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Abstract. Randomized complete block designs (RCBD) introduced by
[3] are probably the most widely used experimental designs. Despite
many advantages, they suffer from one serious drawback. It is not possi-
ble to test interaction effects in analysis of variance (ANOVA) as there
is only one observation for each combination of a block and factor level.
Although there are some attempts to overcome this problem none of
these methods are used in practice, especially as most of the underlying
models are non-linear. A review on such tests is given by [6] and [1].

Here a new method is introduced which permits a test of interactions
in block designs. The model for RCBDs is linear and identical to that
of a two factorial design. The method as such is not restricted to simple
block designs, but can also be applied to other designs like Split-Plot-
design, Strip-Plot-design, . . . and probably to incomplete block designs.

ANOVA based on this method is very simple. Any common statistical
program packages like SAS, SPSS, R, . . . can be used. Although a test
on interaction in two- or multi- factorial designs makes sense only for
fixed and a certain class of mixed models, the proposed method can also
be used for estimating variance components in any kind of block models
(fixed, random, mixed) if the sample size is not too small.

1 Introduction

A Randomized complete block design is a kind of two-factorial design which is
based on the model:

yijk = μ + αi + βj + (αβ)ij + eijk (1)

yijk . . . observation k at level αi of factor A and level βj of factor B
(k = 1, . . . , n)

μ . . . overall mean

αi . . . effect of level i of factor A i = 1, . . . , a

βj . . . effect of level j of factor B j = 1, . . . , b

(αβ)ij . . . interaction effect at level αi of factor A and at level βj of factor B

eijk . . . error term at level αi of factor A, at level βj of factor B
and at replication k k = 1, . . . , n.
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Depending on the chosen model, mean square errors include different kinds
of variance components (Table 1).

Table 1. Variance components of mean square values in a two factorial design for
different kind of models

Source of variation Fixed effects model Random effects model Mixed effects model

Main A σ2 + bn
a−1

∑
i α2

i σ2 + nσ2
ab + bnσ2

a σ2 + nσ2
ab + bn

a−1

∑
i α2

i

Main B σ2 + an
b−1

∑
j β2

i σ2 + nσ2
ab + anσ2

b σ2 + κnσ2
ab + anσ2

b

Interaction A × B σ2 + n
(a−1)(b−1)

∑
i,j(αβ)2ij σ2 + nσ2

ab σ2 + nσ2
ab

Error σ2 σ2 σ2

κ depends on the side condition about interaction.

κ =

{
cov(abij , abij′) = 0 1 (j �= j′)∑a

i=1 abij = 0 0 ∀ j

As one may see from Table 1 a test on main effects in a fixed model is based on
the error term, in a random model on interaction mean squares and in the mixed
model approach either on the error term or the interaction term (depending on
the definition of κ).

In the follow this article focuses primarily on fixed models or mixed models
where κ = 0.

Several authors tried to find a solution for testing interaction in block designs.
A short selection of these models can be found below.

1.1 Tukey’s Test

The first one who proposed a block model which includes interaction was [12].

yij = μ + αi + βj + λ × αi × βj + eij

λ . . . interaction parameter
Here the interaction term is bound to the height of the factor levels which is

a very strong restriction. [11] showed that Tukey’s test can be derived as a test
of H0 : λ = 0.

1.2 Johnson and Graybill’s Test

Another solution to the problem of interactions in block designs is given by the
following model [5]:

yij = μ + αi + βj + Φ × ξi × ηj + eij

Limitations to interaction are not that strict as with Tukey’s model, but some
additional assumptions have to be made (

∑a
i=1 ξi = 0,

∑b
j=1 ηj = 0,

∑a
i=1 ξ2i =

1,
∑b

j=1 η2
j = 1).
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1.3 Mandel’s Test

[7] assumes a systematic type of row column interaction. The underlying
“Mandel-row” model is given by

yij = μ + αi + βj + γi × βj + eij

γj . . . interaction parameter depending on row i
Other models including non-linear interaction effects can be found by [2,4,

8,9] and [10].

2 Deriving Sum of Squares for Error Term
and Interaction in Block Designs

Deriving sum of squares and mean squares in a block model is based on a common
two-factorial design.

2.1 Sum of Squares in Two Factorial Designs

The sum of squares value for interaction in case of a balanced design can be
calculated as

SSAB = n

a∑
i=1

b∑
j=1

(x̄ij. − x̄i.. − x̄.j. + x̄...)2.

with (a − 1)(b − 1) number of degrees of freedom.
The sum of squares value for the error term is given by

SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(xijk − x̄ij.)2.

with ab(n − 1) number of degrees of freedom.

