
Jürgen Pilz · Teresa A. Oliveira · 
Karl Moder · Christos P. Kitsos   Editors

Mindful Topics 
on Risk Analysis 
and Design 
of Experiments
Selected contributions from ICRA8, 
Vienna 2019



Mindful Topics on Risk Analysis and Design
of Experiments



Jürgen Pilz • Teresa A. Oliveira •

Karl Moder • Christos P. Kitsos
Editors

Mindful Topics on Risk
Analysis and Design
of Experiments
Selected contributions from ICRA8,
Vienna 2019

123



Editors
Jürgen Pilz
Department of Statistics
University of Klagenfurt
Klagenfurt, Austria

Karl Moder
Applied Statistics and Computing
University of Natural Resources
and Life Science
Vienna, Austria

Teresa A. Oliveira
Department of Sciences and Technology
Universidade Aberta
Lisbon, Portugal

Christos P. Kitsos
Department of Informatics
University of West Attica
Egaleo, Greece

ISBN 978-3-031-06684-9 ISBN 978-3-031-06685-6 (eBook)
https://doi.org/10.1007/978-3-031-06685-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-06685-6


Preface

In principle, risk is defined as an exposure to the chance of injury or loss.
Practically, it is a hazard or dangerous chance and is wondering about the proba-
bility that something unpleasant will take place. Therefore, the probability of
damage, caused by external or internal factors, has to be evaluated. The essential
factors influence the increment of the risk which is asked to be determined. That is
why eventually we are referring to relative risk (RR) as one factor might influence
the risk in a way that is different from that of another factor. Certainly, interest must
be focused on providing qualitative methods to measure the relative risk.

In decision theory, risk is well defined through the appropriate definition of
“rules” and a solid Bayesian background. But a number of applications from epi-
demiology, toxicology, economics, and engineering do not really obey this
framework. The logit and probit models provided the first opportunities to work
separated from the decision theory. Other techniques have been developed mean-
while approaching the RR in a number of applications.

In epidemiological studies, it is needed to identify and quantitatively assess the
susceptibility of a portion of the population to specific risk factors. It is assumed
that they have been equally exposed to the same possible hazardous factors. The
difference, at the early stage of the research study, is only to a particular factor
which acts as a susceptibility factor. In such a case, statistics provide the evaluation
of the RR.

Under this line of thought, we started the ICCRA (= International Conference on
Cancer Risk Assessment) conferences on August 22, 2003, in Athens, and we
proceeded in Santorini, 2007 and 2009. We moved to Limassol, Cyprus 2011, with
the essential adjustment to ICRA (= International Conference to Risk Analysis).
ICRA5 moved to Tomar, Portugal, 2013, where actually was established the
extension of RA to bioinformatics, management, and industry. The SRPRINGER
volume in 2013 provides the appropriate evidence. One step forward, further from
game theory, towards more fields pertaining to risk, was offered by the second
SPRINGER volume, in 2018. Meanwhile, ICRA6 moved to Barcelona, Spain,
ICRA7 to Chicago, USA, and ICRA8 in 2019 to Vienna, Austria.

v



The Vienna ICRA8 conference was a crossroad: Risk analysis performed with
design of experiments in a joint conference. How close or how far are the two
statistical lines of though it is really a big issue. It seems difficult to see common
ground between decision theory and Fisher’s foundation in 1922. You might be
closer if you think in terms of clinical trials. We really enjoyed the joint meeting.
That is why the present volume is divided in two parts:

Part I: Risk Analysis Development
Part II: Experimental Design Theory

Since the time that Quincy Wright (1890–1970) in his excellent book “A study
of War” offered a development of simple indexes evaluating risk, for such an
important issue as the war, has passed some time. New indexes, new strategies, and
new statistical insight have been developed and SPRINGER volumes try to reflect
this improvement and excellent evolution; we try to follow and guide with ICRA
conferences.

Jürgen Pilz
Teresa Oliveira

Karl Moder
Christos Kitsos
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Abstract. Most financial organisations depend on their ability to match
the assets and liabilities they hold. This managerial challenge has been
traditionally modelled as a series of optimisation problems, which have
been mostly solved by using exact methods such as mathematical and
stochastic programming. The chapter reviews the main works in this
area, with a special focus on three different problems: duration immu-
nisation, multi-stage stochastic programming, and dynamic stochastic
control. Hence, the main results obtained so far are analysed, and the
open challenges and limitations of the current methods are identified.
To deal with these open challenges, we propose the incorporation of new
heuristic-based algorithms and simulation-optimisation methods.

1 Introduction

All financial companies need to manage the risk associated with their liabilities.
This is achieved by properly selecting a convenient set of assets from the market,
which are then assigned to cover liabilities, thus reducing the risk of bankruptcy.
However, both assets and liabilities are exposed to an innumerable amount of
external factors, which need to be factored in order to maintain and update the
allocation map between assets and liabilities. The asset and liability management
(ALM) challenge refers to the set of methods and techniques used to identify
those assets that offer an optimal match with a set of given liabilities. ALM can
be seen as an optimisation problem: the financial institution has to establish a
particular strategy, which gives rise to an objective function subject to a set of
constraints. The optimisation problem typically maximises the company’s value
function, it minimises the price of the selected assets, it maximises the expiration
value or terminal wealth, or combines several aforementioned objectives.

The management of assets and liabilities is of paramount importance for
financial institutions, such as banks, insurance companies, and pension funds.
Although all of them are part of the financial system, they differ in terms of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the nature of their liabilities. Accordingly, the strategy of selecting the adequate
assets to match their liabilities also varies across different financial institutions.
Among the different types of institutions, banks take deposits as their main
liability. These deposits vary over time. Insurance companies also have time-
varying liabilities, which are derived from insurance policies they underwrite. A
portfolio of an insurance company tends to be large in order to benefit from the
law of large numbers. Pension funds project their liabilities into the future, when
the individual is expected to retire. Due to the time consideration, the role of an
interest rate becomes relevant in the ALM process. It is also essential to model
the stochastic behaviour of the random variables in the optimisation problem,
i.e.: liabilities, assets, interest rates, and/or inflation. Due to the stochastic and
dynamic nature of assets and liabilities, it is reasonable to assume that the initial
asset selection might need to be updated throughout time, as new information
becomes available, so the match between assets and liabilities is re-optimised
taking into account the new data. Thus, the financial institution’s assets are
re-balanced in each period by selling and buying asset shares in order to benefit
from portfolio returns. These considerations lead us to three main techniques
in ALM. Firstly, the duration theory, which aims to define an immunisation
strategy so that the value associated with the portfolio of assets matches, at
any time, the value of the liabilities. Hence, a change in the interest rate will
not affect the balance. Secondly, one can consider a single-period version of the
problem or a multi-period one, in which the optimal asset selection is determined
at each stage. Also, the problem can be deterministic – by simplifying some
characteristics – or stochastic in nature. In the latter case, we have to provide
a stochastic process for each asset, which might include random variables in the
objective function and even probabilistic constraints. Thirdly, if time is regarded
as continuous, the problem becomes a stochastic control optimisation one, which
gives rise to a system of differential equations. As shown in Fig. 1, the interest
of the scientific community in asset and liability management (ALM) has been
increasing during the last decades.

The contribution of this chapter is threefold. Firstly, it reviews the main
works in this area, with a special focus on three different problems: duration
immunisation, multi-stage stochastic programming, and dynamic stochastic con-
trol. Secondly, the main results obtained so far are analysed, and the open chal-
lenges and limitations of the current methods are identified. Thirdly, the incor-
poration of new heuristic-based algorithms and simulation-optimisation meth-
ods is proposed in order to deal with these open challenges. The rest of the
chapter is structured as follows: Sect. 2 provides a review of existing work on
duration immunisation. Section 3 analyses applications of stochastic program-
ming to ALM. Section 4 completes a review on stochastic control applied to
ALM. Section 5 discusses the need for considering new simulation-optimisation
approaches in dealing with these problems. Finally, Sect. 6 highlights the main
conclusions of this work and propose some open research lines.
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Fig. 1. Evolution of Scopus-indexed documents related to ALM.

2 Duration Immunisation

Under the assumption of deterministic cash flows on both sides, assets and lia-
bilities, and constant interest rates, Macaulay [51] sought to devise a strategy
for matching values of assets and liabilities. The present value (PV) of a fixed
cash flow (CF), recorded at times t ∈ {0, 1, . . . , T}, and with a constant interest
rate i, is commonly defined as:

PV =
T∑

t=0

CFt

(1 + i)t
. (1)

If the goal is to provide immunisation against variations in the interest rate,
we need to compute the derivative of the present value with respect to the
interest rate i:

1
PV

dPV

di
= − D

1 + i
, (2)

where D is called the Macaulay Duration and is described as:

D =
∑T

t=0 t · CFt(1 + i)−t

PV
. (3)

The immunisation in this approach consists in selecting a set of assets that
satisfy two conditions: (i) the present value of the assets matches the one of the
liabilities; and (ii) the time duration of assets also matches the one of liabilities.
Under these conditions, it is possible to conceive that ‘slight’ changes in the
interest rate will not have a noticeable effect on the values of assets and liabilities.
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If more pronounced changes in the interest rate are expected, then it might be
necessary to add a third condition, the so-called convexity requirement, which
corresponds to the second derivative of the price with regard to a change in
the interest rate change in a Taylor’s series. This approach is clearly focused on
potential changes in the interest rate, and constitutes the first ALM strategy
analysed in the scientific literature.

The first works about immunisation where formalised by Fisher and Weil
[28], who defined the conditions under which the value of an investment in a
bond portfolio is protected against changes in the level of interest rates. The
hypotheses of this work are: i)the portfolio is valued at a fixed horizon date, and
ii) the interest rate changes only by a parallel shift in the forward rates. Fong
and Vasicek [30] consider a fixed income portfolio whose duration is equal to the
length of a given investment horizon. They prove that, given a change in the term
structure of interest rates, there is a lower limit to the value of the portfolio. This
lower limit depends on two factors: the interest rate change and the structure
of the portfolio. Consequently, they postulate that it is possible to optimise the
exposure of the portfolio under interest rate changes. Bierwag et al. [5] study
the properties of cash flow dispersion in duration hedged portfolios. They show
that minimising this dispersion is not independent of stochastic processes, and
that the optimisation of the immunisation by minimising cash-flow dispersion is
only valid under specific convexity conditions. Zenios [69] highlights a frequent
presence of a mismatch between assets and liabilities in the financial industry,
and shows a complex case of portfolios containing mortgage-backed securities
under the term structure volatility. Among others, techniques based on duration
are explored by this author. Seshadri et al. [61] embed a quadratic optimiser in
a simulation model, which is used to generate patterns of dividends and market
values, thus computing the duration of capital. This method is used to refine
the ALM strategy, and is applied to the Federal Home Loan Bank of New York.
Gajek [31] introduces the requirement of ‘solvency’ for a defined benefit pension
plan, i.e., under a scenario with a relatively low interest rate, the assets are
chosen to be the smallest concave majorant of the accumulated liability cash
flow. Ahlgrim et al. [1] study the risk for property-liability insurers of movements
in interest rates. Their paper considers that liability cash flows, affected by future
claim payouts, change with interest rate shifts due to the correlation between
inflation and the interest rate. This study concludes that the effective duration is
lower than the one measured by traditional methods. Benkato et al. [3] analyse
the case of eight banks in Kuwait, showing that this sample of banks adjusted
their portfolio of assets and liabilities by matching their respective Macaulay’s
duration.

3 Multi-stage Stochastic Programming

The allocation of assets in an ALM context is carried out at specific times. When
the manager performs a transaction, she has to cope with transaction costs, asset
values that are dependent on the moment, and liquidity constraints, among other
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variables. The main goal is to meet the liabilities, but other objectives can be
selected simultaneously, e.g.: maximising the terminal wealth of the company,
minimising the risk in terms of volatility, etc. As financial markets run in scenar-
ios under uncertainty, the problem can be regarded as a multi-stage stochastic
program [47]. Numerous approaches have been studied in the literature, but all
of them share a common structure. On the side of the constraints, two basic sets
of equations are defined: the cash-flow accounting and the inventory balance
equations at each time point. At this point, the volume of each asset class and
its values are recorded, together with information on the number of assets that
are purchased and sold. On the objective function side, the common goal is to
maximise expected utility subject to terminal wealth. In order to solve the opti-
misation problem, a scenario tree has to be defined. This represents a lattice of
possibilities for each asset, liability, and other elements in the program, including
interest rate, inflation, among others. Each node is associated with a probability,
and the whole lattice needs to be considered to calculate the expected values.
In this regard, Boender et al. [6] study the role played by these scenarios in
ALM. Following Mulvey et al. [54], we can synthesise the multi-stage stochastic
program as follows:

Max
S∑

s=1

πsU(ws
τ ) (4)

subject to: ∑

i

xs
i,0 = w0, (5)

∑

i

xs
i,τ = wτ , (6)

xs
j,t = (1 + ρs

j,t−1)x
s
j,t−1 + ps

j,t − ds
j,t, (7)

xs
0,t = (1 + ρs

0,t−1)x
s
0,t−1 + Σjd

s
j,t − Σjp

s
j,t − bs

t−1(1 + βs
t−1) + bs

t , (8)

where s represents one possible scenario, πs is the probability of scenario s, ws

is the terminal wealth in scenario s, A is the number of assets, i ∈ {0, 1, . . . , A},
j ∈ {1, 2, . . . , A}, xj is the amount of money invested in asset i, x0 is the vault
cash, ps

j,t is the purchase of asset j in time t in scenario s, ds
j,t is the amount of

asset j sold in time t in scenario s, ρs
j,t is the yield of asset j in time t in scenario

s, ρs
0,t is the riskless interest rate, bs

t is the amount of money borrowed in time
t in scenario s, and βs

t is the borrowing rate in time t in scenario s. Finally:

xs
0,t ≥ lt, (9)

where lt is the liability cash flow at time t.
Numerous works have been searching for a better and more realistic descrip-

tion of the financial system. Hence, Kusy and Ziemba [48] study a model with
legal, financial, and bank-related policy considerations. They apply the model
to a 5-year period for a Canadian bank. Giokas and Vassiloglou [32] discuss a
multi-objective programming model for the Commercial Bank of Greece, taking
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into account institutional characteristics, financial, legal, and bank-related policy
considerations. Oǧuzsoy and Güven [56] present a multi-period stochastic linear
model for ALM in banking, assuming a set of deterministic rates of return on
investment and cost of borrowing. They also consider a set of random deposit lev-
els, liquidity, and total reserve requirements. Mulvey et al. [53,54] show how the
Towers Perrin company plans assets and liabilities to deal with pension-related
payments. The model performs an economic projection, spanning a long-term
horizon (10 to 40 years), and finding strategies via a dynamic assets and lia-
bilities allocation over a range of different scenarios. Nielsen and Zenios [55]
study how to apply a multi-period stochastic program to the problem of funding
single-premium deferred annuities, for which they consider government bonds,
mortgage-backed securities, and derivative products. Klaassen [44] shows that,
in general, scenarios do not consider the variation over time of some asset prices.
Therefore, the solution found by stochastic programming cannot be considered
as optimal in a real-world application. The paper remarks the crucial importance
of respecting the free of arbitrage hypothesis while defining scenarios. Consiglio
et al. [18] develop a pension fund problem, in which uncertainty affects both
assets and liabilities in the form of scenario-dependent payments or borrowing
costs. Cariño et al. [9–11] describe the Russell-Yasuda Kasai model. This model,
created by the Russell company and the Yasuda Fire and Marine Insurance
Co., determines an optimal strategy in a multi-period scenario, and it adds the
characteristics of the complex Japanese regulation, such as legal or taxes limita-
tions. In their first publication, [9] compare the multistage programming model
with the classical mean-variance model, resulting in an extra income of 42 basis
points. Kouwenberg [46] develops a scenario-generation method and applies it to
a multi-stage stochastic program for a Dutch pension fund, where the objective
function consists of minimising the average of contribution rates, taking into
account the degree of risk aversion. The scenario-tree model is compared to a
fixed mix model as shown in Fig. 2.

Fig. 2. Differences between scenario trees and fixed mix approaches. Source: [29]

As sophisticated scenarios are generated in combination with many trading
dates, the number of variables in the mathematical programming model tends
to explode. Gondzio and Kouwenberg [35] deal with the computational com-
plexity of this problem, identifying a bottleneck in memory management. They
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solve a stochastic problem with near 5 million scenarios, more than 12 mil-
lion constraints, and 25 million variables. Gondzio and Grothey [34] also solve
non-linear programming models using an interior point solver and a massive par-
allelisation environment. Bogentoft et al. [7] study the effects of the conditional
value at risk (CVaR) as a risk measure, the weighted average of the value at
risk (VaR), and the losses exceeding the VaR. They also select similar paths in
the scenario creation, simplifying the problem to representative samples. With
this technique, they are able to solve problems with a very large number of ele-
ments and scenarios. Høyland and Wallace [40] show that regulation in Norway
is not beneficial for the insurance industry, according to the results of a simple
stochastic problem that integrate legal issues. Fleten et al. [29] compare a fixed
mix model with a multi-stage stochastic program (dynamic model). The fixed
mix model keeps constant the proportion among the assets, while the dynamic
model changes the proportion in each stage. The conclusion is that the dynamic
model dominates the fixed mix approach. Dash and Kajiji [22] implement a
non-linear model based on the Markowitz’s mean-variance approach [52] for the
optimisation of property-liability insurers. Hibiki [38] compares the results of two
different approaches, which model the evolution of assets both using a scenario
tree and a hybrid tree (simulation paths). Zhang and Zhang [70] improve Hibiki’s
model by introducing the CVaR as a risk measure, and market imperfections. A
genetic algorithm is used to solve the new model. Consiglio et al. [19,20] study
the optimisation problem derived from a liability that includes complex condi-
tions, such as guarantees, surrender options, and bonus provisions. This leads
to a non-linear optimisation problem. Papi and Sbaraglia [60] solve a problem
with two assets, where one of the assets is risky, and the other risk-free. They
use a recourse algorithm. Ferstl and Weissensteine [27] analyse a multi-stage
stochastic program, where the asset return follows an auto-regressive process.
The goal is to minimise the CVaR. In general, the models do not place limits
on the number of assets, which might be a quite unrealistic assumption in prac-
tice. Nevertheless, Escudero et al. [26] propose an approach based on discrete
variables, limiting the number of transactions or the number of assets in each
time. The model is solved with a recourse algorithm. Berkelaar and Kouwenberg
[4] introduce a singular objective function, which consists of a liability-relative
draw-down optimisation approach. Both assets and liabilities are modelled as
auto-regressive processes. Gülpinar et al. [36,37] treat the problem under the
robust optimisation perspective, deriving in a feasible computational tractabil-
ity. These approaches deal with uncertainty in both assets and interest rates, and
are focused on investment products with guarantees, such as guaranteed invest-
ment contracts and equity-linked notes. Zhou et al. [71] construct a program
based on the classical mean-variance efficient frontier. Their approach considers
quadratic transaction costs. They propose tractability models with and without
the risk-less asset, and derive the pre-commitment and time-consistent invest-
ment strategies through the application of an embedding scheme and a backward
induction approach.
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4 Dynamic Stochastic Control

The random behaviour of assets and other market elements, such as interest
rate or inflation, are frequently modelled as a geometric Brownian process in
a continuous time context. ALM is not an exception. Thus, it is possible to
consider a stochastic objective function that also incorporates dynamic equations
regulating changes in market elements. Following Chiu and Li [13], we consider
n + 1 assets, where asset 0 is considered to be risk-less while the other n assets
follow a random walk. The dynamic equation for the price P0 of a risk-less asset
can be written as:

dP0 = P0α0(t)dt, (10)

where P0(0) > 0 and α0(t) is the free risk interest rate.
Since the asset is deemed risk-less, no random component is needed in the

dynamic equation. By contrast, for the price Pi of a risky asset i, the following
equations are used:

dPi = Pi(αi(t)dt +
n∑

j=1

σij(t)dWj(t)), (11)

where i ∈ {1, 2, . . . , n}, P0(0) > 0, and W1(t), . . . , Wn(t) are independent Wiener
processes. Also, αi(t) represents the interest rate for asset i, while σij is the
covariance matrix of assets. A typical mean-variance optimisation problem, max-
imising the terminal wealth, is shown below:

Maxu(t)E[S(T )] (12)

subject to
V ar[S(T )] < σ, (13)

where u(t) = (u0, u1, . . . , un)(t) is the amount of money invested in each asset,
S(T ) =

∑n
i=0 Pi(T ) − L(T ) is the terminal wealth, L(T ) is the terminal value

of the liabilities, and σ is the user-defined threshold for the tolerated risk. Of
course, it is also possible to consider other objectives based on a specific utility
function.

Several authors have proposed different approaches relative to this basic
model. Thus, for example, Chiu and Li [13] assume uncertain liabilities, which
follow a Wiener process that is correlated with the assets. Devolder et al. [24]
solve a defined contribution pension problem where the benefits are paid as
annuities. To find an analytical solution, they consider one risky asset and one
risk-less asset. The paper shows how the strategy changes immediately before
and immediately after the beginning of an annuity, and depending on the utility
functions as objective functions. Briys and De Varenne [8] study a profit-sharing
policy in an insurance company. With this policy, the policyholder has the right
to receive a guaranteed interest rate and a percentage of the company’s revenues.
The results are used to evaluate different aspects of regulatory measures that
are frequently encountered in life-insurance business, such as rate ceilings, capi-
tal ratios, and asset restrictions. Barbarin and Devolder [2] develop a model, in
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which assets are a mix of stocks, bonds, and cash, while liabilities are the result of
a guaranteed technical rate to the premium, plus a participation rate in the case
of a surplus. The paper integrates a risk-neutral approach with a ruin probabil-
ity. VaR and CVaR conditions are tested by including an investment guarantee.
Koivu et al. [45] explore the effects of Finnish regulation within a stochastic
model for a pension insurance company. Seven economic factors, pertaining to
Finland and the EU, are described as a vector equilibrium correction model.
This vector is then used to determine the behaviour of assets and liabilities.
Xie et al. [67] formulate a mean-variance portfolio selection model where assets
follow a geometric Brownian motion, while liabilities follow a Brownian motion
with a drift. The model also features correlations among assets and liabilities.
They derive explicitly the optimal dynamic strategy and the mean-variance effi-
cient frontier by using a general stochastic linear-quadratic control technique.
Related to this, Xie [66] assumes that risk stock prices are governed by a Markov
regime-switching geometric Brownian motion. Detemple and Rindisbache [23]
explore a dynamic asset allocation problem with liabilities, where preferences
are assumed to be von Neumann Morgenstern [64], where a running utility func-
tion is defined over dividends (withdrawals in excess of net benefit payments),
and a terminal utility function defined over liquid wealth in excess of a floor. Chiu
and Li [14] study how to minimise an upper bound of the ruin probability, which
measures the likelihood of the final surplus being less than a given target level.
They identify this criterion as the safety-first ALM problem. Not only does the
paper study this problem in continuous time, but it also solves the problem in a
discrete time context and compares results from the two approaches. The model
drives to a mathematical definition regarding the type of investors (‘greedy’ or
not), which is based on the level of disaster. An approach for pension funds can
be found in Josa-Fombellida and Ricón-Zapatero [41], who consider a stochastic
interest rate, where the investor faces the choice among a risky stock, a bond
and cash. Zeng and Li [68] analyse a simple but realistic model, which features
one risky asset, one risk-free asset, and one liability. The risky asset follows an
exponential Levy Process, which allows simulating potential discontinuities in its
random walk. The model comprises two objective functions (i.e., it considers two
different optimisation problems). The first function is based on a ‘benchmark’
model: a predefined target value b is considered, and the mean of the quadratic
distance between b and the terminal wealth is minimised. The second function
is based on the classical mean-variance portfolio selection model. The optimi-
sation problem in Chiu and Wong [15] consists of minimising the variance of
terminal wealth in a context of co-integrated assets. Specifically, in this paper,
the insurer deals with the payment of uncertain insurance claims, which are
assumed to follow a compound Poisson process. In general, there is a lack in the
literature regarding the study of time-consistency optimisation of asset alloca-
tions in an ALM context – i.e., most studies consider time-dependent investment
strategies. This gap is bridged by Wei et al. [65] considering a Markov regime-
switching model. These authors conclude that the time-consistency equilibrium
control in this context is state dependent, where that dependency is generated
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by the uncontrollable liability process. Chiu and Wong [16] study the problem
under a market with correlations among risky assets, where these correlations
change randomly over time. In this problem, the objective is to minimise the
variance of terminal wealth, given an expected terminal wealth. The liabilities
are assumed to follow a compound Poisson process, and the problem becomes a
linear-quadratic stochastic optimal control problem with volatility, correlations,
and discontinuities – all of them with random behaviour. In a context of low
interest rates, the stochastic behaviour becomes relevant. Chiu and Wong [17]
also solve a model with liabilities that follow a compound Poisson process, with a
stochastic interest rate distributed according to a Cox-Ingersoll-Ross model [21].
The model consists of maximising the expected constant relative risk averse
(CRRA) utility function. Along similar lines, Chang [12] formulates a model
where the interest rate is driven by the Vasicek model [63], and liabilities follow
a Brownian motion with drift. Likewise, Liang and Ma [50] approach a pension
fund with mortality risk and salary risk, with a CRRA utility function. Pan and
Xiao [57] solve a problem with liquidity constraints and stochastic interest rates,
which follow a Hull-White process [39]. This paper compares the two utility func-
tions that feature CRRA, and constant absolute risk averse, CARA. In another
work [58], these authors also include inflation risk under a mean-variance frame-
work. They also consider a non-common variety of assets, such as a default-free
zero coupon bond, an inflation indexed bond, as well as the typical risky assets
and risk-free asset. Also, they assume that liability follows a geometric Brownian
motion process. Finally, to complete this survey, Li et al. [49] solve a classical
mean-variance model with stochastic volatility, which introduces a novel asset;
a derivative whose price depends on the underlying price of the risky stock.

5 Need for Metaheuristics and Simheuristics

The growing complexity of the problems being addressed highlights the need for
faster approaches such as metaheurisics [33]. These algorithms will be needed as
the models introduce further constraints to account for real-life circumstances. In
this regard, Soler-Dominguez et al. [62] and Doering et al. [25] provide quite com-
plete and up-to-date reviews on financial applications of metaheuristics, includ-
ing risk management and portfolio optimisation problems. In this sense, Kizys
et al. [43] have proposed a heuristic approach to solve a NP-hard variant of the
portfolio optimisation problem. Furthermore, the fact that two or more objec-
tives have to be considered simultaneously to account for the complexity will
require multi-objective optimisation methods.

Different simulation-optimisation methods are gaining popularity in the
application to stochastic combinatorial optimisation problems in different appli-
cation areas [42]. Despite the success of simheuristics in solving stochastic opti-
misation problems in different areas, just a few works have focused on the area
of finance. Thus, for example, Panadero et al. [59] propose a simheuristic for
solving a multi-period project selection problem. Even though financial data
is characterised by macro- as well as firm-level uncertainty, to the best of our
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knowledge, none of the finance-related problems analysed in this work has been
addressed with the use of simheuristics so far, which makes this an interesting
avenue for future research.

6 Conclusions and Future Work

The optimal asset allocation subject to liabilities is a financial problem widely
studied in the literature. Broadly speaking, the wealth of strategies can be
divided into two categories. The first category is based on immunising the value
of the selected assets under changes in the interest rate, which is an account-
able approach. The second category is based on cash-flow matching, which is an
operational approach. The immunisation approach is based on the concept of
duration. The potential of application is very limited because: (i) it is a short
time approach, and (ii) it only works when the interest rate is constant and its
shift is small. In addition, the cash-flow matching can bifurcate into continu-
ous time models and discrete time models. The continuous time models show
a limitation in the sense that they need to be restrictive analytical models in
order to use stochastic differential equations. Hence, it is a method more oriented
to knowing the ‘good’ strategy in qualitative terms, than in obtaining optimal
assignment configurations. Finally, the most realistic approach is the multi-stage
stochastic program, since it permits to easily model characteristics of the real
market. Nevertheless, these models can grow very fast in the number of equa-
tions and variables, which eventually make them extremely difficult to solve in
short computing times.

Due to the limitations found by exact methods in solving large-scale and
stochastic versions of the analysed problems, some research opportunities arise,
including: (i) the use of heuristic-based algorithms that can provide reasonably
good results to complex and large-scale financial problems in short computing
times; (ii) the introduction of novel simulation-optimisation approaches – other
than stochastic programming – that can cope, in a more natural way, with the
uncertainty existing in the problems considered in this work; (iii) the introduc-
tion of the aforementioned methodologies will also allow us to consider richer
and more realistic versions of the multi-stage stochastic programming problem;
and (iv) lastly, we also see a clear opportunity to generalise the use of these opti-
misation methodologies to support decision making at the level of the individual
consumer.
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Abstract. Risk Analysis is becoming a recurrent subject in research,
attracting the attention of researchers in a consistent way. More recently
and motivated by the last collapse of the financial system, systemic risk
is getting special attention as well as becoming a tool widely applied for
detect financial institutions systemic risk contributions. We start with
Adrian and Brunnermeier [3] work, where they introduced first time the
concept of CoVaR, and ΔCoV aR of a financial institution, as well as a
methodology to estimate ΔCoV aR using financial market public data.
This paper will then discuss the assumptions taken along that methodol-
ogy, analyse the characteristics of each risk measured used, and discussed
alternatives to measure the individual contribution of a single entity to
the systemic risk of a financial system [5]. At the moment, there are
not yet a consensus in accepting existing measures and methodologies
as good enough to correctly identify the biggest contributors to systemic
risk [8]. As conclusion, a modified methodology to estimate individual
contributions for systemic risk using market data is presented.

Taking as starting point the methodology described by Adrian and
Brunnermeier [20], where they introduced first time the concept of
CoVaR, that stands to conditional Var, to estimate ΔCoV aR of a finan-
cial institution and based in financial market public data, this paper will
discuss the assumptions taken along the referred methodology.

By analysing the characteristics of each risk measured used, such as
Var, CoVaR and ΔCoV aR, this paper will discuss alternative approaches
to measure the individual contribution of a single entity to the systemic
risk of a financial system.

1 Introduction

While analysing financial systems, it was noticed that negative shocks suffered
by an individual financial institution can easily spread and affect other entities
in that system [1]. This way, measuring and analyzing systemic risk phenomena
and consequences has been a topic of interest among policy makers. Since the
last financial crisis, this analysis becomes even of more importance.

Systemic risk may not be assessed using only institution’s individual risk
measurements [2].
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As financial entities are typically highly connected to each other, this may
cause also a high exposure to negative systemic events, even if at the individual
level those institutions have low risk. The risk assumed by a systemic institution
may cause negative spillovers not covered by risk requirements.

A very relevant question is, what are the sources of system vulnerabilities.
In other words, which are the institutions systemically more important or con-
tribute the most to the increase in system vulnerability.

The objective of this paper is to analyze assumptions made and compare
possible options to identify institutions with the highest contribution to systemic
risk. We follow the definition of CoVaR introduced by Adrian and Brunnermeier
[20], which is measured as the Value at Risk (VaR) of a financial institution
conditional on the VaR of another institution. By defining the difference between
these measures as ΔCoV aR, we can estimate the contribution of each institution
to systemic risk.

The remainder of this paper is structured as follows: Sect. 2 gives a theoretical
background and introduces the most relevant concepts used. Section 3 describes
the specification of the model to be implemented with details and steps to be
performed. Section 4 describes the data set used and shows the main results.
Finally, Sect. 5 includes the concluding remarks.

2 Theoretical Background and Main Concepts

2.1 Var - Value at Risk

Value at Risk or VaR is a central tool in risk, asset, and portfolio risk. And it
also plays a key role in systemic risk. VaR is defined as the maximum loss an
asset/portfolio/institution can incur at a defined significance level α (Fig. 1).

Fig. 1. Graphic representation of VaR

VaR is the maximum expected loss over a given period at a given level
of confidence. Represents the value at potential risk of loss, regarding an
asset/portfolio/institution, in a specific time period and specific significance level
α. This probability represents a quantile for risk. With a random variable X and
a distribution function F that model losses, verified for an asset in a time period.
V aRα is defined as:

V aRα = F−1(1 − α) (1)
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A VaR of d days at α% significance level means that on % of d days, we
won’t see a loss higher than the VaR, but for the (1 − α)% of times the loss will
be higher.

For example, a 1 day VaR at the 99% confidence level of 5% means that on
only 1 of every 100 days we will see a loss higher that 5% of the initial capital [15].

The concept of VaR becomes central to the study of systemic risk, consti-
tuting a fundamental concept for the definition of several of the most significant
systemic risk measures mentioned in the literature. Yet this method faces chal-
lenges dealing with the risk associated with events involving volatility component
with dependencies between extremes values in distinct data sets and modeling
extreme values with volatility.

VaR can be calculated in numerous ways and we will focus on the following
ones:

• Historic VaR
• Parametric VaR
• Extreme Value Theory (EVT) VaR

2.2 CoV aR

CoVaR measures and estimate the impact on the VaR of the system concerned
when a particular institution is in a financial stress situation, which is also mea-
sured by the individual VaR of that institution [6].

With CoVaR one intends to answer the following questions:

• What is the system-wide VaR when a particular institution is under financial
stress?

• What is the impact on the system’s VaR when an institution enters financial
stress? Here we refer to another concept, ΔCoV aR.

As mentioned earlier, CoVaR calculation is based on VaR, which in turn is
determined for a specific q quantile. This way CoVaR will also be associated with
this arbitrarily chosen q. CoVaR can also be interpreted as a conditioned value,
so CoV aRj|i represents the VaR of institution j, conditioned by the occurrence
of a certain event, O(Xi) that affected institution i.

Considering a system with compound by N institutions and with i and j
assuming values between 1 and N, CoVaR can also be interpreted as a condi-
tional value, so CoV aRj|i represents the VaR of institution j, conditioned by the
occurrence of a particular event, designated O(Xi) that affected institution i at
any given time t [19].

The CoV aR
j|i
q , is thus the value such that:

Pr(Xj ≤ CoV aRj|O(Xi)|O(Xi)) = q (2)
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where:

• Xj represents the institution j return
• q is the desired quantile
• O(Xi) represent the occurrence of an event the impacts institution i return

In order to build a methodology for determining the systemic importance of
each institution in the systemic risk of the system, we need to further specify
the type of events we will focus on and have as relevant for conditioning VaR.
As a conditioning event O(Xi) is usually chosen because the institution i is in
financial stress (not necessarily insolvent), so Xi = V aRi

q is defined.
From the setting above, CoVaR comes:

Pr(Xj ≤ CoV aRj|i|Xi = V aRi
q) = q (3)

This way CoV aR
j|i
q tell us, V arq for institution j when institution j is in a

loss situation in the quantile q, or V aRq.
The correlation between both institutions will determine the magnitude of

the impact.
On the other hand, if we consider institution j as the financial system as a

whole (or a significant part of it), then CoV aR
j|i
q represents the V aRq of the

financial system when institution i is under financial stress, defined as being in
its V aRq.

