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Abstract. Systems with shared resources can be modeled and analyzed
using high-level Petri nets in a natural way. Choosing a model type suit-
able for the use in conformance checking introduces challenges related
to constraints the model should put on resource types and resource
instances. In this paper, we propose a model for systems with shared
resources based on resource-constrained Petri nets and ν-Petri nets that
can be used in the context of conformance checking. Our model allows
for case and resource isolation, allowing for proper simulation of multiple
cases involving shared resources.

With this minimal extension, we show that we can use existing state-
of-the-art conformance checking techniques to compute alignments on
complete event logs rather than on individual case instances. We show
that previously undetected deviations caused by inter-case dependen-
cies can now be exposed, providing valuable information regarding the
exhaustive workflow in the process.

Keywords: Petri nets · Shared resources · Conformance checking ·
Inter-case dependencies

1 Introduction

Process models often include descriptions of resources executing activities within
the process, since the availability of resources puts constraints on the process
execution. Event logs, recording process executions, also often include indications
which resource executed which activity and when, usually mentioning the exact
person(s) or machine(s) that were involved in the activity. Such event logs can
be used for conformance checking, i.e. checking whether and where the actual
process behavior recorded in an event log deviates from the behavior prescribed
by a process model.

Various types of conformance checking techniques that exist so far are pri-
marily focused on the control flow of a process, without taking into account
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the information about resources, and do so by looking at individual cases going
through the process separately. In the context of resources, it is crucial to con-
sider all the cases going through the system at the same time, since these cases
share resources available in the system.

Another challenge in the conformance checking of processes with shared
resources is the necessity to consider not only resource types (e.g. whether it
is a doctor or a nurse who has to perform a particular activity), but also the
resource identity (e.g. which doctor performed a surgery). This information is
critical for checking resource related constraints that should be imposed by the
model, e.g. that the patient had a follow-up appointment with the doctor who
conducted the surgery, or that the second-opinion appointment is not planned
with the same doctor whom the patient already met.

In this paper, we first address the question how to model resource-constrained
processes in order to enable conformance checking and then adapt a conformance
checking method to dealing with resource-constrained processes. We build our
model on basis of resource-constrained Petri nets [31] and ν-Petri nets [22]. The
model allows to specify resource types by using resource places, and case and
resource identities by using case ids and resource ids as token colors. We use the
alignment mechanism introduced in [1] as basis for our alignment method to do
conformance checking on resource-constrained ν-Petri nets.

Related Work. In [3] and [31], Petri nets are extended with resources to model
availability of durable resources, as well as their claims and releases by cases
running through the system. ν-Petri nets [22] allow for case isolation as a minimal
extension to classical Petri nets via name creation and name management. An
advantage as opposed to more advanced Petri net extensions is that coverability
and termination are decidable for ν-Petri nets.

Other extensions such as Catalog Petri nets [10], synchronizing proclet mod-
els [9], resource and instance-aware workflow nets (RIAW-nets) [17], and DB-
nets [18] inherit the functionality of ν-Petri nets. Additionally, these extensions
implement concepts from databases, shared resources, and proclet channels. We
show that we do not require such additional functionality and aim for a minimal
extension on Petri nets.

Many conformance checking techniques use alignments to directly connect
the behavior of a system recorded in a log with the behavior allowed by a process
model. Alignments can expose exactly where the recorded behavior and the
model agree, which activities prescribed by the model are missing in the log
and which log activities should not be performed according to the model [6,
28]. Rule checking techniques [14,25] are conformance checking techniques that
check if specific business rules are respected, and they can be useful in case
the process model does not describe the whole process behavior. Case-replay
techniques [4,24,28,29] aim to identify specific deviations between modeled and
observed behavior. We choose alignments as basis for our conformance checking
method since they are designed for fully-specified processes (potentially with
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invisible transitions) and target at discovering a broad range of deviations in the
process behavior.

Conformance checking usually targets isolated cases from the workflow per-
spective. More advanced techniques consider resources and data on top of the
control flow; in [7], the control flow is considered first, after which other per-
spectives are checked. This method can provide misleading results in case of
shared resources, since resources put additional constraints on the control flow.
In [15], this is partially mitigated by balancing the different perspectives in a
customizable manner. More recently, a technique was proposed to consider all
perspectives at once [16], but cases are still considered individually, also when
they are run in parallel, and tokens are uncolored, making it impossible to cap-
ture resource ids in the model.

Alignments, as well as the other techniques, are computed primarily focusing
on the detection of workflow deviations for individual cases. Work has been done
to take into account multiple perspectives like data attributes and resources to
check, besides the workflow, whether the correct data attributes and resources
were involved [2,7,15,16]. However, they still operate on a case-by-case basis.
With resource-constrained Petri nets, violations regarding inter-case dependen-
cies remain undetected.

Outline. This paper is organized as follows. Section 2 presents basic defini-
tions related to Petri nets and event logs. In Sect. 3, we focus on processes with
shared resources, introduce the notion of resource-constrained ν-Petri nets and
some modeling patterns. In Sect. 4, we steer towards the problem of conformance
checking and investigate the missing link with inter-case dependencies caused by
shared resources. In Sect. 5, we propose a solution exploiting ν-Petri nets to com-
pute alignments which allows for exposing violations. We conclude in Sect. 6 by
discussing our contributions and directions for future work.

