
Practical Space-Efficient Index
for Structural Pattern Matching

Sung-Hwan Kim(B) and Hwan-Gue Cho

Pusan National University, 46241 Busan, South Korea
{sunghwan,hgcho}@pusan.ac.kr

Abstract. In structural pattern matching, two n-length strings X and
Y over Σ are said to match, if there exists a one-to-one function f :
Σ → Σ such that (i) for 0 ≤ i < n, f(X[i]) = Y [i] and (ii) for any
x, y ∈ Σ whose complements are x′ and y′, respectively, if f(x) = y then
f(x′) = y′. In this paper, we present a 2n lg σ + 2n + o(n)-bit index for
this problem. Although it does not theoretically achieve the succinctness
for a general alphabet, the proposed method is more practical and the
space requirement can be smaller than the previous succinct solution
especially when σ is small. A source code is available at: https://github.
com/sunghwank/spmindex.

Keywords: Compact data structure · String matching · Suffix array ·
FM-index · LF-mapping

1 Motivation

Structural pattern matching was introduced by Shibuya [14,15] to address a
string matching problem on RNA sequences regarding their secondary structure.
In this problem, matching of two strings is defined differently from the standard
string matching problem (see Sect. 2.1). An encoding method was used to trans-
form the suffixes into a certain form so that indexing the encoded suffixes with
a suffix tree can resolve the problem. In order to reduce the space requirement,
which is excessively large for the suffix tree-based indexing methods, Beal and
Adjeroh [1] proposed the use of a suffix array as well as its construction method.
However, indexing an n-length string still requires Θ(n lg n) space in bits, which
is quite far from n lg σ bits, the space required to represent the string, where σ
is the alphabet size.

Recently, Ganguly et al. [5] presented the first succinct data structure for
this problem, which requires n lg σ + O(n) bits of space. Although this method
dramatically reduces the space requirement, it relies on several data structures
that are theoretically optimal but hard to implement in practice, such as a
multiary wavelet tree [3,7,8], and a fully-functional succinct tree supporting
constant-time queries [12,13].

This paper is devoted to present a data structure, which is practically imple-
mentable as well as efficient in time and space. Comparison with the existing
works is shown in Table 1. The proposed index uses 2n lg σ+2n+o(n) bits where
c© Springer Nature Switzerland AG 2022
C. Bazgan and H. Fernau (Eds.): IWOCA 2022, LNCS 13270, pp. 369–382, 2022.
https://doi.org/10.1007/978-3-031-06678-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06678-8_27&domain=pdf
https://github.com/sunghwank/spmindex
https://github.com/sunghwank/spmindex
https://doi.org/10.1007/978-3-031-06678-8_27

370 S.-H. Kim and H.-G. Cho

Table 1. Comparison with other works.

Method Space (in bits) Query time (counting)

Suffix tree [14,15] Θ(n lg n) O(m)

Suffix array [1] Θ(n lg n) O(m + lg n)

sBWT [5] n lg σ + O(n) O(m lg σ)

Proposed 2n lg σ + 2n + o(n) O(m lg σ)

n is the text length and σ is the alphabet size, and it can count the number of
occurrences of an m-length pattern in O(m lg σ) time. It is also practical in the
sense that it uses bitvector dictionaries [2,9], wavelet trees [8] and range maxi-
mum query index [4], which have practical implementations available in public
software libraries such as sdsl-lite [6].

As mentioned in [5], the main challenge in using the suffix-encoding method
described in [14] for space-efficient indexing is that prepending a single character
can affect more than one positions in its encoded string. In this paper, we address
this issue by transforming a structural string (s-string) into a pointer sequence
of double length so that a single prepending operation can affect at most one
position, which is a different approach from that of [5]. We develop an index on
this transformed pointer sequence using its space-efficient representation. As an
overview, the proposed method can be described the following:

1. We represent an n-length s-string as a (2n)-length pointer sequence such that
pointers at even (odd, resp.) positions refer to the next occurrence of the
character (equal-group character, resp.).

2. We construct two suffix arrays by sorting the suffixes starting at even and
odd positions separately.

3. The searching procedure is performed by navigating these two suffix arrays
alternatingly; the so-called LF-mapping of a suffix at one suffix array is
defined to be a suffix at the other suffix array.

4. The LF-mappings can be represented using four arrays Leven, Fodd, Lodd, and
Feven, which can be stored in 2n lg σ + 2n + o(n) bits in total; using these
arrays, the LF-mappings can be simply computed in O(lg σ) time.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
review some backgrounds needed to develop our proposed method. In Sect. 3,
we present a pointer sequence representation for the structural pattern matching
problem. Section 4 describes how to organize the proposed index structure, and
the searching algorithm is presented in Sect. 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Structural Pattern Matching

We describe the structure pattern matching introduced in [14]. In the origi-
nal paper, a string consists of two types of characters: (i) static characters for

Practical Space-Efficient Index for Structural Pattern Matching 371

the exact matching, and (ii) parameterized characters for a more sophisticated
matching. In this paper, we consider only parameterized characters for brevity.
Nevertheless, we emphasize that our proposed method can easily be applied to
the original problem.