The value obtained for measuring CoVaR becomes of greater interest if it is
possible to compare this measurement with a reference value and to gauge the
difference between the two. Thus, one technique used to measure systemic risk
is to measure the difference when an institution moves from a normal situation
to a stress situation. It is normal to assume that the institution’s assets are at
median levels, and in stress when those assets are at V aRq.

The difference between both situations is defined as ΔCoV aR.

2.3 ΔCoV aR

ΔCoV aR is also a systemic risk measure [20]. This measure is based on the
Value-at-Risk, VaR concept. The VaR concept refers to the expected maximum
loss for a predefined VaR significance level (α). CoVaR is the VaR risk condi-
tional upon verification of a particular critical event (a crisis) defined by C(rit).
CoVaR is defined by:

Pr(rjt ≤ CoV aRj|C(rit)
r |C(rit)) = α (4)

where rit and rjt represents the return of institution i and institution j at time
t respectively.

The ΔCoV aR concept is defined as the difference between the system-wide
Var conditioned by the agent i being subject to a critical event and the system
VaR calculated for the event that the critical event does not occurs.
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There are several alternatives for defining the C(rit) critical event. One pos-
sibility is to consider the loss to be equivalent to VaR:

ΔCoV aRit(α) = CoV aR
m|rit=V aRit(α)
t − CoV aR

j|rit=Median(rit)
t (5)

An alternative definition considers as critical event when losses exceed a
previously defined amount VaR [12].

ΔCoV aRit(α) ≤ CoV aR
j|rit=V aRit(α)
t − CoV aR

j|rit=Median(rit)
t (6)

Formally ΔCoV aR is defined as:

ΔCoV aRj|i
q = CoV aR

j|Xi=V aRi
q

q − CoV aRj|Xi=Mediani

q (7)

Which represents the deviation from the threshold defined for the significant
loss region for an institution j when institution i changes from a “normal” loss
situation to a significant loss.

Assuming that j represents an entire financial system ΔCoV aR
j|i
q provides

an estimate of the contribution of institution i to systemic risk, in this case
in response to the question: how much system risk increases due to a stressful
situation in the institution i.

While CoVaR estimates can be used to infer the extent of systemic losses
caused by stress in an institution, ΔCoV aR estimates can be used as a measure
of the contribution to systemic risk.

2.4 Probability of Rare Events - Extreme Values Theory

One of the Var method limitations relies on the difficulty in the deal with esti-
mates of the extreme values (in the tails) of the loss distribution. Traditional
methods used to calculate the VaR are based on the entire distribution of the
data, which shows difficulties estimating the distribution at the tails. Extreme
Values Theory is a methodology that is useful to deal with events in the tail of
a distribution.

One method is identify the extreme values (maximum or minimum) verified
in each period (block), called block maxima method. Another method consists
in to define a level that splits the sample into extreme values and “standard”
values. The distribution associated to block maxima, designated as Mn, where n
represents the block dimension is given by Fisher and Tippett [9,11].

Theorem 1 (Fisher–Tippett–Gnedenko). Be Xn a sequence of random
variables i.i.d. If exists constants cn > 0, dn ∈ R and some non-degenerated
distribution function F, such as:

lim
n→∞ P

(Mn − dn

cn
≤ x

)
= F (x) (8)
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then limit function F belongs to one of the three extreme value distributions:

Fréchet: Φα(x) =

{
0, x ≤ 0
e−x−α

, x > 0
(9)

Weibull: Ψα(x) =

{
e−(−xα), x ≤ 0
1, x > 0

(10)

Gumbel: Λ(x) = e−e−x

, x ∈ R (11)

These three functions can be written with a unique expression using μ and
σ to represent location and scale parameters:

H(x|μ, σ, ξ) =

{
e−(1+

ξ(x−μ)
σ )−1/ξ

ifξ �= 0
e−e−x

ifξ = 0
(12)

where μ is the location parameter, σ is scale parameter and XI is the shape
parameter. This distribution is called the Generalized Extreme Value (GEV )
distribution [18].

An alternative to model extreme values is the POT (peak over threshold)
distribution, an excess distribution function, where the distribution of observed
values above a certain value, is considered.

Considering a F distribution function of a random variable X, the function
Fu represents the distribution function of x values above the u limit. Fu, is the
conditional excess distribution function, formalized by:

Fu(y) = P (X − u ≤ y|X > u), 0 ≤ y ≤ xF − u (13)

where u is a previously defined limit value, y represents the excess, and xF ≤ ∞
is the limit of F on right tail. Extreme value theory allows to apply Pickants
theorem to estimate Fu [17]:

Theorem 2 (Pickands).
For a large class of underlying distribution functions F the conditional excess

distribution function Fu(y), for u large, is well approximated by Gε,σ(y) (also
called Generalized Pareto Distribution - GPD):

Fu(y) ≈ Gξ,σ(y), u → ∞ (14)

where

Gξ,σ(y) =

⎧
⎨
⎩

1 −
(
1 + ξ

σ y
)− 1

ξ

, ξ �= 0

1 − ey/σ, ξ = 0
(15)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σ
ξ ], if ξ ≤ 0.
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2.5 Quantile Regression

CoVaR and ΔCoV aR estimation can be achieved by applying quantile regres-
sion.

Quantile regression is a suitable estimation method for studying the behav-
ior of “non-average” individuals. Quantile regression estimates several lines for
different associated quantiles, instead of just checking the impact of X on the
average Y, as is done in linear regression by Ordinary Least Squares (OLS).

While a model specified with OLS has the form Y = Xβ + e, hence the
condition E[e] = 0 implies that E[Y |X] = Xβ, a quantile regression model will
verify the effect that the X predictors will have on the Y quantiles, such that
the ith quantile of the Y variable is defined as:

Qq(Y ) = inf{y|FY (y) ≥ q (16)

where FY (y) = P (Y ≤ y) is the cumulative distribution function of Y. Intu-
itively, the qth quantile of Y is the Qq(Y ) limit value where there is exactly q
percent chance that Y values are less than Qq(Y ). It is easy to see that 0 ≤ q ≤ 1
(by the probability axiom) and that Qq(Y ) is a non-decreasing function of q.

Thus, in quantile regression, the regression model will be given by:

Qq(Y |X = x) = xT β(q) = β0(q) + x1β1(q) + x2β2(q) + ... + xkβk(q) (17)

(assuming without loss of generality that there are k —1 regressors). β(q)
is the marginal effect of the explanatory variables X on the ith quantile of Y,
which effect may vary depending on the chosen quantile. This approach is quite
relevant for dependent variables whose distribution presents asymmetry, heavy
tails or heteroscedasticity.

The optimization of the ith quantile is similar to the OLS. Estimation of the
quantile regression will also be achieved by least squares,

E[Y ] = min
α

E[(Y − α)2] (18)

which is equivalent to finding the solution to:

min
α

n∑
i=1

(yi − xT
i β)2 (19)

In the case of quantile regression, the optimization is done for every ith

quantile of Y.

3 Methodology

This methodology is proposed as a tool to evaluate the systemic market risk con-
tribution of each entity, and subsequently, identify the entities that are bringing
more risk to the entire system as well. The proposal here is to estimate those
contributions by using public available market information.
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We will take as our system a financial system composed of a set of most
important European banks.

The proposed methodology is implemented over 5 steps:

1. Estimate asset values
2. Estimate institution value change impact on system value change
3. Obtain CoVaR for each Institution
4. Including time variation
5. Identify the most risky institutions

3.1 Methodology Description

Step 1: Estimate Asset Values
Harvesting data to support any research is usually a challenging process. Insti-
tution financial details frequently are not available on the public domain and are
informed only on a periodic basis. So this methodology is an option to obtain
Var and CoVaR based on market public data that brings additional clarity to
the process as well as allows us to access and calculate those risk measures at
any point in time. As an assumption, to use publicly available data, the market
value, the market capitalization of each institution reflects the book value of the
assets. Also, the market value of the system is assumed as the aggregation of the
market value of all the institutions belonging to that system. So, as step 1, for
this method, we have to collect data and calculate the respective market capi-
talization for each day and for each institution and estimate the capitalization
for all the system as well. The process could be summarised as follows:

• Obtain the data:
– collect stock prices
– Balance sheet equity (BVE) and total assets (BVA)
– in this work we will use stock prices, in weekly base (Fridays price)

• market value of equity (MVE)
– stock price × shares outstanding

• Assume market value of assets (MVA)
– book value of assets (BVA) * (MVE/BVE)
– means market-to-book ratios for equity and assets are equal

• Define system asset value as the sum of institutions MV Asys
t =

∑
MV Ai

t,
for a pointy in time t

• getting returns as: Xi
t = (MV Ai

t−MV Ai
t−)

MV Ai
t−

; for institutions and system

Step 2: Estimate System Impact of an Institution Value Change
To establish a relation between system returns and the returns of each institu-
tion, we will apply a quantile regression where system return is the dependent
variable and institution return is the explanatory variables. By using quantile
regression we are not including any specific assumption over the returns and
return’s distribution. This way we will get the β parameter from the quantile
regression that establishes such relation:
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Quantile Regression, proposed by Koenker and Basset (1978) [16], is fre-
quently used to model specific conditional quantiles of the response but the full
potential is in the capacity to modeling the entire conditional distribution [4].
Even if it is computationally more expensive if we compare it with standard least
squares regression models, but also exhibits some important properties such as:

• does not make any assumption on the distribution of the errors
• deals very well with the tail of a distribution
• so, it is a proper way to estimate the CoVaR which is found on the lower

quantiles of a dependent variable

Run a q% quantile regression with the returns of the system as the depen-
dent variable and the return of each institution as independent variables. The
regression model is specified as follows:

Xsys
t = α + βXi

t + εt (20)

regress the system return on each institution return.

Step 3: Obtain CoVaR for Each Institution
In this step, we compute the CoVaR for the system using the β parameters
obtained from quantile regression. System CoVaR estimate is based on the VaR
of each institution, by using α and β parameters we got from the previous step.
Apply both to each institution’s VaR and we have an estimate to CoVaR

To obtain ΔCoV aR we need to use also the institution VaR at quantile
50%, which corresponds to the VaR at the median. This represents the VaR in
a situation where there are no stress in the market. Applying the β parameter,
which is specific of each institution, to the difference between VaR estimated at
quantile q and VaR estimated at quantile 0.5, we have an ΔCoV aR estimate.

1. Obtain VaR for each institution:
2. Obtain the median for each institution
3. Obtain institution CoVaR by applying:

CoV aRsys|i
q = α̂i

q + β̂i
qV aRi

q (21)

4. Obtain institution ΔCoVaR by applying:

ΔCoV aRsys|i
q = β̂i

q(V aRi
q − V aRi

0.5) (22)

Step 4: Adding Time Variation
In the original paper Adrian and Brunnermeier [20] included an additional layer
of assumptions making the institution returns, X dependent on a set of state
variables and assuming an underlying factor model for asset returns, where the
return on each asset depends linearly on these factors:

• A set of lagged state variables M − t − 1 (to be defined shortly)
• The system-wide growth in assets Xsys
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This way, the asset growth of each financial institution will depend on selected
lagged state variables, while the growth rate of system assets depends on indi-
vidual bank asset growth and lagged state variables.

As we aim is to remove additional assumptions from the model, an alternative
to avoid this extra layer of assumptions is to applying a rolling windows technique
as a way to include time variance to have an analysis through time [7]. The caveat
here is we will lose a part of the initial data set. Defining a window length, for
example, 3 years of data, we will be moving this window day by day, or week by
week and apply all the previous steps to each one of those time windows. In the
end we will get a time series for VaR, CoVaR and ΔCoV aR. Another caveat we
can refer to regarding using this method is also the high computational cost of
it. Despite some of its shortcomings, the rolling-window procedure is handy to
implemented and easy to interpret also without including additional assumptions
(Fig. 2).

Fig. 2. Rolling windows

Step 5: Identify the Most Risky Institutions
The most systemic risky institutions will be identified by the ΔCoVaR. Institu-
tion with bigger ΔCoVaR are associated with bigger systemic risk.

3.2 Calculating VaR

There are plenty of different ways to obtain VaR and distinct methods to cal-
culate them. All these methods have a common base but then will diverge in
how they, in fact, calculate VaR. Usually, those methods also have a common
problem in assuming that the future will follow the past.

What are the options to obtain VaR? We will discuss here three different
approaches:

• Historical VaR.
• Analytic VaR (Variance CoVaRiance, Parametric)
• Extreme Value VaR
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While the first ones are standard in literature and across the industry, the
last one mentioned is not yet so broadly used [10].

Historical VaR. With this method we will be looking at the data, that is the
returns during a period of time and check off for the value at specific quantile q
previously defined. The advantage in this method is we don’t need to have also
any special assumption or knowledge about returns distribution. So it is straight
forward to apply and implement and namely:

• Normality Assumption is not required.
• Works on historical returns.

Historical VaR Calculation:

• Step 1: Collect data on historical returns for an institution. These returns
over a time interval = desired VaR time period.

• Step 2: from this info, make a histogram of historical return data.
• Step 3: VaR is the return associated with the cumulative probability from

the left tail of the histogram that equals q quantile.

Therefore, one can associate the following advantages with this methodol-
ogy [14]:

• Because it is non-parametric, the historical method does not require normality
assumption

• Easy to understand and implement.
• Based only on historical information.
• Is consistent with the risk factor changes being from any distribution

Parametric VaR. Parametric VaR is also a popular way to calculate VaR.
Actually, this method will be using returns information in order to estimate the
parameters, as average and variance for a theoretical distribution that will then
be fitted to returns data series.

The most common distribution associated with the returns under this method
is perhaps the normal distribution, and in this case, the method is called also
the variance-covariance method where the returns are assumed to be normally
distributed.

• The most common measure of risk is standard deviation of the distribution
of returns.

• Higher volatility = higher risk = potential for higher losses.
• Using standard deviation and some assumptions about returns, we can derive

a probability distribution for returns.

With this methodology we are taken the following assumptions:

• Variance-Covariance VaR assumes that asset returns are normally distributed
with known mean and standard deviation over a specified time-period

• CoVaRiances (correlations) among assets are known for the same time inter-
val.



A Critical Discussion on Systemic Risk Measures 29

Inputs into the VaR calculation:

• Market values of all securities in the portfolio
• Their volatilities

The assumption is that the movement of the components of the portfolio are
random, and drawn from a normal distribution.

Extreme Value Theory and VaR. Extreme value theory can be used to
investigate the properties of the Left tail of the empirical distribution of a vari-
able Xi.

By applying extreme value theory we don’t have to make assumptions on
returns distribution as well. In fact we don’t need to know the distribution
either. As, in terms of VaR we are looking for the behaviour on the extremes,
and what we really need here is to modulate the behaviour on the tail of the
distribution, in this case in the left tail [13].

By using EVT to model extremes behavior it also means:

• follows mathematical theory of the behaviour of extremes
• the body and the tail of data do not necessarily belong to the same underlying

distribution
• does not require particular assumptions on the nature of the original under-

lying distribution of all the observations

Additionally, with GPD we can consider the following properties:

• GPD is an appropriate distribution for independent observations of excesses
over defined thresholds

• GPD can be used to predict extreme portfolio losses

The two methods to model extremes, GPD and GEV could be proved equiv-
alent, and both methods requires to set an arbitrary value, the time interval in
the GEV and the threshold in the GPD. Analyzing differences between the two
methods, we have that while the GPD method requires only two parameters
GEV method requires three. The most relevant difference between the methods
relies upon in the way it identifies the extremes. In the case of GEV, it relies on
T-maxima (picks in time intervals of duration T), which can include observations
of lower magnitude than the threshold defined for GDP, and this way obtains
more data. On another hand, if in the same interval we have several observations
over the threshold, all will be considered with GDP, but some could be discarded
with GEV.

One drawback of GDP application, in this case, is related to the definition of
a threshold, which means also to establish an arbitrary definition of a “crisis”.
With GEV we don’t need to make this assumption.

So, by applying Fisher-Trippett theorem we can get an expression for the
extreme value distribution. Then we can select only a few data samples, esti-
mate parameters, tail, scale, and location parameters, and fit this extreme value
distribution. The idea here is to pick only a small number of the most extreme
values we have on the data set, the worst 5 returns, for instance in each time
window was been used.
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4 Application

We took as our system the European banking system, compounded by the biggest
banks in Europe, circa 50 European banks, that are also part of the STOXX
European banking index.

4.1 Data

The proposed approach only relies on publicly available market data, such as
stock returns as they are believed to reflect all information about publicly traded
firms.

Based on the list of banks that are part of the STOXX Europe 600 Banks
index, corresponding to the biggest and most important banks in Europe, infor-
mation on daily quotations for each title, public available for consultation at
https://finance.yahoo.com/.

The original data set used was compounded by the daily quotations of the 52
biggest banks in Europe over the last 20 years. Subsequently, information on the
number of shares issued was also collected for each of the institutions. This data,
together with other information such as daily exchange rates were also collected
in order to build a capitalization daily series of each institution (in euro).

This data set was later reduced to include only weekly closing prices for
each financial institution. From this series, a series corresponding to the weekly
returns (in percentage) was obtained from each of the institutions and for the
entire system as well.

The overlapping rolling window was applied over periods of three years each.
For each one of these periods was estimated VaR, CoVaR and ΔCoV aR, forming
new time series related to each institution, representing the risk position for each
institution in each point in time (week).

In order to keep guarantee the anonymization of the institutions used to
elaborate this research, the real designation of each financial institutions was
pseudonymized and replaced by a tag as Bank01 ... to Bank52.

4.2 Comparing VaR, CoVaR and ΔCoV aR

In order to compare the performance of each one of the models we will used a
simple measure to count the breaks on VaR verified by using each method. Lets
consider a break on VaR whenever losst+1 > V aRq

t .

breakt−1(i) =

{
1 if losst > V aRq

t−1

0 otherwise
(23)

where i represents institution i, and t a point in time.

https://finance.yahoo.com/
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The measure used will be simple the count of break observed over the period
in analyse, or:

∑
breakt−1(i) (24)

As of when we are analyzing risk and in special systemic risk, we are inter-
ested in extreme cases localized on extreme of left tail of the distribution. The
first results we are looking into were obtained using a quantile not so “extreme”,
but yet a popular one: 5%.

Using BANK26 bank results as an example, and comparing the three methods
discussed regarding VaR, EVT shows better performance:

• EVT VaR: 28 breaks
• Parametric VaR: 45 breaks
• Historical VaR: 55 breaks

In this case EVT VaR presents a better fit returning fewer breaks than para-
metric and historic methods (Fig. 3).

Fig. 3. BANK26 VaR results with q = 0.05
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Fig. 4. BANK26 ΔCoV aR results with q = 0.05

The graph above represents VaR evolution along the period in analyze.
Returns in the period are included as well in order to compare those figures
with VaR.

In the next two graphs, we reduced the quantile q value in order to analyze
the behavior of VaR and ΔCoV aR when we move further on the tail of the risk
distribution (Fig. 4).

Comparing the three methods for a very extreme q, EVT VaR returns in gen-
eral lower risk estimates when compared with parametric and historic method-
ologies. Is not clear if in this case, the EVT performs better since it the number
of Var breaks increase when a smaller quantile is used.

In any case, if we are instead looking a more extreme quantile, it seems that
Extreme Value Theory is not following the new demand for less risk, and in fact,
we are getting some more breaks with Extreme Value Theory than with Historic
and Parametric VaR (Figs. 5).
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Fig. 5. BANK26 VaR results with q = 0.005

4.3 Identifying Systemic Risky Financial Institutions

This systemic importance rank a measure is not necessarily linked to a possible
situation of the distress of a particular financial institution. Instead, it reflects
the expected additional impact costs given such an event in financial system.

The above table lists financial institutions ordered by its systemic risk esti-
mated impact. In brackets is the % of ΔCoV aR in system VaR, representing
the impact of a significant event in that financial institution reflected in system
VaR (Fig. 6 and Table 1).
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Fig. 6. BANK26 ΔCoV aR results with q = 0.005

Table 1. Top 10 financial institutions by ΔCoV aR - June 2018

Rank Historic Parametric EVT

1 BANK26 (7,4%) BANK26 (9,9 %) BANK26 (8,9%)

2 BANK40 (5,6%) BANK40 (6,6 %) BANK40 (7,7%)

3 BANK27 (5,2%) BANK27 (5,9 %) BANK45 (6,3%)

4 BANK45 (5,1%) BANK45 (5,2 %) BANK27 (5,8%)

5 BANK28 (4%) BANK20 (5 %) BANK28 (5,1%) a

6 BANK20 (3,6%) BANK28 (4,4 %) BANK20 (4,5%)

7 BANK41 (3,3%) BANK41 (3,6 %) BANK41 (3,8%)

8 BANK38 (2,5%) BANK38 (3,5 %) BANK38 (3,3%)

9 BANK25 (2,5%) BANK25 (3,1 %) BANK25 (3,2%)

10 BANK02 (2,2%) BANK02 (2,7 %) BANK44 (2,8%)
a in () ΔCoV aR % on system VaR.
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5 Conclusions

We had used Adrian and Brunnermeier’s [20] CoVaR methodology which is
defined as the VaR of the whole financial system given that one of the financial
institutions is in distress. Quantile regression is employed to estimate the daily
VaR and then CoVaR. In these processes, we use the equity market return and
market volatility.

Using data collected for the period 1998 to 2018, our results indicate that
BANK26 is the largest contributor to the banking sector’s systemic risk in
Europe. Our findings also indicate that the contribution of institutions to sys-
temic risk is linked to the size of the institution, with the larger institutions
contributing more than the smaller ones.

By comparing the three different methods to obtain VaR, Historic and Para-
metric methods are given similar results. When comparing with those mytholo-
gies, EVT VaR offers a better fit (less violations of VaR value by loss).

Analysing how all three methods had identified systemic risky financial insti-
tutions we observed that:

• All methods identify a very similar top ten of risky institutions
• Historic and parametric approaches more close
• Some changes on positions but with a similar set of institutions

However, EVT requires very few data as input (only used 5 records in each
window) on our example. Depending on the scenario of use, this feature could
be advantageous. This characteristic makes it suitable to be used in scenario
analyses, for instance since it will be easier to get reliable results using a limited
data set as input.

In terms of identifying the riskiest financial institutions, we can say the results
are coincident only noticed some slight changes in the rank position for some
banks depending on the method used.

As final remarks, it tends to have fewer breaks with extreme value theory.
Regarding ΔCoV aR it is giving consistent results and estimates over the three
different methods Extreme Value Theory, because it needs only a few data sam-
ples, and doesn’t need any specific assumptions or knowledge about returns
distribution, could be a good option to use in scenarios evaluation and scenario
analysis. It also open the door to answers for questions like:

“If institution i incur on those losses, what could be the impact on the overall
system.”
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Abstract. The target of this paper is to refer on model oriented data
analysis for cancer problem. There is a solid background on statistical
modelling and we provide a compact review of these models, applied
mainly for (experimental) carcinogenesis. For particular cases, differ-
ent methods can be applied. A typical example is the skin cancer of
melanoma and the adopted analysis due to the EFSA Delphi method.

1 Statistical Models in Carcinogenesis

In principle, in (experimental) Carcinogenesis and in most of Ca problems, we are
considering, two classes of stochastic models depending on whether dose levels
or time are treated as random variables. The fundamental assumption is that
the probability of developing cancer is likely to increase with increasing doses
of carcinogen [63,64]. Let D to represent the random variables of the dose level
of carcinogen, that induces a tumour in an individual agent and T the time at
which an individual develops a tumour. Then, we assume that, an individual can
develop tumour, at dose level d at a particular time t, with probability P (d, t).
The probability P (d, t) can be represented either restricted on time or restricted
on dose as

P (d, t) = P (X ≤ d|t) = F (d), P (d, t) = P (T ≤ t|d) = G(t) (1)

In principle, the underlying mechanism of the process is not usually known,
and therefore a Nonparametric feature exists, as we do not know neither F (d)
nor G(t). We try to overpass this problem approaching mainly the F function
acting as a c.d.f. There are special guidelines for carcinogenic risk, see [63,64].
We are looking for that a model, which provides a satisfactory approximation to
the true process, using the Kolmogorov test to provide evidence the model we
choose is the right one [66], restrict our interest on evaluating F (d), for the G(t)
see case [17,39,48–50]. Practically, under some assumptions, the models “fits” to
the data, see [11,13,14]. We shall face and discuss such case in Sect. 4. Therefore
the assumed correct model can be for prediction, and we do not try different
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models, to find the one we would like to assume although this occurs in practice.
This needs Biological experience and knowledge for the underlying mechanism
and is a hazardous procedure. We are working on Sect. 4 considering a data set
for melanoma, adopting an adjusted EFSA Delphi method to analyse the data
set with a number of different F (d) distributions.

Considering (1) the survival distribution is defined as

S(t, d) = 1 − P (t, d)

If the dose dependency is not considered the model can be considered simpli-
fied to P (t) = 1 − exp(−θtλ), a Weibull distribution. More, advanced definition
of S(t) can be considered, see [66] that now, when we consider the case to is
fixed and a sufficient small it can be considered [66]

P (d) = 1 − S(t0, d) or S(t0, d) = 1 − P (d)

while for the practical cases when the estimated parameter has be obtain an
estimate Ŝ(t, dt) is given by the non parametric Kaplan-Meier estimator [22]. A
generalized approach based on the Generalized Normal Distribution (GND) was
discussed in [62] were the hazard function was evaluated for the GND.

Historically, Iverson and Arley [30], in their pioneering quantitative model
of carcinogenesis, proposed that transformed cells are subject to a pure linear
birth process and a clone of transformed cells is detected if it exceeds a certain
threshold. The Arley-Iversen model can be modified in two different ways to
account for this finding:

(i) It could assume that only one step is needed for the transformation of a
normal to a malignant cell.

(ii) To assume that a tumour arises from a single transformed cell.

An improvement was from Nordling [51] who assumed that κ specific muta-
tional events have to occur for a normal cell to transform into a malignant cell
and called this the multi-hit theory. Armitage and Doll [5], modified the multi-hit
theory: they assumed that a certain sequence of irreversible cell alterations has
to be followed. Moreover the quantitative implication of this approach, known
as multi-stage theory was masterly investigated, see also [3,4].

Example 1: Let us consider the case of a constant, continuously applied dose
d. Moreover the transformation rate from each stage, to the next, is assumed
to increase linearly with the dose. In mathematical terms this is equivalent to:
the transformation rate from the stage i − 1 to the next stage i is assumed to
be equal to ai + bidi, where ai > 0 and bi ≥ 0. The parameter ai presents the
spontaneous transformation rate, in the absence of dosing (i.e. d = 0). Suppose
that a tumour will develop before time t if all κ transformations have occurred
in sequence: the commutative probability function that the κ - th change has
occurred is then given by [37,43]

F (d; t) = 1 − exp[−(a1 + b1d)(a2 + b2d) · · · (aκ + bκd)tκ/κ!] (2)
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As the main assumption was that the transformation rate from each stage
to the next on is linear, model (2) can be written as

F (d) = 1 − exp[−(θ0 + θ1d + · · · + θκdκ)] (3)

where θi, i = 0, 1, . . . , κ are defined through the coefficients of the linear trans-
formation assumed between stages, i.e. θi = θi(t) = αi + βit. The most usual
forms of (3) model are the multistage linear model and the multistage model.
Notice that the dangerous point is to consider model (3) only for the Mathemat-
ical point of view and consider solely values of κ, while the biological inside on
the coefficients of model (3) is crucial: are linear function of dose level, with com-
plicates Biological interpretation. Therefore the value of κ is essential: describes
that the susceptible cell can be transformed through κ distinct stages in order to
be a malignant one the multistage model describes the phenomenon, and not just
an extension to a non-linear mathematical model. Same line of thought exists
for the coefficients θi = θi(t).

Example 2: It was noticed that for some cancers (e.g. lung cancer) the cancer
incidence rate increases with age, as log incidence is linear related to log age,
there a log-log linear model describes the mechanism. In case that the time
independence is assumed and the mutation rates are supposed to be small the
hazard function [13] can be written as

λ(t) = c(t − t0)κ−1, c > 0, κ ≥ 1, (4)

where t0 is fixed for the growth of tumour and κ the number of stages. The
above hazard function is the basis of the Armitage - Doll model, which may be
considered biologically inappropriate for very old persons. As based on the fact
that the very old cells lose their propensity to divide, and, therefore, are more
refractive to new transformations. Thus, the “plateau” at older ages may simply
reflect a compensating mechanism, while for a development with covariates see
[59]. In [62] the Normal Distribution has been extended to Generalized Normal
Distribution and the (GND) hazard rate for the GND has been evaluated.

It is easy to see that for the Armitage-Doll hazard function, corresponds the
density function

f(t) = c(t − t0) exp
[
− c

κ
(t − t0)κ

]
. (5)

The target of low dose exposure is to estimate effects of low exposure level of
agents, known already and to identify if there are hazardous to human health.
Therefore the experimentation is based on animals and the results are transferred
to humans. There is certainly a Relative Risk to this transformation [67], which
is usually based on a scaling model of the form aBβ , see [43] for details with
a, β being the involved parameters and B the body weight. So, the target to
calculate the probability of the occurrence of a tumour during the individual’s
lifetime is exposed to an agent of dose d during lifetime is replacing humans with
animals. Moreover, the idea of “tolerance dose distribution” was introduced to
provide a statistical link and generate the class of dose risk functions.
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Consider a nutshell - a tumour occurs at dose level d if the individuals’
resistance/tolerance is broken, then the excess tumour risk is given by

F (d) = P (D ≤ d) = P (”Tolerance” ≤ d)

It is assumed that there is a statistical model which approximates F (d), which
from a statistical point of view is a cumulative distribution function. Then the
dose level d is linked with binary response Y as

Yi =

{
1 success with probability F (d)

0 failure with probability 1 − F (d)

For the assumed (usually nonlinear) model F (d), the vector of parameters θ
involved also needs to be estimated i.e. F (d) = F (d; θ). See also [27], as far as
the safe dose concerns.

When the proportion of “successes”, as a response in a binary problem, is
the proportion of experimental animals killed by various dose levels of a toxic
substance [23], called this experimental design bioassay. The data are called
quanta or dose response, the corresponding probability function is known as
tolerance distribution. Firstly, the probability of success p is described linearly
as a function of the dose d. Typical examples are the Probit and Logit Models
[13,14], and the problem of existence of parameter estimation is crucial [60].

If the cancer occurs when a portion of the tissue sustains a fixed number of
“hits”; cancer is observed. When the first such portion has sustained the required
number of “hits”, then the One-Hit model is considered.

Example 3: The best known tolerance distribution was proposed by Finney
[23], in his early work, the probit model of the form

P (d) = Φ(μ + σd)

with Φ being, as usual, the cumulative distribution function of the normal dis-
tribution and μ and σ are location and scale parameters estimated from the
data. For a compact review of applications of such methods see [19] while for a
theoretical development see [34,41,44]. Practically, the logarithm of dose is used
that implies a log normal tolerance distribution. The Normal, Lognormal and
Beta distributions, among others, were adopted, under the statistical package
SHELF to face melanoma Ca problem, see Sect. 3.

Example 4: The most commonly used parametric model for carcinogenesis is
the Weibull model

P (T ≤ t) = 1 − e−(θt)κ

(6)

With t being time to tumour, and with hazard function λ(t) = κθκtκ−1.
For the parameters θ, κ > 0, it is assumed when the Weibull model can

exhibit a dose-response relationship that is either sub-linear (shape parameter
κ > 1) or subralinear (κ < 1), and has a point of inflection at x = ((κ−1)/κ)1/κ.

The Weibull distribution is used in reliability theory as a lifetime distribution.
Due to its flexibility, the Weibull model is suited to describe incidence data

as they arise in animal experiments and in epidemiological studies.
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The Weibull model has been extensively discussed for tumorigenic potency
by Dewanji et al. (1989) [17], through the survival functions and the maximum
likelihood estimators.

We proceed on the evaluation of the maximum likelihood estimation (MLE)
Propotition 2. For the Weibull model (6) parameters (κ, θ), both assumed
unknown, the corresponding hazard function is h(t) = κθκtκ−1. Thus, the max-
imum likelihood function, from a censored, sample is

Lik(κ, θ) =
∏

h(ti)
∏

s(ti) =
∏

κθκtκ−1
i

∏
e−(θti)

κ

See Appendix I for calculations.

2 Different Classes of Cancer Models

The quantitative methods in cancer related to Relative Risk (RR) for the human
health, has been tackled, for various aspects, under the Mathematical-Statistical
line of thought in [20]. The models we discussed above has been extensively
applied at the early stages, while new methods have been developed, and we
present one in Sect. 4 discussing a Melanoma Analysis. There are different
approaches with more complicated models and other classes of cancer models
which we briefly discuss in this Section [33,35,56,61].

The mechanistic models have been named so because they are based on the
presumed mechanism of the carcinogenesis. The main and typical models of
this class are the dose response models, used in risk assessment, based on the
following characteristics:

	 There is no threshold dose below which the carcinogenic effect will not occur.
	 Carcinogenic effects of chemicals are induced proportionally to dose (target

tissue concentration) at low dose levels.
	 A tumour originates from a single cell that has been damaged by one of the

two reasons
(i) either the parent compound or
(ii) one of its metabolites.

In principle there are two different approaches in cancer modelling:

(i) Those models that consider the whole organism as the modelling unit and
describe the time to overt tumour in this unit.

(ii) Models that describe the formation of carcinomas at the level of the cell,
since knowledge is accumulating about the cellular biological events leading
to cancer.

Hence, the mechanistic class of models can be subdivided into those models that
describe the process on the level of the organism or on the level of individual
cells.

The sub-class of Global models, includes those models that on the level of
the whole organism, are closely related to statistical models, in that they also
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describe the time to detectable carcinoma. Typical example is, the cumulative
damage model is motivated by reliability theory. This model considers that the
environmental factors cause damage to a system, which although does not fail
“immediately”, eventually fails whenever the accumulating damage exceeds a
threshold.