2 Preliminaries

In this section we present the notations that we will use throughout the paper.

2.1 Petri Nets

Petri nets can be used as a tool for the representation, validation and verification
of workflow processes to provide insights in how the process behaves [21].

Definition 1 (Multiset). A multiset m over a set X is m : X → N, denoted as
X⊕. The support supp(m) of a multiset m is the set {x ∈ X | m(x) > 0}.

For m1,m2 ∈ N, we write m1 ≤ m2 if ∀x∈X : m1(x) ≤ m2(x), and m1 < m2

if m1 ≤ m2∧m1 �= m2. We define m1+m2 as (m1+m2)(x) = m1(x)+m2(x) for
all x ∈ X. For m1 ≥ m2, we define m1 − m2 as (m1 − m2)(x) = m1(x) − m2(x)
for all x ∈ X.
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In some cases we consider multisets over a set X as vectors of length |X|,
where we assume arbitrary but fixed orderings of elements of X.

Definition 2 (Petri net). A Petri Net [19] is a 3-tuple N = 〈P, T,F〉, where P
is the set of places, T is the set of transitions, P∩T = ∅, F : (P×T )∪(T×P ) → N

is the flow of the net. The incidence matrix F of a Petri net N is a matrix with
a row for each place p ∈ P and a column for each transition t ∈ T and it is
defined by F (p, t) = F(t, p) − F(p, t).

We write P (N), T (N) and F(N) to indicate that we refer to the set of places,
the set of transitions and the flow relation of a net N .

N1 ∩ N2, N1 ∪ N2, and N1 ⊆ N2 denote intersection, union, and subsets of
nets, respectively, defined on the sets of nodes and arcs of N1 and N2.

A labeled Petri net N = 〈P, T,F , �〉 additionally defines a labeling � : T →
Σ⊥ = Σ ∪ {τ} assigning each transition t a label �(t) from alphabet Σ or �(t) =
τ for silent transitions. We assume that the intersection, union and subsets
are only defined for two labeled Petri nets N1, N2 where �1(t) = �2(t) for any
transition t ∈ T1 ∩ T2.

Definition 3 (Post-set, Pre-set). Given a transition t ∈ T , its pre-set •t and
post-set t• are multisets defined as follows: •t(p) = F(p, t) and t•(p) = F(t, p)
for p ∈ P . Correspondingly, for a place p ∈ P we have •p(t) = F(t, p) and
p•(t) = F(p, t) for t ∈ T .

Definition 4 (Marking). A marking m : P → N of Petri net N = 〈P, T,F〉
assigns how many tokens each place contains. A marking defines the state of N .

Definition 5 (Enabling and firing of transitions, Reachable markings). A tran-
sition t ∈ T is enabled for firing if and only if m ≥ •t. We denote the firing of
t by m

t−→ m′, where m′ is the resulting marking after firing t and is defined by
m′ = m − •t + t•. For a transition sequence σ = 〈t1, . . . , tm〉 we write m

σ−→ m′

to denote the consecutive firing of transitions t1 to tm. We also write m
∗−→ m′

if there is some σ ∈ T ∗ such that m
σ−→ m′.

The set of reachable markings R(N,m) from marking m in a Petri net N is
the set {m′ | m

∗−→ m′}.
Definition 6 (Place invariant). A place invariant [12] is a row vector I : P → Q

such that I · F = 0. We denote the set of all place invariants as IN , which is a
linear subspace of QP .

The main property of place invariants is that for any two markings m1,m2

such that m1
∗−→ m2 and any place invariant I holds: I · m1 = I · m2.

Definition 7 (Distributed run). A distributed run describes a partial order of
transition occurrences represented as an acyclic occurrence net π [20]. An occur-
rence net π = 〈B,E,G〉 is a Petri net where each place b ∈ B is called a con-
dition, each e ∈ E is called an event, the transitive closure G+ is acyclic. Each
b ∈ B has at most one pre-event and at most one post-event, i.e. |•b| ≤ 1 and
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|b•| ≤ 1. A labeled occurrence net π = 〈B,E,G, �〉 is an unfolding of a Petri net
N where each condition (event) is labeled with a set of labels of the form (x, id)
where x refers to a place (transition) of N , and id is an instance identifier.

Definition 8 (Net system, Language, Execution sequence). A Net system is a
tuple SN = (N,mi,mf ), where N is a Petri Net and mi and mf are respectively
the initial and final marking. The language of SN is the set L(SN) = {σ ∈ T ∗ |
mi

σ−→ mf} of all full firing sequences of SN .
An execution sequence in a net system SN = (N,mi,mf ) is a distributed

run of steps, starting at the initial marking mi and ending at the final marking
mf .

2.2 Event Logs

An event log records action executions as events where each event records at
least the action that occurred, the time of occurrence and the case identifier of
the case in which the action occurred. Often resources are also recorded as event
attributes, e.g. the actors executing the action. Typically, there are several types
of resources, and it is generally known beforehand which resources of which types
are involved in which actions.

Definition 9 (Cases, Resources). Idc denotes the set of case identifiers. An
identifier of case c is denoted as idc.