In block designs the number of observations (n) for each combination of a
factor level and a block is equal to 1. It follows, that:

• x̄ij. for each combination of factor and block levels is identical to xij1.
• degree of freedom for the error sum of squares becomes zero.
• MSE = SSE

dfE
can not be estimated.

In the follow we the mean square value for interaction (MSAB = SSAB

dfAB
)

serves as an error term – assuming, that no interaction effects exist. That’s a very
daring assumption, since almost all tow-factorial experiments show interactions
(no matter whether significant or not).



138 K. Moder

2.2 Separating Error from Interaction in Block Designs

In a two factorial design the following restrictions are usually assumed in regard
to interaction:

• The sum of all interaction effects within a block is equal to zero
(
∑a

i=1(αβ)ij = 0 ∀j j = 1, . . . , b).
• The sum of all interaction effects within a certain factor level is equal to zero

(
∑b

j=1(αβ)ij = 0 ∀i i = 1, . . . , a).

To separate the error term from interaction we may look at a Latin square
like block design (Fig. 1)

A1 A2 A3 A4

A4 A1 A2 A3

A3 A4 A1 A2

A2 A3 A4 A1

αβ11 αβ21 αβ31 αβ41

αβ42 αβ12 αβ22 αβ32

αβ33 αβ43 αβ13 αβ23

αβ24 αβ34 αβ44 αβ14

B1

B2

B3

B4

C1 C2 C3 C4

block B1

factor level A1

column block C1

Fig. 1. Block plan and corresponding interaction terms in a Latin square like block
design

Looking at Fig. 1, there is obviously no reason why one should not restrict
the sum of interaction effects within a column block to zero, too

a,b∑
i=1,j=1

(αβ)ijk = 0 ∀k k = 1, . . . , c. (2)

Using this restriction has some important implications:

• Within a column block all levels of a factor are included exactly one time.
As a common restriction

∑a
i=1 αi = 0. So the mean value of a column block

does not include any factor effects.
• In Latin Square like block designs a column block comprises all levels of

blocks. Usually it is assumed, that these effects sum up to zero (
∑b

j=1 βj = 0).
So the mean value of a column block does not include any block effects.

As a consequence of these two last restrictions and of restriction 2 the mean
value of a column block encloses only some error effects besides μ. This enables
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us to separate error variance and interaction variance by calculating the sum of
squares for column blocks.

SScolumn block = SSE = a

c∑
k=1

(x̄ck − x̄..)2 (3)

The error sum of squares for the error term (SSE∗) in a common block design
actually is the sum of squares value for interaction. So the difference zu SSE

obviously gives the sum of squares for interaction.

SSAB = SSE∗ − SSE (4)

or alternatively SSAB = SST − SSA − SSB − SSE .

Degrees of freedom are defined as:

dfE = c − 1 = b − 1
dfAB = dfT − dfA − dfB − dfE = (a − 2)(b − 1)

Mean squares are calculated the usual way:

MSE = SSE/dfE , MSAB = SSAB/dfAB

Until now we restricted or model to a Latin Square design. The method as such
can be applied to any kind of block design. Figure 2 depicts interaction terms in
a 5× 2 block design.

αβ11 αβ21 αβ31 αβ41 αβ51

αβ52 αβ32 αβ42 αβ12 αβ22

C1 C2

column block C1

Fig. 2. Interaction terms in an arbitrary block design

Within a column block all levels of the interesting factor are included. By
definition, the sum of all interaction effects within a column block is zero. The
number of block effects however is different. For example, the first column block
of Fig. 2 contains 2 times the effect of the first and 3 times the effect of the
second block. Since we can estimate these block effects using the block means,
we are able to correct for this biased column block.
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3 Illustrative Example

The example in Fig. 3 shows a block design [A] with 3 blocks and 4 factor levels.
Based on the experimental design 3 column blocks were defined [B]. Each

column block comprises every level of factor A. So their effects sum up to zero.
Interaction effects within each column block sum up to zero too, but block effects
do not, as in every column block a different number of block effects is included. So
we have to correct for these effects. To do this, we need to calculate block means,
factor level means, uncorrected column block means and the overall mean.

