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Abstract. In this paper, we examine the synthesis problem from a finite
labeled transition system when the target is the class of weighted nets
with (possibly) inhibitor and/or reset links, or some subclasses of them.
We also discuss the intrinsic complexity of some cases; in particular we
show that although some subclasses have a polynomial synthesis, most
of the time it is NP-complete.

1 Introduction

In order to validate a system, instead of analyzing a model of the latter to check
if it satisfies a set of desired properties, the synthesis approach tries to build
a model “correct by construction” directly from those properties, and then to
implement it. In particular, if the behavior of a system is specified by a finite
labeled transition system (LTS for short), more or less efficient algorithms have
been developed to build a bounded weighted Petri net with a reachability graph
isomorphic to (or close to) the given LTS [3,23]. It is also possible to target
some subclasses of Petri nets [8], in particular choice-free nets and some of their
specializations [7,9,10,15] which present interesting features.

On the contrary, in order to extend a bit the power of the technique (it may
happen that no net of the chosen subclass has an adequate behavior, even for the
full class of weighted Petri nets), we may consider superclasses of the classic Petri
net subclasses. For instance, in [16], one of us used (weighted) reset arcs. Here,
we shall allow both weighted inhibitor and reset arcs, as well as some subcases.
Since the analysis of such systems is a bit delicate (some properties even become
undecidable [17]), this increases the interest to avoid analysis techniques in favor
of synthesis ones.

Petri net synthesis has numerous practical applications, for example, in the
field of process discovery to reconstruct a model from its execution traces [1], in
supervisory control for discrete event systems [22], and in the design and synthesis
of speed-independent circuits [13]. Usually, the synthesized system yields a struc-
tural model much smaller than the initial behavioral specification, and allows to
build concrete implementations. Moreover, it allows to extract informations about
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concurrency and distributability features from the sequential behavior given by an
LTS [5].

The paper is organized as follows. After recalling some basic notions on
labeled transition systems and Petri nets, we present an extension of the latter,
allowing general inhibitor and reset links. In the next section, we explain how to
extend the classical regional approach to synthesize such a net, or a subclass of
them, when possible, from a finite transition system. Then, we explain how to
characterize the inherent complexity of a synthesis problem, and we delineate a
new target class for which the synthesis is polynomial. In Sect. 4.4, we present
two (pure) target classes for which the synthesis is NP-complete, and in the next
section, we do the same with impure strict reset nets. The last section, as usual,
concludes and presents some possible follow up.

2 Preliminaries

Definition 1. Transition System

A (deterministic) labeled transition system (LTS, for short) A = (S,E, δ, ι) con-
sists of two disjoint sets of states S and events E, a partial transition function
δ : S × E −→ S and an initial state ι ∈ S. An event e occurs at state s, denoted
by s e , if δ(s, e) is defined. By s ¬e we denote that δ(s, e) is not defined. We
abridge δ(s, e) = s′ by s e s′ and call the latter an edge with source s and
target s′. By s e s′ ∈ A, we denote that the edge s e s′ is present in A.
A sequence s0

e1 s1, s1
e2 s2, . . . , sn−1

en sn of edges is called a (directed
labeled) path (from s0 to sn in A). A is called reachable, if there is a path
from ι to s for every state s ∈ S.
Two LTS A1 = (S1, E, δ1, ι1) and A2 = (S2, E, δ2, ι2) are isomorphic if there
is a bijection ζ : S1 → S2 such that ζ(ι1) = ι2 and δ1(s, e) = s′ if and only if
δ2(ζ(s), e) = ζ(s′) for all s, s′ ∈ S1 and all e ∈ E.
An LTS A = (S,E, δ, ι) is finite if so are S and E. �� 1

If an LTS A is not explicitly defined, then we refer to its components by S(A)
(states), E(A) (events), δA (function), ιA (initial state). In this paper, we investi-
gate whether a LTS corresponds to the reachability graph of a Petri net. There are
various ways to present a Petri net or an extension thereof; here we chose a link
oriented one, in order to make the definition of (weighted) arcs more uniform:

Definition 2. Inhibitor-Reset Petri Net: Specification and Semantics

An inhibitor-reset Petri net (IRPN, for short) N = (P, T, f,m0) consists of
finite and disjoint sets of places P and transitions T , a (total) flow function
f : P ×T → N×N×{classic, inhibitor, reset} and an initial marking m0 : P → N.
A link (m,n, type) will be said pure if m · n = 0; it is k-limited (for some
predefined k ∈ N) if m,n ≤ k; it is plain if it is 1-limited; it is strict if it is
0-limited1.
1 I.e., m = n = 0: strict inhibitor links correspond to usual inhibitor arcs found in
the literature [18,21]; strict reset links correspond to the kind of reset arcs some-
times found in the literature [2]; strict classic links correspond to the fact that some
transitions are not connected to some places.
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A transition t ∈ T can fire or occur in a marking m : P → N, denoted by
m t , and this firing leads to the marking m′, denoted by m t m′, if, for all
places p ∈ P , f(p, t) = (m,n, type) and

1. if type = classic, then m(p) ≥ m and m′(p) = m(p) − m + n;
2. if type = inhibitor, then m(p) ≤ m and m′(p) = n;
3. if type = reset, then m(p) ≥ m and m′(p) = n.

This notation extends to sequences w ∈ T ∗ and the reachability set RS(N) =
{m | ∃w ∈ T ∗ : m0

w m} contains all the reachable markings of N . The reacha-
bility graph of N is the LTS AN = (RS(N), T, δ,m0), where, for every reachable

marking m of N and transition t ∈ T with m t m′, the transition function δ of
AN is defined by δ(m, t) = m′. Two IRPNs are equivalent if their reachability
graphs are isomorphic.

A place in N is said k-safe (for some predefined k ∈ N) if, for each reachable
marking m, m(p) ≤ k; it is safe if it is 1-safe; it is bounded if it is k-safe for
some k not defined a priori. An IRPN N is k-safe|safe|bounded if so are all its
places. �� 2

A classic (and easy) result for classic Petri nets immediately extends to IRPNs:

Corollary 1. Bounded system

An IRPN N is bounded if and only if its reachability graph AN is finite.

�� 1
Many subclasses of nets may be defined from this definition. For instance,

Definition 3. Subclasses of Nets

An IRPN N = (P, T, f,m0) is called

– a strict inhibitor reset (Petri) net, denoted by SIRPN, if each link is either
classic or strict reset or strict inhibitor;

– a (strict) inhibitor (Petri) net, denoted by (S)IPN, if each link is either classic
or (strict) inhibitor;

– a (strict) reset (Petri) net, denoted by (S)RPN, if each link is either classic
or (strict) reset;

– a (Petri) net, denoted by PN, if all the links are classic;
– pure if so are all the links (note that strict inhibitor and reset links are

automatically pure);
– plain if so are all the links (note that strict inhibitor and reset links are

automatically plain). �� 3

Graphically, the various kinds of links are represented as illustrated in Fig. 1,
with the convention that arcs with zero weight are omitted.
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Fig. 1. The three kinds of links between a place p and a transition t (arcs with a null
weight are usually omitted in figures).

3 Synthesis

Instead of analyzing a system and (try to) go from a system specification to its
behavior (for instance given by the reachability graph), we may go the other way
round:

Definition 4. Synthesis

Let A = (S,E, δ, ι) be an LTS. An IRPN N synthesizes A if its reachability
graph is isomorphic to A. We then say that N solves A. �� 4

Synthesis is not exactly the symmetric of analysis, however. Indeed, while a
system always has a unique behavior (given by its reachability graph), it may
happen that a synthesis fails (then it is interesting to exhibit one or more sources
of the failure), and if it is possible, there are infinitely many (behaviorally equiv-
alent) solutions, sometimes with very different structures.