R = {r1, . . . , rm} is the set of resource types. Each resource instance with
an identifier idr belongs to some resource type r ∈ R. Idr denotes the set of
resource instances of type r ∈ R. We assume that Idr ∩ Idr′ = ∅ for any r �= r′.
IdR = �r∈RIdr denotes the set of the resource instances of all types.

Note that if one would want to capture resource instances with multiple types
R′ ⊆ R, a new type should be constructed containing all types from R′.

With the notation on cases, resources and resource types, we can define
events, an event log and its traces in an abstract manner:

Definition 10 (Event, Event log, Trace). An event e is a tuple 〈a, ts, idc, Idρ〉,
with an activity name a ∈ Σ, a timestamp ts, a case identifier idc and a set of
resource instance identifiers Idρ ⊆ IdR. Such an event represents that activity a
occurred at timestamp ts for case idc and is executed by resource instances from
Idρ belonging to possibly different resource types.

An event log L is a (partially) ordered set of events. These events can be split
into traces, defined as projections e.g. on the case identifiers or on the resource
identifiers.

For a process modeled by a Petri net, an activity name corresponds to a tran-
sition name or a transition label of the corresponding transition of a (labeled)
Petri net. With the projection on case identifiers, we get the events from indi-
vidual cases, as is mainly used in classical process mining and with projection
on resource identifiers, we can get the events from individual resource instances,
which are entities in their own right, providing the perspective of a single or
multiple resource types.
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3 Modeling Resource-Constrained Case Handling
Systems

A classical Petri net models a process execution using transition firings and the
corresponding changes of markings without making distinction between different
cases on which the modeled system works simultaneously. To create a case view,
Workflow nets [27] model processes from the perspective of a single case. Systems
in which cases share resources need to be modeled in a different way, providing
information both about cases and resources. In this paper, we extend the notion
of RCWF-nets [31], resource-constrained workflow nets with resource places and
id-tokens identifying cases, by loosening some structural restrictions on Petri
nets and including information about resource instances working on cases. To
achieve that, we make use of ν-Petri nets [22].

3.1 Resource-Constrained Petri Nets

Let R be the set of all resource types. Following the definition of [31], we model
each resource type r ∈ R by a place pr, where the resources (tokens) are located
when they are available. We extend the RCWF-nets definition by adding a place
p̄r for each resource type r. Tokens on p̄r represent resources working on cases.
The structural condition F(pr, t) + F(p̄r, t) = 0 is imposed on the net, which
implies that a token can e.g. be moved from pr to p̄r to show that the resource
gets occupied, moved from p̄r to pr to show that the resource becomes available,
or there could be tests whether there are free/occupied resources.

We consider durable resources only, meaning that resources can neither be
created nor destroyed, so in the corresponding net system with initial and final
marking mi and mf , mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r), for any resource
type r ∈ R. The net obtained from a resource-constrained net N by removing
all resource places Pr together with their incoming and outgoing arcs is called
the production net of N .

Tr ⊆ T denotes the set of activities in which resource instances of type r are
involved. We define T in

r = p•
r and T out

r = •pr, where resource instances of type
r are claimed and released, respectively. Note that both Tr \ (T in

r ∪ T out
r ) and

T in
r ∩T out

r may be nonempty, since a resource can be claimed by an activity and
then released only after executing several other activities, or it can be claimed
and immediately released by an activity.

We add modeling restrictions on pr and p̄r to exploit structural characteristics
of the Petri net later in Sect. 3.3.

Definition 11 (Resource-constrained net system). Let R be a set of resource
types. We define the set of availability resource places Pr = {pr | r ∈ R} and
the set of occupancy resource places P̄r = {p̄r | r ∈ R}. A resource-constrained
net system SN = (N,mi,mf ) is a regular net system with resource-constrained
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Fig. 1. Running example Petri net.

Petri net N = 〈P, T,F〉 where P = Pp � Pr � P̄r, with Pp the production places.
We have the following modeling restrictions on pr and p̄r:

1. ∀t∈T [•t(pr) + •t(p̄r) = t•(pr) + t•(p̄r)], i.e. F(pr, t) + F(p̄r, t) = 0.
2. mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r) = 0;

Restriction 1 from Definition 11 enforces the place invariant (1, 1) for each
pair of the availability and occupancy resource places pr and p̄r, which trivially
follows from the definition of place invariants. This implies that m(pr)+m(p̄r) =
mi(pr) for any marking m reachable from the initial marking mi. Restriction 2
requires that all resource tokens are returned to the availability resource place
when the net reaches its final marking.

Typically, a variant of the soundness property is imposed on the net system
to guarantee that the final marking is reachable from any marking reachable
from the initial marking.

3.2 Running Example

As a running example, we use the Petri net representation of a simple process,
see Fig. 1. This Petri net models a hospital process in which three types of
resources are involved: doctors (modeled with resource places pd and p̄d), doctor
assistants (places pa and p̄a) and nurses (places pn and p̄n). Patients undergo
two phases of a treatment. The first phase is the intake where a doctor together
with an assistant first discuss patient symptoms (transition is), after which the
doctor provides the plan of approach (transition ip), and finally the patient asks
questions to the assistant (transition iq). In case of emergency, the whole intake
phase can be skipped, which is modeled by the black (silent) transition. The
second phase is either medication collection (transition m) or operation. The
latter is subdivided in preparation (transition op) done by a nurse after which
the surgery (transition os) and close up (transition oc) are performed by the
nurse and a doctor, ending the process.