The Cell Kinetic models is another sub-class and attempts to incorporate a
number of biological theories, based on the line of thought that the process of
carcinogenesis is on the cellular level. There has been a common understanding
among biologists that the process of carcinogenesis involves several biological
phenomena including mutations and replication of altered cells.

Cell kinetic models are subdivided to sub-classes by the method, which is
used for their analysis, in Multistage Models and Cell Interaction Models, as
follows.

(i) Multistage Models

The main class of cell kinetic models comprises multistage models, which describe
the fate of single cells, but does not take into account interactions between cells.
In these models mutations and cell divisions are described. These models stay
analytically tractable because cells are assumed to act independently to each
other. The pioneering work of Moolgavkar and Venzon [50] formulates a two -
stage model with stochastic clonal expansion of both normal and intermediate
cells. They eventually introduced a very helpful mathematical technique to anal-
yse a two - stage model with deterministic growth of normal cells and stochastic
growth of intermediate cells. Moreover Moolgavkar and Knudson [48] showed
how to apply this latter model to data from epidemiological studies.

The death-birth process was used by Kopp - Schneider [39], who contributes
essentially to incidence data from animal experiments and epidemiological stud-
ies, and provides the appropriate definitions and understanding for the underly-
ing probabilistic mechanism, see also paragraph (ii) bellow the GMS and MVK
class of models.

(ii) Cell Interaction Models

The Cell interaction sub-class of models incorporating both the geometrical
structures of the tissue and communication between cells are too complicated
for analytical results. These models aim to describe the behaviour (described by
a number of simulations) of complex tissues in order to test biological hypotheses
about the mechanism of carcinoma formation.

The Generalised Multistage Models (GMS) or Cell Interaction Models and
the Moolgavkar - Venzon - Knudson Models (MVK) are based on the following
assumptions:

	 Carcinogenesis is a stochastic multistage process on cell level.
	 Transition between stages is caused by an external carcinogen, but it may

also occur spontaneously.

Cell death and division is important in MVK models. The normal, interme-
diate and malignant cells are depending on time. Intermediate cells arise from a
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normal cell due to a Poisson process with known rate. A single intermediate cell
may die with rate β, divide into two intermediate cells with rate α, or divide
into one intermediate and one malignant cell with rate μ. Therefore, the process
gives rise to the three steps:

• initiation
• promotion
• progression

which are very different from the biological point of view. If an agent increases
the net cell proliferation α − β, the cancer risk will also increase [43,49].

These cell kinetic models were used to describe the time to tumour as a
function of exposure to a carcinogenic agent. Two objectives guide this research.
On one hand, the models can be used to investigate the mechanism of tumour
formation by testing biological hypotheses that are incorporated into the models.
On the other hand, they are used to describe the dose-response relationship
for carcinogens. Hence, they present one step on the way to risk assessment
which goes from first indications of carcinogenity over qualitative findings to
quantitative relationships obtained from the application of models to data from
animal experiments. Finally, an inter-species adjustment can be used to transfer
the results from animal experiments to the human situation. This is sometimes
a problem, even the number of animals in the experiment creates problem. That
is why we think, despite the small number of observations, real data analysis
might be helpful, as the one we present for melanoma bellow.

Certainly one of the problems in the cancer risk assessment is the extrapola-
tion from the experimental results to human [67]. There are also different scale
parameters and are discussed in comparisons of LD10 ≡ L.1. These parameters
are based on different species and a given set of chemicals. That is still interest is
focused on low dose, which is equivalent to calculate the percentile Lp, p ∈ (0, 1)
for “small” p, 0 < p ≤ 0.1 [38].

Although different terminology is adopted for the percentile point, like MTD,
maximum tolerance dose, TD, tumorigenic dose, ED, estimated dose, LD, lethal
dose the point remains the same: adopt that model which will provide the best
downwards extrapolation to Lp, as it has no meaning to perform experiments
below an unknown level of dose.

From the statistical point of view F (d) is the cumulative distribution func-
tion, for the underlying probability model, describing the phenomenon. The
notation d is referred to the dose level. Moreover, F (d) is rather an assumed
approximation, than a known deterministic mechanism for the phenomenon
which describes. Therefore it needs an estimation and we would strongly rec-
ommend a Kolmogorov-Smirnov test [66] to verify its approximation.

Theorem 1 (Kitsos [36]). Within the class of Multistage Models

F (d) = 1 −
(

s∑
i=0

θid
i

)
(7)
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the iterative scheme presented below

Lp,n+1 = Lp,n −
(

n

s∑
i=0

ri

)−1

(yn − p), n = 1, 2, · · · (8)

with ri defined as
ri = θiiL

i−1
p (1 − p) (9)

converges to the Lp, in mean square, i.e. Lp,n
m.s.−−−→ Lp and F (Lp) = p.

Corollary 1: The iterative scheme (7) minimizes the variance of Lp in the limit,
i.e. provides a limiting D - optimal design.

Corollary 2: The optimum iterative scheme (8) minimizes entropy of the lim-
iting design.

Corollary 3: Within the Multistage Models class of models there exists at least
one iterative scheme which converge in mean square to the p-th percentile of the
distribution.

This theoretical result also works for “small” n as it has been tested with
a simulation study [26]. The percentiles are applied in the next section in a
Melanoma Analysis, from the dataset collected in Greece.

3 Melanoma Analysis: Biological Insight and Management
of Disease

Melanoma is a malignant tumor arising from melanocytes, typically in the skin.
Melanoma is the most dangerous type of skin cancer [1,2,7,24]. The primary
cause of melanoma is ultraviolet light (UV) exposure in those with low levels
of skin pigment. An individual’s skin pigmentation is the result of genetics,
biological parents’ genetic makeup, and exposure to sun. The UV light may be
from either the sun or from other sources, such as tanning lamps. Those with
many moles, a history of affected family members, and who have poor immune
function (in general, deliberately induced immunosuppression is performed to
prevent the body from rejecting an organ transplant) are at greater risk [29,32,
46]. A human who is undergoing immunosuppression, or whose immune system
is declared as a weak one, for some other reasons (mainly chemotherapy), is
said to be immunocompromised is a state in which the immune system’s ability
to fight successfully infectious disease and cancer is compromised or entirely
absent. A number of rare genetic defects such as xeroderma pigmentosum also
increase risk [6]. Diagnosis is by biopsy and analysis of any skin lesion that has
signs of being potentially cancerous. For an excellent survival analysis example,
adopting Kaplan and Meier approach [31], see [22]. Certainly a Relative survival
of the disease is calculated by dividing the overall survival after diagnosis by
the survival, as observed in a similar population not diagnosed with that disease
[45,46].
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Using sunscreen and avoiding UV light may prevent melanoma [42], while
treatment is typically removal by surgery [15]. In those with slightly larger can-
cers, nearby lymph nodes may be tested for spread. Most people are cured if
spread has not occurred.

In principle Kaplan-Meier (KM) [31] curves and log-rank tests are most useful
when the predictor variable is categorical (e.g., drug vs. placebo), or takes a
small number of values (e.g., drug doses 0, 20, 50, and 100 mg/day) that can
be treated as categorical. The log-rank test and KM curves don’t work easily
with quantitative predictors such as gene expression, white blood count, or age.
For quantitative predictor variables, an alternative method is Cox proportional
hazards regression, analysis [13]. When measuring overall survival by using the
Kaplan-Meier or actuarial survival methods, is that unfortunately, the evaluated
estimates include two causes of death. The deaths from melanoma and the deaths
from other causes such as age, other cancers, or any other possible cause of death.
We emphasize that in general, survival analysis is interested in the deaths by
a disease, therefore a “cause-specific survival analysis” is adopted to measure
melanoma survival. Thus, there are two ways in performing a cause-specific
survival analysis “competing risks survival analysis” and “relative survival.”

The likelihood that it will come back or spread depends how thick the
melanoma is, how fast the cells are dividing, and whether or not the overlying
skin has broken down. A large study validated the importance of tumor depth as
one of the three most important prognostic factors in melanoma. That is in real
life, the complicated and elegant statistical models, as in Sect. 3 might proved
not such helpful. In practise the principle “keep it simple and soft” might be
proved important. Breslow’s depth also accurately predicted the risk for lymph
node metastasis, with deeper tumors being more likely to involve the nodes.

The above studies showed that depth was a continuous variable correlating
with prognosis. However, for staging purposes, the most recent AJCC (=Ameri-
can Joint Committee on Cancer) guidelines use cutoffs of 1 mm, 2 mm, and 4 mm
to divide patients into stages (Table 1).

Table 1. Gershenwald and Scolyer, (2018), American Cancer Society, 2019 (years
2008–13)

Stage Breslow thickness Approximate 5 years survival

T1 <1 mm 99%

T2 1–2mm 80–96%

T3 2.1–4 mm 32–93%

T4 >4 mm 23%

Melanoma was the ninth most common cancer in 2012 in Europe, with 50%
approximately of melanomas harbors activating BRAF mutations [8]. The preva-
lence of melanoma in Greece has increased the recent years and is approximately
3–4 events per 100, 000 inhabitants [25]. The development of BRAF and MEK
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inhibitors (BRAFis and MEKis) as well as of immune checkpoint inhibitors have
changed the management of advanced stage melanoma and improved the out-
comes of patients with this malignancy [57].

Activating BRAF mutations drive constitutive MAPK pathway activation,
with subsequent proliferation and enhanced cellular survival, making BRAF
kinase a promising therapeutic target. Immunotherapies, on the other hand, can
have lasting benefits regardless of BRAF status [18]. In Greece, no available data
exist for the management of Adults receiving treatment for advanced injectable
melanoma that is regionally or distantly (stage IIIB or IV M1c) metastatic.
Eliciting probability distributions from melanoma experts for the transition to
different stages of disease (pre-progression, post progression terminal care is a
laborious but also very interesting procedure. The objective of this study is to
apply and evaluate a modified Delphi [10] method to elicit probability distribu-
tions related to advanced BRAF-mutated melanoma.

The information was collected by experts on the disease from major Medical
Departments around Greece, where 1000 approximately patients with advanced
melanoma are treated per year. A modified EFSA Delphi method was used.
This corresponds to the first phase of a SHELF elicitation [54], using the tertile
method assessment of individual judgements. A tertile is a division of a set of
observations into three defined intervals such that each range contains 33% of
the total observation. Each expert should specify their upper and lower tertiles
by considering the range from L to U and dividing it into three equally likely
intervals [10,54].

Healthcare resource use (HCRU) related to advanced BRAF-mutated
melanoma is based on the information collected by experts on the disease from
major Medical Departments around Greece, where 1000 approximately patients
with advanced melanoma are treated per year. A modified EFSA (=European
Food Safety Authority) Delphi method [21] was used. This corresponds to the
first phase of a SHELF (=Sheffield Elicitation Framework) elicitation [53], using
the tertile method assessment of individual judgements. A tertile is a division of
a set of observations into three defined intervals such that each range contains
33% of the total observation. Each expert should specify their upper and lower
tertiles by considering the range from L to U and dividing it into three equally
likely intervals [10,54]. In place of the second phase - the group judgements -
Delphi iteration process took place. The experts’ judgements and rationales are
relayed anonymously back to the experts and they are asked to provide revised
judgments. After the two rounds, the experts’ individual probability distribu-
tions are averaged to provide the final aggregate distribution [10].

Here is a short description of our approach and analysis.
Material and Methods
The questions analyzed in this paper out of the selected ones, are the following:

1. What proportion (%) of patients has had brain metastases since the start of
the follow-up?

2. What proportion (%) of patients has had in transit metastases since the start
of follow-up?
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We are referring to:
Expert, i = 1, 2, 3, Question k = 1, 2,
pth percentile. L0.05 is the 5th percentile (p1 = 5%), L0.5 is the 50th percentile,
i.e. the median (p2 = 50%) and L0.95 the 95th percentile (p3 = 95%), see Sect. 3.
qpyik the value of the elicited pth

y percentile for expert i question k.
We defined a surprise as the event that the observed value that lies outside

the 5–95 range [9]:

cik =
{

0 if qp1ik < Tk < qp3ik

1 otherwise

where,
Tk : Observed value estimating the true value for question k. If the rate of sur-
prises is above 10%, the judgements have a tendency towards overconfidence [47].
The R language (package “SHELF”) was used for this particular analysis, [54].

The rate of surprises (D-RS) was successively calculated.

Fig. 1. Various distributions assumed of each expert for two datasets

Results
The process of averaging the density functions is known as the linear opinion pool
(with equal weights). We use it in SHELF simply as a benchmark. Figures 1.(i),
1.(ii) present the individual assumed distribution (as it is expressed in Table 2)
of each expert as well as the linear pooling. By inspecting the sum of squared
differences, between elicited and fitted probabilities, we see that the normal
distribution fits better for Expert A, and the Beta distribution fits better for
Expert B and Expert C in the question 1 (Fig. 1.(i)). In the question 2, the
normal distribution fits better for Expert B whereas Beta distribution fits better
for Experts A and C, see Fig. 1.(ii).
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Table 2. Comparing different probability distribution for two data sets D1, D2 relating
to Fig. 1

Normal Log

Normal

Beta Gamma t Log t

Expert D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

A 0.0177 0.0088 0.0243 0.0128 0.0198 0.0086 0.0219 0.0103 0.0231 0.0165 0.0286 0.0189

B 0.0396 0.0324 0.0398 0.0491 0.0375 0.0364 0.0390 0.0376 0.0471 0.0410 0.0475 0.0536

C 0.0343 0.0302 0.0362 0.0347 0.0329 0.0295 0.0354 0.0309 0.0390 0.0393 0.0388 0.0417

EFSA Delphi Method
Applying the second round the group agrees on consensus judgements [21]. Now,
we elicit a single ‘consensus’ distribution from the experts. Experts are invited
to revise their original judgements having seen what the other experts think.
The group judgements are used as a basis for fitting a probability distribution,
that is the outcome of the elicitation process, and so must be selected carefully
and with full approval of the experts [52].

Fig. 2. Various distributions assumed of each expert for two datasets

The final fitted distributions by questions 1 and 2 are shown in Figs. 2.(i),
2(ii) implied by this distribution.

Conclusions
The modified Delphi Method using as percentiles (p) the tertiles (τ) with feed-
back to achieve consensus seems to be an effective method to reduce heuristics
and biases. Providing people with more feedback seemed to help reducing over-
confidence, since feedback serves as a tool allowing people to correct their errors
[26] (Table 3).
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Table 3. Comparing different probability distribution for two data sets D1, D2 relating
to Fig. 2

Normal Log Normal Beta Gamma t Log t

elicited D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

0.330 0.344 0.332 0.337 0.322 0.335 0.325 0.339 0.324 0.344 0.332 0.337 0.322

0.500 0.478 0.497 0.489 0.518 0.490 0.509 0.485 0.512 0.478 0.497 0.489 0.518

0.660 0.670 0.662 0.666 0.648 0.669 0.654 0.667 0.653 0.670 0.662 0.666 0.648

4 Discussion

As data synthesis studies are the most common type of “evaluation studies”,
future work might concentrate on further improvements to these types of elic-
itation design in order to a stronger support to researchers and decision mak-
ers and a better allocation of limited resources. In particular, research might
investigate strategies to limit the anchoring and adjustment heuristic which can
substantially degrade the quality of an economic evaluation in healthcare. The
appropriate adjustment will referred in a compact line of thought.

The target of this paper was to discuss the existence of different classes of
statistical models which try to approach the Biological insight, under which a
normal cell is transformed to a malignant one. For most of these models there
is an appropriate software, in all the cancer research centers, not that friendly
to non experts users. Moreover different cancers as well as the burden of disease
need different approach [39,40], as the biological description is different and
different characteristics are related to them [59], and the treatment and care are
different [65].

Such a different case, we adopted the skin cancer of Melanoma, which appears
different characteristics and a complex disease management. An EFSA Delphi
method was applied under a friendly software (SHELF) for statistical package.
Some of the results were presented and discussed in Sect. 3 while other will
present elsewhere under different approach.

In any case the descriptive statistical analysis is not enough to conclude
about the Ca mechanism, and almost in all cases there is a need for further
statistical analysis to analyze the problem under investigation. A model oriented
data analysis is what we would like to suggest for Cancer models, in the spirit
of [20,55].

Appendix I

Proof of Proposition 2
The corresponding log likelihood function (logLik(.)) and Fisher’s information
are evaluated as

l = log(L(κ, θ)) = d log κ + κd log θ + (κ − 1)
∑

log ti − θκ
∑

tκi . (10)
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To evaluate Fisher’s information matrix the second derivatives of the log-
likelihood l are

Iθθ =
∂2l

∂θ2
=

∂

∂θ

(
κd

θ
− κθκ−1

∑
tκi

)
= −κd

θ2
− κ(κ − 1)θκ−2

∑
tκi ,

Iθκ =
∂2l

∂θ∂κ
=

d

θ
− θκ−1(1 + κ log θ)

∑
tκi − κθκ−1

∑
tκi log ti,

Iκκ =
∂2l

∂κ2
= − d

κ2
− θκ

∑
tκi [log(θti)]2

Fisher’s information matrix is I = (Iij), i, j = θ, κ and the covariance matrix
is the inverse of Fisher’s information matrix. As far as for the MLE it is obtained
through the first derivatives as bellow.

The first derivatives with respect κ and θ, of the log-likelihood function are

Uθ =
∂l

∂θ
=

κd

θ
− κθκ−1

∑
tκi

Uκ =
∂l

∂κ
=

d

κ
+ d log θ +

∑
log ti − θκ

∑
tκi log(θti).

If κ is given, the maximum likelihood estimator (MLE) θ∗ of θ can be eval-
uated explicitly from Uθ = 0 as

Uθ = 0 ⇔ κd

θ
− κθκ−1

∑
tκi = 0 ⇔ d

θ
= θκ−1

∑
tκi ⇔ d

= θκ
∑

tκi ⇔ θκ =
d∑
tκi

Eventually the MLE of θ

θ∗ =
(

d∑
tκi

)1/κ

. (11)

Substitution into the equation Uκ = 0 yields the maximum likelihood estima-
tor κ∗. Equation (11), although is non linear, does not contain θ and therefore
can be solved by a one-dimensional iterative scheme in κ.
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Abstract. The two-stage clonal expansion (TSCE) model has been
developed to investigate the mechanistic processes in cancer develop-
ment on carcinogenesis based on the knowledge of molecular biology.
The model assumes three states of cells (normal, intermediate, and malig-
nant) and four transition rate parameters to describe the rate at which a
cell changes its state. Despite the need for statistically sound and biolog-
ically meaningful estimation methods, no reliable inference method has
yet been established. A major trouble with TSCE model is that itera-
tion algorithms searching for the maximum likelihood estimates of the
model’s parameters are generally non-convergent.

Regarding the problem, Nakamura and Hoel [10] proposed a new likeli-
hood termed “conditional likelihood”. This study conducted simulations
with small sample sizes to assess the performance of the conditional like-
lihood to distinguish between the initiation and promotion effects. Data
generation was performed using parameter values based on dioxin [6] and
radiation [3] experimental data. Several estimation models were applied
to each dataset to determine whether it was generated from the initiation
or the promotion model. The correct identification rate was 98%.

1 Introduction

The Two-Stage Clonal Expansion Model was proposed by Moolgavkar et al.
[8]. TSCE model involves four parameters: μ1, β, δ, and μ2. A normal cell is
transformed into an intermediate cell at a constant rate μ1 per unit time per
cell. Each intermediate cell is subject to three events: birth, death or mutation
(Fig. 1).

Specifically, each intermediate cell undergoes clonal expansion by dividing
into two intermediate cells at a rate of β, death at a rate of δ, or division into
one intermediate cell and one malignant cell at the rate of μ2. Once a malignant
cell has developed, it will replicate into a detectable tumor in a relatively short
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Two-stage clonal expansion model

period of time; therefore, the formation of one malignant cell is usually associated
with the development of detectable cancer.

Let X0, Y (t), Z(t) denote the number of normal, intermediate and malignant
cells, at time t respectively. X0 is assumed to be constant. Hereafter, ν denotes
μ1X0. The endpoint is the appearance of the first malignant cell.

Define
S(t) = Pr{Z(t) = 0|X0, Y (0) = 0, Z(0) = 0}

where S(t) is the probability of no malignant cell at time t. Kopp-Schneider
et al. [7] obtained the exact form of S(t) = exp{−Λ(t)} as follows.

Λ(t) =
ν

β

{
t(R + β − δ − μ2)

2
+ log

R − (β − δ − μ2) + (R + β − δ − μ2) e−Rt

2R

}

R2 = (β + δ + μ2)2 − 4βδ = (β − δ − μ2)2 + 4βμ2

where Λ(t) is a cumulative hazard function. Hereafter, the likelihood using Λ(t)
is termed the original likelihood. Since ν, β, δ, and μ2 are jointly unidentifiable
with censored survival data, some identifiable set of parameters are proposed [4].

Changing parameters such that

Ψ = β − μ2 and η = ν/β

Λ(t) = η

{
t(R + Ψ)

2
+ log

R − Ψ + (R + Ψ) e−Rt

2R

}

The parameters Ψ, η and R are identifiable, as is

ρ = νμ2 = η(R2 − Ψ2)/4

The parameters Ψ and ρ are of interest in most applications and have been
biologically interpreted as the net proliferation rate and the overall mutation
rate, respectively [8,9]. Portier et al. [13] and Sherman et al. [14], however,
cautioned on the estimability with those identifiable parameters:
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“The likelihood function for those parameters were extremely flat that resulted
in frequent non-convergences or large variance estimates. Therefore, some
assumptions on parameters are normally added in determining MLE of param-
eters. Estimated parameters are, however, quite different with the different
assumptions. New statistical methods for the estimation of parameters (e.g. new
likelihoods) are needed”.

Since the iteration algorithms searching for the MLE of those identifiable
parameters using the original likelihood hardly converges, no simulation stud-
ies been reported that revealed the performance of the original likelihood with
individual survival data. This fact hinders the proper use and dissemination of
TSCE model. Thus, Hornsby [5] cautioned:

“Different studies that have used slightly different methods or datasets have
yielded different conclusions. The carcinogenesis models need to be carefully
applied, and the conclusions they yield should be treated with caution”.

Hence, Nakamura and Hoel [10] proposed a new likelihood, termed “condi-
tional likelihood”, obtained by putting δ = 0 in the above cumulative hazard
Λ(t):

Λ∗(t) =
ν∗

β∗

⎧⎩β∗t + log
μ∗
2 + β∗ exp{−(β∗ + μ∗

2)t}
β∗ + μ∗

2

⎫⎭
This makes the likelihood function simple. But, what is the biological meaning

of those parameters? To answer the question, Nakamura and Hoel [10] claim that
it holds exactly that

Ψ = β∗ − μ∗
2, ρ = ν∗μ∗

2 and η = ν∗/β∗ (1)

The unbiasedness of MLE for ρ and Ψ obtained using (1) has been confirmed
by a series of simulation studies [11,12,16,17] with n = 500 and d = 400. The
conditional likelihood has been applied to radiation and dioxin experimental
data [2,10,11,15].

The objective of this study is to examine the most interesting, yet never has
been addressed issue; that is, the discerning ability of the TSCE model to discern
between the Initiation and Promotion effects of carcinogenesis agents using the
conditional likelihood.

2 Methods

For each parameter θ and an exposure dose D, we assume a log-linear dose-
response model

log θ = log θ a + log θ bD

where log θ a is a constant and log θ b is a dose-rate effect of D.

2.1 Parameter Setting and Data Generation

Table 1 presents the three combinations of parameters used for the generation of
survival data. For each combination, 100 independent survival data were gener-
ated for producing 100 independent MLEs. The sample size was fixed to be 500,
of which 100 were censored.
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Table 1. Models used for Generating Data

Model log Ψ a log Ψ b log ρ a log ρ b log η a log η b

×100 ×100 ×100

Initiation −4.9 − −17.0 0.42 −0.08 0.72

Promotion −3.3 0.35 −35.0 − 1.7 −0.35

Full −4.9 −0.1 −17.0 0.42 −0.08 0.72

For the Initiation model, the values of the parameters were determined based
on the results from an analysis of the JANUS experimental data on radia-
tion effects in mice [10], where MLE were described as log ρ a = −17.37,
log ρ b = 0.00424, log Ψ a = −4.852 and log Ψ b = −0.000345. According to
the radiation biology, log Ψ b = −0.000345 was unexpected since the radia-
tion was not considered to affect the promotion rate. However, calculating the
expected number of cells [14], Portier [10] presented the following novel view;
“the number of intermediate cells in those rats would be too large if the pro-
motion rate remains the same with the increased initiation rate”. Thus, we set
log Ψ a = −4.9, a little less than −4.853 and log Ψ b = 0 in the Initiation model.

On the other hand, those for the promotion model were obtained from an
analysis of the Dioxin experimental data by Kociba et al. [6]. They dealt with
female Sprague-Dawley rats maintained for two years on diets supplying 0, 1,
10 and 100 pg/kg/day and observed for each animal the date of death and the
presence or absence of hepatocellular carcinoma or adenoma. The results of the
analysis were described in Nakamura and Hoel [11].

To assess the ability of estimating both log Ψ b and log ρ b simultaneously,
the Full model was also dealt with. The values of the parameters for the model
were the same as those for the Initiation model except for log Ψ b, where we set
log Ψ b < 0 following the Portier’s novel view. The dose level for the Initiation
and Full models are 0, 50, 100, 250 and 500 with 100 cases each. Whereas, those
for the Promotion model are 0, 1, 10 and 100 with 125 cases each.

2.2 Models for the Estimation of Parameters

Table 2 shows the models used for the estimation of parameters using the survival
data generated as described in Sect. 2.1, namely Full initiation (FI), Initiation (I),
Promotion (P), Semi complete (SC) and Complete (C) models. All estimation
models include the three base parameters log ν∗ a, log β∗ a, and log μ∗

2 a.
The initiation effect log ν∗ b is included other than the P-model, the promo-

tion effect log β∗ b is included other than the two initiation models, and log μ∗
2 b

is included in the FI and C models. Hereafter, FI-model, I-model, P-model, SC-
model and C-model will be used to distinguish from the modes for the data
generation.
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Table 2. Models used for estimating parameter values

Model log ν∗ b log β∗ b log μ∗
2 b

Full initiation (FI) ◦ × ◦
Initiation (I) ◦ × ×
Promotion (P) × ◦ ×
Semi complete (SC) ◦ ◦ ×
Complete (C) ◦ ◦ ◦

2.3 Algorithm Searching for MLEs

We applied the Newton-Raphson iteration algorithm for searching for MLEs.
The convergence criterion was to satisfy the following three conditions simulta-
neously:

(1) The norm of the score vector was less than 0.01.
(2) The main diagonal elements of I−1 are all positive, where I is the observed

information matrix.
(3) The norm of the difference between the new and the old parameter vectors

< 0.00001.

The MLEs of ρ and Ψ are obtained by transforming the MLEs of ν∗, β∗, and
μ∗
2 using (1). That is,

log Ψ a ≈ log β∗ a
log Ψ b ≈ log β∗ b

log ρ a = log ν∗ a + log μ∗
2 a

log ρ b = log ν∗ b + log μ∗
2 b

(2)

where ≈ denotes an approximate equality. As described in Sect. 3, since μ∗
2 b is

about 1000 times smaller than ν∗ b or β∗ b, it is ignored in (2).

2.4 Model Selection Strategy

First, either I-model or P-model was selected according to AIC [1]. Then, either
the selected model or SC-model was selected based on the likelihood ratio test.

3 Results and Discussion

Table 3 presents the average of MLE and the proportions of the selected models
for each parameter. The average number of iterations until convergence is also
shown. It turned out that μ∗

2 b badly affected the convergence of the iterations.
It was also found that μ∗

2 b is about 1000 times smaller than ν∗ b or β∗ b,
resulting in that log μ∗

2 b little affects the value of MLE of log Ψ and log ρ. The
fact accords with the findings in cell biology and has been generally observed [9].
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Thereby, the results concerning FI-model and C-model were omitted in Table 3.
Since ρ and Ψ are biologically interesting but η was not, the results on η was
also omitted.

Non-convergence is frequent when either I-model or SF-model, both including
the initiation effect log ρ b, is applied to the Promotion model.

First, the results demonstrate that MLEs were approximately unbiased when
the estimation model was the same as the true model.

The error rate of incorrectly selecting the P-model for the two Initiation
models is only 2% (4 out of 200). In contrast, the error rate of incorrectly selecting
the I-models for the Promotion model is 7%. As for the Full model, 30 out of
100 estimated log Ψ b = 0. Nevertheless, regarding the ability to distinguish
between the initiation and promotion effects, the error rate is 2% (2/100), since
the 30 cases detect the initiation effects. In conclusion, the conditional-likelihood
approach has high ability to distinguish between the two effects.

Table 3. Estimates of parameters

Initiation log Ψ a log Ψ b log ρ a log ρ b Convergence %

Model ×100 ×100 Rate(%) Selection

True value −4.9 − −17 0.42

I-model* −4.86 − −17.5 0.454 100 91

SC-model −4.81 −0.022 −17.7 0.537 100 7

P-model −5.13 0.129 −16.5 − 100 2

Full log Ψ a log Ψ b log ρ a log ρ b Convergence %

Model ×100 ×100 Rate(%) Selection

True value −4.9 −0.1 −17 0.42

I-model −5.07 − −16.7 0.132 100 30

SC-model* −4.85 −0.109 −17.5 0.478 100 68

P-model −5.13 0.0385 −16.4 − 100 2

Promotion log Ψ a log Ψ b log ρ a log ρ b Convergence %

Model ×100 ×100 Rate(%) Selection

True value −3.3 0.35 −35 −
I-model −3.07 − −36.9 8.16 78 7

SC-model −3.27 −0.0812 −36.0 6.29 39 0

P-model* −3.30 0.350 −35.2 − 100 93
∗ denotes the true models.
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4 Concluding Remarks

We conclude that the conditional likelihood approach has a practically sufficient
ability to distinguish between the initiation and promotion effects. This approach
does not require any additional prerequisites, allowing a broader application of
the TSCE model.
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Abstract. The business failure prediction (BFP) research area is
attracting renewed attention due to increasing complexity and uncer-
tainty of modern markets, as witnessed by financial crisis in last decade.
Since many predictive models have been developed using various ana-
lytical tools, it should be important to capture the development of the
BFP models, underlying their limitations and strengths. Using the Web
of Science database, the purpose of this paper is to investigate the evo-
lution of the scientific studies in the field of BFP within a bibliometric
analysis. The research production from 1990 to 2019 is analyzed, and the
most relevant research products in the field are identified and classified
by papers, authors, institutions and countries. Moreover, the most influ-
ential key-words are clustered according to similarity and visualized in a
network. Finally, the social structure between countries and affiliations
are investigated in order to capture the relationship between authors.

1 Introduction

The recent financial crisis showed the increasing vulnerability in complex busi-
ness relations and brought evidence of the fragile financial stability of numerous
firms. Hence, academics, practitioners and regulators focused on the develop-
ment of business failure prediction (BFP) models that attempt to predict the
financial distress.

Since the first BFP models appeared in the 1960s, many different techniques
have been suggested and applied, such as univariate model [8], multiple dis-
criminant analysis [3,14,16], logit and probit analysis [24,35], survival analysis
[18,21,31], classification trees and artificial neural networks [30,34], and machine
learning [17,19].

The literature on methodological issues associated with corporate failure pre-
diction models is well-documented in a number of reviews [1,2,4,6,7,9,15,20,22,
28,32,33]. In some of them, the authors have reviewed and classified a list of arti-
cles on the prediction of business failures according to some characteristics, such
as country, industrial sector, time period, financial ratios and models/methods
employed. Moreover, they have discussed the evolution of BFP studies, highlight-
ing the main differences between different approaches implemented, also through
a comparison in terms of accuracy performance [7,9,15,20,28,32]. In some oth-
ers [1,2,4,22,33], the authors have underlined the trend and evolution of the
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methodological issues on the BFP by means of a systematic literature review
performed using some bibliographic sources, such as Google Scholar1, Web of
Science (WoS)2 or Business Source Complete (EBSCO)3.

Starting with this background, our study contributes to the existing body
of BFP literature through a study based on bibliometric analysis that provides
a comprehensive overview of the research area under investigation. Indeed, a
bibliometric analysis is the most suitable method for studying the conceptual
and intellectual structures of a research area [12] and it allows to obtain an
overview of the main thematic trends in the field. The time period under analysis
ranges from 1990 to 2019. The information is collected from the Web of Science
(WoS) database, actually the largest database in academic research. To cover
our study we deal with two specific research hypotheses:

RH1 (impulsive structure hypothesis): The research area of BFP followed a pecu-
liar trend characterized by endogenous (new methods and techniques) and
exogenous facts, such as economic crises and emerging markets.

RH2 (conceptual structure hypothesis): The trend influenced the collaboration
patterns among scholars in the field and it gave raise to emerging key-topics.

To pursue our goals, we elaborate a research design that is described in
the Sect. 2. In Sect. 3, we provide the main results of the bibliometric analysis
performed on the dataset extracted from WoS. In Sect. 4, discussion and future
research directions are given.

2 Research Methodology

In this study, we perform a bibliometric analysis of the literature on statistical
models for business failure prediction (BFP). Bibliometrics is a research field
within library and information sciences that studies and classifies the biblio-
graphic material by using quantitative methods [11,26]. Over the years, it has
become very popular for assessing the state of the art of a scientific discipline,
classifying bibliography and developing representative summaries of the leading
results. A detailed analysis of the development of research could help to selec-
tively appraise the different facets of the business failure prediction field and
thus to create a better basic understanding of the topic and depict the current
research scene.

The methodological framework to perform the bibliometric review can be
divided into three essential phases: data collection, data analysis and data visu-
alization.

In the data collection phase, after delimiting the research area and goals, we
select the database that could provide the data for the analysis, define the criteria
for searching and selecting articles, and create a data-frame to collect the selected

1 https://www.scopus.com/home.uri.
2 https://clarivate.com/webofsciencegroup/solutions/web-of-science/.
3 https://www.ebsco.com/.

https://www.scopus.com/home.uri
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://www.ebsco.com/
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articles. Among all on-line academic databases, we opt for the “Web of Science”.
In particular, the search is performed on the Web of Science Core Collection, that
has access to more than 21.000 journal and 1.5 billion cited references going back
to 1900. The WoS Core Collection works within citation indexes that contain the
references cited by the authors of the publications covered by different sources,
such as journals, conference proceedings and books.

The topic under analysis consists of four terms: Business, Failure,
Prediction and Models. To ensure that the research includes all the related
terms, we consider four search strings using Boolean expressions. Moreover, we
search all papers whose topics (i.e. title, publication, abstract, keywords, and
research area) include at least a search term belonging to the four sets of search
terms we select.

