needed to alter the load process to allow loads from the interval
[5,45] and [—45,—5], in order to observe non-singleton depletion risk intervals
more frequently. We assume a battery in equilibrium and that is between 60%
and 65% full. Comparing the quality of the results is slightly different from the
comparison before. The precision level £, for PP applies to each task sequence
in the cartesian product, but not necessarily to the final depletion risk interval.
Therefore, we chose the actual width of the depletion risk interval as computed
by PP on each run to be the quality of the result. Singleton interval runs were
again discarded.

The results of the two configurations are shown in the middle and rightmost
plot of Figure 7. Comparing the two plots makes again clear that task sequence
length deteriorates estimation quality for AD. The extent is so severe that PP
actually beats AD for precision level e; = 0.01 in terms of runtime for 16 tasks,
while AD was way faster for only 8 tasks.

5 Conclusion

This paper has introduced two KiBaM-based algorithms, AD and PP, to estimate
the cumulative depletion risk of rechargable battery-powered systems subject to
stochastic fluctuations in both the initial battery state and the loads imposed on
the battery. AD generalizes the previously introduced discretization algorithm
by making its focus follow the relevant neighborhood of the actual battery state,
thereby improving both runtime and memory efficiency. On the other hand, PP
harvests the KiBaM’s order-preserving properties to iteratively narrow down the
depletion risk of relevant classes of initial charge distributions.

After examining the evaluation of AD and PP a few points are worth being
highlighted. First, we point out that AD is the universally applicable algorithm
that can be run on any initial SoC distribution, while PP requires mild condi-
tions on the initial charge to be fulfilled. The consequence of this is, that AD
can be used to analyze systems which are already in operation, while PP is only
suitable for inactive (and fully equilibriated systems) or fully charged systems.
On noisy task instances with large supports, chances are that PP does not per-
form well, but it still provides an alternative with low space requirements, and

Quantification of Battery Depletion Risk Made Efficient 173

comes with an a priori configurable precision level. On the other hand, if high
precision is required, and the task sequences are long, AD requires large grids
that do not directly translate into a precision level. AD has high space require-
ments, with the precision being revealed a posteriori only. Additionally, PP only
estimates the depletion risk, which most of the time is the quantity of interest.
If instead the entire final distribution is required, for example to examine where
the surviving probability mass ends up at the very end of the task sequence, AD
is the algorithm that should be used.

Acknowledgement. This work was partially supported by ERC Proof of Concept
Grant 966770 (LEOpowver), by EU Horizon 2020 Grant 101008233 (MISSION), and
by DFG grant 389792660 as part of TRR 248 — CPEC.

References

1. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In:
Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. pp. 595-606. ACM (2014). https://doi.org/10.1145/2535838.
2535875

2. Buchmann, I. Inc, C.E.: Batteries in a Portable World: A Handbook on Recharge-
able Batteries for Non-engineers. Cadex Electronics (2001). https://books.google.
de/books?id=YIBhAAAACAAJ

3. Cloth, L., Jongerden, M.R., Haverkort, B.R.: Computing battery lifetime distribu-
tions. In: 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN’07). pp. 780-789 (2007). https://doi.org/10.1109/DSN.
2007.26

4. Fenner, G., Stringini, L., Rangel, C., Canha, L.: Comprehensive model for real bat-
tery simulation responsive to variable load. Energies 14, 3209 (05 2021). https://
doi.org/10.3390/en14113209

5. Fraire, J.A., Nies, G., Hermanns, H., Bay, K., Bisgaard, M.: Battery-aware contact
plan design for LEO satellite constellations: The ulloriaq case study. In: IEEE
Global Communications Conference, GLOBECOM 2018, Abu Dhabi, United Arab
Emirates, December 9-13, 2018. pp. 1-7. IEEE (2018). https://doi.org/10.1109/
GLOCOM.2018.8647822

6. Hermanns, H., Krcal, J., Nies, G.: How is your satellite doing? battery kinetics with
recharging and uncertainty. Leibniz Trans. Embed. Syst. 4(1), 04:1-04:28 (2017).
https://doi.org/10.4230/LITES-v004-i001-2004

7. Ivanov, D., Larsen, K.G., Schupp, S., Srba, J.: Analytical solution for long bat-
tery lifetime prediction in nonadaptive systems. In: Mclver, A., Horvdth, A. (eds.)
Quantitative Evaluation of Systems - 15th International Conference, QEST 2018,
Beijing, China, September 4—7, 2018, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 11024, pp. 173-189. Springer (2018). https://doi.org/10.1007/978-3-319-
99154-2_11

8. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Softw. 3(6),
445-457 (2009). https://doi.org/10.1049 /iet-sen.2009.0001

9. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy
systems. Solar energy 50(5), 399-405 (1993)

https://perspicuous-computing.science
https://doi.org/10.1145/2535838.2535875
https://doi.org/10.1145/2535838.2535875
https://books.google.de/books?id=YIBhAAAACAAJ
https://books.google.de/books?id=YIBhAAAACAAJ
https://doi.org/10.1109/DSN.2007.26
https://doi.org/10.1109/DSN.2007.26
https://doi.org/10.3390/en14113209
https://doi.org/10.3390/en14113209
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.4230/LITES-v004-i001-a004
https://doi.org/10.1007/978-3-319-99154-2_11
https://doi.org/10.1007/978-3-319-99154-2_11
https://doi.org/10.1049/iet-sen.2009.0001

174

10.

11.

12.

13.

14.

H. Hermanns and G. Nies

Nies, G., Stenger, M., Krééal, J., Hermanns, H., Bisgaard, M., Gerhardt, D.,
Haverkort, B., Jongerden, M., Larsen, K.G., Wognsen, E.R.: Mastering oper-
ational limitations of leo satellites - the gomx-3 approach. Acta Astronautica
151, 726-735 (2018). https://doi.org/10.1016/j.actaastro.2018.04.040, https://
www.sciencedirect.com/science/article/pii/S009457651730321

Rao, V., Singhal, G., Kumar, A., Navet, N.: Battery model for embedded systems.
In: 18th International Conference on VLSI Design held jointly with 4th Interna-
tional Conference on Embedded Systems Design. pp. 105-110 (2005). https://doi.
org/10.1109/ICVD.2005.61

Stock, G., Fraire, J.A., Momke, T., Hermanns, H., Babayev, F., Cruz, E.: Managing
fleets of LEO satellites: Nonlinear, optimal, efficient, scalable, usable, and robust.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 3762-3773 (2020).
https://doi.org/10.1109/TCAD.2020.3012751

Wognsen, E.R., Hansen, R.R., Larsen, K.G.: Battery-aware scheduling of mixed
criticality systems. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation. Specialized Techniques and Applica-
tions - 6th International Symposium, ISoLLA 2014, Imperial, Corfu, Greece, October
8—11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8803,
pp. 208-222. Springer (2014). https://doi.org/10.1007/978-3-662-45231-8_15
Zhang, Q., Li, Y., Shang, Y., Duan, B., Cui, N., Zhang, C.: A fractional-order
kinetic battery model of lithium-ion batteries considering a nonlinear capacity.
Electronics 8, 394 (04 2019). https://doi.org/10.3390/electronics8040394

https://doi.org/10.1016/j.actaastro.2018.04.040
https://www.sciencedirect.com/science/article/pii/S009457651730321
https://www.sciencedirect.com/science/article/pii/S009457651730321
https://doi.org/10.1109/ICVD.2005.61
https://doi.org/10.1109/ICVD.2005.61
https://doi.org/10.1109/TCAD.2020.3012751
https://doi.org/10.1007/978-3-662-45231-8_15
https://doi.org/10.3390/electronics8040394

®

Check for
updates

Hierarchical Contract-Based Synthesis
for Assurance Cases

Timothy E. Wang!®) Zamira Daw!, Pierluigi Nuzzo?, and Alessandro Pinto’

! Raytheon Technologies Research Center, Berkeley, CA 94705, USA
{timothy.wang,zamira.daw,alessandro.pinto}@rtx.com
2 University of Southern California, Los Angeles, CA 90089, USA
nuzzoQusc.edu

Abstract. An automatic synthesis problem is often characterized by
an overall goal or specification to be satisfied, the set of all possible
outcomes, called the design space, and an algorithm for the automatic
selection of one or more members from the design space that are prov-
ably guaranteed to satisfy the overall specification. A key challenge in
automatic synthesis is the complexity of the design space. In this paper,
we introduce a formal model, termed hierarchical contract nets, and a
framework for the efficient automatic synthesis of hierarchical contract
nets, based on a library of refinement relations between contracts and
contract nets. We show, via the application of automatic synthesis of
assurances cases, that hierarchical contract-based synthesis can mitigate
the design space complexity problem. We also show that the approach
can bring both the benefits of automating the creation of assurance cases
and ensuring that the knowledge from the argumentation experts is cap-
tured and reflected in the synthesized assurance cases.

Keywords: Contracts + Automated synthesis + Assurance case -
Certification

1 Introduction

Program synthesis consists of automatically finding a program in an underlying
programming language that satisfies a user intent captured by a specification.
This problem, which has long been considered a holy grail [1] of computer sci-
ence, can be traced back to Alonzo Church’s synthesis problem [2], albeit posed
in the context of circuits rather than programs. From the perspective of formal
verification, program synthesis is closely tied to deductive theorem proving, on
which the earliest known work traces back to the beginning of theoretical com-
puter science [3]. Subsequent developments in deductive theorem proving have
resulted in proof assistants that can be used for program extractions [4], where
the extracted program is a solution to the program synthesis problem.

The idea behind program synthesis holds several attractions, including (i)
automating the task of low-level programming away from error-prone manual
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 175-192, 2022.
https://doi.org/10.1007/978-3-031-06773-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_9

176 T. E. Wang et al.

implementations, and (ii) providing a provable guarantee of the correctness of
the program by virtue of the correct-by-construction method. Moreover, the
concept has analogues in many fields, from logic synthesis to robust control
and architecture design exploration [5]. In its logical underpinnings, the core
synthesis problem is the problem of deciding an existential formula in second-
order logic [6]. However, a general, systematic strategy for solving synthesis
problems remains “notoriously challenging” [1].

The inherent challenges stem from the very large search space of possible solu-
tions, the complexity of the specification, and the ambiguities of the user intent.
Moreover, any attempt at a generic approach is often outperformed by special
purpose synthesis methods with narrowly tailored search strategies adapted for
the application at hand. For example, synthesis problems in robust control are
solved by restricting the design space or the specification to have a certain struc-
tural property, e.g., convexity. Similarly, in program synthesis, possible programs
are restricted to certain syntactical templates [7].

In this paper, we address these challenges via a hierarchical synthesis app-
roach based on contracts and a library of pre-crafted parts that captures the
knowledge of the domain experts. The goal of the automated synthesis proce-
dure is to construct a solution using all or some parts from the library. While the
synthesis process is fully automatic, the library may be manually constructed.
The design space is then purposefully constrained, which allows harnessing com-
plexity. However, we do not restrict to any language or syntax a priori, except
that the possible outcomes be expressed as finite collections of collections of
contracts.

Contracts have shown to offer effective mechanisms to analyze system require-
ments and behaviors in a modular way for the design of complex hardware and
software systems [8-12]. A contract consists of a pair of specifications called
assumptions and guarantees. Intuitively, the assumptions express the set of envi-
ronments that the system or software operate in, and the guarantees express the
set of possible implementations of the system or software. A system component
can then be captured by a contract. Contracts can be “combined” in the same
way as components are combined to form the overall system. In this paper, we
denote a collection of contracts, their interconnections, and the associated alge-
bra for composition as a contract net. Depending on the specific contract oper-
ations (e.g., composition or conjunction), a contract net can represent either a
collection of components or a collection of different views of a system.

A preorder can be established over contracts via a binary refinement relation
= such that C5 refines C7, written Co =< C4, implies, intuitively, that contract
Cy can be replaced by contract C5. In system design, if component My satis-
fies C5, then it can be swapped in for any component M; satisfying Cy while
still guaranteeing that the overall specification C1 is satisfied. In this paper, we
establish a similar notion of ordering between a contract and a contract net.
The relation =<, the contract, and the contract net form an atomic hierarchical
contract net (HCN), and our reference library is a collection of atomic HCNs.
By restricting the design space to the power-set of a finite collection of HCNs,

Hierarchical Contract-Based Synthesis for Assurance Cases 177

its complexity is reduced. Intuitively, each atomic HCN refers to a component
(contract) of the system, a collection of sub-components that can be manually
created by the domain experts (contract net), and the preorder relation linking
them, i.e., an indication that the collection of sub-components, when combined
together based on some algebra, refines the component.

By the hierarchical structure of the HCN, each of the sub-components of an
atomic HCN can be linked with another collection of sub-components to form
other atomic HCNs, and so on. The synthesis procedure itself starts with a
top-level contract net (root) and, for each of the contracts within the top-level
contract net, it searches the library for any contract nets that can refine the
contract based on the established pre-order relation. If one such contract net
is found, then the contract net is connected with the contract, thus forming
an HCN. The synthesis procedure performs this recursively until all the “leaf”
contracts of the resulting HCN cannot be refined by any other contract net in
the library.

Program synthesis from component libraries is undecidable, in general [13,
14]. Imposing a bound on the number of selected components to achieve decid-
ability, by relying on a library of predefined components (and contracts), possibly
including refinement relations, has also been proposed for automated verifica-
tion [15] and synthesis [16,17] in the context of linear temporal logic (LTL)
contracts. This paper rethinks the synthesis problem within the general, hierar-
chical framework offered by HCNs. Moreover, while the main idea of hierarchical
contract-based synthesis seems straightforward, its practical implementation in
the context of various industry-scale synthesis problems hinges on addressing
some critical challenges:

1. The size of the library can be very large and the library construction is pro-
hibitively expensive.

2. The complexity of formally verifying the preorder relations can lead to
tractability issues depending on the complexity of the specifications captured
by the contracts.

This paper focuses on these challenges. We introduce a technical approach
to address them in Sects.2 and 3 based on hierarchical contract networks and
a library-based synthesis algorithm. Section 4 presents the application of hierar-
chical contract-based synthesis to the automatic generation of assurance cases.
Finally, Sect. 5 draws some conclusions.

2 Hierarchical Contract Networks

We first provide a brief overview of the theory of specifications and contracts [9]
used in this paper. A specification theory is a triple (S, ||, <), where S is a set
of specifications, || : § X § — S is a parallel composition operator over spec-
ifications, and <C S x S is a reflexive and transitive refinement relation. A
specification is a pair S = (Vg, ¢g), where Vg is a set of variables and ¢g is a
formula over V. The parallel composition of two specifications S = (Vg, ¢s) and

178 T. E. Wang et al.

T = (Vr, ¢r) is a new specification S||T = (Vs UV, ¢s A ¢r). Finally, a speci-
fication (Vg, ¢g) refines a specification (Vp, ¢r), written (Vs, ps) < (Vir, ¢r), if
and only if Vp C Vg and ¢g == ¢ is valid. The contract theory that we are
going to use is based on this specification theory.

Definition 1. A contract is a pair of specifications ((V, A), (V,G)), shortened
as (A, G), where V is a set of variables and A and G are referred to as assump-

tions and guarantees, respectively. Given a contract (A, G), its normal form is
(4, A = G).

The environment semantics of a contract is the set of specifications that
refines the assumptions: [Cleny, = {F € S|E < A}, § denoting the set of all
the specifications in the theory. The implementation semantics of a contract
is the set of specifications that refines the guarantees G under assumptions A:
[Climp ={I € S|I < (A = G)}. Two contracts are semantically equivalent
if their environment and implementation semantics are the same, respectively.
A contract C' = (A, G) is semantically equivalent to its normal form. A contract
C is compatible if there exists a valid environment semantics for it, i.e., A is
satisfiable, and consistent if there exists a valid implementation semantics, i.e.,
A = (@ is satisfiable. We also say that C is feasible when A A G is satisfiable.

Contracts can also be related by a refinement relation <. A contract C’
(A", @) refines C = (A,G) if and only if [C']eny 2 [Clenv and [C'impt
[Climpi- It can be shown that this condition corresponds to A < A" and G’
(A = G).

A contract C' is a common dominator of two contracts C; and Cs if and only
if the following conditions hold: (1) VI, € [[Cl]]impl and VI, € [[CZHi'mpla IlHIQ €
[Climpr; (ii) for all environments E € [Cleny: V11 € [Cilimpt, Ell11 € [Calenos
and Vo € [Collimpi, El|I2 € [Ci]eny. Given two contracts Cy and Ca, their
composition C = C1]|Cq, if it exists, is their most specific common dominator,
i.e., C is a common dominator of both, and for any common dominator C’,
C =< (' holds. Composition is associative and commutative.

IANIN I

2.1 Contract Networks and Library

We first give the definition of contract network and then introduce the concept
of library for automatic synthesis.

Definition 2. A contract network (net) is a tuple N := (C, ||, k), consisting of
a collection of contracts C = {Cy,...,Cy}, the composition operation || over the
contracts, and a set of formulas k encoding relations over the variables V' of the
contracts in C.

The semantics of a contract net N are given by the composite contract Cy =
Coll - 1 Cu |l (Tym1) || -+ |l (T, K|x)) where |s[is the cardinality of x and
T denotes the Boolean value true. We can then extend the standard refinement
relation between contracts to also formalize a substitutability relation between a
net N and a contract C, so that the contract net N can replace C' in all contexts
where C' works.

Hierarchical Contract-Based Synthesis for Assurance Cases 179

Certain synthesis problems deal with specific classes of contracts and a
restricted set of possible refinements into contract networks for each class. Let
C denote a class of contracts, P(C) the powerset of contracts, i.e., contract net-
works in the class, and <C C x P(C) the refinement relation between contracts
and contract networks in the class. We could then define a library as the tuple
L = (C,=). We use the library to capture a set of high-level components (con-
tracts) as well as atomic components, i.e., components whose contracts are not
related to any network in the library. A library can then encapsulate the different
ways in which contracts can be refined by contract networks, perhaps following
a set of architectural patterns that are used in system or software design. Notice,
however, that there are no limitations on the size of the library. In principle, a
contract can be associated with any large number of networks in the library.

A synthesis framework based on such a library would present two challenges:
the library could be too large to specify and the algorithm would need to search
over a large number of contracts. In the following, we detail how we address
the first issue via (1) the re-definition of the library over equivalence classes of
contracts, and (2) a weaker notion of refinement called conditional refinement.

Consider an equivalence relation ~ over the set of specification S, such that if
S <T,and S’ ~ S, then there exists T’ ~ T such that S’ < T’. The equivalence
relation extends to a contract theory built over such a specification theory. If
the contract set of a library is endowed with such an equivalence relation, then
the library is amenable to a more compact representation, including only a set
of representative refinement relations, since a single relation of the form N <X C
can represent a potentially large class of relations of the form N’ < C’, where
C’ ~ C and N’ ~ N hold. To make the representation even more compact, we
also leverage the notion of conditional refinement, which we introduce with a
concrete example below.

Consider the case of two refinements N; < C; = (41,G) and Ny < Cy =
(A2, G) and assume that there exists A such that A; = AA A} and Ay = AN AL
Then, we can factor out a common contract (A4, G) and represent the two refine-
ment relations as refinements of the same contract (A, G) subject to additional
conditions, such that N1 <4, (4,G) and Na <4, (A,G) hold. This method
enables halving the number of contracts in this simple example. In the follow-
ing section, we discuss how a weaker notion of refinement, namely, conditional
refinement, enables such compact representations.

2.2 Conditional Refinement and Hierarchical Contract Networks

Definition 3. C5 conditionally refines Cy wunder specification ¢, written
Cy =, Cy, if and only if A1 A ¢ is satisfiable and ¢ = (Co < C4).

The following theorem shows that a conditional refinement amounts to
strengthening the environment assumptions of the contract being refined.

Theorem 1. The conditional refinement Co <, C} is equivalent to

(AQ,GQ) =< (A1 N (p,Gl). (1)

180 T. E. Wang et al.

Proof. Note that ¢ = (Cy < () is true if and only if the following implica-
tions are true:
p = (A = Ay), (2)

p = ((Ag - Gg) - (Al - Gl)) (3)
Note that (2) is equivalent to

Al A p = AQa (4)
and (3) is equivalent to
(A2 - Gz) - ((Al A QO) - Gl) (5)

Consider the normal forms of (As, G2) and (A1 A, G1), which are (As, Ay =
Gg) and (A1 N @, A1 N — Gl) We observe that (AQ, G2) =< (A1 A @, Gl) is
equivalent to A; A = Ay and (Ay = G3) = (41 Ay = (1), which
are precisely (4) and (5). O

The conditional refinement relation extends to a contract network N and a
contract C. For the rest of this paper, with an abuse of notation, we refer to both
relations as conditional refinements. Moreover, we use conditional refinement as
an element of the library L.

Definition 4. A conditional refinement of the library L is a tuple (N, ¢, C') such
that N conditionally refines C' under ¢, i.e., N =%, C.

