
Discovering Unseen Behaviour
from Event Logs

Abel Armas Cervantes(B) and Farbod Taymouri

The University of Melbourne, Melbourne, Australia

abel.armas@unimelb.edu.au

Abstract. Process mining techniques aim to discover insights into the
performance of a business process by analysing its event logs. These
logs capture historical process executions as sequences of activity occur-
rences (events). Often, event logs capture only part of the possible process
behaviour because the number of executions can be very large, partic-
ularly when many activities are executed concurrently. A highly incom-
plete event log is problematic because process mining techniques use the
event log as a starting point. This paper proposes a technique to dis-
cover behaviour from an incomplete log. In order to do so, the presented
technique builds distributive lattices from the executions captured in the
log, which have well-defined notions of completeness and can be used to
discover behaviour from few observations. The paper tests the presented
approach in a set of real-life event logs and measures the amount of
behaviour that can be discovered.

Keywords: Process mining · Distributive lattices · Partial orders ·
Concurrency detection

1 Introduction

Process mining analyses historical business process executions to help discover
fact-based opportunities for process improvements [17]. These historical execu-
tions are captured as event logs (or simply logs), where process executions are
recorded as sequences (traces) of activity instances (events). These traces of
events describe the order in which the activities were executed, thus the con-
current execution of activities are captured as interleavings. These logs are used
as the starting point for various process mining operations, but there are three
main ones: automated process model discovery, conformance checking (checking
the conformance between a model describing expected behaviour and the log
describing the observed behaviour) and process enhancement.

Event logs can capture only a handful of possible executions of the underlying
process [20]. As the complexity of the process increases, it becomes more difficult
to observe all possible traces that a process can generate, which is infinite in
cases when there is looping behaviour. However, even in the finite case, when
there is a large amount of activities that can be executed concurrently, it will
be nearly impossible to capture all possible interleavings. In the worst case, it is
c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 23–42, 2022.
https://doi.org/10.1007/978-3-031-06653-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06653-5_2&domain=pdf
http://orcid.org/0000-0003-0628-2451
http://orcid.org/0000-0002-3150-336X
https://doi.org/10.1007/978-3-031-06653-5_2

24 A. Armas Cervantes and F. Taymouri

necessary to have n! traces to represent all possible interleavings of n concurrent
activities. The completeness of a log is a critical issue because the great majority
of process mining operations use the log as a starting point, and if the log is highly
incomplete, then the analysis results can be highly inaccurate. In practice, the
process model describing the actual behavior of the process is not available,
hence it is impossible to assess the completeness of the log. But by making some
assumptions about the underlying process, it is possible to gain a rough idea of
the behavior the process generates.

The seminal work of Winskel et al. [12] shows the relationship between a
family of Petri nets (conflict-free 1-safe nets), event structures and distributive
lattices. While Petri nets and event structures explicitly represent concurrency
between events, lattices represent concurrency as interleavings, where pairs of
concurrent events form squares in the lattices. Figure 1 shows an example of
the transformations defined in [12], where (a) shows a 1-safe Petri net, (b) its
event structure and (c) the distributive lattice [5,16] representing each of the
execution states of the Petri net. Note that in (c), every node in the lattice
represents an execution state where a set of events have taken place and are
ordered by subset inclusion. This lattice represents the evolution of a process
execution by means of the edges between nodes; for instance, the edge from {A}
to {A,B} represents the occurrence of event B. In the lattices, the traces that
the process can generate are represented as paths (chain of consecutive nodes in
the lattice) from the empty execution state to the final execution state. In the
example displayed in Fig. 1, any path from {} to {A,B,C,D,E} represents a
possible trace of the process.

Fig. 1. From model to domain of configurations.

The aim of this paper is twofold. First, it aims to build distributive lattices
from an event log. Each of these distributive lattices represents a concurrent
execution that is derived from some traces in the log. If the lattices constructed
from the log do not meet the distributivity property because not all interleavings
were observed, then they are completed to be distributive, which will discover
unseen behaviour. Second, by detecting missing behavior, a notion of event log
completeness is defined, which can be used as a reference to assess the quality
of a log. For the use of distributive lattices as a valid representation of an event
log, two main assumptions are made: 1) the event log represents the behaviour
of a 1-safe Petri net, so that each trace in the log represents the execution of the
Petri net, and 2) there is no auto-concurrency in the underlying process (i.e.,
two activities with the same name cannot be concurrent).

Discovering Unseen Behaviour from Event Logs 25

The paper is structured as follows. Section 2 introduces the relevant defi-
nitions and notation for partial orders, lattices and event logs. Then, Sect. 3
presents the reconstruction of the distributive lattices from an event log, defines
a notion of completeness based on the discovered behaviour, and presents a set of
experiments using a set of real-life logs. Discussion and future work is presented
in Sect. 4 and related work in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

This section establishes the foundations for the rest of the paper. The first part
introduces partial orders and lattices, and the second part introduces traces and
event logs. Given that Petri nets are not a central element of this paper, we assume
the reader is familiarwith the basic notions of 1-safe Petri nets, see for example [15].

2.1 Partial Orders and Lattices

Let R be a binary relation over a set X, R is an ordering relation in X if it
is reflexive ((x, x) ∈ R for all x ∈ X), antisymmetric ((x, y), (y, x) ∈ R implies
x = y) and transitive ((x, y), (y, z) ∈ R implies (x, z) ∈ R). The following
definition presents reflexive partially ordered set, poset for short.

