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Abstract Inclusion bodies (IBs) are protein aggregates formed under recombinant
protein production processes in microbial cell factories. Their characterization has
shown that they are self-assembling and biologically active protein nanoparticles
with promising properties for a wide range of applications, including biocatalysis,
tissue engineering, and therapy. Besides, different protocols have also been devel-
oped to obtain soluble protein from IBs using non-denaturing conditions.
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1 Introduction

Inclusion bodies (IBs) are protein aggregates formed during recombinant protein
production in microbial cell factories (Fig. 1). For decades they have been consid-
ered a useless byproduct, and various strategies have been developed aimed to
increase protein solubility thereby reducing the aggregation phenomenon. However,
for over 15 years now, this vision has started to change. Different research groups
have demonstrated that bacterial IBs are far from being merely inactive recombinant
protein deposits (de Marco et al. 2019; Rinas et al. 2017). They have been charac-
terized as self-assembling protein nanoparticles with a dual composition: (1) an
amyloid-like scaffold and (2) folded or partially folded protein species with
β-amyloid structure (Cano-Garrido et al. 2013; Cano-Garrido et al. 2016). The
folded or partially folded protein conformers are biologically active and can be
easily released from the scaffold under physiological conditions (Seras-Franzoso
et al. 2016; Carratalá et al. 2021a). In addition, the formation of these protein
aggregates is a general phenomenon (Villaverde et al. 2015), rather than being a
specific trait of Escherichia coli, observed in different microbial cell factories,
including Lactococcus lactis (Cano-Garrido et al. 2016) and Pichia pastoris
(Rueda et al. 2016; Carratalá et al. 2020a). Thus, IBs can be easily produced through
a scalable process, and straightforward purification protocols have been optimized
consisting in multiple centrifugation and washing steps (Seras-Franzoso et al. 2015).
Altogether, IB features have radically changed the concept of protein aggregation
and become an attractive protein-based biomaterial with a variety of applications,
including biocatalysis, biomedical therapy, and tissue engineering (de Marco et al.
2019; Rinas et al. 2017; Gifre-Renom et al. 2020a; Hrabárová et al. 2015; Liovic
et al. 2012; García-Fruitós et al. 2012). Moreover, the demonstration that IBs are
nanoparticles containing proteins with their native structure has led to a modification
of the protocols used to obtain soluble protein from IBs which proven that denatur-
ing and resolubilization steps are not necessary (Gifre-Renom et al. 2018; Singhvi

Fig. 1 Recombinant protein production and purification process. Recombinant bacteria produce
the protein of interest in both soluble and aggregated (nanoparticle or inclusion bodies) forms. After
that, cells are disrupted and soluble protein and protein nanoparticles are purified. If necessary, the
soluble form can be obtained from inclusion bodies through a solubilization process



et al. 2020; Singh et al. 2015a; Ferrer-Miralles et al. 2018). Alternatively, mild or
non-denaturing solubilization protocols have been developed by different research
groups to solubilize proteins from IBs maintaining protein structure and activity
(Fig. 1).
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2 Protein Production and IB Formation

The bioactivity of releasable proteins forming IBs coupled with the high stability of
these protein nanoparticles has made IBs an appealing alternative form to their
soluble counterpart (Gifre-Renom et al. 2020a; Gifre-Renom et al. 2020b;
Pesarrodona et al. 2019). Thus, contrary to what has been done for years, several
research groups have focused on optimizing the formation and purification of IBs
(Seras-Franzoso et al. 2015). Production time and temperature are the two cultiva-
tion parameters that can significantly influence the formation of aggregates (Vera
et al. 2007; Garcia-Fruitós 2009). Increased production temperature has an impact
not only on the size of IBs, i.e., larger size at higher growth temperatures (García-
Fruitós et al. 2007), but also on the conformational quality of the aggregated proteins
(Vera et al. 2007). Lower growth temperatures improve the conformational quality
of both soluble and insoluble protein fractions (Vera et al. 2007; Jevsevar et al.
2005), meaning that IBs containing more active proteins can be easily obtained. The
bacterial strain used to produce the recombinant protein of interest can also deter-
mine the properties of these proteins. Whereas in most cases IBs are spherical-like
nanoparticles (Cano-Garrido et al. 2016; Garcia-Fruitós 2009; García-Fruitós et al.
2010), some E. coli strains produced tear-shaped aggregates with particular charac-
teristics for tissue engineering applications (García-Fruitós et al. 2010). IBs of the
same proteins produced in different bacterial systems (E. coli and L. lactis) also
show differences in size and surface functional group density when used for
micropatterned surface decoration (Martínez-Miguel et al. 2020).