An assistant is actively involved in the whole intake phase of the process,
which is emphasized by the test arc between the place pa and transition ip. Note
that the nurse is not involved in the surgery, although it is not released during
the entire operation phase.
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Fig. 2. Example Petri net in need of case isolation.

3.3 ν-Petri Nets

Resource-constrained Petri nets are especially useful when multiple cases are
present simultaneously. An example in Fig. 2 shows that distinguishing tokens
belonging to different cases is essential for capturing process behavior of simul-
taneously running cases in a correct way. The shown net does not have the
separability property [30]. Trace 〈a, c, b, f , g, d, e, g〉 can be replayed on the Petri
net without differentiating between the case ids. However, this trace cannot be
formed as an interleaving shuffle of the traces of two separate cases, since each
firing of transition g uses tokens belonging to two different cases. Thus we need a
mechanism preventing firings of transitions that mix tokens belonging to differ-
ent resources. Moreover, we also need a mechanism allowing us to keep track of
resource instances. In our running example, we need e.g. a possibility to extend
the model with a constraint that the doctor who performed the intake is also
the doctor who performs the surgery later in the process.

We use ν-Petri nets to provide case and resource isolation. ν-Petri nets, also
referred to as Petri nets with names, extend regular Petri nets with the capability
of name management. The expressive power of a ν-Petri net strictly surpasses
that of Petri nets and they essentially correspond to the minimal object-oriented
Petri nets of [11]. In a ν-Petri net, names can be created, communicated and
matched which can be used to deal with authentication issues [23], correlation
or instance isolation [8]. Name management is formalized by replacing ordinary
tokens by distinguishable ones, thus adding color the Petri net.

We first give the definition of regular ν-Petri nets from [22] (see Definition
12), after which we show how we extend the definition to work with resource-
constrained Petri nets. Colors are handled by matching variables labeling the
arcs of the Petri nets, taken from a fixed set Var and a set of special variables
Υ ⊂ Var as defined in Definition 12.

Definition 12 (ν-Petri net [22]). A ν-Petri net is a tuple ν-N = 〈P, T,F〉,
with a set of places P and a set of transitions T with P ∩ T = ∅, and a flow
function F : (P × T ) ∪ (T × P ) → Var⊕ such that for every t ∈ T , Υ ∩ pre(t) =
∅ and post(t) \ Υ ⊆ pre(t), where pre(t) =

⋃

p∈P

supp(F(p, t)) and post(t) =
⋃

p∈P

supp(F(t, p)). Υ ⊂ Var denotes a set of special variables ranged by ν, ν1, . . .

to instantiate fresh names.
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Fig. 3. Process model M : ν-Petri net representation of the running example (note that
some arc labels are omitted for clarity).

A marking of ν-N is a function m : P → Id⊕. Id(m) denotes the set of
names in m, i.e. Id(m) =

⋃

p∈P

supp(m(p)).

A mode μ of a transition t is an injection μ : Var(t) → Id, that instantiates
each variable to an identifier.

For a firing of transition t with mode μ, we write m
tµ−→ m′. t is enabled

with mode μ if μ(F(p, t)) ⊆ m(P ) for all p ∈ P and μ(ν) /∈ Id(m) for all
ν ∈ Υ ∩Var(t). The reached state after the firing of t with mode μ is the marking
m′, given by:

m′(p) = m(p) − μ(F(p, t)) + μ(F(t, p)) for all p ∈ P (1)

ν-Petri nets support instance isolation: we use case ids and resource ids as
token colors and require tokens involved in a transition firing to have matching
colors. This allows for separating multiple instances simultaneously running in
the Petri net. We build on Definition 12 to define resource constrained Petri
nets with matching on case instances and resource instances. Instance isolation
is achieved by extending the colored tokens to multi-colored, for which we have
two sets of variables, Varc and Varr, for case and resource isolation respectively,
instead of the single set V ar in ν-Petri nets. This requires modifications in the
standard definition of arcs F , marking m and mode μ of the ν-Petri net. The
definition of transition firings remains the same.

Definition 13 (Resource-constrained ν-Petri net). Let C⊥ be the set of case ids
C extended with ordinary tokens, i.e. • ∈ C, and R⊥ be the set of resource ids
extended with ordinary tokens.
A resource-constrained ν-Petri net N = 〈P, T,F〉 is a Petri net system with
F : (P × T ) ∪ (T × P ) → (Var⊥

c × Var⊥
r )⊕, where Varc denote case variables

and Varr denote resource variable.
A marking of N is a function m : P → (C⊥ × R⊥)⊕ with case ids C and

resources R, which is a mapping from places to multisets of colored tokens.
A mode of a transition t is an injection μ : (Var⊥

c ×Var⊥
r )(t) → (C⊥ ×R⊥),

that instantiates each variable to an identifier.
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Batching

Long-term resource memory
Capacity

(a) Patterns for capacity, long-term resource memory and batching

FIFO queue of length

Four eyes principle

(b) Pattern for FIFO queue and four eyes principle

Fig. 4. Modeling patterns extending the running example showing possible use cases.