Definition 1 (Poset). A partially ordered set, or simply poset, is a pair 〈X, ≤
〉, where X is a set and ≤ is a reflexive, antisymmetric and transitive relation.

e

d c

b

a

Fig. 2. Hasse diagram

Posets can be graphically represented as Hasse dia-
grams. These diagrams represent the “cover” relation,
which is the transitive reduction of the graph represent-
ing the relation ≤ over the elements X. Given a pair of
elements x, y ∈ X, y covers x, denoted as x ≺ y, if
x < y and ∀z ∈ X : x ≤ z < y implies x = z. The
Hasse diagram of a poset P = 〈X, ≤〉 is shorthanded as
H(P) = 〈X, ≺〉. Figure 2 shows a Hasse diagram where
the cover relation is represented as arrows and the ele-
ments are represented by letters; e.g., b covers a in the
diagram.

Meet and join are two common operators in a poset. Given a poset 〈X, ≤〉,
x ∈ X is the meet of a set Y ⊆ X, denoted x = ⊔Y , iff (1) ∀y ∈ Y : x ≤ y
and (2) ∀z ∈ X : (∀y ∈ Y : z ≤ y) ⇒ z ≤ x. If Y contains only two elements,
X = {a, b}, then the meet operation is written as a
 b. Analogously, the join
of Y ⊆ X is an element x, denoted as x =

⊔
Y , iff (1) ∀y ∈ Y : y ≤ x and

(2) ∀z ∈ X : (∀y ∈ Y : y ≤ z) ⇒ x ≤ z. If Y = {a, b}, the join operation is
written as a� b. The meet and join are also known as greatest lower bound (glb)
and least upper bound (lub), respectively. For example, in the Hasse diagram in
Fig. 2, d � c = e and d
 c = b.

A lattice is a special type of poset that contains a join and a meet for every
pair of elements in the set X. One can easily check that the Hasse diagram in

26 A. Armas Cervantes and F. Taymouri

Fig. 2 represents a lattice. Lattices are distributive [5] if they are distributive
over � and
. The following definition formalises lattices and the distributive
property.

Definition 2 (Lattices and distributive lattices). A lattice is a poset
〈X, ≤〉 where ∀x, y ∈ X : x � y and x
 y exist. A lattice is distributive if
∀x, y, z ∈ X : x
 (y � z) = (x
 y) � (x
 z).

Some elements in the lattice can be of one of three types: top element, bottom
element and prime. An element x is the bottom element if ∀y ∈ X : x ≤ y, and
x is the top element if ∀y ∈ X : y ≤ x. An element in a poset is prime if it is
neither the bottom element nor the join of two other elements, see the formal
definition below.

Definition 3 (Prime elements). Let P = 〈X, ≤〉 be a lattice. An element
x ∈ X is a complete prime (prime for short) iff for every Y ⊆ X iff

⊔
Y exists

and x ≤ ⊔
Y , then there exists y ∈ Y such that x ≤ y. The set of complete

primes for P is denoted as CP.

In a distributive lattice, prime elements are those covering exactly one ele-
ment [10]. The set of primes below an element x ∈ X (w.r.t. ≤) are denoted as
φ(x) = {x′ ∈ CP | x′ ≤ x}. For example, in Fig. 2, the elements b, c and d are
primes, and φ(d) = {d, b, a}. All the elements between a pair of elements x and
y define an interval, and it is called a prime interval if it contains only x and y.

Definition 4 (Prime interval). Let 〈X, ≤〉 be a poset, an interval between
x1, x2 ∈ X is [x1, x2] = {x3 ∈ X | x1 ≤ x3 ≤ x2} and it is prime iff x1 �= x2

and [x1, x2] = {x1, x2}.
Let pr([x, y]) = φ(y)\φ(x) be the set difference between the primes below

x and the primes below y. In the case of a prime interval [x, y], pr([x, y]) is a
singleton. A pair of prime intervals [x1, x2] and [x3, x4] are said to be equivalent,
denoted as [x1, x2] ≡ [x3, x4] iff their difference is the same prime element, i.e.,
pr([x1, x2]) = pr([x3, x4]).

2.2 Distributive Lattices and Concurrency

Winskel et al. [12] shows the connection between conflict-free 1-safe Petri nets,
elementary event structures and distributive lattices1. Elementary event struc-
tures are posets describing the execution of events by means of causality ≤,
such that an event a has to occur before an event b when a < b. The authors
showed that the execution states of the unfolding (elementary event structure)
of a conflict-free 1-safe Petri net form a distributive lattice when ordered by set
1 The connection defined in [12] considers a family of Petri nets called causal nets

where there is not conflict – every place has at most one transition connected from
and to it – and F+ is irreflexive, where F ⊆ (P × T) ∪ (T × P) is the flow relation
of the net with places P and transitions T .

Discovering Unseen Behaviour from Event Logs 27

inclusion; furthermore, the prime elements of the distributive lattice correspond
to the events in the elementary event structure. The distributive lattice cap-
tures all possible interleavings of concurrent events, which can occur at different
executions states, and the order ≤=⊆. Additionally, the meet (
) and join (�)
operators correspond to the set intersection (∩) and union (∪) set operations,
respectively. As shown in [5,16], a distributive lattice is a ring of sets where the
union and intersection of every pair of elements are present in the lattice.

