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Abstract. Composition is a key issue in Petri net modelling. It is a topic
that has been studied for a long time, and that finds practical applica-
tion in many Petri net frameworks and tools. Multiple approaches to com-
position exist, based on place or transition refinement, place superposi-
tion, transition synchronization, or sub-net substitution to cite a few. In
this paper we revisit the peculiarities and technicalities (the ins and outs)
of net composition based on the labelling of the net elements. We shall
express general composition of nets through a combinatorial operator,
that, instantiated with different policies, and completed with operators
for parallel composition, label rewriting and restriction, allows us to define
different forms of place-based and transition-based compositions. The use
of this composition framework for model construction is also examined.
For composition based on multisets of labels, we also provide an algorithm
for the construction of the composed net that uses a modified version of
the Farkas algorithm for the computation of semiflows.
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1 Introduction

Composition has attracted the interest of Petri net researchers from the very
early stages of the research in the field. Composition has been studied as an
algebra for building nets from smaller “basic” blocks, as in the seminal work
on Petri Box Calculus (PBC) [6,7] or as a way to compose existing models,
independently from how they have been built (as in many tools). The definition
of a “well-thought” algebra typically allows to exploit the composition also at
the solution level, possibly at the price of some rigidity in the modelling process.
On the other side, composing arbitrary Petri nets provides a lot of flexibility, but
typically it is not as strong in terms of compositional properties and analyses.
When a full algebra, with operators and associated properties is not available,
it is left to the modeller to compose “reasonable” models in a “reasonable” way.

There exist multiple ways to perform composition. Models can be composed
based on place or transition superposition, more rarely on both, and on place,
transition or subnet substitution (also known as refinement). Composition rules
can be based on place and transition names or on labels associated to the net ele-
ments. Especially for what concerns composition based on transitions, different
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interpretations are present: we shall call CCS-like the CCS [26] inspired transi-
tion composition (like in PBC), and CSP-like the CSP [19] inspired transition
superposition (like in [5]).

While net algebras and their operators have been studied in-depth [6,7,23],
less attention has been devoted to the composition of arbitrary nets. The research
questions that motivated our work were to understand the ins and outs of net
composition, and how different forms of composition can be described, and later
implemented, in a single framework, and whether the standard duality principle
of place and transitions carries over in this context. As a result we have defined
a framework for net composition that encompasses different composition rules,
whether based on net elements’ label, set of labels, or multisets of labels, and
whether rooted on place superposition or transition synchronization, or both at
the same time, and considering different form of transition-based synchronization.

In this framework, composition of nets is expressed through a combinatorial
operator, that, instantiated with different policies, allows us to define differ-
ent forms of place-based and transition-based compositions. Composition policy
rules are defined over the labelling of the net elements using multisets of labels.
The framework is completed by operators for parallel composition, label rewrit-
ing and restriction, all implemented in the GreatSPN [1] software. The proposed
framework does not include explicit operators for recursion, nor for place, tran-
sition or subnet substitution/refinement.

We can summarize the paper’s contributions as follows:

– A new framework for Petri net composition in which place- and transition-
based composition are treated uniformly, with a new generic composition
technique, controlled by an input composition policy instance.

– Two composition policies (unary conjugated and n-ary structured, inspired
by CCS, CSP, and PBC) and the algorithms to compute the associated policy
instances.

– Examples of how known operators of other languages and various modelling
patterns can be defined in the proposed framework.

1.1 A Few Examples of Net Composition

Before proceeding to the main part of the paper, it is worth to set the ground
by examining a few examples of net composition. We limit these first examples
to nets in which at each element is associated at most one label.

Figure 1 shows an example of CCS-like parallel composition, which is based
on actions and co-actions (conjugate actions). The co-action of a is named â.
Actions are the labels, and are depicted on top of the transition names. In CCS
when two processes are put in parallel, each action of one process synchronizes
with the co-actions of the other process and vice-versa. The joint action and
co-action leads to a new transition labeled τ , and no further synchronization
can occur. In the figure the label τ is omitted, assuming that each net element
that does not have an associated label is labelled with τ . Moreover each action
and co-action are still executable in the composed process, unless a restriction
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(a) 1 (b) 2 (c) (d) (e) 3 (f) (g)

Fig. 1. CCS-like conjugate synchronization.

is specified. Figure 1(c) shows the composition of N1 with N2: it features a syn-
chronized transition labelled τ , while still allowing both a and â to be executed.
Figure 1(d) shows the composition of N1 with N2 with restriction over a: it fea-
tures only the τ labelled synchronized transition. If the net in Fig. 1(d) is further
composed with N3 no synchronization is possible, resulting in the net in Fig. 1(f).

If instead N1 and N3 are composed first, since all transitions are labelled
with a, no synchronization occurs. If the resulting net is then composed with
N2, it results in the net in Fig. 1(g), with U1 composing with both T1 and V1.
From a modelling point of view this can be seen as two processes (N1 and N3)
that access at their will, but in mutual exclusion, the same resource, where label
a can be interpreted as “providing” a resource and â as “requesting” it.

(a) 1 (b) 2 (c) (d) 3 (e)

Fig. 2. CSP-like synchronization.

Figure 2 shows an example of a CSP-like parallel composition on a synchro-
nization set S made of the single action a. In CSP there is no notion of co-actions.
When two processes synchronize over S, each action a ∈ S of one process syn-
chronizes with every other action a in the other process. Actions that are not
in S can still be freely executed. There is no restriction on the execution of
actions that are not in S. The transition that represents the synchronization
is also labelled with a, so that further synchronization can occur, permitting
a straightforward implementation of the synchronization among any number of
processes (multi-way synchronization).