In the following, we use a function with the same name as an element of a
tuple to return the tuple member itself, e.g., A(C) returns the assumption of the
contract C, C(N) returns the set of contracts in the contract network N, and
©(R) returns the conditional formula of refinement R. Figurel illustrates how
conditional refinement can be used for synthesis. Let the top-level requirement of
a design be modeled by Cjy and let ¢ be its assumption, capturing all the valid
environments for the design, shown as the solid gray box in the figure. ¢ can be
very large, e.g., it may represent the set of all the possible operating conditions
of an autonomous aircraft, including all the possible airport settings, all the
hours of the day, and the possible weather and traffic conditions. It is, however,
possible that certain components of the design only operate under a subset of the
environments satisfying ¢g, e.g., an autoland component C7 may work during the
daylight hours, in good weather and in medium air traffic conditions. Conditional
refinement enables a mechanism for the selection of library components based
on further restrictions of the environment in which the system is expected to
work. In this example, we have that Ci =<4, Cy, i.e., the autoland component
C1 satisfies Cjy under the conditions posed by ¢;.

We now introduce a notion of transitivity for conditional refinements.

Definition 5. Given Cy =4, C1 and C1 =4, Co, we say that conditional refine-
ments <y, are conditionally transitive, i.e., Co <4 Co holds with ¢/ = ¢a A ¢1.

Hierarchical Contract-Based Synthesis for Assurance Cases 181

Given: Co = (¢, true), C; = (4y,true), C; = (4, true), C3 = (43, true), C; <¢, Co, C; ¢, C1, and 3 <4, C;

¢o: set of all possible environments; ®5 and ¢, is empty hence

¢ and ¢, is not empty hence C5 =¢3n, Co is not valid and
C; <¢ne, Co is valid and transitivity is preserved. transitivity is not preserved.

<
g

Fig. 1. A library of conditional refinements.

Conditional transitivity between Co, Cy, and Cy subject to ¢’ is well defined
only if Ag A ¢1 A ¢ is satisfiable, Ay being the assumptions of Cy, since, by
Theorem 1, Cy =4 Cy is equivalent to (Aa,G2) < (Ao A ¢1 A ¢2,Go). If Ag A
@1 N ¢o is unsatisfiable, then the contract C§j = (Ag A ¢1 A ¢2,Gp) admits no
environment. This is illustrated in Fig. 1, where ¢3 /A ¢; is unsatisfiable, hence the
conditional refinement C3 <g,n4, Co is undefined. The following result shows
that conditional transitivity holds for conditional refinements between contract
networks.

Theorem 2. Given a contract C = (A,G), a contract network N = (C =
{C1,...,Cm}, ||, k), and contract networks N; = (C;, ||, ki) fori =1,..., M.
Assume that N <4 C, N; = (Cy, ||, ki) =g, Ci fori=1,....,M, and AN ¢ A
/\?il ¢; is satisfiable. Then, the following holds:

M M
N’ = <U(C¢,|,/£/\/\m) SoapM, g, C- (6)
i=1 i=1

Proof. The satisfiability condition on AAPA /\f\i1 ¢; ensures that the conditional
refinement N’ ZoaAM ¢, C is defined (see Definition 3). First, we show that the

guarantees of C are strengthened by N’. Let GVF be the guarantees of the
normal form of a contract, i.e., GN¥ := A — G we show that

M
/-@/\(b/\/\lii/\ébi/\ /\ Gyl = G (™)
i=1 CreUM, C;

182 T. E. Wang et al.

Since N; =4, C; for i = 1,..., M, which means that x; A ¢; A /\ G,ICVF —

CrLeC;
GZNF holds for i = 1,..., M, (7) is equivalent to its conjunction with /\ GlNF.
C,eC
We can then show that the following holds:
M

knon N\ GIEANRingin N\ GF = G (8)

C;eC i=1 CkeU?il C;

Moreover, N =<4 C implies that the following holds:
knen N\ GNT = GNP (9)

C;eC

From (9), we conclude that (8) is true. We then show that the assumptions of
C' are weakened via refinement, that is,

M
KAGANAN N ki A A A GNF = A, (10)
i=1 CreUL, Ci\{C5}

For C; € Cy, J € [1, M], (10) is equivalent to

KNGNANaAk Ao A [\ GYF = A (11)
CieCr\{Cy}
in which
a::/\m/\gbi/\ /\ GkNF. (12)
i#£J CkeU#JCi
Because N; =4, C;, (11) is equivalent to its conjunction with /\ GNF .,
CieC\{C,}

kAGANAN N GYAank Ag N N\ G = A (13)
CieC\{C} CieC\{C;}

By N =4 C, (13) is equivalent to its conjunction with A, i.e.,

KANONAN N\ GNAans ng AN N\ G = A (14)
C;eC\{Cs} CreCy\{C;}

M
Since Ny =4, Cy, (14) is valid and holds for any C; € U C; since J € [1, M]
i=1
was arbitrary. 0

We now define what is a hierarchical contract network (HCN).

Hierarchical Contract-Based Synthesis for Assurance Cases 183

Definition 6. A hierarchical contract network is a graph with the nodes being
contract networks, and each edge links a contract of a node with another node,
indicating a conditional refinement relation between the two. There exists only
one node in an HCN, denoted as the top-level node, which is not linked by a
refinement relation to a contract of any other node in the graph.

Intuitively, the simplest, or atomic, HCN is a conditional refinement from
the library (see Definition 4), in which a network Ny conditionally refines C(N),
where N contains one contract C. In an HCN, zero or more contracts of a node
could be conditionally refined by another node, ie., N; =4, C;(N) for zero
or more C; € C(N). Moreover, a contract could be linked to more than one
node, ie., Ny <4, C(N),No =<4, C(N),...,Ny =¢,, C(N). This results in
an HCN containing multiple hierarchies, in which each hierarchy represents a
different outcome of a refinement process. In this case, there are M different
hierarchies. An HCN is hierarchical in the sense that N1 <4, Ci(N), Ny =g,
Ci(N1), ... Nar =gy C1(Nps—1).

In summary, let <,C C x P(C) denote a set of conditional refinements. A
library can be compactly represented as the pair £ = (C/ ~, <4). Given a library
L and a contract network N with one contract C, the synthesis problem turns
into a search over the library to replace contracts with contract networks via
possible refinements until no more replacements can be found.

3 Automatic Synthesis

The synthesis algorithm leverages a well-formed component library to ensure
soundness and termination. The definitions of a library and a well-formed library
are given in Sect. 3.1 while the synthesis algorithm is described in Sect. 3.2.

3.1 Well-Formed Library

Definition 7. A library L is a tuple (C,R,N), where C is a collection of con-
tracts, N is a collection of contract networks such that YN € N,C(N) € 2€,
and R C N x C is a collection of conditional refinements.

A well-formed library, defined as follows, ensures that the synthesis algorithm
terminates.

Definition 8. A library L is well-formed if and only if all of the following con-
ditions are satisfied:

1. All conditional refinements hold, i.e., VR € R(L), where R = (C,¢,N),
N =, C.

2. There is no circularity in the library, i.e., there does not exist a sequence of
conditional refinements R; = (N;,¢;,C;),i =1,..., M, such that Ny =,, C1,
02 S (C(Nl) and No j¢2 02,. c CM < C(NMfl) and Ny j@M C]\/[, /\f\il ©;
is satisfiable, and there exists a contract Cpr41 € C(Npy) such that Cp =
CM+1.

184 T. E. Wang et al.

The first item in Definition 8 ensures that all the conditional refinements
in the library hold, which, as described in Theorem 2, is one of the conditions
for the algorithm to be sound. The second condition ensures that the algorithm
will always terminate. In fact, conditional refinement enables the possibility of
having a sequence of refinements which leads back to the initial contract C7 of
the sequence. Consider, for example, the following contracts: Cy = (x > 0, true),
Cy = (x > 1,true), and ¢ defined as x > 1. Clearly, C; =4 Cp holds, and
since Cy = (', the synthesis algorithm will not terminate. In this paper, we do
not directly address how to ensure that there are no circularities in the library,
leaving it as future work. However, we include a runtime check for circularity in
a tool implementation of the algorithm described in the next section.

3.2 Synthesis Algorithm

As summarized in Algorithm 1, the main function of the synthesis algorithm
returns a hierarchical contract network H containing the set of all satisfying
hierarchies if all the pre-conditions are satisfied. The inputs to the algorithm
include the library £, a contract network N consisting of only one contract
C representing the top-level specification to be satisfied by the output H, a
set of formulas X that are assumed to hold, a set of system contexts I, and
the formula @ which is a conjunction of all the conditions of the conditional
refinements used in the construction of the hierarchy (for example, see A A ¢ A
Ni—1 @i used in Theorem 2). The system contexts I is a set of constants which
provides information about the system under design or assurance depending on
the application of the synthesis procedure. The formula & is initialized to A,
which is the assumption of the contract in N. The pre-conditions require that
the library of components £ be well-formed and that the contract network N
admit at least one environment and at least one implementation when & holds.

The function findRefinements enables a full search of the library for any
contract that might refine the leaf contract of the synthesized H at some itera-
tion of the algorithm. This enables the algorithm to find potential refinements
in the library which are not explicitly added by a human user, thus reducing
the manual effort in creating the library. The instantiation function inst,c,, r is
parameterized by the system contexts I and a bijective mapping ren : V(C) — I
from the variables of the contract V(C) to the system contexts I. It takes in a
contract C' and returns an instantiated contract C' such that

C = (Alv; — ren(v;)], Glvi — ren(v;)]). (15)
-1
ren,l’
induces an equivalence relation over the contracts, i.e., C' ~ C. Furthermore,
the inst,e,,r function is overloaded for contract networks and refinements. For
a contract network N, inst,e, ; returns

The inverse of inst ey, 1, inst returns C given C'. The instantiation function

N = ((instren,1(C1), . .., inStren,1(Cum)), ||, K[vi < ren(v;)]). (16)

Hierarchical Contract-Based Synthesis for Assurance Cases 185

Algorithm 1. Synthesize a satisfying hierarchical contract net H from a library
L, a top-level specification represented by the contract net N, a set of facts about
the system and other axioms X', and a set of system contexts I.

Require: £ is well-formed, & is satisfiable, N is consistent, compatible, and feasible.
Ensure: Termination and an output satisfying HCN H.

1: function mamg,z,x(ﬁ, D)

2 for C; € N do

3 R — findRefinements(C;, L)

4 for R, € R, RkI(Cj,¢+,Nk) do

5: Ry — inStren,1 (R, C'])

6 & —PpL NXND

7 if sat?(®') then

8: getEdges(C;) — getEdges(C;) U Ny
9: D — P NP

10: for C; €~Ni do ~
11: for N,, € getEdges(C;) do
12: maing,r,x (Nm,é)

13: function findRefipements(C'j,ﬁ)
14: C; —inst L (C))

ren,I
15: for C; € L do
16: if CZ j Cj then
17: for R; € L do
19: R «— insert(R, R;)

For refinements, inst, ; takes in a refinement R = (C, ¢, N) and contract C' and
returns R ~ R
R=(C,¢[v; — ren(vy)],N). (17)

In this paper, we consider contracts expressed in a first order logic language.
Satisfaction and refinement checks are then translated into satisfiability modulo
theory [18] (SMT) problems and solved using a state-of-art SMT solver [19].
While SMT solving can be computationally expensive, for the application in this
paper, we have primarily used quantifier-free formulas. In the few instances in
which we use quantifiers, those formulas are restricted to one universal quantifier
over uninterpreted functions.

4 Application: Assurance Cases

In this section, we give a brief introduction to assurance cases, describe the
application of hierarchical contract-based synthesis for the automatic generation
of assurance cases, and provide a case study of synthesis of assurance cases for
aerospace software certification.

186 T. E. Wang et al.

An assurance case (AC) is a collection of structured arguments that are
supported by evidence, intended to argue that a claim about the system or
software is true to some acceptable level of confidence. Since the Goal Structuring
Notation [20] (GSN) is a popular notation for writing ACs, for the purpose
of illustration, in this section, we describe the typical structure of an AC by
using elements from this notation, e.g., claims (goals), strategy, assumptions,
justifications, contexts, and solutions. We discuss how ACs can be formalized in
terms of HCNs in Sect. 4.1.

The top claim is the overall objective of the assurance case, e.g., stating
that the system is safe. A strategy describes the approach used to make the
argument. An example of such strategy for the top-level claim that “the system
is safe” is to argue that the claim can be supported if each of the identified
hazards of the system has been mitigated. This sort of strategy typically results
in the decomposition of a higher-level claim into a set of lower-level claims, or
sub-claims. A solution is one or more pieces of evidence that directly support a
claim without additional intermediate arguments. Solutions are the leaf nodes
of an AC. Assumptions are additional propositions that need to be true for a
strategy to be valid, but do not need to be backed up by any other arguments.
For example, the strategy “each of the identified hazards of the system has been
mitigated” used to infer that the system is safe is obviously not sound if one does
not assume that all the hazards have been identified. Finally, the justification
provides the reasons why a strategy is adopted.

4.1 Assurance Case as a Hierarchical Contract Network

Instead of viewing an assurance case as a set of structured arguments, one can
also view it as representing an evolving assurance process. This system-theoretic
viewpoint of assurance cases naturally leads to modeling them as HCNs. In an
HCN, each contract provides an abstraction for a step in the assurance process.
The top-level element of the HCN, a contract network N; containing one or
more contracts, is an abstraction of the entire assurance process, of which the
outcome is that the system satisfies some safety or security goal up to some level
of acceptance. Each contract C; in Ny has guarantees GG;, which form the top-
level claims of the assurance case (and relate to the top-level claim in the GSN
notation). The refinements of Ny amount to the decomposition of the assurance
process into a collection of smaller processes, each with its own sub-claims. This
decomposition relates intuitively to the decomposition of claims into sub-claims
in a GSN-based notation.

While contract guarantees map directly to claims, the role of contract
assumptions is less intuitive. As an example, consider the following contract,
where the set Hazsys := {h € Hazards|present(h, system)} is by definition the
set of all the hazards of the system:

A= /\ivi1 belongs(h;, Hazsys) A (Vh € Hazgys : \/ﬁl(h =h;))

18
G = /\f\il mitigated(h;). (18)

Hierarchical Contract-Based Synthesis for Assurance Cases 187

The guarantees directly map to a claim stating that the hazards h;, i =1,..., M,
have been mitigated. The assumptions require, instead, that the hazards h;
belong to the system, and that these are the only hazards for the system. On
the other hand, the assumption in GSN is a proposition (unsupported by other
arguments or evidence within the AC) that is used to support the argument for
another claim. A GSN assumption (e.g., “all hazards of the system have been
identified”) can then be mapped to a predicate of the contract assumption as
well as to part or to the whole of a condition ¢ in a conditional refinement.
Likewise, a GSN strategy can also be mapped to part or to the whole of the con-
dition in a conditional refinement. For example, the condition below captures
both the assumption (by definition of Hazs,s) that all hazards of the system
have been identified and the argumentation strategy arguing that the system is
safe because all hazards of the system have been mitigated.

p1 = /\f‘il belongs(hi, Hazsys) A (Vh € Hazgys : \/i]\il(h = h;))

19
/\/\ivi1 mitigated(h;) = safe(system). (19)

4.2 Case Study: Assurance Cases for Certification

A certification process evaluates whether the risk of a software system is accept-
able for its intent. The evaluation criteria are usually defined in certification
standards, which encapsulate domain knowledge and best practices for a spe-
cific industry. To streamline the certification process, the Overarching Proper-
ties (OPs) [21] concept has been developed with support of NASA and certifying
agencies including the Federal Aviation Administration (FAA) and the European
Aviation Safety Agency (EASA). OPs provide the flexibility to propose differ-
ent means of compliance by showing that the product possesses the three OPs:
Intent (the system has been specified correctly), Correctness (the system has
been correctly implemented), and Innocuity (the system is safe).

This case study aims to demonstrate how the synthesis of assurance cases
can be used to generate OP certification arguments for an autopilot based on an
assurance case library inspired by best practices presented in RTCA DO-178C,
DO-331, and DO-333. The autopilot has a flight stack, to perform estimation
and control of a drone, and a middleware that supports communication and
hardware integration. System-level requirements (SLR) are formally defined in
computation tree logic (CTL) while high-level requirements (HLR) are mod-
eled using automata. Low-level requirements (LLR) for the flight stack are then
modeled in Simulink (LLR6-10), from which code is automatically generated.
For the middleware, LLR are written, instead, in natural language (LLR1-5)
and manually implemented in C.

A set of “partial” assurance cases in our library (atomic HCNs) related to the
intent property is shown in Fig. 2. Every assurance case has only one reasoning
step, so that the synthesis algorithm can explore multiple combinations from the
library. AC1 specifies that the system needs to possess the Intent, Correctness,
and Innocuity OPs. AC2 specifies that, to possess Intent, the specification must

188

T. E. Wang et al.

AC1

G_1
[System] possesses
OPs

2

)]

G4
[System] possesses
Innocuity

G3
[System] possesses
Correctness

G2
[System] possesses.
Intent

AC3

[Specification] satisfies
[System] Requirements

G_9

—A

G_10
[Specification] is
traceable throuG_h all
[abstraction levels]

G_11
[Specification] is
compliance throuG_h all
[abstraction levels]

AC2

6.5 AC4 612 G2
[System] possesses Natural LanG_uG_e Natural lanG_uaG_e
Intent [Requirements] has a [Requirements] comply
hiG_h quality with Automata..
AC7
£ il G_13 G_15 E1
G_6 G_8 [Requirements] are _| [Requirements] are Compliance
[Specification] satisfies [Specification] has a verifiable accurate verfication
[System] Requirements hiG_h quality usinG__ Manual
Review
G_14 G_17
G7 [Requirements] follow [Requirements] are
[Specification] has requirement standards ~| compatible with the
been developed [TarG_et Plattform]
as [om A [o
) Automata Simulink
[Requirements] have)
T ey [Requirements] has [Requirements] comply
= hiG_h quality with Automata.
4 y
G_22 G_24 G_21 G_19 Eo
[Model] is consistent | A _| (Model] compatible with [Model] compatible with |) | [Model] abstraction is Compliance
[TarG_et Plattform] the [TarG_et Plattform] correct verification
usinG_
DesiG_n
G_20 Verifier
623 [Model] is consistent
[Model] follow
modelinG_ standards

Fig. 2. Pictorial representation (following a GSN-based notation) of a library of “par-
tial” AC patterns used in the synthesis process for the case study.

be developed, have high quality, and satisfy the SLR. AC3 shows that traceabil-
ity and compliance between SLR and HLR is required to satisfy SLR. AC1, AC2,
and AC3 are general assurance cases that can be applied to any system. On the
other hand, showing that the specification has high quality is specific to the type
of specification being considered. As AC4 shows, natural-language requirements
require properties such as verifiability, accuracy, conformance to standards, and
compatibility with the target. In the absence of a formal representation of these
requirements, as it may be the case for legacy software, these properties may
still need to be checked using manual reviews. To ensure the quality of a formal
representation, e.g., based on automata or a Simulink model, for example, we
need to check that the abstraction accurately represents the intended specifica-
tion. In these cases, certain verifiability properties can be intrinsically enforced
by the adoption of a formal language. In a similar way, AC7 and AC8 show
patterns that describe how to check if LLR, specified using Simulink models or
natural language, comply with HLR, specified using automata. Compliance can
be checked by either using a verification tool, in the case of Simulink models, or
manual review, in the case of natural-language requirements.

Hierarchical Contract-Based Synthesis for Assurance Cases 189

a1
Autopilot possesses

4
[]]
G2 G3 G4
Autopilot possesses Autopilot possesses Autopilot possesses
Intent Correctness Innocuity
3
Autopilot:
[SLR1-2 HLRQ1-3 LLR1-10]
[| \
o o7
[HLRQ1-3,LLR1-10] [SLR1-2 HLRQ1-3 LLR1-10] o8
satisfies SLR1-2 has been developed [HLRQ1-3 LLR1-10]
has a high quality
—r F
G11 G10
iLR1-2HLRQ1-3,LLR1-1(| SLR1-2,HLRQ1-3 LLR1-10]| [SLR1-2 HLRQ1-3 LLR1-10] 81
is compliance through is traceable through exis HLR1-3:Automata,
all abtraction level abstraction levels LLR1-5:NL,
A o LLR5-10:Simulink

s2
HLR1-3:Automata,

LLRS-10:Simulink | \
LLR1 5Gh12 high o2
AR LLR6-10 has a high HLR1-3 has high quality
qualty
r \ quality
G26 G27
LLR1-5 comply with LLR5-10 comply with
Automata HLR1 Automata HLR2:3 —f— [
G14 G17. G22 G23 G21
LLR1-S follow _| LiRr1-5 are compatie LLR6-10 are consistent LLR6-10 follow HLR1-3 compatblevith | || HLR1-3 abstiacton's
1 = (| requirement standards vith the JetsonTX2 [~ modeling standards
‘Compliance Compliance
verfication verification |

615 613
LLR1-5 are accurate LLR1-5 are verifiable

using Manual
Review.

using Design
Verifier

G24 G20
LLR6-10 compatible HLR1-3 is consistent
with JetsonTX2

E4
Verification
Result

E11
Req-CheckList

8
HW-Review

Reg-CheckList

E7
Result of
Design Verifier

‘Manual Review

Manual Review

Req-CheckList

Fig. 3. Pictorial representation (following a GSN-based notation) of the result from
the synthesis algorithm.