Figure 3 shows a conflict-free 1-safe Petri net N (Fig. 3a), the corresponding
elementary event structure P (Fig. 3b) and the distributive lattice H(P) of its
execution states ordered by ⊆ (Fig. 3c). In the elementary event structure, the
behavior is described by means of causality (≤) and concurrency between events,
such that events x, y ∈ X are concurrent iff ¬(x ≤ y ∨ y ≤ x). The execution
states, a.k.a. configurations, of an elementary event structure are left-closed sub-
sets of events (i.e., Y ⊆ X is left closed iff x ∈ Y ∧ x′ ≤ x ⇒ x′ ∈ Y). In H(P),
the nodes are the execution states, and the cover relation is denoted by a line,
please disregard the different colors and line formats as they are explained later.
The cover relation describes the evolution of a configuration and represents the
occurrence of an event. For instance, in Fig. 3c, the cover relation between {a}
and {a, d} represents the execution of the event d after a. The bottom and top
element in this distributive lattice represents the state where no event has been
executed {} and the final state {a, b, c, d, e, f} where all events have occurred.

In the distributive lattice, the concurrent executions of pairs of events form
diamond-like shapes representing interleavings. For example, in Fig. 3c, the states

Fig. 3. Petri net, partial order and Hasse diagram

28 A. Armas Cervantes and F. Taymouri

{a}, {a, d}, {a, b} and {a, b, d} represent the concurrent execution of events b and
d. Note, for instance, both intervals [{a}, {a, d}] and [{a, b}, {a, b, d}] represent
the execution of the event d (i.e., pr([{a}, {a, d}]) = pr([{a, b}, {a, b, d}]) and
thus [{a}, {a, d}] ≡ [{a, b}, {a, b, d}]). In fact, all dotted lines in Fig. 3c are an
equivalence class because they represent occurrences of the event d at different
execution states.

2.3 Traces and Event Logs

An event log (or simply log) captures historical executions of a process, where
every execution of a process activity produces an event in the log. Thus, several
events in the log may stem from the same activity. Hereinafter the activities of
a process are represented as Σ and the events as E. An event can have different
attributes, such as the name of the corresponding activity, resources or execution
time. In this paper, we assume that the only available attribute of an event is
the name of the corresponding activity. In order to relate activities to events,
λ : E → Σ is a labeling function, such that the activity of an event e is denoted
as λ(e) = l, where l ∈ Σ.

Process executions are captured in the log by means of traces. These traces
are sequences of events ordered by their order of observation. A pair of traces are
considered the same if they have the same number of events and those events
are instances of the same activities executed in the same order. A log L can
contain several occurrences of the same traces, thus a log is defined as a multiset
of traces. In some occasions, the set representation of the log – containing only
distinct traces – will be used and represented as Set(L).

Definition 5 (Trace and event log). Given a finite set of events E, a trace
σ = 〈e1, e2, . . . , en〉 ∈ E∗ is a sequence of events and an event log L ⊆ E∗ is a
multiset of traces. The set of distinct traces in the log is represented as Set(L).
The number of occurrences of the same trace in the log (multiplicity) is denoted
as γ(σ).

In the presence of concurrency, a single process execution can be captured in
the log by different traces. These traces contain the same activity occurrences
but vary in order. For example, 〈a, b, e, c, d, f〉 and 〈a, d, b, c, e, f〉 are two possible
traces generated by a process where d is concurrent with b, c and e (see Fig. 3b).

Let us define some notation for traces. The length of a trace σ =
〈e1, e2, . . . , en〉 is shorthanded as |σ| = n and it is the number of events in
σ. The event at the ith position is accessed as σ[i]. The prefix σ[1, k] of a trace
σ contains the first k elements of the trace, i.e., σ[1, k] = 〈e1, e1, . . . , ek〉 for
1 ≤ k ≤ |σ|.

The labelling function previously defined for events can be extended to pre-
fixes of traces where λ(σ[1, k]) = 〈λ(e1), λ(e2), . . . , λ(ek)〉. A trace or prefix of a
trace can be represented as a set or as a multiset of labels. These representations
of a (prefix of a) trace σ are denoted as Set(σ) and MultiSet(σ), respectively.

Discovering Unseen Behaviour from Event Logs 29

The cardinality of a set and a multiset Z is denoted as |Z| and refers to the num-
ber of elements in Z; note that in the case of multisets, the cardinality considers
the multiplicities of the elements in Z.

The following section presents the main contribution of the paper, where
traces are used as “seeds” to construct distributive lattices.

3 Distributive Lattices of an Event Log

This section presents the main contributions of the paper. The central idea is the
reconstruction of distributive lattices representing execution states of a process
execution. This reconstruction starts by merging groups of event log traces into
lattices, such that prefixes of a trace represent an execution state, and then
missing elements are added until the lattices are distributive.

The completion operation over the lattice can discover new behavior by intro-
ducing new elements (unseen execution states or event executions) until the dis-
tributivity property is met. However, in the presence of noise, this operation
can introduce a large amount of new behavior that may be undesirable. Thus,
Subsect. 3.1 presents the steps for the construction of the distributive lattice
from a set of traces, and Subsect. 3.2 describes a way to tame the possibly large
amount of behavior introduced during the completion operation.

Fig. 4. Overview of the proposed approach.