Figure 2(c) is the result of the composition of N1 and N2 over the synchro-
nization set S = {a}. All transitions labeled with a from N1 (i.e. T0) are com-
posed with every transition labeled with a from N2 (i.e. T1 and T2), resulting
in two new transitions a T0+T1 and a T0+T2. Once synchronized, the merged
transitions T0, T1 and T2 are not preserved, and do not appear in (c). When (c)
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is composed with N3 resulting in net (e) that can be interpreted as a multi-way
synchronization, modelling the case in which three processes need to reach a
shared barrier, but may choose two different ways to do so.

From a modelling point of view also the use of CSP-like synchronization may
require some cautions. With the same example of Fig. 2, if we interpret N1 as
a resource, and N2 as two requests for that resource, than the net in Fig. 2(c)
correctly represents the acquisition of the resource. If the obtained model is later
composed with a net like N3, which feature another request of the resource,
the resulting model, shown again in Fig. 2(e), does not correctly represent the
resource acquisition. Indeed in this case the order of composition is important:
to get the intended behaviour all resource requests have to be composed first
(by composing N2 with N3 with an empty synchronization set) and then they
may be composed with the resource model of N1.

(a) N1 (b) 2
(c) (d) Nbis

1 (e)

Fig. 3. Place-based composition.

Figure 3 shows an example of place composition. The net in Fig. 3(c) is the
result of a simple sequential composition of N1 and N2: places are labelled as
enter, exit, or τ , and exit places of net N1 are superposed to the enter places of
net N2. The net in Fig. 3(e) is instead the result of the composition of net N bis

1

with net N2: the two exit places combined with the two enter places produce
four places in the resulting net, which induces a synchronization over U0 and U1

among two “control flows” (the one coming through P1 and the one from P2)
that are in mutual exclusion in N bis

1 , leading to a deadlock. This is somehow
counter-intuitive and shows that the PBC choice of having only two labels for
places (enter, exit) may not be always adequate from a modelling point of view.

2 Previous Work on Composition

This section reviews some of the most relevant net algebras and examine which
composition support is provided by a number of well-known Petri net tools. This
review is certainly non-exhaustive, but it is meant to overview the large variety
of composition rules present in the literature and provide pointers to them. Note
that most of the literature presents nonuniform criteria to compose places and
transitions. The framework proposed in this paper (Sect. 4) will follow instead
the classical duality of Petri nets, and place- and transition-based composition
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will be treated using uniform rules. Since most net composition is based on labels,
the type of labelling function is also a relevant aspect.

2.1 Net Algebras and Composition Frameworks

An early proposal for an algebra of Petri nets was provided in [23]. Starting from
simple nets (a sequence of “head” place - transition - “tail” place), larger nets
are generated through tail over head place-based composition operators. The
list of operators includes superposition, merging, joining, exclusion, and other
operations, with a focus on preserving structure in the composition formula.
Transition-based refinement (a transition is substituted by an expression of nets)
is also defined.

An early proposal for CSP-like transition synchronization can be found in
[13].

Petri Box Calculus (PBC from now on) is a complete algebra that features
operators inspired by those found in CCS, but operates on a specific class of
Petri nets known as Petri boxes (nets where places are automatically labeled
as enter, exit or internal). For what concerns basic composition mechanisms as
for the scope of this paper, PBC performs various kinds of transition and place
compositions. Transition synchronization is based on actions and co-actions.
Transitions can be freely labeled with a multiset of labels. Places instead may
only have a single label among {enter, exit}, as already mentioned.

Place and transition composition operators are separated. Places can be com-
posed as sequences or choices. Transitions are composed by synchronization,
which is a unary operator. Performing N sy{a} synchronizes label a over net N ,
which leads to the addition of a new transition for each pair of a, â transitions
that can be “merged”. Unary synchronization can also lead to unexpected con-
sequences, see [7, p. 23]. Multiple nets can be composed by parallel composition,
followed by a synchronization.

In PBC transition labels are multisets, which is needed to ensure that the
synchronization of multiple labels is order-independent. This choice is relevant
(see [7, p. 21]), and for this reason in this paper we also consider multisets of
labels for each net element.

A limitation of PBC is that it does not have an explicit “multi-handshake”
(or multi-way) synchronization. This type of synchronization occurs in practice
[7, Sec. 2.8 and Chap. 9], for example every time a process needs to perform
atomic operations on multiple variables. The box algebra [6, Sec. 4] is a general-
ization of PBC, a more abstract and general algebra that allows for multi-way
synchronization, which facilitate the definition of a box algebra semantics of a
process algebra like TCSP [18], as illustrated in [7, Sec. 8.2.2]. A second lim-
itation of PBC is that its algorithm for the computation of the synchronized
transitions may not terminate, generating infinite synchronizations [6, Sec. 4.5].

The work in [2] proposes a formal composition model for synchronizing mul-
tilabeled transitions in a similar way to PBC but, unlike PBC, this approach is
guaranteed to always terminate. This synchronization is shown to be equivalent
to the semiflows computation problem (i.e. finding the anullers of a matrix).
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The use of semiflows, however, hides some technical details related to minimal-
ity, which result in generating only a subset of the possible interactions. We shall
review this approach to overcome its limits in Sect. 5.1.

