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Abstract. Petri games are a multi-player game model for the automatic
synthesis of distributed systems, where the players are represented as
tokens on a Petri net and grouped into environment players and system
players. As long as the players move in independent parts of the net, they
do not know of each other; when they synchronize at a joint transition,
each player gets informed of the entire causal history of the other players.

We present a subclass of Petri games, for which the synthesis problem
is decidable, with finitely many sources of nondeterminism, which are
caused by the finitely many environment players, and with finitely many
system players. All players satisfy a synchronisation condition guaran-
teeing that they know within a bounded number of own moves what
each other player’s next (non)deterministic move has been. This differs
from existing approaches that limit the number of the system players
or environment players. We show that for Petri games in this subclass
deciding the existence of a winning strategy for the system players with
a global safety condition is in EXPTIME.

Keywords: Synthesis · Distributed systems · Concurrent systems ·
Petri nets · Petri games · Unfolding

1 Introduction

A game can be interpreted as a formal specification of a reactive system. If the
system is distributed over several processes, a multi-player game is appropriate
for its specification. In a multi-player game one distinguishes between environ-
ment and system players. A system player can control or choose which move
it takes next. An environment player is uncontrollable for the system players;
they have to react to all options of the environment players. A strategy for the
system players decides all choices that they have to make during a play, which is
a possibly infinite sequences of moves. A strategy is winning if it fulfills a given
winning condition against all behaviors of the environment. Thus, an implemen-
tation of a winning strategy can be seen as a correct implementation of a reactive
system. The synthesis problem asks whether there exists a winning strategy for
the system players and calls for the automatic generation of such a strategy if it
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exists. Such an automatic generation is useful for implementation tasks, which
are prone to errors.

In this paper, we consider Petri games as a formalisation of multi-player
games. A Petri game extends a Petri net by dividing its places into system and
environment places. A token on a system place represents a system player and
a token on an environment place represents an environment player. Specific to
Petri games is the notion of informedness of the players. As long as the players
move in independent parts of the net, they do not know of each other; when
they synchronize at a joint transition, each player gets informed of the entire
causal history of the other players. Petri games are equipped with a global safety
condition, which is formalized as a set of ‘bad’ markings, i.e., sets of places which
must never be reached simultaneously by the players.
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Fig. 1. A Petri game: the grey places belong to the system players and the white places
to the environment players. The two environment players have two ports each to choose
via tip1 and tip2, i = 1, 2. The goal for the system players is to connect the chosen ports
such that the environment players can communicate; every marking containing a place
si-j and a place e1pk with k �= i or a place e2pl with l �= j is a bad marking. The outgoing
edges of the transitions tfi, i = 1, . . . , 4, putting the tokens back on the initial places
are shown with dotted lines to keep the Petri net overseeable; those are the same places.

Petri games have been introduced in [13], where it has been shown that, limit-
ing the environment to one player, the synthesis problem is EXPTIME-complete
[13]. The dual case, limiting the system to one player, is also EXPTIME-complete
[12]. For Petri games with unboundedly many players the synthesis problem is
undecidable in general [13]. An approach of limiting the size of the winning
strategies to search for is presented as bounded synthesis in [9].
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In this paper, we introduce a subclass of Petri games with finitely many
system players and finitely many environment players that satisfy a synchroni-
sation condition which ensures that all players hear from each other directly or
indirectly within a bounded number of own transitions, or that the Petri net is
acyclic. Games with an arbitrary number of system and environment players are
key to specifying many realistic distributed reactive systems. We show that for
Petri games in this subclass the synthesis problem is decidable in EXPTIME.

Figure 1 shows a Petri game in an abstract communication setting, where
two environment players have two ports each to connect to via transitions. The
system players have to link the correct ports after knowing the choice of each
environment player. If done so, the environment players communicate over the
connected channel and every token is put back to the initial places. The Petri
game in Fig. 1 satisfies the synchronisation condition as all tokens hear from each
other in the joint transition tfi, i = 1, . . . , 4.
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Fig. 2. An initial part of a winning strategy of the Petri game in Fig. 1. This is a part
of the unfolding of the Petri net. The places e10

′
, s10

′
, s10

′
, s10

′
are new instances of the

initial places.

Figure 2 shows an initial part of the described winning strategy. The winning
strategy is a part of the unfolding of the Petri net, which is itself a Petri net,
where every flow of tokens through the net is represented by distinct new places
and transitions: the token initially on place s10 can distinguish its causality on
the places s11 and s11

′: on place s11 the system players knows that the environment
player is connected to port one and in s11

′ to port two. It does not know the port
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the other environment player connected to. From there on, the system players
can choose from four transitions to connect the ports. In the winning strategy,
only the correct option is chosen based on the causality.

The presented solution of the synthesis problem of the described subclass of
Petri games is a reduction to a two-player graph game with a safety condition.
The idea for the system player is to plan so far ahead that no information, that
is not yet available in the Petri net unfolding, is used for the decisions made in
the winning strategy.

The remainder of this paper is organized as follows. In Sect. 2 we introduce
the notions of Petri games and graph games. In Sect. 3 we define the reduction
to graph games and show its correctness. Related work and conclusions are
presented in Sect. 4 and Sect. 5.

2 Foundations

In this section, we define branching processes and unfoldings as they are defined
in [7]. Also, we define Petri games and their winning strategies.

The power set for a set A is denoted as 2A = {B | B ⊆ A}. The
set of nonempty finite subsets for a set A is denoted as 2A

nf = {B | B ⊆
A∧B is nonempty and finite} and the set of finite subsets as 2A

f . A Petri net is
a 5-tuple (P, T , pre, post , In), where P is the set of places, T is the set of transi-
tions, pre and post are flow mappings, In is the initial marking and the following
properties hold: P ∩ T = ∅, pre :�→ 2P

nf , post : T �→ 2P
f , and In ⊆ P is the initial

marking. A Petri net is called finite if P ∪ T is finite. The flow mappings pre and
post are extended for places as usual: ∀p ∈ P : pre(p) = {t ∈ T | p ∈ post(t)}
and ∀p ∈ P : post(p) = {t ∈ T | p ∈ pre(t)}. The flow relation F is defined as
F = {(p, t) ∈ P × T | p ∈ pre(t)} ∪ {(t, p) ∈ T × P | p ∈ post(t)}. A marking M
of a Petri net N is a multi-set over P. In particular, In is a marking. A Petri
net N is called safe, if for all reachable markings M(p) ≤ 1 for all p ∈ P holds.
Then, M is a subset of P.

