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Abstract. Software-defined network (SDN) separates the control plane
and the data plane, which provides the programmability of the network
and is widely deployed in data center networks. As the foundation of
SDN, the data plane needs to be fully verified and tested to ensure its
correctness and reliability. At present, formal verification and testing
methods have been applied to SDN networks. The goals of verification
and testing are to find the design defects and the implementation errors
of the data plane, respectively. In this paper, we conduct a survey of the
state-of-art methods and tools of formal verification and formal testing
for SDN data plane. According to support for online verification, the
related works of formal verification for the data plane fall into static
verification and real-time verification. According to the requirement of
source code, the existing works of formal testing for the data plane fall
into white-box testing and black-box testing. Based on the state-of-art
approaches of verification and testing, we also discuss the research trends
of verification and testing for SDN data plane, such as artificial intelli-
gence (AI)-based model construct and property definition, and scalable
support for the stateful data plane.
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1 Introduction

SDN is a new network paradigm, which separates the control plane and the
data plane and realizes the centralized control of the network through a central
controller. Data plane also known as the forwarding plane, which consists of
switches and other forwarding equipment. Compare with traditional networks,
these forwarding devices are simple forwarding components without embedded
intelligence to make their own decisions. The programmability of control plane
is supported by data plane which is the foundation of SDN. SDN also makes it
easier to apply machine learning strategies. Based on this, some scholars have
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proposed Intelligent Software Defined Network (ISDN) to deal with new chal-
lenges [3].

The programmability brings new possibilities to the future network, which
introduces the risk of network errors. Although some methods have been pro-
posed [1] to effectively handle network congestion and load balancing in SDN
networks, it is still necessary to verify and test SDN networks. Due to the dif-
ference of network properties, the technology of verification and testing in tra-
ditional network cannot be directly applied to SDN data plane. SDN has been
paid more and more attention by the academia, and this paper focuses on the
verification and testing with formal methods of data plane. The formal methods
employ rigorous logical reasoning to check whether the model meets the system
specifications, which has high accuracy and efficiency of verification and testing
in data plane.

The formal verification in data plane of is used to check whether the packet
forwarding path is consistent with the expectation of controller. The main meth-
ods include reading a snapshot of the flow table of the switch at a certain time,
and monitoring the communication between the controller and the switch in real
time, which constructing a formal model to verify the model. With a lot of effort,
a lot of work has been done to help users find design flaws in data planes, such
as HSA [15], VeriFlow [16], and NetPlumber [14], and more.

The formal testing of the SDN data plane is to check the forwarding behavior
of each switch by generating probe packets. According to whether the source code
is needed, these works are divided into the white-box testing methods and the
black-box testing methods. Testing is used to find implementation errors in the
data plane devices, thereby helping users or developers to improve the reliability
of the data plane. Stand for Monocle [18], RuleScope [8], RuleChecker [24], and
more.

Based on the survey, we believe that the future development direction of SDN
data plane verification and testing may include the following three aspects. (1)
AI-based model construct, (2) AI-based property definition, (3) scalable support
for the stateful data plane.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the formal verification of the SDN data plane. In Sect. 3, we introduce the formal
testing of the SDN data plane. In Sect. 4, we put forward a vision for future work.
Section 5 concludes this paper.

2 Verification

When verifying the data plane of traditional networks, we can collect FIB (For-
warding Info Base) through SNMP (Simple Network Management Protocol), a
terminal, or a control session, representing Anteater [17], NETSAT [25], and so
on. For SDN data plane verification, the main idea is to read the information of
the flow tables from the data plane devices and monitor the real-time commu-
nication between the controller and the devices, as shown in Fig 1. We roughly
divide the verification works into two categories: one is static verification, and
the other is real-time verification.
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Fig. 1. Workflow of SDN data plane verification

2.1 Static Verification

The static verification of the SDN data plane is mainly to construct a snapshot
at a certain moment by reading the flow table of the switch, and then build a
model based on the snapshot, and then use a verification tool to check whether
the model meets the defined rules, and then find possible data plane design.

Ehab et al. propose FlowChecker [2], which first applies model checking to
SDN networks, and can accurately detect the correctness of the data plane.
They code the flow tables as the Binary Decision Diagram (BDD), encode the
forwarding rules as Boolean expressions. FlowChecker use the model checking
tool NuSVM to verify the invariants of the network. Although FlowChecker can
check the correctness of protocol deployment, its poor scalability indicated that
it can only be used on small-scale networks.

Natali et al. propose a verification method based on the OpenFlow Speci-
fication. They propose a general OpenFlow switch model based on first-order
logic. Use Alloy [19] to model and verify the OpenFlow switch, and finally use
the SAT solver to solve it. It can well detect the violation of invariants such as
black holes and forwarding loops, but it also has the common shortcomings of
other model-based checking tools such as state space explosions, etc.