The Petri net standard PNML [29] provides support for multi-page nets (files
containing multiple nets), but does not include a compositional specification. An
examination of how to add modules in PNML, and how to construct nets from
instances of such modules is given in [22], in an high level Petri net context.

Driving the modeller in the use of composition to build large models of
computing systems was the objective of the PSR methodology [14], that orga-
nizes models into three layers (Processes, Services, and Resources). Each layer is
defined in isolation, and then composed through CSP-like transition superposi-
tion. Transitions may have a set of associated labels, but in a well-defined man-
ner: only single labels in the Resource layer (to model the “offer” of a resource),
sets of labels for the Service layer (to model a service that acquires two or more
resources at the same time) and single labels for the Process layer. Multisets of
labels are not allowed, which means, for example, that a service cannot acquire
two copies of the same resource at the same time.

Composition has also been considered for colored and high level nets: here
the additional complexity is to appropriately define how to deal with all the
extra information associated to places, transitions and arcs. High-level Petri net
composition using the BPN2 framework was introduced in [8]. Such composition
is shown to be consistent with the unfolding and the operators of PBC. In
CPN, a model [21] can be organised as a set of hierarchically related modules.
“Substitution” transitions are replaced by subnets with well specified place-
oriented input and output ports. Component aggregation of CPNs is described in
[20], based on communicating modules. Hierarchical composition of Generalized
Colored Stochastic Petri Nets (GCSPN) was first defined in [9], while transition
superposition for the colored class of well-formed nets [10] was defined in [4]. A
colored extension of the PSR methodology is given in [4].

2.2 Composition in Tools

Many tools supports some form of compositionality. Snoopy [17] implements
hierarchical nets through P/T refinements. Nodes can be abstracted by a macro
node, and a fine/coarse hierarchy can be visualized [16].

A CPN model in the CPN-Tools framework [27] can be defined hierarchically
using pages and subpages [21]. Special substitution transitions connect super-
pages with subpages, and special tags (in/out) in the subpage allow to define
the inner behaviour.

In Möebius [11] submodels are composed through superposition of places
(shared state variables) [24]. It has two state-sharing formalisms: Replicate/Join
composition and Graph composition. Fused places/transition have the same
name (that must be unique in every composed model), hence it reduces to a
simple merge of the same-name elements, and no complex combination of mul-
tiple net elements is possible.
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In the ITS-tools framework [28] multiple GAL (Guarded Action Language)
instances can be composed over synchronized events, but not over shared vari-
ables [25]. Events are labeled with symbols which guide the synchronization [3].

The GreatSPN [1] tool supports binary composition over labelled places and
transitions, with some restricted form of multiset labelling and some support for
colored net composition, following the rules defined in [4,5].

3 Definitions

Let Σ be a set of tags (also called symbols, actions, etc.). Tags will be used
to label the places and transitions of a Petri net. Since we also label places,
we prefer the use of the term tag instead of the more broadly used term action.
Given a tag a ∈ Σ, let â be its conjugate (or complementary) tag. By convention
â �= a and ˆ̂a = a. Let Σ̂ = Σ ∪ {â | ∀ a ∈ Σ} be the set of all tags including
their conjugated counterparts and M(Σ̂) be the set of all natural multisets of
tags (including their conjugates). Elements of M(Σ̂) are indicated by formal
sums and τ denotes the empty multiset, so, given the set of tags Σ = {a, b, c},
a + 2 · â + 2b, â + c and τ are examples of multisets of tags. A multiset of tags is
canonical if it does not include both a tag and its conjugate (therefore a+2·â+2b
is not canonical).

Given σ ∈ M(Σ̂) and A ⊆ Σ, we indicate with σ \ A, the multiset obtained
by removing all tags in A, and their conjugates. Notation σ[a] denotes the mul-
tiplicity of a in σ.

Definition 1 (Labeled Petri net). It is a tuple N = 〈P, T, I,O,m0, lab〉,
where P is the set of places, T is the set of transitions, I : P × T → N is the
input function, O : T × P → N is the output function, m0 : P → N is the initial
marking, and lab : (P ∪ T ) → M(Σ̂) is the net element labeling function.

We use the term net element to identify elements in (P ∪ T ) and label (of
a net element) to indicate the multiset of tags associated to the net element by
the labelling function lab. We consider only labels that are canonical. Let Σ̂P

and Σ̂T be the subsets of Σ̂ that appear on the labels of the place set P and on
the transition set T , respectively. With M(P ) we denote the set of the natural
multisets of places, which can be represented as a weighted sum of elements of
P , like P1 + 3·P4 + P5. Similarly M(T ) is used for the transitions.

For notational convenience, we also use a matrix-oriented representation of a
Petri net. Let I : |P | × |T | and O : |T | × |P | be the input and the output matrix
of N , respectively, with I[p, t] = I(p, t) and O[p, t] = O(p, t). Let LP : |P |× |ΣP |
be the place labeling matrix, where LP[p, a] is the multiplicity of tag a in lab(p)
and it is negative if a appears conjugated, positive otherwise. Similarly, let LT :
|T | × |ΣT | be the transition labeling matrix. A full example of the net matrices
will be given at the end of Sect. 4.