In the following, we shall always assume that the transition system A we
start from is finite, so that it may be given explicitly and drawn easily (if not
too large), and its synthesis solutions are bounded (see Corollary 1).

Classically [3], synthesis algorithms are related to the construction of regions,
that we shall here adapt to our context:

Definition 5. IRPN-Region

Let A = (S,E, δ, ι) be a LTS. A pair of mappings R = (sup, sig) that con-
sists of the support sup : S → N and the signature sig : E → N × N ×
{classic, inhibitor, reset} is called a (IRPN-)region of A if, when δ(s, e) = s′, then
the following conditions are satisfied:

1. if sig(e) = (m,n, classic), then sup(s) ≥ m and sup(s′) = sup(s) − m + n;
2. if sig(e) = (m,n, inhibitor), then sup(s) ≤ m and sup(s′) = n;
3. if sig(e) = (m,n, reset), then sup(s) ≥ m and sup(s′) = n. �� 5

Remark 1. Regions and Places

Intuitively, a region corresponds to a place in an IRPN solving A: sup yields the
markings of that place corresponding to the various states of A (hence the initial
marking is provided by sup(ι)), and sig yields the links between that place and
the various transitions (E(A) must be the same as the set T of transitions of
any solution of A).

For convenience, for all e ∈ E(A), if sig(e) = (m,n, type), then we define
sig−(e) = m, sig+(e) = n and sigt = type. �� 1
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Remark 2. Construction of the Support

If R = (sup, sig) is a region of an LTS A = (S,E, δ, ι), then we can reconstruct
R already from sup(ι) and sig, since every state s of A is reachable by a directed
labeled path from ι: If s0

e1 . . . en sn with s0 = ι and sn = s, then, for all
i ∈ {0, . . . , n − 1}, we get inductively sup(si+1) from sup(si) and sig(ei+1).
Hence, for the sake of simplicity, we shall often present a region R = (sup, sig)
only by sup(ι) and sig (it is necessary however to check that two different paths
leading from ι to the same state s yield the same support sup(s), and that
the latter is always nonnegative). For an even more compact representation, we
shall summarize events with the same signature as follows: ER

m,n = {e ∈ E |
sig(e) = (m,n, classic)}, and ER

inhibitor = {e ∈ E | sig(e) = (0, 0, inhibitor)}, and
ER
reset = {e ∈ E | sig(e) = (0, 0, reset)}. �� 2

Definition 6. Synthesized Net

If A = (S,E, δ, ι) is an LTS and R a set of regions of A, then the synthesized net
NR

A is defined by SR
A = (R, E, f,m0) such that f(e,R) = sig(e), and m0(R) =

sup(ι) for all R = (sup, sig) ∈ R. �� 6

Definition 7. State Separation Property

Two distinct states s, s′ ∈ S define the state separation atom, SSA for short,
(s, s′) of an LTS A = (S,E, δ, ι). A region R = (sup, sig) of A solves (s, s′)
(equivalently: separates s and s′) if sup(s) 	= sup(s′). A state s ∈ S is called
solvable if, for every s′ ∈ S \ {s}, there is a region of A that solves the SSA
(s, s′). If every state of A is solvable, then A has the state separation property,
SSP for short. �� 7

Definition 8. Event State Separation Property

An event e ∈ E and a state s ∈ S of an LTS A = (S,E, δ, ι) such that s ¬e

define the event state separation atom, ESSA for short, (e, s) of A. A region R =
(sup, sig) of A solves (e, s) (equivalently: separates e from s) if sig−(e) > sup(s)
when sigt(e) = classic or reset and sig−(e) < sup(s) when sigt(e) = inhibitor.
An event e ∈ E is called solvable if, for every state s ∈ S such that s ¬e , there
is a region of A that solves the ESSA (e, s). If all events of A are solvable, then
A has the event state separation property, ESSP for short. �� 8

Definition 9. Admissible Set

Let A = (S,E, δ, ι) be an LTS. A set R of regions of A is called an admissible
set if it witnesses the SSP and the ESSP of A, i. e., for every SSA, and for every
ESSA of A, there is a region in R that solves it. �� 9

The fundamental characterization [3,14] of synthesizability for classic Petri
nets extends immediately to IRPNs:

Theorem 1. Solvability of an LTS

Let A = (S,E, δ, ι) be an LTS. A is solvable by an IRPN if and only if there
is an admissible set R of (IRPN-)regions for A, and a possible solution is then
N = NR

A . �� 1
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Above, we assumed that the target of a synthesis is the whole set of IRPNs,
but it is easy to adapt the discussion to the case where the target is one of the
subclasses mentioned in the previous section (or an intersection of them). One
simply has to add some constraints to the definition of regions to be considered
for the considered LTS:

Definition 10. Subclasses of Regions

A region R = (sup, sig) of an LTS A = (S,E, δ, ι) is called

– an SIRPN -region if sig(e) = (m,n, type) and type ∈ {inhibitor, reset} imply
m = n = 0 for all e ∈ E;

– an (S)IPN -region if sigt(e) ∈ {classic, inhibitor} for all e ∈ E (and sig(e) =
(m,n, inhibitor) implies m = n = 0 for all e ∈ E);

– an (S)RPN -region if sigt(e) ∈ {classic, reset} for all e ∈ E (and sig(e) =
(m,n, reset) implies m = n = 0 for all e ∈ E);

– a PN -region if sigt(e) = classic for all e ∈ E;
– a k-safe region, if sup(s) ≤ k for each s ∈ S (with k = 1 for safeness);
– a pure region, if sig−(e) = 0 or sig+(e) = 0 for each e ∈ E;
– a k-limited region if sig−(e), sig+(e) ≤ k for each e ∈ E (with k = 1 for

plainness),

where the meaning of the acronyms correspond to Definition 3. �� 10

Then, if we want to restrict our attention to the synthesis of, for example,
plain (S)RPNs, we have to look for an admissible set of plain (S)RPN-regions,
according to Theorem 1. In the obvious way, we use the corresponding restricted
regions for the other net classes (and combinations thereof).

All those separation problems (with possibly additional constraints) may
be solved by existing (integer) linear programming tools or SMT-based model
checking, but it is necessary to first choose adequately the type of each link. Note
however that it is not necessary to solve each separation problem from scratch:
we may first check if one of the regions computed previously does not already
solve the new separation problem we consider. The result will of course rely on
the order in which the various separation problems are considered (besides the
fact that each separation problem may sometimes have many possible solutions).

It is possible to also search for solutions with a minimal number of
places/regions.

4 Complexity

4.1 Membership in NP

Concerning the inherent complexity of the IRPN synthesis, we may first observe
that it is in NP:
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Theorem 2. NP-synthesis

Let A = (S,E, δ, ι) be an LTS. Its IRPN solvability is in NP.

Proof: The number of ESSAs and SSAs to be solved is (quadratic, hence) poly-
nomial in the size of A. For each of them, a Turing machine can guess non-
deterministically the type of the signature of the events, for instance: ei1 , . . . , eip

are of type classic, ej1 , . . . , ejq
are of type inhibitor, and e�1 , . . . , e�r

are of type
reset. Then, finding an adequate region amounts to solve a system (of polynomial
size) of linear constraints in the integer domain, as follows:

There are |S|+2 · |E| variables xi, where sup(si) = xi for all i ∈ {1, . . . , |S|},
while sig−(ei) = x|S|+i, and sig+(ei) = x|S|+|E|+i for all i ∈ {1, . . . , |E|}; the
constraints are then

1. For all i ∈ {1, . . . , |S| + 2 · |E|}: add xi ≥ 0 (all variables are in N)
2. For all n ∈ {1, . . . , p}, and all i, j ∈ {1, . . . , |S|}, if si

ein sj ∈ A, then add
(a) xi − x|S|+in

≥ 0, which ensures sup(si) ≥ sig−(ein
), and

(b) xj − xi + x|S|+in
− x|S|+|E|+in

= 0, which ensures sup(sj) = sup(si) −
sig−(ein

) + sig+(ein
).