HSA [15], proposed by the Kazemian team, combines the formal methods and
the network domain features to verify the data plane by checking the network
boxes. First, it abstracts the data packet header as a subset of the geometric
space, then uses the network transfer function and the topology transfer func-
tion to model different individual network boxes, and finally combines all the
individual network boxes into a large network box, which contains all network
behaviors. It can use several algorithms to check network invariants, such as
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reachability failure, loops, and so on. However, when the number of bits in the
header space is large, the cost of exploring the header space state of an expo-
nential packet is enormous.

Son et al. proposed FLOVER [20], a model checking system that verifies
that the set of instantiated flow policies in an OpenFlow network does not vio-
late the network security policy. They proposed a formal approach to demon-
strate the consistency of dynamically generated OpenFlow flow rules with non-
by-pass security attributes, including those with set and goto table actions.
Using FLOVER, OpenFlow rules and network security policies are converted
to an assertion set, which is then processed and validated by the SMT solver.
FLOVER can detect violations that override and modify up to 200 rules in more
than 100 ms.

Static verification summary: As SDN was just beginning to be known to the
public, so the initial verification work was not much, and was limited to static
verification. They all verify the accuracy of the network to a limited extent,
but these tools find problems after the data plane goes wrong, these errors may
have caused damage to the network. More importantly, static verification is not
efficient and cannot be applied to dynamically change networks.

2.2 Real-Time Verification

The network changes with time due to the addition and deletion of the rules for
the controller to issue the flow table. Previous tools were not sufficient to check
the correctness of each network update. To implement real-time verification, it is
necessary to get the continuous update in real-time and improve the performance
of the verification methods. Fortunately, in SDN networks, forwarding rules can
be obtained by monitoring the control messages, such as insertion, deletion, or
modification, between the controller and switch, to achieve real-time verification.

VeriFlow [16], proposed by Khurshid, is the first real-time verification system
that can check network invariants in a few hundred microseconds. It observes
state changes between the control plane and the data plane, and dynamically
checks the validity of network-wide invariants as each rule is inserted. The net-
work is divided into a set of equivalent classes, and the packets belonging to the
equivalent class go through the same forwarding path in the whole network. Ver-
iFlow iterates through the paths of the equivalent classes to determine the state
of one or more invariants. Then it can find where the failure occurred. However,
when a rule has multiple matching fields to check, the number of equivalent
classes may be too large for quick verification.

Different from VeriFlow, Yang et al. give a new method for the division
of equivalence classes. They use PreCherker [9] to dynamically identify con-
flicting rules and classify them into equivalence classes. A multi-terminal BDD
(MTBDD) structure is proposed to express the equivalent classes. This signifi-
cantly improves the efficiency of network verification.

Kazemian et al. have improved on HSA and propose NetPlumber [14] a new
real-time policy checking tool. They run HSA checks incrementally and use Net-
Plumber to check for updates in real-time. It does not have to write new code
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for each policy check like HSA. Once Netplumber detects the occurrence of an
error, it prevents the new policy from taking effect Although it is generally fast
enough, it takes a long time to update the dependency diagram when a link is
up or down.

Yang et al. also inspired by HSA, proposes a new approach, NetV [10]. They
redefine the rule function based on packet header space and present the BDD
transformation and inverse transformation algorithm, which speeds up the rule
updating, and can verify invariants among domains.

In the SDN real-time verification methods, there are some works based on
atomic predicates. Atomic predicates, first proposed by the Yang [21] team,
use atomic predicates to quickly calculate the intersection and union of data
packets. The Zhang [26] team proposes a new verification method based on
atomic predicates. First, the reachability of packets is verified, and then the
reachability result of packets is used to verify the cyclic degree of freedom and
the absence of black hole. In addition, they modeled the network as a directed
graph, adopted the concept of atomic predicates. To improve scalability, they
also proposed a parallel computing method Apache Spark to compute atomic
predicates.

To solve the problem of a large number of equivalent classes that VeriFlow
cannot solve, the Horn group proposes a new real-time data plane checker, Delta-
net [13]. It does not construct multiple forwarding graphs to represent the packets
in the network. Instead, the packets are incrementally transformed into a single
edge-labelled graph that can represent all packet flows across the network. In
addition, the first provable quasi-linear algorithm is proposed, which is influenced
by Yang’s atomic predicate verifier. The algorithm maintains the concept of
atomic predicate incrementally. It analyzes all of the Boolean combinations of
the IP prefix forwarding rules in the network with a set of disjoint packets.

