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Preface

This volume collects the proceedings of the 43rd International Conference on
Application and Theory of Petri Nets and Concurrency (Petri Nets 2022). This series
of conferences serves as an annual meeting place to discuss progress in the field of
Petri nets and related models of concurrency. These conferences provide a forum for
researchers to present and discuss both applications and theoretical developments in this
area. Novel tools and substantial enhancements to existing tools can also be presented.
Petri Nets 2022 included a session devoted to the Application of Concurrency to System
Design (ACSD), which was in the past a separate event. The final selection for this track
was made by Jörg Desel and Alex Yakovlev. The event was organized by the Software
Engineering Research Group at theWestern NorwayUniversity of Applied Sciences and
took place at Campus Bergen, Norway.

After two editions entirely held online because of the SARS-Cov-2 pandemic, this
year the conference took place in the traditional style, gathering people in Bergen, on
the western coast of Norway. On behalf of the authors and participants, we express our
deepest thanks to the Organizing Committee, chaired by Lars Michael Kristensen and
VioletKa I Pun, for the time and effort invested in the organization of this event. This year,
35 papers were submitted to Petri Nets 2022 by authors from 18 different countries. Each
paper was reviewed by at least three reviewers. The discussion phase and final selection
process by the Program Committee (PC) were supported by the EasyChair conference
system. From regular papers and tool papers, the PC selected 19 papers for presentation:
16 regular papers (with three papers on the ACSD track) and three tool papers. After the
conference, some of these authors were invited to submit an extended version of their
contribution for consideration in a special issue of a journal.

We thank the PCmembers and other reviewers for their careful and timely evaluation
of the submissions and the fruitful constructive discussions that resulted in the final
selection of papers. The Springer LNCS team provided excellent and welcome support
in the preparation of this volume.The keynote presentationswere given byPauloEsteves-
Verissimo (CarlAdamPetri distinguished lecture)VolkerDiekert, andMariekeHuisman.

Alongside Petri Nets 2022, the following workshops and events took place: the 12th
edition of the Model Checking Contest (MCC 2022), Algorithms and Theories for the
Analysis of Event Data (ATAED 2022), Petri Nets and Software Engineering (PNSE
2022), and the International Health Data Workshop (HEDA 2022).

We hope you enjoy reading the contributions in this LNCS volume.

June 2022 Laure Petrucci
Luca Bernardinello
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Assumptions in Computer Science: Mere Mathematical
Hypotheses, or Representations of the Physical World?

Paulo Esteves-Verissimo

KAUST, CEMSE, RC3 (Resilient Computing and Cybersecurity Center)
Thuwal, Kingdom of Saudi Arabia

The praxis of algorithm or mechanism design, especially in concurrent or distributed
systems, mandates clear statements of the assumptions underlying the design, such
as topology, dimension, synchrony, performance, threats, etc. The design—say, of an
algorithm whose behaviour is defined by a set of properties (safety, liveness)—is then
shown correct by demonstrating it does secure those properties, given the assumptions.
From a mathematical viewpoint, we are done. We never ask: are the hypotheses valid?

If wewish the algorithm to have any real world impact, it might be advisable to define
an abstract system credibly materializing the assumptions made, where the protocol
implemented from the algorithm will run correctly. However, this apparent detail com-
pletely changes the perspective: in essence, the protocol correctness becomes conditional
to the likelihood of the assumptions being met, in such a system.

Suddenly, we must look at our assumptions from a physics viewpoint: How do
I achieve perfect failure detection in an asynchronous environment? Why would an
attacker compromise certain units and not others in an otherwise arbitrary failure envi-
ronment? We should not be mistaken about these being “implementation details”. They
can and should be addressed as systems theory problems, related to the substance and
the robustness of assumptions—i.e., the coverage of the mapping of the abstract system
onto the physical world.

The rise of malicious threats to systems has been showing the importance of this
argumentation. The practice of accepted deviations of some assumptions from phys-
ical reality, in face of accidental (stochastic) threats, completely crumbled in face of
malicious(intentional) threats, exposing their lack of substance and/or robustness. Para-
phrasing and extending my colleague and friend Fred Schneider’s quote some years ago:
“Every [non-substantiated] assumption is a vulnerability”.

In the talk, I will delve into manifestations of the problems above, and approaches to
solve them in a satisfactory way. Closing these gaps implies effort on some angles, and
I will single-out two: (i) system architecture and design; (ii) modeling and verification.
I will be discussing: system awareness (topology-, context-, hybridisation-), logical
vs. physical centralisation, trust vs. trustworthiness); system-level impossibility results,
lower bounds and safety predicates (coverage-stability, no-contamination, exhaustion-
safety) denying substance to somecommonlymade assumptions—orprovidingguidance
to achieve it.

http://orcid.org/0000-0002-0085-8053


Petri Nets and Mazurkiewicz Traces Partnership When
Honeymoon is Forgotten

Volker Diekert

University of Stuttgart, Germany

History. In the mid 1970-ties it became clear that free partially commutative monoids
play a central role for the analysis and the understanding of concurrent systems. The
foundations were developed in the 1973 JACM-paper by Robert Keller [1]. A few years
later, in 1977AntoniMazurkiewicz published his seminal Aarhus technical report where
he showed that, indeed, partial commutation describes the semantics of one-safe Petri
nets perfectly [2]. He also introduced a graphical representation of elements in free
partially commutative monoids. In his notation a “trace” is not a (firing) sequence of the
net, but a labeled, directed and acyclic graph with an immediate visual understanding.

Honeymoon. A concurrent system has a visual representation (a one-safe Petri net), the
executions have a visual representation as a trace. The set of all executions are recognized
by an asynchronous automaton in the sense of Zielonka ([3]) with a purely algebraic
semantics using syntactic congruences. Languages accepted by asynchronous automata
have finite syntactic monoids.
The Eldorado!

Honeymoon is over. Partnership remains: trace theory as a basic algebraic concept should
not be forgotten.

My lecture. In my talk I will discuss the basic mathematics and extensions to notions
of a semi-trace and/or a partial trace. These concepts can be applied to more general
types of Petri nets, still the algebra can be expressed within the theory of free partially
commutative monoids. It is a versatile tool connecting semantics and combinatorial
algebra.

Trace theory, may you stay forever young. Bob Dylan (1974)

References

1. Keller, R.M.: Parallel program schemata and maximal parallelism I. Fundamental
results. J. ACM 20(3), 514–537 (1973)

2. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus (1977)

3. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O.—Informatique
Théorique et Appl. 21, 99–135 (1987)



VerCors and Alpinist: Correctness of GPU Applications
Throughout the Development Cycle

Marieke Huisman

University of Twente, The Netherlands

GPU programs are widely used in industry. They make use of special hardware, sup-
porting massive parallelism. To avoid the introduction of errors, we can augment GPU
programs with (pre- and postcondition-style) annotations to capture functional proper-
ties. The VerCors program verifier, a verifier for concurrent software, has been tailored
to reason about such GPU programs, and in this talk I will explain how this is done, and
discuss various GPU case studies that have been verified with VerCors.

However, to obtain the best performance, a typical development process of a GPU
application involves the manual or semi-automatic application of optimizations prior
to compiling the code. Keeping these annotations correct when optimizing GPU pro-
grams is labor-intensive and error-prone. Therefore, this talk also introduces Alpinist,
an annotation-aware GPU program optimizer. It applies frequently-used GPU optimiza-
tions, but besides transforming code, it also transforms the annotations. We evaluate
Alpinist, in combination with the VerCors program verifier, to automatically optimize a
collection of verified programs and reverify them.

http://orcid.org/0000-0003-4467-072X
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Application of Concurrency to System
Design



Towards the Application of Coloured
Petri Nets for Design and Validation

of Power Electronics Converter Systems

Vegard Steinsland(B), Lars Michael Kristensen, and Shujun Zhang

Department of Computer Science, Electrical Engineering and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway

{vste,lmkr,shz}@hvl.no

Abstract. We apply Coloured Petri Nets (CPNs) and the CPN Tools to
develop a formal model of an embedded system consisting of a power con-
verter and an associated controller. Matlab/Simulink is the de-facto tool
for embedded control and system design. Moreover, Matlab/Simulink
relies on informal semantics and has limited support for transparent and
integrated specification and validation of both the power converter elec-
tronics, controller (hardware), and the control logic (software). The con-
tribution of this paper is to develop a timed hierarchical CPN model that
mitigates the shortcomings of Simulink by relying on a Petri net formal-
isation. We demonstrate the application of our approach by developing a
fully integrated model of a buck power converter with controller in CPN
Tools. Furthermore, we perform time-domain simulation to verify the
capability of the controller to serve the control objectives. To validate
the developed CPN model, we compare the simulation results obtained
in an open-loop configuration with a corresponding implementation in
Simulink. The experimental results show correspondence between the
CPN model and the Simulink model. As our CPN model reflects the
fully integrated system, we are able to compare CPN simulation results
to measurements obtained with a corresponding implementation in real
hardware/software and compare closed-loop with open-loop configura-
tion. The results show alignment for the steady state while further refine-
ment of the control algorithm and validation is required.

1 Introduction

The development of power electronics converter systems is a multi-disciplinary
task where the immediate time-critical response is related to the integrated sys-
tem of electrical, electronics, cybernetics and embedded control design with soft-
ware forming a cyber-physical system (CPS) [18].

Modelling is a valuable tool for understanding power electronics converters
system and to control their behaviour, and can aid the design process from
initial evaluation of proposed circuit topologies through physical prototyping
with integration of the controller, to iterative improvements in both the physical
design and the control. Given the comprehensive challenges in the design phase,

c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 3–22, 2022.
https://doi.org/10.1007/978-3-031-06653-5_1
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4 V. Steinsland et al.

abstraction and simplification of the system parts are needed to obtain models at
the appropriate abstraction level to achieve and validate the design objective(s).

In power electronics and embedded control system design, Matlab/Simulink
tool [16] is one of the de-facto standards and is supported by an integrated tool
chain. Within the tool chain of MathWorks, the Simulink tool provides prede-
fined modelling objects with approximation of the physical systems (via differen-
tial equation descriptions), control objects, tools for embedded code generation,
and tools for real-time hardware (HW) monitoring to support integrated design
and rapid prototyping. However, Matlab/Simulink relies on informal semantics
and several researchers have identified application shortcomings implied by the
lack of tools for model checking and validation [2–4,14,19].

The lack of formal semantics in Matlab/Simulink also implies challenges when
executing embedded code on real hardware, where the actual performance has
timing properties relying on the integrated CPS. This makes it difficult to vali-
date the integrated system performance based on other metrics than the phys-
ical response. This means that the approach is partly non-transparent and the
designer is somehow blindfolded by the complex power electronics converter sys-
tem behaviour due to the lack of tools in Matlab/Simulink to perform formal
validation of the CPS. For simple power electronics converters such as the buck
converter, the lack of formalization may not be a practical challenge. However,
when developing systems with higher complexity such as a Modular Multilevel
Converter (MMC) and systems of converters forming microgrids, the lack of for-
mal semantics and transparency may lead to unexpected events in the control
schemes as discussed in [8,12,18].

The contribution of this paper is to explore the application of Petri nets to
address the shortcomings of Matlab/Simulink discussed above. Our aim is to
provide an integrated modelling approach that provides transparency and trace-
ability on both the hardware part and on the control logic part of the CPS. Being
based on Petri nets, our approach provides a formal semantics that can serve
as a basis for model validation when applied for the design and implementation
of power electronics converter systems. We rely on high-level Petri nets in order
to conveniently model data related to sensed values (physical response), calcu-
lations, signalling, and system parameters. We specifically apply Coloured Petri
Nets (CPNs) [5] and CPN Tools [6] as it supports the modelling and simulation
of time, and the construction of hierarchical and parametric models divided into
several modules. The latter is important in order to ensure transparency and
scalability to larger power electronics converter systems.

As a case study, we focus on modelling the dynamics of a buck power elec-
tronics converter integrated with an embedded controller, and we use simulation
and physical models to evaluate and compare the system performance in the
time-domain. First the CPN model of the buck converter dynamical response
is compared with the Matlab/Simulink implementation with fixed point oper-
ation, thus reducing the complexity. This is followed by results obtained via
the integrated CPN modelling of the buck converter and the controller aimed
at assessing the objective as an integrated CPS with closed-loop control logic
serving the control objective of fixed output voltage. To further validate the
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constructed CPN model, we validate the CPN simulation against measurements
obtained with a corresponding implementation of the power converter system in
real hardware. The rest of this paper is organised as follows. Section 2 gives an
overview of our modelling approach and the power converter system comprised
of the buck converter topology description and the controller. Section 3 concen-
trates on the modelling of the buck converter, and Sect. 4 presents the modelling
of the embedded controller. Section 5 provides a brief description of the Mat-
lab/Simulink model that we use for comparison. The experimental results are
presented in Sect. 6. In Sect. 7, we present our conclusions, discuss related work,
and suggest directions for future work to further develop our modelling frame-
work in the domain of power electronics systems. We assume that the reader is
familiar with the basic concepts of Petri Nets and high-level Petri Nets.

2 Modelling Approach and Overview of the CPN Model

The developed CPN model comprises the complete system and consists of the
buck converter integrated with the controller. Our modelling approach allows for
system parametrisation of the physical converter model, the system interfaces,
and the controller properties. The objective of the integrated buck power con-
verter system is to reduce the input voltage (Vi) to a given output voltage (Vo)
based on a Pulse Width Modulation (PWM) control signal from the controller
to the converter.

Figure 1 shows the actucal physical CPS being modelled which is also the
system against which we validate the simulation results.

Fig. 1. The modelled CPS with KRTKL Snickerdoodle Black Zynq SoC 7020 controller
and buck-converter. Connected to laboratory power supply and oscilloscope.
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The controller is an embedded Xilinx Zynq System-on-Chip (SoC) 7020 hard-
ware controller that consists of both an Advanced RISC Machines (ARM) pro-
cessing system (PS) and a field-programmable gate array (FPGA) programmable
logic (PL) in one single package. The main advantages of SoC with FPGA are
the parallel task execution feature, very high processing speed, and the inte-
grated ARM processor. These attractive features has resulted in the growing
popularity of SoC being used in embedded controls of power electronics [11,19].
The complete CPN model is hierarchically organised into seven modules. The
top-level module of the CPN model of the CPS is shown in Fig. 2 with the colour
set definitions given in Listing 1.1. The substitution transition Buck Converter
represents the physical electrical converter system and the substitution transi-
tion Controller represents the hardware and the control logic of the controller.
The socket places Gate and Buck loop are used to pass the control signal to the
converter and receive the acknowledgment of the converter state, respectively.
The converter inductor current (iL) and output voltage (vo) measurements are
interfaced with the controller and modelled by the socket place named iL vo.

Fig. 2. Top-level CPN module of the CPS with integrated modelling of the controller,
buck converter, and their interfaces.

colset IntTimed = int timed;

colset iL = real;
colset vo = real;
colset REALxREAL = product iL*vo;

Listing 1.1. Colour set definitions used in the top-level module.

The detailed CPN modelling of the buck converter and the controller will
be presented in Sect. 3 and Sect. 4, respectively. Before proceeding with the pre-
sentation of the CPN modelling of these parts, we first explain how we have
approached the notion of time in our CPN modelling.

The buck converter is a continuous-time dynamic system that evolves over
time and the model description is implemented as a discrete event system (DES)
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together with the digital controller with real-time properties. For modelling the
CPS as a real-time system, we must consider the continues-time dynamics of the
modelled artifact and apply appropriate time discretisation to achieve the desired
modelling accuracy. The physical behaviour of the buck converter over time is
described through differential equations which we have implemented in CPN
Tools with emphasis to clearly show graphically how each step of the calculation
is performed (see Sect. 3). The reason for selecting this approach is to provide
traceability in how the mathematical description is implemented to the explicit
case of the buck converter. By default, the simulated timed properties in CPN
Tools have no intrinsic relationship to real-time. To align the CPN Tools simula-
tion time with the real-time physical properties, we introduce the simulated time
iteration constant (k) and the discrete time-step (Ts) in the discretisation of both
the buck converter and controller. It is the system under investigation that gov-
erns the required refinement of the simulation model discrete time-step (Ts). The
buck converter holds switching states and therefore the discrete time-step (Ts)
must be smaller than the cyclic period (Tp) to represent the dynamic response
in the electric circuit in-between a switching event. The discrete time-step (Ts)
by the simulator must be less than (Tp) to represent the circuit dynamics cor-
rectly. A drawback of making the discrete time-step (Ts) too small is its negative
impact on the performance of the CPN Tools simulation engine. Analytical tools
and domain-specific experience/experimental results may provide insights into
determining a suitable discrete time-step (Ts).

The simulated time in the CPN model is represented via two functions:
Dynsys() and CPU CLK(). The task of the Dynsys function is to keep track
on the time iteration of the dynamic system that forms the buck converter. As
the dynamic system has the highest discretisation requirement in the simula-
tion, the overall time reference is set as Dynsys and holds the iteration relation
to the real-time trough the discrete time-step (Ts). The function CPU CLK is used
to describe the timing of the controller CPU cycle, and is aligning the cycle
frequency of the controller to the real-time properties of Dynsys.

3 Buck Converter CPN Modelling

The buck converter is used to step down the input voltage (Vi) to the desired
output voltage (Vo) The principal electrical topology of the buck converter is
shown in Fig. 3 with the main components. The components introducing circuit
states are the non-linear semiconductor elements with the active controlled tran-
sistor (u) and the passively controlled diode (D). In addition, the circuit contains
linear elements in terms of inductance (L), capacitance (C) and resistance (R).
All components values are derived from the International System of Units (SI),
relating properties with respect to voltage (V ) and current (I). In most basic
circuit analysis (ignoring losses) the steady-state fundamental description of the
relation between the input voltage (Vi) and the output voltage (Vo) may be
described [10] with a factor of the duty-ratio (d):

Vo = Vi · d (1)
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u

Vi

L iL

CD Vo R

Fig. 3. Buck converter principal electrical topology.

The duty-ratio factor of the input/output voltage relation persists with limi-
tation by the switching operation of the transistor element as long as the switch-
ing frequency (fsw) is fixed and the circuit has a continuous inductor current
(iL) [10]. In the time-domain, the switching frequency (fsw) may be expressed
as the switching period (Tp).

Without further details of the design consideration, and the introduction of
semiconductors, transistor and diodes, the buck converter circuit in Fig. 3 can be
in two possible states. This is illustrated in Figs. 4a and 4b as equivalent circuits
for the on- and off-state, respectively. As may be observed from Figs. 4a and 4b,
the semiconductor elements is replaced by their feature in the switching state
by ideal properties as either fully closed or opened.

Vi

L iL

C Vo R

(a) Converter transistor on-state.

L iL

C Vo R

(b) Converter transistor off-state.

Fig. 4. The circuit equivalents of Fig. 3 as determined by transistor state.

Based on the circuit states, the two differential equations [10] describing the
circuit based on the change in the input inductor current (iL) and output voltage
(vo) are given in Eq. (2a) and Eq. (2b):

diL
dt

=
Vi

L
(u) − vo

L
(2a)

dvo
dt

=
1
C
iL − 1

RC
vo (2b)
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As can be seen, the transistor switching states only affects the
Vi

L
(u) expression,

where u is the switch state, zero (off) and one (on).
Figure 5 shows the buck converter submodule of the Buck Converter substi-

tution transition found in the top-level model in Fig. 2. The port places Gate,
Buck loop, and iL vo are associated with the accordingly named socket places in
Fig. 2 and used to model the signalling between the buck converter and the con-
troller. The submodules of the two substitutions transitions IL and Vo in Fig. 5
model the inductor current (IL) and the output voltage (Vo) as described by
the differential equations from Eq. (2). The socket places IL and Vo are used for
modelling the interconnected behaviour of the two differential equation in Eq.
(2), i.e., that vo appears as a term in Eq. (2a) and that iL appears as a term in
Eq. (2b). Below we present in detail the modelling of the inductor current and
the output voltage.

Fig. 5. Submodule of the Buck Converter with external interfaces to the controller
(left) and calculation of IL, Eq. (2a) and Vo, Eq. (2b) represented by substitutions
transitions.

3.1 CPN Modelling of Inductor Current (IL)

Figure 6 shows the submodule of the Inductor Current IL substitution transition
which implements the first part of the integrated behaviour of the buck converter.
The colour set and function definitions are shown in Listing 1.2. The places iL
and vo act as interface to the submodule Vo, and exchange the values for inductor
current (iL) and output voltage (vo). As described by the differential equations
in Eq. 2, the physical response between the modules is integrated.

The purpose of the IL module is to estimate the inductor current from Eq.
(2a) based on the switch state and the circuit electrical properties (see Fig. 3) as
it evolves over time. As may be observed, the modelling approach as represented
by the submodule in Fig. 6 closely follows the buck converter description and
behaviour as represented via the differential equations. This demonstrates how
we have targeted a transparent modelling approach where the detailed modelling
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of the components and the steps involved in their execution are fully available for
inspection and validation. This is in contrast to the black-box approach adopted
by Matlab/Simulink.

Fig. 6. Submodule IL estimating the inductor current (iL) based on Eq. (3).

colset IntTimed = int timed; (* Timed gate control signal *)
colset dILInit = product Vi*L*Ts;
colset piL_k1 = product iL_k1*L*Ts;
colset REALxREAL = product iL*vo;

fun fiL_k1(Vi ,L,u,Ts) = (if u=1 then (Vi/L)*Ts else 0.0,L,Ts);

fun fiL_k2(il_k1 ,L,vo ,iL ,Ts) = (iL+(il_k1 -(vo/L)*Ts));

Listing 1.2. Colour sets and functions used in the iL submodule.

Due to the requirement of time in the circuit analysis, the description of the
inductor current found in Eq. (2a) must be adapted for discrete-event numerical
simulation. As introduced at the end of Sect. 2, the modelling of time includes
the iteration constant k and the real-time conversion constant Ts in the discreti-
sation. Based on this discretisation, we obtain the description expressed by Eq.
(3) which is what is implemented by the IL module in Fig. 6. The description
is also dependent on the switching element u with either a dynamic or fixed
switching frequency (fsw) covering the corresponding switch period (Tp).
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iL((k + 1)Ts) =

fiL k2
︷ ︸︸ ︷

Ts

⎡

⎢

⎢

⎣

fiL k1
︷ ︸︸ ︷

Vi

L
(u)(kTs)−vo

L
(kTs)

⎤

⎥

⎥

⎦
(3)

The buck converter contains physical components each of which has a value,
such as capacitance (C), inductance (L) and load resistanse (R). In addition,
the considered operation of the converter is with a fixed value for the input
voltage (Vi). The value of the components and input voltage forms the constant
parameters defined at the place Parameters. The occurrence of the mux gate
transition is triggered based on the received timed controller signal to the gate
activation (u) from the place Gate. The function fiL k1 is used to estimate the
first part of Eq. (3) based on the control signal state (u). The second part of
Eq. (3) is estimated using the fiL k2 function as part of the firing of the mux
Il,v0 transition and summation of the resulting inductor current (iL) from the
first part. The arc expression from transition mux gate to place Buck loop is
used to signal an acknowledgment which confirms when an iteration of the buck
converter model has been executed and thereby allow the next token from the
controller via the Gate place. Hence, the Buck loop interface place is purely a
modelling artefact for executing the CPN model correctly wrt. time and does
not have a physical counterpart in the real system.

3.2 CPN Modelling of Output Voltage (Vo)

Figure 7 shows the submodule of the output voltage Vo substitution transition
implementing the second part of the integrated behaviour of the buck converter.
The places iL and vo act as the interface to the submodule IL, and exchange
the values for inductor current (iL) and output voltage (vo). The colour set
definitions and the functions used in the arc expressions are listed in Listing 1.3.
The output voltage (Vo) is dynamically connected to the inductor current (iL)
and the corresponding switch-state (u). The buck converter physical component
characteristics are defined at the place Parameters with the load resistor (R)
and capacitance (C).

The description found in Eq. (2b) is extended to include time properties
of the discrete-event model using the same discretisation approach as for the
inductor current (iL). The derived equations are shown in Eq. (4).

vo((k + 1)Ts) =

fvo k2
︷ ︸︸ ︷

Ts

⎡

⎢

⎢

⎣

fvo k1
︷ ︸︸ ︷

1
C
iL(kTs)− 1

RC
vo(kTs)

⎤

⎥

⎥

⎦
(4)
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Fig. 7. Submodule Vo for estimating the output voltage (vo) based on Eq. (4).

colset dvoInit = product C*R*Ts;
colset pvo_k1 = product vo_k1*C*R*Ts;

fun fvo_k1(C,R,iL ,Ts) = (((iL/C)*Ts),C,R,Ts);

fun fvo_k2(vo_k1 ,C,R,vo ,Ts) = (vo+(vo_k1 -((Ts)*vo/(R*C))));

Listing 1.3. Definition of the color set related to substitution transition Vo.

The function fvo k1 estimates the first part of Eq. (4), and function fvo k2
is used for estimating the second part of Eq. (4) based on the firing of the
transition, summation of the resulting voltage product from the first part, and
the output load conditions.

4 Controller CPN Modelling

Figure 8 shows the FPGA-ARM Controller submodule of the FPGA-ARM Controller
substitution transition in Fig. 2. The modelling of the FPGA-ARM controller
in Fig. 8 is organised into two submodules: the XADC-Conditioning and Control
Logic. The purpose of dividing controller in two parts (XADC-Conditioning and
Control Logic) is to capture the data-flow and connected parsing delays in the
Zynq SoC from sensing of input from the buck converter through execution of the
control logic to the eventual effect on the controller output. The two socket places
Control Vo and Control iL in Fig. 8 are used for modelling the interconnection of
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the two sub-modules. An advantage of having the two dedicated control tasks
explicitly separated is that we can easily adopt more complex control logic into
the model. The modelling of the control tasks is described in detail below.

Fig. 8. Overview of FPGA-ARM modelling forming the Zynq SoC.

4.1 CPN Modelling of the XADC Conditioning

Figure 9 shows the submodule of the controller signal conditioning circuit asso-
ciated with the XADC-Conditioning substitution transition from Fig. 8. It imple-
ments the required steps from parsing the signals from the input, through the
analog to digital converter (ADC), and the preparation of the readings for use in
control tasks. The input-pins are allocated to the FPGA and needs to be trans-
ferred to the integrated analog to digital converter (ADC) for signal conditioning
in the ARM.

Each of the steps, moving the data between registers, requires FPGA and
ARM processor execution implying a time delay. This is modelled by the aspect
of @+CPU CLK() time inscriptions placed next to the transitions. There is no time
delay associated with the Input read as it does not involve any CPU processing
for the sensed input on place iL vo to be available via the associated Register in.

4.2 CPN Modelling of the Control Logic

Figure 10 shows the submodule of the Controller Logic substitution transition.
The associated colour set and control functions are defined in Listing 1.4. It
models the execution of the control logic in the FPGA and the setting of the
control output to the buck converter through the Control logic substitution tran-
sition in Fig. 8. The controller uses the power of the FPGA by executing all logic
concurrently based on a single read from the bulk register with the input from
the buck converter output voltage, vo, and inductor current, iL from the XADC-
Conditioning. The time control is therefore determined by the XADC-Conditioning
module, adding a @+CPU CLK() for the pull request of the analog sensing values
to the controller.
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Fig. 9. The XADC-Conditioning submodule modelling of FPGA and the ARM interface

Fig. 10. The Control Logic submodule with open-loop and closed-loop controls.
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colset DCtrl = product fsw * Tsf * duty;

fun modulation(fsw ,Tsf ,duty ,gate) =
let

val time_stamp = time()
val time_stamp_real = (( IntInfToReal 2 time_stamp)*100.0)
val Tp = 1.0/ fsw
val Ts = Tp/Tsf

(* Sets the duty ratio relativ to the simulator timesteps *)
val relative_duty = Tsf*duty

(* Defines the count of cycles , Tp, relative to simulator timesteps *)
val TpCount = Real.fromInt(round ((( IntInfToReal 0 (time()))/Tsf) -0.50))

in
if TpCount <1.0 (* As initial point the Tp counter is ignored *)
then

if relative_duty >time_stamp_real andalso gate then 1 else 0
else
if relative_duty >( time_stamp_real -(Tsf*TpCount)) andalso gate then 1

else 0
end;

Listing 1.4. Definition of the colour set related to substitution transition Control logic.

Three modes of control are represented by the model of the controller logic:

1. The duty ratio control which ensures a gate switching at given duty ratio (d)
of the switching frequency, fsw. With this operation, the ideal properties of
the converter input/output voltage relation is shown in Eq. (1).

2. Voltage reference control ensures that the gate is attempting to compensate
a voltage deviation based on the sensing of the output voltage, vo, to the
voltage reference VREF as closed-loop control.

3. Inductor current protection ensures that the gate is not overloading the induc-
tor and converter by sensing the inductor current, iL, and are blocking the
gate if the threshold current iLLIM is exceeded.

The gate signal (u) is modulated at the output stage between the controller
and buck converter with the function modulation. Through the modulation
function, the predefined switching frequency fsw and time-step discretisation
factor Tsf is aligned with the real-time properties of time-step Ts. The predefined
parameters are defined at the place Parameters. As the duty ratio, duty, is a
fraction of the switching time periode Tp it also implies that the duty ratio is
a fraction of the number of the time-step discretisation factor Tsf. In the if-
statements, the relative duty ratio to the switching period Tp is compared to
the real-time execution of the model. In addition, the gate output considers the
gate-conditions from VREF and iLLIM.
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5 Simulink Model of the Buck Converter

For validation and comparison, we have implemented the buck converter using
the standard component library of Simscape (v 5.1) and Simscape Electrical (v
7.5) under Matlab/Simulink R2021a (Fig. 11).

The topology of Fig. 3 is adopted, adding voltage source, switching elements,
passive components and measurements. All Simulink model components have
simplified real characteristics which is defined by modifying the parameters of
each individual part. In simulation, the discrete solver is selected to catch tran-
sients from the switching events consistently and the results are gathered from
the scope measurement for output voltage (vo) and inductor current (iL). The
model has simple operation of PWM fixed duty ratio control with open-loop
feedback, controlled by the signal generator connected to the transistor gate.

As may be observed, the Simulink model is implemented with ease based on
standard components from a library. However, the detailed modelling of each
component is not openly accessible and how Matlab/Simulink implements the
circuit approximation is not transparent in an approach to evaluate the model
step execution. This gives the CPN Tools model a benefit by its transparent
representation and the added value for the user can be examined by comparing
the results from the Matlab/Simulink model. In addition, a Matlab/Simulink
model that forms the physical controller hardware with its control dynamics is
not found publicly available nor methods on how to implement such a system.

Vd

Discrete
2e-06 s.

+

L

+

C

+

R

v+
-

vo

g

D
S i+ -

iL vo

iL

Fig. 11. Matlab/Simulink model of the buck converter without controller

6 Model Validation and Experimental Results

Our experimental model validation is organised in two parts. In the fist part, the
open-loop response is simulated in both CPN Tools and Matlab/Simulink. The
goal of this simulation is to ensure the correct implementation of the developed
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CPN model of the buck converter by comparing the results in a controlled envi-
ronment. The controlled measure is the scenario of fixed duty ratio (d) which
draws the attention to the buck converter dynamical performance. In both mod-
els, we collect the measured dataset for inductor current (iL), output voltage (vo),
and the gate signal (u). In CPN Tools, we obtain the simulation results using
simulation monitors associated with the places corresponding to the measured
values, and store the observed values in external data-files for post-processing
and visualisation.

In the second part, the simulations are performed in CPN Tools and forms
the integrated CPS by interfacing the controller and buck converter. The initial
closed-loop response is shown based on the FPGA controller functions and the
identified time delays added in the interfacing loops. The results are compared
to the hardware setup of the buck converter and controller in an open-loop
configuration. The results are found in Sects. 6.1 and 6.2, respectively and are
based on the component and control parameters given in Table 1.

Table 1. Model parameters used in the simulation and physical experiments

Section Symbol Value Description

6.1 and 6.2 fsw 200 kHz Switching frequency of the transistor
Ts 0.05µs Discrete time-step
Vi 12 V Input voltage source
L 9.5 mH Inductor inductance
C 20µF Capacitor capacitance at the output
R 2.4 Ω Resistor resistance as the load

6.1 d 50% Duty ratio of switching frequency
6.2 d 10% Duty ratio of switching frequency

VREF 1.2 V Output voltage reference
ILIM 0.7 A Inductor current limit

6.1 Open-Loop Response Evaluation

The simulation results in Fig. 12 shows the initialization and transient response
of the buck converter in open-loop configuration at fixed duty ratio (d) of
the switching frequency, fsw = 200 kHz. In Fig. 12a the output voltage (vo) and
inductor current (iL) are shown for both the CPN Tools and the Simulink model.
The measurements are overlayed, where the CPN Tools measurements are rep-
resented with solid lines and the Simulink measurements are dashed. It can be
seen that the transient response of the CPN Tools model correspond perfectly



18 V. Steinsland et al.

with the Simulink model for both the output voltage (vo) and inductor cur-
rent (iL). The inductor properties are clearly interconnected correctly as can be
seen from the relation between the gate triggering signal (u) in Fig. 12b and the
corresponding response on the inductor current (iL) in Fig. 12a.

Fig. 12. Comparing of open-loop response from initial zero state to duty radio d= 50%
with the CPN model and the Matlab/Simulink model.

6.2 CPN Tools and Physical Response Evaluation

The results in Fig. 13 are comparing the closed-loop control features of the CPN
Tools model and the physical measurements of the open-loop buck converter
setup (see Fig. 1). In CPN Tools, the closed-loop control uses the output voltage
(vo) measurements and continuously compare against the predefined reference
value VREF . In addition, the inductor current (iL) protection function is used
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to limit the maximum current to ILIM . The physical system operates at fixed
duty ratio, d = 10%, of the switching frequency, fsw = 200 kHz.

Fig. 13. Comparison of the response from initial zero-state of the closed-loop CPN
model, FPGA Vref -controller and open-loop control physical setup with duty ratio
d= 10%

The transient response of the CPN model with closed-loop controls tends
to give an even more rapid output increase, increased steady-state and a more
critically damped output voltage (vo) response than the open-loop configura-
tion of the physical system. When evaluating the simple implementation of the
controller this is expected as the gate is switched on as long as the output volt-
age (vo) is below the set-point value, as a consequence of the control logic for
Vref shown in Fig. 10. The additional inductor current protection function is
also acting in the initial phase, t < 50µs, and limiting (iL < ILIM ) which is
a favourable feature in a design. An important note with practical limitation
for the CPN Tools controller is the high switching frequency observed in the
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initial phase (t < 50µs), which is observed in Fig. 13b. The physical transistor
switching speed has some limitation which needs to be considered in converter
design and also when considering limitation in control features.

7 Conclusions and Future Work

A power electronics buck converter with associated controller has been mod-
elled as an integrated system by applying the formalism of Coloured Petri Nets
(CPNs) using the CPN Tools. A key aspect of our CPN model is that it provides
full transparency on how both the physical parts and the controller have been
modelled. Furthermore, our modelling approach based on CPNs has been devel-
oped with a view towards being extendable to more complex converter topologies
and systems of power converters.

The CPN model of the buck converter was first validated without consider-
ing the controller and feedback loop (in open-loop) with the implemented Mat-
lab/Simulink model. The results from both models show similar characteristics
for both the output voltage (vo) and the inductor current (iL). The CPN buck
converter model was further integrated with a CPN model of the controller to
form a fully integrated CPS. The integrated model shows promising results from
operating in closed-loop controls by utilizing the features of the Zynq SoC FPGA
controller compared to open-loop response. The results that we have obtained
show a rapid voltage increase and good steady-state operation which corresponds
to the physical system response and validates the implementation.

Petri nets have been widely used for modelling, formal validation, and verifi-
cation of concurrent systems. In the domain of power electronics converters and
embedded systems, [13] presents a methodology based on low-level Petri nets.
The methodology of [13] is based on associating places with the physical sensing
and using transitions occurrences to model the switching in the power electron-
ics elements. A similar approach applying Petri nets was reported in [12,17,18].
There are also examples of extremely high frequency converters of small size,
using asynchronous circuits, which applies an interpreter of Petri Nets with Sig-
nal Transition Graphs (STG) as a framework for the controller logic [15]. Further
the approach of STG has been used to implement protection functions related to
the transistor switching [7]. Reverse approaches can be found in [1,3,9], where
the state- and control flow statements in Matlab/Simulink are used to encode
Petri net constructs. As discussed in [3], Petri nets are well-suited for modelling
power electronics systems as they can be represented as a DES whose state evolu-
tion depends on discrete events over time in the form of switching events. Still, as
our literature study has shown, the application of Petri nets to power electronics
converter systems is limited. Furthermore, the approaches and results reported
in the literature have primarily served a design objective by applying Petri nets
as a basic framework, and there is a lack of proven track record demonstrating
validation capabilities with a Petri net-based approach.

There are several interesting directions to advance the modelling approach
developed in this paper. The basic component description can be advanced to
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include unideal characteristics (parasitics effects) and further apply as a general
component library. In addition, the convert system could be implemented as
separate components of linearized models to form more complex power electron-
ics converters and option to simulate the dynamics with systems of converters.
This may allow introduction of more advanced classical analytical tools to assess
system stability and frequency response. The currently implemented closed-loop
control is simple, and many improvements are required to ensure safe operation.
The potential for exploring such more advanced control schemes is easily achiev-
able with our CPN modelling approach of the buck converter system. Another
direction is in the detailed modelling of components and integration to benefit
from the formalism in system design of the CPS and to conduct a more compre-
hensive validation against a real hardware implementation. With the higher level
of details, more advanced and time-critical control algorithms may be explored
and validated to ensure correct operation. As part of the current research trends
and challenges in improving DC-microgrids, complex converter topologies such
as MMC and systems of converters consist of time-critical control objectives
where CPNs may be applicable. Investigating a top-down approach, considering
the overall system design and improvements to the control architecture is also
a possible direction for future work. With such an approach, the level of details
may be added gradually and better support an iterative design approach. It may
serve both in the initial design phase with model checking and verification of the
structural properties to avoid formal errors and mistakes in prototyping or when
implementing the higher-level control schemes.
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13. Salinas, F., González, M.A., Escalante, M.F., de León Morales, J.: Control design
strategy for flying capacitor multilevel converters based on petri nets. IEEE Trans.
Industr. Electron. 63(3), 1728–1736 (2016). https://doi.org/10.1109/TIE.2015.
2494535

14. Singh, N.K., Saha, I.: Specification-guided automated debugging of CPS models.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 4142–4153 (2020).
https://doi.org/10.1109/TCAD.2020.3012862

15. Sokolov, D., Khomenko, V., Mokhov, A., Dubikhin, V., Lloyd, D., Yakovlev, A.:
Automating the design of asynchronous logic control for AMS electronics. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 39(5), 952–965 (2020). https://
doi.org/10.1109/TCAD.2019.2907905
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Abstract. Process mining techniques aim to discover insights into the
performance of a business process by analysing its event logs. These
logs capture historical process executions as sequences of activity occur-
rences (events). Often, event logs capture only part of the possible process
behaviour because the number of executions can be very large, partic-
ularly when many activities are executed concurrently. A highly incom-
plete event log is problematic because process mining techniques use the
event log as a starting point. This paper proposes a technique to dis-
cover behaviour from an incomplete log. In order to do so, the presented
technique builds distributive lattices from the executions captured in the
log, which have well-defined notions of completeness and can be used to
discover behaviour from few observations. The paper tests the presented
approach in a set of real-life event logs and measures the amount of
behaviour that can be discovered.

Keywords: Process mining · Distributive lattices · Partial orders ·
Concurrency detection

1 Introduction

Process mining analyses historical business process executions to help discover
fact-based opportunities for process improvements [17]. These historical execu-
tions are captured as event logs (or simply logs), where process executions are
recorded as sequences (traces) of activity instances (events). These traces of
events describe the order in which the activities were executed, thus the con-
current execution of activities are captured as interleavings. These logs are used
as the starting point for various process mining operations, but there are three
main ones: automated process model discovery, conformance checking (checking
the conformance between a model describing expected behaviour and the log
describing the observed behaviour) and process enhancement.

Event logs can capture only a handful of possible executions of the underlying
process [20]. As the complexity of the process increases, it becomes more difficult
to observe all possible traces that a process can generate, which is infinite in
cases when there is looping behaviour. However, even in the finite case, when
there is a large amount of activities that can be executed concurrently, it will
be nearly impossible to capture all possible interleavings. In the worst case, it is
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necessary to have n! traces to represent all possible interleavings of n concurrent
activities. The completeness of a log is a critical issue because the great majority
of process mining operations use the log as a starting point, and if the log is highly
incomplete, then the analysis results can be highly inaccurate. In practice, the
process model describing the actual behavior of the process is not available,
hence it is impossible to assess the completeness of the log. But by making some
assumptions about the underlying process, it is possible to gain a rough idea of
the behavior the process generates.

The seminal work of Winskel et al. [12] shows the relationship between a
family of Petri nets (conflict-free 1-safe nets), event structures and distributive
lattices. While Petri nets and event structures explicitly represent concurrency
between events, lattices represent concurrency as interleavings, where pairs of
concurrent events form squares in the lattices. Figure 1 shows an example of
the transformations defined in [12], where (a) shows a 1-safe Petri net, (b) its
event structure and (c) the distributive lattice [5,16] representing each of the
execution states of the Petri net. Note that in (c), every node in the lattice
represents an execution state where a set of events have taken place and are
ordered by subset inclusion. This lattice represents the evolution of a process
execution by means of the edges between nodes; for instance, the edge from {A}
to {A,B} represents the occurrence of event B. In the lattices, the traces that
the process can generate are represented as paths (chain of consecutive nodes in
the lattice) from the empty execution state to the final execution state. In the
example displayed in Fig. 1, any path from {} to {A,B,C,D,E} represents a
possible trace of the process.

Fig. 1. From model to domain of configurations.

The aim of this paper is twofold. First, it aims to build distributive lattices
from an event log. Each of these distributive lattices represents a concurrent
execution that is derived from some traces in the log. If the lattices constructed
from the log do not meet the distributivity property because not all interleavings
were observed, then they are completed to be distributive, which will discover
unseen behaviour. Second, by detecting missing behavior, a notion of event log
completeness is defined, which can be used as a reference to assess the quality
of a log. For the use of distributive lattices as a valid representation of an event
log, two main assumptions are made: 1) the event log represents the behaviour
of a 1-safe Petri net, so that each trace in the log represents the execution of the
Petri net, and 2) there is no auto-concurrency in the underlying process (i.e.,
two activities with the same name cannot be concurrent).
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The paper is structured as follows. Section 2 introduces the relevant defi-
nitions and notation for partial orders, lattices and event logs. Then, Sect. 3
presents the reconstruction of the distributive lattices from an event log, defines
a notion of completeness based on the discovered behaviour, and presents a set of
experiments using a set of real-life logs. Discussion and future work is presented
in Sect. 4 and related work in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

This section establishes the foundations for the rest of the paper. The first part
introduces partial orders and lattices, and the second part introduces traces and
event logs. Given that Petri nets are not a central element of this paper, we assume
the reader is familiarwith the basic notions of 1-safe Petri nets, see for example [15].

2.1 Partial Orders and Lattices

Let R be a binary relation over a set X, R is an ordering relation in X if it
is reflexive ((x, x) ∈ R for all x ∈ X), antisymmetric ((x, y), (y, x) ∈ R implies
x = y) and transitive ((x, y), (y, z) ∈ R implies (x, z) ∈ R). The following
definition presents reflexive partially ordered set, poset for short.

Definition 1 (Poset). A partially ordered set, or simply poset, is a pair 〈X, ≤
〉, where X is a set and ≤ is a reflexive, antisymmetric and transitive relation.

e

d c

b

a

Fig. 2. Hasse diagram

Posets can be graphically represented as Hasse dia-
grams. These diagrams represent the “cover” relation,
which is the transitive reduction of the graph represent-
ing the relation ≤ over the elements X. Given a pair of
elements x, y ∈ X, y covers x, denoted as x ≺ y, if
x < y and ∀z ∈ X : x ≤ z < y implies x = z. The
Hasse diagram of a poset P = 〈X, ≤〉 is shorthanded as
H(P) = 〈X, ≺〉. Figure 2 shows a Hasse diagram where
the cover relation is represented as arrows and the ele-
ments are represented by letters; e.g., b covers a in the
diagram.

Meet and join are two common operators in a poset. Given a poset 〈X, ≤〉,
x ∈ X is the meet of a set Y ⊆ X, denoted x = ⊔Y , iff (1) ∀y ∈ Y : x ≤ y
and (2) ∀z ∈ X : (∀y ∈ Y : z ≤ y) ⇒ z ≤ x. If Y contains only two elements,
X = {a, b}, then the meet operation is written as a 
 b. Analogously, the join
of Y ⊆ X is an element x, denoted as x =

⊔
Y , iff (1) ∀y ∈ Y : y ≤ x and

(2) ∀z ∈ X : (∀y ∈ Y : y ≤ z) ⇒ x ≤ z. If Y = {a, b}, the join operation is
written as a� b. The meet and join are also known as greatest lower bound (glb)
and least upper bound (lub), respectively. For example, in the Hasse diagram in
Fig. 2, d � c = e and d 
 c = b.

A lattice is a special type of poset that contains a join and a meet for every
pair of elements in the set X. One can easily check that the Hasse diagram in
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Fig. 2 represents a lattice. Lattices are distributive [5] if they are distributive
over � and 
. The following definition formalises lattices and the distributive
property.

Definition 2 (Lattices and distributive lattices). A lattice is a poset
〈X, ≤〉 where ∀x, y ∈ X : x � y and x 
 y exist. A lattice is distributive if
∀x, y, z ∈ X : x 
 (y � z) = (x 
 y) � (x 
 z).

Some elements in the lattice can be of one of three types: top element, bottom
element and prime. An element x is the bottom element if ∀y ∈ X : x ≤ y, and
x is the top element if ∀y ∈ X : y ≤ x. An element in a poset is prime if it is
neither the bottom element nor the join of two other elements, see the formal
definition below.

Definition 3 (Prime elements). Let P = 〈X, ≤〉 be a lattice. An element
x ∈ X is a complete prime (prime for short) iff for every Y ⊆ X iff

⊔
Y exists

and x ≤ ⊔
Y , then there exists y ∈ Y such that x ≤ y. The set of complete

primes for P is denoted as CP.

In a distributive lattice, prime elements are those covering exactly one ele-
ment [10]. The set of primes below an element x ∈ X (w.r.t. ≤) are denoted as
φ(x) = {x′ ∈ CP | x′ ≤ x}. For example, in Fig. 2, the elements b, c and d are
primes, and φ(d) = {d, b, a}. All the elements between a pair of elements x and
y define an interval, and it is called a prime interval if it contains only x and y.

Definition 4 (Prime interval). Let 〈X, ≤〉 be a poset, an interval between
x1, x2 ∈ X is [x1, x2] = {x3 ∈ X | x1 ≤ x3 ≤ x2} and it is prime iff x1 �= x2

and [x1, x2] = {x1, x2}.
Let pr([x, y]) = φ(y)\φ(x) be the set difference between the primes below

x and the primes below y. In the case of a prime interval [x, y], pr([x, y]) is a
singleton. A pair of prime intervals [x1, x2] and [x3, x4] are said to be equivalent,
denoted as [x1, x2] ≡ [x3, x4] iff their difference is the same prime element, i.e.,
pr([x1, x2]) = pr([x3, x4]).

2.2 Distributive Lattices and Concurrency

Winskel et al. [12] shows the connection between conflict-free 1-safe Petri nets,
elementary event structures and distributive lattices1. Elementary event struc-
tures are posets describing the execution of events by means of causality ≤,
such that an event a has to occur before an event b when a < b. The authors
showed that the execution states of the unfolding (elementary event structure)
of a conflict-free 1-safe Petri net form a distributive lattice when ordered by set
1 The connection defined in [12] considers a family of Petri nets called causal nets

where there is not conflict – every place has at most one transition connected from
and to it – and F+ is irreflexive, where F ⊆ (P × T ) ∪ (T × P ) is the flow relation
of the net with places P and transitions T .
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inclusion; furthermore, the prime elements of the distributive lattice correspond
to the events in the elementary event structure. The distributive lattice cap-
tures all possible interleavings of concurrent events, which can occur at different
executions states, and the order ≤=⊆. Additionally, the meet (
) and join (�)
operators correspond to the set intersection (∩) and union (∪) set operations,
respectively. As shown in [5,16], a distributive lattice is a ring of sets where the
union and intersection of every pair of elements are present in the lattice.

Figure 3 shows a conflict-free 1-safe Petri net N (Fig. 3a), the corresponding
elementary event structure P (Fig. 3b) and the distributive lattice H(P) of its
execution states ordered by ⊆ (Fig. 3c). In the elementary event structure, the
behavior is described by means of causality (≤) and concurrency between events,
such that events x, y ∈ X are concurrent iff ¬(x ≤ y ∨ y ≤ x). The execution
states, a.k.a. configurations, of an elementary event structure are left-closed sub-
sets of events (i.e., Y ⊆ X is left closed iff x ∈ Y ∧ x′ ≤ x ⇒ x′ ∈ Y ). In H(P),
the nodes are the execution states, and the cover relation is denoted by a line,
please disregard the different colors and line formats as they are explained later.
The cover relation describes the evolution of a configuration and represents the
occurrence of an event. For instance, in Fig. 3c, the cover relation between {a}
and {a, d} represents the execution of the event d after a. The bottom and top
element in this distributive lattice represents the state where no event has been
executed {} and the final state {a, b, c, d, e, f} where all events have occurred.

In the distributive lattice, the concurrent executions of pairs of events form
diamond-like shapes representing interleavings. For example, in Fig. 3c, the states

Fig. 3. Petri net, partial order and Hasse diagram
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{a}, {a, d}, {a, b} and {a, b, d} represent the concurrent execution of events b and
d. Note, for instance, both intervals [{a}, {a, d}] and [{a, b}, {a, b, d}] represent
the execution of the event d (i.e., pr([{a}, {a, d}]) = pr([{a, b}, {a, b, d}]) and
thus [{a}, {a, d}] ≡ [{a, b}, {a, b, d}]). In fact, all dotted lines in Fig. 3c are an
equivalence class because they represent occurrences of the event d at different
execution states.

2.3 Traces and Event Logs

An event log (or simply log) captures historical executions of a process, where
every execution of a process activity produces an event in the log. Thus, several
events in the log may stem from the same activity. Hereinafter the activities of
a process are represented as Σ and the events as E. An event can have different
attributes, such as the name of the corresponding activity, resources or execution
time. In this paper, we assume that the only available attribute of an event is
the name of the corresponding activity. In order to relate activities to events,
λ : E → Σ is a labeling function, such that the activity of an event e is denoted
as λ(e) = l, where l ∈ Σ.

Process executions are captured in the log by means of traces. These traces
are sequences of events ordered by their order of observation. A pair of traces are
considered the same if they have the same number of events and those events
are instances of the same activities executed in the same order. A log L can
contain several occurrences of the same traces, thus a log is defined as a multiset
of traces. In some occasions, the set representation of the log – containing only
distinct traces – will be used and represented as Set(L).

Definition 5 (Trace and event log). Given a finite set of events E, a trace
σ = 〈e1, e2, . . . , en〉 ∈ E∗ is a sequence of events and an event log L ⊆ E∗ is a
multiset of traces. The set of distinct traces in the log is represented as Set(L).
The number of occurrences of the same trace in the log (multiplicity) is denoted
as γ(σ).

In the presence of concurrency, a single process execution can be captured in
the log by different traces. These traces contain the same activity occurrences
but vary in order. For example, 〈a, b, e, c, d, f〉 and 〈a, d, b, c, e, f〉 are two possible
traces generated by a process where d is concurrent with b, c and e (see Fig. 3b).

Let us define some notation for traces. The length of a trace σ =
〈e1, e2, . . . , en〉 is shorthanded as |σ| = n and it is the number of events in
σ. The event at the ith position is accessed as σ[i]. The prefix σ[1, k] of a trace
σ contains the first k elements of the trace, i.e., σ[1, k] = 〈e1, e1, . . . , ek〉 for
1 ≤ k ≤ |σ|.

The labelling function previously defined for events can be extended to pre-
fixes of traces where λ(σ[1, k]) = 〈λ(e1), λ(e2), . . . , λ(ek)〉. A trace or prefix of a
trace can be represented as a set or as a multiset of labels. These representations
of a (prefix of a) trace σ are denoted as Set(σ) and MultiSet(σ), respectively.
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The cardinality of a set and a multiset Z is denoted as |Z| and refers to the num-
ber of elements in Z; note that in the case of multisets, the cardinality considers
the multiplicities of the elements in Z.

The following section presents the main contribution of the paper, where
traces are used as “seeds” to construct distributive lattices.

3 Distributive Lattices of an Event Log

This section presents the main contributions of the paper. The central idea is the
reconstruction of distributive lattices representing execution states of a process
execution. This reconstruction starts by merging groups of event log traces into
lattices, such that prefixes of a trace represent an execution state, and then
missing elements are added until the lattices are distributive.

The completion operation over the lattice can discover new behavior by intro-
ducing new elements (unseen execution states or event executions) until the dis-
tributivity property is met. However, in the presence of noise, this operation
can introduce a large amount of new behavior that may be undesirable. Thus,
Subsect. 3.1 presents the steps for the construction of the distributive lattice
from a set of traces, and Subsect. 3.2 describes a way to tame the possibly large
amount of behavior introduced during the completion operation.

Fig. 4. Overview of the proposed approach.

3.1 Reconstruction of Distributive Lattice

The reconstruction of the distributive lattice is inspired by two main existing
results: the behavior of a conflict-free 1-safe Petri net forms a distributive lat-
tice [12] and a distributive lattice is a ring of sets [5,16]. Thus, the proposed app-
roach consists of three central steps (dotted area in Fig. 4): 1. group traces rep-
resenting the same process executions (interleavings of concurrent executions),
2. construct a lattice for each group of traces, and 3. complete the lattice until it
is distributive (missing elements can be computed by using two set operations:
union and intersection).
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Before presenting the three steps of the reconstruction, let us define a special
labelling for handling traces with events with the same name. In a trace, every
event is unique but, when the process originating the log contains repeatable
behavior, several events within a trace can stem from the same activity. In order
to differentiate the events with the same label within a trace σ, λ̄ is a special
labelling function, such that λ̄(e) = λ(e)w(e,i), where w(e, i) = |{e′ = σ[j] | 1 ≤
j ≤ i ∧ λ(e′) = λ(e)}|. The special labelling can be applied to traces, where
λ̄(σ) = 〈λ̄(e1), λ̄(e2), . . . λ̄(e|σ|)〉. Intuitively, the special label of an event has a
sub-index representing its number of occurrence within the trace. For instance,
given a trace σ = 〈a, b, c, c . . . 〉, then λ̄(σ) = 〈a1, b1, c1, c2 . . . 〉.
Grouping Traces. The first step is to define a notion of equivalence over
the log traces, such that a pair of traces are equivalent if they represent the
same process execution. A simple notion of equivalence is multiset equivalence,
where traces are equivalent if they have events of the same activities that were
executed the same number of times. For example, the traces 〈a, b, e, c, d, f〉 and
〈a, d, b, c, e, f〉 would be considered as multiset equivalent because they represent
a single execution of the same activities. Note that if the special labelling is used,
the multiset equivalence of a trace can be defined as a set equivalence as shown
next.

Definition 6 (Set equivalent traces). A pair of traces σ, σ′ are set equiv-
alent, denoted as σ ∼set σ′, iff Set(λ̄(σ)) = Set(λ̄(σ′)). I.e., |σ| = |σ′| and
λ̄(σ[i]) ∈ Set(λ̄(σ′)) for all 1 ≤ i ≤ |σ|.

Given that the aim of the presented approach is to build a distributive lat-
tice, where the top element represents the final process execution, the minimum
condition to consider a pair of traces as equivalent is multiset equivalence.

Constructing the Lattice. The second step is to build a lattice from a set
of ∼set-equivalent traces. A trace σ represents execution states, where a prefix
σ[1, k] is the state where events 〈e1, e1, . . . , ek〉 have occurred. Indeed, each ele-
ment in the lattice will represent a trace prefix. The following definition formally
defines a prefix equivalence between traces.

Definition 7 (Equivalent prefixes). Let σ1, σ2 be two traces. The prefixes
σ1[1, k] and σ2[1, k] are equivalent iff σ1[1, k] ∼set σ2[1, k].

Given a group of equivalent traces G, let σ[1, k]≡ = {σ′[1, k] | σ′ ∈
G ∧ σ[1, k] ∼set σ′[1, k]} be the equivalence class for the trace prefix σ[1, k].
The lattice representing G is the pair 〈X,⊆〉, where X represents the equivalence
classes for the prefixes of traces in G and the order between the elements in X
is the subset containment between a pair of elements in the equivalence classes.

Definition 8 (Lattice of traces). Given a log L, the lattice of a set of traces
T ⊆ L is a pair 〈X, ⊆〉, where X = {σ[1, k]≡ | σ ∈ L ∧ 1 ≤ k ≤ |σ|} ∪ ε and
ε is a special state representing the bottom element, and x ⊆ y for x, y ∈ X, if
λ̄(σ′) ⊆ λ̄(σ′′), such that σ′ ∈ x and σ′′ ∈ y.
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Observe that the above definition constructs a valid lattice because there is a
unique bottom element ε and a unique top element Set(σ) that can be the meet
and join elements, respectively, for any pair of elements. Please, observe that in
the Hasse diagram we denote ε as the empty set {}.

Reconstructing Distributive Lattices. The completion of the lattice con-
sists of introducing the relations and elements needed to transform any lattice
into a distributive one. This completion operation is based on the fact that a
distributive lattice is isomorphic to a ring of sets [5], where the union and inter-
section of every pair of elements is also an element in the lattice.

Definition 9 (Lattice completion). Let D = 〈X,≤〉 be a lattice. The com-
pletion of D for a distributive lattice is a lattice D∗ = 〈Y,≤〉 where X ⊆ Y and
(x ∪ y) ∈ Y and (x ∩ y) ∈ Y for all x, y ∈ Y .

Consider the conflict-free 1-safe Petri nets shown in Fig. 5. The possible exe-
cution states of these nets can be represented as the distributive lattices displayed
in Fig. 5. These lattices can be reconstructed from only two traces (represented
by the black elements and relations). For example, traces 〈a, b, c, d〉 and 〈b, c, d, a〉
are the only traces necessary to reconstruct the lattice in Fig. 6a, where activity
a can occur after {b} and {b, c}; after completion, the lattice represents four
traces. In Fig. 6b, traces 〈a, b, c, d〉 and 〈c, d, a, b〉 can be used to generate the
distributive lattice where {a, c} is the union (intersection) of {a} and {c} (resp.
{a, b, c} and {a, c, d}), which represents six traces. Finally, for the reconstruction
of the lattice in Fig. 6c only traces 〈a, b, c〉 and 〈c, b, a〉 are necessary to obtain
the lattice representing six traces.

Fig. 5. Petri nets with computations represented in the distributive lattices in Fig. 6
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Fig. 6. Completed distributive lattices representing the execution states of the nets in
Fig. 5

Note that other equivalences have been proposed in the context of process
mining (see [19]) for constructing transition system-based representations of an
event log, which are not necessarily lattices (e.g., some of the transitions systems
can represent loops). [19] puts forward the idea of closing the diamonds (called
extend strategy) in a transition system. This operation is able to handle cases
as that in Fig. 6a, but it is limited to discover relations between events, and
fails to discover missing elements (i.e., execution states). Thus, [19] would fail
to reconstruct the lattices shown in Figs. 6b and 6c. This discussion is expanded
in the related work in Sect. 5.

Fig. 7. Lattice

Another example of the possible lattices that can be
reconstructed is presented in Fig. 7. The displayed lattice
is built from the traces 〈a, b, e, c, d, f〉 and 〈a, d, b, c, e, f〉.
This is not a distributive lattice because neither the union
of the states {a, b, d} and {a, b, e}, nor the intersection of
{a, b, c, d} and {a, b, c, e} are present. The completion of
the lattice in Fig. 7 is that shown in Fig. 3c, where all
added elements and relations are in red.

As noted previously, by construction, a completed lat-
tice is distributive because it is a ring of sets and hence
distributive. The following proposition simply states the
fact that the result of the completion operation is a dis-
tributive lattice.

Proposition 1. The completion D∗ of a lattice D is dis-
tributive.

Before moving to the next subsection, let us discuss
a possible encoding of the lattice. Using the special labelling function, each
execution state can be encoded as a bit-vector, where every position in the vector
represents an event’s special label. A value of 1 at a given position represents
the occurrence of such an event. The bit-vector encoding will be particularly
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useful during the completion of the lattice when many union and intersection
operations will be performed.

3.2 Containing the Amount of Behaviour Discovered During
Completion

The completion operation, while simple, can be a double-edged sword. In the
case of processes capable of generating large amounts of distinct traces (for
example when there are many concurrent activities), even the majority of the
behaviour can be reconstructed from a few traces acting as seeds. For instance,
the lattices in Fig. 6 can be fully reconstructed from only two traces. However,
this makes the technique too sensitive to noise or exceptional behavior that is
not part of the “usual” process behaviour. In this case, a single (noisy) trace
can lead to the insertion of a large amount of behaviour when computing the
missing elements of a lattice. Note that, the filtering of noise in an event log
is an orthogonal problem that has been studied independently (see for example
the works in [6,8,22]), thus a noise-filtering technique can be applied to the log
as a pre-processing step before the reconstruction of the lattices.

In order to control large numbers of behaviours that might be introduced
during the completion operation, this subsection presents a strategy to, first,
compute the completeness of a log, and then to control the amount of behavior
introduced in the lattice.

Measuring Completeness. The completeness of a lattice is defined with
respect of the number of traces represented after completion. Then, a Hasse
diagram of a distributive lattice is seen as a graph where every path (sequence
of contiguous edges) from the bottom to the top element represents a trace.
Formally, a path p in a poset 〈X,⊆〉 is p = 〈s1, s2, s3, . . . , sn〉, where si ∈ X,
for 1 ≤ i ≤ n, and sj ≺ sj+1 for 1 ≤ j < n. Note that for extracting the traces
from the paths, it is necessary to look at the events represented by the prime
intervals of two consecutive nodes. Thus, the trace represented by a path p is
t(p) = λ(〈pr([s1, s2]), pr([s2, s3]), . . . , pr([sn−1, sn])〉). For instance, Fig. 7 has
a path p = ({}, {a}, {a, b}, {a, b, e}, {a, b, c, e}, {a, b, c, d, e}, {a, b, c, d, e, f}), and
the corresponding trace of p is t(p) = 〈a, b, e, c, d, f〉.

The measure of completeness Θ for a lattice is computed as follows. Θ(D) is
defined as the ratio between the total number of paths in the completed lattice
D∗ and the number of paths in the lattice D prior completion, where D#P and
D∗

#P are the set of paths in the lattice and its completed version, respectively.

Θ(D) =
|D#P |
|D∗

#P | (1)

A Hasse diagram is a directed acyclic graph, thus using dynamic program-
ming, the number of paths can be computed in O(V +E) where V is the number
of set elements and E is the number of cover relations.

The completeness measure can be used to control the amount of behavior
introduced in the lattice during completion. For instance, the lattice of a set of
traces G can be deemed as valid if Θ(D) ≥ β, where β is a given threshold. Then,
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if Θ(D) < β then G has to be refined into subgroups and the lattices for such
subgroups have to be constructed independently. Intuitively, if the completion
operation introduced more behavior than desired according to β, i.e. Θ(D) < β,
it is necessary to subdivide the group of traces where the completion operation
will introduce less new elements, relations and, as a consequence, fewer paths.
The way to subdivide the groups of traces is left for future work. In the current
tool implementation, a hierarchical clustering was used as a black box, such that
the distance between σ and σ′ is |{σ[i] | λ(σ[i]) �= λ(σ′[i]) for 1 ≤ i ≤ |σ|}|. In
words, the distance between a pair of traces is the number of events that are not
the same at a given position in both traces.

Consider the lattice in Fig. 6c. In this lattice, the black lines represent two
traces 〈a, b, c〉 and 〈c, b, a〉, while the red elements are inserted. In this example,
the completed lattice represents six traces, while only two were given as seeds,
thus Θ(D3) = 2

6 = 0.333. Then, if β > 0.333, then it would be necessary to build
one lattice for the trace 〈d, c, e〉 and one for 〈e, c, d〉.

3.3 Experiments

In order to test how much behaviour we can discover in real-life event logs,
the approach was implemented and tested using a set of publicly available logs.
This section presents the results of the presented approach with a series of real-
life event logs. For reproducibility purposes, the library, benchmark and results
(lattices and elementary event structures were included for completeness) can
be found in this link: Latticer at https://blogs.unimelb.edu.au/bpm/tools/.

Datasets. The experiments were conducted using 11 publicly available real-
life logs obtained from the 4TU Centre for Research Data.2 Table 1 shows the

Table 1. Event logs

Log name #Events #Distinct events #Traces #Distinct Traces Trace length

Min. Max.

BPIC12 262200 36 13087 4366 3 175

BPIC13cp 6660 4 1487 183 1 35

BPIC13inc 65533 4 7554 1511 1 123

BPIC14f 369485 9 41353 14948 3 167

BPIC151f 21656 70 902 295 5 50

BPIC152f 24678 82 681 420 4 63

BPIC153f 43786 62 1369 826 4 54

BPIC154f 29403 65 860 451 5 54

BPIC155f 30030 74 975 446 4 61

RTFMP 561470 11 150370 231 2 20

SEPSIPS 15214 16 1050 846 3 185

2
https://data.4tu.nl/Eindhoven University of Technology/categories/Commerce Management
Tourism and Services/13500.

https://blogs.unimelb.edu.au/bpm/tools/
https://data.4tu.nl/Eindhoven_University_of_Technology/categories/Commerce_Management_Tourism_and_Services/13500
https://data.4tu.nl/Eindhoven_University_of_Technology/categories/Commerce_Management_Tourism_and_Services/13500
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characteristics of these logs including the number of (unique) events, (unique)
traces, and the minimum and maximum length of traces for each event log.

Results. The distributive lattices for each of the event logs were computed
with different thresholds β ranging from 0.0 to 1.0. Table 2 shows the number of
lattices generated with different thresholds β. Intuitively, the lower β, the more
behaviour is accepted when completing the lattice and potentially the fewer
lattices.

The best result was obtained in the case of BPIC13i, where the number
of lattices decreased from 1394 to 535 for β = 1.0 and β = 0.0, respectively;
whereas the smallest reduction in number of lattices was observed in the case
of BPIC155f , where the number decreased from 295 to 264 for β = 1.0 and
β = 0.0, respectively.

Table 2. Number of lattices for different β

Threshold β

Dataset 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

BPIC12 3921 3921 3914 3832 3778 3632 3606 3479 3390 3310 3159

BPIC13cp 152 152 151 139 134 131 125 120 113 110 106

BPIC13i 1394 1394 1382 1341 1292 1236 1204 1143 1040 949 535

BPIC14f 13670 13656 13582 13398 13086 12559 12428 11843 11297 10511 7225

BPIC151f 295 295 295 295 295 295 295 288 278 277 264

BPIC152f 416 416 416 416 412 410 410 409 402 398 368

BPIC153f 785 785 785 775 750 738 736 708 702 682 598

BPIC154f 451 451 451 451 442 437 437 425 423 419 370

BPIC155f 446 446 446 446 436 436 436 436 434 434 424

RTFMP 152 152 151 137 123 108 106 94 91 86 85

SEPSIS 791 791 784 777 751 736 734 709 673 621 434

Even though the reduction of the number of traces can be considerable, the
biggest impact of the technique is in the amount of behaviour introduced in the
lattices. Table 3 shows the total number of paths represented by the constructed
lattices. As shown in the last column, β = 0.0 can lead to a huge amount of paths.
For example, in the case of BPIC154f , the number of paths increases from 451
when β = 1.0, which is the number of distinct traces, to more than 2 billion
when β = 0.0. In this latter example, the great majority of the paths is extracted
from a lattice that represents 2,087,976,600 paths and that is computed from 14
distinct traces. A reason for this can be that there is noise in the logs, or traces
that are multiset equivalent but do not represent executions of a concurrent
activities (e.g., the process can have activities with the same name that are
simply performed in a specific order).
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Table 3. Number of paths in the lattices for different β

Threshold β

Dataset 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

BPIC12 4366 4366 4368 4446 4507 4797 4877 5338 6003 7028 1128721

BPIC13cp 183 183 184 191 197 202 213 234 286 319 461

BPIC13i 1511 1511 1515 1540 1590 1670 1747 1967 2543 3565 95633528

BPIC14f 14948 14951 14979 15132 15513 16596 16984 19269 22870 34609 628335832

BPIC151f 295 295 295 295 295 295 295 318 369 378 1454

BPIC152f 420 420 420 420 424 428 428 433 475 507 4308820

BPIC153f 826 826 826 836 863 889 899 1007 1052 1347 5416969

BPIC154f 451 451 451 451 460 470 470 506 517 571 2092799796

BPIC155f 446 446 446 446 456 456 456 456 470 470 5032

RTFMP 231 231 232 245 262 292 302 402 440 628 753

SEPSIS 846 846 848 855 882 912 928 1029 1254 1986 208796

Figures 8 and 9 show the lattices for each dataset, where every dot represents
a lattice. Each graph shows the threshold which was used to create the lattice,
the lattice’s completeness Θ(D) and the number of paths it represents after
completion. Please note that the dot colors are according to the thresholds β. In
these graphs it is possible to observe that there are few lattices that contribute
with the largest amount of paths when the threshold β = 0.0.

4 Discussion and Future Work

The main purpose of this paper is to present distributive lattices as a represen-
tation that can guide the discovery of unseen behavior from event logs. However,
the advantages of using distributive lattices as a representation of the information
of the event logs goes beyond the approach presented in this paper. Distributive
lattices can be used as the bridge to go from traces representing interleavings
of a concurrent process to models with true concurrency semantics, such as the
elementary event structures (see [12]). This is particularly relevant because event
structures have been proposed as suitable representations for the behaviour of
process models and event logs [7].

The construction of distributive lattices from event logs has many potential
uses and directions for our future work, we list some of them below.

Detection of duplicates: As a future work, we will explore the possibility
to detect duplicates (activities which carry the same name but are executed in
different contexts). In particular, we want to explore if the detection of these
duplicates can improve the quality of the models that can be generated using
automated discovery of process models.
Detection of undesirable behaviour: While this paper was focused on deriv-
ing behavior from observed traces, it may also represent behaviour that should
be forbidden if the log is complete. In this case, any other trace inserted during
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Fig. 8. Thresholds, completeness and number of paths for the lattices per dataset
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Fig. 9. (2) Thresholds, completeness and number of paths for the lattices per dataset
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the construction and completion of the distributive lattices can be a trace that
should be forbidden by the process.
Process model discovery from partial orders: A promising direction for
future work is to define automated model discovery techniques that take partial
orders as input and generate process models with guarantees (e.g., free-choice
sound workflow nets or models in BPMN notation). Some works moving in
this direction are [3,4,14]. Currently, the majority of automated process model
discovery techniques take event logs as input and derive concurrency relations
over the activities, rather than over the events (e.g., [2,11]).
Generate unseen behavior as event log traces: Once the distributive lat-
tices have been constructed, it is possible to compute all traces they repre-
sent. While the generation of the traces is trivial, in this paper we only con-
sider control flow information and do not take into account other possible event
attributes. As a future work, we will explore the possible attributes that can be
derived/extrapolated during the generation of the traces from the distributive
lattices.

Finally, another promising direction for future work is to consider other types
of lattices (e.g., semi-modular lattices) and the Petri net classes to which they
correspond.

5 Related Work

The closest related work is that in van der Aalst et al. [19], where different
strategies for constructing transitions systems from event logs are presented.
Once the transition systems are constructed, the authors put forward the idea
of adding new edges between states in the transition systems (called “extend”
strategy) as a way to discover behaviour that was not observed in the log but was
likely to be present in the process. Our work differs from such approach in two
ways. First, we adopt a well-known formalism, distributive lattices, with a well-
defined notion of completeness. Thus, when introducing new behaviour in the
distributive lattices, it is possible to determine when all missing behaviour has
been added, which is not the case when using transition systems. Furthermore,
the extend strategy in [19] can only add missing edges between pairs of states,
but in the case of distributive lattices, it is possible to discover missing states as
well as edges.

Another related work is that on concurrency oracles. [9] uses concurrency
oracles to transform event log traces into elementary event structures. In such
case, the amount of behaviour added when inserting concurrency will depend on
the quality of the oracle. In particular, [9] uses the alpha relations [18] as oracle,
which deems a pair of events as concurrent if the activities were ever observed in
different orders in the log. For example, alpha relations deem (a, b) concurrent if
a is executed before b in one trace, and b is executed before a in another trace.
These relations can be spurious because it is possible that the order between
a and b is particular to some executions (e.g., a is always executed before b in
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the trace 〈c, a, b〉; whereas b is always executed before a in the trace 〈f, b, a〉). In
order to address that issue, [1] put forward the idea of local concurrency oracles
that find concurrency relations that only apply to particular areas of the traces.
Such technique uses two threshold, arbitrarily defined by the user, to control the
sensitivity of the oracle. Different from the concurrency oracle approaches, the
use of distributive lattices gives a reference as to what is the missing behaviour
without having to rely on arbitrary thresholds or inserting concurrency derived
from distinct computations.

The problem of measuring the completeness of an event log is not new. Prob-
abilistic approaches to measure log completeness can be found in [13,21,23].
Different from these approaches, our aim is to discover the behaviour that is
not observed but likely to be present in the process (under some assumptions).
Instead, the probabilistic approaches aim at computing a lower bound represent-
ing the completeness of a log. While informative, it does not allow us to obtain
the missing behavior.

While there are few techniques that compare directly to the approach pre-
sented in the paper, process mining operations, and in particular automated
process discovery techniques, implicitly discover behavior when abstracting the
behavior in a log (e.g., when creating models [2,11]). In fact, a way to assess the
quality of a discovered process model is by measuring its generalization, behavior
that is not observed in the log but likely to be part of the process [17]. The app-
roach presented in this paper can be seen as a pre-processing step that discovers
concurrency from groups of equivalent traces, which can then be inserted during
the construction of other more sophisticated models, such as models in BPMN
notation.

6 Conclusion

This paper presented an approach to discover unseen behavior from an event log.
The approach is based on the reconstruction of distributive lattices, which rep-
resent execution states of process instances. This approach was inspired by the
results presented in [12], where the relationship between a family of Petri nets
(conflict-free 1-safe nets), event structures and lattices was shown. There, the
authors showed that the lattices representing the execution states of the Petri
nets were distributive when ordered by subset inclusion. The approach presented
in this paper starts by computing lattices from groups of traces representing the
same computation. Then, these lattices are completed by inserting missing ele-
ments until the distributivity property is fulfilled. Using the discovered behavior,
a measure of completeness is defined to assess the volume of traces discovered
during the completion operation. Finally, it was shown how this measure of
completeness can be used to control the amount of behavior discovered.

In order to test the effect of the proposed approach in real-life logs, a set
of experiments were run to measure the amount of behavior discovered in a
collection of publicly available event logs. It was observed that in some event
logs, the number of traces that could be computed from the distributive lattice
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could be very large. The latter may be due to noise in the log, which can lead
to the discovery of too much behavior that may not be part of the “normal”
process. Thus, while the completion operation is simple, it can be too sensitive
to noise. Nonetheless, by using the measure of completeness as threshold, it is
possible to control the amount of discovered behavior.

Acknowledgements. The authors would like to thank all the reviewers for their
valuable comments. Special thanks to reviewer 2 for their insightful suggestions.
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Abstract. This paper presents the model of Layered Memory Automata
(LaMA) to deal with languages involving infinite alphabets, with prac-
tical applications in the analysis of datastreams, or modeling complex
resource usages in concurrent systems. The LaMA can be seen as an
extension of the Finite Memory Automata (FMA) with memory lay-
ers and the capacity of dealing with an unbounded amount of mem-
ory. Despite the increased expressiveness, the LaMA preserve most of
the “good” properties of the FMA, in particular the closure properties
for the so-called quasi-regular constructions. Moreover, the layering of
the memory enables particularly economical constructions, which is an
important focus of our study. The capacity of dealing with an unbounded
amount of memory brings the LaMA closer to more powerful automata
models such as the history register automata (HRA), thus occupying an
interesting position at the crossroad between the operational and the
more abstract points of view over data-languages.

Keywords: data languages · memory automata · register automata ·
unbounded memory · quasi-regular languages

1 Introduction

Automata on datawords, involving infinite alphabets, represent an influential
foundation for the analysis of datastreams [13]. Resource analysis frameworks
for concurrent systems have also been investigated based on similar automata-
theoretic foundations, e.g. in [1] or our own previous work [7]. Quoting [10]:

Actions of concurrent processes, when concurrency and communication
are restricted to very simple patterns, are another possible interpretation
of infinite alphabets.

The classification of automata models for datawords can be roughly decom-
posed in two major families. The first family, pioneered by the finite memory
c© Springer Nature Switzerland AG 2022
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automata (FMA) of [10] (colloquially known as register automata), adopts a
mostly operational point of view similar to the classic finite state automata (FA).
With FMA, letters (ranging over an infinite alphabet) can be temporarily or per-
manently stored in a finite amount of dedicated memory cells (or registers). They
can then be compared with letters read at a later time during the recognition
process. These models characterize an important notion of freshness: the prop-
erty of a recorded letter to be unique among the ones already stored. In the
FMA, this is obtained thanks to an injectivity constraint: the fact that the reg-
isters must hold distinct letters at any given time. The languages recognized by
FMA are called quasi-regular, emphasizing their “classical” roots. In particular,
they enjoy important closure properties, especially for the regular operators with
the notable exception of complementation. Moreover, several important decision
problems (e.g. emptiness checking) for FA remain decidable in FMA and related
models. At the other end of the spectrum, the family related to data automata
(DA) [5] adopts a more abstract point of view. They adopt principles, such as
guessing that are very high level in comparison. Unsurprisingly, the decision
problems are much harder for these models.

An important distinction can be made between these two operational vs.
abstract families regarding the nature of the memory store. In the FMA and
related models, the memory is finitely bounded. The automata cannot store more
letters, in a given configuration, than the number of available registers. As a
consequence, it is impossible expressing a language, which needs an unbounded
number of different letters such as the language of words where each letter occurs
at most once. This is a particularly strong constraint that one would like to lift
in order to take more advantage of the infinite alphabets.

In this paper, we introduce an extension of the FMA, namely the model of
Layered Memory Automata (LaMA), with both practical and theoretical bene-
fits. Essentially, the intent is to establish a link between the abstract and opera-
tional families of automata. On the one side, the LaMA possess a strong oper-
ational nature in that they are a (conservative) extension of the FMA with
the extra ability to handle an unbounded amount of memory. LaMA are non-
deteministic finite state automata that have a finite number of variables, each of
them able to store a finite set of letters. Upon reading a letter, a transition can
test if the letter is already stored in a variable, can store the letter in a variable,
or can reset a variable to emptyset. Like FMA, the variables of LaMA are under
an injectivity constraint, which means that two variables cannot stores the same
letter. This constraint is partially relaxed with the introduction of a finite set of
memory layers. Variables are grouped into layers, and the injectivity constraint
is only required between variables of a same layer.

Other works designed models extending FMA to manage an unbounded num-
ber of different letters. The FRA (Fresh-Register Automata) introduce the his-
tory, a memory cell able to store a set of letters from the infinite alphabet not
restricted by injectivity constraint. It is used as well as the registers of FMA
to express the notion of globally fresh letter, a letter never stored in a regis-
ter before. However, this extension only slightly increases the expressivity of
FMA as the set of languages recognized by FRA is not close to concatenation
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and Kleene star. The HRA (History-Register Automata) uses multiple of this
histories instead of registers to store letter of the infinite alphabet. Without
injectivity constraints, HRA uses a similar transition as M-FMA (M-Automata
from [10]), the transition guard is satisfied when the input letter is stored in
the exact set of histories annotating the transition. HRA transitions can clear
a history and transfer the inputted letter among histories. Our model LaMA is
similar to HRA, but without the possibility of performing transfers among its
variables (histories) and preserving the injectivity constraint from FMA.

As a primary contribution, we argue that the LaMA provide a kind of a sweet
spot between the “good” operational properties of the FMA, and (at least some
of) the expressiveness of higher-level models with unbounded memory capabili-
ties. A second contribution we defend in this paper is the economical nature of
the proposed model regarding the (quasi-)regular constructions. The regular con-
structions proposed for FMA in [10,15] or [8] all yield automata of exponential
sizes. Despite the fact that the LaMA strictly subsume the FMA (with unbounded
memory), the constructions we propose for concatenation, disjunction and con-
junction1 of (the language recognized by) LaMA remain polynomial. Despite its
simplicity, the idea of the memory layers plays here a crucial role. Unfortunately,
the construction for the Kleene star remains exponential for LaMA. In [2] we intro-
duce a variant of the LaMA with transfer capabilities that allows to obtain a poly-
nomial construction. However, this variant only preserves the membership prob-
lem, and most other “good” properties are lost. Because of this and of space con-
straints, this variant will not be presented in detail in this paper.

The outline of the presentation is as follows. The LaMA model is presented
in Sect. 2 with a discussion of related work, and its main closure properties
are discussed in Sect. 3. Important language inclusion links between LaMA and
other automata models are presented in Sect. 4. Finally, in Sect. 5 we discuss the
important aspect of the sizes of the regular constructions in LaMA and related
models.

2 Layered Memory Automata

We present in this section the model of layered memory automata (LaMA), an
extension and improvement of the ν-automata presented in previous works [3].
The principle is to recognize datawords based on a countably infinite alphabet
of letters, that we denote by U . During the recognition process, the LaMA use
variables to identify memory cells that can store sets of letters read as input.

The main specificity of this memory model is its structuring in layers. A
memory context M corresponds to a memory divided in distinct layers. Each
layer, identified by a natural number, can store a finite set of letters (over the
infinite alphabet). Thus, for example, we can say that, in M , a variable X
contains (is associated with) the finite set E ⊆ U at layer l, which will be
denoted by M(X l) = E. By a slight abuse of terminology, we will often write
1 Without complementation, the conjunction operator becomes primitive in FMA and

related models.
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“the variable X l” to in fact designate “the variable X at layer l”. The formal
definition is given below.

Definition 1 (Memory context). Given a finite set of variables V , a finite
set of layers L and an infinite alphabet U , we define a memory context M as
an association function whose signature is as follows: M : V × L → 2U where
M(X l) ⊂ U is the finite set of letters associated with variable X l.

The most important feature of memory contexts is the following injectivity
constraint.

Definition 2 (Injectivity of layers). Let a memory context M be defined on
the finite sets of variables V and layers L, the injectivity constraint is:

∀(X,Y ) ∈ V × V,∀l ∈ L,X �= Y =⇒ M(X l) ∩ M(Y l) = ∅
In more informal terms: it is forbidden for a given letter to be stored in the

memory corresponding to distinct variables at the same layer. If compared to
FMA, we can say that each layer resembles the memory context of a FMA, but
that distinct layers remain independent. The second, and fundamental difference
with FMA is that the memory of LaMA is unbounded : each memory cell X l can
store an arbitrary number of letters.

Thanks to the injectivity constraint, we can define the notion of a fresh letter
at layer l, i.e., a letter that is associated with no variable of the layer l. This
subsumes the usual notion of a fresh letter, i.e., a letter being fresh at all layers.

We now explain the composition of a LaMA as state-transition machines.

Definition 3 (Layered Memory Automata). Layered Memory Automata
are defined with respect to an infinite alphabet U and are represented as tuples
of the form A = (Q, q0, F,Δ, V, L,M0) where:

– Q is a finite set of states2,
– q0 ∈ Q and F ⊆ Q are respectively the initial state and the set of accepting

states,
– Δ is a finite set of transitions3, described below in Definition 4 and 5,
– V and L are respectively the finite set of variables and the finite set of layers,

and
– M0 : V × L �→ 2U is the initial memory context.

The initial memory context M0 indicates the letters initially associated with
each variable. This makes it possible to define a finite alphabet of constants,

2 The term state is rather connoted, being also used in e.g. “state-space” to designate
“runtime” artifacts. We will use the term configuration to designate the notion of a
“running state”.

3 For transitions, we will make the distinction between the transition itself, and its
firing, i.e., the fact of effecting the transition on a previous configuration, to construct
a next configuration, at “runtime”.
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similarly to FMA, with thus the possibility to simulate classical FA (a feature
we will not take advantage of in this paper).

The set Δ of transitions encompasses two kinds of transitions: (1) the observ-
able transitions that are fired when a letter is read in input, and which consume
the letter, and (2) the ε-transitions, which are non-observable and thus can be
fired at any time (without consuming the input).

Definition 4 (Observable transition). The observable transitions are tuples
of the form: δ = (q, ν, α, ν, q′) ∈ Δ where:

– q, q′ ∈ Q are the source and destination states of the transition,
– ν ⊆ 2V ×L is the set of variables modifiable by the transition,
– α : L → V ∪ {�} indicates for each layer the variable consulted by the transi-

tion,
– ν ⊆ 2V ×L is the set of variables which are reset by the transition.

Input letters can only be consumed when firing such observable transitions.
The precise definition of a transition firing is given below (cf. Definitions 7 and 8)
but we summarize the informal intent now. The α function indicates the variables
consulted by the transition, with the constraint that at most one variable can be
consulted for each layer. The special symbol � is used to indicate that no variable
is to be consulted for this layer when firing the transition. When reading a letter
u, the transition may be fired if, for each variable X l such that α(l) = X:

– either X l is not modifiable (X l �∈ ν) and u is already associated with X l;
– or, if X l is modifiable (X l ∈ ν), then u is fresh for layer l (i.e., associated

with no variable of layer l).

Because of the injectivity constraint, only a fresh letter can be associated with
a variable X l. That is, upon reading, the letter must not be associated with any
variable in layer l, not even X l.

Remark 1 (Universal transition). If no variable is consulted by a transition (i.e.,
∀l ∈ L,α(l) = �), then the transition can be fired when reading any letter.

The set ν is the set of variables that must be reset by the transition. No
letter is associated with the variables of ν in the configuration reached by the
transition.

Definition 5 (ε-transition). The non-observable ε-transitions are tuples of
the form δε = (q, ν, q′) ∈ Δ where:

– q, q′ ∈ Q are the source and destination states of δε,
– ν ⊆ 2V ×L is the set of variables reset by the transition.

We now turn to the dynamics of the model, describing the behavior of LaMA
as language recognizers. We begin with the definition of a configuration, i.e., a
“running state“.
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Definition 6 (configuration). A configuration of a LaMA is a pair (q,M)
of a state q and a memory context M . Given an automaton A =
(Q, q0, F,Δ, V, L,M0), the initial configuration is (q0,M0) and an accepting con-
figuration is a pair (qf ,M), for a reachable memory context M and an accepting,
final state qf ∈ F .

A dataword belongs to the language of a LaMA if there is a (finite) sequence of
firings of transitions going from the initial configuration to an accepting one. For
observable transitions the question is the following: given a source configuration
(q,M) and an input letter u ∈ U , is there an observable transition δ ∈ Δ which
is enabled such that, as an effect, we can construct a destination configuration
(q′,M ′)? In such a case, the actual firing is denoted by (q,M) u−→

δ
(q′,M ′) (for

observable transitions), or alternatively (q,M) ε−→
δ

(q′,M ′) (for ε-transitions).

Observable transitions, to be fired, must be enabled, under the following
conditions.

Definition 7 (Enabling of an observable-transition). For a configuration
(q,M) and an input letter u ∈ U , an observable transition (q, ν, α, ν, q′) ∈ Δ
is enabled if and only if for each layer l ∈ L and variable X ∈ V such that
α(l) = X ∈ V :

– if X l is modifiable (X l ∈ ν) then no variable must be already associated with
u in layer l, i.e., �Y ∈ V, u ∈ M(Y l);

– otherwise (X l �∈ ν), u must be associated with X in layer l, i.e., u ∈ M(X l).

Informally, the role of the enabling conditions is: (1) to preserve the injectivity
of each layer, and (2) to check the capability of consuming the input and store it
in the required memory cells. The ε-transitions are enabled independently from
the inputted letter. Once a transition is enabled, it can be non-deterministically
fired, which produces as an effect a resulting configuration, as explained by the
following definition.

Definition 8 (Effect of a transition firing). For a source configuration
(q,M), an input letter u ∈ U and an enabled transition δ ∈ Δ, the firing
(q,M) u−→

δ
(q′,M ′) produces the configuration (q′,M ′) constructed as follows:

– if δ = (q, ν, q′), then M ′ consists of M where the variables in ν are reset,
M ′ = M [ν → ∅],

– if δ = (q, ν, α, ν, q′), then in M ′ the modifiable variables are associated with
u and the variables of ν are reset,

i.e., for each X l, M ′(X l) =

⎧
⎨

⎩

∅ if X l ∈ ν (1)
M(X l) ∪ {u} if α(l) = X ∧ X l ∈ ν (2)
M(X l) if X l �∈ ν ∨ α(l) �= X (3)

The memory context M ′ produced by a transition firing is the result of
a combination of three different cases of effects, denoted by (1) - (3) in the
definition above. Case (1) corresponds to the reset of the memory cell X l, which
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q0 q1 q2 q3
νS1, S1

ν{X1, Y 2}, X1, Y 2

S1

Y 2, νY 2

Fig. 1. A layered memory automaton recognizing words of the form abbccdd . . . a

is thus emptied. Case (2) corresponds to the actual consumption of the letter
u, which is placed in all the required memory cells. Finally Case (3) aims at
preserving the unchanged parts of the memory.

The language recognized by a LaMA is now naturally defined by sequences of
firings from the initial configuration to accepting ones. To simplify the definition,
we first introduce the notion of a weak firing that encompasses the firing of a
single observable transition, surrounded by (possibly empty) sequences of ε-
transitions.

We denote by (q,M) u=⇒
δ

(q′′,M ′′) a weak transition firing, corresponding to

any firing sequence of the form: (q,M) ε−→
γ

∗ · · · u−→
δ

(q′,M ′) ε−→
η

∗
(q′′,M ′′).

Definition 9 (Language of a LaMA). Let A be a LaMA and L(A) the lan-
guage it recognizes. A word w = u1 u2 . . . un ∈ U∗ belongs to L(A) iff there exists
a sequence of weak transition firings: (q0,M0)

u1=⇒
δ1

(q1,M1)
u2=⇒
δ2

· · · un==⇒
δn

(qn,Mn)

such that qn ∈ F .

We depict in Fig. 1 an example of a LaMA with 4 states and 5 transitions.
The memory structure of the automaton involves the variables X, Y , S with
two distinct layers 1 and 2.

For the sake of readability, we use a slightly simplified notation for the tran-
sition label. A transition labeled ν{X1, . . .}Y 1Z2 . . . ν{U1, . . .} in a diagram,
from a state labeled q to a state labeled q′, corresponds more formally to a
transition δ = (q, ν, α, ν, q′) such that ν = {X1, . . .}, α = {1 �→ Y, 2 �→ Z, . . .}
and ν = {U1, . . .}. Also, we omit the brackets for singleton sets, and we also
omit the empty sets and the epsilons. For example, in the diagram of Fig. 1, for
the transition labeled Y 2, νY 2 we in fact mean ν = ∅, α = {1 �→ �, 2 �→ Y }
and ν = {Y 2}. Thus, the transition labeled S1 actually means ν = ν = ∅ and
α = {1 �→ S, 2 �→ �}.

Now that the simplified notation is in place, we can explain the behavior of
the depicted automaton. The language it recognizes is the following one:

{sx0x0x2x2 . . . xnxns | ∀i, j ∈ N, s, xi ∈ U , i �= j =⇒ xi �= xj}

This is an example inspired from [3] where we study the pattern recognition
in dynamic graphs, with datawords representing sequences of edges established
dynamically (so-called link streams). In this representation, the automaton char-
acterizes a Hamiltonian circuit as a pattern.



50 C. Bertrand et al.

We assume the initial memory context to be empty, i.e., no letter is initially
associated with the variables. The role of variable S is to identify and memorize
the first letter of the word (here a node of a graph) through the transition
from q0 to q1. This is stored in S at layer 1, denoted S1. The cycling transitions
between q1 and q2 allow to read intermediate letters of the word. The variable X1

memorizes these intermediate letters when ensuring that letters in even positions
are all different from each other. Since X1 belongs to the same layer as S1, the
injectivity constraint ensures that all letters are different from the first one.
Then, the variable Y 2 ensures that the letters in odd positions are identical to
the ones which immediately precede them. In the transition going from q1 to q2
the letter in even position is associated with Y 2. The only letter enabling the
transition from q2 to q1 is the one previously associated with Y 2. Then, Y 2 is
reset in order to track the next letter, and not confuse it with the one previously
stored. Eventually, the last letter is read, which has to be in even position and
to be the same letter as the one stored in S1 to enable the transition from q1 to
the accepting state q3.

3 Regular Constructions and Closure Properties

One of the most important properties of FMA, beyond their extended expres-
siveness, is the fact that they preserve most of the “good” properties of FA,
especially closure properties for all the regular constructions, except for comple-
ment. This aspect is emphasized by the authors of [10] by defining the class of
languages recognized by FMA as quasi-regular.

The LaMA we introduce in this paper correspond to a strict extension of the
FMA (and in fact an extension of both the FRA and the GRA, as discussed in
Sect. 4). But most importantly, we aim with the LaMA to an extension that is
as conservative as possible, wrt. the “good” properties of FMA. In particular,
the LaMA ensure the same closure properties as the FMA wrt. the regular
constructions. In fact, most regular constructions are greatly facilitated by the
availability of layers that allow to compose memory contexts without interference
(e.g. composing two LaMA for concatenation). With the notable exception of
the Kleene star, the proof schemes thus resemble the ones of FA. As such, we
will only present proof sketches, the details being available in [2]. Note, also,
that Sect. 5 discusses quantitative aspects related to these constructions.

Theorem 1 (Closure properties of basic operators). Let the two LaMA
A1 = (Q1, q1, F1,Δ1, V1, L1,M1) and A2 = (Q2, q2, F2,Δ2, V2, L2,M2), such
that L1 ∩ L2 = ∅, then:

– (Concatenation) there is a LaMA A1·2 such that L(A1·2) = L(A1) · L(A2).
– (Union) there is a LaMA A1∪2 such that L(A1∪2) = L(A1) ∪ L(A2).
– (Intersection) there is a LaMA A1∩2 such that L(A1∩2) = L(A1) ∩ L(A2).

Proof (Proof sketches). The assumption L1∩L2 = ∅ is without loss of generality
because a trivial fact is that the injective renaming of the set of layers of a LaMA
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(with fresh layer identities) does not change the language it recognizes. Now, we
consider the basic operators in turn.

Concatenation. It is possible to construct automaton A1·2 following the classi-
cal construction of finite state automata, which consists in adding ε-transitions
allowing to access the initial state of A2 from each accepting state of A1. As the
layers of A1 and A2 are disjoint, their memories are actually put side by side
and the variables of both automata do not interact together. Thus, we ensure
that there is no side effect of A1 on A2 and the initial values of the variables of
A2 do not change when firing transitions in A1.

Union. Similarly as above, the classical construction of FA applies here, which
consists in adding a new initial state connected to the former initial states of A1

and A2 with ε-transitions (without reset). As for concatenation, the variables of
both automata do not interact thus the initial context of the A1 has no impact
on the recognized language of A2.

Intersection. As the memories of both automata are disjoint, it is possible to
use the classical construction of a synchronized product of automata. The syn-
chronization of two non-ε-transitions consists forming a transition labeled with
the union of the sets ν, α and ν of both transitions. Formally, the synchronization
of observable transitions (q1, ν1, α1, ν1, q

′
1) ∈ Δ1 with (q2, ν2, α2, ν2, q

′
2) ∈ Δ2 is

the transition : ((q1, q2), ν1 ∪ ν2, α1∩2, ν1 ∪ ν2, (q′
1, q

′
2)) where ∀i ∈ {1, 2}, l ∈

Li, α1∩2(l) = αi(l). This construction is illustrated in Appendix A.

The case of iteration, or Kleene star, is a little bit less straightforward because
during an iteration the memory context of the automaton may change, however
such effect should be “canceled“ for further iterations. Indeed, each (regular)
iteration has to recognize exactly the same language, and not a language changed
due to memory effects of previous iterations.

Theorem 2 (Closure property of Kleene star). Let A = (Q, q, F,Δ,
V, L,M) be a LaMA, then there is a LaMA A∗ such that L(A∗) = L(A)∗.