The mode determines the case and resource ids of the tokens to consume and
produce in a transition firing. Note the role of the occupancy resource places in
this definition: they allow to keep track of resources working on individual cases.
The place invariant naturally holds for resource-constrained ν-Petri nets as well.

Figure 3 shows the ν-Petri net for our running example.
Note that this example does not include the functionality of new name cre-

ation although this could be useful to exploit in some processes. E.g., consider a
production process where components are assembled into products. Each com-
ponent has a unique identifier, of which a subset is merged into a product for
which a fresh identifier should be produced, requiring new name creation in the
process model.

3.4 Modeling Patterns

Resource-constrained ν-Petri nets open up a number of possibilities in terms of
simulating resource-constrained processes, where case and resource isolation are
critical for correct simulation.

We illustrate a number of modeling patterns in Fig. 4, building on our running
example:

– Capacity, FIFO queues A subprocess in Fig. 4a on the left, prior to the
intake, models a waiting room with a capacity limited by the initial number
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of tokens on the resource place pr. Figure 4b shows a FIFO (first in first
out) version of the waiting room. For the FIFO queue with capacity n, n
availability and n occupancy resource places are needed for this pattern to
lead patient tokens (with their case ids) through the queue.

– Long term resource memory: Place p̃d with F(is, p̃d) = F(p̃d, os) = (c, y)
models a long term resource memory with respect to the doctor, ensuring
that the resource instance of type doctor that was involved in the intake
of a patient is also the same instance that performs the operation for that
patient. This construct still allows the resource to be available for other cases
(patients) in between the intake and the surgery.

– Four eyes principle: Alternatively, as shown in Fig. 4b on the right, p̃d

can also be used to add the opposite restriction with respect to the doctor
resource: the doctor performing the operation (d2) should be different from
the doctor involved in the intake (d1). This pattern is known as the four
eyes principle, meaning that two resources involved in a process should not
be equal. Note that the starting transition of the second subprocess should
be duplicated, since the intake-doctor d1, who is not involved in the surgery,
could be residing in either pd or p̃d.

– Batching: Batch processing can be modeled with multiple arrows, like the
arrows connected to the silent transition in the net firing before transition
m. In this case, a pharmacy may only replenish their inventory for e.g. three
orders of medication at once. This pattern is similar to the one in classical
Petri nets.

4 Alignments on Resource-Constrained Petri Nets

Several state-of-the art techniques in conformance checking use alignments to
relate the recorded executions of a process with a model of this process [1]. A
traditional alignment shows how a trace can be replayed on the process model
by a sequence of moves representing either a synchronous move, a log move
or a model move, denoted as

(
a
a

)
,

(
a
�

)
and

(�
a

)
respectively. A synchronous

move indicates that observed and modeled behavior agree, i.e. the execution of
an activity observed in the log can be mimicked by performing this activity in
the process model. A log move means that an activity from the log cannot be
mimicked in the model, and a model move represents the fact that the model
requires an execution of some activity, which is not observed in the log. Log
moves and model moves can expose deviations of the real behavior from the
model.

In this section we recapitulate the alignment mechanism in its classical form,
with computations performed on a case-by-case basis, after which we show its
shortcomings when dealing with resource-constrained Petri nets.

4.1 Traditional Case-by-Case Alignments

The foundational work for constructing alignments is presented in [1] and relies
on two fundamental concepts: (1) a synchronous product of Petri nets and (2)
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the marking equation. The synchronous product definition is tuned towards the
setting of alignments and it is built for the Petri net model of the process and the
trace Petri net (a Petri net representation of the (partially) ordered trace in the
event log). The trace Petri net traditionally represents only individual cases from
the event log, and consequently does not capture the interdependencies between
multiple cases. The case-by-case alignment is then found by a depth-first search
on the synchronous product Petri net using the A∗ algorithm [1].

A trace net system SNσ of a trace σ = 〈e1, . . . , en〉 is a net system with
the set of transitions T l = {tli | ei ∈ σ}, a connection place for every pair of
transitions tli and tli+1, place pi being the input place of t1 and place pf being
the output place of tn, mi = {pi} and mf = {pf}.

Given a net system SN modeling the considered process and a trace net
system SN σ modeling a trace from a log, a synchronous product ΠSN contains
the places and the transitions of SN and SN σ and additional transitions called
synchronous moves: For each pair of transitions tm ∈ T (SN ), tl ∈ T (SN σ) with
matching labels �(tl) = �(tm), transition ts is created with •ts = •tl ∪ •tm and
ts• = tl• ∪ tm•. Thus ΠSN contains transitions T = T s ∪ T l ∪ Tm, where each
ts ∈ T s can be traced back to a pair of a transition tl ∈ T l and a transition
tm ∈ Tm, T l is the set of transitions of the trace net system and Tm is the set of
transitions of the process model SN . While T s transitions represent synchronous
moves in both the trace net and the process model, T l transitions represent log
moves and Tm transitions represent model moves.

The core alignment question is now formalized as follows: given a synchronous
product Petri net with a cost function assigning a non-negative cost to each
transition firing, find a distributed run from the initial marking to the final
marking with the lowest total costs. Synchronous moves have zero costs, since
they represent a match between the trace and the model behavior.