3.1 Reconstruction of Distributive Lattice

The reconstruction of the distributive lattice is inspired by two main existing
results: the behavior of a conflict-free 1-safe Petri net forms a distributive lat-
tice [12] and a distributive lattice is a ring of sets [5,16]. Thus, the proposed app-
roach consists of three central steps (dotted area in Fig. 4): 1. group traces rep-
resenting the same process executions (interleavings of concurrent executions),
2. construct a lattice for each group of traces, and 3. complete the lattice until it
is distributive (missing elements can be computed by using two set operations:
union and intersection).

30 A. Armas Cervantes and F. Taymouri

Before presenting the three steps of the reconstruction, let us define a special
labelling for handling traces with events with the same name. In a trace, every
event is unique but, when the process originating the log contains repeatable
behavior, several events within a trace can stem from the same activity. In order
to differentiate the events with the same label within a trace σ, λ̄ is a special
labelling function, such that λ̄(e) = λ(e)w(e,i), where w(e, i) = |{e′ = σ[j] | 1 ≤
j ≤ i ∧ λ(e′) = λ(e)}|. The special labelling can be applied to traces, where
λ̄(σ) = 〈λ̄(e1), λ̄(e2), . . . λ̄(e|σ|)〉. Intuitively, the special label of an event has a
sub-index representing its number of occurrence within the trace. For instance,
given a trace σ = 〈a, b, c, c . . . 〉, then λ̄(σ) = 〈a1, b1, c1, c2 . . . 〉.
Grouping Traces. The first step is to define a notion of equivalence over
the log traces, such that a pair of traces are equivalent if they represent the
same process execution. A simple notion of equivalence is multiset equivalence,
where traces are equivalent if they have events of the same activities that were
executed the same number of times. For example, the traces 〈a, b, e, c, d, f〉 and
〈a, d, b, c, e, f〉 would be considered as multiset equivalent because they represent
a single execution of the same activities. Note that if the special labelling is used,
the multiset equivalence of a trace can be defined as a set equivalence as shown
next.

Definition 6 (Set equivalent traces). A pair of traces σ, σ′ are set equiv-
alent, denoted as σ ∼set σ′, iff Set(λ̄(σ)) = Set(λ̄(σ′)). I.e., |σ| = |σ′| and
λ̄(σ[i]) ∈ Set(λ̄(σ′)) for all 1 ≤ i ≤ |σ|.

Given that the aim of the presented approach is to build a distributive lat-
tice, where the top element represents the final process execution, the minimum
condition to consider a pair of traces as equivalent is multiset equivalence.

Constructing the Lattice. The second step is to build a lattice from a set
of ∼set-equivalent traces. A trace σ represents execution states, where a prefix
σ[1, k] is the state where events 〈e1, e1, . . . , ek〉 have occurred. Indeed, each ele-
ment in the lattice will represent a trace prefix. The following definition formally
defines a prefix equivalence between traces.

Definition 7 (Equivalent prefixes). Let σ1, σ2 be two traces. The prefixes
σ1[1, k] and σ2[1, k] are equivalent iff σ1[1, k] ∼set σ2[1, k].

Given a group of equivalent traces G, let σ[1, k]≡ = {σ′[1, k] | σ′ ∈
G ∧ σ[1, k] ∼set σ′[1, k]} be the equivalence class for the trace prefix σ[1, k].
The lattice representing G is the pair 〈X,⊆〉, where X represents the equivalence
classes for the prefixes of traces in G and the order between the elements in X
is the subset containment between a pair of elements in the equivalence classes.

Definition 8 (Lattice of traces). Given a log L, the lattice of a set of traces
T ⊆ L is a pair 〈X, ⊆〉, where X = {σ[1, k]≡ | σ ∈ L ∧ 1 ≤ k ≤ |σ|} ∪ ε and
ε is a special state representing the bottom element, and x ⊆ y for x, y ∈ X, if
λ̄(σ′) ⊆ λ̄(σ′′), such that σ′ ∈ x and σ′′ ∈ y.

Discovering Unseen Behaviour from Event Logs 31

Observe that the above definition constructs a valid lattice because there is a
unique bottom element ε and a unique top element Set(σ) that can be the meet
and join elements, respectively, for any pair of elements. Please, observe that in
the Hasse diagram we denote ε as the empty set {}.

Reconstructing Distributive Lattices. The completion of the lattice con-
sists of introducing the relations and elements needed to transform any lattice
into a distributive one. This completion operation is based on the fact that a
distributive lattice is isomorphic to a ring of sets [5], where the union and inter-
section of every pair of elements is also an element in the lattice.

Definition 9 (Lattice completion). Let D = 〈X,≤〉 be a lattice. The com-
pletion of D for a distributive lattice is a lattice D∗ = 〈Y,≤〉 where X ⊆ Y and
(x ∪ y) ∈ Y and (x ∩ y) ∈ Y for all x, y ∈ Y .

Consider the conflict-free 1-safe Petri nets shown in Fig. 5. The possible exe-
cution states of these nets can be represented as the distributive lattices displayed
in Fig. 5. These lattices can be reconstructed from only two traces (represented
by the black elements and relations). For example, traces 〈a, b, c, d〉 and 〈b, c, d, a〉
are the only traces necessary to reconstruct the lattice in Fig. 6a, where activity
a can occur after {b} and {b, c}; after completion, the lattice represents four
traces. In Fig. 6b, traces 〈a, b, c, d〉 and 〈c, d, a, b〉 can be used to generate the
distributive lattice where {a, c} is the union (intersection) of {a} and {c} (resp.
{a, b, c} and {a, c, d}), which represents six traces. Finally, for the reconstruction
of the lattice in Fig. 6c only traces 〈a, b, c〉 and 〈c, b, a〉 are necessary to obtain
the lattice representing six traces.