Proof (Proof sketch). The proposed construction is based on the classical one
for FA which requires adding “ε-loops” from accepting states to the initial, thus
allowing to iterate on the content of automaton A. As with all kinds of register
automata, one difficulty with LaMA is that the language recognizable from a
configuration depends on its memory context. And the latter can change at
each iteration. In a way similar to what is done in the case of M-automata [10],
the required “cancelling” of memory effects is realized thanks to a mechanism
simulating a reset of the memory context to its initial value M0. To do so, the
principle is to duplicate the set of variables of layers in L on a set of “shadow”
layers Ls. The variables of L are used to memorize the initial values of M0

while the variables of Ls are used to store the fresh values recognized during
the iterations. This way, in order to retrieve the initial values of the memory
context, it is enough to remove at the end of each iteration all the letters stored
in the variables of Ls.

If a transition is enabled in A when the letter read is associated with variable
X l, then this transition has to be duplicated in A∗ such that it is possible to
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q0 q1 q2 q3
νY 1, Y 1

Y 1 Y 1

νX 1

X1

νX 1

X1

νX 1

X1

νX 1

X1

Y 1

Fig. 2. LaMA accepting the language L�=2.

access either X l (the initial values) or X ls (the possibly updated ones), with
ls the “shadow” layer corresponding to l. Moreover, if a transition in A has a
guard referencing several variables, it is necessary to duplicate this transition in
A∗. For example, a transition accessing the variables X l, Y k will be duplicated
4 times, once for each pair of : (X l, Y k), (X ls , Y k), (X l, Y ks), (X ls , Y ks). This
duplication is required, in the absence of e.g. a transfer mechanism (cf. Sect. 5),
because it is not effective to consult the variables in the layers of L and Ls

simultaneously. Indeed, their sets of values are disjoint (e.g. initially the layer Ls

is empty). In consequence, this construction leads to an exponential growth in
terms of the number of transitions of the resulting automaton A∗. Moreover, it
is also necessary to know which variables have been reset during each iteration,
which is realized by duplicating states, implying also an exponential growth in
terms of constructed states. These exponential growth phenomena are discussed
further in Sect. 5.

The infinite nature of the alphabet manipulated by all the classes of memory
automata (at least all the classes discussed in this paper) is in contradiction
with the principle of complementation and determinism. Thus, unsurprisingly
the following negative result also applies to LaMA.

Proposition 1 (Complement). The set of languages recognized by LaMA is
not closed under complement.

Proof. The LaMA represented in Fig. 2 recognizes the language L�=2 of words
containing at least one letter not appearing twice in all words. It does so by non-
deterministicaly selecting a letter when it occurs for the first time, associating
it to variable Y 1 and accepting the word only if this letter does not occur in the
word exactly twice. The variable X1 is used to store all the other letters and to
never forget them, which ensures that the selection of a letter may only happen
at its first occurrence.

The complement of L�=2 is the language L=2 containing only words with
all their letters occurring exactly twice. In order to encode L=2, it is necessary
to enumerate the occurrences of all the letters of words recognized by this lan-
guage. An automaton recognizing this language would have to count an arbitrary
number of occurrences of distinct letters. With a finite number of variables and
states, such a construction is not possible with LaMA.

A deterministic LaMA is an automaton such that for all configurations, when
reading any letter of U , at most one transition can be fired. This restriction
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implies that when reading a globally fresh letter there is at each step only one
way to identify it (associate it with a variable).

Proposition 2 (Determinism). The set of languages recognized by determin-
istic LaMA is strictly included in the set of languages recognized by non-
deterministic LaMA.

Proof. The language L�=2 recognized by the non-deterministic LaMA from Fig. 2
cannot be recognized by a deterministic LaMA. To recognize this language,
the automaton would have to “find” a letter that will not occur exactly twice.
However, the words from this language are finite but may contain an arbitrary
amount of different letters. Thus, it is not possible to track the number of occur-
rences of each of them with a finite amount of variables and layers.

4 A Classification of LaMA (Related Work)

Bounded memory Unbounded memory

FMA[10]

VFA [9]

FRA [15]

GRA [11]

νA [3] LaMA HRA [8]
DA[5]

CMA [4]

[15]

[9]

[11]

[8][3]

[9]
[8]

[8]

[9]

Fig. 3. A classification of automata over datawords, based on [12]. The arrows represent
(strict) language inclusions, the dashed arrows are presented in Sect. 4, and dotted lines
denote language incomparability.

Figure 3 represents most of the automata models we investigated while develop-
ing our proposition. The arrows on the figure are (strict) language inclusions. In
this discussion, we denote by A � B the fact that the languages recognized by
automata of model A strictly includes those of model B. For example, we know
from [15] that the FRA (fresh register automata) can simulate the FMA, and
thus FMA � FRA. The models related by dotted lines are knowingly incompara-
ble. In this section we discuss the positioning of the LaMA in the family of data
language recognizers. More precisely, we present the language inclusions depicted
by dashed arrows on the figure. Since we cannot describe the related automata
models with enough details in this paper, the discussion remains mostly informal,
with the complete proof available in [2].
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The LaMA were designed, broadly speaking, as a variant of FMA with
unbounded memory capabilities. It is thus expected that LaMA are able to sim-
ulate FMA. Since the LaMA with one layer correspond exactly to ν-automata,
we can reuse the result of [6] to show that LaMA are able to simulate the FMA.

Proposition 3. FMA � LaMA

However, in technical terms, it is interesting to compare the LaMA with
other models proposed as extensions or variations of the FMA. FRA (fresh reg-
ister automata) is a conservative extension of FMA capable of dealing with (a
restricted kind of) unbounded memory. It is possible to simulate a FRA with a
2-layer LaMA, and thus to simulate a FMA by transitivity.

Proposition 4. FRA � LaMA

Proof (Proof sketch). The FRA model is based on a memory composed of a set
of registers capable to memorize a unique letter, and constrained by injectivity.
The model is thus quite similar to the FMA, however with a little but important
“twist”. An FRA also provides a “special” variable capable of recording all the
letters read since the beginning of the recognition. The transitions of FRA are
found in three categories that can be enabled in three different ways:

1. when reading a letter already present in some register;
2. when reading a letter which is locally fresh, i.e., not present in any register

currently;
3. when reading a letter which is globally fresh, i.e., not encountered since the

beginning of the recognition.

It is not difficult to provide these mechanisms with a LaMA. The required mem-
ory context contains two layers. Each variable of the first layer corresponds to
a register of the simulated FRA. The second layer, independent, only concerns
the “special” variable to simulate its content. Since the memory cells of LaMA
are not bounded, we can say that all the variables of LaMA are “special”, in the
FRA understanding of the term. Put in other terms, the FRA can be seen as a
special cases of LaMA with a FMA-like layer of bounded memory, and a unique
variable of unbounded memory in a second layer.

The LaMA are also strictly more expressive than the FRA. One may observe,
indeed, that FRA are not closed under concatenation. For example, the language
L�= of words composed of all-distinct letters, may be recognized by both FRA
or LaMA. But the language L�= · L�= is only recognized by LaMA.

The GRA (guessing register automata) model is an interesting variant of
FMA using a non-deterministic assignation (guessing) principle. By proving,
below, that LaMA are able to simulate GRA it emphasizes the fact that the
LaMA are also capable of simulating its guessing principle, and not only the
operational principles of the FMA. This establishes an interesting connection
with the “logical” family that also rely on guessing features (note the inclusion
link between VFA and DA in Fig. 3).
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Proposition 5. GRA � LaMA

Proof. The GRA model is a variant of FMA with a modified variable assign-
ment method. The memory of a GRA is composed of a finite set of registers,
each containing at most one letter, together with an injectivity constraint. The
transitions of GRA are found in two categories:

– the observable ones are annotated by the register containing the letter that
has to be consumed to fire the transition;

– the ε-transitions are annotated with a register which is reassigned to a non-
deterministically guessed letter.

The assigned letter will be decided when firing the next observable transition
annotated with this register. However, if other registers are reassigned in the
meantime, they cannot be assigned the same letter due to the injectivity con-
straint.

Given a GRA, it is possible to construct a LaMA which recognizes the same
language. After the reassignment of a register r, an arbitrary letter of the infi-
nite alphabet is non-deterministically assigned to it. To find out which letter
was assigned to r, it is necessary to memorize all letters currently assigned to
the other registers and those that will be assigned to them until an observable
transition labeled with r is fired. This transition will be enabled by any letter
not recorded since the reassignation.

Hence, for each register of a GRA, the simulating LaMA will use as many
variables as necessary to memorize all the values stored by every other regis-
ters between its reassignment and the transition that will determine the guessed
value. This way, when an observable transition allowing to determine the value
of the input letter is enabled, the injectivity constraint ensures that the letter
is different from those already associated with other registers. The actual con-
struction is in consequence quite intricate, and we delegate to [2] for the formal
details.

The inclusion is strict since it is known (from [11]) that there is no GRA that
can recognize the language of words of any length with all letters occurring only
once.

Perhaps the most interesting inclusion link is the one connecting the LaMA
to the more expressive HRA (history-register Automata).

Proposition 6. LaMA � HRA

Proof (Proof sketch). The HRA memory is constituted of variables associated
with histories that can store an unbounded amount of letters. This is very much
like the ν-automata and thus the LaMA with a single memory layer. However,
a very important difference is that the HRA histories are not restricted by an
injectivity constraint. There are thus quite similar to the M-automata of [10],
but with unbounded memory. The observable transitions are annotated with
two sets of histories: R (read) and W (write). A transition is enabled when the
input letter is exactly associated with all histories of R. After the firing, in the
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Fig. 4. HRA recognizing a language which is not recognized by a LaMA

resulting configuration, the letter is associated exactly to all histories of W . Thus,
the letter can be transferred among the histories, or erased from them, in the
resulting configuration. The ε-transitions are annotated with a set of histories
C containing histories cleared (reset) in the resulting configuration.

It is possible to simulate a LaMA with a HRA by encoding the memory
layers and the injectivity constraint. The simulating HRA has the same set of
states, as well as a history for each variable of the original LaMA. Since the
observable transitions of HRA cannot reset variables, they are split in two parts:
(1) a transition for the enabling and firing, and (2) a transition for the reset.
To simulate the enabling and firing of a LaMA transition, multiple observable
transitions are needed in the HRA:

– for each variable X l consulted in the LaMA transition, α(l) = X,X l �∈ ν, the
matching history is part of both R and W ;

– for each variable X l modified in the LaMA transition, α(l) = X,X l ∈ ν, the
matching history is only part of W .

As R needs to encompass the histories containing the input letter in order to
be enabled, when no variable is consulted for some layer, ∃l, α(l) = �, then the
transition needs to be duplicated in the HRA to search if the value is present
in one of the histories of this layer. If multiple layers are not consulted, then
the transition is duplicated to search the letter in each combination of histories
for those layers. To enforce the layer injectivity constraint, the construction is
designed so that the transitions are never annotated by histories that simulate
variables of the same layer. This way, during the recognition, it is not possible
to reach a configuration in which the histories corresponding to the same layer
contain a common letter.

The observable transitions can remove the input letter from the histories it
is annotated with, when R\W �= ∅. It will thus be possible to delete a particular
letter from a history, which is impossible for LaMA. Thus, it is rather easy to
come up with a language recognizable by a HRA, and not recoginizable by a
LaMA. For example, no LaMA can recognize the language of the HRA in Fig. 4,
which is the language of words of the form w = uv where:

– the prefix u is a word whose length is even and in which all letters are
different;
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– the suffix v = v1v2v3 . . . vn is a word in which each letter vi satisfies that if i
is odd then the occurrence of vi is in an even position in w, and if i is even
then the previous occurrence of vi is in an odd position in w.

It is known, from [8], that the HRA recognize languages that are incompara-
ble with those of the CMA and DA (class memory automata and data automata).
This is due to the capability of resetting histories in HRA, which cannot be sim-
ulated by a CMA/DA. We have not studied the problem finely, but, for the same
reason, we expect the incomparability of LaMA vs. CMA/DA, although it is for
now only a conjecture.

The connections we established with related automata models allow us to give
some insight about the complexity (and decidability) of some decision problems
concerning LaMA. First, the strict inclusion of FMA induces the undecidability
of the same problems as FMA, in particular the language inclusion and the
universal language problems (cf. [14]). The inclusion links discussed previously
allow to establish the following:

Fact 1. The emptiness checking and membership problems for LaMA are both
NP-hard.

Proof. The emptiness checking problem consists in detecting if the language of
an automaton is empty. The problem is known to be NP-complete in the case of
FMA [10,14]. Moreover, the same problem is known to be Ackermann-complete
for HRA [8], thus trivially decidable for LaMA. The situation is in fact exactly
the same for the membership problem: NP-complete for FMA and “at-most”
Ackermann-complete for HRA. Indeed, the membership problem can be solved
through emptiness, although for some automata model the membership problem
can be solved by better, dedicated ways (starting with FA). It is unlikely that
this would be the case for LaMA since it is already not the case for FMA (cf.
[10,14]).

As a future work, we intend to study more finely the complexity of these
two problems for LaMA. It would be interesting to see if the use of unbounded
memory without a transfer mechanism simplifies the emptiness problem (put in
other terms, do we reach the Ackermann bound?).

5 A Quantitative Point of View on Regular Constructions

Expressiveness is not the only important aspect to consider when comparing
classes of automata. For example, many “regular”-expression packages (e.g.
PCRE4) adopt the non-deterministic finite state automata (NFA) rather than
the theoretically “more efficient” and equivalent determistic ones (DFA), because
of the exponential growth when translating the former to the latter. In the same
spirit, the prototype analysis tool we develop5 requires the construction of an
4 Perl compatible regular expressions, cf. https://www.pcre.org/.
5 PaMaTina, cf. https://github.com/clementber/MaTiNA.

https://www.pcre.org/
https://github.com/clementber/MaTiNA
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Table 1. Translation between FMA and M-FMA

�states �transitions �registers

FMA → M-FMA |Q| ∗ (|M |!) |Δ| ∗ (|M |!) |M | + 1

M-FMA → FMA |Q| ∗ |M ||M| |Δ| ∗ |M ||M| |M |

automaton, akin to a (timed variant of the) LaMA, from an extension of reg-
ular expressions (cf. [2,3]). In this compilation step, the size of the resulting
automaton plays a significant role.

In this section we compare the sizes of the regular constructions for three
models of automata: the LaMA, the FMA (taking the constructions proposed in
[10]) and the HRA (taking those of [8]). Note that these sizes are not given in
the aforementioned papers, and we established them while learning about those
constructions. As a consequence, all encountered errors about these computa-
tions would be ours, not those of the original authors. We evaluated the sizes
of the constructions of the FMA presented in the proof of Theorem 3 of [10].
For the HRA, we evaluated the sizes of the constructions presented in Sect. 3 of
[8]. The GRA [11] and FRA [15] constructions are not studied here as they are
based on the ones presented for FMA and HRA. For the sake of concision, we
only consider the (most intricate) cases of concatenation and Kleene star in this
paper (the other constructions being also detailed in [8,10]).

Most importantly, our intent is not to say that the construction we propose
are “better”, in any sense of the word, but instead: (1) to motivate the fact that
reasoning about the size of the constructions is important, and (2) trying to find
ways to make such construction as compact as possible. A positive point of view
is that if we find compact constructions for LaMA, then they can also be used
almost directly as compact constructions for FMA (by first translating FMA to
LaMA, which is both straightforward and economical), and similarly for FRA,
GRA and VFA.

To compare the constructions, the sizes we consider are the worst-case esti-
mates of the automata, with respect to:

– the number of states in the automata, denoted by |Q|,
– the number of transitions, denoted by |Δ|,
– and the number of memory identifiers, denoted by |M |.
What we call memory identifiers here are the registers in the FMA, the histories
in the HRA and the variables X l ∈ V × L in the LaMA. This quantification
on the identifiers does not take into account the number of letters that may be
stored in memory, simply because there is no bound in the case of LaMA and
HRA. In the following tables we denote by |Σ| the number of letters initially
stored in the memory of an automaton and by |L| the number of layers of the
LaMA.

In [10], the regular constructions are not established directly for FMA but
rather rely on the equivalent model of M-Automata (M-FMA). Thus, the FMA
are first converted to M-FMA, which in fact already causes an exponential
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growth, as described on Table 1. The M-FMA resulting from the translations
use approximately the same number of registers. However, the loss of the injec-
tivity constraint in M-FMA causes an explosion in the number of states required
to simulate the correct (i.e., injective) use of registers. The duplication of transi-
tions follows from the duplication of states. Perhaps surprisingly the exponential
growth is also present when translating back to FMA (which could perhaps be
avoided by keeping a little bit more structural information in M-FMA). But as
it is, none of the regular constructions proposed for FMA has polynomial size.

Concatenation. Table 2 represents the sizes of the automata constructed for
concatenation. The constructions for the three models try to duplicate that of
the finite state automata by keeping the structures of the two automata and by
adding transitions allowing access to the initial state of the suffix automaton at
the end of the prefix automaton path.

Table 2. Sizes of constructions for concatenation L(A1) · L(A2)

�states �transitions

M-FMA |Q1| + |Q2| |Δ1| ∗ 2|M2| + |Δ2| ∗ 2|M1|

HRA (|Q1| + |Q2|) ∗ 2|Σ2|∗|M2| (|Δ1| + |Δ2|) ∗ (|Σ2| + 1) ∗ 2|Σ2|∗|M2|

LaMA |Q1| + |Q2| 2 ∗ |Δ1| + |Δ2|
�registers

M-FMA |M1| + |M2|
HRA max(|M1|, |M2|) + |Σ2|
LaMA |M1| + |M2|

In M-FMAs, the constructed automaton uses all the registers of the two
concatenated automata, as well as their initial valuations. However, due to the
nature of the transitions, similar to that of the HRA, it becomes necessary to
duplicate all the transitions for each subset of registers of the other automaton.
Thus, this leads to a combinatorial explosion in the number of transitions in the
automaton resulting from the construction.

In the HRA, before the construction is carried out, all the letters initially
associated with the histories of the suffix automaton are extracted from the two
automata. These letters are each associated with a new history. This preserves
the initial value of the suffix automaton memory when transiting the prefix one.
However, when these values are extracted, it is necessary to add transitions in
order to preserve the language of the automaton. Thus, in the resulting automa-
ton, the transitions leading to the initial position of the suffix automaton reset
all the histories except those containing the extracted letters.

Kleene Star. Table 3 presents the sizes of constructions for Kleene star. The
construction used in the LaMA is inspired from that of M-FMA. Thus, the sizes
are of the same order.
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Table 3. Sizes of constructions for the Kleene star L(A)∗.

�states �transitions �registers

M-FMA |Q| ∗ 2|M| |Δ| ∗ 22∗|M| 2 ∗ |M |
HRA |Q| ∗ 2|Σ|∗|M| |Δ| ∗ 2|Σ|∗|M| ∗ (|Σ| + 1) |M | + |Σ|
LaMA |Q| ∗ 2|M| |Δ| ∗ 22∗|M| (2 ∗ |M |) + |L|

For the Kleene star, the construction in the HRA consists first of all in
extracting all the letters initially stored in the histories and in storing them
in new dedicated histories, as in the construction for concatenation. It is again
necessary to duplicate the transitions and the states so that the automaton
always recognizes the same language. So at the end of each iteration it suffices
to reset all the other histories in order to reset the memory to its initial value.

As a summary, the constructions proposed for LaMA are in most cases more
compact than the ones proposed for FMA (and M-FMA) and HRA. This is not
shown here but the situation is the same for all the regular operators. In fact, all
constructions are polynomial for LaMA with the notable exception of the Kleene
star. To address this issue, we propose in [2] a variant of LaMA with a transfer
mechanism that allows to copy all the letters associated with a variable from one
layer to another layer. This allows to “dump” the memory from the layers in L to
the layers in Ls in the final transitions of an iteration, enabling an exponential
reduction in the number of required states and transitions. However this new
mechanism is quite “powerfull”, causing a loss of several “good” properties of
the model (if only the closure properties). However, it is shown in [2] that this
alternative model is conservative wrt. the membership problem, which explains
why we use it in practice.

6 Conclusion

In this paper we introduced the model of LaMA, characterized by the lay-
ered structure of their memory, and the fact that this memory is not bounded.
We mostly discussed the quasi-regular constructions (insisting on quantitative
aspects) and language inclusion links with related models. Beyond such (impor-
tant) theoretical considerations, we find important to emphasize the fact that
the LaMA were also designed with practical applications in mind. This is the
main reason why we emphasized so much the “compactness” of the quasi-regular
constructions, the layered architecture playing a significant role here.

For future works, we intend to study two more aspects of the model. First,
we know that the class of deterministic LaMA is strictly less expressive than
the non-deterministic ones. However, this class is still worth studying given the
fact that the membership problem becomes much easier in this case. Second, we
would also like to investigate the relationship between subclasses of MSO and
language classes recognizable by LaMA, or a restricted version (without reset
for example) as it is done for DA wrt. ∃MSO.
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A Examples of Regular Constructions (Complement
to Sect. 3)

q0 q1 q2A1 :
νX1, X1 ε, νX1

p0 p1A2 :

νY 2, Y 2, X3

X3, νX3

q0p0 q1p1 q2p1A1∩2 :

ν{X1, Y 2}, X1, Y 2, X3

νX1, X1, X3, νX3

ε, νX1

Fig. 5. Intersection construction

In this appendix, we give some more details about the constructions correspond-
ing to the intersection and iteration of LaMa, as a complement to Sect. 3.

Intersection. Figure 5 illustrates the synchronized product of two LaMA on the
left, A1 and A2, used to produce the LaMA recognizing the intersection of the
languages of A1 and A2. The resulting LaMA A1∩2, on the right of the Figure,
contains only the states reachable by transitions from the initial states. The
construction is thus quite similar to the usual construction for finite automata.
One notable difference relates to then handling of observable transitions. In fact,
only observable transitions are synchronized together, while non-observable ones
are not. The reason is the firing of non-observable transition does not consume
letters, and are thus “transparent” wrt. language intersection.

Iteration. Figure 6 illustrates the Kleene star construction, with on top a LaMA
A, recognizing language L(A), and below the LaMA A∗ constructed such that
L(A∗) = L(A)∗.

The construction is in principle close to the equivalent construction for finite
automata. However, the handling of memory layers requires some care. To illus-
trate this, the automaton A in the figure uses two layers, 1 and 2. To simulate the
reset, two so-called “shadow layers”, resp. 3 and 4, are added in A∗. A variable Ω
is added on the layers 1 and 2 (even if not used on 2) to check the layer freshness
without altering the values initially associated with their other variables.

The states of A are duplicated in A∗ where they are annotated with the
variables that were reset since the beginning of an iteration. These annotations
are used in the construction to create the outgoing transitions. When the variable
X1 is consulted by a transition in A, the matching transitions in A∗ are going to
consult both X1 and X3 if X1 was never reset before. However, if X1 was reset,
then only X3 is consulted as the values associated with X1 should have been
deleted. When the variable X1 is modified by a transition of A, the matching
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q0A : q1 q2

νX1, X1

νX1

X1, Y 2

q

qε

q0, ∅A∗ : q1, ∅ q2, ∅

q0, {X1} q1, {X1} q2, {X1}

ε

ε

ε

ν{Ω1, X3}, Ω1, X3

νΩ1

X1, Y 2

X3, Y 2

X1, Y 4

X3, Y 4
νX

3

ν{Ω1, X3}, Ω1, X3

νΩ1

νX3, X1, X3

νX3

X3, Y 2

X3, Y 4

Fig. 6. Kleene star construction

transition in A∗ will modify X3 and it will also check if the value is fresh on
layer 1, using Ω1. However, if X1 is supposed to have been reset earlier in the
iteration, then the transition is duplicated to check if the letter is associated
with X1 instead, as the values it is associated with are supposed to be fresh.
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Abstract. In Time Petri nets (TPNs), time and control are tightly con-
nected: time measurement for a transition starts only when all resources
needed to fire it are available. For many systems, one wants to start mea-
suring time as soon as a part of the preset of a transition is filled, and
fire it after some delay and when all needed resources are available. This
paper considers an extension of TPN called waiting nets decoupling time
measurement and control. Their semantics ignores clocks when upper
bounds of intervals are reached but all resources needed to fire are not
yet available. Firing of a transition is then allowed as soon as missing
resources are available. It is known that extending bounded TPNs with
stopwatches leads to undecidability. Our extension is weaker, and we
show how to compute a finite state class graph for bounded waiting nets,
yielding decidability of reachability and coverability. We then compare
expressiveness of waiting nets with that of other models and show that
they are strictly more expressive than TPNs.

1 Introduction

Time Petri nets (TPNs) are an interesting model to specify cyber-physical sys-
tems introduced in [22]. They allow for the specification of concurrent or sequen-
tial events, modeled as transitions occurrences, resources, time measurement,
and urgency. In TPNs, time constraints are modeled by attaching an interval
[αt, βt] to every transition t. If t has been enabled for at least αt time units it
can fire. If t has been enabled for βt time units, it is urgent: time cannot elapse,
and t must either fire or be disabled. Urgency is an important feature of TPNs,
as it allows for the modeling of strict deadlines, but gives them a huge expressive
power. In their full generality, TPNs are Turing powerful. A consequence is that
most properties that are decidable for Petri Nets [15] (coverability [25], reach-
ability [21], boundedness [25]...) are undecidable for TPNs. Yet, for the class
of bounded TPNs, reachability [24] and coverability are decidable. The deci-
sion procedure relies on a symbolic representation of states with state classes
and then on the definition of abstract runs as paths in a so-called state class
graph [7,20].

There are many variants of Petri nets with time. An example is timed Petri
nets (TaPN), where tokens have an age, and time constraints are attached to arcs
c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 67–89, 2022.
https://doi.org/10.1007/978-3-031-06653-5_4
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Table 1. Decidability and complexity results for time(d) variants of Petri nets.

Reachability coverability Boundedness

Time Petri Nets Undecidable [19] Undecidable [19] Undecidable [19]

(bounded) Decidable Decidable –

Timed Petri nets Undecidable [27] Decidable [1,16] Decidable [16]

(bounded) Decidable Decidable –

Restricted Urgency Undecidable [2] Decidable [2] Decidable [2]

(bounded) Decidable Decidable –

Stopwatch Petri nets Undecidable [8] Undecidable [8] Undecidable [8]

(bounded) Undecidable [8] Undecidable [8] –

TPNR Undecidable [23] Undecidable [23] Undecidable [23]

(bounded) Decidable [23] Decidable [23] –

Waiting Nets Undecidable (Remark 1) Undecidable (Remark 1) Undecidable (Remark 1)

(bounded) PSPACE-Complete (Theorem 2) PSPACE-Complete (Theorem 2) –

of the net. In TaPNs, a token whose age reaches the upper bound of constraints
becomes useless. The semantics of TaPNs enjoys some monotonicity, and well-
quasi-ordering techniques allow to solve coverability or boundedness problems [1,
26]. However, reachability remains undecidable [27]. We refer readers to [18] for
a survey on TaPN and their verification. Without any notion of urgency, TaPN
cannot model delay expiration. In [2], a model mixing TaPN and urgency is
proposed, with decidable coverability, even for unbounded nets.

Working with bounded models is enough for many cyber-physical systems.
However, bounded TPNs suffer another drawback: time measurement and con-
trol are too tightly connected. In TPNs, time is measured by starting a new clock
for every transition that becomes enabled. By doing so, measuring a duration for
a transition t starts only when all resources needed to fire t are available. Hence,
one cannot stop and restart a clock, nor start measuring time while waiting for
resources. To solve this problem, [8] equips bounded TPNs with stopwatches.
Nets are extended with read arcs, and the understanding of a read arc from a
place p to a transition t is that when p is filled, the clock attached to t is frozen.
Extending bounded TPNs with stopwatches leads to undecidability of coverabil-
ity, boundedness and reachability. This is not a surprise, as timed automata with
stopwatches are already a highly undecidable model [10]. For similar reasons,
time Petri nets with preemptable resources [9], where time progress depends on
the availability of resources cannot be formally verified.

This paper considers waiting nets, a new extension of TPN that decouples
time measurement and control. Waiting nets distinguish between enabling of a
transition and enabling of its firing, which allows rules of the form “start mea-
suring time for t as soon as p is filled, and fire t within [α, β] time units when p
and q are filled”. This model is strictly more expressive than TPN, as TPN are a
simple syntactic restriction of waiting nets. Waiting nets allow clocks of enabled
transitions to reach their upper bounds, and wait for missing control to fire.
A former attempt called Timed Petri nets with Resets (TPNR) distinguishes
some delayable transitions that can fire later than their upper bounds [23]. For
bounded TPNR, reachability and TCTL model checking are decidable. However,
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delayable transitions are never urgent, and once delayed can only fire during a
maximal step with another transition fired on time. Further, delayable tran-
sitions start measuring time as soon as their preset is filled, and hence do not
allow decoupling of time and control as in waiting nets. As a second contribution,
we show that the state class graphs of bounded waiting nets are finite, yield-
ing decidability of reachability and coverability (which are PSPACE-complete).
This is a particularly interesting result, as these properties are undecidable for
stopwatch Petri nets, even in the bounded case. The Table 1 summarizes known
decidability results for reachability, coverability and boundedness problems for
time variants of Petri nets, including the new results for waiting nets proved in
this paper. Our last contribution is a study of the expressiveness of waiting nets
w.r.t timed language equivalence. Interestingly, the expressiveness of bounded
waiting nets lays between that of bounded TPNs and timed automata. Due to
space limitation, proofs in this paper are only sketched, but can be found in an
extended version [17].

2 Preliminaries

We denote by R
≥0 the set of non-negative real values, and by Q the set of rational

numbers. A rational interval [α, β] is the set of values between a lower bound
α ∈ Q and an upper bound β ∈ Q. We also consider intervals without upper
bounds of the form [α,∞), to define values that are greater than or equal to α.

A clock is a variable x taking values in R
≥0. A variable xt will be used to

measure the time elapsed since transition t of a net was last newly enabled. Let
X be a set of clocks. A valuation for X is a map v : X → R

≥0 that associates a
positive or zero real value v(x) to every variable x ∈ X. Intervals alone are not
sufficient to define the domains of clock valuations met with TPNs and timed
automata. An atomic constraint on X is an inequality of the form a ≤ x, x ≤ b,
a ≤ x−y or x−y ≤ b where a, b ∈ Q and x, y ∈ X. A constraint is a conjunction
of atomic constraints. We denote by Cons(X) the set of constraints over clocks
in X. We will say that a valuation v satisfies a constraint φ, and write v |= φ iff
replacing x by v(x) in φ yields a tautology. A constraint φ is satisfiable iff there
exists a valuation v for X such that v |= φ. Constraints over real-valued variables
can be encoded with Difference bound Matrices (DBMs) and their satisfiability
checked in O(n3) [14]. The domain specified by a constraint φ is the (possibly
infinite) set of valuations that satisfy φ.

Given an alphabet Σ, a timed word is an element of (Σ × R
+)∗ of the form

w = (σ1, d1)(σ2, d2) . . . such that di ≤ di+1. A timed language is a set of timed
words. Timed automata [4] are frequently used to recognize timed languages.

Definition 1 (Timed Automaton). A Timed Automaton A is a tuple A =
(L, �0,X,Σ, Inv,E, F ), where L is a set of locations, �0 ∈ L is the initial
location, X is a set of clocks, Σ is an alphabet, Inv : L → Cons(X) is a
map associating an invariant to every location. The set of states F ⊆ L is
a set of final locations, and E is a set of edges. Every edge is of the form
(�, g, σ,R, �′) ∈ L × Cons(X) × Σ × 2X × L.
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Fig. 1. A simple TPN a) and a simple waiting net b)

Intuitively, the semantics of a timed automaton allows elapsing time in a
location � (in which case clocks valuations grow uniformly), or firing a discrete
transition (�, g, σ,R, �′) from location � with clock valuation v if v satisfies guard
g, and the valuation v′ obtained by resetting all clocks in R to 0 satisfies Inv(�′).
One can notice that invariants can prevent firing a transition. Every run of a
timed automaton starts from (�0, v0), where v0 is the valuation that assigns
value 0 to every clock in X. For completeness, we recall the semantics of timed
automata in appendix. The timed language recognized by A is denoted L(A).

In the rest of the paper, we will denote by TA the class of timed automata.
We will be in particular interested by the subclass TA(≤,≥) in which guards
are conjunctions of atomic constraints of the form x ≥ c and invariants are
conjunctions of atomic constraints of the form x ≤ c. Several translations from
TPNs to TAs have been proposed, and in particular, the solution of [20] uses the
state class graph of a TPN to build a time-bisimilar timed automaton in class
TA(≤,≥). This shows that one needs not the whole expressive power of timed
automata to encode timed languages recognized by TPNs.

3 Waiting Nets

TPN are a powerful model: they can be used to encode a two-counter machine,
and can hence simulate the semantics of many other formal models. A coun-
terpart to this expressiveness is that most problems (reachability, coverability,
verification of temporal logics...) are undecidable. Decidability is easily recovered
when considering the class of bounded TPNs. Indeed, for bounded TPNs, one can
compute a finite symbolic model called a state class graph, in which timing infor-
mation is symbolically represented by firing domains. For many applications,
working with bounded resources is sufficient. However, TPN do not distinguish
between places that represent control (the “state” of a system), and those that
represent resources: transitions are enabled when all places in their preset are
filled. A consequence is that one cannot measure time spent in a control state,
when some resources are missing.
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Consider the example of Fig. 1, that represents an arrival of a train followed
by a departure. The arrival in a station is modeled by transition Arrival, that
should occur between 25 and 28 minutes after beginning of a run of the net.
The station is modeled by place p2, and the departure of the train by transi-
tion Departure. A train can leave a station only if a departure order has been
sent, which is modeled by transition Order. The time constraint attached to
Departure is an interval of the form [30, 32]. Assume that one wants to imple-
ment a scenario of the form “the train leaves the station between 30 and 32 min
after its arrival if it has received a departure order”. The TPN of Fig. 1-a) does
not implement this scenario, but rather behaviors in which the train leaves the
station between 30 and 32 min after the instant when it is in station and a depar-
ture order is received. This means that a train may spend more that 32 min in
station, if the order is not released first. Similarly, Timed Petri nets, that do not
have a notion of urgency, cannot encode this scenario where a transition has to
fire after 32 time units.

•p0

Ad [0, ∞]

p1

p2

Cp [1, 4]
p3

So [0, 3]No [0, 8]

p4p5

•p0

Ad [0, ∞]

p1

p2

Cp [1, 4]
p3

p6

So [0, 3]No [0, 8] To [3, 3]

p4p5 p7

(a) (b)

Fig. 2. a) Decoupled time and control in a waiting net. b) ... with a timeout transition.

We propose an extension of TPNs called Waiting nets (WTPN for short),
that decouples control and resources during time measurement. We consider two
types of places: standard places, and control places, with the following functions:
Time measurement for a transition t starts as soon as t has enough tokens in the
standard places of its preset. Then, t can fire if its clock value lays in its timing
interval, and if it has enough tokens in the control places of its preset.

Definition 2. A waiting net is a tuple W =
(
P,C, T, •(), ()•, α, β, λ, (M0.N0)

)
,

where

– P is a finite set of standard places, C is finite set of control places, such that
P ∪ C 	= ∅ and P ∩ C = ∅. A marking M.N is a pair of maps M : P → N,
N : C → N that associate an integral number of tokens respectively to standard
and control places.
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– T is a finite set of transitions. Every t ∈ T has a label λ(t),
– •() ∈ (NP∪C)T is the backward incidence function, ()• ∈ (NP∪C)T is the

forward incidence function,
– (M0.N0) ∈ N

P∪C is the initial marking of the net,
– α : T → Q

+ and β : T → Q
+ ∪ ∞ are functions giving for each transition

respectively its earliest and latest firing times (α(t) ≤ β(t)).

Labeling map λ can be injective or not. To differentiate standard and control
places in the preset of a transition, we will denote by ◦(t) the restriction of •(t)
to standard places, and by c() the restriction of •() to control places. We will
write M(p) = k (resp. N(c) = k) to denote the fact that standard place p ∈ P
(resp. control place c ∈ C) contains k tokens. Given two markings M.N and
M ′.N ′ we will say that M.N is greater than M ′.N ′ and write M.N ≥ M ′.N ′ iff
∀p ∈ P,M(p) ≥ M ′(p) and ∀c ∈ C,N(c) ≥ N ′(C).

Figure 2-a) is a waiting net modelling an online sale offer, with limited dura-
tion. Control places are represented with dashed lines. A client receives an ad,
and can then buy a product up to 8 days after reception of the offer, or wait
to receive a coupon offered to frequent buyers to benefit from a special offer at
reduced price. However, this special offer is valid only for 3 days. In this model,
a token in control place p3 represents a coupon allowing the special offer. How-
ever, time measure for the deal at special price starts as soon as the ad is sent.
Hence, if the coupon is sent 2 days after the ad, the customer still has 1 day to
benefit from this offer. If the coupon arrives more than 3 days after the ad, he
has to use it immediately. Figure 2-b) enhances this example to model expiration
of the coupon after 3 days with a transition. Transition TO consumes urgently a
token from place p6 exactly 3 time units after firing of transition Ad if it is still
enabled, which means that the special offer expires within 3 days, and coupon
arriving later that 3 days after the add cannot be used.

The semantics of waiting nets associates clocks to transitions, and lets time
elapse if their standard preset is filled. It allows firing of a transition t if the
standard and the control preset of t is filled.

Definition 3. (Enabled, fully enabled, waiting transitions)

• A transition t is enabled in marking M.N iff M ≥ ◦(t) (for every standard
place p in the preset of t, M(p) ≥ ◦(t)(p)). We denote by Enabled(M) the
set of transitions which are enabled from marking M , i.e. Enabled(M) :=
{t |M ≥ ◦(t)}

• A transition t is fully enabled in M.N iff, for every place in the preset of t,
M.N(p) ≥ •(t, p). FullyEnabled(M.N) is the set of transitions which are fully
enabled in marking M.N , i.e. FullyEnabled(M.N) := {t |M.N ≥ •t}

• A transition t is waiting in M.N iff t ∈ Enabled(M) \ FullyEnabled(M.N) (t
is enabled, but is still waiting for the control part of its preset). We denote by
Waiting(M.N) the set of waiting transitions.

Obviously, FullyEnabled(M.N) ⊆ Enabled(M). For every enabled transition
t, there is a clock xt that measures for how long t has been enabled. For every
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fully enabled transition t, t can fire when xt ∈ [α(t), β(t)]. We adopt an urgent
semantics, i.e. when a transition is fully enabled and xt = β(t), then this tran-
sition, or another one enabled at this precise instant has to fire without letting
time elapse. Firing of a transition t from marking M.N consumes tokens from
all places in •(t) and produces tokens in all places of (t)•. A consequence of this
token movement is that some transitions are disabled, and some other transitions
become enabled after firing of t.

Definition 4 (Transition Firing). Firing of a transition t from marking
M.N is done in two steps. It first computes an intermediate marking M ′′.N ′′ =
M.N − •(t) obtained by removing tokens consumed by the transition from its
preset. Then, a new marking M ′.N ′ = M ′′.N ′′ +(t)• is computed. We will write
M.N

t−→ M ′.N ′ whenever Firing of t from M.N produces marking M ′.N ′ A
transition ti is newly enabled after firing of t from M.N iff it is enabled in
M ′.N ′, and either it is not enabled in M ′′.N ′′, or it is a new occurrence of t.
We denote by ↑ enabled(M.N, t) the set of transitions newly enabled after firing
t from marking M.N .

↑ enabled(M.N, t) := {ti ∈ T | •(ti) ≤ M.N −•(t)+(t)•∧((ti = t)∨(•(ti) ≥ M.N −•(t))}

As explained informally with the examples of Fig. 2, the semantics of wait-
ing nets allows transitions firing when some time constraints on the duration
of enabling are met. Hence, a proper notion of state for a waiting net has to
consider both place contents and time elapsed. This is captured by the notion of
configuration. In configurations, time is measured by attaching a clock to every
enabled transition. To simplify notations, we define valuations of clocks on a set
XT = {xt | t ∈ T} and write xt = ⊥ if t 	∈ enabled(M). To be consistent, for
every value r ∈ R, we set ⊥ + r := ⊥.

Definition 5 (Configuration). A Configuration of a waiting net is a pair
(M.N, v) where M.N is a marking and v is a valuation of clocks in XT .
The initial configuration of a net is a pair (M0.N0, v0), where v0(xt) = 0 if
t ∈ enabled(M0) and v0(xt) = ⊥ otherwise. A transition t is firable from config-
uration (M.N, v) iff it is fully enabled, and v(xt) ∈ [α(t), β(t)].

The semantics of waiting nets is defined in terms of timed or discrete moves
from one configuration to the next one. Timed moves increase the value of clocks
attached to enabled transitions (when time elapsing is allowed) while discrete
moves are transitions firings that reset clocks of newly enabled transitions.

∀t ∈ Waiting(M.N),
v′(xt) = min(β(t), v(xt) + d)

∀t ∈ FullyEnabled(M.N),
v(xt) + d ≤ β(t)

and v′(xt) = v(xt) + d
∀t ∈ T \ enabled(M), v′(xt) = ⊥

(M.N, v) d−→ (M.N, v′)

M.N ≥ •(t)
M ′.N ′ = M.N − •(t) + (t)•

α(t) ≤ v(t) ≤ β(t)

∀ti ∈ T, v′(ti) =

⎧
⎨

⎩

0 if ti ∈↑ enabled(M.N, t)
⊥ if ti 	∈ enabled(M)
v(ti) otherwise

(M.N, v) t−→ (M ′.N ′, v′)
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Timed moves let d ∈ R
≥0 time units elapse, but leave markings unchanged.

We adopt an urgent semantics that considers differently fully enabled transitions
and waiting transitions. If t is a fully enabled transitions then, t allows elapsing
of d time units from (M.N, v) iff v(t) + d ≤ β(t). The new valuation reached
after elapsing d time units is v(t) + d. If we already have v(t) = β(t), then t
does not allow time elapsing. We say that firing of t is urgent, that is t has
to be fired or disabled by the firing of another transition before elapsing time.
If v(t) + d > β(t) then t becomes urgent before d time units, and letting a
duration d elapse from (M.N, v) is forbidden. Urgency does not apply to waiting
transitions, which can let an arbitrary amount of time elapse when at least one
control places in their preset is not filled. Now, as we model the fact that an event
has been enabled for a sufficient duration, we let the value of clocks attached
increase up to the upper bound allowed by their time interval, and then freeze
these clocks. So, for a waiting transition, we have v′(t) = min(β(t), v(t)+d). We
will write v ⊕ d to denote the valuation of clocks reached after elapsing d time
units from valuation v. A timed move of duration d from configuration (M.N, v)
to (M ′.N ′, v′) is denoted (M.N, v) d−→ (M ′.N ′, v′). As one can expect, waiting
nets enjoy time additivity (i.e. (M.N, v) d1−→ (M.N, v1)

d2−→ (M.N, v2) implies
that (M.N, v) d1+d2−→ (M.N, v2), and continuity, i.e. if (M.N, v) d−→ (M.N, v′),

then for every d′ < d (M.N, v) d′
−→ (M.N, v′′).

Discrete moves fire transitions that meet their time constraints, and reset
clocks attached to transitions newly enabled by token moves. A discrete move
relation from configuration (M.N, v) to (M ′.N ′, v′) via transition ti ∈ T is
denoted (M.N, v) ti−→ (M ′.N ′, v′). Overall, the semantics of a waiting net W is
a timed transition system (TTS) with initial state q0 = (M0.N0, v0) and which
transition relation follows the time and discrete move semantics rules.

Definition 6. A run of a Waiting net W from a configuration (M.N, v) is a
sequence ρ = (M.N, v) e1−→ (M1.N1, v1)

e2−→ (M2.N2, v2) · · · ek−→ (Mk.Nk, vk),
where every ei is either a duration di ∈ R

≥0, or a transition ti ∈ T , and every
(Mi−1.Ni−1, vi−1)

ei−→ (Mi.Ni, vi) is a legal move of W.

We denote by Runs(W) the set of runs of W. A marking M.N is reachable
iff there exists a run from (M0.N0, v0) to a configuration (M.N, v) for some v.
M.N is coverable iff there exists a reachable marking M ′.N ′ ≥ M.N . We will say
that a waiting net is bounded iff there exists an integer K such that, for every
reachable marking M.N and every place p ∈ P and p′ ∈ C, we have M(p) ≤ K
and N(p′) ≤ K. Given two markings M0.N0 and M.N the reachability problem
asks whether M.N is reachable from (M0.N0, v0), and the coverability problem
whether there exists a marking M ′.N ′ ≥ M.N reachable from (M0.N0, v0).

Remark 1. A waiting net with an empty set of control places is a TPN. Hence,
waiting nets inherit all undecidability results of TPNs: reachability, coverability,
and boundeness are undecidable in general for unbounded waiting nets.
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Given a run ρ = (M0.N0, v0)
e1−→ (M1.N1, v1)

e2−→ (M2.N2, v2) · · · , the timed
word associated with ρ is the word wρ = (t1, d1) · (t2, d2) · · · where the sequence
t1 · t2 . . . is the projection of e1 · e2 · · · on T , and for every (ti, di) such that
ti appears on move (Mk−1.Nk−1, vk−1)

ek−→ (Mk.Nk, vk), di is the sum of all
durations in e1 . . . ek−1. The sequence t1.t2 . . . is called the untiming of wρ.
The timed language of a waiting net is the set of timed words L(W) = {wρ |
ρ ∈ Runs(W)}. Notice that unlike in timed automata and unlike in the models
proposed in [6], we do not define accepting conditions for runs of timed words,
and hence consider that the timed language of a net is prefix closed. The untimed
language of a waiting net W is the language LU (W) = {w ∈ T ∗ | ∃wρ ∈
L(W), w is the untiming of wρ}. To simplify notations, we will consider runs
alternating timed and discrete moves. This results in no loss of generality, since
durations of consecutive timed moves can be summed up, and a sequence of two
discrete move can be seen as a sequence of transitions with 0 delays between

discrete moves. In the rest of the paper, we will write (M.N, v)
(d,t)−→ (M ′.N ′, v′)

to denote the sequence of moves (M.N, v) d−→ (M.N, v ⊕ d) t−→ (M ′.N ′, v′).
Let us illustrate definitions with the example in Fig. 2-a). In this net, we have

P = {p0, p1, p2, p4, p5}, C = {p3}, T = {Ad,No, So, Cp}, α(Ad) = α(No) =
α(So) = 0, α(Cp) = 1, β(Ad) = ∞, β(No) = 8, β(So) = 3, β(Cp) = 4. We also
have ◦(So) = p1 and c(So) = p3, (So)• = p4 (we let the reader infer •() and ()• for
other transitions). The net starts in an initial configuration (M0.N0, v0) where
M0(p0) = 1 and M0(pi) = 0 for all other places in P , N0(p3) = 0, v0(Ad) = 0 and
v0(t) = ⊥ for all other transitions in T . From this configuration, one can let an
arbitrary duration d0 elapse before firing transition Ad, leading to a configuration
M1.N0 with M1(p1) = M1(p2) = 1, and v1(Cp) = v1(No) = v1(So) = 0. Then,
one can let a duration smaller than 4 elapse and fire No, or let a duration between
1 and 4 time units elapse and fire Cp. Notice that the net cannot let more than
4 time units elapse before taking a discrete move, as firing of Cp becomes urgent
4 time units after enabling of the transition. Let us assume that Cp is fired after
elapsing 2.3 time units. This leads to a new configuration (M2.N2, v2) where
M2(p1) = M2(p2) = 1, N2(p3) = 1, v2(No) = v2(So) = 2.3. In this net, firing
of So can only occur after firing of Cp, but yet time measurement starts for
So as soon as ◦(So) is filled, i.e. immediately after firing of Ad. This example
is rather simple: the net is acyclic, and each transition is enabled/disabled only
once. One can rapidly see that the only markings reachable are M0.N0, M1.N0,
M2.N2 described above, plus two additional markings M3.N0 where M3(p5) = 1
and M4.N0 where M4(p4) = 1. A normal order can be sent at most 8 time
units after advertising, a special order must be sent at most 3 time units after
advertising if a coupon was received, etc. We give a more complex example
in [17].

4 Reachability

In a configuration (M.N, v) of a waiting net W, v assigns real values to clocks.
The timed transition system giving the semantics of a waiting net is hence in
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general infinite, even when W is bounded. For TPNs, the set of reachable val-
uations can be abstracted to get a finite set of domains, to build a state class
graph [7]. In this section, we build similar graphs for waiting nets. We also prove
that the set of domains in these graphs is always finite, and use this result to
show that reachability and coverability are decidable for bounded waiting nets.

Let t be a transition with α(t) = 3 and β(t) = 12, and assume that t has been
enabled for 1.6 time units. According to the semantics of WPNs, v(xt) = 1.6, and
t cannot fire yet, as xt < α(t). Transition t can fire only after a certain duration
θt such that 1.4 ≤ θt ≤ 10.4. Similar constraints hold for all enabled transitions.
We will show later that these constraint are not only upper and lower bounds
on θ′

ts, but also constraints of the form θi − θj ≤ cij .

Definition 7 (State Class, Domain). A state class of a waiting net W is
a pair (M.N,D), where M.N is a marking of W and D is a set of inequalities
called firing domain. The inequalities in D are of two types:

{
ai ≤ θi ≤ bi, where ai, bi ∈ Q

+ and ti ∈ Enabled(M)
θj − θk ≤ cjk. where ∀j, k j 	= k and tj , tk ∈ Enabled(M).

A variable θi in a firing domain D over variables θ1, . . . , θm represents the
time that can elapse before firing transition ti if ti is fully enabled, and the
time that can elapse before the clock attached to ti reaches the upper bound
β(ti) if ti is waiting. Hence, if a transition is fully enabled, and ai ≤ θi ≤ bi,
then ti cannot fire before ai time units, and cannot let more than bi time units
elapse, because it becomes urgent and has to fire or be disabled before bi time
units. Now, maintaining an interval for values of θ′

is is not sufficient. Allowing
a transition ti to fire means that no other transition tj becomes urgent before
firing of ti, i.e. that adding constraint θi ≤ θj for every fully enabled transition
tj still allows to find a possible value for θi. Then, assuming that ti fires, the new
firing domain D′ over variables θ′

1, . . . , θ
′
q will constrain the possible values of θ′

js
for all transitions tj that remain enabled after firing of ti. As time progresses, we
have θ′

j = θj −θi, which gives rise to diagonal constraint of the form θ′
j −θ′

k ≤ cjk

after elimination of variables appearing in D.
A firing domain D defines a set of possible values for θ′

is. We denote by
�D� the set of solutions for a firing domain D. Now, the way to define a set
of solutions is not unique. We will say that D1, D2 are equivalent, denoted
D1 ≡ D2 iff �D1� = �D2�. A set of solutions �D� is hence not uniquely defined,
but fortunately, a unique representation called a canonical form exists.

Definition 8 (Canonical Form). The canonical form of a firing domain D is

the unique domain D∗ =
{

a∗
i ≤ θi ≤ b∗

i

θj − θk ≤ c∗
jk.

, where
a∗

i = Inf(θi), b∗
i = Sup(θi),

and c∗
jk = Sup(θj − θk)

The canonical form D∗ is the minimal set of constraints defining �D�. If two
sets of constraints are equivalent then they have the same canonical form. The
constraints we consider are of the form K1 ≤ x ≤ K2 and K1 ≤ x − y ≤ K2,
where K1,K2 are rational values. This type of constraints can be easily encoded
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by Difference Bound Matrices [14]. Checking satisfiability of a domain D, or
computing a canonical form D∗ can be done in O(n3), where n is the number of
variables (see [17] for details and [5] for a survey on DBMs). Syntactically, state
classes and canonical forms of waiting nets have the same definition as those
of TPNs: the fact that a transition is waiting or fully enabled does not affect
the representation of constraints. Now, there is a major difference between state
graphs of TPNs and those of waiting nets: for waiting nets, the maximal duration
that can elapse in a state class in contrained by fully enabled transitions only.
However, at the same time, when elapsing time, one has to adapt contraints
attached to waiting transitions which clocks have reached their upper bound. In
some sense, for waiting transitions, variable θt represents a time to upper bound
of intervals rather than a time to fire. When computing the effect of firing a fully
enabled transition, one has to consider which waiting transitions have reached
their upper bounds. A consequence is that state class graphs of waiting nets are
not deterministic, as a class has several successors via the same transition.

Following the semantics of Sect. 3, a transition ti can fire from a domain D
if one can find a value for θi that does not violate urgency of other fully enabled
transitions. However, the upper bound of waiting transitions should not prevent
ti from firing. To get rid of this upper bound, we can use the notion of projection.

Definition 9 (Projection). Let D be a firing domain with variables ai, bi, cjk

set as in Definition 7. The projection of D on its fully enabled transitions is a

domain
D|full = {ai ≤ θi ≤ bi | ti ∈ FullyEnabled(M.N)}

∪ {ai ≤ θi ≤ ∞, | ti ∈ Waiting(M.N)}
∪ {θj − θk ≤ cjk ∈ D | tj , tk ∈ FullyEnabled(M.N)}.

A transition ti can fire from a configuration (M.N, v) iff it is fully enabled
and v(ti) ∈ [α(ti), β(ti)]. Hence, from configuration (M.N, v), firing of ti is one
of the next discrete moves iff there exists a duration θi such that ti can fire
from (M.N, v + θi), i.e., after letting duration θi elapse, and no other transition
becomes urgent before θi time units. We say that ti is firable from a state class
(M.N,D) iff M.N ≥ •(ti) and D|full ∪ {θi ≤ θj | tj ∈ FullyEnabled(M.N)} is
satisfiable. So, ti can be the next transition fired iff there exists a value θj greater
than or equal to θi that does not exceed bj for every fully enabled transition tj .

The construction of the set of reachable state classes of a waiting net
is an inductive procedure. Originally, a waiting net starts in a configura-
tion (M0.N0, v0), so the initial state class of our system is (M0,D0), where
D0 = {α(ti) ≤ θi ≤ β(ti) | ti ∈ Enabled(M0.N0)}. Then, for every state class
(M.N,D), and every transition t firable from (M.N,D), we compute all possible
successors (M ′.N ′,D′) reachable after firing of t. Note that we only need to con-
sider t ∈ FullyEnabled(M.N), as t can fire only when N > c(t). Computing M ′.N ′

follows the usual firing rule of a Petri net: M ′.N ′ = M.N −•(t)+(t)• and we can
hence also compute ↑ enabled(M.N, t), enabled(M ′.N ′) and FullyEnabled(M ′.N ′).
It remains to show the effect of transitions firing on domains to compute all pos-
sible successors of a class. Firing a transition t from (M.N,D) propagates con-
straints of the firing domain D on variables attached to transitions that remain
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enabled. Variables associated to newly enabled transitions only have to meet
lower and upper bounds on their firing times. We can now show that for Wait-
ing nets, the set of successors of a state class is finite and can be effectively
computed despite waiting transitions and non-determinism.

Consider the waiting net of Fig. 1-b. This net starts in a configuration C0 =
(M0.N0, v0) with M0(p0) = M0(p1) = M0(p3) = 1 M0(p) = 0 for every other
place, and N0(p2) = 0. From this configuration, one can let an arbitrary amount
of time δ ∈ R

≥0 elapse. If 0 ≤ δ < 3, then the value of clock x1 is still smaller
than the upper bound β(t1) = 3. Then, if t0 fires from C ′

0 = (M0.N0, v0 +δ), the
net reaches a new configuration C1 = (M1.N1, v1) where M1(p1) = M1(p3) = 1,
M1(p) = 0 for every other place, and N0(p2) = 1. We have v1(x0) = 0, v1(x1) =
v1(x2) = δ. One can still wait before firing t1 in configuration, i.e., t1 is not urgent
and can fire immediately of within a duration 3 − δ. Now, if 3 ≤ δ < 5, then
v1(x1) = 3, v1(x2) < 5 so transition t1 is urgent and must fire, and transition
t2 still has to wait before firing. Hence, choosing 3 ≤ δ < 5 forces to fire t1
immediately after t0. Conversely, if δ ≥ 5 then after firing t0, the net is in
configuration C2 = (M1.N1, v2) where v2(x1) = 3 and v2(x2) ∈ [5, 6], forcing t1
or t2 to fire immediately without elapsing time. This example shows that the
time elapsed in a configuration has to be considered when computing successors
of a state class. We have to consider whether the upper bound of a waiting
transition has been reached or not, and hence to differentiate several cases when
firing a single transition t. Fortunately, these cases are finite, and depend only
on upper bounds attached to waiting transitions by domain D.

Definition 10 (Upper Bounds Ordering). Let M.N be a marking, D be a
firing domain with constraints of the form ai ≤ θi ≤ bi. Let BM.N,D = {bi | ti ∈
enabled(M)}. We can order bounds in BM.N,D, and define bndi as the ith bound
in BM.N,D. We also define bnd0 = 0 and bnd|BM.N,D|+1 = ∞.

Consider a transition tf firable from C = (M.N,D). This means that there is
a way to choose a delay θf that does not violate urgency of all other transitions.
We use BM.N,D to partition the set of possible values for delay θf in a finite set of
intervals, and find which transitions reach their upper bound when θf belongs to
an interval. Recall that θf ≤ θj for every fully enabled transition tj . This means
that when considering that tf fires after a delay θf such that bndi ≤ θf ≤ bndi+1,
as D also gives a constraint of the form af ≤ θf ≤ bf , considering an interval
such that bndi is greater than min{bj ∈ BM.N,D | tj ∈ FullyEnabled(M.N)} or
smaller than af leads to inconsistency of constraint D|full∪

∧

tj∈FullEnabled(M.N)

θf ≤

θj ∧bndi ≤ θf ≤ bndi+1. We denote by B
tf
M.N,D the set of bounds BM.N,D pruned

out from these inconsistent bound values. Now, choosing a particular interval
[bndi, bndi+1] for the possible values in θf indicates for which waiting transitions
t1, . . . tk the clocks xt1 , . . . xtk measuring time elapsed since enabling has reached
upper bounds β(t1), . . . β(tk). The values of these clocks become irrelevant, and
hence the corresponding θi’s have to be eliminated from the domains.
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Definition 11 (Time progress (to the next bound)). Let M.N be a mark-
ing, D be a firing domain, and b = min BM.N,D be the smallest upper bound for
enabled transitions. The domain reached after progressing time to bound b is the
domain D′ obtained by:

– replacing every variable θi by expression θ′
i − b

– eliminating every θ′
k whose upper bound is b,

– computing the normal form for the result and renaming all θ′
i to θi

Progressing time to the next upper bound allows to remove variables related
to waiting transitions whose clocks have reached their upper bounds from a firing
domain. We call these transitions timed-out transitions. For a transition tk ∈
waiting(M.N) if v(xtk) = β(tk), variable θk, that represents the time needed
to reach the upper bound of the interval is not meaningful any more: either tk
gets disabled in the future, or is fired with θk = 0. So the only information to
remember is that tk will be urgent as soon as it becomes fully enabled.

Definition 12 (Successors). A successor of a class C = (M.N,D) after firing
of a transition tf is a class C ′ = (M ′.N ′,D′) such that M ′.N ′ is the marking
obtained after firing tf from M.N , and D′ is a firing domain reached after firing
tf in some interval [br, br+1] with br, br+1 consecutive in B

tf
M.N,D.

Given C and a firable transition tf , we can compute the set Post(C, tf ) of
successors of C, i.e. Post(C, tf ) := {(M ′.N ′, nextr(D, tf )) | br ∈ B

tf
M.N,D ∪ {0}}.

The next marking is the same for every successor and is M ′.N ′ = M.N −•tf +t•f .
We then compute nextr(D, tf ) as follows:

1) Time progress: We successively progress time from D to bounds b1 <
b2 < · · · < br to eliminate variables of all enabled transitions reaching their
upper bounds, up to bound r. We call Dr the domain obtained this way. Every
transition tk in Enabled(M.N) that has no variable θk in Dr is hence a waiting
transition whose upper bound has been reached.

2) Firing condition: We add to Dr the following constraints: we add the
inequality (br ≤ θf ≤ br+1), and for every transition tj ∈ FullyEnabled(M)\{tf},
we add to Dr the inequality θf ≤ θj . This means that no other transition was
urgent when tf has been fired. Let Du be the new firing domain obtained this
way. If any fully enabled transition tj has to fire before tf , then we have a
constraint of the form aj ≤ θj ≤ bj with bj < af , and Du is not satisfiable. As
we know that tf is firable, this cannot be the case, and Du has a solution, but
yet, we have to include in the computation of the next firing domains reached
after firing of tf the constraints on θf due to urgency of other transitions.

3) Substitution of variables: As tf fires after elapsing θf time units, the time
to fire of other transitions whose clocks did not yet exceed their upper bounds
decreases by the same amount of time. Variables of timed-out transitions have
already been eliminated in Du. So for every tj 	= tf that has an associated
constraint aj ≤ θj ≤ bj we do a variable substitution reflecting the fact that the
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new time to fire θ′
j decreases w.r.t the former time to fire θj . We set θj := θf +θ′

j .
When this is done, we obtain a domain D′u,br over a set of variables θ′

i1
, . . . θ′

ik
,

reflecting constraints on the possible remaining times to upper bounds of all
enabled transitions that did not timeout yet.

4) Variable Elimination: As tf fired at time θf , it introduced new relation-
ships between remaining firing times of other transitions, i.e. other θ′

i 	= θf , that
must be preserved in the next state class. However, as tf is fired, in the next
class, it is either newly enabled, or not enabled. We hence need to remove θf from
inequalities, while preserving an equivalent set of constraints. This is achieved by
elimination of variable θf from D′u,br , for instance with the well known Fourier-
Motzkin technique (see [17] for details). We proceed similarly with variable θ′

i

for every transition ti that is enabled in marking M.N but not in M.N − •(tf ).
After elimination, we obtain a domain D′E,br over remaining variables.

5) Addition of new constraints: The last step to compute the next state
classes is to introduce fresh constraints for firing times of newly enabled tran-
sitions. For every ti ∈↑ enabled(M.N, tf ) we add to D′E,br the constraint
α(ti) ≤ θ′

i ≤ β(ti). For every timed-out transition tk that becomes fully enabled,
we add to D′E,br the constraint θk = 0. Timed-out transitions that become fully
enabled are hence urgent in the next class. After adding all constraints associ-
ated to newly enabled transitions, we obtain a domain, in which we can rename
every θ′

i to θi to get a domain D′F,br . Notice that this domain needs not be
minimal, so we do a last normalization step (see Definition 8) to obtain a final
canonical domain nextr(D, tf ) = D′F,br ∗.

More than one transition can fire from (M.N,D), and for a given firable
transition tf , Post(D, tf ) contains one domain per bound in B

tf
M.N,D. It is hence

clear that a state class can have more than one successor, with different markings
and domains. Now, if a waiting net has no control place, transitions are either
enabled or fully enabled in every configuration. Step 1 of successor construction
leaves the starting domain D unchanged, and consequently the state class built
is exactly the standard construction for TPNs (see [7,20]). Let Post(C) be the
set of successors of a class C. Then |Post(C)| ≤ |enabled(M.N)|2. Computing
successors can be repeated from each class in Post(C). For a given net W, and
a given marking M0.N0, we denote by C(W ) the set of classes that can be built
inductively. This set need not be finite, but we show next that this comes from
markings, and that the set of domains appearing in state classes is finite.

Definition 13. (State Class Graph) The State Class Graph of a waiting net W
is a graph SCG(W) = (C(W ), C0,−→) where C0 = (M0.N0,D0), and C

t−→ C ′

iff C ′ ∈ Post(C, t).

Let ρ = (M0.N0, v0)
d1−→ (M0.N0, v0 ⊕ d1)

t1−→ (M1.N1, v1) . . . (Mk.Nk, vk)
be a run of W and π = (M ′

0.N
′
0,D0).(M ′

1.N
′
1,D1) . . . (M ′

k.N ′
k,Dk) be a path

in SCG(W). We will say that ρ and π coincide iff ∀i ∈ 1..k,Mi.Ni = M ′
i .N

′
i ,

and for every step (Mi.Ni, vi)
di−→ (Mi.Ni, vi ⊕ di)

ti−→ (Mi+1.Ni+1, vi+1), there
exists an interval [br, br+1] such that di ∈ [br, br+1] and Di+1 = nextr(Di, ti).
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Proposition 1 (Completeness). For every run ρ = (M0.N0, v0) . . . (Mk.
Nk, vk) of W there exists a path π of SCG(W) such that ρ and π coincide.

Proof (sketch). By induction on the length of runs. For the base case, we can
easily prove that any transition firing from the initial configuration after some
delay d gives a possible solution for D0 and a successor class, as D0 does not
contain constraints of the form θi − θj ≤ cij . The induction step is similar, and
slightly more involved, because domains contain constraints involving pairs of
variables. However, we can show (Lemma 2 in [17]) that along run ρ for every
pair of steps composed of a time elapsing of duration di followed by the firing
of a transition tf , we have di ∈ [ai,f , bi,f ], where ai,f is the lower and bi,f the
upper bound on variable θf at step i of the run. Hence, for every run of W there
is a path that visits the same markings and maintains consistent constraints. ��
Proposition 2 (Soundness). Let π be a path of SCG(W). Then there exists
a run ρ of W such that ρ and π coincide.

Proposition 1 shows that every marking reached by a run of a waiting net
appears in its state class graph. The proof of Proposition 2 uses a similar induc-
tion on runs length, and shows that we do not introduce new markings. These
propositions show that the state class graph is a sound and complete abstrac-
tion, even for unbounded nets. We can show a stronger property, which is that
the set of domains appearing in a state class graph is finite.

Proposition 3. The set of firing domains in SCG(W) is finite.

Proof (sketch). Domains are of the form {ai ≤ θi ≤ bi}ti⊆T ∪ {θi − θj ≤
ci,j}ti,tj⊆T . We can easily adapt proofs of [7] (lemma 3 page 9) to show that
every domain generated during the construction of the SCG has inequalities of
the form ai ≤ θi ≤ bi and θi − θj ≤ cij , where 0 ≤ ai ≤ α(ti), 0 ≤ bi ≤ β(ti)
and −α(ti) ≤ cij ≤ β(ti). This does not yet prove that the set of domains
is finite. We define domains that are bounded and linear, i.e. upper and lower
bounded by some constants, and where constants appearing in inequalities are
linear combinations of a finite set of constant values. Domain D0 is bounded
and linear, and a series of technical lemmas (given in [17]) show that variable
elimination, reduction to a canonical form, etc. preserve bounds and linearity (a
similar result was shown in [7] for domains of TPNs). The set of bounded linear
domains between fixed bounds is finite, so the set of domains of a waiting net is
finite. ��

This property of waiting nets is essential, as waiting nets allow to stop clocks.
Bounded Petri nets with stopwatches do not have a finite state class represen-
tation, because clock differences in domains can take any value. WPNs do not
have this kind of problem because clocks are stopped at a predetermined instant
(when they reach the upper bound of an interval).

Corollary 1. If W is a bounded waiting net then SCG(W) is finite.
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Proof. States of SCG(W) are of the form (M.N,D) where M.N is a marking and
D a domain for time to fire of enabled transitions. By definition of boundedness,
there is a finite number of markings appearing in SCG(W). By Proposition 3,
the set of domains appearing in SCG(W) is finite, so SCG(W) is finite. ��

More precisely, if a net is kP -bounded, there are at most kP
P possible mark-

ings, and the number of possible domains is bounded by (2 · KW + 1)|T+1|2 ,
where KW = maxi,j� βi

αj
� is an upper bound on the number of linear com-

binations of bounds appearing in domains. Hence the size of SCG(W) is in
O(kP

P · (2 ·KW +1)|T+1|2). A direct consequence of Proposition 1, Proposition 2,
and Corollary 1 is that many properties of bounded waiting nets are decidable.

Corollary 2 (Reachability and Coverability). The reachability and cover-
ability problems for bounded waiting nets are decidable and PSPACE-complete.

Proof. For membership, given a target marking Mt.Nt it suffices to explore non-
deterministically runs starting from (M0.N0,D0) of length at most |SCG(W)|
to find marking Mt.Nt, or to find a marking that covers Mt.Nt. Such reachabil-
ity questions are known to be in NLOGSPACE w.r.t. the size of the explored
graph, whence the NPSPACE=PSPACE complexity. For hardness, we already
know that reachability for 1-safe Petri nets is PSPACE-Complete [12], and a
(bounded) Petri net is a (bounded) waiting net without control places and with
[0,∞) constraints. Similarly, given 1-safe Petri net and a place p, deciding if
a marking with M(p) = 1 (which is a coverability question) is reachable is
PSPACE-complete [15]. This question can be recast as a coverability question
for waiting nets, thus establishing the hardness of coverability. ��

5 Expressiveness

A natural question is the expressiveness of waiting nets w.r.t other models with
time. There are several ways to compare expressiveness of timed models: One can
build on relations between models such as isomorphism of their underlying timed
transition systems, timed similarity, or bisimilarity. In the rest of this section,
we compare models w.r.t. the timed languages they generate. For two particular
types of model M1 and M2, we will write M1 ≤L M2 when, for every model
X1 ∈ M1, there exists a model X2 in M2 such that L(X1) = L(X2). Similarly,
we will write M1 <L M2 if M1 ≤L M2 and there exists a model X2 ∈ M2 such
that for every model X1 ∈ M1, L(X2) 	= L(X1). Lastly, we will says that M1 and
M2 are equally expressive and write M1 =L M2 if M1≤L M2 and M1≤L M2.
In the rest of this section, we compare bounded and unbounded waiting nets with
injective/non-injective labelling, with or without silent transitions labelled by ε
to timed automata, TPNs, Stopwatch automata, and TPNs with stopwatches.

We first have obvious results. It is worth nothing that every model with non-
injective labeling is more expressive than its injective counterpart. Similarly,
every unbounded model is strictly more expressive than its bounded subclass.
Waiting nets can express any behavior specified with TPNs. Indeed, a WTPN
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without control place is a TPN. One can also remark that (unbounded) TPNs,
and hence WTPNs are not regular. It is also well known that the timed language
of a bounded TPN can be encoded by a time bisimilar timed automaton [11,20].
We show next that one can extend the results of [20], i.e. reuse the state class
construction of Sect. 4 to build a finite timed automaton AW that recognizes the
same language as a waiting net W. As shown by Proposition 1 and Proposition 2,
the state class graph SCG(W) is sound and complete. State class graphs abstract
away the exact values of clocks and only remember constraints on remaining
time to fire. If we label moves by the name of the transition used to move from a
state class to the next one, we obtain an automaton that recognizes the untimed
language of W. Further, one can decorate a state class graph with clocks and
invariants to recover the timing information lost during abstraction.

Definition 14 (Extended State Class). An extended state class is a tuple
Cex = (M.N,D, χ, trans,XP ), where M.N is a marking, D a domain, χ is a
set of real-valued clocks, trans ∈ (2T )χ maps clocks to sets of transitions and
XP ⊆ T is a set of transitions which upper bound have already been reached.

Extended state classes were already proposed in [20] as a building step for
state class timed automata recognizing languages of bounded TPNs. Here, we
add information on transitions that have been enabled for a duration that is at
least their upper bound. This is needed to enforce urgency when such transitions
become firable. In extended state classes, every clock x ∈ χ represents the time
since enabling of several transitions in trans(x), that were enabled at the same
instant. So, for a given transition t, the clock representing the valuation v(xt)
is trans−1(ti). Let C

exdenote the set of all state classes. We can now define
the state class timed automaton SCTA(W) by adding guards and resets to the
transitions of the state class graph, and invariants to state classes.

Definition 15 (State Class Timed Automaton). The state class timed
automaton of W is a tuple SCTA(W) = (L, l0,X,Σ, Inv,E, F ) where:

– L ⊆ C
ex is a set of extended state classes. l0 = (M0.N0,D0, {x0}, trans0,

XP0), where trans0(x0) = Enabled(M0.N0) and XP0 = ∅.
– Σ = λ(T ), and X =

⋃

(M.N,D,χ,trans)

χ ⊆ {x1, . . . x|T |} is a set of clocks

– E is a set of transitions of the form (Cex, λ(t), g, R,C ′
ex). In each transition,

Cex = (M.N,D, χ, trans,XP ) and C ′
ex = (M ′.N ′,D′, χ′, trans′,XP ′) are

two extended state classes such that (M ′.N ′,D′) −→ (M.N,D) is a move of
the STG with D′ = nextr(D, t).
We can compute the set of transitions disabled by the firing of t from M.N ,
denoted Disabled(M.N, t) and from there, compute a new set of clocks χ′. We
have χ′ = χ\{x ∈ χ | trans(x) ⊆ Disabled(M.N, t)} if firing t does not enable
new transitions. If new transitions are enabled, we have χ′ = χ \ {x ∈ χ |
trans(x) ⊆ Disabled(M.N, t)}∪{xi}, where i is the smallest index for a clock
in X that is not used. Similarly, we can set
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trans′(xk) =⎧
⎨

⎩

trans(xk) \ Disabled(M.N, t) if trans(xk) � Disabled(M.N, t)
↑ enabled(M.N, t) if xk = xi

Undefined otherwise
XP ′ = XP ∩Enabled(M − •(t)) \ FullyEnabled(M ′.N ′)

∪{tk ∈ Enabled(M ′.N ′) | θk 	∈ D′}
The guard g is set to α(t) ≤ trans−1(t). Let Urgent(Cex, t, C ′

ex) = XP ∩
Enabled(M − •(t)) ∩ FullyEnabled(M ′.N ′). The set of clocks reset is R = {xi}
if some clock is newly enabled, and R = ∅ otherwise. For the invariant, we
have two cases. If Urgent(Cex, t, C ′

ex) = ∅ i.e. if there is no transition of XP
that becomes fully enabled (and hence urgent) after firing t, the invariant Inv′

is set to
∧

xj ∈ trans−1(FullyEnabled(M ′.N ′),
tk ∈ trans(xj) ∩ FullyEnabled(M ′.N ′)

xj ≤ β(tk) . Conversely, if Urgent(Cex, t, C ′
ex) 	= ∅

the invariant is set to
∧

tk∈Urgent(Cex,t,C′
ex)

trans−1(tk) ≤ 0

Proposition 4. Let W be a waiting net. Then L(SCTA(W)) = L(W).

Proof (sketch). Obviously, every sequence of transitions in L(SCTA(W)) is a
sequence of transitions of the STG, and hence there exists a timed word that
corresponds to this sequence of transitions. Furthermore, in this sequence, every
urgent transition is fired in priority before elapsing time, and the delay between
enabling and firing of a transition t lays between the upper and lower bound
of the time interval [αt, βt] if some time elapses in a state before the firing of
t, and at least βt time units if t fires immediately after reaching some state
in the sequence (it is an urgent transition, so the upper bound of its interval
has been reached, possibly some time before full enabling). Hence, every timed
word of SCTA(W) is also a timed word of W. We can reuse the technique of
Proposition 1 and prove by induction on the length of runs of W that for every
run of W, there exists a run of SCTA(W) with the same sequence of delays and
transitions. ��

We are now ready to compare expressiveness of waiting nets and their variants
w.r.t other types of time Petri nets, and with timed automata. For a given class
N of net, we will denote by B−N the bounded subclass of N , add the subscript
ε if transitions with ε labels are allowed in the model, and a superscript inj if the
labeling of transitions is non-injective. For instance B − WTPN inj

ε denotes the
class of bounded waiting nets with non-injective labeling and ε transitions. It is
well known that adding ε moves to automata increases the expressive power of
the model [13]. Similarly, allowing non-injective labeling of transitions increases
the expressive power of nets. Lastly, adding stopwatches to timed automata or
bounded time Petri nets make them Turing powerful [10].

Theorem 1. BWTPN <L TA(≤,≥).

Proof. From Proposition 4, we can translate every bounded waiting net W to
a finite timed automaton SCTA(W). Notice that SCTA(W) uses only con-
straints of the form xi ≥ a in guards and of the form xi ≤ b in invariants. Thus,
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BWTPN ⊆ TA(≤,≥). This inclusion is strict. Consider the timed automaton
A1 of Fig. 3. Action a can occur between date 2 and 3 and b between date 4 and
5.The timed language of A1 cannot be recognized by a BWTPN with only two
transitions ta and tb, because ta must be firable and then must fire between dates
2 (to satisfy the guard) and 3 (to satisfy the invariant in s1). However, in TPNs
and WTPNs, transitions that become urgent do not let time elapse, and cannot
be disabled without making a discrete move. As tb is the only other possible
move, but is not yet allowed, no WTPN with injective labeling can encode the
same behavior as A1.

s0

s1

s2

a, x
≥ 2

b, x ≥ 4

x ≤ 3

x ≤ 5
•

a

[2, 3]

b

[4, 5]

(a) (b)

Fig. 3. a) A timed automaton A1 b) an equivalent timed Petri net

Remark 2. It was proved in [6] that timed automata (with ε−transitions) have
the same expressive power as bounded TPNs with ε−transitions. These epsilon
transitions can be used to “steal tokens” of a waiting transition, and prevent it
from firing after a delay. This cannot be done with waiting nets without ε. Hence,
bounded TPN with ε−transitions are strictly more expressive than waiting nets,
and than waiting net with non-injective labeling.

•
p0

t0

[0, 20] c0

t1

[20, 20] p1

•
p0

t0

[0, 20] p

t1

[α, β]

(a) (b)

Fig. 4. a) A waiting net W b) a part of TPN needed to encode L(W).

Remark 3. Another easy result is that timed Petri nets and waiting nets are
incomparable. Indeed, timed Petri nets cannot encode urgency of TPNs, and as
a consequence some (W)TPNs have no timed Petri net counterpart, even in the
bounded case. Similarly, one can design a timed Petri net in which a transition is
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firable only in a bounded time interval and is then disabled when time elapses.
We have seen in Fig. 3-a) that L(A1) cannot be recognized by a waiting net.
However, it is easily recognized by the timed Petri net of Fig. 3-b).

Theorem 2. TPN <L WTPN and BTPN <L BWTPN .

Proof (sketch). TPNs are WTPNs without control places so TPN ≤L WTPN
and BTPN ≤L BWTPN . We can show that inclusions are strict with the net
W of Fig. 4, that recognizes language L(W ) = {(t0, d0)(t1, 20) | 0 ≤ d0 ≤ 20}.
Assuming that a TPN recognizes this language, it must contain the subnet of
Fig. 4-b), for some values α, β. However, there is no assignment for α, β allowing
to consider all values for d0 in L(W ) (see Appendix G in [17] for details). ��
Theorem 3. All injective classes are strictly less expressive than their non-
injective counterparts, i.e. BTPN <L BTPN inj, TPN <L TPN inj,
BWTPN <L BWTPN inj, and WTPN <L WTPN inj.

Proof (sketch). With injective labeling, (W)TPNs can recognize unions of timed
language, which is not the case for models with injective labeling. Let N2 be the
TPN of Fig. 5. We have L(N2) = {(a, d1).(b, d2) | d1 ∈ [0, 1] ∧ d2 ∈ [d1 + 4, d1 +
5]} ∪ {(a, d1).(b, d2) | d1 ∈ [0, 1] ∧ d2 ∈ [d1 + 7, d1 + 8]}. L(N2) is not recognized
by any (waiting) net with injective labeling. ��

•p0
p1 p2

p3 p4

a

[0, 1]

b

[4, 5]

a

[0, 1]

b

[7, 8]

Fig. 5. A TPN N2 with non-injective labeling.

Corollary 3. BTPN inj <L BWTPN inj

Proof. Inclusion BTPN inj ≤L BWTPN inj is straightforward from Defini-
tion 2. Take the example of Fig. 4-a). The language recognized cannot be encoded
with a non-injective TPN, for the reasons detailed in the proof of Theorem 2. ��

To conclude on the effects of non-injective labeling, we can easily notice that
BWTPN inj <L TA(≤,≥) because the automaton construction of Definition 15
still works (one labels transitions of the automaton with labels attached to tran-
sitions and keep the same construction). The last point to consider is whether
allowing silent transitions increases the expressive power of the model. It was
shown in [13] that timed automata with epsilon transitions are strictly more
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expressive than without epsilon. We hence have TA(≤,≥) <L TAε(≤,≥). We
can also show that differences between WTPNs, TPN, and automata disappear
when silent transitions are allowed.

Theorem 4. TAε(≤,≥) =L BTPNε =L BWTPNε

Proof. The equality TAε(≤,≥) = BTPNε was already proved in [6]. Given
BWTPNε, one can apply the construction of Definition 15 to obtain a state
class timed automaton (with ε transitions) recognizing the same language. ��

Figure 6 shows the relations among different classes of nets and automata,
including TPNs and automata with stopwatches. An arrow M1 −→ M2 means
that M1 is strictly less expressive than M2, and this relation is transitively
closed. All extensions with clocks and stopwatches allow the considered model to
simulate runs of Turing Machines. Actually, it has been shown that these models
can encode two-counters machines (and then Turing machines). Obviously, all
stopwatch models can simulate one another. Hence, these models are equally
expressive in terms of timed languages as soon as they allow ε transitions. The
red dashed line in Fig. 6 is the frontier for Turing powerful models, and hence
also for decidability of reachability or coverability.

BTPN

TPN

SwTPN

BSwTPN

BWTPN

WTPN

TA(≤,≥) TA

SwTA

TA (≤, ≥)
= BTPN
= BWTPN

TA

BTPN inj BWTPN inj

TPN inj WTPN inj

SwTPN = BSwTPN
= TPN = WTPN
= SwTA

Fig. 6. Relation among net and automata classes, and frontier of decidability.

6 Conclusion

We have proposed waiting nets, a new variant of time Petri nets, that measure
time elapsed since enabling of a transition while waiting for additional control
allowing its firing. This class obviously subsumes Time Petri nets. More inter-
estingly, expressiveness of bounded waiting nets lays between that of bounded



88 L. Hélouët and P. Agrawal

TPNs and timed automata. Waiting nets allow for a finite abstraction of the fir-
ing domains of transitions. A consequence is that one can compute a finite state
class diagram for bounded WTPNs, and decide reachability and coverability.

As future work, we will investigate properties of classes of WTPN outside the
bounded cases. In particular, we should investigate if being free-choice allows
for the decidability of more properties in unbounded WTPNs [3]. A second
interesting topic is control. Waiting nets are tailored to be guided by a timed
controller, filling control places in due time to allow transitions firing. A challenge
is to study in which conditions one can synthesize a controller to guide a waiting
net in order to meet a given objective.
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INRIA and CMAP, École Polytechnique, IP Paris, CNRS, Palaiseau, France
{Xavier.Allamigeon,Marin.Boyet,Stephane.Gaubert}@inria.fr

Abstract. A fundamental issue in the analysis of emergency call cen-
ters is to estimate the time needed to return to a congestion-free regime
after an unusual event with a massive arrival of calls. Call centers can
generally be represented by timed Petri nets with a hierarchical struc-
ture, in which several layers describe the successive steps of treatments
of calls. We study a continuous approximation of the Petri net dynamics
(with infinitesimal tokens). Then, we show that a counter function, mea-
suring the deviation to the stationary regime, coincides with the value
function of a semi-Markov decision problem. We establish a finite time
convergence result, exploiting the hierarchical structure of the Petri net.
We obtain an explicit bound for the transience time, as a function of
the initial marking and sojourn times. This is based on methods from
the theory of stochastic shortest paths and non-linear Perron–Frobenius
theory. We illustrate the bound on a case study of a medical emergency
call center.

Keywords: Timed Petri Nets · Continuous Petri Nets · Stationary
Regimes · Transience bound · Emergency Call Centers · Semi-Markov
Decision Processes · Stochastic Shortest Path

1 Introduction

Context. The handling of emergency calls in dedicated call centers features vari-
ous concurrency and synchronization patterns, breaking down in a stepwise pro-
cess with tasks involving multiple agents, to be performed with as little delay
as possible. A fundamental question is to fix the staffing so that calls be swiftly
handled, taking into account the customary demand, as well as scenarios allow-
ing sudden bulk of calls, originating for instance from exceptional events. In
particular, one needs to compute the time needed to absorb such a bulk of calls,
depending on the center characteristics and on the number of agents of vari-
ous types. The treatment of incoming calls may be delayed during the transient
phase, and so, the duration of this phase appears to be a critical performance
measure.

Timed Petri nets have been used in [ABG15,ABG21] to model emergency call
centers. Along the lines of [CGQ95,ABG21], timed Petri nets can be modelled by
c© Springer Nature Switzerland AG 2022
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counter variables that give the number of firings of the transitions as a function
of time. The discrete dynamics is generally hard to analyze, and so, a continu-
ous approximation, with infinitesimal firings and stationnary routings, has been
studied there. Then, the evolution of the counter variables is determined by a
dynamic programming equation of semi-Markov type. In this way, first order
performance measures like the long run throughput, were computed analytically
as a function of resources [ABG21]. However, finer key performance evaluation
issues, like the understanding of the transient behavior—in particular the esti-
mation of the “catch-up time”, i.e., the time needed to return to a stationary
regime—have not been addressed so far in this setting.

Contribution. We consider a class of continuous timed Petri nets with a single
input. In a reference scenario, this input is an affine function of time; this repre-
sents a regular arrival of calls in our application. Then, we study the behavior of
the dynamical system under a deviation from this scenario, induced for instance
by a bulk of arrivals.

Our main result shows that when the system is sufficiently staffed, meaning
that the intrinsic throughput of the Petri net exceeds the input flow, the Petri
net trajectory ultimately catches up a stationary regime driven by the input,
see Theorem 4. This result is obtained by showing that the deviation to the
stationary regime coincides with the value function of a stochastic shortest path
problem (SSP), see Theorem 2. In this way, we are reduced to quantifying the
convergence time of SSP problems. In Theorem 6, we characterize the SSP con-
figurations for which the convergence occurs in finite time. This characterization
involves the existence of a partial order over states, such that all optimal policies
make moves that decrease the order. Then, we consider a hierarchical class of
timed Petri nets, for which this partial order is known a priori—in the appli-
cation to call centers, this corresponds to the natural ordering of tasks in the
chain of treatment. In Theorem 7, we obtain an explicit upper bound on the
catch-up times (or transience times) to recover from a perturbation. We illus-
trate our results on the emergency call center application throughout the paper.
Section 3 provides the needed background and tools on semi-Markov decision
processes; a novelty here, of a somewhat technical nature, is to handle the case
of instantaneous transitions, which arises in our applications.

Related Work. The question of convergence of the earliest behavior of timed
event graphs to a periodic or stationary regine has received much attention in the
discrete event systems literature, see [BCOQ92] (especially Th. 3.109), and also
[HOvdW05, Ch. 8 and 9], with an application to the Dutch railway network. For
timed event graphs, the duration of the transient behavior, also sometimes called
“coupling time”, has been extensively studied, in particular by techniques of
max-plus spectral theory, see [BG01,SS12,MNS14,MNS21]. The same problem
has arisen in the setting of deterministic dynamic programming [HA99], and in
the analysis of distributed algorithms [CBFN13],

Here, we extend the bounds given in the above references, passing from
timed event graphs to continuous Petri nets with stationary routings, or, equiva-
lently, passing from deterministic (semi-)Markov decision processes to stochastic
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semi-Markov decision processes. By comparison with the “deterministic” case,
our proofs require new tools, coming from non-linear Perron-Frobenius theory
and from the theory of stochastic shortest paths. In particular, Theorem 4 on
the asymptotic convergence time builds on the work of [BT91] on stochas-
tic shortest path problems, and extends some of these results to the semi-
Markov case. Theorem 6 exploits techniques of non-linear Perron–Frobenius the-
ory [AGN11,AGQS19] in order to characterize the property of convergence in
finite time. To our knowledge, no characterization of the finite time convergence
was known, even in the setting of Markov decisions processes.

Estimating the speed of convergence to the stationary regime for Markov
decision processes is indeed a difficult and classical issue. General asymptotic
convergence results, like the ones of [SF78b,SF78a,SF79], show that a con-
vergence does occur with a ultimately geometric rate. However, they lead to
bounds and speed estimates that are nonconstructive. An explicit bound of the
time needed to enter in the geometric convergence regime was given in [Bon07],
for shortest path stochastic configurations, supposing that all costs are positive.
In contrast, we consider here the property of finite time convergence, leading to
different bounds.

We rely on a correspondence between continuous timed Petri nets and semi-
Markov decisions processes, developed in [CGQ98,CGQ95,ABG21]. This allows
one to obtain asymptotic theorems and develop computational methods to solve
performance evaluation issues by means of Markov decision techniques. Related
analytical results were obtained in [GG04] with a different approach. Alternative
approaches to the question of “absorption time” may rely on stochastic models,
or network calculus. We leave the treatment of such aspects for further work,
noting that the continuous Petri net behaviors studied arise as scaling limits
of discrete deterministic or stochastic models. Hence, capturing probabilistic or
network calculus aspects is expected to add one layer of difficulty – see e.g. [BR19]
for a probabilistic treatment of emergency call centers.

Finally, we refer the reader to [Yus82,Fei94,Ros70] for background on semi-
Markov decision processes, a.k.a, renewal programs [DF68]. See also [HG11] for
a recent reference.

The proofs of our main results, together with additional explanatory or illus-
trative materials, can be found in [ABG22]. The essential tools and ideas, how-
ever, are in the body of the paper.

2 Petri Net Model of a Medical Emergency Call Center

A specific motivation in computing transience bounds for timed Petri nets orig-
inates from a real-life case study of the medical emergency call centers of the
Paris area (SAMU 75, 92, 93 and 94), that is discussed in details in [ABG21].

We consider a medical emergency call center with three types of agents: med-
ical regulation assistants (MRAs) who pick up calls and orient patients through
the system, emergency physicians who handle the calls deemed to be the most
serious by the MRAs, after which it can be decided to send an ambulance or a
mobile intensive care unit, and general practicioners. Once a MRA has detected
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that a patient should talk with some emergency physician, the former stays on
line with the patient and waits for one of the latter to be available; at this point
a very short conversation happens between the MRA and the doctor, in which
the MRA summarizes the case. Calls not passed to emergency physicians by the
MRAs are either transfered to general practitioners if they concern less serious
medical matters, and in this case the patient is put on hold in a virtual waiting
room, or these calls are hang up if it was not a health-related distress call. In the
last two situations, the MRA is able to pick up immediately a new incoming call.
We focus on the next fundamental tasks of the emergency chain of treatment.

Task 0: an emergency inbound call arrives;
Task 1: an inbound call is picked up by a medical regulation assistant, who

will decide if the call should be passed on to an emergency physician
or not;

Task 2: the instruction by the MRA of a call not requiring to talk with the
emergency physician is completed;

Task 3: the instruction by the MRA of a call requiring to talk with the emer-
gency physician is completed and communication with the latter is
initiated;

Task 4: the short briefing between the MRA and the emergency physician is
over, phone consultation between the patient and the physician starts;

Task 5: the consultation of the patient with the physician ends.

Depending on the need to talk with an emergency physician or not, calls will
follow Tasks 0, 1 and 2 or Tasks 0, 1, 3, 4 and 5. For t ≥ 0, we denote by zi(t)
the number of Tasks i completed up to time t, starting with no completed tasks
at the instant t = 0.

We assume that calls arrive at a rate λ, and that a fraction π of them will
require a discussion with an emergency physician. There are a total of NA MRAs
and NP emergency doctors. The conversation between the patient and the MRA
takes a time t1, the synchronization step between an MRA and a physician takes
a time t2, and the consultation between the physician and the patient consumes
a time t3 (all these durations are assumed constant for sake of simplicity).

In [ABG21], we modeled the previous organization by a continuous timed
Petri net [CGQ95], shown on Fig. 1. So zi(t) represents the number of firings of
the transition labeled zi, up to time t. We use the approximation in [ABG21],
allowing “infinitesimal firings”, so that zi(t) is a real nonnegative number, rather
than an integer. In this setting, the functions zi are governed by the following
dynamics:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z1(t) = z0(t) ∧ (
NA + z2(t) + z4(t)

)

z2(t) = (1 − π)z1(t − t1)

z3(t) = πz1(t − t1) ∧ (
NP + z5(t)

)

z4(t) = z3(t − t2)

z5(t) = z4(t − t3)

(EMS)
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(0, τ3)

π

1−π

Fig. 1. Petri net representing an emergency call center [ABG21] (left). The corre-
sponding undiscounted SMDP (right), see Sect. 3 for more information: states (resp.
actions) are depicted by circles (resp. squares). A pair of the form (cost, sojourn time)
is attached to each action. Transition probabilities from actions to states are given
along the arcs if not equal to one.

where ∧ stands for the minimum operation. A minimum of several terms arises
if a task requires the synchronization of multiple resources (e.g., an inbound call
and the availability of a MRA, or availability of both a MRA and a doctor).
Delayed terms (of the form zi(t − τ)) are induced by the completion time of
tasks. Weights (e.g., π and 1−π) occur when calls are split in several categories.

The analysis methods developed in this paper also apply to more complex
examples of emergency call centers, leading to larger Petri nets. Such examples
can be found in [Boy22]. An extension of the formalism, incorporating non-
constant holding times, is also analyzed there.

3 The Equivalence Between Semi-Markov Decision
Processes and Continuous Time Petri Nets

We next recall the correspondence between the dynamics of continuous timed
Petri nets with stationary routings and semi-Markov decision processes, devel-
oped in [ABG21].

3.1 The SMDP Model

In Semi-Markov Decision Processes (SMDPs) [Put14,Yus82], sometimes referred
to as Markov renewal programs, the decision epochs are allowed to occur at any
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real-valued time. Indeed, between two successive moves, a sojourn time attached
to states and actions must elapse.

Here, the finite set of states is denoted by S, and for all i ∈ S the finite
set of playable actions from state i is denoted by Ai. We denote A :=

⊎
i∈S Ai

the disjoint union of the (Ai)i∈S . As a result of playing action a from state i,
the player immediately incurs a deterministic cost ca, is held in the state i for
a nonnegative and deterministic (so possibly null) time ta, and finally goes to
state j ∈ S with probability pa

j . Actions are pulled as soon as a state is reached,
and we assume that

∑
j∈S pa

j = 1 for all i ∈ S. We depict in Fig. 1 an SMDP
with six states and eight actions. We will see that this is precisely the SMDP
corresponding to our running example of a medical emergency call center, in the
sense that the counter equations of the Petri nets are equivalent to the dynamic
programming equations of the SMDP [ABG21].

Recall that a strategy [Put14] is a mapping that associate choices of actions
to play based on histories, i.e. possible realizations of already visited states,
pulled actions, incurred costs and sojourn times etc. We denote by F the set
of strategies. A strategy f in F and an initial state i ∈ S induce a probability
measure P

f
i on the set of histories of the game. The strategy f and the initial

state i also give rise to a random process (̂ik, âk)k∈N (with î0 = i) of visited states
and chosen actions. Denoting by h = (ik, ak)k∈N a general trajectory realized by
this process, we denote by ĉk (resp. t̂k) the random variable such that ĉk(h) = cak

(resp. t̂k(h) = tak) for all k in N.
The value function v∗ : S × R → R of the game in finite horizon is then

defined as follows, so that for i in S and t in R, v∗(i, t) denotes the minimum
(over all strategies) expected cost incurred by the player up to time t by starting
in state i at the instant 0:

v∗(i, t) := inf
f∈F

E
f
i

( ̂Nt∑

k=0

ĉk

)

(1)

where Ef
i denotes the expectation operator relatively to P

f
i and N̂t is the random

variable with values in N such that N̂t(h) = sup
{
n ∈ N

∣
∣

∑n−1
k=0 t̂k(h) ≤ t

}
.

indeed observe that the cost ĉn is incurred at time
∑n−1

k=0 t̂k(h). We shall mainly
focus on cases where t ≥ 0, since the above definition implies v∗(i, t) = 0 for all
i in S and t < 0.

Allowing zero sojourn times and yet immediate incurred costs raises the
question of the well-posedness of the value function in (1). To prevent what we
call Zeno behaviors, i.e., the accumulation of an infinite cost over a finite time
period, a restriction is in order. We characterize non-Zeno SMDPs using the
standard notion of policies: a policy σ is a map from S to A such that σ(i) lies
in Ai for every state i of S (some authors refer to this object as a decision rule).
We denote by S :=

∏
i∈S Ai the finite set of all the policies. If σ is a policy, P σ

denotes the |S| × |S| matrix with entries (pσ(i)
j )i,j∈S , while cσ (resp. tσ) is the

vector with entries (cσ(i))i∈S (resp. (tσ(i))i∈S).
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Assumption A. For all policies σ in S, for all finite classes F ⊂ S of the
Markov chain induced by σ, there is at least one state i in F with tσ(i) > 0, i.e.
with positive sojourn time attached to the chosen action σ(i) from i.