A search string that capture all these words is thus designed with the follow-
ing query:
(failure OR bankruptcy OR default OR insolvency OR distress) AND

(predict∗ OR forecast∗ OR classif∗) AND (statist∗) AND (method OR

model OR analysis OR technique) AND (busines∗ OR compan∗ OR firm∗ OR

enterprise OR corporate OR bank∗).
The wildcard “∗” is used to cover different occurrences of the terms, such

“prediction” and “predicting” for the “predict∗”, and “classification” and “clas-
sifying” for the term “classif∗”. The condition “or” is used to take into account
that some terms are considered as synonyms. For example, bankruptcy, insol-
vency, default, financial distress or failure are often synonyms for failure of firms
and financial institutions. The condition “and” is used in order to join the dif-
ferent combinations of words.

We delimit our results using a combination of filtering criteria, as shown in
Fig. 1. By querying the Web of Science database in the period between 1990 and
2019, we initially find out 991 papers.

The refinement by language (only English), document type (only journal arti-
cles), WoS index and categories and source title is done to improve the search
quality. For the Web of Science categories, since the topic of business failure pre-
diction is multidisciplinary, we collect articles from different research areas, such
as Operations research, Management science, Computer Science, Economics,
Management, Business finance, Statistics, Probability, Mathematics interdisci-
plinary applications, Social sciences mathematical methods. At the end, a set of
497 papers is obtained for our bibliometric analysis.

For the data analysis phase, we use an open-source R package, called Bib-
liometrix able to perform comprehensive bibliometric analysis [5]. Data analysis
entails descriptive analysis and co-occurrence or coupling data extraction. Differ-
ent kinds of co-occurrence data can be extracted using different units of analysis
(such as authors, documents, keywords, words, and so on). In our study, we ana-
lyze the keywords, the countries and the authors’ affiliations. For the keywords
we study the conceptual structure of the research field under investigation, iden-
tifying the most influential keywords. For the countries and affiliations we study
the intellectual structure in terms of collaboration networks. Finally, a multiple
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Fig. 1. Filtering process applied for delimiting literature

correspondence analysis and a cluster analysis are performed in order to identify
homogeneous profiles and sub-structures.

The visualization phase aims at representing the useful knowledge extracted
from the data through bi-dimensional maps, dendrograms, and social networks.

3 Main Results

In Sect. 3.1 we firstly report the main results for the impulsive structure research
hypothesis RH1 by focusing on the topics trends in BFP research area. In order
to analyze the evolution of these topics by means of bibliometric analysis, we
extract some information related to the most influential journals, the most pro-
ductive countries in terms of number of papers published, corresponding authors
and total citations. Then, in Sect. 3.2 we deal with the conceptual structure
research hypothesis RH2, reading the co-occurrences matrices as relational data
structures in terms of networks showing the links among authors, topics and
countries.

3.1 Trends in the Business Failure Prediction Field

The main information on the dataset extracted from WoS and used for the
bibliometric analysis are summarized in Table 1. In particular, the collection
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size in terms of number of documents, number of authors, number of sources,
number of keywords, timespan, and average number of citations are reported.
Furthermore, many different co-authorship indices are shown. In particular, the
Authors per Document index is calculated as the ratio between the total number
of documents and the total number of authors. The Co-Authors per Documents
index is calculated as the average number of co-authors per document. The index
takes into account the author appearances, while for the Authors per Document
an author is counted only once, even if he/she has published more than one
article. The Collaboration Index (CI) is calculated as Total Authors of Multi-
Authored Documents over Total Multi-Authored Documents. In other word,
the Collaboration Index is a Co-authors per Document index calculated only
using the multi-authored document set. In our case, 1378 authors write a total
number of 497 articles. Collaboration is the key amongst authors whereby only
72 documents are single authored.

The growth trend of scientific content in the field of BFP models is shown
in Fig. 2. It can be noted that after the financial crisis in 2008 the number of
papers that analyzed the phenomenon of business failure is increased. Moreover,
14% of the papers is published on this topic before 2004, while 12% and 25%
are between 2005 and 2008 and between 2009 and 2012 respectively, while the
remaining 49% is appeared after 2012. Moreover, the growth rate of the annual
scientific production is equal to 15.14%. Furthermore, looking at the average
article citations per year, we report that some articles published in 2001 and 2008
are collecting the highest number of average total citations per year, respectively
equal to 6.8 and 7.1.

Table 1. Main facts and figures of the BFM database

Description Results

Documents 497

Sources (Journals, Books, etc.) 240

Keywords Plus (ID) 855

Author’s Keywords (DE) 1455

Period 1990–2019

Average citations per documents 25.81

Authors 1142

Author Appearances 1378

Authors of single-authored documents 72

Authors of multi-authored documents 1070

Single-authored documents 81

Documents per Author 0.435

Authors per Document 2.3

Co-Authors per Documents 2.77

Collaboration Index 2.57
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Looking at the impact of the 10 top sources (i.e. journals) (Table 2), we can
observe that the Expert Systems with Applications has a significant contribution
to the publication of papers on the BFP and, compared to other journals, it is
highly specialized in the subject of business failure. It is followed by the European
Journal of Operational Research, the Journal of Banking & Finance, and the
Journal of the Operational Research Society in terms of number of documents,
H-index and g-index. Instead, looking at the m-index, the top journals are the
Expert Systems with Applications, the Applied Soft Computing, the European

Fig. 2. The WoS publications on business failure prediction models between 1990 and
2019

Table 2. Most influential accounting research journals according to the WoS

Source TP H-index g-index m-index TC PY

Expert Systems with Applications 64 30 54 1.2000 3022 1995

European Journal of Operational Research 26 16 26 0.5333 1068 1990

Journal of Banking & Finance 13 8 13 0.3077 636 1994

Journal of the Operational Research Society 11 7 11 0.3333 185 1999

Knowledge-Based Systems 9 9 9 0.4737 440 2001

Decision Sciences 7 7 7 0.2500 274 1992

African Journal of Business Management 6 2 4 0.2000 16 2010

Applied Soft Computing 6 6 6 0.5454 241 2009

Expert Systems 6 4 6 0.3333 85 2008

Journal of Forecasting 6 5 6 0.4545 132 2009

Decision Support Systems 5 5 5 0.1923 507 1994

Quantitative Finance 5 3 4 0.3333 23 2011

Computational Economics 4 2 4 0.2857 20 2013

Computers & Operations Research 4 4 4 0.2105 151 2001

Economic Modelling 4 3 4 0.3333 66 2011

TP = total papers; TC = Total Citations; PY = year when the journal was included in WoS;

H−index is the Hirsch index that is an author’s (or journal’s) number of published articles

each of which has been cited in other papers at least h time; m−index is defined as H over n,

where H is the H−index and n is the number of years since the first published paper of the

scientist (journal); g−index measures the global citation performance of a set of articles.
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Journal of Operational Research, the Knowledge-Based Systems and the Journal
of Forecasting. Finally, the highest values of the total citations are observed again
for the Expert Systems with Applications, the European Journal of Operational
Research, the Journal of Banking & Finance and the Decision Support Systems.

Analyzing the trend of content related to the BFP and the dynamics of the
top 5 journals (Fig. 3), we can reveal that the Expert Systems with Applications
has a significant contribution to the spread of papers on the BFP and compared
to other journals, it becomes specialized in the subject under analysis after
2005, followed by the European Journal of the Operational Research Society.

Fig. 3. Trend of content related to the subject at the first 5 scientific journals

Fig. 4. Country scientific production on map
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Instead, the Journal of Banking & Finance has been a relevant journal until
2004, becoming less specialized in the topic after 2005.

The top countries’ scientific production is shown in Fig. 4, where the color
intensity is proportional to the number of publications. Thus, it is possible to
learn more about the contribution of different countries in BFP research area.

Table 3 shows the corresponding author’s country, underlining how the
authors have been collaborating in one country, or different countries. In particu-
lar, it illustrates the authors collaboration from different countries on this topic.
MCP ratio means Multiple Country Publications and measures the international
collaboration intensity for a country. The highest international collaboration is
for China and Greece, followed by USA. The lowest international collaboration,
for countries with a relevant number of publications, is for Taiwan, followed by
Australia and India.

Table 3. The top 10 corresponding author’s countries

Country Articles Freq SCP MCP MCP Ratio

USA 85 0.1728 60 25 0.294

China 59 0.1199 38 21 0.356

United Kingdom 45 0.0915 32 13 0.289

Taiwan 42 0.0854 42 0 0.000

Spain 25 0.0508 19 6 0.240

Australia 16 0.0325 13 3 0.188

India 16 0.0325 13 3 0.188

Greece 14 0.0285 9 5 0.357

Italy 14 0.0285 11 3 0.214

Germany 13 0.0264 10 3 0.231

SCP = Single country publications; MCP = Multiple country
publications, that indicates for each country the number of doc-
uments in which there is at least one co-author from a different
country.

In Table 4 the 10 main countries ordered by total citations are displayed. The
average number of citations per article is 15.87 for all countries. The study of
the countries influencing the research are on BFP shows that USA is the leader
in this field, followed by Taiwan, China, Korea and United Kingdom. In fact,
USA, Taiwan and China, with more articles published and total citations, have
an average article citation equal to 39.49, 39.9 and 19.17, respectively. Moreover,
the results show that leading countries cover more than 60% of the total number
of references. In terms of average citation, papers published by researchers in
Hong Kong and Korea have maintained the highest citations. In spite of the fact
that Korea is the fourth country in terms of published articles, it has the highest
average citations per article among the leading countries in total citations.
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Table 4. The top 10 total citations per country

Country Total Citations Average article citations

USA 3357 39.49

Taiwan 1676 39.90

China 1131 19.17

Korea 845 76.82

United Kingdom 804 17.87

Greece 548 39.14

Italy 537 38.36

Spain 408 16.32

Turkey 399 33.25

India 281 17.56

Collaboration among various countries is shown in Fig. 5. As we can observe
from the results, there were strong collaborations from the researchers in USA
from one side and other countries such as United Kingdom, Taiwan, Singapore,
Canada, Australia. Another strong collaboration is from the researchers in China
and other countries such as USA, United Kingdom, India, Bangladesh, Australia.
Another relevant collaboration is between UK/Belgium, and Brazil/Italy.

Fig. 5. World Map Collaboration (social structure)

Finally, Fig. 6 shows the ten most used keywords in the BFP articles. Web
of Sciences provides two types of keywords: Author Keywords, which are those
provided by the original authors (Fig. 6a); and Keywords-Plus, which are those
extracted from the titles of the cited references by Thomson Reuters (Fig. 6b).
Keywords Plus are automatically generated by a computer algorithm.
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The most used author keywords are bankruptcy prediction (42), credit scor-
ing (37), bankruptcy (32), followed by credit risk(23), logistic regression (23),
financial ratios (22) and classification (21). Looking at the keywords plus, we
can see that bankruptcy prediction and prediction are the most popular (93 and
82, respectively). Moreover, it is very interesting to observe that bankruptcy pre-
diction is becoming a common keywords after 2008, while discriminant analysis
and classification are less popular after the crisis. Then, in 2011 performance
has increased its appearance and in 2018 the increase has overcome by other
common keywords.

(a) Authors’ keywords (b) Keywords-plus

Fig. 6. The evolution of the top 10 keywords

Drawing some preliminary conclusions, we can distinguish two main periods,
divided by the financial crisis in 2008. It is particularly evident that the pro-
duction and publication of BFP papers are increased at the turn of 2008. Also
the most used keywords changed. In fact in the first period the papers were
focused on the classification models (i.e. discriminant analysis) and data min-
ing, while in the second period the main interest is on bankruptcy prediction,
with a particular attention on financial ratios, on the evaluation of performance
and on neural networks. In-depth analysis of the themes emerging from the key-
words co-occurrences is provided in the next sub-section where we deal with the
conceptual structure of the BFM field.

3.2 Conceptual Structures and Networks

The following analysis aims at capturing the conceptual structure of the research
field considering the relations among emerging topics. We consider the co-
occurrences between authors’ keywords. These keywords represent a subset of
the most cited keywords in the papers. Higher weights can be related either
to high co-occurrence between different words or high occurrence of each key-
word. The Bibliometrics data matrices can be analyzed through classical facto-
rial techniques based on the eigen-decomposition of suitable squared symmetric
matrices derived from the original rectangular ones (whose dimensions can be
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related to several modes extracted from the database, such as keywords, doc-
uments, authors, first author’s country, etc.). For instance, starting from the
two-mode rectangular matrix documents per keywords, each column is binary
coded (presence–absence of a keyword in a document) and a Multiple Corre-
spondence Analysis (MCA) for all those keywords whose column sum is greater
than a specific threshold (say 5) is produced.

In particular, we carry out the MCA on the BFP bibliometric database to
identify groups of keywords with similar profiles of co-occurrences (Fig. 7a).
Looking at the first axis, the interpretation of the factorial axes underlines a
comparison between the keywords that characterize the use and application of
so-called “traditional” statistical models and techniques in scientific documents
where the main topic is the forecasting of bankruptcy (close to the origin of
the plane) and the keywords that characterize the use and application of so-
called “innovative” techniques, that are represented by neural networks, artifi-
cial intelligence, classification trees, genetic algorithms, till to the support vector
machines (on the right). Interpreting the second factorial axis, moving towards
the top side we find a different paradigm that calls for distress prediction models
and the case-based reasoning approach applied to business failure.

Based on the results of MCA, a cluster analysis is consistently performed in
order to recognize homogeneous groups of words. In our case, we identify five
groups (Fig. 7b). The group with the higher number of “similar” words is char-
acterized by the “traditional” statistical models and techniques (discriminant
analysis, logistic regression) applied for predicting the default. A second group
is identified by the “innovative” methods (artificial intelligence, neural networks,
classification tree). A third group is represented by the algorithms used for select-
ing the set of features (genetic algorithm). The last three groups are less dense
and more specific, and they are characterized by case-based reasoning models,
support vector machine and generic business failure models, respectively.

Fig. 7. Conceptual map of MCA and Dendrogram based on keywords-plus

The same data structure used for the factorial technique is then used for a
network analysis strategy. Here, the rectangular matrix is seen as an affiliation
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matrix that describes a two-mode network, that is a network with two sets of
nodes (here documents and keywords). Two-mode networks are useful to derive
one-mode networks by inner or outer projection (matrix product). For instance,
let X be the documents × keywords matrix and denote with X’ its transpose.
We can obtain the adjacency matrix (documents × documents) as XX’ that
establish a correspondence between documents that share the same keywords. At
our interest we focus on the keywords × keywords adjacency matrix obtained as
X’X. The diagonal entries hold the occurrence of each keyword, the off-diagonal
cells hold the desired co-occurrences between any pairs of keywords. Also in this
case a threshold value should be fixed to avoid trivial relationships. In our study
we select a quite high threshold (equal to 7), in order to visualize the core themes
emerging from the analysis.

The resulting adjacency matrix can be represented as a network graph where
each vertex is a word, the vertex size is proportional to the item occurrences
(diagonal elements), and the edge size is proportional to the items co-occurrence
(non-diagonal elements). The network representing the co-occurrence matrix
focuses on understanding the knowledge structure of the scientific field by exam-
ining the links between keywords. If the keywords are grouped in small dense
part of the graph, they are more likely to reflect a specific topic. According to
the definition of community in a strong sense, each node should have more con-
nections within the community than with the rest of the graph [27]. Different
algorithms for community detection in networks can be used. Some famous ones
are Louvain [10], Walktrap [25], Fastgreedy [13], Leading Eigenvector [23] and
Infomap [29]. In our study we use the Louvain algorithm applied to the subset
of the 30 most connected keywords. The results are showed in Fig. 8. Looking at
the colors it is possible to identify the cluster to which each word belongs.

We may distinguish words related to the traditional and innovative mod-
els used for the credit risk. A second group consists of algorithm applicable for
feature selection for the failure prediction. In the red group, there are the oppo-
sition between traditional methods (logistic and principal component analysis)
and innovative techniques (support vector machine). In the blue group there are
some keywords related to the macro-area of the business failure and financial
crisis.

Finally, we study the social structure that show how authors or institutions
relate to others in the field of scientific research, by using the co-authorship net-
work. With these networks, groups of regular authors, influent authors, hidden
communities of authors, relevant institutions, etc. can be discovered. Figure 9
shows the social structure between countries and affiliations. Firstly, some coun-
tries are isolate and have no connection with the others. Moreover, Latvia,
Lithuania, and Sweden are connected with themselves, but they do not have
any connections with others. The countries with the higher number of connec-
tions are USA, UK, and China.
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Fig. 8. Network of co-occurrence based on the authors’ keywords

(a) Country network (b) University network

Fig. 9. Collaboration network

4 Conclusions and Discussion

This paper aimed to use the bibliometric and social network analysis to create
a useful, structured portrayal of the business failure prediction (BFP) research
area and to achieve deeper insight into relationships between authors and coun-
tries. Moreover, by taking key documents into account, a better understanding
was achieved of the structure of citations and co-citations in the context under
analysis. Multiple correspondence analysis and cluster analysis enabled to take
into consideration the most influential and important keywords, as well as to
illustrate the evolution and trend of the most used words in research disciplines
related to the BFP by identifying some homogeneous groups. The information
for the bibliometric analysis have been downloaded by Web of Science database
and covered the period between 1990 and 2019. Two main research questions
have been investigated. The first one, impulsive structure hypothesis, was focused
on identifying a peculiar trend characterized by endogenous (new methods and
techniques) and exogenous facts, such as economic crises and emerging markets.
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The second research hypothesis, conceptual structure hypothesis, aimed at ana-
lyzing the collaboration patterns among scholars in the field and the emerging
key-topics.

The main results of impulsive structure analysis have shown how the number
of papers that analyzed the phenomenon of business failure is increased after
the financial crisis in 2008. Moreover, it is possible to distinguish an increasing
trend. In fact, 14% of the papers on the topic under investigation was published
before 2004, while 12% and 25% were produced between 2005 and 2008 and
between 2009 and 2012 respectively. Finally, the remaining 49% was appeared
after 2012. Moreover, the growth rate of the annual scientific production was
equal to 15.14%. Furthermore, looking at the average article citations per year,
some articles published in 2001 and 2008 were collecting the highest number of
average total citations per year, respectively equal to 6.8 and 7.1. Looking at
the international collaboration, the results have shown that the highest interna-
tional collaboration was in China and Greece, followed by USA, while the lowest
international collaboration, for countries with a relevant number of publications,
was observed for Taiwan, followed by Australia and India. Then, analyzing the
most used keywords, it was very interesting to observe that bankruptcy predic-
tion was becoming a common keywords after 2008, while discriminant analysis
and classification were less popular after the crisis. Then, in 2011 performance
has increased its appearance and in 2018 the increase had overcome by the other
common keywords.

The main results of Multiple Correspondence Analysis based on the key-
words to identify a conceptual structure have revealed that it was observable a
clear comparison between the “traditional” statistical models (i.e. discriminant
analysis) and “innovative” techniques (i.e. neural networks, artificial intelligence,
classification trees, genetic algorithms, support vector machines). Moreover, it
was possible to create some homogeneous groups, confirming the results of Mul-
tiple Correspondence Analysis. In particular, the group with the higher number
of “similar” words was characterized by the “traditional” statistical models and
techniques (discriminant analysis, logistic regression) applied for predicting the
default. A second group was identified by the “innovative” methods (artificial
intelligence, neural networks, classification tree). A third group was represented
by the algorithms used for selecting the set of features (genetic algorithm). The
last three groups were less dense and more specific, and they were characterized
by case-based reasoning models, support vector machine and generic business
failure models, respectively.

As future research proposal, a deeper investigation of the information down-
loaded from the Web of Science is desirable, such as the words in the papers,
the most influential references and authors. Moreover, an intra-period analysis
should be performed in order to capture the differences that characterize the pre-
crisis and post-crisis periods. Finally, it should be interesting to catch potential
connections to other research disciplines, by changing the research criteria to
enlarge the set of the papers.
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Abstract. Traditionally, researchers collect and analyze their own data,
or use published results to perform meta-analysis. However, they rarely
combine the experimental data with already published findings, which
is a more efficient and cost effective approach for experimental planning
and data analysis. In this work, we present two methods on the use of pre-
viously published data. One method targets variance minimization and
another minimizes mean squared error (MSE). Bayesian approaches to
prior information are not considered in this work. Variance minimization
is designed to work in a class of unbiased estimators, where both (1) the
estimators based on experimental data and (2) the estimators available
as additional information (previously published results) are unbiased.
MSE minimization relaxes the unbiasedness assumption on additional
information and assumes that bias may be present. The use of these
methods is illustrated for the analysis of association between gestational
age at birth and third grade academic performance.

Keywords: additional information · variance minimization ·
association between gestational age and academic performance · mean
squared error · asymptotic bias

1 Introduction

While working on their research questions about a quantity of interest θ, sci-
entists usually collect and analyze their own data. In this scenario, researchers
deal with a single data set, and the quality of data analysis is often limited
by its sample size. Often, this limitation is expressed by the Cramer-Rao lower
boundary on variance of estimators of θ.

There is only one way to overcome this limitation for a single data set: the
use of additional information. Additional information can come from experts, or
from external data sources other than the originally collected data. Additional
information can be combined with a given data set using Bayesian methodology
[3,6], but Bayesian approaches are not considered in this manuscript.

In this work, two approaches are presented which combine previously pub-
lished results with a researcher’s new data. We show how these approaches for
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the use of additional information apply to the analysis of association between
gestational age and third grade academic performance on a standardized reading
test. A previous publication that analyzes a similar research question serves as
the additional information.

Section 2 introduces the motivating example of association between gesta-
tional age and academic performance. Section 3 describes statistical methods on
the use of additional information and investigates their large sample proper-
ties. In Sect. 4, the narrative returns to the motivating example to estimate the
association between gestational age and academic progress incorporating previ-
ously published results on association. An R implementation for the use of addi-
tional information with an R package located at https://github.com/starima74/
AddInf is described in the Appendix. A short summary in Sect. 5 concludes the
manuscript.

2 Association Between Gestational Age at Birth
and Third Grade Academic Performance

The association between gestational age and academic performance has long
been established [1,2]. On average, children born prematurely under-perform in
academic performance as compared to full-term birth children. In this article,
the full-term birth group are children born with gestational age of 37 to 41 weeks.
Moreover, even within the full-term group, the students who were born at 37
weeks have lower standardized academic scores than those who were born at 38,
and even more so for those who were born 39:41 weeks [7].

2.1 Previously Published Findings on New York City

Specifically, [7] analyzed a large cohort of 128,050 full-term births to mothers
residing in New York City from 1988 to 1992 that linked their gestational age
to third grade mathematics and reading standardized scores. Both reading and
mathematics scores had means equal to 50 and standard deviations equal to 10.
Here, we focus on the reading scores only.

Table 1. Means and SEs of Standard Scores by gestational age (weeks).

Test 37 38 39 40 41 39 : 41
Reading 50.34(.093) 50.69(.060) 50.98(.050) 51.12(.050) 51.18(.065) 51.08(.031)

Table 1 reports means and standard errors of the scores extracted from Fig-
ures 1 and 2 of [7], separately for each gestational week of birth. In addition,
Table 1 also reports weighted averaged scores and weighted standard error (SE)
for weeks 39 : 41 using inverse variance weighting [5]. This weighted estimator
secures the smallest variance in the class of linear combinations of mean calcu-
lated separately for children born with gestational age (GA) of 39, 40 and 41

https://github.com/starima74/AddInf
https://github.com/starima74/AddInf
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weeks. As shown in [5], the difference in standardized scores between weeks 39,
40 and 41 is very small, at most 0.2. These very small differences are practically
irrelevant and statistically non-significant (the smallest P-value for pairwise com-
parisons was 0.025, see Table 2 in [5]). This justifies the use of the aggregated
average for 39 : 41 weeks instead if separate analysis of 39, 40, and 41 week
scores.

Using data in Table 1, we can calculate differences in academic performance
scores between early full-term births (weeks 37 and 38) and weeks 39 : 41. These
mean differences and their standard errors are reported in Table 2.

Table 2. Mean differences (SEs) of Standard Scores by gestational age.

Test Week (I) Week (J) Mean Difference (I-J) SE P

Reading 37 39 : 41 −0.74 0.098 < 0.0001

Reading 38 39 : 41 −0.39 0.068 < 0.0001

The authors [7] concluded that “Children born at 37 and 38 weeks ges-
tation score significantly lower on reading and math achievement tests than
children born at every other week.” Further, in their adjusted analyses, they
showed that the effect of gestational age continues to be significant. In the three
separate regression models controlling for obstetric-level, individual-level, and
community-level characteristics, respectively, gestational age was significant.

2.2 Data on Milwaukee Public Schools

To investigate the association between gestational age and standardized mathe-
matics and reading scores among third grade students, Milwaukee Public Schools
reading and mathematics test results, 2010 to 2015, were linked with students’
birth certificate data from Milwaukee county. This population and time range
is different from the New York City study, which creates a new research ques-
tion: whether the association between gestational age and academic performance
continues to exist in Milwaukee?

A technical report [9] analyzed 47,925 third grade test scores from 122 Mil-
waukee Public Schools. To make the test scores comparable to the New York
City study, third grade reading RIT scores [12] were converted to a standardized
version with a mean of 50 and a standard deviation (SD) of 10. For students of
37 weeks GA the mean reading score was lower than 39 : 41 week GA students
by 0.95 (SE = 0.277, p < 0.0001), whereas the score reduction for students 38
week GA was 0.374 (SE = 0.191, p = 0.0502)).

After controlling for the effects of gender, weight at birth, testing period (Fall,
Winter, or Spring), student race, mother’s prenatal cigarette use, enrollment in
special education services, indicator of English learner as a second language,
school attendance, clustering by school, the reading score for those who were



Use of Previously Published Data in Statistical Estimation 81

born at 37 weeks GA was higher by 0.173 (SE = 0.215, p = 0.4218) when
compared to those who were born at 39 : 41 weeks. Similarly, for those who were
born at 38 weeks the adjusted increase in the reading score was equal to 0.116
(SE = 0.167, p = 0.4905).

2.3 The Use of Both Data Sources

What the two separate data sources tell us is that the results of unadjusted anal-
yses are consistent between Milwaukee and New York City studies, whereas the
adjusted analyses do not coincide. This can be explained by different statistical
models and different sets of control variables used by the two studies.

Since unadjusted results are consistent between the two studies, it can be
assumed that the unadjusted difference of standardized reading scores is approx-
imately the same, or, if different, the difference is relatively small. This creates
an opportunity to combine both studies together to get a more precise estimate
of the effect of 37 or 38 week gestational age on third grade reading. Taking into
account that both Milwaukee and New York City studies used mutually inde-
pendent data sources, inverse variance weighting [5] can be used again. The com-
bined difference from both data sources in standardized reading scores between
students of 37 and 39 : 41 week(s) GA is −0.763 (SE = 0.092, p < 0.0001),
and the difference between students of 38 and 39 : 41 week(s) GA is −0.388
(SE = 0.064, p < 0.0001). This example clearly shows that the use of additional
information improved the estimates (SEs are smaller) and even reversed one of
the findings: the P-value for the 38 and 39 : 41 weeks difference was not signifi-
cant when only Milwaukee data were used and became highly significant when
both data sources were combined for the estimation.

The use of New York City data for the analysis of adjusted association
requires more complex methods than inverse variance weighting. These methods
are presented in Sect. 3.

3 Methodology

Let X = (X1, . . . , Xn) be a random sample of independent and identically dis-
tributed random variables with a probability density or measure function fX(x).
The parameter of interest is θ, which is not the only population parameter
estimable on X. Potentially relevant additional information can come from an
external data source, such as a previously published manuscript which used a
similar data source. We consider additional information reported by an estimate
of η, η̃, and its covariance matrix, cov(η̂). The estimate η̃ is an estimate of a
different population parameter η estimable on X. It is expected that this addi-
tional information is relevant to the estimation of θ. In this manuscript, the
relevancy is quantified by the correlation between θ̂ and η̂, where “hat” refers
to the estimators calculated on X and “tilde” is used to denote random quanti-
ties obtained as additional information. Both θ and η can be finite dimensional
vectors.
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To incorporate additional information, a class of linear combinations

θΛ = θ̂ + Λ (η̂ − η̃) (1)

is considered and it is assumed that regularity conditions of multidimensional
central limit theorem hold. Then, for large samples, the joint distribution of θ̂
and η̂ can be approximated by a multivariate normal distribution.

We also assume that E(θ̂) = θ and E(η̂) = η, and E(η̃) = η + δ where δ is
an unknown bias.

As shown in [10], the estimator with the smallest mean squared error (MSE)
in the class θΛ is

θ0 = θ̂ − cov
(
θ̂, δ̂

)
E−1

(
δ̂δ̂T

)
δ̂ (2)

with

MSE
(
θ0

)
= cov

(
θ̂
)

− cov
(
θ̂, δ̂

)
E−1

(
δ̂δ̂T

)
cov

(
δ̂, θ̂

)
, (3)

where δ̂ = η̂ − η̃, E(θ̂) = δ, and E
(
δ̂δ̂T

)
= cov (η̂) + cov (η̃) + δδT . For the

special case when δ = 0, the class θΛ becomes the class of unbiased estimators
and θ0 minimizes variance of θΛ, see [8].

The difficulty of applying θ0 to real data is the unknown covariances, and,
most importantly, the unknown δ in its structure. Dmitriev and his colleagues
[4] considered the same class of linear estimators but assumed that η̃ = η + δ is
known to belong to a pre-determined set of possible values and while studying
MSE minimization in these settings. They faced similar problems of estimating
unknown quantities.

Use of consistent estimators of covariances and the MLE δ̂ leads to

θ̂0 = θ̂ − ĉov
(
θ̂, δ̂

) (
ĉov (η̂) + c̃ov (η̃) + δ̂δ̂T

)−1

δ̂ (4)

which partially resolves the issue of unknown second moments with the exception
of the still unknown δ2.

3.1 Sub-optimality of θ̂0 Under δ = 0

The problem with θ̂0 is that under δ = 0,
√

n
(
θ̂0 − θ0

)
does not converge to

zero (in probability) which makes it asymptotically sub-optimal as compared to
θ0. Under δ = 0, the class θΛ becomes a class of unbiased estimators. If Λ is
estimated by

Λ̂ = ĉov
(
θ̂, δ̂

) (
ĉov (η̂) + c̃ov (η̃) + δ̂δ̂T

)−1

the new estimator θ̂0 does not have the smallest MSE for finite sam-
ple sizes. To explore asymptotic properties, we will assume that when n

increases,
√

n (ĉov (η̂) − cov (η̂))
p→ 0 and

√
n

(
ĉov

(
θ̂
)

− cov
(
θ̂
))

p→ 0, which
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holds for MLEs of covariances under certain regularity conditions. Similarly,√
m (c̃ov (η̃) − cov (η̃))

p→ 0, where m is the sample size of an external data set
used for obtaining additional information c̃ov (η̃) and η̃. When large sample sizes
are considered, both n and m are assumed to be large enough for convergence
to be approximately correct. It is important to connect rates of convergence to
infinity for n and m. For example, let the ratio n/m converge to a finite positive
limit τ .

Further, assume existence of real positive definite asymptotic covariance
matrices: n · cov (η̂) → Σηη, n · cov

(
η̂, δ̂

)
→ Σηδ, n · cov

(
δ̂
)

→ Σδδ, and
m · cov (η̃) → Kηη. Then,

Λ̂ = n · ĉov
(
θ̂, δ̂

)(
n · ĉov (η̂) + n · c̃ov (η̃) + n · δ̂δ̂T

)−1

→ Σηδ (Σηη + τKηη + ΣδδΔ)−1
, (5)

where Δ2 = limn→∞
(
n · cov

(
δ̂
))−1 (√

nδ̂
)2

. To investigate asymptotic
behaviour of Δ, δ should be a considered as a function of n. If δ is a scalar,
then

• if
√

nδ → ∞, then Δ2 is a degenerate random variable, which forces Λ̂ shrink
to zero in probability.

• if
√

nδ → h ∈ [0,+∞), then Δ2 is a non-central χ2
1

(
h2

)
random variable with

1 degrees of freedom and a non-centrality matrix h2.

In a special case of unbiased estimation Eδ̂ = 0, h = 0 and Δ2 becomes
the central χ2

1. In this case, Λ̂ converges to a random variable and thus is not a
consistent estimator of Λ. Moreover, Λ̂ �= Λ.

3.2 Sensitivity Analysis Conditional on δ = c

To address the concern of sub-optimality, [11] introduced a sample size dependent
sensitivity parameter c in the estimator

θ̂0(c) = θ̂ − ĉov
(
θ̂, δ̂

) (
ĉov (η̂) + c̃ov (η̃) + cδ̂δ̂T cT

)−1

δ̂. (6)

A pre-determined fixed vector c reduces the impact of δ estimation, but the
estimation is still present and its effect continues to exist making the estimation
procedure based on (6) sub-optimal under H0.

In this manuscript, we address this problem from another angle by consider-
ing

θ̂0c = θ̂ − ĉov
(
θ̂, δ̂

) (
ĉov (η̂) + c̃ov (η̃) + ccT

)−1
δ̂. (7)

which, when c = δ, is asymptotically the minimum MSE estimator with

cov
(
θ̂0c

)
= cov

(
θ̂
)

− cov
(
θ̂, δ̂

) (
cov (η̂) + cov (η̃) + ccT

)−1
cov

(
δ̂, θ̂

)
. (8)
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The estimator (7) is useful for sensitivity analysis. Instead of struggling with
sub-optimality (6) we propose to evaluate ranges of bias leading to a different
conclusion. Specifically, we propose to find cl and cu which do not change the
inference made under the unbiased case c = δ = 0.

4 Association Between Gestational Age and Academic
Performance (continuation)

The effect of early (37 weeks) versus normal (39 : 41 weeks) GA on third grade
standardized reading test scores was evaluated with Milwaukee Public Schools
data (Wisconsin, USA). Students with 37 week GA had 0.952 (

√
MSE = 0.277)

lower test scores as compared to children born at normal GA. This decrease
changed to an increase of 0.171 (

√
MSE = 0.216) after controlling for factors

significantly associated with the difference: gender, birth weight, test adminis-
tration period (fall, winter, or spring), race, prenatal cigarette use, enrollment in
special education, English language learner status, school attendance, and the
clustering effect of schools. The estimator θ̂0(c) was applied to improve these
estimates with the use of a similar previously published study on New York City
schools, which reported an unadjusted reduction in third grade standardized
reading by 0.726 (

√
MSE = 0.084).