Based on this library, the synthesis tool explores 8 candidates, including all
the possible combinations of the library patterns (atomic HCNs). The number of
candidates is reduced when considering the top-level claim for the system and the
available development process, as shown in Fig. 3. The claims of the library nets
are instantiated and connected to their premises and sub-claims based on the
evaluation of the conditional refinement relations. The claims represented with a
green diamond have not been developed because the algorithm did not find any
contract network that satisfies the refinement relationship. The pattern AC2 is
instantiated based on the requirement set of the autopilot associated with the
claim in G2. The algorithm also instantiates different patterns to refine G8 based
on the type or requirement: AC4 for natural-language requirements, AC6 for
requirements specified using Simulink models, and AC5 for formal requirements.
Being able to instantiate patterns for groups of artifacts of the same type, in this
case requirements, reduces the number of refinement evaluations and facilitates
the interpretation of the argument.

190 T. E. Wang et al.

A tool implementation of Algorithm 1 was used to generate an assurance case
for the certification of a commercial aerospace system. The system is a legacy
one that was already certified according to the RTCA DO-178B standard. Its
676 requirements were written in natural language, and tests were used to vali-
date the implementation. Existing artifacts were used to support the generated
assurance cases. For this case study, we created 40 patterns. While most of the
patterns were motivated by compliance to DO-178C, we also created patterns
capturing best practices in system development. The overall synthesis time was
about 2s.

Overall, grouping the certification artifacts using types (e.g., requirements,
test cases, reviews) helps improve the scalability of the synthesis algorithm. Espe-
cially in the context of OPs, as different applicants can develop different argu-
ments, the heterogeneity and size of the space of possible assurance cases can
overwhelm certification authorities. Therefore, relying on a library of reusable
assurance case patterns vetted by a team of domain experts can speed up the
approval process without compromising assurance. Finally, the automated syn-
thesis and validation of assurance cases based on a library of vetted formal
patterns open up opportunities for optimizing the process of reaching compli-
ance based on cost, schedule, or confidence, and allow more efficiently comparing
different development processes to help project managers make more informed
decisions.

5 Conclusion

We presented an automated compositional synthesis approach, based on the
formal foundation of assume-guarantee contracts, for generating hierarchies of
interconnected contracts, i.e., hierarchical contract networks, to satisfy a system-
level specification. The approach employs a library of components, encoded using
atomic hierarchical contract nets, that captures the domain knowledge and a
satisfiability modulo theory (SMT)-based synthesis procedure that is fully auto-
mated. We presented the synthesis algorithm and its application to the automatic
generation of assurance cases. We illustrated how assurance cases can be formally
represented using hierarchical contract networks and provided a case study on
creating assurance cases for software certification in the aerospace domain. The
proposed approach provides the correct balance between automation and knowl-
edge representation capabilities that is demanded for the construction of certi-
fication arguments in safety-critical applications. In future work, we want to
also explore this synthesis approach for system design with potentially other
specification languages, such as Simulink. In this context, refinement checking of
contracts over streams is more of a challenge for SMT solving than the quantifier-
free fragment that we have mostly utilized for assurance cases.

Acknowledgments. Distribution Statement A (Approved for Public Release, Dis-
tribution Unlimited). This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA) contract FA875020C0508. The views,

Hierarchical Contract-Based Synthesis for Assurance Cases 191

opinions, or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S.
Government.

References

®

10.

11.

12.
13.

14.

15.

16.

17.

18.

Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Found. Trends Pro-
gramm. Lang. 4(1-2), 1-119 (2017)

Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symbol. Logic 28(4) (1963)

Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67-69 (1949)

Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media (2013)

Nuzzo, P., Bajaj, N., Masin, M., Kirov, D., Passerone, R., Sangiovanni-Vincentelli,
A.L.: Optimized selection of reliable and cost-effective safety-critical system archi-
tectures. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 39(10), 21092123
(2020)

David, C., Kroening, D.: Program synthesis: challenges and opportunities. Philos.
Trans. Royal Soc. A: Math. Phys. Eng. Sci. 375(2104), 20150403 (2017)

Alur, R., et al.: Syntax-guided synthesis. IEEE (2013)

Benveniste, A., et al.: Contracts for system design. PhD thesis, Inria (2012)
Sebastian, S., et al.: Moving from specifications to contracts in component-based
design. In: Fundamental Approaches to Software Engineering (2012)
Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming dr. Frankenstein:
Contract-based design for cyber-physical systems. Eur. J. Control 18, 217-238
(2012)

Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D., Geretti, L., Villa, T.: A
platform-based design methodology with contracts and related tools for the design
of cyber-physical systems. In: Proceedings of the IEEE (2015)

Benveniste, A., et al.: Contracts for System Design. Werner Damm (2018)
Pneuli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proceedings Annual Symposium on Foundations of Computer Science, pp. 746—
757 (1990)

Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: de Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 395-409. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00596-1_28

Tannopollo, A., Nuzzo, P., Tripakis, S., Sangiovanni-Vincentelli, A.: Library-based
scalable refinement checking for contract-based design. In: 2014 Design, Automa-
tion Test in Europe Conference Exhibition (DATE) (2014)

Tannopollo, A., Tripakis, S., Sangiovanni-Vincentelli, A.: Constrained synthesis
from component libraries. Sci. Comput. Programm. 171, 21-41 (2019)
Tannopollo, A., Tripakis, S., Sangiovanni-Vincentelli, A.: Specification decomposi-
tion for synthesis from libraries of LTL assume/guarantee contracts. In: Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1574-1579 (2018)
Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305-343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8_11

https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11

192 T. E. Wang et al.

19. de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

20. Kelly, T., Weaver, R.: The goal structuring notation-a safety argument notation.
In: Proceedings of the Dependable Systems and Networks 2004 Workshop on Assur-
ance Cases, p. 6. Citeseer (2004)

21. Holloway, C.M.: Understanding the Overarching Properties. NASA Langley
Research Center (2019)

https://doi.org/10.1007/978-3-540-78800-3_24

®

Check for
updates

Verified Probabilistic Policies for Deep
Reinforcement Learning

Edoardo Bacci® and David Parker(®)

University of Birmingham, Birmingham, UK
{exb461,d.a.parker }@bham.ac.uk

Abstract. Deep reinforcement learning is an increasingly popular tech-
nique for synthesising policies to control an agent’s interaction with its
environment. There is also growing interest in formally verifying that
such policies are correct and execute safely. Progress has been made
in this area by building on existing work for verification of deep neu-
ral networks and of continuous-state dynamical systems. In this paper,
we tackle the problem of verifying probabilistic policies for deep rein-
forcement learning, which are used to, for example, tackle adversarial
environments, break symmetries and manage trade-offs. We propose an
abstraction approach, based on interval Markov decision processes, that
yields probabilistic guarantees on a policy’s execution, and present tech-
niques to build and solve these models using abstract interpretation,
mixed-integer linear programming, entropy-based refinement and prob-
abilistic model checking. We implement our approach and illustrate its
effectiveness on a selection of reinforcement learning benchmarks.

1 Introduction

Reinforcement learning (RL) is a technique for training a policy used to govern
the interaction between an agent and an environment. It is based on repeated
explorations of the environment, which yield rewards that the agent should aim
to maximise. Deep reinforcement learning combines RL and deep learning, by
using neural networks to store a representation of a learnt reward function or
optimal policy. These methods have been increasingly successful across a wide
range of challenging application domains, including for example, autonomous
driving [30], robotics [19] and healthcare [49].

In safety critical domains, it is particularly important to assure that policies
learnt via RL will be executed safely, which makes the application of formal
verification to this problem appealing. This is challenging, especially for deep
RL, since it requires reasoning about multi-dimensional, continuous state spaces
and complex policies encoded as deep neural networks.

There are several approaches to assuring safety in reinforcement learning,
often leveraging ideas from formal verification, such as the use of temporal logic
to specify safety conditions, or the use of abstract interpretation to build dis-
cretised models. One approach is shielding (e.g., [1]), which synthesises override
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 193-212, 2022.
https://doi.org/10.1007/978-3-031-06773-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_10&domain=pdf
http://orcid.org/0000-0002-0367-898X
http://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-031-06773-0_10

194 E. Bacci and D. Parker

mechanisms to prevent the RL agent from acting upon bad decisions; another is
constrained or safe RL (e.g. [17]), which generates provably safe policies, typi-
cally by restricting the training process to safe explorations.

An alternative approach, which we take in this paper, is to verify an RL
policy’s correctness after it has been learnt, rather than placing restrictions on
the learning process or on its deployment. Progress has been made in the formal
verification of policies for RL [6] and also for the specific case of deep RL [3,4,28],
in the latter case by building on advances in abstraction and verification tech-
niques for neural networks; [3] also exploits the development of efficient abstract
domains such as template polyhedra [42], previously applied to the verification
of continuous-space and hybrid systems [7,16].

A useful tool in reinforcement learning is the notion of a probabilistic pol-
icy (or stochastic policy), which chooses randomly between available actions in
each state, according to a probability distribution specified by the policy. This
brings a number of advantages (similarly to mixed strategies [39] in game the-
ory and contextual bandits [34]), such as balancing the exploration-exploitation
tradeoft [18], dealing with partial observability of the environment [40], handling
multiple objectives [47] or learning continuous actions [38].

In this paper, we tackle the problem of verifying the safety of probabilistic
policies for deep reinforcement learning. We define a formal model of their exe-
cution using (continuous-state, finite-branching) discrete-time Markov processes.
We then build and solve sound abstractions of these models. This approach was
also taken in earlier work [4], which used Markov decision process abstractions
to verify deep RL policies in which actions may exhibit failures.

However, a particular challenge for probabilistic policies, as generated by
deep RL, is that policies tend to specify very different action distributions across
states. We thus propose a novel abstraction based on interval Markov decision
processes (IMDPs), in which transitions are labelled with intervals of probabil-
ities, representing the range of possible events that can occur. We solve these
IMDPs, over a finite time horizon, which we show yields probabilistic guarantees,
in the form of upper bounds on the actual probability of the RL policy leading
the agent to a state designated to be unsafe.

We present methods to construct IMDP abstractions using template poly-
hedra as an abstract domain, and mixed-integer linear programming (MILP) to
reason symbolically about the neural network policy encoding and a model of
the RL agent’s environment. We extend existing MILP-based methods for neu-
ral networks to cope with the softmax encoding used for probabilistic policies.
Naive approaches to constructing these IMDPs yield abstractions that are too
coarse, i.e., where the probability intervals are too wide and the resulting safety
probability bounds are too high be useful. So, we present an iterative refine-
ment approach based on sampling which splits abstract states via cross-entropy
minimisation based on the uncertainty of the over-approximation.

We implement our techniques, building on an extension of the probabilistic
model checker PRISM [32] to solve IMDPs. We show that our approach suc-
cessfully verifies probabilistic policies trained for several reinforcement learning
benchmarks and explore trade-offs in precision and computational efficiency.

Verified Probabilistic Policies for Deep Reinforcement Learning 195

Related Work. As discussed above, other approaches to assuring safety in rein-
forcement learning include shielding [1,5,25,31,52] and constrained or safe RL
[13,17,21-23,26,37,45]. By contrast, we verify policies independently, without
limiting the training process or imposing constraints on execution.

Formal verification of RL, but in a non-probabilistic setting includes: [6],
which extracts and analyses decision trees; [28], which checks safety and liveness
properties for deep RL; and [3], which also uses template polyhedra and MILP
to build abstractions, but to check (non-probabilistic) safety invariants.

In the probabilistic setting, perhaps closest is our earlier work [4], which
uses abstraction for finite-horizon probabilistic verification of deep RL, but for
non-probabilistic policies, thus using a simpler (MDP) abstraction, as well as a
coarser (interval) abstract domain and a different, more basic approach to refine-
ment. Another approach to generating formal probabilistic guarantees is [14],
which, unlike us, does not need a model of the environment and instead learns
an approximation and produces probably approximately correct (PAC) guaran-
tees. Probabilistic verification of neural network policies on partially observable
models, but for discrete state spaces, was considered in [10].

There is also a body of work on verifying continuous space probabilistic
models and stochastic hybrid systems, by building finite-state abstractions as,
e.g., interval Markov chains [33] or interval MDPs [11,36], but these do not
consider control policies encoded as neural networks. Similarly, abstractions of
discrete-state probabilistic models use similar ideas to our approach, notably via
the use of interval Markov chains [15] and stochastic games [27].

2 Background

We first provide background on the two key probabilistic models used in this
paper: discrete-time Markov processes (DTMPs), used to model RL policy exe-
cutions, and interval Markov decision processes (IMDPs), used for abstractions.
Notation. We write Dist(X) for the set of discrete probability distributions
over a set X, i.e., functions p : X — [0,1] where > _\ u(z) = 1. The support
of p, denoted supp(u), is defined as supp(p) = {z € X | u(x) > 0}. We use the
same notation where X is uncountable but where p has finite support. We write
P(X) to denote the powerset of X and v* for the ith element of a vector v.

Definition 1 (Discrete-time Markov process). A (finite-branching)
discrete-time Markov process is a tuple (S, So, P, AP, L), where: S is a (possibly
uncountably infinite) set of states; So C S is a set of initial states; P : S xS —
[0,1] is a transition probability matriz, where 3. cupnp(s,y) P(s,8") =1 for all
s € S; AP is a set of atomic propositions; and L : S — P(AP) is a labelling
Sfunction.

A DTMP begins in some initial state sg € Sy and then moves between states
at discrete time steps. From state s, the probability of making a transition to
state s’ is P(s,s’). Note that, although the state space of DTMPs used here is
continuous, each state only has a finite number of possible successors. This is

196 E. Bacci and D. Parker

always true for our models (where transitions represent policies choosing between
a finite number of actions) and simplifies the model.

A path through a DTMP is an infinite sequence of states sgs1ss ... such that
P(si, siy1) > 0 for all 4. The set of all paths starting in state s is denoted Path(s)
and we define a probability space Pr, over Path(s) in the usual way [29]. We use
atomic propositions (from the set AP) to label states of interest for verification,
e.g., to denote them as safe or unsafe. For b € AP, we write s = b if b € L(s).

The probability of reaching a b-labelled state from s within k steps is:

Pr, (0SFb) = Pr ({sos152 - € Path(s)|s; = b for some 0 < i < k})

which, since DTMPs are finite-branching models, can be computed recursively:

1 ifsEb
Prs(ogkb) — 0 if s=bAKk=0
> s/ esupp(P(s,)) P(5:8") - Pr_,(0SF=1b) otherwise.

To build abstractions, we use interval Markov decision processes (IMDPs).

Definition 2 (Interval Markov decision process). An interval Markov
decision process is a tuple (S,So, P, AP, L), where: S is a finite set of states;
So C S are initial states; P : SxNx.S — (IU0) is the interval transition probabil-
ity function, where I is the set of probability intervals I = {[a,b] | 0 < a < b < 1},
assigning either a probability interval or the probability exactly 0 to any transi-
tion; AP is a set of atomic propositions; and L:S—P(AP) is a labelling function.

Like a DTMP, an IMDP evolves through states in a state space S, starting
from an initial state sy € Sp. In each state s € S, an action j must be chosen.
Because of the way we use IMDPs, and to avoid confusion with the actions taken
by RL policies, we simply use integer indices j € N for actions. The probability
of moving to each successor state s’ then falls within the interval P(s, j, s').

To reason about IMDPs, we use policies, which resolve the nondeterminism
in terms of actions and probabilities. A policy o of the IMDP selects the choice
to take in each state, based on the history of its execution so far. In addition,
we have a so-called environment policy 7 which selects probabilities for each
transition that fall within the specified intervals. For a policy ¢ and environment
policy 7, we have a probability space PrJ’" over the set of infinite paths starting
in state s. As above, we can define, for example, the probability Pr?7(O<kb) of
reaching a b-labelled state from s within k£ steps, under o and 7.

If ¢ is an event of interest defined by a measurable set of paths (e.g., OSFb),
we can compute (through robust value iteration [48]) lower and upper bounds
on, e.g., maximum probabilities, over the set of all allowable probability values:

Prmex min(w) = sup irTlf Pro7(yp) and Pri®oM(y) = supsup Pro7(¢)

S

3 Modelling and Abstraction of Reinforcement Learning

We begin by giving a formal definition of our model for the execution of a
reinforcement learning system, under the control of a probabilistic policy. We

Verified Probabilistic Policies for Deep Reinforcement Learning 197

also define the problem of verifying that this policy is executed safely, namely
that the probability of visiting an unsafe system state, within a specified time
horizon, is below an acceptable threshold.

Then we define abstractions of these models, given an abstract domain over
the states of the model, and show how an analysis of the resulting abstraction
yields probabilistic guarantees in the form of sound upper bounds on the prob-
ability of a failure occurring. In this section, we make no particular assumption
about the representation of the policy, nor about the abstract domain.

3.1 Modelling and Verification of Reinforcement Learning

Our model takes the form of a controlled dynamical system over a continuous
n-dimensional state space S C R™, assuming a finite set of actions A performed
at discrete time steps. A (time invariant) environment E : S x A — S describes
the effect of executing an action in a state, i.e., if s; is the state at time ¢ and
a; is the action taken in that state, we have s;11 = E(s¢, at).

We assume a reinforcement learning system is controlled by a probabilistic
policy, i.e., a function of the form = : S — Dist(A), where 7(s)(a) specifies
the probability with which action a should be taken in state s. Since we are
interested in verifying the behaviour of a particular policy, not in the problem of
learning such a policy, we ignore issues of partial observability. We also do not
need to include any definition of rewards.

Furthermore, since our primary interest here is in the treatment of proba-
bilistic policies, we do not consider other sources of stochasticity, such as the
agent’s perception of its state or the environment’s response to an action. Our
model could easily be extended with other discrete probabilistic aspects, such as
the policy execution failure models considered in [4].

Combining all of the above, we define an RL ezxecution model as a
(continuous-space, finite-branching) discrete-time Markov process (DTMP). In
addition to a particular environment E and policy 7, we also specify a set Sy C .S
of possible initial states and a set Sy C S of failure states, representing unsafe
states.

Definition 3 (RL execution model). Assuming a state space S C R™ and
action set A, and given an environment E : S X A — S, policy 7 : S — Dist(A),
initial states So C S and failure states Stau C S, the corresponding RL execution
model is the DTMP (S, So, P, AP, L) where AP = {fail}, for any s € S, fail €
L(s) iff s € Staa and, for states s, s’ € S:

P(s,s') = Z {m(s)(a) | a € A s.t. E(s,a) =5'}.

The summation in Definition 3 is required since distinct actions a and a’ applied
in state s could result in the same successor state s’.

Then, assuming the model above, we define the problem of verifying that an
RL policy executes safely. We consider a fixed time horizon k € N and an error
probability threshold p,fe, and the check that the probability of reaching an
unsafe state within k time steps is always (from any start state) below psq fe-

198 E. Bacci and D. Parker

Definition 4 (RL verification problem). Given a DTMP model of an RL
execution, as in Definition 3, a time horizon k € N and a threshold pgeye € [0, 1],
the RL verification problem is to check that Pr (0S¥ fail) < psafe for all s € So.

In practice, we often tackle a numerical version of the verification problem,
and instead compute the worst-case probability of error for any start state p™ =
inf{ Pr (OSFfail) | s € Sp} or (as we do later) an upper bound on this value.

3.2 Abstractions for Verification of Reinforcement Learning

Because our models of RL systems are over continuous state spaces, in order to
verify them in practice, we construct finite abstractions. These represent an over-
approximation of the original model, by grouping states with similar behaviour
into abstract states, belonging to some abstract domain S C P(S).

Such abstractions are usually necessarily nondeterministic since an abstract
state groups states with similar, but distinct, behaviour. For example, abstrac-
tion of a probabilistic model such as a discrete-time Markov process could be
captured as a Markov decision process [4]. However, a further source of com-
plexity for abstracting probabilistic policies, especially those represented as deep
neural networks, is that states can also vary widely with regards to the proba-
bilities with which policies select actions in those states.

So, in this work we represent abstractions as interval MDPs (IMDPs), in
which transitions are labelled with intervals, representing a range of different
possible probabilities. We will show that solving the IMDP (i.e., computing the
maximum finite-horizon probability of reaching a failure state) yields an upper
bound on the corresponding probability for the model being abstracted.

Below, we define this abstraction and state its correctness, first focusing
separately on abstractions of an RL system’s environment and policy, and then
combining these into a single IMDP abstraction.

Assuming an abstract domain S C P(S), we first require an environment
abstraction E : S x A — § , which soundly over-approximates the RL environ-
ment F: S x A— S, as follows.

Definition 5 (Environment abstraction). For environment E: Sx A — S
and set of abstract states Sc P(S), an environment abstraction is a function
E:SxA— S such that: for any abstract state § € S, concrete state s € § and
action a € A, we have E(s,a) € E(3,a).

Additionally, we need, for any RL policy 7, a policy abstraction 7, which gives
a lower and upper bound on the probability with which each action is selected
within the states grouped by each abstract state.

Definition 6 (Policy abstraction). For a policy w: S — Dist(A) and a set
of abstract states S C P(S), a policy abstraction is a pair (7r,7y) of functions
of the form 7 : S x A —[0,1] and 7y : S x A — [0,1], satisfying the following:
for any abstract state § € S, concrete state s € § and action a € A, we have
7r(8,a) < w(s,a) < 7y (8, a).

