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Abstract. How to identify crop types faster and more accurately by integrating
multiple sources Remote Sensing (hereafter RS) data has become a key technique
in topographic regions, yet few literatures has addressed on this deficiency. By
given a detailed review on two major issues of RS data fusion patterns and differ-
entiation algorithms about crop types, this paper extracted three dominant patterns
existing in current RS data fusions, which can be named as time-sequential fusion,
spatial-resolution fusion, and spatial-temporal fusion; and from which three types
of crop recognitionmethodologies can be concluded, namely time-sequential phe-
nological characteristics method, plant spectral reflection characteristic method,
and combined method of spectral and phenological characteristic of crops accord-
ingly. Furthermore, a detailed comparison of those methods on their influencing
factors and regional applicability is also illustrated in order to provide a more
effective methods selection strategies targeting on RS crop monitoring.

Keywords: Crop recognition · Multi-source remote sensing data · Fusion
pattern · Technique status and future prospects

1 Introduction

Remote sensing recognition of crops is the theoretical foundation of remote sensing of
agricultural situations [1, 2], which is usually fulfilled by extracting unique spectral,
textural and phenological characteristics of crops, and crop type identification using
supervised classification, unsupervised classification and machine learning methods in
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combination with crop growth patterns and conditions [3]. Low spatial resolution remote
sensing images such as MODIS data can cover long time series of crop growing period.
It can also effectively identify crop phenological crossover phenomenon [4], but cannot
identify crop types grown in small plots in complex terrain areas due to the interference
of factors such as mixed cropping and plot size. Medium-resolution remote sensing
images such as Landsat TM/ETM data can identify relatively more crop types due to
the increased resolution. However, it is difficult to obtain long-term sequence images
due to adverse weather conditions such as cloud, rain and fog and revisit cycles, which
makes it difficult to use growth cycle characteristics (such as growth curve) for crop
identification. High spatial resolution remote sensing images, such as GF-1 / 2 data, can
extract abundant spectral information and spatial heterogeneity characteristics, which
is helpful to improve crop recognition accuracy under complex planting patterns and
terrain conditions. However, due to poor data continuity and limited coverage of spatial,
the image processing of such images is more difficult [5]. In conclusion, any single
remote sensing data source cannot fully reflect the spectral characteristics of different
crops throughout the growing season due to themutual restriction of temporal and spatial
resolutions [6]. Therefore, it is of great theoretical research significance and practical
application value to study the synergy and fusion of multi-source data in remote sensing
recognition of crops.

2 Research Overview

Domestic and foreign scholars have usedMODIS, Landsat TM / OLI, GF and HJ images
to study crop classification. Early data type is single, often using single source image,
which is divided into low spatial resolution and high spatial resolution. Low spatial
resolution long-term sequence data can be used to detect large-scale crops, and the crop
situation is analyzed by calculating the vegetation index. For example, Xiao et al. (2005)
and Zheng et al. (2008) used MODIS data and SPOT-5 images to study the planting
structure of specific crops. [7, 8]. Ridhika Aggarwal et al. (2014) [9] used remote sensing
images of multi-temporal Landsat-8 OLI data to classify wheat of Radaur city, India.
Qingyun Xu et al. (2014) [10] reconstructed NDVI time series curve using MOD09Q1
dataset and combinedwith crop phenology information to identify the types and cropping
patterns of major crops in Shanxi Province. Supervised or unsupervised classification
and machine learning methods are often used when using multi-temporal data from
high spatial resolution images (Kim, 2014) [11]. For example, Huanxue Zhang et al.
(2015) [12] used an object-oriented decision tree algorithm to classify crops frommulti-
temporal environmental satellite NDVI time series data. Wuyundeji et al. (2018) [13]
used GF-1 image data to extract the area of spring wheat in the river-loop irrigation
area and monitored the crop growth with NDVI, and found that the accuracy of the area
extraction results reached 93.51%.