A transition t ∈ T is enabled in marking M , if pre(t) ⊆ M . If t is enabled,
the transition t can be fired, such that the new marking is M ′ = M \ pre(t) ∪
post(t). This is denoted as M |t〉M ′. The marking M ′ is also denoted by M |t〉.
This notation is extended to sequences of enabled transitions M |t1 . . . tn〉M ′ and
M |t1 . . . tn〉, respectively A marking M is reachable, if there exists a sequence
of enabled transitions (tk)k={1,...,n} and In|t1 . . . tn〉M . This sequence can be
empty. The set of all reachable markings is denoted as R(N), where N is a Petri
net. We call a node x a place or a transition x ∈ P ∪ T .

The following definitions are essential for understanding this paper and are
also taken from [7]. A node x ∈ P ∪ T is a causal predecessor of y, denoted as
x ≤ y, if there is a sequence (xi, yi)i=1,...,n, (xi, yi) ∈ F , where x1 = x, yn = y
and yi = xi+1 forall i = 1, . . . , n−1. Furthermore, x ≤ x holds for all x ∈ P ∪T .
Two nodes x, y ∈ P ∪ T are causally related, if and only if x ≤ y or y ≤ x
holds. We say x is a causal successor of y, if and only if y ≤ x holds. We define
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the past of a node in an occurrence net as the set of all causal predecessors
Past(x) = {y ∈ P ∪ T | y ≤ x} as this is used in later definitions.

Two nodes x1, x2 ∈ P ∪ T are in conflict, denoted x1#x2, if there exist two
transitions t1, t2 ∈ T , t1 = t2 with pre(t1) ∩ pre(t2) = ∅ and ti ≤ xi, i = 1, 2. A
node x ∈ P ∪ T is in self-conflict, if x#x. Informally speaking, two nodes are in
conflict if two transitions exist that share some place in their presets and each
node is a causal successor of one of those transitions. Two nodes x, y ∈ P ∪ T
are concurrent, denoted x||y, if they are neither causally related nor in conflict.

A Petri net N is finitely preceded, if for every node x ∈ P ∪T the set Past(x)
is finite. A Petri net N is acyclic, if the directed graph (P ∪T ,F) is acyclic. The
two following definitions lead to the definition of a branching process, which
represents several runs of the underlying Petri net taken together. A run is
represented by a (possibly infinite) firing sequence of transitions. An occurrence
net is a Petri net N = (P, T , pre, post , In) with the following properties: N
is acyclic, finitely preceded, ∀p ∈ P : |pre(p)| ≤ 1, no transition t ∈ T is in
self-conflict, and In = {p ∈ P| pre(p) = ∅}.

A homomorphism from one Petri net to another maps each node to a node
such that the preset and postset relations are preserved including the initial
marking. Let N1 = (P1, T1, pre1, post1, In1) and N2 = (P2, T2, pre2, post2, In2)
be two Petri nets. A homomorphism from N1 to N2 is a mapping h : P1 ∪ T1 →
P2 ∪T2 with following properties: h(P1) ⊆ P2 and h(T1) ⊆ T2, for all transitions
t ∈ T1, h restricted to pre1(t) is a bijection between pre1(t) and pre2(h(t)), for
all transitions t ∈ T1, h restricted to post1(t) is a bijection between post1(t) and
post2(h(t)), and the restriction of h to In1 is a bijection between In1 and In2.
An isomorphism is an bijective homomorphism.

The previous definitions now lead to the definition of a branching process of
a Petri net resembling multiple runs of the Petri net.

Branching Process. Let N0 = (P0, T0, pre0, post0, In0) be a Petri net. A
branching process of N0 is a pair B = (N,π), where N = (P, T , pre, post , In) is
an occurrence net and π a homomorphism from N to N0 such that:

(*) For all t1, t2 ∈ T : if pre(t1) = pre(t2) and π(t1) = π(t2), then t1 = t2.

The notion of the set of all reachable markings of a branching process B = (N,π)
is extended to R(B) = R(N).

The property (∗) of the definition of a branching process ensures that every
run of the Petri net is represented at most once. Informally speaking, a run only
consists of concurrent and causally related nodes and a node can be part of
multiple runs. Nodes that are in conflict, cannot belong to the same run.

Homomorphism on Branching Processes. Given two branching processes
B1 = (N1, π1) and B2 = (N2, π2) of a Petri net N0. A homomorphism from B1

to B2 is a homomorphism h from N1 to N2 such that π2 ◦ h = π1. It is called
an isomorphism if h is an isomorphism. The branching processes B1 and B2 are
isomorphic if there exists an isomorphism from B1 to B2.
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As the names of the nodes of isomorphic branching processes may differ we
define the set of canonical names such that every branching process is isomorph
to a branching process with canonical names.

Canonical Names. Let N = (P, T , pre, post , In) be a Petri net, the set of
canonical Names CAN is the smallest set such that, if x ∈ P ∪ T and A is a
finite subset of CAN , then (x,A) ∈ CAN .

A canonical name of a node in a branching process is composed of the label
of the node and the set of the canonical names of all nodes in its preset. The
label of a node x is the name of the node in the underlying Petri net, denoted
as π(x).

Canonical Coding. Let B = (N,π) be a branching process of N0 and N =
(P, T , pre, post , In). Then the canonical coding of B is a mapping codB : P ∪
T → CAN with codB(x) = (π(x), codB(pre(x))). Note that pre(x) is a set and
thus codB(pre(x)) = {codB(y)| y ∈ pre(x)}. Consequently, a branching process
is called canonical if all nodes have canonical names.

Canonical Branching Process. A branching process B = (N,π) is called
canonical, if P ∪ T ⊆ CAN and codB(x) = x for all x ∈ P ∪ T .

Note that the definition of a canonical branching process requires the initial
marking of the branching process to be a set rather than a multi set.

A natural partial order on branching processes is defined in the following.

Subprocess Relation of Branching Processes. Let B1 and B2 be two
branching processes of a Petri net N = (P, T , pre, post , In). Then B1 approxi-
mates B2, denoted B1 ≤ B2, if there exists an injective homomorphism denoted
h≤ from B1 to B2.

Note that this partial order is independent of a branching processes being
canonical. Restricting this partial order to canonical branching processes results
in a partial order, too. Now we define the maximal canonical branching process
as the unfolding of a Petri net.