Let T [0..n − 1] be an n-length structural string (s-string) over alphabet Σ =
{0, · · · , σ −1}. We use the 0-based index. We have a one-to-one function compl :
Σ → Σ that represent the association among characters in Σ. For each x ∈ Σ,
x is associated with its complement compl(x) ∈ Σ. And for any x, y ∈ Σ, if
compl(x) = y then compl(y) = x. For simplicity, we assume that the alphabet
size σ = |Σ| is a multiple of 2, and x �= compl(x). To represent the relationship
defined via compl(·), we can also use a function g : Σ → {0, · · · , σ/2 − 1} such
that for x, y ∈ Σ g(x) = g(y) iff x = y or x = compl(y). We say x and y
such that g(x) = g(y) are equal-group characters. Two s-strings X and Y are
said to match if there exists a one-to-one function f : Σ → Σ such that (i)
for 0 ≤ i < n, f(X[i]) = Y [i] and (ii) for any x, y ∈ Σ, if f(x) = y then
f(compl(x)) = compl(y). For example, let Σ = {w, x, y, z} and g(w) = g(x)
and g(y) = g(z). Then wyxxwyzw matches zwyyzwxz, while it does not match
yxwwyxzy.

2.2 Pointer Sequence Matching

In this subsection, we briefly review the pointer sequence matching described in
[10]. Although the description below may be slightly different from that in the
original paper in detail, the basic idea is essentially the same.

In the pointer sequence matching problem, a string is a sequence of pointers.
Each pointer is either a null pointer or one refers to another element among those
in its right-hand side. We represent a null pointer by a symbol ∞. We represent a
pointer referring to another element by its length so that the element at position
i refers to the element at position i + X[i] if X[i] �= ∞.

Definition 1 (Pointer sequence). A sequence X[0..n − 1] of length n is a
pointer sequence if, for 0 ≤ i < n, X[i] ∈ {1, · · · , n − i − 1} ∪ {∞}.

With this representation, we say two equal-length pointer sequences match
if they are exactly the same. To define a pattern matching problem on pointer
sequences, we define a substring of a pointer sequence. Taking a substring from a
pointer sequence not only copies the target part but also converts pointers going
to the outside of the taken part into null pointers.

Definition 2 (Substring of a pointer sequence). A substring Y = X[i..j]
of X from position i to position j is defined as follows: for 0 ≤ k ≤ j − i.

Y [k] =

{
X[i + k] if X[i + k] ≤ j − i − k,

∞ otherwise.
(1)

372 S.-H. Kim and H.-G. Cho

For indexing a pointer sequence, we transform it into an encoded form, which
is a sequence of sets. The encoded sequence E(X) of an n-length pointer sequence
X is defined as follows:

E(X)[i] = {1 ≤ j ≤ i | X[i − j] = j} (2)

An element of an encoded sequence represents the set of elements pointing
to it. To define the lexicographical order among encoded sequences, we define
the ordering on their elements, which are sets. As we will see, an element of an
encoded sequence handled in this paper is either the empty set ∅ or a singleton
{x} for some integer x. We define the ordering of sets (which are elements of
encoded sequences) as follows: A < B iff (i) A �= ∅ and B = ∅ or (ii) A = {a}
and B = {b} are singletons such that a < b.

We can index the set of encoded suffixes in 2n lg n + 2n + o(n) bits although
we do not use it directly in this paper. Rather, we develop a more space-efficient
representation for the structural pattern matching problem.

Proposition 1 ([10]). For an n-length pointer sequence, there exists a data
structure that uses 2n lg n + 2n + o(n) bits, and can count the number of occur-
rences of an m-length pattern in O(m lg n) time.

2.3 Building Blocks

The proposed index uses several well-known data structures as its building
blocks.

Bitvector. For an n-length bitvector A[0..n−1], a data structure that supports
the following operations in O(1) time can be represented in n + o(n) bits [2,9].

1. A.rankx(i): the number of occurrences of x in A[0..i].
2. A.selectx(j): the position of the j-th occurrence of x on A.

We also define A.rankx(i, j) = A.rankx(j) − A.rankx(i − 1).

Wavelet Tree. A wavelet tree of an n-length string A[0..n−1] over an alphabet
of size σ is a data structure that supports the following operations in O(lg σ)
time using n lg σ + o(n) bits [3,7,11].