Definition 2 (Semiflows). Given an integer matrix A, a flow f is an integer
vector s.t. f · A = 0, i.e. f is a left anuller of A. A semiflow is a non-negative
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flow. The support [[f ]] of a flow f is the set of indices of the non-zero values, i.e.
[[f ]] = {i | f [i] �= 0}. A semiflow is canonical iff the g.c.d. of its non-zero entries
is 1. A semiflow is minimal iff it is canonical and its support does not strictly
contain the support of any other semiflow of A. The set of all minimal semiflows
is finite and unique, and let F be the matrix of the minimal semiflows [12, p.
82].

4 A Framework for Net Composition

We proceed by defining a framework for composing labelled Petri nets that allows
us to define, among others, the cases discussed in Sect. 1. We define the basic
operations for net composition in terms of four basic operations. Three oper-
ations perform basic transformations on labels (tag rewriting, restriction) and
merge multiple nets together without combining the elements (parallel composi-
tion). The fourth operation (combinatorial composition) combines net elements
together by applying a policy.

Tag Rewriting. A tag rewriting function is a function λ : Σ̂ → Σ̂ that transforms
tags. By extension, given a multiset of tags φ = w1 · a1 + . . . + wn · an, let λ(φ)
be the canonical multiset resulting from the application of λ to every tag, i.e.
the canonical form of w1 · λ(a1) + . . . + wn · λ(an). We define the tag rewriting
operation on a net N , denoted as λ(N ), as an operation that builds a new net
N ′ where labels have been rewritten, i.e. lab′ = λ ◦ lab.

Parallel Composition. This operation juxtaposes multiple independent nets
together into a single net. Given N1 . . . Nn nets, let N1 ‖ . . . ‖ Nn be a new
net N ′ defined as:

– P ′ = ∪n
i=1Pi and T ′ = ∪n

i=1Ti;
– I ′(p′, t′) = Iθ(p′)(p′, t′) if θ(p′) = θ(t′), and 0 otherwise;
– O′(t′, p′) = Iθ(p′)(t′, p′) if θ(p′) = θ(t′), and 0 otherwise;
– m′

0(p
′) = (m0)θ(p′)(p′);

– lab′(p′) = labθ(p′)(p′) and lab′(t′) = labθ(t′)(t′);

where the function θ : P × T → N is defined to associate each P/T elements of
N to the index of the original net Ni.

Restriction. This operation removes from a net N all elements whose label
includes any of the tags in the set of restriction tags A ⊆ Σ or their conjugates.
The new net is indicated as N ′ = N \ A and it is defined by:

– P ′ =
{
p ∈ P | ∀ a ∈ A : lab(p)[a] = lab(p)[â] = 0

}
;

– T ′ =
{
t ∈ T | ∀ a ∈ A : lab(t)[a] = lab(t)[â] = 0

}
;

– I ′(p, t) = I(p, t) and O′(t, p) = O(t, p), for all p ∈ P ′, t ∈ T ′;
– m′

0(p) = m0(p), for all p ∈ P ′.
– lab′(x) = lab(x), for all x ∈ P ′ ∪ T ′.
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Combinatorial Composition. This operation alters the behaviour of a net N
by defining a new set of places and transitions made as combinations of the
net elements of the original net. Each new place (resp. transition) that is being
composed is identified by a multiset of composing places (resp. transitions ) from
the original net. We divide the net composition into two tasks:

1. Identifying which multisets of places (transitions) will be composed together
to form each new place (transition). These are described by a composition
instance π, which can be generated by composition policy (defined in the
next section).

2. Defining a new net with the new net elements, connected according to a
composition of the original input and output functions.

A composition instance π is a pair π = 〈CP , CT 〉, with CP ⊆ M(P ) × M(Σ̂P )
and CT ⊆ M(T ) × M(Σ̂T ). We use the notation 〈φ, σ〉 to denote tuples in CP ,
and 〈ψ, ς〉 to denote tuples in CT .

Given a net N and a composition instance π, the combined net N ′ = N ∗ π
is obtained in the following way. Each tuple 〈φ, σ〉 ∈ CP defines a new place
p′ of N ′, s.t. the multiset φ tells the weighted combination of places of N that
are combined together to form p′, while σ is the label of p′ Transitions follow a
similar schema from CT .

The combined net N ′ is defined as

– P ′ = {new place p′ for each 〈φ, σ〉 ∈ CP };
– T ′ = {new transition t′ for each 〈ψ, ς〉 ∈ CT };
– I ′(p′, t′) =

∑
p∈P

∑
t∈T φp′ [p] · ψt′ [t] · I(p, t);

– O′(p′, t′) =
∑

p∈P

∑
t∈T φp′ [p] · ψt′ [t] · O(p, t);

– m′
0(p

′) =
∑

p∈P φp′ [p] · m0(p);
– lab(p′) = σp′ and lab(t′) = ςt′ .

with 〈φp′ , σp′〉 and 〈ψt′ , ςt′〉 the tuples that originated p′ and t′, respectively.
Figure 4 shows an example of a composed net, where π is

CP =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈P0, τ〉,
〈P1, τ〉,
〈P2, e〉,
〈P3, 2ê〉,

〈{2 · P2 + P3}, τ〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, CT =

⎧
⎨

⎩

〈T0, a + b + c〉,
〈T1, â + b̂ + 2d〉,
〈T0 + T1, c + 2d〉

⎫
⎬

⎭

i.e. two new net elements are added, 2 ·P2+P3 and T0+T1, and all the other net
elements are preserved. In the figure, drawn with the GreatSPN tool, multisets
of tags are represented as tags separated by bars, so for instance â + b̂ + 2d is
depicted as â|̂b|2d. Observe that the new arcs connecting the new nodes have
the sum of the multiplicities. For instance, O(T0+T1, 2 · P2+P3) = 3 because it
is 2 · O(T0, P2) + O(T1, P3).