Unfolding. A branching process B = (N,π) with N = (P, T , pre, post , In)
is isomorphic to the unfolding unf (N0) of the underlying Petri net N0 =
(P0, T0, pre0, post0, In0) if and only if the following holds: For all transitions
t0 ∈ T0 and all sets C ⊆ P of pairwise concurrent places exists t ∈ T with
pre(t) = C and π(t) = t0, if the restriction of π to C is a bijection between C
and pre0(t0). The notation unf (N0) denotes the canonical unfolding. We refer to
the components of the unfolding as Tunf (N0), Punf (N0), preunf (N0), postunf (N0),
and Inunf (N0).

As we only consider Petri games of finite and safe Petri nets in this paper,
these properties are part of the definition of a Petri game. Note that we allow
tokens to be generated or deleted. Also, we allow tokens to transition from a
system place to an environment place and vice versa.

Definition 1 (Petri game). A Petri-game of an underlying finite and safe
Petri net N is a tuple G = (PS ,PE , T , pre, post , In,B), where the places are
two disjoint sets PS, called the system places and PE, called the environment
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places with PS ∪ PE = P . The sets P and T are finite. B is the set of bad
markings.

We assume the underlying Petri net of a Petri game to be safe for formal sim-
plicity of the canonical branching processes. Note that a finite and safe Petri net
has a bounded number of places in every reachable marking.

Now we can define a winning strategy as a branching process of the underlying
Petri net, that satisfies four properties.

Definition 2 (Winning strategy). A winning strategy of a Petri-game GP =
(PS

0 ,PE
0 , T0, pre0, post0, In0,B) with underlying Petri-net N0 = (P0, T0, pre0,

post0, In0) is a branching process B = (N,π) of N0 with N = (P, T , pre, post , In)
and the following properties.

1. Justified refusal: Let C ⊆ P be a set of pairwise concurrent places and
t ∈ T0 a transition with π(C) = pre0(t). If no t′ ∈ T with π(t′) = t and
pre(t′) = C exists, then there exists a place p ∈ C with π(p) ∈ PS

0 , such that
t /∈ π(post(p)).

2. Safety: For all reachable markings M in N holds π(M) /∈ B.
3. Determinism: For all p ∈ P with π(p) ∈ PS

0 and for all reachable markings
M in N with p ∈ M exists at most one transition t ∈ post(p), which is enabled
in M .

4. Deadlock avoiding: For all reachable markings M in N exists an enabled
transition, if a transition is enabled in π(M) in the underlying Petri-net N0.

We fix the notations GP = (PS
0 ,PE

0 , T0, pre0, post0, In0,B) of the Petri game
GP and N0 = (P0, T0, pre0, post0, In0) of the underlying Petri net N0.

The four properties of a winning strategy can be interpreted as follows: The
justified refusal property forces the system player in each place to allow all
instances of an outgoing transition t or no instance at all. This enables the
representation of the decisions of the system player as commitment sets in its
places: each transition is allowed for every possible instance or it is forbidden
at all. The safety property ensures that no bad markings are reachable. The
determinism property ensures that for each system place at most one transition
is enabled in every reachable marking. The deadlock avoiding property ensures
that the system allows at least one transition in every reachable marking if an
enabled transition exists in that marking.

2.1 Graph Games

A graph game is a two player game with perfect information played on a directed
graph, called an arena. The vertices in the arena divide into system vertices and
environment vertices. The system player, who chooses the next move in system
vertices, is referred to as player 0 and the environment player, who chooses the
next move in environment vertices, is player 1.

An arena A = (V, V0, V1, E) consists of a finite set V of vertices, disjoint
subsets V0, V1 ⊆ V with V = V0 ∪V1 denoting the vertices of player 0 and player
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1, a set E ⊆ V × V of (directed) edges such that every vertex has at least one
outgoing edge, i.e., {v0 | (v, v0) ∈ E} is non-empty for every v ∈ V . The size of
A, denoted by |A|, is defined to be |V |. A play in an arena A = (V, V0, V1, E)
is an infinite sequence of vertices μ = v1v2v3 . . . ∈ V ω such that (vn, vn+1) ∈ E
holds for every n ∈ N. We say μ starts in the vertex v1. The set of plays in A is
denoted by Plays(A), the set of all plays starting in v by Plays(A, v), and we
define Plays(A, V ′) =

⋃
v∈V ′ Plays(A, v) for every V ′ ⊆ V .

A strategy of a player determines the next vertex of a play, if the cur-
rent vertex belongs to the player. A strategy for Player i ∈ {0, 1} in an arena
(V, V0, V1, E) is a function σ : V ∗Vi �→ V such that σ(wv) = v′ implies (v, v′) ∈ E
for every w ∈ V ∗ and every v ∈ Vi. The set of plays obtained by following a strat-
egy is the set of consistent plays. A play v1v2v3 . . . in an arena A = (V, V0, V1, E)
is consistent with a strategy σ for Player i in A if vn+1 = σ(v1 . . . vn) for every
n ∈ N with vn ∈ Vi . Given a vertex v, we denote the set of plays that are consis-
tent with σ and start in v with Plays(A, v, σ). Finally, we define Plays(A, V ′, σ)
for V ′ ⊆ V by Plays(A, V ′, σ) =

⋃
v∈V ′ Plays(A, v, σ).

The winning condition in a safety graph game is to remain in safe vertices.
The set of safe vertices is a subset of all vertices. A safety graph game G = (A,S)
consists of an arena A with vertex set V and a set of safe vertices S ⊆ V . We call
a sequence μ winning for Player 0 if, and only if Occ(μ) ⊆ S. Occ(μ) denotes
all vertices occurring in μ: Occ(μ) := {v ∈ V | ∃n ∈ N : vn = v}. A strategy
is winning, if all consistent plays remain in safe vertices at all time: A strategy
σ of a safety graph game G = (A,S) is called winning in a vertex v ∈ V , if all
consistent plays μ ∈ Plays(A, v, σ) are winning.

A strategy σ for Player i in an arena (V, V0, V1, E) is positional if σ(wv) =
σ(v) for all w ∈ V ∗ and v ∈ Vi . Safety graph games are determined with
positional winning strategies. These strategies are called positional because they
do not need any memory of the vertices visited so far.

Safety graph games can be solved with the standard attractor construction
in linear time in the number of edges of the underlying arena [2].