Another strategy that has been used to optimize the formation of IBs is based on
the use of protein tags based on specific aggregation-prone proteins, including the
foot-and-mouth disease virus capsid protein (VP1) (García-Fruitós et al. 2005a), a
variant of the human β-amyloid peptide (Morell et al. 2008), the maltose-binding
protein mutant (Arié et al. 2006), poxB from Paenibacillus polymyxa (Park et al.
2012), and the cellulose-binding domain of Clostridium cellulovorans (Nahalka and
Nidetzky 2007). Also, shorter aggregation peptides (Carratalá et al. 2020a; Carratalá
et al. 2021b; Wang et al. 2015a; Wu et al. 2011; Zhou et al. 2012; Jiang et al. 2019;
Küsters et al. 2021), such as coiled-coil domains (Küsters et al. 2021; Jäger et al.
2019; Jäger et al. 2018; Gil-Garcia et al. 2020; Lamm et al. 2020) and leucine zippers
(Choi et al. 2014; Roca-Pinilla et al. 2020a), have been successfully used to promote
protein aggregation. Although all these tags have been described to promote aggre-
gation, a screening for each specific protein would be needed to gain optimal results.
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3 Structure, Composition, and Activity of IBs

The study and characterization of IBs have been mainly focused on their structure
and composition. Regarding the structure, as already mentioned, there are two main
parts conforming the aggregates: the β-sheet skeleton, which is a common structure
in all IBs (García-Fruitós et al. 2011; de Groot et al. 2009; Castillo et al. 2011), and
the fractions formed by the native or native-like recombinant proteins, which is
protein-dependent (Rinas et al. 2017). The former provides the mechanical and
chemical stability, while the latter is responsible for the specific activity of the IBs
(Carratalá et al. 2020a; García-Fruitós et al. 2005a).

Despite all IBs present a common structural pattern, their composition varies. It
depends on the recombinant protein that is being produced but also on the specific
recombinant cell factory used. Thus, other molecules or impurities such as host cell
proteins like chaperones, lipids, lipopolysaccharide (LPS), and/or nucleic acids, can
be accumulated inside the IBs increasing the variability of their composition (Roca-
Pinilla et al. 2020a; Rinas and Bailey 1992; Valax and Georgiou 1993). Therefore,
the molecular complexity of IBs requires a huge variety of techniques for their
characterization (Rinas et al. 2017). In this section, techniques extensively used to
describe IBs physicochemical and biological features are provided in detail (Fig. 2).

Transmission electron microscopy (TEM) and some of its variants, such as Cryo-
TEM, are techniques used for the visualization of intracellular structures, such as
organelles or membranes, at high resolution. Furthermore, it is possible to detect the
cell components, including IBs, at nanoscale. Various publications have shown that
these microscopical techniques allow to identify the presence of the IBs and to
determine their exact location inside the recombinant cell factories (Rinas et al.
2017; Cano-Garrido et al. 2016; Rueda et al. 2016; Zhou et al. 2012). Normally, IBs
present a polar distribution inside the producer cells, showing an electrodense pattern
under the microscope. Moreover, using purified IBs as a sample, it is possible to