In recent years, in the research of crop classification and agricultural remote sensing,
data source has changed from single-source data to multi-source data set [14], and crop
identification method based on satellite remote sensing data collaboration has become a
research hotspot. For example, Guangxiong Peng et al. (2009) [15] used multiple typical
classification methods to identify and extract crops such as sugarcane and maize in Mile
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County, Yunnan Province, and the data he used were CBERS02B-CCD and Landsat-5
TM images of CMBR at two times. Songlin Wang (2015) [16] selected low and medium
spatial resolution MODIS remote sensing images to extract crop cultivation area in
Jiangsu Province, and used medium and high resolution HJ-1A/B images to verify their
spatial distribution.HuinanXin et al. (2016) [17] used a decision tree classificationmodel
to monitor crop cropping structure in the Aksu region of Xinjiang. The experimental
procedure combined with the spectral information of the higher radiometric resolution
multi-temporal Landsat8 OLI images. Aiming at the two key problems of common
multi-source image data fusion methods and remote sensing crop recognition methods,
this paper makes a systematic review.

Table 1. Cases of multi-source remote sensing data fusion applied to crop identification.

Data source Identifying
characteristics

Research area Crop type Accuracy References

CBERS02B-CCD
and Landsat-5TM

Time series
spectral curve

Mile County,
Yunnan Province

Corn, rice, sugar
cane

0.655 [15]

HJ-1A/B and
MODIS

Comprehensive
features

Guangxi Zuojiang
River Basin

Sugar cane 0.8 [14]

NDVI timing
curve

Jiangsu Province Winter wheat
and rape

0.85 [16]

GF-1 and Landsat Features such as
time series
phenology and
spectrum

Aksu Region,
Xinjiang

Corn, rice,
wheat, cotton

0.83 [17]

Phenological
spectral
characteristics

Bei’an City,
Heilongjiang

Corn, rice,
wheat, soybean

0.8754 [41]

NDVI timing and
spectral
characteristics

Jiutai District,
Changchun City

Corn, rice,
soybean

0.88 [42]

MODIS、Landsat
and HJ-1

Vegetation index
time series curve

Xinjiang Bole City Corn, cotton,
grapes, melon

0.9 [25]

HJ CCD and
Landsat 8 OLI

NDVI timing and
spectral curve

Xining Wheat, rape,
barley, potatoes

0.882 [44]

Sentinel-1 and
Sentinel-2

Multi-band
spectral
characteristics

A farm in Dali,
Shaanxi Province

Corn, wheat,
alfalfa

0.9 [64]

HJ-1A and GF-1 Comprehensive
features

Sihong County,
Jiangsu Province

Corn, rice 0.9707 [71]

3 The Fusion Method of Multi-source RS Data

With the rapid development of remote sensing technology, the acquisition of agricultural
information gradually tends to the system of Satellite-UAV-Ground Internet of Things



574 L. Wang et al.

System, which can quickly acquire multi-source and multi-view farmland information
data. Multi-source data need to be fused according to certain rules before using [18–
20]. Based on the literature review of CNKI in the past decade, this paper introduces
the fusion method and recognition method of multi-source remote sensing data. The
application and recognition effect of each case are shown in Table 1.

3.1 Realization of Multi-source RS Data Fusion for High Temporal Resolution
Targets

Multi-source remote sensing image collaboration can expand the frequency of repeated
observation on the ground, effectively capture the optimal time window for crop recog-
nition [5, 21], and achieve the goal of “time optimization”. Extracting the long time
series spectral characteristics of crops by using the image of crop key growth period or
whole growth period can solve the phenomenon of crop phenological period crossing
and improve the recognition accuracy [22]. Multi-temporal remote sensing data can be
divided into multi-phase homologous sensors and heterogeneous sensors according to
different data sources [23].

Qinxue Xiong et al. [24] had used multi-period homogenous sensor data for their
study. They selected 17 different time-phase MODIS data from May to December 2001
to analyze NDVI time series curves, and then applied hierarchical classification method
and BP neural network method to supervise the classification of autumn crop in Jian-
gling County, Hubei Province. Crop recognition model is a combination of NDVI time
series curve data with high temporal resolution extracted fromMODIS data and Landsat
ETM standard data. This model provides a reliable basis for high precision crop spatial
distribution mapping. The study by PengYu Hao et al. [25] is a typical case of crop clas-
sification using heterogeneous sensors. They fused 15-view MODIS data and 7-view
TM/HJ-1 data into vegetation index time-series data with both 30m spatial resolution,
then transformed the TM/HJ-1 vegetation index into MODIS vegetation index by lin-
ear regression model. Finally, they used the minimum distance classification method to
distinguish cotton, maize and other crops in Bole City, Xinjiang, and the recognition
accuracy reached more than 90%. This study uses heterogeneous source data to estab-
lish vegetation reference curves. It eliminates the manual collection of training samples
compared with the traditional supervised classification, achieves automatic extraction
of crop planting area with high spatial resolution for long time series [26].