Application of θ0(0): Minimum Variance Estimation
The use of this additional information improved the unadjusted and estimates
leading to a new estimate of the unadjusted difference = −0.749(

√
MSE =

0.080) and to a new adjusted difference = 0.301(
√

MSE = 0.130) at c2 = 0.
What this tells is that under the assumption of δ = 0, the confidence interval for
the unadjusted difference in standardized reading scores between 37 and 39 : 41
GA is = −0.749 with an asymptotic 95% confidence intervals (−0.592,−0.906)
and the adjusted difference is = 0.301(−0.046,−0.556). These two confidence
intervals are built under the assumption that δ = 0.

Application of θ0(1): Minimum MSE Estimation with an Estimated
by MLE Bias
If δ = c �= 0 the confidence cannot be assumed to be at 95%, but what we are
interested in is whether 0 belongs to the confidence interval or not.

If we set c2 = 1, then the unadjusted and adjusted differences are =
−0.860(

√
MSE = 0.158) and = −0.230(

√
MSE = 0.157), respectively. The

unknown covariances were estimated using cross validation.

Application of θ0
δ : MMSE Estimation with Assumed Bias δ

To perform sensitivity analysis we assume a range of specific values of δ and
plot asymptotic 95% confidence intervals. Figure 1 highlights two interesting
conclusions. First, the impact of additional information vanishes as bias becomes
larger. Second, the confidence interval is the smallest when the bias is equal to
zero. Moreover, only in a very small neighbourhood of zero the confidence interval
does not contain the zero difference in reading scores between 37 weeks and full
term gestational age.
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Fig. 1. Sensitivity analysis

5 Conclusion

Accuracy of statistical estimation based solely on experimental or observational
data is often limited and cannot be have a higher precision than a particular
threshold. This threshold can be determined, for example, by a Cramer-Rao
lower bound for variance. Use of previously published data allows overcoming
this limitation and produce estimators with better accuracy. We have introduced
a sensitivity analysis which helps investigating the impact of bias on minimum
MSE statistical procedure combining empirical data with external information.
Using Milwaukee county test score data we show that after adjusting for con-
founding variables the impact of early full-term birth is very small (near 0.2
on the standardized score scale). Moreover, this impact is shown to be only
marginally significant when the unadjusted impact 37 week gestational age is
nearly identical between New York and Milwaukee cities.

Thus, we conclude that additional information may be helpful for increasing
efficiency of statistical procedures, but a sensitivity analysis is an important tool
to investigate validity and robustness of such findings.

Authors acknowledgement Roman Vygon, a student from the Institute of
Applied Mathematics and Computer Science, Tomsk State University (Russia),
for his assistance with developing MMSE2 R function.
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Appendix

install.packages("devtools")
library(devtools)
install_github("starima74/AddInf", force=TRUE)
library(AddInf)

### A variance covariance matrix of adjuated
### and unadjusted estimates of differences
### in reading scores between children born
### at the gestational age of 37 and 39:41 weeks

K <- matrix(c(0.0467408718, 0.0499675797,
0.0499675797, 0.0768166235),2,2)

### an estimate of the parameter of interest
### (the adjusted estimate of differences in
### standardized reading scores between children
### born at the gestational age of 37 and 39:41 weeks
thetahat <- 0.173

### an estimate of the auxiliary parameter
### (the unadjusted estimate of differences in
### reading scores between children born at
### the gestational age of 37 and 39:41 weeks
betahat <- -0.952

### (Empty) Additional Information
### (on the auxiliary parameter)
Add.Info.Means <- list()
Add.Info.Vars <- list()
Add.Info.Biases <- list()

### the additional data source says the unadjusted
### difference is -0.74 with a standard error = 0.098
### (variance = 0.009604) this information may
### be biased as it came from a different population
Add.Info.Means[[1]] <- -0.74
Add.Info.Vars[[1]] <- 0.009604
# biased additional information
Add.Info.Biases[[1]] <- 1

### create the data frame where the additional
### information will be saved
Add.Info <- data.frame(Means = rep(NA,1),

Vars = rep(NA,1),



Use of Previously Published Data in Statistical Estimation 87

Biases = rep(NA,1))

### Adding the additional information to the data frame
Add.Info$Means = Add.Info.Means
Add.Info$Vars = Add.Info.Vars
Add.Info$Biases = Add.Info.Biases

### estimation based on both data sources
res <- MMSE2(K, -0.05, Add.Info, thetahat,

betahat, eig.cutoff = 1)

### the new estimate and its confidence interval
lo <- res$Theta.Est - 1.96*sqrt(res$Theta.Est.MSE)
est <- res$Theta.Est
hi <- res$Theta.Est + 1.96*sqrt(res$Theta.Est.MSE)
c(lo, est, hi)

### the empirical (no additional information)
### estimate and its confidence interval
theta_lo <- res$Theta.Hat - 1.96*sqrt(res$Theta.Hat.Var)
theta_est <- res$Theta.Hat
theta_hi <- res$Theta.Hat + 1.96*sqrt(res$Theta.Hat.Var)
c(theta_lo, theta_est, theta_hi)
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1 Introduction

Biochemical reaction model describe the enzyme processes and the basic enzy-
matic reaction, this complex biological system is given by the scheme

E + A
k1−−⇀↽−−
k−1

Y
k2−→ E + X (1)

where E is the enzyme, A the substrate, Y the enzyme-substrate intermediate
complex and X the product. The parameters k1, k−1 and k2 are positive rate
constants for each reaction [4]. The time evolution of the scheme can be deter-
mined from the solution of the system of coupled nonlinear [7], given as

⎧
⎨

⎩

u′(t) = −εu + ε(u + α − λ)v
v′(t) = u − (u + α)v
w′(t) = λv

(2)

with the boundary conditions

u(0) = 1, v(0) = 0, w(0) = 0

where ε, α and λ are dimensionless parameters.
Many methods have been presented to find the solution of a basic enzyme kinet-
ics. Introducing variational iteration method is used to solve a biochemical reac-
tion model [4]. The multistage homotopy analysis method is applied to solve a
biochemical reaction model of fractional order [7].
Our motivation for this work is to provide an efficient method to find the solution
for the biochemical Reaction Model. Bernstein polynomials method is one of the
important methods for solving differential equations [2,3,5]. Bernstein polyno-
mials will be used to find the solutions of the model then correct the previous
solutions by using the residual correction procedure.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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2 Description of Method with Application

The Bernstein polynomials of degree m are defined by

Bi,m(t) =
(

m

i

)

ti(1 − t)m−i, i = 0, 1, . . . ,m

where the binomial coefficient is
(

m

i

)

=
m!

i! (m − i)!
.

In general, we approximate the functions u(t),v(t), and w(t) with the first (m+1)
Bernstein polynomials as

u(t) =
m∑

i=0

ciBi,m(t) = CT
1 φ(t) (3)

v(t) =
m∑

i=0

ciBi,m(t) = CT
2 φ(t)

w(t) =
m∑

i=0

ciBi,m(t) = CT
3 φ(t)

where CT = [c0, c1, . . . , cm] and φ(t) = [B0,m(t), B1,m(t), . . . , Bm,m(t)]T.

The derivatives of the vector φ(t) can be expressed as dφ(t)
dx = D1φ(t), see

[1,6]. By applying the previous relations on the system (2), we have

CT
1 D1φ(t) + εCT

1 φ(t) − ε(CT
1 φ(t) + α − λ)CT

2 φ(t) = 0 (4)
CT

2 D1φ(t) − CT
1 φ(t) + (CT

1 φ(t) + α)CT
2 φ(t) = 0

CT
3 D1φ(t) − λCT

3 φ(t) = 0,

Collocation points will be substituting in (4) to find the unknowns ci, then
u(t),v(t), and w(t) will be found, we can find the collocation points by applying
Chebyshev roots

ti =
1
2

+
1

2 cos((2i + 1) π
2n )

, i = 0, 1, . . . ,m − 1. (5)

2.1 Residual Correction Procedure

If um is Bernstein series solution to (4) and En also an approximate solution,
n > m, then um(t)+En is the corrected approximate solution for (1). Moreover,
we call for |u(t) − (um(t) + En)| is corrected of absolute error. In the case exact
solution not found then we have to find error function, see [2].
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Results and Discussion
The model (2) is solved for the case m = 5 and α = 1, λ = 0.5, ε = 0.6. Some of
the error in solutions are found, so we need to improve the solution to get a more
accurate solution, residual correction procedure for the case n = 14 is applied to
correct the solutions. Figure 1 and 2 show the absolute error and the absolute
corrected error, for the case m = 5, n = 14, we can see the solutions are corrected
by applying residual correction procedure which described in (2). Figure 3 shows
the results of our technique and compare it with RK4. The results which obtained
by using the Bernstein polynomials method with residual correction procedure
are more accurate.

Fig. 1. Absolute of error function for the case m = 5.

Fig. 2. Absolute corrected of error function, for the case m = 5 and n = 14.
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Fig. 3. Corrected solutions for u(t),v(t),w(t) and RK4 for t ∈ (0, 1).

3 Conclusions

These results show that the Bernstein polynomials method with residual correc-
tion procedure has much impact on the accuracy of the solution on this basic
enzyme kinetics scheme. The method is easily implemented. First, the results of
scheme are obtained and then it is improved by residual correction procedure.
The method for different values of m and n is applied.
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Abstract. Crossover designs are used to assign multiple treatments to
the same unit over a period of time. In the search of optimal crossover
designs, approximate design theory emerged to be a powerful tool over
the last two decades. In its development, the idea of symmetrization plays
a crucial role (Kushner 1997). While the construction of exact symmetric
designs from the approximate design theory is relatively straightforward;
however, to achieve the symmetry, a large number of units is typically
required. There exist evidence that concept of symmetry could be gen-
eralized. This paper extracts and organizes some key ideas scattered in
the literature and formulates them into a systematic way of constructing
an important type of symmetric designs. We also give a survey of recent
advances on crossover designs and related studies, where new designs
could be derived by the methods laid out in this paper.

1 Introduction

Crossover designs are widely used in various fields due to their cost effectiveness
and statistical efficiency. Their applications lie in experiments where different
treatments, applied to a number of subjects during a sequence of periods, are to
be compared. The mathematical development for the problem of finding optimal
crossover designs could find its root in the simpler forms of block designs and
row-column designs. For these classical problems, combinatorial tools dominated
the literature. Many proposed designs, such as the balanced incomplete block
design, Latin square, Youden design, and Orthogonal Array, became textbook
standards.

In crossover designs, the treatments possess carryover effects in subsequent
periods. This additional nuisance factor complicates the problem substantially,
in the sense that the order of treatments within a block becomes relevant.
However, to handle carryover effects, more sophisticated crossover structures,
using combinatorial tools, have been proposed and their statistical properties
have been studied. Examples include the (strongly) balanced uniform crossover
design, the Type I orthogonal array, and the totally balanced crossover design.
Since Hedayat and Afarinejad (1978), the study of optimal crossover designs has
been an active area in design of experiments. Excellent surveys of the topic were
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given by Matthew (1988), Ratkowsky et al. (1992), Stufken (1996), Jones and
Kenward (2003), Senn (2003), and Bose and Dey (2009).

Designs constructed using combinatorial tools have a natural limitation: they
only exist under special configurations of the numbers of treatments, periods,
and subjects. For some proposed designs, the optimality only holds within a
subclass, while their performance among all possible designs remains unknown.
The seminal paper of Kushner (1997) adopted the approach of approximate
design theory and derived conditions for universal optimality. These conditions
are easy to check and also provide guidelines for constructing optimal or efficient
designs for any given configuration. The theory has since been further developed
and extended to more complicated models. The purpose of this paper is to
extract and organize some key ideas scattered in the literature and propose a
systematic way of constructing designs. Such ideas helps enhance the results for
related studies, and a short survey of the latter will also be given.

Throughout the paper, we illustrate the ideas for crossover designs, even
though many other problems could be tackled in a similar fashion. In a crossover
design with p periods, t treatments, and n subjects, the response is typically
modeled as

Ydku = μ + αk + βu + τd(k,u) + γd(k−1,u) + εku, (1)

Here, Ydku denotes the response from subject u in period k to which treatment
d(k, u) ∈ {1, 2, ..., t} is assigned by design d. εku is the corresponding error term.
Furthermore, μ is the general mean, αk is the kth period effect, βu is the uth
subject effect, τd(k,u) is the (direct) treatment effect of treatment d(k, u), and
γd(k−1,u) is the carryover effect of treatment d(k − 1, u) that subject u received
in the previous period (by convention γd(0,u) = 0).

Let Yd = (Yd11, Yd21, ...Ydp1, Yd12, ..., Ydpn)′ be the np × 1 response vector,
then Model (1) has the matrix form of

Yd = 1npμ + Zα + Uβ + T 1
d τ + T 2

dγ + ε, (2)

where α = (α1, ..., αp)′, β = (β1, ..., βn)′, τ = (τ1, ...τt)′, γ = (ρ1, ..., ρt)′, Z =
1n⊗Ip, U = In⊗1p with ⊗ being the Kronecker product of two matrices, and T 1

d

and T 2
d denote the treatment/subject and carryover/subject incidence matrices,

respectively. Here we assume E(ε) = 0 and V ar(ε) = In ⊗ V , where V is the
nonsingular within subject covariance matrix. The information matrix for the
direct treatment effect τ under Model (2) is

Cd = Cd11 − Cd12C
−
d22Cd21,

where Cdij = (T i
d)

′(Bn ⊗ Ṽ )T j
d , 1 ≤ i, j ≤ 2, with Bk = Ik − k−1Jk. Here −

represents a generalized inverse of a matrix and Ṽ = V −1−V −1JpV
−1/1′

pV
−11p

with Jk = 1k1′
k and 1k the vector of ones of length k. Let T i

u be the submatrix
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of T i
d associated with the uth subject, we have

Cdij =
n∑

u=1

(T i
u)′Ṽ T j

u − n(T
i

d)
′Ṽ T

j

d (3)

T
i

d = n−1
n∑

u=1

T i
u

Note that Cdij depends on V only through Ṽ . We have Ṽ = Bp when V = Ip

or V = Ip + γ1′
p + 1pγ

′. The latter form of the covariance matrix is called a
type H matrix. Following Kiefer (1975), we would like to find a design which
maximizes Φ(Cd) with the certain criterion function Φ satisfying

(C.1) Φ is concave.
(C.2) Φ(S′CS) = Φ(C) for any permutation matrix S.
(C.3) Φ(bC) is nondecreasing in the scalar b > 0.

A design is said to be universally optimal if it maximizes Φ(Cd) for any Φ satis-
fying these three conditions. It is well known that a universally optimal design
is also optimal under criteria of A, D, E, T, etc.

2 Some Critical Steps in Literature

We begin with the notations that are needed throughout this paper. Let Ωp,t,n

be the collection of all crossover designs with p periods, t treatments and n
subjects. Consider a design d ∈ Ωp,t,n to be the result of selecting n elements with
replacement from S, the collection of all possible tp treatment sequences. Now
define the treatment sequence proportion ps = ns/n, where ns is the number
of replications of sequence s in the design. For given n, a design is identified
by the measure ξ := (ps, s ∈ S). In approximate design theory, we ignore the
integer constraint of n and search for an optimal measure in the set P = {ξ :∑

s∈S ps = 1, ps ≥ 0}. An exact design can be constructed from ξ if and only
if ξ ∈ Pn := {ξ ∈ P : nξ is a vector of integers}. In particular, when ps is
irrational for at least one sequence, then the corresponding measure does not
belong to Pn for any n.

For sequence s ∈ S, let T 1
s and T 2

s be the corresponding direct and carryover
incidence matrices. Suppose a design d induces the measure ξ, by (3), we shall
have

Cdij = nCξij

Cξij =
∑

s∈S
psCsij − (T

i

ξ)
′Ṽ T

j

ξ

Csij = (T i
s)

′Ṽ T j
s

T
i

ξ =
∑

s∈S
psT

i
s



98 A. S. Hedayat and W. Zheng

As a result, we have

Cd = nCξ, (4)
Cξ = Cξ11 − Cξ12C

−
ξ22Cξ21.

Based on (4), in approximate design theory, we try to find the optimal measure
ξ∗ ∈ P to maximize Φ(Cξ). Such a measure, ξ∗, is called optimal.

Let G be the set of all t! permutations on symbols {1, 2, ..., t}. For permutation
σ ∈ G and sequence s = (t1 · · · tp) with 1 ≤ ti ≤ t, 1 ≤ i ≤ p, we define
σs = (σ(t1) · · · σ(tp)). For measure ξ = (ps, s ∈ S), we define σξ = (pσ−1s, s ∈ S).
A measure is said to be symmetric if σξ = ξ for all σ ∈ G. For sequence s, denote
by 〈s〉 = {σs : σ ∈ G} the symmetric block generated by s. Symmetric blocks
generated by two different sequences are either identical or mutually disjoint.
Therefore S is partitioned into m symmetric blocks, i.e. S = ∪m

i=1〈si〉, where m
is the Bell number indexed by p. For a symmetric measure and a fixed 1 ≤ i ≤ m
we have

ps = p〈si〉/|〈si〉| for s ∈ 〈si〉, (5)

where p〈si〉 =
∑

s∈〈si〉 ps and |〈si〉| is the cardinality of 〈si〉. Equation (5) means
that ps is the same for sequences from the same symmetric block. Now are we
ready to introduce Lemmas 1–2 and Theorems 1–2 in approximate design sense
due to Kushner (1997).

Lemma 1. There exists a symmetric measure which is universally optimal in
P.

Now define Ĉsij = BtCsijBt, 1 ≤ i, j ≤ 2 and Ĉξij =
∑

s∈S psĈsij . Then we
have

Ĉξij = Cξij + Bt(T
i

ξ)
′Ṽ T

j

ξBt, 1 ≤ i, j ≤ 2

It is obvious that Cξ12 and Ĉξ12 are the transpose of Cξ21 and Ĉξ21, respectively.

Lemma 2. For a symmetric measure ξ ∈ P we have Cξ = q∗
ξBt/(t − 1), where

q∗
ξ = cξ11 − c2ξ12/cξ22,

cξij = tr(Ĉξij), 1 ≤ i, j ≤ 2.

Lemmas 1 and 2 indicate that a symmetric measure is universally optimal
if and only if it maximises q∗

ξ . The latter is resolved by Theorem 1 below. To
understand the meaning of the theorem, we need to define the following concepts:
Let qs(x) = cs11 + 2cs12x + cs22x

2, where csij = tr(Ĉsij). Obviously, cs12 = cs21.
Let r(x) = maxs qs(x), y∗ = min−∞<x<∞ r(x), x∗ to be the unique solution of
q(x) = y∗ and the support T = {s ∈ S|qs(x∗) = y∗}.
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Theorem 1. A symmetric measure is universally optimal if and only if
∑

s∈T
psq

′
s(x

∗) = 0 (6)

∑

s∈T
ps = 1

where q′
s(x) is the derivative of qs(x) with respective to x.

Kushner (1997) has given an algorithm for computing x∗,y∗ and T . Note that
qs(x) is invariant with respect to treatment permutations, i.e.

qs(x) = qσs(x), σ ∈ G. (7)

Hence s ∈ T implies 〈s〉 ⊂ T . Therefore we have the partition T = ∪i∈IT 〈si〉
where IT ⊂ {1, 2, ...,m}. Hence, like S, the support T is also a partition of
symmetric blocks. In view of (5) and (7), now (6) is reduces to

∑

i∈IT

p〈si〉q
′
si

(x∗) = 0 (8)

One straightforward way to derive a universally optimal measure is to use
a symmetric measure satisfying (8). However, this approach necessitates a very
large number of subjects for the corresponding exact design. In fact, a symmet-
ric block, say 〈s〉, has t!/(t − ηs)! different sequences, where ηs is the number
of distinct symbols (treatments) in s. In particular, we have ηs = min(p, t)
or min(p, t) − 1 for sequences in T when Σ = Ip or more generally when Σ
is a type H matrix (Kushner 1998). As another extreme, Kushner (1997) also
provided a general optimality condition, which covers all possible universally
optimal designs.

Theorem 2. A measure is universally optimal if and only if

∑

s∈T
ps(Ĉs11 + x∗Ĉs12) =

y∗

t − 1
Bt, (9)

∑

s∈T
ps(Ĉs21 + x∗Ĉs22) = 0, (10)

∑

s∈T
psṼ (T 1

s + x∗T 2
s )Bt = 0, (11)

∑

s∈T
ps = 1. (12)

Note that (9)–(12) is a linear system of equations for proportions. We may
multiply n to the equations so that they become linear equations in ns. As a
result, one can find smallest universally optimal design by minimizing

∑
s∈T ns

subject to those linear constraints along with non-negativity requirements. Yet,
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it is not straightforward to use the conditions for an arbitrarily given n. The
number of equations in (9)–(12) is 2t2+pt+1, which is typically a lot larger |T |,
and hence there are infinity many solutions in P. However, there could be no
solutions at all in Pn due to the integer constraint. One remedy is to find a point
in Pn nearest to the hyperplane as defined by the linear equations. For example,
Zheng (2013a) used the Euclidean distance to find the nearest point, which
reduce the problem to the integer quadratic programming. Examples obtained
there showed that designs derived in this way are highly efficient. However, since
the integer quadratic programming is essentially an N-P hard problem and the
computation will be prohibitive even when p and t becomes larger.

As a compromise between Theorems 1 and 2, Kushner (1999) proposed using
a transitive subgroup of G and to partition each symmetric block into many
smaller sets, for which proportions of the sequences in these sets are equal. Let
H ⊂ G be a transitive subgroup and define the 2-orbit [(i, j)] = {(σ(i), σ(j)) :
σ ∈ H}, where (i, j) is a 2-tuple with 1 ≤ i, j ≤ t. Due to the group structure
of H, any two 2-orbits, say [(i, j)] and [(i′, j′)], are either disjoint or identical.
Correspondingly, we have the partition of the set of all 2-tuples {(i, j) : 1 ≤
i, j ≤ t} = ∪g

v=0[(iv, jv)] := ∪g
v=0Hv, where g + 1 is the total number of disjoint

orbits with (iv, jv) being generator 2-tuples. Without loss of generality we take
(i0, j0) = (1, 1) and we have H0 = {(i, i) : 1 ≤ i ≤ t} since H is transitive. Also
define Δv = (i(i,j)∈Hv

)1≤i,j≤t, 0 ≤ v ≤ g, where i is the indicator function. Then
we have

Δ0 = It, (13)
g∑

v=0

Δv = Jt, (14)

tr(Δ′
v1

Δv2) = δv1
v2

|Hv1 |, (15)

with δ being the Kronecker delta. For example, if H is the cyclic group gen-
erated by (12 · · · t), we have Δ1 = (ij=i+1 (mod t))1≤i,j≤t and Δv = (Δ1)v =
(ij=i+v (mod t))1≤i,j≤t for 0 ≤ v ≤ g = t − 1.

Similarly, we define H-symmetric blocks [s] = {σs : σ ∈ H}. Due to the sub-
group structure of H, we have the partition 〈si〉 = ∪ni

w=1[si,w], where ni is the
total number of disjoint H-symmetric blocks in 〈si〉 and si,w are the represen-
tative sequences. Define a measure to be H-symmetric if σξ = ξ for all σ ∈ H,
i.e.

ps = p[si,w]/|[si,w]|, s ∈ [si,w], (16)

where p[si,w] =
∑

s∈[si,w] ps. Equation (16) means that ps is the same for
sequences from the same H-symmetric block. For an H-symmetric measure,
Kushner (1999) has mentioned that Ĉξij ∗ Δv is proportional to Δv, where ∗
represents the Hadamard product. By (15), the orthogonality of Δv’s, we can
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derive the following decomposition.

Ĉξij = cξij,0It/t −
g∑

v=1

cξij,v|Hv|−1Δv, (17)

cξij,v = −tr(ĈξijΔ
′
v), 0 ≤ v ≤ g

Let csij,v = −tr(ĈsijΔ
′
v), then we have cξij,v =

∑
s∈S pscsij,v, 0 ≤ v ≤ g.

Applying (13)–(17) to Theorem 2 yields the following theorem (Kushner 1999).

Theorem 3. An H-symmetric measure is universally optimal if and only if

∑

i∈IT

ni∑

w=1

p[si,w](csi,w11,v + x∗csi,w12,v) =
y∗|Hv|
t(t − 1)

,

∑

i∈IT

ni∑

w=1

p[si,w](csi,w21,v + x∗csi,w22,v) = 0,

∑

i∈IT

ni∑

w=1

p[si,w] = 1.

hold for all 1 ≤ v ≤ g.

Remark 1. By (14) we have
∑g

v=0 csij,v = 0, hence v = 0 is not included in
Theorem 3.

Remark 2. When H = G, we have g = 1, Δ1 = Jt−It, cξij,1 = cξij , |H1| = t(t−1)
and henceforth

Ĉξij =
cξij

t
It − cξij

t(t − 1)
(Jt − It)

= cξijBt/(t − 1).

Hence Theorem 3 reduces to Theorem 1.

3 Pseudo Symmetric Designs

The advantage of using H-symmetric designs over symmetric designs is that the
former requires fewer blocks. One difficulty in using the H-symmetric designs is
that the resulting design depends on the choice of the subgroup of permutations
and not all choices lead to small designs. As an alternative, here we propose to
search for an optimal design in the subclass of pseudo symmetric designs, a sub-
class that contains the symmetric designs. The calculation of the proportions for
the pseudo symmetric designs is as simple (just two equations) as for symmetric
designs while the construction of pseudo symmetric designs requires much fewer
blocks than symmetric designs.

According to (5) (resp. (16)), for a symmetric (resp. H-symmetric) measure,
we have Cξij = Ĉξij =

∑
s∈S psĈsij , where ps are the same for sequences within
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the same symmetric (resp. H-symmetric) blocks. See Kushner (1997, 1999) for
details. The blocks are constructed so that Cξij , 1 ≤ i, j ≤ 2, have certain
desirable, but different, structures. In particular, a symmetric measure ensures
that Cξij is completely symmetric and an H-symmetric measure ensures that
Cξij is a linear combination of Δv, 0 ≤ v ≤ g, and the latter adds up to Jt, i.e.
(14). In either case, (9)–(12) reduce to simpler forms so that we can construct
universally optimal designs in a more straightforward way.

Both symmetric and H-symmetric designs are constructed via groups of per-
mutations. However, we can construct a desirable block by a collection of map-
pings, which are not permutations. A permutation is essentially a surjective
mapping with {1, 2, ..., t} as the domain. Let ηs be the number of distinct treat-
ments in sequence s. When ηs ≤ t−2 there are at least two columns and rows of
Ĉsij whose entries are all zero. Hence, permutations of all t treatments are not
necessary. Instead, we only need to consider injective mappings of {1, 2, ..., ηs}
into {1, 2, ..., t}.

In the study of mapping schemes, we focus on constructing pseudo symmetric
measures, which is defined to be measures such that Cξij = Ĉξij , 1 ≤ i, j ≤ 2,
and all these matrices are completely symmetric. By (4.5) of Kushner (1997), a
symmetric measure is also pseudo symmetric and hence Lemma 1 is automati-
cally true when the symmetric measure therein is replaced by pseudo symmetric
measure. By definition of pseudo symmetric measure, the same is also true for
Lemma 2. By examining the proof of Theorem 1, we have Corollary 1. Corollary
2 is a direct result of Theorem 1, Corollary 1 and (7).

Corollary 1. Lemmas 1 and 2 and Theorem 1 still hold if the symmetric mea-
sure therein is replaced by a pseudo symmetric measure.

Corollary 2. A pseudo symmetric measure is universally optimal if and only if
(8) and (12) hold.

Lemma 1 indicates that an optimal measure in the subclass of symmetric
measures is automatically optimal among P. Now Corollary 1 shows that we can
actually search for optimal measures in a larger subclass of pseudo symmetric
measures. The difference is that (5) does not have to hold for a general pseudo
symmetric measure.

Given sequence s = (t1, ..., tp), let li = ls,i = min{j : tj = i} with the
convention that the minimum over an empty set is infinity. Without loss of
generality, we assume that the sequence under mapping satisfies l1 ≤ l2 ≤ · · · ≤
lt, that is, the first occurrence of a treatment with larger label should be after
the first occurrence of a treatment with smaller label. This of course implies
t1 = 1, tp = ηs and ηs = max1≤i≤p ti. Now it is sufficient to restrict ourselves to
injective mappings with the domain {1, ..., ηs} and range {1, 2, ...t}. A mapping,
typically denoted by ϕ here, is represented by a sequence of ηs distinct numbers,
with the location and the number being the domain and image respectively. For
example, ϕ = (243) means that ϕ(1) = 2, ϕ(2) = 4 and ϕ(3) = 3. We also define
ϕ(s) = (ϕ(t1), ..., ϕ(tp)). If s = (11232), we have ϕ(s) = (22434).
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For sequence s, we associate M a mapping array with ηs rows. The entries
of M are from {1, 2, ..., t} and the columns of M are mappings, say ϕ1, ...., ϕh.
Denote by Ms the p×h array such that the columns are given by ϕ1(s), ...., ϕh(s).
For example, for the same sequence s = (11232) and the mapping array

M =

⎡

⎣
1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 3
4 2 3 3 4 1 4 1 2 2 3 1

⎤

⎦ , (18)

we have

Ms =

⎡

⎢⎢⎢⎢⎣

1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 3
4 2 3 3 4 1 4 1 2 2 3 1
2 3 4 1 3 4 1 2 4 1 2 3

⎤

⎥⎥⎥⎥⎦
.

If M consists of all t! permutations {1, 2, ...t}, Ms becomes a symmetric
design, a stronger structure than pseudo symmetry. Note that one sufficient
condition for a measure to be pseudo symmetric is given by

(Ĉξij =)
∑

s∈S
psĈsij = cξijBt/(t − 1), 1 ≤ i, j ≤ 2 (19)

∑

s∈S
psT

1
s Bt = 0 (20)

3.1 A General Solution: OAI of Strength 2

Proposition 1. (i) Given a sequence s, let M be an orthogonal array of type I
(OAI) with ηs rows, t symbols and strength 2. Then Ms is a pseudo symmetric
design. (ii) The juxtaposition of designs derived in (i) results in a pseudo sym-
metric design, while the OAI ’s used for generating each small design are allowed
to be different.

Proof. Note that (19) and (20) are shown by strength 2 and 1 of OAI respec-
tively.

Martin and Eccleston (1998) have given a different proof of part (i). Mean-
while, they also commented that “Optimality is much harder to show, and
depends on both the assumed dependence structure and the parameter values
for a given structure”. Finally, they discussed optimal designs through several
concrete examples without, however, providing general guidelines for deriving
optimal designs. Now, by combining Corollary 2 and Proposition 1, we have

Theorem 4. For a design constructed by Proposition 1 (ii), if its block propor-
tion also satisfy (8), then the design is universally optimal.
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In Theorem 4, the existence of pseudo symmetric design only relied on the exis-
tence of OAI , which in turn only rely on the values of p and t and not rely on
V . The matrix V shall decide the form of (8) and hence the block proportions in
order to achieve universal optimality. Of course, the value of n is still restricted
by the structure of OAI as well as the optimal block proportions derived from
(8). To be more specific, we can produce pseudo symmetric designs by applying
OAI mappings to sequences {si : i ∈ IT } and make proper numbers of copies of
each of them so that (8) is satisfied. This approach will work when the values of
the derivatives in (8) are rational, such as when V is a type H matrix. But these
values could be irrational for other forms of V , or other models, as the one in
Zheng (2015), and we shall look for efficient designs by rounding the proportions
to rational numbers. As will be shown in Sect. 3.3, an approximate solution of
(8) still yields a highly efficient design, and meanwhile the required n is allowed
to be much smaller.

The advantage of pseudo symmetric designs over symmetric designs is that
it can achieve higher flexibility in the number of subjects. To see this, assume
that T consists of a single symmetric block, say 〈s〉. A pseudo symmetric design
constructed by OAI frequently requires only k = t(t − 1) subjects, while a
symmetric design generated by s requires t!/(t−ηs)! = k(t−2)!/(t−ηs)! subjects.
Both of these two designs are universally optimal; however, the former provides
a more flexible solution since it requires fewer subjects than the latter. Clearly, if
all the mapping arrays are of strength ηs, the pseudo symmetric design reduces
to a symmetric design.

The type of H-symmetric designs as specified by Theorem 7.2 of Kushner
(1999) is also related to OAI with strength 2. However, a necessary condition
for such a design to exist is the existence of an OAI with t rows. See Examples
7.5 and 7.6 in Kushner (1999), where H is a cyclic permutation group and an
alternating permutation group respectively. By the present mapping approach,
we only require the existence of an OAI with ηs rows.

Kunert and Martin (2000b) proved that OAI is universally optimal among
all binary designs. This is a direct result of Corollary 1. To see this, we only have
to notice that csij , 1 ≤ i, j ≤ 2, is constant for all s ∈ 〈s∗〉, s∗ is the sequence
with ti = i, 1 ≤ i ≤ p. For other models than (1), Majumdar and Martin (2004)
studied the optimality of Ms∗ under various models when M is either OAI or
orthogonal array of type II. Hedayat and Yan (2008) studied the optimality of
Ms∗ for the self and mixed carryover effect model when p = 3 and the covariance
matrix V follows a stationary first-order autoregressive process. The results of
these papers could be essentially proved as long as we can show that T = 〈s∗〉.

3.2 The Case of V = Ip and t ≥ p − 1

Recall that s∗ is the sequence with ti = i, 1 ≤ i ≤ p and denote by s# the
sequence with ti = i, 1 ≤ i ≤ p − 1 and tp = p − 1. Let M be an OAI of
strength 2 with p rows and t symbols. Stufken (1991) considered the subclass of
designs with different proportions of Ms∗ = M, Ms# and another array with
the format Ms. He showed that the optimal proportions for these arrays are
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1/t(p − 1) for Ms# and the remaining proportions for Ms∗. With the help of
Kushner (1998), we can further show that such designs are universally optimal
among all designs. He gave the theoretical results regarding T in two separate
cases, namely t ≥ p or t < p. As a matter of fact, we can refine the result for the
special case of t = p − 1.

Proposition 2 (Kushner 1998). Assume V to be of type H. (i) If t ≥ p, we
have T = 〈s∗〉 ∪ 〈s#〉. Moreover, a (pseudo) symmetric measure is universally
optimal if and only if p〈s#〉 = 1/t(p − 1) and p〈s∗〉 + p〈s#〉 = 1. (ii) If t < p, T
consists of all sequences whose replications of different treatments do not differ
by a number larger than one.