This assumption, milder than imposing an almost surely positive sojourn
time for all actions of the game, is the same as the one that Schweitzer and
Federgruen considered in their study [SF78b] of an average-cost criterion for
SMDPs. Under this assumption, one can check that the value function v∗ is well
defined. In the rest of the paper, we shall denote by tmax the maximum positive
sojourn time ta attached to an action a in A.

In accordance with the dynamic programming principle, the value function
satsifies the following recursive optimality equation:

∀t ≥ 0, ∀i ∈ S, v(i, t) = min
a∈Ai

{

ca +
∑

j∈S

pa
j v(j, t − ta)

}

. (DP)

The correspondence theorem, established in [ABG21, Th. 6.1], shows that the
counter functions of priority-free continuous timed Petri nets with preselection
routings are always of this form. When ta ≡ 1, corresponding to holding times
equal to 1 in all places, we recover the standard dynamic programming equation
of Markov decision processes. However, allowing real soujourn times is natural
in the Petri-net applications, leading to a semi-Markov framework.

When ta ≡ 1, an initial condition v(−1) fully determines the value function
v(t) for all t ∈ N. In the case of SMDPs, the knowledge of the value function
over the whole interval [t − tmax, t) is needed to compute v(t), where tmax is
the maximum positive sojourn time ta attached to an action a ∈ A, and we get
an infinite dimensional dynamics. This motivates the introduction of the space
V of bounded |S|-dimensional vector-valued functions over [−tmax, 0) in order
to characterize the initial conditions of (DP). The following proposition shows
that, under such an initial condition, there is a unique trajectory satisfying the
dynamic programming equations (DP). The main difficulty is to handle null
sojourn times, then terms of v(·, t) can appear in both sides of (DP). We recall
that a function of a real variable is càdlàg if it is right continuous and admits a
limit at the left of every point.

Proposition 1. Let v0 ∈ V. Under Assumption A, there is a unique function v
defined on [−tmax,∞) satisfying the dynamic programming equation (DP) and
for all t ∈ [−tmax, 0), v(t) = v0(t). In addition, if v0 is càdlàg (resp. piecewise-
constant, piecewise-affine), then v is càdlàg (resp. piecewise-constant, piecewise-
affine).

Building in Proposition 1, we establish that v∗ satisfies (DP).

Theorem 1. The value function v∗ defined by (1) is the unique function null
on [−tmax, 0) that verifies the dynamic programming equations (DP).

The last theorem and Proposition 1 show in particular that v∗ is piecewise-
constant.
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Example. In the case of the SMDP depicted in Fig. 1, corresponding to the med-
ical emergency call center, the dynamic programming equations (DP) specialize
to:

v∗(0, t) = v∗(0, t − t0) + λt0 (2a)
v∗(1, t) = v∗(0, t) ∧ (

NA + (1 − π)v∗(2, t) + πv∗(4, t)
)

(2b)
v∗(2, t) = v∗(1, t − t1) (2c)
v∗(3, t) = v∗(1, t − t1) ∧ (

NP /π + v∗(5, t)
)

(2d)
v∗(4, t) = v∗(3, t − t2) (2e)
v∗(5, t) = v∗(4, t − t3) (2f)

We denote (e0 := 1, e1 := 1, e2 := 1 − π, e3 := π, e4 := π, e5 := π). As
shown in [ABG21], under steady call arrivals with rate λ so that z0(t) = λt, it can
be seen that zi(t)/ei = v∗(i, t), since initial conditions (nullity before t = 0) and
dynamics coincide. This is a consequence of the main result of [ABG21] which
states that priority free timed Petri nets with a stoichiometric invariant are in
correspondence with SMDPs and share common dynamics equations (actually
the correspondence v∗(0, t) = λt holds for t0 → 0 but further computations shall
not require to take this limit, see Sect. 4.1).

3.2 Properties of the Dynamics Governing the Value Function

To portray the effect of applying equations (DP) to a function of V, it shall come
in handy to introduce the following evolution operator.

Definition 1. For t ≥ 0, we define the evolution operator St as the self-map of
the set of functions V, propagating an initial condition v0 by t time units, i.e.,

St : v0 �−→
{

[−tmax, 0) → R
|S|

s �→ v(t + s),
(3)

where v is the function uniquely determined by the initial condition v0 and the
equations (DP), in accordance with Proposition 1.

The operator St for SMDPs with t ≥ 0 plays the same role as the t-fold
iterate of the Bellman operator for MDPs (with in that case t ∈ N). It follows
from Theorem 1 and (3) that for all t ≥ 0 and sufficiently small ε, we have
v∗(t) = St+ε[0̃](−ε), where 0̃ denotes the null function of V. It readily follows
that the family (St)t≥0 constitutes a one-parameter semi-group, i.e., S0 is the
identity map of V, and for all t, t′ ≥ 0, we have St ◦ St′ = St+t′ .

We list below some important properties of the operators (St)t≥0. The space
V is equipped with the usual pointwise partial ordering ≤, and with the sup-
norm

∥
∥v0

∥
∥

∞ := sups∈[−tmax,0)

∥
∥v0(s)

∥
∥

∞. We denote by 1̃ the constant function
of V with all coordinates equal to 1.
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Proposition 2. Let t ≥ 0. The operator St is (i) additively homogeneous: ∀α ∈
R, St[v0 + α1̃] = St[v0] + α1̃; (ii) monotone (or order-preserving): v0 ≤
v′0 =⇒ St[v0] ≤ St[v′0]; (iii) nonexpansive:

∥
∥St[v′0] − St[v0]

∥
∥

∞ ≤ ∥
∥v′0 −

v0
∥
∥

∞; (iv) continuous in both the uniform and pointwise convergence topologies.

The following proposition states the existence of an affine stationary regime,
i.e., a particular initial condition function of V for which evolution under (DP)
amounts to a translation in time.

Proposition 3 ([ABG21]). Suppose that Assumption A holds. Then,

(i) there exists two vectors χ(S ) and h in R
|S| such that the affine function

vaff of V defined by vaff : s �→ χ(S )s + h satisfies St[vaff](s) = vaff(t + s);
(ii) for all v0 in V, we have for all s in [−tmax, 0), St[v0](s) =

t→∞ χ(S )t+O(1).

In particular, we have v∗(t) =
t→∞ χ(S )t + O(1).

As it appears in item (ii) above, the growth rate limt→∞ St[v0]/t is indepen-
dent of the choice of v0 in V and relates only to the topology and the parameters
of the SMDP (or its evolution semi-group S ), hence the notation χ(S ). This
vector is none other than the solution of the minimal time-average cost problem
associated with our SMDP, and the following proposition provides an explicit
formula to compute it in terms of the policies and the associated Markov chains,
see also [SF78a]:

Proposition 4. Suppose that Assumption A holds. Then, the vector χ(S ) fea-
tured in Proposition 3 is unique and we have for all i in S

χ(S )i = min
σ∈S

∑

F∈F(σ)

φF
i

〈μσ
F , cσ〉

〈μσ
F , tσ〉 , (4)

where for a policy σ in S, F(σ) denotes the set of final classes of the Markov
chain induced by σ, and for a final class F in F(σ), μσ

F (resp. φF
i ) denotes

the invariant nonnegative measure of class F (resp. the probability to reach F
starting from i under σ).

Observe that the conditions of the non-Zeno Assumption A are precisely
those which make χ(S ) well-defined in Proposition 4.

Remark 1. It shall turn convenient in Sect. 5.2 to consider an SMDP induced by
a subset of actions. This may also require to restrict ourselves to an adequate
subset of states. To that purpose, we say that a pair (S′, A′ :=

⊎
i∈S′ A′

i) with
S′ ⊂ S and ∅ �= A′

i ⊂ Ai for all i in S is a consistent subset of states and actions
if for all a ∈ A′, we have

∑
j∈S′ pa

j = 1.
If (S′, A′) is such a pair, the equations (DP) restricted to actions of A′ and to

states of S′ induce an evolution semi-group that we may denote by
(
St

∣
∣
S′, A′

)

t≥0

on the set of “initial condition” functions with suitable dimension, as set out
in Proposition 1 and Definition 1. Any restricted semi-group of this form also
enjoys the properties listed in Proposition 2.
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4 Deviation of the Value from the Congestion-Free
Regime

4.1 Reducing to a Stochastic Shortest Path Problem

We deal with systems that have to meet a known inbound demand. In the
framework of SMDP, such an input is conveniently modeled by distinguishing a
sink state denoted by 0, for which the value function t �→ v∗(0, t) is prescribed for
all t ≥ 0. We will assume that v∗(0, t) = λt for all t ≥ 0, where λ > 0 is constant
rate of tasks to perform per unit of time. This input profile may be realized by
our SMDP framework by first supposing that a single action a0 is playable from
state 0 such that pa0

0 = 1, ta0 > 0 and ca0 = λta0 , and also that the dynamics is
initialized with a function of Vλ := {v ∈ V | v(0, s) = λs for all s ∈ [−tmax, 0)}.
In what follows, we shall refer to this setting as λ-sink SMDPs.

By an abuse of language and notation, we shall still refer to the value function
and denote by v∗ the solution of the dynamics of a λ-sink SMDP uniquely
determined by the initial condition v0 in V such that v0

∣
∣
S\{0} = 0̃. Indeed, this

initial condition is not null on state 0 on [−tmax, 0), as required by Theorem 1,
but the function it generates coincides on [0,∞) with the value function obtained
by prescribing v∗(0, t) = 0 for t ∈ [−tmax, 0) and v∗(0, t) = λt for t ≥ 0, provided
that the actions giving access to state 0 are equipped with null sojourn time,
which involves no loss of generality up to considering intermediary states.

Proposition 3 and Proposition 4 show that the growth rate of the solutions
of (DP) is given by the one of an average-cost optimal policy; the final classes
of this policy indicate which parts of the system, by staying within them, enable
the player to minimize his/her costs in the long run. In our emergency call center
application, these final classes correspond to the slowest part of the treatment
chain and therefore indicate which resources are bottleneck via the computation
of the growth rate. Observe that in a λ-sink SMDP, the singleton {0} is a final
class of all policies of S and that 0 must always have a growth-rate of λ. We
want to focus on “congestion-free regimes” of these SMDPs, i.e., for which the
evolution under (DP) is driven by the input, resulting in χ(S ) = λ1 (where
1 denotes the vector with all components set to 1). According to Proposition
4 and the previous remark, it is relevant to introduce the minimum possible
growth-rate in the SMDP except λ, denoted by χ and defined as

χ := min
σ∈S

min
F∈F(σ)
F 	={0}

{ 〈μσ
F , cσ〉

〈μσ
F , tσ〉

}

. (5)

It is therefore seen from Proposition 4 that χ(S ) = λ1 can occur only if
χ ≥ λ, i.e., the least growth-rate of the cost is achieved by accessing the sink
state 0; and imposing χ > λ ensures that the less costly final class of all policies
is always {0}. Conversely, we note that the value function of a state i can be
driven by the input only if this state has access to 0, captured by the term
φ

{0}
i in (4) (recall that for two states i and j of the SMDP, we say that i has
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access to j iff there are states i0, i1, . . . , ik, ik+1 of S with i0 = i and ik+1 = j,
and actions a0, a1, . . . , ak of Ai0 × Ai1 × · · · × Aik

such that pa�
i�+1

> 0 for all
0 ≤ 
 ≤ k). This motivates the statement of the next assumption to characterize
the congestion-free regimes of λ-sink SMDPs.

Assumption B. Consider a λ-sink SMDP.

(1) All the states of S have access to 0,
(2) χ > λ.

To investigate if a better result than the mere v∗(t) =
t→∞ λt1 + O(1) can

be obtained under Assumption B, we focus on the deviation Δv∗(t) := v∗(t) −
λt1. We remark that our setting bears much resemblance with the subclass
of problems associated with MDPs known as Stochastic Shortest Path (SSP)
problems. An SSP configuration refers to a MDP in which there is a distinguished
sink state denoted by 0 such that any playable action from state 0 has null cost
and forces to stay in 0 (for all a ∈ A0, ca = 0 and pa

0 = 1). It is therefore
seen that as soon as one reaches state 0, the accumulated cost no longer evolves
and the game virtually stops; in this case it is licit to study the limit of the
value function in (1) when t tends to ∞. We point out that the notion of SSP
configuration carries over SMDPs. However, we are not aware of any study of
the stochastic shortest path problem in the semi-Markov setting.

We now show that studying the deviation Δv∗ reduces to a SSP problem.

Theorem 2. Let P be a λ-sink SMDP. The SMDP P ′ obtained from P by
changing the costs to the reduced costs ca − λta for all a ∈ A is in SSP configu-
ration. Moreover, Δv∗ satisfies the dynamic programming equations of P ′, i.e.,
for all t ≥ 0 and i ∈ S:

Δv∗(i, t) = min
a∈Ai

{
(
ca − λta

)
+

∑

j∈S

pa
j Δv∗(j, t − ta)

}

. (6)

The key elements that make the SSP configuration arise under the cost reduc-
tion transformation featured in Theorem 2 are the fact that 0 remains an absorb-
ing sink state but in addition becomes cost-free.

The mere SSP configuration in terms of topology is not sufficient to obtain
convergence of Δv∗. Instead, to ensure that the SSP problem is well-posed and
that ultimate reachability of state 0 is guaranteed, the notion of proper policy
is often introduced.

Definition 2. A policy σ in S is proper if for all i in S, limn→∞
[(

P σ
)n]

i0
= 1.

A non-proper policy is called improper.

The next proposition links our setting of congestion-free regime for λ-sink
SMDPs to the most standard assumptions made in the SSP literature, expressed
in terms of proper and improper policies.
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Proposition 5. Let P be a λ-sink SMDP. The two assumptions of B are equiv-
alent to the following two conditions on the SMDP P ′ in SSP configuration
constructed in Theorem 2:

(1’) There exists a proper policy.
(2’) For every improper policy, the expectation of the accumulated reduced cost

incurred up to time t converges to +∞ as t → ∞, for at least one initial
state.

This entails that the SMDP with reduced costs satisfies precisely the condi-
tion [BT91, Assumption 1].

Theorem 3 (Corollary of [BT91]). Suppose that conditions (1’) and (2’)
of Proposition 5 hold. Then, the equations

∀i ∈ S\{0}, u(i) = min
a∈Ai

{
(
ca − λta

)
+

∑

j∈S

pa
j u(j)

}

, u(0) = 0 (7)

admit a unique solution in R
|S|.

In what follows, if Assumption B is verified, we denote by u∗ the unique solution
of Eq. (7). Bertsekas and Tsitsiklis show in [BT91] that the total cost of the SSP
problem specified to the case of MDPs (when all the delays (ta)a∈A are equal to
1) coincides with the solution of (7), and that it arises as the limit of iterates
of the associated Bellman operator applied to any starting vector. We establish
in the next theorem that these results carry over the semi-Markov framework,
by considering the evolution semigroup (S Δ

t )t≥0 associated with the reduced
dynamic programming Eq. (6). The latter naturally acts on the set of initial
conditions V0 := {v ∈ V | v0(s) = 0 for all s ∈ [−tmax, 0)}.

Theorem 4. Suppose that Assumptions A and B hold. Then, for all v0 in V0,
for all s in [−tmax, 0), we have limt→∞ S Δ

t [v0](s) = u∗.

In other words, Theorem 4 states that the minimum ultimate total expected
cost of an SMDP in SSP configuration (such as the decision process P ′ featured
in Theorem 2) is the same as in a corresponding MDP with unit transition
times. Indeed, we study the infinite-horizon limit of a total reduced cost, which
is a time indifferent quantity. In particular, the optimality equality characterizing
the limit cost u∗ has precisely the same form in the MDP and in the SMDP case,
the only change being that the delays (ta)a∈A can take non unit values in the
SMDP case.

We obtain a direct corollary of Theorem 4 for the study of the value function,
which indeed improves the result of Proposition 3 in the congestion-free regime.
We insist on the importance of the first result for applications: whatever the
initial condition, the trajectory of a non-Zeno λ-sink SMDP in congestion-free
regime always ultimately catches up the input t �→ λt, up to a constant delay
u∗.
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Corollary 1. For a λ-sink SMDP, if Assumptions A and B hold, we have for all
v0 in Vλ and s in [−tmax, 0): St[v0](s) =

t→∞ λ(t + s)1 + u∗ + o(1). In particular,

v∗(t) =
t→∞ λt1 + u∗ + o(1).

Example. We come back to our running example of a medical emergency call
center, and we first acknowledge that the SMDP depicted in Fig. 1 is indeed a
λ-sink SMDP. It is easy to verify in this figure that all the states have access to
0 and thus Assumption B-(1) is satisfied. The computation of the scalar χ, using
closed forms of the probabilistic invariants associated with the final classes of
the four policies of the SMDP, provides χ = λA ∧ λP , where

λA :=
NA

t1 + πt2
and λP :=

NP

π(t2 + t3)
.

These two quantities are fundamental in the analysis of the SMDP behavior and
closely tied to real organization. The first one, λA, can be interpreted by the
calls handling speed of MRAs, indeed there are NA of them and a fraction 1−π
(resp. π) of their work is to perform tasks 1 and 2 (resp. 1, 2, 3 and 4) which
consumes a time t1 (resp. t1 + t2), hence accounting for an average cycle time
of t1 + πt2. The quantity λP can similarly be interpreted as the handling speed
of the NP emergency physicians, having a cycle time of t2 + t3 (to achieve tasks
3, 4 and 5) for a fraction π of all the calls. Depending on the choice of NA and
NP (but also of the other parameters), there may or may not be enough agents
(whether MRAs or doctors) to perform without delay all the tasks arriving with
flow λ.

The medical emergency call center that we model by means of this SMDP
thus behaves in its congestion-free regime if and only if Assumption B-(2) is
met, i.e., if λA > λ and λP > λ. In this case, the call center is correctly staffed
and there are enough agents to ultimately pick up all the calls with no delay,
i.e., all the functions t �→ zi(t) in (EMS) admit their maximum throughput λei.
The policy that selects (σ(1), σ(3)) = (a−

1 , a−
3 ) is the one that achieves minimal

throughput (only the calls arrival itself is bottleneck). It is associated with the
unique final class {0} and an affine stationary regime t �→ λt1 + u∗, where
u∗ = −λ(0, 0, t1, t1, t1 + t2, t1 + t2 + t3). As shown in Corollary 1, thanks to the
sufficient staffing, this congestion-free regime where all calls are handled with no
delays is always ultimately reached.

If λA < λ or λP < λ, this means that there are either not enough MRAs or
not enough emergency physicians to perform all the required tasks, and due to
the synchronization step (Task 3), the whole chain of treatment is slowed down.
Limit cases (λA = λ or λP = λ) would require a more detailed analysis.

4.2 Transience Time Needed to Catch-Up the Input

In the congestion-free regime, the function w : t �→ λt1 + u∗ of Vλ featured
in Corollary 1 gives rise to an affine stationary regime in the sense that for all
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t ≥ 0 and s in [−tmax, 0), we have St[w](s) = w(t + s) with no error term, like
introduced in Proposition 3-(i); any such regime actually differs from w by a
multiple of 1̃.

We leverage on the previous framework to study the effect of a perturbation
on a steady-flow input in a λ-sink SMDP. For sake of simplicity, suppose that
the system is initialized in its stationary affine congestion-free regime w (this
entails little loss of generality since this behavior is always ultimately reached
according to Corollary 1). We suppose that at t = t, the input incurs a step of
cost, so that v(0, t) = λt + MH̃(t − t) for all t ≥ 0, where M ≥ 0 and H̃ denotes
the Heaviside step function. In our emergency call center application, this can
be used to simulate the sudden arrival at time t of M new calls to handle on top
of the usual demand with rate λ. The next result formalizes the fact that these
requirements on v(0, ·) actually define a unique trajectory of the λ-sink SMDP.

Proposition 6. Under Assumption A, there is a unique function v : [−tmax,∞)
→ R

|S| such that

– for all t in [−tmax,∞), v(0, t) = λt + MH̃(t − t),
– for all t in [−tmax, 0), v

∣
∣
S\{0} = 0̃,

– v satisfies Eq. (DP) for states in S\{0}.
Moreover, if Assumption B holds, we have v(t) =

t→∞ λt1 + u∗ + M1 + o(1).

Building on the last statement of Proposition 6, which guarantees that in
spite of the perturbation, the trajectory of the system still catches up the input
(including the step of magnitude M), we want to study the transience time
before this final regime is reached. To this purpose, we define for the state-by-
state catch-up times (or transience times) (θi)i∈S by:

∀i ∈ S, θi := inf
{
t ≥ t

∣
∣ v(i, t) = λt + u∗(i) + M

}
.

In Sect. 5, we shall study cases where the catching-up is exact and thus occurs
in finite time; but we may as well have defined the (θi)i∈S by the time needed
for v(i, t) to approach λt + u∗(i) + M up to a chosen precision ε.

The next theorem shows that the problem of characterizing the (θi)i∈S

reduces to the study of catch-up times in an SMDP in SSP configuration starting
from a particular initial condition.

Theorem 5. Suppose that Assumptions A and B hold. Let v′ be the function
uniquely determined by the initial condition s �→ u∗ − M1S\{0} in V0 and the
dynamics of the reduced-costs SMDP in SSP configuration featured in Theorem
2. Then, for all i in S, we have θi = t+ θ′

i, where θ′
i := inf

{
t ≥ 0

∣
∣ v′(i, t) =

u∗(i)
}
.

5 Finite Time Convergence of the Semi-Markov
SSP-value

In this section, we tackle the purified version of our problem brought to light
in Theorem 5, letting aside λ-sink SMDP to solely focus on SMDPs in SSP
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configurations. In particular, the evolution semigroups considered hereafter such
as (St)t≥0 are associated with dynamics of type (6) with null costs on state 0.
Furthermore, observing that the definition of χ in (5) for λ-sink SMDPs carries
over to SSP configurations (that are essentially 0-sink SMDPs). In consequence,
we rephrase the two conditions of Assumption B in the special case of SMDPs
in SSP configuration.

Assumption C. Consider a SMDP in SSP configuration.

(1) All the states of S have access to 0,
(2) χ > 0.

The following lemma ensures that Assumption C corresponds to Assump-
tion B in the sense of the reduction stated in Theorem 2.

Lemma 1. Let P be a λ-sink SMDP, and P ′ be the SMDP in SSP configuration
built in Theorem 2. Then P satisfies Assumption B if and only if P ′ satisfies
Assumption C.

We point out that this result follows from the application of Proposition 5 to P
and P ′, and the fact that P ′ is precisely the reduced cost SMDP associated to
itself.

The purpose of this section is to provide quantitative and constructive upper
bounds on the (θ′

i)i∈S introduced in Theorem 5. This, in turn, yields upper
bounds on the catch-up times of the original λ-sink SMDP, thanks to Theorem
5.

5.1 The Different Convergence Phases

Recall as stated in Theorem 4 that a function determined by an initial condition
v0 in V0 and satisfying the dynamic programming equations of a SMDP in SSP
configuration converges towards u∗ as considered horizons approach infinity. We
first provide a qualitative insight on the speed of convergence associated with
this result.

For all i in S\{0}, we denote by A∗
i the nonempty subset of Ai composed

of optimal actions, i.e. those achieving minimality in (7). Similarly, we intro-
duce S∗ := A0 × ∏

i∈S\{0} A∗
i the set of optimal policies, included in S. In

accordance with Remark 1, optimal actions induce an evolution semi-group S ∗,
which corresponds to applying only optimal policies. The following proposition
shows that there is always an instant t∗ such that: 1. before t∗, either optimal
or non-optimal actions can be picked, and thus the evolution of the dynamics
amounts to applying the semigroup S ; 2. after t∗, only optimal actions are cho-
sen, so that the finer dynamics associated with the semigroup S ∗ are actually
used. Moreover, the second phase induces a geometric speed of convergence con-
trolled by the spectral radii of the probability matrices of optimal policies. The
geometric convergence result is deduced from [AGQS19, Th. 1 and Th .2], using
tools from non-linear Perron–Frobenius theory [AGN11]. In particular, we refer
to [AGQS19] for background on weighted sup-norms.
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Proposition 7. Suppose Assumptions A and C hold. Let v0 ∈ V0 and denote by
v the solution of (DP) it determines. Then, there exists t∗ ≥ 0 such that for all
t ≥ t∗ and all s in [−tmax, 0), we have v(t + s) = S ∗

t−t∗
[
St∗ [v0]

]
(s). Moreover,

if we define ν := maxσ∈S∗ ρ
(
P σ

∣
∣
(S\{0})×(S\{0})

)
< 1, where ρ(·) denotes the

spectral radius of a matrix, then for all ε > 0 small enough, there is a weighted
sup norm in which S ∗

tmax
is a contraction of rate ν + ε.

We point out that this proposition is reminiscent of the different phases of
convergence established by Schweitzer and Federgruen in their work [SF79] of
the deviation v(t) − χ(S )t in the case of MDPs when this quantity admits a
limit.

We are interested in cases where convergence occurs in finite time, i.e., without
geometric residual, which is desirable in our call center application. The next
theorem shows that such a finite time convergence cannot be expected unless
all probability matrices associated with optimal proper policies and restricted to
states of S\{0} are nilpotent, hence making the rate of geometric convergence ν
featured in Proposition 7 null. The latter is also equivalent to some restrictions
on the SMDP topology, that we may interpret as requiring a form of hierarchy
within the set of states that is compatible with the moves made by the optimal
policies; these should always “descend” in the hierarchy until finally reaching 0,
the minimal element.

Theorem 6. Suppose Assumptions A and C hold. Then, the following are equiv-
alent:

(1) for all v0 in V0 and associated solution v of (DP), there exists t∗ in R such
that for all t ≥ t∗, v(t) = u∗

(2) for all proper optimal policies σ in S∗, we have ρ
(
P σ

∣
∣
(S\{0})×(S\{0})

)
= 0,

(3) there exists a partial ordering (≤) on S such that for all σ in S∗ and for all
i in S\{0}, supp(σ(i)) ⊂ {j ∈ S , j < i}.

5.2 Hierarchical SSP Configurations

The set S∗ of optimal policies that control the ultimate rate of convergence
according to the previous theorem is in general not known, and depends on the
costs and sojourn times attached to the actions of the SMDP. It is desirable to
identify conditions of a more topological nature under which finite time conver-
gence occurs regardless of optimal character of some policies. Building on the
statement of Theorem 6-(iii), we choose to enforce the existence of a partial
ordering (≤) on S such that applying some actions necessarily make the order
strictly decrease. This is formalized in the next assumption.

Assumption D. There is a partial ordering (≤) on S, such that for all state
i ∈ S, there is a partition of the set of playable actions from i in the form
Ai = A−

i � A+
i , with the condition that if a ∈ A−

i , then (pa
j > 0 =⇒ j < i) and

if a ∈ A+
i , then (pa

j > 0 =⇒ i ≤ j), in which j < i means that j ≤ i and j �= i.
In addition, A−

i �= ∅ for all i ∈ S\{0}.
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In other words, Assumption D requires that actions either strictly “descend”
or weakly “ascend” relatively to the states hierarchy, the first case being always
possible. In what follows, we shall refer to a ∈ A−

i (resp. a ∈ A+
i ) as a “descend-

ing action” (resp. an “ascending action”). Remark that imposing in Assump-
tion D that A−

i �= ∅ for all i ∈ S\{0} implies the condition (1’) of Proposition
5, since any policy which makes use of only descending actions is proper. This
implication turns into an equivalence (i.e., any proper policy must make use of
only descending actions) if the next condition is also met.

Assumption E. For all σ ∈ S, if there exists i ∈ S such that σ(i) ∈ A+
i , then

σ is improper.

Under Assumptions D and E (stronger than the condition (iii) of Theorem 6),
we obtain that A∗

i ⊂ A−
i for all i ∈ S and according to Theorem 6, convergence

towards u∗ arises in finite time.

Example. For the medical emergency call center depicted on Fig. 1, these two
hierarchical assumptions are satisfied, as highlighted on the first picture of Fig. 2.
The states hierarchy is the one naturally given by the (partial) order in which
the different tasks are performed in the call center.

Our goal is to leverage on the hierarchical structure brought by Assump-
tions D and E to bound the catch-up times (θ′

i)i∈S defined in Theorem 5. To
this purpose, we remark that the state 0 is the bottom element of the order (≤),
and that the states that lie in low layers of the hierarchy shall have “quicker”
access to state 0 than states located higher in the hierarchy (since the latter may
need to pass through the former). From this perspective, if i is a state of S, it is
natural to study the catch-up time θ′

i after the states located lower than i in the
hierarchy already caught up the input. It amounts to determining the (θ′

i)i∈S by
following an inductive scheme given by the partial ordering (≤).

This reasoning would result in straightforward bounds in the absence of
ascending actions, i.e., which make the player move in states located higher in
the hierarchy and thus slow down the catching-up of the input at the lowermost
state 0. We know under Assumption C and E that these actions are ultimately
non optimal because they are necessarily associated with improper policies and
it is less costly to end up playing a proper policy. However for short decision
horizons, some of these ascending actions may actually be optimal.

We tackle this difficulty by considering the collection of state-accessibility
graphs of our SMDP in which particular states cannot use descending actions.
More precisely, given i ∈ S\{0} such that A+

i �= ∅, we introduce the graph G(i)
S

with nodes set S and with edge set
{
(k, 
) ∈ S2

∣
∣ ∃a ∈ Ak\A−

k s.t. pa
� > 0

}
.

We denote by C(i) the strongly connected component of state i in the graph G(i)
S .

The Fig. 2 represents the two such subgraphs of our running example SMDP
introduced in Fig. 1. It can be seen on this example that for i in S such that
A+

i �= ∅, not selecting actions in A−
i amounts to staying within states of C(i)

with no way of accessing 0. The next lemma formalizes this fact.
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Fig. 2. Left: a hierarchical Stochastic Shortest Path configuration (satisfying Assump-
tions D and E) with six states. We have 0 ≤ 1 ≤ 2 and 0 ≤ 1 ≤ 3 ≤ 4 ≤ 5, while other
pairs need not to be comparable. Middle (resp. right): the remaining sub-graph when
ruling out actions of A−

1 (resp. A−
3 ), with strongly connected component C(1) (resp.

C(3)) outlined in blue. (Color figure online)

Lemma 2. Suppose that Assumptions C, D and E hold. For all i ∈ S\{0} such
that A+

i �= ∅, the following properties hold:

(i) 0 is not accessible from i in G(i)
S ,

(ii) every state accessible from i in G(i)
S also has access to i via descending

actions.

Let i ∈ S\{0} such that A+
i �= ∅. To prove that it cannot be more inter-

esting in the long run to stay in the class C(i) than playing descending actions
to reach state 0, we focus on the particular evolution associated with (DP) in
C(i). Observe that the pair (C(i), AC(i)), with AC(i) := A+

i � ⊎
j∈C(i)

j 	=i

Aj , is a

consistent subset of states and actions in the sense of Remark 1. We thus intro-
duce the associated evolution semigroup

(
St

∣
∣
C(i), AC(i)

)

t≥0
, denoted for short by

(S̃ (i)
t )t≥0.

Lemma 3. Suppose Assumptions D and E hold. Let i in S such that A+
i �= ∅.

Then, the growth rate of S̃ (i) is uniform on C(i), i.e., of the form χ(i)1, where
χ(i) ≥ χ.

We are now ready to formulate the bounds on the catch-up times (θ′
i)i∈S .

Recall that these are defined in Theorem 5 under Assumption B for λ-sink
SMDPs, or equivalently under Assumption C for SMDPs in SSP configuration.
In particular we have χ > 0.
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Theorem 7. Suppose that hierarchical Assumptions D and E hold. Then, we
have θ′

0 = 0 and for all i ∈ S\{0}, θ′
i consistently verifies by induction:

θ′
i ≤ max

a∈A−
i

{
ta + max

j∈supp(a)
θ′

j

}
+

M

χ(i)
1A+

i 	=∅,

where for all i in S such that A+
i �= ∅, χ(i)1 denotes the growth rate vector of

the evolution semigroup S̃ (i) introduced in Lemma 3.

The proof of Theorem 7 makes an extensive use of the fact that the function
v′ introduced in Theorem 5 is nondecreasing. As indicated in the statement,
a different behavior occurs if A+

i is empty or not. The case A+
i = ∅ is rather

easy to address: it consists in applying the inductive scheme described earlier
and waiting for states lower in the hierarchy to catch up the input. In contrast,
the case A+

i �= ∅, in which an “adverse” behavior may delay the catch-up by
using actions of A+

i , is harder to analyze. The key ingredient of the proof is to
bound below the evolution of v′ on the class C(i) by an affine stationary regime
of the evolution semigroup S̃ (i). Since the latter has positive growth rate, and
v′ eventually reaches a constant value on states located lower in the hierarchy,
actions of A+

i cannot be selected for a too long duration.
We set θ∗ := maxi∈S θ′

i the maximum of the catch-up times, so that after
time θ∗, all states have caught up the input.

Example. We suppose that in addition to the usual calls arrival rate λ, our
medical emergency call center undergoes the sudden arrival of M extra calls
(for instance, corresponding to an event with many casualties) at time t = 0.
As proved in Corollary 1, if the call center is well-staffed, this peak of calls
will ultimately be absorbed and the system shall return to a “cruise regime”,
where the policy (σ(1), σ(3)) = (a−

1 , a−
3 ) is applied (recall that the latter is

the only proper policy of the system). As already observed and commented
in Fig. 2, our SMDP modeling the call center satisfies hierarchical Assumptions D
and E. As a result, the previous peak is overcome in a finite time θ∗ and we can
apply Theorem 7 to bound this duration. We obtain

θ∗ =
M

(λA ∧ λP ) − λ
+ t1 +

M

λP − λ
+ t2 + t3. (8)

In this transience bound, we identify three terms coming from the mere commu-
nication delays between states (the times t1, t2 and t3), and two terms originating
from the states that could play ascending actions. The term M/((λA ∧ λP ) − λ)
corresponds to a maximum time needed for state 1 to choose action a−

1 . We check
that it is proportional to the amount of extra calls to pick up and is governed
by the minimum residual handling speed of agents after they performed all the
usual tasks, i.e. the throughput on class C(1) of semigroup (S̃ (1)

t )t≥0, given by
either λA −λ or λP −λ depending on which policy realizes the minimal average-
cost between (σ(1), σ(3)) = (a+

1 , a−
3 ) and (σ(1), σ(3)) = (a+

1 , a+
3 ). Similarly, the
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term M/(λP − λ) bounds the time needed for state 3 to choose action a−
3 after

θ′
1 + t1; the denominator corresponds to the throughput on class C(3) = {3, 4, 5}

of semigroup (S̃ (3)
t )t≥0 (applying policy σ(1), σ(3)) = (a+

1 , a+
3 )).

Building on Theorem 7, we may give a coarser and simple bound on the global
catch-up time θ∗ that emphasizes the tree structure of hierarchical SMDPs. We
denote by d the maximal length of a descending path in S relatively to the
ordering (≤), and by d+ the maximal number of states with non-empty set of
ascending playable actions along a descending path.

Corollary 2. Under conditions of Theorem 7, convergence towards u∗ occurs
in a time θ∗ such that θ∗ ≤ d × tmax + d+ ×

(
M/χ

)
.

This upper bound on the total time of convergence is governed by the ratio
M/χ, i.e., it is proportional to the magnitude of the bulk that affected the input,
and inversely proportional to the growth-rate of the inner part of the system (no
taking into account the input). Rephrasing this result in terms of the λ-sink
SMDPs, such as done in the example above, we get that χ = λ′ − λ, where λ′

is an intrinsic throughput of the system and λ is the input throughput. In the
emergency call center example, λ′ represents the maximal admissible input rate
of calls. E.g., in (8), λ′ = λA ∧λP is the maximal input flow that does not exceed
the capacities of treatment of the MRA and physicians. Hence, the difference
λ′ − λ has an intuitive interpretation as a security margin, which increases with
the staffing.

Although the results of Theorem 7 and Corollary 2 were brought to address
the question raised in Theorem 5 of the transience time to catch-up a specific
Heaviside-type perturbation in λ-sink SMDPs, the derived bounds bear some
generality. Indeed, any perturbation taking the form of an extra positive cost on
the input—or equivalently an extra negative cost on states of S\{0}—possibly
not instantaneous but spread over a time window of length smaller than tmax

can be bounded by such a template. This addresses the realistic case where
the inner part of the system suffers a delay with respect to the input due to
the perturbation. Besides, note that our techniques also allow us to bound the
transience time of going back to an input-driven regime starting “ahead of it”.
This would correspond to a “negative bulk” of arrivals (e.g., a reduced rate of
arrivals, or an absence of arrivals, over a short time period), i.e., the opposite
situation to the one considered in our motivating application. As an examination
of our proofs shows, this case is easier to handle because it is always non-optimal
to pick ascending actions, thus resulting in bounds without the M/χ terms.

Concluding Remarks
We provided an explicit upper bound for the time needed for an emergency
call center to absorb a bulk of calls, relying on a continuous time Petri net
model. This is based on an analysis of the conditions for convergence in finite
time for semi-Markov decision processes. We showed that, under a “hierarchical”
assumption on the topology of Petri nets, satisfied by emergency call centers,
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there is a finite absorption time, bounded by an expression whose essential term is
of the form d+M/(λ′−λ), where λ is the input rate, λ′ is an intrinsic throughput
of the system (with an explicit monotone dependence in the staffing), assuming
that λ′ > λ, M is the bulk size, and d+ is a constant depending on the topology
of the system but not on the staffing. Whereas the order M/(λ′−λ) of our bound
is optimal, we believe there is still room for improvement for the multiplicative
constant d+ that we obtained. We plan to address this issue in further work.
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LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

namat@laas.fr

Abstract. Kong, the Koncurrent places Grinder, is a tool designed to
compute the concurrency relation of a Petri net by taking advantage
of structural reductions. The specificity of Kong is to rely on a state
space abstraction, called polyhedral abstraction in previous works, that
involves a combination of structural reductions and linear arithmetic
constraints between the marking of places.

Keywords: Petri nets · Abstraction techniques · Reachability
problems

1 Introduction

Kong, the Koncurrent places Grinder, is a recent formal verification tool for
Petri nets that can take advantage of structural reductions to accelerate the
verification of reachability properties. We made our code freely available under
the GPLv3 license and all the software, scripts and data used in this paper are
available on GitHub.

In a nutshell, Kong can compute a reduced Petri net, (N ′,m′), from an
initial one, (N,m), and prove properties about the initial net by exploring only
the state space of the reduced one. A difference with previous works on structural
reductions [4,15], is that our approach is not tailored to a particular class of
properties—such as safety or the absence of deadlocks—but could be applied to
more general problems. In this paper, we focus on a particular problem supported
by Kong, called the concurrent places problem.

The correctness of our tool relies on two main theoretical notions. First, a
new state space abstraction method, that we called polyhedral abstraction in [1],
which involves a combination of structural reductions and linear arithmetic con-
straints between the marking of places. Second, a new data structure, called
Token Flow Graph (TFG) in [2], that can be used to compute properties based
on a polyhedral abstraction. We give a short overview of these two notions in this
paper. Nonetheless, our main objective here is to describe the features imple-
mented in our tool.

The basic operation involved in our approach is to compute reductions of
the form (N,m) �E (N ′,m′) where: N is an initial Petri net (that we want to

c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 115–126, 2022.
https://doi.org/10.1007/978-3-031-06653-5_6
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analyse); N ′ is a residual net (hopefully simpler than N); and E is a system of
linear equations. The goal is to preserve enough information in E so that we can
rebuild the reachable markings of N knowing only those of N ′. We say in this
case that N and N ′ are E-equivalent. While there are many examples of the
benefits of structural reductions when model-checking Petri nets, the use of an
equation system (E) for tracing back the effect of reductions is new.

In our approach, the computation of structural reductions is delegated to a
separate tool. We mention two possibilities in this paper. First the tool Reduce,
which is a new addition to the Tina model-checking toolbox since version 3.7
(https://projects.laas.fr/tina). We also describe, with more details, a new open-
source framework called Shrink. This is a highly customizable tool, and also a
library, that we hope can be reused and improved in other contexts.

A TFG is a graph-like data structure that can be built from an E-equivalence
statement, (N,m) �E (N ′,m′), and that embodies the structure of the equations
occurring in E. Kong can build a TFG from sequences of reductions computed
using Shrink or Reduce, and use it to symbolically explore the state space of
the initial net.

We describe two applications of TFGs. The main application [2] is to compute
the concurrency relation of a Petri net; what is also known as the concurrent
places problem [8]. The goal is to enumerate all pairs of places that can be marked
together in some reachable marking. This problem has practical applications,
for instance because of its use for decomposing a safe Petri net into the product
of concurrent processes [8,9]. It also provides an interesting example of safety
property that nicely extends the notion of dead places; meaning places that can
never be marked. To illustrate the versatility of our approach, we also describe
a new feature, implemented in Kong, for checking the reachability of a given
marking. Our method exploits the TFG to compute a reduced, projected marking
that needs to be found in the reduced net. This is a direct illustration of the
philosophy behind Kong, which is solving complex problems by first reducing
a Petri net; then solving the problem in a “lower dimension”; before finally
transposing this solution to the initial net.

Outline. The rest of the paper is organized as follows. In Sect. 2, we detail
how to install and use Kong. Section 3 describes the architecture of Kong and
Shrink. We illustrate the workings of Kong on a concrete example, in Sect. 4.
Finally, we validate our tool by discussing the results of experiments performed
with nets used in the 2021 edition of the Model Checking Contest (MCC).

2 Commands, Basic Usage and Installation

Kong is an open-source tool made freely available on GitHub (https://github.
com/nicolasAmat/Kong). The code repository also provides all the material to
reproduce the experiments described in Sect. 5.

https://projects.laas.fr/tina
https://github.com/nicolasAmat/Kong
https://github.com/nicolasAmat/Kong
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Dependencies. Kong is written in Python and requires a version 3.5 or higher.
It also requires the graphviz Python library in order to output a graphical
description of Token Flow Graphs (optional). Scripts and models included in
the repository are used for benchmarking and for continuous testing. Kong is
intended to be as understandable as possible; the code is heavily documented
and we provide many tracing and debugging options that can help understand
its inner workings.

We support two different tools to compute polyhedral abstractions, Reduce
and Shrink, that both use the same input and output formats. Reduce is a
tool developed inside the Tina toolbox [14], since version 3.7. It is currently used
by the Tina.Tedd and SMPT model-checkers, that both compete in the Model
Checking Contest (MCC) [3,13], albeit on different examinations. Shrink is an
open-source alternative, on which we focus in Sect. 3. Kong runs Reduce if
the executable is in the current PATH environment variable, but automatically
switches to Shrink otherwise. It is still possible to enforce the use of Shrink by
using the --shrink option. It is also possible to directly provide a precomputed
result of structural reductions with the option --reduced-net.

Concurrent and Dead Places. Kong is a CLI tool organized around sub-
commands to expose its different features. The tool provides several options that
are described in the documentation using --help. We give a brief description of
some of them in the following sections.

The main subcommands of Kong are conc and dead for, respectively, com-
puting the concurrent relation and the list of dead places in a net. When com-
puting a concurrency matrix, Kong relies on an external tool to compute the
concurrency matrix of the reduced net. This is currently done using cæsar.bdd,
part of the CADP toolbox [7,12], which is the state-of-the-art tool for the con-
current places problem [7,12].

Kong takes as inputs ordinary, safe Petri nets defined using either the Petri
Net Markup Language (PNML) [11], or the Nest-Unit Petri Net (NUPN) for-
mat [9]. (The file format is automatically detected from the file extension.) The
use of a NUPN decomposition, which provides information about the concurrent
structure of the net, can bring a significant performance improvement. The tool
was designed to be fully compatible with Petri net instances used in the MCC.
For instance, we can make use of NUPN information added to a PNML model
using its tool-specific extension mechanism.

Kong can be executed as a Python script or converted into a standalone
executable using cx Freeze. Each subcommand only requires the path to the
input Petri net (with a .pnml or .nupn extension). Hence a typical call to Kong
is of the form ‘./kong.py conc model.pnml’. We also provide two main options
to limit the exploration performed by cæsar.bdd: --bdd-timeout to set a
time limit and --bdd-iterations to limit the number of iterations. Debugging
options are described in Sect. 4.

The concurrency relation of a Petri net, denoted C, is encoded as a symmetric
matrix of dimension |P |, where |P | is the number of places in the net. We also



118 N. Amat and L. Chauvet

use the name concurrency matrix. We use the notation C[p, q] = 1 when places
p, q can be marked together in a reachable state, and 0 otherwise. In some cases,
we may need to work with “partial relations”; for example when we impose a
time limit. We say that the concurrency matrix is incomplete in this case and
use the value ‘·’ (a dot) for pairs of places where the relation is undecided.

Our output format for the concurrency matrix is taken from cæsar.bdd.
We can output our results using a compressed format, based on a run-length
encoding (RLE) of the rows of C. For the sake of readability, it is possible to
disable this encoding using option --no-rle. It is also possible to print the place
ordering with option --place-names.

A call to ‘kong.py conc’ delegates the computation of the concurrent
relation on the reduced net to the tool cæsar.bdd. It can also take
as input a precomputed concurrency matrix of the reduced net, using
option --reduced-matrix. Likewise, the dead subcommand provides option
--reduced-vector if we have a precomputed list of dead places for the reduced
net.

Marking Reachability. The reach subcommand provides a procedures to
check if a given marking is reachable. Like previously, this command relies on
an external tool to check if a marking is reachable in the reduced net. To this
end, we use Sift, which is an explicit-state model-checker for Petri nets from
the Tina toolbox, that can check reachability properties on the fly.

The tool takes as input a Petri net—not necessarily safe, ordinary or
bounded—described either in the PNML or the NET format. (NET is the spec-
ification format of the Tina toolbox). The target marking is defined using a
simple textual format, as a space-separated list of place identifiers with their
multiplicities, of the form p*k, where p is a place and k is a positive integer.
By default, places that are not listed contain no tokens. The path to the file
describing the target marking is given using option --marking.

3 Architecture of Kong

Our tool is basically composed of three modules: kong.py the front-end program
in charge of parsing command-line options; pt.py a Petri net parser; and tfg.py
the data structure and computational module based on Token Flow Graphs. We
illustrate the architecture of Kong in Fig. 1, where we describe the different steps
involved during a typical computation. The first step is to reduce the input Petri
net, say (N,m), using the Shrink tool. Shrink outputs a reduced net (N ′,m′)
and a system of linear equations E. We display in Fig. 2 a sequence of structural
reductions, with their equations, computed using Shrink. By construction, the
result of this first stage is guaranteed to be a polyhedral abstraction.

Then we build a Token Flow Graph, �E�, from the set of linear equations in
E. The TFG is a Directed Acyclic Graph (DAG), capturing the specific structure
of the equations in E, that allows us to reason about the reachable markings by
playing a token game on this graph.
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Fig. 1. Kong’s architecture.

At this stage, we must distinguish two possible cases. First, the net could be
fully reduced, meaning the resulting net is “empty”; it has no remaining places.
In this case, the set of markings of (N,m) is exactly the solutions of the linear
system E. Hence the TFG is enough to compute the concurrency matrix using an
algorithm that we call dimensionality reduction, or to decide if a given marking
is reachable. Otherwise, we have a non-trivial reduced net, in which case we need
to compute the concurrency matrix of (N ′,m′) or to check the reachability of
the projection of our marking of interest.

The first module of our pipeline relies on two Rust libraries, based on a
common crate called pnets, that defines functions for parsing, manipulating
and reducing Petri nets. This code is freely available on GitHub (https://github.
com/Fomys/pnets), under the MIT license.

Petri Nets Library. The pnets library is the core for parsing and manipu-
lating Petri nets. It supports both standard and timed Petri nets. Internally,
Petri nets are stored using adjacency lists, ensuring a low memory footprint and
fast iterations over connected places and transitions. The toolbox includes two
sublibraries for parsing nets: pnets pnml and pnets tina, respectively for the
PNML and NET formats.

Structural Reduction Library. The pnets shrink library implements reduc-
tions rules described in [5,6]. It implements a large subset of the reductions
included in Reduce, such as (definitions refers to the ones in [6]): T - Redundant
transitions (def. 1), P - Redundant places (def. 2), SCA - Simple chain agglomer-
ation (def. 5), SLA - Simple loop agglomeration (def. 6), and SSP - Source-sink
pair (def. 10).

https://github.com/Fomys/pnets
https://github.com/Fomys/pnets
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Standalone Reduction Tool. Shrink is a standalone program, integrated
with Kong, and built with the pnets crate. It can be installed using cargo, the
Rust package manager, by running ‘cargo install pnets_shrink’, or built
from sources available in the GitHub repository.

Shrink can parse nets defined in the PNML or NET formats, and use the
NET format for its output. Use option -i to indicate the path to the input net,
and -o to redirect the reduced net. It is possible to use - for replacing paths by
the standard input or output. Another option, --equation, can be used to print
the reduction equations as comments in the output net (lines starting by #).

Shrink is quite modular, different options permit to enable subsets of reduc-
tion rules from the pnets shrink library. For instance, --redundant enables the
T, P and SSP rules, and compact the SCA and SLA ones. Furthermore, a loop iter-
ation limit over the net can be set using the option --max-iter <MAX ITER>.

4 Concrete Example

The simplest way to illustrate the usage of Kong is to look at a concrete exam-
ple. This is also a good opportunity to show the debugging options provided by
our tool. Assume (N,m) is the net in top left position in Fig 2.

Net Reduction. Structural reduction is performed iteratively, until no new
reductions are possible. We display, Fig. 2, a sequence of four reductions that
leads to the result computed with Shrink; the marked net at the bottom-right.
Each row is an example of reduction, and its associated equation. First, it is
always safe to remove a redundant place, e.g. a place with the same pre and
post conditions than another one. This is the case with places p4, p5. Redundant
places can sometimes be found by looking at the structure of the net, but we
can use more elaborate methods to find redundant places by solving an integer
linear programming problem [16]. After the removal of p5, we obtain the equation
p4 = p5, and we are left with the residual net at the left part of row 2. In this case,
we can use an agglomeration rule, which states that we can fuse places inside a
“deterministic sequence” of transitions. For instance to simplify places p1 and p2
into a new place, a12. Similar situations, where we can aggregate several places
together, can be found by searching patterns in the net. After this step, we find a
new opportunity to reduce a redundant place, based on the structural invariant
a12 = p3 + p4. We conclude by agglomerating places p3 and p4 into a new place,
a13.

At the end of these reductions, we obtain the reduced net, (N ′,m′), with
only 3 places instead of 6. We also obtain a system of four linear equations
E � (p5 = p4), (a12 = p1 + p2), (a12 = p3 + p4), (a13 = p3 + p4).

Kong provides an option, --save-reduced-net, to save the reduced net into
a specific file. Additionally, we can print the reduction equations with the option
--show-equations.
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Fig. 2. Example of sequence of four reductions leading from the net N to N ′.

TFG Construction. Kong can build the TFG associated with the linear
system E; see Fig. 3. It is possible to output a graphical version of the TFG
using option --draw-graph. The TFG is a DAG where the vertices are the
places of the input and reduced net, in addition to the free variables from E.
The set of roots (nodes with no predecessor) is exactly the set of places of the
reduced net N ′. Arcs in the TFG are used to depict the relation induced by
equations in E.

A TFG includes two different kinds of arcs. Arcs for redundancy equations,
q →• p, to represent equations of the form p = q (or p = q + r + . . . ), corre-
sponding to redundant places. In this case, we say that place p is removed by
arc q →• p, because the marking of q may influence the marking of p, but not
necessarily the other way round.

The second kind of arcs, a ◦→ p, is for agglomeration equations. It represents
equations of the form a = p + q, generated when we agglomerate several places
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Fig. 3. Equations generated from net N , in Fig. 2, and associated TFG �E�.

into a new one. In this case, we expect that if we can reach a marking with k
tokens in a, then we can certainly reach a marking with k1 tokens in p and k2
tokens in q when k = k1+k2. Hence information flows in reverse order compared
to the case of redundancy equations. This is why, in this case, we say that places
p and q are removed. We also say that node a is inserted ; it does not appear in
N but may appear as a new place in N ′. We can have more than two places in
an agglomeration.

We can use the TFG to reason about the reachable markings of a net by
playing a “token game” on this DAG. Basically, we can put tokens on the roots
of the graph (given a marking of N ′) then propagate them downwards while
respecting the constraints dictated by the →• and ◦→ arcs. The result observed
on the ◦→-leaf nodes (the places of N) is guaranteed to be reachable in (N,m).

Concurrent Places Algorithm. With subcommand conc, the final stage is
to compute the concurrency matrix of the input net, C(N,m), from the one of the
reduced net, C(N ′,m′). Currently, Kong uses cæsar.bdd to compute C(N ′,m′).
But we could adapt Kong to use any other tool that can compute the con-
currency relation, such as [17]. It is possible to output this matrix with option
--show-reduced-matrix (resp. --show-reduced-vector if we use subcommand
dead).

We can give an intuition for our Dimensionality Reduction algorithm using
our example. For instance, we have that place a13, in the reduced net N ′ of
Fig. 2, is non-dead (because we can fire t9). As a consequence, all the successors
nodes of a13 in the TFG (that are also places in N) must also be non-dead,
meaning C[pi, pi] = 1 for all i in 1..5. Also, we can deduce that p4 is concurrent
to p5 (meaning C[p4, p5] = 1), because of the redundancy p5 = p4, and p1, p2
are concurrent to p3, p4, p5. A detailed description of our algorithm can be found
in [2].
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Marking Reachability Decision. With subcommand reach, the final step is
to project the marking of interest into a new marking defined on the reduced
net, and to check its reachability in the reduced net (N ′,m′).

We illustrate this procedure by taking two concrete examples on the marked
net N given in Fig. 2 (first row, left). Assume we want to check if marking
m1 � (p0 = 0, p1 = 1, p2 = 1, p3 = 1, p4 = 1, p5 = 1, p6 = 0) is reachable
in (N,m). This marking can be mapped to a unique marking of N ′, namely
m2 � (p0 = 0, p6 = 0, a13 = 2). (Use option --show-projected-marking to
output this marking.) Deciding if marking m1 is reachable in (N,m) is equivalent
to deciding if m2 � (p0 = 0, a2 = 2, p6 = 0) is reachable in (N ′,m′) (which
it is not). Observe that m1 would be reachable if the initial marking m was
(p0 = 2, p6 = 1) and the other places empty.

The “marking projection” algorithm can also directly return with a con-
tradiction (⊥), meaning that the target marking cannot be reached. Assume
we want to check the reachability of a marking m′

1 such that m′
1(p4) = 2 and

m′
1(p1) = m′

1(p2) = 0. It is not possible to project this marking into N ′ while
respecting the constraint given in the TFG. In this case, we directly obtain that
m′

1 is not reachable in (N,m).

5 Performance

We used the database of models provided by the Model Checking Contest [3,13]
to study the performances of Kong. For the computation of concurrent matrices,
among the 562 safe and ordinary instances used in the MCC’2021, we kept only
the ones with reduction opportunities; which amount to 424 nets in total. And
we selected 426 instances (among 1 411) to evaluate the marking reachability
procedure, for which we generated 5 queries that are markings found using a
“random walk” on the state space of the net. We used Reduce to compute
net reductions, we computed the concurrency matrices on the reduced net with
cæsar.bdd, version 3.6, part of CADP version 2022-b “Kista”, published in
February 2022 and used Sift to check the reachability of the projected marking.

To understand the impact of reductions on the computation time, we com-
pare cæsar.bdd and Sift alone, on the initial net, and Kong + Reduce +
cæsar.bdd or Sift on the reduced net. We display our results in the charts
of Fig. 4, which gives the number of feasible instances, for each tool, when we
change the timeout value. (To reproduce the experiments follow the instructions
from the README file in the benchmark/ directory of the repository).
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Fig. 4. Minimal timeout to compute a given number of instances: (left) concurrency
matrices, (right) reachable markings.

We observe that net reductions have a clear impact on the speed-up and that
we can compute more instances with reductions than without: 229 matrices for
Kong against 176 for cæsar.bdd alone, with a timeout of 15 min. The same
observations holds for the reachability procedure: 901 queries solved for Kong
against 667 for Sift alone, with a timeout of 5 min. Furthermore concerning the
tool Reduce, we obtained on safe instances a mean reduction ratio—that is the
quotient between how many places can be removed and the number of places in
the initial net—of 40% (median of 26%), computed in an average time of 0.7 s
(median of 0.2 s).

6 Future Work

Both Kong and Shrink are destined to evolve. For instance, we want to experi-
ment with more challenging problems using Kong and the TFG data-structure.
We are particularly interested in answering reachability queries expressed using
a boolean combination of constraints over place markings. Another interesting
problem would be to support the verification of Generalized Mutual Exclu-
sion Constraints, like in [10], that requires checking invariants involving a
weighted sums over the marking of places, of the form

∑
p∈P wp.m(p) � k,

with w1, . . . , wn, k constants in Z.
We also want to explore new reduction rules using our polyhedral abstraction

framework Shrink. We already developed new reduction rules for specific models
from the MCC, such as Election2020 and ViralEpidemic, and plan to look at
more specific examples of reduction rules.

To conclude, we are convinced that there is still a lot of work to be done
to compute polyhedral abstractions, and to apply them on useful and complex
problems.
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Abstract. This paper describes the IOPT-Tools cloud-based tool-chain,
offering a complete set of tools supporting design automation for embed-
ded controller’s development, benefiting from adopting a model-driven
development attitude. The tools are freely available online at http://gres.
uninova.pt/IOPT-Tools/. The tool-chain relies on IOPT nets (Input-
Output Place-Transition nets) to describe the controller behavior, allow-
ing an explicit representation of constraints on input and output sig-
nals and events, which is necessary for the development of controllers.
The IOPT-Tools tool-chain includes tools for interactive graphical IOPT
nets models editing, simulation and test (token-player, timing diagram,
remote debugging), as well as a state-space generator, state-space visu-
alization, and a query system for properties verification. The tool-chain
also supports the automatic generation of execution code to be directly
deployed in the controllers’ implementation platforms, such as FPGA
boards, as well as Arduino, Raspberry, and other Linux-based boards.
Most notably, it is possible to obtain C code and VHDL code to be
directly deployed into the referred boards without writing/changing a
line in the generated code. The tool-chain uses the PNML format for
storing the models and can import PNML models generated by other
frameworks, automatically generating, if necessary, an associated graph-
ical representation. After, it is possible to add input and output signals
and events to create controller models. IOPT-Tools also supports net
operations, namely net addition, allowing composition of sub-models,
and net splitting, which in conjunction with the use of clock domains
and dedicated communication channels support the development of dis-
tributed controllers.
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1 Introduction

Traditionally, Petri nets are sometimes classified as autonomous or non-autono-
mous. Autonomous nets are used when their semantics are independent of the
external environment, namely when the transition enabling and firing is not
constrained by any element coming from the environment. On the other hand,
the Petri net classes usually named as non-autonomous have semantics taking
into consideration elements from the external environment, being augmented
with dependencies on time, inputs sensors, and output actuators.

For several engineering areas, particularly when one wants to model the
behavior of a controller for discrete-event systems using Petri nets, it is of
paramount importance to explicitly model the relation between the controller
(and associated Petri net model) and the environment (that is under control).
This relation includes dependencies on input and output signals and events and
the need to change the model execution semantics accordingly.

To that end, several classes of Petri nets have been proposed during the last
decades, such as interpreted and synchronized nets [1–3], as well as several other
classes having factory automation applications in mind [4–6].

However, according to the Petri Nets Tools Database [7], very few tools pro-
vide adequate support for the modeling of external dependencies, especially when
automatic code generation is considered, for common microcontrollers or pro-
grammable devices hardware for implementation.

The tools framework presented in this paper (IOPT-Tools), freely available
at [8], is intended to mitigate the referred gap.

The structure of the paper is as follows. Section 2 presents the motivation and
objectives. After, Sect. 3 provides background information on IOPT nets, main
characteristics and execution semantics. Section 4 briefly presents the IOPT-
Tools architecture and associated development flow, while the main function-
alities of the IOPT-Tools framework are presented in Sect. 5. Finally, Sect. 6
concludes and identifies some future works.

2 Motivation and Objectives

The IOPT-Tools framework [9,10] relies on a non-autonomous class of Petri nets,
tailored for the specification, analysis, and synthesis of controllers: the IOPT nets
- Input-Output Place-Transition nets [11–13]. These nets allow the automatic
generation of executable code for discrete event-driven controllers, most notably
C for software frameworks, and VHDL for hardware implementations.

In this paper, several new functionalities of the tool-chain are presented
(when compared with [9,10]), particularly new features allowing simulation,
remote debugging and testing, operations on nets (namely net addition and
net decomposition), and new support for interoperability with external tools’
frameworks.

In this sense, the main goal of the IOPT-Tools framework is to provide sup-
port for all phases of the development of controllers for discrete-event systems.
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The development starts with the behavioral description through an IOPT net
model and ends with the automatic generation of execution code ready to be
directly deployable into implementation platforms. Also, the IOPT net model
can be simulated and validated using integrated tools or relying on external tools
interoperability.

3 Preliminaries

IOPT nets extend Place-Transition nets, adding dependencies on several non-
autonomous elements of the environment under control. In particular, input
and output signals and events are available as annotations to the graph, and
the execution semantics was changed accordingly. The syntax and semantics of
IOPT nets can be found elsewhere [11,13].

Transition firing is also constrained by input events occurrence and condi-
tioned by the evaluation of guard functions, which depend on input signals val-
ues. Upon a transition firing, output events associated with the transition can
be generated and output signals updated. Output signals activation can also be
associated with places with non-empty markings.

Test (or read) arcs are available as a major convenience to allow compact
modeling for specific situations. Priorities can be associated with transitions,
supporting strategies to automatically solve conflicts and allow deterministic
execution, even at the expense of an unfair/unbalanced decision.

Ensuring a deterministic execution is very important for embedded con-
trollers in many application areas, namely industrial systems and safety-critical
systems. In order to ensure it, a step-based execution semantics is adopted rely-
ing upon the following aspects:

• Maximal step execution, as all transitions enabled and ready will fire in the
same execution step;

• Cycle-accurate execution, delaying the acquisition of input events to the
beginning of the next execution step, considering that the execution of a
step by the controller will take some time (non-instantaneous);

• Single server semantics, transitions will fire only once per execution step, even
if enabled multiple times.

Input events can be generated due to changes in input signals (comparing the
value of the signal in two consecutive steps) or as autonomous events, indepen-
dent of any signal and helpful for simulations, inter-subsystem communication,
or both. Similarly, output events generated by transition firing can be associated
with output signals (forcing their updating) or as autonomous events.

Finally, support for modeling of Globally Asynchronous Locally Synchronous
(GALS) systems and distributed execution of the model is achieved introducing
decomposition of the model into sub-models (using the net splitting operation
[14]) and the concept of time-domain [15], which is associated with the nodes
of a subnet (ultimately, each subnet will be associated with a specific imple-
mentation platform). The different subnets can be interconnected using a new
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type of arcs, named channel arcs and a new type of node having place semantics
and representing communication channels. Five types of communication chan-
nels are available; due to space limitations, further information can be obtained
in [13,15].

4 IOPT-Tools Architecture and Availability

As already mentioned, IOPT-Tools [9,10] is a cloud-based platform, freely avail-
able at [8]. It relies on IOPT nets and includes a set of tools for developing
controllers of discrete event-driven systems. This set of tools, partly presented
in Fig. 1, includes an interactive graphical Petri net editor, simulator, remote
debugger and tester, property verification tools based on reachability graph
generation, and automatic code generation tools. The automatically generated
C code or VHDL hardware descriptions are amenable to be directly deployed
(without writing additional lines of code) into most common controllers’ imple-
mentation platforms, such as Arduino series, Raspberry Pi series, Intel Edison,
Red-Pitaya, Coral-dev-board, Zed-boards, and other Linux-based platforms and
FPGA boards. It is important to note that other implementation platforms are
also supported for software implementations if a C compiler is available. It is
also possible to generate other types of execution code associated with the model
(but not explicitly analyzed in this paper), such as Instruction List (IL) code
amenable to be deployed into a specific line of industrial Programmable Logic
Controllers (PLC) from Siemens, as well as Simulink System Block amenable to
be integrated with MatLab/Simulink projects.

Fig. 1. IOPT-Tools: Block diagram of tools.

All tools share a common web-based graphical user interface. No software
installation is required, taking advantage of standard W3C technologies, such as
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SVG (Scalable Vector Graphics), AJAX (Asynchronous Javascript and XML),
and XSLT (eXtensible Stylesheet Language Transformations).

Three types of user accounts, all having access to all functionalities of the
framework, can be considered for usage of the IOPT-Tools framework:

• Default user account «guest» (password «guest») is a common area, but with-
out privacy, as all models can be used/changed/deleted by anyone;

• Default user account «models» (password «models») is also a common area
with similar privileges as «guest» account, but containing a set of read-only
pre-prepared reference models providing to the novice a brief introduction to
IOPT-Tools;

• Personal user accounts are free and only require an email address (recom-
mended usage).

5 IOPT-Tools Functionality

After logging in at [8], the list of tools in the framework are made available and
associated with a set of buttons presented in the interface, as shown in Fig. 2.

Fig. 2. IOPT-Tools: User interface main page.

Overall functionalities can be grouped as follows (some of the listed function-
alities are available inside one of the tools):
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• Editing Models
· Edit model
· Net addition
· Net split
· Decompose GALS

• Automatic generation of execution code
· C Code
· VHDL Code
· IL Code
· Simulink Code

• Simulators
· Simulator (Token player and timing Diagram)
· (Remote) Debugger

• Create, Export and Import models
· Start new model
· Upload Model file
· Download Model File
· Export P/T Net

• Property Verification
· Generate State Space
· Query Editor
· Query Results
· HIPPO

• Miscellaneous
· Model List
· User Manual

In the following sub-sections, individual attention will be paid to each listed
group.

5.1 Editing Models

As previously referred, the IOPT Petri net editor runs inside a common web
browser taking advantage of standard W3C technologies, such as AJAX (Asyn-
chronous Javascript and XML), SVG (Scalable Vector Graphics), and XSLT
(eXtensible Stylesheet Transformations). Figure 3 shows a typical editing envi-
ronment, where the model is edited in the central window.

On the right side of the window, it is possible to edit specific characteristics
of the selected element, the one that is highlighted. Possible elements include
those associated with the graph (places, transitions, and arcs) and those associ-
ated with the non-autonomous part of the model (input and output signals and
events). This last part is the big difference compared to other Petri net editing
tools. In the following sub-sections, some of these attributes will be referred to
whenever necessary.
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Fig. 3. IOPT net editor page.

A coloring scheme, which received very favorable comments from users, com-
bined with a distinctive graphical representation for showing the different ele-
ments of the model was adopted, allowing a clear perception of the type of
input/output signal/event.

On the left side of the window, several buttons are ready to support specific
editing tasks. These include selecting elements, undo, redo, cut, copy, paste,
rotation, mirror, generation of complementary places, semaphores, and other
graphical conveniences, and editing of places, transitions, arcs, and input and
output signals and events (as already anticipated).

Of particular interest, there is also direct support for net inclusion (disjoint
addition), allowing the reading of other models into the editing area, as well as
the addition of several nets through the definition of fusion sets (a form of place
and transition fusion proposed elsewhere [16]). This is a significant convenience
for the user, as it supports the re-utilization of models within new models.

On the other hand, support for decomposition of a model into several sub-
models is possible using the net splitting plug-in, considering a set of rules pro-
posed elsewhere [14]. This decomposition technique could be used as the starting
point to produce a set of sub-models. This paves the way to support the dis-
tributed execution of the model, where each sub-model can be associated with a
different time domain and interconnected with other sub-models through a new
type of node with the semantic of a place (the communication channel), as pro-
posed in [15]. When coming to the implementation level, this set of sub-models
will be deployed as a Globally Asynchronous Locally Synchronous system into
a network of controllers.
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5.2 Automatic Generation of Execution Code

Overall, the automatic generation of execution code is the distinctive feature of
the IOPT-Tools framework and an important asset. Several target languages
are available, most notably C for software implementations [17] and VHDL
for hardware implementations [18], but also Instruction Language for indus-
trial controllers [19] and Simulink blocks to be used in conjunction with Mat-
Lab/Simulink platform. A step-based execution of the model is adopted, which
means that whenever hardware solutions are selected, the execution of a step is
associated with a period of the clock signal, and whenever a software implemen-
tation is the solution, the sequential execution of all transitions is selected.

The generated code, both C and VHDL, have been validated and compared
with manually-coded implementations, and the feedback from users has been
very positive. One aspect that biased this opinion for sure is clearly the facility
to associate the ID of the input/output pins of the implementation platform with
specific input/output signal/event of the model (using one editable attribute of
the signal/event). In this way, the generated code will be directly deployed into
the controller, without writing/changing a line of code. This is valid for a large set
of boards, including Arduino, Raspberry, and other Linux-based platforms. Also,
some other attributes have a strong impact in terms of implementation, such as
the Bound attribute associated with places, which will be considered when the
execution code is generated to determine the amount of resources necessary for
the implementation (particularly relevant whenever hardware implementation is
of interest).

5.3 Simulation and Testing

The IOPT-Tools framework also supports the simulation of the model. Two
forms are available. The first one is just the usual interactive token-player, where
benefiting from an interface with some similarities with Fig. 3, the user can
change the values of the input signals/events and be exposed to the animation
of the model. As in the editing tasks, the user will take advantage of the coloring
of places and transitions to get a direct perception of the place’s marking or the
condition of a transition if enabled or/and ready. The second way to perform the
simulation is by providing the timing diagram associated with the evolution of
input signals and events. The simulation can then be executed automatically or
interactively step by step. The tool generates the timing diagram of all inputs and
outputs and all place marking and transition firings. This provides the traditional
view in electronic circuits simulation/testing. It is important to refer that it is
possible switching from one view (token-player) to the other (timing diagram),
or vice-versa.

The three steps described– editing the model, simulating the model, and
generating executable implementation code– support a sound path for rapid
prototyping of controllers for discrete event systems. This has been extensively
used in several courses at NOVA University Lisbon, Portugal [20].
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The IOPT-Tools framework also supports remote debugging : the monitoring
and remote operation of controllers running code generated by the framework.
The user interface of the remote debugger is similar to the interactive token-
player simulator, but the animation of the model is achieved through the real-
time acquisition of the values of signals and events provided by the controller
at the plant level. The communication with the remote controller is achieved
through a minimalist http server (also generated automatically by IOPT-Tools
framework). The user interface also allows overwriting of values acquired from
the plant. More specifically, it is possible to perform a remote step-by-step testing
procedure if some malfunction is detected at the controller end.

5.4 Create, Export, and Import Models

The capability of interchange models between different tool frameworks is the
main idea behind the proposal of PNML standard (Petri net markup language)
[21]. IOPT-Tools fully support this approach. In this sense, it is possible to
import PNML files of place-transition models (using Upload model file option).
The functionality has been used to ensure interoperability with external tools.
It is also a way to allow users of other tool frameworks to benefit from the
unique characteristics of IOPT-Tools, namely the automatic code generation
for implementation (after augmenting their models with the non-autonomous
elements). Important to refer that whenever the model to import does not have
a graphical representation of the nodes and arcs of the graph, the open source
graph visualization software Graphviz [22] is used to produce this information.

Additionally, it is possible to obtain the PNML file associated with the IOPT
net model (using the Download Model File button), as well as the PNML file
associated with the underlying P/T net model (using the Export P/T Net but-
ton). The latter is obtained by removing all references and dependencies on
signals and events.

5.5 Property Verification

The model-checking subsystem, allowing verification of properties of the model,
is composed by a state-space generator, complemented by a query system able
to produce answers to specific questions [23,24]. When the state-space graph is
small, it can be directly presented in the browser. Yet, in most cases, state-space
graphs are too large to be visualized; in those cases, it is possible to download
the state-space graph (as an XML file), allowing its inspection by external tools.
The query editor allows the construction of mathematical expressions that will
be evaluated while the spate-space is being constructed. The editor of the mathe-
matical expressions (similar to the ones used to fill in several attributes of places
and transitions, such as transitions guards and expressions associated with out-
put signals) is straightforward when the type of questions is simple. However,
it falls short when more complex questions are of interest. This is an aspect
where currently IOPT-Tools users rely more on external tools (using the export
feature presented before) than on the model-checking subsystem. One of these
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links with external tools is available through a direct connection with the tool
HIPPO [25], where some answers on invariants can be obtained.

Overall, the model-checking subsystem has an important role in three situa-
tions:

• When generating the state-space graph and computing the maximum number
of tokens for all places; this information will be back-annotated into the model,
in the Bound attribute, which will be used by the code generator tools (as
referred in Sect. 5.2);

• As the physical systems running the code generated automatically may suffer
from malfunctions or cause hazardous situations, the model-checking subsys-
tem may be used to automate the detection of problematic situations and
verify if undesired states are reachable;

• As an important support for teaching activities.

5.6 Miscellaneous

At any moment, it is possible to return to the Model List and select another
model. There is also a User Manual, very important for newcomers.

6 Conclusions and Future Works

The framework was built together with the definition of the IOPT nets class
to allow the generation of executable code from Petri net models targeting con-
trollers. Hence, the primary motivation to use this set of tools remains the same: a
formal and precise graphical language to simulate and generate code for discrete-
event systems controllers. Additionally, several cooperating controllers executing
in distinct time domains can also be modeled, thus allowing simulation and code
generation for GALS systems.

As all tool developers know very well, the job is never completed if one wants
to keep the tool live and updated, giving adequate answers to new challenges.
This is also the case for IOPT-Tools, where one primary source of user feedback is
the continuous usage of IOPT-Tools for teaching purposes in engineering courses
at several universities, most notably at NOVA University Lisbon, Portugal.

Current tool support for verification and property analysis has been exten-
sively used for teaching purposes in engineering courses. Yet, it is still far from
an industrial-strength tool regarding robustness and efficiency. Hence, as future
work, we intend to prioritize the following developments:

• Robust support for interoperability with industrial-strength external verifi-
cation tools, e.g., the Spin model-checker;

• Improve the graphical user interface usability and design;
• Better support for modularization, including hierarchical composi-

tion/decomposition of models.
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Abstract. Process mining uses event sequences recorded in informa-
tion systems to discover and analyze the process models that generated
them. Traditional process mining techniques make two assumptions that
often do not find correspondence in real-life event data: First, each event
sequence is assumed to be of the same type, i.e., all sequences describe an
instantiation of the same process. Second, events are assumed to exclu-
sively belong to one sequence, i.e., not being shared between different
sequences. In reality, these assumptions often do not hold. Events may
be shared between multiple event sequences identified by objects, and
these objects may be of different types describing different subprocesses.
Assuming “unshared” events and homogeneously typed objects leads to
misleading insights and neglects the opportunity of discovering insights
about the interplay between different objects and object types. Object-
centric process mining is the term for techniques addressing this more
general problem setting of deriving process insights for event data with
multiple objects. In this paper, we introduce the tool OCπ. OCπ aims
to make the process behind object-centric event data transparent to the
user. It does so in two ways: First, we show frequent process executions,
defined and visualized as a set of event sequences of different types that
share events. The frequency is determined with respect to the activity
attribute, i.e., these are object-centric variants. Second, we allow the user
to filter infrequent executions and activities, discovering a mainstream
process model in the form of an object-centric Petri net. Our tool is freely
available for download (http://ocpi.ai/).

Keywords: Process Mining · Object-Centric Petri Net · Process
Discovery · Object-Centric Variants

1 Introduction

Process mining is an umbrella term describing techniques to derive data-driven
insights into processes. The data come in an event log, describing the event
sequences of many process executions and their associated data. Typically, three
different process mining fields are considered: process discovery, conformance
checking, and process enhancement [1]. Techniques from process discovery aim to
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Fig. 1. Overview of OCπ: The log management is integrated into the toolbar, the
user can further interact with the tool by submitting the desired settings through the
log settings component. Petri net and object-centric variants can be explored through
scrolling, zooming and panning.

construct a model from the event log, e.g., a Petri net or a BPMN model. Such a
model aims to describe the event sequences contained in the event log with only
one comprehensive model. Conformance checking deals with quantifying and
describing how well a model corresponds to an event log. Process enhancement
aims to deliver data-driven process improvements.

Process mining techniques make some assumption about the nature of event
logs and the event sequences event logs contain. Most techniques make the fol-
lowing two assumptions: (1) An event log contains process executions related to
individual objects, often called cases. Therefore, every event sequence describes
an execution of a single case. Each case is of the same case notion. (2) Event
sequences for cases are independent of each other, i.e., two cases do not share
events.

In reality, event logs often violate these assumptions. There is often no clear
case notion in an event log. Events can be associated with multiple cases [2].
Imagine an ordering process: An order of some items is placed in a system.
These items are later delivered. Events can refer to a case notion of an order, an
item, or a delivery. Furthermore, some events are shared between different cases
of different case notions, e.g., an event that describes the placing of an order of
two items.

In traditional process mining, we cannot derive insights from such event data
as a whole. One case notion would need to be chosen, and events referring to
multiple objects of that notion would need to be duplicated, called flattening
[2]. This procedure removes essential information about interactions between
different case notions and objects. These problems are the motivation for object-
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centric process mining [3]. By dropping the two mentioned assumptions and
adapting process mining techniques, object-centric process mining aims to deliver
algorithms that are able to exploit event logs with multiple case notions and
shared events fully.

Different methods for dealing with multiple case notion processes exist. Some,
like artifacts [7,8] and proclets [11], deal with the problem mostly from a model-
ing perspective. Object-centric process mining [2] takes the object-centric event
data [12] as a starting point to discover process models and insights. So far,
the discovery of process models in the form of object-centric Petri nets [3] has
been introduced. A discussion of sound object-centric workflow nets has recently
been published [14]. Furthermore, basic conformance checking techniques for
object-centric Petri nets and event logs [4], and performance analysis measures
cite[16] have been introduced. On the tool side, tools to extract object-centric
Petri nets [3] and object-centric directly-follows graphs [5] as well es storing and
querying multiple case notion event data in the form of graph databases [10]
have been introduced. Furthermore, object-centric Petri nets have been used to
model digital twins of organizations [15].

However, some key ingredients of traditional process mining are, so far, not
available to users. Here, we focus on variant visualization and discovering pro-
cess models for frequent variants. Process executions can be equivalent if they
describe the same execution sequences of event activities. The equivalence classes
they form are commonly known as variants [9]. Each variant has a frequency
determined by the number of process executions in this variant. Filtering and
exploring frequent variants provides the user with insights into the mainstream
behavior of the underlying process and yields a mainstream model.

Therefore, with OCπ (cf. Fig. 1), we provide a tool that augments object-
centric process discovery in the following two ways:

1. We allow the user to filter the least frequent variants of process executions
from the retrieved event log to discover an object-centric Petri net that shows
the mainstream behavior of the event log.

2. We provide a variant explorer that allows the user to retrieve and explore the
variants of process executions and their frequencies.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
some basic concepts on which this tool is built, i.e., object-centric event logs,
extraction of executions, variants, and object-centric Petri nets. We explain the
algorithmic foundations and some concepts relevant for the understanding and
usage of the tool in Sect. 3. We provide an extensive overview of the functional-
ities, the implementation and installation requirements in Sect. 4. We conclude
this tool paper in Sect. 5.

2 Object-Centric Process Mining

In this section, we introduce some of the basic concepts on which this tool is
built. The tool takes input in the form of an object-centric event log, extracts
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Fig. 2. Example of an object-
centric Petri net. Places are col-
ored according to the object type
they belong to; variable arcs (dou-
ble lined) can consume a variable
amount of tokens.

Table 1. Example of an object-centric event log.
Each event can be associated to multiple objects
of different object types. In this log, order, item
and delivery are the object types.

Event Activity Order Item Delivery

e1 Place Order o1 i1,i2

e2 Pick item i2

e3 Pick item i1

e4 Fuel car d1

e5 Pay order o1

e6 Pack items i1,i2 d1

e7 Deliver i1,i2 d1

process executions from it, determines frequent equivalence classes, i.e., variants,
and discovers and displays an object-centric Petri net to the user. Therefore, we
give a short formal introduction of these concepts in this section.

An object-centric event log can be seen as an extension to traditional event
logs used in process mining [1] that records multiple case notions (object types)
for each event and allows referencing to multiple cases (objects) of each object
type of an event.

Definition 1 (Object-Centric Event Log). Let UE be the universe of event
identifiers, UOT be the universe of object types, UO be the universe of objects
and UA be the universe of activities. P(X) denotes the power set of a set X.
πot : UO → UOT maps an object to its object type. An object-centric event log
is a tuple L = (E,OT,O,A, πo, πa,≺) consisting of event identifiers E ⊆ UE,
object types OT ⊆ UOT , objects O ⊆ UO, activities A ⊆ UA, a mapping function
from events to objects πo : E → P(O) and a mapping function from events to
activities πa : E → A. The event identifiers are subject to a total order ≺.

An example of an object-centric event log in table format is given in Table 1.
Each event has a unique identifier ei and an activity1. Furthermore, each event
has reference to a set of objects. Each object is associated with one object type of
order, item or delivery. In traditional process mining, each process execution is
associated with exactly one object, i.e., each process execution is one sequence.
The notion of a process execution can be generalized for object-centric event

1 We omit the timestamp and additional attributes as they are not relevant for the
capabilities described in this paper.
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data, involving the sequences multiple objects sharing events. An extraction
technique retrieves a set of process executions from an event log.

Definition 2 (Process Execution). Let L = (E,OT,O,A, πo, πa,≺) be an
object-centric event log. PL = {(E′, O′) | E′⊆E ∧ O′⊆O ∧ e∈E′ ⇔
πo(e)∩ O′ 	= ∅ ∧ (O′, {(o, o′)∈O′×O′ | ∃e∈E′ o, o′∈πo(e)}) is a connected graph}
is the set of process executions of an event log. An extraction technique fextract :
L → P(PL) extracts a subset of all process executions.

For the example of the event log excerpt in Table 1, a single process executions
could be all seven events and the four objects. Another possible process execution
would be a subset of these objects and their events, e.g., only the order o1 and
the two items i1 and i2. Different methods are available to retrieve subsets of
all process executions. The process executions in the extracted subset should
have some similar characteristics to be comparable. We discuss two different
extraction techniques in Subsect. 3.2.

Variants in process mining summarize multiple cases (or process executions)
with the same control-flow behavior. This is translated to the object-centric
setting by determining equivalency of process executions concerning the event
activity attribute and grouping equivalent executions in one class, i.e., variant.

Definition 3 (Equivalent Process Executions). Let P = {p1, p2, . . . pn} be
a set of process executions. An oracle fequiv : P → {1, . . . ,m} maps executions
to m∈N classes of equivalent executions considering the event’s activity. Each
class is one variant Vi = {pj ∈ P | fequiv(pj) = i} for i ∈ {1, . . . , m}.

We can discover an object-centric Petri net from an object-centric event log
[3]. Object-centric Petri nets borrow from colored Petri nets [13] to be able to
model different object types and how they interact.

Definition 4 (Object-Centric Petri Net). Let N = (P, T, F, l) be a Petri net
with places P , transitions T , a flow relation F ⊆ T × P ∪ P × T with T ∩ P = ∅
and a labelling function l : T � UA and let OT ⊆ UOT be a set of object types.
An object-centric Petri net OCPN = (N, pt, fvar) is a tuple of a Petri net N ,
a mapping function from places to object types pt : P → OT and fvar ⊆ F
describing a subset of arcs which are variable arcs, i.e., they can consume and
produce more than one token.

An example of an object-centric Petri net is given in Fig. 2. This Petri net
describes the process used to generate the event log of Table 1. Each place has
a color corresponding to one object type. Each arc can either be a standard arc
or a variable arc. When playing the token game in such a Petri net, a binding
execution of a transition would consume tokens associated with objects in the
input places. These could be multiple tokens in the case of a variable arc. The
consumed tokens are then produced in the output places of the corresponding
object types of the input places.



144 J. N. Adams and W. M. P. van der Aalst

Fig. 3. Overview over the user interaction and the algorithmic steps in OCπ.

3 Algorithmic Concept

The technique to discover an object-centric Petri net from an object-centric
event log is described in [3]. We focus on preprocessing the underlying event log
for process discovery according to some user input. The general signature of the
processing we apply is depicted below.

L
fextract−−−−−→ {p1, . . . , pn} fequiv−−−−→ {V1, . . . , Vm} → Petri net & Variants

The detailed algorithmic concept of our tool is depicted in Fig. 3. The user
provides an object-centric event log and makes a choice about several settings:
The selected object types, the activity threshold, the variant threshold, and the
technique to extract process executions. Based on this, our tool applies different
filtering and algorithmic steps. Process executions are extracted from the object-
centric event log, and their equivalence classes, i.e., variants, are calculated.
Subsequently, the user can explore the object-centric Petri net and the variants,
adjust the input settings, and reiterate until the result is sufficient for the user. In
the following sections, we provide deeper insights into the different algorithmic
steps conducted by our tool that are of importance for the understanding of the
user on how to interpret the results.

3.1 Filtering

The filtering possibilities included in our tool, by activity frequency and variant
frequency, both follow the same method: The user selects a threshold between
0 and 1.0. Subsequently, the minimum number of behavioral observations, i.e.,
either activities or variants, is collected such that the cumulative frequency of
these observations exceeds this threshold. The events that are not associated
with these observations are filtered out. For the example of activity filtering, the
relative frequencies of each activity in the event log are calculated. After the
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user sets a threshold, the most frequent activities are greedily added to a set
of activities that should be kept in the event log until the threshold is met. All
events with activities not in this set will be discarded.

3.2 Process Execution Extraction

The process execution extraction technique determines how process executions
are retrieved from the object-centric event log and is, therefore, important for
the variants retrieved as well as the results of the variant filtering. We provide
two execution extraction techniques: coherent objects and leading object type.

For a brief explanation of these techniques, we use a concept of direct rela-
tions between objects: if two objects share an event, they are directly related.
Two objects can be transitively related if a chain of direct relations leads from
one object to the other. The length of the chain is the level of transitivity.
Coherent objects take all objects directly and transitively related into one pro-
cess execution. The underlying assumption is that they are all dependent on each
other by sharing events. However, this might lead to process executions that are
too extensive for some logs and some users. Imagine the ordering process from
Table 1. If multiple items of multiple orders end up in the same delivery, all of
these orders would be one process execution. While they, indeed, all depend on
each other, this might be too extensive for the user who may only be interested
in the execution of an order and the associated objects or a delivery and the
associated objects. Because of this, we include leading object type as a tech-
nique for execution extraction. It constructs executions by taking each object
of the leading object type and recursively adding directly related objects until
objects of the same type have already been added on a lower level of transitivity.
These objects are not added anymore, and their directly related objects are not
further traversed. The events of the selected objects are one process execution.
This execution extraction cuts off some dependencies to have more understand-
able and comprehensive process executions. Some events may end up in multiple
process executions. Our implementation determines the equivalence of process
executions by testing for automorphism between the different execution graphs
given by the process executions.

3.3 Variant Visualization

Each execution is associated with one variant, describing the sequence of activ-
ities for each involved object. We visualize these variants by giving each object
one lane. Each object gets a color, dependent on the object type’s base color,
which is slightly altered for each object. We draw a chevron for each event. The
activity is depicted inside the chevron. If an event is shared between objects,
the corresponding chevron is drawn on each lane and colored with all colors
of all involved objects. Generally, the chevrons are of the same width. Only if
a chevron is placed between two shared chevrons, the width is adjusted to fit
the gap. Except for the shared chevrons, the chevron ordering and horizontal
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Fig. 4. The log settings component, the central point of interaction with the users.

positioning gives information about the time-ordering within one object, not
between objects.

4 Usage and Functionalities

In this section, we introduce the core functionalities of our tool. A complete view
of the tool is depicted in Fig. 1. Our tool is separated into four components:
two for user interaction and two for exploring the output. The user interaction
components are the log management (integrated into the toolbar on top) and
the log settings. The output components are the object-centric Petri net explorer
and the variant explorer. We are going to introduce each of the components in
the following sections.

4.1 Event Log Management

OCπ offers extensive event log management. The file formats jsonocel and
jsonxml introduced in the OCEL standard [12] as well as a csv import are sup-
ported. The CSV file should contain an “event activity” and “event timestamp”
column. As a supportive element for uploading CSV, we implemented functional-
ity to choose potential object types to prevent unwanted columns from becoming
object types. The file’s encoding should comply with UTF-8 encoding. The sepa-
rator will automatically be detected. Each log can also be deleted at an arbitrary
point in time. Each event log will be uniquely identified by its name. Two event
logs with the same filename cannot be uploaded.

4.2 Log Settings

The log setting component is the main point of input from the user and is
depicted in Fig. 4. We provide two filtering thresholds: One to filter out infrequent
activities and one to filter out infrequent variants. Furthermore, we allow the user
to discard some object types for their scope of analysis, effectively removing
these object types and their objects from the event log. We provide two different
techniques to extract process executions. The first one is called coherent objects,
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Fig. 5. The object-centric Petri net discovered from an object-centric event log accord-
ing to the settings provided by the user.

the second technique is called leading object type. Subsection 3.2 provides a
detailed explanation of the execution extraction. The settings can be submitted
to the back-end by pressing the submit changes button.

4.3 Process Model Explorer

Based on the event log that is processed according to the setting provided by
the user, our tool discovers an object-centric Petri net and displays it to the
user as a process model. The component is depicted in Fig. 5. The visualization
can interactively be explored, navigation by zooming and dragging/panning is
supported. These functionalities help make large Petri nets with many object
types and transitions accessible to users. Every object type has one globally
assigned color, which is also used by the variant explorer component described
later. The Petri net can be discovered by pressing the button. If the settings were
changed and the Petri net is not consistent with the current submitted settings,
this button changes its color to red to indicate a necessary update.

4.4 Variant Explorer

The variant explorer displays the variants of the process executions extracted
from the event log based on the provided settings. It is depicted in Fig. 6. The
colors of the object types are consistent with the colors in the object-centric
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Fig. 6. The variant explorer shows the frequency and a visualisation for each variant.

Petri net component. Each object of an object type is colored in a different
shade of the object types’ base color. Each object gets a lane to describe its
event sequence, lanes of the same object types are grouped. The frequency of
the variant (with respect to the event log after the filtering settings are applied)
is depicted on the left-hand side of the variant. With a click on the variant, the
variant is unfolded such that the full activity labels are visible. The explorer
allows scrolling in both directions, vertically and horizontally.

4.5 Implementation

We implemented this tool on a technology stack of Python, Django, Angular,
and D3.js and GraphViz2 for visualization. The core algorithmic functionality
is taken from the OCPA3 and the PM4Py library [6]. The tool can be run on
Windows by downloading it from http://ocpi.ai/ and running the executable
named OCpi.exe.

5 Conclusion

In this paper, we introduced the tool OCπ. This tool enables users to load object-
centric event data and explore novel insights: The process execution variants
contained in the object-centric event data and their frequencies. Furthermore,
we enable the user to filter out infrequent variants, infrequent activities, and

2 GraphViz needs to be installed. See: https://graphviz.org/download/.
3 https://github.com/gyunamister/ocpa.

http://ocpi.ai/
https://graphviz.org/download/
https://github.com/gyunamister/ocpa
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unwanted object types to discover an object-centric Petri net according to the
chosen settings. This allows a user to interactively explore an object-centric
process model and its most frequent variants.

Acknowledgements. We thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.
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Abstract. Space system engineering has to follow a rigorous design pro-
cess to manage performance/risk trade-offs at each development stage
and possibly across several functional and organizational domains. The
process is further complicated by the co-development of multiple solu-
tions, each contributing differently to the goal and with different trade-
offs. Moreover, the design process is iterative, involving both changing
requirements and specifications along the different ways that lead to the
set goal of the mission. The above requires rigorous modeling that, in
addition, must be easily extendible and maintainable across organiza-
tional units. On the example of the PROBA-3 science computer (instru-
ment control unit, CCB DPU), we show how Petri Nets can serve as
such a simple-to-maintain, holistic model, combining finite-state charac-
terizations with dynamic system behavior caused by hardware-software
interactions, to express the component-state dependent end-to-end per-
formance characteristics of the system. The paper elaborates on how the
proposed Petri-Net-modeling scheme allows for system architecture opti-
mization that result in safely reduced technical margins and in turn sub-
stantial savings in components costs. We show that performance metrics,
obtained from simulation, correlate well with the real performance char-
acteristics of the flight model of PROBA-3’s science computer.
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1 Introduction

While space missions may have a clearly specified goal, there are many ways of
achieving it. Not all solution pathways are equal: some entail higher implemen-
tation costs, others are limited in the performance they achieve, introduce unac-
ceptable risks, or utilize spacecraft resources too extensively. Designing space-
crafts and their subsystems is a gradual, iterative, incremental process and has
to happen concurrently across functional and organizational boundaries. Grad-
ual advances and small increments lead the project from initial requirements and
specification up to construction, test and deployment. At all times, subsequent
steps in the development process have to be evaluated from the perspective of
risk mitigation, reducing unknowns and removing technical obstacles.

Classically, space projects in the ecosystem of the European Space Agency
(ESA) progress through the following seven phases:

Phase 0 - Early Conceptualization
Phase A - Mission Definition
Phase B - Preliminary Technical Design
Phase C - Critical Technical Design
Phase D - Flight Equipment Manufacturing, Assembly, Integration and Test
Phase E - Deployment in Flight
Phase F - Disposal

Subsequent phases thereby build upon design decisions, trade-offs and experi-
ments from earlier phases and the high formalization of the process has the goal
of reducing programmatic risk. Examples of the latter include overruns on costs
or of the schedule, which are often caused by wrong requirements or assumptions,
that were discovered too late for quick and easy fixes. This calls for the deploy-
ment and active use of all possible means for simulating, testing, and verifying
assumptions, solutions and decisions, as early as possible and sensible.

Space projects often experience a clash between opposing forces: on the one
hand, there is a demand for large technical margins on designed subsystems
to ensure with a very large likelihood that evolving requirements will be met;
on the other hand, there is the need to optimize the design, reduce the typi-
cally very large costs incurred by an extensive use of high reliability components
and resources (mass, energy, processing power, memory size) utlization. This
dilemma drives the strong need to analyze, evaluate and experiment with the
designed system to judge technical decisions and to ensure that, as the project
matures, risks are indeed reduced while striving for optimal utilization of avail-
able resources.
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In this paper, we would like to share our experience of using Petri Nets in
practice for modeling the processing performance of the Instrument Control Unit
for Coronagraph, a sun observing telescope, which has been the primary payload
of ESA’s Proba-3 mission. Application of Petri Nets has been essential in the
early stages of the project (Phases B and C) where architectural decisions and
optimization attempts had been confronted with the need to prove the system
would be capable of meeting required performance.

Aside from our experience report, this paper contributes:

– the design of Coronagraph’s instrument control unit architecture,
– an initial Petri Net model and simulation exploring the system’s design space,
– an advanced Petri Net model correlated with flight equipment,
– a concept for the hardware-software co-design of embedded systems beyond

the space domain, and
– the tangible system optimization results we achieved applying the above

methods.

Parts of this work (Sects. 3.1, 3.2 and 4) have been previously published as a
PhD thesis [14].

2 Background

Modeling and simulation of space systems, be it avionics, command and data
handling systems, or mission payloads, is crucial for their correct high-level
design, for their technical specification and, finally, for an initial verification
of their key requirements. Early modeling and simulation helps making tested
functionalities traceable for future user needs and for ensuring a common under-
standing on what is actually being built and why. Modeling and simulation of
the system design allows for idea feasibility checks, architecture trade-offs, initi-
ates early prototyping, brief requirements verification, and de-risking any critical
aspects of the system [4,6,7,15,19,26]. Two modeling approaches are frequently
used for spacecrafts, which we describe in the following.

2.1 Analytical and Mathematical Models

Every system operation can be modeled by means of affecting the energy, mass
or information flow (in sense of enabling or disabling the flow, accumulation or
transformation of resource). Modeling along those lines starts with capturing the
basic building blocks of the system, defining transfer functions and their transient
response, which leads to a description of components in form of a mix of alge-
braic and differential equations. From these equations, one further derives sys-
tem balancing equations to describe the system dynamics in simplified form, by
linking storage, flow or transformation of mass, energy or information. Balance
equations are a valid method for modeling fluid systems, attitude determination
and control, and some electrical systems (e.g., power systems) are conveniently
modeled by means of flow and storage. In this approach, the ultimate goal is to
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describe the state space of a system by formulating state equations, which define
the internal state of the system, and output equations, which define the system
response as a function of its current system state and received inputs.