3. For all n ∈ {1, . . . , q}, and all i, j ∈ {1, . . . , |S|}, if si
ejn sj ∈ A, then add

(a) xi − x|S|+jn
≤ 0, which this ensures sup(si) ≤ sig−(ejn

), and
(b) xj − x|S|+|E|+jn

= 0, this ensures sup(sj) = sig+(ejn
).

4. For all n ∈ {1, . . . , r}, and all i, j ∈ {1, . . . , |S|}, if si
e�n sj ∈ A, then add

(a) xi − x|S|+�n
≥ 0, which ensures sup(si) ≥ sig−(e�n

), and
(b) xj − x|S|+|E|+�n

= 0, this ensures sup(sj) = sig+(e�n
).

5. In order to solve α = (sf , eg), add xf −x|S|+g ≤ −1, which ensures sup(sf ) <
sig−(eg), if eg corresponds to the types classic or reset, and x|S|+g −xf ≤ −1,
which ensures sup(sf ) > sig−(eg), if eg corresponds to inhibitor.

6. In order to solve α = (si, sj), create two systems, one where we add xi −xj ≤
−1 and one where we add xj − xi ≤ −1, which ensures sup(si) 	= sup(sj).

7. Other constraints may be added to restrict the target class; for instance, for
all i ∈ {1, . . . , |S|}: add xi ≤ k if we aim at synthesizing a k-safe net; for all
i ∈ {1, . . . , |E|}: add x|S|+i ≤ k and x|S|+|E|+i ≤ k if we aim at synthesizing
a k-limited net.

Solving such a system may be assimilated to an integer linear programming
problem (without an economic function to optimize, or with a null economic
function) (ILP for short), and it is known that ILP belongs to NP [20]. �� 2

4.2 Polynomial Cases

In the procedure described in the previous section to solve a separation prop-
erty, we first have to fix the type of link for each transition: this is generally
exponential, hence we may suspect that (in most cases) the synthesis problem
is NP-complete [19]. There are cases however where it is polynomial in the size
of the transition system to be solved. For instance, this was shown [3] when the
target is the class of classic Petri nets without additional constraints (essentially,
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in that case, there is no choice to make for the link types and one has to solve a
system of homogeneous linear constraints of linear size; one can solve it polyno-
mially in the rational range and then multiply all the found variables by some
common factor to get an integer solution, if there is one). The same is true when
the target is the class of pure classic Petri nets without additional constraints [4],
using slightly different regions.

But there are other interesting cases; for instance we shall now show that
the synthesis remains polynomial when the target is the class of strict inhibitor
nets (without additional constraints). To do that, we shall first introduce com-
plementary places.

Lemma 1. Complementary Place

Let N = (P, T, f,m0) be an IRPN and p ∈ P a place in it bounded by
some value k ∈ N (i.e., for any reachable marking m, m(p) ≤ k). Let also
l = maxt∈T {n | f(p, t)) = (m,n, classic)}, h = maxt∈T {m,n | f(p, t)) =
(m,n, type) and type 	= classic} and μ = max{k+l, h}. Let ̂N be the net obtained
from N by introducing a fresh place p̂ (the complementary of p) with initial mark-
ing μ − m0(p) and such that, for each t ∈ T , the link between p̂ and t is built
as illustrated in Fig. 2. Then ̂N and N are behaviorally equivalent and, for each
marking m̂ reached in ̂N , m̂(p) + m̂(p̂) = μ (and is thus constant).
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p p
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n n
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p p
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Fig. 2. Construction of a complementary place.

Proof: Since ̂N has one place more than N , and the initial marking of ̂N is the
same as N when restricted to P , any evolution of ̂N is also one of N , and the
restriction to P of the reached marking in ̂N is the marking reached with the
same evolution in N .

If m is a marking reachable in N , from the choice of μ we have μ−m(p) ≥ 0,
and if m̂ is the marking in ̂N obtained by adding to m that m̂(p̂) = μ − m(p),
it may be observed that for any transition t ∈ T , if t is enabled by m in N ,
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then it is also enabled by m̂ in ̂N . Indeed, if m(p) ≥ m, then μ − m(p) ≤ μ − m
(reset case), if m(p) ≤ m, then μ −m(p) ≥ μ − m (inhibitor case), and from the
choice of μ again μ − m(p) ≥ n (classic case). In any case, from the choice of

μ again, μ − m ≥ 0 and μ − n ≥ 0 when they are used. Moreover, if m t m′

in N , and m̂ t m̂′ in ̂N , it is easy to see that the restriction of m̂′ to P is m′,
and m̂′(p̂) = μ − m′(p). Since initially (by construction), m̂0(p̂) = μ − m0(p), by
induction we get that the evolutions are the same in N and ̂N . Moreover, if m is
reached after some evolution in N , the marking m̂ reached in ̂N after the same
evolution only differs from m by m̂(p̂) = μ − m(p).

Finally, from this property, if two evolutions lead to m1 and m2 in N , and
the same evolutions lead to m̂1 and m̂2 in ̂N , then m1 = m2 if and only if
m̂1 = m̂2. Consequently, we do not only have the same evolutions, but also the
same reachability graph (up to isomorphism). �� 1

This exhibits an interesting relationship between inhibitor links and reset
ones, but there is also a case where we have an even more interesting relationship
between inhibitor links and classic ones.

Lemma 2. Complementary Place and Special Inhibitor Links

In the construction of Lemma 1, if the link between p and t in N is in
{0} × N × {inhibitor}, then in ̂N we may replace the links between t and {p, p̂}
by classic ones, as illustrated in Fig. 3.

p
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n

=

p p

t

n µ

µ n

Fig. 3. Construction of a complementary place for special inhibitor links.

Proof: From the construction (and the analysis in the proof of Lemma 1), if m̂

is reachable in ̂N and m̂ t , since m̂(p)+ m̂(p̂) = μ, we must have m̂(p̂) = μ and
m̂(p) = m(p) = 0, which indeed allows to fire t from m in N . The relationship
between the resulting markings in both N and ̂N is as before. �� 2

Corollary 2. Bounded IRPNs With Only Classic and Strongly

Guarded Inhibitor Links are Behaviorally Equivalent to Classic

Nets

If a bounded IRPN only has links in N×N× {classic} ∪ {0} ×N× {inhibitor}
(i.e., classic or strongly guarded inhibitor links, since m determines how the
transition is guarded), then it is behaviorally equivalent to a (bounded) net with
only classic links, i.e., a classic Petri net.

Proof: One simply has to apply Lemmata 1 and 2 to each place (or only to the
ones having a non-classic link). �� 2
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Corollary 3. Bounded SIPNs

Any bounded SIPN is behaviorally equivalent to a bounded net with only clas-
sic links, i.e., a classic Petri net. �� 3

Theorem 3. Synthesis of SIPNs

The synthesis problem with the class of SIPNs as target is polynomial.

Proof: Since we only consider finite transition systems, when they have solu-
tions, they are bounded. From Lemma 2, introducing strict inhibitor links does
not extend the expressive power of classical links and we only have to search for
solutions in the class of (bounded) weighted Petri nets, for which we mentioned
before that the problem is polynomial. �� 3

Of course, this result relies on the fact that we consider general weighted Petri
nets as target. It may be observed that Lemma 1 and its corollaries are not valid
if we require that nets are pure or plain or k-safe. This certainly does not mean
that there are no other efficient solvable cases. However, there are important
subclasses of IRPNs for which we know they do not have efficient synthesis
procedures (unless P = NP), such as (pure) safe SIPN, (pure) safe SRPN, safe
SIRPN [24], and (pure) k-safe PN, for any fixed k ∈ N [25]. In the following
sections, we shall exhibit other NP-complete subclasses.