A1
8

A2
6

A3
7

A4
9

A2
5

A3
8

A4
7

A1
8

A3
9

A4
5

A1
7

A2
5

[A] experimental design
measurements

C1 C2 C3

αβ11 αβ21 αβ31 αβ41

αβ22 αβ32 αβ42 αβ12

αβ33 αβ43 αβ13 αβ23

[B] column blocks

Fig. 3. Illustrative example including experimental design and corresponding measure-
ments [A] and defined column blocks with interaction effects [B].

overall
¯̄x

7.0

factor x̄Ai

1 2 3 4
7.6 5.3 8.0 7.0

block x̄Bj

1 2 3
7.5 7.0 6.50

uncorrected
col. block x̄Ck

1 2 3
6.75 7.00 7.25

3.1 Calculation of Column Block Means

Each uncorrected column block mean includes a specific block effect several
times (e.g. The first column block C1 includes 2 times block effect 3, C2 includes
2× block effect 2, C3 includes 2× block effect 1). So we have to correct this
additional block effects. The effect of a block can be calculated as the difference
between the block mean and the overall mean.

If we want to calculate the mean of C1 we have reduce the sum for this
column block by the effect of block 3, to get an unbiased estimator. The effect of
block 3 is calculated es the difference between x̄B3 − ¯̄x. So an unbiased estimation
of column block 1 for the example given above can be calculated based on the
sum of this column block and the effect size of block 3 (efB3) as this is included
in the sum for this column block.
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uncorrected sum:
∑n

j=1 x1j = 8 + 5 + 9 + 5 = 27
effect size block 3: efB3 = x̄B3 − ¯̄x = 6.5 − 7.0 = −0.5
corrected sum:

∑n
j=1 x1j − efB3 = 27 − (−0.5) = 27.5

corrected mean: x̄C1 =
∑nf

j=1 x1j−efB3
nf

= 27.5
4 = 6.875

Similarly, we can derive all other correction factors and column block means.

x̄B − ¯̄x
1 2 3

0.5 0.000 -0.5

corrected column
block means x̄C

1 2 3
6.875 7.000 7.125

3.2 Calculation of Sum of Squares and Degrees of Freedom

Sum of squares for blocks, factors, total and the (uncorrected) error is calculated
the usual way and can be done with any statistical package for a common block
design.

Sum of squares for the error term is calculated by the corrected column block
means:

SSE = nf

ncb∑

k=1

(x̄cbk − ¯̄x)2 = 4((6.875− 7.0)2 + (7.000− 7.0)2 + (7.125− 7.0)2) = 0.125

From evaluating a common block design we get SS∗
E = 9.3. As mentioned

above this actually includes possible interaction effects. By subtracting SSE from
SSE∗ we find the sum of squares value for interaction.

SSIA = SS∗
E − SSE = 9.3 − 0.125 = 9.2083

Degrees of freedom for factor, block and total are those of a common block
design. Degrees of freedom for main effects and interaction effects are calculated
as follows:

dfE = c − 1 = b − 1 3 − 1 = 2
dfAB = df∗

E − dfE 6 − 2 = 4
= (a − 2)(b − 1) (4 − 2)(3 − 1) = 4

3.3 ANOVA Table

Based on calculations for a common block design and those of 3.2 we find results
as shown in an ANOVA Table 2.

As can be seen from Table 2, separating interaction from the error of the
common block model dramatically changes the result. If interaction is possible
or can be expected, it should be included in the model regardless of whether it
is significant or not.
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Table 2. Example of analysis of variance for the interaction model in compare to that
of a common block model

block design with Interaction common block design
Effect df SS MS F Prob df SS MS F Prob
Factor 3 12.666 4.2222 67.55 0.0146 3 12.6 4.2 2.71 0.1377
Block 2 2.000 1.0000 16.00 0.0588 2 2.0 1.0 0.64 0.5585
Int.act. 4 9.208 2.3021 36.83 0.0266
Error 2 0.125 0.0625 6 9.3 1.5
Total 11 24.000 11 24.0

4 Simulations

To get an idea about the power of the interaction model several simulations
were performed. A Fortran program (as well as a SAS macro and a R script)
was developed to calculate ANOVA results for both the interaction model as well
as for the common block model. Simulation were based on 100000 runs each.
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3 × 3 Latin Square like block design
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Fig. 4. Empirical power of the test on interaction as a function of the standard devia-
tion of interaction for different sized Latin Square like block designs (σE = 1).

Figure 4 illustrates the empirical power of a test on interaction in 3 × 3 to
7×7 Latin Square like block designs. The standard deviation for this effect varied
from 0 to 4 in steps of 0.5. The standard deviation for the error term (σE) was
held constant and set to 1. As one would expect the power increases if sample
size increases too. Thus, for example the power for the test on interaction in
7 × 7 design is about 92% if the standard deviation of the interaction is twice as
high as that of the error (99.9% if it is three times as high). Whereas power in
a 3× 3 design is about 58% respectively 84%.