Fig. 5. Petri nets with computations represented in the distributive lattices in Fig. 6

32 A. Armas Cervantes and F. Taymouri

Fig. 6. Completed distributive lattices representing the execution states of the nets in
Fig. 5

Note that other equivalences have been proposed in the context of process
mining (see [19]) for constructing transition system-based representations of an
event log, which are not necessarily lattices (e.g., some of the transitions systems
can represent loops). [19] puts forward the idea of closing the diamonds (called
extend strategy) in a transition system. This operation is able to handle cases
as that in Fig. 6a, but it is limited to discover relations between events, and
fails to discover missing elements (i.e., execution states). Thus, [19] would fail
to reconstruct the lattices shown in Figs. 6b and 6c. This discussion is expanded
in the related work in Sect. 5.

Fig. 7. Lattice

Another example of the possible lattices that can be
reconstructed is presented in Fig. 7. The displayed lattice
is built from the traces 〈a, b, e, c, d, f〉 and 〈a, d, b, c, e, f〉.
This is not a distributive lattice because neither the union
of the states {a, b, d} and {a, b, e}, nor the intersection of
{a, b, c, d} and {a, b, c, e} are present. The completion of
the lattice in Fig. 7 is that shown in Fig. 3c, where all
added elements and relations are in red.

As noted previously, by construction, a completed lat-
tice is distributive because it is a ring of sets and hence
distributive. The following proposition simply states the
fact that the result of the completion operation is a dis-
tributive lattice.

Proposition 1. The completion D∗ of a lattice D is dis-
tributive.

Before moving to the next subsection, let us discuss
a possible encoding of the lattice. Using the special labelling function, each
execution state can be encoded as a bit-vector, where every position in the vector
represents an event’s special label. A value of 1 at a given position represents
the occurrence of such an event. The bit-vector encoding will be particularly

Discovering Unseen Behaviour from Event Logs 33

useful during the completion of the lattice when many union and intersection
operations will be performed.

3.2 Containing the Amount of Behaviour Discovered During
Completion

The completion operation, while simple, can be a double-edged sword. In the
case of processes capable of generating large amounts of distinct traces (for
example when there are many concurrent activities), even the majority of the
behaviour can be reconstructed from a few traces acting as seeds. For instance,
the lattices in Fig. 6 can be fully reconstructed from only two traces. However,
this makes the technique too sensitive to noise or exceptional behavior that is
not part of the “usual” process behaviour. In this case, a single (noisy) trace
can lead to the insertion of a large amount of behaviour when computing the
missing elements of a lattice. Note that, the filtering of noise in an event log
is an orthogonal problem that has been studied independently (see for example
the works in [6,8,22]), thus a noise-filtering technique can be applied to the log
as a pre-processing step before the reconstruction of the lattices.

In order to control large numbers of behaviours that might be introduced
during the completion operation, this subsection presents a strategy to, first,
compute the completeness of a log, and then to control the amount of behavior
introduced in the lattice.

Measuring Completeness. The completeness of a lattice is defined with
respect of the number of traces represented after completion. Then, a Hasse
diagram of a distributive lattice is seen as a graph where every path (sequence
of contiguous edges) from the bottom to the top element represents a trace.
Formally, a path p in a poset 〈X,⊆〉 is p = 〈s1, s2, s3, . . . , sn〉, where si ∈ X,
for 1 ≤ i ≤ n, and sj ≺ sj+1 for 1 ≤ j < n. Note that for extracting the traces
from the paths, it is necessary to look at the events represented by the prime
intervals of two consecutive nodes. Thus, the trace represented by a path p is
t(p) = λ(〈pr([s1, s2]), pr([s2, s3]), . . . , pr([sn−1, sn])〉). For instance, Fig. 7 has
a path p = ({}, {a}, {a, b}, {a, b, e}, {a, b, c, e}, {a, b, c, d, e}, {a, b, c, d, e, f}), and
the corresponding trace of p is t(p) = 〈a, b, e, c, d, f〉.

The measure of completeness Θ for a lattice is computed as follows. Θ(D) is
defined as the ratio between the total number of paths in the completed lattice
D∗ and the number of paths in the lattice D prior completion, where D#P and
D∗

#P are the set of paths in the lattice and its completed version, respectively.

Θ(D) =
|D#P |
|D∗

#P | (1)

A Hasse diagram is a directed acyclic graph, thus using dynamic program-
ming, the number of paths can be computed in O(V +E) where V is the number
of set elements and E is the number of cover relations.

The completeness measure can be used to control the amount of behavior
introduced in the lattice during completion. For instance, the lattice of a set of
traces G can be deemed as valid if Θ(D) ≥ β, where β is a given threshold. Then,

34 A. Armas Cervantes and F. Taymouri

if Θ(D) < β then G has to be refined into subgroups and the lattices for such
subgroups have to be constructed independently. Intuitively, if the completion
operation introduced more behavior than desired according to β, i.e. Θ(D) < β,
it is necessary to subdivide the group of traces where the completion operation
will introduce less new elements, relations and, as a consequence, fewer paths.
The way to subdivide the groups of traces is left for future work. In the current
tool implementation, a hierarchical clustering was used as a black box, such that
the distance between σ and σ′ is |{σ[i] | λ(σ[i]) �= λ(σ′[i]) for 1 ≤ i ≤ |σ|}|. In
words, the distance between a pair of traces is the number of events that are not
the same at a given position in both traces.