Verified Probabilistic Policies for Deep Reinforcement Learning 199

Finally, combining these notions, we can define an RL ezecution abstraction,
which is an IMDP abstraction of the execution of an policy in an environment.

Definition 7 (RL execution abstraction). Let E and m be an RL envi-
ronment and policy, DTMP (S,S0,P, AP, L) be the corresponding RL execution
model and S C P(S) be a set of abstract states. Given also a policy abstraction

7t of ™ and an environment abstraction E of E, an RL execution abstraction is
an IMDP (S, Sy, P, AP, L) satisfying the following:

= for all s € Sp, s € § for some § € So;
— for each 8§ € S, there is a partition {51,...,8m} of § such that, for each
je{l,...,m} we have P(3,5,8) = [Pr(5,4,8),Pu(8,4,8)] where:

Il
o

PL(3,7,8) = 171(35,a) | a € A s.t. E(3j,a) =&
Pu(5,5,8) =Y 17u(3j,a) | a € A s.t. E(3j,a) =&

— AP = {fail} and fail € L(3) iff fail € L(s) for some s € §.

Intuitively, each abstract state 5 is partitioned into groups of states §; that
behave the same under the specified environment and policy abstractions. The
nondeterministic choice between actions j € {1,...,m} in abstract state §, each
of which corresponds to the state subset §;, allows the abstraction to overap-
proximate the behaviour of the original DTMP model.

Finally, we state the correctness of the abstraction, i.e., that solving the
IMDP provides upper bounds on the probability of policy execution resulting in
a failure. This is formalised as follows (see the appendix for a proof).

Theorem 1. Given a state s € S of an RL execution model DTMP, and an
abstract state § € S of the corresponding abstraction IMDP for which s € §:

Prs(oékfai” < PrgnaxmaX(ngfail)'

In particular, this means that we can tackle the RL verification problem of
checking that the error probability is below a threshold pg,f. for all possible
start states (see Definition 4). We can do this by finding an abstraction for
which PrP®max(osk fail) < Psafe for all initial abstract states 5 € So.
Although Pr®*™i(¢<kfgil) is not necessarily a lower bound on the failure
probability, the value may still be useful to guide abstraction refinement.

4 Template-Based Abstraction of Neural Network
Policies

We now describe in more detail the process for constructing an IMDP abstrac-
tion, as given in Definition 7, to verify the execution of an agent with its environ-
ment, under the control of a probabilistic policy. We assume that the policy is

200 E. Bacci and D. Parker

encoded in neural network form and has already been learnt, prior to verification,
and we use template polyhedra to represent abstract states.

The overall process works by building a k-step unfolding of the IMDP, start-
ing from a set of initial states Sy C S. For each abstract state § explored during
this process, we need to split § into an appropriate partition {1, ..., §m,}. Then,
for each 5; € 5 and each action a € A, we determine lower and upper bounds on
the probabilities with which a is selected in states in 35, i.e., we construct a policy
abstraction (%, 7y). We also find the successor abstract state that results from
executing a in 3;, i.e., we build an environment abstraction E. Construction of
the IMDP then follows directly from Definition 7.

In the following sections, we describe our techniques in more detail. First,
we give brief details of the abstract domain used: bounded polyhedra. Next, we
describe how to construct policy abstractions via MILP. Lastly, we describe how
to partition abstract states via refinement. We omit details of the environment
abstraction since we reuse the symbolic post operator over template polyhedra
given in [3], also performed with MILP. This supports environments specified
as linear, piecewise linear or non-linear systems defined with polynomial and
transcendental functions. The latter is dealt with using linearisation, subdividing
into small intervals and over-approximating using interval arithmetic.

Further details of the algorithms in this section can be found in [2].

4.1 Bounded Template Polyhedra

Recall that the state space of our model S C R™ is over n real-valued variables.
We represent abstract states using template polyhedra [42], which are convex
subsets of R", defined by constraints in a finite set of directions A C R™ (in
other words, the facets of the polyhedra are normal to the directions in A). We
call a fixed set of directions A C R™ a template.

Given a (convex) abstract state § C R™, a A-polyhedron of § is defined as
the tightest A-polyhedron enclosing §:

N{{s: (5, s) <sup{(d,s): s € §}}: § € A},

where (-,-) denotes scalar product. In this paper, we restrict our attention to
bounded template polyhedra (also called polytopes), in which every variable in
the state space is bounded by a direction of the template, since this is needed
for our refinement scheme.

Important special cases of template polyhedra are rectangles (i.e., intervals)
and octagons. Later, in Sect. 5, we will present an empirical comparison of these
different abstract domains applied to our setting, and show the benefits of the
more general case of template polyhedra.

4.2 Constructing Policy Abstractions

We focus first on the abstraction of the RL policy m : S — Dist(A), assuming
there are k actions: A = {ai,...,a;}. Let m be encoded by a neural network

Verified Probabilistic Policies for Deep Reinforcement Learning 201

comprising n input neurons, ! hidden layers, each containing h; neurons (1 <
i < 1), and k output neurons, and using ReLU activation functions.

The policy is encoded as follows. We use variable vectors zg . . ., 2141 to denote
the values of the neurons at each layer. The current state of the environment is
fed to the input layer zy, each hidden layer’s values are as follows:

Z; = ReLU(WiZi,1 + bl) for i =]., . ,l

and the output layer is z;41 = W12, where each W; is a matrix of weights
connecting layers :—1 and ¢ and each b; is a vector of biases. In the usual fash-
ion, ReLU(z) = max(z,0). Finally, the & output neurons yield the probability
assigned by the policy to each action. More precisely, the probability that the
encoded policy selects action a; is given by p; based on a softmax normalisation
of the output layer:

ezlj+1
Yyt

For an abstract state §, we compute the policy abstraction, i.e., lower and upper
bounds 77,(3,a;) and 7y (3, a;) for all actions a; (see Definition 6), via mixed-
integer linear programming (MILP), building on existing MILP encodings of
neural networks [9,12,46]. The probability bounds cannot be directly computed
via MILP due to the nonlinearity of the softmax function so, as a proxy, we
maximise the corresponding entry (the jth logit) of the output layer (I41). For
the upper bound (the lower bound is computed analogously), we optimise:

pj = softmax(z;11)’ =

maximize zlj 11

subject to zp € §,
ngi—WiZifl—bigMZ;fOI"L':].,...,Z, (1)
0< 2z <M- Mz fori=1,...,1,
0<z <1 fore=1,...,1,
241 = W12,

over the variables zg € R", 2,41 € RF and 2; € RM | 2/ € ZM for 1 <i < L.

Since abstract state § is a convex polyhedron, the initial constraint zy € §
on the vector of values zp fed to the input layer is represented by |A| linear
inequalities. ReLU functions are modelled using a big-M encoding [46], where
we add integer variable vectors z; and M € R is a constant representing an
upper bound for the possible values of neurons.

We solve 2k MILPs to obtain lower and upper bounds on the logits for
all k£ actions. We then calculate bounds on the probabilities of each action by
combining these values as described below. Since the exponential function in
softmax is monotonic, it preserves the order of the intervals, allowing us to
compute the bounds on the probabilities achievable in §.

Let xj3; and x4p,; denote the lower and upper bounds, respectively, obtained
for each action a; via MILP (i.e., the optimised values z/, , in (1) above). Then,

202 E. Bacci and D. Parker

the upper bound for the probability of choosing action a; is yusp,;:

o ‘ i _) mws fi=j

Yub,j = softmax(zup,;) where Fubyj = { 1 — x5, otherwise

and where z,; ; is an intermediate vector of size k. Again, the computation for
the lower bound is performed analogously.

4.3 Refinement of Abstract States

As discussed above, each abstract state § in the IMDP is split into a partition
{51,...,8m} and, for each §;, the probability bounds 71 (8;,a) and 7y (8;,a) are
determined for each action a. If these intervals are two wide, the abstraction is
too coarse and the results uninformative. To determine a good partition (i.e., one
that groups states with similar behaviour in terms of the probabilities chosen by
the policy), we use refinement, repeatedly splitting §; into finer partitions.

We define the mazimum probability spread of §;, denoted AP**(3;), as:

APAX(g)) = meai((ﬁy (8i,a) — 7L(84,0a))

and we refine §; until AP**(3;) falls below a specified threshold ¢. Varying ¢
allows us to tune the desired degree of precision.

When refining, our aim is minimise AZ**(§;), i.e., to group areas of the
state space that have similar probability ranges, but also to minimise the num-
ber of splits performed. We try to find a good compromise between improving
the accuracy of the abstraction and reducing partition growth, which generates
additional abstract states and increases the size of the IMDP abstraction.

Calculating the range AP**(3;) can be done by using MILP to compute each
of the lower and upper bounds 7 (§;,a) and 7y (8;,a). However, this may be
time consuming. So, during the first part of refinement for each abstract state,
we sample probabilities for some states to compute an underestimate of the true
range. If the sampled range is already wide enough to trigger further refinement,
we do so; otherwise we calculate the exact range of probabilities using MILP to
check whether there is a need for further refinement.

Each refinement step comprises three phases, described in more detail below:
(i) sampling policy probabilities; (ii) selecting a direction to split; (iii) splitting.
Figure 1 gives an illustrative example of a full refinement.

Sampling the Neural Network Policy. We first generate a sample of the
probabilities chosen by the policy within the abstract state. Since this is a con-
vex region, we sample state points within it randomly using the Hit & Run
method [44]. We then obtain, from the neural network, the probabilities of pick-
ing actions at each sampled state. We consider each action a separately, and
then later split according to the most promising one (i.e., with the widest prob-
ability spread across all actions). The probabilities for each a are computed in
a one-vs-all fashion: we generate a point cloud representing the probability of
taking that action as opposed to any other action.

Verified Probabilistic Policies for Deep Reinforcement Learning 203

) 1.0
L 0.75
! 05
» 0.25
0.0

Fig. 1. Sampled policy probabilities for one action in an abstract state (left) and the
template polyhedra partition generated through refinement (right).

The number of samples used (and hence the time needed) is kept fixed,
rather than fixing the density of the sampled points. We sample 1000 points per
abstract state split but this parameter can be tuned depending on the machine
and the desired time/accuracy tradeoff. This ensures that ever more accurate
approximations are generated as the size of the polyhedra decreases.

Choosing Candidate Directions. We refine abstract states (represented as
template polyhedra) by bisecting them along a chosen direction from the set A
used to define them. Since the polyhedra are bounded, we are free to pick any one.
To find the direction that contributes most to reducing the probability spread,
we use cross-entropy minimisation to find the optimal boundary at which to split
each direction, and then pick the direction that yields the lowest value.

Let S be the set of sampled points and Y, denote the true probability of
choosing action a in each point s € S, as extracted from the probabilistic policy.
For a direction &, we project all points in S onto & and sort them accordingly,

ie., we let S = {s1,...,8m}, where m = |S| and index i is sorted by (4, s;).
We determine the optimal boundary for splitting in direction ¢ by finding the
optimal index k that splits S into {s1,..., sk} and {sg41,...,Sm}. To do so, we

first define the function Yik"s classifying the ith point according to this split:

Yo

K2

lifi<k
0if2 >k

and then minimise, over k, the binary cross entropy loss function:

- 1 m & y
HY . 7) = —= %" (v log(Yi) + (1 - ¥/*)) log(1 - V2,))

which reflects how well the true probability for each point Y, matches the sepa-
ration into the two groups.

204 E. Bacci and D. Parker

One problem with this approach is that, if the distribution of probabilities
is skewed to strongly favour some probabilities, a good decision boundary may
not be picked. To counter this, we perform sample weighting by grouping the
sampled probabilities into small bins, and counting the number of samples in
each bin to calculate how much weight to give to each sample.

Abstract State Splitting. Once a direction § and bisection point s are chosen,
the abstract state is split into two with a corresponding pair of constraints that
splits the polyhedron. Because we are constrained to the directions of the tem-
plate, and the decision boundary is highly non-linear, sometimes the bisection
point falls close to the interval boundary and the resulting slices are extremely
thin. This would cause the creation of an unnecessarily high number of polyhe-
dra, which we prevent by imposing a minimum size of the split relative to the
dimension chosen. By doing so we are guaranteed a minimum degree of progress
and the complex shapes in the non-linear policy space which are not easily classi-
fied (such as non-convex shapes) are broken down into more manageable regions.

5 Experimental Evaluation

We evaluate our approach by implementing the techniques described in Sect. 4
and applying them to 3 reinforcement learning benchmarks, analysing perfor-
mance and the impact of various configurations and optimisations.

5.1 Experimental Setup

Implementation. The code is developed in a mixture of Python and Java. Neu-
ral network manipulation is done through Pytorch [51], MILP solution through
Gurobi [20], graph analysis with networkX [50] and cross-entropy minimisation
with Scikit-learn [41]. IMDPs are constructed and solved using an extension of
PRISM [32] which implements robust value iteration [48]. The code is available
from https://github.com/phate09/SafeDRL.

Benchmarks. We use the following three RL benchmark environments:

(i) Bouncing ball [24]: The agent controls a ball with height p and vertical
velocity v, choosing to either hit the ball downward with a paddle, adding speed,
or do nothing. The ball accelerates while falling and bounces on the ground losing
10% of its energy; it eventually stops bouncing if its height is too low and it is out
of reach of the paddle. The initial heights and speed vary. In our experiments,
we consider two possible starting regions: “large” (So = L), where p € [5,9] and
v € [—1,1], and “small” (Sy = S), where p € [5,9] and v € [—0.1,0]. The safety
constraint is that the ball never stops bouncing.

(i) Adaptive cruise control [3]: The problem has two vehicles i € {lead, ego},
whose state is determined by variables z; and v; for the position and speed of
each car, respectively. The lead car proceeds at constant speed (28 m s~1), and
the agent controls the acceleration (£1 m s~2) of ego using two actions. The

https://github.com/phate09/SafeDRL

Verified Probabilistic Policies for Deep Reinforcement Learning 205

(a) Intervals: |§| = 450 (b) Octagons: |§| = 334 (c) Templates: |§] = 25

Fig. 2. Policy abstractions for an abstract state from the adaptive cruise control bench-
mark, using different abstract domains (see Fig. 1 for legend).

range of possible start states allows a relative distance of [3,10] metres and the
speed of the ego vehicle is in [26, 32] m/s. Safety means preserving icqq = Zego-

(i) Inverted pendulum: This benchmark is a modified (discrete action) version
of the “Pendulum-v0” environment from the OpenAl Gym [8] where an agent
applies left or right rotational force to a pole pivoting around one of its ends,
with the aim of balancing the pole in an upright position. The state is modelled
by 2 variables: the angular position and velocity of the pole. We consider initial
conditions of an angle [—0.05,0.05] and speed [—0.05,0.05]. Safety constitutes
remaining within a range of positions and velocities such that an upright position
can be recovered. This benchmark is more challenging than the previous two: it
allows 3 actions (noop, push left, push right) and the dynamics of the system
are highly non-linear, making the problem more complex.

Policy Training. All agents have been trained using proximal policy optimisa-
tion (PPO) [43] in actor-critic configuration with Adam optimiser. The training
is distributed over 8 actors with 10 instances of each environment, managing the
collection of results and the update of the network with RL1ib [35]. Hyperpa-
rameters have been mostly kept unchanged from their default values except the
learning rate and batch size which have been set to 5x10~* and 4096, respec-
tively. We used a standard feed forward architecture with 2 hidden layers (size
32 for the bouncing ball and size 64 for the adaptive cruise control and inverted
pendulum problems) and ReLU activation functions.

Abstract Domains. The abstraction techniques we present in Sect. 4 are based
on the use of template polyhedra as an abstract domain. As special cases, this
includes rectangles (intervals) and octagons. We use both of these in our experi-
ments, but also the more general case of arbitrary bounded template polyhedra.
In the latter case, we choose a set of directions by sampling a representative
portion of the state space where the agent is expected to operate, and choosing
appropriate slopes for the directions to better represents the decision bound-
aries. The effect of the choice of different template can be seen in Fig. 2 where

206 E. Bacci and D. Parker

Table 1. Verification results for the benchmark environments

Benchmark environment | k Abs. dom. | ¢ Contain| Num. Num. IMDP Prob. Runtime
check poly. visited | size bound (min.)

Bouncing ball 20 | Rect 0.1 v 337 28 411 0.0 1
(S0 =8) 20 | Oct 01 | v 352 66 484 | 0.0 2
Bouncing ball 20 | Rect 01 | v/ 1727 5534 7796 0.63 30
(S0 =1L) 20 | Oct 01 |v 2480 | 3045 6273 | 0.0 33
20 | Rect 0.1 X 18890 0 23337 0.006 91
20 | Oct 0.1 X 13437 0 16837 0.0 111
Adaptive cruise 7 | Rect 0.33 | v/ 1522 4770 10702 0.084 85
control 7 | Oct 0.33 | v 1415 | 2299 6394 | 0.078 60
7 | Temp 0.33 | vV 2440 2475 9234 0.47 70
7 | Rect 0.5 v 593 1589 3776 0.62 29
7 | Oct 0.5 v 801 881 3063 0.12 30
7 | Temp 0.5 v 1102 1079 4045 0.53 34
7 | Rect 0.33 | X 11334 0 24184 0.040 176
7 | Oct 0.33 | X 7609 0 16899 0.031 152
7 | Temp 0.33 | X 6710 0 14626 0.038 113
7 | Rect 0.5 X 3981 0 8395 0.17 64
7 | Oct 0.5 X 2662 0 5895 0.12 52
7 | Temp 0.5 X 2809 0 6178 0.16 48
Inverted 6 | Rect 0.5 v 1494 3788 14726 0.057 71
pendulum 6 | Rect 05 | X 5436 0 |16695 |0.057 69

we show a representative abstract state and how the refinement algorithm is
affected by the choice of template: as expected, increasing the generality of the
abstract domain results in a smaller number of abstract states.

Containment Checks. Lastly, we describe an optimisation implemented for
construction of IMDP abstractions, whose effectiveness we will evaluate in the
next section. When calculating the successors of abstract states to construct
an IMDP, we sometimes find that successors that are partially or fully con-
tained within previously visited abstract states. Against the possible trade-off of
decreasing the accuracy of the abstraction, we can attempt to reduce the total
size of the IMDP that is constructed by aggregating together states which are
fully contained within previously visited abstract states.

5.2 Experimental Results

Table 1 summarises the experimental results across the different benchmark envi-
ronments; k denotes the time horizon considered. We use a range of configura-
tions, varying: the abstract domain used (rectangles, octagons or general tem-
plate polyhedra); the maximum probability spread threshold ¢ and whether the
containment check optimisation is used.

The table lists, for each case: the number of independent polyhedra generated,
the number of instances in which polyhedra are contained in previously visited
abstract states and aggregated together; the final size of the IMDP abstraction
(number of abstract states); the generated upper bound on the probability of

Verified Probabilistic Policies for Deep Reinforcement Learning 207

encountering an unsafe state from an initial state; and the runtime of the whole
process. Experiments were run on a 4-core 4.2 GHz PC with 64 GB RAM.

Verification successfully produced probability bounds for all environments
considered. Typically, the values of k shown are the largest time horizons we
could check, assuming a 3 h timeout for verification. The majority of the runtime
is for constructing the abstraction, not solving the IMDP.

As can be seen, the various configurations result in different safety probability
bounds and runtimes for the same environments, so we are primarily interested in
the impact that these choices have on the trade-off between abstraction precision
and performance. We summarise findings for each benchmark separately.

Bouncing Ball. These are the quickest abstractions to construct and verify
due to the low number of variables and the simplicity of the dynamics. For both
initial regions considered, we can actually verify that it is fully safe (maximum
probability 0). However, for the larger one, rectangles (particular with contain-
ment checks) are not accurate enough to show this.

Two main areas of the policy are identified for refinement: one where it can
reach the ball and should hit it and one where the ball is out of reach and the
paddle should not be activated to preserve energy. But even for threshold ¢ = 0.1
(lower than used for other benchmarks), rectangular abstractions resulted in
large abstract states containing most of the other states visited by the agent,
and which ultimately overlapped with the unsafe region.

Adaptive Cruise Control. On this benchmark, we use a wider range of con-
figurations. Firstly, as expected, for smaller values of the maximum probability
spread threshold ¢, the probability bound obtained is lower (the overestima-
tion error from the abstraction decreases, making it closer to the true maximum
probability) but the abstraction size and runtime increase. Applying the con-
tainment check for previously visited states has a similar effect: it helps reduce
the computation time, but at the expense of overapproximation (higher bounds)

The choice of abstract domain also has a significant impact. Octagons yield
more precise results than rectangles, for the same values of ¢, and also produce
smaller abstractions (and therefore lower runtime). On the other hand, general
template polyhedra (chosen to better approximate the decision boundary) do
not appear to provide an improvement in time or precision on this example,
instead causing higher probability bounds, especially when combined with the
containment check. Our hypothesis is that this abstract domains groups large
areas of the state space (as shown in Fig. 2) and this eventually leads to overlaps
with the unsafe region.