2.2 Dynamic and Functional Models

While flow or variation of physical attributes are conveniently expressed in terms
of differential equations, the modeling of computation or data flow needs to take
into account the stateful and event-driven nature of the data processing and
control systems. State charts or graphs and finite-state machines (FSMs) are
mathematical models used to represent such computation in classic logic devices
or, when extended like in UML [16], SDL [2] or AADL [9], to represent software
execution paths and software component relations in an embedded system [18].
FSMs can be in only one state at a time. External events induce state changes.
This makes FSMs a convenient way of representing a single activity over time
and showing the dependency of modeled systems on transition triggering condi-
tions. The operation of one or more FSMs over time, and their interaction can be
extended into flow networks. A flow network is a particular example of a directed
graph where each edge has its maximum capacity and has some temporary flow
value. Flow values cannot exceed the maximum capacity of an edge. Flow has to
follow the preservation rules, meaning that effective network-node inflow must
be equal to outflow (with the exception of source and sink nodes). This simple
methodology allows for brief analysis of the dynamic behavior of systems. Flow
networks are especially useful for modeling system aspects related to transporta-
tion like electric current, liquid or heat flow or data transfer. Flow networks are
useful not only for the analysis of system evolutions over time, but also for find-
ing the maximum flow capability of the whole network. Quite often, computing
and control systems have to be analyzed as an evolution over time (in continuous
domain), while system state transitions occur at discrete events, when associated
conditions trigger desired reactions. Such events exhibit a competition against
other triggers and each one of them, typically, has its own stochastic mecha-
nisms that govern determining a new system state. For each state transition,
new events may be scheduled and previously scheduled events may be canceled.
Petri Nets provide a versatile analysis framework for this kind of modeling, espe-
cially if the modeled system exhibits randomness, state-transitions, concurrency
and scheduling [13,22,23,29]. Some works on Petri Nets applied to space systems
engineering can be found, including software modeling [21], satellite constellation
modeling [8] and instrument simulation [20].

2.3 Hybrid Models

Hybrid models, combining discrete and dynamic aspects, such as PDL [5,10]
and hybrid-systems state machines [25] have been investigated in the research
community, but are not yet widely deployed in space system design. We therefore
leave the investigation of such models as future work.
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2.4 State-of-the-Art Modeling Approaches

A representative example of a state-of-the-art modeling approach for embedded
cyber-physical systems, used in ESA, is TASTE [1,3] and its toolchain. TASTE
focuses on the software aspect of system operations and supports the creation
of systems using formal methods and automated code generation. The system
under evaluation shall be defined in AADL, but a large number of other tools and
languages are supported as well, including SDL, VHDL, ASN.1, SCADE, and
Simulink. Cheddar and MAST are used for model verification. Verified models
can be converted into Ada, C, or C++ and deployed on the target hardware.
The TASTE framework targets the development of safety and mission-critical
communication, control and data processing systems and associated real-time
applications. The goal for using TASTE is to facilitate the understanding of a
specification or design to get an early executable representation of the system and
allow independent testing and verification at different levels of abstractions [24].

3 The Proba-3 Mission, ASPIICS Coronagraph
and Instrument Control Unit

Proba-3 includes, among others, the ASPIICS (Association of Spacecraft for
Polarimetric and Imaging Investigation of the Corona of the Sun) primary pay-
load. The mission is devoted to demonstrating in-orbit the precision formation
flying of two satellites. The first one produces a nearly perfect eclipse allow-
ing the second one—the PROBA-3 Coronagraph ASPIICS—to observe the sun
corona closer to the rim than ever before. To achieve that, both satellites need to
keep, their distance and alignment, precisely and accurately, during the obser-
vations. The coronagraph will cover the range of radial distances between ∼1.1
and 3 solar radii, thus providing continuous observational conditions very close to
those during a total solar eclipse, but without the effects of Earth’s atmosphere.
ASPIICS will provide novel solar observations capabilities to achieve two major
science objectives in the area of solar physics [11,27]:

1. understanding the physical processes that govern the quiescent solar corona;
and

2. understanding the physical processes that lead to coronal mass ejections
(CMEs) and that thus determine space weather.

The Coronagraph Control Box (CCB) is the electronic controller of the ASPI-
ICS Coronagraph Instrument (CI). The CCB consists of a compact housing that
contains:

– a Data Processing Unit (DPU), i.e., an embedded payload computer module
that is capable of processing and buffering data and of executing manage-
ment and control algorithms. The DPU is responsible for interacting with
the Proba-3 Coronagraph Satellite on-board computer, called Advanced Data
and Power Management System (ADPMS);



158 R. Graczyk et al.

– a Power Conditioning Unit (PCU), i.e., a power supply module that provides
all the voltages required by the CI, along with voltage/current measurement
capabilities for telemetry data generation and protection circuits. The PCU
is switched on at the moment when the ADPMS provides power, and supplies
all units instantaneously;

– an Ancillary Electronics Unit (AEU) contains switches for ASPIICS power
on and off control, as well as advanced actuation control for Filter Wheel
Assembly (FWA) and Front Door Assembly (FDA) stepper motors, the Coro-
nagraph Optical Box (COB) heater system and the ADCs to gather telemetry
data. AEU functionality is controlled by the DPU;

The Data Processing Unit (DPU) of the Coronagraph Instrument is respon-
sible for all control and scientific processing algorithms. It is built on two main
components. One, is a processor (CPU, GR712RC), executing the control soft-
ware (Boot Software and, target, Application Software). The other is a con-
figurable logic device (FPGA, RTAX2000S), that acts as the processor’s co-
processor, implementing all features that are not available in the processor. The
processor interfaces to Flash (for boot-image and application software storage)
and to SDRAM as operations memory and as storage for scientific data. The
FPGA is equipped with an external SRAM acting as a cache for scientific data
packet formation. The processor’s main functions are:

– scientific data acquisition, processing and transfer to On-Board Computer
– flight software and operations schedule execution
– motor and temperature control, power management
– fault detection, isolation and recovery

Main FPGA functions are:

– extending the CPU features through Space Wire
– providing missing communication interfaces (Packet Wire)
– Shadow Position Sensor data acquisition and preprocessing

See Fig. 1 for an overview over the DPU functional blocks and their relation to
the overall system architecture.

3.1 Classic Approach to Performance Modeling

The system architecture, as described at the beginning of Sect. 3, shall be eval-
uated during its development against the system requirements. System char-
acteristics estimation is needed to, first, understand the feasibility of the pro-
posed solution, and, second, to identify the system’s technical margins, which
are needed to understand the project’s technical risks.

The classical approach for modeling complex embedded system like the CCB
DPU, would be to create a simple pipeline model. Such a model assumes tiles
(chunks of images taken by Coronagraph) are transferred from one buffering
place to another, immediately, with maximum rate. Typically, such a model will
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Fig. 1. Data Processing Unit (DPU) architecture

not include any functional dependencies or blocking operations and is there-
fore limited to giving theoretical maximum performance estimates of a given
hardware configuration of the system. It can help detect of performance bot-
tlenecks, which are typically located at the communication interface with the
lowest bandwidth.
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To be more specific, let us outline a simple DPU pipeline model, where the
input stream of scientific data is fed through the “pipeline” over a data transfer
channel. A data transfer channel consists of all sub-channels (communication
interfaces) through which data is transferred. For convenience, we could express
the bandwidth (BW) of each of part of the data transfer channel in terms of tiles
per second (BWCoff for compression off and BWCon for compression on, since
compressed tile is about 3 times smaller than raw). The simple DPU pipeline
model is shown in Table 1. Knowing that planned system operations require
the CCB DPU to be capable handling 192 tiles/s, in worst case scenario, we
could immediately conclude, that, there should be no performance bottleneck
present. Then, we could draw a positive conclusion regarding the implementation
feasibility of PROBA-3 CCB Data Processing Unit.

Table 1. DPU pipeline dataflow model

Communication Path BW [Mbps] BWCoff [tiles/s] BWCon [tiles/s]

Space Wire (from CEB) 50 800 800

AMBA bus (in CPU) 1600 25600 25600

Space Wire (between CPU & FPGA) 50 800 800

AMBA bus (in FPGA) 200 3200 9600

Packet Wire (to ADPMS) 25 400 3200

3.2 Tile-Flow Peculiarities that Need to Be Taken into Account

The pipeline model presented in Sect. 3.1 is simple but dangerously coarse. It can
be noticed, that within the processor and within the FPGA, all activity—i.e.,
control and data transfer—is conducted over the AMBA bus, which interconnects
all peripheral and IP-core blocks. On the processor side, AMBA is involved
whenever a tile is transferred, whenever the processor cache has to be filled,
during regular housekeeping, scheduling, control and health monitoring activities
of the on-board software, and whenever interactions with other parts of the
Coronagraph Instrument or the satellite bus take place.

The FPGA is designed and built around the same philosophy of operation,
also utilizing the AMBA bus and the set of IP-cores to provide the required
functionalities. However, the FPGA does not contain any processor itself. Its
operation therefore crucially depends on remote configuration by the main pro-
cessor (CPU). Therefore, although some bus transactions inside the FPGA (like
DMA transfers) happen automatically, they have to be configured beforehand
by the CPU. In consequence, the CPU remains in full control of scientific data
flows, both in the GR712RC processor and in the RTAX 2000 FPGA.

The FPGA further reports back to the CPU any detected events related to
the communication and Shadow Position Sensor (SPS) operation. Reporting is
via 3 interrupt lines originating from the Packet Wire block denoting success-
ful transmission of a tile to the spacecraft mass memory, from the IDC data
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compression engine, denoting end-of-tile processing, and from the SPS Readout
Engine block. This generates additional asynchronous events, on top of those
received by the CPU directly (e.g., in relation to the communication with the
satellite’s On-Board Computer and the ADPMS).

Let us take a brief glimpse how the AMBA bus works to understand a major
issue we have to address. AMBA (also called here AHB) is a multiplexed bus
(see Fig. 2). A multiplexer, connecting the master (i.e. source of data) to a slave
(i.e. data sink), blocks any connection from happening until the bus is freed
again. Only one type of operation can be executed at a time and by only one
master at a time. That is either a tile can be transferred from Space Wire to
SDRAM, or from SDRAM to the FPGA for compression, provided the FPGA is
configured or interacts with the CPU. The same holds for the FPGA side AMBA
bus: either the IDC compression engine (or the CPU) feeds tiles directly into the
SRAM cache or tiles are sent through Packet Wire to the On-Board Computer.
On a given AMBA bus (of the CPU or FPGA), each AMBA operation blocks
all other operations from being executed. Introducing multiple separate buses
allows increasing the degree of parallelism, but the dependence on the CPU to
manage data flows continues to significantly affect system performance. This
aspect is ignored in classic modeling, causing it to be potentially flawed.

Fig. 2. AMBA AHB controller functional block diagram

4 Processing Performance Modeling

In order to build a Petri Net model capable of correctly characterizing the CCB
DPU processing performance, we need to map DPU functional components and
other aspects of the system to Petri Net (PN) primitives.

We used a Extended Deterministic and Stochastic Petri Net (eDSPN) to
model the CCB DPU. Table 2 summarizes the PN primitives and the physical
reality they represent. All the models presented in the paper were built and
simulated with the TimeNet software [12,17,28].
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Table 2. Physical system element to Petri Net primitive mapping.

Physical system Petri Net Comment

tile, control signal token tokens are all the same, token
role is interpreted depending on
topology of places and
transactions

memory buffer, cache,
processing block,
process mode change

place place function is subject to
abstract interpretation

buffer or communication
interface capacity

inhibitor arc arc ended with a circle,
connecting place and inhibited
transaction, activated when
number of tokens in starting
place exceeds defined threshold

communication interface deterministic
transaction

black rectangle, firing rate
inversely proportional to tile
throughput, enabled in presence
of control token, absence of
inhibiting signals

communication bus exponential
transaction

white rectangle, firing rate
expected value, enabled in
presence of control token,
absence of inhibiting signals

software process
preemption

immediate transition black bar, controlled by guard
signals

The basic idea behind the proposed DPU performance model is to convert
the classic pipeline model to Petri Nets and to augment the latter with the
missing dynamic aspects of the system that affect the scientific tile-flow and
that characterize AMBA bus blocking.

4.1 Initial Processing Performance Model

The proposed CCB DPU Petri Net model is shown on Fig. 3. It characterizes
the CCB DPU configuration where compression is enabled. In the model, the
places P CEB and P ADPMS represent the scientific data stream source and
the sink, respectively. To obtain a more flexible simulation, we introduced a
parameter N (typically set to 10000) for the number of tokens (or tiles) that are
to be transferred. Simulation ends once N tokens arrive at P ADPMS. The time
to transfer all tokens thereby serves as a performance indicator of the system
throughput, as shown in Eq. 1.

System Throughput =
N

time to transfer N tokens
(1)
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Tokens need to traverse along the whole DPU science data path to be stored
in P ADPMS. Some places along this path represent internal buffers of the com-
munication interfaces (P SPW[0..2]), two places represent the key buffers of the
DPU system - the SDRAM memory attached to CPU (P SDRAM) and SRAM
memory attached to FPGA (P SRAM). The IDC compression engine, assumed
to process 1 tile at a time, is labeled as P IDC. The maximum buffer size (in
number of tiles it can hold) is enforced by the use of transition feedback, an
inhibitor arc.

Fig. 3. Data Processing Unit (DPU) performance model. Compression engine, disabled
in raw mode, marked with dashed line.

Petri Net places are connected using transitions, representing the throughput
of the interfaces and buses that are involved in transferring tiles between the
respective buffers and processing nodes in physical system. The transitions T0
and T3 are Space Wire interfaces from the CEB and between the CPU and the
FPGA. They operate at 50 Mbps. Transition T7 is a Packet Wire interface to
ADPMS and operates at 25 Mbps. Transition T1 and T2 represent the AHB
transfers to and from the SRAM buffer. Similarly, T4, T5, T6 represent AHB
transitions in the FPGA. The AHB bus in the processor operates at 1600 Mbps
and the AHB in the FPGA at 200 Mbps. Equation 2 denotes the firing rate (i.e.,
expected time to fire).

Time to F ire =
Tile Size

Throughput
(2)

There are three modes of scientific data flow processing: compression, bit-
stuffing and raw. Compression and bit-stuffing make use of the IDC engine to
perform their activities. This part of the system’s Petri Net model can remain
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the same. Only the transition firing rate needs to change in order to reflect
changes in the tile throughput in the FPGA. This is because tile sizes are reduced
after compression, utilizing only a fraction of the bandwidth. For raw mode the
location P IDC and transmission T4 are removed, T5 then connects directly to
P SPW2, and firing rates are modified to reflect the transition of full size tiles.

In order to model the dynamic behavior of the system, at the stage of devel-
opment, where perhaps only hardware prototypes are available, but no soft-
ware, simplifying assumptions have to be made. Plain throughput, as shown
in the pipeline model, is not sufficient to validate architecture design in the
presence of AMBA bus blocking behavior, which is introduced by competing
functional chains (science vs SPS control vs maintenance vs TC/TM control).
Moreover, even within the scientific data transfer functional chain, a compe-
tition for AMBA bus access occurs. This is because only one of the following
two situations happen: tiles are circulated within the processor; or the proces-
sor configures and monitors the semi-automatic operation of the Direct Memory
Access engines in the FPGA. To model this behavior we introduce the sub-
net P BUS CPU{Ø, no} ACC, T8 and T9, where the presence of a token (inter-
preted as flow control) in place P BUS CPU ACC denotes the CPU having access
over AHB to perform its activities (including FPGA control) and a token in
P BUS CPU{Ø, no} denotes that the CPU is either idle or performs activities
using only it’s cache memories, while the AHB is free for science data transfer.
The T1 transfer (from CEB data source to SDRAM) will fire only if a token
is present at P BUS CPU no ACC, which in turn blocks the T2 transfer (from
SDRAM buffer to FPGA via Space Wire), which mimics the same limitations as
present in the processor. Firing of T1 or T2, besides moving tokens that repre-
sent tiles of scientific data moving along the scientific datapath, will also put the
flow control token back to P BUS CPU no ACC. A similar concept of operation
is implemented for enabling T6, with small but important difference, that this
transition can fire only when the CPU takes control over the GR712RC AMBA
bus and the FPGA Space Wire link with RMAP enabled to configure the Packet
Wire DMA engine.

4.2 Simulation of the Initial Processing Performance Model

Since the initial model is designed to validate the architectural considerations
before actual hardware is built and software deployed on it, there is not much
gain in simulating performance to evaluate overall absolute values. Obtained
measures would be questioned during technical reviews as being too affected by
model assumptions. Much more appealing at this early stage is leveraging the
model for exploring numerous design variants and configurations, to see which
of them are promising to fulfill system and, eventually, mission requirements.

To evaluate the CCB DPU architecture, one needs to show the system perfor-
mance goal can be met and under what conditions. Therefore, on the one hand,
simulation needs to show that the most demanding (data-intensive) observation
scenario can be served within the expected payload operation window (here 25–
30% of the orbital period) and that the influence of AMBA bus blocking on the
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scientific data flow is tolerable. The first can be obtained by simulating the time
required to transfer and process the selected amount of tokens from CEB to
ADPMS, extrapolating the result to estimate the time required for transferring
all tiles generated during the CME-Watch scenario (∼2.9M tiles). The second
measure can be obtained by defining AMBA blocking ratio (Eq. 3) as the frac-
tion of time during which the token is in place P BUS CPU ACC in contrast to
being in either in P BUS CPU ACC or P BUS CPU no ACC.

AMBA blocking ratio =
T9

(T8 + T9)
∗ 100% (3)

Figure 4 shows DPU’s performance obtained from simulating the initial model
outlined above, configured with (a) and without (b) compression. The blue-
shaded area at the bottom of the figures denotes the time limit available for
DPU operations: 21600 s. s. Scientific data streaming to ADPMS is considered
successful when it finishes before this time limit. The plots show the time to
stream data to ADPMS that was generated in the worst-case CME-watch sce-
nario for different CPU AMBA bus blocking ratios (i.e., for different fractions of
total time that the AMBA bus is not used for transferring scientific data tiles,
refer to Eq. 3). Simulations are performed for few cases, showing fours orders
of magnitude of AMBA blocking ratio granularity. The more the AMBA bus
is blocked for other activities than transferring tiles from the CEB and further
into the DPU and ADPMS (horizontal axes), the more time it takes to complete
the whole data dump to the on-board computer. This actually confirms initial
suspicions, since when tile-reception is blocked at the GR712RC, then tile inflow
to the DPU is limited as well and no advantage can be drawn from the fast
internal DPU interfaces.

Another insight into CCB DPU operations can be obtained in relation to
the impact of the CPU AMBA bus mode switching time granularity. The larger
this granularity, the more time is spent in a given mode before switching and
the lower will be DPU’s capability to stream the data. Keeping mode switching
granularity high and ensuring buffers are emptied quickly, prevents tile pile-ups
and appears to be a key to achieving the required performance and drove further
hardware and software codesign.

5 Implementation

Validating the architecture with the help of Petri Nets, as described in the previ-
ous section, confirms the initial assumptions and indicate that it will be feasible
to implement the CCB DPU. They provided insight into the system’s inter-
nal operation and allowed to better understand the involved hardware-software
interactions, allowing the project to advance into subsequent phases, where the
focus is on building and deploying the actual equipment.

Subsequent CCB DPU models are developed in an iterative approach, where
each following model tests the assumptions, solutions and design decisions that
have been made with the previous model and that are most critical. The outcome
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Fig. 4. Data Processing Unit (DPU) performance simulation
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of analyzing such a refinement may require discarding certain design decisions or
they may remain uncertain in the sense that still multiple options may be viable.
The best viable state in the final phase is the desired system. A summary of the
models built within the CCB DPU project is provided in Table 3. For clarity,
only the models that are most relevant for the performance evaluation are shown.

Table 3. CCB DPU models

Model Phase Applicability Purpose

Software Mock-Up B & C Prototyping Used for verifying schedulability of
software components

Development Model B & C Prototyping Used for testing the hardware and
software, verification of initial
assumptions, getting acquainted
with technology stack

Engineering Model C & D Advanced
Prototyping

Built be as close to Flight Model as
possible, used for testing critical
functionality and interfacing with
the rest of the system. Intermediate
software revisions deployed.

Proto-Flight Model D & E To conduct
the mission

Full flight configuration, materials,
quality and processes, tested to
acceptance levels. Flight software
revision deployed

The DPU Development Model allowed for early prototyping and was built
for reducing the risks associated with technology and components selection. It
further served to create first mock-ups of the critical hardware and software parts
and for testing initial assumptions about operations, including first performance
measurements. For example, at this stage, measurements already indicated a tile
throughput of 252 tiles/s on average, for which we had to implement only part
of the final software functionality.

Following the above, we conducted (as part of our Verification and Valida-
tion campaign) a performance verification of the DPU processing capabilities
on a physical implementation of the models (the Engineering Model and Proto-
Flight Model, shown in Fig. 5). The campaign attempted to answer whether the
requirements defining the system have been met, but also, what were the actual
limits of the hardware and of the software scientific data processing power. The
data flow test involved verifying that the rate of transfer of compressed science
data from the CCB to the ADPMS memory module met the requirements set
out in the system requirements specification. The scenario measured the average
number of tiles processed by the CCB and sent to the ADPMS each second based
on the events logged by the software for each tile. The numbers obtained from
validation test logs, collected from runs performed on the engineering model
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Fig. 5. Flight model of Coronograph Control Box (CCB) Data Processing Unit (DPU)

of the CCB, connected to the electrical ground support equipment, oscillated
around 205 tiles per second. It therefore met the requirement of at least 192 tiles
per second, as defined in the requirements specification.

However the DPU engineering model, at time of test, did not operate under
the final version of flight software. Similar tests conducted with the Proto-Flight
Model in its final software configuration revealed a scientific tile throughput of
233 tiles per second (all values for compression mode enabled), still well within
the specification requirements.

6 Correlating the Petri Net Performance Model
with the Physical Model

It is worth noticing, that the performance model and actual verification mea-
surements were organized around different methodologies. The Petri Net per-
formance model was targeting simulation of what is happening inside the DPU,
while it is fed with a worst case expected data stream to figure out what are
required buffer sizes and what control-performance bottlenecks might be encoun-
tered in the system. Modeling was performed for the purpose of reducing uncer-
tainty (and associated programmatic risks) and for optimizing the technical mar-
gins of the system. The verification measurements, however, were targeting the
discovery of actual performance limits in the system. Therefore it was fed with
the maximum data stream allowed by the input interface bandwidth, measuring
the resulting processing performance.

To correlate these performance results, both have to follow the same experi-
mentation philosophy. However, since at the time of writing, the CCB underwent
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the integration process with the satellite platform, it was easier to adjust the
Petri Net model rather than repeating the performance measurements with the
payload, although the latter will have to happen anyway as part of the validation
campaign of the integrated satellite.

A quick look at the Petri Net models in Fig. 3 allows noticing that to replicate
the performance experiments, which had been performed on the implemented
equipment, it suffices to modify transaction T1, defining the data stream input
rate, from 192 tiles/s to 800 tiles/s which is about the maximum that can be
handled by the SpaceWire interface at a configured bit rate of 50 Mbps.

The other aspect that has to be adjusted in our models is the T8/T9 trans-
actions to resemble the behavior of the CCB Application Software. In the initial
modeling of the CCB DPU, the expected value of the T8 and T9 transactions fir-
ing time was of main interest, but not their absolute values, which at that time
would have to be guessed. The analysis had therefore focused on the relation
between T8 and T9 and on the order of magnitude of the firing time (granu-
larity of translation activation) as described in Sect. 4.2. Now, after the Flight
Software (ASW) is available and deployed in target architecture, it is possible
to estimate these values more accurately.

T8 indicates for how long the CPU manages tile-inflow to the system, receiv-
ing in the first part of the data pipeline the tiles from imager electronics (CEB)
and within the CPU itself (storing in SDRAM, passing to FPGA, configuring
FPGA DMAs and IDC operation). T8 is defined by execution times of ASW
components summed up in Table 4.

T9 defines how long the CPU manages tile-outflow of the system in the second
part of the data pipeline, pushing out the tiles stored in the FPGA SRAM to
On-Board Computer(ADPMS) through PacketWire. T9 is defined by execution
time of ASW components (summed up as well in Table 4).

Table 4. Relevant ASW components average execution times, modeled by respective
transactions.

Transaction Component Average execution time [ms]

T8 tile related rmap transaction 0.012

tile spw transmission 1.250

fpga idc compression 0.660

Total: 1.922

T9 fpga pw transmission 2.73

Total: 2.73

As for T8’s and T9’s expected firing times, the key architecture quality factor
derived from initial modeling, AMBA blocking factor (Eq. 3) is 59% and it has
a very fine granularity (order of milliseconds) which are the exact circumstances
that have been discovered as offering sufficient CCB DPU performance margins
and flexibility to meet the system requirements (refer to Sect. 4.2).
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However, setting realistic values of T8 and T9 is necessary, but not sufficient,
to ensure adequate similarity between Proto-Flight Model and Petri Nets. At
this stage, we also needed to accommodate the fact that the Application Flight
Software is much more complex than it was considered (and feasible for taking
into account) at initial modeling time. Application Flight Software is responsi-
ble for real-time SPS sensor measurements and their delivery further down the
Guidance, Navigation and Control loop. This is 2 Hz period process and some
associated processing load. Among other loads there is a telecommand decod-
ing and telemetry packet generation, as well as, all the housekeeping and control
activities and, last but not least, fault detection, isolation and recovery functions
(internal monitoring).

Fig. 6. Data Processing Unit (DPU) performance model, with enabled compression,
correlated with Proto-Flight Model

All in all, those real-time (deterministic scheduling) and asynchronous (inter-
rupt based) loads block, when executed, the AMBA bus for tile transfer and this
effect can be modeled by controlling the presence of tile transmission enabling
token rotation in P TILE TRAN A & T8 & P TILE TRAN B & T9 path. This is
done by adding the P IDLE A and P IDLE B places which siphons in (by imme-
diate transitions T dA and T dB) or siphons out (by immediate transitions T eA
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and T eB) the token so none of the transition responsible for modeling actual
tile transfer can fire. Disabling the tile transmission in the system, effectively is
performed by activating T dA or T dB. Both these transition are controlled by
an enabling function, asserted when the newly introduced place P RT OTHERS
contains a token. By symmetry, the tile transmission within the system recovers
when T eA or T eB are activated, by asserting the enabling function when place
P nRT OTHER contains the token. It shall now be obvious that a token in the
place P RT OTHER models the times when the CPU executes the scheduled and
asynchronous loads, while a token in P nRT OTHER models the situation when
the CPU performs best-effort operations and tile-transfers. The transition T RT
ensures that periodic and other loads are executed in simulation every 500 ms
and the T nRT sets the expected load execution time to about 200 ms, which
estimate is based on execution loads of major components of ASW. The model
is presented in Fig. 6. The enabling connections from P RT OTHERS to T dA
and T dB, as well as from P nRT OTHER to T eA and T eB are omitted for
maintaining clarity of figure.

Simulation of the updated models in TimeNet software yields that, in order
to transfer 10000 tiles the DPU would need 41 and 59 s, respectively, for models
with compression enabled and disabled. This corresponds to about 244 and 169
tiles/s peak performance capability of DPU for compression-on and -off mode.
For the mode of operation involving the bit-stuffing (each pixel is coded with 16
bits but contains only 14 bits of information) time to transfer while simulated
tile batch is about 51 s, which corresponds to 196 tiles/s on average.

Simulation results correlate well with experimental results, as presented in
Table 5, in the whole spectrum of DPU modes of operation. Following models
are taken into account: Development Model (DM), Engineering Model (EM),
Proto-Flight Model (PFM) and Petri Net model (P/N-model).

Table 5. The processing performance (in tiles per second) of CCB DPU models.

Mode of operation DM EM PFM P/N-model

raw tiles — — 180 169

bit-stuffed tiles — — 202 196

compressed tiles 252 205 233 244

7 Gained Insights and Conclusions

Petri Nets are not new to industry. However, they are not used very widely.
They can serve addressing the increasing importance, in logistics, network and
computer architectures design and analysis and workflow systems.

The work presented in this paper documents the way Petri Nets were involved
in systems engineering of complex control and data processing systems. This
method of modeling has been proven as a useful tool for obtaining insights in
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architecture trade-offs, but more importantly, the model could be easily updated
to track and reflect the changes in the system, as development gains maturity
and up to the stage of quite accurate correlation of simulation results with the
measurements of processing performance of DPU flight hardware and software.
Our main achievements of the CCB DPU modeling process using Petri Nets can
be summed up in following way:

– DPU Petri Net performance model revealed that DPU has to be treated as
streaming, not buffering, device, as in worst-case operation scenario of “CME-
Watch” there will be no time to send all scientific data tiles after the end of
observations;

– to the last point, DPU amount of on-board SDRAM memory has been reduced
significantly, which in terms of Flight Units delivery is equivalent of buying
9 SDRAM memory modules less (savings of roughly 50 thousand Euro in
components costs);

– DPU performance model analysis provided insights in how the Application
Software controlling the DPU has to manage the scientific data flow and
circulation of tiles from CEB, to compression engine and to ADPMS Mass
Memory Modules in order to meet the processing performance demands;

– the Petri Net model validity has been proven by, first, building the flight
equipment meeting performance requirements, second, accurately correlating
the updated Petri Net model with the measurements performed on the DPU
Flight Model.

All in all, we found that time and effort spent on developing modeling tools,
such as Petri Nets, are likely to pay back in the future. Modeling, if it allows
early concept prototyping in order to fail and pivot or to consolidate and move
forward, without any doubt, is an invaluable support, that is directly traceable
to savings in time and money spent on the project. The described creation of
Proba-3 Coronagraph Control Box and its Digital Processing Unit in particular,
provides solid evidence for this claim.

The presented work contributes a small step towards providing new systems
engineering tools for use in the aerospace or space industry. It is a perfect moment
for such discussions, as space business undergoes deep changes, starting from
the New Space revolution up to evolution of Model-based Systems Engineering
into a Digital Twin Spacecraft concept. Petri Nets, thanks to their high level
of abstraction and versatility, tackle a large class of system engineering issues,
especially in the early design phases.

References

1. TASTE. https://taste.tools/. Accessed 26 Jan 2022
2. Blommestijn, R., Fuchs, J.: Specification and description language (SDL), July

1999. z.100
3. Blommestijn, R., Fuchs, J.: Technical Dossier on System Modelling and Simulation

Tools, July 2012. iss 2, rev 2A

https://taste.tools/


Petri Nets in Systems Engineering 173

4. Bluff, R.: Avionic system modelling. In: International Conference on Simulation
1998 (Conf. Publ. No. 457), pp. 11–18, September 1998. https://doi.org/10.1049/
cp:19980610

5. Bollig, B., Fortin, M., Gastin, P.: Communicating finite-state machines, first-order
logic, and star-free propositional dynamic logic. J. Comput. Syst. Sci. 115, 22–53
(2021). https://doi.org/10.1016/j.jcss.2020.06.006

6. Eickhoff, J.: Simulating Spacecraft Systems. Springer, Heidelberg (2009)
7. Eickhoff, J.: Onboard Computers, Onboard Software and Satellite Operations: An

Introduction, 2012 edn. Springer, New York (2011)
8. Ereau, J.F., Saleman, M.: Modeling and simulation of a satellite constellation

based on Petri nets, pp. 66–72, January 1996. https://doi.org/10.1109/RAMS.
1996.500644

9. Feiler, P.: Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language, 1st edn. Addison-Wesley Professional
(2012)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18(2), 194–211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1

11. Galano, D., et al.: Development of ASPIICS: a coronagraph based on Proba-3 for-
mation flying mission. In: Lystrup, M., MacEwen, H.A., Fazio, G.G., Batalha, N.,
Siegler, N., Tong, E.C. (eds.) Space Telescopes and Instrumentation 2018: Optical,
Infrared, and Millimeter Wave, vol. 10698, pp. 906–918. International Society for
Optics and Photonics, SPIE (2018). https://doi.org/10.1117/12.2312493

12. German, R., Kelling, C., Zimmermann, A., Hommel, G.: TimeNET-a toolkit for
evaluating non-Markovian stochastic Petri nets. In: Proceedings of the Sixth Inter-
national Workshop on Petri Nets and Performance Models, pp. 210–211, October
1995. https://doi.org/10.1109/PNPM.1995.524333

13. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Modeling,
Verification, and Applications. Springer, Heidelberg (2003)

14. Graczyk, R.: Reliability and performance modeling of configurable electronic sys-
tems for unmanned spacecraft. Editorial Series on Accelerator Science, Warsaw
University of Technology Publishing House, Warsaw (2016)

15. Hall, A.D.: A Methodology for Systems Engineering. Van Nostrand (1962)
16. Holt, J.: UML for systems engineering (2004)
17. Kelling, C., German, R., Zimmermann, A., Hommel, G.: TimeNET: evaluation

tool for non-Markovian stochastic Petri nets. In: Proceedings of IEEE International
Computer Performance and Dependability Symposium, September 1996. https://
doi.org/10.1109/IPDS.1996.540206

18. Kordon, F., Canals, A., Dohet, A.: Embedded systems analysis and modeling with
SysML, UML and AADL. Electonics Engineering Series, ISTE, London (2013)

19. Kossiakoff, A., Sweet, W.N.: Systems Engineering Principles and Practice, 1st edn.
Wiley-Interscience, New York (2002)

20. Lloret, J.C., Roux, J.L., Algayres, B., Chamontin, M.: Modelling and evaluation
of a satellite system using EVAL, a Petri Net based industrial tool. In: Jensen,
K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 379–383. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55676-1 23

21. Malott, L., Palangpour, P.: Small spacecraft software modeling: a Petri net-based
approach. In: AIAA/USU Conference on Small Satellites, August 2013

22. Molloy: Performance analysis using stochastic petri nets. IEEE Trans. Comput.
C-31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110

https://doi.org/10.1049/cp:19980610
https://doi.org/10.1049/cp:19980610
https://doi.org/10.1016/j.jcss.2020.06.006
https://doi.org/10.1109/RAMS.1996.500644
https://doi.org/10.1109/RAMS.1996.500644
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1117/12.2312493
https://doi.org/10.1109/PNPM.1995.524333
https://doi.org/10.1109/IPDS.1996.540206
https://doi.org/10.1109/IPDS.1996.540206
https://doi.org/10.1007/3-540-55676-1_23
https://doi.org/10.1109/TC.1982.1676110


174 R. Graczyk et al.

23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). https://doi.org/10.1109/5.24143

24. Perrotin, M., et al.: TASTE in action. In: 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016). TOULOUSE, France, January
2016. https://hal.archives-ouvertes.fr/hal-01289678

25. Platzer, A.: Logical Analysis of Hybrid Systems Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

26. Rechtin, E.: Systems Architecting: Creating and Building Complex Systems. Pren-
tice Hall (1991)

27. Renotte, E., et al.: Recent achievements on ASPIICS, an externally occulted coro-
nagraph for PROBA-3. In: MacEwen, H.A., Fazio, G.G., Lystrup, M., Batalha, N.,
Siegler, N., Tong, E.C. (eds.) Space Telescopes and Instrumentation 2016: Optical,
Infrared, and Millimeter Wave, vol. 9904, pp. 1112–1126. International Society for
Optics and Photonics, SPIE (2016). https://doi.org/10.1117/12.2232695

28. Zimmermann, A.: Modeling and evaluation of stochastic Petri nets with TimeNET
4.1. In: 2012 6th International Conference on Performance Evaluation Methodolo-
gies and Tools (VALUETOOLS), pp. 54–63, October 2012

29. Zurawski, R., Zhou, M.: Petri nets and industrial applications: a tutorial. IEEE
Trans. Ind. Electron. 41(6), 567–583 (1994). https://doi.org/10.1109/41.334574

https://doi.org/10.1109/5.24143
https://hal.archives-ouvertes.fr/hal-01289678
https://doi.org/10.1117/12.2232695
https://doi.org/10.1109/41.334574


Petri Nets Semantics of Reaction Rules
(RR)

A Language for Ecosystems Modelling

Franck Pommereau1(B) , Colin Thomas1,2 , and Cédric Gaucherel2

1 IBISC, Univ. Évry, Univ. Paris-Saclay, 91020 Évry-Courcouronne, France
franck.pommereau@univ-evry.fr

2 AMAP-INRA, CIRAD, CNRS, IRD, Univ. Montpellier, 34398 Montpellier, France

Abstract. The eden framework provides formal modelling and anal-
ysis tools to study ecosystems. At the heart of the framework is the
reaction rules (rr) modelling language, that is equipped with an oper-
ational semantics and can be translated into Petri nets with equivalent
semantics. In this paper, we formally define the rr language and its
semantics, detailing the initial definition from [8] and extending it with
a notion of constraints that allows to model mandatory events. Then,
we consider in turn two classes of Petri nets: priority Petri nets (ppn),
which are safe place/transition Petri nets equipped with transitions pri-
orities, and extended Petri nets (epn) which are ppn further extended
with read arcs, inhibitor arcs, and reset arcs. For each of these classes, we
define the translation of an rr system into a Petri net and prove that the
state-space generated with the rr operational semantics is equivalent to
the marking graph of the Petri net resulting from the translation. We
use a very strong notion of equivalence by considering labelled transition
systems (lts) isomophism with states and labels matching.

1 Introduction

The framework eden has been developed and used for ecological studies for
more than five years [4–8,12]. It provides tools and methods to formally model
ecosystems, and analyse them through an interactive method that lets the users
explore their models dynamics and draw understanding progressively. Properties
of interest include searching the root causes (events, conditions, or states) leading
to trajectories of interest, structural stabilities, or collapses. In addition to the
published works, eden has been used by more than a dozen Master interns in
ecology, who modelled and analysed varied ecosystems.

At the heart of eden is the reaction rules modelling language (rr). An rr
system consists of (1) a set of Boolean variables representing the functional pres-
ence (on) or absence (off) of an entity in an ecosystem, and (2) a set of actions
representing the possible events that lead to observable changes in the ecosys-
tem (i.e. assign new values to variables). A species is functionally present if its
presence enables observable effects on the ecosystem, otherwise it is functionally
c© Springer Nature Switzerland AG 2022
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Fig. 1. A toy model of a termite colony, adapted from [8]. Variables are defined in
the left column, dispatched into user-chosen sections (that play the role of comments).
Each variable is given a name, an initial value (+ for on, - for off, * for both values),
and a description. For instance, variable Rp is initially on and models the reproductives
(queen and king). Constraints and rules, collectively referred to as actions, are defined
in the right column, each has a left-hand side that corresponds to its guard and a
right-hand side that corresponds to its effect. We have named the actions for reference
using a comment “# ...”. For instance, rule R9 states that if Ac is on and Sd is off, then
rule R9 may be executed, yielding a state in which Wk and Rp are set to off.

absent. Actions are divided into constraints and rules, the only difference being
that the former have the priority over the latter (i.e. no rule can be executed if
a constraint can). Constraints are useful in particular to model cascading events
or transient states. For instance, if a pond dries its inhabitants will rapidly die.
Such a situation may be modelled by a constraint, and the state where the pond
is dry but its inhabitants are still present has to be transient. rr models can
be seen as an analogue for ecology to Boolean networks for systems biology [21],
but with important differences that will be underlined later on. An example of
an rr system is given in Fig. 1. Note that an rr system may have several initial
states, for instance this one has two (one with Ac+ and another with Ac-).

The contribution of this paper is graphically summarised in Fig. 2. In Sect. 3,
we give a formal definition of rr systems, detailing the initial definition from [8]
and enriching it with the notion of constraints as well as with the possibility to
have more than one initial state. We then define the semantics of rr systems in
terms of labelled transitions systems (lts). At the end of Sect. 3, we define two
transformations on an rr system, normalisation and elementarisation, and we
prove that they generate rr systems whose semantics are equivalent to that of
the original rr system. In Sect. 4, we define the translation of elementary rr
systems into priority Petri nets (ppn: regular Petri nets extended with transi-
tions priorities), and we prove that the nets resulting from this translation yield
marking graphs (mg) that are equivalent to the semantics of the translated ele-
mentary rr system. This corresponds to the right-most column of the diagram
depicted in Fig. 2. Finally, in Sect. 5, we define the translation of normal rr sys-
tems into extended Petri nets (epn: ppn further extended with read-, inhibitor-
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Fig. 2. Visual summary of the paper, where + marks the elements we define, � those
that exist already in the literature, and � those we prove. rr stands for reaction rules,
lts for labelled transition systems, mg for marking graph, epn for extended Petri nets,
and ppn for priority Petri nets.

and reset-arcs), and we prove that the nets resulting from this translation yield
marking graphs that are equivalent to the semantics of the translated normal
rr system. This corresponds to the middle column of the diagram depicted in
Fig. 2.

From the proved equivalences, we also have that the marking graph of an epn
translated from a normal rr system is equivalent to the marking graph of the
ppn translated from the elementarisation of the normal rr system (upper-most
gray dotted edge in the diagram from Fig. 2). Finally, note that there exists a
translation from epn to ppn that is well known in the Petri net community1

and corresponds exactly to what we use in the current paper: safe places are
translated into pairs of complementary places, which allows to implement reset
and inhibitor arcs as regular arcs, while read arcs are implemented with side-
loops.

To start with, Sect. 2, provides the basic definitions upon which the rest is
defined; in particular the definition of labelled transitions systems lts and their
equivalence through isomorphism with states and labels matching.

1 We did not find its formal definition and proof of correctness in the literature.
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2 Preliminary Definitions

2.1 Boolean and Ternary Truth Valuations

Let B
df= {⊥, �} be the set of Boolean values and T

df= B � {�} be the set of
truth values where � is the unknown value. We define relation �� on T as the
smallest symmetric binary relation such that � �� ⊥. Then, � is defined as the
complement of ��, i.e., a � b iff ¬(a �� b).

Let b be a Boolean expression and x, y two arbitrary values, we note by
〈b ? x : y〉 the ternary expression whose value is x when b holds else y.

Let V be a finite set of ordered values, an element of TV can be written as a
vector of values from T following the order in V . For v ∈ V \ {max(V )} we note
by succ(v) the smallest element of V such that v < succ(v). Let x, y ∈ TV , we
define:

– x[v] for v ∈ V is the value of x at position v;
– x � y iff x[v] � y[v] for all v ∈ V ;
– for a, b ∈ T, a � b

df= 〈b �= � ? b : a〉, that is a � b has the value of a except when
b �= � in which case it has the value of b.

– x � y
df= [x[v] � y[v] | v ∈ V ], i.e. we extend � on vectors component-wise;

– for a ∈ T and v ∈ V , we note by a[v] the element of TV such that: a[v][v] = a
and a[v][v′] = � for all v′ ∈ V \ {v}, i.e., a[v] df= [〈u = v ? a : �〉 | u ∈ V ].

x may be considered as the set of indexes where it valuates to �, i.e., x may be
viewed as set {v ∈ V | x[v] = �}. Operation x � y will be used to compute a new
state by applying on a state x the effect y of an executed action. This is why it
is defined as x except for some values that are updated as in y. Thus, � in y at
some position v means that the executed action has no effect on variable v.

For example, take x
df= [�, ⊥, �], y

df= [⊥, �, �], and z
df= [�, �, �] with V

df=
[u, v, w] we have:

– x[u] = �, x[v] = ⊥, and x[w] = �;
– x � z, but x �� y because x[v] = ⊥ �� y[v] = �;
– x � y = [⊥, �, �] that is y except on variable w where y[w] = � and thus we

use the value of x[w];
– similarly, we have y � z = [�, �, �];
– �[u] = [�, �, �] and ⊥[v] = [�, ⊥, �].

2.2 Multisets

A multiset m over a domain D is a function m : D → N (natural numbers),
where, for d ∈ D, m(d) is the number of occurrences of d in the multiset m. We
note by D∗ the set of all multisets over D. The empty multiset is noted by 0
and is the constant function 0 : D → {0}. Similarly we define 1 : D → {1} the
unit multiset. A set X may be used as multiset 1 over X. A multiset m over D
may be naturally extended to any domain D′ ⊃ D by defining m(d) df= 0 for all
d ∈ D′ \ D, which explains why we generally do not need to be precise about
multisets domains. If m1 and m2 are two multisets over D, we define:
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– m1 ≤ m2 iff m1(d) ≤ m2(d) for all d ∈ D;
– m1 + m2 is the multiset over D defined by (m1 + m2)(d) df= m1(d) + m2(d)

for all d ∈ D;
– m1 − m2 is the multiset over D defined by (m1 − m2)(d) df= max(0, m1(d) −

m2(d)) for all d ∈ D;
– m1/m2 is the multiset over D defined by (m1/m2)(d) df= 〈m2(d) = 0?0 : m1(d)〉

for all d ∈ D. This operation nullifies m1 where m2 is zero. For D′ ⊆ D we
may use m1/D′ by treating D′ as a multiset as explained above.

– for d ∈ D, we note by d ∈ m1 the fact that m1(d) > 0.

2.3 Labelled Transition Systems

A labelled transition system (lts) is a tuple (S, I, A, →) such that:

– S is the set of states;
– I ⊆ S is the set of initial states;
– A is the set of labels;
– → ⊆ S × A × S if the set of transitions.

We note by s
a−→ s′ the fact that (s, a, s′) ∈ →.

It should be stressed that we use a definition where several initial states are
allowed, which will be the case for all our formalisms.

Let L
df= (S, I, A, →) and L′ df= (S′, I ′, A′, →′) be two lts, they are called

equivalent through (g, h) iff:

– g is a bijection from S to S′;
– h is a function from A′ to A;
– I ′ = g(I);
– for all x, y ∈ S, x

a−→ y iff g(x) a′
−→ g(y) with h(a′) = a.

Thus g is an isomophism between the two lts, and h defines a matching on
the labels of the transitions. Assuming that L is an “original” lts to which we
compare a “transformed” lts L′, h maps every action label in L′ to the original
label it was obtained from. We note by id the identity function that may be
later used as g. This definition results in a very strong notion of equivalence that
requires matching the states as well as the transitions labels.

2.4 Regular Petri Nets

A regular Petri net (rpn) is a tuple (P, T, W ) where:

– P is the finite set of places, depicted as circle-shaped nodes;
– T is the finite set of transitions, depicted as rectangle- or square-shaped nodes;
– W ∈ ((P ×T )∪(T ×P ))∗ is the weight of arcs, arcs with non-zero weights are

depicted as directed edges, labelled by the weight when it is greater that 1.
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A marking m of a rpn is a multiset over P , m(p) is called the marking of place
p and is the number of tokens held by p. Tokens are depicted as black bullets •
inside p. Given t ∈ T , we define •t

df= {p �→ W (p, t) | (p, t) ∈ W} ∈ P ∗ that is
the preset of t, and t• df= {p �→ W (t, p) | (t, p) ∈ W} ∈ P ∗ that is the postset of
t. Both are multisets of places in which the multiplicity of each place p is the
weight of the arc from/to t.

A transition t ∈ T is enabled at a marking m iff •t ≤ m. In such a case, t
may fire, leading to the marking m′ df= m − •t + t•, which is noted by m

t−→ m′.
The state graph of a rpn (P, T, W ) with respect to a set of initial markings
M ⊆ P ∗ is a the smallest lts (S, M, T, →) such that M ⊆ S and, if m

t−→ m′ in
the rpn, then m′ ∈ S and (m, t, m′) ∈ → in the lts as well. This lts is generally
referred to as the marking graph, or the reachability graph, but we call it the
state graph to streamline the comparison between our formalisms. Similarly, we
have generalised the definition to allow a set of initial markings instead of just
one as it is usually the case.

A rpn is safe (or 1-safe) with respect to a set M of initial markings iff for all
marking m of its state graph we have m ≤ 1. In the following, all our nets will
be safe so that most multisets in the definitions will be without repetitions (and
thus equivalent to sets). But since we will have to prove that our nets are safe,
we must state the definitions in the more general context of non-safe Petri nets.

3 Reaction Rules (RR)

3.1 Definition and Syntax

An rr system consists of a set of Boolean variables together with actions that can
change the variables when their values meet the action preconditions. Actions
are separated into constraints and rules, the former having a higher priority.

Definition 1 (RR systems). An rr system is a tuple (V, I, C, R) where:

– V is a finite set of ordered variables;
– I ⊆ BV is the set of initial states;
– C is a finite set of constraints;
– R is a finite set of rules, disjoint from C;
– A df= C � R is the set of actions, and each action is a pair (�, r) ∈ TV × TV .

rr systems were originally defined in [8] using a concrete syntax that is
easy to edit in simple text files. Formalisation was done using much heavier
notations that we simplified here thanks to ternary truth values. Figure 3 shows
the grammar of the concrete syntax.

In the concrete syntax, using Ac*, like in Fig. 1, means that we have two initial
states, one with Ac+ and another with Ac-. So that initial states are indeed in BV .
However, the abstract syntax allows more varied initial states than it is possible
to define using the concrete syntax. For instance, for two variables, it is possible
to have I = {[�, ⊥], [⊥, �]} which cannot be obtained using the concrete syntax.
This is not a problem since we base all the following on the abstract syntax, but
rather a practical limitation when using the concrete syntax.
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Fig. 3. Concrete syntax for rr systems in bnf notation. The left-hand side (resp. right-
hand side) of an actions correspond to the � (resp. r) part in the definition. A variable
that do not appear in one side of an action is assumed to be � so that the � and r parts
of the actions are fully defined using this syntax.

3.2 Operational Semantics

The execution of an rr system is straightforward: starting from a set of initial
states, we can reach new states by applying constraints first, then rules from
states where no constraint can be applied. Note that we explicitly forbid self-
loops, i.e. action applications that would not change the state. This contrasts,
in particular, with Boolean networks where self-loops are not only allowed but
desired and searched for as they usually correspond to stable states of the system
of interest (e.g. a phenotype of a cell is often modelled as such a stable state).
In our setting, such states will be deadlocks.

Definition 2 (RR firing rule). Let (V, I, C, R) be an rr system, with A df=
C � R its set of actions. Let a

df= (�, r) ∈ A be an action and s ∈ BV be a state.
Then:

1. Action a is enabled at s iff s � �.
2. If a is a constraint, it can be fired from s yielding a new state s′ df= s � r iff it

is enabled at s, which is noted by s
a−→ s′.

3. If a is a rule, it can be fired from s yielding a new state s′ df= s � r iff it is
enabled at s and no constraint in C is enabled at s, which is noted by s

a−→ s′.

The semantics of an rr system is expressed as expected in terms of a lts
obtained by firing actions from the initial states until saturation.

Definition 3 (RR state graph). Let (V, I, C, R) be an rr system, with A df=
C � R its set of actions. Its state graph is the smallest lts (S, I, A, →) such that
I ⊆ S and, if s

a−→ s′ in the rr system with s �= s′, then s′ ∈ S and (s, a, s′) ∈→.

Note that we forbid self-loops in the definition of an rr state graph instead
of in the definition of actions enabling. Both approaches would be correct but
the one we have chosen will simplify the comparison with Petri nets state graphs.
From now on, we always consider that we are within a lts and thus we forbid
firing actions when this would create a self-loop.
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Fig. 4. Illustration of normalisation (left) and elementarisation (right), where b, c ∈ B.
Each action (�, r) is depicted with � drawn above r.

3.3 Normal and Elementary RR Systems

As defined above, the actions of an rr system have implicit elements. For
instance, taking A, B, C as the variables, when one writes A+, B- >>C+ in the
textual syntax, this corresponds to an action ([�, ⊥, �], [�, �, �]) in the definition.
Firing this action can be done only from state [�, ⊥, ⊥] (otherwise it would be a
self-loop), yielding new state [�, ⊥, �], which results in A = � and B = ⊥ while
this is not explicit in the action.

An equivalent writing of the same action would be A+, B- >>A+, B-, C+,
which explicitly specifies which values A and B get upon firing. This latter version
of the action is called normal, i.e. all of its left-hand side variables appear in the
right-hand side, and we show below that any action can be rewritten this way
without changing the semantics.

An even more explicit writing of this action would be A+, B-, C- >>A+, B-,
C+, which clearly states that C has to be ⊥ to fire the action. Such an action,
with exactly the same variables on both sides, is called elementary. We show
below that any normal rule can be rewritten as a set of equivalent elementary
rules without changing the semantics. The elementarisation of an action is a
one-to-many transformation since there may exist different states from which a
normal action can be fired. Consider for instance A+ >>A+, B+, C+. It is normal
and can be fired whenever A = � and (B, C) �= (�, �), which corresponds to the
three distinct states [�, ⊥, ⊥], [�, �, ⊥], and [�, ⊥, �] (with the fourth possibility
[�, �, �] yielding a self-loop).

Definition 4 (normalisation). Let R
df= (V, I, C, R) be an rr system, with

A df= C � R its set of actions. R is called normal iff for all a
df= (�, r) ∈ A and for

all v ∈ V we have: r[v] = � =⇒ �[v] = �.
The normalisation of R, noted by norm(R), is obtained by replacing all its

actions (�, r) with norm(�, r) df= (�, [〈r[v] = � ? �[v] : r[v]〉 | v ∈ V]).

How norm(�, r) works is illustrated on the left of Fig. 4: for each v ∈ V, if
r[v] = � then it is replaced by �[v] (which may be � also).

Theorem 1. Let R
df= (V, I, C, R) be an rr system. Then, R and norm(R) gen-

erate equivalent state graphs.
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Proof. We first note that systems R and R′ df= norm(R) are defined on the same
variables so that every state of R is also a valid state of R′ and vice-versa.
Moreover, they have the same initial states by definition. Let s and s′ be two
states of R or R′, and let a

df= (�, r) be an action of R and a′ df= norm(�, r) df= (�, r′).
We will prove that s

a−→ s′ in R iff s
a′
−→ s′ in R′. As a consequence, starting from

the same initial states the ltss of R and R′ are equivalent through (id, h) with
h

df= {norm(a) �→ a | a ∈ A}.
(⇒) assume s

a−→ s′. By Definition 2 we have s � � and s′ = s � r. Since the
left-hand side of a′ is �, we also have a′ enabled by s. So we need to prove that
s′ = s � r = s � r′, or equivalently, that for all variable v we have s[v] � r[v] =
s[v] � r′[v]. From Definition 4, there are three cases:

– if �[v] = � = r[v], we also have r′[v] = �[v] and thus r′[v] = � = r[v], hence
the result;

– if r[v] �= � then r′[v] = r[v] hence the result;
– if �[v] �= � = r[v], then r′[v] = �[v], and since a is enabled we have �[v] = s[v],

hence the result.

(⇐) assume s
a′
−→ s′. The proof is essentially the same, by exchanging a

(resp. r) with a′ (resp. r′). ��
Definition 5 (elementarisation). Let R

df= (V, I, C, R) be an rr system, with
A df= C � R its set of actions. R is called elementary iff for all a

df= (�, r) ∈ A and
for all v ∈ V we have: �[v] = � ⇐⇒ r[v] = �. Consequently, an elementary rr
system is also normal.

Assuming that R is normal, its elementarisation, noted by elem(R) is the rr
system (V, I, C′, R′) where

C′ df=
⋃

a∈C
elem(a) and R′ df=

⋃

a∈R
elem(a) ,

with a
df= (�, r), elem(a) df= elem(�, r, min(V)) and elem(�, r, v) defined as:

– {(� � ⊥[v], r), (� � �[v], r)} if v = max(V) and �[v] = � �= r[v];
– {(�, r)} if v = max(V) and ¬(�[v] = � �= r[v]);
– elem(� � ⊥[v], r, succ(v)) ∪ elem(� � �[v], r, succ(v))} if v < max(V) and �[v] =

� �= r[v];
– elem(�, r, succ(v)) if v < max(V) and ¬(�[v] = � �= r[v]).

How elem(�, r) works is illustrated on the right of Fig. 4: for each v ∈ V in
turn, every �[v] = � such that r[v] �= � is replaced by either ⊥ or �, yielding two
new actions.

Theorem 2. Let R
df= (V, I, C, R) be a normal rr system. Then, R and elem(R)

generate equivalent state graphs.

Proof. As with normalisation, R and R′ may have the same states and they do
have the same initial states. Let s and s′ be two states of R or R′. Let a

df= (�, r)
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be an action of R. We will prove that s
a−→ s′ in R iff s

a′
−→ s′ in R′ for some

a′ ∈ elem(�, r). As a consequence, starting from the same initial states the ltss of
R and R′ are equivalent through (id, h) with h

df= {a′ �→ a | a ∈ A∧a′ ∈ elem(a)}.
The right-hand sides of a and all a′ ∈ elem(a) are the same, so we just need to
prove that a is enabled at s iff some a′ ∈ elem(a) is enabled at s.

(⇒) assume s
a−→ s′. Take �′ df= [〈�[v] = � �= r[v] ? s[v] : �[v]〉 | v ∈ V], we have

(�′, r) ∈ elem(a) and it is enabled at s because � and �′ only differ on positions v
where �[v] = � and at these positions we have �′[v] = s[v].

(⇐) take a′ df= (�′, r) ∈ elem(a) and assume s
a′
−→ s′. As previously, � and �′

only differ on positions v where �[v] = �, which does not restrict enabling. ��

4 Priority Petri Nets

Regular Petri nets may be extended with transitions priorities. In our setting,
we just need two levels of priorities, so we distinguish a set of urgent transitions
whose firing is always preferred above that of non-urgent transitions (hence the
used of letter U below). The former will be used to implement constraints while
the latter will be used to implement rules.

Definition 6 (PPN). A priority Petri net (ppn) is a tuple (P, T, W, U) where
(P, T, W ) is a rpn, called the underlying rpn, and U ⊆ T is the set of urgent
transitions.

Definition 7 (PPN firing rule). Let (P, T, W, U) be a ppn and m a marking
of it. A transition t ∈ U is enabled at m iff it is enabled at m in the underlying
rpn. A transition t ∈ T \U is enabled at m iff it is enabled at m in the underlying
rpn and no u ∈ U is enabled at m. If t is enabled at m then we may have
m

t−→ m − •t + t• just like in the underlying rpn.

Definition 8 (PPN state graph). Let (P, T, W, U) be a ppn and M the set
of its initial markings. Its state graph is the smallest lts (S, M, T, →) such that
M ⊆ S and if m

t−→ m′ in the ppn with m �= m′, then m′ ∈ S and (m, t, m′) ∈ →
in the lts as well. The ppn is safe with respect to M iff for all m ∈ S we have
m ≤ 1.

Note that, as for rr systems, we restrict the lts semantics of ppn to avoid
self-loops (hence the condition m �= m′).

Translation from an elementary rr system to a ppn is made by creating a
pair of complementary places p�

v and p⊥
v for each variable v and then, each action

a gives rise to a transition ta linked to these places as depicted in Fig. 5. The
figure also depicts the translation to ppn of four elementary rules, each being
depicted separately from the others for the sake of readability.

Another way to avoid self-loops would be to remove from this translation all
transitions that do not change the marking (i.e., transitions t such that •t = t•).
This is probably the most practical solution but, as discusses later, it will not
work for epn so we prefer to use the same approach for both classes of Petri nets.
Moreover, doing so, we guarantee that every action in an elementary rr system
has a corresponding transition in the ppn translation.
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Fig. 5. (Left) Depiction of all the possible relations between a variable v and an action
a

df= (�, r) of an elementary rr system, and how this is translated to ppn. (Right) The
four elementary rules resulting from rule R9 (Ac+, Sd- >>Wk-, Rp-) in the termite
model of Fig. 1 translated to ppn (presented separately to improve readability). The
top-most transition is never fired because it does not change the marking.

Definition 9 (elementary RR systems to PPN). Let R
df= (V, I, C, R) be

an elementary rr system, with A df= C � R its set of actions. R can be translated
to a ppn ppn(R) df= (P, T, W, U) and a set of initial markings M as follows:

– P
df= {p�

v , p⊥
v | v ∈ V};

– T
df= {ta | a ∈ A};

– W
df= {(p�[v]

v , ta), (ta, p
r[v]
v ) | a

df= (�, r) ∈ A ∧ v ∈ V ∧ ¬(�[v] = � = r[v])};
– U

df= {ta | a ∈ C};
– M

df= {{p
s[v]
v | v ∈ V} | s ∈ I}.

Proposition 1. With the notations from Definition 9, we have that ppn(R) is
a safe ppn with respect to M .

Proof. We prove by induction that all the reachable markings are safe and that
the pairs of places p�

v and p⊥
v are complementary places (i.e., they together hold

exactly one token). For brevity below, we call v-safe such a marking.
(Basis.) Every marking in M is v-safe because for all s ∈ I and all v ∈ V,

depending on the value of s[v], we put exactly one token in either p�
v or p⊥

v .
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(Induction.) Firing any transition from a v-safe marking yields a v-safe mark-
ing. Indeed, for all v ∈ V and all a ∈ A, we have the following cases, correspond-
ing to the rows of Fig. 5:

– if �[v] = r[v] = � (row 1) then transition ta has a side loop on p�
v which does

not change the marking;
– case �[v] = r[v] = ⊥ (row 2) is similar;
– �[v] = � and r[v] = ⊥ (row 3) then transition ta removes one token from p�

v

and puts one in p⊥
v . Since these places are complementary, p⊥

v is empty before
the firing and will hold one token after while p�

v holds one token before the
firing and will be empty after;

– case �[v] = ⊥ and r[v] = � (row 4) is symmetric;
– if �[v] = r[v] = � (row 5) then transition ta is not connected to p�

v nor p⊥
v

and thus does not change their markings.

No other arcs exist between ta and p�
v or p⊥

v . ��
Theorem 3. With the notations from Definition 9, we have that R and ppn(R)
generate equivalent state graphs.

Proof. We prove that the lts of R and that of ppn(R) are equivalent through
(g, h) with g

df= {s �→ {p
s[v]
v | v ∈ V} | s ∈ S} where S is the set of states of the

lts of R, and h
df= {ta �→ a | a ∈ A}. To do so, we prove that s

a−→ s′ in R iff
g(s) ta−→ g(s′) in ppn(R) with s �= s′ two states of R.

(⇒) assume s
a−→ s′, with a

df= (�, r). Since a is enabled, we have �[v] = s[v] or
�[v] = � = r[v] for all v ∈ V, and thus •ta = {p

s[v]
v | v ∈ V ∧ ¬(�[v] = � = r[v])}

by definition of W . Moreover, we have g(s) = {p
s[v]
v | v ∈ V} by definition. Thus

•ta ≤ g(s) and ta is enabled. Take m′ the marking such that g(s) ta−→ m′ df=
g(s) − •t + t•, it remains to prove that m′ = g(s′). From the definitions we have

m′ = {ps[v]
v | v ∈ V} (1)

− {p�[v]
v | v ∈ V ∧ ¬(�[v] = � = r[v])} (2)

+ {pr[v]
v | v ∈ V ∧ ¬(�[v] = � = r[v])} (3)

and we can consider each v ∈ V separately. There are three cases, corresponding
to the rows in Fig. 5:

– if �[v] = r[v] �= � (rows 1–2) we also have s[v] = �[v] because s enables a, thus
one token exists in p

s[v]
v at (1), it is removed at (2) and another is added at (3)

in p
�[v]
v so it is marked in m′. Moreover we have s′[v] = s[v] by definition of

rr firing, so g(s′) has one token in p
s[v]
v and none in its complementary place

hence the result;
– if �[v] �= r[v] (rows 3–4) then because R is elementary none of them is �.

Assume �[v] = � and r[v] = ⊥ (the other case is symmetric). The token in p�
v

from (1) is removed at (2), and one token is added to p⊥
v at (3). Moreover, by

definition of rr firing, we have s′[v] = r[v] = ⊥ so that g(s′) has one token
in p⊥

v and none in p�
v hence the result;
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– if �[v] = � = r[v] (row 5) then place p
s[v]
v is left untouched with one token

inside because it is not connected to ta. Moreover we have s′[v] = s[v] by
definition of rr firing, so g(s′) has one token in p

s[v]
v and none in its comple-

mentary place hence the result.

(⇐) assume g(s) ta−→ g(s′). Since ta is enabled, we have •ta = {p
�[v]
v | v ∈

V ∧ ¬(�[v] = � = r[v])} ≤ g(s) = {p
s[v]
v | v ∈ V}. So, for each v such that

¬(�[v] = � = r[v]) we have 0 < {p
�[v]
v } ≤ {p

s[v]
v } ≤ 1 and thus �[v] = s[v].

Moreover, each v such that �[v] = � = r[v] has no influence on the enabling
of a. So a is enabled at s. It remains to show that s

a−→ s′. Taking m′ = g(s′),
Eq. (1–3) above still holds and we consider each v separately. There are three
cases, corresponding to the rows in Fig. 5:

– if �[v] = s[v] = r[v] (rows 1–2), one token is removed and another is added
from p

s[v]
v while p

¬s[v]
v remains empty, thus s[v] = s′[v] which is what firing a

with �[v] = s[v] = r[v] yields;
– if �[v] = s[v] �= r[v] (rows 3–4), the token in p

s[v]
v from (1) is removed at (2)

and one is added to p
¬s[v]
v at (3). Because the net is safe, p

¬s[v]
v is empty in

g(s) and holds exactly one token in g(s′). Firing a from s with �[v] �= r[v]
changes the value of v thus s′[v] = ¬s[v], which corresponds to the marking;

– if �[v] = r[v] = � (row 5), token in p
s[v]
v from (1) is not removed at (2) and

no token is added in p
s[v]
v nor p

¬s[v]
v at (3). g(s′) has one token in p

s[v]
v and

s[v] = s′[v], which is what firing a with �[v] = r[v] = � yields. ��

5 Extended Petri Nets

Priority Petri nets may be further extended with:

– read arcs (depicted as bare edges) that allow to test for the presence of tokens
without consuming them (letter Z below is for “Zero tokens consumed”);

– inhibitor arcs (depicted with a white dot at the transition side) that allow to
test for the absence of tokens in a place (letter H below is for “inHibitor”);

– reset arcs (depicted with a black diamond at the transition side) that allow
to consume all the tokens from a place, if any (letter F below is for “Flush”).

Considering this class rather that ppn allows a translation from rr systems
without resorting to elementarisation, only normalisation is needed. On the good
side, one action written by the modeller is being translated to one epn transition
and normalisation can be kept invisible. On the bad side, we need to cope with
a more complex class of Petri nets for which fewer tools may be available.

Definition 10 (EPN). An extended Petri net (epn) is a tuple (S, T, W, U, Z,
H, F ) where (S, T, W, U) is a ppn, called the underlying ppn, and:

– Z ∈ (P × T )∗ defines the (weighted) read arcs and for t ∈ T we define
∗t

df= {p �→ Z(p, t) | (p, t) ∈ Z} the places from which t reads tokens;
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– H ∈ (P × T )∗ defines the (weighted) inhibitor arcs and for t ∈ T we define
◦t

df= {p �→ H(p, t) | (p, t) ∈ H} the multiset of places from which t checks the
absence of too much tokens;

– F ⊆ (P × T ) defines the reset arcs and for t ∈ T we define t
df= {p ∈ P |

(p, t) ∈ F} the set of places whose marking is reset by t.

Definition 11 (EPN firing rule). Let (S, T, W, U, Z, H, F ) be an epn and m
a marking of it. A transition t ∈ T is enabled at m iff it is also enabled in the
underlying ppn, and we have ∗t ≤ m and m/◦t < ◦t. If t is enabled at m then
we may have m

t−→ m′ with m′ df= m/(P \ t) − •t + t•.

The intuition behind this firing rule is as follows:

– t must be enabled in the underlying ppn, that is: there are enough tokens to
be consumed by the regular arcs, and priorities are respected;

– ∗t ≤ m checks that there are enough tokens to be tested by the read arcs.
Read arcs are weighted so for instance ∗t(p) = 2 means that two tokens will
be tested in p, thus the inequality;

– m/◦t < ◦t checks that there are not too much tokens with respect to the
inhibitor arcs. We consider m/◦t instead of m because a weight zero on a
inhibitor arc corresponds to the absence of such an arc. So, this condition can
be read as “for every place p such that there is an inhibitor arc between t and
p with weight w > 0, p must be marked by less than w tokens”;

– m′ df= m/(P \ t) − •t + t• is similar to m′ df= m − •t + t• in ppn but instead
of computing m′ from m, we compute it from m restricted to the places that
are not connected to t through a reset arc. In other words, m/(P \ t) is m in
which we emptied all the places connected to t through a reset arc.

Definition 12 (EPN state graph). Let (S, T, W, U, Z, H, F ) be an epn and
M the set of its initial markings. Its state graph is the smallest lts (S, M, T, →)
such that M ⊆ S and if m

t−→ m′ in the epn with m �= m′, then m ∈ S and
(m, t, m′) ∈ → in the lts as well. The epn is safe with respect to M iff for all
m ∈ S we have m ≤ 1.

As with ppn, we have restricted the semantics to avoid self-loops in an epn
state graph.

Translation from a normal rr system to an epn is made by creating one place
pv for each variable v and one transitions ta for each action a that is connected
to each pv as depicted in Fig. 6. An example of such a translation is depicted on
the right of the figure.

Definition 13 (normal RR systems to EPN). Let R
df= (V, I, C, R) be a

normal rr system, with A df= C � R its set of actions. R can be translated to a
epn epn(R) df= (P, T, W, U, Z, H, F ) and a set of initial markings M as follows,
with reference to Fig. 6 displayed at the end of lines:

– P
df= {pv | v ∈ V};

– T
df= {ta | a ∈ A};
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Fig. 6. (Left) Depiction of all the possible relations between a variable v and an action
a

df= (�, r) of a normal rr system, and how this is translated to epn. (Right) The
normal rule resulting from rule R9 in the termite model of Fig. 1 translated to epn.

– W
df= {(pv, ta) | v ∈ V ∧ a

df= (�, r) ∈ A ∧ �[v] = � ∧ r[v] = ⊥} (row 2)
+ {(ta, pv) | v ∈ V ∧ a

df= (�, r) ∈ A ∧ �[v] �= � ∧ r[v] = �}; (rows 4–5)
– U

df= {ta | a ∈ C};
– Z

df= {(pv, ta) | v ∈ V ∧ a
df= (�, r) ∈ A ∧ �[v] = r[v] = �}; (row 1)

– H
df= {(pv, ta) | v ∈ V ∧ a

df= (�, r) ∈ A ∧ �[v] = ⊥}; (rows 3–4)
– F

df= {(pv, ta) | v ∈ V ∧ a
df= (�, r) ∈ A ∧ �[v] = � ∧ r[v] �= �}; (rows 5–6)

– M
df= {{pv | v ∈ V ∧ s[v] = �} | s ∈ I}.

Proposition 2. With the notations from Definition 13, we have that epn(R) is
a safe epn with respect to M .

Proof. We prove by induction that all reachable markings are safe.
(Basis.) Every marking in M is safe because for all s ∈ I and all v ∈ V,

depending on the value of s[v], we put at most one token in pv.
(Induction.) Firing any transition from a safe marking yields a safe marking.

Indeed, for all v ∈ V and all a ∈ A, we have the following cases, corresponding
to the rows of Fig. 6:

– if �[v] = r[v] = � (row 1), only a read arc exists between ta and pv, which
does not change its marking;

– if �[v] = � and r[v] = ⊥ (row 2), a token is consumed by ta from pv which
keeps it safe;

– if �[v] = r[v] = ⊥ (row 3), only an inhibitor arc exists between ta and pv,
which does not change its marking;

– if �[v] = ⊥ and r[v] = � (row 4), a token is produced by ta into pv but only
if it is empty thanks to the inhibitor arc between ta and pv;
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– if �[v] = � and r[v] = � (row 5), pv is emptied by ta thanks to the reset arc
and then one token is produced in pv;

– if �[v] = � and r[v] = ⊥ (row 6), pv is emptied by ta;
– if �[v] = r[v] = � (row 7), there is no arc between ta and pv so its marking is

untouched.

No other arcs exist between ta and pv. ��
Theorem 4. With the notations from Definition 13, we have that R and epn(R)
generate equivalent state graphs.

Proof. We prove that the lts of R and that of epn(R) are equivalent through
(g, h) with g

df= {s �→ {pv | v ∈ V ∧ s[v] = �} | s ∈ S} where S is the set of states
of the lts of R, and h

df= {ta �→ a | a ∈ A}. To do so, we prove that s
a−→ s′ in R

iff g(s) ta−→ g(s′) in epn(R) with s �= s′ two states of R.
(⇒) assume s

a−→ s′, with a
df= (�, r). First we prove that ta is enabled. From

Definitions 11 and 13, we must have:

•t
df= {pv | v ∈ V ∧ �[v] = � ∧ r[v] = ⊥} ≤ g(s) df= {pv | v ∈ V ∧ s[v] = �} (4)

∗t
df= {pv ∈ V | �[v] = r[v] = �} ≤ g(s) (5)

◦t
df= {pv ∈ V | �[v] = ⊥} > g(s)/◦t (6)

(4) and (5) hold because when a is enabled we must have s[v] = � for every v
such that �[v] = �. (6) holds because when a is enabled we must have s[v] = ⊥
and thus g(s)(pv) = 0 for every v such that �[v] = ⊥. Take m′ the marking such
that g(s) ta−→ m′ df= g(s)/(P \ t) − •t + t•. It remains to prove that m′ = g(s′).
From the definitions we have:

m′ = {pv | v ∈ V ∧ s[v] = � ∧ (�[v] �= � ∨ r[v] = �)} (7)
− {pv | v ∈ V ∧ �[v] = � ∧ r[v] = ⊥} (8)
+ {pv | v ∈ V ∧ �[v] �= � ∧ r[v] = �} (9)

where �[v] �= � ∨ r[v] = � corresponds to pv /∈ t by definition of F in the
translation. Then we can consider each v ∈ V separately and there are seven
cases, corresponding to the rows in Fig. 6:

– if �[v] = r[v] = � (row 1), then we have s[v] = � because a is enabled and
s′[v] = � by definition of rr firing. On the Petri net side, the token in pv

from m is kept at (7) and not removed at (8), and no token is added at (9),
so the marking is not changed, hence the result;

– if �[v] = � and r[v] = ⊥ (row 2), then we have s[v] = � and s′[v] = ⊥.
Moreover, the token in pv from m is kept at (7), it is removed at (8), and no
token is added at (9), hence the result;

– if �[v] = r[v] = ⊥ (row 3), then we have s[v] = s′[v] = ⊥. Moreover, there is
no token in pv from m thus none can be kept at (7), and none is added at (9),
hence the result;
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– if �[v] = ⊥ and r[v] = � (row 4), then we have s[v] = ⊥ and s′[v] = �.
Moreover, there is no token in pv from m thus none is kept at (7), and one is
added at (9), hence the result;

– if �[v] = � and r[v] = � (row 5), then we do not know what s[v] is but we
have s′[v] = �. Moreover, any token in pv from m is not kept at (7), and one
is added at (9), hence the result;

– if �[v] = � and r[v] = ⊥ (row 6), then we do not know what s[v] is but we
have s′[v] = ⊥. Moreover, any token in pv from m is not kept at (7), and
none is added at (9), hence the result;

– if �[v] = r[v] = � (row 7), then s[v] = s′[v]. Moreover, any token in pv from m
is kept at (7), not removed at (8), and no other token is added at (9), hence
the result.

(⇐) assume g(s) ta−→ g(s′), and thus relations (4–6). Consider each v ∈ V
separately, we have four cases to prove that a is enabled at s:

– if �[v] = r[v] = � then from (5) we have 0 < ∗t(pv) ≤ g(s)(pv) thus s[v] = �;
– if �[v] = � and r[v] = ⊥ then from (4) we have 0 < •t(pv) ≤ g(s)(pv) and

thus s[v] = �;
– if �[v] = ⊥ then from (6) we have 1 = ◦t(v) > g(s)(pv) thus s[v] = ⊥;
– if �[v] = � then v has no influence on the enabling of a.

It remains to show that s
a−→ s′, taking m′ = g(s′), Eq. (7–9) still holds and

we consider each v separately. There are five cases corresponding to the rows in
Fig. 6:

– if �[v] = r[v] (rows 1, 3, and 7), then a possible token in pv is kept at (7) and
not removed at (8) while none is added at (9), and from the definition of rr
firing we have s′[v] = s[v], hence the result;

– if �[v] = � and r[v] = ⊥ (row 2), then one token is consumed from pv at (8)
and none is added at (9) so that m′(pv) = 0. From the definition of rr firing
we have s′[v] = ⊥, hence the result;

– if �[v] = ⊥ and r[v] = � (row 4), then m(pv) = 0 and one token is added
at (9), so that m′(pv) = 1. Moreover, we have s′[v] = �, hence the result;

– if �[v] = � and r[v] = � (row 5), then no token is copied from m into pv at (7)
and one is added at (9), so that m′(pv) = 1. Moreover, we have s′[v] = �,
hence the result;

– if �[v] = � and r[v] = ⊥ (row 6), then any token in pv is skipped at (7) and
none is added at (9) so that m′(pv) = 0. Moreover, we have s′[v] = ⊥, hence
the result. ��

6 Conclusion

We have presented a modelling language for ecosystems called reaction rules (rr)
that has been developed and used for more than five years. This is a simple rule-
based language in which ecological entities are modelled as Boolean variables,
and the potential events in the ecosystem are modelled as if-then rules. This lan-
guage is equipped with an operational semantics expressed in terms of labelled
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transitions systems (lts). Then, we have proposed two alternative denotational
semantics: (1) a translation to Petri nets extended with transitions priorities
(ppn) that is obtained through an elementarisation of the translated system’s
rules, and (2) a translation to ppn further extended with read, inhibitor, and
reset arcs (epn) that is obtained trough a normalisation of the translated sys-
tem’s rules. The main result of this paper is to prove that all these semantics
are strongly equivalent, which is expressed in terms of the isomorphism of the
corresponding lts, with states and labels matching. We have defined in proofs
constructive mappings that can be used in practice to translate one kind of lts
into another. The overall contribution is summarised in Fig. 2 page 3.

The main interest of having several consistent semantics is the ability to
chose one or another depending on the situation. For example, the operational
semantics can be presented in intuitive terms directly on the rr concrete syntax,
and thus it is suitable to be explained to ecologists. However, no implementation
exists for it so it cannot be used to compute state-spaces. On the other hand, the
Petri net semantics allows to use one of the numerous tools readily available for
Petri nets. For instance, in [5–8], we have used tina [1] to compute explicit state-
spaces from the ppn semantics of rr since tina supports transitions priorities.
We also have used the epn semantics in [4,12] through a translation of extended
Petri nets into gal systems [19, Sec. 5] in order to compute symbolic state-spaces
using libddd and its-tools [18,19]. Another use of the epn semantics could be
through the snakes [15] library for interactive simulation.

6.1 Related Works

The design of the rr modelling language has been made by computer scientists
working together with ecologists, with the goal to provide a language that is both
as simple as possible and also sufficiently descriptive for actual use by ecologists.
Actually, modelling ecosystems by discrete systems with if-then rules was pro-
posed in the early 90’s in [16,17], but using multi-valued variables. These works
have then evolved towards cellular automata and, to the best of our knowledge,
remained focused on simulation-based analysis.

rr being based on Boolean variables, it may appear similar to Boolean net-
works that are widely used in systems biology [14,21]. However, both languages
have several important differences. First of all, they greatly differ in the mod-
elling philosophy: Boolean networks are centred onto how each variable is influ-
enced by the others and thus present the system as an interaction network; rr is
centred onto the potential events in the system and thus presents the system as
a rule-based model. Then, rr allows to express non-determinism at the level of
rules while, in Boolean networks, it arises only in the semantics from the update
mode of the variables [3]. This is a crucial feature to model ecosystems that
often exhibit such non-deterministic behaviours where the same causes (as far
as they can be observed) may lead to distinct consequences. Finally, from the lts
perspective, rr is strictly more expressive than Boolean networks. It has been
proved that it can generate any lts based on Boolean variables while Boolean
networks cannot generate lts in which a state has successors with incompatible
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Fig. 7. A lts on three Boolean variables that can be modelled by an rr system but
not by a Boolean network. (This is left to the reader.) This lts has been taken in the
literature in ecology and corresponds to actual observations [9].

updates of some variables [20], as for example that depicted in Fig. 7. From this
it appears that Boolean networks offer a trade-off between modelling complexity
and generality, by allowing modellers to focus on the evolution of each variable.
rr on the other hand, is focused on the events and may lead to more detailed,
and thus more complex, models.

6.2 Future Works

Several extensions of the rr language will be considered in the future. In par-
ticular, we have preliminary results based on an extension with explicit spatial
information, which allows to model ecosystems taking into account their “geog-
raphy”. Another extension that is demanded by some users is the ability to
have multi-valued variables, for example to represent ecosystems where some
species play different roles depending on several thresholds of their population.
Finally, we are working on a compact semantics that would remove from the
state-space the constraints and the states from which they are executed. This
is motivated by the fact that constraints are usually introduced to skip states
that are only transient and should be discarded when studying the long term
dynamics. While such semantics is quite easy to obtain in explicit state-spaces,
it is more tricky for symbolic state-spaces. Moreover, the properties preserved
or not by this transformation are still to be precisely characterised.

Another trend of research addresses more particularly the epn semantics
of rr systems. A PhD is in progress about obtaining unfoldings à la McMil-
lan [13] for such Petri nets, with the aim to be able to apply in ecology the
techniques developed in [2,10,11] for a Petri nets semantics of Boolean networks.
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Abstract. JAliEn (Java ALICE Environment) is a new Grid middle-
ware framework designed to satisfy the needs of the CERN ALICE Col-
laboration for the LHC Run 3. It aims to ameliorate past shortcomings of
the original AliEn middleware, and to provide a high-performance, and
high-scalability service to cope with the increased volumes of collected
data. To achieve this, JAliEn comes with many significant architectural
changes – something which is not without challenges in a distributed
system. Not only are users unfamiliar with how the framework behaves
and communicates, it could also potentially introduce system deadlocks.

One possible way of describing and verifying distributed systems is
through the use of Petri Nets (PNs), a modelling language designed for
such purposes. Through an extension of it, known as Coloured Petri Nets
(CPNs), unique “tokens” can be used to describe individual commands
and actions as they are sent through the system. This allows to map,
model, and possibly verify JAliEn and its architecture, which will be the
focus of this contribution.

Keywords: CPN · Grid · ALICE · CERN · LHC · AliEn · JAliEn

1 Introduction

Following multiple upgrades to the ALICE detector at CERN [1], the number
of the minimum bias Pb-Pb events to be collected is expected to rise by a factor
of 50 during LHC Run 3, compared to the already collected data sample over
the past 10 years. To accommodate for this massive increase in data, the current
production Grid middleware, AliEn (ALICE Environment) [2], is being replaced
with a new middleware stack. Dubbed JAliEn (Java ALICE Environment) [3]
for its use of Java as the language of choice, this new middleware is a complete
rewrite of the legacy AliEn middleware. It aims to provide a high-performance
and high-scalability service, while at the same time avoids inheriting deprecated
code and accumulated hardcoded fixes.
c© Springer Nature Switzerland AG 2022
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Albeit inspired by the AliEn middleware, JAliEn deviates from it in several
ways. There are new database backends, built-in load balancing functionality
and a hierarchical approach to configuration – in addition to the new Java code-
base. Furthermore, a new authentication scheme is introduced, based around the
passing of token certificates1, that allows for assigning fine grained permissions
to each required task.

The accommodation of the above changes has resulted in JAliEn having a
largely different overall architecture compared to the legacy AliEn, with new
system components and means of data exchange. Consequently, there is a loss of
familiarity and understanding on how the system is expected to behave – possibly
exacerbating the use of the new system for users familiar with the legacy AliEn.
Furthermore, AliEn has been successfully used in production for over a decade,
giving it high credibility.

To aid users in better understanding the system and to alleviate concerns
in regards to its correctness and credibility, a formal software model may thus
be used to describe and validate the system. This approach has previously been
applied within other experiments at CERN, with promising results [4]. The con-
tribution of this paper is to describe one approach for creating such a model,
known as Coloured Petri Nets (CPNs) [5], and consequently present the JAliEn
system modelled using this approach. This formal model will in turn be used to
study the behaviour of the full system while in-use, performing simulation and
state-space exploration through the use of CPN Tools – allowing for not only
gauging the correctness of the real system when in use, but also to gain insight
to how each individual distributed component comes together to form it.

The rest of this paper is organised as follows: Sect. 2 will discuss initial mod-
elling and abstraction considerations that had to be taken, thereafter providing
an overview of the finalised model – a dedicated subsection has been given to each
major component. In Sect. 3, the model will be used for simulations, generating
a state space report which in turn will be used to examine relevant properties.
A conclusion is provided in Sect. 4.

2 Modelling JAliEn Using CPNs

Petri Net colours provide a natural way of modelling the JAliEn middleware:
While passing generic PN tokens would be too limited to accurately represent
the transitions needed by JAliEn, coloured tokens allow a near 1:1 mapping of
relevant data structures. Specifically, a token can be used to represent commands
as they are passed through the system, along with JAliEn token certificates,
which are used to authenticate the actions.

Modelling Considerations. CPNs provide means to verify the correctness of
system behaviour. However, Petri nets are also a powerful visual tool for edu-
cation and documentation. With JAliEn being a new system, and still in active
development, changes are major and documentation still scarce. A simulated

1 This is a JAliEn construct, not to be confused with (C)PN tokens.
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CPN model allows users to interact with the “system” in real-time, submit com-
mands and actions, and proceed to monitor how their requests are both handled
and forwarded between the various components of the distributed system. This
in turn provides valuable insight, allowing users to gain a better understanding
of the inner workings of the system, interactions and execution flow. Such a use-
case has thus been taken into account during model creation, where additional
places/transitions are added for visual aid.

Abstraction Considerations. Selecting an appropriate level of abstraction
is essential for a good, usable, model. However, this appropriate level is indeed
tightly correlated with its intended use: Reduce the abstraction, gain more detail.
Conversely, increase the abstraction, gain a better overview.

The level of abstraction should reflect the intention behind the model. In
this case, the model has been devised from the initial idea of utilising CPN
tokens as a representation for JAliEn commands and their authentication tokens,
which through their interactions enable visualising core exchanges and flow of
the real system. Furthermore, there is also the prospect of using the model
for documentation and educational purposes in mind. For these reasons, the
model should be able to accurately describe the JAliEn token flow, though not
needlessly delve into unrelated details.

Model. From a top-down perspective, the JAliEn middleware system can be
described as consisting of six distinct (albeit not always unique or sole) actors:
The central services, a JBox (JAliEn authentication handler), a VOBox (ALICE
front–end for compute clusters), a batch queue (schedules Grid job execution on
worker nodes), a worker node (used to execute submitted Grid jobs), and a user
– representing actions taken by user(s) from a JAliEn shell.

An overview of the above actors is presented in Fig. 1, using the CPN Tools
software [7]. Each actor is represented through a substitution, with an associated
submodule (see Fig. 2). The communication between each actor is here repre-
sented by transitions, and indicated by arcs.

Combined, the actors represented here create a starting point for a full model,
though it remains to define the necessary routines and steps for each actor.
Furthermore, JAliEn transitions and user interactions require the passing of data
structures – something which too needs to be represented. Below we present each
of the detailed CPN modules.

2.1 User

While the majority of the actors shown in Fig. 1 represent system components,
the submodule labelled “User” consolidates the actions instigated by users inter-
acting with the system.
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Fig. 1. Overview of the main components (actors) of the JAliEn system modelled in
CPN.

Premise. All user-facing interactions are generally done through a JAliEn shell,
which provides Unix-like commands for interacting with files on the Grid through
an abstracted filesystem, in addition to Grid job submission. A user intending
to use the JAliEn system will need to be authenticated, meaning the identity of
the user must be included with each request. Identity within JAliEn is handled
through the use of authentication tokens, providing sufficient permissions for
each intended task/action. Should a user not possess a token, but a common
Grid certificate, this certificate will first be exchanged for a token [6].

Modelling Considerations. The user submodule will need to handle the ini-
tial stages of the authentication flow, as a valid authentication token is needed



Modelling the Next Generation ALICE Grid Middleware Using CPNs 199

for any user commands to be propagated through the system. This is where CPN
tokens fit perfectly, as these provide means to simply bundle a command and an
authentication token, and have them propagated through the system as a CPN
token – as mentioned at the start of Sect. 2.

Model. Each command specified by a user can be represented by a CPN token,
and may in this way be passed through the modelled system in a similar manner
to the real-world when using a simulator (e.g. CPN Tools). However, as each
request must carry an identity, each coloured token must consequently carry
two values: The desired command (e.g. ls, ps or submit) and the authenti-
cation token. The CPN token is thus defined as a product of jalienCmd and
jalienIdentity, and combined labelled as a jalienRequest. An example of a
jalienRequest token can be found in the bottom left corner of Fig. 2, containing
the command submitJob and a user certificate for authentication.

Figure 2 provides an overview of the contents found within the User sub-
module. In its initial state, a coloured token can be seen in the bottom left
corner, representing the command to be submitted and the identity. As a user
certificate is provided in this example, the following transitions are consequently
triggered: The jalienRequest will be forwarded to the central services, but a copy
of the coloured token is also put aside, stating “Identity token missing”. This
is used to indicate that the only way to proceed onward from this state, is to
receive a proper authentication token – something the forwarded jalienRequest
will attempt to obtain. Only once a token is received as a response will the true
request be forwarded.

2.2 JBox

The JBox generally handles authentication and upstream connections. In other
words, it forwards authentication requests centrally when required, or JAliEn
commands otherwise. Replies from the central services are similarly forwarded
in the opposite direction back to the user/requester. Consequently, the JBox
is for this reason simply modelled as an intermediary step for jalienRequests,
and the equivalent jalienResponses, between the user and the central services
– despite being a core component of the authentication, also maintaining and
storing the details of the connection instance.
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Fig. 2. CPN submodule of the “User”. Error handling actions are grouped together in
its own submodule, which may be expanded further.

2.3 Central Services

The central services consist of the components required for database connec-
tions, lookup in the file catalogue and LDAP (Lightweight Directory Access
Protocol), in addition to authentication handling. At its centre is the JCentral
– the authoritative source for all JAliEn API requests.

Premise. The JCentral mainly handles API requests, though it also performs
calls to LDAP, file catalogue, database and task queue as necessary to satisfy
its responsibilities. These include accepting incoming requests, handling them
to the extent possible, and providing responses back to caller for each request.
All requests must be authenticated before being handled. Conversely, an error
response will be generated if this should fail.

Modelling Considerations. Unlike the “User” actor in Sect. 2.1, where most
of its logic can be confined to a single submodule, the Central Services are the
exact opposite due to their extensive size. Furthermore, they are composed of
multiple services and components, many with requests simply being forwarded
to them by JAliEn. Taking this into consideration, it becomes sensible to group
behaviour based on a response/request flow, as opposed to logical components,
so to make the order of passing CPN tokens more evident.

It must also be noted that many components found within the Central Ser-
vices are irrelevant for the passing of CPN tokens (such as the Task Queue and
LDAP). Nevertheless, given how one intended use of the model is for the pur-
pose of documentation, it could make sense to have these added for the sake of
overview.
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Fig. 3. Initial submodule for the central services (top), and the JCentral submodule
when expanded (bottom). Note the addition of ‘Task Queue’ and ‘LDAP’, which are
solely added for readability.

Model. The first submodule expands to reveal each of the components found
in the Central Services and their connection (i.e. JCentral, DB, task queue and
LDAP) – though each of these with their own submodule as well. However, the
JCentral is again compartmentalised into several submodules for each respon-
se/request flow. This is suggested in Fig. 3.

Given how authentication differs greatly between the legacy AliEn and
JAliEn, one of the more interesting submodules is the JCentral “Authentication”
handler. Continuing on the example discussed in Sect. 2.1, where a jalienRequest
was forwarded upstream to exchange a user certificate for a user token, this is
also where the CPN token would eventually arrive when simulated.

Figure 4 shows the model of the JCentral authentication handler. As a user
certificate is provided in this example, the next transition will go the path indi-
cated by usercert provided, in order to authenticate the certificate identity. A
Boolean variable is provided in the given model to simulate authentication suc-
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cess/failure: Should verisuccess be false, then a jalienResponse with an error
will be generated. However, should verisuccess be true, the jalienResponse
will instead contain an authentication token. This token will in this case be sent
back, and eventually trigger the waiting Resubmit with token transition within
the User submodule in Fig. 2.

When an authentication token is available, requests that arrive in the JCen-
tral authentication handler will now be able to go left (in regards to Fig. 4),
and have the token verified. Should this succeed, the request – in this exam-
ple submitJob – will be forwarded to the JCentral request handler. A model
submodule for the handler is presented in Fig. 5. As this is a user request, it
will proceed to the user request submodule, which in essence separates the
requests in two categories: Request that in some form access the file catalogue
(such as ls or cd), or those that submit new Grid jobs (submitJob). The former
requests are taken by the handler and forwarded appropriately, while the latter
(submitJob) instigates a separate transition chain: It is submitted to the central
queue, waiting to be picked up by a Computing Element (CE) at a VOBox.

2.4 VOBox

A VOBox is a front-end node for a Virtual Organisation (VO), in this case
ALICE, at a Grid computing site. It serves as an entrypoint, and hosts services
allowing members of the organisation to connect and monitor its status. It is
also a common2 host for the site Computing Element (CE), which picks up jobs
from the central Grid queue and distributes them among the workers present at
the current site.

Fig. 4. JCentral authentication handler.
2 Assumed to be the case throughout the examples within this contribution.
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Fig. 5. JCentral user request handler.

Premise. The CE queries the central queue for Grid jobs that may match the
site configuration. Should this succeed, a request will be sent for a JobAgent
token. The JobAgent is a process tasked with executing Grid jobs on each
worker node and requires a corresponding token for the permissions required
to achieve this. The request for this token is handled by the JCentral, which
sends a response containing it back to the CE. The CE will afterwards use this
JobAgent token to generate a script that can be used to start a JobAgent process
and insert it in the site batch queue – ready to be distributed and executed on
a worker node.

Modelling Considerations. The process of requesting a JobAgent token is
in many ways reminiscent of the exchange of a user certificate for a user token
between User and JCentral: The CE provides a user(host) token, which is there-
after forwarded and exchanged at the JCentral. In this particular case, however,
the process is more simplified as there is no error handling.

Model. Given the similarity to the existing User submodule, the corresponding
model for the VOBox becomes as shown in Fig. 6. Like in Fig. 2, the CPN token
splits in two separate paths, which results in a halt at Receive JobAgentToken
until a response containing a JobAgent token is also received from the JCentral.
Once received, a transition may be used to mimic JobAgent script generation
and insertion into the site batch queue.
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Fig. 6. The CE in a VOBox. Not unlike Fig. 2, the userToken is here used to receive a
JobAgentToken from JCentral before continuing.

2.5 Batch Queue

The batch queue maintains a queue of scheduled tasks, in the form of scripts,
and distributes these among a set of connected worker nodes. For a JAliEn site,
these tasks/scripts are used to start the JobAgent process on each node – which
will run and execute scheduled Grid jobs. However, the specific batch queue used
differs between Grid sites, with the inner workings of each implementation being
unrelated to JAliEn. Consequently, the batch queue has been simply modelled
as an intermediary step between generating a JobAgent startup script at the
VOBox/CE, and then having it executed at a worker node (visible in Fig. 1).



Modelling the Next Generation ALICE Grid Middleware Using CPNs 205

Fig. 7. JAliEn JobAgent as modelled in CPN.

2.6 Worker Node

A worker node is an executing machine at a Grid site, containing a front-end
process which pulls scheduled tasks from a site batch queue when there are
resources available. These tasks are generally scripts used to start the JobAgent,
which again pull and execute Grid jobs matching the associated site.

Premise. The JobAgent has two responsibilities: To match the worker node
configuration with the requirements of waiting Grid jobs, and to process and
execute the jobs that successfully match. The latter is done by launching a
separate process known as a JobWrapper, which contains a JobToken that allows
it to download necessary input files, execute the job, upload the results – and
send a response to the JCentral once the job completes.
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Modelling Considerations. The initial stages of the JobAgent are not unlike
those found within User and VObox. The JobAgent, which has a corresponding
JobAgent token, must use it to request a job token from the JCentral, which
contains the required permissions for job execution. However, it must be noted
that much of the JobAgent complexity spans beyond that of the initial token
exchange, something which is not possible to model solely by the passing of
authentication tokens.

Modelling Focus. The absence of other JobAgent tasks and responsibilities
within the model, such as the specifics of how a Grid job is handled, is a conse-
quence of the chosen level of abstraction. However, this limitation can be con-
sidered acceptable given the intended modelling focus, which is aimed at the
core interactions of the system. JobAgent specifics related to payload execution
are in this case irrelevant for the general execution flow – instead being largely
self-contained in its own corner of the Grid system.

Model. The execution flow can be found depicted in Fig. 7, where – and as
before – a CPN token is forwarded to the central, with the next transition
requiring an appropriate response to be triggered. Once that requirement is
satisfied, the subsequent transitions will mimic the start of the JobWrapper, job
execution and file upload. The latter will result in a CPN token again arriving
at the JCentral, though instead of exchanging tokens/certificates, a new CPN
token in form of a jalienResponse is generated. It is thereafter forwarded back
to the user responsible for invoking the original command, arriving as either
success/failure as seen in Fig. 2, completing the JAliEn request/response circle
for the ’submit’ command by a user.