Proposition 3. When V = Ip and t = p − 1, a pseudo symmetric measure is
universally optimal if and only if p〈s#〉 = 1.

Proof. By Theorem 1.a of Kushner (1998), we have x∗ = 0 and hence q′
s(x

∗) =
2cs12. By Corollary 2, the proposition will be proved as long as we can show that
cs12 = 0 for s ∈ 〈s#〉 and cs12 < 0 for s ∈ S\〈s#〉. The former is already shown
in the proof of Theorem 1.a of Kushner (1998) and the latter can be shown by
similar algebra.

Here, we try to use Patterson’s designs to achieve the higher flexiblity in the
number of subjects than the OAI strategy when V = Ip and t ≥ p − 1. A two
way array is called a Patterson array if it satisfies the following five conditions.

I. No symbol occurs in a given column more than once.
II. Each symbol occurs in a given row an equal number of times.

III. Each ordered succession of two distinct symbols occur equally often in
columns.

IV. In columns with a given symbol in the last row, the other symbols occur
equally often.

V. Every two symbols occur together in the same number of columns.

Theorem 5. Assume V = Ip, (i) If t ≥ p and M1 is a Patterson’s array with
p rows and t symbols, then M1s

∗ is a pseudo symmetric design. (ii) If t ≥ p− 1
and M2 is a Patterson’s array with p − 1 rows and t symbols, then M2s

# is a
pseudo symmetric design. (iii) The juxtaposition of designs produced in (i) and
(ii) respectively results in a pseudo symmetric design.

Proof. By Condition II, we have (20) for all designs as proposed in the theorem,
which indicates Cξij = Ĉξij , 1 ≤ i, j ≤ 2. For brevity, here we only show the
complete symmetry of Ĉξ12 = Bt[

∑
s∈S ps(T 1

s )′BpT
2
s ]Bt, for which it is sufficient

to show the complete symmetry of
∑

s∈S ps(T 1
s )′BpT

2
s . Note that the values of

the (i, j)th element of (T 1
s )′BpT

2
s only depend on the locations of symbols i and

j in the sequence s. For the designs produced here, the columns represent the
sequences.

For (i), the design produced is M1 itself and hence the produced sequences
correspond to the columns of M1, i.e. satisfying Property I. For a given sequence
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or column, (a) If i is immediately preceded by j, then the (i, j)th element takes
the value of 1− 1/p. (b) If the jth element is in the last row, the (i, j)th element
takes the value of 0. (c) If the sequence does not have the two symbols simultane-
ously, the (i, j)th element takes the value of 0. (d) If none of above happens, the
(i, j)th element takes the value of −1/p. Now Property III guarantees that each
off-diagonal element of the t×t matrix fall into category (a) for the same number
of sequences. Properties II and IV guarantees that each off-diagonal element fall
into category (b) for the same number of times. Property V guarantees that each
off-diagonal element fall into category (c) for the same number of sequences. As
a result, each off-diagonal element will fall into category (d) for the same num-
ber of sequences. The equality of the diagonal elements of

∑
s∈S ps(T 1

s )′BpT
2
s is

guaranteed by Property II.
The proof for (ii) is similar and the extension to (iii) is straight forward.

Shah, Bose, and Raghavarao (2005) showed that the Patterson’s array is
universally optimal among binary designs. The latter is now a direct result of
Theorem 5, in view of Corollary 1 (i) and Ms∗=M. Patterson (1952) proposed
seven conditions and studied the construction of this desirable structure. In fact,
five of the seven conditions are as listed above, and the remaining two conditions
are direct results of these five. The proof of Theorem 5 is valid if Condition II
is replaced by the weaker condition II’: each symbol occurs in the last row an
equal number of times. It is not clear if this weaker structure permits alternative
methods of construction besides the ones in Patterson (1952). The Patterson
array based on Method 1 in Patterson (1952) can be derived from Kushner
(1999)’s approach by taking H to be a cyclic permutation group. In studying
optimal designs for the model with self and mixed carryover effects, Kunert and
Stufken (2002) proposed a structure called a totally balanced design. A totally
balanced design reduces to a Patterson array when the number of symbols is not
less than the number of rows.

3.3 An Example

Now, for the case p = 4, t = 7 and V = Ip, we compare the flexibility, i.e. the
number of subjects, associated with the symmetric, H-symmetric and pseudo-
symmetric measures discussed and introduced in this paper. Since the juxtapo-
sition of two optimal designs under the discussion of this paper is still optimal,
we look for the smallest possible numbers of subjects in order for these types of
designs to be optimal.

To construct a symmetric design, we must have: (i) p〈s#〉 = 1/t(p−1) = 1/21
and p〈s∗〉 = 20/21, where s∗ = (1234) and s# = (1233); (ii) Sequences in each of
the two symmetric blocks should be evenly weighted. Since |〈s∗〉| = 7×6×5×4 =
840 and |〈s#〉| = 7 × 6 × 5 = 210. Since |〈s∗〉| = 4|〈s#〉| and p〈s∗〉 = 20p〈s#〉,
the minimum number of subjects can be achieved by making one copy of 〈s#〉
and 5 copies of 〈s∗〉. As a result, we have n = 210 × 21 = 4410. If we use a
pseudo symmetric design constructed by OAI , whose number of columns could
be as small as t(t − 1) = 42, the minimum size of the design then reduces to
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n = 42 × 21 = 882. The H-symmetric design with H the cyclic subgroup yields
the same size, i.e. n = 882. However, the last approach only works when t is
prime.

A symmetric design with p〈s∗〉 = 1 has the efficiency lower bound of 0.9861.
To construct such a design, the minimum number of columns of such a design
will be n = 840. A pseudo symmetric design constructed by OAI with p〈s∗〉 = 1,
having the same efficiency, only needs n = 42. By using the following Patterson
array (Patterson 1952), we can further reduce the size to n = 14.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 3 4 5 6 7 1 7 1 2 3 4 5 6
4 5 6 7 1 2 3 5 6 7 1 2 3 4
7 1 2 3 4 5 6 2 3 4 5 6 7 1

4 Recent Advances on Related Problems

Here we would like to go through several examples to showcase that the approx-
imate design theory has become a powerful tool in deriving optimal crossover
or other similar designs. Some of the following result can be further enhanced
by exploring the H-symmetric and/or pseudo symmetric designs as illustrated
Sects. 2 and 3.

One possible concern with Model (1) is from the patient noncompliance in
clinical trials, namely some will drop out of the study before the end of the p
periods. As a result, the optimal design under full compliance may no longer be
optimal or even efficient any more, and sometimes these designs could be even
disconnected, see Godolphin (2004). By assuming the dropout mechanism to be
completely random, we can utilize the observed data by standard least square
estimates, and the information matrix, Cd, can be still derived in a smilier way
as in this paper, except that this matrix is a random functional of the dropout
realization. Low, Lewis, and Prescott (1999) focused on the criteria of EΦA(Cd),
where ΦA is the A-criterion function and the expectation is taken with respect to
the distribution of dropout realization. They carried out direct search for efficient
designs in the pool of Latin squares. Combinatorial tools are adopted by Bose
and Bagchi (2008) and Majumdar, Dean, and Lewis (2008). They constructed
designs optimal for the cases of full compliance or the case when all patients drop
out at a certain period. The latter is justified by protecting for the worst case
when all patients drop out at the earliest possible period. In fact, the complexity
in calculating the expectation in EΦA(Cd) has prohibited the usage of combina-
torial tools. Zheng (2013a) proposed to use a surrogate criterion function, which
allows for studying the problem in the framework of approximate designs the-
ory. Necessary and sufficient conditions of the universal optimality are derived
for both pseudo symmetric designs and asymmetric designs. Further, a formula
is given to evaluate the efficiency of any given design under the true criteria of
EΦ(Cd).

Another variant of Model (1) is motivated by fact that sometimes treatments
with strong direct effect may also tend to have stronger carryover effects. One
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way to deal with this issue is by a proportional model, where the carryover
effects are assumed to be proportional to their direct effects, i.e. γ = λτ for
a constant λ. This small modification lead us to a nonlinear model where the
information matrix Cd depends on unknown parameters τ and λ. Kempton et
al. (2001) adopted the Bayesian design approach and defined the criterion of
EΦA(Cd). Here the expectation is taken with respect to the prior distributions
of τ and λ, which are assumed to be multivariate normal and uniform distribution
respectively. They proposed the strongly neighbour-balanced design and proved
its A-optimality. The later research are all carried out in approximate design.
Bailey and Kunert (2006) adopted the local optimal design for λ by replying
on a good guess of it in design stage and adopt the Bayesian design for τ while
relaxing the prior distribution to be any exchangeable distribution. They proved
the A-optimality of totally balanced design (Kunert and Stufken 2002) when λ is
smaller than a bound which is further controlled by 1/(p−1). This indicates that
the optimality will not hold when the carryover effects has a moderate positive
proportionality with the direct effect. Bose and Stufken (2007) assumed λ to be
known even in data analysis stage, and as a consequence the optimality problem
reduces to a linear model case. For the same problem as in Bailey and Kunert
(2006), Zheng (2013b) derived the optimality conditions for criteria A, D, E and
T. The idea therein can be implemented to deal with other criteria functions.
Furthermore, Zheng (2013b) allowed for the general within subject covariance
matrix.

The additivity assumption in Model (1) has been frequently challenged. One
remedy is to assume the full interaction between the direct and carryover effects.
Early works by Sen and Mukerjee (1987) and Park et al. (2011) used the com-
binatorial tools while the recent work by Bailey and Druilhet (2014) adopted
Kushner’s approximate design theory. To achieve a balance for the trade-off
between bias and variance, the self and mixed carryover effect model was first
proposed and studied by Afsarinejad and Hedayat (2002) for the special case of
p = 2. To deal with longer sequences, we have to resort to approximate design
theory, which is the case for all follow up works. Kunert and Stufken (2002)
proved that a totally balanced design, if it exists, is universally optimal when
t > 3 and 3 < p < 2t. They also showed that a generalized Latin square with
some extra properties will be optimal whenever p = t or p = 2t. Kunert and
Stufken (2008) extended the work by focusing on the special case of t = 2.
Hedayat and Yan (2008) showed that Type I orthogonal array is optimal when
the correlation between observations is a stationary first-order autoregressive
process and p is 3 or 4. Druilhet and Tinsson (2009, 2014) considered optimal
circular designs, where there exists a pre-period as a copy of the last period
so that the treatment in the pre-period has carryover effect on the first period.
Wilk and Kunert (2015) extended Hedayat and Yan (2008)’s result to the case
of t ≥ p ≥ 4.

Motivated by agricultural and other applications, researchers have proposed
the interference model where each treatment applied at a certain unit will have
side effects on all neighboring units. When the unites within a block is arranged in
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a one-dimensional space, Kunert and Martin (2000a) investigated the case when
p is 3 or 4, which is extended by Kunert and Mersmann (2011) to t ≥ p ≥ 5.
The results are in the format of Theorem 1. Following their work, Zheng (2015)
achieved the following generalization: (i) The linear equation as in Theorem 2
is derived. (ii) It allows for any numbers of p ≥ 3 and t ≥ 2. (iii) It allows for
any within-block covariance matrix. Moreover, the Kiefer’s equivalence theorem
are derived and it can be used to find sequences set T without locating the x∗

value. The arguments developed therein shed light on other models with at least
two sets of treatment-related nuisance parameters. Recently, Li, Zheng, and Ai
(2015) derived optimal designs for estimating both the direct and total effects
when the side effects are proportional to the direct effects while the within block
covariance matrix is allowed to be of any form.

One variant of the interference model is the circular design, in which each
block has a guard plot at each end so that each plot within the block has two
neighbors. In early research, combinatorial tools dominated. See for instance
Gill (1993) and Druilhet (1999). Also see Filipiak and Markiewicz (2003), who
assumed random side effects, and Bailey and Druilhet (2004) for estimating the
total effects. Subsequently, research used approximate design theory. For exam-
ple, Filipiak and Markiewicz (2005) considered special correlated observations,
for which only left side neighbor effects exist; Filipiak and Markiewicz (2007)
considered again the random side effects model; Filipiak (2012) studied the spe-
cial case of equal left and right side effects; Druilhet and Tinsson (2012) tackled
the original problem by deriving pseudo symmetric designs. All of these papers
assume that the within block covariance matrix is proportional to the identity
matrix. Recently, Zheng et al. (2017) made a big leap forward in two directions.
(i) The within block covariance matrix is arbitrarily. (ii) The general linear equa-
tions system is established as the necessary and sufficient condition for universal
optimality.

5 Discussions

The main idea of approximate design theory (Kushner 1997) is symmetrization,
which allows us to restrict consideration to the subclass of symmetric designs.
The optimization within this subclass reduces to finding the maxmin of design-
based quadratic functions, and the latter are typically computable by an algo-
rithm. The issue with such an approach is that the existence of exact symmetric
designs is rare due to the equal replications of sequences within a symmetric
block. To remedy this, Kushner (1999) proposed H-symmetric designs by using
subgroup of permutations. Here we propose the idea of pseudo symmetric designs
for the same purpose. We illustrated that the latter is easier to implement and
sometimes provides a better flexibility on the requirement of n, namely the
number of subjects. To achieve further flexibility, we may round up the sequence
proportions as in the example in Sect. 3.3. The construction of pseudo symmetric
designs are worthy of study for other models.

Kushner (1997) has also provided a useful tool to check the universal optimal-
ity of any arbitrary design, namely the linear equations in Theorem 2. Note that
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the solution to the linear equations exist in Pn for only selected number of n, i.e.,
for many cases there does not exist a universally optimal exact design. Hence it
remains an open question of how to utilize it to construct optimal or efficient
designs. One approach is the find a point in Pn nearest to the hyperplane defined
by the linear equations. For example, Zheng (2013a) used Euclidean distance to
find the nearest point, which reduce the problem to the integer quadratic pro-
gramming. Examples obtained there showed that designs derived in this way
are highly efficient. However, since integer quadratic programming is essentially
an N-P hard problem, and the computation will be prohibitive when p and t
become larger.

By using approximate design theory, we shall be able to find optimal designs
for new models and enhance results for old models. It is technically more chal-
lenging to derive the general optimality condition as in Theorem 2 than the
optimality condition for (pseudo) symmetric designs. Such results have their
value, paving the way to the construction of asymmetric crossover designs. A
further fundamental problem is to develop procedures of deriving exact designs
based on the theorems in approximate design theory.
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Abstract. Accelerated degradation tests are used to provide accurate
estimation of lifetime characteristics of highly reliable products within
a relatively short testing time. Data from particular tests at high lev-
els of stress (e.g., temperature, voltage, or vibration) are extrapolated,
through a physically meaningful statistical model, to attain estimates of
lifetime quantiles at normal use conditions. The gamma process is a nat-
ural model for estimating the degradation increments over certain degra-
dation paths, which exhibit a monotone and strictly increasing degra-
dation pattern. In this work, we contribute with analytical results in
regards to optimal design for accelerated degradation testing with single
failure mode that corresponds to single response component. The uni-
variate degradation process is expressed using a gamma model where
the concept of generalized linear model is introduced to facilitate the
derivation of an optimal design. Subsequently, we extend the univariate
model to characterize optimal designs for accelerated degradation tests
under different bivariate degradation models. The first bivariate model
includes two gamma processes as marginal degradation models. The sec-
ond bivariate models is expressed by a gamma process along with a mixed
effects linear model for the marginal components. Design optimization
is conducted with respect to the minimum asymptotic variance criterion
for estimating some quantile of the failure time distribution. Sensitiv-
ity analysis is considered to study the behavior of the resulting optimal
designs under misspecifications of parameter values.

Keywords: Accelerated degradation test · Gamma model · Linear
mixed-effects model · The multiplicative algorithm · Elfving’s
theorem · Locally c-optimal design

1 Introduction

Along with the enormous advances of industrial technologies, the companies
are forced to manufacture highly reliable products in order to compete in the
industrial market. During the design stage, it is extremely significant to assess
the reliability related properties of the product. One of the proposed methods
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to handle this issue is accelerated life testing (ALT). However, it is difficult to
obtain enough failure time data to satisfy the requirement of ALT because of the
high-reliable property of products. Hence, accelerated degradation test (ADT) is
suggested in order to give estimations in relatively short periods of time about the
life time and reliability of the system under study. ADT might be divided into
three classes, constant stress ADT (CSADT), step stress ADT (SSADT) and
progressive ADT. In our model, we consider the optimal planning of CSADT
where the testing units are divided into groups where each group is tested under
distinct stress combination. Numerous researches have considered the implemen-
tation of ADT to provide reliability estimations. Tsai et al. (2016) derived an
algorithm-based optimal ADT procedure by minimizing the asymptotic vari-
ance of the MLE of the mean time to failure of a product, where the sample
size and termination time of each run of the ADT at a constant measurement
frequency were determined. Zhang et al. (2015) suggested an analytical optimal
ADT design method for more efficient reliability demonstration by minimizing
the asymptotic variance of decision variable in reliability demonstration under
the constraints of sample size, test duration, test cost, and predetermined deci-
sion risks. Considering linear mixed effects model (LMEM), (Weaver and Meeker
2013) utilized also the minimum asymptotic variance criterion to develop opti-
mal design as well as compromise design plans for accelerated degradation tests.
Further, (Ankenman et al. 2003) provided D-optimal experimental designs for
the estimation of fixed effects and two variance components, in the presence of
nested random effects. The authors show that the designs when the samples are
distributed as uniformly as possible among batches result in D-optimal designs
for maximum likelihood estimation. For the non-linear case, (Bogacka et al. 2017)
presented D-optimal experimental designs for non-linear mixed effects models,
where a categorical factor with covariate information is a design variable com-
bined with another design factor. Moreover, (Sinha and Xu 2011) studied the
performance of the locally D-optimal sequential designs for analyzing generalized
linear mixed models. The authors demonstrate that one could attain considerable
gain in efficiency from the maximum likelihood estimators when data are aug-
mented with the sequential design scheme rather than the much simpler uniform
design scheme. Considering Gamma process models, (Tsai et al. 2012) discussed
the problem of cost-constrained optimal design for degradation tests based on
a gamma degradation process with random effects. The authors provide fur-
ther an analytical assessment of the effects of model mis-specification that occur
when the random effects are not taken into consideration in the gamma degrada-
tion model. In addition, (Pan and Sun 2014) introduced reliability model of the
degradation products with two performance characteristics based on a gamma
process, and then present the corresponding SSADT model. Next, under the
constraint of total experimental cost, the optimal settings such as sample size,
measurement times, and measurement frequency are obtained by minimizing
the asymptotic variance of the estimated 100αth percentile of the product’s life-
time distribution. In order to predict the lifetime of the population from ADT,
(Wang et al. 2015) considered gamma process with a time transformation and
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random effects. They present a deducing method for determining the relation-
ships between the shape and scale parameters of gamma process and accelerated
stresses. Duan and Wang (2019) discussed optimal design problems for CSADT
based on gamma processes with fixed effect and random effect. They prove that,
for D-optimality,V -optimality and A-optimality criteria, optimal CSADT plans
with multiple stress levels degenerate to two stress-level test plans only using
the minimum and maximum stress levels under model assumptions. Lim (2015)
developed statistical methods for optimal designing ADT plans under the total
experimental cost constraint and assuming that the degradation characteristic
follows a gamma process model. In addition, the author derives compromise
plans to provide means to check the adequacy of the assumed acceleration model.
ADT with the presence of competing failure modes is an important reliability
area to be addressed. Therefore, the study of the statistical inference of ADT
with competing failures is of great significance. (Haghighi and Bae 2015) intro-
duced a modeling approach to simultaneously analyze linear degradation data
and traumatic failures with competing risks in an SSADT experiment. Moreover,
a methodology for ALT planning when there are two or more independent fail-
ure modes was discussed by (Pascual 2007). The author assumed that the failure
modes have respective latent failure times, and the minimum of these times cor-
responds to the product lifetime. The latent failure times are assumed to be inde-
pendently Weibull distributed with known, common shape parameter. Consid-
ering accelerated destructive degradation tests (ADDT), (Shi and Meeker 2014)
proposed methods to find unconstrained and constrained optimum test plans for
competing risk applications under a V -optimality criterion that aim to minimize
the large-sample approximate variance of a failure-time distribution quantile at
use conditions. The authors consider linearly degraded response models with an
application for an adhesive bond. In regards to nonparametric methods of evalu-
ation, Balakrishnan and Qin (2019) introduced some approximation techniques
of the first passage time distribution of the degradation processes incorporating
random effects if the process type is unknown. The authors approximate the
density function of some stochastic degradation processes, i. e. Gamma process
and inverse Gaussian process, by inverting the empirical Laplace transform using
the empirical saddle-point method. Palayangoda et al. (2020) extended the work
of (Balakrishnan and Qin 2019) by proposing some improved techniques based
on saddle-point approximation where numerical examples and Monte Carlo sim-
ulation studies are used to illustrate the advantages of the proposed techniques.
Further, Balakrishnan et al. (2017) considered the theoretical aspects as well as
the application of Gamma processes in degradation analysis. The authors give
some statistical properties of degradation models based on Gamma processes
under different tests.

The rest of this article is organized as follows. Section 2 is devoted to analyt-
ically develop optimal experimental designs for a univariate gamma model. In
Sect. 3 we introduce an optimal design considering a bivariate gamma process
where the corresponding failure modes do not interact. In Sect. 4, we characterize
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a c-optimal design for an ADT with a bivariate degradation model given that
one of the marginal response components follows a gamma process model where
the other follows a LMEM. The paper closes with a short discussion in Sect. 5.
All numerical computations were made by using the R programming language
(R Core Team 2020).

2 Accelerated Degradation Testing Based on a Gamma
Process

The gamma process is a natural stochastic model for degradation processes in
which degradation is assumed to occur gradually over time in a sequence of
independent increments. In this section, we assume that the testing unit has a
single dependent failure mode where the degradation path is characterized by a
gamma process model in terms of a standardized time variable t. In addition, it
is assumed that there is a single stress variable and its (standardized) stress level
x can be chosen by the experimenter from the experimental region X “ [0, 1].
The subsequent subsections clarify the approximation of the gamma model with
a generalized linear model approach. Further, we explain the derivation of the
corresponding information matrix in order to obtain an optimal experimental
design with respect to the asymptotic variance of a quantile of the failure time
distribution.

2.1 Model Formulation

A gamma process Zt is a stochastic process with independent gamma distributed
increments. The process can be parameterized by the rate γ and a scale parame-
ter ν. If the process is observed at k subsequent time points tj , 0 ă t1 ă ... ă tk,
then the jth degradation increment Yj “ Ztj ´ Ztj´1 is gamma distributed with
shape γδj and scale ν, where δj “ tj ´ tj´1 is the length of the jth time interval
and Zt0 “ 0 at t0 “ 0.

We assume that the stress variable x only affects the rate γ “ γ(x) of the
gamma process and, hence, the shape parameters γ(x)δj of the increments while
the scale parameter ν is fixed and known. We further assume that the rate γ(x)
is given by a linear trend in the stress variable with a logarithmic link,

γ(x) “ eβ0`β1x, (1)

where the intercept β0 and the slope β1 are to be estimated. When a unit is
tested under stress level x during a time interval of length δ, the degradation
increment Y has density

fY (y) “ yγ(x)δ´1e´y{ν

Γ(γ(x)δ)νγ(x)δ
, (2)

where Γ(α) “ ∫ 8
0

zα´1e´zdz is the gamma function. The mean of the increment
is given by

μ(x) “ E(Y ) “ γ(x)δν “ eβ0`β1xδν. (3)
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Thus the mean μ(x) is linked to the linear predictor β0 `β1x by a scaled log link.
Hence, the model assumptions fit into the concept of generalized linear models.

To be more specific, in accelerated degradation testing n distinct testing units
are tested at potentially different stress settings xi which are held fixed over time
for each unit i “ 1, ..., n. Measurements are made at predetermined time points
t1, ..., tk which are identical for all units. The degradation increments Yij when
testing unit i during the jth time interval of length δj “ tj ´tj´1 are independent
gamma distributed with shape γ(xi)δj and scale ν.

2.2 Estimation and Information

Denote by β “ (β0, β1)T the vector of unknown parameters. By (2) the log-
likelihood of a single degradation increment Y is given by

�(β; y) “ (eβ0`β1xδ ´ 1) ln(y) ´ y{ν ´ ln
(
Γ(eβ0`β1xδ)

) ´ eβ0`β1xδ ln(ν) (4)

when the stress level x is applied and the increment is measured over a time
interval of length δ. The elemental Fisher information matrix Mβ (x, δ) related
to a single increment can be calculated as minus the matrix of expected second
order derivatives of the log-likelihood,

Mβ (x, δ) “ q(β0 ` β1x ` ln(δ))
(

1 x
x x2

)

, (5)

where q is defined by q(z) “ e2zψ1(ez) and ψ1(α) “ d2 ln (Γ(α)) {dα2 is the
trigamma function.

Because the increments Yi1, ..., Yik measured at times t1, ..., tk are statistically
independent within a unit i, the log-likelihood �(β; yi1, ..., yik) “ ∑k

j“1 �(β; yij)
of a unit i is the sum of the log-likelihoods for the single observations Yij . Thus
also the information matrix Mβ (xi) of a unit is the sum of the information of
the single increments,

Mβ (xi) “
k∑

j“1

Mβ (xi, δj) “ λ(β0 ` β1xi)
(

1 xi

xi x2
i

)

, (6)

where the “intensity” λ(z) “ ∑k
j“1 q

(
z ` ln(δj)

)
accounts for the contribution

of the non-linearity at z “ β0 ` β1xi to the information.
Furthermore, because measurements are statistically independent between

units, both the log-likelihood �(β; y11, ..., ynk) “ ∑n
i“1 �(β; yi1, ..., yik) and the

information

Mβ (x1, ..., xn) “
n∑

i“1

Mβ (xi) (7)

for the whole experiment summarize the log-likelihood and the information of
the units, respectively. This information matrix Mβ (x1, ..., xn) provides a mea-
sure for the performance of the experiment as its inverse is proportional to the
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asymptotic variance covariance matrix for the maximum likelihood estimator of
β.

In an accelerated degradation experiment the stress variable x is under con-
trol of the experimenter. For each unit i, the setting xi of the stress variable
adjusted to i may be chosen from an experimental region X . The collection
x1, ..., xn of these settings is called the design of the experiment. An optimal
design then aims at minimizing an optimality criterion which is a function of
the information matrix.

Finding optimal designs x1, ..., xn is, in general, a difficult task of discrete
optimization. To circumvent this problem we follow the approach of approximate
designs propagated by Kiefer (1959). For this first note that by (7) the informa-
tion matrix Mβ (x1, ..., xn) “ ∑m

i“1 niMβ (xi) does only depend on the set of
mutually distinct settings x1, ..., xm, say, in the design and their corresponding
frequencies n1, ..., nm,

∑m
i“1 ni “ n. For approximate designs the requirement of

integer numbers ni of testing units at stress level xi is relaxed. Then methods
of continuous convex optimization can be employed to find optimal designs, see
(Silvey 1980), and efficient designs with integer numbers ni can be derived by
proper rounding the optimal solutions to nearest integers. For this approach the
sample size n does not play a role on the optimization step when proportions
wi “ ni{n are considered. This approach is, in particular, of use when the num-
ber n of units is sufficiently large which is appropriate in the present non-linear
setup, where asymptotic performance is measured. Moreover, in this approach,
the frequencies ni will be replaced by proportions wi “ ni{n, because the total
number n of units does not play a role in the optimization. Thus an approximate
design ξ is defined by a finite number of settings xi from the experimental region
X with associated weights wi ą 0, i “ 1, ...,m,

∑m
i“1 wi “ 1. Accordingly, the

corresponding standardized, per unit information matrix is defined as

Mβ (ξ) “
m∑

i“1

wiMβ (xi) (8)

so that “exact” designs x1, ..., xn are properly embedded by Mβ (ξ) “
(1{n)Mβ (x1, ..., xn).

As the information matrix depends on the parameter vector β only through
the linear predictor β0 `β1x, a canonical transformation can be employed which
simultaneously maps experimental settings x to z “ β0`β1x and the parameters
β0 and β1 to the standardized value β0 “ 0 and β1 “ 1 for analytical solutions,
see Ford et al. (1992).

When all time intervals have the same length δj “ δ, j “ 1, ..., k, the influence
of the repeated measurements reduces to λ(z) “ k q

(
z ` ln(δ)

)
for the intensity

and, hence, to a multiplicative factor k in the information matrix. Thus, for
common design criteria, the number k of measurements is immaterial for design
optimization.
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2.3 Optimality Criterion Based on the Failure Time Distribution

In degradation testing we are interested in characteristics of the failure time
distribution of soft failure due to degradation under normal use condition xu.
It is supposed that the gamma process Zu,t describing the degradation under
normal use condition has the rate γ(xu) “ eβ0`β1xu as in Eq. (1) and scale
ν. Typically the normal use condition xu is not contained in the experimental
region X , xu ă 0. Further it is natural to assume that the degradation paths are
strictly increasing over time. Then a soft failure due to degradation is defined
as exceedance of the degradation path over a failure threshold z0. The failure
time T under normal use condition is defined as the first time t the degradation
path Zu,t reaches or exceeds the threshold z0, i. e., T “ inf{t ě 0; Zu,t ě z0}. In
order to derive certain characteristics of the distribution of the failure time, we
determine its distribution function FT (t) “ P(T ď t). For this note that T ď t if
and only if Zu,t ě z0. The degradation Zu,t at time t is gamma distributed with
shape γ(xu)t and scale ν. Hence, the distribution function of the failure time T
can be expressed as

FT (t) “ P(Zu,t ě z0)

“ 1
Γ(γ(xu)t)

∫ 8

z0

(z{ν)γ(xu)t´1e´z{νν´1dz

“ Q(γ(xu)t, z0{ν)

(9)

where Q(s, z) “ Γ(s, z){Γ(s) is the regularized gamma function and Γ(s, z) “∫ 8
z

xs´1e´xdx the incomplete gamma function.
We will be interested in some quantile tα of the failure time distribution. In

the case of a continuous distribution function FT (t), the α-quantile tα satisfies
FT (tα) “ α, i. e., it represents the time up to which under normal use conditions
α · 100 percent of the units fail and (1 ´ α) · 100 percent of the units persist.
The distribution function and, hence, the quantile tα “ tα(β) depends on the
parameter vector β in which the quantile tα is a decreasing functions of the
linear predictor β0 ` β1xu.

With this functional relationship the maximum likelihood estimator for the
quantile tα is given by t̂α “ tα(β̂), where β̂ is the maximum likelihood estima-
tor of β. The performance of these estimators is measured by their asymptotic
variance aVar(t̂α), and design optimization will be conducted with respect to
the minimum asymptotic variance criterion, i. e. an optimal design minimizes
aVar(t̂α). This criterion is commonly used in planning degradation tests when
experimenters are interested in accurately estimating reliability properties of a
system over its life cycle.

If the distribution function FT (t) is strictly increasing with continuous density
fT (t) “ F ′

T (t), the asymptotic variance can be derived by the delta method from
the information matrix in Sect. 2.2 as

aVar(t̂α) “ cTMβ (ξ)´1c, (10)

where c “ ∂tα(β){∂β is the vector of partial derivatives of tα “ F ´1
T (α) with

respect to the components of the parameter vector β evaluated at the true values
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of β. Let g(s) “ Q(s, z0{ν) be the regularized gamma function with the second
argument fixed to z0{ν, then tα “ g´1(α){γ(xu) by (9) and the vector c of
partial derivatives can be written as c “ ´tα(1, xu)T , where the minus sign and
the scaling factor tα do not affect the optimization problem. Hence, the minimum
asymptotic variance criterion is equivalent to a c-criterion with c “ (1, xu)T , i. e.,
extrapolation of the linear predictor β0 ` β1xu at the normal use condition xu,
and standard optimization methods for c-criteria can be employed. In particular,
the design optimization does not depend on which quantile tα is to be estimated,
and the obtained design is simultaneously optimal for all α.

Because the information matrix Mβ (ξ) depends on the parameter vector β,
this affects the design optimization. Hence, nominal values have to be assumed
for these parameters, and locally optimal designs can be obtained for those
nominal values. Numerical calculations indicate that the locally optimal designs
ξ˚ are supported on the endpoints of the design region X , i. e., they are of the
form ξ˚ “ ξw˚ , where ξw denotes a design with weight w1 “ w on x1 “ 0 and
weight w2 “ 1 ´ w on x2 “ 1. Under this premise the optimal weight w˚ can be
determined analytically by Elfving’s theorem Elfving (1952),

w˚ “ (1 ` |xu|)√λ(β0 ` β1)
(1 ` |xu|)√λ(β0 ` β1) ` |xu|√λ(β0)

(11)

for (standardized) normal use condition xu ă 0. This optimal weight w˚ is a
decreasing function in the distance |xu| between the normal use condition and
the lowest stress level x1 “ 0, and it decrease from w˚ “ 1 when formally
letting xu “ 0 to

√
λ(β0 ` β1){(

√
λ(β0 ` β1) ` √

λ(β0)) for xu → ´8, where
this lower bound is larger than 0.5 since β1 ą 0 and the intensity λ(z) is an
increasing function in z.

Concerning the parameters β0 and β1 the optimal weight w˚ is increasing in
the slope parameter β1 while it does not seem to be sensitive with respect to
the intercept parameter β0 as will be illustrated in Fig. 3 and Fig. 4 below for
some nominal values. Therefore it is of interest to check how a misspecification of
the nominal values for β may affect the performance of a locally optimal design
ξ˚ “ ξw˚ . To measure the performance we make use of the concept of efficiency

effaVar(ξ;β) “ aVarβ (t̂α; ξβ̊ )

aVarβ (t̂α; ξ)
(12)

of a design ξ with respect to the asymptotic variance for estimating tα when β
is the true value of the parameter, where aVarβ (t̂α; ξ) denotes the asymptotic
variance of t̂α at β, when the design ξ is used, and ξβ̊ is the locally optimal design
at β. This efficiency attains a value between 0 and 1. It can be interpreted as
the proportion of units needed, when the locally optimal design ξβ̊ is used, to
obtain the same precision in the asymptotic variance as for the design ξ under
consideration. Thus high values of the efficiency are advantageous for a design
to be used.
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Fig. 1. Optimal weights w˚ in depen-
dence on the normal use condition xu

for the univariate gamma process in the
example of Subsect. 2.4
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Fig. 2. Efficiency of ξ̄2 (solid line) and
ξ̄3 (dashed line) in dependence on the
normal use condition xu in the example
of Subsect. 2.4

2.4 Numerical Example

In this example we consider an accelerated degradation experiment as described
in Subsect. 2.1 with standardized normal use condition xu “ ´0.4, underlying
gamma process with scale parameter ν “ 1 and degradation threshold z0 “ 5.16.
We will be interested in estimating the median t0.5 of the failure time T due
to degradation. The standardized observation times are tj “ 0.25, 0.5, 0.75 and
1, i. e., there are k “ 4 degradation increments measured on time intervals of
constant length δ “ 0.25. With respect to the location parameters we assume
the nominal values β0 “ 0.23 for the intercept and β1 “ 0.53 for the slope.
For these parameter values, the distribution function FT (t) of the failure time
T is exhibited in Fig. 7 below as FT1 . The corresponding median failure time
t0.5 “ 5.39 for which FT (t0.5) “ 1{2 is indicated in Fig. 7 by a dashed vertical
line.