3 Reduction of Petri Games to Graph Games

In this section, we reduce Petri games, where the underlying Petri net satisfies
a synchronisation condition, to safety graph games. We call the synchronisation
condition non-simultaneous synchronisation condition as the players do not need
to take one joint transition. They do need to be causally dependent from each
other directly or indirectly after they take a bounded number of transitions. The
only exception occurs, if there are only finite firing sequences of transitions in
the Petri net meaning the Petri net is acyclic.

Informally speaking the non-simultaneous synchronisation condition defined
in the following expresses that every token in the Petri net has to take a tran-
sition within firing at most n transitions or no transition is enabled anymore
after n − 1 transitions. This ensures that every token hears from every other
token directly or indirectly after firing finitely many transitions, if there are still
enabled transitions in the Petri net.
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Definition 3 (Non-simultaneous synchronisation condition). A Petri
net N satisfies the non-simultaneous synchronisation condition if and only if
there exists a bound n ∈ N such that

∀M ∈ R(N) : ∀s ∈ M : ¬∃t1 . . . tn : M |t1 . . . tn〉M ′ ∧ ∀k = 1, . . . n : s /∈ pre(tk).

This bound is unrelated to the number of tokens in the Petri net. An equivalent
characterisation of Petri nets that satisfy this synchronisation condition is to
bound the number of concurrent transitions for every place in the unfolding of
a Petri net. A Petri net satisfies the non-simultaneous synchronisation if and
only if there exists a bound m ∈ N such that for all places p ∈ unf (N) the set
of concurrent transitions in the unfolding is bounded by m, i.e. |{t ∈ Tunf (N) |
p||t}| ≤ m.

The remainder of this section is structured as follows: in Subsect. 3.1 we
introduce further definitions for Petri games such that we can express a winning
strategy in a Petri game to be planned part by part in a graph game. In Sub-
sect. 3.2 we define the graph game to which a Petri game is reduced. In Subsect.
3.3 we show how to construct a winning Petri game strategy if the graph game
has a winning strategy and vice versa.

3.1 Extended Petri Game Semantics

In the following, we introduce another synchronisation condition, the local syn-
chronisation condition, that is defined for the nodes in a branching process as
opposed to the non-simultaneous synchronisation condition that is defined for a
Petri net.

The reduction from Petri games to graph games, where both players have
perfect information, needs to ensure that the decisions of the system player in
the graph game do not rely on information it would not have in the Petri game.
Therefore, we introduce a local synchronisation condition that ensures that the
system player has sufficient information in the graph game. The idea is that
the system player plans so far ahead until it meets the local synchronisation
condition for all tokens such that it cannot abuse information in the graph game
it would not have in the Petri game. We define the set of enabled transitions in
a marking of a Petri net and the local synchronisation condition dependent on
this set as follows. The set of the enabled transitions in a marking M of a Petri
net is defined as TEn

M = {t ∈ T | t is enabled in M}. The notation TEn
B is used

for a branching process B. This is the set of enabled transitions in the initial
marking of B.

Definition 4 (Local synchronisation condition (abbreviated LSC)). For
a branching process B = (N,π) of a Petri net N0 the local synchronisation
condition, abbreviated LSC , is defined for a node x ∈ P∪T as follows: x satisfies
the LSC if

∀t ∈ TEn
B : t ∈ Past(x) ∨ x#t.
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The local synchronisation condition is called local because the causal past
of a node determines if it is satisfied: a node satisfies the local synchronisation
condition if it has information of all enabled transitions in the initial marking
whether they have been fired or not. The information that one of those transi-
tions was not fired is equal to having a node in conflict to that transition in the
past of the node that satisfies the local synchronisation condition.

In the graph game, the system player and environment player take alternate
turns. The system player plans a branching process, i.e. the system player deter-
mines its strategy part by part. Then, the environment player chooses a set of
enabled and pairwise concurrent transitions that are fired. Afterwards, the sys-
tem player has to plan further ahead, and so on. We define firing transitions in a
branching process which results in a branching process containing all remaining
nodes that were not in conflict to a fired transition or a causal predecessor of
fired transition. As the initial marking of this new branching process changed
and therefore it might not be a branching process by definition, we extend the
set of branching process to those starting in an arbitrary reachable marking of
the underlying Petri net.

Definition 5 (Extended set of branching processes of a Petri net).
An extended branching process B = (N,π) of a safe Petri net N0 = (P0, T0,
pre0, post0, In0) is a branching process of a Petri net N ′

0 = (P0, T0, pre0,
post0,M), where M ∈ R(N0). The set of all extended branching processes of
a Petri net N0 or a Petri Game GP is denoted as EB(N0) and EB(GP ), respec-
tively. The notion of the unfolding of N ′

0 as an extended branching process is
added as unf M (N0).

In the following, we define firing a set of pairwise concurrent transitions in an
extended branching process.

Definition 6 (Firing transitions in extended branching processes). Let
B = (N,π) be an extended branching process with N = (P, T , pre, post , In)
and Tf ⊆ TEn

B a set of pairwise concurrent transitions. Then B|Tf 〉B′ denotes
the firing of all transitions in Tf in an arbitrary order, resulting in the extended
branching process

B′ = ((P \ {s ∈ P | s ∈ pre(Tf ) ∨ ∃t′ ∈ Tf : t′#s},

T \ {t ∈ T | t ∈ Tf ∨ ∃t′ ∈ Tf : t′#t}, pre�T ′ , post �T ′ ,M |Tf 〉), π �T ′∪P′),

where the components of B′ are referred to as P ′, T ′, pre ′, post ′, In ′ and π′,
and pre�T ′ and post �T ′ are the restrictions of pre and post to the transitions
T ′ of B′, and π �T ′∪P′ the restriction of π to T ′ ∪ P ′.

The branching process B′ is also denoted as B|Tf 〉. We extend these nota-
tions for sequences of sets of concurrent transitions as B|Tf1 . . . Tfn

〉B′ and
B|Tf1 . . . Tfn

〉 respectively. Here, M |Tf 〉 denotes the marking reached after firing
all transitions in Tf in an arbitrary order. Let B̃′ ∼= B′ denote the canonical
branching process, which is isomorph to B′ via an isomorphism Φ : B′ �→ B̃′.
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To ensure that the decisions of the system player which transitions are allowed
to be fired in each place are final, such that the system does not change its deci-
sions when it has more information, we define a commitment set mapping for an
extended branching process, which states for every place the set of transitions
which are allowed to be fired. This ensures the justified refusal property of a
winning strategy in a Petri game. For environment places the allowed transi-
tions are not restricted. In the graph game, the system player has to choose a
commitment set for every system place, when it is added, and this commitment
set is kept the same from there on.