3 Simulation

Software toolkits, such as CPN Tools, can be used to run simulations on CPN
models: Automatically triggering transitions, moving the CPN tokens through
places as indicated by arcs, Booleans and if-statements. This allows us to emulate
the execution of a real system in operation, and thus explore properties of interest
for the system.

One particular benefit of having an executable model is the possibility of
doing state space exploration – by allowing the simulator to run through all
possible states of the system model, potential faults and design flaws may be
uncovered that are not immediately apparent.
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3.1 State Space Insights

Fig. 8. Excerpt from the state space report generated for the command submitJob
by CPN Tools. While there are several dead markings and dead transitions present,
these are expected for a single command state space report. The exception is the dead
transitions for LDAP and Task_Queue, which were solely added to the model for
readability.

Deadlocks and unreached end-states are two common types of states/conditions
that are generally considered unfavourable in distributed systems. Specifically,
given that a distributed system is composed of multiple independent (yet inter-
acting) components, a chain of events may occur that leaves the system in a
suspended state, with each and every component waiting for the response of
another. Conversely, the system may execute all actions, but still not reach an
intended end-state – or simply end up in an infinite loop of repeating actions
(fairness). In the context of JAliEn, this result would be disastrous, as it would
not only prevent the execution of analysis jobs, but also waste limited computing
resources.
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To identify the presence of the above states/conditions, a full state space explo-
ration was initiated on the created JAliEn model for each of the modelled com-
mands (cd, ls and submitJob)3. The initial results are summarised below:

Liveness. Initially, the model can be found to reach expected end-states for all
commands – i.e. ‘Success’ or ‘User notified’ (error), the two intended end-states
in the model, with no indication of deadlocks being present. However, the state
space report also indicates a number of dead markings that do not coincide with
the end states, as well as multiple dead transitions. These are however accepted:
Each of the modelled commands traverse and instigate different components of
the distributed system, and as one state space report was generated for each
command, not all components will be interacted with (e.g. calling cd will not
instigate a submit chain, as needed for submitJob). Likewise, this is also reflected
in several of the dead transitions. However, the latter is also caused by choices
made to make the model more readable for educational purposes (see beginning
of Sect. 2). This can be seen in Fig. 8, where there are dead transitions present
for LDAP and Task_queue.

Fairness. Across all state space reports, no infinite sequences were reported,
indicating that there are no infinite loops present. While this is only guaranteed
to be true for the model, it would coincide with the experience of using the
legacy AliEn in production – which never encountered infinite sequences. While
not guaranteed, it would suggest that JAliEn may likewise avoid having this
issue in production.

Other Properties. While knowing the presence of infinite loops and deadlocks
are of high concern, other likewise interesting properties may also be examined
within the model. While the high-level model presented in this contribution is
unsuitable for identifying intricate edge cases, it may nevertheless be able to
reveal other flaws in the model logic.

As the model is tailored to depicting the system flow through the exchange of
authentication tokens, with an appropriate abstraction level, it remains the most
accurate for this intended use. Within this domain, a crucial safety property is
that no tokens are accepted without the proper exchange, or being presented an
error – e.g. a user certificate should not be able to do a command without being
exchanged for a token. Likewise, each command should not be able to invoke a
path unrelated to its own function. In other words, it should not be possible to
start with a CPN token representing ls, yet execute parts of the system only
intended for submitJob.

When asserting the correct authentication token, or command, is present in
each deviating transition (e.g. through the built-in ML of CPN tools), no issues
are detected. That is, no transitions were observed outside of the intended path
3 Considered representative for possible paths in the system, with each being indepen-
dent.
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for each token/command. For the commands, this can be further confirmed in
the above ’Liveness’ subsection – the dead markings present when executing the
state space for only a single command would indicate that blocked paths exist.
This becomes evident in Fig. 8, where there are dead markings in the paths for ls
and cd, for the example command submitJob. In turn, this suggests the safety
property is satisfied, given that the specified command was unable to interact
with the transitions intended for others.

4 Conclusion

This contribution has examined a possible model of the JAliEn Grid middle-
ware system using CPNs. It consists of six main submodules, each representing
an actor/component of the system, with CPN tokens carrying commands and
identities as indicated by transitions and arcs, mimicking JAliEn requests/re-
sponses. Through the use of CPN toolkits, such as CPN Tools, the passing of
CPN tokens between valid states is simulated, thus emulating the execution of
a real system. From this execution, a state-space exploration was performed,
which in turn found no deadlocks, invalid end-states or infinite loops. While the
above result is promising, it must be taken in consideration that it only reflects a
model, and not a real system. Several components are simplified, modelling and
interpretations errors may be present, and there is an absence of any external
factor. Furthermore, the model is biased to align with the perspective of a user,
while in reality a user would not necessarily be the first to instigate actions or
exchange certificates. Nevertheless, while this does not guarantee the absence of
errors, it helps in alleviating some of the concerns. Furthermore, having an inter-
active model provides a useful supplement for documentation, allowing users to
get an overview of the system as a whole.
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Abstract. In this paper, we examine the synthesis problem from a finite
labeled transition system when the target is the class of weighted nets
with (possibly) inhibitor and/or reset links, or some subclasses of them.
We also discuss the intrinsic complexity of some cases; in particular we
show that although some subclasses have a polynomial synthesis, most
of the time it is NP-complete.

1 Introduction

In order to validate a system, instead of analyzing a model of the latter to check
if it satisfies a set of desired properties, the synthesis approach tries to build
a model “correct by construction” directly from those properties, and then to
implement it. In particular, if the behavior of a system is specified by a finite
labeled transition system (LTS for short), more or less efficient algorithms have
been developed to build a bounded weighted Petri net with a reachability graph
isomorphic to (or close to) the given LTS [3,23]. It is also possible to target
some subclasses of Petri nets [8], in particular choice-free nets and some of their
specializations [7,9,10,15] which present interesting features.

On the contrary, in order to extend a bit the power of the technique (it may
happen that no net of the chosen subclass has an adequate behavior, even for the
full class of weighted Petri nets), we may consider superclasses of the classic Petri
net subclasses. For instance, in [16], one of us used (weighted) reset arcs. Here,
we shall allow both weighted inhibitor and reset arcs, as well as some subcases.
Since the analysis of such systems is a bit delicate (some properties even become
undecidable [17]), this increases the interest to avoid analysis techniques in favor
of synthesis ones.

Petri net synthesis has numerous practical applications, for example, in the
field of process discovery to reconstruct a model from its execution traces [1], in
supervisory control for discrete event systems [22], and in the design and synthesis
of speed-independent circuits [13]. Usually, the synthesized system yields a struc-
tural model much smaller than the initial behavioral specification, and allows to
build concrete implementations. Moreover, it allows to extract informations about
c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 213–235, 2022.
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concurrency and distributability features from the sequential behavior given by an
LTS [5].

The paper is organized as follows. After recalling some basic notions on
labeled transition systems and Petri nets, we present an extension of the latter,
allowing general inhibitor and reset links. In the next section, we explain how to
extend the classical regional approach to synthesize such a net, or a subclass of
them, when possible, from a finite transition system. Then, we explain how to
characterize the inherent complexity of a synthesis problem, and we delineate a
new target class for which the synthesis is polynomial. In Sect. 4.4, we present
two (pure) target classes for which the synthesis is NP-complete, and in the next
section, we do the same with impure strict reset nets. The last section, as usual,
concludes and presents some possible follow up.

2 Preliminaries

Definition 1. Transition System

A (deterministic) labeled transition system (LTS, for short) A = (S,E, δ, ι) con-
sists of two disjoint sets of states S and events E, a partial transition function
δ : S × E −→ S and an initial state ι ∈ S. An event e occurs at state s, denoted
by s e , if δ(s, e) is defined. By s ¬e we denote that δ(s, e) is not defined. We
abridge δ(s, e) = s′ by s e s′ and call the latter an edge with source s and
target s′. By s e s′ ∈ A, we denote that the edge s e s′ is present in A.
A sequence s0

e1 s1, s1
e2 s2, . . . , sn−1

en sn of edges is called a (directed
labeled) path (from s0 to sn in A). A is called reachable, if there is a path
from ι to s for every state s ∈ S.
Two LTS A1 = (S1, E, δ1, ι1) and A2 = (S2, E, δ2, ι2) are isomorphic if there
is a bijection ζ : S1 → S2 such that ζ(ι1) = ι2 and δ1(s, e) = s′ if and only if
δ2(ζ(s), e) = ζ(s′) for all s, s′ ∈ S1 and all e ∈ E.
An LTS A = (S,E, δ, ι) is finite if so are S and E. �� 1

If an LTS A is not explicitly defined, then we refer to its components by S(A)
(states), E(A) (events), δA (function), ιA (initial state). In this paper, we investi-
gate whether a LTS corresponds to the reachability graph of a Petri net. There are
various ways to present a Petri net or an extension thereof; here we chose a link
oriented one, in order to make the definition of (weighted) arcs more uniform:

Definition 2. Inhibitor-Reset Petri Net: Specification and Semantics

An inhibitor-reset Petri net (IRPN, for short) N = (P, T, f,m0) consists of
finite and disjoint sets of places P and transitions T , a (total) flow function
f : P ×T → N×N×{classic, inhibitor, reset} and an initial marking m0 : P → N.
A link (m,n, type) will be said pure if m · n = 0; it is k-limited (for some
predefined k ∈ N) if m,n ≤ k; it is plain if it is 1-limited; it is strict if it is
0-limited1.
1 I.e., m = n = 0: strict inhibitor links correspond to usual inhibitor arcs found in
the literature [18,21]; strict reset links correspond to the kind of reset arcs some-
times found in the literature [2]; strict classic links correspond to the fact that some
transitions are not connected to some places.
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A transition t ∈ T can fire or occur in a marking m : P → N, denoted by
m t , and this firing leads to the marking m′, denoted by m t m′, if, for all
places p ∈ P , f(p, t) = (m,n, type) and

1. if type = classic, then m(p) ≥ m and m′(p) = m(p) − m + n;
2. if type = inhibitor, then m(p) ≤ m and m′(p) = n;
3. if type = reset, then m(p) ≥ m and m′(p) = n.

This notation extends to sequences w ∈ T ∗ and the reachability set RS(N) =
{m | ∃w ∈ T ∗ : m0

w m} contains all the reachable markings of N . The reacha-
bility graph of N is the LTS AN = (RS(N), T, δ,m0), where, for every reachable

marking m of N and transition t ∈ T with m t m′, the transition function δ of
AN is defined by δ(m, t) = m′. Two IRPNs are equivalent if their reachability
graphs are isomorphic.

A place in N is said k-safe (for some predefined k ∈ N) if, for each reachable
marking m, m(p) ≤ k; it is safe if it is 1-safe; it is bounded if it is k-safe for
some k not defined a priori. An IRPN N is k-safe|safe|bounded if so are all its
places. �� 2

A classic (and easy) result for classic Petri nets immediately extends to IRPNs:

Corollary 1. Bounded system

An IRPN N is bounded if and only if its reachability graph AN is finite.

�� 1
Many subclasses of nets may be defined from this definition. For instance,

Definition 3. Subclasses of Nets

An IRPN N = (P, T, f,m0) is called

– a strict inhibitor reset (Petri) net, denoted by SIRPN, if each link is either
classic or strict reset or strict inhibitor;

– a (strict) inhibitor (Petri) net, denoted by (S)IPN, if each link is either classic
or (strict) inhibitor;

– a (strict) reset (Petri) net, denoted by (S)RPN, if each link is either classic
or (strict) reset;

– a (Petri) net, denoted by PN, if all the links are classic;
– pure if so are all the links (note that strict inhibitor and reset links are

automatically pure);
– plain if so are all the links (note that strict inhibitor and reset links are

automatically plain). �� 3

Graphically, the various kinds of links are represented as illustrated in Fig. 1,
with the convention that arcs with zero weight are omitted.



216 R. Devillers and R. Tredup

m0

p

t

m

n

(m,n, classic)

m0

p

t

m

n

(m,n, inhibitor)

m0

p

t

m

n

(m,n, reset)

Fig. 1. The three kinds of links between a place p and a transition t (arcs with a null
weight are usually omitted in figures).

3 Synthesis

Instead of analyzing a system and (try to) go from a system specification to its
behavior (for instance given by the reachability graph), we may go the other way
round:

Definition 4. Synthesis

Let A = (S,E, δ, ι) be an LTS. An IRPN N synthesizes A if its reachability
graph is isomorphic to A. We then say that N solves A. �� 4

Synthesis is not exactly the symmetric of analysis, however. Indeed, while a
system always has a unique behavior (given by its reachability graph), it may
happen that a synthesis fails (then it is interesting to exhibit one or more sources
of the failure), and if it is possible, there are infinitely many (behaviorally equiv-
alent) solutions, sometimes with very different structures.

In the following, we shall always assume that the transition system A we
start from is finite, so that it may be given explicitly and drawn easily (if not
too large), and its synthesis solutions are bounded (see Corollary 1).

Classically [3], synthesis algorithms are related to the construction of regions,
that we shall here adapt to our context:

Definition 5. IRPN-Region

Let A = (S,E, δ, ι) be a LTS. A pair of mappings R = (sup, sig) that con-
sists of the support sup : S → N and the signature sig : E → N × N ×
{classic, inhibitor, reset} is called a (IRPN-)region of A if, when δ(s, e) = s′, then
the following conditions are satisfied:

1. if sig(e) = (m,n, classic), then sup(s) ≥ m and sup(s′) = sup(s) − m + n;
2. if sig(e) = (m,n, inhibitor), then sup(s) ≤ m and sup(s′) = n;
3. if sig(e) = (m,n, reset), then sup(s) ≥ m and sup(s′) = n. �� 5

Remark 1. Regions and Places

Intuitively, a region corresponds to a place in an IRPN solving A: sup yields the
markings of that place corresponding to the various states of A (hence the initial
marking is provided by sup(ι)), and sig yields the links between that place and
the various transitions (E(A) must be the same as the set T of transitions of
any solution of A).

For convenience, for all e ∈ E(A), if sig(e) = (m,n, type), then we define
sig−(e) = m, sig+(e) = n and sigt = type. �� 1
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Remark 2. Construction of the Support

If R = (sup, sig) is a region of an LTS A = (S,E, δ, ι), then we can reconstruct
R already from sup(ι) and sig, since every state s of A is reachable by a directed
labeled path from ι: If s0

e1 . . . en sn with s0 = ι and sn = s, then, for all
i ∈ {0, . . . , n − 1}, we get inductively sup(si+1) from sup(si) and sig(ei+1).
Hence, for the sake of simplicity, we shall often present a region R = (sup, sig)
only by sup(ι) and sig (it is necessary however to check that two different paths
leading from ι to the same state s yield the same support sup(s), and that
the latter is always nonnegative). For an even more compact representation, we
shall summarize events with the same signature as follows: ER

m,n = {e ∈ E |
sig(e) = (m,n, classic)}, and ER

inhibitor = {e ∈ E | sig(e) = (0, 0, inhibitor)}, and
ER
reset = {e ∈ E | sig(e) = (0, 0, reset)}. �� 2

Definition 6. Synthesized Net

If A = (S,E, δ, ι) is an LTS and R a set of regions of A, then the synthesized net
NR

A is defined by SR
A = (R, E, f,m0) such that f(e,R) = sig(e), and m0(R) =

sup(ι) for all R = (sup, sig) ∈ R. �� 6

Definition 7. State Separation Property

Two distinct states s, s′ ∈ S define the state separation atom, SSA for short,
(s, s′) of an LTS A = (S,E, δ, ι). A region R = (sup, sig) of A solves (s, s′)
(equivalently: separates s and s′) if sup(s) 	= sup(s′). A state s ∈ S is called
solvable if, for every s′ ∈ S \ {s}, there is a region of A that solves the SSA
(s, s′). If every state of A is solvable, then A has the state separation property,
SSP for short. �� 7

Definition 8. Event State Separation Property

An event e ∈ E and a state s ∈ S of an LTS A = (S,E, δ, ι) such that s ¬e

define the event state separation atom, ESSA for short, (e, s) of A. A region R =
(sup, sig) of A solves (e, s) (equivalently: separates e from s) if sig−(e) > sup(s)
when sigt(e) = classic or reset and sig−(e) < sup(s) when sigt(e) = inhibitor.
An event e ∈ E is called solvable if, for every state s ∈ S such that s ¬e , there
is a region of A that solves the ESSA (e, s). If all events of A are solvable, then
A has the event state separation property, ESSP for short. �� 8

Definition 9. Admissible Set

Let A = (S,E, δ, ι) be an LTS. A set R of regions of A is called an admissible
set if it witnesses the SSP and the ESSP of A, i. e., for every SSA, and for every
ESSA of A, there is a region in R that solves it. �� 9

The fundamental characterization [3,14] of synthesizability for classic Petri
nets extends immediately to IRPNs:

Theorem 1. Solvability of an LTS

Let A = (S,E, δ, ι) be an LTS. A is solvable by an IRPN if and only if there
is an admissible set R of (IRPN-)regions for A, and a possible solution is then
N = NR

A . �� 1
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Above, we assumed that the target of a synthesis is the whole set of IRPNs,
but it is easy to adapt the discussion to the case where the target is one of the
subclasses mentioned in the previous section (or an intersection of them). One
simply has to add some constraints to the definition of regions to be considered
for the considered LTS:

Definition 10. Subclasses of Regions

A region R = (sup, sig) of an LTS A = (S,E, δ, ι) is called

– an SIRPN -region if sig(e) = (m,n, type) and type ∈ {inhibitor, reset} imply
m = n = 0 for all e ∈ E;

– an (S)IPN -region if sigt(e) ∈ {classic, inhibitor} for all e ∈ E (and sig(e) =
(m,n, inhibitor) implies m = n = 0 for all e ∈ E);

– an (S)RPN -region if sigt(e) ∈ {classic, reset} for all e ∈ E (and sig(e) =
(m,n, reset) implies m = n = 0 for all e ∈ E);

– a PN -region if sigt(e) = classic for all e ∈ E;
– a k-safe region, if sup(s) ≤ k for each s ∈ S (with k = 1 for safeness);
– a pure region, if sig−(e) = 0 or sig+(e) = 0 for each e ∈ E;
– a k-limited region if sig−(e), sig+(e) ≤ k for each e ∈ E (with k = 1 for

plainness),

where the meaning of the acronyms correspond to Definition 3. �� 10

Then, if we want to restrict our attention to the synthesis of, for example,
plain (S)RPNs, we have to look for an admissible set of plain (S)RPN-regions,
according to Theorem 1. In the obvious way, we use the corresponding restricted
regions for the other net classes (and combinations thereof).

All those separation problems (with possibly additional constraints) may
be solved by existing (integer) linear programming tools or SMT-based model
checking, but it is necessary to first choose adequately the type of each link. Note
however that it is not necessary to solve each separation problem from scratch:
we may first check if one of the regions computed previously does not already
solve the new separation problem we consider. The result will of course rely on
the order in which the various separation problems are considered (besides the
fact that each separation problem may sometimes have many possible solutions).

It is possible to also search for solutions with a minimal number of
places/regions.

4 Complexity

4.1 Membership in NP

Concerning the inherent complexity of the IRPN synthesis, we may first observe
that it is in NP:
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Theorem 2. NP-synthesis

Let A = (S,E, δ, ι) be an LTS. Its IRPN solvability is in NP.

Proof: The number of ESSAs and SSAs to be solved is (quadratic, hence) poly-
nomial in the size of A. For each of them, a Turing machine can guess non-
deterministically the type of the signature of the events, for instance: ei1 , . . . , eip

are of type classic, ej1 , . . . , ejq
are of type inhibitor, and e�1 , . . . , e�r

are of type
reset. Then, finding an adequate region amounts to solve a system (of polynomial
size) of linear constraints in the integer domain, as follows:

There are |S|+2 · |E| variables xi, where sup(si) = xi for all i ∈ {1, . . . , |S|},
while sig−(ei) = x|S|+i, and sig+(ei) = x|S|+|E|+i for all i ∈ {1, . . . , |E|}; the
constraints are then

1. For all i ∈ {1, . . . , |S| + 2 · |E|}: add xi ≥ 0 (all variables are in N)
2. For all n ∈ {1, . . . , p}, and all i, j ∈ {1, . . . , |S|}, if si

ein sj ∈ A, then add
(a) xi − x|S|+in

≥ 0, which ensures sup(si) ≥ sig−(ein
), and

(b) xj − xi + x|S|+in
− x|S|+|E|+in

= 0, which ensures sup(sj) = sup(si) −
sig−(ein

) + sig+(ein
).

3. For all n ∈ {1, . . . , q}, and all i, j ∈ {1, . . . , |S|}, if si
ejn sj ∈ A, then add

(a) xi − x|S|+jn
≤ 0, which this ensures sup(si) ≤ sig−(ejn

), and
(b) xj − x|S|+|E|+jn

= 0, this ensures sup(sj) = sig+(ejn
).

4. For all n ∈ {1, . . . , r}, and all i, j ∈ {1, . . . , |S|}, if si
e�n sj ∈ A, then add

(a) xi − x|S|+�n
≥ 0, which ensures sup(si) ≥ sig−(e�n

), and
(b) xj − x|S|+|E|+�n

= 0, this ensures sup(sj) = sig+(e�n
).

5. In order to solve α = (sf , eg), add xf −x|S|+g ≤ −1, which ensures sup(sf ) <
sig−(eg), if eg corresponds to the types classic or reset, and x|S|+g −xf ≤ −1,
which ensures sup(sf ) > sig−(eg), if eg corresponds to inhibitor.

6. In order to solve α = (si, sj), create two systems, one where we add xi −xj ≤
−1 and one where we add xj − xi ≤ −1, which ensures sup(si) 	= sup(sj).

7. Other constraints may be added to restrict the target class; for instance, for
all i ∈ {1, . . . , |S|}: add xi ≤ k if we aim at synthesizing a k-safe net; for all
i ∈ {1, . . . , |E|}: add x|S|+i ≤ k and x|S|+|E|+i ≤ k if we aim at synthesizing
a k-limited net.

Solving such a system may be assimilated to an integer linear programming
problem (without an economic function to optimize, or with a null economic
function) (ILP for short), and it is known that ILP belongs to NP [20]. �� 2

4.2 Polynomial Cases

In the procedure described in the previous section to solve a separation prop-
erty, we first have to fix the type of link for each transition: this is generally
exponential, hence we may suspect that (in most cases) the synthesis problem
is NP-complete [19]. There are cases however where it is polynomial in the size
of the transition system to be solved. For instance, this was shown [3] when the
target is the class of classic Petri nets without additional constraints (essentially,
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in that case, there is no choice to make for the link types and one has to solve a
system of homogeneous linear constraints of linear size; one can solve it polyno-
mially in the rational range and then multiply all the found variables by some
common factor to get an integer solution, if there is one). The same is true when
the target is the class of pure classic Petri nets without additional constraints [4],
using slightly different regions.

But there are other interesting cases; for instance we shall now show that
the synthesis remains polynomial when the target is the class of strict inhibitor
nets (without additional constraints). To do that, we shall first introduce com-
plementary places.

Lemma 1. Complementary Place

Let N = (P, T, f,m0) be an IRPN and p ∈ P a place in it bounded by
some value k ∈ N (i.e., for any reachable marking m, m(p) ≤ k). Let also
l = maxt∈T {n | f(p, t)) = (m,n, classic)}, h = maxt∈T {m,n | f(p, t)) =
(m,n, type) and type 	= classic} and μ = max{k+l, h}. Let ̂N be the net obtained
from N by introducing a fresh place p̂ (the complementary of p) with initial mark-
ing μ − m0(p) and such that, for each t ∈ T , the link between p̂ and t is built
as illustrated in Fig. 2. Then ̂N and N are behaviorally equivalent and, for each
marking m̂ reached in ̂N , m̂(p) + m̂(p̂) = μ (and is thus constant).
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Fig. 2. Construction of a complementary place.

Proof: Since ̂N has one place more than N , and the initial marking of ̂N is the
same as N when restricted to P , any evolution of ̂N is also one of N , and the
restriction to P of the reached marking in ̂N is the marking reached with the
same evolution in N .

If m is a marking reachable in N , from the choice of μ we have μ−m(p) ≥ 0,
and if m̂ is the marking in ̂N obtained by adding to m that m̂(p̂) = μ − m(p),
it may be observed that for any transition t ∈ T , if t is enabled by m in N ,
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then it is also enabled by m̂ in ̂N . Indeed, if m(p) ≥ m, then μ − m(p) ≤ μ − m
(reset case), if m(p) ≤ m, then μ −m(p) ≥ μ − m (inhibitor case), and from the
choice of μ again μ − m(p) ≥ n (classic case). In any case, from the choice of

μ again, μ − m ≥ 0 and μ − n ≥ 0 when they are used. Moreover, if m t m′

in N , and m̂ t m̂′ in ̂N , it is easy to see that the restriction of m̂′ to P is m′,
and m̂′(p̂) = μ − m′(p). Since initially (by construction), m̂0(p̂) = μ − m0(p), by
induction we get that the evolutions are the same in N and ̂N . Moreover, if m is
reached after some evolution in N , the marking m̂ reached in ̂N after the same
evolution only differs from m by m̂(p̂) = μ − m(p).

Finally, from this property, if two evolutions lead to m1 and m2 in N , and
the same evolutions lead to m̂1 and m̂2 in ̂N , then m1 = m2 if and only if
m̂1 = m̂2. Consequently, we do not only have the same evolutions, but also the
same reachability graph (up to isomorphism). �� 1

This exhibits an interesting relationship between inhibitor links and reset
ones, but there is also a case where we have an even more interesting relationship
between inhibitor links and classic ones.

Lemma 2. Complementary Place and Special Inhibitor Links

In the construction of Lemma 1, if the link between p and t in N is in
{0} × N × {inhibitor}, then in ̂N we may replace the links between t and {p, p̂}
by classic ones, as illustrated in Fig. 3.
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Fig. 3. Construction of a complementary place for special inhibitor links.

Proof: From the construction (and the analysis in the proof of Lemma 1), if m̂

is reachable in ̂N and m̂ t , since m̂(p)+ m̂(p̂) = μ, we must have m̂(p̂) = μ and
m̂(p) = m(p) = 0, which indeed allows to fire t from m in N . The relationship
between the resulting markings in both N and ̂N is as before. �� 2

Corollary 2. Bounded IRPNs With Only Classic and Strongly

Guarded Inhibitor Links are Behaviorally Equivalent to Classic

Nets

If a bounded IRPN only has links in N×N× {classic} ∪ {0} ×N× {inhibitor}
(i.e., classic or strongly guarded inhibitor links, since m determines how the
transition is guarded), then it is behaviorally equivalent to a (bounded) net with
only classic links, i.e., a classic Petri net.

Proof: One simply has to apply Lemmata 1 and 2 to each place (or only to the
ones having a non-classic link). �� 2
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Corollary 3. Bounded SIPNs

Any bounded SIPN is behaviorally equivalent to a bounded net with only clas-
sic links, i.e., a classic Petri net. �� 3

Theorem 3. Synthesis of SIPNs

The synthesis problem with the class of SIPNs as target is polynomial.

Proof: Since we only consider finite transition systems, when they have solu-
tions, they are bounded. From Lemma 2, introducing strict inhibitor links does
not extend the expressive power of classical links and we only have to search for
solutions in the class of (bounded) weighted Petri nets, for which we mentioned
before that the problem is polynomial. �� 3

Of course, this result relies on the fact that we consider general weighted Petri
nets as target. It may be observed that Lemma 1 and its corollaries are not valid
if we require that nets are pure or plain or k-safe. This certainly does not mean
that there are no other efficient solvable cases. However, there are important
subclasses of IRPNs for which we know they do not have efficient synthesis
procedures (unless P = NP), such as (pure) safe SIPN, (pure) safe SRPN, safe
SIRPN [24], and (pure) k-safe PN, for any fixed k ∈ N [25]. In the following
sections, we shall exhibit other NP-complete subclasses.

4.3 General Approach of the NP-completeness Proofs

In Sects. 4.4, and 4.5, we shall show that the synthesis problem for several sub-
classes of IRPNs is NP-complete. Our proofs for NP-completeness follow a com-
mon approach based on (polynomial) reductions of the problem 3Sat, which has
been shown to be NP-complete in [19]:

3Sat

Input: A pair (U,M) with a set of 3-clauses M = {M0, . . . , Mm−1} on
a finite set U of variables.

Question: Is there an assignment b : U → {0, 1} that satisfies all the clauses
in M?

It is based on the notion of clause, i.e., a set of literals, where a literal is
either a Boolean variable or its negation; a clause is interpreted as a disjunction
of its items; and a set of clauses is interpreted as their conjunction. A 3-clause is
a clause of size 3 and, if X ∈ U is a variable, then we denote its negation by X.

Example 1. The instance (U,M) with variables U = {X0,X1,X2,X3}, and
clauses M = {M0,M1,M2} such that M0 = {X0,X1,X2}, M1 = {X0,X1,X3},
and M2 = {X1,X2,X3} allows a positive decision, since b(X0) = b(X2) = 0, and
b(X1) = b(X3) = 1 defines a truth assignment for M .

In the following, unless explicitly stated otherwise, (U,M) is an arbitrary
but fixed input of 3Sat, where U = {X0, . . . , Xn−1}, M = {M0, . . . , Mm−1}
and Mi = {Li0 , Li1 , Li2} for all i ∈ {0, . . . , m− 1}. By L =

⋃m−1
i=0 {Li0 , Li1 , Li2},
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we refer to the set of all literals of M . Moreover, by a little abuse of notation, for
every assignment b for (U,M), we let b(Xi) = 1− b(Xi) for all i ∈ {0, . . . , n−1}.
Finally, we assume without loss of generality that each variable and its negation
occur at least once, but not in the same clause.

The common principle of the proofs for the NP-hardness can be summarized
as follows: We reduce (U,M) to an LTS A, of size polynomial in n and m, which
is the composition of several gadgets, and represents, for every i ∈ {0, . . . , m−1},
the clause Mi by a directed path on which the literals of Mi are events. The LTS
A has an ESSA α such that if R = (sup, sig) is a region that solves α, and goes
along with the addressed net class, then we can extract a truth assignment for
(U,M) from the signature sig of the literal events of A. Hence, if there is an
admissible set R for A, implying that R contains a region that solves α, then
there is an assignment for U that satisfies all clauses of M . Conversely, if there
is a truth assignment for (U,M), then there is an admissible set of regions for
A; in general, we shall construct adequate regions Ri from the construction of
supi and sigi. Hence, A is a yes-instance if and only if (U,M) is a yes-instance.

4.4 The Synthesis Complexity of Several Plain Subclasses of SIRPN

In this section, we shall prove the following theorem:

Theorem 4. Plain Subclasses of IRPN: NP-complete Cases

Deciding, for a given LTS A, whether there is

1. a pure and plain PN, or a pure and plain SRPN, or
2. a pure and plain SIPN, or a pure and plain SIRPN, or
3. a plain PN, or a plain SIPN, or a plain SRPN, or a plain SIRPN

whose reachability graph is isomorphic to A is NP-complete. �� 4
Theorem 2 showed that all these synthesis problems are in NP. Hence, it

remains to prove the hardness part. For that, we follow our general approach.
However, the nets of Item 1, and the ones from Item 2, and 3 need a slightly (but
crucially) different construction, which result in LTS A1, and A2, respectively.
These LTS are defined as follows:

First of all, the LTS A1 has the edges h0
k h2 and h0

u h1, where h0 is the

initial state of A1. On the other hand, the LTS A2 has the edge h0
k h1, and

again h0 is the initial state. Moreover, for every i ∈ {0, . . . , m − 1}, A1, and A2

have the following directed path that represents the clause Mi = {Li0 , Li1 , Li2}
by using its literals as events:

h1 ti,0 ti,1 ti,2 ti,3 ti,4 ti,5
ai k Li0 Li1 Li2 k

Finally, for every i ∈ {0, . . . , n−1}, the LTSs A1, and A2 implement the following
gadget Gi that uses the variable Xi and its negation Xi as events:

Gi = h0 gi,0

gi,1

gi,2
bi

Xi Xi

ci
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h0

h2

h1

t0,0 t0,1 t0,2 t0,3 t0,4 t0,5
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Fig. 4. The reductions based on Example 1: the solid and dashed lines define A1, and
the solid lines and the dotted line define A2.

In the following, as long as not explicitly stated otherwise, by S1 and E1

(S2 and E2), we refer to the set of states and the set of events of A1 (of A2),
respectively. If we apply the reduction to the input of Example 1, then we obtain
the LTSs A1, and A2 of Fig. 4.

Lemma 3. Plain Solvability of ESSA (k, h1) Implies Truth Assign-

ment

If the ESSA α = (k, h1) is solvable (1) by a pure and plain SRPN-region
of A1, respectively (2) by a plain SIRPN-region of A2, then there is a truth
assignment for (U,M).

Proof: Let R = (sup, sig) be a region of A1 that solves α and such that, for all
e ∈ E1, sigt(e) ∈ {classic, reset} and

– if sig(e) = (x, y, classic), then x = 0 or y = 0, and x, y ∈ {0, 1},
– if sig(e) = (x, y, reset), then x = 0 = y,

Since R solves α, we must have sig(k) = (1, 0, classic) and sup(h1) = 0.
Similarly, if R = (sup, sig) is a plain SIRPN-region of A2 that solves α,

then sig(k) 	∈ {(0, 0, reset), (0, 0, classic), (0, 1, classic)}; moreover, since h0
k h1,

sig(k) 	∈ {(0, 0, inhibitor), (1, 1, classic)} so that again sig(k) = (1, 0, classic) and
sup(h1) = 0.

Let i ∈ {0, . . . , m − 1}. Since k occurs at ti,0 and at ti,4, and sig(k) =
(1, 0, classic), we have that sup(ti,0) ≥ 1 ≤ sup(ti,4). Moreover, since sup(h1) =
0, we get that sig(ai) = (0, 1, classic), sup(ti,0) = 1 and sup(ti,1) = 0. Hence,
there is a j ∈ {0, 1, 2} such that the event Lij

of {Li0 , Li1 , Li2} satisfies
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sig(Lij
) = (0, 1, classic). We argue that this implies2 sig(Lij

) 	= (0, 1, classic).
Indeed, let � ∈ {0, . . . , m − 1} be such that Lij

∈ {X�,X�}. If sig(X�) =
sig(X�) = (0, 1, classic), then we have sup(g�,2) = sup(g�,0) + 2. This implies
sig(c�) = (x, y, classic) with y ≥ 2, which contradicts the plainness of R. Hence,
sig(Lij

) 	= (0, 1, classic).
Since i was arbitrary, we obtain the following observation: For every i ∈

{0, . . . , m− 1}, there is an event e ∈ Mi such that sig(e) = (0, 1, classic); and for
each event e ∈ Mi, if sig(e) = (0, 1, classic), then sig(e) 	= (0, 1, classic).

Let b : U → {0, 1} be the (well-defined) assignment for U, which, for all X ∈ U,
is defined as follows: b(X) = 1 if sig(X) = (0, 1, classic), and 0 otherwise.

Needless to say that b is a well-defined assignment, that is, if b(X) = x and
b(X) = y, then x = y. Similarly, if b(X) = x, then b(X) = 1 − x, since both
cases are mutually exclusive.

We argue that b satisfies every clause: Let i ∈ {0, . . . , m−1}. As argued above,
there is j ∈ {0, 1, 2} such that the literal Lij

∈ Mi has signature sig(Lij
) =

(0, 1, classic). If Lij
= X for some variable X ∈ U, then b(X) = 1 and thus

Mi is satisfied. Otherwise, Lij
= X for some variable X ∈ U, which implies

sig(X) 	= (0, 1, classic) and thus b(X) = 0 according to the definition of b. This,
however, implies b(X) = 1 so that Mi is satisfied. By the arbitrariness of i, we
have that b is a truth assignment for (U,M). �� 3

By Lemma 3, the existence of an admissible set implies a truth assignment
for (U,M), since such a set implies the solvability of (k, h1). Conversely, we
have to prove that, if there is a truth assignment for (U,M), A1 and A2 both
allow admissible sets of regions, with signatures corresponding to the wanted
target net class. In order to simplify the presentation, we shall only give the
support of the initial state and the signatures which are not (0, 0, classic), where
we collect events by sets ER

m,n, ER
inhibitor and ER

reset following Remark 2. This will
allow to construct the full region and to check that the construction is sound.
Illustrations of our constructions may be found in the appendices.

Fact 1. All SSAs of A1 are solvable by pure and plain PN-regions.
Proof:
– If sup0(h0) = 0 and ER0

0,1 = {e ∈ E1 | h0
e }, then R0 solves h0.

– If sup1(h0) = 0, ER1
0,1 = {u} and ER1

1,0 = {a0, . . . , am−1}, then R1 solves h1.
Let i ∈ {0, . . . , n − 1}.

– If sup2(h0) = 0 and ER2
0,1 = {bi}, then R2 solves gi,0, gi,1 and gi,2.

– If sup3(h0) = 0 and ER3
0,1 = {ci,Xi}, then R3 solves (gi,0, gi,1) and (gi,0, gi,2).

– If sup4(h0) = 0 and ER4
0,1 = {ci,Xi} then R4 solves (gi,1, gi,2).

As a consequence, since i was arbitrary, all the gi,j ’s are solvable.
Let i ∈ {0, . . . , m − 1}.

– If sup5(h0) = 0 and ER5
0,1 = {ai}, then R5 solves (t, s) for all t ∈ S(Ti) and all

s ∈ S \ S(Ti).

2 As usual, if Lij = X�, we state that Lij = X�.
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– Let G�0 , G�1 and G�2 be the gadgets containing the events Li0 , Li1 and Li2 ,
respectively. If sup6(h0) = 0 and ER6

0,1 = {k} ∪ {Li0 , Li1 , Li2} ∪ {c�0 , c�1 , c�2},
then R6 solves (s, s′) for all s 	= s′ ∈ {ti,0, . . . , ti,5} (recall that no clause con-
tains both a literal and its negation). As a consequence, since i was arbitrary,
all the ti,j ’s are solvable.

Finally, since, for all s ∈ S \{h2}, we have argued that s is solvable, it follows
that h2 is solvable as well. Altogether, we have witnessed the SSP of A1. �� 1

Fact 2. If there is a truth assignment for (U,M), then all ESSAs of A1 are
solvable by pure and plain PN-regions.

Proof: We start with the ai’s: If sup0(h0) = 0, ER0
0,1 = {u} and ER0

1,0 =
{a0, . . . , am−1}, then R0 solves all the ai’s.

We proceed with the ci’s: Let i ∈ {0, . . . , n−1} be arbitrary but fixed and let
i0, . . . , i� ∈ {0, . . . , m−1} be the indices such that Xi ∈ Mij

for all j ∈ {0, . . . , �}.

– If sup1(h0) = 0, ER1
0,1 = {bi, ai0 , . . . , ai�

} and ER1
1,0 = {Xi, ci}, then R1 solves

(ci, s) for all necessary states s ∈ S \ ⋃�
j=0 S(Tij

).
– If sup2(h0) = 0, ER2

0,1 = {bi} ∪ {aj | j ∈ {0, . . . , m − 1} \ {i0, . . . , i�}} and
ER2
1,0 = {Xi, ci}, then R2 solves (ci, s) for the remaining states s. Since i was

arbitrary, all the ci’s are solvable.

We proceed with k and u: Let b be a valid truth assignment for (U,M) and
let i ∈ {0, . . . , m − 1}.

– If sup3(h0) = 1, ER3
1,0 = {u, k} and ER3

0,1 = {a0, . . . , am−1} ∪ {c0, . . . , cn−1} ∪
{Xi,Xj | b(Xi) = 1, b(Xj) = 0, i, j ∈ {0, . . . , n − 1}}, then R3 solves (k, s)
and (u, s) for all s ∈ {h2, h1}.

– If sup4(h0) = 1, ER4
1,0 = {k} ∪ {b0, . . . , bn−1} and ER4

0,1 = {u}, then R4 solves
(k, s) for all s ∈ ⋃n−1

j=0 {gj,0, gj,1, gj,2}.
– If sup5(h0) = 1, ER5

1,0 = {k} and ER5
0,1 = {ci2 , Li2} ∪ ({a0, . . . , am−1} \ {ai}),

then R5 solves (k, s) for all s ∈ {ti,1, ti,2, ti,3, ti,5}.
– If sup6(h0) = 1 and ER6

1,0 = {u} ∪ {b0, . . . , bn−1}, then R6 solves (u, s) for all
s ∈ S \ {h2, h1}.

Since i was arbitrary, this completes the separability of k and u.
We proceed with the variable events: Let i ∈ {0, . . . , n − 1} be arbitrary but

fixed and let i0, . . . , i� ∈ {0, . . . , m− 1} be the indices such that Xi ∈ Mij
for all

j ∈ {0, . . . , �}.

– If sup7(h0) = 0, ER7
1,0 = {Xi, ci} and ER7

0,1 = {bi} ∪ {ai0 , . . . , ai�
}, then R7

solves (Xi, s) for all necessary states s ∈ S \ ⋃�
j=0{tij ,0, . . . , tij ,4}. (Note that

(Xi, tj,5) is solved for all j ∈ {0, . . . , m − 1}).
– If we exchange Xi with Xi (according to R7) and consider i0, . . . , i� ∈

{0, . . . , m − 1} to be the indices such that Xi ∈ Mij
for all j ∈ {0, . . . , �},

then the resulting region solves (Xi, s) for all necessary states s ∈ S \
⋃�

j=0{tij ,0, . . . , tij ,4} except s = gi,0.



Synthesis of Inhibitor-Reset Petri Nets: Algorithmic and Complexity Issues 227

– If sup8(h0) = 0, ER8
1,0 = {Xi} and ER8

0,1 = {Xi} ∪ {a0, . . . , am−1}, then R8

solves (Xi, gi,0).

It remains to argue that the literals are separable from the ti,j ’s, when j 	= 5.
Let i ∈ {0, . . . , m − 1}.

– If sup9(h0) = 0, ER9
1,0 = {Li0 , ci0} and ER9

0,1 = {bi0 , k}, then R9 solves (Li0 , s)
for all s ∈ {ti,0, ti,2, ti,3, ti,4}.

– If sup10(h0) = 0, ER10
1,0 = {Li1 , ci1} and ER10

0,1 = {ci0}∪{bi1}∪{a0, . . . , am−1}\
{ai}, then R10 solves (Li1 , s) for all s ∈ {ti,0, ti,1, ti,3, ti,4}. Similarly, one
shows that (Li2 , s) can be solved for all s ∈ {ti,0, ti,1, ti,2, ti,4}.

Since i was arbitrary, all the literal events are solvable. �� 2
Altogether, we get the following lemma:

Lemma 4. Truth Assignment Implies Suitable Admissible Set for A1

If there is a truth assignment for (U,M), then A1 has an admissible set of
pure and plain PN-regions.

Let us now consider the synthesizability of A2. Similarly to the arguments
for A1, there is a set of pure and plain PN-regions that solve all the SSAs of A2.
Hence, we restrict ourselves to the solvability of the ESSAs.

The following fact deals with ESSAs, whose solvability needs possibly impure
or inhibitor links:

Fact 3. There is a pure and plain SIPN-region, as well as an impure and plain
PN-region, of A2 that solves (k, s) for all s ∈ ⋃n−1

i=0 S(Gi).

Proof: If sup0(h0) = 0, ER0
inhibitor = {k} and ER0

0,1 = {b0, . . . , bm−1}, then R0 is a
suitable pure and plain SIPN-region.
If sup1(h0) = 1, ER1

1,1 = {k} and ER1
1,0 = {b0, . . . , bm−1}, then R1 is a suitable

impure and plain PN-region. �� 3

Fact 4. If there is a truth assignment b for (U,M), then there is an admissible
set of pure and plain PN-regions solving the ESSAs of A2 not addressed by Fact 3.

Proof: Recall that L is the set of the literals of M and b is extended to L, i. e.,
b(X) = 1 − b(X) for all X ∈ U.

We start with k:

– If sup0(h0) = 1, ER0
1,0 = {k} ∪ {b0, . . . , bn−1} and ER0

0,1 = {L ∈ L | b(L) =
1} ∪ {a0, . . . , am−1} ∪ {c0, . . . , cn−1}, then R0 solves (k, h1).

Let i ∈ {0, . . . , m − 1}.

– If sup1(h0) = 2, ER1
1,0 = {k} and ER1

0,1 = {Li2 , ci2} ∪ ({a0, . . . , am−1} \ {ai}),
then R1 solves (k, s) for all s ∈ {ti,1, ti,2, ti,3, ti,5}.

Since i was arbitrary, the claim follows for k.
We proceed with the ai’s and bi’s: Let i ∈ {0, . . . , m− 1} and j ∈ {0, . . . , n−

1}.
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– If sup2(h0) = 1 and ER2
1,0 = {a0, . . . , am−1} ∪ {b0, . . . , bn−1}, then R2 solves

(ai, s) and (bj , s) for all s ∈ S \ {h0, h1}.
– If sup3(h0) = 0, ER3

1,0 = {a0, . . . , am−1} and ER3
0,1 = {k}, then R3 solves (ai, h0).

– The region R0 of this proof also solves (bi, h1) for all i ∈ {0, . . . , n− 1}. Since
i and j were arbitrary, this proves the claim for the ai’s and bi’s.

We proceed with the ci’s: Let i ∈ {0, . . . , n − 1}.

– If sup4(h0) = 0, ER4
1,0 = {ci,Xi} and ER4

0,1 = {bi} ∪ {aj | j ∈ {0, . . . , m − 1} :
Xi ∈ Mj}, then R4 solves (ci, s) for all s ∈ S \ ({tj,0, . . . , tj,5 | j ∈ {0, . . . , m−
1} : Xi ∈ Mj} ∪ {gi,0}).

– If sup5(h0) = 0, ER5
1,0 = {ci,Xi} and ER5

0,1 = {bi} ∪ {aj | j ∈ {0, . . . , m − 1} :
Xi ∈ Mj}, then, for all j ∈ {0, . . . , m − 1}, R5 solves (ci, s) for all s ∈ S(Tj)
if Xi ∈ Mj . Since i was arbitrary, this proves the claim for the ci’s.

It remains to consider the literal events: Let i ∈ {0, . . . , n − 1} be arbitrary
but fixed and let i0, . . . , i� be the indices such that Xi ∈ Mij

for all j ∈ {0, . . . , �}.

– If sup6(h0) = 0, ER6
1,0 = {ci,Xi} and ER6

0,1 = {ai0 , . . . , ai�
}, then R6 solves

(Xi, s) for all s ∈ S \ (
⋃�

j=0{tj,0, . . . , tj,3}. (We stress that (Xi, tj,4) and
(Xi, tj,5) are solved for every j ∈ {0, . . . , m − 1}.)

Similarly, if we interchange Xi with Xi and let i0, . . . , i� select the clauses that
contain Xi, then the resulting region solves (Xi, s) for all s ∈ S \ ({gi,0} ∪
⋃�

j=0{tj,0, . . . , tj,3}.

– If sup7(h0) = 0, ER7
1,0 = {Xi} and ER7

0,1 = {Xi} ∪ {aj | j ∈ {0, . . . , m − 1} :
Xi ∈ Mj}, then R7 solves (Xi, gi,0).

It remains to solve the literal events within their gadgets:

– If sup8(h0) = 0, ER8
1,0 = {Li0 , ai, ci0} and ER8

0,1 = {k, bi0}, then R8 solves
(Li0 , s) for all s ∈ {ti,0, ti,2, ti,3}.

– If sup9(h0) = 1, ER9
1,0 = {Li1 , ai, ci1} and ER9

0,1 = {Li0 , ci0}, then R9 solves
(Li1 , s) for all s ∈ {ti,0, ti,1, ti,3}.

Similarly, one shows that (Li2 , s) is solvable for all s ∈ {ti,0, ti,1, ti,2}.
Since i was arbitrary, this completes the proof. �� 4
Altogether, we get the following lemma:

Lemma 5. Truth Assignment Implies Suitable Admissible Set for A2

If there is a truth assignment for (U,M), then A2 has an admissible set of
pure and plain SIPN-regions, and also of impure and plain PN-regions.

Moreover, gathering Lemmata 3, 4 and 5, we get Theorem 4.



Synthesis of Inhibitor-Reset Petri Nets: Algorithmic and Complexity Issues 229

4.5 The Synthesis Complexity of Impure SRPN and SIRPN

The following theorem states the main result of this section:

Theorem 5. Synthesis of SRPN and SIRPN is NP-complete

Deciding whether there is a SRPN or a SIRPN whose reachability graph is
isomorphic to a given LTS is NP-complete. �� 5

By Theorem 2 the addressed synthesis problems belong to NP. In order to
prove the hardness part, we follow again the announced general approach: First
of all, the LTS A has the following gadget H0 that provides the ESSA α = (k, h1):

H0 = h0 h1
k yy

Moreover, for every i ∈ {0, . . . , m − 1}, the LTS A has the following gadgets Ti

at which the literals of the clause Mi = {Li0 , Li1 , Li2} occur as events:

Ti = ti,0 ti,1 ti,2 ti,3 ky
Li0 Li1 Li2

Finally, for every i ∈ {0, . . . , n − 1}, the LTS has the following three gadgets
Gi,0, Gi,1 and Gi,2, that use the i-th variable and its negation as events:

Gi,0 = gi,0,0 gi,0,1

Xi

ai

Gi,1 = gi,1,0 gi,1,1

Xi

bi

Gi,2 = gi,2,0 gi,2,1

ai

bi

Let SI = {h0} ∪ {t0,0, . . . , tm−1,0} ∪ ⋃n−1
i=0 {gi,0, gi,1, gi,2} be the set of the

initial states of A’s gadget. Finally, to complete the construction, we use the
initial state ι and, for every state s ∈ SI , a fresh and unambiguous event us to
connect the gadgets with ι by ι us s.

Recall that we here assume all non-classic regions R = (sup, sig) to be strict,
that is, if sig(e) = (m,n, type) with type ∈ {inhibitor, reset}, then m = n = 0.
We first observe the following simple facts:

Fact 5. Let i ∈ {0, . . . , n − 1} and Li ∈ {Xi,Xi}, and let R = (sup, sig) be a
region of A. If sig(Li) = (m,n, classic) with n > m, then sig−(Li) ≥ sig+(Li).

Proof: Let R = (sup, sig) be a region of A, such that sig(Xi) = (m,n, classic)
with n > m. This implies sup(gi,0,1) > sup(gi,0,0) ≥ 0 and thus sig(ai) =
(x, y, classic) with y − x = n − m. By gi,2,0

ai , this implies sup(gi,2,1) >
sup(gi,2,0) ≥ 0, and thus sigt(bi) = reset or sig(bi) = (x′, y′, classic) with
x′ > y′. Hence, by the signature of bi, we have that sup(gi,1,1) = 0 or
sup(gi,1,0) > sup(gi,1,1), which implies that if sig(Xi) = (m′, n′, classic), then
m′ > n′ or m′ = n′ = 0, hence the claim. Analogously, one argues for the other
case. �� 5

Fact 6. Let s 	= s′ ∈ S be states and e ∈ E an event such that s e s′ and
s′ e s′ are edges of A. If R = (sup, sig) is a region of A such that sup(s) 	=
sup(s′), then sigt(e) = reset and sup(s′) = 0.
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Proof: If sig(e) = (0, 0, inhibitor), then we get sup(s) = sup(s′) = 0, which
contradicts sup(s) 	= sup(s′). If sig(e) = (m,n, classic), then, by s′ e s′, we
have sup(s′) = sup(s′) − m + n and thus m = n. Moreover, by s e s′ and
sup(s′) 	= sup(s), we get | − m + n| > 0 and thus m 	= n, which is again a
contradiction. Hence, sigt(e) = reset and sup(s′) = 0. �� 6

Lemma 6. Strict synthesis implies truth assignment

If there is an admissible set of SIRPN-regions for A, then there is a truth
assignment for (U,M).

Proof: Since R is an admissible set, it contains a region R = (sup, sig) that
solves α = (k, h1). If sig(k) = (0, 0, inhibitor), then 0 = sup(h0) 	= sup(h1). By
Fact 6 and sup(h0) 	= sup(h1), we get sig(y) = reset and thus sup(h1) = 0, which
is a contradiction. Moreover, if sig(k) = (0, 0, reset), then R does not solve α.
Hence, we have sig(k) ∈ N × N × {classic} and sig−(k) > sup(h1) ≥ 0.

Since R is a region, by h0
k , we get sup(h0) ≥ sig−(k) and thus sup(h0) >

sup(h1). By Fact 6, this implies sigt(y) = reset.
Let i ∈ {0, . . . , n − 1}. By sigt(y)= reset and y ti,0, we get sup(ti,0) =

0. On the other hand, by ti,3
k , we get sup(ti,3) ≥ sig−(k) > 0 and thus

sup(ti,3) > sup(ti,0). This implies that there is a literal L ∈ {Li0 , Li1 , Li2} such
that sig+(L) > sig−(L).

Since i was arbitrary, we obtain the following observation: For every i ∈
{0, . . . , m − 1}, there is an event e ∈ Mi such that such that sig+(e) > sig−(e),
which implies sig−(e) ≥ sig+(e), by Fact 5.

Let b : U → {0, 1} be the assignment for U, which, for all X ∈ U, is defined
as follows: b(X) = 1 if sig+(X) > sig−(X) and 0 otherwise.

The assignment is well-defined, since both cases are mutually exclusive. We
argue that b satisfies every clause. Let i ∈ {0, . . . , n−1} be arbitrary but fixed: As
argued above, there is j ∈ {0, 1, 2} such that the literal Lij

∈ Mi has signature
sig+(Lij

) > sig−(Lij
). If Lij

= X for some variable X ∈ U, then b(X) = 1 and
thus Mi is satisfied. Otherwise, Lij

= X for some variable X ∈ U, which implies
sig−(X) ≥ sig+(X) (by Fact 5) and thus b(X) = 0 according to the definition
of b. This, however, implies b(X) = 1 so that Mi is satisfied. By the arbitrariness
of i, we have that b is a truth assignment for (U,M). �� 6

For the converse direction, we argue that the existence of a model implies an
admissible set of plain SRPN-regions of A. For the presentation of these regions,
we shall use the same conventions as for Lemma 4. Moreover, for the sake of sim-
plicity, we often only define (sup, sig) when restricted to S\{ι} and E\Us, which
is justified as follows: If sup : S\{ι} and sig : E\Us → N×N×{classic, inhibitor},
such that, for all s, s′ ∈ S \ {ι} and for all e ∈ E \ Us, the presence of s e s′

implies that (sup, sig) behaves like a region according to Definition 5 and, more-
over, for every state s ∈ {h0} ∪ {t0,0, . . . , tm−1,0} ∪ ⋃n−1

i=0 {gi,0, gi,1, gi,2} holds
sup(s) ∈ {0, 1}, then it is easy to see that (sup, sig) can be extended to a
region of A, where sup(ι) ∈ {0, 1} and sig(u) ∈ {(m,n, classic) | m,n ∈ {0, 1}}
for all events u ∈ Us, since the latter occur only once in A. Hence, for an
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even more compact representation we restrict the representation of sup to
s ∈ {h0} ∪ {t0,0, . . . , tm−1,0} ∪ ⋃n−1

i=0 {gi,0, gi,1, gi,2}, since we can then compute
sup for all states S \ {ι} by Remark 2 (and check its coherence).

Fact 7. There is a set of plain SRPN-regions of A that solve all SSAs of A.

Proof: If sup0(ι) = 0 and ER0
1,0 = {e ∈ E | ι e }, then R0 solves ι.

Let i ∈ {0, . . . , m−1}. If sup1(ι) = 1 and ER1
1,0 = {uti,0}, then R1 solves (s, s′)

for all states s ∈ S(Ti) and all states s′ ∈ S \ S(Ti). Similarly, one shows, for
any fixed i ∈ {0, . . . , n − 1} and j ∈ {0, 1, 2}, that the states gi,j,0 and gi,j,1 are
solvable.

Since i was arbitrary, it only remains to show that different states of the
same gadget are separable.

If sup2(ι) = 1 and ER2
reset = {y}, then R2 solves (h0, h1).

The following implicitly defined regions complete the proof of this fact:
Let i ∈ {0, . . . , m − 1}. Let sup(h0) = sup3(t0,0) = · · · = sup(tm−1,0) = 0

and, for every j ∈ {0, 1, 2}, let sup3(gij ,2,0) = 1 if Lij
	∈ U (i.e. Lij

is a negated
variable); let ER3

0,1 = {Li0 , Li1 , Li2} ∪ {aij
| j ∈ {0, 1, 2} and Lij

∈ U} ∪ {bij
|

j ∈ {0, 1, 2} and Lij
	∈ U} and ER3

reset = {aij
| j ∈ {0, 1, 2} and Lij

	∈ U} ∪ {bij
|

j ∈ {0, 1, 2} and Lij
∈ U}. Then R3 solves (s, s′) for all s 	= s′ ∈ {ti,0, . . . , ti,4}.

Since i was arbitrary, this shows the solvability of the ti,j ’s.
Let i ∈ {0, . . . , n − 1}.

– If, for all s ∈ SI , sup(s) = 1 if s ∈ {gi,0,0, gi,1,0} and otherwise sup(s) = 0,
and ER4

reset = {Xi,Xi, ai, bi}, then R4 solves (gi,j,0, gi,j,1) for all j ∈ {0, 1}.
– If, for all s ∈ SI , sup(s) = 1 if s = gi,2,0 and sup(s) = 0 otherwise, ER5

0,1 =
{Xi, b1} and ER5

reset = {ai}, then R5 solves (gi,2,0, gi,2,1). Since i was arbitrary,
the gi,j,�’s are solvable. �� 7

Fact 8. If there is truth assignment for (U,M), then there is a set of plain
SRPN-regions of A that solves all ESSAs of A.

Proof: First of all, if a ∈ E is an event and q ∈ S a state of a gadget that does
not contain a, then (a, q) is solvable by a plain classic region R = (sup, sig):
define sup(s) = 1 for the states of the gadgets containing a, sup(s) = 0 for the
other states, sig(a) = (1, 1, classic) and sig(e) = (0, 1, classic) if e goes from ι to
any gadget that contains a (and (0, 0, classic) otherwise). Hence, in the following,
for every e ∈ E, we only deal explicitly with the gadgets that contain e.

We start with k: Let b be a valid truth assignment for (U,M);
let sup0(h0) = 1 and sup0(ti,0) = 0 for all i ∈ {0, . . . , m − 1}; for all i ∈
{0, . . . , n − 1}, let sup0(gi,0,0) = sup0(gi,1,0) = sup0(gi,2,0) = 0 if b(Xi) = 1
and let sup0(gi,2,0) = 1 and sup0(gi,0,0) = sup0(gi,1,0) = 0 if b(Xi) = 0; let
ER0
1,1 = {k}, ER0

reset = {y} ∪ {ai | i ∈ {0, . . . , n − 1} : b(Xi) = 0} ∪ {bi | i ∈
{0, . . . , n − 1} : b(Xi) = 1} and ER0

0,1 = {Xi, ai | i ∈ {0, . . . , n − 1} : b(Xi) =
1} ∪ {Xi, bi | i ∈ {0, . . . , n − 1} : b(Xi) = 0}. Then R0 solves (k, h1).
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Let i ∈ {0, . . . , m − 1}.
Let sup1(h0) = sup1(t0,0) = · · · = sup(tm−1,0) = 1 and sup1(gi2,2,0) = 1 if
Li2 ∈ U (i.e. Li2 is the negation of a variable) and sup(s) = 0 for the other
states s ∈ SI ; let ER1

1,1 = {k}, ER1
0,1 = {Li2} ∪ {bi2 | Li2 ∈ U} ∪ {ai2 | Li2 ∈ U}

and ER1
reset = ∪{ai2 | Li2 ∈ U} ∪ {bi2 | Li2 ∈ U}. Then R1 solves (k, s) for all

s ∈ {ti,0, ti,1, ti,2}. Since i was arbitrary, that completes the solvability of k.
We proceed with y: If, for all s ∈ SI , sup2(s) = 1 if s ∈ {h0, t0,0, . . . , tm−1,0}

and 0 otherwise, ER2
1,1 = {y} and ER1

reset =
⋃m−1

i=0 Mi, then R2 solves (y, s) for all
s ∈ ⋃m−1

i=0 {ti,1, ti,2, ti,3}. This proves the solvability of y.
We proceed with the ai’s and the bi’s: Let i ∈ {0, . . . , n−1}. If, for all s ∈ SI ,

sup(s) = 1 if s ∈ {gi,0,0, gi,2,0} and 0 otherwise, ER3
1,0 = {ai}, ER3

0,1 = {bi,Xi} and
ER3
reset = {Xi}, then R3 solves (ai, gi,0,1) and (ai, gi,2,1).

Similarly, one shows the solvability of (bi, gi,1,1) and (bi, gi,2,0). Since i was
arbitrary, this shows the solvability of the ai’s and bi’s.

Finally, we argue that the literal events are separable:
Let i ∈ {0, . . . , m − 1}. If, for all s ∈ SI , if s ∈ {t0,0, . . . , tm−1,0} ∪ {gi0,0,0 |
Li0 ∈ U} ∪ {gi0,1,0 | Li0 	∈ U}, then sup4(s) = 1, and sup4(s) = 0 otherwise,
ER4
1,0 = {Li0} and ER4

reset = {ai0 | Li0 ∈ U} ∪ {bi0 | Li0 	∈ U}, then R4 solves
(Li0 , s) for all s ∈ {ti,1, ti,2, ti,3}. Moreover, R4 solves (Li0 , gi0,0,1) if Li0 ∈ U,
and (Li0 , gi0,1,1) otherwise.

We now argue that (Li1 , s) can be solved for all s ∈ {ti,0, ti,1, ti,2} and s =
gi0,0,1 if Li0 ∈ U, respectively s = gi0,1,1 if Li0 	∈ U. For space reasons, we
consider only the case where Li1 ∈ U and Li0 	∈ U (i.e. Li0 is a negated variable).
The other cases for Li0 and Li1 being a variable or its negation are similar.

If, for all s ∈ SI , if s ∈ {gi1,0,0, gi0,2,0} ∪ {ti,j | j ∈ {0, . . . , m − 1} \ {i}},
then sup5(s) = 1, and sup5(s) = 0 otherwise, ER5

1,0 = {Li1}, ER5
0,1 = {Li0 , bi0} and

ER5
reset = {ai0 , ai1}, then R5 solves (Li1 , s) for all s ∈ {ti,0, ti,1, ti,2, gi1,0,1}.

Similarly, one shows that (Li2 , s) is solvable for all s ∈ {ti,0, ti,1, ti,3} (and
gi2,0,1 or gi2,1,1, depending on whether Li2 ∈ U or not). Since i was arbitrary,
the literal events are solvable. This completes the proof. �� 8

Altogether, we get the following lemma:

Lemma 7. Truth Assignment Implies Suitable Admissible Set for A
If there is a truth assignment for (U,M), then there is an admissible set of

(plain) SRPN-regions for A.

Since every SRPN-region is a SIRPN-region, gathering Lemmata 6 and 7, we
get Theorem 5.

5 Conclusion

We have introduced a rather general class of Petri nets with inhibitor and reset
links and showed how to synthesize them. While all the introduced net classes
belong to the complexity class NP (Theorem 2), we exhibited some interesting
subclasses for which the synthesis is polynomial (Theorem 3), and some for
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which it is NP-complete (Theorems 4 and 5). Figure 5 provides an overview of
our findings, but also shows that there are still some open cases, even if reset
and inhibitor links are assumed to be strict.

Net Class pure impure pure + plain impure + plain

PN P P NPC NPC
SRPN open NPC NPC NPC
SIPN open P NPC NPC
SIRPN open NPC NPC NPC

Fig. 5. An overview over the complexity of synthesis of PN, SRPN, SIPN and SIRPN,
according to whether links are pure or (possibly) impure and/or plain. The results for
the pure and impure PN are known from [3,6], the other results were developed here.

As future works, we plan to characterize the synthesis complexity for these
open cases pictured by Fig. 5. After that, the next natural step is to characterize
the complexity of synthesis of (pure) Petri nets with reset or inhibitor links or
both, where these links do not necessarily have to be strict. Moreover, it remains
to incorporate the corresponding algorithms into existing synthesis tools like
SYNET [3], APT [11], GENET [12], or others.
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Abstract. Petri games are a multi-player game model for the automatic
synthesis of distributed systems, where the players are represented as
tokens on a Petri net and grouped into environment players and system
players. As long as the players move in independent parts of the net, they
do not know of each other; when they synchronize at a joint transition,
each player gets informed of the entire causal history of the other players.

We present a subclass of Petri games, for which the synthesis problem
is decidable, with finitely many sources of nondeterminism, which are
caused by the finitely many environment players, and with finitely many
system players. All players satisfy a synchronisation condition guaran-
teeing that they know within a bounded number of own moves what
each other player’s next (non)deterministic move has been. This differs
from existing approaches that limit the number of the system players
or environment players. We show that for Petri games in this subclass
deciding the existence of a winning strategy for the system players with
a global safety condition is in EXPTIME.

Keywords: Synthesis · Distributed systems · Concurrent systems ·
Petri nets · Petri games · Unfolding

1 Introduction

A game can be interpreted as a formal specification of a reactive system. If the
system is distributed over several processes, a multi-player game is appropriate
for its specification. In a multi-player game one distinguishes between environ-
ment and system players. A system player can control or choose which move
it takes next. An environment player is uncontrollable for the system players;
they have to react to all options of the environment players. A strategy for the
system players decides all choices that they have to make during a play, which is
a possibly infinite sequences of moves. A strategy is winning if it fulfills a given
winning condition against all behaviors of the environment. Thus, an implemen-
tation of a winning strategy can be seen as a correct implementation of a reactive
system. The synthesis problem asks whether there exists a winning strategy for
the system players and calls for the automatic generation of such a strategy if it
c© Springer Nature Switzerland AG 2022
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exists. Such an automatic generation is useful for implementation tasks, which
are prone to errors.

In this paper, we consider Petri games as a formalisation of multi-player
games. A Petri game extends a Petri net by dividing its places into system and
environment places. A token on a system place represents a system player and
a token on an environment place represents an environment player. Specific to
Petri games is the notion of informedness of the players. As long as the players
move in independent parts of the net, they do not know of each other; when
they synchronize at a joint transition, each player gets informed of the entire
causal history of the other players. Petri games are equipped with a global safety
condition, which is formalized as a set of ‘bad’ markings, i.e., sets of places which
must never be reached simultaneously by the players.
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t1p1 t1p2

e11 e12

s10 s20

s11 s22

e20

t2p1 t2p2

e21 e22

t12

t11

t21

t22

tc1-1 tc1-2 tc2-1 tc2-2

s1-1 s1-2 s2-1 s2-2
e1p1e1p2 e2p2 e2p1

tf1 tf2 tf3 tf4

e10 s10 s20 e20

Fig. 1. A Petri game: the grey places belong to the system players and the white places
to the environment players. The two environment players have two ports each to choose
via tip1 and tip2, i = 1, 2. The goal for the system players is to connect the chosen ports
such that the environment players can communicate; every marking containing a place
si-j and a place e1pk with k �= i or a place e2pl with l �= j is a bad marking. The outgoing
edges of the transitions tfi, i = 1, . . . , 4, putting the tokens back on the initial places
are shown with dotted lines to keep the Petri net overseeable; those are the same places.

Petri games have been introduced in [13], where it has been shown that, limit-
ing the environment to one player, the synthesis problem is EXPTIME-complete
[13]. The dual case, limiting the system to one player, is also EXPTIME-complete
[12]. For Petri games with unboundedly many players the synthesis problem is
undecidable in general [13]. An approach of limiting the size of the winning
strategies to search for is presented as bounded synthesis in [9].
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In this paper, we introduce a subclass of Petri games with finitely many
system players and finitely many environment players that satisfy a synchroni-
sation condition which ensures that all players hear from each other directly or
indirectly within a bounded number of own transitions, or that the Petri net is
acyclic. Games with an arbitrary number of system and environment players are
key to specifying many realistic distributed reactive systems. We show that for
Petri games in this subclass the synthesis problem is decidable in EXPTIME.

Figure 1 shows a Petri game in an abstract communication setting, where
two environment players have two ports each to connect to via transitions. The
system players have to link the correct ports after knowing the choice of each
environment player. If done so, the environment players communicate over the
connected channel and every token is put back to the initial places. The Petri
game in Fig. 1 satisfies the synchronisation condition as all tokens hear from each
other in the joint transition tfi, i = 1, . . . , 4.
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Fig. 2. An initial part of a winning strategy of the Petri game in Fig. 1. This is a part
of the unfolding of the Petri net. The places e10

′
, s10

′
, s10

′
, s10

′
are new instances of the

initial places.

Figure 2 shows an initial part of the described winning strategy. The winning
strategy is a part of the unfolding of the Petri net, which is itself a Petri net,
where every flow of tokens through the net is represented by distinct new places
and transitions: the token initially on place s10 can distinguish its causality on
the places s11 and s11

′: on place s11 the system players knows that the environment
player is connected to port one and in s11

′ to port two. It does not know the port
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the other environment player connected to. From there on, the system players
can choose from four transitions to connect the ports. In the winning strategy,
only the correct option is chosen based on the causality.

The presented solution of the synthesis problem of the described subclass of
Petri games is a reduction to a two-player graph game with a safety condition.
The idea for the system player is to plan so far ahead that no information, that
is not yet available in the Petri net unfolding, is used for the decisions made in
the winning strategy.

The remainder of this paper is organized as follows. In Sect. 2 we introduce
the notions of Petri games and graph games. In Sect. 3 we define the reduction
to graph games and show its correctness. Related work and conclusions are
presented in Sect. 4 and Sect. 5.

2 Foundations

In this section, we define branching processes and unfoldings as they are defined
in [7]. Also, we define Petri games and their winning strategies.

The power set for a set A is denoted as 2A = {B | B ⊆ A}. The
set of nonempty finite subsets for a set A is denoted as 2A

nf = {B | B ⊆
A∧B is nonempty and finite} and the set of finite subsets as 2A

f . A Petri net is
a 5-tuple (P, T , pre, post , In), where P is the set of places, T is the set of transi-
tions, pre and post are flow mappings, In is the initial marking and the following
properties hold: P ∩ T = ∅, pre :�→ 2P

nf , post : T �→ 2P
f , and In ⊆ P is the initial

marking. A Petri net is called finite if P ∪ T is finite. The flow mappings pre and
post are extended for places as usual: ∀p ∈ P : pre(p) = {t ∈ T | p ∈ post(t)}
and ∀p ∈ P : post(p) = {t ∈ T | p ∈ pre(t)}. The flow relation F is defined as
F = {(p, t) ∈ P × T | p ∈ pre(t)} ∪ {(t, p) ∈ T × P | p ∈ post(t)}. A marking M
of a Petri net N is a multi-set over P. In particular, In is a marking. A Petri
net N is called safe, if for all reachable markings M(p) ≤ 1 for all p ∈ P holds.
Then, M is a subset of P.

A transition t ∈ T is enabled in marking M , if pre(t) ⊆ M . If t is enabled,
the transition t can be fired, such that the new marking is M ′ = M \ pre(t) ∪
post(t). This is denoted as M |t〉M ′. The marking M ′ is also denoted by M |t〉.
This notation is extended to sequences of enabled transitions M |t1 . . . tn〉M ′ and
M |t1 . . . tn〉, respectively A marking M is reachable, if there exists a sequence
of enabled transitions (tk)k={1,...,n} and In|t1 . . . tn〉M . This sequence can be
empty. The set of all reachable markings is denoted as R(N), where N is a Petri
net. We call a node x a place or a transition x ∈ P ∪ T .

The following definitions are essential for understanding this paper and are
also taken from [7]. A node x ∈ P ∪ T is a causal predecessor of y, denoted as
x ≤ y, if there is a sequence (xi, yi)i=1,...,n, (xi, yi) ∈ F , where x1 = x, yn = y
and yi = xi+1 forall i = 1, . . . , n−1. Furthermore, x ≤ x holds for all x ∈ P ∪T .
Two nodes x, y ∈ P ∪ T are causally related, if and only if x ≤ y or y ≤ x
holds. We say x is a causal successor of y, if and only if y ≤ x holds. We define
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the past of a node in an occurrence net as the set of all causal predecessors
Past(x) = {y ∈ P ∪ T | y ≤ x} as this is used in later definitions.

Two nodes x1, x2 ∈ P ∪ T are in conflict, denoted x1#x2, if there exist two
transitions t1, t2 ∈ T , t1 = t2 with pre(t1) ∩ pre(t2) = ∅ and ti ≤ xi, i = 1, 2. A
node x ∈ P ∪ T is in self-conflict, if x#x. Informally speaking, two nodes are in
conflict if two transitions exist that share some place in their presets and each
node is a causal successor of one of those transitions. Two nodes x, y ∈ P ∪ T
are concurrent, denoted x||y, if they are neither causally related nor in conflict.

A Petri net N is finitely preceded, if for every node x ∈ P ∪T the set Past(x)
is finite. A Petri net N is acyclic, if the directed graph (P ∪T ,F) is acyclic. The
two following definitions lead to the definition of a branching process, which
represents several runs of the underlying Petri net taken together. A run is
represented by a (possibly infinite) firing sequence of transitions. An occurrence
net is a Petri net N = (P, T , pre, post , In) with the following properties: N
is acyclic, finitely preceded, ∀p ∈ P : |pre(p)| ≤ 1, no transition t ∈ T is in
self-conflict, and In = {p ∈ P| pre(p) = ∅}.

A homomorphism from one Petri net to another maps each node to a node
such that the preset and postset relations are preserved including the initial
marking. Let N1 = (P1, T1, pre1, post1, In1) and N2 = (P2, T2, pre2, post2, In2)
be two Petri nets. A homomorphism from N1 to N2 is a mapping h : P1 ∪ T1 →
P2 ∪T2 with following properties: h(P1) ⊆ P2 and h(T1) ⊆ T2, for all transitions
t ∈ T1, h restricted to pre1(t) is a bijection between pre1(t) and pre2(h(t)), for
all transitions t ∈ T1, h restricted to post1(t) is a bijection between post1(t) and
post2(h(t)), and the restriction of h to In1 is a bijection between In1 and In2.
An isomorphism is an bijective homomorphism.

The previous definitions now lead to the definition of a branching process of
a Petri net resembling multiple runs of the Petri net.

Branching Process. Let N0 = (P0, T0, pre0, post0, In0) be a Petri net. A
branching process of N0 is a pair B = (N,π), where N = (P, T , pre, post , In) is
an occurrence net and π a homomorphism from N to N0 such that:

(*) For all t1, t2 ∈ T : if pre(t1) = pre(t2) and π(t1) = π(t2), then t1 = t2.

The notion of the set of all reachable markings of a branching process B = (N,π)
is extended to R(B) = R(N).

The property (∗) of the definition of a branching process ensures that every
run of the Petri net is represented at most once. Informally speaking, a run only
consists of concurrent and causally related nodes and a node can be part of
multiple runs. Nodes that are in conflict, cannot belong to the same run.

Homomorphism on Branching Processes. Given two branching processes
B1 = (N1, π1) and B2 = (N2, π2) of a Petri net N0. A homomorphism from B1

to B2 is a homomorphism h from N1 to N2 such that π2 ◦ h = π1. It is called
an isomorphism if h is an isomorphism. The branching processes B1 and B2 are
isomorphic if there exists an isomorphism from B1 to B2.
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As the names of the nodes of isomorphic branching processes may differ we
define the set of canonical names such that every branching process is isomorph
to a branching process with canonical names.

Canonical Names. Let N = (P, T , pre, post , In) be a Petri net, the set of
canonical Names CAN is the smallest set such that, if x ∈ P ∪ T and A is a
finite subset of CAN , then (x,A) ∈ CAN .

A canonical name of a node in a branching process is composed of the label
of the node and the set of the canonical names of all nodes in its preset. The
label of a node x is the name of the node in the underlying Petri net, denoted
as π(x).

Canonical Coding. Let B = (N,π) be a branching process of N0 and N =
(P, T , pre, post , In). Then the canonical coding of B is a mapping codB : P ∪
T → CAN with codB(x) = (π(x), codB(pre(x))). Note that pre(x) is a set and
thus codB(pre(x)) = {codB(y)| y ∈ pre(x)}. Consequently, a branching process
is called canonical if all nodes have canonical names.

Canonical Branching Process. A branching process B = (N,π) is called
canonical, if P ∪ T ⊆ CAN and codB(x) = x for all x ∈ P ∪ T .

Note that the definition of a canonical branching process requires the initial
marking of the branching process to be a set rather than a multi set.

A natural partial order on branching processes is defined in the following.

Subprocess Relation of Branching Processes. Let B1 and B2 be two
branching processes of a Petri net N = (P, T , pre, post , In). Then B1 approxi-
mates B2, denoted B1 ≤ B2, if there exists an injective homomorphism denoted
h≤ from B1 to B2.

Note that this partial order is independent of a branching processes being
canonical. Restricting this partial order to canonical branching processes results
in a partial order, too. Now we define the maximal canonical branching process
as the unfolding of a Petri net.

Unfolding. A branching process B = (N,π) with N = (P, T , pre, post , In)
is isomorphic to the unfolding unf (N0) of the underlying Petri net N0 =
(P0, T0, pre0, post0, In0) if and only if the following holds: For all transitions
t0 ∈ T0 and all sets C ⊆ P of pairwise concurrent places exists t ∈ T with
pre(t) = C and π(t) = t0, if the restriction of π to C is a bijection between C
and pre0(t0). The notation unf (N0) denotes the canonical unfolding. We refer to
the components of the unfolding as Tunf (N0), Punf (N0), preunf (N0), postunf (N0),
and Inunf (N0).

As we only consider Petri games of finite and safe Petri nets in this paper,
these properties are part of the definition of a Petri game. Note that we allow
tokens to be generated or deleted. Also, we allow tokens to transition from a
system place to an environment place and vice versa.

Definition 1 (Petri game). A Petri-game of an underlying finite and safe
Petri net N is a tuple G = (PS ,PE , T , pre, post , In,B), where the places are
two disjoint sets PS, called the system places and PE, called the environment
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places with PS ∪ PE = P . The sets P and T are finite. B is the set of bad
markings.

We assume the underlying Petri net of a Petri game to be safe for formal sim-
plicity of the canonical branching processes. Note that a finite and safe Petri net
has a bounded number of places in every reachable marking.

Now we can define a winning strategy as a branching process of the underlying
Petri net, that satisfies four properties.

Definition 2 (Winning strategy). A winning strategy of a Petri-game GP =
(PS

0 ,PE
0 , T0, pre0, post0, In0,B) with underlying Petri-net N0 = (P0, T0, pre0,

post0, In0) is a branching process B = (N,π) of N0 with N = (P, T , pre, post , In)
and the following properties.

1. Justified refusal: Let C ⊆ P be a set of pairwise concurrent places and
t ∈ T0 a transition with π(C) = pre0(t). If no t′ ∈ T with π(t′) = t and
pre(t′) = C exists, then there exists a place p ∈ C with π(p) ∈ PS

0 , such that
t /∈ π(post(p)).

2. Safety: For all reachable markings M in N holds π(M) /∈ B.
3. Determinism: For all p ∈ P with π(p) ∈ PS

0 and for all reachable markings
M in N with p ∈ M exists at most one transition t ∈ post(p), which is enabled
in M .

4. Deadlock avoiding: For all reachable markings M in N exists an enabled
transition, if a transition is enabled in π(M) in the underlying Petri-net N0.

We fix the notations GP = (PS
0 ,PE

0 , T0, pre0, post0, In0,B) of the Petri game
GP and N0 = (P0, T0, pre0, post0, In0) of the underlying Petri net N0.

The four properties of a winning strategy can be interpreted as follows: The
justified refusal property forces the system player in each place to allow all
instances of an outgoing transition t or no instance at all. This enables the
representation of the decisions of the system player as commitment sets in its
places: each transition is allowed for every possible instance or it is forbidden
at all. The safety property ensures that no bad markings are reachable. The
determinism property ensures that for each system place at most one transition
is enabled in every reachable marking. The deadlock avoiding property ensures
that the system allows at least one transition in every reachable marking if an
enabled transition exists in that marking.

2.1 Graph Games

A graph game is a two player game with perfect information played on a directed
graph, called an arena. The vertices in the arena divide into system vertices and
environment vertices. The system player, who chooses the next move in system
vertices, is referred to as player 0 and the environment player, who chooses the
next move in environment vertices, is player 1.

An arena A = (V, V0, V1, E) consists of a finite set V of vertices, disjoint
subsets V0, V1 ⊆ V with V = V0 ∪V1 denoting the vertices of player 0 and player
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1, a set E ⊆ V × V of (directed) edges such that every vertex has at least one
outgoing edge, i.e., {v0 | (v, v0) ∈ E} is non-empty for every v ∈ V . The size of
A, denoted by |A|, is defined to be |V |. A play in an arena A = (V, V0, V1, E)
is an infinite sequence of vertices μ = v1v2v3 . . . ∈ V ω such that (vn, vn+1) ∈ E
holds for every n ∈ N. We say μ starts in the vertex v1. The set of plays in A is
denoted by Plays(A), the set of all plays starting in v by Plays(A, v), and we
define Plays(A, V ′) =

⋃
v∈V ′ Plays(A, v) for every V ′ ⊆ V .

A strategy of a player determines the next vertex of a play, if the cur-
rent vertex belongs to the player. A strategy for Player i ∈ {0, 1} in an arena
(V, V0, V1, E) is a function σ : V ∗Vi �→ V such that σ(wv) = v′ implies (v, v′) ∈ E
for every w ∈ V ∗ and every v ∈ Vi. The set of plays obtained by following a strat-
egy is the set of consistent plays. A play v1v2v3 . . . in an arena A = (V, V0, V1, E)
is consistent with a strategy σ for Player i in A if vn+1 = σ(v1 . . . vn) for every
n ∈ N with vn ∈ Vi . Given a vertex v, we denote the set of plays that are consis-
tent with σ and start in v with Plays(A, v, σ). Finally, we define Plays(A, V ′, σ)
for V ′ ⊆ V by Plays(A, V ′, σ) =

⋃
v∈V ′ Plays(A, v, σ).

The winning condition in a safety graph game is to remain in safe vertices.
The set of safe vertices is a subset of all vertices. A safety graph game G = (A,S)
consists of an arena A with vertex set V and a set of safe vertices S ⊆ V . We call
a sequence μ winning for Player 0 if, and only if Occ(μ) ⊆ S. Occ(μ) denotes
all vertices occurring in μ: Occ(μ) := {v ∈ V | ∃n ∈ N : vn = v}. A strategy
is winning, if all consistent plays remain in safe vertices at all time: A strategy
σ of a safety graph game G = (A,S) is called winning in a vertex v ∈ V , if all
consistent plays μ ∈ Plays(A, v, σ) are winning.

A strategy σ for Player i in an arena (V, V0, V1, E) is positional if σ(wv) =
σ(v) for all w ∈ V ∗ and v ∈ Vi . Safety graph games are determined with
positional winning strategies. These strategies are called positional because they
do not need any memory of the vertices visited so far.

Safety graph games can be solved with the standard attractor construction
in linear time in the number of edges of the underlying arena [2].

3 Reduction of Petri Games to Graph Games

In this section, we reduce Petri games, where the underlying Petri net satisfies
a synchronisation condition, to safety graph games. We call the synchronisation
condition non-simultaneous synchronisation condition as the players do not need
to take one joint transition. They do need to be causally dependent from each
other directly or indirectly after they take a bounded number of transitions. The
only exception occurs, if there are only finite firing sequences of transitions in
the Petri net meaning the Petri net is acyclic.

Informally speaking the non-simultaneous synchronisation condition defined
in the following expresses that every token in the Petri net has to take a tran-
sition within firing at most n transitions or no transition is enabled anymore
after n − 1 transitions. This ensures that every token hears from every other
token directly or indirectly after firing finitely many transitions, if there are still
enabled transitions in the Petri net.



244 P. Hannibal and E.-R. Olderog

Definition 3 (Non-simultaneous synchronisation condition). A Petri
net N satisfies the non-simultaneous synchronisation condition if and only if
there exists a bound n ∈ N such that

∀M ∈ R(N) : ∀s ∈ M : ¬∃t1 . . . tn : M |t1 . . . tn〉M ′ ∧ ∀k = 1, . . . n : s /∈ pre(tk).

This bound is unrelated to the number of tokens in the Petri net. An equivalent
characterisation of Petri nets that satisfy this synchronisation condition is to
bound the number of concurrent transitions for every place in the unfolding of
a Petri net. A Petri net satisfies the non-simultaneous synchronisation if and
only if there exists a bound m ∈ N such that for all places p ∈ unf (N) the set
of concurrent transitions in the unfolding is bounded by m, i.e. |{t ∈ Tunf (N) |
p||t}| ≤ m.

The remainder of this section is structured as follows: in Subsect. 3.1 we
introduce further definitions for Petri games such that we can express a winning
strategy in a Petri game to be planned part by part in a graph game. In Sub-
sect. 3.2 we define the graph game to which a Petri game is reduced. In Subsect.
3.3 we show how to construct a winning Petri game strategy if the graph game
has a winning strategy and vice versa.

3.1 Extended Petri Game Semantics

In the following, we introduce another synchronisation condition, the local syn-
chronisation condition, that is defined for the nodes in a branching process as
opposed to the non-simultaneous synchronisation condition that is defined for a
Petri net.

The reduction from Petri games to graph games, where both players have
perfect information, needs to ensure that the decisions of the system player in
the graph game do not rely on information it would not have in the Petri game.
Therefore, we introduce a local synchronisation condition that ensures that the
system player has sufficient information in the graph game. The idea is that
the system player plans so far ahead until it meets the local synchronisation
condition for all tokens such that it cannot abuse information in the graph game
it would not have in the Petri game. We define the set of enabled transitions in
a marking of a Petri net and the local synchronisation condition dependent on
this set as follows. The set of the enabled transitions in a marking M of a Petri
net is defined as TEn

M = {t ∈ T | t is enabled in M}. The notation TEn
B is used

for a branching process B. This is the set of enabled transitions in the initial
marking of B.

Definition 4 (Local synchronisation condition (abbreviated LSC)). For
a branching process B = (N,π) of a Petri net N0 the local synchronisation
condition, abbreviated LSC , is defined for a node x ∈ P∪T as follows: x satisfies
the LSC if

∀t ∈ TEn
B : t ∈ Past(x) ∨ x#t.
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The local synchronisation condition is called local because the causal past
of a node determines if it is satisfied: a node satisfies the local synchronisation
condition if it has information of all enabled transitions in the initial marking
whether they have been fired or not. The information that one of those transi-
tions was not fired is equal to having a node in conflict to that transition in the
past of the node that satisfies the local synchronisation condition.

In the graph game, the system player and environment player take alternate
turns. The system player plans a branching process, i.e. the system player deter-
mines its strategy part by part. Then, the environment player chooses a set of
enabled and pairwise concurrent transitions that are fired. Afterwards, the sys-
tem player has to plan further ahead, and so on. We define firing transitions in a
branching process which results in a branching process containing all remaining
nodes that were not in conflict to a fired transition or a causal predecessor of
fired transition. As the initial marking of this new branching process changed
and therefore it might not be a branching process by definition, we extend the
set of branching process to those starting in an arbitrary reachable marking of
the underlying Petri net.

Definition 5 (Extended set of branching processes of a Petri net).
An extended branching process B = (N,π) of a safe Petri net N0 = (P0, T0,
pre0, post0, In0) is a branching process of a Petri net N ′

0 = (P0, T0, pre0,
post0,M), where M ∈ R(N0). The set of all extended branching processes of
a Petri net N0 or a Petri Game GP is denoted as EB(N0) and EB(GP ), respec-
tively. The notion of the unfolding of N ′

0 as an extended branching process is
added as unf M (N0).

In the following, we define firing a set of pairwise concurrent transitions in an
extended branching process.

Definition 6 (Firing transitions in extended branching processes). Let
B = (N,π) be an extended branching process with N = (P, T , pre, post , In)
and Tf ⊆ TEn

B a set of pairwise concurrent transitions. Then B|Tf 〉B′ denotes
the firing of all transitions in Tf in an arbitrary order, resulting in the extended
branching process

B′ = ((P \ {s ∈ P | s ∈ pre(Tf ) ∨ ∃t′ ∈ Tf : t′#s},

T \ {t ∈ T | t ∈ Tf ∨ ∃t′ ∈ Tf : t′#t}, pre�T ′ , post �T ′ ,M |Tf 〉), π �T ′∪P′),

where the components of B′ are referred to as P ′, T ′, pre ′, post ′, In ′ and π′,
and pre�T ′ and post �T ′ are the restrictions of pre and post to the transitions
T ′ of B′, and π �T ′∪P′ the restriction of π to T ′ ∪ P ′.

The branching process B′ is also denoted as B|Tf 〉. We extend these nota-
tions for sequences of sets of concurrent transitions as B|Tf1 . . . Tfn

〉B′ and
B|Tf1 . . . Tfn

〉 respectively. Here, M |Tf 〉 denotes the marking reached after firing
all transitions in Tf in an arbitrary order. Let B̃′ ∼= B′ denote the canonical
branching process, which is isomorph to B′ via an isomorphism Φ : B′ �→ B̃′.
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To ensure that the decisions of the system player which transitions are allowed
to be fired in each place are final, such that the system does not change its deci-
sions when it has more information, we define a commitment set mapping for an
extended branching process, which states for every place the set of transitions
which are allowed to be fired. This ensures the justified refusal property of a
winning strategy in a Petri game. For environment places the allowed transi-
tions are not restricted. In the graph game, the system player has to choose a
commitment set for every system place, when it is added, and this commitment
set is kept the same from there on.

Definition 7 (Commitment set mapping). Given a Petri game GP , a com-
mitment set mapping CS of an extended branching process B = (N,π) ∈
EB(GP ), where N = (P, T , pre, post ,M), is a mapping with the following prop-
erties:

CS :P → 2T0

∀s ∈ P : CS (s) ⊆ post0(π(s))

∧ (π(s) ∈ PE
0 ⇒ CS (s) = post0(π(s)))

For example, the commitment set of the system place s11 in Fig. 2 would be
{tc1-1, tc1-2} as it needs to connect port one of the first environment player to
either port one or port two of the other environment player.

In the following definition we extend the subprocess relation ≤ to a sub-
process relation ≤CS

CS ′ respecting given commitment set mappings of extended
branching processes. This means that the commitment sets are preserved under
the subprocess homomorphism h≤.

Definition 8 (Subprocess relation of extended branching processes
with commitment set mapping). Let B1 and B2 be extended branching pro-
cesses of a safe Petri net N0 with commitment set mappings CS 1 and CS 2. B1

approximates B2 with respect to the commitment set mappings CS 1 and CS 2,
denoted B1 ≤CS1

CS2
B2, if and only if B1 ≤ B2 and for all p ∈ P1 for the commit-

ment set CS1 (p) = CS 2(h≤(p)) holds.

Note that this defines a partial order on tuples of extended branching processes
and their commitment set mappings.

Now, we can define planning segments as tuples of extended branching pro-
cesses and a commitment set mapping, such that every node necessary to satisfy
the local synchronisation condition for every maximally progressed place is added
and no more nodes are included. We call a place maximally progressed, if and
only if it satisfies the LSC or has an empty postset. Thus, either the LSC is
satisfied or no further transitions are allowed in the commitment set mapping.
Exactly those transitions which are allowed in the commitments set are added
until the LSC is satisfied.

Definition 9 (Planning segment). A tuple (B,CS ) consisting of an extended
branching process B = (N,π) with N = (P, T , pre, post ,M) of a Petri game GP
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with underlying Petri net N0 and a commitment set mapping CS of B is a
planning segment, if and only if the following holds:

∀t ∈ T :∀p ∈ pre(t) : π(t) ∈ CS (p)
∧ ∃t′ ∈ T : (t ≤ t′ ∧ ∃s ∈ pre(t′) : s does not satisfy the LSC )) (1)

¬∃(B′,CS ′) : (B′,CS ′) satisfies (1) ∧ B ≤CS
CS ′ B′ (2)

Let PSeg(G) denote the set of all planning segments of a Petri game G. The
notation TEn

v is used for a planning segment v ∈ PSeg(G). This is the set of
enabled transitions in the initial marking of its branching process B.

Note: The second part of property (1): ∃t′ ∈ T : (t ≤ t′ ∧ ∃s ∈ pre(t′) :
s does not satisfy LSC ) ensures that every added transitions is necessary to sat-
isfy the LSC . Thereby, it allows transitions, that are causal predecessors of other
transitions, where the preset does not satisfy the local synchronisation condition,
to be added despite the possibility that all places in the preset of the transition
itself already satisfy the local synchronisation condition. The property (2) of
such a tuple ensures that all such transitions are added by requiring the tuple
to be maximal.

3.2 Corresponding Graph Game

The set of all planning segments is used as the set of vertices of the environment
player in the graph game. In the following, we define decision sets that are the
possible decisions for the environment player in one of its vertices. This means
that every decision set corresponds to an outgoing edge from an environment
vertex in the graph game. A decision set consists of a set of concurrent transitions
that are enabled in the current marking. The environment player chooses to fire
these transitions.

Definition 10 (Decision sets). For a Petri game GP and a planning segment
(B,CS ) ∈ PSeg(G) with initial marking In of B, the set of decision sets for the
environment player is defined as follows:

DSets((B,CS )) ={DS ⊆ TEn
In | ∀ti, tj ∈ DS , ti = tj : ti||tj}

An example of a branching process of a planning segment is shown in Fig. 2,
if the places in the post sets of the transitions tf2 and tf3 are added, which
are indicated with vertical dots. The places after firing a transition tfi, i =
1, . . . , 4, satisfy the local synchronisation condition as they know which port
each environment player chose. The branching process in Fig. 2 is a planning
segment, if a suitable commitment set mapping is added.

In the following, we define deterministic and deadlock avoiding planning seg-
ments. The intuition here is quite similar to the determinism and deadlock avoid-
ance of a winning strategy in a Petri game: eventually, assuming exactly those
transitions allowed in the commitment sets are added to the branching process
the definition is equal for the places and transitions that are actually in the
branching process. The definitions are not only for planning segments but for
extended branching processes with a commitment set mapping.



248 P. Hannibal and E.-R. Olderog

Definition 11 (Deterministic and deadlock avoiding planning seg-
ments). Let GP be a Petri game. An extended branching process with a com-
mitment set mapping (B,CS ), where B = (N,π) and N = (P, T , pre, post , In),
is called deterministic in a reachable marking M ∈ R(B), if for all p ∈ M with
π(p) ∈ PS exist at most one transition t ∈ CS (p), where pre0(t) ⊆ π(M) and
for all p ∈ π �−1

M (pre0(t)) : t ∈ CS (p) holds.
An extended branching process with a commitment set mapping (B,CS ) is

called deadlock avoiding in a reachable marking M ∈ R(B) if and only if the
following holds: If a transition t ∈ T0 is enabled in π(M), then there exists a
transition t′ ∈ T0, where for all p ∈ π �−1

M (pre0(t′)) : t′ ∈ CS (p) holds.

The set of bad planning segments is defined as expected.

Definition 12 (Bad planning segments). Let GP be a Petri game and let
PSeg(GP ) denote the set of all planning segments. The set of bad planning
segments is defined as:

PSegbad ={(B,CS ) ∈ PSeg | ∃M ∈ R(B) : π(M) ∈ B
∨ (B,CS ) is not deterministic or not deadlock avoiding in M.}

Now, turn to the graph game. We define the starting vertices of the system player
in the graph game. A winning strategy has to be winning starting in one of those
vertices to construct a winning strategy in the Petri game later on. A starting
vertex of the graph game consists of the branching process with just the places
of the initial marking, their arbitrary commitment sets and no transitions. Note
the pre-image of pre and post are empty.