Fig. 2 Main techniques for IB characterization



determine their size and shape (Cano-Garrido et al. 2013; Garcia-Fruitós 2009;
García-Fruitós et al. 2010; Zhou et al. 2012; Wang et al. 2008). The size of these
protein aggregates usually ranges between 50 and 500 nm with a pseudospherical
shape in most of the cases.
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Scanning electron microscopy (SEM) is another technique widely used to
determine physical parameters of IBs like shape, roughness, volume, and size
(Cano-Garrido et al. 2016; Pesarrodona et al. 2019; Díez-Gil et al. 2010), which
complements TEM analysis. SEM allows to work directly with IBs samples without
any preparation prior to their visualization. For that, both SEM and TEM are usually
used together in many IBs studies, obtaining a complete physical characterization of
these protein aggregates (Carratalá et al. 2020a; Garcia-Fruitós 2009; Torrealba et al.
2016a). With 3D visualization, it has been possible to observe a porous structure in
IBs, which is an interesting property not only for its application as biocatalysts but
also as biomaterials to decorate surfaces and promote cell adhesion and proliferation
(see the following sections).

Atomic force microscopy (AFM) is a microscopy technique with a wide appli-
cability in IBs research (Garcia-Fruitós 2009; Díez-Gil et al. 2010; Sanagavarapu
et al. 2019). This microscopy technique perfectly completes the information
obtained by TEM and SEM, capable of characterizing morphology and stiffness of
the samples directly under environmental conditions.

Dynamic light scattering (DLS) is used to measure the size distribution of
nanoparticles or protein samples in solution. It allows researchers to determine the
volume size distribution of soluble proteins in either unassembled or monomeric
form (Unzueta et al. 2020), as well as the size and zeta potential of IBs (Carratalá
et al. 2020a; Garcia-Fruitós 2009; Díez-Gil et al. 2010). The zeta potential provides
information on the superficial charge of IBs, in which negatively charged IBs
indicate the aggregation-prone nature of these protein-based aggregates (Garcia-
Fruitós 2009; Díez-Gil et al. 2010). Furthermore, in some cases, DLS is used in the
stability studies of IBs, by performing the measurements at different time points to
see if the physical properties are maintained. DLS is very useful to obtain the
particles’ mean diameter when the sample is homogenous, and there is no important
variance in the diameter of the particles. Moreover, DLS can differentiate
populations of different particle sizes within the sample if the size of each population
is homogenous (Martínez-Miguel et al. 2020). Thus, DLS offers many possibilities
for the study of IBs, as it is relatively easy to measure under environmental
conditions (i.e., buffers, solution, etc.).

Other techniques have allowed studying in detail the secondary structure of
proteins forming these aggregates. Fourier transform infrared spectroscopy (FTIR)
is the most widely used technique for this purpose, and different articles have proven
that IBs contain correctly folded proteins but also an amyloid structure inside the IBs
(Jevsevar et al. 2005; Natalello and Doglia 2015; Ami et al. 2006). FTIR is capable
to detect and differentiate between β-sheet and α-helix structures, opening the
possibility to define the structure and the organization of the proteins inside the
aggregates (Garcia-Fruitós 2009). FTIR also allows researchers to establish com-
parisons between the soluble and aggregated forms of the same protein, elucidating



differences in the structure or the appearance of new patterns during the aggregation
process (Cano-Garrido et al. 2016; Wang 2009). This fact is an important advantage
compared to other techniques used for secondary structure analyses, such as circular
dichroism (CD), that only permits the analysis of soluble protein samples. Specifi-
cally, the pattern described in IBs by FTIR comprises a part of β-sheet structure
which corresponds to the IB scaffold and serves as the link to α-helix parts
conforming to the native-folded protein inside the aggregates (Roca-Pinilla et al.
2020a; Ami et al. 2006). In addition, FTIR has been used for the in vivo detection of
IBs in bacteria, following their rate of formation at different temperatures (Ami et al.
2005). The secondary structure evolves from α-helixes predomination at earlier
stages of the aggregation process, corresponding to the native-folded protein, to
β-sheet forms showing the growth of the IBs inside the cells.
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To determine the specific composition of IBs, techniques such as 2D sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (2D SDS-PAGE) have been
applied. As previously mentioned, recombinant protein coexists with other cell
proteins. This has been studied in detail using 2D SDS-PAGE, alloweing researchers
to take a step forward to elucidate the heterogeneity inside these aggregates
(Jevsevar et al. 2005; Rinas and Bailey 1992; Rinas et al. 1993; Jürgen et al.
2010). Alternatively, matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-ToF MS) can be used to identify cell proteins present
in the aggregate (Gardner et al. 2019). Besides, western blot (WB) is widely used to
specifically quantify the amount of recombinant protein present in IBs. Protocols for
protein quantification in IBs have been well established, and this has allowed not
only to determine IB recombinant protein yields but also to determine the soluble/
aggregated protein ratio during recombinant protein production processes (Gifre-
Renom et al. 2018; García-Fruitós et al. 2007).