Definition 7 (Commitment set mapping). Given a Petri game GP , a com-
mitment set mapping CS of an extended branching process B = (N,π) ∈
EB(GP ), where N = (P, T , pre, post ,M), is a mapping with the following prop-
erties:

CS :P → 2T0

∀s ∈ P : CS (s) ⊆ post0(π(s))

∧ (π(s) ∈ PE
0 ⇒ CS (s) = post0(π(s)))

For example, the commitment set of the system place s11 in Fig. 2 would be
{tc1-1, tc1-2} as it needs to connect port one of the first environment player to
either port one or port two of the other environment player.

In the following definition we extend the subprocess relation ≤ to a sub-
process relation ≤CS

CS ′ respecting given commitment set mappings of extended
branching processes. This means that the commitment sets are preserved under
the subprocess homomorphism h≤.

Definition 8 (Subprocess relation of extended branching processes
with commitment set mapping). Let B1 and B2 be extended branching pro-
cesses of a safe Petri net N0 with commitment set mappings CS 1 and CS 2. B1

approximates B2 with respect to the commitment set mappings CS 1 and CS 2,
denoted B1 ≤CS1

CS2
B2, if and only if B1 ≤ B2 and for all p ∈ P1 for the commit-

ment set CS1 (p) = CS 2(h≤(p)) holds.

Note that this defines a partial order on tuples of extended branching processes
and their commitment set mappings.

Now, we can define planning segments as tuples of extended branching pro-
cesses and a commitment set mapping, such that every node necessary to satisfy
the local synchronisation condition for every maximally progressed place is added
and no more nodes are included. We call a place maximally progressed, if and
only if it satisfies the LSC or has an empty postset. Thus, either the LSC is
satisfied or no further transitions are allowed in the commitment set mapping.
Exactly those transitions which are allowed in the commitments set are added
until the LSC is satisfied.

Definition 9 (Planning segment). A tuple (B,CS ) consisting of an extended
branching process B = (N,π) with N = (P, T , pre, post ,M) of a Petri game GP
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with underlying Petri net N0 and a commitment set mapping CS of B is a
planning segment, if and only if the following holds:

∀t ∈ T :∀p ∈ pre(t) : π(t) ∈ CS (p)
∧ ∃t′ ∈ T : (t ≤ t′ ∧ ∃s ∈ pre(t′) : s does not satisfy the LSC )) (1)

¬∃(B′,CS ′) : (B′,CS ′) satisfies (1) ∧ B ≤CS
CS ′ B′ (2)

Let PSeg(G) denote the set of all planning segments of a Petri game G. The
notation TEn

v is used for a planning segment v ∈ PSeg(G). This is the set of
enabled transitions in the initial marking of its branching process B.

Note: The second part of property (1): ∃t′ ∈ T : (t ≤ t′ ∧ ∃s ∈ pre(t′) :
s does not satisfy LSC ) ensures that every added transitions is necessary to sat-
isfy the LSC . Thereby, it allows transitions, that are causal predecessors of other
transitions, where the preset does not satisfy the local synchronisation condition,
to be added despite the possibility that all places in the preset of the transition
itself already satisfy the local synchronisation condition. The property (2) of
such a tuple ensures that all such transitions are added by requiring the tuple
to be maximal.

3.2 Corresponding Graph Game

The set of all planning segments is used as the set of vertices of the environment
player in the graph game. In the following, we define decision sets that are the
possible decisions for the environment player in one of its vertices. This means
that every decision set corresponds to an outgoing edge from an environment
vertex in the graph game. A decision set consists of a set of concurrent transitions
that are enabled in the current marking. The environment player chooses to fire
these transitions.

Definition 10 (Decision sets). For a Petri game GP and a planning segment
(B,CS ) ∈ PSeg(G) with initial marking In of B, the set of decision sets for the
environment player is defined as follows:

DSets((B,CS )) ={DS ⊆ TEn
In | ∀ti, tj ∈ DS , ti = tj : ti||tj}

An example of a branching process of a planning segment is shown in Fig. 2,
if the places in the post sets of the transitions tf2 and tf3 are added, which
are indicated with vertical dots. The places after firing a transition tfi, i =
1, . . . , 4, satisfy the local synchronisation condition as they know which port
each environment player chose. The branching process in Fig. 2 is a planning
segment, if a suitable commitment set mapping is added.

In the following, we define deterministic and deadlock avoiding planning seg-
ments. The intuition here is quite similar to the determinism and deadlock avoid-
ance of a winning strategy in a Petri game: eventually, assuming exactly those
transitions allowed in the commitment sets are added to the branching process
the definition is equal for the places and transitions that are actually in the
branching process. The definitions are not only for planning segments but for
extended branching processes with a commitment set mapping.
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Definition 11 (Deterministic and deadlock avoiding planning seg-
ments). Let GP be a Petri game. An extended branching process with a com-
mitment set mapping (B,CS ), where B = (N,π) and N = (P, T , pre, post , In),
is called deterministic in a reachable marking M ∈ R(B), if for all p ∈ M with
π(p) ∈ PS exist at most one transition t ∈ CS (p), where pre0(t) ⊆ π(M) and
for all p ∈ π �−1

M (pre0(t)) : t ∈ CS (p) holds.
An extended branching process with a commitment set mapping (B,CS ) is

called deadlock avoiding in a reachable marking M ∈ R(B) if and only if the
following holds: If a transition t ∈ T0 is enabled in π(M), then there exists a
transition t′ ∈ T0, where for all p ∈ π �−1

M (pre0(t′)) : t′ ∈ CS (p) holds.

The set of bad planning segments is defined as expected.

Definition 12 (Bad planning segments). Let GP be a Petri game and let
PSeg(GP ) denote the set of all planning segments. The set of bad planning
segments is defined as:

PSegbad ={(B,CS ) ∈ PSeg | ∃M ∈ R(B) : π(M) ∈ B
∨ (B,CS ) is not deterministic or not deadlock avoiding in M.}

Now, turn to the graph game. We define the starting vertices of the system player
in the graph game. A winning strategy has to be winning starting in one of those
vertices to construct a winning strategy in the Petri game later on. A starting
vertex of the graph game consists of the branching process with just the places
of the initial marking, their arbitrary commitment sets and no transitions. Note
the pre-image of pre and post are empty.