3.2 Realization of Multi-source RS Data Fusion for High Spatial Resolution
Targets

The use of high spatial resolution remote sensing data can extract richer spectral infor-
mation of features, clearer texture features and clearer spatial neighborhood geometric
relation-ships, which provides new opportunities for high precision extraction of crop
target classification and planting area [27, 28]. Small wave transformmethods have been
widely used in image fusion because of better spatial scale transformationmatching [29],
and easier understanding of the synthesized images [30].

For example, Xiaohe Gu et al. [31] used wavelet transform method to fuse MODIS
temporal images with 250 m spatial resolution and TM images with 30 m resolution,
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and obtained time series fusion images with 30 m resolution. The minimum distance
classifier combined with crop NDVI growth curve was used to distinguish the main
crops in Yuanyang County, Henan Province, and effectively extract maize planting area
and spatial distribution. Jie Li [32] and Tao Han et al. [33] found that Sentinel-2A
could well extract crop distribution information due to higher spatial resolution in small-
scale agricultural areas with complex agricultural structures. In Sentinel-2A, different
features show significant differences in spectral characteristics and vegetation indices,
which makes Sentinel-2A more suitable for the study of small-scale areas with complex
feature structures and fragmented land masses. In addition, Bu and Osler et al. [34]
showed that the “pixel-level scale extension” of different resolution data can effectively
distinguish mixed pixels and identify feature boundaries, which can be applied in feature
classification studies.

3.3 Multi-source RS Data Fusion with a Combination of Spatio-Temporal
and Spectral Advantages

High spatial and temporal resolution data can improve the accuracy of ground interpreta-
tion, and hyperspectral images can obtain the continuous band of feature spectra, which
will directly distinguish crop species [35–39]. Therefore, in complex terrain areas with
small crop planting area, complex planting pattern and high frag-mentation of farm-
land landscape [43], it is still urgent to study crop classification by combining temporal
and spatial advantages with spectral ad-vantages [40–42]. For example, Feifei Shi et al.
(2018) [44] extracted crop NDVI time series data based on HJ CCD and Landsat 8 OLI
data, while using HJ-1A HSI data to extract spectral feature variables to form a multi-
source dataset. They used classification and regression tree (CART) and support vector
machine (SVM) to classify major crops such as oilseed rape, wheat and potatoes in Xin-
ing City, a plateau region. Ling Ouyang et al. [45] selected GF-1 data and Landsat8 OLI
data as remote sensing data sources, and conducted regression analysis on the spectral
reflectance of the same ground object. The decision tree classification method was used
to detect crop planting structure in Bei’an City of Heilongjiang Province based on crop
phenology and spectral characteristics. Xiaohui Li et al. [46] accurately distinguished
the cultivated land area of Datong City, Shanxi Province based on GF-1 image, and
extracted the distribution of main crops by using landsat8 OLI image. In summary, it is
feasible to use multi-source data fusion for crop identification in complex terrain areas.

4 Main Methods of RS Crop Recognition

Extracting important feature parameters of crops based on information such as
reflectance spectra, colors, and textures of features and combining themwith appropriate
classificationmethods to distinguish crop types [47, 48] is the basis of crop identification
frommulti-source remote sensing data. In this paper, we introduce three methods for the
application of multi-source remote sensing imagery in the field of crop identification,
the results of each method and application cases are shown in Table 2.
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4.1 Recognition Methods Based on Temporal Phenological Features

Phenology knowledge show us that different crops are affected by climate, soil, hydrol-
ogy and other factors in specific areas, and have different periodic growth and devel-
opment laws [49]. Studies have shown that the time series of Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Differ-
ence Water Index (NDWI) can accurately reflect the dynamic change trend of crops
in different periods [50, 51]. It contributes to solving the problem of ‘foreign matter
congener spectrum’ in crop identification and is widely used in monitoring crop annual
changes. The key to crop classification based on temporal phenological characteristics
is the phenological period and characteristic parameters of crop growth [52]. However,
the remote sensing data acquisition and processing are disturbed by many factors such
as sensor noise [12] and solar altitude angle, which leads to abnormal fluctuations in
the vegetation index curve of time series. Usually, smoothing denoising and eliminating
abnormal points are used to reconstruct time series data.