Let ΠSN = 〈P, T,F〉 be a synchronous product Petri net with T = T s �
T l �Tm partitioned into sets of transitions corresponding to synchronous moves,
log moves and model moves respectively and let (ΠSN,mi,mf ) a corresponding
net system. Furthermore let c : T → R

+ a cost function.
An alignment is a distributed run γ ∈ {γ ∈ T ∗|(ΠSN,mi)

γ−→ (ΠSN,mf )}.
An optimal alignment is an alignment γ such that c(γ) ≤ c(γ′) holds for any

alignment γ′.
Optimal alignments can be computed for individual cases in an event log

using an A∗ based search strategy [1,6,29] where ILP is utilized as a heuristic
function, or logic programming [5] is used. Other methods focus on approxima-
tions of alignments [26] or provide divide-and-conquer strategies [13]. Although
we will not go into the details on the exact workings of these methods, we point
out that they all have one fundamental property in common: they all reason over
the synchronous product Petri net.
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4.2 Unexposed Deviations; the Need for Multi-case and -resource
Alignments

When talking about case-by-case alignments with resource-constrained Petri
nets, some deviations remain unexposed. Recall that for simulating resource-
constrained Petri nets, we need a ν-Petri net representation to correctly isolate
the cases and resources. Similar issues emerge when computing alignments case
by case using indistinguishable resources. Referring back to the modeling pat-
terns presented in Sect. 3.4, we show some event logs for the extended running
example process models from Fig. 4 for which case-by-case alignments fail to
expose deviations in resource-constrained Petri nets:

– Multitasking: consider the partial event log L1 given by

L1 = 〈. . . , 〈is, {d1, a1}〉, 〈is, {d1, a2}〉, 〈ip, {d1, a1}〉, 〈ip, {d1, a2}〉, . . . 〉

where the timestamp is abstracted away and the case identifier is denoted
by the activity color (and additionally by the bar position). The recorded
behavior in L1 shows that doctor d1 is multitasking on the intake subprocesses
of two patients. The resource-constrained ν-Petri net does not accept this
behavior since is claims the doctor and the doctor is released again only after
ip is executed. Case-by-case alignments consider every case in isolation and
therefore they do not expose any deviations in L1.

– Resource switching: consider the partial event log L2 given by

L2 = 〈. . . , 〈is, {d1, a1}〉, 〈is, {d2, a2}〉, 〈ip, {d2, a1}〉, 〈ip, {d1, a2}〉, . . . 〉

The behavior recorded in L2 shows that doctors d1 and d2 swapped patients
during the intake subprocess, which is not allowed according to the process
model where the resources have names (colors).
Furthermore, consider the partial event log L3 given by

L3 = 〈. . . , 〈is, {d1, a1}〉, 〈ip, {d1, a1}〉, . . . , 〈os, {d2, a1}〉, . . . 〉

L3 shows that doctor d2 performed an surgery on a patient whose intake was
done by doctor d1, although the long-term resource memory place p̃d in the
process model implies that the doctor performing the surgery is the same as
the one who did the intake.
These deviations remain undetected by the traditional alignments, computed
on classical Petri nets with black tokens.

– Capacity violations: consider the partial event log L4 given by

L4 = 〈〈we, {r1}〉, 〈we, {r1}〉, 〈we, {r1}〉, 〈wl, {r1}〉, 〈wl, {r1}〉, 〈wl, {r1}〉, . . . 〉

L4 shows the behavior from the waiting room subprocess, where a maximum
capacity of two patients is in place. Similar to the first example, case-by-case
leaves this deviation undetected.
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– Overtaking in FIFO queues: consider the partial event log L5 given by

L5 = 〈〈we, {r1}〉, 〈we, {r1}〉, 〈wl, {r1}〉, 〈wl, {r1}〉, . . . 〉
The recorded behavior in L5 does not violate the waiting room’s capacity, but
the patients leave in a different order than how they arrived, while the process
model imposes the FIFO pattern. Such deviations can only be exposed when
aligning multiple cases simultaneously.

– Batching violations: consider the partial event log L6 given b

L6 = 〈. . . , 〈m, ∅〉, 〈m, ∅〉, . . . 〉
Recall that m is only enabled after e.g. three (with n = 3) tokens are in •op

in order to fire the connected silent transition in the process model. L6 shows
that m occurred for two patients only, deviating from the model. With case-
by-case alignments, it is impossible to align m. It also would be impossible in
case there were three patients according to the log, since it requires multiple
cases being processed simultaneously.

This clearly shows that case-by-case conformance checking is not suffi-
cient and resource identities are essential for detecting deviations from stan-
dard resource-related constraints. Therefore, we introduce multi-case and multi-
resource alignments using ν-Petri nets that align the complete event log to the
process model, allowing to expose the deviations listed above.

5 Computing Multi-case and -resource Alignments

Our approach to computing multi-case alignments is based on the traditional
alignment-based approach using the synchronous product Petri net. Instead of
representing individual cases in the trace Petri net, we capture the complete
event log there in order to consider inter-case relations. To retain the case
isolation when aligning, we transform the process model given by a resource-
constrained Petri net into the resource-constrained ν-Petri net (Definition 13).