4.3 General Approach of the NP-completeness Proofs

In Sects. 4.4, and 4.5, we shall show that the synthesis problem for several sub-
classes of IRPNs is NP-complete. Our proofs for NP-completeness follow a com-
mon approach based on (polynomial) reductions of the problem 3Sat, which has
been shown to be NP-complete in [19]:

3Sat

Input: A pair (U,M) with a set of 3-clauses M = {M0, . . . , Mm−1} on
a finite set U of variables.

Question: Is there an assignment b : U → {0, 1} that satisfies all the clauses
in M?

It is based on the notion of clause, i.e., a set of literals, where a literal is
either a Boolean variable or its negation; a clause is interpreted as a disjunction
of its items; and a set of clauses is interpreted as their conjunction. A 3-clause is
a clause of size 3 and, if X ∈ U is a variable, then we denote its negation by X.

Example 1. The instance (U,M) with variables U = {X0,X1,X2,X3}, and
clauses M = {M0,M1,M2} such that M0 = {X0,X1,X2}, M1 = {X0,X1,X3},
and M2 = {X1,X2,X3} allows a positive decision, since b(X0) = b(X2) = 0, and
b(X1) = b(X3) = 1 defines a truth assignment for M .

In the following, unless explicitly stated otherwise, (U,M) is an arbitrary
but fixed input of 3Sat, where U = {X0, . . . , Xn−1}, M = {M0, . . . , Mm−1}
and Mi = {Li0 , Li1 , Li2} for all i ∈ {0, . . . , m− 1}. By L =

⋃m−1
i=0 {Li0 , Li1 , Li2},
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we refer to the set of all literals of M . Moreover, by a little abuse of notation, for
every assignment b for (U,M), we let b(Xi) = 1− b(Xi) for all i ∈ {0, . . . , n−1}.
Finally, we assume without loss of generality that each variable and its negation
occur at least once, but not in the same clause.

The common principle of the proofs for the NP-hardness can be summarized
as follows: We reduce (U,M) to an LTS A, of size polynomial in n and m, which
is the composition of several gadgets, and represents, for every i ∈ {0, . . . , m−1},
the clause Mi by a directed path on which the literals of Mi are events. The LTS
A has an ESSA α such that if R = (sup, sig) is a region that solves α, and goes
along with the addressed net class, then we can extract a truth assignment for
(U,M) from the signature sig of the literal events of A. Hence, if there is an
admissible set R for A, implying that R contains a region that solves α, then
there is an assignment for U that satisfies all clauses of M . Conversely, if there
is a truth assignment for (U,M), then there is an admissible set of regions for
A; in general, we shall construct adequate regions Ri from the construction of
supi and sigi. Hence, A is a yes-instance if and only if (U,M) is a yes-instance.

4.4 The Synthesis Complexity of Several Plain Subclasses of SIRPN

In this section, we shall prove the following theorem:

Theorem 4. Plain Subclasses of IRPN: NP-complete Cases

Deciding, for a given LTS A, whether there is

1. a pure and plain PN, or a pure and plain SRPN, or
2. a pure and plain SIPN, or a pure and plain SIRPN, or
3. a plain PN, or a plain SIPN, or a plain SRPN, or a plain SIRPN

whose reachability graph is isomorphic to A is NP-complete. �� 4
Theorem 2 showed that all these synthesis problems are in NP. Hence, it

remains to prove the hardness part. For that, we follow our general approach.
However, the nets of Item 1, and the ones from Item 2, and 3 need a slightly (but
crucially) different construction, which result in LTS A1, and A2, respectively.
These LTS are defined as follows:

First of all, the LTS A1 has the edges h0
k h2 and h0

u h1, where h0 is the

initial state of A1. On the other hand, the LTS A2 has the edge h0
k h1, and

again h0 is the initial state. Moreover, for every i ∈ {0, . . . , m − 1}, A1, and A2

have the following directed path that represents the clause Mi = {Li0 , Li1 , Li2}
by using its literals as events:

h1 ti,0 ti,1 ti,2 ti,3 ti,4 ti,5
ai k Li0 Li1 Li2 k

Finally, for every i ∈ {0, . . . , n−1}, the LTSs A1, and A2 implement the following
gadget Gi that uses the variable Xi and its negation Xi as events:

Gi = h0 gi,0

gi,1

gi,2
bi

Xi Xi

ci
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h0

h2

h1

t0,0 t0,1 t0,2 t0,3 t0,4 t0,5

t1,0 t1,1 t1,2 t1,3 t1,4 t1,5

t2,0 t2,1 t2,2 t2,3 t2,4 t2,5

g0,0

g0,1

g0,2 g1,0

g1,1

g1,2

g2,0

g2,1

g2,2 g3,0

g3,1

g3,2

k

u

k

a0

k X0 X1 X2 k

a1 k X0 X1 X3 k

a2

k X1 X2 X3 k

b0

X0 X0

c0

b1

X1 X1

c1

b2

X2 X2

c2

b3

X3 X3

c3

Fig. 4. The reductions based on Example 1: the solid and dashed lines define A1, and
the solid lines and the dotted line define A2.

In the following, as long as not explicitly stated otherwise, by S1 and E1

(S2 and E2), we refer to the set of states and the set of events of A1 (of A2),
respectively. If we apply the reduction to the input of Example 1, then we obtain
the LTSs A1, and A2 of Fig. 4.

Lemma 3. Plain Solvability of ESSA (k, h1) Implies Truth Assign-

ment

If the ESSA α = (k, h1) is solvable (1) by a pure and plain SRPN-region
of A1, respectively (2) by a plain SIRPN-region of A2, then there is a truth
assignment for (U,M).

Proof: Let R = (sup, sig) be a region of A1 that solves α and such that, for all
e ∈ E1, sigt(e) ∈ {classic, reset} and

– if sig(e) = (x, y, classic), then x = 0 or y = 0, and x, y ∈ {0, 1},
– if sig(e) = (x, y, reset), then x = 0 = y,

Since R solves α, we must have sig(k) = (1, 0, classic) and sup(h1) = 0.
Similarly, if R = (sup, sig) is a plain SIRPN-region of A2 that solves α,

then sig(k) 	∈ {(0, 0, reset), (0, 0, classic), (0, 1, classic)}; moreover, since h0
k h1,

sig(k) 	∈ {(0, 0, inhibitor), (1, 1, classic)} so that again sig(k) = (1, 0, classic) and
sup(h1) = 0.

Let i ∈ {0, . . . , m − 1}. Since k occurs at ti,0 and at ti,4, and sig(k) =
(1, 0, classic), we have that sup(ti,0) ≥ 1 ≤ sup(ti,4). Moreover, since sup(h1) =
0, we get that sig(ai) = (0, 1, classic), sup(ti,0) = 1 and sup(ti,1) = 0. Hence,
there is a j ∈ {0, 1, 2} such that the event Lij

of {Li0 , Li1 , Li2} satisfies
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sig(Lij
) = (0, 1, classic). We argue that this implies2 sig(Lij

) 	= (0, 1, classic).
Indeed, let � ∈ {0, . . . , m − 1} be such that Lij

∈ {X�,X�}. If sig(X�) =
sig(X�) = (0, 1, classic), then we have sup(g�,2) = sup(g�,0) + 2. This implies
sig(c�) = (x, y, classic) with y ≥ 2, which contradicts the plainness of R. Hence,
sig(Lij

) 	= (0, 1, classic).
Since i was arbitrary, we obtain the following observation: For every i ∈

{0, . . . , m− 1}, there is an event e ∈ Mi such that sig(e) = (0, 1, classic); and for
each event e ∈ Mi, if sig(e) = (0, 1, classic), then sig(e) 	= (0, 1, classic).