However, IBs conformational heterogeneity is not only determined by different
types of proteins; many molecules can be embedded inside these aggregates. In this
context, recombinant protein production using E. coli as the cell factory has a big
concern: the presence of LPS in the recombinant products. LPS, even at low
amounts, can induce an endotoxic immune response in mammals, which greatly
limits their biomedical applicability. Thus, its detection is crucial for knowing
possible drawbacks or alterations to the final activity of the proteins that conform
the aggregates (Rueda et al. 2014). Due to the possible obstacles that this could
cause, the use of LPS-free systems or generally recognized as safe (GRAS) micro-
organisms, such as lactic acid bacteria, has increased significantly in the last few
years (García-Fruitós 2012; Song et al. 2017). In addition to LPS impurities,
carbohydrates or lipids could be present inside the IBs, being possible to determine
the specific amounts in each case (Roca-Pinilla et al. 2020a).

Beyond the physicochemical, structural, and morphological characterization of
IBs, different research groups have been working on the analysis of the activity of
recombinant proteins in form of IBs. It has been widely demonstrated that IBs are
formed (at least partially) by active proteins in a very important percentage. It is
well-known that the composition of the IBs is directly related to the recombinant
protein produced and that is why the assays to study the activity are



protein-dependent. Thus, different protocols have been optimized for the determi-
nation of IBs activity including enzymatic activity assays (Hrabárová et al. 2015;
García-Fruitós et al. 2005a; Tokatlidis et al. 1991; García-Fruitós et al. 2005b;
Worrall and Goss 1989; Gifre-Renom et al. 2020c), cytokine activity (Carratalá
et al. 2020a), antimicrobial activity (Roca-Pinilla et al. 2020b), and also fluorescence
emission (Garcia-Fruitós 2009). The presence of activity in these protein aggregates
has opened a large number of possibilities in terms of applicability, as detailed in the
following sections.
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4 Stability of IBs

IBs are protein aggregates with a notable mechanical stability (Rinas et al. 2017). It
has been widely described that their amyloid structure allows them to preserve their
integrity and morphology upon mechanical, chemical, and enzymatic cell disruption
and upon long-term storage under different conditions. Recent research has corre-
lated these in vitro observations with the in vivo efficiency of this new biomaterial
while comparing the effect of other types of nanoparticles. Matrix metalloproteinase-
9 (MMP-9) protein, which has an important role in facilitating the migration of
immune cells, has been used as a model protein in these studies (Gifre-Renom et al.
2020b). The MMP-9 IBs were compared with their soluble counterpart and MMP-9
encapsulated in polymeric-based micelles (PM) through ionic and covalent binding.
The soluble MMP-9 and the MMP-9-ionic PM showed the highest activity values
in vitro, whereas IBs showed the lowest activity values. However, the in vitro
stability test in 50% bovine serum at room temperature proved that the IBs were
the most stable format. Interestingly, the data were well correlated in vivo using an
intra-dermal air-pouch model in mice. MMP-9 IBs appeared to be the biomaterial
with the highest in vivo activity compared to the soluble MMP-9 form, that was
associated with a low and a transitory peak of activity. These results demonstrated
that, although the IBs are not always the most active format in vitro, their stability
can switch this biomaterial in the most active form once administrated in vivo thanks
to their slow-release properties and resilience to protein degradation.