Definition 13 (Starting vertices). The set of starting vertices in the graph
game for a Petri game GP = (PS

0 ,PE
0 , T0, pre0, post0, In0,B) is defined as:

Start = {(B = ((In0, ∅, pre, post , In0), π),CS ) |
CS is a commitment set mapping of B}

The reduction of a Petri game to a graph game is now defined as follows: the set
of environment vertices V1 is the set of all planning segments. The set of system
vertices V0 is the union of the set of starting vertices and the set of extended
branching processes with commitment set mapping, that are reached by firing a
decision set of an arbitrary planning segment. The commitment sets remain the
same for the remaining places. The system vertices are denoted as pairs with a
0 in the second component to distinguish them from the environment vertices;
the first component of a system vertex might be a planning segment. The set
of directed edges consists of three sets: First, firing a decision set resembles an
edge from the planning segment to a system vertex. Second, the system player
has to plan further ahead to meet the local synchronisation condition resulting
in an edge from a system vertex to a planning segment. Third, the graph game
loops if no transition is enabled. All edges preserve a subprocess relation in their
direction. The commitment sets for all those places kept due to the subprocess
relation remain the same. The set of all safe vertices are all vertices that are not
bad planning segments.
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Definition 14 (Corresponding graph game). For a Petri game GP = (PS
0 ,

PE
0 , T0, pre0, post0, In0,B) we define a safety graph game GGraph = (A, S),

A = (V, V0, V1, E) as follows:

V1 = PSeg(Gp)

V0 = {((B̃′,CS ′), 0) | ∃(B,CS ) ∈ V1 : ∃DS ∈ DSets((B,CS )) :

B̃′ = Φ(B|DS 〉) ∧ CS ′ = CS �P′ ◦Φ−1} ∪ Start × {0}
E = {(((B,CS ), 0), (B′,CS ′) ∈ V0 × V1 | B ≤CS

CS ′ B′}
∪ {((B,CS ), ((B̃′,CS ′), 0)) ∈ V1 × V0 | ∃DS ∈ DSets((B,CS )) :

B̃′ = Φ(B|DS 〉) ∧ CS ′ = CS �P′ ◦Φ−1}
∪ {((B,CS ), (B,CS ) ∈ V1 × V1 | TEn

B = ∅}
S = V1 ∪ V0 \ PSegbad (Gp)

The sets P and P ′ denote the places of the branching processes B and B′,
respectively. Φ denotes the isomorphism from the branching process B′ to the
canonical branching process B̃′. We refer to this graph game as the corresponding
graph game of G.

•• • •• •

•• •

•• •

•• • •• •

•• •

•
•

{t1p1} {t1p1, t2p1}

{t11}{t11, t21}

{tc1-1}, {tf1}

Fig. 3. A part of the corresponding safety graph game of the Petri game in Fig. 1
starting in the vertex, where the commitment set mapping allows all transitions. The
commitment set mappings are implicit within the branching processes. White vertices
belong to the environment player and gray to the system player. The dotted white ver-
tices are bad planning segments. Edges are annotated with their decision sets. Decision
sets with unique planning are blue, later defined in Definition 17.



250 P. Hannibal and E.-R. Olderog

The graph game is almost bipartite: As long as T En
In = ∅, vertices of the

system player and the environment player alternate. This is not necessary when
the extended branching process with its commitment set mapping of a vertex of
the system player is already a planning segment again. The graph game is kept
bipartite in that case for formal simplicity reasons.

In Fig. 3, a part of the corresponding graph game starting in the vertex, that
allows all transitions in the initial marking, is shown. The planning segments
represent all possible combinations of commitment sets, from the unfolding on
the left over the initial part of a winning strategy in Fig. 2 to not allowing
any transition on the right. The edges are annotated with decision sets. A blue
decision set belongs to a play with unique planning, later defined in Definition 17.
The play following the blue decision sets is winning. Note that the LSC is always
satisfied after a transition tfi.

Lemma 1 (Corresponding graph game has exponential size). The cor-
responding graph game of a Petri game has exponential size.

Proof (Proof sketch).1 The corresponding graph game has exponential size as the
LSC ensures that every token has to hear from every other token within taking
n own transitions. The combinations of commitment sets in the system places
result in exponentially many planning segments, which results in an exponential
size of the corresponding graph game.

3.3 From Graph Games to Petri Games and Vice Versa

First in this section, we prove the existence of a winning strategy in a Petri
game if a winning strategy exists in its corresponding graph game. Starting
with a winning strategy in the graph game the idea of the construction of the
Petri game strategy is simple: Every node added in some branching process of
a consistent play with unique planning is added to the Petri game strategy and
no more.

In the following, we fix the Petri game GP = (PS
0 ,PE

0 , T0, pre0, post0, In0,B)
and the underlying Petri net of a Petri game always satisfies the non-
simultaneous synchronisation condition from Definition 3, G = (A, S) is the
corresponding graph game from Definition 14, and σ is a strategy of G.

The next two definitions lead to the definition of unique planning that pre-
vents different planning by varying the order of a firing sequence. A play in the
graph game gets annotated with the decision sets chosen by the environment:

Definition 15 (Annotation of plays). We annotate a play of the graph game
μ = v1v2v3 . . . with its decision sets:

If (vn, vn+1) = ((B,CS ), ((B̃′,CS ′), 0)) ∈ V1 × V0 and DS ∈ DSets(B,CS ) :
B̃′ = Φ(B|DS 〉) ∧ CS ′ = CS �P′◦Φ−1 we write vn

DS−−→ vn+1.

1 Full proofs will appear in an extended version of this paper on arXiv.
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We define the canonical branching process of a play in the graph game as the
branching process yielded by sequentially attaching the planning segments of
the play. As every planning segment itself has canonical names, the names in
the branching process of a play are not the same as in the planning segments
in general. A subprocess homomorphism h≤ for each planning segment maps
its places and transitions to its part of the branching process of the play. The
commitment set mapping of the branching process of a play is compounded by
the commitment set mappings of the planning segments.

Definition 16 (Branching process and commitment set mapping of a
play). Let μ = v1v2v3 . . . be a play or a prefix of a play of G and DS1DS2 . . .
the sequence of annotated decision sets. The branching process of the play μ,
Bμ = (Nμ, πμ), is defined as the smallest canonical branching process with respect
to ≤ such that the sequence of annotated decision sets can be fired in Bμ. We
refer to the components of Nμ as Pμ, Tμ, preμ, postμ, and Inμ.

For all prefixes v1v2 . . . vn with vn = (Bvn
,CS vn

) ∈ V1 and its sequence
of annotated decision sets DS 1DS 2 . . .DSm, we define a part of the planning
segment vn in Bμ, denoted ṽn, as follows: ṽn = (Bṽn

,CS ṽn
), where Bṽn

=
h≤(B) and B is the maximal canonical branching process with respect to ≤ such
that B ≤ Bμ|DS 1DS 2 . . .DSm〉 with the subprocess homomorphism h≤ : B �→
Bμ|DS 1DS2 . . .DSm〉 and B ≤ Bvn

. The components of Bṽn
are denoted as

Pṽn
, Tṽn

, pre ṽn
, post ṽn

and In ṽn
. For all p ∈ Pṽn

, the commitment set mapping
CS ṽn

(p) is defined as CSvn
(pn) if h≤(pn) = p. The commitment set mapping

CSμ(p) of Bμ for all p ∈ Pμ is defined as CSμ(p) = CS ṽn
(p), if p ∈ Pṽn

.

Note that the compound commitment set mapping CSμ is well defined as already
existing commitment sets are preserved by the edges in the graph game.

Now we define the set of plays with unique planning. Firing the same set
of transitions in a different order can result in differently planned branching
processes in the graph game. Those different branching processes might not
result in a winning strategy for the Petri game when they are added together.
We only consider those plays in the graph game, where every transition is fired as
soon as possible or never. This means that every transition chosen in a decision
set must not be enabled in an earlier planning segment.

Definition 17 (Set of plays with unique planning). Let Plays(G, σ) be
the set of consistent plays and let DSμ

1DSμ
2 . . . denote the sequence of annotated

decision sets of a play μ ∈ Plays(G, σ). The set of consistent plays with unique
planning is defined as

Playsu(G, σ) ={μ ∈ Plays(G, σ) | ∀t ∈ DSμ
j , j ≥ 2 : t /∈ T En

vDS
µ
j−1

∨ ∃t′ ∈ DSμ
j−1 : prevDS

µ
j−1

(t′) ∩ prevDS
µ
j

(t) = ∅},

where vDSµ
j−1

is the vertex of the play μ with outgoing annotation DSμ
j−1 and

prevDS
µ
i

the preset mapping of the branching process of vDSµ
i
.
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This definition makes use of the canonical names. An enabled transition in the
initial marking has the same name for all instances of that transition. If a tran-
sition is enabled in the initial marking of a previous planning segment, we do
not allow that transition in the decision set. But, we have to consider that the
transition in the current planning segment can be another instance of the tran-
sition of the previous planning segment that just has the same name. This is the
case, if a transition t0 of the Petri net is enabled right again after firing itself
or after firing a transition in conflict to the previous instance of t0 such that an
instance with the same name is in T En

vDS
µ
j−1

, but the second instance cannot be

fired earlier. The condition ∃t′ ∈ DSμ
j−1 : prevDS

µ
j−1

(t′) ∩ prevDS
µ
j

(t) = ∅ ensures

that a second instance with the same name can be chosen in the decision set.
The idea of the construction of the winning strategy in the Petri game is to

merge the branching processes of every possible and to the graph game strategy
consistent unique play. We define the union of two branching processes compo-
nentwise. As the proof of the construction of a winning strategy in the Petri
game is by induction, we define a winning prefix and its union naturally. The
branching processes of prefixes of winning plays in the graph game are winning
prefixes.

In the following we show three crucial properties of the branching process of
a single play consistent to the winning strategy. The first property is that every
transition has to be allowed in the commitment sets of its preset.

Lemma 2 (All transitions are allowed in commitment sets). For the
branching process Bμ of a play μ ∈ Plays(G, σ) it holds that for every transition
t ∈ Tμ for all p ∈ preμ(t) : t ∈ CSμ(p).

Proof. As in the definition of a planning segment, every transition has to be in
the commitment set of every place in its preset.

The second property is that every reachable marking in the branching process
of a play is reachable in one of its planning segments.

Lemma 3 (Every reachable marking is reachable in a planning seg-
ment). For the branching process Bμ of a play μ ∈ Plays(G, σ) it holds that
for every reachable marking M ∈ R(Bμ) exists a planning segment v ∈ V1 in μ,
where M is reachable in its part Bṽ of the branching process Bμ.

Proof (Proof sketch). We need to distinguish two cases. In the first case, a tran-
sition t ∈ Tμ is enabled in M . Then we can take the prefix v1v2 . . . vn of μ, where
vn ∈ V1 is the first vertex, where Invn

enables a transition t′ ∈ Tμ, which is
enabled in M . Every reachable marking in a branching process is a set of pair-
wise concurrent places and the maximally progressed places in vn either satisfy
the LSC or no further transitions are allowed. Thus, as those places are either
not concurrent to the places in pre(t′) or no concurrent places can be added later
on, M is reachable in Bṽn

.
In the second case, a planning segment vi is reached eventually, where M is

the initial marking In ṽi
.
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The third property is that every transition allowed in the commitment sets of
its preset is added in a branching process of some play with unique planning.

Lemma 4 (All allowed transitions are added). Let μ = v1v2 . . . ∈
Playsu(G, σ) be a consistent play with unique planning. If M is a reachable
marking in vi such that no transition in the past of a place of M could have
been fired in a previous planning segment of μ and ∃t0 ∈ T0 : pre0(t0) ⊆
πvi

(M) ∧ ∀p ∈ πvi
�−1
M (pre0(t0)) : t0 ∈ CSvi (p), then there exists a unique play

μ′ ∈ Playsu(G, σ) with a same prefix μ|i| = μ′|i|, and a vertex v′
j that is reached

in μ′ with j ≥ i via the sequence of annotated decision sets DS 1 . . .DSn from
v′

i . . . v′
j such that there exists t ∈ Tv′

j
with prev′

j
(t) = Φ(πvi

�−1
M (pre0(t0))) and

πv′
j
(t) = t0, where Φ is the isomorphism from B|DS 1 . . .DSn〉 to its canonical

branching process.

Proof. Let t0 ∈ T0 be such a transition in vi. Since M is a reachable marking in
vi, we construct a play μ′ ∈ Playsu(G, σ), where the environment player chooses
its decision sets in a way that every transition in the past of any place of M is
chosen as soon as possible and no transition in conflict to one of the places in
M is chosen. Since Bμ is finitely preceded it follows that a planning segment
v′

j , j ≥ i, is reached, where a place p ∈ Φ(πvi
�−1
M (pre0(t0))) is in the initial

marking of v′
j , and the commitment sets of the places remained the same due

to the construction of the arena A. The place p does not satisfy the LSC of v′
j

and since v′
j is maximal with respect to its commitment set mapping, we have

t ∈ Tv′
j

with prev′
j
(t) = Φ(πvi

�−1
M (pre0(t0))) and πv′

j
(t) = t0.

Lemma 5 (From graph games to Petri games). If a winning strategy
σ : V ∗V0 → V for player 0 exists in G starting in a vertex v1 ∈ Start, then
there exists a winning strategy σ′ in the Petri game GP .

Proof (Proof sketch). We show that the union of the branching processes of all
plays with unique planning is winning in the Petri game. For the maximally
progressed places in a planning segment that satisfy the LSC , all decision sets,
which are allowed in plays with unique planning, are distinguishable. This means
that each of those places refers to exactly one such decision set. Thus, for two
different decision sets the maximally progressed places are disjoint and further
transitions added later in the play have disjoint presets, such that every node is
added only in one branching process of a prefix of a play with unique planning.
For the maximally progressed places, that do not satisfy the LSC , no transition is
allowed to be added due to the commitment sets. From there on, the commitment
set is kept the same in all plays with that prefix.

Now, the three shown properties for branching processes of a play with unique
planning together with σ being a winning strategy ensure the winning properties
of the Petri game strategy: Lemma 2 and Lemma 4 ensure the justified refusal
property; Lemma 3 ensures the safety property; Lemma 2 and Lemma 3 ensure
the determinism property; Lemma 3 and Lemma 4 ensure the deadlock avoiding
property.
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Now, we show the existence the other way round.

Lemma 6 (From Petri games to graph games). Let GP be a Petri game
and σ a winning strategy for GP . Then there exists a winning strategy σ′ for
player 0 in the safety graph game G = (A, S) from Definition 14.

Proof (Proof sketch). We choose the planning segments according to the given
Petri game strategy, where the commitment sets are equal to the postsets of the
places in the Petri game strategy.

We conclude with the theorem that states that the synthesis problem for Petri
games of the presented subclass is decidable in EXPTIME.

Theorem 1 (Synthesis). Let GP be a Petri game, where the underlying Petri
net satisfies the non-simultaneous synchronisation condition from Definition 3,
then the existence of a winning strategy, and deriving it if existent, is decidable
in EXPTIME.

Proof. The equivalence of the existence of a winning strategy follows from the
two implications in Lemma 5 and Lemma 6. The corresponding graph game has
exponential size dependent on the size of the Petri game. The graph game takes
linear time to be solved dependent on the number of edges, which are at most
square as many as vertices. This results in exponential complexity overall.

4 Related Work

There have been quite a few approaches to the synthesis problem. We distinguish
between works that address a single-process synthesis problem, where the system
consists of one process that has all its information accessible, and works that
address a multi-process synthesis problem, where multiple processes exist that
are all partially informed. One of the latter is presented in this paper. The works
on Petri nets in [5,23] belong to the former.

The synthesis problem was first introduced in [6]. Pnueli and Rosner intro-
duced a setting of synchronous processes that communicate via shared variables
[22]. For a single process, this setting is known to be decidable [4,21]. For multiple
processes, this setting is known to be undecidable [22]. In particular, information
forks have been found to be a necessary and sufficient criterion for the undecid-
ability in that distributed setting [14]. There have been positive decidability
results on specific architectures with multiple processes, including pipelines [24],
rings [16], and acyclic architectures [14]. However, all the positive results for
multiple processes have non-elementary complexity. A general game model in
this type of setting is introduced by Walukiewicz and Mohalik [19]. Another line
of work concerns the alternating-time temporal logics, which are interpreted over
concurrent game structures [1].

Petri nets are conceptually connected to event structures by their unfoldings
[18,20]. As an application example, unfoldings are used to determine the set of all
reachable markings in a Petri net [8]. We use net unfoldings to define strategies
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on Petri games. The causal past of a node is the only available information;
concurrent and future actions are invisible.

Zielonka automata are another distributed setting introduced in [25]. These
are weakly bisimilar on their winning strategies to Petri games that have a
local safety condition, with an exponential blow-up [3]. The synthesis problem is
decidable for games on acyclic Zielonka automata [15] and on Zielonka automata
with a strong synchronisation condition together with constraints on the winning
condition that allow no distinction of differently ordered executions of the same
trace [17]. We allow such distinctions, but the synchronisation condition in this
paper is similar to the one in [17] and restricts the Petri nets to those that only
allow loops including all tokens or that are acyclic.

5 Conclusions

We have presented a subclass of Petri games with an arbitrary mixture of sys-
tem and environment players for which the synthesis problem is decidable in
EXPTIME. Petri games use the tokens as carriers of information and link their
information flow to their causality. This makes Petri games a suitable formalism
to reason about distributed applications. The presented approach might seem
anti-intuitive as it does not use the causal past of the players; it uses the causal-
ity to plan ahead. This subclass allows us to model distributed systems with a
hierarchic communication structure, where every part has to check on its sub-
ordinated parts within a bound. Every part may consist of multiple processes
itself, that communicate repeatedly within a bound. For example, we can model
a control for several traffic lights geared to each other which react to the current
traffic situation. A failure of a traffic light could be modeled within the Petri
game. Another possible modeling is the communication structure of a round
robin protocol. We cannot express exact timing constraints in Petri games.

This is the first work approaching the synthesis problem for distributed sys-
tems that allows finitely many system players and finitely many environment
players while the global safety condition allows to distinguish between different
interleavings of the same trace. Also, we allow tokens to be generated or deleted,
which makes these Petri games a convenient way to model resource allocations
and situations where processes are generated or deleted. This is not possible in
the setting of Zielonka automata.

In future work, we will investigate weaker synchronisation conditions. We will
also implement the presented decision procedure and compare it to existing ones
in [9,11]. Another challenge is to extend the winning condition to reachability,
Büchi, or parity conditions. A reachability condition is harder to check as we
need to ensure that for all plays a designated marking is reached in every possible
order of firing its transitions, which is not possible to check within the presented
planning segments. In [10], it is shown that Petri games with a global reachability
condition are undecidable.
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Abstract. We look at modelling of a choice between several ‘bursts’ of
concurrent actions in a Petri net. If ‘silent’ transitions are disallowed, a
construction based on Cartesian product is traditionally used, resulting
in an exponential explosion in the model size.

We demonstrate that this exponential explosion can be avoided. We
show the equivalence between this modelling problem and the problem
of finding an edge clique cover of a complete multipartite graph, which
gives major insights into the former problem as well as linking it to the
existing results from graph theory.

It turns out that the exponential number of places created by the
Cartesian product construction can be improved down to polynomial
(quadratic) in the worst case, and down to logarithmic in the best (non-
degraded) case. For example, to express a choice between 10 pairs of
concurrent transitions, the Cartesian product construction creates 1024
places, even though 6 places are sufficient. We also derive several lower
and upper bounds on the numbers of places and arcs.

As these results affect the ‘core’ modelling techniques based on Petri
nets, eliminating a source of an exponential explosion, we hope they
will have applications in Petri net modelling and translations of various
formalisms to Petri nets. As an example, applying them to translate
Burst Automata to Petri nets reduces the size of the resulting Petri net
from exponential down to polynomial.

Keywords: Petri net · Complete multipartite graph · Edge clique
cover · Control flow · Burst Automata

1 Introduction

Petri nets (PN) are often used as a modelling formalism, and their advantages
include the simplicity of semantics, the intuitive graphical notation, the abun-
dance of software tools, and the possibility of capturing behaviours concisely
without making subsequent processing (e.g., formal verification or synthesis)
undecidable. In particular, the possibility to create concise models is often the
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Fig. 1. A BA specification of the C-element and an FSM expressing its interleaving
semantics. A C-element waits for both inputs to switch to 1 (actions i+1 and i+2 ) before
switching its output to 1 (action o+), and then waits for both inputs to switch to 0
(actions i−1 and i−2 ) before switching its output to 0 (action o−). It is assumed that the
environment fulfills its part of the contract, i.e. each input switches only once before
the output switches.

Fig. 2. A BA with singleton bursts, so coinciding with the FSM expressing its inter-
leaving semantics (left); its PN translation prefixing each burst with a silent transition
(middle); and the reachability graph (FSM) of this PN (right). Note that the two FSMs
are language-equivalent but not weakly bisimilar.

key advantage of PNs over simpler formalisms like Finite State Machine (FSMs).
Indeed, it is generally accepted that one is likely to encounter the exponential
state space explosion [9] during, e.g., formal verification—this problem is believed
to be fundamental (unless P=PSPACE), and mitigating this explosion using
heuristics has been a hot research topic for many years. However, encountering
an exponential explosion already during the modelling stage is both regrettable
and indicative of problems in modelling techniques or even the formalism itself.

Unfortunately, some common PNs modelling techniques can indeed result in
exponentially large models, even in common cases of simple control flows. As a
motivating example we consider Burst Automata (BA) [3]—a more general ver-
sion of Burst Mode [8] formalism from the area of asynchronous circuits design.
Intuitively, BAs are similar to FSMs, except that their arcs are labelled not by
single actions but by sets of actions (‘bursts’) which fire concurrently. One can
define the interleaving semantics of BAs by allowing the actions in a burst to
fire in any order, which results in the usual FSM, see the example in Fig. 1.
For the purposes of formal verification and circuit synthesis, it would be advan-
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tageous to develop a translation from BAs to PNs, in order to be able to use
existing PN software. This means some kind of behavioural equivalence between
the FSM expressing the interleaving semantics and the reachability graph of the
resulting PN is required, e.g., language equivalence or bisimulation. As BAs are
a very simple FSM-like formalism, it would be reasonable to expect that such a
translation would be quite simple and efficient.

However, developing a compact translation from BAs to PNs is more compli-
cated than one might expect. In particular, efficiently expressing a choice between
several bursts of concurrent transitions is not trivial in PNs. In [3], a language-
preserving linear size translation is proposed, that prefixes each burst with a silent
‘fork’ transition and then uses another silent ‘join’ transition after the burst to
detect completion. Unfortunately, there are situations when this translation is
unacceptable. First of all, silent transitions turn a deterministic model into a non-
deterministic one which is often undesirable (e.g., non-determinism cannot be
directly implemented physically, say in an asynchronous logic circuit [4]). Second,
language equivalence may be too weak (e.g., it does not preserve branching time
temporal properties or even deadlocks), and prefixing bursts with silent transi-
tions breaks not only strong but also weak bisimulation, see Fig. 2.

To preserve strong bisimulation, the followingCartesian Product Construction
(×-construction) is traditionally used, see e.g., [2]. To express a choice between
several bursts (i.e., sets of concurrent transitions) B1, B2, . . . , Bn, this construc-
tion would create a set of places corresponding to tuples in the Cartesian product
B1 × B2 × · · · × Bn, so that a place corresponding to a tuple (b1, . . . , bn) is con-
nected to each transition bi occurring in the tuple. This means that the number of
created places is |B1| · |B2| · . . . · |Bn|, i.e., the PN size is exponential in the number
of bursts.

In this paper we focus on efficiently expressing a choice between several bursts
without using silent transitions. We demonstrate that the ×-construction is often
sub-optimal, in particular one can always avoid an exponential explosion—a
polynomial (quadratic) number of places is sufficient even in the worst case.
Moreover, in the case of each burst containing two transitions, the ×-construction
requires 2n places while the construction proposed in this paper needs only log2 n
places (asymptotically)—a dramatic double-exponential reduction.

We believe that the proposed construction, which is the main contribution of
the paper, will have many applications, as it affects the ‘core’ modelling techniques
for PNs. In particular, translations from various formalisms to PNs relying on the
×-construction can be significantly improved by using the proposed construction
instead, thus eliminating a source of exponential explosion. In Sect. 8, we show how
to improve the bisimulation-preserving translation from BAs to PNs described in
[3], from exponential down to polynomial. Note that the developed translation is
just a simple example of applying the proposed construction rather than the focus
of the paper, and there are more applications, e.g., in our forthcoming paper [7] we
develop a polynomial PN translation for arbitrary control flows built from atomic
actions using sequencing, parallel composition, and choice.

The proposed construction is based on the observation that the problem
of implementing a choice between concurrent bursts in a PN using k places is
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equivalent to finding an edge clique cover of a complete multipartite graph with
k cliques. Hence, the minimal possible number of places is equivalent to the
edge clique cover number (a.k.a. intersection number [5]) of a certain complete
multipartite graph. The latter is a problem investigated for decades. Even though
it is not completely solved, there are many useful published results, and we prove
several new results helping to improve some upper bounds on the number of PN
places and arcs. In practice, the optimality is usually not required, and one can
use simple approximations with useful lower and upper bounds.

2 Basic Notions

In this section, we provide some basic notions related to Petri nets, complete
multipartite graphs, and edge clique covers.

Petri Nets
We focus on safe (i.e., at most one token per place) PNs, which are often used for
modelling control flows. For a safe PN, the total number of tokens in its initial
marking cannot exceed the number of places, so we can define its size as the
total number of places, transitions, and arcs, disregarding the initial marking.
Note that the size of a PN is dominated by its arcs, except the uninteresting
degraded case when there are many isolated nodes.

In this paper, the set of transitions is usually given (e.g., when translating a
model from some other formalism to PNs, the transitions often correspond to the
occurrences of actions in that model), and the objective is to express the intended
behaviour using small numbers of places and arcs. Note that having a small
number of places is often desirable for formal verification as they correspond to
state variables, and having a small number of arcs is desirable as they dominate
the PN size.

Complete Multipartite Graphs
We consider undirected graphs with no parallel edges and no self-loops. A graph
is called multipartite if its vertices are partitioned into several sets in such a way
that there are no edges between vertices in the same partition. A multipartite
graph is complete if, for every pair of vertices from different partitions, there is an
edge connecting them. A complete multipartite graph with the partitions of sizes
t1 ≤ t2 ≤ · · · ≤ tn will be denoted Kt1,t2,...,tn . Note that for the purposes of this
paper one can assume that multipartite graphs have at least two partitions and
that each partition contains at least two vertices—violating these assumptions
leads to simple degraded cases. If the sizes of all partitions in Kt1,t2,...,tn are
equal, t1 = t2 = · · · = tn = t, the graph is called balanced and will be denoted
Kn(t).

Edge Clique Covers
A clique in a graph is a set of vertices which are pairwise connected by edges. A
clique is called maximal if it is not a subset of any other clique. Note that for a
complete multipartite graph, every maximal clique contains exactly one vertex



Avoiding Exponential Explosion in Petri Net Models of Control Flows 265

from each partition, and vice versa, by picking one vertex from each partition
one always obtains a maximal clique.

A set of cliques in a graph form an edge clique cover (ECC) if for every edge
in the graph there is at least one clique that contains both endpoints of this edge.
The number of cliques in an ECC is called its size. Note that, given an ECC, one
can expand each clique in it to some maximal one, without increasing the size
of the ECC. The minimum possible size of an ECC of a graph G is called the
edge clique cover number (a.k.a. intersection number) of G, and will be denoted
ecc(G).

3 Equivalence Between the Problems of Modelling a
Choice Between Bursts in a PN and Finding an ECC
of a Complete Multipartite Graph

Suppose that we have pairwise disjoint1 bursts B1, B2, . . . , Bn where each burst
is a non-empty set of transitions, and the intention is to create a choice between
these bursts. Hence, the problem is to add some places and connect them to
these transitions (by place→transition arcs) so that the transitions within each
burst must be concurrent,2 but any pair of transitions from different bursts must
be in conflict. More precisely, the following requirements must be satisfied:

–ReqChoice For every pair of transitions from different bursts, there is a place
connected to both of them (this creates choices between transitions from
different bursts).

–ReqConc A place cannot be connected to more than one transition from the
same burst (otherwise these transitions would not be concurrent). An alter-
native and stricter formulation of this requirement is that a place must be
connected to exactly one transition from each burst—this in addition ensures
that no tokens are left behind after a burst fires, which is essential for control
flows containing cycles, a common case in practice. We will denote this strict
formulation by ReqConc(strict). Note that if ReqConc(strict) is satisfied
then the number of arcs can be determined from the number of places by
multiplying the latter by the number of bursts, i.e., by n.

–ReqNoDups No two places are connected to the same set of transitions (this
would create redundancy – one of such places can be removed without affect-
ing the PN’s behaviour).

Furthermore, we define the problem size as |B1| + · · · + |Bn|—the upper and
lower bounds on the number of required places and arcs will be relative to it.
1 In practice, transitions are often labelled by actions, and there is no requirement for

the sets of labels corresponding to bursts to be disjoint, e.g., it is possible to have
bursts B1 = {t1} and B2 = {t2} where t1 and t2 are distinct transitions labelled by
the same action a. In particular, BAs allow non-determinism, and the PN translation
in Sect. 8 expresses it by creating distinct transitions with the same label.

2 Note that the |Bi|-ary concurrency relation intended here is not reducible to pairwise
concurrency.
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One can see that the ×-construction satisfies the above conditions, including
ReqConc(strict). However, it generates |B1| · |B2| · . . . · |Bn| places and n · |B1| ·
|B2| · . . . · |Bn| arcs, i.e., the PN size is exponential.

The natural questions now are whether the above requirements are possible
to achieve with fewer places and arcs—in particular, whether the PN size can be
polynomial in the problem size, what would be the minimal number of places,
and whether it is possible to derive some useful lower and upper bounds on the
size of the smallest PN. We show that these problems can be reformulated in
terms of finding ECCs of a complete multipartite graph, which provides revealing
insights and helps one to find positive answers to these questions.

Consider the conflict (i.e., choice) relation between the transitions. It is sym-
metric and irreflexive, and so can be represented by an undirected graph without
self-loops such that there is an edge between two vertices iff the transitions cor-
responding to these vertices belong to different bursts. Thus, the graph is a
complete multipartite graph with its partitions corresponding to the bursts, i.e.,
K|B1|,|B2|,...,|Bn|. Furthermore, any complete multipartite graph represents the
conflict relation for some family of bursts.

Now consider a place connected to several transitions picked from different
bursts. The vertices corresponding to these transitions form a clique in the graph
representing the conflict relation. Thus, given any ECC of this graph, one can
create a place for each clique in the ECC and connect it to transitions correspond-
ing to the vertices occurring in the clique, and the resulting set of places will
satisfy the above requirements. Furthermore, one can in addition satisfy Req-
Conc(strict) by extending every clique in the ECC to a maximal one. Hence,
there is a 1-to-1 correspondence between cliques and places, or between maximal
cliques and places in the ReqConc(strict) case. This simple observation allows
one to answer some of the posed questions:

– The trivial ECC where each edge is covered by a clique with two vertices
(which can then be extended to a maximal clique if necessary) has only a
quadratic number of cliques at most, which yields a polynomial translation
with a quadratic number of places and either quadratic (for ReqConc) or
cubic (for ReqConc(strict)) number of arcs—already a huge improvement
on the exponential ×-construction.

– In bipartite graphs there are no cliques with more than two vertices, and
so the minimal ECC coincides with the trivial one. Consider the case of two
bursts of equal size, |B1| = |B2| = k. One can see that the graph of the conflict
relation is the bipartite graph Kk,k, i.e., the number of PN places cannot be
smaller than k2. This observation yields a quadratic worst case lower bound
on the number of places, that matches the above upper bound. Furthermore,
this gives a quadratic worst case lower bound on the number of arcs, that
matches the above upper bound for the ReqConc case, though there is still
a gap between this lower bound and the upper bound for ReqConc(strict).

These simple observations, though giving matching worst case upper and
lower bounds on the number of places as well as the number of arcs in the
ReqConc case, do not provide the full picture. It turns out that one can often
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do much better than the above quadratic worst case lower bound suggests, e.g.,
in the next section, we give an example where a logarithmic number of places is
sufficient.

Furthermore, the ReqConc(strict) case is more important in practice, and
given that the size of a PN is normally dominated not by places but by arcs,
the gap between quadratic lower and cubic upper bounds on the number of arcs
needs narrowing and ideally closing. In what follows, we derive some improved
upper bounds in the ReqConc(strict) case, including a quadratic upper bound
for the cases where the sizes of bursts are the same or at least not too different,
i.e., the graph of the conflict relation is balanced or almost balanced.

4 A Logarithmic Case

Above we derived a polynomial (quadratic) worst-case bound on the number of
places, which is an exponential improvement over the ×-construction. In this
section, we consider the best-case scenario, excluding the degraded cases of a
single burst, and the situation when some of the bursts are singletons. The
former is trivial, and the latter can be reduced to a smaller non-degraded case
by removing all singleton bursts. It turns out that in the best case a logarithmic
number of places is both necessary and sufficient, yielding a dramatic double-
exponential improvement on the ×-construction.

Consider the case of each burst containing two transitions. The ×-construc-
tion would create 2n places, but it turns out that log2 n places are sufficient
(asymptotically). The conflict relation graph in this case is Kn(2), and the prob-
lem boils down to finding a small ECC of this graph. This problem was solved
in [6], which proved that ecc(Kn(2)) ∼ log2n.

The idea of the construction is as follows. For simplicity, we assume that
n =

(
k−1
k/2

)
for some even k. One can check (e.g., using wolframalpha.com) that

lim
k→+∞

log2 n

k
= lim

k→+∞

log2
(
k−1
k/2

)

k
= 1 ,

and so k ∼ log2n. Consider the family of subsets of size k/2 of {1, . . . , k}. One
can build a multipartite graph with these subsets as vertices, and with two
vertices being connected iff their intersection is non-empty (this construction is
called the intersection graph [5] of a family of sets). In our case each subset has
a non-empty intersection with all but one other subset in the family, viz. its
complement, and so Kn(2) is the intersection graph of this family of subsets.
One can then observe that the vertices corresponding to subsets sharing some
element i are pairwise connected and so form a clique. Moreover, the cliques
corresponding to the elements of {1, . . . , k} form an ECC of size k.

For example, let n = 10 =
(
6−1
6/2

)
, i.e., k = 6 places are sufficient to express all

the conflicts between 10 binary bursts (compared to 210 = 1024 places created
by the ×-construction). We consider all 3-element subsets of the set {1, . . . , 6}
and pair subsets with their complements:

https://www.wolframalpha.com/
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Fig. 3. A PN model with 6 places expressing a choice between 10 binary bursts. The
transitions are labelled by 3-element subsets of {1, . . . , 6}, e.g., ‘123’ corresponds to
{1, 2, 3}.

{1, 2, 3} {4, 5, 6}
{1, 2, 4} {3, 5, 6}
{1, 2, 5} {3, 4, 6}
{1, 2, 6} {3, 4, 5}
{1, 3, 4} {2, 5, 6}
{1, 3, 5} {2, 4, 6}
{1, 3, 6} {2, 4, 5}
{1, 4, 5} {2, 3, 6}
{1, 4, 6} {2, 3, 5}
{1, 5, 6} {2, 3, 4}

One can see that the intersection graph of this family of subsets is K10(2) where
the vertices in each of the 10 partitions correspond to these 10 pairs of compli-
mentary sets. Furthermore, one can cover all the edges of this graph by 6 cliques,
where the i-th clique comprises vertices corresponding to the subsets containing
i, for each i = 1, . . . , 6.

In the corresponding PN, the pairs of transitions in these 10 bursts can be
labelled by the above pairs of subsets, the places be labelled by the numbers
1,. . . , 6, and the connection be such that there is an arc from place i to a
transition labelled by subset S iff i ∈ S, see Fig. 3.

5 Upper Bounds for the Balanced Case

In this section, we provide two different upper bounds on the number of places
and arcs for the balanced case, i.e., when all the bursts have the same size. It
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turns out one can improve the trivial upper bound on the number of arcs derived
in Sect. 3.

The idea of the first bound is based on the observation that, by generating
a sufficient number k of random cliques, one can cover every edge with high
probability (in the sense that the expected number of uncovered edges is <1),
which implies that there is an ECC of size k. Furthermore, the probability of
an edge being uncovered falls exponentially with k, so k does not have to be
large. The following result was inspired by [1, Lemma 3.2]. Using the specifics
of balanced complete multipartite graphs, we reformulated that result to avoid
references to graph’s complement, streamlined the proof, and obtained a better
multiplicative constant.

Proposition 1. ecc(Kn(t)) ≤
⌈
2t2 ln tn√

2

⌉
if n, t ≥ 2.

Proof. One can pick a random maximal clique in Kn(t) by randomly and uni-
formly picking a vertex from each of the n parts. Suppose that k (to be chosen
appropriately below) such cliques are picked independently.

Given a random clique as above, an edge (u, v) is covered by it iff both u and
v were picked from their partitions, i.e., the probability that a particular edge is
covered by a random maximal clique is 1/t2. Hence the probability that an edge
is not covered by any of the k chosen random cliques is

(
1 − 1

t2

)k

≤ e−k/t2 ,

where the inequality follows from 1 − x ≤ e−x for all real x.
There are t2n(n−1)

2 < t2n2

2 edges in Kn(t), so the expected number of edges
not covered by any of the k cliques does not exceed

t2n2

2
e−k/t2 .

We now choose k =
⌈
t2 ln t2n2

2

⌉
> t2 ln t2n2

2 (note that the inequality here
is indeed strict because n, t ≥ 2 are integers and the natural logarithm of an
integer distinct from 1 is never an integer). Substituting this value for k into
the above formula for the expected number of edges not covered by any of the
k cliques, we have

t2n2

2
e−

⌈
t2 ln t2n2

2

⌉

t2 <
t2n2

2
e− t2 ln t2n2

2
t2 = 1 ,

i.e., it is strictly below 1. Hence, it is possible to choose

k =
⌈
t2 ln

t2n2

2

⌉
=

⌈
2t2 ln

tn√
2

⌉

cliques forming an ECC of Kn(t). �	
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One can see that the proof of the above proposition yields a randomised
algorithm for generating a small ECC, and the derived upper bound is usually
good in practice. However, it is expressed in terms of the number n of partitions
in Kn(t) and their (common) size t rather than the number v = t · n of vertices
Kn(t) (note that v is the problem size that was defined as the total size of all
bursts). Reformulating this bound in terms of v yields

⌈
2
v2

n2
ln

v√
2

⌉
= O

(
v2

n2
log v

)
,

which means that the number of places in the PN is O
(
v2 log v

)
if n is fixed.

This means that in some cases this upper bound can be worse than the trivial
quadratic one derived in Sect. 3. However, the above expression allows one to
improve on the trivial cubic upper bound on the number of arcs in the Req-
Conc(strict) case derived in Sect. 3. Recall that in this case the number of arcs
equals to the number of places multiplied by n, i.e.,

n

⌈
2
v2

n2
ln

v√
2

⌉
= O

(
v2

n
log v

)
.

This bound is quite good, and becomes O (v log v) if n is linear in v. The worst
case is when n is fixed—the bound then becomes O

(
v2 log v

)
, which almost (but

not quite) matches the quadratic worst case lower bound.
The natural question now is whether one can achieve quadratic (in v) upper

bounds on the numbers of both places and arcs, thus completely closing the gap
between the worst case lower and upper bounds at least in the balanced case.
The following simple result provides a new (to our knowledge) upper bound on
the edge clique cover number of Kn(t) that allows one to answer this question
affirmatively.

Proposition 2. ecc(Kn(t)) ≤ nt2/2, where t, n ≥ 2.

Proof. We construct an ECC comprised of the cliques:

– Cpij , where p = 1, . . . , n, i = 2, . . . , t and j = 1, . . . , i − 1, such that Cpij

comprises the i-th vertex from p-th partition and the j-th vertex from every
other partition.

– Ci, where i = 1, . . . , t, containing the i-th vertex from every partition.

Note that the edge from the i-th vertex from p-th partition to j-th vertex in
some other partition p′ is covered by either Cpij (if i > j) or Cp′ji (if j > i) or
Ci (if i = j), so it is indeed an ECC. The size of this ECC is

nt(t − 1)/2 + t = nt2/2 − nt/2 + t ≤ nt2/2 ,

and so ecc(Kn(t)) ≤ nt2/2. �	
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The above result can be used to derive quadratic upper bounds on the num-
bers of both places and arcs. Indeed, when expressed in terms of v, this bound
becomes v2

2n and so cannot be worse than O(v2) even if n is fixed. Furthermore,
the number of arcs in ReqConc(strict) case can be obtained by multiplying by
n, which yields v2

2 .
Hence, in the balanced case we have obtained quadratic worst case upper

bounds on both places and arcs, which match the quadratic worst case lower
bound derived in Sect. 3.

6 Upper Bounds for the Almost Balanced Case

In this section, we show that the upper bounds from the previous sections can
be transferred (up to a multiplication by a constant) to the unbalanced case pro-
vided it is not ‘too unbalanced’. The idea is based on the following observations:

– Kt1,t2,...,tn is an induced sub-graph in Kn(tn), and so ecc(Kt1,t2,...,tn) ≤
ecc(Kn(tn)), as any ECC of the latter can be turned into an ECC of the
former by deleting the vertices which are not in Kt1,t2,...,tn from each clique
(and then extending each clique to a maximal one if required).

– The number of vertices in Kn(tn) is not much greater than that in Kt1,t2,...,tn

provided that the latter is not ‘too unbalanced’, so the upper bounds derived
in the previous section do not become too large w.r.t. the size of Kt1,t2,...,tn .

Formally, let b ≥ 1 be some fixed real number. A complete multipartite graph
Kt1,t2,...,tn is called b-balanced if tn ≤ b

n

∑n
i=1 ti = b

nv, i.e., the size of the biggest
partition is within the factor b of the average partition size. One can observe that
the number of vertices in Kn(tn) is then

ntn ≤ n

(
b

n
v

)
= bv,

i.e., within the factor b of the number v of vertices in Kt1,t2,...,tn . Hence the
bounds derived in Sect. 5 can be lifted to ‘almost balanced’ graphs as follows.

Proposition 3 (Lifting Propositions 1 and 2 to almost balanced case).
Suppose that Kt1,t2,...,tn is b-balanced and n, ti ≥ 2. Then

ecc(Kt1,t2,...,tn) ≤
⌈
2
(bv)2

n2
ln

bv√
2

⌉

and

ecc(Kt1,t2,...,tn) ≤ (bv)2

2n
,

where v =
∑n

i=1 ti is the number of vertices in Kt1,t2,...,tn .

Proof. Follows directly from the
⌈
2 v2

n2 ln v√
2

⌉
and v2

2n bounds for the balanced
case derived in Sect. 5. �	
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Hence, in the almost balanced case the numbers of places and arcs are
quadratic in the worst case. Furthermore, Proposition 5 below improves the
former bound down to

⌈
2tntn−1 ln v√

2

⌉
. Note that, for a b-balanced graph,

tn−1 ≤ tn ≤ bv
n and, moreover, b is removed from under the logarithm.

7 Upper Bounds for the Unbalanced Case

In this section, we consider the case of complete multipartite graphs Kt1,t2,...,tn

which are ‘very unbalanced’. We slightly improve on the trivial upper bound on
the number of arcs. However, this may still be cubic in the worst case, e.g., if n,
tn and tn−1 are linear in v.

First, we recall the following result from [5]. It refers to edge clique partitions,
which are a special case of ECCs with every edge covered exactly by one clique.
We denote the edge clique partition number ecp(G) of a graph G as the smallest
possible number of cliques in an edge clique partition of G. Trivially, ecc(G) ≤
ecp(G).

Proposition 4 (adapted from [5]). Let G be a graph with v vertices. Then
G has an edge clique partition of size at most

⌊
v2/4

⌋
consisting of edges and

triangles. Moreover, ecp(G) =
⌊
v2/4

⌋
if and only if G is K�v/2�,	v/2
.

This translates into a
⌊
v2/4

⌋
upper bound on the number of places and

n
⌊
v2/4

⌋
upper bound on the number of arcs in ReqConc(strict) case, which

may be O(v3) if n (the number of bursts) grows linearly in v.
It should be noted that this bound is rather pessimistic: Edge clique partition

is a very special case of ECC, and moreover only edges and triangles are used in
this partition. Hence one can hope that the bound on arcs could be improved:

– The worst case for Proposition 4 is a balanced bipartite graph, in which case
n = 2 and so the number of arcs is quadratic (and it remains quadratic for
any fixed n).

– When n grows linearly, much larger cliques than edges and triangles can be
formed.

As a result, we hope that a sub-cubic or even a quadratic bound on the number
of arcs can be obtained, and leave this question for future research.

We now generalise Proposition 1 to the unbalanced case, which gives a slightly
better bound than that derived in Sect. 6.

Proposition 5. ecc(Kt1,t2,...,tn) ≤
⌈
2tntn−1 ln v√

2

⌉
where v is the number of

vertices in Kt1,t2,...,tn and n, ti ≥ 2.

Proof. One can pick a random maximal clique in Kt1,t2,...,tn by randomly and
uniformly picking a vertex from each of the n partitions. Suppose that k (to be
chosen appropriately below) such cliques are picked independently.
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Given a random clique as above, an edge (u, v) is covered by it iff both u
and v were picked from their partitions, i.e., the probability that an edge (u, v)
is covered by a random maximal clique is 1/(tutv), where tu and tv are the sizes
of partitions u and v are coming from. Hence the probability that an edge (u, v)
is not covered by any of the k chosen random cliques is

(
1 − 1

tutv

)k

≤ e−k/(tutv) ≤ e−k/tntn−1 ,

where the former inequality follows from 1 − x ≤ e−x for all real x.
There are 1

2

(
v2 − ∑s

i=1 t2i
)

< v2

2 edges in the graph, so the expected number
of edges not covered by any of the k cliques does not exceed

v2

2
e−k/tntn−1 .

We now choose k =
⌈
tntn−1 ln v2

2

⌉
> tntn−1 ln v2

2 (note that the inequality
here is indeed strict because v ≥ 4 and ti ≥ 2 are integers and the natural
logarithm of an integer distinct from 1 is never an integer). Substituting this
value for k into the above formula for the expected number of edges not covered
by any of the k cliques, we have

v2

2
e

−
⌈
tntn−1 ln v2

2

⌉

tntn−1 <
v2

2
e

− tntn−1 ln v2
2

tntn−1 = 1 ,

i.e., it is strictly below 1. Hence, it is possible to choose

k =
⌈
tntn−1 ln

v2

2

⌉
=

⌈
2tntn−1 ln

v√
2

⌉

cliques forming an ECC of Kt1,t2,...,tn . �	

8 A Polynomial Bisimulation-Preserving Translation
from BAs to PNs

In [3], three translations from BAs to PNs were developed. One of them
is linear—but it uses silent ‘fork’ and ‘join’ transitions for each burst and
so preserves only language equivalence but not bisimulation (not even weak
bisimulation)—as illustrated in Fig. 2. The second translation uses ‘join’ (but
not ‘fork’) transitions and the ×-construction. As a result, it preserves weak
bisimulation but is exponential. The third translation uses neither ‘fork’ nor
‘join’ transitions, and preserves strong bisimulation, but it also depends on the
×-construction and thus is exponential (and often larger than the second trans-
lation).

We now show how to eliminate a source of exponential explosion in the lat-
ter construction by replacing the ×-construction by the ECC-based one, thus
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obtaining a polynomial bisimulation-preserving translation from BAs to PNs.
Note that the developed translation is just a simple example of applying the
proposed ECC-based construction rather than the focus of the paper, and there
are more applications, e.g., in our forthcoming paper [7] we develop a polyno-
mial PN translation for arbitrary control flows built from atomic actions using
sequencing, parallel composition, and choice.

The improved translation is illustrated in Fig. 4 and works as follows.

– Each burst B is represented by |B| transitions corresponding to occurrences
of actions in B and labelled by the corresponding actions. (Empty bursts
are interpreted as ε-transitions in FSMs, and so for the purposes of this
translation are replaced by singleton bursts {ε}.) No other transitions are
created by the translation. Then each state s of the BA is considered in turn,
together with its incoming and outgoing bursts.

– For the incoming bursts of s, a set P in
s of new places is created, so that

|P in
s | is the maximal input burst cardinality (and hence of linear size). The

transitions in the input bursts are then connected by transition→place arcs
to the places in P in

s , so that the i-th transition in each burst is connected to
the i-th place in P in

s . Moreover, for bursts with fewer than |P in
s | transitions,

extra arcs are added so that each place in P in
s is connected to exactly one

transition in the burst (e.g., one can connect the first transition in the burst
to all the unmatched places in P in

s ).
– For the outgoing bursts of s, the ReqConc(strict) variant of the ECC-based

construction presented in this paper is applied, yielding a set P out
s of places.

Note that |P out
s | is at most quadratic, and the number of created arcs is at

most cubic (in the total size of all output bursts).
– To enforce the causality between the input and output bursts, a set of places

P
(in,out)
s = P in

s × P out
s is created,3 where each place (pin, pout) ∈ P

(in,out)
s

inherits its incoming arcs from pin and its outgoing arcs from pout. After
that, the places in P in

s and P out
s are removed from the PN, together with

their arcs.
– Finally, if s is the initial state of the BA, all the places in P

(in,out)
s are initially

marked.

Clearly, the resulting PN is strongly bisimilar with the original BA (in fact, its
reachability graph is isomorphic to the FSM expressing the interleaving seman-
tics of BA, which is an even stronger equivalence), and its size is polynomial in
the size of BA, improving thus the exponential translation of [3].

It should be noted that self-loops with non-singleton bursts in BAs may cause
the resulting PN to be unsafe (2-bounded). If this is undesirable, the problem can
be easily avoided by replicating BA states with self-loops before the translation,
as follows. If s is a state with a self-loop, a new state s′ is created that inherits all

3 This aspect of the translation can be improved as explained in our forthcoming paper
[7]. In fact, the number of places in the Petri net in Fig. 4(bottom) can be reduced
from 12 down to 6. However, the given simple construction is already sufficient for
the translation to be polynomial.
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Fig. 4. An example of bisimulation-preserving BA to PN translation: (top-left) A BA
state with its incoming and outgoing bursts; (top-middle) PN translations of the incom-
ing bursts—the maximal incoming burst size is two, so two places are created; (top-
right) PN translations of the outgoing bursts—ecc(K2,2,3) = 6 places are created;
(bottom) combined PN—the places corresponds to pairs in {p1, p2} × {q1, . . . , q6}.

the incoming and outgoing arcs of s, except the self-loops. Then each self-loop
at s labelled by a burst B is replaced by two B-labelled arcs, s → s′ and s′ → s.
This transformation at most doubles the size of the BA.

9 Conclusions

In this paper, we observed that the ×-construction often used for the modelling
of a choice between concurrent bursts is sub-optimal and causes an exponential
explosion in the size of PNs that can be avoided by better modelling. We showed
equivalence between this modelling problem, and the problem of finding an ECC
of a complete multipartite graph. It provided helpful insights into the former
problem as well as linking it to existing results from graph theory. This enabled
us:

– To show that the exponential number of places created by the ×-construction
can be improved down to polynomial (quadratic) even in the worst case, and
down to logarithmic in the best (non-degraded) case.

– To derive quadratic worst case lower and upper bounds on the number of
places.
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– To derive quadratic worst case lower and upper bounds on the number of arcs
in ReqConc case.

– To derive quadratic worst case lower and upper bounds on the number of arcs
in ReqConc(strict) case for the balanced and ‘almost balanced’ cases.

– To derive a quadratic worst case lower bound and a cubic worst case upper
bound on the number of arcs in ReqConc(strict) case, as well as several
upper bounds which in some situation can be better than cubic. There is still
a gap between the quadratic lower and cubic upper bounds, closing which we
leave for future research.

– To obtain a polynomial bisimulation-preserving translation from BAs to PNs,
as an example of applying the proposed construction to improve the expo-
nential translation in [3].

These results eliminate a source of exponential explosion in PNs when mod-
elling control flows and in translations from various formalisms to PNs. We
believe that these results will have wide applications, as they affect the ‘core’
modelling techniques based on PNs.

In our future work, besides improving the upper bounds as explained above,
we plan to lift the proposed ECC-based construction to the case of more general
control flows, and in our forthcoming paper [7] we present a polynomial PN
translation for arbitrary control flows built from atomic actions using sequencing,
parallel composition, and choice.
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Abstract. Composition is a key issue in Petri net modelling. It is a topic
that has been studied for a long time, and that finds practical applica-
tion in many Petri net frameworks and tools. Multiple approaches to com-
position exist, based on place or transition refinement, place superposi-
tion, transition synchronization, or sub-net substitution to cite a few. In
this paper we revisit the peculiarities and technicalities (the ins and outs)
of net composition based on the labelling of the net elements. We shall
express general composition of nets through a combinatorial operator,
that, instantiated with different policies, and completed with operators
for parallel composition, label rewriting and restriction, allows us to define
different forms of place-based and transition-based compositions. The use
of this composition framework for model construction is also examined.
For composition based on multisets of labels, we also provide an algorithm
for the construction of the composed net that uses a modified version of
the Farkas algorithm for the computation of semiflows.

Keywords: Petri net composition · Petri Box Calculus · CCS · CSP

1 Introduction

Composition has attracted the interest of Petri net researchers from the very
early stages of the research in the field. Composition has been studied as an
algebra for building nets from smaller “basic” blocks, as in the seminal work
on Petri Box Calculus (PBC) [6,7] or as a way to compose existing models,
independently from how they have been built (as in many tools). The definition
of a “well-thought” algebra typically allows to exploit the composition also at
the solution level, possibly at the price of some rigidity in the modelling process.
On the other side, composing arbitrary Petri nets provides a lot of flexibility, but
typically it is not as strong in terms of compositional properties and analyses.
When a full algebra, with operators and associated properties is not available,
it is left to the modeller to compose “reasonable” models in a “reasonable” way.

There exist multiple ways to perform composition. Models can be composed
based on place or transition superposition, more rarely on both, and on place,
transition or subnet substitution (also known as refinement). Composition rules
can be based on place and transition names or on labels associated to the net ele-
ments. Especially for what concerns composition based on transitions, different
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interpretations are present: we shall call CCS-like the CCS [26] inspired transi-
tion composition (like in PBC), and CSP-like the CSP [19] inspired transition
superposition (like in [5]).

While net algebras and their operators have been studied in-depth [6,7,23],
less attention has been devoted to the composition of arbitrary nets. The research
questions that motivated our work were to understand the ins and outs of net
composition, and how different forms of composition can be described, and later
implemented, in a single framework, and whether the standard duality principle
of place and transitions carries over in this context. As a result we have defined
a framework for net composition that encompasses different composition rules,
whether based on net elements’ label, set of labels, or multisets of labels, and
whether rooted on place superposition or transition synchronization, or both at
the same time, and considering different form of transition-based synchronization.

In this framework, composition of nets is expressed through a combinatorial
operator, that, instantiated with different policies, allows us to define differ-
ent forms of place-based and transition-based compositions. Composition policy
rules are defined over the labelling of the net elements using multisets of labels.
The framework is completed by operators for parallel composition, label rewrit-
ing and restriction, all implemented in the GreatSPN [1] software. The proposed
framework does not include explicit operators for recursion, nor for place, tran-
sition or subnet substitution/refinement.

We can summarize the paper’s contributions as follows:

– A new framework for Petri net composition in which place- and transition-
based composition are treated uniformly, with a new generic composition
technique, controlled by an input composition policy instance.

– Two composition policies (unary conjugated and n-ary structured, inspired
by CCS, CSP, and PBC) and the algorithms to compute the associated policy
instances.

– Examples of how known operators of other languages and various modelling
patterns can be defined in the proposed framework.

1.1 A Few Examples of Net Composition

Before proceeding to the main part of the paper, it is worth to set the ground
by examining a few examples of net composition. We limit these first examples
to nets in which at each element is associated at most one label.

Figure 1 shows an example of CCS-like parallel composition, which is based
on actions and co-actions (conjugate actions). The co-action of a is named â.
Actions are the labels, and are depicted on top of the transition names. In CCS
when two processes are put in parallel, each action of one process synchronizes
with the co-actions of the other process and vice-versa. The joint action and
co-action leads to a new transition labeled τ , and no further synchronization
can occur. In the figure the label τ is omitted, assuming that each net element
that does not have an associated label is labelled with τ . Moreover each action
and co-action are still executable in the composed process, unless a restriction
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(a) 1 (b) 2 (c) (d) (e) 3 (f) (g)

Fig. 1. CCS-like conjugate synchronization.

is specified. Figure 1(c) shows the composition of N1 with N2: it features a syn-
chronized transition labelled τ , while still allowing both a and â to be executed.
Figure 1(d) shows the composition of N1 with N2 with restriction over a: it fea-
tures only the τ labelled synchronized transition. If the net in Fig. 1(d) is further
composed with N3 no synchronization is possible, resulting in the net in Fig. 1(f).

If instead N1 and N3 are composed first, since all transitions are labelled
with a, no synchronization occurs. If the resulting net is then composed with
N2, it results in the net in Fig. 1(g), with U1 composing with both T1 and V1.
From a modelling point of view this can be seen as two processes (N1 and N3)
that access at their will, but in mutual exclusion, the same resource, where label
a can be interpreted as “providing” a resource and â as “requesting” it.

(a) 1 (b) 2 (c) (d) 3 (e)

Fig. 2. CSP-like synchronization.

Figure 2 shows an example of a CSP-like parallel composition on a synchro-
nization set S made of the single action a. In CSP there is no notion of co-actions.
When two processes synchronize over S, each action a ∈ S of one process syn-
chronizes with every other action a in the other process. Actions that are not
in S can still be freely executed. There is no restriction on the execution of
actions that are not in S. The transition that represents the synchronization
is also labelled with a, so that further synchronization can occur, permitting
a straightforward implementation of the synchronization among any number of
processes (multi-way synchronization).

Figure 2(c) is the result of the composition of N1 and N2 over the synchro-
nization set S = {a}. All transitions labeled with a from N1 (i.e. T0) are com-
posed with every transition labeled with a from N2 (i.e. T1 and T2), resulting
in two new transitions a T0+T1 and a T0+T2. Once synchronized, the merged
transitions T0, T1 and T2 are not preserved, and do not appear in (c). When (c)
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is composed with N3 resulting in net (e) that can be interpreted as a multi-way
synchronization, modelling the case in which three processes need to reach a
shared barrier, but may choose two different ways to do so.

From a modelling point of view also the use of CSP-like synchronization may
require some cautions. With the same example of Fig. 2, if we interpret N1 as
a resource, and N2 as two requests for that resource, than the net in Fig. 2(c)
correctly represents the acquisition of the resource. If the obtained model is later
composed with a net like N3, which feature another request of the resource,
the resulting model, shown again in Fig. 2(e), does not correctly represent the
resource acquisition. Indeed in this case the order of composition is important:
to get the intended behaviour all resource requests have to be composed first
(by composing N2 with N3 with an empty synchronization set) and then they
may be composed with the resource model of N1.

(a) N1 (b) 2
(c) (d) Nbis

1 (e)

Fig. 3. Place-based composition.

Figure 3 shows an example of place composition. The net in Fig. 3(c) is the
result of a simple sequential composition of N1 and N2: places are labelled as
enter, exit, or τ , and exit places of net N1 are superposed to the enter places of
net N2. The net in Fig. 3(e) is instead the result of the composition of net N bis

1

with net N2: the two exit places combined with the two enter places produce
four places in the resulting net, which induces a synchronization over U0 and U1

among two “control flows” (the one coming through P1 and the one from P2)
that are in mutual exclusion in N bis

1 , leading to a deadlock. This is somehow
counter-intuitive and shows that the PBC choice of having only two labels for
places (enter, exit) may not be always adequate from a modelling point of view.

2 Previous Work on Composition

This section reviews some of the most relevant net algebras and examine which
composition support is provided by a number of well-known Petri net tools. This
review is certainly non-exhaustive, but it is meant to overview the large variety
of composition rules present in the literature and provide pointers to them. Note
that most of the literature presents nonuniform criteria to compose places and
transitions. The framework proposed in this paper (Sect. 4) will follow instead
the classical duality of Petri nets, and place- and transition-based composition
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will be treated using uniform rules. Since most net composition is based on labels,
the type of labelling function is also a relevant aspect.

2.1 Net Algebras and Composition Frameworks

An early proposal for an algebra of Petri nets was provided in [23]. Starting from
simple nets (a sequence of “head” place - transition - “tail” place), larger nets
are generated through tail over head place-based composition operators. The
list of operators includes superposition, merging, joining, exclusion, and other
operations, with a focus on preserving structure in the composition formula.
Transition-based refinement (a transition is substituted by an expression of nets)
is also defined.

An early proposal for CSP-like transition synchronization can be found in
[13].

Petri Box Calculus (PBC from now on) is a complete algebra that features
operators inspired by those found in CCS, but operates on a specific class of
Petri nets known as Petri boxes (nets where places are automatically labeled
as enter, exit or internal). For what concerns basic composition mechanisms as
for the scope of this paper, PBC performs various kinds of transition and place
compositions. Transition synchronization is based on actions and co-actions.
Transitions can be freely labeled with a multiset of labels. Places instead may
only have a single label among {enter, exit}, as already mentioned.

Place and transition composition operators are separated. Places can be com-
posed as sequences or choices. Transitions are composed by synchronization,
which is a unary operator. Performing N sy{a} synchronizes label a over net N ,
which leads to the addition of a new transition for each pair of a, â transitions
that can be “merged”. Unary synchronization can also lead to unexpected con-
sequences, see [7, p. 23]. Multiple nets can be composed by parallel composition,
followed by a synchronization.

In PBC transition labels are multisets, which is needed to ensure that the
synchronization of multiple labels is order-independent. This choice is relevant
(see [7, p. 21]), and for this reason in this paper we also consider multisets of
labels for each net element.

A limitation of PBC is that it does not have an explicit “multi-handshake”
(or multi-way) synchronization. This type of synchronization occurs in practice
[7, Sec. 2.8 and Chap. 9], for example every time a process needs to perform
atomic operations on multiple variables. The box algebra [6, Sec. 4] is a general-
ization of PBC, a more abstract and general algebra that allows for multi-way
synchronization, which facilitate the definition of a box algebra semantics of a
process algebra like TCSP [18], as illustrated in [7, Sec. 8.2.2]. A second lim-
itation of PBC is that its algorithm for the computation of the synchronized
transitions may not terminate, generating infinite synchronizations [6, Sec. 4.5].

The work in [2] proposes a formal composition model for synchronizing mul-
tilabeled transitions in a similar way to PBC but, unlike PBC, this approach is
guaranteed to always terminate. This synchronization is shown to be equivalent
to the semiflows computation problem (i.e. finding the anullers of a matrix).
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The use of semiflows, however, hides some technical details related to minimal-
ity, which result in generating only a subset of the possible interactions. We shall
review this approach to overcome its limits in Sect. 5.1.

The Petri net standard PNML [29] provides support for multi-page nets (files
containing multiple nets), but does not include a compositional specification. An
examination of how to add modules in PNML, and how to construct nets from
instances of such modules is given in [22], in an high level Petri net context.

Driving the modeller in the use of composition to build large models of
computing systems was the objective of the PSR methodology [14], that orga-
nizes models into three layers (Processes, Services, and Resources). Each layer is
defined in isolation, and then composed through CSP-like transition superposi-
tion. Transitions may have a set of associated labels, but in a well-defined man-
ner: only single labels in the Resource layer (to model the “offer” of a resource),
sets of labels for the Service layer (to model a service that acquires two or more
resources at the same time) and single labels for the Process layer. Multisets of
labels are not allowed, which means, for example, that a service cannot acquire
two copies of the same resource at the same time.

Composition has also been considered for colored and high level nets: here
the additional complexity is to appropriately define how to deal with all the
extra information associated to places, transitions and arcs. High-level Petri net
composition using the BPN2 framework was introduced in [8]. Such composition
is shown to be consistent with the unfolding and the operators of PBC. In
CPN, a model [21] can be organised as a set of hierarchically related modules.
“Substitution” transitions are replaced by subnets with well specified place-
oriented input and output ports. Component aggregation of CPNs is described in
[20], based on communicating modules. Hierarchical composition of Generalized
Colored Stochastic Petri Nets (GCSPN) was first defined in [9], while transition
superposition for the colored class of well-formed nets [10] was defined in [4]. A
colored extension of the PSR methodology is given in [4].

2.2 Composition in Tools

Many tools supports some form of compositionality. Snoopy [17] implements
hierarchical nets through P/T refinements. Nodes can be abstracted by a macro
node, and a fine/coarse hierarchy can be visualized [16].

A CPN model in the CPN-Tools framework [27] can be defined hierarchically
using pages and subpages [21]. Special substitution transitions connect super-
pages with subpages, and special tags (in/out) in the subpage allow to define
the inner behaviour.

In Möebius [11] submodels are composed through superposition of places
(shared state variables) [24]. It has two state-sharing formalisms: Replicate/Join
composition and Graph composition. Fused places/transition have the same
name (that must be unique in every composed model), hence it reduces to a
simple merge of the same-name elements, and no complex combination of mul-
tiple net elements is possible.
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In the ITS-tools framework [28] multiple GAL (Guarded Action Language)
instances can be composed over synchronized events, but not over shared vari-
ables [25]. Events are labeled with symbols which guide the synchronization [3].

The GreatSPN [1] tool supports binary composition over labelled places and
transitions, with some restricted form of multiset labelling and some support for
colored net composition, following the rules defined in [4,5].

3 Definitions

Let Σ be a set of tags (also called symbols, actions, etc.). Tags will be used
to label the places and transitions of a Petri net. Since we also label places,
we prefer the use of the term tag instead of the more broadly used term action.
Given a tag a ∈ Σ, let â be its conjugate (or complementary) tag. By convention
â �= a and ˆ̂a = a. Let Σ̂ = Σ ∪ {â | ∀ a ∈ Σ} be the set of all tags including
their conjugated counterparts and M(Σ̂) be the set of all natural multisets of
tags (including their conjugates). Elements of M(Σ̂) are indicated by formal
sums and τ denotes the empty multiset, so, given the set of tags Σ = {a, b, c},
a + 2 · â + 2b, â + c and τ are examples of multisets of tags. A multiset of tags is
canonical if it does not include both a tag and its conjugate (therefore a+2·â+2b
is not canonical).

Given σ ∈ M(Σ̂) and A ⊆ Σ, we indicate with σ \ A, the multiset obtained
by removing all tags in A, and their conjugates. Notation σ[a] denotes the mul-
tiplicity of a in σ.

Definition 1 (Labeled Petri net). It is a tuple N = 〈P, T, I,O,m0, lab〉,
where P is the set of places, T is the set of transitions, I : P × T → N is the
input function, O : T × P → N is the output function, m0 : P → N is the initial
marking, and lab : (P ∪ T ) → M(Σ̂) is the net element labeling function.

We use the term net element to identify elements in (P ∪ T ) and label (of
a net element) to indicate the multiset of tags associated to the net element by
the labelling function lab. We consider only labels that are canonical. Let Σ̂P

and Σ̂T be the subsets of Σ̂ that appear on the labels of the place set P and on
the transition set T , respectively. With M(P ) we denote the set of the natural
multisets of places, which can be represented as a weighted sum of elements of
P , like P1 + 3·P4 + P5. Similarly M(T ) is used for the transitions.

For notational convenience, we also use a matrix-oriented representation of a
Petri net. Let I : |P | × |T | and O : |T | × |P | be the input and the output matrix
of N , respectively, with I[p, t] = I(p, t) and O[p, t] = O(p, t). Let LP : |P |× |ΣP |
be the place labeling matrix, where LP[p, a] is the multiplicity of tag a in lab(p)
and it is negative if a appears conjugated, positive otherwise. Similarly, let LT :
|T | × |ΣT | be the transition labeling matrix. A full example of the net matrices
will be given at the end of Sect. 4.

Definition 2 (Semiflows). Given an integer matrix A, a flow f is an integer
vector s.t. f · A = 0, i.e. f is a left anuller of A. A semiflow is a non-negative
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flow. The support [[f ]] of a flow f is the set of indices of the non-zero values, i.e.
[[f ]] = {i | f [i] �= 0}. A semiflow is canonical iff the g.c.d. of its non-zero entries
is 1. A semiflow is minimal iff it is canonical and its support does not strictly
contain the support of any other semiflow of A. The set of all minimal semiflows
is finite and unique, and let F be the matrix of the minimal semiflows [12, p.
82].

4 A Framework for Net Composition

We proceed by defining a framework for composing labelled Petri nets that allows
us to define, among others, the cases discussed in Sect. 1. We define the basic
operations for net composition in terms of four basic operations. Three oper-
ations perform basic transformations on labels (tag rewriting, restriction) and
merge multiple nets together without combining the elements (parallel composi-
tion). The fourth operation (combinatorial composition) combines net elements
together by applying a policy.

Tag Rewriting. A tag rewriting function is a function λ : Σ̂ → Σ̂ that transforms
tags. By extension, given a multiset of tags φ = w1 · a1 + . . . + wn · an, let λ(φ)
be the canonical multiset resulting from the application of λ to every tag, i.e.
the canonical form of w1 · λ(a1) + . . . + wn · λ(an). We define the tag rewriting
operation on a net N , denoted as λ(N ), as an operation that builds a new net
N ′ where labels have been rewritten, i.e. lab′ = λ ◦ lab.

Parallel Composition. This operation juxtaposes multiple independent nets
together into a single net. Given N1 . . . Nn nets, let N1 ‖ . . . ‖ Nn be a new
net N ′ defined as:

– P ′ = ∪n
i=1Pi and T ′ = ∪n

i=1Ti;
– I ′(p′, t′) = Iθ(p′)(p′, t′) if θ(p′) = θ(t′), and 0 otherwise;
– O′(t′, p′) = Iθ(p′)(t′, p′) if θ(p′) = θ(t′), and 0 otherwise;
– m′

0(p
′) = (m0)θ(p′)(p′);

– lab′(p′) = labθ(p′)(p′) and lab′(t′) = labθ(t′)(t′);

where the function θ : P × T → N is defined to associate each P/T elements of
N to the index of the original net Ni.

Restriction. This operation removes from a net N all elements whose label
includes any of the tags in the set of restriction tags A ⊆ Σ or their conjugates.
The new net is indicated as N ′ = N \ A and it is defined by:

– P ′ =
{
p ∈ P | ∀ a ∈ A : lab(p)[a] = lab(p)[â] = 0

}
;

– T ′ =
{
t ∈ T | ∀ a ∈ A : lab(t)[a] = lab(t)[â] = 0

}
;

– I ′(p, t) = I(p, t) and O′(t, p) = O(t, p), for all p ∈ P ′, t ∈ T ′;
– m′

0(p) = m0(p), for all p ∈ P ′.
– lab′(x) = lab(x), for all x ∈ P ′ ∪ T ′.
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Combinatorial Composition. This operation alters the behaviour of a net N
by defining a new set of places and transitions made as combinations of the
net elements of the original net. Each new place (resp. transition) that is being
composed is identified by a multiset of composing places (resp. transitions ) from
the original net. We divide the net composition into two tasks:

1. Identifying which multisets of places (transitions) will be composed together
to form each new place (transition). These are described by a composition
instance π, which can be generated by composition policy (defined in the
next section).

2. Defining a new net with the new net elements, connected according to a
composition of the original input and output functions.

A composition instance π is a pair π = 〈CP , CT 〉, with CP ⊆ M(P ) × M(Σ̂P )
and CT ⊆ M(T ) × M(Σ̂T ). We use the notation 〈φ, σ〉 to denote tuples in CP ,
and 〈ψ, ς〉 to denote tuples in CT .

Given a net N and a composition instance π, the combined net N ′ = N ∗ π
is obtained in the following way. Each tuple 〈φ, σ〉 ∈ CP defines a new place
p′ of N ′, s.t. the multiset φ tells the weighted combination of places of N that
are combined together to form p′, while σ is the label of p′ Transitions follow a
similar schema from CT .

The combined net N ′ is defined as

– P ′ = {new place p′ for each 〈φ, σ〉 ∈ CP };
– T ′ = {new transition t′ for each 〈ψ, ς〉 ∈ CT };
– I ′(p′, t′) =

∑
p∈P

∑
t∈T φp′ [p] · ψt′ [t] · I(p, t);

– O′(p′, t′) =
∑

p∈P

∑
t∈T φp′ [p] · ψt′ [t] · O(p, t);

– m′
0(p

′) =
∑

p∈P φp′ [p] · m0(p);
– lab(p′) = σp′ and lab(t′) = ςt′ .

with 〈φp′ , σp′〉 and 〈ψt′ , ςt′〉 the tuples that originated p′ and t′, respectively.
Figure 4 shows an example of a composed net, where π is

CP =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈P0, τ〉,
〈P1, τ〉,
〈P2, e〉,
〈P3, 2ê〉,

〈{2 · P2 + P3}, τ〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, CT =

⎧
⎨

⎩

〈T0, a + b + c〉,
〈T1, â + b̂ + 2d〉,
〈T0 + T1, c + 2d〉

⎫
⎬

⎭

i.e. two new net elements are added, 2 ·P2+P3 and T0+T1, and all the other net
elements are preserved. In the figure, drawn with the GreatSPN tool, multisets
of tags are represented as tags separated by bars, so for instance â + b̂ + 2d is
depicted as â|̂b|2d. Observe that the new arcs connecting the new nodes have
the sum of the multiplicities. For instance, O(T0+T1, 2 · P2+P3) = 3 because it
is 2 · O(T0, P2) + O(T1, P3).

Alternatively, we can view the combinatorial composition as a matrix opera-
tion over the net elements. Let FP be a |P ′|× |P | matrix that encodes the places
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(a) Net (b) Net ′ = π

Fig. 4. Example of combinatorial composition for both places and transitions.

in CP and L′
P be a |P ′| × |ΣP | matrix that encodes the place labels, where con-

jugated labels are represented as negative values. Thus [FP|L′
P] encodes CP in

matrix form. Similarly, FT : |T ′| × |T | and L′
T : |T ′| × |ΣT | are used for CT . For

the example of Fig. 4, we have:

[FP|L′
P] =

P0 P1 P2 P3 e
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 −2
0 0 2 1 0

, [FT|L′
T] =

T0 T1 a b c d
[ ]1 0 1 1 1 0

0 1 −1 −1 0 2
1 1 0 0 1 2

Then, we can write the net composition in terms of matrix operations:

– The input matrix is I′ = FP × I × FT
T ;

– The output matrix is O′ = FT × O × FT
P ;

– The initial marking m′
0 = FP × m0.

If we indicate with Id the identity matrix, whenever [Id|LP] is a submatrix
of [FP|L′

P] under some row permutation, the transformation is a place extension,
since all places of N are preserved in N ′. A similar notion of transition extension
can be defined on [FT|L′

T].

5 Composition Policies

We now define two composition policies to generate composition instances
according to two paradigms inspired by PBC and of CSP.

5.1 Unary Conjugated Composition

We start by considering a composition policy for places and transitions which is
based on the merging of conjugated tags, as in PBC transition synchronization.
Let A ⊆ Σ be the set of tags considered for the operation. The PBC transition
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synchronization is summarized by the following intuitive principle (adapted from
[6, sec. 4.5]), by which, for every a ∈ A:

Repeatedly choose a, â–pairs of labeled net elements, and
each time create a new composed net element from them.

Label this new element with the sum of the labels.
(1)

The idea is to add to the original net new elements until all combinations that
reduce the a, â–pairs have been enumerated. This implies that (1) enumerates
both the combinations that reach a τ -label, as well as all intermediate steps
which may still have tags of Σ.

(a) 1 (b) (c) 2 (d)

Fig. 5. Multitag conjugate composition and infinite PBC synchronization.

Figure 5(b) shows an example of the application of (1) to N1: T1 and U1 are
retained, synchronization of T1 and U1 leads to transition T1 +U1, labelled with
â, which can be synchronized with T1, leading to transition 2 · T1 + U1, labelled
τ . There are no other composition of transitions that satisfies (1).

Note that this approach, which is the one employed by PBC for transition
composition [6, Sec. 4.5], may repeatedly choose the same transition as a pair
if it is labelled with both a tag a and its conjugate â. Figure 5(d) shows an
example of such PBC synchronization, applied to N2. In that case, transition
T1 is composed infinitely many times with itself, since each composition adds
the labels a + â and then removes a single pair of a, â tags. Such scenario may
happen because PBC labels may be multisets of tags that are not canonical.
That’s why we restrict our work to canonical labels.

The computation of all transitions pairs to be added can be non trivial,
and Anisimov proposes in [2] an algorithm that is based on the computation
of minimal P/T-semiflows. The Anisimov algorithm works on transitions with
canonical labels, and it is based on the Farkas algorithm [12,15] for computing
the minimal P/T-semiflows: therefore it is proved to always terminate. The
intuition is that the goal of finding which combination of net elements reduces
the sum of their labels to τ is equivalent to finding a linear combinations f of
labels that cancel the tags in A, i.e. f · L = 0. Vector f is, by Definition 2, a
semiflow of L. The Anisimov algorithm although, by considering only minimal
semiflows, does not correspond exactly to (1) because:
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– compositions that result in a transition with a label different from τ , like
transition T1 + U1 in Fig. 5(b), are not generated;

– the algorithm does not either generates all composed transitions labelled with
τ . Indeed the algorithm only considers minimal semi-flows, while these tran-
sitions corresponds to semi-flows that are non-minimal, although canonical
(as explained later with reference to the example in Fig. 6).

Algorithm 1. Modified Farkas algorithm for unary conjugated composition.
1: procedure ConjugateCompSet(L, A) // L is a N × M matrix
2: [D|A] ← [Id|L]
3: for j between 1 and M do
4: if j corresponds to a column of A then
5: for each r1 �= r2 with A[r1, j] > 0 ∧ A[r2, j] < 0 do
6: [d|a] = [D|A][r1, ·] + [D|A][r2, ·]
7: [d|a] ← [d|a] / gcd([d|a])
8: if [d|a] does not appear in [D|A] then
9: [D|A] ← AppendRows([D|A], [d|a])

10: end if
11: end for
12: end if
13: end for
14: return [D|A]
15: end procedure

We therefore propose a modified Farkas algorithm for determining the
instance of a composition policy that follows (1) and that overcomes the lim-
itations of the Anisimov algorithm listed above. The pseudocode is shown in
Algorithm 1. To compute the composition instance π, the unary conjugated com-
position policy extends both places and transitions simultaneously. To do so, the
method is used twice, once for the places and once for the transitions, i.e.

[FP|L′
P] ← ConjugateCompSetLP, A

[FT|L′
T] ← ConjugateCompSetLT, A

Assume that we want to compute the composition of transitions. The method
takes in input a |T | × |ΣT | matrix L, where L[t, s] is the multiplicity of tag s
in label lab(t), and ΣT is the set of tags appearing on transitions. Conjugated
tags appear as negative numbers in L. The objective of Algorithm 1 is to find all
linear combinations of labels that combine a–â pairs, until all τ combinations
are generated. The loop at lines 3–13 considers one tag at a time. The tags in
A are used to generate the combination rows. The inner loop 5–11 identifies
all candidate combinations of net elements with a–â pairs in their labels. A
combination is obtained by summing row r1 with r2, assuming that r1 has tag
a and r2 has tag â. The algorithm generates all such combinations until a fixed
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point is reached. Convergence is guaranteed since each new row [d|a] generated
at line 6 is such that |a[j]| < |A[r1, j]| and |a[j]| < |A[r2, j]|, and the algorithm
stops when all possible rows with a = 0 are generated. However, Algorithm 1
may require an exponential number of steps to terminate.

While generating all the combinations that reduce the tag pairs, the algo-
rithm may reach a point where all A–tags are zeroed for a row. In that case,
the vector d for that row is a semiflow of the initial system. Unlike the Farkas
algorithm, there is no check of minimality of such semiflows. Therefore all canon-
ical semiflows are found. A second difference from the Farkas algorithm is the
selection of the candidate vector at line 6. For semiflow computation, the vector
[d|a] would be computed as:

m2 · [D|A][r1, ·] + m1 · [D|A][r2, ·], m1 = |A[r1, j]|, m2 = |A[r2, j]|

which would zero the value of a[j]. By not multiplying by m1 and m2, all inter-
mediate steps to reach the zero for a[j] are stored as rows in [D|A]. Each inter-
mediate step can be seen as a new pair of a, â tags being cancelled from two
groups of net elements, therefore implementing the principle (1).

Consider the net in Fig. 6(a) and the set A = {a, b}. The initial [Id|L] matrix
for transitions is shown in (2a). Row operations combine progressively row pairs,
until a fixpoint is reached. All rows are kept.

T1 T2 T3 T4 a b
⎡

⎢
⎣

⎤

⎥
⎦

row1 : 1 0 0 0 2 0
row2 : 0 1 0 0 0 −1
row3 : 0 0 1 0 −1 1
row4 : 0 0 0 1 −1 0

(2a) Matrix [Id|L]

T1 T2 T3 T4 a b
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

row5 : 1 0 1 0 1 1
row6 : 1 0 0 1 1 0
row7 : 1 0 2 0 0 2
row8 : 1 0 1 1 0 1
row9 : 1 0 0 2 0 0 minimal s.f.

row10 : 0 1 1 0 −1 0
row11 : 1 1 1 0 1 0
row12 : 1 1 2 0 0 1
row13 : 1 1 1 1 0 0 s.f.

row14 : 1 2 2 0 0 0 minimal s.f.

(2b) Rows appended to matrix [D|A]

(2)

The final matrix [D|A] is made by all the initial rows of (2a) together with the
rows in (2b), which contain the canonical semiflows (minimal and not), if they
exists, and all the intermediate pairwise combinations.

The Anisimov algorithm generates the composition elements based exclu-
sively on the minimal semiflows, i.e. Fig. 6(b).1 The full unary conjugated com-
position policy, denoted as N ∗C A with A = {a, b}, corresponds to generating
the 14 transitions resulting from the rows of D in (2b). Each row [d|a] results

1 In (2b) row13 is not minimal because its support (all four transitions) contains the
supports of both row9 and row14.
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(a) Net (b) Anisimov synchronization (c) Net ( C A) A

Fig. 6. Unary conjugated composition of N , with A = {a, b}.

in a tuple 〈ψ, ς〉 ∈ CT . Note that every initial transition is also preserved, since
they appear as rows in D. If we further restrict to A, for sake of readability,
we obtain the net (N ∗C A) \ A depicted in Fig. 6(c), where only the elements
corresponding to semiflows are added.

The unary conjugated composition policy is a place/transition extension,
since new net elements are added and no net element is removed.

5.2 N-Ary Structured Composition

The second composition policy that we consider is defined over a parallel com-
position of n > 1 nets N = (N1 ‖ . . . ‖ Nn). Again, a set of tags A ⊆ Σ is
defined to guide the policy. For each tag a ∈ A, new net elements result from
composing one net element from every subnet N1 . . . Nn that is labeled with a.
For this policy there is no notion of conjugated tags. Moreover, the resulting
multiplicity is 1 independently of the input tag multiplicities. When focusing on
transitions only, this composition is similar to the parallel composition of CSP
[19].

The sets CP and CT are computed independently. Consider the problem of
identifying the places that will be composed together. For each tag a ∈ A, for
every tuple of places 〈p1, . . . pn〉 with ∀ i ≥ n : θ(pi) = i ∧ a ∈ lab(pi), then the
tuple 〈φ, σ〉 belongs to CP , with:

– φ = p1 + . . . + pn, with all weights being one;
– σ = {a} +

∑n
i=1

(
lab(pi) \ A

)
.

An equivalent definition applies for the transitions.
Algorithm 2 shows the pseudo-code of the structured composition policy. To

compute CP and CT , the algorithm is applied twice, i.e.

[FP|L′
P] ← StructuredCompSetLP, A, θ

[FT|L′
T] ← StructuredCompSetLT, A, θ

We define two variations of the structured composition:
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Algorithm 2. N-Ary structured composition matrix.
1: procedure StructuredCompSet(L, A, θ) // L is a N × M matrix
2: [F|L′] ← [Id|L]
3: for each tag a ∈ A do
4: for each tuple 〈p1, . . . , pn〉 with θ(pi) = i do
5: φ = p1 + . . . + pn

6: σ ← {a} +
∑n

i=1

(
lab(pi) \ A

)

7: [F|L′] ← AppendRows([F|L′], vector form of [φ|σ])
8: end for
9: end for

10: return [F|L′]
11: end procedure

(a) N1 (b) N2 (c) ( 1 2) S A (d) ( 1 2) R A

Fig. 7. Structured composition example, with A = {a, b}.

– Structured extension: (N1 ‖ . . . ‖ Nn) ∗S A extends N with the new elements.
All existing net elements are kept.

– Restricted structured composition: (N1 ‖ . . . ‖ Nn) ∗R A first extends N with
the new elements, and then removes all the elements of (N1 ‖ . . . ‖ Nn) that
were used to generate the new elements.

Figure 7 shows an example of both a structured and a restricted extensions
of a parallel composition of two nets, with A = {a, b}. Only transitions are
composed in this example. Four new transitions are added to CT , corresponding
to 〈T0 + T3, a〉, 〈T1 + T3, a〉, 〈T1 + T2, b + c〉, and 〈T1 + T3, b〉. Observe that T1+
T3 is composed twice, once for tag a and once for tag b. The restricted structured
composition results in Fig. 7(d).

Notes on Operations. Tag rewriting and restriction could also be defined as
composition policies.

6 Modelling Using the Composition Framework

We now focus on the usefulness of the framework for generating new models
from existing ones.
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6.1 Place-Based Composition

(a) Net N1

(b) Net 2
(c) Net N1;N2

Fig. 8. Sequence as:
(N1 ‖ λenter→̂exit(N2)

) ∗C A \ A, with A = {exit}.

Place Sequence. Sequential composition is a typical composition pattern found
in several algebras (CCS, CSP, PBC, and others). In the following we show how
to use the framework to provide the sequence operator of PBC, that is based on
the notion of entry and exit places. Assume a net N1 has some places labeled
with a tag exit and a net N2 has some places labeled as enter. We can connect
the exit places of N1 with the enter places of N2 by means of tag rewriting
and combinatorial composition. Both the unary conjugated composition and
the n-ary structured composition can be adopted. Figure 8 shows an example of
sequential composition on places performed using unary conjugated composition,
that leads to the formula:

(N1 ‖ λenter→̂exit(N2)
) ∗C A\A, with A = {exit}. Tag

rewriting is particularly useful in these situations, since it allows to identify pairs
of conjugated tags that do not need to have the same name in the operand nets.

(a) Net 1 (b) Net 2 (c) Net 1 2

Fig. 9. Choice as (N1 ‖ N2) ∗R A, with A = {enter, exit}.

Place Choice. Another common compositional pattern is choice. Again, our
example consider the choice operator of PBC. In this setting, enter places of
the two nets are multiplied together, the same for exit places, to split and then
merge the control flows of the nets. Figure 9 shows an example of choice compo-
sition, taken from [6, Fig. 4]. The resulting net is obtained using restricted n-ary
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structured composition on the two tags {enter, exit} leading to (N1 ‖ N2) ∗R A,
with A = {enter, exit}. Note that each place in the final net results from a com-
position of two places from each of the operand nets. A similar behaviour could
also have been obtained using the unary conjugated composition, provided that
tags are appropriately conjugated.

(a) N1

(b) N2

(c) (N1‖N2) ∗C A \ A,
A = {a, b}

(d) (N1‖N2) ∗C A \ A,
A = full

(e) (N1‖N2) ∗R A,
A = a, b

Fig. 10. Examples of place composition.

General Place Composition. Figure 10 shows different types of place-based com-
position for two nets N1 and N2, that induce a different interpretation of the
multiset of tags associated to places. Indeed using different type of tags and dif-
ferent composition policies we can achieve rather diverse interpretations: this can
be an advantage, but it requires a certain modelling expertise to appropriately
master the composition process. Nets N1 and N2 in Fig. 10(a) and Fig. 10(b)
can be interpreted as a very simple consumer and producer models. The net
in Fig. 10(c) is obtained through unary conjugated composition, followed by
restriction, on the set A = {a, b}. In formulae: (N1‖N2) ∗C A \ A. In this case
the modelling objective was that the object place can contain elements coming
from the places partA or partB and the composition ensures that any consumed
object is actually consuming one part, either A or B. After composition, the
individual identity (part A or part B) is lost. The tag a + b of the place object
of N1 can then be interpreted in a or -logic (either a or b).

If conjugated composition is performed instead on the full tag, which is
included in the labels of the partA and partB places of N2, the identity of the
two parts is kept in the composed net as two distinct places object+partA and
object+partB, shown in Fig. 10(d). Consuming an object will now require con-
suming both a part A and a part B. In this way, the tag full interprets the
composition using an and -logic (one token from every full place).

When place composition is realized through the n-ary structured composition
policy, the result is similar to the and -logic. If composition is performed on tags
{a, b}, each tag will result in an individual place, as in Fig. 10(e). Similarly, if
composition is performed on {full}, this will again lead to two places. To have
a 3-way composition resulting in a single place, the net N2 has to be separated
further into two subnets, one for part A and one for part B, such that each
subnet has only a single place tagged with full.
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6.2 Transition-Based Composition

Composition of concurrent events as a composition of the transitions sharing
the same tags (synchronization) is an important feature of any net algebra. We
shall first consider how the proposed framework can express the CCS-like and
CSP-like parallel operators, through which synchronization can be achieved, to
then show how to express multi-way synchronization in two different forms.

(a) 1 (b) 2 (c) ( 1 2) R a (d) bis
2 (e) ( 1

bis
2 ) C Σ

Fig. 11. CSP and CCS parallel operators.

CSP and CCS Parallel Operators. Nets N1 and N2 in Fig. 11 show two simple
processes, let’s say P and Q, that can both execute a. The net equivalent to the
CSP process P ‖{a} Q (parallel composition of P and Q with synchronization
over action a) can be obtained as (N1 ‖ N2) ∗R{a}, and it is depicted in Fig. 11(c).

If we now consider for process Q the net N bis
2 in Fig. 11(d), the net equiva-

lent to the CCS process P ‖ Q (parallel composition of P and Q over conjugate
actions) can be obtained as (N1 ‖ N2) ∗C {Σ}, and it is depicted in Fig. 11(e).
Note that the composition is over the whole set Σ of actions (tags) as in CCS (in
its original form): there is no way to limit the set of actions on which synchro-
nization takes place and the resulting net can correctly execute independently
also action a and â, while the synchronized action is labelled τ . Moreover the
two actions a and â are still executable.

Multi-way Synchronization requires a different approach, depending on whether
we have a single common tag or conjugate tags. In the former case we can use
structured composition, while in the latter one we need to use multiple tags.

Figure 12 shows how to realize a three-way synchronization with a single
common tag. The three operand nets N1, N2 and N3 all have a transition with
tag a. Restricted structured composition merges these transitions into a single
transition, that is also connected to all input and output places.
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(a) Net 1 (b) Net 2 (c) Net 3 (d) ( 1 2 3) R a

Fig. 12. Three-way synchronization using structured composition.

(a) N1 (b) N2 (c) N3 (d) (N1‖N2‖N3) ∗C A \A,
with A = {a, b}

(e)
(

(N1‖N2) ∗R{a})

‖N3 ∗R{b}

Fig. 13. Three-way synchronization using conjugated tags.

Figure 13 shows a three-way synchronization realized using conjugate tags.
Nets N1, N2, and N3 depicts the component of a system in which a token
is placed into place received only when the two sensors’ values are read in a
single moment. The synchronization can be achieved through unary conjugated
composition (merging all tags), as in Fig. 13(d), or by subsequently merging one
tag after the other as multiple nested restricted structured composition, as in
Fig. 13(e).

Multitag Synchronization. The other important aspect that is covered by the
composition over multitags is that all transitions that fully complement the
synchronized tags are generated (if possible). Figure 6(c) is an example of this
behaviour. In this way, complex dependencies among the tags can be expressed.
An example of application is a transition that needs to acquire n resources of
type a, that are provided and locked by another transition with a â transition.
The resulting synchronization consists in a single acquisition and n lock events
into a single transition. When complementarity of the tags is implicit in the
structure of the net, structured composition is also an option, as in Fig. 7(c).

Prototype. The proposed framework has been implemented as a prototype inside
the GreatSPN software (https://github.com/greatspn/SOURCES). All figures used
in the paper were generated using the proposed composition framework, with the
exception of Fig. 5(d, e), that was generated manually. The framework is devel-
oped inside the graphical editor, where multiple nets can be composed together
using the unary conjugated composition, or the n-ary structured composition.
Restriction is optional and can be applied after each composition.

https://github.com/greatspn/SOURCES
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(1)

(2)

(3)

(4)

(5)

Fig. 14. Prototype implemented inside the GreatSPN graphical interface.

Figure 14 shows how the composition interface looks like in the tool. Compo-
sition pages are special subnets, and are defined following this schema. In (1) the
composed nets are selected, and optional tag rewriting rules are specified (2).
The composition tags for places and transitions are then selected (3), together
with the composition policy, the optional tag restriction and other parameters
(4). The composed net is then shown in the central pane (5).

7 Conclusions

In this paper we propose a novel framework for net composition that is focused on
the simultaneous joint combination of places and transitions into a single policy-
based combinatorial operator. Multiple policies can be defined for composition,
and we provided a CCS-like unary conjugated composition, as well as a CSP-like
n-ary structured composition. Conjugated composition is based on the intuitions
of [2], but it is modified to follow the synchronization rules of the Petri box
calculus. We have reviewed several common cases for Petri net composition and
various modeling patterns, showing the effectiveness of the proposed approach
in modeling terms. The operators have been defined in net syntactical terms.
While this definition is enough to proceed, for example, to an implementation, it
lacks a formal semantic interpretation of the composed net behaviour in terms of
the possible executions of the composed nets. While for transition composition
defined by the policies of Sect. 5.1 and 5.2 this may be an attainable goal, it is
less clear how this can be achieved when the policies are applied to place-based
composition, a topic that has received less attention in the literature and that
certainly deserves more investigation.



298 E. G. Amparore and S. Donatelli

References

1. Amparore, E.G., Donatelli, S.: GreatTeach: a tool for teaching (stochastic) petri
nets. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877,
pp. 416–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-
4 24

2. Anisimov, N.A., Golenkov, E.A., Kharitonov, D.I.: Compositional petri net app-
roach to the development of concurrent and distributed systems. Program. Com-
put. Softw. 27, 309–319 (2001). https://doi.org/10.1023/A:1012758417962

3. Arnold, A.: Nivat’s processes and their synchronization. Theoret. Comput. Sci.
281(1–2), 31–36 (2002)

4. Ballarini, P., Donatelli, S., Franceschinis, G.: Parametric stochastic well-formed
nets and compositional modelling. In: Nielsen, M., Simpson, D. (eds.) ICATPN
2000. LNCS, vol. 1825, pp. 43–62. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44988-4 5

5. Bernardi, S., Donatelli, S., Horvath, A.: Implementing compositionality for stochas-
tic petri nets. Int. J. Softw. Tools Technol. Transf. 3, 417–430 (2001)

6. Best, E., Devillers, R., Hall, J.G.: The box calculus: a new causal algebra with
multi-label communication. In: Rozenberg, G. (ed.) Advances in Petri Nets 1992.
LNCS, vol. 609, pp. 21–69. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55610-9 167

7. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-04457-5

8. Best, E., Fleischhack, H., Fraczak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: A class
of composable high level Petri nets. In: De Michelis, G., Diaz, M. (eds.) ICATPN
1995. LNCS, vol. 935, pp. 103–120. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60029-9 36

9. Buchholz, P.: Hierarchies in colored GSPNs. In: Ajmone Marsan, M. (ed.) ICATPN
1993. LNCS, vol. 691, pp. 106–125. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-56863-8 43

10. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured
nets and their symbolic reachability graph. In: Jensen, K., Rozenberg, G. (eds.)
High-level Petri Nets, pp. 373–396. Springer, Heidelberg (1991). https://doi.org/
10.1007/978-3-642-84524-6 13
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Abstract. In process discovery, the goal is to find, for a given event log, the
model describing the underlying process. While process models can be repre-
sented in a variety of ways, Petri nets form a theoretically well-explored descrip-
tion language. In this paper, we present an extension of the eST-Miner process
discovery algorithm. This approach computes a set of places which are con-
sidered to be fitting with respect to a user-definable fraction of the behavior
described by the given event log, by evaluating all possible candidate places using
token-based replay. The set of replayable traces is determined for each place in
isolation, i.e., they do not need to be consistent. When combining these places
into a Petri net by connecting them to the corresponding transitions, which are
uniquely labeled for each activity in the event log, the resulting net can replay
exactly those traces that can be replayed by each of the inserted places. Thus,
inserting places without further checks may results in deadlocks and thus low fit-
ness of the Petri net. In this paper, we explore a variant of the eST-Miner, that aims
to select a subset of the discovered places such that the resulting Petri net guar-
antees a definable minimal fitness while maintaining high precision with respect
to the input event log. Various place selection strategies are proposed and their
impact on the returned Petri net is evaluated by experiments using both real and
artificial event logs.