1. A(i): accessing A[i].
2. A.rankx(i, j): the number of occurrences of x in A[i..j].
3. A.rank gex(i, j): the number of occurrences of characters that are greater than

or equal to x in A[i..j].
4. A.selectx(j): the position of the j-th occurrence of x on A.

Range Maximum Query. A range maximum query (i, j) on array A[0..n−1] is
to ask the index of the maximum element among A[i..j], which can be performed
in O(1) time with a 2n + o(n)-bit data structure [4]:

1. A.rMq(i, j) = arg maxi≤k≤j A[k].

Practical Space-Efficient Index for Structural Pattern Matching 373

z y zx x z y w x x y z

7 1 11 3 5 3 3 5 1 7 1 1 ∞∞∞∞391395

T =

PS(T) = ∞1∞

Fig. 1. Pointer sequence representation PS(T) of T = zyxzxzywxxyz where Σ =
{w, x, y, z}, g(w) = g(x) and g(y) = g(z). Each square represents an element of the
pointer sequence. The integers inside the squares indicate the pointer lengths and ∞s
indicate null pointers. White ones are pointers to its next occurrence, and shaded ones
are pointers to the next occurrence of its equal-group character.

3 Pointer Sequence Representation

The basic idea of this paper is to resolve the structural pattern matching problem
by solving the matching problem on pointer sequences. In this section, we present
a pointer sequence representation for structural pattern matching, which will
be used for developing an index structure. More specifically, we represent an n-
length s-string as a (2n)-length pointer sequence. Each character of an s-string is
corresponding to two pointers. One pointer points to the position of the nearest
occurrence of the character at the current position, and the following pointer
points to the position of the nearest occurrence of its equal-group character. Let
ν(i) and μ(i) be the distance to the next occurrence of T [i] and T [i]’s equal-group
character, respectively. More formally, for 0 ≤ i < n,

ν(i) = min
j>i

{j − i : T [j] = T [i]} ∪ {∞} (3)

μ(i) = min
j>i

{j − i : g(T [j]) = g(T [i])} ∪ {∞} (4)

For an n-length s-string T , we define its pointer sequence representation
PS(T) as follows: for 0 ≤ i < 2n,

PS(T)[i] =

{
2ν(i

2) + 1 if i = 0 mod 2
2μ(i−1

2) − 1 if i = 1 mod 2
(5)

As an example, the pointer sequence representation of an s-string T =
zyxzxzywxxyz with the complement relationship g(w) = g(x) and g(y) = g(z) is
given in Fig. 1. It is easy to see that this pointer sequence representation can be
used for solving the structural pattern matching problem.

Observation 1. For s-strings T, P ∈ Σ∗, let PS(T) and PS(P) be their pointer
sequence representations. For 0 ≤ i ≤ |T | − |P |, P matches T at position i if
and only if PS(P) matches PS(T) at position 2i.

One can directly apply the indexing method in [10] to this representation
to obtain a 4n lg n + O(n)-bit data structure that can compute the number of

374 S.-H. Kim and H.-G. Cho

occurrences in O(m lg n) time. One of the goal of this paper is to reduce the
space requirement into O(n lg σ) bits. The lg n factor in the space requirement
comes from the representation of the pointer length. In [10], the pointers are
represented by their lengths, which is O(n). This is the alphabet size of the
underlying sequence on which the wavelet trees are built, which results in the
lg n factor. To reduce this into lg σ, we need to represent these sequences in more
compact values within a range of O(σ).

One may also notice that we do not consider occurrences of PS(P) at odd
positions 2i + 1 on PS(T), despite the fact that there may be (false positive)
occurrences of PS(P) at odd positions even if P does not match T there. When we
apply the method in [10], it is inevitable to involve an additional filtering method
to remove these false positives, which produces a non-negligible overhead. We
will address this problem in the next section by constructing suffix arrays for
suffixes at even and odd positions separately.

4 Data Structure

In this section, we present a data structure for structural pattern matching.
We build two suffix arrays using the corresponding pointer sequence, one for the
suffixes starting at even positions (even suffixes), the other one for those starting
at odd positions (odd suffixes). Then we define integer arrays that will be used
for the searching algorithm we will describe in the next section.