5 Inclusion Bodies as Active Nanoparticles: Applications

Acknowledging IBs as functional protein nanoparticles (Jevsevar et al. 2005;
García-Fruitós et al. 2005a; Peternel and Komel 2011) boosted a new perspective
in research that aimed to exploit the different properties of these nanoparticles in a
wide range of applications. As such, during the last decades, IBs have exhibited an
important economic potential in industrial catalysis and an intrinsic biological
interest in tissue engineering and in therapeutic research, including regenerative



medicine, drug delivery in cancer and immunotherapy, and their antimicrobial use as
alternatives to classic antibiotics (Fig. 3).
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Fig. 3 Schematic representation of IBs applications

5.1 IBs in Biocatalysis

Pharmaceuticals, food-related products, biofuels, detergents, and other everyday
goods, such as paper and textile, are being produced at high rates by engineered
biocatalysts. The use of enzymes at industrial scale was enhanced after the DNA
technology discovery, which provided the tools to obtain recombinant enzymes on
demand. The main limitations were then the lifetime and stability of these enzymes
in which, together with the high costs involved in protein purification processes, they
made industrial scale-up expensive. The immobilization of the enzymes with either
organic or inorganic carriers, or through carrier-free cross-linked enzyme aggrega-
tion (further reviewed methods in Wang et al. (2015b)), allowed the recyclability of
these catalysts for several enzymatic reactions, importantly reducing the overall



costs. However, laborious and expensive chromatographic purification of the
enzymes and covalent or non-covalent attachments to carriers are inherent in these
approaches. In fact, these are still in the focus of biocatalysts optimization.
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Fig. 4 Examples of IBs activity. (a) Yields of substrate to product conversion using cross-linked
IBs. Reprinted from Nahalka et al., 2008, copyright (2008) with permission from Elsevier. (b) Cell
growth of 1671, HeLa, HepG2, and PC12 cell cultures on FGF-2 IBs and nonfunctional IBs (IBs
IR). Reprinted from Seras-Franzoso et al., 2014, copyright (2014) with permission from Elsevier.
(c) Quantification of apoptotic nuclei in treated tumors with (FN-GFP-H6) and FN-p31-H6 IBs.
Reprinted from Pesarrodona et al., 2019 (open access article distributed under the terms of the
Creative Commons CC BY license). (d) Antibiofilm activity of JAMF1 IBs against carbapenem-
resistant Klebsiella pneumoniae (KPC). Reprinted from Roca-Pinilla et al., 2020 (open access
article licensed under a Creative Commons Attribution 4.0 International License)

In this regard, IBs have demonstrated to be a highly convenient type of carrier-
free immobilizing method for biocatalysts (Fig. 4a). The fact that these aggregates do
not require any chromatographic purification steps makes them already appealing
from their production process, which is important for the reduction in industrial
scaling-up costs (Kloss et al. 2018). Hence, abundant research has been dedicated to
the study of IBs as biocatalysts, as summarized in the book chapter by Hrabárová
et al. (2015) and in the mini-review by Jäger et al. (2020). However, the benefits of
using IBs go beyond purification-related processes. On the one hand, since IBs are
spontaneously formed as aggregates (otherwise promoted by fusion of aggregation-
inducing tags (Jäger et al. 2019)), no further immobilization procedures are required
afterward, reducing not only any adsorption efficiency issue but also time and
enzyme manipulation. Moreover, these new class of biocatalysts are reusable,
maintaining their activity after multiple cycles of catalysis (Fig. 4a) (Rinas et al.