Vermont [5], proposed by the Altukho team, is a set of tools for real-time veri-
fication. Vermont can be installed on the control plane. It intercepts the messages
sent by the switch to the controller and the commands sent by the controller to
the switch to observe the state changes of the network. It establishes an appro-
priate formal model of the entire network and checks each event, such as rule
installation, deletion, or modification, against a set of formal requirements of the
Packet Forwarding Policies (PFP). Before sending the network update command
to the switch, Vermont predicts its execution and checks that the new network
state meets the PFP. If this condition is met, the command will be passed to
the corresponding switch. When a violation of the PFP is detected, VERMONT
will prevent the change, warn the network administrator, and provide some addi-
tional information to locate the possible source of the error.

Due to the lack of detailed behavior of each hop, the previous work required
a complicated fault location process. Zhao et al. proposed SERVE [27], a method
that can automatically identify network problems in the data plane and peri-
odically compare each rule and network behavior. SERVE provides all existing
rules and generates a set of probes. After each probe is input, the actual network
behavior of the output is compared with the expected network behavior of the
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control plane to verify the validity of each rule. They proposed a new detection
generation method that can perform real-time verification in time when rules are
added or deleted, which improves the verification efficiency. They considered the
characteristics of pipeline processing and modeled the stateful multi-rooted tree
(SMRT) in the network equipment of the data plane. The verification efficiency
of SERVER is very high.

Summary of real-time verification: Formal real-time verification tools support
real-time monitoring of the evolving SDN data plane of the network. They turn
the packet reachability verification problem into a graph problem by modeling
data packets or flow rules as graphs. This makes verification fast enough, but
the existing tools each have different shortcomings, they cannot achieve all of
the intended goals, such as good scalability, detection range, easy deployment,
easy modeling, and detection speed. In addition, some hardware failures cannot
be detected by these tools.

3 Testing

Data plane verification in the SDN network can check whether the devices of the
data plane forward the packets according to the rules issued by the controller.
However, switch failure may still exist, so it is necessary to test the data plane
in the SDN network. Testing checks the forwarding behavior of each switch by
generating probe data packets, thereby discovering failures in the data plane, as
shown in Fig. 2. We divide this testing works into white-box testing and black-
box testing according to the need for source code.

3.1 White-Box Testing

White-box testing needs to obtain source codes from the vendors to build formal
models for checking the invariants of the data plane.

Zeng et al. propose ATPG [23], which is an automated and systematic method
for testing data planes. ATPG reads the router configurations and builds a
device-independent model which is used to generate a minimum set of test
packets. Test packets are sent periodically to detect the failures. And then a
mechanism will be triggered to locate the failures. Instead of matching rules,
ATPG pays attention to whether the physical paths of the data plane are the
same as the expected paths of the control plane policies. When the number of
data packets exceeds a certain number, the detection speed will slow down.

Peter et al. propose Monocle [18], a system for monitoring the SDN data
plane in real-time. Monocle is used as a proxy between the SDN controller and
its corresponding switches, which allows Monocle to intercept all rules changes
sent to any switch. Monocle maintain the desired global forwarding status on
the network, and the expected content of the flow tables in each switch. After
determining the expected state of the switches, Monocle can calculate the packet
header space of running rules. Finally, Monocle injects these generated packets
into the network as a proxy and sees how they are processed. But it requires a
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Fig. 2. Workflow of SDN data plane testing

Boolean satisfiability problem solution for each probe, resulting in slow probe
generation. And when there are multiple missing rules associated with them, they
may produce false negatives and do not support incremental probe updates.

Bu et al. propose RuleScope [8], a more comprehensive solution to check the
transmission of SDN packets, mainly to detect rule missing fault and priority
fault in switches. It checks the forwarding behavior with a probe, based on the
established system. RuleScope accomplishes how to generate probe packets and
how to handle the results of probes by introducing a monitoring application
on the probe core. At the heart of the monitoring, the application is a set of
algorithms they propose to detect and troubleshoot rules. However, RuleScope
cannot handle rule updates, and its deployment scope is limited.

In response to previous deficiencies, Zhang et al. propose RuleChecker [24].
It is a fast SDN data plane testing tool. Unlike previous tools that solve the SAT
problem by generating each probe for each data packet, RuleChecker takes the
flow table as a whole and generates all probe data packets iteratively through
a simple set operation. By encoding the set with a binary decision graph,
RuleChecker is very fast. It is nearly 20 times faster than RuleScope and can
update detections in 90.

White-box test summary: In SDN data plane formal testing, there are many
methods based on white-box testing. In general, SDN data plane white-box test-
ing can accurately detect and locate the errors, suitable for small and medium-
sized networks. But it also has many shortages. On the one hand, not all source
codes of data plane devices are available. On the other hand, for large networks,
the model built from source codes has too many details and cost too much for
testing.
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3.2 Black-Box Testing

White box testing requires access to source code, but it is difficult for most users
to obtain it, which gives white box testing certain limitations. Therefore, it is
necessary to use black box testing without obtaining the source code during the
testing.