Keywords: Process discovery · Petri nets · eST-Miner

1 Introduction and Related Work

More and more corporations and organizations support their processes using informa-
tion systems, which record the occurring behavior and represent this data in the form of
event logs. Each event in such a log has a name identifying the executed activity (activ-
ity name), an identification mapping the event to some execution instance (case id), a
time stamp showing when the event was observed, and often extended meta-data of the
activity or process instance. In the field of process discovery, we utilize the event log
to identify relations between the activities (e.g. pre-conditions, choices, concurrency),
which are then expressed within a process model, for example a Petri net [1–4]. This
is non-trivial for various reasons. We cannot assume that the given event log is com-
plete, as some possible behavior might be yet unobserved. Also, real-life event logs
often contain noise in the form of incorrectly recorded data or deviant behavior, which
c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 303–324, 2022.
https://doi.org/10.1007/978-3-031-06653-5_16
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Fig. 1. Consider the event log L = [〈�, a, b, �〉40, 〈�, b, a, �〉60] and the set of candidate places
on the left. Assuming, that we set the eST-Miner to accept all places that can replay at least 35%
of the event log, it would add all those places and return the Petri net on the right. Although each
individual place has at least 40 fitting traces, the whole model cannot replay any trace.

is not desired to be reflected in the process model. Correctly classifying behavior as
noise can be hard to impossible. An ideal process model can reproduce all behavior
contained in an event log, while not allowing for unobserved behavior. It should rep-
resent all dependencies between events and at the same time be simple enough to be
understandable by a human interpreter. Computation should be fast and robust to noise.
Usually, it is impossible to fulfill all these requirements at the same time. Thus, different
algorithms focus on different quality criteria, while neglecting others. As a result, the
models returned for a given event log can differ significantly.

Many existing discovery algorithms abstract from the full information given in a
log and/or generate places heuristically, in order to decrease computation time and
complexity of the returned process models. While this is convenient in many applied
settings, the resulting models are often underfitting, in particular when processes are
complex. Examples are the Alpha Miner variants [5], the Inductive Mining family [6],
genetic algorithms or Heuristic Miner. In contrast to these approaches, which are not
able to (reliably) discover complex model structures, algorithms based on region the-
ory [7–17] discover models whose behavior is the minimal behavior representing the
input event log. On the downside, these approaches are known to be rather time-
consuming, cannot handle noise, and tend to produce complex, overfitting models
which can be hard to interpret. A combination of strategies has been introduced in [18],
which aims to circumvent performance issues by limiting the application of region the-
ory to small fragments of a pre-descovered Petri net.

In [19] we introduced the discovery algorithm eST-Miner. This approach aims to
combine the capability of finding complex control-flow structures like longterm-depen-
dencies with an inherent ability to handle low-frequent behavior while exploiting the
token-game to increase efficiency. The basic idea is to evaluate all possible places,
defined by all possible combinations of uniquely labeled transitions, to discover a set of
fitting ones. Efficiency is significantly increased by skipping uninteresting parts of the
search space. This may decrease computation time immensely compared to the brute-
force approach evaluating every single candidate place, while still providing guarantees
with regard to fitness and precision.

While traditional region-theory uses a global perspective to find a set of feasible
places, the eST-Miner evaluates each place separately, that is from a local perspective.
This allows us to easily enforce all kinds of constraints definable on the place level, e.g.,
constraints on the number or type of connected transitions, token throughput or similar.
In particular, we are able to filter infrequent behavior locally, by requiring each place to
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be able to replay only a certain fraction of the traces in the event log. A candidate place
will be accepted, if the event log contains sufficient support for the relation between
the activities as defined by the place. In contrast to common noise filtering techniques
which loose information by removing infrequent trace variants or infrequent activities
from the event log, this approach can also consider infrequent information to discover
relations between activities.

The local perspective of the eST-Miner ensures that all occurrences of activities
within a log can contribute to the discovered model. However, when a set of discovered
fitting places is combined into a Petri net, this Petri net allows only for the behavior
in the intersection of the behaviors allowed by all inserted places. Thus, the Petri net
may include deadlocks or dead parts, resulting in a much lower overall fitness than the
fitness of each individual place and an overly complicated model. In extreme cases,
the constructed net cannot replay any trace at all as illustrated by the small example
in Fig. 1. Assuming we decide to add places that replay only a fraction of 0.35 of the
traces, the Petri net discovered for the given event log cannot fire any transition after
the start transition.

In this paper, we aim to remedy this issue by selecting a subset of the discovered
places which can be combined into a Petri net with definable minimal fitness, while
simultaneously striving for high precision and simplicity, without loosing the desir-
able properties of the eST-Miner. Thus, we require the algorithm to maintain its ability
to discover and model non-local dependencies, to deal with infrequent behavior and
to provide guarantees without over- or underfitting. Additionally, the time and space
consumption should remain reasonable, in particular more scalable than classic region
theory approaches.

Section 2 provides basic notation and definitions. In Sect. 3, we briefly review the
basics of the standard eST-Miner. Our new concepts are introduced in Sects. 4 and 5,
and their experimental evaluation is presented in Sect. 6. Finally, Sect. 7 concludes this
work by summarizing our findings and suggesting possibilities for future work.

2 Basic Notations, Event Logs, and Process Models

A set, e.g. {a, b, c}, does not contain any element more than once, while a multiset, e.g.
[a, a, b, a] = [a3, b], may contain multiples of the same element. The intersection of two
sets contains only elements that occur in both sets, i.e., {x, y} ∩ {y, z} = {y}, while
the intersection of two multisets contains each element with its minimum frequency,
i.e., [x, y2, z] � [y5, z2] = [y2, z]. By P(X) we refer to the power set of the set X , and
M(X) is the set of all multisets over this set. In contrast to sets and multisets, where the
order of elements is irrelevant, in sequences the elements are given in a certain order,
e.g., 〈a, b, a, b〉 �= 〈a, a, b, b〉. The size of a set, multiset or sequence X , that is |X|, is
defined to be the number of elements in X .

We define activities, traces, and logs as usual, except that we require each trace to
begin with a designated start activity (�) and end with a designated end activity (�).
Note that this is a reasonable assumption in the context of processes, and that any log
can easily be transformed accordingly.
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Definition 1 (Activity, Trace, Log). Let A be the universe of all possible activities
(e.g., actions or operations), let � ∈ A be a designated start activity and let � ∈ A
be a designated end activity. A trace is a sequence containing � as the first element, �
as the last element and in-between elements of A \{�, �}. Let T be the set of all such
traces. A log L ∈ M(T ) is a multiset of traces.

In this paper, we use an alternative definition for Petri nets. We only allow for places
connecting transitions, called here activities, that are initially empty (without tokens),
because we allow only for traces starting with � and ending with �. These places
are uniquely identified by the non-empty sets of input activities I and output activi-
ties O. Each activity corresponds to exactly one uniquely labeled transition, therefore,
this paper refers to transitions as activities.

Definition 2 (Petri nets). A Petri net is a pair N = (A,P), where A ⊆ A is the set of
activities including start and end ({�, �} ⊆ A) and P ⊆ {(I|O) | I ⊆ A ∧ I �= ∅ ∧
O ⊆ A ∧ O �= ∅} is the set of places. We call I the set of ingoing activities of a place
and O the set of outgoing activities.

Note that if p = (I|O), then •p = I and p• = O using standard notation.
A place is fitting if it can replay (parts of) the event log without missing or remaining

tokens. Otherwise, it is unfitting.

Definition 3 (Fitting and Unfitting Places, compare [20]). Let N = (A,P) be a
Petri net, let p = (I|O) ∈ P be a place, and let σ be a trace. With respect to the given
trace σ, p is called

– unfitting, denoted by �σ(p), if and only if ∃k ∈ {1, 2, ..., |σ|} such that
|{i | i ∈ {1, 2, ...k − 1} ∧ σ(i) ∈ I}| < |{i | i ∈ {1, 2, ...k} ∧ σ(i) ∈ O}| or
|{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ I}| > |{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ O}|,

– fitting, denoted by �σ(p), if and only if not �σ(p).

We extend these notions to the whole log using the noise parameter: with respect to a
log L and parameter τ ∈ [0, 1], p is called fitting, denoted by �τ

L(p), if and only if
|{σ ∈ L | �σ(p)}|/|L| ≥ τ , and unfitting otherwise.

Definition 4 (Behavior of a Petri net). We define the behavior of the Petri net (A,P)
to be the set of all fitting traces, that is {σ ∈ T | ∀p ∈ P : �σ(p)}.
Note that we only allow for behaviors of the form 〈�, a1, a2, . . . an, �〉 (Definition 1)
such that places are empty at the end of the trace and never have a negative number of
tokens.

We are often interested in the traces of the event log which are replayable by certain
(sets of) places.

Definition 5 (Multisets of Fitting Traces). For an event log L and a place p, the mul-
tiset of log traces replayable by p is

fit(L, p) = [σ ∈ L | �σ(p)].

For an event log L and a Petri net N = (A,P ), the multiset of log traces replayable by
N is the intersection of all log traces replayable by the places in P , i.e.,

fit(L,N) = [σ ∈ L | ∀p ∈ P : �σ(p)] =
�

p∈P

fit(L, p).



Discovering Process Models While Providing Guarantees 307

3 Introducing the eST-Miner

Several variants and extensions of the eST-Miner have been proposed in the past years.
In the following, we briefly introduce the eST-Miner variant used as the basis of this
work. For further details, we refer the reader to the respective papers.

As input, the algorithm takes a log L and a parameter τ ∈ [0, 1], and returns a
Petri net as output. A place is considered fitting, if it allows to replay at least a fraction
τ of traces in the event log. Inspired by language-based regions, the basic strategy of
the approach is to begin with a Petri net whose transitions correspond exactly to the
activities used in the given log. From the finite set of unmarked, intermediate places, the
subset of all fitting places is computed and inserted. To facilitate further computations
and human readability, implicit places are identified and removed [21–23]. A place is
implicit if its removal does not increase the behavior of the Petri net. Implicit places
can be detected based on the structure of the Petri net as proposed for the first eST-
Miner variant [19], or by using the faster replay-based implicit place removal strategy
introduced in [24]. The latter one is applied in the experimentation of this paper.

The algorithm uses token-based replay to evaluate the candidate places. To avoid
replaying the log on the exponential number of candidates (i.e., all pairs of subsets of
activities, (2|A|−1)2), it organizes the potential places as a set of trees, such that certain
properties hold. When traversing the trees, these properties allow to cut off subtrees, and
thus candidates, based on the replay result of their parent [19]. This greatly increases
efficiency, while still guaranteeing that all fitting places are found.

An example of such a tree-structured candidate space is shown in Fig. 2. Note the
incremental structure of the trees, i.e., the increase in distance from the roots corresponds
to the increase of input (red edges) and output (blue edges) activities. However, the orga-
nization of candidates within the same depth and their connections to other candidates is
not fixed, but defined by the order of ingoing activities (>i) and outgoing activities (>o).

Definition 6 (Complete Candidate Tree). Let A be a set of activities and let >i, >o

be two total orderings on this set of activities. A complete candidate tree is a pair
CT = (N,F ) with N = {(I|O) | I ⊆ A\{�} ∧ O ⊆ A\{�} ∧ I �= ∅ ∧ O �= ∅}.
We have that F = Fred ∪ Fblue, with

Fred ={((I1|O1), (I2|O2)) ∈ N × N | |O2| = 1 ∧ O1 = O2

∧ ∃a ∈ I1 :
(
I2 ∪ {a} = I1 ∧ ∀a′ ∈ I2 : a >i a′)} (red edges)

Fblue ={((I1|O1), (I2|O2)) ∈ N × N | I1 = I2

∧ ∃a ∈ O1 :
(
O2 ∪ {a} = O1 ∧ ∀a′ ∈ O2 : a >o a′)} (blue edges).

If ((I1|O1), (I2|O2)) ∈ F , we call the candidate (I1|O1) the child of its parent (I2|O2).

The purpose of the tree structured candidate space is to enable skipping of sets of unin-
teresting candidates to improve time and space efficiency. The runtime of the eST-Miner
strongly depends on the number of candidate places skipped during the search for fitting
places.

When a candidate place is evaluated to be fitting, i.e., it can replay a fraction of τ
traces in the event log, existing variants of the eST-Miner simply insert the place into the
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(▶|a)  (▶|b)  (▶|■)  (a|a)  (a|b)  (a|■)  (b|a)  (b|b)  (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■)     (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■)    (▶,a|a,b) (▶,a|a,■) (▶,a|b,■)    (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■)    (▶,a,b|a) (▶,a,b|b) (▶,a,b|■)

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

       (▶,a,b|a,b,■)

Fig. 2. Example of a tree-structured candidate space for the set of activities {�, a, b, �}, with
orderings � >i b >i a >i � and � >o b >o a >o �.

ID Traces in L p1 p2 p3 p4 p5 p6 p7 p8 N
(�|a) (a|c) (a|b) (c|e) (b|e) (e|�) (b|c, d) (d, e|�)

1 〈�, a, b, c, e, �〉60 � � � � � � � � �
2 〈�, a, b, d, �〉20 � � � � �
3 〈�, a, c, b, e, �〉15 � � � � � � �
4 〈�, a, b, d, e, �〉5 � � � � �

a

b

c e

d

p1

p2

p3

p5

p4 p6

p8

p7

Fig. 3. The table indicates for each of the given trace variants and candidate places whether the
place can replay that trace variant. The Petri net N is created by inserting all places which can
replay at least 0.75 · |L| = 75 traces. However, N can replay only the first trace variant, i.e.,
0.6 · |L| = 60 traces.

Petri net by connecting it to its uniquely labeled ingoing and outgoing transitions. Con-
sider the example event log and subset of candidate places in Fig. 3. Of the (incomplete)
subset of candidate places, the places p1 to p8 are fitting the event log for τ = 0.75.
Inserting these places results in the given Petri net N , which can replay only the first
trace variant corresponding to 60% of traces. The introductory example in Fig. 1 illus-
trates, that the fraction of replayable traces may even decrease to 0. Such a result is
undesirable, since it is unnecessarily complex with respect to the behavior it represents,
not free of dead parts and likely to disappoint user expectations with respect to fitness.
This work explores strategies of maintaining the fitness threshold τ as a minimal fitness
threshold of the returned, deadlock-free Petri net by inserting only a selection of the
discovered fitting places.
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{p1, p3}
1,2,3,4

1.0{p1, p3, p4, p8}
1,2,3
0.95 {p1, p3, p7}

1,2,4
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{p1, p3, p5, p6}
1,3,4
0.8

{p1, p2, p3, p4, 
p5, p6, p8}

1,3
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{p1, p3, p4, p7, p8}
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0.8

{p1, p3, p5, p6, p7}
1,4

0.65

{p1, p2, p3, p4, p5, 
p6, p7, p8}

1
0.6

N1

N2

N6

N4 N5

N3

N7

N8

set of places
forming N

replayable 
trace variants

fraction of 
replayable 

traces

Fig. 4. Consider the set of places given in Fig. 3. This figure shows all possible combinations of
these places such that adding any other place to the corresponding Petri net would decrease the
number of replayable log traces. Each set of places, i.e., Petri net, is annotated with the list of
trace variants it can replay and the corresponding fraction of log traces. Note, thatN8 corresponds
to the Petri net shown in Fig. 3.

4 Place Selection

Consider the set of all fitting places discovered for a certain noise threshold τ . The
selection of an adequate subset of these places, such that also the resulting Petri net can
replay a fraction of at least τ traces, is non-trivial for a variety of reasons. First of all,
the definition of an optimal solution is not straightforward. Several maximal subsets of
places satisfying this requirement may exist, which differ, for example, in size, fraction
of replayable traces, place complexity (number of connected activities) or subjective
‘interestingness’ measures for the places retained. Figure 4 illustrates all maximal sets
of places that can be built from the example places given in Fig. 3. These sets are max-
imal in the sense that adding any of the other places would decrease the number of
replayable log traces. Depending on the choice of the minimal fitness threshold τ , the
optimal solution is not clear.

Furthermore, even if we have somehow obtained a notion of optimality, first col-
lecting all fitting places and then computing an optimal solution can quickly become
unfeasible, both in terms of time complexity and memory requirements. This is due
to the very large number of fitting but potentially implicit places discovered by the
eST-Miner. Unfortunately, knowledge of which places are contained in the Petri net is
required to identify implicit places reliably.

To circumvent the issue of time and space complexity, we combine the eST-Miners
sequential place evaluation procedure with a guided greedy place selection approach,
which is decsribed in detail in Subsects. 4.1 and 4.2. In the absence of a clear notion of
optimality, we propose and investigate several heuristic selection strategies and evaluate
their impact on different quality aspects of the returned Petri net. In this paper, we
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consider fitness, precision, and simplicity as desirable properties (for details compare
[25,26]). While generality is desirable, additional information would be required to
evaluate it, which is why we consider it outside the scope of this work.

Our fitness evaluation of the returned Petri net N uses the standard alignment-based
fitness as defined in [27]. For precision, we use the approach as implemented in [28].
Simplicity is harder to evaluate, since it is a rather subjective metric that can be influ-
enced by a variety of features. In this paper, we simplify the notion to express the
fraction of net elements that are transitions, arguing that a Petri net with relatively few
places is likely to be perceived as simple.

Definition 7 (Simplicity). Given a Petri net N = (A,P ), we define simplicity as the
fraction of nodes that are transitions, i.e.,

Simplicity(N) = 1 − |P |
|P | + |A| .

All used quality metrics return values between 0 and 1, where a value close to 1
indicates high quality in general. However, note that for simplicity a value around 0.5
indicates a model with roughly as many places as transitions, for example a simple
sequence, while a higher value would arise from a Petri net with extremely few places.
Therefore, we consider a value close to 0.5 to be rather optimal in terms of simplicity.

4.1 Place Classification

When making the decision to insert a place into the model, this reduces the possible
choices we can make later on: the place constrains the behavior of the model and only
places with a sufficiently large intersection of replayable traces can be added to the
model at a later point. Consider the example place combinations in Fig. 4 with a fitness
threshold of τ = 0.75 and assume that the model already contains the places p1 and p3.
If the next fitting place we discover is p7, and we immediately insert it into the Petri
net, we can no longer discover a Petri net including, for example, p6, without violating
our global fitness constraint. Such choices may prevent us from discovering a more
desirable solution. Therefore, we aim to capture the main behavior of the log by using
heuristics to postpone, or even disallow, the addition of very restrictive places.

To this end, we introduce a new parameter δ which is our main tool to guide the
choice of places while balancing fitness, precision and simplicity. This δ specifies the
largest acceptable reduction in replayable traces when adding a place to the model.
Optionally, δ can be adapted for each place individually using an adaption function
adapt to favor certain places over others, according to the users preferences. Favored
places can be added earlier, despite being rather restrictive, while other places will be
added only if they do not constrain the behavior too much. Examples for such strategies
are presented in Sect. 5.

Definition 8 formalizes the use of τ , δ and adapt to decide for the discovered fitting
places, whether they should be added, kept for later re-evaluation or discarded.

Definition 8 (Place Classification Using τ, δ and adapt). Consider a set of activities
A, a set of places P ⊆ P(A)×P(A), a place p ∈ P(A)×P(A) and an event log L. We
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use parameters τ ∈ [0, 1] and δ ∈ [0, 1], and a function adapt : ([0, 1],P(A)×P(A)) →
[0, 1] to categorize p as follows:

keepL,A,τ (P, p) = |fit(L(A,P )) ∩ fit(L, p)| ≥ τ · |L|
addL,A,τ,δ(P, p) = keepL,A,τ (P, p)

∧ |fit(L(A,P ))| − |fit(L, (A,P )) ∩ fit(L, p)| ≤ adapt(δ, p) · |L|

If keepL,A,τ (P, p) does not hold, p will be discarded.

In the following subsection, we give an overview of the complete approach.

4.2 Selection Framework

An overview of our approach, indicating inputs, outputs and use of parameters, is given
in Fig. 5. Since we consider simplicity to be a desirable property, we set the eST-Miner
to traverse the complete candidate tree using BFS rather than DFS. Thus, places with
few connected activities are evaluated first and can therefore be inserted into the model
at an earlier stage. Furthermore, we limit the traversal depth to places with dcut activi-
ties, arguing that places with many transitions are generally not desirable - such places
are usually devastating to simplicity while their constraints can be sufficiently approxi-
mated by much simpler places.

After the eST-Miner framework evaluates a candidate place p to be fitting with
respect to a fraction τ of traces (Definition 3), we use the classification functions given
in Definition 8 to decide whether the place should immediately be added to the output
Petri net, discarded forever or kept for re-evaluation. In the latter case it is added to
a queue Q of potential places which is sorted according to how interesting a place is.
In our case, we sort by place simplicity (few transitions are better) and place fitness
(number of replayable log traces). Optionally, the length of Q can be limited, trading
an improvement in time and space complexity for potentially lowered model quality.

Whenever the BFS candidate traversal reaches a new level in the complete candi-
date tree, we revisit the potential places queue Q and re-evaluate its places using the
classification functions before proceeding with the traversal of more complex places.
This makes sense to promote simplicity in particular together with the delta adaption
functions proposed in Sect. 5, which give preference to places less complex than indi-
cated by the current tree level. After reaching the lowest tree level, the approach can
either terminate immediately, or iterate over the potential places queue while artificially
increasing the tree depth d+ times. This can be relevant for delta adaption functions
depending on place complexity, as exemplified in Sect. 5. Here, the artificial tree depth
allows for increased leniency also for the most complex places evaluated.

Finally, the resulting Petri net N may contain dead parts: in particular infrequent
activities with erratic behavior are likely to occur only in those traces that are no longer
replayable on N . Therefore, as a final step, we detect and remove all activities that do
not occur in fit(L,N) together with their connected arcs.

Before returning this Petri net as final output, the eST-Miner framework removes
implicit places, merges places that are equal except for self-loops, i.e., (I ∪X1|O∪X1)
and (I ∪ X2|O ∪ X2) are merged into (I ∪ X1∪ X2|O ∪ X1 ∪ X2), and adds start and
end places.
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Algorithmic Framework

re-evaluate

keep (not add)

Parameters

traverse the complete 
candidate tree using BFS

(compare Def. 6)

Candidate Traversal

Place Selection

(compare Def. 3)

Candidate Evaluation

• Remove dead activities
• Merge self-loop places
• Remove implicit places

Post-processing

(compare Def. 8)

Place Classification
Q

N

Trigger 
revisiting 
of Q

add

P

Fig. 5. Overview of the presented approach, including input, output and parameter use.

The approach returns a Petri net N satisfying the following guarantees.

Theorem 1 (Guarantees). Given a set of activities A, event log L over A, an adap-
tion function adapt : ([0, 1],P(A) × P(A)) → [0, 1] and parameters τ ∈ [0, 1], δ ∈
[0, 1], s ∈ N, |Q| ∈ N, d+ ∈ N, dcut ∈ N, the presented approach computes a Petri net
N = (A′, P ) with A′ ⊆ A, such that N can replay at least τ · |L| traces from L and
every transition in A′ can be fired at least once.

Furthermore, if the length of Q is not limited, and thus a place p is discarded only if
it does not satisfy keepL,A,τ (P, p), the set of places P is maximal in the sense that
no place from the set of evaluated candidate places can be added without violating the
fitness constraints imposed by the chosen heuristics.

5 Selection Strategies

As illustrated by the example place combinations in Fig. 4, the order of places added
can have a significant impact on the selected subset of places and thus the behavior
of the returned Petri net. The presented framework allows for a wide range of heuris-
tic functions, optimizing the place selection individually towards a variety of possible
user interests. Thus, obviously, the examples presented in the following are by far not
exhaustive and entirely different choices are possible, but they can serve as a starting
point to an investigation of the impact and suitability of our approach.

The linear and sigmoid delta adaption functions both aim to promote fitness and
simplicity. The constant and no delta delta adaption functions are introduced to be used
as a baseline in our experiments, towards which the effect of the other strategies can be
compared.

No Delta. As a baseline to compare to, we introduce a function that ignores delta and
simply adds every fitting place to the Petri net as soon as it is discovered. Within the
framework, this can be formalized to
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Fig. 6. Example behavior of the delta adaption modifiers modsigmoid(δ) (left) and modlinear(δ)
(right) for three places with 2, 3 and 4 activities, respectively. The x-axis indicates the current
tree depth d, with dmax = 12, while the y-axis indicates the modifier to be multiplied with δ.

adaptnoDelta(δ, p) = 1.

Constant Delta. Trivially, we can choose not to adapt delta at all. We simply add every
fitting, non-discarded place that does not reduce the replayable traces from the log by a
fraction of more than delta. Formally, this resembles the identity function:

adaptconstant(δ, p) = δ

Linear and Sigmoid Delta Adaption. For a set of activities A, let dmax = 2|A| be
the maximum depth of the complete candidate tree, and let d ∈ [2, 3, ..., dmax] be the
current depth of the candidate tree traversal. We call s ∈ N\{0} the steepness modifier.
Consider a place p = (I|O).

The linear delta adaption function computes the adapted δ as follows:

adaptlinear(δ, (I|O)) = δ · modlinear((I|O))

= δ · s

(|I| + |O|) · d − (|I| + |O|)
dmax − 2

We define the sigmoid delta adaption function as follows:

adaptsigmoid(δ, (I|O)) = δ · modsigmoid((I|O))

= δ ·

⎛

⎝ 2

1 + exp
(
(−1) · s

(|I|+|O|) · (d − (|I| + |O|))
) − 1

⎞

⎠

Figure 6 illustrates the behavior of the modifier each adaption function multiplies
with the parameter δ for three example places of varying complexity. Both, the linear
and sigmoid delta adaption are designed to prefer simple places. When a place origi-
nates from the currently traversed level of the complete candidate tree, i.e., it is among
the most complex places currently available, both functions will evaluate to 0, meaning
that only a perfectly fitting place can be added. The simpler the evaluated place is com-
pared to the current tree level, the larger the result of the function and the more unfitting
traces are allowed, with δ marking the maximal returnable value. The only difference is
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the steepness of the functions: while the linear function increases linearly with the place
complexity, the sigmoid function grows fast in the beginning but stagnates towards the
end. Thus, the linear function becomes uniformly less lenient with increasing place
complexity. In contrast, the sigmoid function prefers the simpler places more strongly,
while the more complex places are (roughly) equally undesirable.

6 Experimental Results and Evaluation

We perform several introductory experiments where we run the proposed algorithm
with a wide variation of combinations of possible parameter settings on several event
logs with different properties. To investigate the impact of the proposed heuristics, we
use a lexicographical ordering of the activities, thus fixing the order of candidate eval-
uation. The purpose is to focus on the effect of the different parameters, and possibly
derive which of them are the most relevant for the discovery of certain models and
whether certain (combinations of) settings are preferable.

6.1 Experimental Setup

Table 1 provides an overview of the event logs used in our experimentation. Sepsis
has a relatively high number of different trace variants, all of which have compara-
ble frequencies with the most frequent trace making up only 3.33% of the event log.
Activities are repeated often within a trace, which must lead to looping behavior within
a Petri net with uniquely labeled transitions. RTFM is rather large, with a moderate
variety of trace variants and activities. Both for variants and activities some are very
frequent while others are quite infrequent. Teleclaims is an established artificial log
useful for testing discovery of various control-flow structures. With Orders we can
demonstrate the algorithms ability to discover complex control flow structures, as well
as the option to abstract from rare behavior. For each event log we perform 4200 runs
of the algorithm with varying combinations of the different parameters, as specified in
Table 2. Note, that we keep the order of place candidate traversal fixed for all runs.

6.2 Results and Evaluation

For each model discovered we compute alignment-based fitness, precision and simplic-
ity as described in Sect. 4. Based on alignment-based fitness and precision, we also
present the F1-Score, i.e., the harmonic mean of alignment-based fitness and precision.

Table 1. List of logs used for the evaluation. The upper part lists real-life logs while the lower
part shows artificial logs. Logs are referred to by their abbreviations.

Log name Abbreviation Activities Trace variants Reference

Sepsis Sepsis 16 846 [29]

Road Traffic Fine Management RTFM 11 231 [30]

Teleclaims Teleclaims 11 12 [25]

Order-Handling Orders 8 9 [31]
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Table 2. Overview of the parameters settings used in our experimentation. The combinations
result in 4200 runs for each event log. The values ranges were chosen based on a smaller set
of preliminary experiments, aiming to investigate a wide range of parameter settings on the one
hand, while on the other hand avoiding unnecessary complexity resulting from variation without
notable impact. For example, for our inputs no places were discarded for |Q| ≥ 10000. For d+

we chose a very low and a very high value to evaluate whether it had any impact at all. Finally,
for the chosen event logs dcut = 5 has shown to be sufficient to find complex structures with the
standard eST-Miner, i.e., increasing the traversed tree depth increases computation time but has
no strong impact on model quality.

Parameter Used values Purpose

τ 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9

Defines the minimal fraction of log traces that every place, as
well as the final Petri net, must be able to replay.

δ 0.05, 0.1, 0.15, 0.2, 0.25 Used to define the allowed reduction in log traces replayable
by N when adding a place.

adapt adaptnoDelta, adaptconstant,
adaptlinear, adaptsigmoid

The delta adaption function used to guide the heuristics.

s 1, 2, 3, 4, 5 The steepness of the increase of the adaption function
(relevant for adaptlinear and adaptsigmoid only).

|Q| 100, 1000, 10000 The maximal number of places stored in Q.

d+ 0, 10 Artificial tree depth to re-evaluate places in Q after end of
tree traversal (relevant for adaptlinear and adaptsigmoid only).

dcut 5 Stop candidate traversal after the specified tree level.

In Fig. 7 an overview of the quality results of the 4200models generated for each log
is given. Fitness and simplicity remain rather stable, with fitness being generally high
and simplicity values clustering around 0.5 (which we consider a good value, recall
Definition 7). On the other hand, precision, and by extension the F1-score, vary a lot
for the discovered models. This clearly indicates that the choice of parameters has a
strong impact on this quality aspect.

While we discovered only 7 unique models for Orders, there were 19 unique mod-
els found for RTFM, 27 for Teleclaims and 140 for Sepsis. The quality results and
frequencies of the 10 most frequently discovered Petri nets are given in Fig. 8 (Model
IDs 1 to 10). Additionally, we provide the same results for the models discovered by the
Inductive Miner infrequent (IMf) with default settings as implemented in ProM [32],
the models discovered by the eST-Miner with τ = 1.0 (comparable to region theory
results), as well as the model with the highest F1-Score discovered over all runs.

In Figs. 9, 10, 11 and 12 we present a selection of models for each log: the model
discovered by IMf, the model discovered by the eST-Miner with τ = 1.0, the most
frequently discovered model and the model with the highest F1-score discovered by the
experiments with our proposed approach.

All models shown in Fig. 9 were discovered for the Orders log. For this rather
simple event log, all models achieve relatively high scores with respect to the quality
metrics. However, some notable differences in the expressed behavior can be observed
in particular with respect to the activities send invoice, send reminder, pay and cancel
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Fig. 7. Overview of model quality results for all 4200 runs with varying parameters but fixed
candidate traversal order.

order. According to the event log, in most cases execution of send invoice is eventually
followed either by pay (and then delivery) or by cancel order, but never both. In rare
cases, payment occurs before sending the invoice. After sending the invoice, reminders
can be sent repeatedly, until payment is received or the order is canceled. This behavior
is fully expressed only by the model discovered using the eST-Miner with τ = 1.0,
which is comparable to results produced by region-based approaches. Since payment
before sending the invoice is rare, users may prefer the other models which focus on
behavior where payment arrives after sending the invoice. The model discovered by
IMf further deviates from the log by not allowing for repeated reminders (occurring in
25% of the traces), and enabling the cancellation of orders after payment. In contrast
to the model discovered most frequently by our extended eST-Miner, the model with
the highest F1-Score does not contain the activity cancel order (occurring in 13.03% of
traces) at all, resulting in slightly lower fitness but notably increased precision.

The Sepsis event log exhibits many repetitions of activities and a comparatively
high control-flow variance, with 846 trace variants in 1050 traces, the most frequent
of which occurs only 35 times. Thus, the discovery of a model with simultaneously
high fitness and precision is challenging. Figure 10 presents a selection of discovered
Petri nets. The IMf manages to discover groups of activities that occur in sequence,
however, within these groups the activities are in parallel and mostly skipable, resulting
a very low precision. The eST-Miner with τ = 1.0 illustrates a disadvantage of requiring
perfect fitness: the resulting model allows for nearly all possible behaviors. For the most
frequent model discovered by our extension, this problem becomes less severe and is
significantly reduced for the discovered model with the highest F1-Score. This model
manages to capture the main behavior hidden in the traces while ignoring infrequent
activity behavior, achieving comparatively high precision.
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Log Metric eST
(τ = 0.1) 1 2 3 4 5 6 7 8 9 10

F1 0.6432 0.6531 0.6763 0.9638 0.6794 0.9371 0.7570 0.8816 0.9270 0.8540 0.7792 0.6757
Fitness 0.9820 1.0000 0.9940 0.9301 0.9642 0.9642 0.9603 0.7882 0.8640 0.8707 0.9809 0.9642
Precision 0.4782 0.4849 0.5125 1.0000 0.5245 0.9114 0.6248 1.0000 1.0000 0.8379 0.6463 0.5201
Simplicity 0.5526 0.6842 0.5714 0.5000 0.5714 0.5333 0.5200 0.4667 0.5000 0.5000 0.5333 0.5333
Frequency - - 1271 1107 383 367 312 243 150 150 34 33
F1 0.3215 0.3266 0.4264 0.4639 0.5205 0.5752 0.6086 0.4849 0.4672 0.6893 0.6036 0.4582 0.7836
Fitness 0.9060 1.0000 0.9942 0.9846 0.9603 0.9681 0.9560 0.9679 0.9781 0.9230 0.9635 0.9942 0.9115
Precision 0.1954 0.1952 0.2714 0.3034 0.3570 0.4091 0.4464 0.3235 0.3069 0.5500 0.4395 0.2977 0.6871
Simplicity 0.5106 0.7826 0.6667 0.5926 0.5926 0.5909 0.5385 0.5806 0.6087 0.4516 0.6154 0.6522 0.52
Frequency - - 408 354 198 187 186 180 180 150 150 120 52
F1 0.9496 0.5993 0.9316 0.4697 0.3895 0.4536 0.6272 0.9469 0.9328 0.8621 0.8202 0.8825
Fitness 0.9490 1.0000 0.9538 1.0000 0.9889 0.9889 0.9733 0.9244 0.8740 0.9423 0.9572 0.8461
Precision 0.9503 0.4279 0.9105 0.3069 0.2425 0.2943 0.4627 0.9706 1.0000 0.7945 0.7175 0.9222
Simplicity 0.5172 0.5200 0.5000 0.5417 0.6190 0.5909 0.5200 0.5200 0.4815 0.5200 0.5000 0.4783
Frequency - - 650 507 474 440 374 356 210 182 182 150
F1 0.9340 0.9319 0.9258 0.9664 0.9502 0.9374 0.9319 0.9096 0.9296
Fitness 0.9600 1.0000 0.9996 0.9562 0.9279 0.8822 1.0000 0.9279 0.9562
Precision 0.9094 0.8725 0.8622 0.9768 0.9735 1.0000 0.8725 0.8921 0.9044
Simplicity 0.5000 0.4762 0.5000 0.4737 0.5000 0.4706 0.4762 0.4737 0.4500
Frequency - - 1472 1424 1000 225 64 11 4

highest 
F1

Model 2

Model 6

Model 2

RTFM (discovered 
19 unique models)

Sepsis (discovered 
140 unique 

models)

Teleclaims 
(discovered 27 
unique models)

Orders (discovered 
7 unique models)

Model IDIMf (default 
settings)

Fig. 8. Overview of the qualitative evaluation results of the IMf (default settings), the eST-Miner
with τ = 0 and the 10 most frequently discovered models by the presented approach including
their frequencies. The final column indicates the model with the best F1-Score (only for Sepsis
this is not contained in the most frequent models). A selection of models is presented for each
event log in Figs. 9, 10, 11 and 12.

Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 9. The Petri nets discovered based on the Orders log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, andModel 1 (most frequent) andModel 2 (highest
F1-Score) discovered with our runs of the presented approach.

Figure 11 shows Petri nets discovered from the RTFM log. Considering the models
discovered by IMf and eST-Miner with τ = 1.0, we observe the same general tenden-
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 10. The Petri nets discovered based on the Sepsis log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, and Model 1 (most frequent) and the model with
the highest F1-Score discovered with our runs of the presented approach.

cies as for the previous logs. For the models discovered by our approach, we note that
quite many activities are missing, meaning that they are not part of any replayable trace
from the event log. The reason can be found by investigation of this particular event log,
which describes two very distinct sub-processes, the more frequent of which consists of
the activities still contained in the model. The activities of the infrequent sub-process
related to the appeals have been filtered to focus on the main process.
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 11. The Petri nets discovered based on the RTFM log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, andModel 1 (most frequent) andModel 2 (highest
F1-Score) discovered with our runs of the presented approach.

A set of process models discovered from the Teleclaims log is presented in
Fig. 12. The models discovered by the IMf and our approach express similar behav-
ior, with the main difference being the representation of skipable activities: with all
transitions being uniquely labeled, our approach has to rely on loop constructs rather
than silent activities. The eST-Miner with τ = 1.0 does not abstract from infrequent
behavior, which in this case results in a perfectly fitting but quite complex model.
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach (most frequent):

Presented Approach (highest F1):

Fig. 12. The Petri nets discovered based on the Teleclaims log using the Inductive Miner
infrequent (default settings), the eST-Miner with τ = 1.0, and Model 1 (most frequent) and
Model 6 (highest F1-Score) discovered with our runs of the presented approach.

Our results indicate that even minor gains in fitness are usually accompanied by a
major drop in precision. The models with the best F1-Score are usually those with the
highest precision value. From Figs. 9, 10, 11 and 12 we can observe that these models
seem to abstract well from infrequent activity behavior, giving a clear representation of
the main process. However, models with higher fitness may reveal complex control-flow
structures and interesting variations. The presented approach is able to return models
anywhere on this scale between fitness and precision based on the choice of parameters.
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While the quality metrics clearly indicate that our approach is able to discover mod-
els balancing fitness and precision while maintaining reasonable simplicity, the choice
of parameters has a significant impact that requires further investigation. We used deci-
sion tree analysis to search for certain parameter settings that would result in the highest
quality models as indicated by the F1-Score. The results of this analysis are shown in
Table 3, where each line represents a set of parameter combinations that leads to the
discovery of the best model.

For the four event logs investigated in this paper, the most important parameters
seem to be τ and δ. This is not surprising, since τ has a direct impact on which places
are available for addition to the Petri net and δ is limiting the range of the adaption
strategies, which include the use of s. Notably, the artificial tree depth d+ as well as
|Q| have had no major impact on the discovery of any of the examined models and the
sigmoid and linear delta adaption strategies are often interchangeable.

Some interdependencies between the parameters are expected, and seem to be con-
firmed by the results in Table 3. For example, when using the delta adaption functions
adaptconstant and adaptnoDelta, the steepness modifier s has no impact. For the Orders
log there is an indication of an exceptionally low s value working well with a high arti-
ficial tree depth modifier d+, and for low τ values requiring the use of δ to discover
the best model. For event logs like the RTFM log and the Orders log, which have a
few very dominant trace variants, we seem to generally achieve good results for rather
high values of τ . In contrast, for event logs with a high variety of traces as for example
Sepsis log, a low τ -value seems mandatory. Most likely, the large variety of fitting
places allows for obtaining high precision, while our heuristics seems to successfully
ensure the focus on the main behavior. However, more results are needed to validate
such speculations.

Interestingly, the results from the Sepsis log, which contains a high variety of
traces, seem to confirm our algorithms ability to discover the main behavior hidden
in an event log even in the absence of main trace variants: for a low value of τ , e.g.
τ = 0.3, the fraction of log traces replayable by the return Petri net is indeed close
to 0.3, however, the alignment-based fitness reliably remains above 0.9, indicating that
most of the traces are close to being replayable. We can conclude that the returned
model successfully expresses the core behavior of the process.

To summarize, the results clearly show that high quality models balancing the dif-
ferent quality aspects can be discovered. There is a significant variance in some of
the metrics, particularly precision, indicating that the settings of the algorithm have
a notable impact. Our preliminary investigation using decision trees shows, that cer-
tain parameter choices result in high quality models. It gives a first indication about
which parameters have a more notable impact and whether certain settings are more
suitable for logs with certain properties. Further experimentation needs to be performed
to investigate to which degree a generalization is possible. Note, that the impact of
the candidate traversal order has not been investigated yet, and may allow for further
improvements.
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Table 3. Overview of the parameter choices resulting in the discovery of the model with the
highest F1-Score. For each log we indicate how often this model has been discovered in our
experimental runs and in which figure to find it. For each parameter that our decision tree anal-
ysis has revealed to be impactful, the possible values are indicated. Each line corresponds to a
set of parameter combinations, with the frequency of the model being discovered using these
combinations given to the right.

Log and Model τ δ Strategy s d+ #Combinations

Sepsis (Fig. 10) (discovered 52 times) 0.3 0.15 adaptconstant – – 30

0.3 0.25 adaptsigmoid [3, 5] – 18

RTFM (Fig. 11) (discovered 1107 times) [0.3, 0.6] [0.15, 0.25] adaptconstant – – 360

[0.4, 0.6] [0.2, 0.25] adaptsigmoid , adaptlinear [2, 5] – 288

0.6 – adaptnoDelta – – 150

[0.4, 0.6] 0.15 adaptlinear [3, 5] – 54

Teleclaims (Fig. 12) (discovered 356 times) [0.3, 0.4] [0.15, 0.25] adaptconstant – – 180

[0.3, 0.4] [0.2, 0.25] adaptsigmoid [4, 5] – 48

[0.3, 0.4] 0.15 adaptlinear [3, 4] – 24

[0.3, 0.4] 0.25 adaptlinear [4, 5] – 24

Orders (Fig. 9) (discovered 1424 times) [0.7, 0.8] [0.15, 0.25] – [2, 5] – 576

[0.3, 0.6] [0.15, 0.2] adaptsigmoid , adaptconstant [2, 5] - 384

[0.7, 0.8] – adaptnoDelta – – 120

[0.7, 0.8] [0.15, 0.25] – 1 10 72

7 Conclusion

In this paper, we introduced an extension to the eST-Miner that returns a Petri net which
satisfies user-definable minimal fitness requirements. The presented approach employs
heuristics to efficiently select a suitable subset of the discovered places, while aiming
towards high precision and simplicity. The algorithm is capable to discover complex
control-flow structures such as non-local dependencies, to deal with noise in the event
log and to provide guarantees without over- or underfitting.

Our first experiments, using four different event logs, clearly show that not only
is it possible to discover high-quality models using the introduced approach, but also
the heuristics applied have a significant impact on the obtained Petri net. Based on the
parameter settings, models with a very different focus with respect to fitness, precision
and the handling of infrequent behavior can be discovered. Some parameters have a
stronger effect than others and some parameter choices seem to be more suitable for
logs with certain properties, which should be verified by further experimentation.

Next to an analysis of the running-time, future work includes further experimenta-
tion to explore the generalization the preliminary results, as well as the impact of the
candidate place traversal order and its interaction with the heuristics used. Improve-
ments or variations of the strategies are likely possible. It would be particularly inter-
esting to investigate to which degree the approach can be used to prioritize non-standard
quality aspects, for example related to user interests such as compliance or performance.

The dead transitions removed from the model because they are no longer part of the
replayable event log give rise to further possible extensions of the eST-Miner. When
detected early on, they can be used to identify and cut off candidate subtrees consisting
of dead places to improve the running time. Further investigation into the cause of their
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removal my lead to better noise handling strategies to improve the quality of discov-
ered models. Finally, it would be interesting to investigate whether the presented place
selection strategies can be adapted to improve other algorithms as well.
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Abstract. Systems with shared resources can be modeled and analyzed
using high-level Petri nets in a natural way. Choosing a model type suit-
able for the use in conformance checking introduces challenges related
to constraints the model should put on resource types and resource
instances. In this paper, we propose a model for systems with shared
resources based on resource-constrained Petri nets and ν-Petri nets that
can be used in the context of conformance checking. Our model allows
for case and resource isolation, allowing for proper simulation of multiple
cases involving shared resources.

With this minimal extension, we show that we can use existing state-
of-the-art conformance checking techniques to compute alignments on
complete event logs rather than on individual case instances. We show
that previously undetected deviations caused by inter-case dependen-
cies can now be exposed, providing valuable information regarding the
exhaustive workflow in the process.

Keywords: Petri nets · Shared resources · Conformance checking ·
Inter-case dependencies

1 Introduction

Process models often include descriptions of resources executing activities within
the process, since the availability of resources puts constraints on the process
execution. Event logs, recording process executions, also often include indications
which resource executed which activity and when, usually mentioning the exact
person(s) or machine(s) that were involved in the activity. Such event logs can
be used for conformance checking, i.e. checking whether and where the actual
process behavior recorded in an event log deviates from the behavior prescribed
by a process model.

Various types of conformance checking techniques that exist so far are pri-
marily focused on the control flow of a process, without taking into account
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the information about resources, and do so by looking at individual cases going
through the process separately. In the context of resources, it is crucial to con-
sider all the cases going through the system at the same time, since these cases
share resources available in the system.

Another challenge in the conformance checking of processes with shared
resources is the necessity to consider not only resource types (e.g. whether it
is a doctor or a nurse who has to perform a particular activity), but also the
resource identity (e.g. which doctor performed a surgery). This information is
critical for checking resource related constraints that should be imposed by the
model, e.g. that the patient had a follow-up appointment with the doctor who
conducted the surgery, or that the second-opinion appointment is not planned
with the same doctor whom the patient already met.

In this paper, we first address the question how to model resource-constrained
processes in order to enable conformance checking and then adapt a conformance
checking method to dealing with resource-constrained processes. We build our
model on basis of resource-constrained Petri nets [31] and ν-Petri nets [22]. The
model allows to specify resource types by using resource places, and case and
resource identities by using case ids and resource ids as token colors. We use the
alignment mechanism introduced in [1] as basis for our alignment method to do
conformance checking on resource-constrained ν-Petri nets.

Related Work. In [3] and [31], Petri nets are extended with resources to model
availability of durable resources, as well as their claims and releases by cases
running through the system. ν-Petri nets [22] allow for case isolation as a minimal
extension to classical Petri nets via name creation and name management. An
advantage as opposed to more advanced Petri net extensions is that coverability
and termination are decidable for ν-Petri nets.

Other extensions such as Catalog Petri nets [10], synchronizing proclet mod-
els [9], resource and instance-aware workflow nets (RIAW-nets) [17], and DB-
nets [18] inherit the functionality of ν-Petri nets. Additionally, these extensions
implement concepts from databases, shared resources, and proclet channels. We
show that we do not require such additional functionality and aim for a minimal
extension on Petri nets.

Many conformance checking techniques use alignments to directly connect
the behavior of a system recorded in a log with the behavior allowed by a process
model. Alignments can expose exactly where the recorded behavior and the
model agree, which activities prescribed by the model are missing in the log
and which log activities should not be performed according to the model [6,
28]. Rule checking techniques [14,25] are conformance checking techniques that
check if specific business rules are respected, and they can be useful in case
the process model does not describe the whole process behavior. Case-replay
techniques [4,24,28,29] aim to identify specific deviations between modeled and
observed behavior. We choose alignments as basis for our conformance checking
method since they are designed for fully-specified processes (potentially with
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invisible transitions) and target at discovering a broad range of deviations in the
process behavior.

Conformance checking usually targets isolated cases from the workflow per-
spective. More advanced techniques consider resources and data on top of the
control flow; in [7], the control flow is considered first, after which other per-
spectives are checked. This method can provide misleading results in case of
shared resources, since resources put additional constraints on the control flow.
In [15], this is partially mitigated by balancing the different perspectives in a
customizable manner. More recently, a technique was proposed to consider all
perspectives at once [16], but cases are still considered individually, also when
they are run in parallel, and tokens are uncolored, making it impossible to cap-
ture resource ids in the model.

Alignments, as well as the other techniques, are computed primarily focusing
on the detection of workflow deviations for individual cases. Work has been done
to take into account multiple perspectives like data attributes and resources to
check, besides the workflow, whether the correct data attributes and resources
were involved [2,7,15,16]. However, they still operate on a case-by-case basis.
With resource-constrained Petri nets, violations regarding inter-case dependen-
cies remain undetected.

Outline. This paper is organized as follows. Section 2 presents basic defini-
tions related to Petri nets and event logs. In Sect. 3, we focus on processes with
shared resources, introduce the notion of resource-constrained ν-Petri nets and
some modeling patterns. In Sect. 4, we steer towards the problem of conformance
checking and investigate the missing link with inter-case dependencies caused by
shared resources. In Sect. 5, we propose a solution exploiting ν-Petri nets to com-
pute alignments which allows for exposing violations. We conclude in Sect. 6 by
discussing our contributions and directions for future work.

2 Preliminaries

In this section we present the notations that we will use throughout the paper.

2.1 Petri Nets

Petri nets can be used as a tool for the representation, validation and verification
of workflow processes to provide insights in how the process behaves [21].

Definition 1 (Multiset). A multiset m over a set X is m : X → N, denoted as
X⊕. The support supp(m) of a multiset m is the set {x ∈ X | m(x) > 0}.

For m1,m2 ∈ N, we write m1 ≤ m2 if ∀x∈X : m1(x) ≤ m2(x), and m1 < m2

if m1 ≤ m2∧m1 �= m2. We define m1+m2 as (m1+m2)(x) = m1(x)+m2(x) for
all x ∈ X. For m1 ≥ m2, we define m1 − m2 as (m1 − m2)(x) = m1(x) − m2(x)
for all x ∈ X.



328 D. Sommers et al.

In some cases we consider multisets over a set X as vectors of length |X|,
where we assume arbitrary but fixed orderings of elements of X.

Definition 2 (Petri net). A Petri Net [19] is a 3-tuple N = 〈P, T,F〉, where P
is the set of places, T is the set of transitions, P∩T = ∅, F : (P×T )∪(T×P ) → N

is the flow of the net. The incidence matrix F of a Petri net N is a matrix with
a row for each place p ∈ P and a column for each transition t ∈ T and it is
defined by F (p, t) = F(t, p) − F(p, t).

We write P (N), T (N) and F(N) to indicate that we refer to the set of places,
the set of transitions and the flow relation of a net N .

N1 ∩ N2, N1 ∪ N2, and N1 ⊆ N2 denote intersection, union, and subsets of
nets, respectively, defined on the sets of nodes and arcs of N1 and N2.

A labeled Petri net N = 〈P, T,F , �〉 additionally defines a labeling � : T →
Σ⊥ = Σ ∪ {τ} assigning each transition t a label �(t) from alphabet Σ or �(t) =
τ for silent transitions. We assume that the intersection, union and subsets
are only defined for two labeled Petri nets N1, N2 where �1(t) = �2(t) for any
transition t ∈ T1 ∩ T2.

Definition 3 (Post-set, Pre-set). Given a transition t ∈ T , its pre-set •t and
post-set t• are multisets defined as follows: •t(p) = F(p, t) and t•(p) = F(t, p)
for p ∈ P . Correspondingly, for a place p ∈ P we have •p(t) = F(t, p) and
p•(t) = F(p, t) for t ∈ T .

Definition 4 (Marking). A marking m : P → N of Petri net N = 〈P, T,F〉
assigns how many tokens each place contains. A marking defines the state of N .

Definition 5 (Enabling and firing of transitions, Reachable markings). A tran-
sition t ∈ T is enabled for firing if and only if m ≥ •t. We denote the firing of
t by m

t−→ m′, where m′ is the resulting marking after firing t and is defined by
m′ = m − •t + t•. For a transition sequence σ = 〈t1, . . . , tm〉 we write m

σ−→ m′

to denote the consecutive firing of transitions t1 to tm. We also write m
∗−→ m′

if there is some σ ∈ T ∗ such that m
σ−→ m′.

The set of reachable markings R(N,m) from marking m in a Petri net N is
the set {m′ | m

∗−→ m′}.
Definition 6 (Place invariant). A place invariant [12] is a row vector I : P → Q

such that I · F = 0. We denote the set of all place invariants as IN , which is a
linear subspace of QP .

The main property of place invariants is that for any two markings m1,m2

such that m1
∗−→ m2 and any place invariant I holds: I · m1 = I · m2.

Definition 7 (Distributed run). A distributed run describes a partial order of
transition occurrences represented as an acyclic occurrence net π [20]. An occur-
rence net π = 〈B,E,G〉 is a Petri net where each place b ∈ B is called a con-
dition, each e ∈ E is called an event, the transitive closure G+ is acyclic. Each
b ∈ B has at most one pre-event and at most one post-event, i.e. |•b| ≤ 1 and
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|b•| ≤ 1. A labeled occurrence net π = 〈B,E,G, �〉 is an unfolding of a Petri net
N where each condition (event) is labeled with a set of labels of the form (x, id)
where x refers to a place (transition) of N , and id is an instance identifier.

Definition 8 (Net system, Language, Execution sequence). A Net system is a
tuple SN = (N,mi,mf ), where N is a Petri Net and mi and mf are respectively
the initial and final marking. The language of SN is the set L(SN) = {σ ∈ T ∗ |
mi

σ−→ mf} of all full firing sequences of SN .
An execution sequence in a net system SN = (N,mi,mf ) is a distributed

run of steps, starting at the initial marking mi and ending at the final marking
mf .

2.2 Event Logs

An event log records action executions as events where each event records at
least the action that occurred, the time of occurrence and the case identifier of
the case in which the action occurred. Often resources are also recorded as event
attributes, e.g. the actors executing the action. Typically, there are several types
of resources, and it is generally known beforehand which resources of which types
are involved in which actions.

Definition 9 (Cases, Resources). Idc denotes the set of case identifiers. An
identifier of case c is denoted as idc.

R = {r1, . . . , rm} is the set of resource types. Each resource instance with
an identifier idr belongs to some resource type r ∈ R. Idr denotes the set of
resource instances of type r ∈ R. We assume that Idr ∩ Idr′ = ∅ for any r �= r′.
IdR = �r∈RIdr denotes the set of the resource instances of all types.

Note that if one would want to capture resource instances with multiple types
R′ ⊆ R, a new type should be constructed containing all types from R′.

With the notation on cases, resources and resource types, we can define
events, an event log and its traces in an abstract manner:

Definition 10 (Event, Event log, Trace). An event e is a tuple 〈a, ts, idc, Idρ〉,
with an activity name a ∈ Σ, a timestamp ts, a case identifier idc and a set of
resource instance identifiers Idρ ⊆ IdR. Such an event represents that activity a
occurred at timestamp ts for case idc and is executed by resource instances from
Idρ belonging to possibly different resource types.

An event log L is a (partially) ordered set of events. These events can be split
into traces, defined as projections e.g. on the case identifiers or on the resource
identifiers.

For a process modeled by a Petri net, an activity name corresponds to a tran-
sition name or a transition label of the corresponding transition of a (labeled)
Petri net. With the projection on case identifiers, we get the events from indi-
vidual cases, as is mainly used in classical process mining and with projection
on resource identifiers, we can get the events from individual resource instances,
which are entities in their own right, providing the perspective of a single or
multiple resource types.
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3 Modeling Resource-Constrained Case Handling
Systems

A classical Petri net models a process execution using transition firings and the
corresponding changes of markings without making distinction between different
cases on which the modeled system works simultaneously. To create a case view,
Workflow nets [27] model processes from the perspective of a single case. Systems
in which cases share resources need to be modeled in a different way, providing
information both about cases and resources. In this paper, we extend the notion
of RCWF-nets [31], resource-constrained workflow nets with resource places and
id-tokens identifying cases, by loosening some structural restrictions on Petri
nets and including information about resource instances working on cases. To
achieve that, we make use of ν-Petri nets [22].

3.1 Resource-Constrained Petri Nets

Let R be the set of all resource types. Following the definition of [31], we model
each resource type r ∈ R by a place pr, where the resources (tokens) are located
when they are available. We extend the RCWF-nets definition by adding a place
p̄r for each resource type r. Tokens on p̄r represent resources working on cases.
The structural condition F(pr, t) + F(p̄r, t) = 0 is imposed on the net, which
implies that a token can e.g. be moved from pr to p̄r to show that the resource
gets occupied, moved from p̄r to pr to show that the resource becomes available,
or there could be tests whether there are free/occupied resources.

We consider durable resources only, meaning that resources can neither be
created nor destroyed, so in the corresponding net system with initial and final
marking mi and mf , mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r), for any resource
type r ∈ R. The net obtained from a resource-constrained net N by removing
all resource places Pr together with their incoming and outgoing arcs is called
the production net of N .

Tr ⊆ T denotes the set of activities in which resource instances of type r are
involved. We define T in

r = p•
r and T out

r = •pr, where resource instances of type
r are claimed and released, respectively. Note that both Tr \ (T in

r ∪ T out
r ) and

T in
r ∩T out

r may be nonempty, since a resource can be claimed by an activity and
then released only after executing several other activities, or it can be claimed
and immediately released by an activity.

We add modeling restrictions on pr and p̄r to exploit structural characteristics
of the Petri net later in Sect. 3.3.

Definition 11 (Resource-constrained net system). Let R be a set of resource
types. We define the set of availability resource places Pr = {pr | r ∈ R} and
the set of occupancy resource places P̄r = {p̄r | r ∈ R}. A resource-constrained
net system SN = (N,mi,mf ) is a regular net system with resource-constrained
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Fig. 1. Running example Petri net.

Petri net N = 〈P, T,F〉 where P = Pp � Pr � P̄r, with Pp the production places.
We have the following modeling restrictions on pr and p̄r:

1. ∀t∈T [•t(pr) + •t(p̄r) = t•(pr) + t•(p̄r)], i.e. F(pr, t) + F(p̄r, t) = 0.
2. mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r) = 0;

Restriction 1 from Definition 11 enforces the place invariant (1, 1) for each
pair of the availability and occupancy resource places pr and p̄r, which trivially
follows from the definition of place invariants. This implies that m(pr)+m(p̄r) =
mi(pr) for any marking m reachable from the initial marking mi. Restriction 2
requires that all resource tokens are returned to the availability resource place
when the net reaches its final marking.

Typically, a variant of the soundness property is imposed on the net system
to guarantee that the final marking is reachable from any marking reachable
from the initial marking.

3.2 Running Example

As a running example, we use the Petri net representation of a simple process,
see Fig. 1. This Petri net models a hospital process in which three types of
resources are involved: doctors (modeled with resource places pd and p̄d), doctor
assistants (places pa and p̄a) and nurses (places pn and p̄n). Patients undergo
two phases of a treatment. The first phase is the intake where a doctor together
with an assistant first discuss patient symptoms (transition is), after which the
doctor provides the plan of approach (transition ip), and finally the patient asks
questions to the assistant (transition iq). In case of emergency, the whole intake
phase can be skipped, which is modeled by the black (silent) transition. The
second phase is either medication collection (transition m) or operation. The
latter is subdivided in preparation (transition op) done by a nurse after which
the surgery (transition os) and close up (transition oc) are performed by the
nurse and a doctor, ending the process.

An assistant is actively involved in the whole intake phase of the process,
which is emphasized by the test arc between the place pa and transition ip. Note
that the nurse is not involved in the surgery, although it is not released during
the entire operation phase.
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Fig. 2. Example Petri net in need of case isolation.

3.3 ν-Petri Nets

Resource-constrained Petri nets are especially useful when multiple cases are
present simultaneously. An example in Fig. 2 shows that distinguishing tokens
belonging to different cases is essential for capturing process behavior of simul-
taneously running cases in a correct way. The shown net does not have the
separability property [30]. Trace 〈a, c, b, f , g, d, e, g〉 can be replayed on the Petri
net without differentiating between the case ids. However, this trace cannot be
formed as an interleaving shuffle of the traces of two separate cases, since each
firing of transition g uses tokens belonging to two different cases. Thus we need a
mechanism preventing firings of transitions that mix tokens belonging to differ-
ent resources. Moreover, we also need a mechanism allowing us to keep track of
resource instances. In our running example, we need e.g. a possibility to extend
the model with a constraint that the doctor who performed the intake is also
the doctor who performs the surgery later in the process.

We use ν-Petri nets to provide case and resource isolation. ν-Petri nets, also
referred to as Petri nets with names, extend regular Petri nets with the capability
of name management. The expressive power of a ν-Petri net strictly surpasses
that of Petri nets and they essentially correspond to the minimal object-oriented
Petri nets of [11]. In a ν-Petri net, names can be created, communicated and
matched which can be used to deal with authentication issues [23], correlation
or instance isolation [8]. Name management is formalized by replacing ordinary
tokens by distinguishable ones, thus adding color the Petri net.

We first give the definition of regular ν-Petri nets from [22] (see Definition
12), after which we show how we extend the definition to work with resource-
constrained Petri nets. Colors are handled by matching variables labeling the
arcs of the Petri nets, taken from a fixed set Var and a set of special variables
Υ ⊂ Var as defined in Definition 12.

Definition 12 (ν-Petri net [22]). A ν-Petri net is a tuple ν-N = 〈P, T,F〉,
with a set of places P and a set of transitions T with P ∩ T = ∅, and a flow
function F : (P × T ) ∪ (T × P ) → Var⊕ such that for every t ∈ T , Υ ∩ pre(t) =
∅ and post(t) \ Υ ⊆ pre(t), where pre(t) =

⋃

p∈P

supp(F(p, t)) and post(t) =
⋃

p∈P

supp(F(t, p)). Υ ⊂ Var denotes a set of special variables ranged by ν, ν1, . . .

to instantiate fresh names.
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Fig. 3. Process model M : ν-Petri net representation of the running example (note that
some arc labels are omitted for clarity).

A marking of ν-N is a function m : P → Id⊕. Id(m) denotes the set of
names in m, i.e. Id(m) =

⋃

p∈P

supp(m(p)).

A mode μ of a transition t is an injection μ : Var(t) → Id, that instantiates
each variable to an identifier.

For a firing of transition t with mode μ, we write m
tµ−→ m′. t is enabled

with mode μ if μ(F(p, t)) ⊆ m(P ) for all p ∈ P and μ(ν) /∈ Id(m) for all
ν ∈ Υ ∩Var(t). The reached state after the firing of t with mode μ is the marking
m′, given by:

m′(p) = m(p) − μ(F(p, t)) + μ(F(t, p)) for all p ∈ P (1)

ν-Petri nets support instance isolation: we use case ids and resource ids as
token colors and require tokens involved in a transition firing to have matching
colors. This allows for separating multiple instances simultaneously running in
the Petri net. We build on Definition 12 to define resource constrained Petri
nets with matching on case instances and resource instances. Instance isolation
is achieved by extending the colored tokens to multi-colored, for which we have
two sets of variables, Varc and Varr, for case and resource isolation respectively,
instead of the single set V ar in ν-Petri nets. This requires modifications in the
standard definition of arcs F , marking m and mode μ of the ν-Petri net. The
definition of transition firings remains the same.

Definition 13 (Resource-constrained ν-Petri net). Let C⊥ be the set of case ids
C extended with ordinary tokens, i.e. • ∈ C, and R⊥ be the set of resource ids
extended with ordinary tokens.
A resource-constrained ν-Petri net N = 〈P, T,F〉 is a Petri net system with
F : (P × T ) ∪ (T × P ) → (Var⊥

c × Var⊥
r )⊕, where Varc denote case variables

and Varr denote resource variable.
A marking of N is a function m : P → (C⊥ × R⊥)⊕ with case ids C and

resources R, which is a mapping from places to multisets of colored tokens.
A mode of a transition t is an injection μ : (Var⊥

c ×Var⊥
r )(t) → (C⊥ ×R⊥),

that instantiates each variable to an identifier.
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Batching

Long-term resource memory
Capacity

(a) Patterns for capacity, long-term resource memory and batching

FIFO queue of length

Four eyes principle

(b) Pattern for FIFO queue and four eyes principle

Fig. 4. Modeling patterns extending the running example showing possible use cases.

The mode determines the case and resource ids of the tokens to consume and
produce in a transition firing. Note the role of the occupancy resource places in
this definition: they allow to keep track of resources working on individual cases.
The place invariant naturally holds for resource-constrained ν-Petri nets as well.

Figure 3 shows the ν-Petri net for our running example.
Note that this example does not include the functionality of new name cre-

ation although this could be useful to exploit in some processes. E.g., consider a
production process where components are assembled into products. Each com-
ponent has a unique identifier, of which a subset is merged into a product for
which a fresh identifier should be produced, requiring new name creation in the
process model.

3.4 Modeling Patterns

Resource-constrained ν-Petri nets open up a number of possibilities in terms of
simulating resource-constrained processes, where case and resource isolation are
critical for correct simulation.

We illustrate a number of modeling patterns in Fig. 4, building on our running
example:

– Capacity, FIFO queues A subprocess in Fig. 4a on the left, prior to the
intake, models a waiting room with a capacity limited by the initial number
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of tokens on the resource place pr. Figure 4b shows a FIFO (first in first
out) version of the waiting room. For the FIFO queue with capacity n, n
availability and n occupancy resource places are needed for this pattern to
lead patient tokens (with their case ids) through the queue.

– Long term resource memory: Place p̃d with F(is, p̃d) = F(p̃d, os) = (c, y)
models a long term resource memory with respect to the doctor, ensuring
that the resource instance of type doctor that was involved in the intake
of a patient is also the same instance that performs the operation for that
patient. This construct still allows the resource to be available for other cases
(patients) in between the intake and the surgery.

– Four eyes principle: Alternatively, as shown in Fig. 4b on the right, p̃d

can also be used to add the opposite restriction with respect to the doctor
resource: the doctor performing the operation (d2) should be different from
the doctor involved in the intake (d1). This pattern is known as the four
eyes principle, meaning that two resources involved in a process should not
be equal. Note that the starting transition of the second subprocess should
be duplicated, since the intake-doctor d1, who is not involved in the surgery,
could be residing in either pd or p̃d.

– Batching: Batch processing can be modeled with multiple arrows, like the
arrows connected to the silent transition in the net firing before transition
m. In this case, a pharmacy may only replenish their inventory for e.g. three
orders of medication at once. This pattern is similar to the one in classical
Petri nets.

4 Alignments on Resource-Constrained Petri Nets

Several state-of-the art techniques in conformance checking use alignments to
relate the recorded executions of a process with a model of this process [1]. A
traditional alignment shows how a trace can be replayed on the process model
by a sequence of moves representing either a synchronous move, a log move
or a model move, denoted as

(
a
a

)
,

(
a
�

)
and

(�
a

)
respectively. A synchronous

move indicates that observed and modeled behavior agree, i.e. the execution of
an activity observed in the log can be mimicked by performing this activity in
the process model. A log move means that an activity from the log cannot be
mimicked in the model, and a model move represents the fact that the model
requires an execution of some activity, which is not observed in the log. Log
moves and model moves can expose deviations of the real behavior from the
model.

In this section we recapitulate the alignment mechanism in its classical form,
with computations performed on a case-by-case basis, after which we show its
shortcomings when dealing with resource-constrained Petri nets.

4.1 Traditional Case-by-Case Alignments

The foundational work for constructing alignments is presented in [1] and relies
on two fundamental concepts: (1) a synchronous product of Petri nets and (2)
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the marking equation. The synchronous product definition is tuned towards the
setting of alignments and it is built for the Petri net model of the process and the
trace Petri net (a Petri net representation of the (partially) ordered trace in the
event log). The trace Petri net traditionally represents only individual cases from
the event log, and consequently does not capture the interdependencies between
multiple cases. The case-by-case alignment is then found by a depth-first search
on the synchronous product Petri net using the A∗ algorithm [1].

A trace net system SNσ of a trace σ = 〈e1, . . . , en〉 is a net system with
the set of transitions T l = {tli | ei ∈ σ}, a connection place for every pair of
transitions tli and tli+1, place pi being the input place of t1 and place pf being
the output place of tn, mi = {pi} and mf = {pf}.

Given a net system SN modeling the considered process and a trace net
system SN σ modeling a trace from a log, a synchronous product ΠSN contains
the places and the transitions of SN and SN σ and additional transitions called
synchronous moves: For each pair of transitions tm ∈ T (SN ), tl ∈ T (SN σ) with
matching labels �(tl) = �(tm), transition ts is created with •ts = •tl ∪ •tm and
ts• = tl• ∪ tm•. Thus ΠSN contains transitions T = T s ∪ T l ∪ Tm, where each
ts ∈ T s can be traced back to a pair of a transition tl ∈ T l and a transition
tm ∈ Tm, T l is the set of transitions of the trace net system and Tm is the set of
transitions of the process model SN . While T s transitions represent synchronous
moves in both the trace net and the process model, T l transitions represent log
moves and Tm transitions represent model moves.

The core alignment question is now formalized as follows: given a synchronous
product Petri net with a cost function assigning a non-negative cost to each
transition firing, find a distributed run from the initial marking to the final
marking with the lowest total costs. Synchronous moves have zero costs, since
they represent a match between the trace and the model behavior.

Let ΠSN = 〈P, T,F〉 be a synchronous product Petri net with T = T s �
T l �Tm partitioned into sets of transitions corresponding to synchronous moves,
log moves and model moves respectively and let (ΠSN,mi,mf ) a corresponding
net system. Furthermore let c : T → R

+ a cost function.
An alignment is a distributed run γ ∈ {γ ∈ T ∗|(ΠSN,mi)

γ−→ (ΠSN,mf )}.
An optimal alignment is an alignment γ such that c(γ) ≤ c(γ′) holds for any

alignment γ′.
Optimal alignments can be computed for individual cases in an event log

using an A∗ based search strategy [1,6,29] where ILP is utilized as a heuristic
function, or logic programming [5] is used. Other methods focus on approxima-
tions of alignments [26] or provide divide-and-conquer strategies [13]. Although
we will not go into the details on the exact workings of these methods, we point
out that they all have one fundamental property in common: they all reason over
the synchronous product Petri net.
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4.2 Unexposed Deviations; the Need for Multi-case and -resource
Alignments

When talking about case-by-case alignments with resource-constrained Petri
nets, some deviations remain unexposed. Recall that for simulating resource-
constrained Petri nets, we need a ν-Petri net representation to correctly isolate
the cases and resources. Similar issues emerge when computing alignments case
by case using indistinguishable resources. Referring back to the modeling pat-
terns presented in Sect. 3.4, we show some event logs for the extended running
example process models from Fig. 4 for which case-by-case alignments fail to
expose deviations in resource-constrained Petri nets:

– Multitasking: consider the partial event log L1 given by

L1 = 〈. . . , 〈is, {d1, a1}〉, 〈is, {d1, a2}〉, 〈ip, {d1, a1}〉, 〈ip, {d1, a2}〉, . . . 〉

where the timestamp is abstracted away and the case identifier is denoted
by the activity color (and additionally by the bar position). The recorded
behavior in L1 shows that doctor d1 is multitasking on the intake subprocesses
of two patients. The resource-constrained ν-Petri net does not accept this
behavior since is claims the doctor and the doctor is released again only after
ip is executed. Case-by-case alignments consider every case in isolation and
therefore they do not expose any deviations in L1.

– Resource switching: consider the partial event log L2 given by

L2 = 〈. . . , 〈is, {d1, a1}〉, 〈is, {d2, a2}〉, 〈ip, {d2, a1}〉, 〈ip, {d1, a2}〉, . . . 〉

The behavior recorded in L2 shows that doctors d1 and d2 swapped patients
during the intake subprocess, which is not allowed according to the process
model where the resources have names (colors).
Furthermore, consider the partial event log L3 given by

L3 = 〈. . . , 〈is, {d1, a1}〉, 〈ip, {d1, a1}〉, . . . , 〈os, {d2, a1}〉, . . . 〉

L3 shows that doctor d2 performed an surgery on a patient whose intake was
done by doctor d1, although the long-term resource memory place p̃d in the
process model implies that the doctor performing the surgery is the same as
the one who did the intake.
These deviations remain undetected by the traditional alignments, computed
on classical Petri nets with black tokens.

– Capacity violations: consider the partial event log L4 given by

L4 = 〈〈we, {r1}〉, 〈we, {r1}〉, 〈we, {r1}〉, 〈wl, {r1}〉, 〈wl, {r1}〉, 〈wl, {r1}〉, . . . 〉

L4 shows the behavior from the waiting room subprocess, where a maximum
capacity of two patients is in place. Similar to the first example, case-by-case
leaves this deviation undetected.
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– Overtaking in FIFO queues: consider the partial event log L5 given by

L5 = 〈〈we, {r1}〉, 〈we, {r1}〉, 〈wl, {r1}〉, 〈wl, {r1}〉, . . . 〉
The recorded behavior in L5 does not violate the waiting room’s capacity, but
the patients leave in a different order than how they arrived, while the process
model imposes the FIFO pattern. Such deviations can only be exposed when
aligning multiple cases simultaneously.

– Batching violations: consider the partial event log L6 given b

L6 = 〈. . . , 〈m, ∅〉, 〈m, ∅〉, . . . 〉
Recall that m is only enabled after e.g. three (with n = 3) tokens are in •op

in order to fire the connected silent transition in the process model. L6 shows
that m occurred for two patients only, deviating from the model. With case-
by-case alignments, it is impossible to align m. It also would be impossible in
case there were three patients according to the log, since it requires multiple
cases being processed simultaneously.

This clearly shows that case-by-case conformance checking is not suffi-
cient and resource identities are essential for detecting deviations from stan-
dard resource-related constraints. Therefore, we introduce multi-case and multi-
resource alignments using ν-Petri nets that align the complete event log to the
process model, allowing to expose the deviations listed above.

5 Computing Multi-case and -resource Alignments

Our approach to computing multi-case alignments is based on the traditional
alignment-based approach using the synchronous product Petri net. Instead of
representing individual cases in the trace Petri net, we capture the complete
event log there in order to consider inter-case relations. To retain the case
isolation when aligning, we transform the process model given by a resource-
constrained Petri net into the resource-constrained ν-Petri net (Definition 13).

As a running example we take the Petri net from Fig. 1 and the event log:

L = 〈is, is, ip, ip, op, os, is, iq, oc, ip, iq, op, op, os, oc, os,m〉

where the colors (and bar positions) represent the case identifiers. The times-
tamps and involved resource instances are omitted and made implicit by the
ordering and the transitions from the process model respectively. For this exam-
ple, there is a single resource instance for each resource type.

5.1 Approach

Recall that alignments are computed by taking the synchronous product Petri
net constructed from the process model Petri net and a Petri net representation
of the trace, called the trace Petri net. With a resource constrained ν-Petri net
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Legend:

Fig. 5. Running example trace ν-Petri net

as the process model, we have to modify the definition of the trace Petri net
that takes into account the case identifiers of the events in the event log. We
achieve this by constructing multiple trace Petri nets for each trace in the event
log projected on the case identifiers. The cases are then differentiated by turning
this into a ν-Petri net with the label (c,⊥) on the arcs. Additionally, we add
places between the transitions to enforce the correct ordering as they occurred
in the event log, with label (⊥,⊥) on its incoming and outgoing arcs. Formally,
this trace ν-Petri net is defined as follows:

Definition 14 (Trace ν-Petri net). ν-SN = 〈P, T,F , �〉, a labeled trace ν-Petri
net, is constructed from an event log L = 〈eidc,a

i 〉1≤i≤n, with idc and a denoting
respectively the case identifier and activity of event ei. For each event eidc,a

i with
1 ≤ i ≤ n, we have a transition tidc

i with �(ti) = a. Places are added between
these transitions as follows1: With i from 1 to n, we add a place pidc

i between tidc
i

and minj>i t
idc′
j such that idc′ = idc with F(tidc

i , pidc
i ) = F(pidc

i , t
idc′
j ) = (c,⊥).

Furthermore, we add a place pτ
i , enforcing the original ordering, between tidc

i

and t
idc′
i+1 if idc′ �= idc with F(tidc

i , pτ
i ) = F(pτ

i , t
idc′
i+1) = (⊥,⊥).

Lastly, initial and final places are added for each case idc ∈ Idc: pidc
in to

mini tidc
i and pidc

out to maxj tcj with F(pidc
in , tidc

i ) = F(tidc
j , pidc

out) = (c,⊥). The
initial and final marking is then defined by mi(pidc

in ) = mf (pidc
out) = {(idc,⊥)}.

The trace ν-Petri net for the running example is shown in Fig. 5. With the
redefined trace ν-Petri net we can construct the synchronous product Petri net
ν-ΠSN consisting of the resource constrained ν-Petri net and the trace ν-Petri
net.

Computing the multi-case alignments is now a matter of finding the dis-
tributed run in the ν-ΠSN for which we can use any of the existing methods as
described in Sect. 4.1. The optimal alignment is again the one with lowest cost.

Note that while ν-Petri nets are inherently unbounded by generating fresh
tokens, we can decide on the tokens to be generated beforehand by preprocessing
the event log, and can therefore retain boundedness.
1 Adding a place p between two transitions ta and tb denotes a single arc from ta to

p and a single arc from p to tb.
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Fig. 6. Running example synchronous product ν-Petri net

For our running example we get the synchronous product ν-Petri net as
shown in Fig. 6 and the corresponding optimal alignment is the shortest path
through ΠSN and is shown in Table 1. Note that not all synchronous transitions
are visualized in the figure for clarity reasons.

Table 1. Alignment from the naive method

5.2 Multi-case and -resource Alignments in Action

With the examples listed in Sect. 4.2 of undetected deviations with traditional
alignments, we show here how multi-case and -resource alignments expose them.
Note that resource attributes for some event logs are abstracted away when this
is implicit from the data (only a single resource was involved). For others, the
resource attribute is denoted in the superscript of the event.

– γ(L1) shows an optimal alignment for L1 computed from the method described
above. With multi-case and -resource alignments, it is not possible anymore
for all moves to be aligned synchronously because of the doctor’s availability
during the intake process.
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γ(L1) =
L1 is � is ip ip

Me is ip is � ip

– γ(L2) shows an optimal alignment for L2, where we see that ip and ip should
have occurred with doctors d1 and d2 respectively according to the model
exposing that they have switched positions in the recorded behavior.

γ(L2) =
L2 id1s id2s � id2p � id1p

γ(L3) =
L3 id1s id2s · · · � od2s

Me id1s id2s id1p � id2p � Me id1s id2s · · · od1s �

– γ(L3) shows an optimal alignment for L3, where we see that the long term
resource memory is violated and os should have been executed by doctor d1
instead of d2.

– γ(L4) shows an optimal alignment for L4, revealing that wl should have
occurred before we according to the capacity restriction in the model, i.e.
the first patient should have left the waiting room before the third patient
entered.

γ(L4) =
L4 we we � we wl wl wl

γ(L5) =
L5 we we � wl wl

Me we we wl we � wl wl Me we we wl wl �

– γ(L5) shows an optimal alignment for L5. The model move on wl shows that
the first patient should leave before the second one does, exposing the FIFO
violation in the waiting room process.

– γ(L6) shows an optimal alignment for L6, where the batching restriction is
violated. The model moves show that an added third patient should have
been included in order to execute m for the three patients.

γ(L6) =
L6 � � � m m

Me τ τ m m m

5.3 Relaxing the Synchronous Product Petri Net to Detect
Resource-Related Deviations

With the alignments generated as described above it could be difficult to inter-
pret the exposed deviations, especially in terms of the added model moves: was
the activity executed but not logged, was it executed by a “wrong” resource and
therefore not executable in the model, or was it definitely not executed because
no appropriate resource was available?

In this section we show how we can use simple model transformations on the
synchronous product Petri net to allow for additional behavior (at some costs),
so we can interpret resource-related deviations in more detail. To show these
transformations, we use an example subprocess with two activities a and b in
which a resource of type r is involved. The corresponding Petri net is shown in
Fig. 7, where the transitions {ā, b̄, τ1, τ2, τ3} are added to the model.
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Fig. 7. Resource relaxations for improved alignment interpretability.

Multitasking. From alignment γ(L1) from Sect. 5.2 it is not immediately clear
that the resource instance was multitasking. The model transformation in Fig. 7
using silent transitions τ1 and τ2 between pr and p̄r allows for turning a resource
instance from available to occupied and vice versa at any point in time. These
silent transitions give additional interpretation to the alignment, showing where
the resource might have been released or claimed to work on another case, while
it was not allowed by the model. With c(τ1) > 0 and c(τ2) > 0, model moves with
τ1 or τ2, which we denote as resource moves, are only selected when necessary.

Model Moves Not Claiming Resources. Transitions ā and b̄ allow for model
moves not claiming the resource(s), which we call control flow moves. It is impor-
tant to note that these transitions have no corresponding “resource-free” syn-
chronous move in the synchronous product Petri net ΠSN , since they represent
a relaxed version of the model move. Therefore, the cost of a control flow move
should be higher than the cost of the corresponding model move (that do claim
the resources), i.e. c(ā) > c(a) and c(b̄) > c(b).

This transformation allows to compute more sensible alignments in cases
when a work item is skipped and the resources necessary for it were occupied,
making a model move impossible. In such cases, the alignment without control
flow moves would fit the model moves in time ranges where the needed resources
were available, potentially causing conflicts in earlier or later stages of the pro-
cess. Therefore, with the additional model moves, the resource claim is bypassed.

τ1 and τ2 as introduced above are necessary to avoid deadlocks that can arise
in case a control flow move mimics a transition that claims or releases resources.

Resource Switching. From alignments γ(L2) and γ(L3) from Sect. 5.2 it is
not immediately clear that the resource instances have switched or the incor-
rect resource instance is involved. The model transformation in Fig. 7 using τ3
connected to p̄r and possibly p̃r allows the resources to take over each other’s
work. For the resource switch from γ(L3), additionally τ1 and τ2 are necessary
to get d1 into p̃d. With c(τ3) > 0, a model move with τ3 would only reside in
the optimal alignment would it be necessary and it is interpretable showing the
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resource instance that took over work for a case from a specific resource instance.
A model move with τ3 is also denoted as a resource move.

Resource Type Relaxation. Recall that the resource instances as defined
above are strictly typed. In case we want to allow a resource to execute tasks
belonging to other resource types (at some cost), e.g. n and a, the following
model transformation is sufficient: add a place pn,a with •pn,a = •pn ∪ •pa and
p•

n,a = p•
n ∪ p•

a. A resource instance that could be involved in activities from n
and a resides initially in pn,a from where it is able to do both.

Furthermore, when we would want to allow some types, e.g. for type r, to be
unnamed, a model transformation making all tokens on place pr the same color
suffices. Note that this was already done for the waiting room resource instances
for alignments γ(L4) and γ(L5) from Sect. 5.2.

These, and possible other model transformations could be used to enrich the
alignment providing more interpretability.

6 Conclusion

In this paper we proposed a model for processes with shared resources using
some features of resource-constrained workflow nets and ν-Petri nets. Our model
allows to distinguish both cases and resources. This opens up possibilities in
terms of modeling intricate inter-case dependencies and shared resources, includ-
ing long-term resource memory, while still offering an option to exploit structural
properties like well-structuredness of the control flow for e.g. conformance check-
ing.

We showed that traditional alignments for conformance checking fail to detect
some deviations that can arise in processes with shared resources. With our
extended ν-Petri net representation of the process model, and a newly defined
trace ν-Petri net containing the complete event log, we showed that the tech-
niques for computing alignments can be utilized to expose violations on inter-case
dependencies and usage of shared resources.

Our proposed extension to ν-Petri nets is a minimal extension that is suf-
ficient for computing alignments on event logs without redundant functionality
that other, possibly more sophisticated, extensions may offer as discussed in
Sect. 1.

Future Work. Computing alignments on a case-by-case basis is already a com-
plex problem in terms of computational power [6]. In principle, the complexity
increases when multiple traces together with resource information are consid-
ered. At the same time, resource information available in the log can narrow
the actual search space. We plan to look into preprocessing techniques and into
structural reductions and decompositions for the Petri net to reduce the search
space when computing the alignments.
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Abstract. Standard process discovery algorithms find a single process
model that describes all traces in the event log from start to end as best as
possible. However, when the event log contains highly diverse behavior,
they fail to find a suitable model, i.e., a so-called “flower” or “spaghetti”
model is returned. In these cases, discovering local process models can
provide valuable information about the event log by returning multiple
small process models that explain local behavior. In addition to explain-
ability, local process models have also been used for event abstraction,
trace clustering, outcome prediction, etc. Existing approaches that dis-
cover local process models do not scale well on event logs with many
events or activities. Hence, in this paper, we propose a novel approach
for discovering local process models composed of so-called place nets, i.e.,
Petri net places with the corresponding transitions. The place nets may
correspond to state- or language-based regions, but do not need to. The
goal however is to build multiple models, each explaining parts of the
overall behavior. We also introduce different heuristics that measure the
model’s frequency, simplicity, and precision. The algorithm is scalable on
large event logs since it needs only one pass through the event log. We
implemented our approach as a ProM plugin and evaluated it on several
data sets.

Keywords: Local process models · Process mining · Process discovery

1 Introduction

The main goal of process mining is to help people analyze and improve processes.
One subarea of process mining is process discovery which automatically creates
process models from available event logs [1]. Process discovery techniques [13,
15,26,27] try to explain and visualize the process from start to end, while other
algorithms like sequence and episode mining [19,21] try to mine small patterns
that frequently happen in the event log. This paper will focus on local process
model discovery which was first introduced in [24] as an individual branch and
was positioned between process discovery and pattern mining. Local process
models are able to describe complex constructs in contrast to sequences and
episodes, but keep the local perspective introduced in pattern mining, which
separates them from process discovery. This way, instead of describing a process
with one overall model, a set of models is used.
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Some processes we want to analyze are too diverse to have a clear structure.
Thus, making it almost impossible to discover an end-to-end model, resulting in
a discovery of a so-called “flower” or “spaghetti” models. Hence, one straight-
forward use-case of local process model discovery is when traditional process
discovery approaches fail to produce an understandable model. However, the
importance of local process models is not constrained to processes where pro-
cess discovery fails to produce a good model. Despite the limited number of
approaches that offer local process model discovery [2,24], local process models
have been used in event abstraction [18], classification of traces [20], clustering
of resources [8], as sub-part of end-to-end discovery algorithms [12,17], and in
different use-case studies [7,11].

In this paper, we introduce a novel approach for discovering local process
models. We are inspired by region-theory discovery algorithms. We assume that
the possible regions are already available to us, and instead of building one end-
to-end model, we combine the regions in smaller local process models. We accept
the regions in the form of place nets, that we can get from any of the existing
process discovery approaches. Our proposed algorithm is available as a plugin in
ProM1 [25] (Fig. 1) that allows the input to be defined as a set of place nets or
a Petri net. The first notable difference between our approach and the existing
ones is that we build the local process models as Petri nets instead of process
trees as in [2,24]. This allows us to find constructs like long-term dependencies
that are not possible in process trees. The next significant difference is speed
and feasibility. We show that in contrast to the existing approaches, we are able
to handle event logs with many activities or events and we return results much
faster. Previous approaches rely on pruning infrequent local process models early
on to gain on speed. Thus, forcing them to return only frequently appearing mod-
els. And although we are able to return frequent models, we are not constrained
to find only those, since our speed arises from passing the event log only once
and not pruning out infrequent patterns. In the future, this would allow for even
broader usage and application of local process models in other areas of process
analysis. To summarize, our contribution is threefold:

– We introduce an entirely new technique to build local process models that is
completely based on Petri nets.

– We offer a technique that is feasible on event logs with many activities or
events because it is linear in the size of the event log.

– We do not limit the results to frequent local process models.

We continue the paper by presenting some related work in Sect. 2, and prelim-
inaries in Sect. 3. In Sect. 4, we present the approach for local process model dis-
covery. Section 5 explains our evaluation strategy and the results we get. Section 6
concludes the paper by summarizing and giving an outlook for future work.

1 The plugin “LocalProcessModelDiscoveryByCombiningPlaces” is available in ProM
6.11 and the Nightly Builds.
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(a) Table with local process models (b) Visualizing a local process model

Fig. 1. Implementation of our approach as a ProM plugin.

2 Related Work

As previously mentioned, local process model discovery is positioned in-between
traditional process discovery and episode and sequence mining. Although process
discovery approaches [4,6,13,15,26,27] are highly valuable for process analysis,
the purpose of local process models is different. Local process models try to
explain subsequences of the traces like in episode and sequence mining but can
discover much more complex constructs as compared to traditional process dis-
covery. To take advantage of all the different discovery techniques, we can use
the output they produce as input for our algorithm. To be flexible regarding the
existing and future discovery methods, we only require that the input is a Petri
net or a set of place nets no matter how or which algorithm produced them.

To the best of our knowledge, there are two existing techniques for mining
local process models from event logs. Both [24] and [2] mine local process models
by recursively extending process trees.

The approach in [24] was the first to discover local process models and con-
sists of four main steps. In the first step, for each activity in the event log a
process tree containing exactly one leaf node that represents the activity is cre-
ated. This set is the first set of candidate local process models. In the second
step, each of the local process models from the candidate set is evaluated on the
event log with different quality metrics, and only a subset of them that satisfy
certain thresholds are selected in the third step. In the fourth step, the selected
local process models (process trees) are expanded by replacing one of the leaves
with each process tree operator (sequence, loop, parallel, and exclusive choice)
and adding the replaced leaf as one child and an activity not already present in
the process tree as a second child. The expanded local process models become
candidates in the next step, and the procedure is repeated until the maximal size
of the local process model is achieved or none of the candidates pass the selection
phase. Each process tree is evaluated on the entire event log and extended with
all activities, making the approach infeasible for event logs with many events or
activities.

The approach in [2] was inspired by [24], and also recursively extends process
trees. However, they create new process trees by combining two existing process
trees, called seeds, that differ only in one leaf node. In the combined process
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tree this differentiating node is replaced with a process tree operator and the
two nodes are added as children to the new operator. In addition to [24] they do
not reevaluate the process trees on the entire event log but on projections of the
seeds. Additionally, they define compact and maximal process trees and strive
to return only such local process models.

Both approaches use monotonicity of model frequency for pruning, but still
struggle to return results in reasonable time on mid-sized event logs. To handle
this problem, [23] extends the work in [24] by mining local process models for
specific subsets of activities decided via heuristics. [22] allows for mining local
process models of a specific interest using utility functions, and with [3] the
work in [2] is extended to discover patterns that are frequent for a given context.
Although not in the focus of this paper, our algorithm can adopt both utility
functions and in-context search without impacting our running time significantly.

3 Preliminaries

In this section, we introduce important background information needed for
understanding the rest of the paper. We start with some general notations, and
we continue with topic-specific definitions.

General. We use sets ({a, b, ...}), multisets ([a2, b, ...]), sequences (〈a, b, ...〉), and
tuples ((a, b, ...)) as usually defined. Given a set X, X∗ represents the set of
all sequences over X, and M(X) is the set of all multisets over X. Given a
sequence σ = 〈s1, s2, ...sn〉, we access the i-th element of the sequence with σ[i],
i.e., σ[i] = si, for 1 ≤ i ≤ n. We extend σ with an additional element sn+1

by writing σ · sn+1. We call the sequence σ′ a subsequence of σ, if and only if
σ′ = 〈sl, sl+1, ...sm〉 and 1 ≤ l < m ≤ n (we write σ′ � σ or σ′ = σ[l,m] if the
indices are known). We call σ′ a relaxed subsequence (we write σ′ �

˜

σ) if and only
if for some k ≥ 1 there is σ′ = 〈si1 , si2 , ...sik〉 such that 1 ≤ i1 < i2 < ... < ik ≤ n,
i.e., we drop any number of elements from σ (at most n − 1) and keep the order
for the rest. We write {σ′ op σ} or [σ′ op σ ] where op ∈ {�,�

˜

,�k,�
˜

k}, to
denote the set or multiset of all sequences σ′ that satisfy the given operator
in regard to σ. We use �k and �

˜

k when we are interested in subsequences
respectively relaxed subsequences of a particular length. To recalculate sets or
multisets from other sets, multisets or sequences, we use the {·} and [ · ] operators.
We use f(X) = {f(x)|x ∈ X} (respectively f(σ) = 〈f(s1), f(s2), ...f(sn)〉) to
apply the function f to every element in the set X (the sequence σ) and f�X
(respectively σ�X ) to denote the projection of the function f (respectively the
sequence σ) on the set X.

Process Mining. The collected data used for process analysis is given in the
form of event logs. Hence, in Definition 1, we formally define traces and event
logs. Note that although traces are usually defined as sequences of events, in this
work, we are interested only in the activity the events represent.
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Definition 1. Given the universe of activities A, we define ρ ∈ A∗ as a trace,
and L ∈ M(A∗) as an event log.

In Definition 2, we define labeled Petri nets. Note that a transition t ∈ T with
l(t) = τ is called silent, and that there may be duplicate transitions t1, t2 ∈ T
such that l(t1) = l(t2).

Definition 2 (Labeled Petri Net). A labeled Petri net N = (P, T, F,A, l)
is a tuple, where P is a set of places and T is a set of transitions such that
P ∩ T = ∅. F ⊆ (P × T ) ∪ (T × P ) is the flow relation, A ⊆ A is a set of
activities, and l : T −→ A ∪ {τ} the labeling function.

Now given a labeled Petri net N = (P, T, F,A, l), for each element
x ∈ P ∪ T we define the preset of x to be •x = {y|(y, x) ∈ F}, and the
postset of x to be x• = {y|(x, y) ∈ F}. We additionally define the set
N = {(ti, to)|∃p∈P ((ti, to) ∈ •p × p•)} to denote all pairs of transitions in the
net N , that are directly connected via a place. We call each such pair a passage.

A labeled Petri net can be in a given state with the help of markings. Given
a labeled Petri net N = (P, T, F,A, l), we define a marking M as M ∈ M(P ),
and with [ ] we denote the empty marking. Every element in the marking M
represents a token in one of the places in P . The state can change by following
the firing rule. We say that a transition t ∈ T is enabled in the marking M if
and only if there is a token in each place in the preset of t, i.e., •t ⊆ M (we write
M [t〉). A transition t can fire in marking M if and only if it is enabled in M . By
firing, the transition changes the marking to M ′ = (M \ •t) ∪ t•. In this case,
we can write M

t−→ M ′. To denote getting from M to M ′ by firing a sequence of
transitions σ = 〈t1, ..., tn〉 ∈ T ∗ such that M

t1−→ M1
t2−→ M2 · · · tn−→ M ′, we write

M
σ−→ M ′.
In Definition 3, we define a union of two labeled Petri nets and we extend

for multiple labeled Petri nets. Then in Definition 4 we define what it means for
a labeled Petri net to be connected.

Definition 3 (Union of Labeled Petri Nets). Given two labeled
Petri nets N1 = (P1, T1, F1, A1, l1) and N2 = (P2, T2, F2, A2, l2) we define
their union as N1 ∪ N2 = N = (P, T, F,A, l) where P = P1 ∪ P2, T = T1 ∪ T2,
F = F1 ∪ F2, A = A1 ∪ A2, and l : T −→ A ∪ {τ,⊥} is the mapping

l(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

l1(t), if t ∈ T1 \ T2

l2(t), if t ∈ T2 \ T1

l1(t), if t ∈ T1 ∩ T2 ∧ l1(t) = l2(t)
⊥, otherwise

.

The union is a valid union if there is no t ∈ T such that l(t) = ⊥. We
write

⋃n
i=1 Ni = (· · · ((N1 ∪ N2) ∪ N3) · · · ∪ Nn) to denote the union of the set

of labeled Petri nets {N1, . . . , Nn}.
Definition 4 (Connected Labeled Petri Net). A labeled Petri net
N = (P, T, F,A, l) is connected, if and only if for each two different elements
x, x′ ∈ P ∪ T there exists a sequence 〈y1, . . . , yn〉 such that n ≥ 2, (yi, yi+1) ∈ F
or (yi+1, yi) ∈ F for 1 ≤ i < n and y1 = x and yn = x′.
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Local Process Models. Our algorithm discovers a set of local process models, that
we represent with labeled Petri nets. We discover these local process models from
an event log and a set of place nets. To represent our input, in Definition 5 we
define a place net as a labeled Petri net with only one place.

Definition 5 (Place Net). A place net is a labeled Petri net Np = ({p}, T,
F,A, l), where {p} is a set of places containing one place only, and T is a set of
transitions such that P ∩ T = ∅. F ⊆ ({p} × T ) ∪ (T × {p}) is the flow relation,
A ⊆ A is a set of activities, and l : T −→ A ∪ {τ} the labeling function.

Next, with the help of Definitions 3 and 4, in Definition 6 we define a local
process model as a union of place nets.

Definition 6 (Local Process Model). Given a set of place nets Npi
= ({pi},

Ti, Fi, Ai, li) for 1 ≤ i ≤ k, their union is a local process model, LPM =
⋃k

i=1 Npi
, if and only if LPM is a valid union and a connected labeled Petri

net.