Inverted Pendulum. This benchmark is more challenging and, while we suc-
cessfully generate bounds on the probability of unsafe behaviour, for smaller
values of ¢ and other abstract domains, experiments timed out due to the high
number of abstract states generated and the time needed for MILP solution.
The abstract states generated were sufficiently small that the containment check
could be used to reduce runtime without increasing the probability bound.

208 E. Bacci and D. Parker

(a) Rectangles (b) Octagons

Fig. 3. Refined policy abstractions from the inverted pendulum benchmark (Color
figure online)

Figure 3 illustrates abstraction applied to a state space fragment from this
benchmark using both rectangles and octagons. It shows the probability of choos-
ing one of three actions, coded by RGB colour: noop (red), right (green) and left
(blue), The X axis represents angular speed and the Y axis represents the angle
of the pendulum in radians. Notice the grey area towards the centre where all
3 actions have the same probability, the centre right area with yellow tints (red
and green), and the centre left area with purple tints (red and blue). Towards
the bottom of the heatmap, the colour fades to green as the agent tries to push
the pendulum so that it spins and balances once it reaches the opposite side.

6 Conclusion

We presented an approach for verifying probabilistic policies for deep reinforce-
ment learning agents. This is based on a formal model of their execution as
continuous-space discrete time Markov process, and a novel abstraction repre-
sented as an interval MDP. We propose techniques to implement this framework
with MILP and a sampling-based refinement method using cross-entropy min-
imisation. Experiments on several RL benchmarks illustrate its effectiveness and
show how we can tune the approach to trade off accuracy and performance.
Future work includes automating the selection of an appropriate template for
abstraction and using lower bounds from the abstraction to improve refinement.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 834115, FUN2MODEL).

Verified Probabilistic Policies for Deep Reinforcement Learning 209

Appendix: Proof of Theorem 1

We provide here a proof of Theorem 1, from Sect. 3, which states that:
Given a state s € S of an RL execution model DTMP, and abstract state
5 € S of the corresponding controller abstraction IMDP for which s € §, we
have:
Pr (OSFfail) < Prexmax(SFfail)

S

By the definition of Pri®*™#*(.) it suffices to show that there is some policy o
and some environment policy 7 in the IMDP such that:

Pr (0SFfail) < Pri7 (0 fail) (2)

Recall that, in the construction of the IMDP (see Definition 7), an abstract state
5 is associated with a partition of subsets 3; of 3, each of which is used to define
the j-labelled choice in state 5. Let o be the policy that picks in each state s
(regardless of history) the unique index j, such that s € §;,. Then, let 7 be
the environment policy that selects the upper bound of the interval for every
transition probability. We use function P, to denote the chosen probabilities,
i.c., we have P.(3, j,, §') = Py(3, js, &) for any 8, j,, &'

The probabilities Pr?" (0S¥ fail) for these policies, starting in §, are defined
similarly to those for discrete-time Markov processes (see Sect. 2):

1 if 3 = fail
o,T - 0 1f§béfazl/\k::0
PrI7(0Sk fail) = R
rs (07 ail) > P(3, s, §’)~Pr§;‘r(<><k*1fail) otherwise.

3’ esupp(P(8,4s,"))

Since this is defined recursively, we prove (2) by induction over k. For the case
k = 0, the definitions of Pr (0<%fail) and Pr (0S°fail) are equivalent: they
equal 1 if s = fail (or § = fail) and 0 otherwise. From Definition 7, s = fail
implies § = fail. Therefore, Pr (0<fail) < Pr77(0Sfail).

Next, for the inductive step, we will assume, as the inductive hypothesis,
that Pry, (OSF1fail) < Prg7(0SF1fail) for s € S and 8 € S with ' € §. If
$ | fail then Pri7(OS*fail) =1 > Pr (OSFfail). Otherwise we have:

Prg7(OSF fail)
= Y coupp(Pr(s.jary) Pr(8:35,8") - Pr o, (0S* " fail) by defn. of o and PrI" (0" fail)

yPu(8,7s,8) - Préz(ng_lfail) by defn. of 7

3’ esupp(Py (8,4s,)

=Yacamu(§a)- Pry (0SF" 1 fail) by defn. of Py (3,4, §")
85,0
Z Z,,,GA (s, a) - PTE(: a)(ogkflfail) since s € § and by Defn.6
85,

2 >eam(s,a)- PTE(S’Q)(ng_lfail) by induction and since, by
Defn. 5, E(s,w) € EA(§j7 w)

= 2o/ csupp(P(s,)) P (5 s') - PTS/(ng_lfail) by defn. of P(s,s’)

= Pr (0SFfail) by defn. of Pr_(OS* fail)

which completes the proof.

210 E. Bacci and D. Parker
References
1. Alshiekh, M., Bloem, R., Ehlers, R., Koénighofer, B., Niekum, S., Topcu, U.: Safe

10.

11.

12.

13.

14.

15.

16.

17.

reinforcement learning via shielding. In: Proceedings of 32nd A AAI Conference on
Artificial Intelligence (AAAT 2018), pp. 26692678 (2018)

. Bacci, E.: Formal Verification of Deep Reinforcement Learning Agents. Ph.D. the-

sis, School of Computer Science, University of Birmingham (2022)

Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infin-
ity. In: Proceedings 30th International Joint Conference on Artificial Intelligence
(IJCAI 2021), pp. 2154-2160 (2021)

Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learning.
In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 231—
248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_14
Bastani, O.: Safe reinforcement learning with nonlinear dynamics via model predic-
tive shielding. In: Proceedings of the American Control Conference, pp. 3488-3494
(2021)

Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via pol-
icy extraction. In: Proceedings of 2018 Annual Conference on Neural Information
Processing Systems (NeurIPS 2018), pp. 2499-2509 (2018)

Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided
refinement of template polyhedra. In: TACAS (1), pp. 589-606 (2017)

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAl Gym, June 2016

Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Kumar, P.: A unified view of piecewise
linear neural network verification. In: Proceedings of 32nd International Conference
on Neural Information Processing Systems (NIPS 2018), pp. 4795-4804 (2018)
Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable RNN-based policies for par-
tially observable Markov decision processes. J. Artif. Intell. Res. 72, 819-847 (2021)
Cauchi, N., Laurenti, L., Lahijanian, M., Abate, A., Kwiatkowska, M., Cardelli,
L.: Efficiency through uncertainty: scalable formal synthesis for stochastic hybrid
systems. In: 22nd ACM International Conference on Hybrid Systems: Computation
and Control (2019)

Cheng, C.-H., Niithrenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251-268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2_18

Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
AAAT, pp. 3387-3395. AAAT Press (2019)

Delgrange, F., Ann Now e, G.A.P.: Distillation of RL policies with formal guar-
antees via variational abstraction of Markov decision processes. In: Proceedings of
36th AAAT Conference on Artificial Intelligence (AAAT 2022) (2022)

Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71-88. Springer, Heidelberg (2006).
https://doi.org/10.1007/11691617_5

Frehse, G., Giacobbe, M., Henzinger, T.A.: Space-time interpolants. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 468-486. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_25

Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: AAAI, pp. 6485—6492. AAAI Press
(2018)

https://doi.org/10.1007/978-3-030-57628-8_14
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/11691617_5
https://doi.org/10.1007/978-3-319-96145-3_25

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Verified Probabilistic Policies for Deep Reinforcement Learning 211

Garcia, J., Ferndndez, F.: Probabilistic policy reuse for safe reinforcement learning.
ACM Trans. Autonomous Adaptive Syst. 13(3), 1-24 (2018)

Gu, S., Holly, E., Lillicrap, T.P., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: Proceedings of 2017 IEEE
International Conference on Robotics and Automation (ICRA 2017), pp. 3389-
3396 (2017)

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021)
Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained neural fitted g-
iteration. In: AAMAS, pp. 2012-2014. IFAAMAS (2019)

Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with
logical constraints. In: AAMAS, pp. 483-491. International Foundation for
Autonomous Agents and Multiagent Systems (2020)

Hunt, N., Fulton, N., Magliacane, S., Hoang, T.N., Das, S., Solar-Lezama, A.:
Verifiably safe exploration for end-to-end reinforcement learning. In: Proceedings
of 24th International Conference on Hybrid Systems: Computation and Control
(HSCC 2021) (2021)

Jaeger, M., Jensen, P.G., Guldstrand Larsen, K., Legay, A., Sedwards, S.,
Taankvist, J.H.: Teaching stratego to play ball: optimal synthesis for continuous
space MDPs. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 81-97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3.5

Jansen, N., Konighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields. In: Proceedings of 31st International Confer-
ence on Concurrency Theory (CONCUR 2020), vol. 171, pp. 31-316 (2020)

Jin, P., Zhang, M., Li, J., Han, L., Wen, X.: Learning on Abstract Domains: A
New Approach for Verifiable Guarantee in Reinforcement Learning, June 2021
Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
Syst. Des. 36(3), 246-280 (2010)

Kazak, Y., Barrett, C.W., Katz, G., Schapira, M.: Verifying deep-RL-driven
systems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML,
NetAIQSIGCOMM 2019, pp. 83-89. ACM (2019)

Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer
(1976)

Kendall, A.| et al.: Learning to drive in a day. In: ICRA, pp. 8248-8254. IEEE
(2019)

Konighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290-306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
416

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

Lahijania, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control 60(8), 2031-2045
(2015)

Langford, J., Zhang, T.: The epoch-greedy algorithm for contextual multi-armed
bandits. Adv. Neural. Inf. Process. Syst. 20(1), 96-1 (2007)

https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

212

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

E. Bacci and D. Parker

Liang, E., et al.: RLIib: abstractions for distributed reinforcement learning. In:
Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 3053—
3062. PMLR, 10-15 July 2018

Lun, Y.Z., Wheatley, J., D’Innocenzo, A., Abate, A.: Approximate abstractions
of Markov chains with interval decision processes. In: Proceedings of 6th IFAC
Conference on Analysis and Design of Hybrid Systems (2018)

Ma, H., Guan, Y., Li, S.E., Zhang, X., Zheng, S., Chen, J.: Feasible Actor-Critic:
Constrained Reinforcement Learning for Ensuring Statewise Safety (2021)

Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Balcan,
M.F., Weinberger, K.Q. (eds.) Proceedings of 33rd International Conference on
Machine Learning, vol. 48, pp. 1928-1937. PMLR (2016)

Osborne, M.J.; et al.: An Introduction to Game Theory, vol. 3. Oxford University
Press, New York (2004)

Papoudakis, G., Christianos, F., Albrecht, S.V.: Agent modelling under partial
observability for deep reinforcement learning. In: Proceedings of the Neural Infor-
mation Processing Systems (NeurIPS) (2021)

Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 28252830 (2011)

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25-41. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30579-8_2

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly
distributed over bounded regions. Oper. Res. 32(6), 1296-1308 (1984)

Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be Safe: Deep
RL with a Safety Critic (2020)

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating Robustness of Neural Networks with
Mixed Integer Programming (2017)

Vamplew, P., Dazeley, R., Barker, E., Kelarev, A.: Constructing stochastic mixture
policies for episodic multiobjective reinforcement learning tasks. In: Nicholson, A.,
Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 340-349. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10439-8_35

Wolff, E., Topcu, U., Murray, R.: Robust control of uncertain Markov decision pro-
cesses with temporal logic specifications. In: Proceedings of 51th IEEE Conference
on Decision and Control (CDC 2012), pp. 3372-3379 (2012)

Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: a survey.
ACM Comput. Surv. 55(1), 1-36 (2021)

Networkx - network analysis in python. https://networkx.github.io/. Accessed 07
May 2020

Pytorch. https://pytorch.org/. Accessed 07 May 2020

Zhu, H., Magill, S., Xiong, Z., Jagannathan, S.: An inductive synthesis frame-
work for verifiable reinforcement learning. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
686—701. Association for Computing Machinery, June 2019

https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-30579-8_2
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-642-10439-8_35
https://networkx.github.io/
https://pytorch.org/

®

Check for
updates

NNLander-VeriF: A Neural Network
Formal Verification Framework
for Vision-Based Autonomous Aircraft
Landing

Ulices Santa Cruz®™) and Yasser Shoukry

University of California Irvine, Irvine, CA, USA
{usantacr,yshoukry}@uci.edu

Abstract. In this paper, we consider the problem of formally verifying
a Neural Network (NN) based autonomous landing system. In such a
system, a NN controller processes images from a camera to guide the
aircraft while approaching the runway. A central challenge for the safety
and liveness verification of vision-based closed-loop systems is the lack
of mathematical models that captures the relation between the system
states (e.g., position of the aircraft) and the images processed by the
vision-based NN controller. Another challenge is the limited abilities of
state-of-the-art NN model checkers. Such model checkers can reason only
about simple input-output robustness properties of neural networks. This
limitation creates a gap between the NN model checker abilities and the
need to verify a closed-loop system while considering the aircraft dynam-
ics, the perception components, and the NN controller. To this end, this
paper presents NNLander-VeriF, a framework to verify vision-based NN
controllers used for autonomous landing. NNLander-VeriF addresses the
challenges above by exploiting geometric models of perspective cameras
to obtain a mathematical model that captures the relation between the
aircraft states and the inputs to the NN controller. By converting this
model into a NN (with manually assigned weights) and composing it
with the NN controller, one can capture the relation between aircraft
states and control actions using one augmented NN. Such an augmented
NN model leads to a natural encoding of the closed-loop verification into
several NN robustness queries, which state-of-the-art NN model check-
ers can handle. Finally, we evaluate our framework to formally verify the
properties of a trained NN and we show its efficiency.

Keywords: Neural network - Formal verification - Perception

1 Introduction

Machine learning models, like deep neural networks, are used heavily to process
high-dimensional imaging data like LiDAR scanners and cameras. These data

This work was supported by the National Science Foundation under grant numbers
#2002405 and #2013824.
© Springer Nature Switzerland AG 2022

J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 213-230, 2022.
https://doi.org/10.1007/978-3-031-06773-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_11

214 U. Santa Cruz and Y. Shoukry

driven models are then used to provide estimates for the surrounding environ-
ment which is then used to close the loop and control the rest of the system.
Nevertheless, the use of such data-driven models in safety-critical systems raises
several safety and reliability concerns. It is unsurprising the increasing attention
given to the problem of formally verifying Neural Network (NN)-based systems.

The work in the literature of verifying NNs and NN-based systems can be
classified into component-level and system-level verification. Representatives of
the first class, namely component-level verification are the work on creating spe-
cialized decision procedures that can reason about input-output properties of
NNs [2,8,10,11,17,18,20,25,26]. In all these works, the focus is to ensure that
inputs of the NN that belong to a particular convex set will result in NN outputs
that belong to a defined set of outputs. Such input-output specification allows
designers to verify interesting properties of NN like robustness to adversarial
inputs and verify the safety of collision avoidance protocols. For a comparison
between the details and performance of these NN model checkers, the reader is
referred to the annual competition on verification of neural networks [1]. Regard-
less of the improvements observed every year in the literature of NN model
checkers, verifying properties of perception and vision-based systems as a simple
input-output property of NNs is still an open challenge.

On the other hand, system-level verification refers to the ability of reasoning
about the temporal evolution of the whole system (including the NNs) while pro-
viding safety and liveness assurance [7,12,23,24]. A central challenge to verify
systems that rely on vision-based systems and other high-bandwidth signals (e.g.,
LiDARs) is the need to explicitly model the imaging process, i.e., the relation
between the system state and the images created by cameras and LiDARs [23].
While first steps were taken to provide formal models for LiDAR based sys-
tems [23], very little attention is given to perception and vision-based systems.
In particular, current state-of-the-art aims to avoid modeling the perception sys-
tem formally, and instead focus on the use of abstractions of the perception sys-
tem [14,19]. Unfortunately, these abstractions are only tested on a set of samples
and lack any formal guarantees in their ability to model the perception system
formally. Other techniques use the formal specifications to guide the generation
of test scenarios to increase the chances of finding a counterexample but without
the ability to formally prove the correctness of the vision-based system [12].

Motivated by the lack of formal guarantees of the abstractions of perception
components [14,19], we argue in this paper for the need to formally model such
perception components. Fortunately, such models were historically investigated
in the literature of machine vision before the explosion of using data-driven
approaches in machine learning [9,21]. While these physical/geometrical models
of perception were shown to be complex to design vision-based systems with high
performance, we argue that these models can be used for verification. In other
words, we employ the philosophy of data-driven design of vision-based systems
and model-based verification of such systems.

In this paper, we employ our philosophy above to the problem of design-
ing a vision-based NN that controls aircraft while approaching runways to per-

NNLander-VeriF: A Neural Network Formal Verification Framework 215

form autonomous landing. Such a problem enjoys geometric nature that can
be exploited to develop a geometrical/physical model of the perception system,
yet represent an important real-world problem of interest to the autonomous
systems designers. In particular, we present NNLander-VeriF, a framework for
formal verification of vision-based autonomous aircraft landing. This framework
provides several contributions to the state of the art:

— The proposed framework exploits the geometry of the autonomous landing
problem to construct a formal model for the image formation process (a map
between the aircraft states and the image produced by the camera). This
formal model is designed such that it can be encoded as a neural network
(with manually chosen weights) that we refer to as the perception NN. By
augmenting the perception NN along with the NN controller (which maps
camera images into control actions), we obtain a formal relation between the
aircraft states and the control action that is amenable to verification.

— The proposed framework uses symbolic abstraction of the physical dynamics
of the aircraft to divide the problem of model checking the system-level safety
and liveness properties into a set of NN robustness queries (applied to the
augmented NN obtained above). Such robustness queries can be carried out
efficiently using state-of-the-art component-level NN model checkers.

— We evaluated the proposed framework on a NN controller trained using imi-
tation learning.

2 Problem Formulation

Notation. We will denote by N, B, R and RT the set of natural, Boolean,
real, and non-negative real numbers, respectively. We use ||z||c to denote the
infinity norm of a vector € R™. Finally, we denote by B,.(c) the infinity norm
ball centered at ¢ with radius 7, i.e., B.(¢c) = {z € R" | ||c — z||ec <7}

Aircraft Dynamical Model. In this paper, we will consider an aircraft landing
on a runway. We assume the states of the aircraft to be measured with respect
to the origin of the Runway Coordinate Frame (shown in Fig. 1(left)), where
positions are: &, is the axis across runway; &, is the altitude, and &, is the
axis along runway. We consider only one angle & which represents the pitch
rotation around x axis of the aircraft. The state vector of the aircraft at time
t € N is denoted by ¢ € R* = | ét), ® ét),ggt)]T and is assumed to evolve
over time while being governed by a general nonlinear dynamical system of the
form €D = £(£® 4®)) where u® € R™ is the control vector at time ¢. Such
nonlinear dynamical system is assumed to be time-sampled from an underlying
continuous-time system with a sample time equal to 7.

Runway Parameters. We consider runway that consists of two line segments L
and R. Each line segment can be characterized by its start and end point (mea-
sured also in the Runway Coordinate Frame) i.e. L = [(L4,0,L,), (L4, 0, L, +1)]
and R = [(R4,0,R,), (R.,0, R, +7;)], with R, = L,+7, and R, = L, where 1,

216 U. Santa Cruz and Y. Shoukry

(= [6,.&,6:]
TN

%
(ccF) 49

Optical
Axis

ZccF

Fig. 1. Main coordinate frames: Runway (RCF), Camera (CCF) and Pixel (PCF).

and r; refers to the runway width and length (standard international runways
are designed with r,, = 40 m wide and r; = 3000 m).

Camera Model. We assume the aircraft is equipped with a monochrome cam-
era C that produces an image I of ¢ x ¢ pixels. Since the camera is assumed to
be monochromatic, each pixel in the image I takes a value of 0 or 1. The image
produced by the camera depends on the relative location of the aircraft with
respect to the runway. In other words, we can model the camera C as a function
that maps aircraft states into images, i.e., C : R* — B9%9. Although the images
created by the camera depend on the runway parameters, for ease of notation,
we drop this dependence from our notation in C.

We utilize an ideal pinhole camera model [21] to capture the image formation
process of this camera. In general, a point p = (ps, py, p-) in the Runway Coor-
dinate Frame (RCF) is mapped into a point p’ = (pl, ., Pyee» Preee) ON the Camera
Coordinate Frame (CCF) using a translation and rotation transformations defined
by [13]:

Plroes 10 0 z||p
j - _ |0 cos® sinby| |p, (1)
Dheee 0 —sinf cosf z| |p.

1 0 O 0 1 1

The camera then converts the 3-dimensional point p’ on the camera coordinate
frame into two-dimensional point p” on the Pixel Coordinate Frame (PCF) as:

q q
P = (Pl Ps) = Q—qJ : {—yD (2)
ZPCF qZPCF

where:
/
o] [Pw O uo] [F000] [Pre=
Gyes | = | O —prvo| |0 F00] [Ppeer (3)
Conce 0 0 1]]0010 pzlm

and f is the focal length of the camera lens, W is the image width (in meters),

H is the image width (in meters), WP is the image width (in pixels), HP is the

image height (in pixels), and ug = 0.5 x WP, vy = 0.5x HP, p,, = %, pp, = 5F.