Consider the lattice in Fig. 6c. In this lattice, the black lines represent two
traces 〈a, b, c〉 and 〈c, b, a〉, while the red elements are inserted. In this example,
the completed lattice represents six traces, while only two were given as seeds,
thus Θ(D3) = 2

6 = 0.333. Then, if β > 0.333, then it would be necessary to build
one lattice for the trace 〈d, c, e〉 and one for 〈e, c, d〉.

3.3 Experiments

In order to test how much behaviour we can discover in real-life event logs,
the approach was implemented and tested using a set of publicly available logs.
This section presents the results of the presented approach with a series of real-
life event logs. For reproducibility purposes, the library, benchmark and results
(lattices and elementary event structures were included for completeness) can
be found in this link: Latticer at https://blogs.unimelb.edu.au/bpm/tools/.

Datasets. The experiments were conducted using 11 publicly available real-
life logs obtained from the 4TU Centre for Research Data.2 Table 1 shows the

Table 1. Event logs

Log name #Events #Distinct events #Traces #Distinct Traces Trace length

Min. Max.

BPIC12 262200 36 13087 4366 3 175

BPIC13cp 6660 4 1487 183 1 35

BPIC13inc 65533 4 7554 1511 1 123

BPIC14f 369485 9 41353 14948 3 167

BPIC151f 21656 70 902 295 5 50

BPIC152f 24678 82 681 420 4 63

BPIC153f 43786 62 1369 826 4 54

BPIC154f 29403 65 860 451 5 54

BPIC155f 30030 74 975 446 4 61

RTFMP 561470 11 150370 231 2 20

SEPSIPS 15214 16 1050 846 3 185

2
https://data.4tu.nl/Eindhoven University of Technology/categories/Commerce Management
Tourism and Services/13500.

https://blogs.unimelb.edu.au/bpm/tools/
https://data.4tu.nl/Eindhoven_University_of_Technology/categories/Commerce_Management_Tourism_and_Services/13500
https://data.4tu.nl/Eindhoven_University_of_Technology/categories/Commerce_Management_Tourism_and_Services/13500

Discovering Unseen Behaviour from Event Logs 35

characteristics of these logs including the number of (unique) events, (unique)
traces, and the minimum and maximum length of traces for each event log.

Results. The distributive lattices for each of the event logs were computed
with different thresholds β ranging from 0.0 to 1.0. Table 2 shows the number of
lattices generated with different thresholds β. Intuitively, the lower β, the more
behaviour is accepted when completing the lattice and potentially the fewer
lattices.

The best result was obtained in the case of BPIC13i, where the number
of lattices decreased from 1394 to 535 for β = 1.0 and β = 0.0, respectively;
whereas the smallest reduction in number of lattices was observed in the case
of BPIC155f , where the number decreased from 295 to 264 for β = 1.0 and
β = 0.0, respectively.

Table 2. Number of lattices for different β

Threshold β

Dataset 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

BPIC12 3921 3921 3914 3832 3778 3632 3606 3479 3390 3310 3159

BPIC13cp 152 152 151 139 134 131 125 120 113 110 106

BPIC13i 1394 1394 1382 1341 1292 1236 1204 1143 1040 949 535

BPIC14f 13670 13656 13582 13398 13086 12559 12428 11843 11297 10511 7225

BPIC151f 295 295 295 295 295 295 295 288 278 277 264

BPIC152f 416 416 416 416 412 410 410 409 402 398 368

BPIC153f 785 785 785 775 750 738 736 708 702 682 598

BPIC154f 451 451 451 451 442 437 437 425 423 419 370

BPIC155f 446 446 446 446 436 436 436 436 434 434 424

RTFMP 152 152 151 137 123 108 106 94 91 86 85

SEPSIS 791 791 784 777 751 736 734 709 673 621 434

Even though the reduction of the number of traces can be considerable, the
biggest impact of the technique is in the amount of behaviour introduced in the
lattices. Table 3 shows the total number of paths represented by the constructed
lattices. As shown in the last column, β = 0.0 can lead to a huge amount of paths.
For example, in the case of BPIC154f , the number of paths increases from 451
when β = 1.0, which is the number of distinct traces, to more than 2 billion
when β = 0.0. In this latter example, the great majority of the paths is extracted
from a lattice that represents 2,087,976,600 paths and that is computed from 14
distinct traces. A reason for this can be that there is noise in the logs, or traces
that are multiset equivalent but do not represent executions of a concurrent
activities (e.g., the process can have activities with the same name that are
simply performed in a specific order).

36 A. Armas Cervantes and F. Taymouri

Table 3. Number of paths in the lattices for different β

Threshold β

Dataset 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

BPIC12 4366 4366 4368 4446 4507 4797 4877 5338 6003 7028 1128721

BPIC13cp 183 183 184 191 197 202 213 234 286 319 461

BPIC13i 1511 1511 1515 1540 1590 1670 1747 1967 2543 3565 95633528

BPIC14f 14948 14951 14979 15132 15513 16596 16984 19269 22870 34609 628335832

BPIC151f 295 295 295 295 295 295 295 318 369 378 1454

BPIC152f 420 420 420 420 424 428 428 433 475 507 4308820

BPIC153f 826 826 826 836 863 889 899 1007 1052 1347 5416969

BPIC154f 451 451 451 451 460 470 470 506 517 571 2092799796

BPIC155f 446 446 446 446 456 456 456 456 470 470 5032

RTFMP 231 231 232 245 262 292 302 402 440 628 753

SEPSIS 846 846 848 855 882 912 928 1029 1254 1986 208796

Figures 8 and 9 show the lattices for each dataset, where every dot represents
a lattice. Each graph shows the threshold which was used to create the lattice,
the lattice’s completeness Θ(D) and the number of paths it represents after
completion. Please note that the dot colors are according to the thresholds β. In
these graphs it is possible to observe that there are few lattices that contribute
with the largest amount of paths when the threshold β = 0.0.