4.1 Suffix Arrays

For the pointer sequence PS(T) of an n-length s-string T , let Seven =
{PS(T)[2i..] : 0 ≤ i ≤ n} be the set of the suffixes of PS(T) that start at
even positions; note that Seven includes the empty string ε = PS(T)[2n..], which
acts as the termination symbol as usually assumed in many other string index-
ing methods. We define the suffix array SAeven for the suffixes Seven using
their encoded form; i.e. SAeven(i) = j iff there are i encoded suffixes in Seven

that are smaller than E(PS(T)[2j..]). Similarly, we define SAodd from the set
Sodd = {PS(T)[2i + 1..] : 0 ≤ i ≤ n} of suffixes of PS(T) that start at odd posi-
tions; note that Sodd also contains the empty string as Seven does. We also define
the inverse function of the two suffix arrays such that SA−1

even(SAeven(i)) = i and
SA−1

odd(SAodd(i)) = i for 0 ≤ i ≤ n.
Recall that the LF-mapping is the one-to-one function that maps a suffix

starting at position j into its previous suffix starting at position j −1 in terms of
their lexicographical ranks. Recall also that we defined suffix arrays separately
for even and odd suffixes. The previous suffix of an even suffix is an odd suffix,
and vice versa. Hence we have to define the LF-mappings to be functions from
even suffixes to odd suffixes, and the other way around.

LFeo(i) = SA−1
odd(SAeven(i) + n mod (n + 1)) (6)

LFoe(i) = SA−1
even(SAodd(i)) (7)

Practical Space-Efficient Index for Structural Pattern Matching 375

4.2 F and L Arrays

In this subsection, we define four integer arrays Feven, Fodd, Leven, and Lodd,
which compactly store the information used to compute the LF-mappings and
to update suffix ranges in the searching algorithm.

For 0 ≤ i < n, let us define ν(i) and μ(i) as Eqs. 3 and 4. We define two n-
length arrays Deven and Dodd as follows. Deven(i) indicates whether ν(i) = μ(i)
or not. Dodd indicates the number of distinct groups appearing between position
i and min{i + μ(i), n} (both exclusive). More formally, these two sequences are
defined as follows.

Deven(i) =

{
0 if ν(i) = μ(i)
1 otherwise.

(8)

Dodd(i) = |{g(T [j]) : i < j < min{i + μ(i), n}}| (9)

Now we define Feven and Fodd. Note that Feven represents the pointers at
even positions of the pointer sequence representation and each element Feven(i)
corresponds to each entry SAeven(i) of the suffix array for even positions; sim-
ilarly, Fodd represents the pointers at odd positions and corresponds to entries
of SAodd. Feven and Fodd are (n + 1)-length arrays, which are defined as follows:
Feven(0) = Fodd(0) = −1, and for 0 < i ≤ n,

Feven(i) = Deven(SAeven(i)) (10)
Fodd(i) = Dodd(SAodd(i)) (11)

We also define Leven and Lodd as permuted arrays of Fodd and Feven, respec-
tively, as follows: for 0 ≤ i ≤ n,

Leven(i) = Fodd(LFeo(i)) (12)
Lodd(i) = Feven(LFoe(i)) (13)

4.3 Computing LFeo(i) and LFoe(i)

In this subsection, we present how LFeo(i) and LFoe(i) can be computed using
the four arrays Leven, Fodd, Lodd, and Feven. The following lemma shows the key
property we can use for computing the LF-mappings using the correspondence
between the arrays (Fig. 2).

Lemma 1. For 0 ≤ i < j ≤ n,

1. Leven(i) = Leven(j) then LFeo(i) < LFeo(j).
2. Lodd(i) = Lodd(j) then LFoe(i) < LFoe(j).

376 S.-H. Kim and H.-G. Cho

{7}{1} {11}{3} {5}{3} {3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φ φ φ φ φ φ

{11}{3} {5}{3} {3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φ φ φ φφφ

{5}{3} {3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φ φ φφφφ

{3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φφφφφφ

{5}{1} {7}{1} {1}{3} {9} {13}{9}{1}φφφφφφ

{7}{1} {1}{3} {9}{1}φ φφφφφ

{1} {1}{3}{1}φ φφ φφφ

{1} {1}{3} φφ φφφ

{1} φφ φφ φ

{1}φ φ φ

φφ

{1} {7}{1} {1}{3} {9} {13}{1}φ φφφφ φ

LFLFSA

0

i

1

2

3

4

5

6

7

8

9

10

11

12

12 empty string

11

10

9

8

7

6

5

4

3

2

1

0

−11

2

3

7

8

9

0

4

5

10

11

12

6

0

0

1

1

1

1

0

0

1

0

0

1

0

0

0

1

1

1

0

0

1

1

1

−1

0

(a) Sorted even suffixes with SAeven, LFeo, Feven, and Leven

LFLFSA

0

i

1

2

3

4

5

6

7

8

9

10

11

12

{1} {11}{3} {5}{3} {3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φ φ φ φ φφ