NNLander-VeriF: A Neural Network Formal Verification Framework 217

What is remaining is to map the coordinates of p” = (pJ _, p;’m) into a
binary assignment for the different ¢ x ¢ pixels. But first, we need to check if
p” is actually inside the physical limits of the Pixel Coordinate Frame (PCF) by
checking:

S W H
visible = yes |ngCF| < 9 V |pngF| < 5 (4)
no otherwise

Whenever the point p” is within the limits of PCF, then the pixel I[i, j] should
be assigned to 1 whenever the index of the pixel matches the coordinates

/! 1 3 .
(meCF’p.UPCF)’ Le.:

()

Ii, f] = L (e ==1— 1) A (P, == J — 1) Avisible
’ 0 otherwise

fori,j € (1,2,3..WP). Where for simplicity, we set HP = WP for square images.

This process of mapping a point p in the Runway Coordinate Frame (RCF) to a

pixel in the image I is summarized in Fig. 1 (right).

Neural Network Controller. The aircraft is controlled by a vision based
neural network N A controller that maps the images I created by the camera C
into a control action, i.e., NN : B9%¢ — R™. We confine our attention to neural
networks that consist of multiple layers and where Rectified Linear Unit (ReLU)
are used as the non-linear activation units.

Problem Formulation. Consider the closed-loop vision based system . defined
as:

5 { €D = (€W NN(C(EM))).

A trajectory of the closed loop system X' that starts from the initial condition &g
is the sequence {& (t)};’io ¢ —¢,- Consider also a set of initial conditions Xy C R*.

We denote by X%0 the trajectories of the system X that starts from X, i.e.,

X0 — U {f(t)}fio,gw):go-
§0€Xo

We are interested in checking if the closed-loop system meets some specifica-
tions that are captured using Linear Temporal Logic (LTL) (or a Bounded-Time
LTL) formula ¢. Examples of such formulas may include, but are not limited to:

— 1 = 0{& = 0 A& = 0} which means that the aircraft should eventually
reach an altitude of zero while the pitch angle is also zero. Satisfying ¢
ensures that the aircraft landed on the ground.

— g := 0{&, < 3000} which ensures the aircraft will always land before the
end of the runway (assuming a runway length that is equal to 3000 m).

For the formal definition of the syntax and semantics of LTL and Bounded-Time
LTL formulas, we refer the reader to [5]. Given a formula ¢ that specifies correct
landing, our objective is to design a bounded model checking framework that
verifies if all the trajectories X% satisfy ¢ (denoted by X% =).

218 U. Santa Cruz and Y. Shoukry

3 Framework

The verification problem described in Sect. 2 is challenging because it needs to
take into account the nonlinear dynamics of the aircraft f, the image formation
process captured by the camera model C, and the neural network controller N

5 { €6 = FED NN (C(ED))). B {C = hoc o f (h2(CO) NNE(HEC)))
ST
b
A
h/;.—;;c\, Safe
FSM v
S — —
\’&#‘\Z,{Ei \\
NBLEE i -
Yy Unsafe
e
B =N

Fig. 2. Main elements of the proposed NNLander-VeriF framework: (A): construction
of the augmented neural network that captures both perception and control, (B:) sym-
bolic analysis of aircraft trajectories, (C:) neural network verification.

Our framework starts by re-modeling the pinhole camera model as a ReLU
based neural network (with manually designed weights) that we refer to as the
perception neural network AN ¢. To facilitate this re-modeling, we need first to
apply a change of coordinates to the states of the dynamical systems. We refer to
the states in the new coordinates as ¢, i.e., { = h(£). By augmenting NN ¢ along
with the neural network controller NN, one can obtain an augmented neural
network NN g : R™ — R™ defined as NN ayg = NN o NN ¢ and a simplified
closed-loop dynamics, in the new coordinates, written as:

{0 = (¢, NN s ().

Now, assume that we are given (i) a region = in the new coordinate system
and (ii) the maximal set of control actions (denoted by Uz) that can be applied
at = while ensuring the system adhere to the specification ¢. Given this pair
(2,Uz) one can always ensure that the augmented neural network NN aug Will
produce actions in the set U=z whenever its inputs are restricted to = by checking
the following property:

V¢ € 2 (NNawg(¢) € Uz) (6)

NNLander-VeriF: A Neural Network Formal Verification Framework 219

which can be easily verified using existing neural network model checkers 10,18,
20]. In other words, checking the augmented neural network against the property
above ensures that all the images produced within the region = will force the
neural network controller A to produce control actions that are within the set
of allowable actions U=.

To complete our framework, we need to partition the state-space into regions
(51, Z9,...). Each region is a ball parametrized by a center ¢; and a radius e. For
each region, our framework will compute the set of allowable control actions at
each of these regions (Uz,,Usz,,...). Our framework will also parametrize each
set Uz, as a ball with center ¢; and radius ju;, i.e., Uz, = {u € RY| ||u — ¢;|| < p;}-
The computations of the pairs (£;,Usz,) can be carried out using the knowledge
of the aircraft dynamics f. In summary, and as shown in Fig. 2, our framework
will consist of the following steps:

— (A) Compute the augmented neural network: Using the physical model
of the pinhole camera, our framework will re-model the pinhole camera C as
a neural network that can be augmented with the neural network controller
to produce a simpler model that is amenable for verification.

— (B) Compute the set of allowable control actions: We use the properties
of the dynamical system f to compute the set of safe control actions Uz, for
each partition =; of the state space.

— (C) Apply the neural network model checker: We use the neural net-
work model checkers to verify that NN, satisfies (6) for each identified pair
(572/{51')'

The remainder of this paper is devoted to providing details for the steps
required for each of the three phases above.

4 Neural Network Augmentation

In this section, we focus on the problem of using the geometry of the runway
to develop a different mathematical model for the camera C. As argued in the
previous section and shown in Fig. 3, our goal is to obtain a model with the same
structure of a neural network (i.e., consists of several layers and neurons) and
contains only ReLU activation units. We refer to this new model as N N¢.

The main challenge to construct NN is the fact that ReLU based neural
networks can only represent piece-wise affine (or linear) functions [22]. Never-
theless, the camera model C is inherently nonlinear due to the optical projection
present in any camera. Such non-linearity can not be expressed (without any
error) via a piece-wise affine function. To solve this problem, we propose a change
of coordinates to the aircraft states h. Such change of coordinates is designed to
eliminate part of the camera’s non-linearity while allowing the remainder of the
model to be expressed as a piece-wise affine transformation.

Change of Coordinates: Recall the runway consists of line segments L and
R (defined in Sect.2). Instead of measuring the state of the aircraft by the

220 U. Santa Cruz and Y. Shoukry

Augmented Neural Network AN,

Perception Network Image NN Controller

(L ol
Action [§ o €
=R

u L _/

Fig. 3. Augmented network NN ,ue maps the output ¢ to control action u.

vector ¢ = [£g, &z, &y, &2], We propose measuring the state of the aircraft by the
projections of the end points of the lines I and R on the Pixel Coordinate Frame
PCF. Formally, we define the change of coordinates as:

¢] [ow#%+uo]
G —pnf Eom e g
C=hrc(§) = |G| = owm + uo (7)
G —th% + o
L6 C1Ca — C2G3

where f, pn, pw, Vo, ug are the camera physical parameters as defined in Sect. 2.
In other words, the pair ({1, (2) is the projection of the start point of the runway
(Ly,0,L,) onto the Pixel Coordinate Frame PCF (while ignoring the flooring
operator for now). Similarly, the pair ({3, (4) is the projection of the endpoint of
the runway (L,,0, L, + 1) onto the PCF frame. Indeed, we can define a similar
set of variables for the other line segment of the runway, R. The dependence of
this change of coordinates on the camera parameters (e.g., the focal length f)
and the runway parameters justifies the subscripts in our notation h,. ¢. We refer
to the new state-space as =.
Before we proceed, it is crucial to establish the following result.

Proposition 1. The change of coordinates function h,c is bijective.

The proof of such proposition is based on ensuring that the inverse function 5, 1
exists. For brevity, we will omit the details of this proof. Since h, ¢ is bljectlve
we can re-write the closed-loop dynamics of the system as:

e {0 = hre o f (B (CO)NNCh D)) ®)

Indeed, if X, satisfies the property ¢ then do the original system X' and vice
versa, thanks for the fact that h, ¢ is bijective. This is captured by the following
proposition:

NNLander-VeriF: A Neural Network Formal Verification Framework 221

Proposition 2. Consider the dynamical systems X and Y. Consider a set of
initial states Xy and an LTL formula ¢, the following holds:

IO o= I Ee
where Zy = {h,c(§) | £ € Xo}.

Neural Network-Based Model for Perception: While the model of the
pinhole camera (defined in Eq. (1)—(5)) focuses on mapping individual points
into pixels, we aim here to obtain a model that maps the entire runway lines
R and L into the corresponding binary assignment for each pixel in the image.
Therefore, it is insufficient to analyze the values of (3, ..., {4 which encodes the
start point ((1,¢2) and the endpoint ((3,(4) of the runway line segments on the
PCF. To correctly generate the final image I € B?7*%, we need to map every point
between ({1,¢2) and ({3, {4) into the corresponding pixels.

While the pinhole camera (defined in Eq. (1)—(4)) uses the information in the
Pixel Coordinate Frame (PCF) to compute the values of each pixel, we instead
rely on the information in the Camera Coordinate Frame (CCF) to avoid the
nonlinearities added by the flooring operator in (2) and the logical checks in
(4)—(5). For each pixel, imagine a set of four line segments AB, BC,CD, DA in
the Pixel Coordinate Frame (PCF) that defines the edges of each pixel (see Fig. 4
for an illustration). To check if a pixel should be set to zero or one, it is enough
to check the intersection between the line segment ({1,(2) — ({3,¢4) and each
of the lines A-B, B-C', C—D, D—-A. Whenever an intersection occurs, the pixel
should be assigned to one.

To intersect one of the pixel edges, e.g., the edge A — B = (4,,4,) —
(B, By), with the line segment ({1,(2) — (¢3,¢4), we proceed with the stan-
dard line segment intersection algorithm [6] which compute four values named
01, 027 03, 04 as:

01 =C(Ay — By) + ((By — Ay) + Az By — AyB, (9)
=(3(Ay — By) + C(By — Az) + Az By — AyB, (10)

O3 = —(1(A4y) + G(Az) + G(Ay) — G(Az) + G5 (11)
04 = _Cl() + CZ(z) S(By) - C4(Bm) + CS (12)

The line segment algorithm [6] detects an intersection whenever the following
condition holds:

(sign(O1) # sign(0z)) A (sign(Os) # sign(O4)) (13)

Luckily, we can organize the equations (9)—(13) in the form of a neural net-
work with a Rectifier Linear Activation Unit (ReLU). ReLU nonlinearity takes
the form of ReLU(z) = max{x, 0}. To show this conversion, we first note that the
values of A, Ay, By, By are constant and well defined for each pixel. So assum-
ing the input to such a neural network is the vector (, one can use equations
(9)—(12) to assign the weights to the input layer of the neural network (as shown

222 U. Santa Cruz and Y. Shoukry

in Fig.4). To check the signs of Oy,..., Oy, we recall the well-known identity for
numbers of the same sign:

sign(a) = sign(b) <= |la+b| — |a| — |b| =0 (14)
The absolute function can be implemented directly with a ReLLU using the iden-

tity:
|z| = max{z,0} + max{—=z,0}. (15)

AsB, — A,B,

(C1.C2)
e ¢ A By
P o O 1 {
Al(An) 7~ D \

ABS|

- - N
' G2 "B, 4, 1
N

~
P pizel
s
P 5(2.2) A,B, - AB,

¢ -A=By

ABS
2 BY%,.8,) oc @OA . @

1

14 1= sign(O1) # sign(03)
L 5 0 sign(0)) = sign(0)

6B A,

Fig. 4. Line-segment intersection algorithm: The runway line (in red) as seen by the
camera intersects the pixel edge A-B (in blue), this single edge intersection is detected
by using a layer of six ReLU’s. (Color figure online)

The process above has to be repeated four times (to account for all edges
A-B, B-C, C—D, D—-A of a pixel). Finally, to check that at least one intersection
occurred, we compute the minimum across the results from all the intersections.
Calculating the minimum itself can be implemented directly with a ReLU using
the identity:

min{a, b} — 450 _le =0l (16)
2 2
The overall neural network requires 68 x g X ¢ ReLLU neurons for each projected
line segment. The final architecture is shown in Fig. 5. We refer to the resulting
neural network as NA¢(¢®).

It is direct to show that the constructed neural network NN (¢®) will

produce the same images obtained by the pinhole camera model C, i.e.,

Clhre (™)) = NNe(¢™)
Finally, by substituting in (8), we can now re-write the closed-loop dynamics as:
Te {) = g (ArA () NN g (€)) (a7
where NN g = NN oNN¢ and g = hyco f.

NNLander-VeriF: A Neural Network Formal Verification Framework 223

@ = X
[® mingx,1) an @ G @ 61|60 @, 8
o= - ' '
o = W rincn
& [2 | 22 G2 @2 62 62| 0,2 62
(\‘ i : —4 B absn) 2
A 1 1,3 2,3) (3,3) | 4,3) (5,3) | (6,3) | (7,3) | (8,
1 1 sum(x) » 'y 'y 'y s s > 3
e et ® : 7]
« o = L el e | e | Ga @ | 69 | 6o |ae e
¥z o @ ' = = 1 NNC 4
SIS e ® ! 1,5 | 2,5 3,5 | 4,5 | 5,5 |65 | 76| 35
v ® - O 2 p -
& \ Ol - 1 1 1,6 (2,6) (3,6) (4,6) (5,6) | (6, (7,6) (8,6)
X i = @
w RN Y L - = 6
X N (\ 1 -l 1 “a,n @2, 3,7 | @7 | (5,7 ®,7 | 7,1 | &7
Nd i !
15 o e ® ! 7
(_'\ i 1,8 2,8 (3,8) | (4,8) 5,8) | (6,8 | (7,8) | (8,8)
-
)y 8
O: T, @
) - -
@ = o 1 - L
= L
-

Fig.5. NN¢ checks the intersection between line segment (¢1,¢2) — (¢3,¢4) and all
edges of each cell pixel of the final image.

5 Identifying the Allowable Control Actions Using
Symbolic Abstractions

As shown in Sect. 3, our framework aims to split the verification of the dynamical
system (17) into several NN model checking queries. Each query will verify the
correctness of the closed-loop system within a region (or a symbol) =; of the state
space. To prepare for such queries, we need to compute a set of input /output
pairs (Z;,Us=,) with the guarantee that all the control inputs inside each Uz, will
produce trajectories that satisfy the specifications . In this section, we provide
details of how to compute the pairs (Z;,Uz,).

State Space Partitioning: Given a partitioning parameter €, we partition the
new coordinate space of { into L regions =7, Z5,..., = such that each = is
an infinity-norm ball with radius € and center ¢;. For simplicity of notation, we
keep the radius € constant within all the regions =;. However, the framework is
generic enough to account for multi-scale partitioning schemes similar to those
reported in the literature of symbolic analysis of hybrid systems [15].

Obtain Symbolic Models: Given the regions =7, 2, ..., the next step is to
construct a finite-state abstraction for the closed loop system (17). Such finite
state abstraction takes the form of a finite state machine ¥y = (S, 04) where
S, is the set of finite states and o4 : Sq — 2% is the state transition map of the
finite state machine, defined as:

S,=1{1,2,...L} and jeo,(i)<>g (h;é(ci),NNaug(ci)) €=, (18)

In other words, the finite state machine (FSM) has a number of states L that is
equal to the number of regions =j, i.e., each finite state symbolically represents
a region. A transition between the state 7 and j is added to the state transition
map o, whenever applying the NN controller to the center of the region i (i.e.,
¢;) will force the next state of the system to be within the region =;. The value

of g (h;é (Ci),NNaug(ci)) can be directly computed by evaluating the neural
network NN o, at the center ¢; followed by evaluating the function g.

224 U. Santa Cruz and Y. Shoukry

So far, the state transition map o, accounts only for actions taken at the
center of the region. To account for the control actions in all the states (; € =,
we need to bound the distance between the trajectories that start at the center
of the region ¢; and the trajectories that start from any other state {; € =;.
For such bound to exist, we enforce an additional assumption on the dynamics
of the aircraft model f (and hence g = h,¢ o f) named § forward complete
(6-FC) [28]. Given the center of a region ¢; and an arbitrary state ¢; € =, the
0-FC assumption bounds the distance, denoted by d¢, between the trajectories
that starts at (; and the center ¢; as:

d¢ < B(6,7) + ([N Nang(ci) = NN aug(i)loo, 7) (19)

where 7 is the sample time used to obtain the dynamics f (as explained in
Sect.2) and B and v are class K, functions that can be computed from the
knowledge of the dynamics f. Such 6-FC assumption is shown to be mild and
does not require the aircraft dynamics to be stable. For technical details about
the §-FC assumption and the computation of the functions § and =, we refer
the reader to [27]. Given the inequality (19), we can revisit the definition of the
state transition map o, to account for all possible trajectories as:

j € qli) = g (hré (e, NN agle)) + ¢ € 5. (20)

With such a modification, it is direct to show the following result:

Proposition 3. Consider the dynamical systems X and X,. Consider also a
set of initial conditions =y and a specification p. The following holds:

IR Ee=> I =g
where So ={i € {1,...,L} |3 € Z: (€ =i}
This proposition follows directly from Theorem 4.1 in [28].

Compute the Set of Allowable Control Actions: Unfortunately, computing
the norm [N N aug(¢;) = NNaug(Gi)]loo (and hence d¢) is challenging. As shown
in [16], computing such norm is NP-hard and existing tools in the literature
focus on computing an upper bound for such norm. Nevertheless, the bounds
given by the existing literature constitute large error margins that will render
our approach severely conservative.

To alleviate the problem above, we use the inequality (19) in a “backward
design approach”. We first search for the maximum value of §; that renders
Y4 compatible with the specification. To that end, we substitute the norm
NN aug(€i) — NN aug(Gi)||oo with a dummy variable 4. By iteratively increas-
ing the value of u, we will obtain different X, one for each value of ;1. We use a
bounded model checker for each value of i to verify if the resulting Y, satisfies
the specification. We keep increasing the value of p until the resulting X, no
longer satisfies ¢. We refer to this value as pmax. What is remaining is to ensure
that the neural network indeed respects the bound:

HNN&Ug(Ci) _NNaug(Ci)Hoo < Hmax

NNLander-VeriF: A Neural Network Formal Verification Framework 225

Algorithm 1. LanderNN-VeriF

Input: =, Z0,¢, ¢, 7, 3,7, NNaug, T, B, , f, b, K1
Output: STATUS

1: {&£1,55,...,5.} = Partition_into_regions(=)e€)

2t p=p

3: while statusFSM == UNSAT do

4: X, =Create FSM(f,h,h ", 7, 8,7, NN aug, Z1..1, 1t)
5. statusFSM = Check_FSM(y, ¥y, T)

6: if u <7 then

7 i = Increase MU(u)

8: end if

9: end while

10: fori=1to L do
11: STATUS.NN[i] = NN_Verifier(N' N aug, Si, 1)
12: if STATUS_NN[i] == SAT then

13: STATUS = UNSAFE
14: else

15: STATUS = SAFE
16: end if

17: end for

18: return STATUS

To that end, we define the set of allowable control actions U=, as:
uEt - B#max (NNaug(Ci))
It is then direct to show the following equivalence:
HNNaug(Ci) _NNaug(Ci)Hoo < fhmax <= VC € Ei-(NNaug(C) € uEi)

where Uz, = By,,..(NNaug(c;)). Luckily, the right-hand side of this equiva-
lence is precisely what neural network model checkers are capable of verifying.
Algorithm 1 summarizes this discussion. The following result captures the guar-
antees provided by the proposed framework:

Proposition 4. The LanderNN-VeriF algorithm (Algorithm 1) is sound but not
complete.

6 Numerical Example

We illustrate the results in this paper using a vision-based aircraft landing sys-
tem. We use a fixed-wing aircraft model defined using the guidance kinematic
model [3], where orientations (in Rads) are defined by the course angle x (rota-
tion around yecr axis), pitch angle 6 (rotation around xccr axis) and V, denotes
the total Aircraft velocity relative to the ground. We further simplify the sys-
tem by keeping the course angle pointing towards the runway (y = 0), similarly
velocity is kept as constant. Moreover, § (Rad/s) is regarded as the control

226 U. Santa Cruz and Y. Shoukry

input u. According to this model, the state vector of the aircraft evolves over
time while being governed by the following dynamical system [3]:

&Y = €9 4 Vyr cos (&) (21)
£V = €0 1 Vyrsin (6) (22)
fétJrl) _ fét) + ul®r (23)
where 7 is the sampling time. For our simulations we consider V, = 25-*
and 7 = 0.1. Moreover based on airport standards we consider the run-

way segments (in meters) defined by L = [(L.,0,L,),(Ls,0,L, +)] and
R =[(R:,0,R,), (R:,0,R, +7)] where R, = 20, L, = —20, R, =0, L, = 0,
r; = 3000. For the camera parameters we consider images of 16 x 16 pixels and
focal length of 400 mm.

We note that the system dynamics (21)—(23) is a §-FC system. In particular,
by using the method [27] and the 6-FC Lyapunov function V(&,¢) = [|€ — ¢'||3
one can show that:

B(G, G2 Gom) = V8 E+ G+ G e (24)

Y, 7) =/ Vg(e*™ = (25)

We work on the output space set D = [¢1 X (2 % ¢3] = [0, 16] x [0, 16] x [0, 16]
of X with a precision € = 1, thus our discretized grid consists of 163 cubes.