Alternatively, we can view the combinatorial composition as a matrix opera-
tion over the net elements. Let FP be a |P ′|× |P | matrix that encodes the places
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(a) Net (b) Net ′ = π

Fig. 4. Example of combinatorial composition for both places and transitions.

in CP and L′
P be a |P ′| × |ΣP | matrix that encodes the place labels, where con-

jugated labels are represented as negative values. Thus [FP|L′
P] encodes CP in

matrix form. Similarly, FT : |T ′| × |T | and L′
T : |T ′| × |ΣT | are used for CT . For

the example of Fig. 4, we have:

[FP|L′
P] =

P0 P1 P2 P3 e
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 −2
0 0 2 1 0

, [FT|L′
T] =

T0 T1 a b c d
[ ]1 0 1 1 1 0

0 1 −1 −1 0 2
1 1 0 0 1 2

Then, we can write the net composition in terms of matrix operations:

– The input matrix is I′ = FP × I × FT
T ;

– The output matrix is O′ = FT × O × FT
P ;

– The initial marking m′
0 = FP × m0.

If we indicate with Id the identity matrix, whenever [Id|LP] is a submatrix
of [FP|L′

P] under some row permutation, the transformation is a place extension,
since all places of N are preserved in N ′. A similar notion of transition extension
can be defined on [FT|L′

T].

5 Composition Policies

We now define two composition policies to generate composition instances
according to two paradigms inspired by PBC and of CSP.

5.1 Unary Conjugated Composition

We start by considering a composition policy for places and transitions which is
based on the merging of conjugated tags, as in PBC transition synchronization.
Let A ⊆ Σ be the set of tags considered for the operation. The PBC transition
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synchronization is summarized by the following intuitive principle (adapted from
[6, sec. 4.5]), by which, for every a ∈ A:

Repeatedly choose a, â–pairs of labeled net elements, and
each time create a new composed net element from them.

Label this new element with the sum of the labels.
(1)

The idea is to add to the original net new elements until all combinations that
reduce the a, â–pairs have been enumerated. This implies that (1) enumerates
both the combinations that reach a τ -label, as well as all intermediate steps
which may still have tags of Σ.

(a) 1 (b) (c) 2 (d)

Fig. 5. Multitag conjugate composition and infinite PBC synchronization.

Figure 5(b) shows an example of the application of (1) to N1: T1 and U1 are
retained, synchronization of T1 and U1 leads to transition T1 +U1, labelled with
â, which can be synchronized with T1, leading to transition 2 · T1 + U1, labelled
τ . There are no other composition of transitions that satisfies (1).

Note that this approach, which is the one employed by PBC for transition
composition [6, Sec. 4.5], may repeatedly choose the same transition as a pair
if it is labelled with both a tag a and its conjugate â. Figure 5(d) shows an
example of such PBC synchronization, applied to N2. In that case, transition
T1 is composed infinitely many times with itself, since each composition adds
the labels a + â and then removes a single pair of a, â tags. Such scenario may
happen because PBC labels may be multisets of tags that are not canonical.
That’s why we restrict our work to canonical labels.

The computation of all transitions pairs to be added can be non trivial,
and Anisimov proposes in [2] an algorithm that is based on the computation
of minimal P/T-semiflows. The Anisimov algorithm works on transitions with
canonical labels, and it is based on the Farkas algorithm [12,15] for computing
the minimal P/T-semiflows: therefore it is proved to always terminate. The
intuition is that the goal of finding which combination of net elements reduces
the sum of their labels to τ is equivalent to finding a linear combinations f of
labels that cancel the tags in A, i.e. f · L = 0. Vector f is, by Definition 2, a
semiflow of L. The Anisimov algorithm although, by considering only minimal
semiflows, does not correspond exactly to (1) because:
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– compositions that result in a transition with a label different from τ , like
transition T1 + U1 in Fig. 5(b), are not generated;

– the algorithm does not either generates all composed transitions labelled with
τ . Indeed the algorithm only considers minimal semi-flows, while these tran-
sitions corresponds to semi-flows that are non-minimal, although canonical
(as explained later with reference to the example in Fig. 6).

Algorithm 1. Modified Farkas algorithm for unary conjugated composition.
1: procedure ConjugateCompSet(L, A) // L is a N × M matrix
2: [D|A] ← [Id|L]
3: for j between 1 and M do
4: if j corresponds to a column of A then
5: for each r1 �= r2 with A[r1, j] > 0 ∧ A[r2, j] < 0 do
6: [d|a] = [D|A][r1, ·] + [D|A][r2, ·]
7: [d|a] ← [d|a] / gcd([d|a])
8: if [d|a] does not appear in [D|A] then
9: [D|A] ← AppendRows([D|A], [d|a])

10: end if
11: end for
12: end if
13: end for
14: return [D|A]
15: end procedure

We therefore propose a modified Farkas algorithm for determining the
instance of a composition policy that follows (1) and that overcomes the lim-
itations of the Anisimov algorithm listed above. The pseudocode is shown in
Algorithm 1. To compute the composition instance π, the unary conjugated com-
position policy extends both places and transitions simultaneously. To do so, the
method is used twice, once for the places and once for the transitions, i.e.