{3} {5}{3} {3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φ φ φ φφ φ

{3} {3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{5} {1}φ φφφφ φ

{3} {5}{1} {7}{1} {1}{3} {9} {13}{9}{1}φφφφφ φ

{5}{1} {7}{1} {1}{3} {9} {13}{1}φφφφφ φ

{1} {7}{1} {1}{3} {9}{1}φ φφφ φ φ

{7}{1} {1}{3}{1}φ φφφφ φ

{1} {1}{3}{1}φ φφ φφ

{1} {1} φφ φφ φ

{1} φφ φφ

{1}φ φ

φ

empty string12

11

10

7

8

5

0

9

6

4

3

2

1

−10

1

3

4

2

5

6

7

8

9

10

11

12

0

0

0

0

0

0

1

1

1

1

1

1

−1

0

1

1

0

1

1

0

0

1

0

0

1

(b) Sorted odd suffixes with SAodd, LFoe, Fodd, and Lodd

Fig. 2. Sorted (encoded) suffixes for T = zyxzxzywxxyz and the related information
used in the proposed data structure (white: even positions, gray: odd positions). The
searching algorithm navigates two suffix arrays alternatingly by updating suffix ranges
iteratively.

Practical Space-Efficient Index for Structural Pattern Matching 377

Proof. Observe that prepending a pointer at the beginning of a pointer sequence
affects at most one position in terms of its encoded form. More specifically,
consider pointer sequences X and Y such that Y can be obtained by prepending
a pointer of length l at the beginning of X. Then, for 0 ≤ i < |Y |,

E(Y)[i] =

⎧⎪⎨
⎪⎩

∅ if i = 0,

E(X)[i − 1] ∪ {l} if i = l,

E(X)[i − 1] otherwise.
(14)

We call the position on X to which a new pointer to refer a changing position:
i.e. it refers to position l − 1 of X in the above equation. Consider two pointer
sequences, and a pointer for each sequence is to be prepended. Their relative
order changes by these new pointers only if the changing position of the lexico-
graphically greater sequence is earlier and the changing position is within their
common prefix. We claim that it is impossible for two suffixes having the same
L-value. Based on this observation, we prove each proposition as follows.
1. Let k = lcp(E(PS(T)[2 · SAeven(i)..]), E(PS(T)[2 · SAeven(j)..]) be the length

of the longest common prefix of the (encoded) suffixes on SAeven whose ranks
are i and j. Let d = |{g(T [SAeven(i) + p]) : 0 ≤ p < 	k

2
} be the number of
distinct groups in this longest common prefix. If Leven(i) < d the length of
the newly prepended pointers are the same, which implies the relative order
does not change because the changing positions of the encoded sequences are
the same. If Leven(i) > d, the changing position is out of the longest common
prefix, and the relative order is determined by E(PS(T)[2 · SAeven(i)..])[k] <
E(PS(T)[2 ·SAeven(j)..])[k], which do not change. Before considering the case
of Leven(i) = d, note that E(PS(T)[2 · SAeven(i)..])[k] ≤ {k} �= ∅ because
E(PS(T)[2 · SAeven(i)..])[k] < E(PS(T)[2 · SAeven(j)..])[k] and ∅ is considered
to be the greatest. Therefore the changing position of suffix i is not k. Even if
the changing position of suffix j is k, ∅ is substituted by {k + 1}, which does
not change the relative order.

2. Let k = lcp(E(PS(T)[2 · SAodd(i) + 1..]), E(PS(T)[2 · SAodd(j) + 1..]) be the
length of the longest common prefix of suffixes whose ranks are i and j,
respectively. Note that, at this moment the group of the character is already
determined (by the pointer at the odd position on the text pointer sequence),
the pointer to be newly prepended here indicates which of the two characters
in the group is actually prepended; therefore we have two candidates for the
change position for each suffix. Let c

(1)
i and c

(2)
i be two candidate positions for

suffix whose rank is i such that c
(1)
i < c

(2)
i . Similarly, we define c

(1)
j and c

(2)
j

for suffix whose rank is j. Note that if c
(1)
i < k or c

(1)
j < k, then c

(1)
i = c

(1)
j .

Similarly, if c
(2)
i < k or c

(2)
j < k, then c

(2)
i = c

(2)
j . Let li and lj be the

changing position of suffixes whose ranks are i and j, respectively. If Lodd(i) =
Lodd(j) = 0, then li = c

(1)
i and lj = c

(1)
j . Similarly, if Lodd(i) = Lodd(j) = 1,

li = c
(2)
i and lj = c

(2)
j . Therefore, if li < k or lj < k then we have li = lj .

Let us assume that the relative order changes after prepending corresponding
pointers to these suffixes. Then it must be both lj < k and lj < li. However,
if lj < k, we have li = lj . Contradiction. ��

378 S.-H. Kim and H.-G. Cho

From the order-preserving property described in Lemma 1, we can simply
compute LFeo(i) and LFeo(i) using the rank and select operations as follows.