2017; Nahálka et al. 2008). On the other hand, IBs can be easily tailored to fit a
desired size, resistance to solubilizing agents, porosity, purity, or specific activity by
simply modulating the production conditions (e.g., temperature, pH, etc.) (de Marco
et al. 2019) or the expression system. The porous nature of IBs, for instance, can
benefit its adhesion in case of solid phase catalysis. Moreover, improved IB
biocatalysts can be obtained by combining different proteins or by fusion of specific
protein domains (Jäger et al. 2019). For example, the fusion of an hydroxynitrile
lyase to a coiled-coil domain improved the enzyme resistance to acidic pH (Diener
et al. 2016), or two-step cascade reactions could be facilitated by colocalizing
different enzymes within the IBs, further improving the stability of the involved
enzymes (Jäger et al. 2018).
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Thus, so far, many enzymes have proven to form catalytically active IBs exploit-
able as industrial biocatalysts. Some examples are hydrolases (Park et al. 2012;
Tokatlidis et al. 1991; Worrall and Goss 1989; Li et al. 2013; Dong et al. 2014),
oxidoreductases (García-Fruitós et al. 2005a), oxidases (Hrabárová et al. 2015),
lyases (Kloss et al. 2018), phosphatases (Huang et al. 2013), kinases (Nahálka
et al. 2006), aldolases (Nahálka et al. 2008; Sans et al. 2012), phosphorylases
(Nahálka 2008), and transferases (Korovashkina et al. 2012; Mestrom et al. 2020).
Nevertheless, IBs do not guarantee per se the best (although still high) catalytic
performance, as described by a recent work in which IBs and carrier-immobilization
methods are compared for trehalose transferase (Mestrom et al. 2020); instead, this
might be an enzyme-to-enzyme matter. The benefits of using IBs as biocatalysts are,
however, not only drastically reducing the overall procedure costs and providing
stability and tailorable properties to the enzyme but also conferring the possibility to
design cascade-like bioreactions relatively easily.

5.2 IBs in Therapy/Nanopills

Another remarkable potential of IBs is their use for drug delivery and regenerative
medicine approaches in biomedicine and animal science. The fact that the nanopar-
ticle form of proteins provides stability to the embedded proteins, along with their
slow-release properties in physiological conditions and the capability of engineering
the proteins for targeting purposes, motivated an extensive study of IBs to identify
their therapeutic value as nanoscale aggregates with releasable protein (nanopills)
(Vázquez et al. 2012). For example, IBs formed by biologically irrelevant proteins
(i.e., green fluorescent protein (GFP)) were used to decorate surfaces for in vitro cell
culture and demonstrated to increase human mesenchymal stem cells adherence and
to promote their differentiation to osteoblasts (Seras-Franzoso et al. 2014). This
bottom-up approach was further investigated with IBs composed of extracellularly
and/or intracellularly acting biologically relevant proteins (e.g., fibroblast growth
factor 2 and human chaperone Hsp70), with results suggesting the cellular internal-
ization of the slowly released proteins from the immobilized IBs (Fig. 4b) (Seras-
Franzoso et al. 2014; Seras-Franzoso et al. 2013a; Seras-Franzoso et al. 2013b).



These results are highly valuable for tissue engineering and regenerative medicine
applications (Martínez-Miguel et al. 2020). This example has already been materi-
alized in in vitro wound healing studies accomplished by protein hormone-releasing
IBs (Stamm et al. 2018). In addition, IBs in suspension can also be internalized by
mammalian cells with a high efficiency (Seras-Franzoso et al. 2016; Vázquez et al.
2012), suggesting their potential for drug delivery in vivo and inspiring tumor-
targeting research, as will be discussed later on. In the context of the aforementioned
applications of IBs, it is relevant to point out the absence of toxicity signs neither
when injected (intraperitoneal or intratumorally) nor when administrated orally in
mice and zebrafish (Vázquez et al. 2012; Torrealba et al. 2016b). Further, orally
administered tumor necrosis factor (TNF)-α IBs protected zebrafish from a lethal
infection through their immunostimulant action (Torrealba et al. 2016b). Other
proteins forming IBs have been studied also for animal science applications. The
low costs of IB production and their versatility make these nanomaterials especially
appealing for veterinary applications.
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5.3 IBs in Cancer