[FP|L′
P] ← ConjugateCompSetLP, A

[FT|L′
T] ← ConjugateCompSetLT, A

Assume that we want to compute the composition of transitions. The method
takes in input a |T | × |ΣT | matrix L, where L[t, s] is the multiplicity of tag s
in label lab(t), and ΣT is the set of tags appearing on transitions. Conjugated
tags appear as negative numbers in L. The objective of Algorithm 1 is to find all
linear combinations of labels that combine a–â pairs, until all τ combinations
are generated. The loop at lines 3–13 considers one tag at a time. The tags in
A are used to generate the combination rows. The inner loop 5–11 identifies
all candidate combinations of net elements with a–â pairs in their labels. A
combination is obtained by summing row r1 with r2, assuming that r1 has tag
a and r2 has tag â. The algorithm generates all such combinations until a fixed
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point is reached. Convergence is guaranteed since each new row [d|a] generated
at line 6 is such that |a[j]| < |A[r1, j]| and |a[j]| < |A[r2, j]|, and the algorithm
stops when all possible rows with a = 0 are generated. However, Algorithm 1
may require an exponential number of steps to terminate.

While generating all the combinations that reduce the tag pairs, the algo-
rithm may reach a point where all A–tags are zeroed for a row. In that case,
the vector d for that row is a semiflow of the initial system. Unlike the Farkas
algorithm, there is no check of minimality of such semiflows. Therefore all canon-
ical semiflows are found. A second difference from the Farkas algorithm is the
selection of the candidate vector at line 6. For semiflow computation, the vector
[d|a] would be computed as:

m2 · [D|A][r1, ·] + m1 · [D|A][r2, ·], m1 = |A[r1, j]|, m2 = |A[r2, j]|

which would zero the value of a[j]. By not multiplying by m1 and m2, all inter-
mediate steps to reach the zero for a[j] are stored as rows in [D|A]. Each inter-
mediate step can be seen as a new pair of a, â tags being cancelled from two
groups of net elements, therefore implementing the principle (1).

Consider the net in Fig. 6(a) and the set A = {a, b}. The initial [Id|L] matrix
for transitions is shown in (2a). Row operations combine progressively row pairs,
until a fixpoint is reached. All rows are kept.

T1 T2 T3 T4 a b
⎡

⎢
⎣

⎤

⎥
⎦

row1 : 1 0 0 0 2 0
row2 : 0 1 0 0 0 −1
row3 : 0 0 1 0 −1 1
row4 : 0 0 0 1 −1 0

(2a) Matrix [Id|L]

T1 T2 T3 T4 a b
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

row5 : 1 0 1 0 1 1
row6 : 1 0 0 1 1 0
row7 : 1 0 2 0 0 2
row8 : 1 0 1 1 0 1
row9 : 1 0 0 2 0 0 minimal s.f.

row10 : 0 1 1 0 −1 0
row11 : 1 1 1 0 1 0
row12 : 1 1 2 0 0 1
row13 : 1 1 1 1 0 0 s.f.

row14 : 1 2 2 0 0 0 minimal s.f.

(2b) Rows appended to matrix [D|A]

(2)

The final matrix [D|A] is made by all the initial rows of (2a) together with the
rows in (2b), which contain the canonical semiflows (minimal and not), if they
exists, and all the intermediate pairwise combinations.

The Anisimov algorithm generates the composition elements based exclu-
sively on the minimal semiflows, i.e. Fig. 6(b).1 The full unary conjugated com-
position policy, denoted as N ∗C A with A = {a, b}, corresponds to generating
the 14 transitions resulting from the rows of D in (2b). Each row [d|a] results

1 In (2b) row13 is not minimal because its support (all four transitions) contains the
supports of both row9 and row14.
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(a) Net (b) Anisimov synchronization (c) Net ( C A) A

Fig. 6. Unary conjugated composition of N , with A = {a, b}.

in a tuple 〈ψ, ς〉 ∈ CT . Note that every initial transition is also preserved, since
they appear as rows in D. If we further restrict to A, for sake of readability,
we obtain the net (N ∗C A) \ A depicted in Fig. 6(c), where only the elements
corresponding to semiflows are added.

The unary conjugated composition policy is a place/transition extension,
since new net elements are added and no net element is removed.

5.2 N-Ary Structured Composition

The second composition policy that we consider is defined over a parallel com-
position of n > 1 nets N = (N1 ‖ . . . ‖ Nn). Again, a set of tags A ⊆ Σ is
defined to guide the policy. For each tag a ∈ A, new net elements result from
composing one net element from every subnet N1 . . . Nn that is labeled with a.
For this policy there is no notion of conjugated tags. Moreover, the resulting
multiplicity is 1 independently of the input tag multiplicities. When focusing on
transitions only, this composition is similar to the parallel composition of CSP
[19].

The sets CP and CT are computed independently. Consider the problem of
identifying the places that will be composed together. For each tag a ∈ A, for
every tuple of places 〈p1, . . . pn〉 with ∀ i ≥ n : θ(pi) = i ∧ a ∈ lab(pi), then the
tuple 〈φ, σ〉 belongs to CP , with:

– φ = p1 + . . . + pn, with all weights being one;
– σ = {a} +

∑n
i=1

(
lab(pi) \ A

)
.