Let b : U → {0, 1} be the (well-defined) assignment for U, which, for all X ∈ U,
is defined as follows: b(X) = 1 if sig(X) = (0, 1, classic), and 0 otherwise.

Needless to say that b is a well-defined assignment, that is, if b(X) = x and
b(X) = y, then x = y. Similarly, if b(X) = x, then b(X) = 1 − x, since both
cases are mutually exclusive.

We argue that b satisfies every clause: Let i ∈ {0, . . . , m−1}. As argued above,
there is j ∈ {0, 1, 2} such that the literal Lij

∈ Mi has signature sig(Lij
) =

(0, 1, classic). If Lij
= X for some variable X ∈ U, then b(X) = 1 and thus

Mi is satisfied. Otherwise, Lij
= X for some variable X ∈ U, which implies

sig(X) 	= (0, 1, classic) and thus b(X) = 0 according to the definition of b. This,
however, implies b(X) = 1 so that Mi is satisfied. By the arbitrariness of i, we
have that b is a truth assignment for (U,M). �� 3

By Lemma 3, the existence of an admissible set implies a truth assignment
for (U,M), since such a set implies the solvability of (k, h1). Conversely, we
have to prove that, if there is a truth assignment for (U,M), A1 and A2 both
allow admissible sets of regions, with signatures corresponding to the wanted
target net class. In order to simplify the presentation, we shall only give the
support of the initial state and the signatures which are not (0, 0, classic), where
we collect events by sets ER

m,n, ER
inhibitor and ER

reset following Remark 2. This will
allow to construct the full region and to check that the construction is sound.
Illustrations of our constructions may be found in the appendices.

Fact 1. All SSAs of A1 are solvable by pure and plain PN-regions.
Proof:
– If sup0(h0) = 0 and ER0

0,1 = {e ∈ E1 | h0
e }, then R0 solves h0.

– If sup1(h0) = 0, ER1
0,1 = {u} and ER1

1,0 = {a0, . . . , am−1}, then R1 solves h1.
Let i ∈ {0, . . . , n − 1}.

– If sup2(h0) = 0 and ER2
0,1 = {bi}, then R2 solves gi,0, gi,1 and gi,2.

– If sup3(h0) = 0 and ER3
0,1 = {ci,Xi}, then R3 solves (gi,0, gi,1) and (gi,0, gi,2).

– If sup4(h0) = 0 and ER4
0,1 = {ci,Xi} then R4 solves (gi,1, gi,2).

As a consequence, since i was arbitrary, all the gi,j ’s are solvable.
Let i ∈ {0, . . . , m − 1}.

– If sup5(h0) = 0 and ER5
0,1 = {ai}, then R5 solves (t, s) for all t ∈ S(Ti) and all

s ∈ S \ S(Ti).

2 As usual, if Lij = X�, we state that Lij = X�.
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– Let G�0 , G�1 and G�2 be the gadgets containing the events Li0 , Li1 and Li2 ,
respectively. If sup6(h0) = 0 and ER6

0,1 = {k} ∪ {Li0 , Li1 , Li2} ∪ {c�0 , c�1 , c�2},
then R6 solves (s, s′) for all s 	= s′ ∈ {ti,0, . . . , ti,5} (recall that no clause con-
tains both a literal and its negation). As a consequence, since i was arbitrary,
all the ti,j ’s are solvable.

Finally, since, for all s ∈ S \{h2}, we have argued that s is solvable, it follows
that h2 is solvable as well. Altogether, we have witnessed the SSP of A1. �� 1

Fact 2. If there is a truth assignment for (U,M), then all ESSAs of A1 are
solvable by pure and plain PN-regions.

Proof: We start with the ai’s: If sup0(h0) = 0, ER0
0,1 = {u} and ER0

1,0 =
{a0, . . . , am−1}, then R0 solves all the ai’s.

We proceed with the ci’s: Let i ∈ {0, . . . , n−1} be arbitrary but fixed and let
i0, . . . , i� ∈ {0, . . . , m−1} be the indices such that Xi ∈ Mij

for all j ∈ {0, . . . , �}.

– If sup1(h0) = 0, ER1
0,1 = {bi, ai0 , . . . , ai�

} and ER1
1,0 = {Xi, ci}, then R1 solves

(ci, s) for all necessary states s ∈ S \ ⋃�
j=0 S(Tij

).
– If sup2(h0) = 0, ER2

0,1 = {bi} ∪ {aj | j ∈ {0, . . . , m − 1} \ {i0, . . . , i�}} and
ER2
1,0 = {Xi, ci}, then R2 solves (ci, s) for the remaining states s. Since i was

arbitrary, all the ci’s are solvable.

We proceed with k and u: Let b be a valid truth assignment for (U,M) and
let i ∈ {0, . . . , m − 1}.

– If sup3(h0) = 1, ER3
1,0 = {u, k} and ER3

0,1 = {a0, . . . , am−1} ∪ {c0, . . . , cn−1} ∪
{Xi,Xj | b(Xi) = 1, b(Xj) = 0, i, j ∈ {0, . . . , n − 1}}, then R3 solves (k, s)
and (u, s) for all s ∈ {h2, h1}.

– If sup4(h0) = 1, ER4
1,0 = {k} ∪ {b0, . . . , bn−1} and ER4

0,1 = {u}, then R4 solves
(k, s) for all s ∈ ⋃n−1

j=0 {gj,0, gj,1, gj,2}.
– If sup5(h0) = 1, ER5

1,0 = {k} and ER5
0,1 = {ci2 , Li2} ∪ ({a0, . . . , am−1} \ {ai}),

then R5 solves (k, s) for all s ∈ {ti,1, ti,2, ti,3, ti,5}.
– If sup6(h0) = 1 and ER6

1,0 = {u} ∪ {b0, . . . , bn−1}, then R6 solves (u, s) for all
s ∈ S \ {h2, h1}.

Since i was arbitrary, this completes the separability of k and u.
We proceed with the variable events: Let i ∈ {0, . . . , n − 1} be arbitrary but

fixed and let i0, . . . , i� ∈ {0, . . . , m− 1} be the indices such that Xi ∈ Mij
for all

j ∈ {0, . . . , �}.

– If sup7(h0) = 0, ER7
1,0 = {Xi, ci} and ER7

0,1 = {bi} ∪ {ai0 , . . . , ai�
}, then R7

solves (Xi, s) for all necessary states s ∈ S \ ⋃�
j=0{tij ,0, . . . , tij ,4}. (Note that

(Xi, tj,5) is solved for all j ∈ {0, . . . , m − 1}).
– If we exchange Xi with Xi (according to R7) and consider i0, . . . , i� ∈

{0, . . . , m − 1} to be the indices such that Xi ∈ Mij
for all j ∈ {0, . . . , �},

then the resulting region solves (Xi, s) for all necessary states s ∈ S \
⋃�

j=0{tij ,0, . . . , tij ,4} except s = gi,0.
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– If sup8(h0) = 0, ER8
1,0 = {Xi} and ER8

0,1 = {Xi} ∪ {a0, . . . , am−1}, then R8

solves (Xi, gi,0).

It remains to argue that the literals are separable from the ti,j ’s, when j 	= 5.
Let i ∈ {0, . . . , m − 1}.

– If sup9(h0) = 0, ER9
1,0 = {Li0 , ci0} and ER9

0,1 = {bi0 , k}, then R9 solves (Li0 , s)
for all s ∈ {ti,0, ti,2, ti,3, ti,4}.

– If sup10(h0) = 0, ER10
1,0 = {Li1 , ci1} and ER10

0,1 = {ci0}∪{bi1}∪{a0, . . . , am−1}\
{ai}, then R10 solves (Li1 , s) for all s ∈ {ti,0, ti,1, ti,3, ti,4}. Similarly, one
shows that (Li2 , s) can be solved for all s ∈ {ti,0, ti,1, ti,2, ti,4}.