Definition 13 (Starting vertices). The set of starting vertices in the graph
game for a Petri game GP = (PS

0 ,PE
0 , T0, pre0, post0, In0,B) is defined as:

Start = {(B = ((In0, ∅, pre, post , In0), π),CS ) |
CS is a commitment set mapping of B}

The reduction of a Petri game to a graph game is now defined as follows: the set
of environment vertices V1 is the set of all planning segments. The set of system
vertices V0 is the union of the set of starting vertices and the set of extended
branching processes with commitment set mapping, that are reached by firing a
decision set of an arbitrary planning segment. The commitment sets remain the
same for the remaining places. The system vertices are denoted as pairs with a
0 in the second component to distinguish them from the environment vertices;
the first component of a system vertex might be a planning segment. The set
of directed edges consists of three sets: First, firing a decision set resembles an
edge from the planning segment to a system vertex. Second, the system player
has to plan further ahead to meet the local synchronisation condition resulting
in an edge from a system vertex to a planning segment. Third, the graph game
loops if no transition is enabled. All edges preserve a subprocess relation in their
direction. The commitment sets for all those places kept due to the subprocess
relation remain the same. The set of all safe vertices are all vertices that are not
bad planning segments.
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Definition 14 (Corresponding graph game). For a Petri game GP = (PS
0 ,

PE
0 , T0, pre0, post0, In0,B) we define a safety graph game GGraph = (A, S),

A = (V, V0, V1, E) as follows:

V1 = PSeg(Gp)

V0 = {((B̃′,CS ′), 0) | ∃(B,CS ) ∈ V1 : ∃DS ∈ DSets((B,CS )) :

B̃′ = Φ(B|DS 〉) ∧ CS ′ = CS �P′ ◦Φ−1} ∪ Start × {0}
E = {(((B,CS ), 0), (B′,CS ′) ∈ V0 × V1 | B ≤CS

CS ′ B′}
∪ {((B,CS ), ((B̃′,CS ′), 0)) ∈ V1 × V0 | ∃DS ∈ DSets((B,CS )) :

B̃′ = Φ(B|DS 〉) ∧ CS ′ = CS �P′ ◦Φ−1}
∪ {((B,CS ), (B,CS ) ∈ V1 × V1 | TEn

B = ∅}
S = V1 ∪ V0 \ PSegbad (Gp)

The sets P and P ′ denote the places of the branching processes B and B′,
respectively. Φ denotes the isomorphism from the branching process B′ to the
canonical branching process B̃′. We refer to this graph game as the corresponding
graph game of G.

•• • •• •

•• •

•• •

•• • •• •

•• •

•
•

{t1p1} {t1p1, t2p1}

{t11}{t11, t21}

{tc1-1}, {tf1}

Fig. 3. A part of the corresponding safety graph game of the Petri game in Fig. 1
starting in the vertex, where the commitment set mapping allows all transitions. The
commitment set mappings are implicit within the branching processes. White vertices
belong to the environment player and gray to the system player. The dotted white ver-
tices are bad planning segments. Edges are annotated with their decision sets. Decision
sets with unique planning are blue, later defined in Definition 17.
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The graph game is almost bipartite: As long as T En
In = ∅, vertices of the

system player and the environment player alternate. This is not necessary when
the extended branching process with its commitment set mapping of a vertex of
the system player is already a planning segment again. The graph game is kept
bipartite in that case for formal simplicity reasons.

In Fig. 3, a part of the corresponding graph game starting in the vertex, that
allows all transitions in the initial marking, is shown. The planning segments
represent all possible combinations of commitment sets, from the unfolding on
the left over the initial part of a winning strategy in Fig. 2 to not allowing
any transition on the right. The edges are annotated with decision sets. A blue
decision set belongs to a play with unique planning, later defined in Definition 17.
The play following the blue decision sets is winning. Note that the LSC is always
satisfied after a transition tfi.

Lemma 1 (Corresponding graph game has exponential size). The cor-
responding graph game of a Petri game has exponential size.

Proof (Proof sketch).1 The corresponding graph game has exponential size as the
LSC ensures that every token has to hear from every other token within taking
n own transitions. The combinations of commitment sets in the system places
result in exponentially many planning segments, which results in an exponential
size of the corresponding graph game.

3.3 From Graph Games to Petri Games and Vice Versa

First in this section, we prove the existence of a winning strategy in a Petri
game if a winning strategy exists in its corresponding graph game. Starting
with a winning strategy in the graph game the idea of the construction of the
Petri game strategy is simple: Every node added in some branching process of
a consistent play with unique planning is added to the Petri game strategy and
no more.

In the following, we fix the Petri game GP = (PS
0 ,PE

0 , T0, pre0, post0, In0,B)
and the underlying Petri net of a Petri game always satisfies the non-
simultaneous synchronisation condition from Definition 3, G = (A, S) is the
corresponding graph game from Definition 14, and σ is a strategy of G.

The next two definitions lead to the definition of unique planning that pre-
vents different planning by varying the order of a firing sequence. A play in the
graph game gets annotated with the decision sets chosen by the environment:

Definition 15 (Annotation of plays). We annotate a play of the graph game
μ = v1v2v3 . . . with its decision sets:

If (vn, vn+1) = ((B,CS ), ((B̃′,CS ′), 0)) ∈ V1 × V0 and DS ∈ DSets(B,CS ) :
B̃′ = Φ(B|DS 〉) ∧ CS ′ = CS �P′◦Φ−1 we write vn

DS−−→ vn+1.

1 Full proofs will appear in an extended version of this paper on arXiv.
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We define the canonical branching process of a play in the graph game as the
branching process yielded by sequentially attaching the planning segments of
the play. As every planning segment itself has canonical names, the names in
the branching process of a play are not the same as in the planning segments
in general. A subprocess homomorphism h≤ for each planning segment maps
its places and transitions to its part of the branching process of the play. The
commitment set mapping of the branching process of a play is compounded by
the commitment set mappings of the planning segments.

Definition 16 (Branching process and commitment set mapping of a
play). Let μ = v1v2v3 . . . be a play or a prefix of a play of G and DS1DS2 . . .
the sequence of annotated decision sets. The branching process of the play μ,
Bμ = (Nμ, πμ), is defined as the smallest canonical branching process with respect
to ≤ such that the sequence of annotated decision sets can be fired in Bμ. We
refer to the components of Nμ as Pμ, Tμ, preμ, postμ, and Inμ.