IBs have several properties that make them also attractive as peptide/protein drug
delivery systems (DDS) for cancer (Vázquez et al. 2012). The IBs stability, pene-
trability, and slow-release properties, therefore, might be useful for the delivery of
the proteins to tumoral tissues, if the proteins can target a specific biomarker that is
only present or overexpressed in malignant cells. Taking advantage of this,
researchers sought to target CD184+ colorectal cancer cells, which overexpress the
chemokine receptor CD184 (Unzueta et al. 2018). They designed two modular
constructs based on the T22 and R9 proteins using GFP as a fusion partner. These
two proteins, T22 and R9, are highly specific ligands of the CD184 receptor and,
thus, are able to home in cells that overexpress it. In addition, T22 and R9, when
fused to GFP, and in combination with a poly-His tag, can self-assemble in protein
nanoparticles (pNPs) that can efficiently direct and increase pNPs cell penetration in
tumoral cells. These pNPs can also aggregate forming IBs and provide an
immobilized DDS that maintained the sustained release of these tumor-targeting
pNPs both in vitro and in vivo. Remarkably, T22-GFP IBs provided high amounts of
pNPs for up to 10 days after subcutaneous administration. This work only proved the
appealing slow-release properties of IBs for cancer applications, with an efficient
accumulation in the desired malignant tissue, yet it did not use any therapeutic
proteins.

Moving a step further, Pesarrodona et al. designed two different modular proteins
formed by the polypeptides p31 and Omomyc (Pesarrodona et al. 2019). The first
protein (p31) is based on a fragment from p130cas which can promote apoptosis
(Casanova et al. 2006). The second protein (Omomyc) is a dominant negative mutant
of the Myc protein which is involved in the cell cycle and possesses antitumoral
properties (Whitfield et al. 2017). These two proteins were each fused to a



tumor-homing peptide (FN) that binds to the CD44 receptor, which is a widely
recognized tumoral marker and is related to tumor progression and metastasis. In this
study, these fusion antitumoral constructs were produced recombinantly as IBs,
which were able to selectively enter and kill CD44+ cells in vitro in cell culture,
and in vivo in a mice model of human breast cancer (Fig. 4c). Moreover, an
important conclusion of both studies was that, in any case, there was no off-target
accumulation and toxicity.
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5.4 Antimicrobial IBs

Antibiotic-resistant bacteria (ARB) are one of the biggest threats to global health
today. Many infectious diseases that could be successfully treated with antibiotic
drugs have acquired resistance to most or nearly all of the available compounds,
including a growing list of infections, such as pneumonia, tuberculosis, gonorrhea,
and foodborne diseases (Laxminarayan et al. 2013). These infections are becoming
harder, and sometimes impossible, to treat with the current generation of medicines.
To make matter worse, no new class of antibiotics has been discovered since the
1980s, and few antibiotics are being developed to face the challenge of ARBs. So,
there is an urgent need for the development of new antimicrobials to enable the
treatment for those infections effectively.

Among the potential alternatives to conventional antibiotics, antimicrobial IBs
might be a promising one, as they are highly stable and have slow-release properties
likely able to maintain antimicrobial activity. Constant administration of antimicro-
bial compounds that have a short half-life is required, or otherwise, the use of
concentrations that are under the minimum inhibitory concentration (MIC) will
probably increase antimicrobial resistances (AMRs) (Gao et al. 2011). A slow-
release profile seems to be vital to maintain constant antimicrobial levels for long
periods of time, to obtain the optimal therapeutic benefits while minimizing AMRs.
Another benefit might be that one long-lasting administration is more advantageous
than multiple short-lived ones. Further, IBs offer all these properties without the
need to manipulate them further (i.e., encapsulation processes or protein embedding
in a matrix), because they are produced in a one-step process.

A study published in 2020 found out that the antimicrobial peptide (AMP)
GWH1 had a therapeutic effect in a mouse mastitis model (Carratalá et al. 2020b).
The GWH1 peptide was fused to the N-terminus of either of GFP or IFN-γ in a form
of IBs and resulted in diminished bacterial loads by five- and sixfold, respectively.
The study also found that the IB form per se can be antimicrobial, as GFP or IFN-γ
IBs showed no antimicrobial activity and, in some cases, achieve a similar reduction
in bacterial loads when compared to GWH1 fusion constructs (Carratalá et al.
2020b). Another study found that a multidomain AMP named JAMF1 displayed a
clear antimicrobial effect against several ARB, such as Klebsiella pneumoniae,
E. coli, Enterococcus spp., and E. faecalis, in both planktonic and biofilm state
(Fig. 4d) (Roca-Pinilla et al. 2020b). The JAMF1 construct was based on the



combination of human α-defensin-5 (HD5), human XII-A secreted phospholipase
A2 (sPLA2), and a gelsolin-based bacterial-binding domain. Two aggregation-
seeding domains based on leucine zippers were also added to promote IB formation
during the recombinant production of JAMF1.
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5.5 IBs a Source of Soluble Protein