Since i was arbitrary, all the literal events are solvable. �� 2
Altogether, we get the following lemma:

Lemma 4. Truth Assignment Implies Suitable Admissible Set for A1

If there is a truth assignment for (U,M), then A1 has an admissible set of
pure and plain PN-regions.

Let us now consider the synthesizability of A2. Similarly to the arguments
for A1, there is a set of pure and plain PN-regions that solve all the SSAs of A2.
Hence, we restrict ourselves to the solvability of the ESSAs.

The following fact deals with ESSAs, whose solvability needs possibly impure
or inhibitor links:

Fact 3. There is a pure and plain SIPN-region, as well as an impure and plain
PN-region, of A2 that solves (k, s) for all s ∈ ⋃n−1

i=0 S(Gi).

Proof: If sup0(h0) = 0, ER0
inhibitor = {k} and ER0

0,1 = {b0, . . . , bm−1}, then R0 is a
suitable pure and plain SIPN-region.
If sup1(h0) = 1, ER1

1,1 = {k} and ER1
1,0 = {b0, . . . , bm−1}, then R1 is a suitable

impure and plain PN-region. �� 3

Fact 4. If there is a truth assignment b for (U,M), then there is an admissible
set of pure and plain PN-regions solving the ESSAs of A2 not addressed by Fact 3.

Proof: Recall that L is the set of the literals of M and b is extended to L, i. e.,
b(X) = 1 − b(X) for all X ∈ U.

We start with k:

– If sup0(h0) = 1, ER0
1,0 = {k} ∪ {b0, . . . , bn−1} and ER0

0,1 = {L ∈ L | b(L) =
1} ∪ {a0, . . . , am−1} ∪ {c0, . . . , cn−1}, then R0 solves (k, h1).

Let i ∈ {0, . . . , m − 1}.

– If sup1(h0) = 2, ER1
1,0 = {k} and ER1

0,1 = {Li2 , ci2} ∪ ({a0, . . . , am−1} \ {ai}),
then R1 solves (k, s) for all s ∈ {ti,1, ti,2, ti,3, ti,5}.

Since i was arbitrary, the claim follows for k.
We proceed with the ai’s and bi’s: Let i ∈ {0, . . . , m− 1} and j ∈ {0, . . . , n−

1}.
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– If sup2(h0) = 1 and ER2
1,0 = {a0, . . . , am−1} ∪ {b0, . . . , bn−1}, then R2 solves

(ai, s) and (bj , s) for all s ∈ S \ {h0, h1}.
– If sup3(h0) = 0, ER3

1,0 = {a0, . . . , am−1} and ER3
0,1 = {k}, then R3 solves (ai, h0).

– The region R0 of this proof also solves (bi, h1) for all i ∈ {0, . . . , n− 1}. Since
i and j were arbitrary, this proves the claim for the ai’s and bi’s.

We proceed with the ci’s: Let i ∈ {0, . . . , n − 1}.

– If sup4(h0) = 0, ER4
1,0 = {ci,Xi} and ER4

0,1 = {bi} ∪ {aj | j ∈ {0, . . . , m − 1} :
Xi ∈ Mj}, then R4 solves (ci, s) for all s ∈ S \ ({tj,0, . . . , tj,5 | j ∈ {0, . . . , m−
1} : Xi ∈ Mj} ∪ {gi,0}).

– If sup5(h0) = 0, ER5
1,0 = {ci,Xi} and ER5

0,1 = {bi} ∪ {aj | j ∈ {0, . . . , m − 1} :
Xi ∈ Mj}, then, for all j ∈ {0, . . . , m − 1}, R5 solves (ci, s) for all s ∈ S(Tj)
if Xi ∈ Mj . Since i was arbitrary, this proves the claim for the ci’s.

It remains to consider the literal events: Let i ∈ {0, . . . , n − 1} be arbitrary
but fixed and let i0, . . . , i� be the indices such that Xi ∈ Mij

for all j ∈ {0, . . . , �}.

– If sup6(h0) = 0, ER6
1,0 = {ci,Xi} and ER6

0,1 = {ai0 , . . . , ai�
}, then R6 solves

(Xi, s) for all s ∈ S \ (
⋃�

j=0{tj,0, . . . , tj,3}. (We stress that (Xi, tj,4) and
(Xi, tj,5) are solved for every j ∈ {0, . . . , m − 1}.)

Similarly, if we interchange Xi with Xi and let i0, . . . , i� select the clauses that
contain Xi, then the resulting region solves (Xi, s) for all s ∈ S \ ({gi,0} ∪
⋃�

j=0{tj,0, . . . , tj,3}.

– If sup7(h0) = 0, ER7
1,0 = {Xi} and ER7

0,1 = {Xi} ∪ {aj | j ∈ {0, . . . , m − 1} :
Xi ∈ Mj}, then R7 solves (Xi, gi,0).

It remains to solve the literal events within their gadgets:

– If sup8(h0) = 0, ER8
1,0 = {Li0 , ai, ci0} and ER8

0,1 = {k, bi0}, then R8 solves
(Li0 , s) for all s ∈ {ti,0, ti,2, ti,3}.

– If sup9(h0) = 1, ER9
1,0 = {Li1 , ai, ci1} and ER9

0,1 = {Li0 , ci0}, then R9 solves
(Li1 , s) for all s ∈ {ti,0, ti,1, ti,3}.

Similarly, one shows that (Li2 , s) is solvable for all s ∈ {ti,0, ti,1, ti,2}.
Since i was arbitrary, this completes the proof. �� 4
Altogether, we get the following lemma:

Lemma 5. Truth Assignment Implies Suitable Admissible Set for A2

If there is a truth assignment for (U,M), then A2 has an admissible set of
pure and plain SIPN-regions, and also of impure and plain PN-regions.

Moreover, gathering Lemmata 3, 4 and 5, we get Theorem 4.
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4.5 The Synthesis Complexity of Impure SRPN and SIRPN

The following theorem states the main result of this section:

Theorem 5. Synthesis of SRPN and SIRPN is NP-complete

Deciding whether there is a SRPN or a SIRPN whose reachability graph is
isomorphic to a given LTS is NP-complete. �� 5

By Theorem 2 the addressed synthesis problems belong to NP. In order to
prove the hardness part, we follow again the announced general approach: First
of all, the LTS A has the following gadget H0 that provides the ESSA α = (k, h1):

H0 = h0 h1
k yy

Moreover, for every i ∈ {0, . . . , m − 1}, the LTS A has the following gadgets Ti

at which the literals of the clause Mi = {Li0 , Li1 , Li2} occur as events:

Ti = ti,0 ti,1 ti,2 ti,3 ky
Li0 Li1 Li2

Finally, for every i ∈ {0, . . . , n − 1}, the LTS has the following three gadgets
Gi,0, Gi,1 and Gi,2, that use the i-th variable and its negation as events:

Gi,0 = gi,0,0 gi,0,1

Xi

ai

Gi,1 = gi,1,0 gi,1,1

Xi

bi

Gi,2 = gi,2,0 gi,2,1

ai

bi

Let SI = {h0} ∪ {t0,0, . . . , tm−1,0} ∪ ⋃n−1
i=0 {gi,0, gi,1, gi,2} be the set of the

initial states of A’s gadget. Finally, to complete the construction, we use the
initial state ι and, for every state s ∈ SI , a fresh and unambiguous event us to
connect the gadgets with ι by ι us s.

Recall that we here assume all non-classic regions R = (sup, sig) to be strict,
that is, if sig(e) = (m,n, type) with type ∈ {inhibitor, reset}, then m = n = 0.
We first observe the following simple facts:

Fact 5. Let i ∈ {0, . . . , n − 1} and Li ∈ {Xi,Xi}, and let R = (sup, sig) be a
region of A. If sig(Li) = (m,n, classic) with n > m, then sig−(Li) ≥ sig+(Li).