At present, phenological characteristics combinedwith temporal remote sensing data
is the mainstream of remote sensing crop classification research. For example, Ansai,
Machao, Rongqun Zhang and Yuepeng Ping et al. [53–56] usedMODIS time series data
to establish vegetation time series curve, and classify the main crops in plain and hilly
areas by extracting phenological indexes such as the beginning and end of crop growth
season and the length of crop growth season. Xia Zhao et al. [57, 58] identified crops
in Qinghai Province. The results showed that the recognition accuracy of spring wheat,
potato and rape was more than 60%. Yanjun Yang [59] used five different classification
methods to classify winter wheat, summer maize, rice and peanut through GF-1 WFV
satellite images. The results showed that the NDVI time series curve after smoothing
treatment could highlight the overall trend of crops.

4.2 Recognition Methods Based on Spectral Features

Remote sensing images record the electromagnetic wave information of ground objects.
Because the spectral reflection characteristics are different, the images show different
brightness, texture features and geometric structures [60]. And hyperspectral can record
hundreds of narrow bands from visible light to infrared light, which are close to the
actual spectrum of crops in the case of high spatial resolution. Therefore, the difference
in spectral reflectance of crops can be used as a basis for judgment [61, 62]. The methods
of crop recognition based on spectral features mainly include supervised classification
and unsupervised classification. The main difference between them is whether there is
prior knowledge.

Supervised classification is the process of using training samples to construct dis-
criminant functions to identify classes of image elements [63], and the main methods are
maximum likelihood, SVMand decision tree. Lin Zhu [64] used Sentinel-1 and Sentinel-
2 multi-source remote sensing data for crop classification based on minimum distance,
maximum likelihood, SVM and BP neural network. Crop classification experiments on a
farm in Dali, Shaanxi Province show that the classification results of BP neural network
without cloud cover are the best, and SVM with cloud cover are the best, the overall
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classification accuracy is more than 90%. Unsupervised classification only relies on sta-
tistical feature differences to achieve classification purposes, and mainly adopts cluster
analysis methods such as iterative self-organizing data analysis algorithm (ISODATA)
[65, 66]. Limin Wang et al. [65] used ISODATA to classify multi-temporal GF-1 WFV
data in Langfang City, Hebei Province, and established semantic constraints. Winter
wheat was identified according to Sigmoid spatial membership. The classification accu-
racy was 95.33% and the Kappa coefficient was 0.90. In short, supervised classification
method has high classification accuracy, but requires prior knowledge, and the workload
is large. Methods of crop classification depend on specific circumstances.

4.3 Comprehensive Feature Selection for Crop Recognition by Remote Sensing

Auxiliary data are non-image information used to assist image analysis,mainly including
parameters such as elevation, slope, slope direction, and various thematic information
[67, 68]. Using the spatial characteristics of natural elements and the texture character-
istics [69] of measuring the spatial distribution of pixel neighborhood gray can improve
the accuracy of crop recognition and effectively avoid the phenomenon of ‘same object,
different spectrum’. In the hilly areas with high fragmentation, the spatial feature infor-
mation can help to express the planting area boundary [43]. Crop classification research
uses all the feature information to increase the data dimension, which will inevitably
lead to Hughe phenomenon, reducing the recognition accuracy. Dimension reduction is
the use of specific algorithms to select feature subsets that are important to the classifi-
cation process, and has become a key step in processing high spatial resolution images.
When feature selection is carried out, the classifier is limited by many factors such as
the landscape structure of the study area, so the multi-classifier system has been widely
used [70].