An equivalent definition applies for the transitions.
Algorithm 2 shows the pseudo-code of the structured composition policy. To

compute CP and CT , the algorithm is applied twice, i.e.

[FP|L′
P] ← StructuredCompSetLP, A, θ

[FT|L′
T] ← StructuredCompSetLT, A, θ

We define two variations of the structured composition:
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Algorithm 2. N-Ary structured composition matrix.
1: procedure StructuredCompSet(L, A, θ) // L is a N × M matrix
2: [F|L′] ← [Id|L]
3: for each tag a ∈ A do
4: for each tuple 〈p1, . . . , pn〉 with θ(pi) = i do
5: φ = p1 + . . . + pn

6: σ ← {a} +
∑n

i=1

(
lab(pi) \ A

)

7: [F|L′] ← AppendRows([F|L′], vector form of [φ|σ])
8: end for
9: end for

10: return [F|L′]
11: end procedure

(a) N1 (b) N2 (c) ( 1 2) S A (d) ( 1 2) R A

Fig. 7. Structured composition example, with A = {a, b}.

– Structured extension: (N1 ‖ . . . ‖ Nn) ∗S A extends N with the new elements.
All existing net elements are kept.

– Restricted structured composition: (N1 ‖ . . . ‖ Nn) ∗R A first extends N with
the new elements, and then removes all the elements of (N1 ‖ . . . ‖ Nn) that
were used to generate the new elements.

Figure 7 shows an example of both a structured and a restricted extensions
of a parallel composition of two nets, with A = {a, b}. Only transitions are
composed in this example. Four new transitions are added to CT , corresponding
to 〈T0 + T3, a〉, 〈T1 + T3, a〉, 〈T1 + T2, b + c〉, and 〈T1 + T3, b〉. Observe that T1+
T3 is composed twice, once for tag a and once for tag b. The restricted structured
composition results in Fig. 7(d).

Notes on Operations. Tag rewriting and restriction could also be defined as
composition policies.

6 Modelling Using the Composition Framework

We now focus on the usefulness of the framework for generating new models
from existing ones.
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6.1 Place-Based Composition

(a) Net N1

(b) Net 2
(c) Net N1;N2

Fig. 8. Sequence as:
(N1 ‖ λenter→̂exit(N2)

) ∗C A \ A, with A = {exit}.

Place Sequence. Sequential composition is a typical composition pattern found
in several algebras (CCS, CSP, PBC, and others). In the following we show how
to use the framework to provide the sequence operator of PBC, that is based on
the notion of entry and exit places. Assume a net N1 has some places labeled
with a tag exit and a net N2 has some places labeled as enter. We can connect
the exit places of N1 with the enter places of N2 by means of tag rewriting
and combinatorial composition. Both the unary conjugated composition and
the n-ary structured composition can be adopted. Figure 8 shows an example of
sequential composition on places performed using unary conjugated composition,
that leads to the formula:

(N1 ‖ λenter→̂exit(N2)
) ∗C A\A, with A = {exit}. Tag

rewriting is particularly useful in these situations, since it allows to identify pairs
of conjugated tags that do not need to have the same name in the operand nets.

(a) Net 1 (b) Net 2 (c) Net 1 2

Fig. 9. Choice as (N1 ‖ N2) ∗R A, with A = {enter, exit}.

Place Choice. Another common compositional pattern is choice. Again, our
example consider the choice operator of PBC. In this setting, enter places of
the two nets are multiplied together, the same for exit places, to split and then
merge the control flows of the nets. Figure 9 shows an example of choice compo-
sition, taken from [6, Fig. 4]. The resulting net is obtained using restricted n-ary
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structured composition on the two tags {enter, exit} leading to (N1 ‖ N2) ∗R A,
with A = {enter, exit}. Note that each place in the final net results from a com-
position of two places from each of the operand nets. A similar behaviour could
also have been obtained using the unary conjugated composition, provided that
tags are appropriately conjugated.

(a) N1

(b) N2

(c) (N1‖N2) ∗C A \ A,
A = {a, b}

(d) (N1‖N2) ∗C A \ A,
A = full

(e) (N1‖N2) ∗R A,
A = a, b

Fig. 10. Examples of place composition.

General Place Composition. Figure 10 shows different types of place-based com-
position for two nets N1 and N2, that induce a different interpretation of the
multiset of tags associated to places. Indeed using different type of tags and dif-
ferent composition policies we can achieve rather diverse interpretations: this can
be an advantage, but it requires a certain modelling expertise to appropriately
master the composition process. Nets N1 and N2 in Fig. 10(a) and Fig. 10(b)
can be interpreted as a very simple consumer and producer models. The net
in Fig. 10(c) is obtained through unary conjugated composition, followed by
restriction, on the set A = {a, b}. In formulae: (N1‖N2) ∗C A \ A. In this case
the modelling objective was that the object place can contain elements coming
from the places partA or partB and the composition ensures that any consumed
object is actually consuming one part, either A or B. After composition, the
individual identity (part A or part B) is lost. The tag a + b of the place object
of N1 can then be interpreted in a or -logic (either a or b).

If conjugated composition is performed instead on the full tag, which is
included in the labels of the partA and partB places of N2, the identity of the
two parts is kept in the composed net as two distinct places object+partA and
object+partB, shown in Fig. 10(d). Consuming an object will now require con-
suming both a part A and a part B. In this way, the tag full interprets the
composition using an and -logic (one token from every full place).