We used Imitation Learning to train a fully connected ReLLU Neural Network
controller (NA) of 2 layers with 128 Neurons each. Trajectories from different
initial conditions were collected and used to train the network. Our objective is
to verify that the aircraft landing using the trained NN ., satisfies the safety
specification ¢ = O-Gunsafe Where qunsate = [§» = 800,&, = 200,& = 1] which
corresponds to an unsafe region while landing.

In what next, we report the execution time to verify the trained network.
All experiments were executed on an Intel Core i7 processor with 50 GB of
RAM. First, we implemented our Vision Network (MA¢) for images of 16 x 16
pixels using Keras. Similarly, we used Keras composition libraries to merge the
controller and perception networks into the augmented network (NN .,g), a
landing trajectory using NN 4,4 is shown in Fig. 6 and its corresponding camera
view is shown in Fig. 7.

0 200 400 600 80 1000 0 100 200 300 400 500 o 100 200 300 400 500
& (m) Time steps Time steps

Fig. 6. Aircraft landing using augmented controller NN q.g. Left: aircraft position
(&y,&2); Middle: aircraft angle (£p); Right: aircraft control (u = NN qug)-

NNLander-VeriF: A Neural Network Formal Verification Framework 227

[4]

@~ @ o s w N = oo

® v @ v B w N = o

@ < @ o os w N = oo
e

Fig. 7. Landing camera view using 16 x 16 pixels resolution. Left: £ = [1000, 1000, 71,
Middle: £**° = [400, 300, Z], Right: £'°°° = [5, 5, 0].

We used a Boolean SAT solver named SAT4J [4] to implement the Check_FSM
function in Algorithm 1. The finite state machine X, was encoded using a set of
Boolean variables and our implementation performed a bounded model checking
for the generated FSMs (the bounded model checking horizon was set to 20).
We constructed FSMs with the following values p = [0.1,0.2,0.3,0.6,0.8,0.9, 1.1]
until a value of fimq, = 1.1 was found. The execution time for creating Y, and
verifying its properties with the bounded model checker increased monotonically
from 2000 seconds for p = 0.1 to 7000 seconds for p = 1.1. As expected, the
higher the value of y, the higher the number of transitions in Y, and the higher
the time needed to create and verify.

Finally, we used PeregriNN [20] as the NN model checker. Figure 8 reports the
execution time for verifying the neural network property in 100 random regions,
and Fig.9 in regions 1 to 500. The average execution time was 76s per region
and the NN was found to be safe and satisfying the specification ¢.

e

)

0 0
¢FSESLELELESFEESCEE PSS >® FELL PP

Fig. 8. Execution time for verifying ¢ Fig. 9. Execution time for verifying ¢ in

in 100 different random regions. regions 1 to 500.

g

Time (Seconds)
3 8 8
g B

8 8 8 8 8
Time (Seconds)
8

8

8

©

&
Region (State) Region (State)

7 Conclusion and Future Work

Due to the recent surge in vision-based autonomous systems, it is becoming
increasingly important to provide frameworks to facilitate its formal verifica-
tion. In this work we have proposed two key contributions: first, a generative

228 U. Santa Cruz and Y. Shoukry

model that encodes part of the camera image formation process into a ReLU
neural network, where the neuronal weights are fully determined by the camera
intrinsic parameters, and second, a framework that uses the characteristics of the
dynamical system (i.e. 6-FC) to compute the set of safe control actions; Finally,
having both contributions allows us to use off-the-shelf neural network checkers
to verify the entire system.

At the same time, there are some limitations. First, the generative model
we developed insists on modeling the image formation process with a piece-
wise affine (PWA) function which facilitates encoding it as a ReLU network.
However, this restriction may in odds with realistic scenarios which may not
be captured exactly by CPWA functions. Nevertheless, it is widely known that
CPWA functions can approximate general nonlinear functions with some error.
This also leads to the second limitation, namely, the inability to consider noise
in the image formation process. Finally, the number of pixels has a direct effect
on the scalability of the framework, as a consequence further improvements are
required to build more concise finite-state machine abstractions of the physical
system.

Moving forward, we plan to extend our approach in different directions to
account for the aforementioned limitations. First, we seek to generalize the frame-
work to account for uncertainties in the camera model, the image formation
model, and the environment. Second, we intend to process more complex image
features (e.g. combinations of multiple lines and curvatures) by developing bet-
ter generative models with provable error bounds. Finally, we aim to verify the
robustness of neural network controllers to external disturbances (e.g., wind)
while developing better scalable algorithms.

References

1. International Verification of Neural Networks Competition 2020 (VNN-COMP
2020). https://sites.google.com/view/vnn20

2. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved Geometric path enumer-
ation for verifying ReL.U neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020, Part I. LNCS, vol. 12224, pp. 66-96. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8_4

3. Beard, R.W., Mclain, T.W.: Small Unmanned Aircraft: Theory and Practice.
Princeton University Press, Princeton (2012)

4. Berre, D.L., Parrain, A.: The Sat4j library. Boolean Model. Comput. 7, 59—64
(2010)

5. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of Model
Checking, vol. 10. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-
10575-8

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The
MIT Press, Cambridge (2003)

7. Cruz, U.S., Ferlez, J., Shoukry, Y.: Safe-by-repair: a convex optimization approach
for repairing unsafe two-level lattice neural network controllers. arXiv preprint
arXiv:2104.02788 (2021)

https://sites.google.com/view/vnn20
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
http://arxiv.org/abs/2104.02788

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

NNLander-VeriF: A Neural Network Formal Verification Framework 229

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269-286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
Faugeras, O., Faugeras, O.A.: Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, Cambridge (1993)

Ferlez, J., Khedr, H., Shoukry, Y.: Fast BATLLNN: fast box analysis of two-level
lattice neural networks. In: Proceedings of the 25th ACM International Conference
on Hybrid Systems: Computation and Control (2022)

Ferlez, J., Shoukry, Y.: Bounding the complexity of formally verifying neural net-
works: a geometric approach. In: 2021 60th IEEE Conference on Decision and
Control (CDC), pp. 5104-5109. IEEE (2021)

Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with VER-
IFAL In: Lahiri, S.K., Wang, C. (eds.) CAV 2020, Part I. LNCS, vol. 12224, pp.
122-134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_6
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2003)

Hsieh, C., Joshi, K., Misailovic, S., Mitra, S.: Verifying controllers with convo-
lutional neural network-based perception: a case for intelligible, safe, and precise
abstractions. arXiv preprint arXiv:2111.05534 (2021)

Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.K.: Multi-layered abstraction-
based controller synthesis for continuous-time systems. In: Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (part of
CPS Week), pp. 120-129 (2018)

Kallus, N., Zhou, A.: Assessing disparate impact of personalized interventions:
identifiability and bounds. Adv. Neural Inf. Process. Syst. 32 (2019)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63387-9_5

Katz, G., et al.: The marabou framework for verification and analysis of deep neural
networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019, Part I. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of
image-based neural network controllers using generative models. arXiv preprint
arXiv:2105.07091 (2021)

Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRINN: penalized-relaxation greedy neu-
ral network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021, Part I. LNCS,
vol. 12759, pp. 287-300. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81685-8_13

Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From
Images to Geometric Models, vol. 26. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-0-387-21779-6

Nagamine, T., Mesgarani, N.: Understanding the representation and computation
of multilayer perceptrons: a case study in speech recognition. In: International
Conference on Machine Learning, pp. 2564-2573. PMLR (2017)

Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 147-156 (2019)

Sun, X., Shoukry, Y.: Provably correct training of neural network controllers using
reachability analysis. arXiv preprint arXiv:2102.10806 (2021)

https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-53288-8_6
http://arxiv.org/abs/2111.05534
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/2105.07091
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-0-387-21779-6
https://doi.org/10.1007/978-0-387-21779-6
http://arxiv.org/abs/2102.10806

230 U. Santa Cruz and Y. Shoukry

25. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020, Part I. LNCS, vol. 12224, pp. 3-17. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53288-8_1

26. Wang, Y.S., Weng, L., Daniel, L.: Neural network control policy verification
with persistent adversarial perturbation. In: International Conference on Machine
Learning, pp. 10050-10059. PMLR (2020). https://proceedings.mlr.press/v119/
wang20v.html

27. Zamani, M.: Control of cyber-physical systems using incremental properties of
physical systems. Ph.D. thesis (2012)

28. Zamani, M., Pola, G., Mazo, M., Jr., Tabuada, P.: Symbolic models for nonlinear
control systems without stability assumptions. IEEE Trans. Autom. Control 57(7),
18041809 (2012)

https://doi.org/10.1007/978-3-030-53288-8_1
https://proceedings.mlr.press/v119/wang20v.html
https://proceedings.mlr.press/v119/wang20v.html

®

Check for
updates

The Black-Box Simplex Architecture
for Runtime Assurance
of Autonomous CPS

Usama Mehmood, Sanaz Sheikhi®) | Stanley Bak, Scott A. Smolka,
and Scott D. Stoller

Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
{umehmood ,ssheikhi,sbak,sas, stoller}@cs .stonybrook.edu

Abstract. The Simplex Architecture is a runtime assurance framework
where control authority may switch from an unverified and potentially
unsafe advanced controller to a backup baseline controller in order to
maintain the safety of an autonomous cyber-physical system. In this
work, we show that runtime checks can replace the requirement to stat-
ically verify safety of the baseline controller. This is important as there
are many powerful control techniques, such as model-predictive control
and neural network controllers, that work well in practice but are dif-
ficult to statically verify. Since the method does not use internal infor-
mation about the advanced or baseline controller, we call the approach
the Black-Box Simplex Architecture. We prove the architecture is safe
and present two case studies where (i) model-predictive control provides
safe multi-robot coordination, and (ii) neural networks provably prevent
collisions in groups of F-16 aircraft, despite the controllers occasionally
outputting unsafe commands.

Keywords: Black-Box Simplex - Runtime assurance - Autonomous
CPS

1 Introduction

Autonomous cyber-physical systems (CPS) have the potential to transform vital
domains such as transportation, health-care, and energy management. As these
systems perform complex functions, they often require complex designs. More-
over, since autonomous CPS interact with the physical world, they are typically
safety-critical. Formal analysis, however, can be difficult for complex systems.

In the development of such CPS, powerful control techniques such as model-
predictive control and deep reinforcement learning are increasingly being used
instead of traditional controller design techniques. Such trends exacerbate the
safety verification problem. Additionally, there is increasing interest in systems
that can learn in the field, changing their behaviors based on observations. Clas-
sical verification strategies are poorly suited for such designs.

© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 231-250, 2022.
https://doi.org/10.1007/978-3-031-06773-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_12

232 U. Mehmood et al.

édvanc”ed Decision Advanced
ontroller Module Plant Controller Flant
< —P Command + qu Decision Module | comman d +
omman P Low-Level Command St T > Low-Level
Baseline J A Controller Lookahead Saduence Controller
Controller Sensor gaselme A sensor
Data ontroller Data
(a) Traditional Simplex Architecture (b) Black-Box Simplex Architecture

Fig.1. The Black-Box Simplex Architecture guarantees safety despite a black-box
advanced controller and a black-box baseline controller.

One approach for dynamically providing safety for systems with complex and
unverified components is runtime assurance [9], where the state of the plant is
monitored at runtime to mitigate possible imminent violations of formal prop-
erties. A well-known runtime assurance technique is the Simplex Control Archi-
tecture [36,37], which has been applied to a wide range of systems [10,30,32].
In the original Simplex Architecture, shown in Fig. 1(a), the baseline controller
(BC) and the decision module (DM) are part of the trusted computing base. The
DM monitors the state of the system and switches control from the advanced
controller (AC) to the BC if using the former could result in a safety violation
in the near future. The original Simplex Architecture requires creating a prov-
ably safe BC, which can be difficult. In this work, we eliminate this requirement
through a greater reliance on runtime verification.

In the proposed Black-Box Simplex Architecture (BSA), shown in Fig. 1(b),
the BC (now referred to as the Lookahead Baseline Controller (LBC)), no longer
needs to be statically verified, and can even be incorrect. The tradeoff is that
the DM performs more extensive runtime checking and stores backup command
sequences from previous computation steps. The DM performs simulation or
reachability analysis based on a known system model. If the DM’s computation
time is too large, BSA keeps the system safe by switching control to a stored
command sequence generated at an earlier step by the LBC and checked for
safety by the DM. The specifics of the approach will be discussed in Sect. 2.

We prove two theorems about this architecture: (i) safety is always guaran-
teed, and (ii) when the baseline and advanced controllers perform well (to be for-
mally defined in Sect. 2), the architecture is transparent: the advanced controller
appears to have full control of the system. The practicality of these assumptions
and the utility of the BSA architecture itself is demonstrated through two signifi-
cant case studies. In the first, a multi-robot coordination system uses a BC based
on a model-predicative control algorithm with a potential-field approach for col-
lision avoidance. Such a setup is difficult to statically verify as it depends on
the online solution of a nonlinear optimization problem. In the second, a mid-air
collision avoidance system for groups of F-16 aircraft is created from imperfect
logic encoded in neural networks. A preview of the second case study is shown
in Fig. 2, where directly using the neural networks causes a collision (left), but
the Black-Box Simplex approach safely navigates the scenario, resulting in an
emergent maneuver similar to a roundabout (right).

The Black-Box Simplex Architecture for Runtime Assurance of CPS 233

90000
80000 -

=
&E 70000 -

s v
g g8 8
8 3 g
8 8 8
8 38 8

30000

20000 -

North / South Position

10000 -

Closest Distance: 1500.5 ft
~40000 -30000 ~20000 ~10000 0 10000 20000 30000 40000

East / West Position (ft) East / West Position (ft)

Closest Distance: 18.5 ft
—40000 ~30000 —20000 ~10000 0 10000 20000 30000 40000

0 0

(a) Original System (unsafe, the two red (b) Black-Box Simplex (safe, snapshot
aircraft collide) shown at closest distance)

Fig. 2. Black-Box Simplex safely navigates complex scenarios. In the 15-aircraft case,
all aircraft cross the circle while maintaining a 1500 ft separation distance.

The rest of the paper is organized as follows. Section?2 presents a formal
definition of the Black-Box Simplex Architecture, including proofs of safety and
transparency. Section 3 features two case studies implementing the architecture.
Section 4 discusses related work and Sect. 5 offers our concluding remarks.

2 Black-Box Simplex

The traditional Simplex Architecture, shown in Fig. 1(a), preserves the safety of
the system while permitting the use of an unverified AC. It does this by using
the AC in conjunction with a verified BC and a verified DM. The DM cannot
simply check if the next state is safe, as cyber-physical systems have inertia and
it may be too late to take corrective action. Rather, the verified design of a
Simplex system usually requires offline reasoning with respect to a trusted BC
and the system dynamics.

If the system dynamics are linear and the admissible states are defined with
linear constraints, a state-feedback BC and a DM can be synthesized by solving a
linear matrix inequality [36]. If the system dynamics or constraints are nonlinear,
however, there is no direct approach to create a trusted BC and DM. This
prevents more widespread use of the traditional Simplex Architecture.

The proposed Black-Box Simplex Architecture removes the requirement that
the BC is statically verified, allowing provable safety with both an unverified AC
and an unverified BC. Its architecture is shown in Fig. 1(b). Apart from elimi-
nating the need to establish safety of the BC, BSA differs from the traditional
Simplex Architecture in other important ways. First, the AC shares its com-
mand with the LBC instead of passing it directly to the DM. Second, the LBC
uses this command as the starting point of a candidate safe command sequence.
(Sanaz: inconsistant with Sect. 3.2).

Candidate command sequences may be generated using state-of-the-art con-
troller designs, including neural networks trained with reinforcement learning or

234 U. Mehmood et al.

MPC. Note that a candidate command sequence is not guaranteed to be safe
until it is verified by the DM through a runtime check. Specifically, the DM
checks safety of the LBC’s candidate command sequence, rejecting it if safety is
not ensured. The DM checks safety by running simulations (rollouts) for deter-
ministic systems; for systems with uncertainty, it performs online reachability
computation [2,4,21]. BSA does not fail if the DM cannot finish the computation
in time. Rather, it aborts the computation and switches to a backup command
sequence that continues to ensure system safety. It can subsequently switch back
to the AC when the runtime checks finish in time.

As long as the AC drives the system through states from which the LBC
can recover, it continues to actuate the system. However, if the LBC fails to
compute a candidate command sequence that maintains safety—due to a fault
of the unverified AC or the unverified BC, or due to excessive computation time
for any of the components—the DM can still recover the system using the safe
command sequence from the previous step. Note that the DM does not generate
any command sequences. It only performs runtime checks and stores command
sequences to maintain a safe backup plan at all times.

The applicability of BSA depends on the feasibility of two system-specific
steps: (i) constructing candidate command sequences and (ii) proving their safety
at runtime. For some systems, a safe command sequence can simply bring the
system to a stop. An autonomous car, for example, could have a safe com-
mand sequence that steers the car to the side of the road and then stops. A safe
sequence for a drone might direct it to the closest emergency landing location. For
an rapidly-moving autonomous fixed-wing aircraft swarm, a safe sequence could
fly all aircraft in non-intersecting circles to allow time for human intervention.
Proving safety of a given command sequence can also be challenging and depends
on the system dynamics. For nondeterministic systems, this could involve per-
forming reachability computations at runtime [2,4,21]. Such techniques assume
an accurate system model is available in order to compute reachable sets. Notice
that traditional offline control theory also requires this assumption, so we do not
view it as overly burdensome.

In BSA, although both controllers are unverified, we do not combine them
into a single unverified controller. This allows for a logical separation of concerns,
where the AC focuses on making progress on the mission, and the BC focuses
on generating safe backup plans.

2.1 Formal Definition of Black-Box Simplex
We formalize the behavior and requirements for the components of the Black-Box

Simplex Architecture in order to prove properties about the system’s behavior.

Plant Model. We consider discrete-time plant dynamics, modeled as a function

f(L 7\/“/2'/5 ws) = Ti+1 (1)

state input disturbance next state

The Black-Box Simplex Architecture for Runtime Assurance of CPS 235

where i € Z7T is the time step, x; € X is the system state, u; € U is a control
input command, and w; € W is an environmental disturbance. We sometimes
also consider a deterministic version of the system, where the disturbance w;
can be taken to be zero at every step.

Admissible States. The system is characterized by a set of operational con-
straints which include physical limits and safety properties. States that satisfy
all the operational constraints are called admissible states.

Candidate Command Sequences. A single-input command is some u € U,
and a k-length sequence of commands is written as @ € U*. The length of a
sequence can be written as U, = k, where we also can take the length of a
single command, u)e; = 1. We use Python-like notation for subsequences, where
the first element in a sequence is w[0], and the rest of the sequence is @[1:].

Decision Module. The decision module in Black-Box Simplex stores a com-
mand sequence s, which we sometimes call the decision module’s state. The
behavior of the DM is defined through two functions, dmypdate and dmstep. The
dmypdate function attempts to modify the DM’s stored command sequence:

v By)= (2)

state cur seq proposed seq new seq

dmupdate(£

where if s’ = ¥ then we say that the proposed command sequence is accepted;
otherwise s/ = 5 and we say that it is rejected. Correctness conditions on dMypdate
are given in Sect.2.2. Note that the DM will accept a safe command sequence
from the AC even if the previous command sequence from the AC was rejected
because it was unsafe. As in [28], we refer to this as reverse switching, since it
switches control back to the AC.

The dmstep function produces the next command v to apply to the plant, as
well as the next step’s command sequence s’ for the DM:
s) 3)

dmger(5)=(u_ . 5

cur seq next input next seq

where u = 3[0] and s’ is constructed from 5 by removing the first command (if
the current sequence s has only one command then it is repeated):

— s if Slen = 1
S =
5[1:] otherwise

Controllers. The AC and LBC are defined using functions of the system state.
In particular, the AC is defined by a function ac(x) = u, where u € U is a single
command. BSA’s look-ahead baseline controller is defined by [bc(x) = u, where

236 U. Mehmood et al.

7 € U* is a k-length command sequence. The LBC outputs candidate command
sequences that start with a given command, specifically, the command proposed
by the AC. These can be defined with a function lbc,.(x) = @, with @[0] = ac(z).
We generally drop the subscript on lbe, as it is clear from context.

Execution Semantics. At step i, given system state x; and DM state s,
the next system state z;1; and next DM state 5,77 are computed with the
following sequence of steps: (1) z; = ac(x;); (2) t; = lbe(x;), with £;[0] = z;
(3)) = dmuypdate(T4, 53, ti); (4) (ui,Six1) = dMstep(s}); (5) Tip1 = f(@i, us, wy),
for some disturbance w; € W.

2.2 Safety and Transparency Theorems

We define several relevant concepts and then state and prove safety and trans-
parency theorems for Black-Box Simplex.

Definition 1 (Safe System Execution). A system execution is called safe if
and only if the system state is admissible at every step.

Safety can be ensured by following a permanently safe command sequence from
a given system state.