What makes our local process models local is the behavior. Therefore, we
define the term locality or local distance to be the maximal length of the trace’s
subsequences we want our local process models to explain. Since local process
models are a subset of labeled Petri nets, markings, enabled transitions and firing
rule, also hold for them. The opportunity to change states and fire transitions
makes it possible local process models to describe behavior. Since we want to
discover models that explain selected parts of the behavior in an event log, we
need to somehow align the two. Thus, in Definition 7 we define how a local
process model can replay a sequence of activities. In addition, we want to be
able to skip some of the activities during the replay, so we also define relax
replay (Definition 8).

Definition 7 (Replay). Given a local process model LPM = (P, T, F,A, l)
and a sequence of activities ρ = 〈a1, a2, . . . an〉, we say LPM replays ρ if and
only if there exists a sequence of transitions σ = 〈t1, t2, . . . , tm〉 ∈ T ∗ such that
l(σ)�A = ρ and [ ] σ−→ [ ].

Definition 8 (Relaxed Replay). Given a local process model LPM = (P,
T, F,A, l) and a sequence of activities ρ = 〈a1, a2, ...an〉, we say LPM relax
replays ρ if and only if there exists at least one relaxed subsequence ρ′ ∈ [ρ′ �

˜

ρ ]
that LPM can replay.

By defining replay and relax replay to require starting and ending in an empty
marking, makes the subset of place nets Np = ({p}, T, F,A, l) for which •p ⊆ p•
or p• ⊆ •p unsuitable for our local process models. Hence, in the continuation
we will discard place nets of this type.

In addition, we use replay and relax replay to define the language (Definition
9) and relaxed language (Definition 10) for a given local process model LPM .



352 V. Peeva et al.

Definition 9 (Language). Given a local process model LPM = (P, T, F,A, l),
we define L(LPM) = {ρ ∈ A∗|∃σ∈T ∗(l(σ)�A = ρ ∧ [ ] σ−→ [ ])} to be the language
of LPM .

Definition 10 (Relaxed Language). Given a local process model LPM =
(P, T, F,A, l), we define the relaxed language of LPM as Lrlx(LPM) =
{ρ ∈ A∗|∃ρ′∈L(LPM)(ρ′ �

˜

ρ)}.
We conclude this section, by defining how a local process model can be com-

pact in regard to a sequence of activities (Definition 11).

Definition 11 (Compact Local Process Model). Given a local process
model LPM = (P, T, F,A, l) and a sequence of activities ρ = 〈a1, a2, ..., an〉
∈ Lrlx(LPM), we say LPM is compact with respect to ρ if and only if it holds
that ∃σ∈T ∗([ ] σ−→ [ ] ∧ l(σ)�A �

˜

ρ ∧ ∀p∈P (∃t∈{σ}(p ∈ •t ∪ t•))).

4 Approach

Our algorithm combines place nets into local process models. Hence, as input we
require place nets and an event log for which we want to build the local process
models. However, for n place nets, there are 2n − 1 non-empty candidate local
process models. Even if we remove the ones that do not satisfy Definition 6, our
search space would still be enormous. Additionally, some of the local process
models we build, can be too complicated or not satisfy basic quality expectations.
Therefore, we propose a framework with three modules (Fig. 2). Since our search
space directly depends on the number of place nets we use, we use the first
module for filtering and adapting the place nets to limit their number. However,
at the same time the quality of the built local process models directly depends
on the quality of the chosen place nets, so we want to choose these wisely. After
the place nets are chosen, the second module introduces the main algorithm for
building local process models. The goal of the algorithm is to consider different
subsets of place nets, construct their union and check whether it can relax replay
subsequences of the traces in the given event log. Although we restrict the set
of place nets we use, we can still end up with a lot of local process models.
Therefore, we also provide a module for evaluating and ranking the found local
process models with different metrics. In the following, we introduce each of the
modules, with the main focus on the combination algorithm (the second module
in Fig. 2).

4.1 Place Net Adaptation and Filtering (PAF)

We use an “oracle” to get the place nets from which we build our local process
models. Any algorithm that returns a labeled Petri net or a set of place nets
based on an event log can be considered an oracle. The oracle can return many
place nets, so for efficiency reasons, we want to limit the number of those we
use for building local process models. On the other side, the set of place nets we
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Fig. 2. Top view of our framework for local process model discovery

use restricts our models to a representational bias defined by them. Hence, to
promote simplicity and higher relax replay frequency (see Definition 8), we rank
the place nets by giving preference to nets with fewer transitions that can relax
replay more subsequences. For place nets that rank the same on the previous
criteria, we use the lexicographic order of the included transitions. Afterward,
we keep the k highest ranking place nets to build local process models, where k
is a user-defined parameter. For simplicity in the continuation of the paper, we
assume that given the set of place nets P that we return now

⋃

P is a valid union.
Otherwise, we keep track of all the subsets where label disagreements exist and
do not use multiple contradicting place nets in one local process model.

4.2 Building Local Process Models (B-LPMs)

This module covers the part of the framework that combines place nets into local
process models, thus, making it the main contribution of this paper. To explain
the approach, we give a high-level pseudo-code in Algorithm 1. There are three
main steps that make up the gist of the algorithm, and get us from a set of place
nets, to a set of local process models that describe the event log:

1. Focus on locality by iterating all subsequences in the event log of certain
length (Line 2).

2. Build local process models for each subsequence separately (Line 3).
3. Store the built local process models in a single structure (Line 4).

The high-level algorithm looks pretty straightforward. However, optimizing the
traversal of the event log on line 2, the particulars of the global storage and how
we create local process models that relax replay the window, is what makes the
algorithm not only feasible but also efficient.

Focus on Locality. We want our local process models to describe what happens
within some local distance in the event log. Hence, with a sliding window we
get subsequences of certain length, that we call windows. The sliding window
size represents the locality we are interested in, and we accept it as an input
parameter. We formally define the sliding window in Definition 12.
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Algorithm 1: Combining Places in Local Process Models
input : L - event log; d - local distance; P - set of place nets;
output: LPM - set of local process models

1 LPM ← [ ]; // initialize the global storage

2 forall w ∈ [ρ′ �d ρ|ρ ∈ L ] do
// for each subsequence of L of length d find subsets of P that

relax replay w and satisfy some additional constraints AC
(e.g., compactness)

3 lpms ← {⋃
P ′|P ′ ⊆ P ∧ w ∈ Lrlx(

⋃
P ′) ∧ AC(

⋃
P ′, w)};

4 LPM ← LPM ∪ lpms; // add lpms to the global storage

Definition 12 (Sliding Window). Given a trace ρ = 〈a1, a2, ..., an〉 and local-

ity d > 0, we define the function Wd(i, ρ) =
{

ρ[i, i + d − 1], if 1 ≤ i ≤ n − d + 1
〈〉, otherwise

to be a sliding window. Each generated subsequence for a concrete i and ρ we
call a window.

The sliding window helps us to iterate the event log, and focus on a local level.
However, for each window, we need to efficiently and exhaustively (consider-
ing our representational bias and limitations) combine places into local process
models that can relax replay that window.

Building Local Process Models for One Window. At this point, we have
our set of place nets P = {Np1 , Np2 , . . . , Npk

} and a sequence of activities, i.e.,
our window w. Our goal is to find subsets of P , P ′ ⊆ P , to form local pro-
cess models, LPM =

⋃

P ′, that satisfy Definition 6 considering the following
constraints:

– LPM can relax replay w (w ∈ Lrlx(LPM))
– LPM is compact in regard to w (see Definition 11)

Additionally, we want to be time efficient. Therefore, given a trace
ρ = 〈a1, a2, . . . , an〉 we consider that two consecutive windows Wd(m, ρ) and
Wd(m + 1, ρ), share d − 1 of their elements. The models found for this over-
lapping sequence shared by both windows, are the same. Hence, it is important
that we do not recalculate these models, which in turn defines the goal to reuse
local process models shared between consecutive windows.

Idea. The core idea is to create new local process models by extending exist-
ing ones with an additional place net such that the relaxed subsequence of the
window that they can replay increases in length. We start with the empty local
process model that can somehow replay the empty trace, and we want to extend
it with carefully selected place nets such that two activities from the window can
be replayed. In the next step, we would extend those local process models by
adding an additional place net such that the newly created local process models
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(a) Existing local process model LPM (b) New local process model LPM Np

Fig. 3. Extension of a local process model with a new place net.

can replay three of the activities in the window. We continue as long as there
are still unprocessed activities in the window. For example, let us consider the
window W7(4, ρ) in Fig. 3a where ρ is a trace. We have built a local process
model LPM such that 〈a4, a6, a7〉 ∈ L(LPM)2. Since 〈a4, a6, a7〉 �

˜

W7(4, ρ),
W7(4, ρ) ∈ Lrlx(LPM). We now want to extend LPM with an additional place
net Np = ({p}, Tp, Fp, Ap, lp). What is specific for Np is that it should be able to
replay a7 such that a token is put in p, and also replay one of the unprocessed
activities (a8, a9 or a10) such that the token is removed from p. Hence, the newly
built local process model LPM ∪Np is empty after replaying four activities from
the window, and the used firing sequence is an extension of the firing sequence
used for replaying 〈a4, a6, a7〉 on LPM . In our case the new activity is a9 and we
visualize this in Fig. 3b. To know whether we can extend LPM with Np we have
to check that we do not break the replay of 〈a4, a6〉. Hence, we need the firing
sequence σ for which we replayed 〈a4, a6〉, to ensure that σ can still fire when the
new place net is added. To know where to connect the place net and the local
process model such that a7 can be replayed we need the marking M after firing
σ i.e., [ ] σ−→ M . At the end, we also store the two indices indIn and indOut in
the window for which the last extension happened. Note that σ�A �

˜

w[1, indIn]
and w[1, indOut] ∈ Lrlx(LPM).

Algorithm. We now present an algorithm that builds local process models given
a set of place nets P and a window w. We explained that at every step we
extend existing local process models with new place nets. To be aware of the
extension path from which we got to a particular local process model and how
to continue extending it, we organize the local process models in a tree structure
that we call local tree. Each node in the local tree represents a local process
model LPM = (P, T, F,A, l) that can relax replay w. There is an edge between
two nodes n and n′ when the local process model represented by n′ was built by
extending the local process model in n with an additional place net. We formally
define our local tree in Definition 13.

Definition 13 (Local Tree). A local tree LT = (N,E) is a pair, where N is
a set of nodes and E a set of edges such that:

– A node n = (LPM,σ,M, indIn, indOut) is a tuple, where LPM = (P, T, F,
A, l) is a local process model, σ ∈ T ∗ is a sequence of transitions, M ∈ M(P )

2 Note that this doesn’t have to be the only one such local process model.
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is the marking [ ] σ−→ M , and indIn, indOut ∈ N are the indices for which the
last extension happened.

– An edge e = (n, n′) is a pair of nodes.

In Algorithm 2 we give the pseudo-code of the entire procedure. As input
we are given the set of place nets P and the window w. We start by initializing
the local tree to contain only a root node that represents the empty local pro-
cess model (line 1). Then we traverse all activity pairs of the window, and for
each pair, we extend existing local process models in LT with additional place
nets. We get suitable place nets by filtering those that can replay the currently
considered two events w[i] and w[j], and suitable nodes by filtering those that
contain a local process model in a marking in which w[i] can be replayed (lines
5 and 6). Afterward, we restrict that local process models are extended with a
place net only if the place net does not add a new constraint on an already used
transition (line 9). Then, we find a common transition of the place net and the
local process model that can replay w[i]. If there are no such transitions and the
node is not the root, the extension can not happen (line 12). If there are multiple
such transitions we randomly choose one (line 14). We create a new node n′ (line
15) that represents the local process model built by adding the place net Np to
the local process model in the node n, in a marking after replaying w[i]. We add
the newly created node in the tree and connect it with the node from which it
was created (lines 16 and 17). We finish by adding the local process model to the
final set if after replay of w[j] we end in the empty marking (lines 18 and 19).

Fulfillment of Constraints and Goals. In the following, we give some intuitions
that connect the design of the algorithm to the constraints and the goal. The
first constraint is that each returned local process model satisfies Definition 6. In
the PAF module we assumed that

⋃

P is a valid union. Hence, the union of any
subset P ′ ⊆ P is also a valid union. That the local process model is connected is
satisfied by requiring T ′ �= ∅ when the place net we add is not the first in the local
process model (line 12). The constraint that each created local process model
can relax replay w is satisfied by combining lines 5, 6, 9 and 18. The filterings of
the nodes and place nets, ensure that a local process model is extended with a
new place net only when the newly created local process model replays one more
activity of the window than its base local process model. In line 9 we make sure
we do not break the successful replay of the base local process model, and with
line 18 we make sure that there is at least one unprocessed activity in the window,
after whose replay the local process model ends in an empty marking. Definition
11 is also satisfied because of the filtering in line 5. A place net is added to a local
process model only if a token can be put in the place it represents and removed
from it, by replaying two activities. Therefore each place is marked at some point
of the replay. Finally, our goal to reuse local process models between consecutive
windows, is satisfied by the way we organize our nodes in the tree, i.e., how we
create edges (line 17). Given two nodes n and n′ such that (n, n′) ∈ LT.E,
we know that n.LPM.l(n.σ) = n′.LPM.l(n′.σ)[1, |n′.σ| − 1]. Hence, the most
distant ancestor of n′ apart from the root, is some node n∗ that is a child of the
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Algorithm 2: Building Local Process Models for a Window
input : w - window; P - set of place nets;
output: LPMs - set of local process models
// In the pseudo-code we use a dot notation for accessing elements

of an object, similar as in object-oriented programming.

1 LT ← (N = {root = (∅, 〈〉, [ ], 0, 0)}, E = ∅); // initialize the storage

2 d = |w|; // length of the window

3 for j ← 1 to d do
4 for i ← 1 to j − 1 do

// for each pair of events get suitable place nets and nodes

5 P ′ ← {Np ∈ P |〈w[i], w[j]〉 ∈ L(Np)};
6 N ′ ← {n ∈ N |n.LPM.l(n.σ)�n.LPM.A · w[i] ∈ L(n.LPM)} ∪ {root}

// try to extend LPM in each node with each place net

7 for n = (LPM, σ, M, indIn, indOut) ∈ N ′ do
8 for Np = ({p}, Tp, Fp, Ap, lp) ∈ P ′ do
9 if p • ∩{σ} �= ∅ then

10 continue; // no new constraint

11 T ′ ← {t′ ∈ LPM.T ∩ •p|LPM.M [t′〉 ∧ LPM.l(t′) = w[i]};
12 if n �= root ∧ T ′ = ∅ then
13 continue; // no common transition

14 t ←R T ′ // choose any transition

15 n′ ← (LPM ∪ Np, σ · t, (M \ •t) ∪ t•, i, j); // create node

16 LT.N ← LT.N ∪ n′; // add node

17 LT.E ← LT.E ∪ (n, n′); // add edge

// add n′.LPM in final set if w ∈ Lrlx(n′.LPM)

18 if ∃t∈n′.LPM.T (n′.M t−→ [ ] ∧ n′.LPM.l(t) = w[j]) then
19 LPMs ← LPMs ∪ {n′.LPM};

20 return LPMs

root. Then, n∗.σ = 〈n′.σ[1]〉. Therefore, if we want to remove all local process
models that replay w[1], we just need to remove all children of the root n∗ for
which n∗.LPM.l(n∗.σ[1]) = w[1] (have in mind that |n∗.σ| = 1 for the children
of the root).

Example. To clarify how the algorithm works given its input, we additionally
provide an example. For simplicity we assume that t = l(t) for each transition.
Given the set of place nets P (see Fig. 4a) and the window w = 〈b, a, x, a, d〉 we
build local process models by following Algorithm 2. We first initialize the local
tree LT = ({root}, ∅) and the resulting set LPMs = ∅. Then we iterate through
the window with the indices i and j. We start with i = 1 and j = 2. Since w[i] = b
and w[j] = a, we get P ′ = ∅ so we continue. For i = 1 and j = 3 (w[i] = b
and w[j] = x) we filter P ′ = {Np2}, N ′ = {root}. Since p2 • ∩{root.σ} = ∅
and T ′ = {b}, we create the node n1 = ({Np2}, 〈b〉, [p21], 1, 3) and add it as
child to the root node (LT = ({root, n1}, {(root, n1)})). Because [p21] x−→ [ ] and
w[j] = x we add the local process model to the final set (LPMs = {{Np2}}).
We skip i = 2, j = 3 and all pairs for j = 4, since P ′ = ∅ for them. For i = 1
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Fig. 4. Place nets and Local Process Models for the example

and j = 5 we calculate P ′ = {Np1}, N ′ = {root}. Given p1 • ∩{root.σ} = ∅ and
T ′ = {b}, we create the node n2 = ({Np1}, 〈b〉, [p11], 1, 5), add it as child to
the root node and to the final set (LT = ({root, n1, n2}, {(root, n1), (root, n2)})
and LPMs = {{Np2}, {Np1}}). We again skip i = 2, j = 5
since P ′ = ∅. For i = 3 and j = 5 we calculate P ′ = {Np3},
N ′ = {root, n1}. For Np3 and root, p3 • ∩{root.σ} = ∅ and T ′ = {x} so we
create n3 = ({Np3}, 〈x〉, [p31], 3, 5). For Np3 and n1, p3 • ∩{n1.σ} = ∅ and
T ′ = {x} so we create n4 = (

⋃{Np2, Np3}, 〈b, x〉, [p31], 3, 5). We add n3
as child to the root node and n4 as child to n1. Our local tree now
is LT = ({root, n1, n2, n3, n4}, {(root, n1), (root, n2), (root, n3), (n1, n4)}) and
final set LPMs = {{Np2}, {Np1}, {Np3},

⋃{Np2, Np3}} . We do nothing for i = 4
and j = 5 since P ′ = ∅. The final set LPMs is given in Fig. 4b.

Choice and Concurrency. After processing the window w, the tree contains all
local process models LPM for which w ∈ Lrlx(LPM) and given the used firing
sequence σ it holds that ∀t∈σ(M t−→ M ′ =⇒ M ∩ M ′ = ∅), i.e., concurrency
is not considered. To build the concurrency constructs, we combine nodes from
different branches in the local tree and take the union of the local process mod-
els that the nodes contain. The number of transitions that can be concurrent
directly depends of the number of nodes we combine. To avoid an explosion of
possibilities, the number of concurrent transitions can not be too large since
we try all possible node combinations. Because of the place nets, the choice
construct is embedded in our input, so no additional processing is needed.

Silent and Duplicate Transitions. The presented algorithm handles the duplicate
transitions as all other transitions. However, in the case of silent transitions we
convert the set of place nets to a set of paths. Each path is a valid and connected
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Fig. 5. Global Tree Structure. With red, we denote the place nets in the global tree,
blue the local process models, and the count in green is for the number of windows the
local process model (starting in the root and ending in that node) can relax replay.
(Color figure online)

union of one or multiple place nets connected via silent transitions. Then, on line
5 we check whether the sequence consisted of the two activities, is in the language
of the path and the path is compact for the sequence.

Collecting Local Process Models on a Global Level. The local process
models we want to store in the global storage are just sets of place nets. Hence,
to represent them efficiently, we use a tree structure as shown in Fig. 5. Every
node in the tree stores one place net. At the same time each node also represents
exactly one local process model by taking the union of the place nets in the path
from that node to the root. Hence, in each node we also keep the number of
windows the corresponding local process model can relax replay. Any additional
information about the local process model that we might want to store in the
future, can be stored in the same way as the relax replay count.

Structuring the tree this way we share place nets between the stored local
process models. To also make the structure efficiently extendable, we want each
path in the tree to represent a unique local process model. Therefore, we intro-
duce a rank function. The rank function rank : P �→ N gives priority to each
place net which in turn determines the order in which the place nets appear in
the tree path representing the local process model. In Fig. 6 we illustrate the
problem when a local process model

⋃{Np1, Np2} needs to be added to the tree
in Fig. 6a.

After processing each window, we add all discovered local process models to
the global storage. At the end, after processing all windows, the tree will contain
each local process model we find together with the number of windows each local
process model can relax replay.

4.3 Local Process Models Evaluation and Ranking (LPMs-ER)

Our exhaustive search can end up in a large number of local process models.
Hence, we need to limit the number of local process models we return and first
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Fig. 6. Difficulty in the global tree for adding the same local process models multiple
times when we do not use a rank function.

show the ones we classify as more relevant. One simple restriction is to limit the
minimal and maximal number of places and transitions a local process model
can have.

To measure the quality of our local process models we propose different
heuristics. All metrics are calculated for an event log L, a local distance d, and a
local process model LPM = (P, T, F,A, l). With WL = [w ∈ ⋃

ρ∈L[ρ′ �d ρ ] ]
we define the multiset of all windows in L with length d, and with
SL

LPM = [s ∈ [w′ �
˜

w ]|w ∈ WL ∧ s ∈ L(LPM)] a multiset of the sequences
replayed by LPM during relax replay of the windows.

– Fitting windows evaluation calculates the fraction of windows a local process
model can relax replay (Eq. (1)).

fw(LPM,L) = |{w∈WL|w∈Lrlx(LPM)}|
|WL| (1)

This metric is in a way an adaptation for calculating fitness for the local
process models. We never expect one local process model to explain the entire
event log, so to make the metric comparable, we compare the values to the
best scoring local process model.

– Passage coverage evaluation calculates the fraction of the passages used in
the relax replay of the fitting windows (Eq. (2)).

pc(LPM,L) =
|{(t1,t2)∈LPM |∃

s∈SL
LPM

(∃i∈{1,...,|s|−1]}(si=l(t1)∧si+1=l(t2)))}|
|LPM | (2)

The values are in the interval (0, 1], where we get 1 when all the local process
model passages are used at least once. This metric is similar to precision since
lower values mean that the local process model allows more behavior than
seen in the event log.

– Passage repetition evaluation calculates whether multiple place nets of
the local process model contain the same passages (Eq. (3)). We define
#(t1,t2) = |{p ∈ P |(t1, t2) ∈ •p × p•} to be the number of place nets in LPM
that have the passage (t1, t2).

pr(LPM,L) =
|LPM |·|LPM |− ∑

(t1,t2)∈LPM

#(t1,t2)

|LPM |·|LPM |−|LPM | (3)
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Table 1. Information about the event logs used in our analysis

Event log alias Trace variants count Activities count Total event count

BPIC2012 [9] 4366 24 182467

BPIC2019 [10] 11973 42 338247

RTFM [14] 231 13 2353

Sepsis [16] 846 16 13775

Artificial Small 2 7 45

Artificial Big 96 13 1624

This metric tries to express the simplicity of the local process model. The
value of 1 denotes that each passage is contained by only one place net, and
0 denotes that all passages are contained in all place nets.

– Transition coverage evaluation calculates in how many of the relax replayed
windows in which a transition t can be used, that transition is actually used
during the replay. The average value over all transitions is returned. (Eq. (4)).

tc(LPM,L) = 1
|T | ·

∑

t∈T

|[s∈SL
LPM |∃i∈{1,...,|s|}(s[i]=l(t))]|

|[w∈WL|w∈Lrlx(LPM)∧∃i∈{1,...,|w|}(w[i]=l(t))]| (4)

The values for the metric are in the interval (0, 1]. Low values indicate that we
use only a few transitions in our local process model during the relax replay,
meaning our model is more complex than necessary.

We finish by ranking the found local process models, by taking the average
score of the presented evaluation metrics. The higher the average score, the
better the rank of the local process model.

5 Evaluation and Results

In this section, we evaluate our method on real and artificial event logs (see
Table 1). We split the evaluation into several parts. We start by discussing how
quality is defined and measured for local process models, and the challenges
around it. Then, we compare the results of our algorithm with several process
discovery approaches and presented related work on a specific event log. After-
ward, we present the running time our algorithm has on different event logs, and
the effect different parameters have on it. We end the evaluation section by com-
paring the running time with the running time of existing approaches discussed
in related work [2,24]. For all experiments, we use the plugin we implemented
in ProM and the eST Miner [15] as a place oracle. To allow for reproducibility
of the experiments, we provide the artificial event logs and the sets of place nets
we use at https://github.com/VikiPeeva/PlacesAndEventLogs.

https://github.com/VikiPeeva/PlacesAndEventLogs
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5.1 Quality Definition and Challenges

Calculating the quality of local process models is challenging because of all the
different ways it can be looked at. From one side we can look at the quality
of each individually returned local process model or the quality of all of them
as a group. If we use local process model discovery when traditional process
discovery fails, the desired result would be a minimal set of local process models
that cover the entire event log with as little overlaps between them as possible.
This is discussed in [5] where one event log is analyzed by hand and compared
to the results from [24]. Both [24] and [2], nor their future work offer this as a
possibility and neither our algorithm. However, as discussed in the introduction,
that is not the only usage of local process models. If we are interested in what
happens when patients are cured, when companies lose money, when employees
resign, etc., then we might be interested in finding local process models in regard
to some utility functions or different contexts. This is to some degree investigated
in [22] and [3] accordingly. Our work, currently does not support this type of
local process mining, however, it is orthogonal to the current work, and can be
integrated in the algorithm. With the previous information in mind we see how
challenging is to give quality comparison on hundreds returned local process
models between different approaches, especially when the most straight-forward
comparison - event log coverage - is not available for any of them. Hence, for us,
the goal was the new approach we propose to be more feasible than the existing
ones in regard to running time and number of local process models found, and
extendable towards event log coverage and utility mining.

5.2 Discoverability of Constructs

To illustrate the need for local process model discovery, and why the approaches
proposed in [24] and [2] are not enough, we give an event log whose traces are
generated by repeating the pattern AXDBXE. We additionally add noise (from
the alphabet l, m, n) between the different occurrences of the pattern and in
smaller amount in-between the pattern itself. An example trace in such event log
would be 〈m,A,X, n,D,B,X,E, l〉. We ran the generated event log with α++
miner [26], inductive miner [13], ILP miner [27], the local process model discovery
approaches proposed in [24] and [2], and the approach proposed in this paper. We
present the results we get in Fig. 7. ILP and α++ miner returned a spaghetti-
like models, while the inductive miner returned a model with mostly flowery
behavior. In none of these models the pattern is clearly visible. The approaches
in [24] and [2] although returning local process models that represent parts of
the pattern, are not able to return a local process model that describes the
pattern accurately. In contrast, our algorithm finds a local process model that
completely describes the pattern (Fig. 1b) in addition to the other local process
models that we find. By finding this model we show that we are able to skip in-
between noise, and that we can discover constructs like long-term dependencies
which the approaches in [2] and [24] cannot because of the representational bias
of process trees.
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(a) α++ Miner (b) Inductive Miner (c) ILP Miner

(d) Approach in [24] (e) Approach in [2]

Fig. 7. Process models for an event log focusing on the pattern AXDBXE.

5.3 Running Time vs Parameters

The main parameters that we can control are the number of place nets we use
and the size of the local distance. Other important parameter is the cardinality
of the concurrency, i.e., what is the maximal number of transitions we allow to be
in a concurrent construct. Hence, we show diagrams to see how these parameters
affect the running time of the algorithm.

In Fig. 8, we show the running time for place net counts of [50, 75] and locality
of [5, 7, 10, 12]. As expected, given a fixed amount of place nets used, the running
time increases as the locality increases, and also the other way around, given
a fixed locality, the running time increases as the number of place nets used
increases. We can notice that for 50 place nets the algorithm finishes in less
than five minutes for all event logs and different localities except for BPIC2019
and locality 12. However, when considering 75 place nets, for all event logs
except Artificial Small the limit of ten minutes is reached at locality 12. What
is interesting to see is that both Artificial Big and RTFM have a larger running
time for place net count of 75 and localities 5, 7 and 10 than BPIC2012 and
BPIC2019 although the latter are much larger event logs, both in the number
of events and number of activities they contain (see Table 1). This shows the
impact the linearity of our algorithm has in regard to the size of the event log,
and the importance of how we choose which place nets to use.

Regarding our concurrency cardinality parameter, we see in Fig. 9 that we are
able to handle concurrency constructs with 4 transitions for 50 place nets, and 3
transitions for 75 place nets. However, we notice that by adding the possibility
for just one more transition, the running time exceeds 10 min.
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Fig. 8. Diagram that shows the effect different settings for the count of place nets and
local distance have on the running time.

Fig. 9. Diagram that shows how the concurrency cardinality parameter affects the
running time.

5.4 Comparison to Other Approaches

In this section, we focus on the comparison of our approach to the ones presented
in [24] and [2] in regard to the running time. We run all algorithms on real and
artificial event logs with time limit of 10 min on a PC with i7-1.8GHz, 16GB
RAM and Windows 10. We use the provided default settings of the plugins where
for the approach of Tax et al. the default settings also include the log projections
explained in [23]. The only setting we vary for our algorithm is the number of
places used (50, 75 and 100). We present the results at Table 2. We see that for
the artificial event logs our approach is comparable in the time needed to return
results to the one in [24] when we use 50 places. However, when it comes to real
event logs, our approach is notably faster than the other two. For example, on
the BPIC2019 event log the other approaches do not return results at all because
of memory problems, while we are able to build a large amount of local process
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Table 2. Results comparison to [24] and [2]

Event log Our approach Approach in [24] Approach in [2]

#places runtime #LPMs runtime #LPMs runtime #LPMs

BPIC2012 50 4s 284 90s 454 out of time

75 20s 2473

100 23s 6484

BPIC2019 50 28s 3190 out of memory out of memory

75 48s 7617

100 out of time /

RTFM 50 15s 8967 out of time out of time

75 368s 90862

100 out of time /

Sepsis 50 2s 18 56s 4627 125s 375

75 4s 3384

100 22s 14951

Artificial Big 50 40s 8979 70s 56110 out of time

75 536s 65383

100 out of time /

Artificial Small 50 2s 5123 2s 2665 16s 126

75 9s 15623

100 25s 34844

models in less than a minute when we use less than 75 places. For the BPIC2012
event log, [2] needs more than 10 min to return results and [24] investigates 454
candidate local process models in 90 s. This is less than what we can discover
and it needs four times more time than our approach. The Sepsis and RTFM
event logs further confirm these results, which shows that our algorithm is able
to handle large event logs much better, while returning a large amount of local
process models.

6 Conclusion and Outlook

In this paper, we introduced a novel way of discovering local process models. We
proposed a first solution to the problem, which can be further investigated and
extended. Our first goal was to have an algorithm that can find local process
models for large event logs, and we achieved this by building local process models
through one pass of the event log. Different quality dimensions that we discussed
are returning minimal number of local process models that cover the entire event
log or mining using utility functions. These are compelling directions that we
plan to investigate as future work. Another point is that we get the place nets
from which we build local process models from an oracle which currently is a
regular process discovery algorithm. Hence, how to generate place nets valuable
for local process model discovery or build the local process models without using
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place nets is something that warrants further research. The algorithm we propose
is able to process large event logs and is flexible to support improvements for
the above mentioned topics without destroying the linear complexity on the size
of the event log.

Acknowledgments. We thank the Alexander von Humboldt (AvH) Stiftung for sup-
porting our research.
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11. Kirchner, K., Marković, P.: Unveiling hidden patterns in flexible medical treatment

processes – a process mining case study. In: Dargam, F., Delias, P., Linden, I.,
Mareschal, B. (eds.) ICDSST 2018. LNBIP, vol. 313, pp. 169–180. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-90315-6 14

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-21290-2_36
https://doi.org/10.1007/978-3-030-21290-2_36
https://doi.org/10.1109/TKDE.2021.3077653
https://doi.org/10.1109/TKDE.2021.3077653
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-030-11641-5_5
https://doi.org/10.1007/978-3-030-11641-5_5
https://doi.org/10.1145/3341105.3373864
https://doi.org/10.1007/978-3-319-90315-6_14


From Place Nets to Local Process Models 367

12. Leemans, S.J.J., Tax, N., ter Hofstede, A.H.M.: Indulpet miner: Combining dis-
covery algorithms. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A.,
Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 97–115.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02610-3 6

13. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

14. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015)
15. Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by

exploiting the token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019.
LNCS, vol. 11522, pp. 258–278. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21571-2 15

16. Mannhardt, F.: Sepsis Cases - Event Log (2016). https://doi.org/10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460

17. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.:
Guided process discovery- a pattern-based approach. Inf. Syst. 76, 1–18 (2018).
https://doi.org/10.1016/j.is.2018.01.009

18. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction
and local process models. In: Gulden, J., (eds.) Joint Proceedings of the Radar
tracks at the 18th International Working Conference on Business Process Mod-
eling, Development and Support (BPMDS), and the 22nd International Working
Conference on Evaluation and Modeling Methods for Systems Analysis and Devel-
opment(EMMSAD), and the 8th International Workshop on Enterprise Modeling
and Information Systems Architectures (EMISA) co-located with the 29th Inter-
national Conference on Advanced Information Systems Engineering 2017 (CAiSE
2017), Essen, 12–13 June 2017. CEUR Workshop Proceedings, vol. 1859, pp. 55–63.
CEUR-WS.org (2017). http://ceur-ws.org/Vol-1859/bpmds-06-paper.pdf

19. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Min. Knowl. Disc. 1(3), 259–289 (1997). https://doi.org/10.1023/
A:1009748302351

20. Pijnenborg, P., Verhoeven, R., Firat, M., van Laarhoven, H., Genga, L.: Towards
evidence-based analysis of palliative treatments for stomach and esophageal cancer
patients: a process mining approach. In: 2021 3rd International Conference on
Process Mining (ICPM), pp. 136–143 (2021). https://doi.org/10.1109/ICPM53251.
2021.9576880

21. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT
1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0014140

22. Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M.P., Norre, S.: Interest-driven
discovery of local process models. Inf. Syst. 77, 105–117 (2018). https://doi.org/
10.1016/j.is.2018.04.006

23. Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches for
generating local process models through log projections. In: 2016 IEEE Symposium
Series on Computational Intelligence, SSCI 2016, Athens, 6–9 December 2016, pp.
1–8. IEEE (2016). https://doi.org/10.1109/SSCI.2016.7849948

24. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016). https://doi.org/10.1016/j.
jides.2016.11.001

https://doi.org/10.1007/978-3-030-02610-3_6
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-030-21571-2_15
https://doi.org/10.1007/978-3-030-21571-2_15
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.1016/j.is.2018.01.009
http://ceur-ws.org/Vol-1859/bpmds-06-paper.pdf
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1109/ICPM53251.2021.9576880
https://doi.org/10.1109/ICPM53251.2021.9576880
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1016/j.is.2018.04.006
https://doi.org/10.1016/j.is.2018.04.006
https://doi.org/10.1109/SSCI.2016.7849948
https://doi.org/10.1016/j.jides.2016.11.001
https://doi.org/10.1016/j.jides.2016.11.001


368 V. Peeva et al.

25. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
Prom 6: the process mining toolkit. In: Rosa, M.L. (ed.) Proceedings of the Business
Process Management 2010 Demonstration Track, Hoboken, 14–16 September 2010.
CEUR Workshop Proceedings, vol. 615. CEUR-WS.org (2010). http://ceur-ws.
org/Vol-615/paper13.pdf

26. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-
free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007). https://
doi.org/10.1007/s10618-007-0065-y

27. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2017). https://doi.org/10.1007/s00607-017-0582-5

http://ceur-ws.org/Vol-615/paper13.pdf
http://ceur-ws.org/Vol-615/paper13.pdf
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/s00607-017-0582-5


Data and Process Resonance
Identifier Soundness for Models of Information Systems

Jan Martijn E. M. van der Werf1(B), Andrey Rivkin2, Artem Polyvyanyy3,
and Marco Montali2

1 Utrecht University, Princetonplein 5, 3584 Utrecht, CC, The Netherlands
j.m.e.m.vanderwerf@uu.nl

2 Free University of Bozen-Bolzano, piazza Domenicani 3, 39100 Bolzano, Italy
{rivkin,montali}@inf.unibz.it

3 The University of Melbourne, Parkville, VIC 3010, Australia
artem.polyvyanyy@unimelb.edu.au

Abstract. A model of an information system describes its processes
and how these processes manipulate data objects. Object-aware exten-
sions of Petri nets focus on modeling the life-cycle of objects and their
interactions. In this paper, we focus on Petri nets with identifiers, where
identifiers are used to refer to objects. These objects should “behave”
well in the system from inception to termination. We formalize this intu-
ition in the notion of identifier soundness, and show that although this
property is undecidable in general, useful subclasses exist that guarantee
identifier soundness by construction.

Keywords: Information System · Verification · Data and Processes

1 Introduction

Petri nets are widely used to describe distributed systems capable of expanding
their resources indefinitely [26]. A Petri net describes passive and active com-
ponents of a system, modeled as places and transitions, respectively. The active
components of a Petri net communicate asynchronously with each other via local
interfaces. Thus, state changes in a Petri net system have local causes and effects
and are modeled as tokens consumed, produced, or transferred by the transitions
of the system. A token is often used to denote an object in the physical world the
system manipulates or a condition that can cause a state change in the system.

Petri nets with identifiers extend classical Petri nets to provide formal means
to relate tokens to objects. Every token in such a Petri net is associated with a
vector of identifiers, where each identifier uniquely identifies a data object. Con-
sequently, active components of a Petri net with identifiers model how groups
of objects, either envisioned or those existing in the physical world, can be con-
sumed, produced, or transferred by the system.

It is often desirable that modeled systems are correct. Many criteria have been
devised for assessing the correctness of systems captured as Petri nets. Those
c© Springer Nature Switzerland AG 2022
L. Bernardinello and L. Petrucci (Eds.): PETRI NETS 2022, LNCS 13288, pp. 369–392, 2022.
https://doi.org/10.1007/978-3-031-06653-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06653-5_19&domain=pdf
https://doi.org/10.1007/978-3-031-06653-5_19


370 J. M. E. M. van der Werf et al.

criteria target models of systems that use tokens to represent conditions that
control state changes. In other words, they can be used to verify the correctness
of processes the systems can support and not of the object manipulations carried
out within those processes. Such widely-used criteria include boundedness [18],
liveness [12], and soundness [1]. The latter one, for instance, ensures that a
system modeled as a workflow net, a special type of a Petri net used to encode
workflow at an organization, has a terminal state that can be distinguished from
other states of the modeled system, the system can always reach the terminal
state, and every transition of the system can in principle be enabled and, thus,
be executed by the system.

Real-world systems, such as information systems [25], are characterized by
processes that manipulate objects. For instance, an online retailer system manip-
ulates products, invoices, and customer records. However, correctness criteria
that address both aspects, that is, the processes and data, are understood less
well. Hence, the paper at hand to address the gap.

In this paper, we propose a correctness criterion for Petri nets with identifiers
that combines the checks of the soundness of the system’s processes with the
soundness of object manipulations within those processes. Intuitively, objects of
a specific type are correctly manipulated by the system if every object instance
of that type, characterized by a unique identifier, can “leave” the system, that is,
a dedicated transition of the system can consume it, and once that happens, no
references to that object instance remain in the system. When a system achieves
this harmony for its processes and all data object types, we say that the system
is identifier sound, or, alternatively, that the data and processes of the system
are in resonance. Specifically, this paper makes these contributions:

– It motivates and defines the notion of identifier soundness for checking cor-
rectness of data object manipulations in processes of a system; and

– It discusses aspects related to decidability of identifier soundness in the gen-
eral case and for certain restricted, but still useful, classes of systems.

The paper proceeds as follows. The next section introduces concepts and
notions required to support subsequent discussions. Section 3 introduces typed
Petri nets with identifiers, a model for modeling distributed systems whose state
is defined by objects the system manipulates. Section 4 presents the notion of
identifier soundness, including a proof that the notion is in general undecidable.
Section 5 discusses several classes of systems for which identifier soundness is
guaranteed by construction. Finally, the paper concludes with a discussion of
related work (Sect. 6) and conclusions (Sect. 7).

2 Preliminaries

Let S and T be sets. The powerset of S is denoted by ℘(S) = {S′ | S′ ⊆ S}
and |S| denotes the cardinality of S. Given a relation R ⊆ S × T , its range is
defined by rng(R) = {y ∈ T | ∃x ∈ S : (x, y) ∈ R}. A multiset m over S is
a mapping of the form m : S → N, where N = {0, 1, 2, . . .} denotes the set of
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natural numbers. For s ∈ S, m(s) ∈ N denotes the number of times s appears
in the multiset. We write sn if m(s) = n. For x �∈ S, we assume m(x) = 0. We
use S⊕ to denote the set of all finite multisets over S and ∅ to denote the empty
multiset. The support of m ∈ S⊕ is the set of elements that appear in m at least
once: supp(m) = {s ∈ S | m(s) > 0}. Given two multisets m1 and m2 over S:
(i) m1 ⊆ m2 (resp., m1 ⊂ m2) iff m1(s) ≤ m2(s) (resp., m1(s) < m2(s)) for
each s ∈ S; (ii) (m1 + m2)(s) = m1(s) + m2(s) for each s ∈ S; (iii) if m1 ⊆ m2,
(m2 − m1)(s) = m2(s) − m1(s) for each s ∈ S; and (iv) |m| =

∑
s∈S m(s). A

sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If n > 0 and
σ(i) = ai, for 1 ≤ i ≤ n, we write σ = 〈a1, . . . , an〉. The length of a sequence σ
is denoted by |σ|. The sequence of length 0 is called the empty sequence, and is
denoted by ε. The set of all finite sequences over S is denoted by S∗. We write
a ∈ σ if there is 1 ≤ i ≤ |σ| such that σ(i) = a. Projection of sequences on a set T
is defined inductively by ε|T = ε, (〈a〉 ·σ)|T = 〈a〉 ·σ|T if a ∈ T and 〈a〉 ·σ|T = σ|T
otherwise, where · is the sequence concatenation operator. Renaming a sequence
with an injective function r : S → T is defined inductively by ρr(ε) = ε, and
ρr(〈a〉 · σ) = 〈r(a)〉 · ρr(σ). Renaming is extended to multisets of sequences as
follows: given a multiset m ∈ (S∗)⊕, we define ρr(m) =

∑
σ∈supp(m) σ(m) ·ρr(σ).

For example, ρ{x�→a,y �→b}([〈x, y〉3]) = [〈a, b〉3].
Labeled Transition Systems. To model the behavior of a system, we use
labeled transition systems. Given a finite set A of (action) labels, a (labeled)
transition system (LTS) over A is a tuple Γ = (S,A, s0,→), where S is a (possibly
infinite) set of states, s0 is the initial state and → ⊆ (S × (A ∪ {τ}) × S) is the
transition relation, where τ �∈ A denotes the silent action [11]. In what follows,
we write s

a−→ s′ for (s, a, s′) ∈→. Let r : A → (A′ ∪ {τ}) be an injective,
total function. Renaming Γ with r is defined as ρr(Γ ) = (S,A′, s0,→′) with
(s, r(a), s′) ∈→′ iff (s, a, s′) ∈→. Given a set T , hiding is defined as ĤT (Γ ) =
ρh(Γ ) with h : A → A ∪ {τ} such that h(t) = τ if t ∈ T and h(t) = t otherwise.
Given a ∈ A, p a q denotes a weak transition relation that is defined as follows:
(i) p a q iff p( τ−→)∗q1

a−→ q2(
τ−→)∗q; (ii) p τ q iff p( τ−→)∗q. Here, ( τ−→)∗ denotes

the reflexive and transitive closure of τ−→.

Definition 1 (Strong and weak bisimulation). Let Γ1 = (S1, A, s01,→1)
and Γ2 = (S2, A, s02,→2) be two LTSs. A relation R ⊆ (S1 × S2) is called
a strong simulation, denoted as Γ1 ≺R Γ2, if for every pair (p, q) ∈ R and
a ∈ A ∪ {τ}, it holds that if p

a−→1 p′, then there exists q′ ∈ S2 such that q
a−→2 q′

and (p′, q′) ∈ R. Relation R is a weak simulation, denoted by Γ1 �R Γ2, iff for
every pair (p, q) ∈ R and a ∈ A ∪ {τ} it holds that if p

a−→1 p′, then either a = τ
and (p′, q) ∈ R, or there exists q′ ∈ S2 such that q a

2 q′ and (p′, q′) ∈ R.
R is called a strong (weak) bisimulation, denoted by Γ1 ∼R Γ2 (Γ1 ≈R Γ2) if

both Γ1 ≺ Γ2 (Γ1 �R Γ2) and Γ2 ≺R−1 Γ1 (Γ2 �R−1 Γ1). The relation is called
rooted iff (s01, s02) ∈ R. A rooted relation is indicated with a superscript r. �

Petri Nets. A weighted Petri net is a 4-tuple (P, T, F,W ) where P and T are
two disjoint sets of places and transitions, respectively, F ⊆ ((P ×T )∪ (T ×P ))
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is the flow relation, and W : F → N
+ is a weight function. For x ∈ P ∪ T , we

write •x = {y | (y, x) ∈ F} to denote the preset of x and x• = {y | (x, y) ∈ F} to
denote the postset of x. We lift the notation of preset and postset to sets element-
wise. If for a Petri net no weight function is defined, we assume W (f) = 1 for
all f ∈ F . A marking of N is a multiset m ∈ P⊕, where m(p) denotes the
number of tokens in place p ∈ P . If m(p) > 0, place p is called marked in
marking m. A marked Petri net is a tuple (N,m) with N a weighted Petri net
with marking m. A transition t ∈ T is enabled in (N,m), denoted by (N,m)[t〉
iff W ((p, t)) ≤ m(p) for all p ∈ •t. An enabled transition can fire, resulting
in marking m′ iff m′(p) + W ((p, t)) = m(p) + W ((t, p)), for all p ∈ P , and
is denoted by (N,m)[t〉(N,m′). We lift the notation of firings to sequences.
A sequence σ ∈ T ∗ is a firing sequence iff σ = ε, or markings m0, . . . ,mn

exist such that (N,mi−1)[σ(i)〉(N,mi) for 1 ≤ i ≤ |σ| = n, and is denoted by
(N,m0)[σ〉(N,mn). If the context is clear, we omit the weighted Petri net N .
The set of reachable markings of (N,m) is defined by R(N,m) = {m′ | ∃σ ∈ T ∗ :
m[σ〉m′}. The semantics of a marked Petri net (N,m) with N = (P, T, F,W ) is
defined by the LTS ΓN,m = (P⊕, T,m0,→) with (m, t,m′) ∈→ iff m[t〉m′.

Workflow Nets. A workflow net (WF-net for short) is a tuple N =
(P, T, F,W, in, out) such that: (i) (P, T, F,W ) is a weighted Petri net; (ii)
in, out ∈ P are the source and sink place, respectively, with •in = out• = ∅; (iii)
every node in P ∪ T is on a directed path from in to out . N is called k-sound
for some k ∈ N iff (i) it is proper completing, i.e., for all reachable markings
m ∈ R(N, [ink]), if [outk] ⊆ m, then m = [outk]; (ii) it is weakly terminating,
i.e., for any reachable marking m ∈ R(N, [ink]), the final marking is reachable,
i.e., [outk] ∈ R(N,m); and (iii) it is quasi-live, i.e., for all transitions t ∈ T ,
there is a marking m ∈ R(N, [in]) such that m[t〉. The net is called sound if it
is 1-sound. If it is k-sound for all k ∈ N, it is called generalized sound [15].

3 Typed Petri Nets with Identifiers

Processes and data are highly intertwined: processes manipulate data objects.
These manipulations can be complex and involve multiple objects. As an exam-
ple, consider a retailer shop with three types of objects: products that are sold
through the shop, and customers that can order these products, which is sup-
ported through an order process. Here, object relations can be many-to-many:
e.g., a product can be ordered for many customers and the same customer can
order many products. Relations can also be one-to-many, e.g., an order is always
for a single customer, but a customer can have many orders. In addition, objects
may have their own life cycle, which can be considered to be a process itself.
For example, a product may temporarily be unavailable, or customers may be
blocked by the shop, disallowing them to order products.

Different approaches have been studied to model and analyse such models
that combine objects and processes. For example, data-aware Proclets [7] allow
to describe the behavior of individual artifacts and their interactions. Another
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approach is followed in ν-PN [28], in which tokens can carry a single identi-
fier [27]. These identifiers can be used to reference entities in an information
model. However, referencing a fact composed of multiple entities is not possible
in ν-PNs. In this paper, we study typed Petri nets with identifiers (t-PNIDs),
which build upon ν-PNs [28] by extending tokens to carry vectors of identi-
fiers [25,31]. Vectors, represented by multisets, have the advantage that a single
token can represent multiple objects or entities at the same time, such as for
which customer an order is. Identifiers are typed, i.e., the countable, infinite set
of identifiers is partitioned into a set of types, such that each type contains a
countable, infinite set of identifiers. Variables are typed as well and can only
refer to identifiers of the associated type.

Definition 2 (Identifier Types). Let I, Λ, and V denote countable, infinite
sets of identifiers, type labels, and variables, respectively. We define:

– the domain assignment function I : Λ → ℘(I), such that I(λ1) is an infinite
set, and I(λ1) ∩ I(λ2) �= ∅ implies λ1 = λ2 for all λ1, λ2 ∈ Λ;

– the id typing function typeI : I → Λ s.t. if typeI(id) = λ, then id ∈ I(λ);
– a variable typing function typeV : V → Λ, prescribing that x ∈ V can be

substituted only by values from I(typeV(x)).

When clear from the context, we omit the subscripts of type. �

In a t-PNID, each place is annotated with a label, called the place type. A
place type is a vector of types, indicating types of identifier tokens the place
can carry. A place with an empty place type, represented by the empty vector,
is a classical Petri net place carrying indistinguishable (black) tokens. Each arc
is inscribed with a multiset of vectors of identifiers, such that the type of each
variable coincides with the place types. This allows to model situations in which
a transition may require multiple tokens with different identifiers from the same
place.

Definition 3 (Petri net with identifiers). A Typed Petri net with identifiers
(t-PNID) N is a tuple (P, T, F, α, β), where:

– (P, T, F ) is a Petri net;
– α : P → Λ∗ is the place typing function;
– β : F → (V∗)⊕ defines for each flow a multiset of variable vectors such

that α(p) = type(x) for any x ∈ supp(β((p, t))) and type(y) = α(p′) for any
y ∈ supp(β((t, p′))) where t ∈ T , p ∈ •t, p′ ∈ t•;

Figure 1 shows a t-PNID, Nrs , of the retailer shop. Each place is colored
according to its identifier type. In Nrs , places product and unavailable product
are annotated with a vector 〈product〉, i.e., these places contain tokens that carry
only a single identifier of type product . Places customer and blocked customer
have type 〈customer〉. All other places, except for place p, are labeled with type
〈order〉. Place p maintains the relation between orders and customers, and is
typed 〈order , customer〉, i.e., tokens in this place are identifier vectors of size 2.
Nrs uses three variables: x for product , y for order and z for customer .



374 J. M. E. M. van der Werf et al.

G

H J K

L

N

E

MT

A

B

CD

V

U

O

create
product

activate
product

suspend
product

delete
product

product

activate
customer

create
customer

delete
customer

add
product

i

p

(x)(x) (x)

(x)
(x)

(x)(x)

(x)

(y)

(y) (y)

(z)(z)
(z)

(z)
(z)

(z)

(z)

(z)

(y,z)

(y,z)

(y,z)

(y) (y)

(y)

(y) (y) (y)

(y)

(y)

(y)

(y)

(y)(y)

(y)(y)
(y)unavailable 

product

blocked 
customer

customer

create 
offer

accept offer deliver offer finish offer

block customer

send invoice

send reminder

pay invoice

q

r

Fig. 1. t-PNID for the retailer shop with types products, customers and orders. Each
place is colored according to its type. Place p carries pairs of identifiers: an order and
a customer.

A marking of a t-PNID is the configuration of tokens over the set of places.
Each token in a place should be of the correct type, i.e., the vector of identifiers
carried by a token in a place should match the corresponding place type. All
possible vectors of identifiers a place may carry is defined by the set C(p).

Definition 4 (Marking). Given a t-PNID N = (P, T, F, α, β), and place
p ∈ P , its id set is C(p) =

∏
1≤i≤|α(p)| I(α(p)(i)). A marking is a func-

tion m ∈ M(M), with M(M) = P → (Λ∗)⊕, such that m(p) ∈ C(p)⊕,
for each place p ∈ P . The set of identifiers used in M is denoted by
Id(M) =

⋃
p∈P rng(supp(M(p))). The pair (N,M) is called a marked t-PNID.

To define the semantics of a t-PNID, the variables need to be valuated with
identifiers. In Fig. 1, transition G uses variable y to create an identifier of type
order , whereas transition K uses the same variable to remove an identifier from
the marking.

Definition 5 (Variable sets). Given a t-PNID N = (P, T, F, α, β), t ∈ T and
λ ∈ Λ, we define the following sets of variables:

– input variables as In(t) =
⋃

x∈β((p,t)),p∈•t rng(supp(x));
– output variables as Out(t) =

⋃
x∈β((t,p)),p∈t• rng(supp(x));

– variables as Var(t) = In(t) ∪ Out(t);
– emitting variables as Emit(t) = Out(t) \ In(t);
– collecting variables as Collect(t) = In(t) \ Out(t);
– emitting transitions as EN (λ) = {t | ∃x ∈ Emit(t) ∧ type(x) = λ};
– collecting transitions as CN (λ) = {t | ∃x ∈ Collect(t) ∧ type(x) = λ};
– types in N as type(N) = {λ | ∃p ∈ P : λ ∈ α(p)}. �
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As customary in colored Petri nets, the firing of a transition requires a binding
that valuates variables to identifiers. The binding is used to inject new fresh data
into the net via variables that emit identifiers, i.e., via variables that appear only
on the output arcs of that transition. We require bindings to be an injection, i.e.,
no two variables within a binding may refer to the same identifier. Note that in
this definition, freshness of identifiers is local to the marking, i.e., disappeared
identifiers may be reused, as it does not hamper the semantics of the t-PNID.
Our semantics allow the use of well-ordered sets of identifiers, such as the natural
numbers, as used in [25,27] to ensure that identifiers are globally new. Here we
assume local freshness over global freshness.

Definition 6 (Firing rule). Given a marked t-PNID (N,M) with N =
(P, T, F, α, β), a binding for transition t ∈ T is an injective function ψ : V → I
such that type(v) = type(ψ(v)) and σ(v) �∈ Id(M) iff v ∈ Emit(t). Tran-
sition t is enabled in (N,M) under binding ψ, denoted by (N,M)[t, ψ〉 iff
ρψ(β(p, t)) ≤ M(p) for all p ∈ •t. Its firing results in marking M ′, denoted
by (N,M)[t, ψ〉(N,M ′), such that M ′(p) + ρψ(β(p, t)) = M(p) + ρψ(β(t, p)). �

Again, the firing rule is inductively extended to sequences η ∈ (T×(V → I))∗.
A marking M ′ is reachable from M if there exists η ∈ (T × (V → I))∗ s.t.
M [η〉M ′. We denote with R(N,M) the set of all markings reachable from M for
(N,M).

The execution semantics of a t-PNID is defined as an LTS that accounts for
all possible executions starting from a given initial marking.

Definition 7. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), its
induced transition system is ΓN,M0 = (M(N), (T × (V → I)),M0,→) with

M
(t,σ)−−−→ M ′ iff M [t, σ〉M ′.

t-PNIDs are a vector-based extension of ν-PNs. In other words, a ν-PN can
be translated into a strongly bisimilar t-PNID with a single type, and all place
types are of length of at most 1.

Lemma 1. For any ν-PN there exists a single-typed t-PNID such that the two
nets are strongly rooted bisimilar. �

As a result, decidability of reachability for ν-PNs transfers to t-PNIDs [28].

Proposition 1. Reachability is undecidable for t-PNIDs. �

4 Correctness Criteria for t-PNIDs

Many criteria have been devised for assessing the correctness of systems captured
as Petri nets. Traditionally, Petri net-based criteria focus on the correctness
of processes the systems can support. Enriching the formalism with ability to
capture object manipulation while keeping analyzability is a delicate balancing
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act. Therefore, object manipulations can only be captured if these are reflected
in the token game of the net.

For t-PNIDs, correctness criteria can be categorized as system-level and as
object-level. Criteria on the system-level focus on traditional Petri net-based
criteria to assess the system as a whole, whereas criteria on object-level address
correctness of individual objects represented by identifiers.

4.1 Correctness Criteria on System-Level

System-level properties address the overall behavior of the system. For exam-
ple, liveness is a typical system-level property. It expresses that any transition
is always eventually enabled again. As such, a live system guarantees that its
activities cannot eventually become unavailable and never recover again.

Definition 8 (Liveness). A marked t-PNID ((P, T, F, α, β),M0) is live iff for
every marking M ∈ R(N,M0) and every transition t ∈ T , there exist a marking
M ′ ∈ R(N,M) and a binding ψ : V → I such that M ′[t, ψ〉. �

Boundedness expresses that the reachability graph of a Petri net is finite, i.e.,
that there are finitely many tokens in the system. Thus, it is a typical system-level
property. Many systems have a dynamic number of simultaneously active objects.
Designers often do not want to limit themselves on the maximum number of
active objects. Consequently, many systems are unbounded by design. Similar
to ν-PN, we differentiate between various types of boundedness. Boundedness
expresses that the number of tokens in any reachable place does not exceed a
given bound, whereas width-boundedness expresses that the modeled system has
a bound on the number of simultaneously active objects. Notice that a width-
bounded net may be unbounded if it contains infinitely many tokens referring
to finitely many available objects.

Definition 9 (Bounded, width-bounded). Let ((P, T, F, α, β),M0) be a
marked t-PNID. A place p ∈ P is called:

– bounded if there is k ∈ N such that |M(p)| ≤ k for all M ∈ R(N,M0);
– width-bounded if there is k ∈ N such that |Id(M)|≤k for all M ∈ R(N,M0);

If all places in (N,M0) are (width-) bounded, (N,M0) is called (width-) bounded.
�

4.2 Correctness Criteria on Object-Level

An object-level property assesses the correctness of individual objects. In t-
PNIDs, identifiers can be seen as references to objects: if two tokens carry the
same identifier, they refer to the same object. The projection of an identifier on
the complete reachability graph of a t-PNID represents the life-cycle of an iden-
tifier. Whereas boundedness of a t-PNID implies that states in its reachability
graph of the whole system are bounded, depth-boundedness expresses that for
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Fig. 2. A transition-bordered WF-Net and its closure for soundness [17].

each identifier the number of tokens carrying that identifier is bounded. In other
words, if a t-PNID is depth-bounded, the complete system may be unbounded,
but the life-cycle of each individual identifier is finite.

Definition 10 (Depth-boundedness). Let ((P, T, F, α, β),M0) be a marked
t-PNID. A place p ∈ P is called depth-bounded if there is k ∈ N such that
M(p)( id) ≤ k for all id ∈ I∗, M ∈ R(N,M0), and id ∈ C(p) with id ∈ id. If
all places are depth-bounded, (N,M0) is called depth-bounded. �

Depth-boundedness is undecidable for ν-PNs [28] and thus also for t-PNIDs.

Proposition 2. Depth-boundedness is undecidable for t-PNIDs. �

Each type has a life-cycle. Intuitively, an object of a given type “enters” the
system via an emitter that creates a unique identifier that refers to the object.
The identifier remains in the system, until the object “leaves” the system by
firing a collecting transition (that binds to the identifier and consumes it). Hence,
once that transition fires, there should be no remaining tokens referring to the
removed object. The process of a type is a model that describes all possible paths
allowed for a type. It can be represented as a transition-bordered WF-net [17].
Instead of a sink and source place, a transition-bordered WF-net has transitions
that represent the start and finish of a process. A transition-bordered WF-net
is sound, if its closure is sound. As shown in Fig. 2, its closure is constructed
by creating a new source place i s.t. each emitting transition consumes from i,
and a new sink place f s.t. each collecting transition produces in f . Consider in
t-PNID Nrs of Fig 1, identifier type order . Its life cycle starts with transition G.
Transitions K and V are two transitions that may remove the last reference to
an order . Soundness of a transition-bordered WF-net would require that firing
transition K or transition V would result in the final marking. In the remainder
of this section, we develop this intuition into the concept of identifier soundness.

Soundness constitutes three properties: proper completion, weak termination
and quasi-liveness. Similarly to [15], we focus on the first two properties. Proper
completion states that if a marking covers the final marking, it is the final mark-
ing. In other words, as soon as a token is produced in the final place, all other
places are empty. Following the idea of transition-bordered WF-nets, identifiers
should have a similar behavioral property: once an identifier is consumed by a
collector, the identifier should be removed from the marking.
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Definition 11 (Proper type completion). Given type λ ∈ Λ, a marked t-
PNID (N,M0) is called proper λ-completing iff for all t ∈ CN (λ), bindings ψ :
V → I and markings M,M ′ ∈ R(N,M0), if M [t, ψ〉M ′, then for all identifiers
id ∈ rng(ψ|Collect(t)) ∩ Id(M) and type(id) = λ, it holds that id �∈ Id(M ′).1 �

As an example, consider t-PNID Nrs in Fig. 1. For type customer , we have
CNrs

(customer) = {K,V }. In the current – empty – marking, transition T is
enabled with binding ψ = {y �→ o, z �→ c}, which results in marking M with
M(customer) = [c]. Next, transitions G, H, J , L and N can fire, all using the
same binding, producing marking M ′ with M ′(p) = [o, c], M ′(customer) = [c]
and M ′(q) = M ′(r) = [c]. Hence, transition K is enabled with binding ψ.
However, firing K with ψ results in marking M ′′ with M ′′(customer) = [c],
while ψ(z) = c. Hence, Nrs is not properly customer -completing.

Weak termination for a WF-net signifies that from any reachable marking,
the final marking can be reached. Translated to identifiers, it should always
eventually be possible to remove an identifier from a marking.

Definition 12 (Weak type termination). Given type λ ∈ Λ, a marked t-
PNID (N,M0) is called weakly λ-terminating iff for every M ∈ R(N,M0) and
identifier id ∈ I(λ) such that id ∈ Id(M), there exists a marking M ′ ∈ R(N,M)
with id �∈ Id(M ′). �

Identifier soundness combines the two properties of proper type completion
and weak type termination: the former ensures that as soon a collector fires
for an identifier, the identifier is removed, whereas the latter ensures that it is
always eventually possible to remove that identifier.

Definition 13. A marked t-PNID (N,M0) is λ-sound iff it properly λ-completes
and weakly λ-terminates. It is identifier sound iff it is λ-sound for every λ ∈
type(N). �

There are two interesting observations that one can make about the identifier
soundness property. First, identifier soundness does not imply soundness in the
classical sense: any classical net N without types, i.e., type(N) = ∅, is identifier
sound, independently of the properties of N . Second, identifier soundness implies
depth-boundedness. In other words, if a t-PNID is identifier sound for all types,
it cannot accumulate infinitely many tokens carrying the same identifier.

Lemma 2. If a t-PNID (N,M0) is identifier sound, then it is depth-bounded. �

Proof. Suppose that (N,M0) is identifier sound, but not depth-bounded. Then,
at least for one place p ∈ P and identifier id ∈ C(p) of type λ there exists
an infinite sequence of increasing markings Mi, all reachable in (N,M0), such
that Mi(p)(id) < Mi+1(p)(id). Assume λ ∈ λ. As (N,M0) weakly λ-terminates,
there exists M ′ ∈ R(N,M) such that u �∈ Id(M ′), where type(u) = λ. This
means that the above sequence cannot exist as all constituents of id must be
eventually removed. Hence, (N,M0) is depth-bounded. �

As identifier soundness relies on reachability, it is undecidable.
1 Here, we constrain ψ only to objects of type λ that are only consumed.
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Fig. 3. EC-closure of a WF-net N .

Theorem 1. Identifier soundness is undecidable for t-PNIDs. �

Proof. Let (N,M0) be a marked t-PNID. By Definition 13, we need to show
that it properly completes and weakly terminates. Since the latter requires a
reachability test, it is undecidable by Proposition 1. �

The above theorem also naturally follows from the fact that all non-trivial
decision problems are undecidable for Petri nets in which tokens carry pairs of
data values (taken from unordered domains) and in which element-wise equality
comparisons are allowed over such pairs in transition guards [19].

5 Correctness by Construction

As shown in the previous section, identifier soundness is undecidable. However,
we are still interested in ensuring correctness criteria over the modeled system.
In this section, we propose a structural approach to taming the undecidability
and study sub-classes of t-PNIDs that are identifier sound by construction.

5.1 EC-Closed Workflow Nets

WF-nets are widely used to model business processes. The initial place of the
WF-net signifies the start of a case, the final place represents the goal state, i.e.,
the process case completion. A firing sequence from initial state to final state
represents the activities that are performed for a single case. Thus, a WF-net
describes all possible sequences of a single case. Process engines, like Yasper [14]
simulate the execution of multiple cases in parallel by coloring the tokens with
the case identifier (a similar idea is used for resource-constrained WF-net variants
of ν-PNs in [23]). In other words, they label each place with a case type, and
inscribe each arc with a variable. To execute it, the WF-net is closed with an
emitter and a collector, as shown in Fig. 3. We generalize this idea to any place
label, i.e., any finite sequence of types may be used to represent a case.

Definition 14 (EC-Closure). Given a WF-net N , place type λ ∈ Λ∗ and
a variable vector v ∈ V∗ such that type(v) = λ. Its EC-closure is a t-PNID
W(N,λ,v) = (PN , TN ∪ {tE , tC}, FN ∪ {(tE , in), (out , tC)}, α, β), with:
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– α(p) = λ for all places p ∈ PN ;
– β(f) = vW (f) for all flows f ∈ FN , and β((te, in)) = β((out , tc)) = [v]; �

The EC-closure of a WF-net describes all cases that run simultaneously at
any given time. In other words, any reachable marking of the EC-closure is the
“sum” of all simultaneous cases. Lemma 3 formalizes this idea by establishing
weak bisimulation between the projection on a single case and the original net.

Lemma 3 (Weak bisimulation for each identifier). Let N be a WF-net,
λ ∈ Λ∗ be a place type and v ∈ V∗ be a variable vector s.t. type(v) = λ. Then,
for any id ∈ I |�λ|, ρr(ΓW(N,�λ,�v),∅) ≈ ΓN,[in] with r(t, ψ) = r(t), if ψ(v) = id,
and r((t, ψ)) = τ , otherwise. �

Proof. Define R = {(M,m) | ∀p ∈ P : M(p)(a) = m(p)}. We need to show
that R is a weak bisimulation. (⇒) Let M,M ′ and m be such markings that
(M,m) ∈ R and M [t, ψ〉M ′, with t ∈ T and ψ : V → I. By Definition 14,
ψ(v) = u, for some u ∈ I |�λ|. From the firing rule, we obtain M ′(p)+[uW ((p,t))] =
M(p)+[uW ((t,p))], for any p ∈ P . If u �= id, then r(t, ψ) = τ , and (M ′,m) ∈ R. If
u = id, there exists such marking m′ that m[t〉m′ (since m(p) = M(p)(id) and
thus m(p) ≥ W ((p, t))) and m′(p)+W ((p, t)) = M(p)(id)+W ((t, p)). Then, by
construction, m′(p) = M ′(p)(id) and (M ′,m′) ∈ R.
(⇐) By analogy with the previous argument. �

A natural consequence of this weak bisimulation result is that any EC-closure
of a WF-net is identifier sound if and only if the underlying WF-net is sound.

Theorem 2. Given a WF-Net N , if N is sound, then W(N,λ,v) is identifier
sound and live, for any place type λ ∈ Λ∗ and variable vector v ∈ V∗ with
type(v) = λ. �

Proof. Let W(N,λ,v) = (P, T, F, α, β). By definition of W, Collect(t) = ∅ for
any transition t ∈ T \{tC}. Hence, only transition tC can remove identifiers, and
thus, by construction, W is properly type completing on all λ ∈ λ.

Next, we need to show that M is weakly type terminating for all types λ ∈ λ.
Let M ∈ R(W, ∅), with firing sequence η ∈ (T × (V → I))∗, i.e., M0[η〉M .
Let id ∈ C(p) such that M(p)(id) > 0 for some p ∈ P . We then construct a
sequence ω by stripping the bindings from ηs.t. it contains only transitions of T .
Then, using Lemma 3, we get that [in][ψ〉m, with m(p) = M(p)(id). Since N is
sound, there exists a firing sequence ω′ such that m[ω′〉[out ]. Again by Lemma 3,
a firing sequence η′ exists such that M [η′〉M ′ and (M ′, [out ]) ∈ R(W, ∅)|id,
where R(W, ∅)|id is the set of all reachable markings containing id. Hence, if
M ′(p)(id) > 0, then p = out . Thus, transition tC is enabled with some binding
ψ such that ψ(v) = id, and a marking M ′′ exists such that M ′[tc, ψ〉M ′′, which
removes all identifiers in id from M ′. Hence, W is identifier sound.

As transition te is always enabled, any transition is live, since N is quasi live.
Hence W(N,λ,v) is live. �
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5.2 Typed Jackson Nets

A well-studied class of processes that guarantee soundness are block-structured
nets. Examples include Process Trees [20], Refined Process Structure Trees [30]
and Jackson Nets [13]. Each of the techniques have a set of rules in common
from which a class of nets can be constructed that guarantees properties like
soundness. In this section, we introduce Typed Jackson Nets (t-JNs), extending
the ideas of Jackson Nets [13,17] to t-PNIDs, that guarantee both identifier
soundness and liveness. The six reduction rules presented by Murata in [24]
form the basis of this class of nets. The rules for t-JNs are depicted in Fig. 4.

Rule 1: Place Expansion. The first rule is based on fusion of a series of
places. As shown in Fig. 4a, a single place p is replaced by two places pi and
pf that are connected via transition t. All transitions that originally produced
in p, produce in pi in the place expansion, and similarly, the transitions that
consumed from place p, now consume from place pf . In fact, transition t can be
seen as a transfer transition: it needs to move tokens from place pi to place pf ,
before the original process can continue. This is also reflected in the labeling of
the places: both places have the same place type, and all arcs of transition t are
inscripted with [μ], i.e., only consuming and producing a single token in a firing.

Definition 15 (Place expansion). Let (N,M) be a marked t-PNID with
N = (P, T, F, α, β), p ∈ P be a place and μ ∈ V∗ be a variable vector s.t.
type(μ) = α(p). The place expanded t-PNID is defined by Rp,�μ(N,M) =
((P ′, T ′, F ′, α′, β′),M ′), where:

– P ′ = (P \ {p}) ∪ {pi, pf} with pi, pf �∈ P ; and T ′ = T ∪ {t} with t �∈ T ;
– F ′ = (F \ (({p}×p•)∪ (•t×{p}))∪ (•p×{pi})∪{(pi, t), (t, pf )}∪ ({pf}×p•);
– α′(q) = α(p), if q ∈ {pi, pf}, and α′(q) = α(q), otherwise.
– β′(f) = [μ], if f ∈ {(pi, t), (t, pf )}, β′((u, pi)) = β((u, p)), if u ∈ •p,

β′((pf , u)) = β((p, u)), if u ∈ p•, and β′(f) = β(f), otherwise.
– M ′(q) = M(q) for all q ∈ P \ {p}, M ′(pf ) = 0, and M ′(pi) = M(p). �

Inscription μ cannot alter the vector identifier on the tokens, as the type
of μ should correspond to both place types α(p) and α(q). Hence, the transi-
tion is enabled with the same bindings as any other transition that consumes a
token from place p, modulo variable renaming. As such, transition t only “trans-
fers” tokens from place pi to place pf . Hence, as the next lemma shows, place
expansion yields a weakly bisimilar t-PNID.

Lemma 4. Let (N,M0) be a marked t-PNID with N = (P, T, F, α, β),
p ∈ P be a place to expand and μ ∈ V∗ be a variable vector. Then
ΓN,M0≈rĤ{t}(ΓRp,�μ(N,M0)), with transition t added by Rp,�μ. �

Proof. Let (N ′,M ′
0) = Rp,μ(N,M0). We define Q ⊆ M(N) × M(N ′) such that

M(q) = M ′(q) for all places q ∈ P \ {p} and M ′(pi) + M ′(pf ) = M(p). Then
(M0,M

′
0) ∈ Q, hence the relation is rooted.
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(a) Place Expansion (b) Transition Expansion (c) Place Duplication

(d) Transition Duplication (e) Self-loop Addition (f) Identifier Creation

Fig. 4. Construction rules of the typed Jackson Nets.

(⇒) Let (M,M ′) ∈ Q and M [u, ψ〉M̄ , where u is as in Definition 15. We need to
show that there exists marking M̄ ′ such that M ′ (t, ψ)

M̄ ′ and (M̄, M̄ ′) ∈ Q.
Suppose p �∈ •u. Then M ′(q) = M(q) and M(q) ≥ ρψ(β((p, u))) (note that

ρψ(β((p, u))) = ρψ(β′((p, u)))). By the firing rule, a marking M̄ ′ exists with
M ′[u, ψ〉M̄ ′, M̄(q) = M̄ ′(q) for all q ∈ P ′. Thus, (M̄, M̄ ′) ∈ Q. Suppose p ∈ •u.
Then ρψ(β((pf , u))) ≤ M(p) = M ′(pi) + M ′(pf ). If ρψ(β(pf , u))) ≤ M ′(pf ),
then transition u is enabled, and a marking M̄ ′ exists with M ′[u, ψ〉M̄ ′ and
(M ′, M̄ ′) ∈ Q. Otherwise, ρψ(β(pf , u))) ≤ M ′(pi). Construct a binding ψ′ by
letting ψ′(μ(i)) = ψ(β(p, u)(i)), for all 1 ≤ i ≤ |μ|. Then, ρψ′(μ) = ρψ(β(p, u)),
and transition t is enabled with binding ψ′. Hence, a marking exists M ′′ with
M ′[t, ψ′〉M ′′ and ρψ(β((p′, u))) ≤ M ′′(p′). Then (M,M ′′) ∈ Q and t is labeled τ
in Ĥ{t}(R(p,�μ)(N)), and the first case applies on M ′′. In all cases, M ′ (t, ψ)

M̄ ′.
(⇐) By analogy with the previous argument.

Rule 2: Transition Expansion. The second rule is transition expansion,
which corresponds to Murata’s fusion of series transitions. As shown in Fig. 4b,
transition t is divided into two transitions, tc that consumes the tokens, and a
second transition tp that produces the tokens. The two transitions are connected
with a single, fresh place p. This place can have any type, as long as it does not
hamper firing the post transition tp, i.e., place p should ensure that all variables
consumed by tc, and that are required by te are passed. Transition tc is allowed
to emit new identifiers, as long as these are not already produced by tp.
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Definition 16 (Transition expansion). Let (N,M) be a marked t-PNID with
N = (P, T, F, α, β), let t ∈ T , and let λ ⊆ Λ∗ and μ ∈ (V \ Emit(t))∗ such that
type(x) ∈ λ and x ∈ μ, for all x ∈ In(t), and type(μ) = λ. The transition
expanded t-PNID is defined by Rt,λ,μ(N,M) = ((P ′, T ′, F ′, α′, β′),M), where:

– P ′ = P ∪ {p} with p �∈ P ; and T ′ = (T \ {t}) ∪ {te, tc} with te, tc �∈ T ;
– F ′ = (F \ ((•t×{t})∪ ({t}× t•)))∪ (•t×{te})∪{(te, p), (p, tc)}∪ ({tc}× t•);
– α′(p) = λ and α′(q) = α(q) for all q ∈ P ;
– β′(f) = [μ] if f ∈ {(te, p), (p, tc)}, β′((q, te)) = β((q, t)) for q ∈ •t,

β′((tc, q)) = β((t, q)) for q ∈ t•, and β′(f) = β(f) otherwise. �

Transition te is allowed to introduce new variables, but key is that inscription
μ contains all input variables of transition t. Consequently, μ encodes the binding
of transition t. We use this to prove weak bisimulation between a t-PNID and
it transition expanded net. The idea behind the simulation relation Q is that
the firing of te is postponed until tc fires. In other words, Q encodes that tokens
remain in place q until transition tc fires.

Lemma 5. Given marked t-PNID (N,M0) with N = (P, T, F, α, β), transition
t ∈ T , λ ∈ Λ∗ and μ ∈ V∗. Let te, tc be the transitions added by the expansion.
Then ΓN,M0 ≈r ρr(ΓRt,λ,μ(N,M0)) with r = {(te, τ), (tc, t)}. �

Proof. Let N ′ = Rt,λ,μ(N). Define relation Q ⊆ M(N) × M(N ′) such
that M(q) = M ′(q) for all places q ∈ P \ •t and M(q) = M ′(q) +∑

b∈supp(M ′(p)) M ′(p)(b) ·ρμ(b)β((q, t)), where μ(b) is a shorthand for the binding
ψ : V → I with ψ(x) = b(i) iff μ(i) = x for all 1 ≤ i ≤ |μ|. Then (M0,M0) ∈ Q.
(⇒) Follows directly from the firing rule, and the construction of μ.
(⇐) Let (M,M ′) ∈ Q and M ′[u, ψ〉M̄ ′. We need to show a marking M̄ exists

such that M
(t, ψ)

M̄ and (M̄, M̄ ′) ∈ Q. If te �= u �= tc, the statement
holds by definition of the firing rule. Suppose u = te, i.e., r(u) = τ . Hence,
we need to show that (M,M̄ ′) ∈ Q. Let q ∈ •t. Since (M,M ′) ∈ Q, we
have M(q) = M ′(q) +

∑
b∈supp(M ′(p)) M ′(p)(b) · ρμ(b)β((q, t)). By the firing

rule, we have M̄ ′(p) = M ′(p) + [ρψ(μ)] and M ′(q) = M̄ ′(q) + ρψ(β((q, t))).
By construction, ρψ and ρμ([ρψ(μ)]) are identical functions. Rewriting gives
M(q) = M̄ ′(q) +

∑
b∈supp(M̄ ′(p)) M ′(p)(b) · ρμ(b)β((q, t)), and thus (M,M̄ ′) ∈ Q.

Suppose u = tc, i.e., r(u) = t and [ρψ(μ)] ≤ M ′(p). Let q ∈ •t. Then
M(q) = M ′(q)+

∑
b∈supp(M ′(p)) M ′(p)(b) ·ρμ(b)β((q, t)). Since M̄ ′(p)+[ρψ(μ)] =

M ′(p) and ρψ(β((q, u))) = ρμ([ρψ(μ)])(β((q, u))), we obtain M(q) = M ′(q) +
(∑

b∈supp(M̄ ′(p)) M̄ ′(p)(b) · ρμ(b)β((q, t))
)

+ ρψβ((q, t)). Hence, a marking M̄

exists such that M [t, ψ〉M̄ . Rewriting gives (M̄, M̄ ′) ∈ Q. �

Rule 3: Place Duplication. Whereas the previous two rules only introduced
ways to create sequences, the third rule introduces parallelism by duplicating
a place, as shown in Fig. 4c. It is based on the fusion of parallel transitions
reduction rule of Murata. For t-PNIDs, duplicating a place has an additional
advantage: as all information required for passing the identifiers is already guar-
anteed, the duplicated place can have any place type.
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Definition 17 (Duplicate place). Let (N,M) be a marked t-PNID with N =
(P, T, F, α, β), let p ∈ P , such that M(p) = ∅, and some transitions t, u ∈ T
exist with •p = {t} and p• = {u}. Let λ ∈ Λ∗ and μ ∈ (V \ Emit(u))∗ such
that type(μ) = λ. Its duplicated place t-PNID is defined by Dp,λ,μ(N,M) =
((P ′, T, F ′, α′, β′),M), where:

– P ′ = P ∪ {q}, with q �∈ P , and F ′ = F ∪ {(t, q), (q, u)};
– α′ = α ∪ {q �→ λ} and β′ = β ∪ {(t, q) �→ [μ], (q, u) �→ [μ]}. �

As the duplicated place cannot hamper the firing of any transition, all behav-
ior is preserved by a strong bisimulation on the identity mapping.

Lemma 6. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), place
p ∈ P , λ ∈ Λ∗ and μ ∈ V∗. Then ΓN,M0 ∼r ΓDp,λ,μ(N,M0). �

Proof. Let (N ′,M ′
0) = Dp,λ,μ(N). Define relation Q ⊆ M(N)×M(N ′) such that

(M,M ′) ∈ Q iff M(p) = M ′(p) for all places p ∈ P . The bisimulation relation
trivially follows from the firing rule. �

Rule 4: Transition Duplication. As already recognized by Berthelot [6], if
two transitions have an identical preset and postset, one of these transitions can
be removed while preserving liveness and boundedness. Murata’s fusion of par-
allel places is a special case of this rule, requiring that the preset and postset are
singletons. For t-JNs, this results in the duplicate transition rule: any transition
may be duplicated, as shown in Fig. 4d.

Definition 18 (Duplicate place). Let (N,M) be a marked t-PNID with N =
(P, T, F, α, β), and let t ∈ T such that some places p, q ∈ P exist with •t =
{p} and t• = {q}. Its duplicated transition t-PNID is defined by Dt(N,M) =
((P, T ′, F ′, α, β′),M), where:

– T ′ = T ∪ {u}, with t′ �∈ T , and F ′ = F ∪ {(p, u), (u, q)};
– β′((p, u)) = β((p, t)), β((u, q)) = β((t, q)) and β′(f) = β(f) for all f ∈ F . �

As the above rule only duplicates t ∈ T , the identity relation on markings is
a strong rooted bisimulation. The proof is straightforward from the definition.

Lemma 7. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), and tran-
sition t ∈ T . Then ΓN,M0 ∼r ρ{(u,t)}(ΓDt(N,M0)). �

Proof. Let (N ′,M ′
0) = Dt(N). Define relation Q ⊆ M(N) × M(N ′) such that

(M,M ′) ∈ Q iff M(p) = M ′(p) for all places p ∈ P . The bisimulation relation
trivially follows from the firing rule. �

Rule 5: Adding Identity Transitions. In [6], Berthelot classified a tran-
sition t with an identical preset and postset, i.e., •t = t• as irrelevant, as its
firing does not change the marking. The reduction rule elimination of self-loop
transitions is a special case, as Murata required these sets to be singletons. For
t-JNs, adding a self-loop transition is the fifth rule, as shown in Fig. 4e.
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Definition 19 (Self-loop addition). Let (N,M be a marked t-PNID with
N = (P, T, F, α, β), and let p ∈ P . Its Self-loop Added t-PNID is defined by
Ap(N,M) = ((P, T ′, F ′, α, β′),M), where:

– T ′ = T ∪ {t}, with t �∈ T , and F ′ = F ∪ {(p, t), (t, p)};
– β′((p, t′)) = β′((p, t′)) = [μ] with μ ∈ V∗ such that type(μ) = α(p), and

β′(f) = β(f) otherwise. �

Similar to the duplicate transition rule, the self-loop addition rule does not
introduce new behavior, except for silent self-loops. Hence, the identity relation
on markings is a weak rooted bisimulation.

Lemma 8. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), and place
p ∈ P . Then ΓN,M0 ≈r Ĥ{t}(ΓAp(N,M0)) with t the added self-loop transition. �

Proof. Let (N ′,M ′
0) = Ap(N,M0). Define relation Q ⊆ M(N)×M(N ′) such that

(M,M ′) ∈ Q iff M(p) = M ′(p) for all places p ∈ P . The bisimulation relation
trivially follows from the firing rule. �

Rule 6: Identifier Introduction. The first five rules preserve the criteria of
block-structured WF-nets. Murata’s elimination of self-loop places states that
adding or removing a marked place with identical preset and postset does pre-
serve liveness and boundedness. This rule is often used to introduce a fixed
resource to a net, i.e., the number of resources is determined in the initial mark-
ing. Instead, identifier introduction adds dynamic resources, as shown in Fig. 4f:
transition te emits new identifiers as its inscription uses only “new” variables
(i.e., those that have not been used in the net), and place p works like a storage
of the available resources, which can be removed by firing transition tc.

Definition 20 (Identifier Introduction). Let (N,M) be a marked t-PNID
with N = (P, T, F, α, β), let t ∈ T , let λ ∈ (Λ \ type(N))∗ and μ ∈ V∗ such that
type(μ) = λ. The Identifier introducing t-PNID is defined by At,�λ,�μ(N,M) =
((P ′, T ′, F ′, α′, β′),M), where:

– P ′ = P ′ ∪ {p} and T ′ = T ∪ {te, tc}, for p �∈ P and te, tc �∈ T , and F ′ =
F ∪ {(p, t), (t, p), (te, p), (p, tc)};

– α′ = α∪{p �→ λ} and β′ = β∪{(p, t) �→ [μ], (t, p) �→ [μ], (te, p) �→ [μ], (p, tc) �→
[μ]}; �

Lemma 9. Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), transition
t ∈ T , λ ∈ Λ∗ and μ ∈ (V \ Var(t))∗. Then ΓN,M0 ≈r Ĥ{te,tc}(ΓA(p)(N,M0)) with
te, tc the added transitions. �

Proof. Let N ′ = (P ′, T ′, F ′, α′, β′). Define Q ⊆ M(N) × M(N ′) such that
(M,M ′) ∈ Q iff M(p) = M ′(p) for all p ∈ P .
(⇒) Suppose M [u, ψ〉M̄ ′. If t �= u, the statement directly follows from the firing
rule. If t = u, then a marking M ′′ and binding ψ′ exists such that M ′[te, ψ′〉M ′′.
Then M ′(p) > ∅, (M,M ′′) ∈ Q, and M ′′[t, ψ〉. Hence, markings M̄ ′′ and M̄ ′
exist such that M ′′[t, ψ〉M̄ ′′[tc, ψ′〉M̄ ′, and (M ′, M̄ ′′), (M ′, M̄ ′) ∈ Q.
(⇐) Follows directly from the firing rule. �
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As shown in [28], unbounded places are width-bounded, i.e., can contain
an infinite number of identifiers, or depth-bounded, i.e., for each identifier, the
number of tokens carrying that identifier is bounded, or both. The place added
by the identifier creation rule is by definition width-unbounded, as it has an
empty preset. However, it is identifier sound, and thus depth-bounded, as shown
in the next lemma.

Lemma 10. Given a marked t-PNID (N,M) with N = (P, T, F, α, β). Then
At,�λ,�μ(N,M) is identifier sound iff (N,M) is identifier sound. �

Proof. Let (N ′,M ′) = At,�λ,�μ(N,M), and let p ∈ P ′ \P . Let λ ∈ type(N ′). If λ ∈
type(N), it is λ-sound by Lemma 9. Suppose λ �∈ type(N). Then EN ′(λ) = {te}
and CN ′(λ) = {tc}. Let a ∈ Id(M) such that type(a) = λ. Then an id ∈ C(p)
exists with a ∈ id and M(p)(id) = 1. Hence, a binding ψ exists such that
ψ(μ) = id, and transition tc is enabled with ψ. Let M ′ be a marking such that
M [tc, ψ〉M ′. Then a �∈ Id(M ′), which proves the statement. �

Any net that can be reduced to a net with a single transition using these
rules is called a typed Jackson Net (t-JN).

Definition 21. The class of typed Jackson Nets T is inductively defined by:

– ((∅, {t}, ∅, ∅, ∅), ∅) ∈ T ;
– if (N,M) ∈ T , then Rp,�μ(N,M) ∈ T ;
– if (N,M) ∈ T , then Rt,�λ,�μ(N,M) ∈ T ;
– if (N,M) ∈ T , then Dp,�λ,�μ(N,M0) ∈ T ;
– if (N,M) ∈ T , then Dt(N,M) ∈ T ;
– if (N,M) ∈ T , then Ap(N,M) ∈ T ;
– if (N,M) ∈ T , then At,�λ,�μ(N,M) ∈ T . �

As any t-JN reduces to a single transition, and each construction rule goes
hand in hand with a bisimulation relation, any liveness property is preserved.
Consequently, any t-JN is identifier sound and live.

Theorem 3. Any typed Jackson Net is identifier sound and live. �

Proof. We prove the statement by induction on the structure of t-JNs. The
statement holds trivially for the initial net, ((∅, {t}, ∅, ∅, ∅), ∅). Suppose (N,M) ∈
T . Then for each of the rules, the statement follows directly from the respective
bisimulation relations of Lemma 4–9, and the result of Lemma 10. �

To solve the problem of the running example, several solutions exist. One
solution is shown in Fig. 5. In this example, the net is a t-JN: starting from
transition G, a self loop is added (transition G). The transition is then expanded
with transition Z. Place p is then duplicated to create the subnet R. In this way,
subnet R only knows of type offer , as the connection with customer is stored in
place p. Consequently, the net is identifier sound, and live.
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Fig. 5. The example of the retailer shop as a typed Jackson Net.

5.3 Workflow Refinement

A well-known refinement rule is workflow refinement [15]. In a WF-net, any place
may be refined with a generalized sound WF-net. If the original net is sound, then
the refined net is sound as well. In this section, we present a similar refinement
rule. Given a t-PNID, any place may be refined by a generalized sound WF-net.
In the refinement, each place is labeled with the place type of the refined place,
and all arcs in the WF-net are inscribed with the same variable vector.

Definition 22 (Workflow refinement). Let L = (PL, TL, FL, αL, βL), be a
t-PNID, p ∈ PL a place, and N = (PN , TN , FN ,WN , inN , outN ) a WF-net.
Workflow refinement is defined by L ⊕p N = (P, T, F, α, β), where:

– P = (PL \ {p}) ∪ PN and T = TL ∪ TN ;
– F = (FN ∩ ((P ×T )∪ (T ×P )))∪FL ∪{(t, inN ) | t ∈ •p}∪{(out , t) | t ∈ p•};
– α(q) = αN (q) for q ∈ PL \ {p}, and α(q) = α(p) for q ∈ PN ;
– β(f) = βL(f) for f ∈ FL, β(f) = [μ](W (f))for f ∈ FN and type(μ) = α(p),

β((t, in)) = β((t, p)) for t ∈ •t and β((out , t)) = β((p, t)) for t ∈ t•. �

Generalized soundness of a WF-Net ensures that any number of tokens in
the initial place are “transferred” to the final place. As shown in Sect. 5.1, the
EC-closure of a sound WF-net is identifier sound and live. A similar approach
is taken to show that the refinement is weakly bisimilar to the original net.
Analogously to [15], the bisimulation relation is the identity relation, except for
place p. The relation maps all possible token configurations of place p to any
reachable marking in the WF-net, given p’s token configuration.

Lemma 11. Let L = (PL, TL, FL, αL, βL) be a t-PNID with initial marking M0,
let p ∈ PL be a place s.t. M0(p) = ∅, and let N = (PN , TN , FN ,WN , inN , outN )
be a WF-net. If N is generalized sound, then ΓL ≈r ĤTN

(ΓL⊕pN ). �

Proof. For simplicity, we start by defining a type extension of N as a t-PNID
N ′ = (PN , TN , FN , α, β), where type(v) = λ, α(p) = λ for all places p ∈ PN , and
β(f) = vW (f) for all f ∈ FN , and β((te, in)) = β((out , tc)) = [v].
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To prove bisimilarity, we define R = {(M,M ′ + m) | M ∈ R(L,M0),M ′ ∈
A,m ∈ B} where A = {M ′ | M ′,M ∈ R(L,M0),M ′(p) = ∅,∀q ∈ PL \ {p} :
M ′(q) = M(q)} and B = {m | m ∈ R(N ′, [in]), [in] = M(p),∀M ∈ R(L,M0)}.
(⇒) Let (M,M ′ + m) ∈ R and M [t, ψ〉M̄ . We need to show that exists M̄ ′
and m̄ such that (M ′ + m) (t, ψ) (M̄ ′ + m̄) and (M̄, M̄ ′ + m̄) ∈ R. If t �∈ •p
(or p �∈ •t), then M ′(q) = M(q) for all q ∈ PL \ p. Thus t is also enabled in
M ′(q) and M(q) ≥ β((q, t)). Then by the firing rule there exists M̄ ′ such that
(M ′ +m)[t, ψ〉(M̄ ′ +m) and M̄(q) = M̄ ′(q) for all q ∈ PL. Thus, (M ′, M̄ ′ +m) ∈
R. If t ∈ •p, then, by construction, M ′(q) = M(q) for all q ∈ PL \ p. Thus, using
the same reasoning as above, (M ′ + m)[t, ψ〉(M̄ ′ + m̄) for all q ∈ PL \ p and
m̄(in) = M ′(p). Thus, (M ′, M̄ ′ + m̄) ∈ R.

Now, assume that p ∈ •t and ρψ(β((p, t))) = id. Given that N is generalized
sound and by applying Lemma 3, there exists a firing sequence η for N ′ that
carries identifier id to out . This means that, by construction, M ′(q) = M(q), for
all q ∈ PL, and m(out)(id) = M(p)(id). Hence, t is enabled in (M ′ + m) under
binding ψ′ that differs from ψ everywhere but on place out . By the firing rule,
there exists (M̄ ′ + m̄) s.t. (M ′ + m)[t, ψ′〉(M̄ ′ + m̄) and (M, (M̄ ′ + m̄)) ∈ R.
(⇐) By analogy with the previous argument.

As a consequence of the bisimulation relation, the refinement is identifier
sound and live if the original net is identifier sound.

Theorem 4. Let (L,M) be a marked t-PNID and N be a generalized sound WF
net. Then (L,M) is identifier sound and live iff (L ⊕ N,M) is identifier sound
and live. �

The refinement rule allows to combine the approaches discussed in this
section. For example, a designer can first design a net using the construction
rules of Sect. 5.2, and then design generalized WF-nets for specific places. In
this way, the construction rules and refinement rules ensure that the designer
can model systems where data and processes are in resonance.

6 Related Work

This work belongs to the line of research that aims at augmenting pure control-
flow description of processes with data, and study formal properties of the
resulting, integrated models. When doing so, it becomes natural to move from
case-centric process models whose analysis focuses on the evolution of a single
instance in isolation, to so-called object-centric process models where multiple
related instances of the same or different processes co-evolve. This is relevant for
process modeling, analysis, and mining [2].

Different approaches to capture the control-flow backbone of object-oriented
processes have been studied in literature, including declarative [4] and database-
centric models [22]. In this work, we follow the Petri net tradition, which comes
with three different strategies to tackle object-centric processes.
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A first strategy is to represent objects implicitly. The most prominent exam-
ple in this vein is constituted by proclets [7]. Here, each object type comes with
a Petri net specifying its life cycle. Special ports, annotated with multiplicity
constraints, are used to express generation and synchronization points in the
process. Correctness analysis of proclets is an open research topic.

A second strategy is to represent objects explicitly. Models adopting this
strategy are typically extensions of ν-PNs [28], building on their ability to gen-
erate (fresh) object identifiers and express guarded transitions relating multi-
ple objects at once. The ISML approach [25] equips Petri nets with identifiers
(PNIDs) [16] with the ability of manipulating populations of objects defining
the extensional level of an ORM data model. For such models, correctness prop-
erties are assessed by imposing that the overall set of object identifiers is finite,
and fixed a-priori. Catalog-nets [10] extend PNIDs with the ability of query-
ing a read-only database containing background information. Decidability and
other meta-properties, as well as actual algorithms for verification based on SMT
model-checking, are given for safety properties, whereas (data-aware) soundness
can only be assessed for state-bounded systems [5,22].

The third, final strategy for modeling object-centric processes with Petri nets
is to rely on models that highlight how multiple objects of different types may
flow through shared transitions, without considering object identifier values. This
approach is followed in [3], where object-centric nets are extracted from event
logs, where logged events might come with sets of object identifiers. Soundness
for this model is studied in [21].

The approach studied in this paper focuses on the essence of Petri net-based
object-centric processes adopting the explicit approach, that is, grounded on
PNIDs. We provide, for the first time, a notion of identifier soundness that
conceptually captures the intended evolution of objects within a net, show that
such a property is undecidable to check in general, and provide a pattern-based
construction technique that guarantees to produce identifier-sound models.

7 Conclusions

Achieving harmony in models that describe how processes data objects manip-
ulate is challenging. In this paper, we use typed Petri nets with Identifiers (t-
PNIDs) to model these complex interactions of multiple objects, referred through
their identifiers. We propose identifier soundness as a correctness criterion that
conceptually captures the expected evolution of each object. Identifier sound-
ness is, in general, undecidable for t-PNIDs. For two subclasses, we show that
identifier soundness is guaranteed and that the overall model remains live.

Many systems allow for a dynamic number of simultaneously active objects.
In theory, this number can be infinite, and thus such models become width-
unbounded. However, for many systems, there is a natural upper bound, which
can be either assumed or guaranteed with different modeling techniques (such as
multiplicity upper bounds on objects [22] or resources [23,29]. One can extend
t-PNIDs by enriching objects with attributes over different data types, similar
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as it is done in data modeling and knowledge graphs. This calls for combining
the techniques studied in this paper with data abstraction techniques used to
deal with numerical data types, possibly equipped with arithmetics [8,9].

We plan to provide tool support for designers of such systems. Although
many correctness criteria are undecidable, this does not mean designers should
be left in the dark. Since the ISM-suite [31] already allows to model t-PNIDs,
we intend to work on extending it with verification techniques to support the
modeler in designing systems where processes and data are in resonance.
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