To find the optimal design ξ˚ for estimating the median failure time tα, we
apply the multiplicative algorithm following (Torsney and Mart́ın-Mart́ın 2009)
for the standardized stress parameter x on a grid with increments of size 0.01
on the design region X “ [0, 1]. The optimal design ξ˚ is found to be of the form
ξw with optimal weight w˚ “ 0.79 at the lowest stress level (x “ 0) and weight
1 ´ w˚ “ 0.21 at the highest stress level (x “ 1) in the experiment.

For illustrative purposes, the optimal weight w˚ is plotted in Fig. 1 as a
function of the normal use condition xu when the nominal values of the other
parameters are held fixed.

For the normal use condition xu close to the lowest value x “ 0 of the design
region, the optimal weight w˚ approaches 1, and w˚ decreases to 0.516 when xu is
far away from the design region (xu → ´8). The nominal value xu “ ´0.4 and
the corresponding optimal weight w˚ “ 0.79 are indicated in Fig. 1 by a vertical
and a horizontal dashed line, respectively. To imagine the gain in applying the
optimal design ξ˚, we exhibit the efficiency (12) of commonly used standard
designs ξ̄2 and ξ̄3 in Fig. 2, when the nominal values for the other parameters
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are held fixed. In this comparison the designs ξ̄m are uniform on m equidistant
stress values x1, ..., xm covering the whole range of the design region 0 ď x ď 1.
In particular, ξ̄2 is of the form ξw with w “ 1{2, and ξ̄3 assigns weight 1{3 to
each of the endpoints (x “ 0) and (x “ 1) and to the midpoint (x “ 0.5) of the
design region.
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Fig. 3. Dependence of the optimal
weight w˚ on β0 in the example of Sub-
sect. 2.4
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Fig. 4. Dependence of the optimal
weight w˚ on β1 in the example of Sub-
sect. 2.4
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Fig. 5. Efficiency of ξ˚ in dependence
on β0 in the example of Subsect. 2.4
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Fig. 6. Efficiency of ξ˚ in dependence on
β1 in the example of Subsect. 2.4

The nominal value xu “ ´0.4 of the normal use condition is indicated in Fig. 2
by a vertical dotted line. The uniform two-point design ξ̄2 shows a high efficiency
at values xu which are sufficiently far from the standardized design region. This
is in accordance with the similarity of the weights in ξ̄2 and in the optimal design
ξ˚ for such values. For xu close to the lowest experimental stress level x “ 0 the
efficiency of ξ̄2 drops to 50%. The uniform three-point design ξ̄3 shows a much
lower efficiency throughout. At the nominal value xu “ ´0.4 the efficiency of
the uniform two- and three-point designs ξ̄2 and ξ̄3 is effaVar(ξ̄2;β) “ 75% and
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effaVar(ξ̄3;β) “ 55%, respectively. That means that for the optimal design ξ˚
only 75% of units are required compared to the design ξ̄2 and 55 percent of
units compared to the design ξ̄3 to achieve the same accuracy for estimating the
median failure time.

To assess the sensitivity of the locally optimal design ξ˚ “ ξw˚ we plot the
optimal weights w˚ in dependence on the intercept and slope parameters β0 and
β1 in Fig. 3 and Fig. 4, respectively, while the other nominal values are held fixed.

In order to judge the performance of the locally optimal design ξ˚ “ ξβ̊ at
the proposed nominal values β0 “ 0.23 and β1 “ 0.53 of the location parameters
under misspecifications, we show the efficiency in dependence on the intercept
and slope parameters β0 and β1 in Fig. 5 and Fig. 6, respectively, while the other
parameters are held fixed to their nominal values. Figure 5 displays that the
optimal design ξ˚ maintain its efficiency under misspecifications of β0. In con-
trast, Fig. 6 depicts that misspecifications of the slope β1 substantially affects
the efficiency of the design ξ˚ and more attention should be paid to a correct
specification of the nominal value for the slope parameter opposite to the inter-
cept.

3 Bivariate Accelerated Degradation Testing with Two
Gamma Processes

We consider now the optimal design problem for a bivariate degradation process
incorporating serially two independent failure modes which means that a failure
of the system occurs when one of the two components fail.

3.1 Model Formulation

We assume that in the two degradation components takes place according to
independent gamma processes Z1t and Z2t, respectively, as described in Sect. 2,
where for both processes Zlt the rate γl(x) “ eβl0`βl1x depends on the same
standardized accelerating stress variable x P X “ [0, 1] via a linear trend βl0 `
βl1x under the log link as in (1). By assumption the degradation increments
Yilj “ Zltj ´ Zltj´1 of both components during the jth time interval of length
δj are all gamma distributed with shape γl(xi)δj and scale νl, l “ 1, 2, and
independent.

The failure times T1 and T2 of the components for soft failure due to degrada-
tion are defined as in Subsect. 2.3. The failure of the system occurs when either
of the two components fail, and the failure time T of the system is defined by
T “ min{T1, T2}. Because of the independence of the underlying processes, the
failure times T1 and T2 of the components are independent.

3.2 Information

Denote by βl “ (βl1, βl2)T the marginal parameter vector associated with
the lth failure mode. Because of the independence of the components the
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joint log-likelihood of β1 and βl is the sum �(β1, �(β2; y111, ..., yn2k) “
�(β1; y111, ..., yn1k) ` �(β2; y121, ..., yn2k) of the log-likelihoods �(βl; y1l1, ..., ynlk)
of the components given by 4. Hence, the maximum likelihood estimators β̂l

of βl in the whole system coincides with those in the marginal models and the
joint information matrix Mβ1,β2

(x1, ..., xn) for all parameters is block diago-

nal, Mβ1,β2
(x1, ..., xn) “

(
Mβ1

(x1, ..., xn) 0
0 Mβ2

(x1, ..., xn)

)

, where the diag-

onal blocks Mβ l
are the marginal information matrices for the single failure

modes as specified in Subsect. 2.2. Accordingly, for approximate designs ξ the
standardized information matrix

Mβ1,β2
(ξ) “

(
Mβ1

(ξ) 0
0 Mβ2

(ξ)

)

. (13)

is also block diagonal with the marginal information matrices Mβ l
(ξ) on the

diagonal.

3.3 Optimality Criterion Based on the Failure Time Distribution

As in Sect. 2.3 we are interested in characteristics of the failure time distribu-
tion of soft failures due to degradation under normal use condition xu. The
marginal failure times Tl under normal use condition are defined as the first
time t the degradation path Zu,lt reaches or exceeds the corresponding thresh-
old zl0, i. e., Tl “ inf{t ě 0; Zu,lt ě zl0}. A failure of the system occurs if one
of the components fail. Hence, the failure time T of the system is defined by
T “ min{T1, T2}. Because of the independence of the components the survival
function 1 ´ FT (t) “ P(T1 ą t, T2 ą t) factorizes into the marginal survival
functions 1 ´ FTl

(t). Hence, the failure time distribution of the system can be
expressed as

FT (t) “ 1 ´ (1 ´ FT1(t))(1 ´ FT2(t)), (14)

where FTl
(t) “ Q(γl(xu)t, zl0{νl) by (9).

As in Subsect. 2.3, we will consider quantiles tα of the failure time dis-
tribution. Also here the distribution function FT and, hence, the quantile
tα “ tα(β1,β2) is a function of the parameters and the maximum likelihood
estimate t̂α “ tα(β̂1, β̂2) of the quantile tα is based on the maximum likelihood
estimates β̂l of β for the components.

The task of designing the experiment is to provide an as precise estimate of
the α-quantile as possible, i. e., to minimize the asymptotic variance aVar(t̂α)
of t̂α at the normal use condition. As in Subsect. 2.3 the asymptotic variance
can be obtained as aVar(t̂α) “ cTMβ1,β2

(ξ)´1c, where c “ (cT
1 , cT

2 )T and cl “
∂tα(β1,β2){∂βl is the vector of partial derivatives of tα with respect to the
parameter vector βl evaluated at the true values of βl. Differently from the
univariate case in Subsect. 2.3 there is no explicit formula for tα. Therefore, the
general form of the gradient vectors cl will be derived by the implicit function
theorem as

∂tα
∂βl

“ ´ 1
fT (tα)

∂FT (tα)
∂βl

(15)
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in terms of the failure time distribution FT (t), where fT (t) “ ∂FT (t){∂t is
the density of T . The common scaling factor c0 “ ´1{fT (tα) is irrelevant for
the optimization problem. Hence, the components of the c-criterion vector c “
(cT

1 , cT
2 )T can be reduced to cl “ ∂FT (tα){∂βl. Based on Eq. 14, the gradient

vectors cl can be expressed as cl “ cl(1, xu)T similar to the univariate case,
where

cl “κl

(
1 ´ FTl′ (tα)

)
(

Γ(κl)
Γ(κl ` 1)2

(zl0{νl)κl
2F2(κl, κl;κl ` 1, κl ` 1; ´zl0{νl)

` (Q(κl, zl0{νl) ´ 1) (ln(zl0{νl) ´ ψ(κl)))
(16)

is a positive constant depending on β1 and β2, κl “ γl(xu)tα is the shape
parameter for an increment of the lth marginal process during time tα, 2F2

denotes the generalized hypergeometric function

2F2(κ, κ;κ ` 1, κ ` 1; ´z) “ 1 `
8∑

k“1

(
κ

κ ` k

)2 (´z)k

k!
,

and l′ is the index of the respective other component, i. e., l′ “ 2 if l “ 1 and
vice versa. For further details see (Tsai et al. 2012).

Since the information matrix in (13) is block-diagonal, the optimality crite-
rion

aVar(t̂α) “ c20(c
2
1(1, xu)Mβ1

(ξ)´1(1, xu)T ` c22(1, xu)Mβ2
(ξ)´1(1, xu)T ) (17)

is a weighted sum of the optimality criteria for the single components stated in
Subsect. 2.3 and constitutes, hence, a compound criterion.
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Fig. 7. Failure time distributions FT (t)
(solid line), FT1(t) (dashed line), and
FT2(t) (dotted line) for the bivariate
gamma process in the example of Sub-
sect. 3.4
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In the special case that the nominal values are identical for both components,
i. e., β1 “ β2, the optimal design ξ˚ for a single component will also be opti-
mal for the bivariate failure process, independent of α. In general, however, the
optimal design for the bivariate failure process has to be a compromise of the
marginal optimal designs for the components.

3.4 Numerical Example

In this example we consider an accelerated degradation experiment with two fail-
ure components following two independent gamma processes. The first process
is specified as in Subsect. 2.4 with scale parameter ν1 “ 1, degradation thresh-
old z10 “ 5.16 and nominal values β10 “ 0.23 for the intercept and β11 “ 0.53
for the slope. For the second process we assume a scale parameter ν2 “ 0.88, a
degradation threshold z20 “ 4.60 and nominal values β20 “ 0.31 for the intercept
and β21 “ 0.35 for the slope. As in Subsect. 2.4 the standardized normal use
condition is xu “ ´0.40 and the processes are measured at k “ 4 standardized
time points tj “ 0.25, 0.5, 0.75 and 1 with time intervals of constant length
δ “ 0.25. Also here we will be interested in estimating the median failure time
t0.5.

The distribution function FT (t) of the combined failure time T given by (14)
is plotted in Fig. 7 together with the distribution functions FT1(t) and FT2(t)
of the failure times T1 and T2 in the components. The median failure time
t0.5 “ 3.93 satisfying FT (t0.5) “ 1{2 is indicated there together with the median
failure times for the single components by dashed vertical lines.

For estimating the median failure time, also here the optimal design is sought
numerically by means of the multiplicative algorithm on an equidistant grid of
step size 0.01 on the design region. The locally optimal design obtained is of
the form ξ˚ “ ξw˚ assigning optimal weights w˚ “ 0.78 to the lowest stress
level x “ 0 and 1 ´ w˚ “ 0.22 to the highest stress level x “ 1 in the design
region. This optimal weight is close to the solution for the first component (see
Subsect. 2.4) and shows a similar behavior, when the value of the normal use
condition is altered. Similar considerations hold for the sensitivity with respect
to misspecifications of the nominal values of the parameters.

4 Bivariate Accelerated Degradation Testing
with a Gamma Process and a Linear Mixed Model

In Sect. 3 we considered a degradation process with two response components
where each is modeled by a gamma model. In this section we consider a bivari-
ate process with two different degradation models. The first degradation mode
is modeled by a gamma process as in Sect. 2. As in Sect. 3 the degradation incre-
ments of this component are denoted by Yi1j for unit i during a time intervals
of length δj “ tj ´ tj´1, j “ 1, ..., k. The second degradation mode is given by
a linear model with random intercept which will be described in the subsequent
subsection and is a special case of the model treated in (Shat and Schwabe 2021).
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Both failure modes are influenced by the same standardized accelerating stress
variable x P X “ [0, 1]. Apart from that the degradation modes are assumed
to be independent and, hence, do not have an interactive effect. As before, also
here a failure of the system occurs when at least one of the marginal degradation
paths exceeds its corresponding failure threshold.

4.1 Model Formulation of the Second Degradation Component:
Linear Mixed Model

Here we consider a linear regression model, similar to the model presented by
(Weaver and Meeker 2013), for a single stress variable x. Measurements Yi2j of
the second component at unit i are taken at the same time points t1, ..., tk as for
the first component and additionally at the beginning of the degradation exper-
iment, t0 “ 0, j “ 0, ..., k. These measurements are described by a hierarchical
model. For each unit i the observation Yi2j at time point tj is given by

Yi2j “ μi(xi, tj) ` εij , (18)

where μi(x, t) is the mean degradation path of the second marginal response of
unit i at time t, when stress x is applied to unit i, and εij is the associated
measurement error at time point tj . The mean degradation μi(x, t) is given by
a linear model equation in the stress variable x and in time t with stress-time
interaction,

μi(x, t) “ βi20 ` β21x ` β22t ` β23xt (19)

where only the intercept is unit specific and the time and stress effects are the
same for all units. Hence, the response is given by

Yi2j “ βi20 ` β21xi ` β22tj ` β23xitj ` εij . (20)

The measurement error εij is assumed to be normally distributed with zero mean
and a time independent error variance σ2

ε ą 0. Moreover, the error terms are
assumed to be independent within a unit over time.

On the aggregate level it is assumed that the units are representatives of
a larger entity. The unit specific intercept βi20 is modeled as a random effect,
i. e., βi20 is normally distributed with mean β20 and variance σ2

0 ą 0. All mea-
surement errors εij and random effects βi20 are assumed to be independent. For
transferring the results, it is assumed that the model defined in Eq. (20) also
holds for units under normal use condition xu.

4.2 Information for the Second Degradation Component: Linear
Mixed Model

To derive the information matrix in the mixed effects model we first write the
model in vector notation. Denote by β2 “ (β20, β21, β22, β23)T the vector of fixed
effect (aggregate) location parameters and by ς “ (σ2

0 , σ
2
ε)T the vector of variance

parameters. The (k`1)-dimensional vector of observations Yi2 “ (Yi20, ..., Yi2k)T
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at unit i is multivariate normal with expectation E(Yi2) “ (D ⊗ (1, xi)) β2,
where D “ (

(1, t0)T , ..., (1, tk)T
)T is the “design” matrix for the time variable

and “⊗” denotes the Kronecker product, and compound symmetric covariance
matrix Cov(Yi2) “ V with diagonal entries σ2

0 ` σ2
ε and off-diagonals σ2

0 . The

elemental information matrix (per unit) Mβ2,ς (xi) “
(
Mβ2

(xi) 0
0 Mς

)

of the

linear mixed model component is block diagonal with the elemental information

matrices Mβ2
(x) “ (DTV´1D) ⊗

(
1 x
x x2

)

for the location parameters and Mς

for the variance parameters on the diagonal, where Mς does not depend on the
setting x of the stress variable.

Accordingly, also for an approximate design ξ, the standardized information
matrix

Mβ2,ς (ξ) “
(

(DTV´1D) ⊗ M(ξ) 0
0 Mς

)

(21)

of the second component is block diagonal, where M(ξ) “ ∑m
i“1 wi

(
1 xi

xi x2
i

)

is

the standardized information matrix of linear fixed effect regression model which
does not depend on the parameters. For further details of the linear mixed model
see (Shat and Schwabe 2021).

4.3 Failure Time Distribution for the Second Degradation
Component: Linear Mixed Model

As mentioned in Sect. 2.3 we are interested in characteristics of the failure time
distribution of soft failure due to degradation. Therefore it is assumed that the
model equation μu(t) “ βu20 ` β21xu ` β22t ` β23xut is also valid under the
normal use condition, where μu denotes the mean degradation path for a unit
“u” under the normal use condition xu and βu20 is the random intercept of u. We
further denote by μ(t) “ E(μu(t)) “ β20 ` β21xu ` β22t ` β23xut the aggregate
degradation path under normal use condition.

A soft failure due to degradation for the second response component is defined
as the exceedance of the degradation over a failure threshold y20. This definition
is based on the mean degradation path μu(t) and not on a “real” path subject
to measurement errors. The failure time T2 under normal use condition is then
defined as the first time t the mean degradation path μu(t) reaches or exceeds the
threshold y20, i. e. T2 “ min{t ě 0; μu(t) ě y20}. Because the random intercept
βu20 is involved in the mean degradation path, the failure time T2 is random.

As in the previous sections, we will describe the characteristics of the failure
time T2 by its distribution function FT2(t). We note that T2 ď t if and only if
μu(t) ě y20 and, hence, we can derive

FT2(t) “ P(μu(t) ě y20) “ Φ((μ(t) ´ y20){σ0), (22)

where Φ denotes the distribution function of the standard normal distribution.
For later use we also state the gradient

∂FT2(t){∂β2 “ σ´1
0 ϕ ((μ(tα) ´ y20){σ0) (1, t)T ⊗ (1, xu)T (23)
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of FT2(t) with respect to the vector β2 of location parameters (cf. (Shat and
Schwabe 2021)), where ϕ denotes the density of the standard normal distribu-
tion.

4.4 Estimation and Information in the Combined Model

The combined model parameters β1, β2 and ς can be estimated by means of
the maximum likelihood method. As stated in Subsect. 3.3, in the combined
model the maximum likelihood estimates coincide with those for the single com-
ponents because of the independence between the failure modes. Accordingly,
the combined information matrix for all parameters is block diagonal with the
information matrices for the components on the diagonal. In view of (21) the
information matrix of an approximate design ξ is given by

Mβ1,β2,ς (ξ) “
⎛

⎝
Mβ1

(ξ) 0 0
0 Mβ2

(ξ) 0
0 0 Mς (ξ)

⎞

⎠ , (24)

where Mβ2
(ξ) “ DTV´1D ⊗ M(ξ) and Mβ1

(ξ) as in Subsect. 2.2.

4.5 Optimality Criterion Based on the Joint Failure Time

The combined failure time T is defined as the minimum of the marginal failure
times T1 and T2 for the single components derived in Subsects. 2.3 and 4.3.
As in Subsect. 4.5, the survival function of the joint failure time T factorizes
and, hence, the distribution function FT (t) can be expressed as FT (t) “ 1 ´
(1 ´ FT1(t))(1 ´ FT2(t)). The quantiles tα “ tα(β1,β2, ς) are functions of both
the location parameters β1 and β2 as well as on the variance parameters ς, in
general. Consequently, the maximum likelihood estimate of a quantile tα is given
by t̂α “ tα(β̂1, β̂2, ς̂) in terms of the maximum likelihood estimates β̂1, β̂2 and
ς̂ of the parameters β1, β2 and ς in the components. The asymptotic variance of
t̂α can again be obtained by the delta method and the implicit function theorem.
By the block diagonal structure of the information matrix and the decomposition
of the distribution function of the failure time we get

aVar(̂tα) “ fT (tα)´2
(

c21 (1, xu)Mβ1
(ξ)´1(1, xu)T ` c22 (1, xu)M(ξ)´1(1, xu)T ` c2ς

)

, (25)

where fT (t) is the density of T , c1 is defined as in (16) with the distribution
function FT2(tα) “ Φ((μ(tα)´y20){σ0) of the linear mixed effect model inserted,

c2 “ (1 ´ Q (γ(xu)tα, z10{ν1))σ´1
0 ϕ ((μ(tα) ´ y20){σ0)

(

(1, tα)
(

DTV´1D
)´1

(1, tα)T
)1{2

(26)
by (21) and (23), and c2ς “ cT

ς M
´1
ς cς is a constant independent of ξ in which

cς “ ∂FT2(tα){∂ς is the gradient of FT2(tα) with respect to the vector ς of
variance parameters.

The criterion (25) is a weighted sum of the optimality criteria for the single
components and constitutes, hence, a compound criterion, where the weights
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depend on both vectors β1 and β2 of location parameters as well as on the
variance parameters ς of the linear mixed model component, in general. Due to
convexity the optimal weight w˚ for the system lies in the range of the optimal
weights w1̊ and w2̊ for the components, min{w1̊, w2̊} ď w˚ ď max{w1̊, w2̊}.

4.6 Numerical Example

In this example we consider an accelerated degradation experiment with two
failure components in which the first component follows a gamma process and the
second is described by a linear mixed model with random intercept as described
in Subsect. 4.1. The gamma process is specified as in Subsects. 2.4 and 3.4 with
scale parameter ν1 “ 1, degradation threshold z10 “ 5.16 and nominal values
β10 “ 0.23 for the intercept and β11 “ 0.53 for the slope. For the linear model
we assume a degradation threshold y20 “ 3.73 and nominal values β20 “ 2.35
for the aggregate intercept, β21 “ 0.06 for the slope in the stress variable x,
β22 “ 0.28 for the slope in time t, β23 “ 0.04 for the stress-time interaction xt,
σ0 “ 0.08 for the standard deviation of the random intercept, and σε “ 0.09 for
the standard deviation of measurement errors. As before the standardized normal
use condition is xu “ ´0.40 and both degradation processes are measured at the
k “ 4 standardized time points tj “ 0.25, 0.5, 0.75 and 1 with time intervals of
constant length δ “ 0.25. Additionally, the degradation of the second component
is measured initially at t0 “ 0, i. e., at the beginning of the experiment. Also in
the present setting we will be interested in estimating the median failure time
t0.5.

The distribution function FT (t) of the combined failure time T is plotted in
Fig. 8 together with the distribution functions FT1(t) and FT2(t) of the failure
times T1 and T2 in the components. The median failure time t0.5 “ 4.99 satisfying
FT (t0.5) “ 1{2 is indicated there by a dashed vertical line.

For estimating the median failure time, also here the optimal design is sought
numerically by means of the multiplicative algorithm on an equidistant grid of
step size 0.01 on the design region. As in the univariate case the algorithm
indicates that the optimal design ξ˚ is of the form ξw. Under this premise the
optimal value of w˚ can be determined by a simple line search on a sufficiently
dense grid. The resulting optimal designs which assigns optimal weights w˚ “
0.78 to the lowest stress level x “ 0 and 1 ´ w˚ “ 0.22 to the highest stress level
x “ 1 in the design region.

To assess the robustness of the locally optimal design we examine how the
optimal weight w˚ varies when the underlying parameter values are modified.
Computations indicate that the optimal weight does not change much in the
nominal values of the parameters β2 and ς for the linear mixed effects degrada-
tion model in the second component. This property is in accordance with the
fact that the design criterion depends on the values of β2 and ς only through the
weighting factors c21 and c22 while the marginal information matrix M(ξ) does
not. However, similar to the univariate case, there may be moderate changes with
respect to the parameters β1 of the gamma degradation model in the first com-
ponent. Additionally, the optimal weight w˚ may switch between the marginal
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optimal weights w1̊ and w2̊ for the marginal failure models depending on which
of the marginal failure modes is dominant in the bivaraite system.
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We will demonstrate this behavior in the case when the intercept β10 of the
gamma model component varies while all other parameters are fixed to their
nominal values. In Fig. 9 we plot the median failure time t0.5 and the weighting
coefficients c1 and c2, respectively, in dependence on β10. For negative values
of β10, the failure time T2 of the first component decreases and the failure of
the bivariate system is dominated by the second component. Then the median
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failure time t0.5 approaches its marginal counterpart 5.32 in the second compo-
nent. For increasing values of β10, the failure of the first component becomes
dominant and the median failure time t0.5 behaves as in the marginal model for
the first component. In particular, t0.5 is decreasing in β10 and becomes smaller
than 1 for β1 ą 1.92. Hence, only values β10 ď 1.92 are reasonable to be con-
sidered because otherwise no acceleration would be required to obtain failure
due to degradation under normal use conditions. The dominance of the failure
components is also reflected in Fig. 10 where the weighting coefficients c1 and
c2 are shown in dependence on β10. There the second coefficient c2 is standard-
ized by its maximum for purposes of comparison. For negative values of β10, the
coefficient c2 of the second component dominates the asymptotic variance (25)
while the dominance is reversed for β10 ą 0.5.

This change in dominance has also an impact on the optimal weights w˚ as
exhibited in Fig. 11. For negative values of β10, the optimal weight w˚ coincides
with its marginal counterpart in the second component while, for β10 ą 0.5,
the optimal weight w˚ is as in the univariate model for the first component
(see Subsect. 2.4). Caused by the change in dominance, there is a small, but
pronounced change in the optimal weight when β10 varies from 0.35 to 0.50.
This shift is also visible in the efficiency of the locally optimal design ξ˚ at
the given nominal values when the intercept parameter β10 is misspecified, as
shown in Fig. 12. For values of β10 less than the nominal value β10 “ 0.23, the
locally optimal design ξ˚ has an efficiency of nearly 1, up to β10 “ 0.35. Then
there is a small, instantaneous decrease in efficiency to 0.999 for β10 between
0.35 and 0.50. For larger values of β10 the efficiency smoothly decreases as in
the univariate model for the first component (see Subsect. 2.4). For the maximal
value β10 “ 1.92 the efficiency of ξ˚ is still remarkably high with a value of about
0.9936. In all of Figs. 9, 10, 11 and 12 the nominal value β10 “ 0.23 is indicated
by a dotted vertical line.

With respect to the slope parameter β20 ď 0 of the gamma component,
the failure is dominated by the second component. Hence, neither the optimal
weight is affected by β20, nor the efficiency of the locally optimal design ξ˚ differs
reasonably from 1. In total, the locally optimal design ξ˚ at the given nominal
values appears to be robust against misspecifications of the parameters within a
meaningful range.

5 Concluding Remarks

The design stage of highly reliable systems requires a sophisticated assessment
of the reliability related properties of the product. One approach to handle this
issue is to conduct accelerated degradation testing. Accelerated degradation tests
have the advantage to provide an estimation of lifetime and reliability of the
system under study in a relatively short testing time. The majority of existing
literature deals with this issue by considering a single failure mode, which may
not be sufficiently representative in many cases.

In this work, we propose optimal experimental designs for ADTs with single
response components and extend it to the case of multiple response components
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with repeated measures. Two bivariate degradation models are considered. The
marginal degradation functions are described by two gamma process models
in the first bivariate model, and a gamma process with a linear model with a
random intercept in the second one. In this context it is desirable to estimate
certain quantiles of the joint failure time distribution as a characteristic of the
reliability of the product. The purpose of optimal experimental design is to find
the best settings for the stress variable to obtain most accurate estimates for
these quantities.

In the present model for accelerated degradation testing, it is assumed that
stress remains constant within each testing unit during the whole period of exper-
imental measurements but may vary between units. Hence, in the corresponding
experiment a cross-sectional design between units has to be chosen for the stress
variable(s) while for repeated measurements the time variable varies according
to a longitudinal time plan within units. In particular, the same time plan for
measurements is used for all units in the test. It is further assumed that the
marginal response components are uncorrelated.

The multiplicative algorithm is utilized to obtain optimal experimental
designs for the single response case as well as the two bivariate degradation
models. The sensitivity analysis shows that the optimal designs of the univari-
ate model as well as the bivariate model with two marginal gamma processes
are robust against misspecifications of the corresponding parameter vectors and
depend mainly on the normal use condition of the stress variable. For the bivari-
ate model with two different marginal models the sensitivity analysis establishes
that the resulting optimal design is slightly dependent on the nominal parameter
values.

Although only gamma processes and LMEM are considered as marginal
degradation models here, the underlying methods can be extended to other
marginal failure modes, like Wiener processes, inverse Gaussian processes and
non-linear mixed effects degradation models. Another object of interest would be
to consider optimality criteria accounting for simultaneous estimation of various
characteristics of the failure time distribution.
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Abstract. Randomized complete block designs (RCBD) introduced by
[3] are probably the most widely used experimental designs. Despite
many advantages, they suffer from one serious drawback. It is not possi-
ble to test interaction effects in analysis of variance (ANOVA) as there
is only one observation for each combination of a block and factor level.
Although there are some attempts to overcome this problem none of
these methods are used in practice, especially as most of the underlying
models are non-linear. A review on such tests is given by [6] and [1].

Here a new method is introduced which permits a test of interactions
in block designs. The model for RCBDs is linear and identical to that
of a two factorial design. The method as such is not restricted to simple
block designs, but can also be applied to other designs like Split-Plot-
design, Strip-Plot-design, . . . and probably to incomplete block designs.

ANOVA based on this method is very simple. Any common statistical
program packages like SAS, SPSS, R, . . . can be used. Although a test
on interaction in two- or multi- factorial designs makes sense only for
fixed and a certain class of mixed models, the proposed method can also
be used for estimating variance components in any kind of block models
(fixed, random, mixed) if the sample size is not too small.

1 Introduction

A Randomized complete block design is a kind of two-factorial design which is
based on the model:

yijk = μ + αi + βj + (αβ)ij + eijk (1)

yijk . . . observation k at level αi of factor A and level βj of factor B
(k = 1, . . . , n)

μ . . . overall mean

αi . . . effect of level i of factor A i = 1, . . . , a

βj . . . effect of level j of factor B j = 1, . . . , b

(αβ)ij . . . interaction effect at level αi of factor A and at level βj of factor B

eijk . . . error term at level αi of factor A, at level βj of factor B
and at replication k k = 1, . . . , n.
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Depending on the chosen model, mean square errors include different kinds
of variance components (Table 1).

Table 1. Variance components of mean square values in a two factorial design for
different kind of models

Source of variation Fixed effects model Random effects model Mixed effects model

Main A σ2 + bn
a−1

∑
i α2

i σ2 + nσ2
ab + bnσ2

a σ2 + nσ2
ab + bn

a−1

∑
i α2

i

Main B σ2 + an
b−1

∑
j β2

i σ2 + nσ2
ab + anσ2

b σ2 + κnσ2
ab + anσ2

b

Interaction A × B σ2 + n
(a−1)(b−1)

∑
i,j(αβ)2ij σ2 + nσ2

ab σ2 + nσ2
ab

Error σ2 σ2 σ2

κ depends on the side condition about interaction.

κ =

{
cov(abij , abij′) = 0 1 (j �= j′)∑a

i=1 abij = 0 0 ∀ j

As one may see from Table 1 a test on main effects in a fixed model is based on
the error term, in a random model on interaction mean squares and in the mixed
model approach either on the error term or the interaction term (depending on
the definition of κ).

In the follow this article focuses primarily on fixed models or mixed models
where κ = 0.

Several authors tried to find a solution for testing interaction in block designs.
A short selection of these models can be found below.

1.1 Tukey’s Test

The first one who proposed a block model which includes interaction was [12].

yij = μ + αi + βj + λ × αi × βj + eij

λ . . . interaction parameter
Here the interaction term is bound to the height of the factor levels which is

a very strong restriction. [11] showed that Tukey’s test can be derived as a test
of H0 : λ = 0.

1.2 Johnson and Graybill’s Test

Another solution to the problem of interactions in block designs is given by the
following model [5]:

yij = μ + αi + βj + Φ × ξi × ηj + eij

Limitations to interaction are not that strict as with Tukey’s model, but some
additional assumptions have to be made (

∑a
i=1 ξi = 0,

∑b
j=1 ηj = 0,

∑a
i=1 ξ2i =

1,
∑b

j=1 η2
j = 1).
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1.3 Mandel’s Test

[7] assumes a systematic type of row column interaction. The underlying
“Mandel-row” model is given by

yij = μ + αi + βj + γi × βj + eij

γj . . . interaction parameter depending on row i
Other models including non-linear interaction effects can be found by [2,4,

8,9] and [10].

2 Deriving Sum of Squares for Error Term
and Interaction in Block Designs

Deriving sum of squares and mean squares in a block model is based on a common
two-factorial design.

2.1 Sum of Squares in Two Factorial Designs

The sum of squares value for interaction in case of a balanced design can be
calculated as

SSAB = n

a∑
i=1

b∑
j=1

(x̄ij. − x̄i.. − x̄.j. + x̄...)2.

with (a − 1)(b − 1) number of degrees of freedom.
The sum of squares value for the error term is given by

SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(xijk − x̄ij.)2.

with ab(n − 1) number of degrees of freedom.

In block designs the number of observations (n) for each combination of a
factor level and a block is equal to 1. It follows, that:

• x̄ij. for each combination of factor and block levels is identical to xij1.
• degree of freedom for the error sum of squares becomes zero.
• MSE = SSE

dfE
can not be estimated.

In the follow we the mean square value for interaction (MSAB = SSAB

dfAB
)

serves as an error term – assuming, that no interaction effects exist. That’s a very
daring assumption, since almost all tow-factorial experiments show interactions
(no matter whether significant or not).
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2.2 Separating Error from Interaction in Block Designs

In a two factorial design the following restrictions are usually assumed in regard
to interaction:

• The sum of all interaction effects within a block is equal to zero
(
∑a

i=1(αβ)ij = 0 ∀j j = 1, . . . , b).
• The sum of all interaction effects within a certain factor level is equal to zero

(
∑b

j=1(αβ)ij = 0 ∀i i = 1, . . . , a).