Na Wang [71] used GF-1 and HJ-1A images to extract the multi-temporal spec-
tral characteristics, vegetation index characteristics (NDVI, perpendicular vegetation
index PVI, difference vegetation index DVI, soil-adjusted vegetation index SAVI), tex-
ture characteristics (variance, information entropy, second-order distance, etc.) and band
difference information of Sihong County, Jiangsu Province. Then, they design six clas-
sification schemes based on random forest classifier and SelectKBest method to select
the optimized feature subset (A. spectral feature, B. spectral feature + band difference
feature, C. spectral feature+ vegetation index feature, D. spectral feature+ texture fea-
ture, E. spectral feature + band difference feature + vegetation index feature + texture
feature, and F. optimized feature subset). The classification results show that the recog-
nition accuracy of multi-information comprehensive features of remote sensing crops is
higher than that of single original spectral feature classification.

5 Accuracy Evaluation of Classification Results and Influencing
Factors

The accuracy evaluation of crop classification refers to the comparison of the classifi-
cation results with the actual data to determine the accuracy of various ground objects
[1]. Commonly used methods for evaluation of classification results include confusion
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matrix, result superposition and ROC curve [72], and indicators for evaluation of accu-
racy include User’s Accuracy, Producer’s Accuracy, Overall Accuracy, Kappa coeffi-
cient, etc., as well as the calculation of absolute error and root mean square error based
on departmental statistics [52]. Usually, the higher the resolution of data is, the stronger
the recognition ability is. However, the distinction of crop categories is not entirely
dependent on spatial resolution. It is necessary to combine the environmental character-
istics of topography, geomorphology and soil in the study area and the relative difference
between the brightness and structure of the surrounding objects [61]. We should com-
prehensively consider the above characteristics to obtain data with optimal resolution. In
addition, the rationality of training samples and the heterogeneity within plots will also
affect the classification accuracy, and the mixed pixel decomposition method is helpful
to improve the classification accuracy of crops [73]. The Table 2 shows that the extrac-
tion accuracy of comprehensive features or combination of spectral and phenological
features is higher.

6 Problems and Prospects

In recent years, with the rapid development of remote sensing technology, the research
on crop recognition based onmulti-source data hasmade great progress, but there are still
some problems in the classification accuracy and feasibility. In the future, the theoretical
system and technical methods of multi-source remote sensing crop identification should
be further developed, and its practical application scope should be expanded to promote
the development of agricultural remote sensing.

1) Establishing a technical method system for remote sensing crop identification in
different ecological zones. The spatial distribution status of crops affects the recognition
accuracy of crop types [74]. Because the growing environment of crops has differences,
ecological zoning should be carried out according to the agricultural zoning system or
farmland landscape, and we should establish a separate system of technical methods for
crop identification.Meanwhile, when extracting crop information in areas with abundant
crop species and complex terrain, the processing method of image partition can be used
to improve the recognition accuracy. However, the size of spatial and temporal scales
of different regions or ecological zones and the law of range boundary division need to
be further studied, which will determine the selection of remote sensing image types,
classification methods, etc.

2) Comprehensive classification features and multi-classifier system application
research. There are many characteristic parameters extracted from crop recognition
based on multi-source remote sensing data. In addition to the spectral features, tem-
poral phenology differences and texture features, we can also try to classify the area,
aspect ratio and shape index as the classification features. However, due to the diversity
of information sources, there will be differences in classification, so the comprehensive
application of information needs further research. At the same time, it is necessary to
consider the contribution rate of different features to the recognition accuracy, and study
the influence of feature combination on crop classification, so as to obtain the optimal
feature collection in the study area. Studies have confirmed that the multi-classifier sys-
tem is an effective solution to control the classification uncertainty of remote sensing
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images and improve the classification accuracy [75, 76]. Therefore, it’s application in
crop recognition is a valuable research direction in the future.

3) In-depth exploration of remote sensing technology for crop identification in com-
plex topographic areas. Now the domestic use of optical remote sensing for crop type
identification mainly focuses on large area plain agricultural demonstration zone of sta-
ple crops such as rice, corn and wheat, cole, potato, soybean and cotton and other crops
involved, but there is little research on regional specific crops such as barley and oats
in alpine regions such as the Qinghai-Tibet Plateau. Therefore, the potential of remote
sensing data to identify crops in complex terrain areas should be further explored, and
remote sensing techniques applicable to identify these small crops in complex terrain
areas should be studied to provide scientific basis for fine agricultural management of
small agricultural areas.
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