For all prefixes v1v2 . . . vn with vn = (Bvn
,CS vn

) ∈ V1 and its sequence
of annotated decision sets DS 1DS 2 . . .DSm, we define a part of the planning
segment vn in Bμ, denoted ṽn, as follows: ṽn = (Bṽn

,CS ṽn
), where Bṽn

=
h≤(B) and B is the maximal canonical branching process with respect to ≤ such
that B ≤ Bμ|DS 1DS 2 . . .DSm〉 with the subprocess homomorphism h≤ : B �→
Bμ|DS 1DS2 . . .DSm〉 and B ≤ Bvn

. The components of Bṽn
are denoted as

Pṽn
, Tṽn

, pre ṽn
, post ṽn

and In ṽn
. For all p ∈ Pṽn

, the commitment set mapping
CS ṽn

(p) is defined as CSvn
(pn) if h≤(pn) = p. The commitment set mapping

CSμ(p) of Bμ for all p ∈ Pμ is defined as CSμ(p) = CS ṽn
(p), if p ∈ Pṽn

.

Note that the compound commitment set mapping CSμ is well defined as already
existing commitment sets are preserved by the edges in the graph game.

Now we define the set of plays with unique planning. Firing the same set
of transitions in a different order can result in differently planned branching
processes in the graph game. Those different branching processes might not
result in a winning strategy for the Petri game when they are added together.
We only consider those plays in the graph game, where every transition is fired as
soon as possible or never. This means that every transition chosen in a decision
set must not be enabled in an earlier planning segment.

Definition 17 (Set of plays with unique planning). Let Plays(G, σ) be
the set of consistent plays and let DSμ

1DSμ
2 . . . denote the sequence of annotated

decision sets of a play μ ∈ Plays(G, σ). The set of consistent plays with unique
planning is defined as

Playsu(G, σ) ={μ ∈ Plays(G, σ) | ∀t ∈ DSμ
j , j ≥ 2 : t /∈ T En

vDS
µ
j−1

∨ ∃t′ ∈ DSμ
j−1 : prevDS

µ
j−1

(t′) ∩ prevDS
µ
j

(t) = ∅},

where vDSµ
j−1

is the vertex of the play μ with outgoing annotation DSμ
j−1 and

prevDS
µ
i

the preset mapping of the branching process of vDSµ
i
.
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This definition makes use of the canonical names. An enabled transition in the
initial marking has the same name for all instances of that transition. If a tran-
sition is enabled in the initial marking of a previous planning segment, we do
not allow that transition in the decision set. But, we have to consider that the
transition in the current planning segment can be another instance of the tran-
sition of the previous planning segment that just has the same name. This is the
case, if a transition t0 of the Petri net is enabled right again after firing itself
or after firing a transition in conflict to the previous instance of t0 such that an
instance with the same name is in T En

vDS
µ
j−1

, but the second instance cannot be

fired earlier. The condition ∃t′ ∈ DSμ
j−1 : prevDS

µ
j−1

(t′) ∩ prevDS
µ
j

(t) = ∅ ensures

that a second instance with the same name can be chosen in the decision set.
The idea of the construction of the winning strategy in the Petri game is to

merge the branching processes of every possible and to the graph game strategy
consistent unique play. We define the union of two branching processes compo-
nentwise. As the proof of the construction of a winning strategy in the Petri
game is by induction, we define a winning prefix and its union naturally. The
branching processes of prefixes of winning plays in the graph game are winning
prefixes.

In the following we show three crucial properties of the branching process of
a single play consistent to the winning strategy. The first property is that every
transition has to be allowed in the commitment sets of its preset.

Lemma 2 (All transitions are allowed in commitment sets). For the
branching process Bμ of a play μ ∈ Plays(G, σ) it holds that for every transition
t ∈ Tμ for all p ∈ preμ(t) : t ∈ CSμ(p).

Proof. As in the definition of a planning segment, every transition has to be in
the commitment set of every place in its preset.

The second property is that every reachable marking in the branching process
of a play is reachable in one of its planning segments.

Lemma 3 (Every reachable marking is reachable in a planning seg-
ment). For the branching process Bμ of a play μ ∈ Plays(G, σ) it holds that
for every reachable marking M ∈ R(Bμ) exists a planning segment v ∈ V1 in μ,
where M is reachable in its part Bṽ of the branching process Bμ.

Proof (Proof sketch). We need to distinguish two cases. In the first case, a tran-
sition t ∈ Tμ is enabled in M . Then we can take the prefix v1v2 . . . vn of μ, where
vn ∈ V1 is the first vertex, where Invn

enables a transition t′ ∈ Tμ, which is
enabled in M . Every reachable marking in a branching process is a set of pair-
wise concurrent places and the maximally progressed places in vn either satisfy
the LSC or no further transitions are allowed. Thus, as those places are either
not concurrent to the places in pre(t′) or no concurrent places can be added later
on, M is reachable in Bṽn

.
In the second case, a planning segment vi is reached eventually, where M is

the initial marking In ṽi
.
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The third property is that every transition allowed in the commitment sets of
its preset is added in a branching process of some play with unique planning.

Lemma 4 (All allowed transitions are added). Let μ = v1v2 . . . ∈
Playsu(G, σ) be a consistent play with unique planning. If M is a reachable
marking in vi such that no transition in the past of a place of M could have
been fired in a previous planning segment of μ and ∃t0 ∈ T0 : pre0(t0) ⊆
πvi

(M) ∧ ∀p ∈ πvi
�−1
M (pre0(t0)) : t0 ∈ CSvi (p), then there exists a unique play

μ′ ∈ Playsu(G, σ) with a same prefix μ|i| = μ′|i|, and a vertex v′
j that is reached

in μ′ with j ≥ i via the sequence of annotated decision sets DS 1 . . .DSn from
v′

i . . . v′
j such that there exists t ∈ Tv′

j
with prev′

j
(t) = Φ(πvi

�−1
M (pre0(t0))) and

πv′
j
(t) = t0, where Φ is the isomorphism from B|DS 1 . . .DSn〉 to its canonical

branching process.