4 Discussion and Future Work

The main purpose of this paper is to present distributive lattices as a represen-
tation that can guide the discovery of unseen behavior from event logs. However,
the advantages of using distributive lattices as a representation of the information
of the event logs goes beyond the approach presented in this paper. Distributive
lattices can be used as the bridge to go from traces representing interleavings
of a concurrent process to models with true concurrency semantics, such as the
elementary event structures (see [12]). This is particularly relevant because event
structures have been proposed as suitable representations for the behaviour of
process models and event logs [7].

The construction of distributive lattices from event logs has many potential
uses and directions for our future work, we list some of them below.

Detection of duplicates: As a future work, we will explore the possibility
to detect duplicates (activities which carry the same name but are executed in
different contexts). In particular, we want to explore if the detection of these
duplicates can improve the quality of the models that can be generated using
automated discovery of process models.
Detection of undesirable behaviour: While this paper was focused on deriv-
ing behavior from observed traces, it may also represent behaviour that should
be forbidden if the log is complete. In this case, any other trace inserted during

Discovering Unseen Behaviour from Event Logs 37

Fig. 8. Thresholds, completeness and number of paths for the lattices per dataset

38 A. Armas Cervantes and F. Taymouri

Fig. 9. (2) Thresholds, completeness and number of paths for the lattices per dataset

Discovering Unseen Behaviour from Event Logs 39

the construction and completion of the distributive lattices can be a trace that
should be forbidden by the process.
Process model discovery from partial orders: A promising direction for
future work is to define automated model discovery techniques that take partial
orders as input and generate process models with guarantees (e.g., free-choice
sound workflow nets or models in BPMN notation). Some works moving in
this direction are [3,4,14]. Currently, the majority of automated process model
discovery techniques take event logs as input and derive concurrency relations
over the activities, rather than over the events (e.g., [2,11]).
Generate unseen behavior as event log traces: Once the distributive lat-
tices have been constructed, it is possible to compute all traces they repre-
sent. While the generation of the traces is trivial, in this paper we only con-
sider control flow information and do not take into account other possible event
attributes. As a future work, we will explore the possible attributes that can be
derived/extrapolated during the generation of the traces from the distributive
lattices.

Finally, another promising direction for future work is to consider other types
of lattices (e.g., semi-modular lattices) and the Petri net classes to which they
correspond.

5 Related Work

The closest related work is that in van der Aalst et al. [19], where different
strategies for constructing transitions systems from event logs are presented.
Once the transition systems are constructed, the authors put forward the idea
of adding new edges between states in the transition systems (called “extend”
strategy) as a way to discover behaviour that was not observed in the log but was
likely to be present in the process. Our work differs from such approach in two
ways. First, we adopt a well-known formalism, distributive lattices, with a well-
defined notion of completeness. Thus, when introducing new behaviour in the
distributive lattices, it is possible to determine when all missing behaviour has
been added, which is not the case when using transition systems. Furthermore,
the extend strategy in [19] can only add missing edges between pairs of states,
but in the case of distributive lattices, it is possible to discover missing states as
well as edges.

Another related work is that on concurrency oracles. [9] uses concurrency
oracles to transform event log traces into elementary event structures. In such
case, the amount of behaviour added when inserting concurrency will depend on
the quality of the oracle. In particular, [9] uses the alpha relations [18] as oracle,
which deems a pair of events as concurrent if the activities were ever observed in
different orders in the log. For example, alpha relations deem (a, b) concurrent if
a is executed before b in one trace, and b is executed before a in another trace.
These relations can be spurious because it is possible that the order between
a and b is particular to some executions (e.g., a is always executed before b in

40 A. Armas Cervantes and F. Taymouri

the trace 〈c, a, b〉; whereas b is always executed before a in the trace 〈f, b, a〉). In
order to address that issue, [1] put forward the idea of local concurrency oracles
that find concurrency relations that only apply to particular areas of the traces.
Such technique uses two threshold, arbitrarily defined by the user, to control the
sensitivity of the oracle. Different from the concurrency oracle approaches, the
use of distributive lattices gives a reference as to what is the missing behaviour
without having to rely on arbitrary thresholds or inserting concurrency derived
from distinct computations.

The problem of measuring the completeness of an event log is not new. Prob-
abilistic approaches to measure log completeness can be found in [13,21,23].
Different from these approaches, our aim is to discover the behaviour that is
not observed but likely to be present in the process (under some assumptions).
Instead, the probabilistic approaches aim at computing a lower bound represent-
ing the completeness of a log. While informative, it does not allow us to obtain
the missing behavior.