Corollary 1. For 0 ≤ i ≤ n,

1. LFeo(i) = Fodd.selectx(Leven.rankx(i)) where x = Leven(i).
2. LFoe(i) = Feven.selectx(Lodd.rankx(i)) where x = Lodd(i).

4.4 Implementation

In this subsection, we describe how the proposed data structure is organized.
More specifically, we show the following lemma.

Lemma 2. There exists a data structure that uses 2n lg σ + 2n + o(n) bits and
supports the following operations in O(lg σ) time for any 0 ≤ i, j ≤ n, a ∈
{0, · · · , σ − 1}, and b ∈ {0, 1}:
1. Leven(i): access to the value Leven(i).
2. Lodd(i): access to the value Lodd(i).
3. Leven.ranka(i, j): the number of occurrences of a in Leven[i..j].
4. Leven.rank gea(i, j): the number of elements greater than or equal to a in

Leven[i..j].
5. Lodd.rankb(i, j): the number of occurrences of b in Lodd[i..j].
6. Feven.selectb(i): the position of the i-th occurrence of b in Feven.
7. Fodd.selecta(i): the position of the i-th occurrence of a in Fodd.
8. LFeo.rMq(i, j): the index of the maximum element among LFeo(i), · · · ,

LFeo(j).

Proof. In short, we build wavelet trees on Leven and Fodd, and rank/select dic-
tionaries for bitvectors on Lodd and Feven, and a range maximum query index
on LFeo. More specifically,

– We build wavelet trees on Leven and Fodd, which can support the operations
related on these arrays in O(lg σ) time. Note that the alphabet size of these
arrays is σ/2, thereby each wavelet tree uses n lg(σ/2)+o(n) = n lg σ−n lg 2+
o(n) = n lg σ − n + o(n) bits.

– For Lodd and Feven, we can observe that these arrays consist of 0 and 1 except
the unique −1. Thus storing the index at which −1 appears using O(lg σ) bits,
we can consider them as bitvectors, which can support rank and select queries
in O(1) time using n + o(n) bits each.

– Range maximum query on LFeo requires 2n + o(n) bits, and can answer to a
range maximum query in O(1) time.

As a result, the total space requirement is 2n lg σ + 2n + o(n) bits. ��

Practical Space-Efficient Index for Structural Pattern Matching 379

5 Searching Algorithm

In this section, we present the searching algorithm on the proposed data struc-
ture. As other methods based on suffix arrays do, we represent the occurrences
of a pattern as a contiguous interval on the suffix array, which is called a suffix
range. Recall that we have two suffix arrays SAeven and SAodd, and only suffix
ranges on SAeven should be the final answer. To distinguish a suffix range on
SAeven from one on SAodd, we call a suffix range on SAeven a real suffix range
and one on SAodd an imaginary suffix range.

For a pattern P , its suffix range on SAeven is a pair of indices (ps, pe) such
that for any ps ≤ i ≤ pe E(PS(T)[2 · SAeven(i)..]) has a prefix E(PS(P)). Note
that a character of an s-string is represented as two pointers. Let x ∈ Σ be a
character, suppose we are to prepend x to the beginning of P . Let l1 and l2 be
the lengths of the first two pointers PS(xP). These are what we are about to
prepend to PS(P) to compute the updated suffix range for xP . By prepending
the latter pointer at the beginning of PS(P), we obtain an imaginary suffix range
on SAodd. Then, prepending the other pointer completes PS(xP), and we obtain
a real suffix range on SAeven via a proper update procedure, which is the desired
(real) suffix range for the updated pattern xP .

Our searching algorithm iteratively updates the suffix array starting from the
suffix range (ps, pe) = (0, n) on SAeven of the empty string, which represents all
the suffixes starting at even positions. Each iteration we prepend each character
of the pattern in the backward searching fashion. It is equivalent to prepend
the corresponding two pointers in the pointer sequence representation. Thus the
update procedure consists of two phases, in which we update the current (real)
suffix range into an imaginary suffix range on SAodd, followed by updating it into
a real suffix range on SAeven. The algorithm for updating a suffix range is given
in Algorithm 1.

For a suffix range (ps, pe) for a pointer sequence X, let l be the length of the
pointer to be prepended to the beginning of X. Let (p′

s, p
′
e) be the suffix range

the pointer sequence after prepending the pointer. For an index ps ≤ i ≤ pe,
we say i is a target suffix if p′

s ≤ LF∗(i) ≤ p′
e where LF∗(i) = LFeo(i) if |X|

is a multiple of 2, LF∗(i) = LFoe(i) otherwise. Now we can describe a suffix
update procedure as (i) identifying the target suffixes within the current suffix
range, followed by (ii) applying the LF-mapping to the identified suffixes. The
remainder of the section is devoted to show the following theorem about the
correctness of the algorithm.