As a running example we take the Petri net from Fig. 1 and the event log:

L = 〈is, is, ip, ip, op, os, is, iq, oc, ip, iq, op, op, os, oc, os,m〉

where the colors (and bar positions) represent the case identifiers. The times-
tamps and involved resource instances are omitted and made implicit by the
ordering and the transitions from the process model respectively. For this exam-
ple, there is a single resource instance for each resource type.

5.1 Approach

Recall that alignments are computed by taking the synchronous product Petri
net constructed from the process model Petri net and a Petri net representation
of the trace, called the trace Petri net. With a resource constrained ν-Petri net



Aligning Event Logs to Resource-Constrained ν-Petri Nets 339

Legend:

Fig. 5. Running example trace ν-Petri net

as the process model, we have to modify the definition of the trace Petri net
that takes into account the case identifiers of the events in the event log. We
achieve this by constructing multiple trace Petri nets for each trace in the event
log projected on the case identifiers. The cases are then differentiated by turning
this into a ν-Petri net with the label (c,⊥) on the arcs. Additionally, we add
places between the transitions to enforce the correct ordering as they occurred
in the event log, with label (⊥,⊥) on its incoming and outgoing arcs. Formally,
this trace ν-Petri net is defined as follows:

Definition 14 (Trace ν-Petri net). ν-SN = 〈P, T,F , �〉, a labeled trace ν-Petri
net, is constructed from an event log L = 〈eidc,a

i 〉1≤i≤n, with idc and a denoting
respectively the case identifier and activity of event ei. For each event eidc,a

i with
1 ≤ i ≤ n, we have a transition tidc

i with �(ti) = a. Places are added between
these transitions as follows1: With i from 1 to n, we add a place pidc

i between tidc
i

and minj>i t
idc′
j such that idc′ = idc with F(tidc

i , pidc
i ) = F(pidc

i , t
idc′
j ) = (c,⊥).

Furthermore, we add a place pτ
i , enforcing the original ordering, between tidc

i

and t
idc′
i+1 if idc′ �= idc with F(tidc

i , pτ
i ) = F(pτ

i , t
idc′
i+1) = (⊥,⊥).

Lastly, initial and final places are added for each case idc ∈ Idc: pidc
in to

mini tidc
i and pidc

out to maxj tcj with F(pidc
in , tidc

i ) = F(tidc
j , pidc

out) = (c,⊥). The
initial and final marking is then defined by mi(pidc

in ) = mf (pidc
out) = {(idc,⊥)}.

The trace ν-Petri net for the running example is shown in Fig. 5. With the
redefined trace ν-Petri net we can construct the synchronous product Petri net
ν-ΠSN consisting of the resource constrained ν-Petri net and the trace ν-Petri
net.

Computing the multi-case alignments is now a matter of finding the dis-
tributed run in the ν-ΠSN for which we can use any of the existing methods as
described in Sect. 4.1. The optimal alignment is again the one with lowest cost.

Note that while ν-Petri nets are inherently unbounded by generating fresh
tokens, we can decide on the tokens to be generated beforehand by preprocessing
the event log, and can therefore retain boundedness.
1 Adding a place p between two transitions ta and tb denotes a single arc from ta to

p and a single arc from p to tb.
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Fig. 6. Running example synchronous product ν-Petri net

For our running example we get the synchronous product ν-Petri net as
shown in Fig. 6 and the corresponding optimal alignment is the shortest path
through ΠSN and is shown in Table 1. Note that not all synchronous transitions
are visualized in the figure for clarity reasons.

Table 1. Alignment from the naive method

5.2 Multi-case and -resource Alignments in Action

With the examples listed in Sect. 4.2 of undetected deviations with traditional
alignments, we show here how multi-case and -resource alignments expose them.
Note that resource attributes for some event logs are abstracted away when this
is implicit from the data (only a single resource was involved). For others, the
resource attribute is denoted in the superscript of the event.

– γ(L1) shows an optimal alignment for L1 computed from the method described
above. With multi-case and -resource alignments, it is not possible anymore
for all moves to be aligned synchronously because of the doctor’s availability
during the intake process.
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γ(L1) =
L1 is � is ip ip

Me is ip is � ip

– γ(L2) shows an optimal alignment for L2, where we see that ip and ip should
have occurred with doctors d1 and d2 respectively according to the model
exposing that they have switched positions in the recorded behavior.

γ(L2) =
L2 id1s id2s � id2p � id1p

γ(L3) =
L3 id1s id2s · · · � od2s

Me id1s id2s id1p � id2p � Me id1s id2s · · · od1s �

– γ(L3) shows an optimal alignment for L3, where we see that the long term
resource memory is violated and os should have been executed by doctor d1
instead of d2.

– γ(L4) shows an optimal alignment for L4, revealing that wl should have
occurred before we according to the capacity restriction in the model, i.e.
the first patient should have left the waiting room before the third patient
entered.

γ(L4) =
L4 we we � we wl wl wl

γ(L5) =
L5 we we � wl wl

Me we we wl we � wl wl Me we we wl wl �

– γ(L5) shows an optimal alignment for L5. The model move on wl shows that
the first patient should leave before the second one does, exposing the FIFO
violation in the waiting room process.