Definition 2 (Permanently Safe Command Sequence). Given state x;, a
k-length permanently safe command sequence 5; € U* is one where the state
x; is admissible at every step j > i, where (u;,Si41) = dMstep(5i), and x;11 =
f(zi,us,w;), for every choice of disturbance w; € W.

That is, the system state will remain admissible when applying each command in
the sequence s;, and then repeatedly using the last command forever, according
to the semantics of dmstep. More general definitions of permanently safe com-
mand sequences could be considered, such as repeating a suffix rather than just
the last command. For simplicity we do not explore this here.

We define recoverable commands to be commands that result in states that
have permanently safe command sequences.

Definition 3 (Recoverable Command). Given state x;, a recoverable com-
mand u is one where there exists a permanently safe command sequence from
Zit1, where ;41 = f(x;,u,w;), for every choice of disturbance w; € W.

Optimal decision modules are defined by requiring the dnypdate function accept
all sequences that can guarantee future safety.

Definition 4 (Optimal Decision Module). An optimal decision module has
a dMypdate function that accepts t at state x if and only if t is a permanently safe
command sequence starting from x.

A correct DM is one which only accepts sequences that can guarantee future
safety. A correct DM, by this definition, could reject every command sequence.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 237

Definition 5 (Correct Decision Module). A correct decision module has
a dMypdate function that accepts t at state x only if t is a permanently safe
command sequence starting from x.

The role of the BC is to try to keep the system safe. An optimal look-ahead
BC can be defined as one that always produces a permanently safe command
sequence when it exists. This is optimal in the sense that during system execu-
tion, it allows the DM to override the AC as infrequently as possible while still
guaranteeing safety. This notion of optimality can be defined with respect to a
specific advanced controller ac.

Definition 6 (Optimal Look-Ahead Baseline Controller). Given state x
with u = ac(x), if there exists a permanently safe command sequence s from x
with 3[0] = u, then an optimal look-ahead baseline controller will always produce
a permanently safe command sequence t, with t[0] = u.

Note that ¢ may differ from 3, as there can be multiple permanently safe com-
mand sequences from the same state.

Theorem 1 (Safety). Given initial state x¢ along with an initial permanently
safe command sequence g, if the decision module is correct, then the system’s
execution is safe regardless of the outputs of the advanced controller ac and look-
ahead baseline controller lbc.

Proof. The command executed at each step comes from the state of the decision
module §;, which maintains the invariant that 5; is always a permanently safe
command sequence from the current system state ;. The dmypdate function can
only replace a permanently safe command sequence with another permanently
safe command sequence. Since initially, Sg is permanently safe, then by induction
on the step number, the decision module’s command sequence at every step is
permanently safe, and so the system’s execution is safe.

Although safety is important, achieving only safety is trivial, as a decision
module can simply reject all new command sequences. A runtime assurance
system must also have a transparency property, where the advanced controller
retains control in sufficiently well-designed systems.

Theorem 2 (Transparency). If (i) from every state x; encountered, the out-
put of the advanced controller ac(x;) = z; s a recoverable command, (ii) the
look-ahead baseline controller is optimal, and (iii) the decision module is opti-
mal, then the input command used to actuate the system at every step is the
advanced controller’s command, z;.

Proof. The proof proceeds by stepping through an arbitrary step 7 of the execu-
tion semantics defined in Sect.2.1. Since the output of the advanced controller
ac(x;) = z; is assumed to be recoverable, there exists a permanently safe com-
mand sequence from xz; that starts with z;. By the definition of an optimal
look-ahead baseline controller, since there exists a permanently safe command
sequence, the output lbc(x;) = ¢ must also be a permanently safe command

238 U. Mehmood et al.

sequence, with £[0] = z; as required by the definition of a look-ahead baseline
Eontroller. In step (3) of the execution semantics, dmypdate(i, 57, t;) = ;. Since
t is a permanently safe command sequence and the decision module is optimal,
the command sequence will be accepted by the decision module, and so 57 =1
Step (4) of the execution semantics produces w;, which is the first command in
the sequence t. As shown before, this command is equal to z;, which is used in
step (5) of the execution semantics to actuate the system. This reasoning applies
at every step, and so the advanced controller’s command is always used.

Discussion. There are several practical considerations with the described app-
roach. For example, the black-box controllers may not only generate unsafe com-
mands, but a controller implementation may fail to generate a command at all,
for example, entering an infinite loop. To account for such behaviors, a runtime
cap can be used with a default command sequence assumed if the DM receives
no input. For increased protection, the black-box controllers can be isolated on
dedicated hardware [3] so that they do not, for example, crash a shared operat-
ing system. Also, the DM’s analysis of the command sequence is nontrivial and
could involve a runtime reachability computation. If this may take too long, we
again could use a runtime cap. This means that the practicality of the architec-
ture depends on the efficiency of runtime reachability methods, an active area
of research orthogonal to this work.

Another consideration is the feasibility of coming up with permanently safe
command sequences. For systems where landing or coming to a stop is considered
safe, remaining there forever will be permanently safe. Other approaches, which
we use the case studies in the next section, rely on geometric arguments to
show permanent safety. Methods from control theory could also be used for this,
such as computing forward invariant sets [16] or using a locally stable controller.
For example, using the indirect method of Lyapnuov, a closed-loop system’s
equilibrium point z* can be proven to be stable using linearization, along with
conservative bounds on its basin of attraction [27]. The BC would then strive
to get the system into the basin of attraction of x*, and then use the locally
stable controller to ensure indefinite future safety. Directly using the locally
stable controller as the BC, however, would be overly conservative, as it would
not allow the system to leave the (potentially small) basin of attraction.

3 Case Studies

In this section, we apply the approach to two case studies: a multi-robot coor-
dination system, and a mid-air collision avoidance system for groups of F-16
aircraft.

3.1 Multi-robot Coordination

We consider a multi-agent system (MAS), indexed by M = {1,...,n}, of planar
robots modeled with discrete-time dynamics of the form:

The Black-Box Simplex Architecture for Runtime Assurance of CPS 239

Lo) x , |)

: 1 .
’ -8 - -4 o 4 i 8 ’ -8 i -4 o 8 ’ -8 -4 o 4 : B E E 1
(a) Initial configura- (b) k=10 (c) BC fails, k =11 (d) Final configura-
tion, k=1 tion, k = 32

Fig. 3. Simulation of the MAS with 7 robots. The DM performs system recovery after
the BC produces an unsafe command sequence. The BC’s proposed path is shown
in part (c) at kK = 11, where the two dotted red lines intersect, indicating the future
paths of the agents cross. We represent current positions as red dots, future positions
corresponding to the safe/unsafe command sequences as green/blue dots, velocities as
blue lines, and agent trajectories as grey curves. (Color figure online)

pl(k+1) :pl(k)+dtvz(k)7 |U1(k)| < Umaz (4)
Ui(k + 1) = Ui(k) +dt- ai(k)v |az(k)| < Umax

where p;, v;, a; € R? are the position, velocity and acceleration of agent i,
respectively, at time step k, and dt € RT is the time step. The magnitudes
of velocities and accelerations are bounded by v,q: and ap,q., respectively. The
acceleration a; is the control input for agent . The combined state of all agents is
denoted as = [p¥ vl ..., pL vI]T and their accelerations are a = [af, ...,al]T.

In the initial configuration, the agents are equally spaced on the boundary of
a circle and are at rest. Agent i’s goal is to reach a target location r;, located on
the opposite side of the circle. The initial configuration of the MAS is shown in
Fig. 3(a), where the agents and their target locations are represented as red dots
and blue crosses, respectively. The safety property is absence of inter-agent colli-
sions. A pair of agents is considered to collide if the Euclidean distance between
them is less than a non-negative threshold d,,;,. Thus, the safety property is
that ||p; — p;l| > dmin for all pairs of agents ¢, € M with 7 # j.

Both the AC and the BC are designed using centralized Model Predictive
Control (MPC), which produces command sequences as part of the solution of
a nonlinear optimization problem. For collision avoidance, we use a potential
field formulation [19] in both the AC and BC. While the AC tries to reach the
target positions on the opposite side of the circle, the BC has a simpler goal
of having each agent leave the circle. Note that numerical methods for global
nonlinear optimization, such as MATLAB’s fmincon used in our implementation,
do not provide a guaranteed optimal solution. To create unsafe variants of the
controllers, we simply limit the number of iterations used for optimization.

The AC only outputs the first command of the command sequence, whereas
the BC produces the full command sequence. Both the AC and the BC are
high-level controllers that produce accelerations. In our simulations, we do not

240 U. Mehmood et al.

model the low-level controller; the plant dynamics work directly with the acceler-
ations. When implementing our approach on physical robots, a trusted low-level
controller will map the desired acceleration commands to actuator inputs.

A centralized MPC controller produces a command sequence s of length T,
where T is the prediction horizon, and each command 3[i] contains the acceler-
ations for all agents to use at step 1.

The centralized MPC controller solves the following optimization problem at
each time step k:

T-1 T-1
arg min Jk+t|k) + X la(k+t| k)| (5)
a(k|k),...,a(k+T—1|k) ; ;

where a(k 4+t | k) and J(k +t | k) are the predictions made at time step k for
the values at time step k + ¢ of the accelerations and the centralized (global)
cost function J, respectively. The first term is the sum of the centralized cost
function, evaluated for T time steps, starting at time step k. It encodes the
control objective. The second term, scaled by a weight A > 0, penalizes large
control inputs.

Advanced Controller. The centralized cost function J,. for the AC contains
two terms: (1) a separation term based on the inverse of the squared distance
between each pair of agents (potential field term for collision avoidance); and
(2) a target seeking term based on the distance between the agent and its target

location.
Jac = Ws Z
i>j ”pz -

2+ tZsz TZH (6)

where wy,wy € R are the weights of the separation term and target seeking
terms. The separation term promotes inter-agent spacing but does not guaran-
tee collision avoidance. The AC generates a command sequence by solving the
optimization problem in Eq.5, with J replaced by J,.. The first command in
that sequence is the AC’s command; it is passed to the LBC.

Baseline Controller. The centralized cost function J. for the BC contains
two terms. As in Eq. 6, the first term is the separation term (collision avoidance
based on potential fields). The second term is a divergence term which forces
the agents to move out of the circle by aligning their velocities with rays radially
pointing out of the center of the circle.

e =wsd il dz(Ip—c)llvvl) @

i>j ”pz
where wg,wg € R are the weights of the separation term and the divergence
term, and c is the center of the circle containing the initial configuration of the
robots and their target locations. The control law for the BC is Eq.5, with J
replaced by Jy.. A zero acceleration is appended to the end of the BC’s command
sequence to help establish collision freedom for all future time steps.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 241

=
& |]
8 |
\7\ S
\ - \ /
[/\\ \ >
4 T P o\ 5
NS AL
of &~ y (-
~ \ /
/N a0
"
4 — —TQ c,//—l._ \
&« X = ! b]
X J
8 /
o /]
X
8 4 0 4 8

Fig. 4. Stress test of robotic MAS with 12 robots reaching their targets. Trajectory
segments where stored command sequences are used are shown in blue. (Color figure
online)

Decision Module. The LBC combines accelerations from the AC and the
BC, producing the command sequence ¢ = [ac(z), be(z’), 0], where z’ is the next
state after executing ac(x) in state z. The function dmypdate(2, 5, t) accepts the
proposed command sequence t if and only if ¢ is a permanently safe command
sequence. For this system, a command sequence t is considered permanently safe
in a state x if it satisfies the following two conditions. First, for all states in the
state trajectory obtained by executing ¢ from z, the Euclidean distance between
every pair of distinct agents is at least d,,;,,. Second, in the final state, for all pairs
of distinct agents, the rays extending from their positions and in the directions
of their velocities do not intersect. Any pair of agents that satisfies the second
condition will not collide in the future, since the last command in the sequence ¢
has zero acceleration. The initial permanently safe command sequence is a zero
acceleration for all agents, as the agents start at rest.

MPC Parameters. In our case study, we use the following MPC parameters:
dt = 0.3 sec, dpin = 1.7, Gmaz = 1.5, and vy,q, = 2. The length of the prediction
horizon for MPC is T,. = Tp. = 10.

Successful Recovery After Failure. We first consider seven robotic agents
initialized on a circle centered at the origin, with a radius of 10. The initial
state of the system is shown in Fig.3(a). At k = 11, the BC produces an unsafe
command sequence. The state trajectory corresponding to the unsafe sequence
is shown in blue. As shown in Fig. 3(c), the final paths of the two agents corre-
sponding to the larger red dots cross after simulating the current state forward
with the unsafe sequence. Hence, at k = 11, the DM rejects the proposed com-
mand sequence and shifts control to the previous safe command sequence, which
safely recovers the system. Here, we purposefully did not return control to the
AC to demonstrate how the stored command sequence keeps the agents safe!.

1A video of the simulation is available at https://youtu.be/bcVIBkGgnxA.

https://youtu.be/bcVJBkGgnxA

242 U. Mehmood et al.

Reverse Switching Scenario. We stress-tested the multi-robot system by
initializing 12 agents on a circle of radius 10. The path of the agents is shown in
Fig. 4. There are 10 instances where the DM rejects the AC’s proposed command
sequence and instead uses the stored command sequence. Nonetheless, all agents
reach their target locations without colliding, maintaining a minimum separation
of 1.724 between any pair of agents?.

Handling Uncertainty. We next investigate the DM’s runtime overhead when
there is uncertainty in the robot’s state or the dynamics. The former case arises
when the sensors used to determine the positions and velocities are subject
to sensor noise. The latter case could be used to account for modeling errors,
through disturbances on the positions and velocities at each step.

We continue to use the same MPC strategy as before; thus, the controllers
ignore the uncertainty when generating proposed command sequences. Only the
logic used by the DM to accept or reject command sequences is modified to
account for uncertainty. We examine the scenario shown before in Fig. 3(b). To
account for the uncertainty, we perform an online reachability computation. To
do this, we use efficient methods for reachability for linear systems based on zono-
topes [11], which we implement in Python. Briefly, a zonotope is a set of states
represented as an affine transformation of a unit box. The unit box is associated
with a number of generator vectors, where each generator vector corresponds to
one dimension of the box. The computational efficiency of propagating sets over
time using zonotopes relates to the number of generators. Each agent has four
state variables, two for position and two for velocity. The composed system with
seven agents has 28 state variables.

In the situation shown in Fig. 5(a), the current state is assumed to have uncer-
tainty independently in both position and velocity with an L? norm of 0.1. We
use a 16-sided polygon to bound this uncertainty. In the plot, the deterministic
simulation is given, along with black polygons for each agent that show the states
that might be reachable at each step due to the sensor uncertainty. The uncer-
tainty in the velocity causes the set to expand over time, since the open-loop
command sequence does not attempt to compensate for the uncertainty. The
zonotope representation of the composed system needs 112 generator vectors to
represent the initial states, which remains constant at every time step.

In the situation shown in Fig. 5(b), the initial state has very little error, but
the dynamics is modified to have disturbances at each step. For each component
of each agent’s position and velocity, we allow an external disturbance value
to be added in the range [—0.02,0.02]. Since each agent has four independent
disturbances, the zonotope representation of the composition will have 28 new
generators added at each step. After 12 steps, the final zonotope will have a total
of 364 generators.

2 A video of the simulation is available at https://youtu.be/qmk31jS6B2Y.

https://youtu.be/qmk31jS6B2Y

The Black-Box Simplex Architecture for Runtime Assurance of CPS 243

-6 -4 2 0 2 4 6 -6 -4 2 0 2 4 6

(a) Reachable States with Sensor Error (b) Reachable States with Disturbances

Fig. 5. Zonotope reachability computes future states with uncertainty.

Runtime. To measure runtime, we used a standard laptop with a 2.70 GHz Intel
Xeon E-2176M CPU and 32 GB RAM. The method is fast. For the case of sensor
uncertainty, computing the box bounds of the reachable set at all the steps takes
about 1.5 ms. With uncertainty, even though the number of generators grows over
time, it is not large enough to significantly affect the runtime. The computation
with disturbances requires about 2ms to complete. We believe such execution
times are sufficiently fast for use in the decision module.

3.2 Multi-aircraft Collision Avoidance

Our second evaluation system guarantees collision avoidance for groups of air-
craft. We use a full six-degrees-of-freedom F-16 simulation model [14], based on
dynamics taken from an Aerospace Engineering textbook [38]. Each aircraft is
modeled with 16 state variables, including positional states, positional velocities,
rotational states, rotational velocities, an engine thrust lag term, and integrator
states for the low-level controllers. These controllers actuate the system using
the typical aircraft control surfaces—the ailerons, elevators, and rudder—as well
as by setting the engine thrust. The system evolves continuously with piece-wise
nonlinear differential equations, where the function that computes the derivative
given the state is provided as Python code. In order to match the discrete-time
plant model in Definition 1, we periodically select a control strategy with a fre-
quency of once every two seconds. The model further includes high-level autopilot
logic for waypoint following, which we reuse in the advanced controller.

For the collision-avoidance baseline controller, our controller is based on the
ACAS Xu system designed for collision avoidance in unmanned aircraft [20].
While the original system was designed using a partially observable Markov
decision process (POMDP), the resultant controller was encoded in a large look-
up table that used hundreds of gigabytes of storage [15]. To make the system
more practical, one early approach considered a downsampling process followed
by a lossy compression using neural networks [15,17]. We use these downsampled
neural networks as the BC and refer to this as the original system.

244 U. Mehmood et al.

The system issues horizontal turn advisories based on the relative positions
of two aircraft, an ownship and an intruder. The system is similar to Simplex,
where the output can be either clear-of-conflict, where any command is allowed,
or an override command that is one of weak-left, weak-right, strong-left or strong-
right. We adapt this system to the multi-aircraft case by having each aircraft
run an instance of the system against every other aircraft, using the closest turn
advisory as the output.

To create command sequences, the BC repeatedly advances the plant model
and re-runs the collision avoidance system in a closed-loop fashion until the
generated command sequence is permanently safe. To check whether a generated
command sequence is permanently safe, the DM checks that (i) each aircraft’s
state stays within the model limits (e.g., no aircraft enters a stall), (ii) all aircraft
obey the safety distance constraint at all times, and (iii) the execution ends in
a state where the roll angle of each aircraft has been small (less than 15°) and
the distances between all pairs of aircraft has been increasing consecutively for
several seconds. If all aircraft continue to fly straight and level from such a
configuration, their distance would increase and no collisions would occur in the
future.

As with the multi-robot scenario, we examine cases where the initial air-
craft state xy has all aircraft starting evenly-spaced, facing towards the center
of a circle with a given initial diameter. Each aircraft has an initial velocity of
807 ft/s and an initial altitude of 1000 ft, both of which are maintained through-
out the maneuver by the lower-level controllers. The AC commands each aircraft
to fly towards a waypoint past the opposite side of the circle, which would cause
a collision at the center. The safety property requires maintaining horizontal
separation. The near mid-air collision cylinder (NMAC) uses a safe horizon-
tal separation of 500 ft [24], although we will vary this in our evaluation. For
the initial permanently safe command sequence sy, we have each aircraft fly in
clockwise circles forever, which avoids collisions.

In addition to the AC being unsafe, the baseline controller should not be fully
trusted for many reasons. The original POMDP formulation was not proven for-
mally correct, not to mention the downsampling and lossy neural network com-
pression. While some research has examined proving open-loop properties for
the neural network compression [5,6,17], these do not imply closed-loop collision
avoidance. Further, we use a multi-aircraft adaptation of the system, which could
also lead to problems. Although aspirationally, the system should handle up to 30
intruders [15], in practice most analysis has been performed on two aircraft sce-
narios. Finally, the intended physical system response to the collision-avoidance
commands is that weak-left and weak-right should cause turning at 1.5° per sec-
ond, whereas strong-left and strong-right turn at 3.0° per second [15]. However,
turning an aircraft in the F-16 model (as well as in the real world) is not an
instantaneous process, and requires first performing a roll maneuver before the
heading angle begins to change. For these reasons, the BC in this scenario is
also an unverified component, and we will show scenarios where it misbehaves.
Nonetheless, we will compose the incorrect AC with the incorrect BC to create
a safe collision-avoidance system by using BSA.

The Black-Box Simplex Architecture for Runtime Assurance of CPS 245

uuuuu

~ " AR

uuuuu

;;;;;;;;;

North / South Position (ft)

orth / South Position (ft

Closest Distance: 1751 Closest Distance 16021 | closet Dstance; 1602210
10000 o El 000 36000 GO0 000

" Fast West Position (1) e st boston T T st West Position (@)
(a) Original System (b) Black-Box Simplex (¢) Black-Box Simplex
(Zoomed In)

Fig. 6. Black-Box Simplex is safe. In the three-aircraft case, the original system fails,
whereas BSA maintains the 1500 ft separation.

We now elaborate on three scenarios: (i) a three aircraft case, which shows the
safety of the system despite unsafe outputs, (ii) a four aircraft case, which shows
the increased transparency of BSA, and (iii) a 15 aircraft case, which shows safe
navigation of a complex scenario. Also, a seven aircraft case is presented in the
appendix of extended report®, which shows the safety condition can be easily
customized.

In all the plots in this section, we show snapshots at the time when the
distance between the two closest aircraft is smallest. The two red aircraft are
the closest pair, and thei