Theorem 1. Given a suffix range (ps, pe) for a pattern P ∈ Σ∗ and x ∈ Σ,
Algorithm 1 correctly computes the updated suffix range (p′

s, p
′
e) for pattern xP

in O(lg σ) time, provided ig, ic, and a can be computed in O(lg σ) time.

By Lemma 2, all the operations in Algorithm 1 related to the arrays take
O(lg σ) time. Considering a character x ∈ Σ to be prepended to the beginning
of the currently searched pattern P during the update procedure, we divide it
into two cases: (i) P has x or compl(x), and (ii) P does not have any of them.

380 S.-H. Kim and H.-G. Cho

Algorithm 1. Update a suffix range.
1: procedure Update(P : current pattern s-string, (ps, pe): suffix range, x: character)
2: if either x or compl(x) appeared in P then
3: ic ← min{0 ≤ j < |P | : P [i] = x} ∪ {|P |}.
4: ig ← min{0 ≤ j < |P | : g(P [i]) = g(x)}.
5: a ← |{g(P [j]) : 0 ≤ j < ig}|.
6: c ← Leven.ranka(ps, pe).
7: pe ← Fodd.selecta(Leven.ranka(0, pe)).
8: ps ← pe − c + 1.
9: b ← 0 if ic = ig, 1 otherwise.

10: c ← Lodd.rankb(ps, pe).
11: pe ← Feven.selectb(Lodd.rankb(0, pe)).
12: ps ← pe − c + 1.
13: else
14: i∗ ← LFeo.rMq(ps, pe).
15: l ← Leven(i∗).
16: a ← |{g(P [j]) : 0 ≤ j < |P |}|.
17: c ← Leven.rank gea(ps, pe).
18: pe ← Fodd.selectl(Leven.rankl(i

∗)).
19: ps ← pe − c + 1.
20: end if
21: return (ps, pe).
22: end procedure

Case 1: At least one of x and compl(x) appear in P. Lines 3–12 handle
this case. Let ic be the position of the first occurrence of x on P ; if x does
not appear on P , then ic = |P |. Let ig be the position of first occurrence of
x’s equal-group character (either x or compl(x)), which must exist. Let a be
the number of distinct groups in P [0..ig − 1]. This value can be computed in
O(lg σ) time, if we keep a balanced binary tree keyed by positions of the first
occurrences of each group, and the leftmost position of each character as similar
to that described in [5]. Then the indices of the target suffixes on SAeven must
be the suffixes having a as their Leven-values. The number of these suffixes can
be counted by c = Leven.ranka(ps, pe). And the last index of the suffix is located
by ie = Leven.ranka(0, pe). We can find the corresponding index LFeo(ie) on
selecta(ie), update pe to it. Using the number c of target suffixes, we can update
ps to be pe − c + 1.

Now (ps, pe) is an imaginary suffix range on SAodd. Let b be a binary number
such that b = 0 if P [ig] = x (i.e. ic = ig), b = 1 otherwise. Similarly, the target
suffixes are those having b as their Lodd-values. We can update the suffix range
correspondingly in a similar way.

Case 2: Neither x nor compl(x) appears in P. Lines 14–19 handle this
case, which is a little more difficult. Let a be the number of distinct groups
in P . The target suffixes are those within the current suffix range that have
a Leven value of at least a. We can count the number c of these suffixes via
Leven.rank gea(ps, pe). It is easy to see, for ps ≤ i, j ≤ pe such that Leven(i) <

Practical Space-Efficient Index for Structural Pattern Matching 381

a ≤ Leven(j), LFeo(i) < LFeo(j). This is because, for such suffix i, the changing
position is one of the first |P | positions, which is definitely within the common
prefix of the encoded sequences. Since such suffix j has a changing position
beyond that of the suffix i, the suffix i becomes smaller after prepending the
corresponding pointer. Therefore LFeo(i) < LFeo(j). As a result, we can find i∗

such that LFeo(i∗) is the updated pe by performing the range maximum query on
LFeo with the current suffix range. After updating pe = LFeo(i∗) by Leven.rank(·)
followed by Fodd.select(·), ps can also be updated using the updated pe and the
number c of the target suffixes.