– γ(L6) shows an optimal alignment for L6, where the batching restriction is
violated. The model moves show that an added third patient should have
been included in order to execute m for the three patients.

γ(L6) =
L6 � � � m m

Me τ τ m m m

5.3 Relaxing the Synchronous Product Petri Net to Detect
Resource-Related Deviations

With the alignments generated as described above it could be difficult to inter-
pret the exposed deviations, especially in terms of the added model moves: was
the activity executed but not logged, was it executed by a “wrong” resource and
therefore not executable in the model, or was it definitely not executed because
no appropriate resource was available?

In this section we show how we can use simple model transformations on the
synchronous product Petri net to allow for additional behavior (at some costs),
so we can interpret resource-related deviations in more detail. To show these
transformations, we use an example subprocess with two activities a and b in
which a resource of type r is involved. The corresponding Petri net is shown in
Fig. 7, where the transitions {ā, b̄, τ1, τ2, τ3} are added to the model.
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Fig. 7. Resource relaxations for improved alignment interpretability.

Multitasking. From alignment γ(L1) from Sect. 5.2 it is not immediately clear
that the resource instance was multitasking. The model transformation in Fig. 7
using silent transitions τ1 and τ2 between pr and p̄r allows for turning a resource
instance from available to occupied and vice versa at any point in time. These
silent transitions give additional interpretation to the alignment, showing where
the resource might have been released or claimed to work on another case, while
it was not allowed by the model. With c(τ1) > 0 and c(τ2) > 0, model moves with
τ1 or τ2, which we denote as resource moves, are only selected when necessary.

Model Moves Not Claiming Resources. Transitions ā and b̄ allow for model
moves not claiming the resource(s), which we call control flow moves. It is impor-
tant to note that these transitions have no corresponding “resource-free” syn-
chronous move in the synchronous product Petri net ΠSN , since they represent
a relaxed version of the model move. Therefore, the cost of a control flow move
should be higher than the cost of the corresponding model move (that do claim
the resources), i.e. c(ā) > c(a) and c(b̄) > c(b).

This transformation allows to compute more sensible alignments in cases
when a work item is skipped and the resources necessary for it were occupied,
making a model move impossible. In such cases, the alignment without control
flow moves would fit the model moves in time ranges where the needed resources
were available, potentially causing conflicts in earlier or later stages of the pro-
cess. Therefore, with the additional model moves, the resource claim is bypassed.

τ1 and τ2 as introduced above are necessary to avoid deadlocks that can arise
in case a control flow move mimics a transition that claims or releases resources.

Resource Switching. From alignments γ(L2) and γ(L3) from Sect. 5.2 it is
not immediately clear that the resource instances have switched or the incor-
rect resource instance is involved. The model transformation in Fig. 7 using τ3
connected to p̄r and possibly p̃r allows the resources to take over each other’s
work. For the resource switch from γ(L3), additionally τ1 and τ2 are necessary
to get d1 into p̃d. With c(τ3) > 0, a model move with τ3 would only reside in
the optimal alignment would it be necessary and it is interpretable showing the
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resource instance that took over work for a case from a specific resource instance.
A model move with τ3 is also denoted as a resource move.

Resource Type Relaxation. Recall that the resource instances as defined
above are strictly typed. In case we want to allow a resource to execute tasks
belonging to other resource types (at some cost), e.g. n and a, the following
model transformation is sufficient: add a place pn,a with •pn,a = •pn ∪ •pa and
p•

n,a = p•
n ∪ p•

a. A resource instance that could be involved in activities from n
and a resides initially in pn,a from where it is able to do both.

Furthermore, when we would want to allow some types, e.g. for type r, to be
unnamed, a model transformation making all tokens on place pr the same color
suffices. Note that this was already done for the waiting room resource instances
for alignments γ(L4) and γ(L5) from Sect. 5.2.

These, and possible other model transformations could be used to enrich the
alignment providing more interpretability.

6 Conclusion

In this paper we proposed a model for processes with shared resources using
some features of resource-constrained workflow nets and ν-Petri nets. Our model
allows to distinguish both cases and resources. This opens up possibilities in
terms of modeling intricate inter-case dependencies and shared resources, includ-
ing long-term resource memory, while still offering an option to exploit structural
properties like well-structuredness of the control flow for e.g. conformance check-
ing.

We showed that traditional alignments for conformance checking fail to detect
some deviations that can arise in processes with shared resources. With our
extended ν-Petri net representation of the process model, and a newly defined
trace ν-Petri net containing the complete event log, we showed that the tech-
niques for computing alignments can be utilized to expose violations on inter-case
dependencies and usage of shared resources.

Our proposed extension to ν-Petri nets is a minimal extension that is suf-
ficient for computing alignments on event logs without redundant functionality
that other, possibly more sophisticated, extensions may offer as discussed in
Sect. 1.

Future Work. Computing alignments on a case-by-case basis is already a com-
plex problem in terms of computational power [6]. In principle, the complexity
increases when multiple traces together with resource information are consid-
ered. At the same time, resource information available in the log can narrow
the actual search space. We plan to look into preprocessing techniques and into
structural reductions and decompositions for the Petri net to reduce the search
space when computing the alignments.
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