Proof: Let R = (sup, sig) be a region of A, such that sig(Xi) = (m,n, classic)
with n > m. This implies sup(gi,0,1) > sup(gi,0,0) ≥ 0 and thus sig(ai) =
(x, y, classic) with y − x = n − m. By gi,2,0

ai , this implies sup(gi,2,1) >
sup(gi,2,0) ≥ 0, and thus sigt(bi) = reset or sig(bi) = (x′, y′, classic) with
x′ > y′. Hence, by the signature of bi, we have that sup(gi,1,1) = 0 or
sup(gi,1,0) > sup(gi,1,1), which implies that if sig(Xi) = (m′, n′, classic), then
m′ > n′ or m′ = n′ = 0, hence the claim. Analogously, one argues for the other
case. �� 5

Fact 6. Let s 	= s′ ∈ S be states and e ∈ E an event such that s e s′ and
s′ e s′ are edges of A. If R = (sup, sig) is a region of A such that sup(s) 	=
sup(s′), then sigt(e) = reset and sup(s′) = 0.
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Proof: If sig(e) = (0, 0, inhibitor), then we get sup(s) = sup(s′) = 0, which
contradicts sup(s) 	= sup(s′). If sig(e) = (m,n, classic), then, by s′ e s′, we
have sup(s′) = sup(s′) − m + n and thus m = n. Moreover, by s e s′ and
sup(s′) 	= sup(s), we get | − m + n| > 0 and thus m 	= n, which is again a
contradiction. Hence, sigt(e) = reset and sup(s′) = 0. �� 6

Lemma 6. Strict synthesis implies truth assignment

If there is an admissible set of SIRPN-regions for A, then there is a truth
assignment for (U,M).

Proof: Since R is an admissible set, it contains a region R = (sup, sig) that
solves α = (k, h1). If sig(k) = (0, 0, inhibitor), then 0 = sup(h0) 	= sup(h1). By
Fact 6 and sup(h0) 	= sup(h1), we get sig(y) = reset and thus sup(h1) = 0, which
is a contradiction. Moreover, if sig(k) = (0, 0, reset), then R does not solve α.
Hence, we have sig(k) ∈ N × N × {classic} and sig−(k) > sup(h1) ≥ 0.

Since R is a region, by h0
k , we get sup(h0) ≥ sig−(k) and thus sup(h0) >

sup(h1). By Fact 6, this implies sigt(y) = reset.
Let i ∈ {0, . . . , n − 1}. By sigt(y)= reset and y ti,0, we get sup(ti,0) =

0. On the other hand, by ti,3
k , we get sup(ti,3) ≥ sig−(k) > 0 and thus

sup(ti,3) > sup(ti,0). This implies that there is a literal L ∈ {Li0 , Li1 , Li2} such
that sig+(L) > sig−(L).

Since i was arbitrary, we obtain the following observation: For every i ∈
{0, . . . , m − 1}, there is an event e ∈ Mi such that such that sig+(e) > sig−(e),
which implies sig−(e) ≥ sig+(e), by Fact 5.

Let b : U → {0, 1} be the assignment for U, which, for all X ∈ U, is defined
as follows: b(X) = 1 if sig+(X) > sig−(X) and 0 otherwise.

The assignment is well-defined, since both cases are mutually exclusive. We
argue that b satisfies every clause. Let i ∈ {0, . . . , n−1} be arbitrary but fixed: As
argued above, there is j ∈ {0, 1, 2} such that the literal Lij

∈ Mi has signature
sig+(Lij

) > sig−(Lij
). If Lij

= X for some variable X ∈ U, then b(X) = 1 and
thus Mi is satisfied. Otherwise, Lij

= X for some variable X ∈ U, which implies
sig−(X) ≥ sig+(X) (by Fact 5) and thus b(X) = 0 according to the definition
of b. This, however, implies b(X) = 1 so that Mi is satisfied. By the arbitrariness
of i, we have that b is a truth assignment for (U,M). �� 6

For the converse direction, we argue that the existence of a model implies an
admissible set of plain SRPN-regions of A. For the presentation of these regions,
we shall use the same conventions as for Lemma 4. Moreover, for the sake of sim-
plicity, we often only define (sup, sig) when restricted to S\{ι} and E\Us, which
is justified as follows: If sup : S\{ι} and sig : E\Us → N×N×{classic, inhibitor},
such that, for all s, s′ ∈ S \ {ι} and for all e ∈ E \ Us, the presence of s e s′

implies that (sup, sig) behaves like a region according to Definition 5 and, more-
over, for every state s ∈ {h0} ∪ {t0,0, . . . , tm−1,0} ∪ ⋃n−1

i=0 {gi,0, gi,1, gi,2} holds
sup(s) ∈ {0, 1}, then it is easy to see that (sup, sig) can be extended to a
region of A, where sup(ι) ∈ {0, 1} and sig(u) ∈ {(m,n, classic) | m,n ∈ {0, 1}}
for all events u ∈ Us, since the latter occur only once in A. Hence, for an
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even more compact representation we restrict the representation of sup to
s ∈ {h0} ∪ {t0,0, . . . , tm−1,0} ∪ ⋃n−1

i=0 {gi,0, gi,1, gi,2}, since we can then compute
sup for all states S \ {ι} by Remark 2 (and check its coherence).

Fact 7. There is a set of plain SRPN-regions of A that solve all SSAs of A.

Proof: If sup0(ι) = 0 and ER0
1,0 = {e ∈ E | ι e }, then R0 solves ι.

Let i ∈ {0, . . . , m−1}. If sup1(ι) = 1 and ER1
1,0 = {uti,0}, then R1 solves (s, s′)

for all states s ∈ S(Ti) and all states s′ ∈ S \ S(Ti). Similarly, one shows, for
any fixed i ∈ {0, . . . , n − 1} and j ∈ {0, 1, 2}, that the states gi,j,0 and gi,j,1 are
solvable.

Since i was arbitrary, it only remains to show that different states of the
same gadget are separable.

If sup2(ι) = 1 and ER2
reset = {y}, then R2 solves (h0, h1).

The following implicitly defined regions complete the proof of this fact:
Let i ∈ {0, . . . , m − 1}. Let sup(h0) = sup3(t0,0) = · · · = sup(tm−1,0) = 0

and, for every j ∈ {0, 1, 2}, let sup3(gij ,2,0) = 1 if Lij
	∈ U (i.e. Lij

is a negated
variable); let ER3

0,1 = {Li0 , Li1 , Li2} ∪ {aij
| j ∈ {0, 1, 2} and Lij

∈ U} ∪ {bij
|

j ∈ {0, 1, 2} and Lij
	∈ U} and ER3

reset = {aij
| j ∈ {0, 1, 2} and Lij

	∈ U} ∪ {bij
|

j ∈ {0, 1, 2} and Lij
∈ U}. Then R3 solves (s, s′) for all s 	= s′ ∈ {ti,0, . . . , ti,4}.

Since i was arbitrary, this shows the solvability of the ti,j ’s.
Let i ∈ {0, . . . , n − 1}.

– If, for all s ∈ SI , sup(s) = 1 if s ∈ {gi,0,0, gi,1,0} and otherwise sup(s) = 0,
and ER4

reset = {Xi,Xi, ai, bi}, then R4 solves (gi,j,0, gi,j,1) for all j ∈ {0, 1}.
– If, for all s ∈ SI , sup(s) = 1 if s = gi,2,0 and sup(s) = 0 otherwise, ER5

0,1 =
{Xi, b1} and ER5

reset = {ai}, then R5 solves (gi,2,0, gi,2,1). Since i was arbitrary,
the gi,j,�’s are solvable. �� 7

Fact 8. If there is truth assignment for (U,M), then there is a set of plain
SRPN-regions of A that solves all ESSAs of A.