While there are few techniques that compare directly to the approach pre-
sented in the paper, process mining operations, and in particular automated
process discovery techniques, implicitly discover behavior when abstracting the
behavior in a log (e.g., when creating models [2,11]). In fact, a way to assess the
quality of a discovered process model is by measuring its generalization, behavior
that is not observed in the log but likely to be part of the process [17]. The app-
roach presented in this paper can be seen as a pre-processing step that discovers
concurrency from groups of equivalent traces, which can then be inserted during
the construction of other more sophisticated models, such as models in BPMN
notation.

6 Conclusion

This paper presented an approach to discover unseen behavior from an event log.
The approach is based on the reconstruction of distributive lattices, which rep-
resent execution states of process instances. This approach was inspired by the
results presented in [12], where the relationship between a family of Petri nets
(conflict-free 1-safe nets), event structures and lattices was shown. There, the
authors showed that the lattices representing the execution states of the Petri
nets were distributive when ordered by subset inclusion. The approach presented
in this paper starts by computing lattices from groups of traces representing the
same computation. Then, these lattices are completed by inserting missing ele-
ments until the distributivity property is fulfilled. Using the discovered behavior,
a measure of completeness is defined to assess the volume of traces discovered
during the completion operation. Finally, it was shown how this measure of
completeness can be used to control the amount of behavior discovered.

In order to test the effect of the proposed approach in real-life logs, a set
of experiments were run to measure the amount of behavior discovered in a
collection of publicly available event logs. It was observed that in some event
logs, the number of traces that could be computed from the distributive lattice

Discovering Unseen Behaviour from Event Logs 41

could be very large. The latter may be due to noise in the log, which can lead
to the discovery of too much behavior that may not be part of the “normal”
process. Thus, while the completion operation is simple, it can be too sensitive
to noise. Nonetheless, by using the measure of completeness as threshold, it is
possible to control the amount of discovered behavior.

Acknowledgements. The authors would like to thank all the reviewers for their
valuable comments. Special thanks to reviewer 2 for their insightful suggestions.

References

1. Armas-Cervantes, A., Dumas, M., Rosa, M.L., Maaradji, A.: Local concurrency
detection in business process event logs. ACM Trans. Internet Technol. 19(1), 1–
23 (2019)

2. Augusto, A., Conforti, R., Rosa, M.L., Dumas, M.: Split miner: discovering accu-
rate and simple business process models from event logs. In: 2017 IEEE Interna-
tional Conference on Data Mining (ICDM), pp. 1–10 (2017)

3. Bergenthum, R.: Prime miner - process discovery using prime event structures. In:
2019 International Conference on Process Mining (ICPM), pp. 41–48 (2019)

4. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of petri nets from
term based representations of infinite partial languages. Fundam. Inf. 95(1), 187–
217 (2009)

5. Birkhoff, G.: On the combination of subalgebras. Math. Proc. Cambridge Philos.
Soc. 29(4), 441–464 (1933)

6. Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314
(2017)

7. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: event structures as a
unified representation of process models and event logs. In: Devillers, R., Valmari,
A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19488-2 2

8. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour
in event logs. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320,
pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5 9

9. Garćıa-Bañuelos, L., van Beest, N.R.T.P., Dumas, M., Rosa, M.L., Mertens, W.:
Complete and interpretable conformance checking of business processes. IEEE
Trans. Softw. Eng. 44(3), 262–290 (2018)

10. Habib, M., Nourine, L.: Tree structure for distributive lattices and its applications.
Theoret. Comput. Sci. 165(2), 391–405 (1996)

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

12. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
Part I. Theor. Comput. Sci. 13, 85–108 (1981)

13. Pei, J., Wen, L., Yang, H., Wang, J., Ye, X.: Estimating global completeness of
event logs: a comparative study. IEEE Trans. Serv. Comput. 14(2), 441–457 (2021)

https://doi.org/10.1007/978-3-319-19488-2_2
https://doi.org/10.1007/978-3-319-93931-5_9
https://doi.org/10.1007/978-3-642-38697-8_17

42 A. Armas Cervantes and F. Taymouri

14. Ponce-de-León, H., Rodŕıguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-
based process discovery. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 31–47. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-24953-7 4

15. Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985)
16. Stone, M.H.: The theory of representation for boolean algebras. Trans. Am. Math.

Soc. 40(1), 37–111 (1936)
17. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer,

Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
18. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-

covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

19. Van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

20. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda.
Comput. Ind. 53(3), 231–244 (2004)

21. van Hee, K.M., Liu, Z., Sidorova, N.: Is my event log complete? - a probabilistic
approach to process mining. In: International Conference on Research Challenges
in Information Science, pp. 1–12 (2011)

22. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a graph
repair approach. In: 2015 IEEE 31st International Conference on Data Engineering,
pp. 30–41 (2015)

23. Yang, H., Ter Hofstede, A.H., Van Dongen, B.F., Wynn, M.T., Wang, J.: On global
completeness of event logs. BPM Center Report BPM-10-09 (2010)

https://doi.org/10.1007/978-3-319-24953-7_4
https://doi.org/10.1007/978-3-319-24953-7_4
https://doi.org/10.1007/978-3-662-49851-4

	Discovering Unseen Behaviour from Event Logs
	1 Introduction
	2 Preliminaries
	2.1 Partial Orders and Lattices
	2.2 Distributive Lattices and Concurrency
	2.3 Traces and Event Logs

	3 Distributive Lattices of an Event Log
	3.1 Reconstruction of Distributive Lattice
	3.2 Containing the Amount of Behaviour Discovered During Completion
	3.3 Experiments

	4 Discussion and Future Work
	5 Related Work
	6 Conclusion
	References