Proof. Let t0 ∈ T0 be such a transition in vi. Since M is a reachable marking in
vi, we construct a play μ′ ∈ Playsu(G, σ), where the environment player chooses
its decision sets in a way that every transition in the past of any place of M is
chosen as soon as possible and no transition in conflict to one of the places in
M is chosen. Since Bμ is finitely preceded it follows that a planning segment
v′

j , j ≥ i, is reached, where a place p ∈ Φ(πvi
�−1
M (pre0(t0))) is in the initial

marking of v′
j , and the commitment sets of the places remained the same due

to the construction of the arena A. The place p does not satisfy the LSC of v′
j

and since v′
j is maximal with respect to its commitment set mapping, we have

t ∈ Tv′
j

with prev′
j
(t) = Φ(πvi

�−1
M (pre0(t0))) and πv′

j
(t) = t0.

Lemma 5 (From graph games to Petri games). If a winning strategy
σ : V ∗V0 → V for player 0 exists in G starting in a vertex v1 ∈ Start, then
there exists a winning strategy σ′ in the Petri game GP .

Proof (Proof sketch). We show that the union of the branching processes of all
plays with unique planning is winning in the Petri game. For the maximally
progressed places in a planning segment that satisfy the LSC , all decision sets,
which are allowed in plays with unique planning, are distinguishable. This means
that each of those places refers to exactly one such decision set. Thus, for two
different decision sets the maximally progressed places are disjoint and further
transitions added later in the play have disjoint presets, such that every node is
added only in one branching process of a prefix of a play with unique planning.
For the maximally progressed places, that do not satisfy the LSC , no transition is
allowed to be added due to the commitment sets. From there on, the commitment
set is kept the same in all plays with that prefix.

Now, the three shown properties for branching processes of a play with unique
planning together with σ being a winning strategy ensure the winning properties
of the Petri game strategy: Lemma 2 and Lemma 4 ensure the justified refusal
property; Lemma 3 ensures the safety property; Lemma 2 and Lemma 3 ensure
the determinism property; Lemma 3 and Lemma 4 ensure the deadlock avoiding
property.
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Now, we show the existence the other way round.

Lemma 6 (From Petri games to graph games). Let GP be a Petri game
and σ a winning strategy for GP . Then there exists a winning strategy σ′ for
player 0 in the safety graph game G = (A, S) from Definition 14.

Proof (Proof sketch). We choose the planning segments according to the given
Petri game strategy, where the commitment sets are equal to the postsets of the
places in the Petri game strategy.

We conclude with the theorem that states that the synthesis problem for Petri
games of the presented subclass is decidable in EXPTIME.

Theorem 1 (Synthesis). Let GP be a Petri game, where the underlying Petri
net satisfies the non-simultaneous synchronisation condition from Definition 3,
then the existence of a winning strategy, and deriving it if existent, is decidable
in EXPTIME.

Proof. The equivalence of the existence of a winning strategy follows from the
two implications in Lemma 5 and Lemma 6. The corresponding graph game has
exponential size dependent on the size of the Petri game. The graph game takes
linear time to be solved dependent on the number of edges, which are at most
square as many as vertices. This results in exponential complexity overall.

4 Related Work

There have been quite a few approaches to the synthesis problem. We distinguish
between works that address a single-process synthesis problem, where the system
consists of one process that has all its information accessible, and works that
address a multi-process synthesis problem, where multiple processes exist that
are all partially informed. One of the latter is presented in this paper. The works
on Petri nets in [5,23] belong to the former.

The synthesis problem was first introduced in [6]. Pnueli and Rosner intro-
duced a setting of synchronous processes that communicate via shared variables
[22]. For a single process, this setting is known to be decidable [4,21]. For multiple
processes, this setting is known to be undecidable [22]. In particular, information
forks have been found to be a necessary and sufficient criterion for the undecid-
ability in that distributed setting [14]. There have been positive decidability
results on specific architectures with multiple processes, including pipelines [24],
rings [16], and acyclic architectures [14]. However, all the positive results for
multiple processes have non-elementary complexity. A general game model in
this type of setting is introduced by Walukiewicz and Mohalik [19]. Another line
of work concerns the alternating-time temporal logics, which are interpreted over
concurrent game structures [1].

Petri nets are conceptually connected to event structures by their unfoldings
[18,20]. As an application example, unfoldings are used to determine the set of all
reachable markings in a Petri net [8]. We use net unfoldings to define strategies
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on Petri games. The causal past of a node is the only available information;
concurrent and future actions are invisible.

Zielonka automata are another distributed setting introduced in [25]. These
are weakly bisimilar on their winning strategies to Petri games that have a
local safety condition, with an exponential blow-up [3]. The synthesis problem is
decidable for games on acyclic Zielonka automata [15] and on Zielonka automata
with a strong synchronisation condition together with constraints on the winning
condition that allow no distinction of differently ordered executions of the same
trace [17]. We allow such distinctions, but the synchronisation condition in this
paper is similar to the one in [17] and restricts the Petri nets to those that only
allow loops including all tokens or that are acyclic.

5 Conclusions

We have presented a subclass of Petri games with an arbitrary mixture of sys-
tem and environment players for which the synthesis problem is decidable in
EXPTIME. Petri games use the tokens as carriers of information and link their
information flow to their causality. This makes Petri games a suitable formalism
to reason about distributed applications. The presented approach might seem
anti-intuitive as it does not use the causal past of the players; it uses the causal-
ity to plan ahead. This subclass allows us to model distributed systems with a
hierarchic communication structure, where every part has to check on its sub-
ordinated parts within a bound. Every part may consist of multiple processes
itself, that communicate repeatedly within a bound. For example, we can model
a control for several traffic lights geared to each other which react to the current
traffic situation. A failure of a traffic light could be modeled within the Petri
game. Another possible modeling is the communication structure of a round
robin protocol. We cannot express exact timing constraints in Petri games.

This is the first work approaching the synthesis problem for distributed sys-
tems that allows finitely many system players and finitely many environment
players while the global safety condition allows to distinguish between different
interleavings of the same trace. Also, we allow tokens to be generated or deleted,
which makes these Petri games a convenient way to model resource allocations
and situations where processes are generated or deleted. This is not possible in
the setting of Zielonka automata.

In future work, we will investigate weaker synchronisation conditions. We will
also implement the presented decision procedure and compare it to existing ones
in [9,11]. Another challenge is to extend the winning condition to reachability,
Büchi, or parity conditions. A reachability condition is harder to check as we
need to ensure that for all plays a designated marking is reached in every possible
order of firing its transitions, which is not possible to check within the presented
planning segments. In [10], it is shown that Petri games with a global reachability
condition are undecidable.
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24. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Insti-
tute of Science, Rehovot, Israel (1992)

25. Zielonka, W.: Notes in finite asynchronous automata. RAIRO - Theoret. Inform.
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