Proof: First of all, if a ∈ E is an event and q ∈ S a state of a gadget that does
not contain a, then (a, q) is solvable by a plain classic region R = (sup, sig):
define sup(s) = 1 for the states of the gadgets containing a, sup(s) = 0 for the
other states, sig(a) = (1, 1, classic) and sig(e) = (0, 1, classic) if e goes from ι to
any gadget that contains a (and (0, 0, classic) otherwise). Hence, in the following,
for every e ∈ E, we only deal explicitly with the gadgets that contain e.

We start with k: Let b be a valid truth assignment for (U,M);
let sup0(h0) = 1 and sup0(ti,0) = 0 for all i ∈ {0, . . . , m − 1}; for all i ∈
{0, . . . , n − 1}, let sup0(gi,0,0) = sup0(gi,1,0) = sup0(gi,2,0) = 0 if b(Xi) = 1
and let sup0(gi,2,0) = 1 and sup0(gi,0,0) = sup0(gi,1,0) = 0 if b(Xi) = 0; let
ER0
1,1 = {k}, ER0

reset = {y} ∪ {ai | i ∈ {0, . . . , n − 1} : b(Xi) = 0} ∪ {bi | i ∈
{0, . . . , n − 1} : b(Xi) = 1} and ER0

0,1 = {Xi, ai | i ∈ {0, . . . , n − 1} : b(Xi) =
1} ∪ {Xi, bi | i ∈ {0, . . . , n − 1} : b(Xi) = 0}. Then R0 solves (k, h1).
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Let i ∈ {0, . . . , m − 1}.
Let sup1(h0) = sup1(t0,0) = · · · = sup(tm−1,0) = 1 and sup1(gi2,2,0) = 1 if
Li2 ∈ U (i.e. Li2 is the negation of a variable) and sup(s) = 0 for the other
states s ∈ SI ; let ER1

1,1 = {k}, ER1
0,1 = {Li2} ∪ {bi2 | Li2 ∈ U} ∪ {ai2 | Li2 ∈ U}

and ER1
reset = ∪{ai2 | Li2 ∈ U} ∪ {bi2 | Li2 ∈ U}. Then R1 solves (k, s) for all

s ∈ {ti,0, ti,1, ti,2}. Since i was arbitrary, that completes the solvability of k.
We proceed with y: If, for all s ∈ SI , sup2(s) = 1 if s ∈ {h0, t0,0, . . . , tm−1,0}

and 0 otherwise, ER2
1,1 = {y} and ER1

reset =
⋃m−1

i=0 Mi, then R2 solves (y, s) for all
s ∈ ⋃m−1

i=0 {ti,1, ti,2, ti,3}. This proves the solvability of y.
We proceed with the ai’s and the bi’s: Let i ∈ {0, . . . , n−1}. If, for all s ∈ SI ,

sup(s) = 1 if s ∈ {gi,0,0, gi,2,0} and 0 otherwise, ER3
1,0 = {ai}, ER3

0,1 = {bi,Xi} and
ER3
reset = {Xi}, then R3 solves (ai, gi,0,1) and (ai, gi,2,1).

Similarly, one shows the solvability of (bi, gi,1,1) and (bi, gi,2,0). Since i was
arbitrary, this shows the solvability of the ai’s and bi’s.

Finally, we argue that the literal events are separable:
Let i ∈ {0, . . . , m − 1}. If, for all s ∈ SI , if s ∈ {t0,0, . . . , tm−1,0} ∪ {gi0,0,0 |
Li0 ∈ U} ∪ {gi0,1,0 | Li0 	∈ U}, then sup4(s) = 1, and sup4(s) = 0 otherwise,
ER4
1,0 = {Li0} and ER4

reset = {ai0 | Li0 ∈ U} ∪ {bi0 | Li0 	∈ U}, then R4 solves
(Li0 , s) for all s ∈ {ti,1, ti,2, ti,3}. Moreover, R4 solves (Li0 , gi0,0,1) if Li0 ∈ U,
and (Li0 , gi0,1,1) otherwise.

We now argue that (Li1 , s) can be solved for all s ∈ {ti,0, ti,1, ti,2} and s =
gi0,0,1 if Li0 ∈ U, respectively s = gi0,1,1 if Li0 	∈ U. For space reasons, we
consider only the case where Li1 ∈ U and Li0 	∈ U (i.e. Li0 is a negated variable).
The other cases for Li0 and Li1 being a variable or its negation are similar.

If, for all s ∈ SI , if s ∈ {gi1,0,0, gi0,2,0} ∪ {ti,j | j ∈ {0, . . . , m − 1} \ {i}},
then sup5(s) = 1, and sup5(s) = 0 otherwise, ER5

1,0 = {Li1}, ER5
0,1 = {Li0 , bi0} and

ER5
reset = {ai0 , ai1}, then R5 solves (Li1 , s) for all s ∈ {ti,0, ti,1, ti,2, gi1,0,1}.

Similarly, one shows that (Li2 , s) is solvable for all s ∈ {ti,0, ti,1, ti,3} (and
gi2,0,1 or gi2,1,1, depending on whether Li2 ∈ U or not). Since i was arbitrary,
the literal events are solvable. This completes the proof. �� 8

Altogether, we get the following lemma:

Lemma 7. Truth Assignment Implies Suitable Admissible Set for A
If there is a truth assignment for (U,M), then there is an admissible set of

(plain) SRPN-regions for A.

Since every SRPN-region is a SIRPN-region, gathering Lemmata 6 and 7, we
get Theorem 5.

5 Conclusion

We have introduced a rather general class of Petri nets with inhibitor and reset
links and showed how to synthesize them. While all the introduced net classes
belong to the complexity class NP (Theorem 2), we exhibited some interesting
subclasses for which the synthesis is polynomial (Theorem 3), and some for
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which it is NP-complete (Theorems 4 and 5). Figure 5 provides an overview of
our findings, but also shows that there are still some open cases, even if reset
and inhibitor links are assumed to be strict.

Net Class pure impure pure + plain impure + plain

PN P P NPC NPC
SRPN open NPC NPC NPC
SIPN open P NPC NPC
SIRPN open NPC NPC NPC

Fig. 5. An overview over the complexity of synthesis of PN, SRPN, SIPN and SIRPN,
according to whether links are pure or (possibly) impure and/or plain. The results for
the pure and impure PN are known from [3,6], the other results were developed here.

As future works, we plan to characterize the synthesis complexity for these
open cases pictured by Fig. 5. After that, the next natural step is to characterize
the complexity of synthesis of (pure) Petri nets with reset or inhibitor links or
both, where these links do not necessarily have to be strict. Moreover, it remains
to incorporate the corresponding algorithms into existing synthesis tools like
SYNET [3], APT [11], GENET [12], or others.

Acknowledgments. We would like to thank the anonymous reviewers for their
detailed comments and helpful suggestions.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19345-3

2. Akshay, S., Chakraborty, S., Das, A., Jagannath, V., Sandeep, S.: On petri nets
with hierarchical special arcs. In: Meyer, R., Nestmann, U. (eds.) 28th International
Conference on Concurrency Theory, CONCUR 2017, September 5–8, 2017, Berlin,
Germany. LIPIcs, vol. 85, pp. 40:1–40:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.40

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

4. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES,
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

5. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

6. Badouel, E., Darondeau, P.: On the Synthesis of General Petri Nets. Research
Report RR-3025, INRIA (1996). https://hal.inria.fr/inria-00073668

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.4230/LIPIcs.CONCUR.2017.40
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/s001650200022
https://hal.inria.fr/inria-00073668


234 R. Devillers and R. Tredup

7. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
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