Yao et al. [22] proposed a black-box testing method for the SDN data plane.
They defined an extended finite state machine model for the pipeline to describe
the OpenFlow switch. The data graph is extracted from the pipeline extended
finite state machine model, and the data path that does not contain component
details are searched on the data graph. This method can effectively reduce the
cost. A leading sequence generation algorithm for I/O matching is proposed,
which can process the components on each data path one by one. This method
does not need to combine all the state machines in the model, thus effectively
alleviating the space explosion.

Fayaz et al. proposed FlowTest [11], a test scheme for testing stateful
and dynamic network strategies. They capture different DPFs by establishing
abstract models, then model the network topology and forwarding strategies,
and then use CBMC to generate counterexamples. Finally, these counterexam-
ples are used as the input of the tracking generator to detect the fault and locate
the location of the fault.

Fayaz et al. propose a stateful data plane testing framework BUZZ based on
symbolic execution [12]. To establish an expressible and extensible data plane
model, BUZZ introduces a novel network traffic abstraction called BUZZ Data
Unit (BDU). It models network properties as a collection of finite state machines
and triggers forwarding policies by generating test traffic. They also developed
an optimized workflow based on symbolic execution to generate test traffic. To
deal with the problem of state space explosion, they reduced the number and
scope of symbolic variables. However, the process of BUZZ is too complicated,
and it is easy to fail in the modeling process.

Summary of black-box testing: In this subsection, we introduce the SDN data
plane black-box formal testing. We think that black-box testing is complemen-
tary to white-box testing. But due to the limitations of formal methods, and the
strategic problems with their testing methods, they are not fast enough. In a
word, the black-box testing of SDN data has made great progress, but the cur-
rent testing method cannot deal with large-scale networks and hybrid networks
well.

4 Future Research Prospects

At present, many works on formal testing and verification of SDN data planes has
been recognized by the industry. But with the widespread deployment of SDN,
the data plane will become more complex, so its accuracy and reliability will
encounter more challenges. The current work urgently needs to be optimized, and
their cost and time also need to be reduced. We divide the future development
direction into the following three points. In the future, we will also work to
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combine AI and formal methods and apply them to the formal verification and
testing of the SDN data plane. We learned that AI can effectively balance the
load and improve quality of service (QoS) of SDN [7], and we will use it in
combination with the related method proposed by some scholars. [4,6], thereby
helping us to obtain more traffic.

(1) AI-based model construct: Model is the basis of formal verification and
testing. Building a model requires specific knowledge. It is so difficult, that
only computer experts can implement. This requirement hinders the pro-
motion of formal methods in the industry. Some researchers are currently
trying to use AI to assist model construction and have achieved preliminary
results. They construct a concrete model based on the abstract model input
by the user based on the AI method. We plan to apply AI-based model
construct to the real-world SDN data plane verification and testing works.
By comparing with existing expert modeling methods, this type of method
is expected to gain advantages in ease of use and efficiency.

(2) AI-based property definition: In the formal method of verification and
testing, researchers define attributes according to the general rules of the
network. The attributes are further used as the basis for the correctness
of verification and testing. So, defining attributes is very important. But
defining attributes requires a lot of professional knowledge. This can only
be done by highly professional people. We plan to apply AI-based property
definition for formal verification and testing. By giving AI a small number
of predefined attributes and network traffic, we let it learn independently
and generate a large number of attributes that can be used for verification.
Compared with the existing methods that completely define attributes by
humans, this type of method is expected to gain advantages in accuracy and
efficiency.

(3) Scalable support for stateful data plane: As SDN may enable richer
network data processing services, the SDN network environment will be
more complex and changeable. The correctness and reliability of the stateful
data plane need more attention. As the scale of the data plane grows, the
state space will become larger and larger, which brings challenges to the
scalability of the model. For complex stateful data planes, a new formal
model needs to be proposed to accurately describe the data plane while
controlling the model scale.

5 Conclusion

Since 2010 when Flowchecker applied model checking to SDN data plane verifica-
tion, more and more work has been done on SDN data plane formal verification
and testing. In this paper, the existing works are divided into data plane veri-
fication and data plane testing. We have the following conclusions: data plane
verification can find the defects of the data plane design in a short time and
evaluate whether the design supports ideal invariants; data plane testing can
check network behavior by generating probes to find implementation errors in
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the network. The current short-coming is that the manual construction of mod-
els and definitions of attributes re-quire professional knowledge, which hinders
the promotion of formal verification and testing. And it needs to be improved
in terms of verifying the stateful data plane. In the future, we will apply AI
to assist modeling and attribute definition work, and make efforts to explore
feasible verification and testing methods for stateful data planes.
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