To separate the error term from interaction we may look at a Latin square
like block design (Fig. 1)

A1 A2 A3 A4

A4 A1 A2 A3

A3 A4 A1 A2

A2 A3 A4 A1

αβ11 αβ21 αβ31 αβ41

αβ42 αβ12 αβ22 αβ32

αβ33 αβ43 αβ13 αβ23

αβ24 αβ34 αβ44 αβ14

B1

B2

B3

B4

C1 C2 C3 C4

block B1

factor level A1

column block C1

Fig. 1. Block plan and corresponding interaction terms in a Latin square like block
design

Looking at Fig. 1, there is obviously no reason why one should not restrict
the sum of interaction effects within a column block to zero, too

a,b∑
i=1,j=1

(αβ)ijk = 0 ∀k k = 1, . . . , c. (2)

Using this restriction has some important implications:

• Within a column block all levels of a factor are included exactly one time.
As a common restriction

∑a
i=1 αi = 0. So the mean value of a column block

does not include any factor effects.
• In Latin Square like block designs a column block comprises all levels of

blocks. Usually it is assumed, that these effects sum up to zero (
∑b

j=1 βj = 0).
So the mean value of a column block does not include any block effects.

As a consequence of these two last restrictions and of restriction 2 the mean
value of a column block encloses only some error effects besides μ. This enables
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us to separate error variance and interaction variance by calculating the sum of
squares for column blocks.

SScolumn block = SSE = a

c∑
k=1

(x̄ck − x̄..)2 (3)

The error sum of squares for the error term (SSE∗) in a common block design
actually is the sum of squares value for interaction. So the difference zu SSE

obviously gives the sum of squares for interaction.

SSAB = SSE∗ − SSE (4)

or alternatively SSAB = SST − SSA − SSB − SSE .

Degrees of freedom are defined as:

dfE = c − 1 = b − 1
dfAB = dfT − dfA − dfB − dfE = (a − 2)(b − 1)

Mean squares are calculated the usual way:

MSE = SSE/dfE , MSAB = SSAB/dfAB

Until now we restricted or model to a Latin Square design. The method as such
can be applied to any kind of block design. Figure 2 depicts interaction terms in
a 5× 2 block design.

αβ11 αβ21 αβ31 αβ41 αβ51

αβ52 αβ32 αβ42 αβ12 αβ22

C1 C2

column block C1

Fig. 2. Interaction terms in an arbitrary block design

Within a column block all levels of the interesting factor are included. By
definition, the sum of all interaction effects within a column block is zero. The
number of block effects however is different. For example, the first column block
of Fig. 2 contains 2 times the effect of the first and 3 times the effect of the
second block. Since we can estimate these block effects using the block means,
we are able to correct for this biased column block.



140 K. Moder

3 Illustrative Example

The example in Fig. 3 shows a block design [A] with 3 blocks and 4 factor levels.
Based on the experimental design 3 column blocks were defined [B]. Each

column block comprises every level of factor A. So their effects sum up to zero.
Interaction effects within each column block sum up to zero too, but block effects
do not, as in every column block a different number of block effects is included. So
we have to correct for these effects. To do this, we need to calculate block means,
factor level means, uncorrected column block means and the overall mean.

A1
8

A2
6

A3
7

A4
9

A2
5

A3
8

A4
7

A1
8

A3
9

A4
5

A1
7

A2
5

[A] experimental design
measurements

C1 C2 C3

αβ11 αβ21 αβ31 αβ41

αβ22 αβ32 αβ42 αβ12

αβ33 αβ43 αβ13 αβ23

[B] column blocks

Fig. 3. Illustrative example including experimental design and corresponding measure-
ments [A] and defined column blocks with interaction effects [B].

overall
¯̄x

7.0

factor x̄Ai

1 2 3 4
7.6 5.3 8.0 7.0

block x̄Bj

1 2 3
7.5 7.0 6.50

uncorrected
col. block x̄Ck

1 2 3
6.75 7.00 7.25

3.1 Calculation of Column Block Means

Each uncorrected column block mean includes a specific block effect several
times (e.g. The first column block C1 includes 2 times block effect 3, C2 includes
2× block effect 2, C3 includes 2× block effect 1). So we have to correct this
additional block effects. The effect of a block can be calculated as the difference
between the block mean and the overall mean.

If we want to calculate the mean of C1 we have reduce the sum for this
column block by the effect of block 3, to get an unbiased estimator. The effect of
block 3 is calculated es the difference between x̄B3 − ¯̄x. So an unbiased estimation
of column block 1 for the example given above can be calculated based on the
sum of this column block and the effect size of block 3 (efB3) as this is included
in the sum for this column block.
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uncorrected sum:
∑n

j=1 x1j = 8 + 5 + 9 + 5 = 27
effect size block 3: efB3 = x̄B3 − ¯̄x = 6.5 − 7.0 = −0.5
corrected sum:

∑n
j=1 x1j − efB3 = 27 − (−0.5) = 27.5

corrected mean: x̄C1 =
∑nf

j=1 x1j−efB3
nf

= 27.5
4 = 6.875

Similarly, we can derive all other correction factors and column block means.

x̄B − ¯̄x
1 2 3

0.5 0.000 -0.5

corrected column
block means x̄C

1 2 3
6.875 7.000 7.125

3.2 Calculation of Sum of Squares and Degrees of Freedom

Sum of squares for blocks, factors, total and the (uncorrected) error is calculated
the usual way and can be done with any statistical package for a common block
design.

Sum of squares for the error term is calculated by the corrected column block
means:

SSE = nf

ncb∑

k=1

(x̄cbk − ¯̄x)2 = 4((6.875− 7.0)2 + (7.000− 7.0)2 + (7.125− 7.0)2) = 0.125

From evaluating a common block design we get SS∗
E = 9.3. As mentioned

above this actually includes possible interaction effects. By subtracting SSE from
SSE∗ we find the sum of squares value for interaction.

SSIA = SS∗
E − SSE = 9.3 − 0.125 = 9.2083

Degrees of freedom for factor, block and total are those of a common block
design. Degrees of freedom for main effects and interaction effects are calculated
as follows:

dfE = c − 1 = b − 1 3 − 1 = 2
dfAB = df∗

E − dfE 6 − 2 = 4
= (a − 2)(b − 1) (4 − 2)(3 − 1) = 4

3.3 ANOVA Table

Based on calculations for a common block design and those of 3.2 we find results
as shown in an ANOVA Table 2.

As can be seen from Table 2, separating interaction from the error of the
common block model dramatically changes the result. If interaction is possible
or can be expected, it should be included in the model regardless of whether it
is significant or not.
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Table 2. Example of analysis of variance for the interaction model in compare to that
of a common block model

block design with Interaction common block design
Effect df SS MS F Prob df SS MS F Prob
Factor 3 12.666 4.2222 67.55 0.0146 3 12.6 4.2 2.71 0.1377
Block 2 2.000 1.0000 16.00 0.0588 2 2.0 1.0 0.64 0.5585
Int.act. 4 9.208 2.3021 36.83 0.0266
Error 2 0.125 0.0625 6 9.3 1.5
Total 11 24.000 11 24.0

4 Simulations

To get an idea about the power of the interaction model several simulations
were performed. A Fortran program (as well as a SAS macro and a R script)
was developed to calculate ANOVA results for both the interaction model as well
as for the common block model. Simulation were based on 100000 runs each.
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Fig. 4. Empirical power of the test on interaction as a function of the standard devia-
tion of interaction for different sized Latin Square like block designs (σE = 1).

Figure 4 illustrates the empirical power of a test on interaction in 3 × 3 to
7×7 Latin Square like block designs. The standard deviation for this effect varied
from 0 to 4 in steps of 0.5. The standard deviation for the error term (σE) was
held constant and set to 1. As one would expect the power increases if sample
size increases too. Thus, for example the power for the test on interaction in
7 × 7 design is about 92% if the standard deviation of the interaction is twice as
high as that of the error (99.9% if it is three times as high). Whereas power in
a 3× 3 design is about 58% respectively 84%.

In block analysis one is primarily interested in the test regarding the main
effect. Figure 5 displays the power for a 3 × 3 and 7 × 7 Latin Square like block
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Fig. 5. Empirical power of the test on the main effect as a function of the standard
deviation of this effect for 3× 3 and 7× 7 different Latin Square like block designs
(σE = 1).

design. Four different standard deviations for interaction were taken into account
(σAB = 1, 2, 3, 4). If there is no interaction the power for the common block
analysis is highest (dashed curve). In this situation the interaction model is over
parameterized and thus its power decreases. Whereas in those situations where
the standard deviation of the interaction corresponds at least to that of the error,
the interaction model (solid line) is best in most cases.

In addition, Fig. 5 shows another unwanted effect for the common block
model. Depending on the level of interaction, there is a certain range in which
it is impossible for the common block model to find any significant result for
the main effect (although one awaits at least α% of significant cases even in the
absence of any influences).

Results for 5 × 3 and 7 × 4 block designs in regard to the main effect are
presented in Fig. 6. Again common block analysis is best in those situations
were no interaction exists. Depending on the size of interaction the power of the
interaction model gets more and more superior. Contrary to statistical theory,
type I error rate is zero (although it should be α) in many situations where
interaction exists and the main effect is low.
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Fig. 6. Empirical power of the test on the main effect as a function of the standard
deviation of this effect for different block designs (σE = 1).

5 Estimating Variance Components

The method described here is based on fixed effect model reps. a model with a
special definition of interaction (Table 1, κ = 0). In this case we can estimate
the Least Squares (LSQ) variance component for interaction as

MSAB = σ2 + nσ2
ab σ2 ≡ MSE

σ2
ab = MSAB−MSE

n

In block-designs:

n = 1 =⇒ σ2
ab = MSAB − MSE

A usual assumption in estimating variance components of interaction based
on restricted maximum likelihood (REML) estimation is cov(abij , abij′) = 0, (j �=
j′) In Fig. 7 both methods are compared for different heights of variance com-
ponents of interaction (σ2

ab) in compare to the error variance (σ2).
As long as the variance component for interaction is similar to the of the error

variance, there is almost no difference between different estimation methods. In
7 the height of the variance component for interaction is 9 time as high as
that of the error variance. Even in this rather extreme situation the differences
between LSQ and REML estimation is negligible with at least 6 blocks and 6
levels of the factor. This means the proposed method can be used to estimate
variance components in any mixed and random effects model approach with an
appropriate sample size.
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Fig. 7. Comparison of REML and LSQ estimation of variance components for interac-
tion assuming σ2

ab = σ2 ([A]) and σ2
ab = 9σ2 ([B])

6 Conclusions

The method presented here allows for testing interaction in different kind of block
designs. It can also be used for estimating variance components of interaction
and main effects for mixed and random effect models in block designs. There are
some additional advantages in compare to other methods:

• It is based on a linear model and as such comprises all previously developed
non linear models.

• It is very easy to use and any statistical package like SAS, R, SPSS can be
used with just a few simple additional calculations.

• There are no uncommon restrictions.
• It can be used not only for common block designs or Latin Squares, but for

any statistical model that has a suitable block structure as for instance Split-
Plot Designs or maybe even incomplete block designs (although one has to
use least-square means here).

• The power of the method is good in respect to interaction and even more for
the main effect, if interaction exists.

Block analysis is based on at least a two factorial design (Table 1). Depending
on the model (fixed, random, mixed) main effects are tested against either the
error sum of squares or that of the interaction. For a fixed and a special kind
of mixed effects models (Table 1, κ = 0) an assessment of the main and block
effect must be made by means of the error. In all other situations you have to
test against means squares of the interaction. Interaction itself always has to be
tested against the error.

So far, means squares for the error term were not or only available under the
very restrictive assumptions of non linear models. With the method presented
here this test now is possible even in a random or mixed effect surrounding
(Table 1, κ = 1). Although the basic assumption (κ = 1) is different to that of
the fixed model, it doesn’t really matter for estimating variance components.
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Abstract. The subject of this work is two treatment groups random
coefficient regression models, in which observational units receive some
group-specific treatments. We provide A- and D-optimal designs (opti-
mal group sizes) for the estimation of fixed effects and the prediction of
random effects. We illustrate the obtained results by a numerical exam-
ple.

1 Introduction

The subject of this paper is optimal designs in two treatment groups random
coefficient regression (RCR) models, in which observational units receive some
group-specific kinds of treatment. These models are typically used for cluster
randomized trials. For some real data examples see e. g. Piepho and Möhring
(2010).

Optimal designs for fixed effects models with multiple groups are well dis-
cussed in the literature (see e.g. Bailey (2008), ch. 3). In models with random
coefficients, the estimation of population parameters (fixed effects) is usually
of prior interest (see e.g. Fedorov and Jones (2005), Kunert et al. (2010), Van
Breukelen and Candel (2018)). Optimal designs for the prediction of random
effects in models with known population parameters have been considered in
detail in Gladitz and Pilz (1982). Prus and Schwabe (2016) provide analytical
results for the models with unknown population mean under the assumption of
the same design for all individuals. Multiple group models with fixed group sizes
were briefly discussed in Prus (2015), ch. 6.

Here, we consider two groups models with unknown population parameters
and group specific designs. We provide A- and D-optimality criteria for the
estimation and the prediction of fixed and random effects, respectively. Our
main focus is optimal designs for the prediction.

The paper is structured in the following way: In Sect. 2 the two groups RCR
model will be introduced. Section 3 presents the best linear unbiased estimator
for the population parameter and the best linear unbiased predictor for individ-
ual random effects. Section 4 provides analytical results for the designs, which
are optimal for the estimation or for the prediction. The paper will be concluded
by a short discussion in Sect. 5
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2 Two Treatment Groups RCR Model

In this work we consider RCR models with two treatment groups G1 and G2,
where observational units (people, plots, studies, etc.) receive group-specific
kinds of treatment, T1 and T2, respectively. Further we will use the term “indi-
viduals” instead of “observational units” for simplicity. The first group includes
n1 individuals and the second group n2 individuals. The groups sizes n1 and n2

are to be optimized and the total number of individuals N = n1 + n2 in the
experiment is fixed. The k-th observation at the i-th individual is described for
the first group by

Y1ik = μ1i + ε1ik, i = 1, . . . , n1, k = 1, . . . ,K (1)

and for the second group by

Y2ik = μ2i + ε2ik, i = n1 + 1, . . . , N, k = 1, . . . ,K, (2)

where K is the number of observations per individual, which is assumed to be the
same for both groups, ε1ik and ε2ik are the observational errors in the first and
the second groups with zero expected value and the variances var(ε1ik) = σ2

1 and
var(ε2ik) = σ2

2 , respectively. μ1i and μ2i are the individual response parameters.
As it has been already mentioned above, we optimize the group sizes n1 and

n2. Therefore, we define the individual parameters for all individuals for both
groups: θi := (μ1i, μ2i)�, i = 1, . . . , N . The parameters can be interpreted as
follows: Let individual i be in the second group. Then the parameter μ1i describes
the response, which would be observed at individual i if the individual had
received treatment T1, and μ2i is the usual response parameter of the individual.
The latter parametrization allows to identify the best kind of treatment for each
individual (for future treatments), which can be useful in practical situations
where only one treatment per individual is possible.

The individual parameters are assumed to have an unknown mean E(θi) =
(μ1, μ2)� =: θ0 and a covariance matrix Cov(θi) = diag(σ2

1 u, σ2
2 v) for given

dispersions u > 0 and v > 0. All individual parameters θi and all observational
errors ε1i′k and ε2i′′k′ , i, i′, i′′ = 1, . . . , N , k, k′ = 1, . . . ,K, are assumed to be
uncorrelated.

Note that this model is not a particular case of the RCR models considered by
Prus and Schwabe (2016). In contrast to that paper, here the expected values for
the response parameters μ1i and μ2i in the first and the second groups are not the
same (which is equivalent to different regression functions in the parametrization
using θi) and group sizes are non-fixed. Therefore, the approach proposed by
Prus and Schwabe (2016) cannot be used.

Further we focus on the following contrasts: the population parameter α0 =
μ1 − μ2 and the individual random parameters αi = μ1i − μ2i, i = 1, . . . , N . α0

describes the difference between the mean parameters μ1 and μ2 in the first and
in the second group, respectively, and αi may be interpreted as the difference for
individual i between the present response and the response, which could have
been observed if the individual had received another treatment. We search for
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the designs (group sizes), which are optimal for the estimation of α0 or for the
prediction of αi.

3 Estimation and Prediction

In this section we concentrate on the estimation of the population parameter
α0 and the prediction of the individual parameters αi. We use the standard
notation Ȳ1 = 1

n1

∑n1
i=1

1
K

∑K
k=1 Y1ik and Ȳ2 = 1

n2

∑N
i=n1+1

1
K

∑K
k=1 Y2ik for

the mean response in the first and the second treatment group, respectively, and
obtain the following best linear unbiased estimator (BLUE) for α0.

Theorem 1. a) The BLUE for the population parameter α0 is given by

α̂0 = Ȳ1 − Ȳ2. (3)

b) The variance of the BLUE α̂0 is given by

var (α̂0) =
σ2
1(Ku + 1)

Kn1
+

σ2
2(Kv + 1)

Kn2
. (4)

Further we use the notation Ȳ1i = 1
K

∑K
k=1 Y1ik and Ȳ2i = 1

K

∑K
k=1 Y2ik for

the mean individual response for individuals in the first and in the second treat-
ment group, respectively. We obtain the next result for the best linear unbiased
predictor (BLUP) for the individual response parameter αi.

Theorem 2. The BLUP for the individual response parameter αi is given by

α̂i =

{
Ku

Ku+1 Ȳ1i + 1
Ku+1 Ȳ1 − Ȳ2, ind. ”i ” in G1

Ȳ1 − Kv
Kv+1 Ȳ2i − 1

Kv+1 Ȳ2, ind. ”i ” in G2 .
(5)

The next theorem presents the mean squared error (MSE) matrix for the
total vector α̂ := (α̂1, ..., α̂N )� of all BLUPs α̂i for all individuals.

Theorem 3. The MSE matrix of the vector α̂ of individual predictors is given
by

Cov (α̂ − α) =
(
A11 A12

A�
12 A22

)

(6)

for

A11 =
(

σ2
1

K(Ku + 1)n1
+

σ2
2(Kv + 1)

Kn2

)

1n11
�
n1

+ σ2
1

(
u

Ku + 1
+ v

)

In1 ,

where 1m denotes the vector of length m with all entries equal to 1, Im is the
m × m identity matrix and ⊗ denotes the Kronecker product,

A12 =
(

σ2
1

Kn1
+

σ2
2

Kn2

)

1n11
�
n2

and

A22 =
(

σ2
1(Ku + 1)

Kn1
+

σ2
2

K(Kv + 1)n2

)

1n21
�
n2

+ σ2
2

(

u +
v

Kv + 1

)

In2 .

Proofs of Theorems 1, 2 and 3 are deferred to Appendix.
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4 Experimental Design

We define the experimental (exact) design for the RCR model with two treatment
groups G1 and G2 as follows:

ξ :=
(

G1 G2

n1 n2

)

.

For analytical purposes, we generalize this to the definition of an approximate
design:

ξ :=
(

G1 G2

w 1 − w

)

,

where w = n1
N and 1−w = n2

N are the allocation rates for the first and the second
groups, respectively, and only the condition 0 ≤ w ≤ 1 has to be satisfied. Then
only the optimal allocation rate w∗ to the first group has to be determined for
finding an optimal design.

Further we search for the allocation rates, which minimize variance (4) of
the BLUE α̂0 and MSE matrix (6) of the BLUP α̂ and concentrate on the A-
(average) and D- (determinant) optimality criteria.

4.1 Optimal Designs for Estimation of Population Parameter

For the estimation of the population parameter α0 both A- and D-criteria may be
considered to be equal to variance (4) of the BLUE α̂0. We rewrite the variance
of the estimator in terms of the approximate design and receive the following
optimality criterion (neglecting the constant factor (KN)−1):

Φα0(w) =
σ2
1(Ku + 1)

w
+

σ2
2(Kv + 1)

1 − w
. (7)

Criterion function (7) can be minimized directly. The optimal allocation rate for
the estimation of the population parameter α0 is is given by

w∗
α0

=
1

1 +
√

σ2
2(Kv+1)

σ2
1(Ku+1)

. (8)

Note that the optimal allocation rate w∗
α0

to the first group increases with
increasing observational error variance σ2

1 and the dispersion u of random effects
for the first group and decreases with variance parameters σ2

2 and v for the
second group. Note also that if the observational error variance is the same for
both groups (σ2

1 = σ2
2), w∗

α0
is larger than 0.5 for u > v and smaller than 0.5 for

u < v.
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4.2 Optimal Designs for Prediction of Individual Response
Parameters

We define the A-criterion for the prediction of the individual response parameters
α = (α1, ..., αN )� as the trace of MSE matrix (6):

ΦA,α := tr (Cov (α̂ − α)) . (9)

We extend this definition for approximate designs and receive the following result
(neglecting the constant factor K−1).

Theorem 4. The A-criterion for the prediction of the individual response
parameters α = (α1, ..., αN )� is given by

ΦA,α(w) = c1 + σ2
1

(
Ku + 1

w
+ Nw

(
Ku

Ku + 1
+ Kv

))

+ σ2
2

(
Kv + 1
1 − w

+ N (1 − w)
(

Kv

Kv + 1
+ Ku

))

, (10)

where

c1 = σ2
1

(
1

Ku + 1
− Ku − 1

)

+ σ2
2

(
1

Kv + 1
− Kv − 1

)

.

For this criterion no explicit formulas for optimal allocation rates can be pro-
vided. For given dispersion matrix of random effects (given values of u an v),
the problem of optimal designs can be solved numerically. In this work we are
however interested in the behavior of optimal designs with respect to the vari-
ance parameters. Therefore, we consider some special cases, which illustrate this
behavior.

Special Case 1: σ2
1 = σ2

2 and u = v
If the variances σ2

1 and σ2
2 of the observational errors as well as the dispersions u

and v (and consequently the variances σ2
1 u and σ2

2 v) of the random effects are
the same for both groups, A-criterion (10) simplifies to

ΦA,α(w) = c2 +
1
w

+
1

1 − w
, (11)

where

c2 =
NKu′(Ku′ + 2) + 2

(Ku′ + 1)2
− 2

for u′ = u = v (neglecting the factor Ku′ + 1 and the observational errors
variance). We obtain for this criterion the optimal allocation rate w∗

A,α = 0.5,
which is also optimal for estimation in the fixed-effects model (u = v = 0).

Special Case 2: σ2
1 = σ2

2

If only the variances σ2
1 and σ2

2 of the observational errors are the same for both
groups, the A-criterion for the prediction simplifies to

ΦA,α(w) = c3 +
Ku + 1

w
+ Nw

(
Ku

Ku + 1
+ Kv

)

+
Kv + 1
1 − w

+ N (1 − w)
(

Kv

Kv + 1
+ Ku

)

, (12)
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where
c3 =

1
Ku + 1

+
1

Kv + 1
− K(u + v) − 2,

(neglecting the observational errors variance). The behavior of the optimal allo-
cation rate will be considered for this case in a numerical example later.

The D-criterion for the prediction of α = (α1, ..., αN )� can be defined as the
logarithm of the determinant of MSE matrix (6):

ΦD,α := log det (Cov (α̂ − α)) . (13)

For approximate designs we obtain the next result.

Theorem 5. The D-criterion for the prediction of the individual response
parameters α = (α1, ..., αN )� is given by

ΦD,α(w) = b1 + w N log
(

σ2
1(Kv + 1)

σ2
2(Ku + 1)

)

+ log
(

σ2
1(1 − w) + σ2

2 w

w(1 − w)

)

, (14)

where

b1 = log
(

(σ2
2)

N−1(v + u(Kv + 1))N−2(Ku + 1)(K(u + v) + 1)
σ2
1K

2N(Kv + 1)N−1

)

.

Proof. We compute the determinant of MSE matrix (6) using the formula for
block-matrices

det (Cov (α̂ − α)) = det (A11) det
(
A22 − A�

12A
−1
11 A12

)
.

Then we rewrite the result in terms of the approximate design and receive cri-
terion (14).

Also for this criterion no finite analytical solutions for optimal designs can be
provided. We consider the same special cases as for the A-criterion.

Special Case 1: σ2
1 = σ2

2 and u = v
If the variances of the observational errors and the variances of the random effects
are the same for the first and the second treatment groups, the D-criterion for
the prediction is given by

ΦD,α(w) = b2 − log (w(1 − w)) , (15)

where b2 = b1+log(σ2) for σ2 = σ2
1 = σ2

2 . Then we obtain the optimal allocation
rate w∗

D,α = 0.5 = w∗
A,α, which is also optimal for the fixed-effects model.

Special Case 2: σ2
1 = σ2

2

If the variances of the observational errors are the same for both groups and the
dispersions u and v of random effects may be different, we receive the following
D-criterion for the prediction:

ΦD,α(w) = b2 + w N log
(

Kv + 1
Ku + 1

)

− log (w(1 − w)) . (16)

If we additionally assume different dispersions of random effects (u �= v), we
obtain the next result for the optimal designs.
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Theorem 6. If the variances of the observational errors are the same and the
dispersions of the random effects are different for the first and the second treat-
ment groups, the D-optimal allocation rate for the prediction of the individual
response parameters α = (α1, ..., αN )� is given by

w∗
D,α =

1
2a

(
a + 2 −

√
a2 + 4

)
, (17)

where

a = N log
(

Kv + 1
Ku + 1

)

.

Note that the optimal allocation rate w∗
D,α to the first group increases with

u and decreases with v. It can be easily proved that w∗
D,α is larger than 0.5 if

u > v and smaller than 0.5 if u < v.
For further considerations we rewrite the optimal allocation rate (17) as a

function of the ratio q = u
v of the variances of random effects in the first and the

second groups and the variance parameter u:

a = N log
(

Ku/q + 1
Ku + 1

)

.

Than it is easy to verify that w∗
D,α increases with u for q > 1 (u > v) and

decreases for q < 1.

4.3 Numerical Example

In this section we illustrate the obtained results for the prediction of the individ-
ual response parameters by a numerical example. We consider the two groups
RCR model with N = 60 individuals, K = 5 observations per individual and the
same variance of observational errors for both treatment groups: σ2

1 = σ2
2 (spe-

cial case 2). We fix the ratio q = u
v of the variances of random effects in the first

and the second groups by q = 3, q = 1 and q = 0.3. Figures 1 and 2 illustrate the
behavior of the optimal allocation rates for the A- and D-criteria in dependence
of the rescaled random effects variance in the first group ρ = u/(1 + u), which is
monotonic in u and has been used instead the of random effects variance itself
to cover all values of the variance by the finite interval [0, 1].

As we can observe on the graphics, the optimal allocation rate to the first
group increases with the rescaled variance ρ from 0.5 for ρ → 0 to 0.910 for
the A-criterion and to 0.985 for the D-criterion for ρ → ∞ if q = 3. If q = 0.3,
the optimal allocation rate decreases from 0.5 to 0.083 and 0.014 for the A- and
D-criterion, respectively. For q = 1 the model coincides with that considered in
special case 1 and the optimal design remains the same (w∗

A,α = w∗
D,α = 0.5) for

all values of u.
Figures 3 and 4 exhibit the efficiencies of the balanced design w = 0.5 for the

prediction in the two groups model for the A- and D-criteria. For computing the
A- and D-efficiencies, we use the formulas

effA =
ΦA,α(w∗

A,α)
ΦA,α(0.5)

(18)
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Fig. 1. A-optimal allocation rate w∗ for variance ratios q = 3 (solid line), q = 1 (dashed
line) and q = 0.3 (dotted line)

and

effD =
(exp(ΦD,α(w∗

D,α))
exp(ΦD,α(0.5)

) 1
N

, (19)

respectively.
As we can observe, the efficiency of the balanced design decreases with

increasing values of ρ from 1 for ρ → 0 to 0.655 and 0.615 if q = 3 and to
0.618 and 0.585 if q = 0.3 for the A- and D-criteria, respectively. For q = 1 the
balanced design is optimal for the prediction, which explains the efficiency equal
to 1 for all values of the variance.

5 Discussion

In this work we have considered RCR models with two treatment groups. We
have obtained the A- and D-optimality criteria for the estimation of the popu-
lation parameter and the prediction of the individual response. For a particular
case of the same observational error variance for both groups, we illustrate the
behavior of the optimal designs by a numerical example. The optimal allocation
rate to the first treatment group turns out to be larger than 0.5 if the vari-
ance of individual random effects in the first group is larger than in the second
group. Otherwise, the optimal allocation rate is smaller than 0.5. The efficiency
of the balanced design, which assigns equal group sizes, is relatively high only
for small values of the variances of random effects. The efficiency decreases fast
with increasing variance.
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Fig. 2. D-optimal allocation rate w∗ for variance ratios q = 3 (solid line), q = 1 (dashed
line) and q = 0.3 (dotted line)
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Fig. 3. A-efficiency of the balanced design w = 0.5 for variance ratios q = 3 (solid
line), q = 1 (dashed line) and q = 0.3 (dotted line)
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For simplicity, we have assumed a diagonal covariance matrix of random
effects. For more general covariance structure further considerations are needed.
We have also assumed the same number of observations for all individuals. Opti-
mal designs for models with different numbers of observations for different indi-
viduals may be one of the next steps in the research. Moreover, optimal designs
for RCR models with more than two groups can be investigated in the future.
Furthermore, some research on more robust design criteria (for example, min-
imax or maximin efficiency), which are not sensible with respect to variance
parameters, may be an interesting extension of this work.

Acknowledgements. This research has been supported by grant SCHW 531/16–1 of
the German Research Foundation (DFG).

Appendix

Proofs of Theorems 1, 2, 3 and 4
The two treatment groups RCR model described by formulas (1) and (2)

may be recognized as a special case of the general linear mixed model

Y = Xβ + Zγ + ε (20)

with specific design matrices X and Z for fixed and random effects, respectively.
ε are the observational errors, β denotes the fixed effects vector and γ are the
random effects. The random effects and the observational errors are assumed to
have zero mean and to be all uncorrelated with corresponding full rank covari-
ance matrices Cov (γ) = G and Cov (ε) = R.

In model (20) the BLUE for β and the BLUP for γ are solutions of the mixed
model equations

(
β̂
γ̂

)

=
(
X�R−1X X�R−1Z
Z�R−1X Z�R−1Z + G−1

)−1 (
X�R−1Y
Z�R−1Y

)

(21)

if the fixed effects design matrix X has full column rank (see e.g. Henderson
et al. (1959) and Christensen (2002)). According to Henderson (1975), the joint
MSE matrix for both β̂ and γ̂ is given by

Cov
(

β̂
γ̂ − γ

)

=
(
X�R−1X X�R−1Z
Z�R−1X Z�R−1Z + G−1

)−1

. (22)

To make use of the theoretical results available for the general linear mixed
model, we rewrite the two groups RCR model in form (20):

Y =
(
1Kn1e

�
1

1Kn2e
�
2

)

β +
(
In1 ⊗ (

1Ke�
1

)
0

0 In2 ⊗ (
1Ke�

2

)
)

γ + ε, (23)

where β = θ0, γ = θ − (1N ⊗ I2) β, θ = (θ1, . . . , θN ) and em denotes the m-
th unit vector. The covariance matrices of the random effects and the obser-
vational errors in model (23) are given by G = IN ⊗ diag(σ2

1 u, σ2
2 v) and

R = block-diag(σ2
1 IKn1 , σ

2
2 IKn2), respectively.
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Fig. 4. D-efficiency of the balanced design w = 0.5 for variance ratios q = 3 (solid
line), q = 1 (dashed line) and q = 0.3 (dotted line)

Using formula (21) we obtain the BLUEs μ̂1 = Ȳ1 and μ̂2 = Ȳ2 for the fixed
effects and the BLUPs

μ̂1i =

{
Ku

Ku+1 Ȳ1i + 1
Ku+1 Ȳ1, ind. ”i ” in G1

Ȳ1, ind. ”i ” in G2

(24)

and

μ̂2i =

{
Kv

Kv+1 Ȳ2i + 1
Kv+1 Ȳ2, ind. ”i ” in G2

Ȳ2, ind. ”i ” in G1

(25)

for the random effects. Then the BLUE and the BLUP for the contrasts α0 and
αi can be computed as α̂0 = μ̂1 − μ̂2 and α̂i = μ̂1i − μ̂2i and result to formulas
(3) and (5), respectively. Variance (4) of the estimator α̂0 can be determined
directly.

Using formula (22) we obtain the following joint MSE matrix for both β̂ and
γ̂:

Cov
(

β̂
γ̂ − γ

)

=
(
C11 C12

C�
12 C22

)

, (26)

where

C11 =

(
σ2
1(Ku+1)

Kn1
0

0 σ2
2(Kv+1)

Kn2

)

,

C12 = −
( 1

n1
σ2
1 u1�

n1
⊗ e�

1 0
0 1

n2
σ2
2 v 1�

n2
⊗ e�

2

)
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and

C22 =
(
B1 0
0 B2

)

for

B1 = σ2
1

(
Ku2

n1(Ku + 1)
1n11

�
n1

⊗ (e1e�
1 ) + In1 ⊗ diag

(
u

Ku + 1
, v

))

and

B2 = σ2
2

(
Kv2

n2(Kv + 1)
1n21

�
n2

⊗ (e2e�
2 ) + In2 ⊗ diag

(

u,
v

Kv + 1

))

.

The MSE matrix of the prediction θ̂ can be written in terms of joint MSE matrix
(26):

Cov
(
θ̂ − θ

)
= (1N ⊗ I2)C11

(
1�

N ⊗ I2
)
+(1N ⊗ I2)C12 +C�

12

(
1�

N ⊗ I2
)
+C22.

(27)
Using this formula we obtain

Cov
(
θ̂ − θ

)
=

(
H11 H12

H�
12 H22

)

,

where

H11 = 1n11
�
n1

⊗
(

σ2
1

K(Ku+1)n1
0

0 σ2
2(Kv+1)

Kn2

)

+ σ2
1 In1 ⊗

(
u

Ku+1 0
0 v

)

,

H12 = 1n11
�
n2

⊗
(

σ2
1

Kn1
0

0 σ2
2

Kn2

)

and

H22 = 1n21
�
n2

⊗
(

σ2
1(Ku+1)

Kn1
0

0 σ2
2

K(Kv+1)n2

)

+ σ2
2 In2 ⊗

(
u 0
0 v

Kv+1

)

.

Then we present the MSE matrix of the predictor α̂ in form

Cov (α̂ − α) =
(
IN ⊗ 1�

2

)
Cov

(
θ̂ − θ

)
(IN ⊗ 12)

and receive result (6) of Theorem 3.
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