When place composition is realized through the n-ary structured composition
policy, the result is similar to the and -logic. If composition is performed on tags
{a, b}, each tag will result in an individual place, as in Fig. 10(e). Similarly, if
composition is performed on {full}, this will again lead to two places. To have
a 3-way composition resulting in a single place, the net N2 has to be separated
further into two subnets, one for part A and one for part B, such that each
subnet has only a single place tagged with full.
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6.2 Transition-Based Composition

Composition of concurrent events as a composition of the transitions sharing
the same tags (synchronization) is an important feature of any net algebra. We
shall first consider how the proposed framework can express the CCS-like and
CSP-like parallel operators, through which synchronization can be achieved, to
then show how to express multi-way synchronization in two different forms.

(a) 1 (b) 2 (c) ( 1 2) R a (d) bis
2 (e) ( 1

bis
2 ) C Σ

Fig. 11. CSP and CCS parallel operators.

CSP and CCS Parallel Operators. Nets N1 and N2 in Fig. 11 show two simple
processes, let’s say P and Q, that can both execute a. The net equivalent to the
CSP process P ‖{a} Q (parallel composition of P and Q with synchronization
over action a) can be obtained as (N1 ‖ N2) ∗R{a}, and it is depicted in Fig. 11(c).

If we now consider for process Q the net N bis
2 in Fig. 11(d), the net equiva-

lent to the CCS process P ‖ Q (parallel composition of P and Q over conjugate
actions) can be obtained as (N1 ‖ N2) ∗C {Σ}, and it is depicted in Fig. 11(e).
Note that the composition is over the whole set Σ of actions (tags) as in CCS (in
its original form): there is no way to limit the set of actions on which synchro-
nization takes place and the resulting net can correctly execute independently
also action a and â, while the synchronized action is labelled τ . Moreover the
two actions a and â are still executable.

Multi-way Synchronization requires a different approach, depending on whether
we have a single common tag or conjugate tags. In the former case we can use
structured composition, while in the latter one we need to use multiple tags.

Figure 12 shows how to realize a three-way synchronization with a single
common tag. The three operand nets N1, N2 and N3 all have a transition with
tag a. Restricted structured composition merges these transitions into a single
transition, that is also connected to all input and output places.
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(a) Net 1 (b) Net 2 (c) Net 3 (d) ( 1 2 3) R a

Fig. 12. Three-way synchronization using structured composition.

(a) N1 (b) N2 (c) N3 (d) (N1‖N2‖N3) ∗C A \A,
with A = {a, b}

(e)
(

(N1‖N2) ∗R{a})

‖N3 ∗R{b}

Fig. 13. Three-way synchronization using conjugated tags.

Figure 13 shows a three-way synchronization realized using conjugate tags.
Nets N1, N2, and N3 depicts the component of a system in which a token
is placed into place received only when the two sensors’ values are read in a
single moment. The synchronization can be achieved through unary conjugated
composition (merging all tags), as in Fig. 13(d), or by subsequently merging one
tag after the other as multiple nested restricted structured composition, as in
Fig. 13(e).

Multitag Synchronization. The other important aspect that is covered by the
composition over multitags is that all transitions that fully complement the
synchronized tags are generated (if possible). Figure 6(c) is an example of this
behaviour. In this way, complex dependencies among the tags can be expressed.
An example of application is a transition that needs to acquire n resources of
type a, that are provided and locked by another transition with a â transition.
The resulting synchronization consists in a single acquisition and n lock events
into a single transition. When complementarity of the tags is implicit in the
structure of the net, structured composition is also an option, as in Fig. 7(c).

Prototype. The proposed framework has been implemented as a prototype inside
the GreatSPN software (https://github.com/greatspn/SOURCES). All figures used
in the paper were generated using the proposed composition framework, with the
exception of Fig. 5(d, e), that was generated manually. The framework is devel-
oped inside the graphical editor, where multiple nets can be composed together
using the unary conjugated composition, or the n-ary structured composition.
Restriction is optional and can be applied after each composition.

https://github.com/greatspn/SOURCES
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(1)

(2)

(3)

(4)

(5)

Fig. 14. Prototype implemented inside the GreatSPN graphical interface.

Figure 14 shows how the composition interface looks like in the tool. Compo-
sition pages are special subnets, and are defined following this schema. In (1) the
composed nets are selected, and optional tag rewriting rules are specified (2).
The composition tags for places and transitions are then selected (3), together
with the composition policy, the optional tag restriction and other parameters
(4). The composed net is then shown in the central pane (5).

7 Conclusions

In this paper we propose a novel framework for net composition that is focused on
the simultaneous joint combination of places and transitions into a single policy-
based combinatorial operator. Multiple policies can be defined for composition,
and we provided a CCS-like unary conjugated composition, as well as a CSP-like
n-ary structured composition. Conjugated composition is based on the intuitions
of [2], but it is modified to follow the synchronization rules of the Petri box
calculus. We have reviewed several common cases for Petri net composition and
various modeling patterns, showing the effectiveness of the proposed approach
in modeling terms. The operators have been defined in net syntactical terms.
While this definition is enough to proceed, for example, to an implementation, it
lacks a formal semantic interpretation of the composed net behaviour in terms of
the possible executions of the composed nets. While for transition composition
defined by the policies of Sect. 5.1 and 5.2 this may be an attainable goal, it is
less clear how this can be achieved when the policies are applied to place-based
composition, a topic that has received less attention in the literature and that
certainly deserves more investigation.
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