To update this imaginary suffix range into a real suffix range for the update
pattern xP , we observe that target suffixes are all the suffixes within the current
imaginary suffix range. This is because the group corresponding to the newly
prepended character x is a new group that has not been appeared in P , every
suffix within the current imaginary suffix range should be considered regardless
of their Lodd-values. And surprisingly, for 0 ≤ i, j, k ≤ n such that i < ps ≤
k ≤ pe < j, LFoe(i) < LFoe(k) < LFoe(j). The lengths of the pointers to be
prepended is longer than the length of the longest common prefix of (encoded)
suffixes i (or j) and k, which does not change the relative order. Therefore, we
do not have to update ps and pe anymore, and (ps, pe) itself is also the desired
real suffix range.

6 Conclusions

In this paper, we present a space-efficient index for the structural pattern match-
ing problem. The data structure requires 2n lg σ+2n+o(n) bits and it can count
the number of occurrences of an m-length pattern in O(m lg σ) time. Due to the
hidden constant factor in O term in the previous succinct index [5], our struc-
ture can become much smaller if σ is small enough. Further, our data structure
consists of building blocks that are widely used and practically implementable
in many other succinct and compact data structures. Adding the sampled suffix
array, we can also report each occurrence by repeatedly calling the LF-functions
until reaching the sampled entry.

In the future work, the construction algorithm should be addressed. Once the
suffix array of the pointer sequence for a given text s-string is given, our data
structure can efficiently constructed; however, the construction of such suffix
array is an open problem; besides pointer sequences, suffix sorting algorithms
for a s-string have not been well-studied as well. Separating suffixes is not only
for the compact representation, but it also gives many ways to generalize this
problem further. For example, we may think of a problem in which a multiple
number of characters are grouped together, instead of complement pairs.

Acknowledgement. The authors would like to thank anonymous reviewers for their
valuable comments and suggestions.

382 S.-H. Kim and H.-G. Cho

References

1. Beal, R., Adjeroh, D.: Efficient pattern matching for RNA secondary structures.
Theoret. Comput. Sci. 592, 59–71 (2015). https://doi.org/10.1016/j.tcs.2015.05.
016

2. Clark, D.: Compact pat trees. Ph.D. thesis, University of Waterloo (1996)
3. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Trans. Algorithms 3(2), 20–es (2007).
https://doi.org/10.1145/1240233.1240243

4. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12200-2 16

5. Ganguly, A., Shah, R., Thankachan, S.V.: Structural pattern matching - succinctly.
In: Proceedings of the 28th International Symposium on Algorithms and Computa-
tion (ISAAC), pp. 35:1–35:13 (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.
35

6. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Proceedings of the 13th International Symposium
on Experimental Algorithms (SEA), pp. 326–337 (2014). https://doi.org/10.1007/
978-3-319-07959-2 28

7. Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the size of succinct
indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
371–382. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-
3 34

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 841–850 (2003). https://doi.org/10.5555/644108.644250

9. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 549–554
(1989). https://doi.org/10.1109/SFCS.1989.63533

10. Kim, S.H., Cho, H.G.: Indexing isodirectional pointer sequences. In: Proceedings
of the 31st International Symposium on Algorithms and Computation (ISAAC),
pp. 35:1–35:15 (2020). https://doi.org/10.4230/LIPIcs.ISAAC.2020.35

11. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014). https://
doi.org/10.1016/j.jda.2013.07.004

12. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms 10(3), 1–39 (2014). https://doi.org/10.1145/2601073

13. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proceedings of the
21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 134–149 (2010).
https://doi.org/10.5555/1873601.1873614

14. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern match-
ing. In: SWAT 2000. LNCS, vol. 1851, pp. 393–406. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44985-X 34

15. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39, 1–19 (2004). https://doi.org/10.1007/s00453-003-1067-9

https://doi.org/10.1016/j.tcs.2015.05.016
https://doi.org/10.1016/j.tcs.2015.05.016
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1007/978-3-642-12200-2_16
https://doi.org/10.4230/LIPIcs.ISAAC.2017.35
https://doi.org/10.4230/LIPIcs.ISAAC.2017.35
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-540-75520-3_34
https://doi.org/10.1007/978-3-540-75520-3_34
https://doi.org/10.5555/644108.644250
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.4230/LIPIcs.ISAAC.2020.35
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1145/2601073
https://doi.org/10.5555/1873601.1873614
https://doi.org/10.1007/3-540-44985-X_34
https://doi.org/10.1007/s00453-003-1067-9

	Practical Space-Efficient Index for Structural Pattern Matching
	1 Motivation
	2 Preliminaries
	2.1 Structural Pattern Matching
	2.2 Pointer Sequence Matching
	2.3 Building Blocks

	3 Pointer Sequence Representation
	4 Data Structure
	4.1 Suffix Arrays
	4.2 F and L Arrays
	4.3 Computing LFeo(i) and LFoe(i)
	4.4 Implementation

	5 Searching Algorithm
	6 Conclusions
	References