In block analysis one is primarily interested in the test regarding the main
effect. Figure 5 displays the power for a 3 × 3 and 7 × 7 Latin Square like block
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interaction model
block model (σAB = 0)
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Fig. 5. Empirical power of the test on the main effect as a function of the standard
deviation of this effect for 3× 3 and 7× 7 different Latin Square like block designs
(σE = 1).

design. Four different standard deviations for interaction were taken into account
(σAB = 1, 2, 3, 4). If there is no interaction the power for the common block
analysis is highest (dashed curve). In this situation the interaction model is over
parameterized and thus its power decreases. Whereas in those situations where
the standard deviation of the interaction corresponds at least to that of the error,
the interaction model (solid line) is best in most cases.

In addition, Fig. 5 shows another unwanted effect for the common block
model. Depending on the level of interaction, there is a certain range in which
it is impossible for the common block model to find any significant result for
the main effect (although one awaits at least α% of significant cases even in the
absence of any influences).

Results for 5 × 3 and 7 × 4 block designs in regard to the main effect are
presented in Fig. 6. Again common block analysis is best in those situations
were no interaction exists. Depending on the size of interaction the power of the
interaction model gets more and more superior. Contrary to statistical theory,
type I error rate is zero (although it should be α) in many situations where
interaction exists and the main effect is low.
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Fig. 6. Empirical power of the test on the main effect as a function of the standard
deviation of this effect for different block designs (σE = 1).

5 Estimating Variance Components

The method described here is based on fixed effect model reps. a model with a
special definition of interaction (Table 1, κ = 0). In this case we can estimate
the Least Squares (LSQ) variance component for interaction as

MSAB = σ2 + nσ2
ab σ2 ≡ MSE

σ2
ab = MSAB−MSE

n

In block-designs:

n = 1 =⇒ σ2
ab = MSAB − MSE

A usual assumption in estimating variance components of interaction based
on restricted maximum likelihood (REML) estimation is cov(abij , abij′) = 0, (j �=
j′) In Fig. 7 both methods are compared for different heights of variance com-
ponents of interaction (σ2

ab) in compare to the error variance (σ2).
As long as the variance component for interaction is similar to the of the error

variance, there is almost no difference between different estimation methods. In
7 the height of the variance component for interaction is 9 time as high as
that of the error variance. Even in this rather extreme situation the differences
between LSQ and REML estimation is negligible with at least 6 blocks and 6
levels of the factor. This means the proposed method can be used to estimate
variance components in any mixed and random effects model approach with an
appropriate sample size.



Testing Interaction in Block Designs 145

2 3 4 5 6 7 8 910 2 4 6 8 10

0

2

blocks factor levels

[A]

2 3 4 5 6 7 8 910 2 4 6 8 10

0

2

blocks factor levels

di
ff

(L
SQ

-R
E

M
L
)

[B]

Fig. 7. Comparison of REML and LSQ estimation of variance components for interac-
tion assuming σ2

ab = σ2 ([A]) and σ2
ab = 9σ2 ([B])

6 Conclusions

The method presented here allows for testing interaction in different kind of block
designs. It can also be used for estimating variance components of interaction
and main effects for mixed and random effect models in block designs. There are
some additional advantages in compare to other methods:

• It is based on a linear model and as such comprises all previously developed
non linear models.

• It is very easy to use and any statistical package like SAS, R, SPSS can be
used with just a few simple additional calculations.

• There are no uncommon restrictions.
• It can be used not only for common block designs or Latin Squares, but for

any statistical model that has a suitable block structure as for instance Split-
Plot Designs or maybe even incomplete block designs (although one has to
use least-square means here).

• The power of the method is good in respect to interaction and even more for
the main effect, if interaction exists.

Block analysis is based on at least a two factorial design (Table 1). Depending
on the model (fixed, random, mixed) main effects are tested against either the
error sum of squares or that of the interaction. For a fixed and a special kind
of mixed effects models (Table 1, κ = 0) an assessment of the main and block
effect must be made by means of the error. In all other situations you have to
test against means squares of the interaction. Interaction itself always has to be
tested against the error.

So far, means squares for the error term were not or only available under the
very restrictive assumptions of non linear models. With the method presented
here this test now is possible even in a random or mixed effect surrounding
(Table 1, κ = 1). Although the basic assumption (κ = 1) is different to that of
the fixed model, it doesn’t really matter for estimating variance components.
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