Inclusion bodies have also been used for years as a source to obtain soluble proteins
when these cannot be obtained directly from the cell cytoplasm or from the growth
media if secreted. Although some heterologous proteins are produced mainly in the
soluble form, most of them are in the aggregated form. In some cases, the aggrega-
tion levels are so high that the only option to obtain the soluble form is through the
solubilization of IBs. One example of this is matrix metalloproteinase 9 (MMP-9);
when using L. lactis as the cell factory, MMP-9 is only produced in an aggregated
form (Gifre-Renom et al. 2018). Other proteins of interest are produced in a soluble
form, but they are co-purified with host cell proteins. This occurs, for example, with
mammary serum amyloid protein A3 (M-SAA3), and their solubilization from IBs is
the only protocol that allows to have good purity levels (Gifre-Renom et al. 2018).
Thus, for both aggregation-prone and difficult-to-produce/purify proteins, the solu-
bilization of IBs is the only strategy for their purification.

The strategy that has been traditionally used to recover soluble proteins from IBs
has been based on the following sequential steps: IB isolation and purification from
the recombinant culture, IB solubilization with harsh detergents and chaotropic
agents (e.g., urea or guanidine hydrochloride) at high concentration (i.e., 6–8 M),
refolding of the solubilized protein to reach their native conformation, and purifica-
tion by chromatography methods (Singh et al. 2015a). However, the use of these
solubilization agents lead to a protein denaturation, and refolding steps are necessary
to recover the original structure and function of the target proteins. Solubilization
and refolding are critical steps limiting the yield of recovered protein, and have been
subjected to an intense and expanding research (Burgess 2009; Singh et al. 2015b).
Usually, proteins can be refolded upon removal of denaturing agents jointly provid-
ing favorable conditions to reach their native state (Singhvi et al. 2020). The
underlying principle in the refolding process is that the proteins are able to switch
back into their native conformation from a denatured condition. However, during
this process, non-desirable aggregated intermediates can be formed. In the refolding
process, quality and quantity of the folded protein rely on the buffer, protein
concentration, and the method used (Singhvi et al. 2020). Alternative and simpler
strategies considering the biological nature of bacterial IBs have been developed
over the last few years. The new description of IBs as protein aggregates containing
properly folded and biologically active recombinant proteins has permitted to
advance significantly in the development of new protocols without the need of
using denaturing agents to solubilize proteins from IBs (Ferrer-Miralles et al.
2018). For that, mild solubilization agents, such as n-lauroylsarcosine, dimethyl



sulfoxide (DMSO), and organic solvents such as n-propanol and isopropanol are
used, which are strong enough to solubilize IBs without disturbing the native
structure of the protein (Singhvi et al. 2020; Ferrer-Miralles et al. 2018; Peternel
et al. 2008; Sarker et al. 2019). The use of n-lauroylsarcosine to recover soluble
protein from IBs has allowed the development of a non-denaturing protocol for IBs
that are produced from E. coli (Roca-Pinilla et al. 2020b; Peternel et al. 2008; Park
et al. 2018; Francis et al. 2012) and L. lactis (Gifre-Renom et al. 2018). Target
proteins are gradually solubilized in a single step, keeping their native structure. In
addition, mild detergents enhance membrane protein recovery due to stabilization of
their hydrophobic groups, playing both roles of solubilization and retaining its
folded and active state (Francis et al. 2012). Once solubilized, the protein can be
further purified by chromatography. An alternative to mild detergents are organic
solvents, which have been proven to be plausible alternative to obtain high-quality
protein from IBs. The use of n-propanol (Singh et al. 2012), for example, has been
reported to be an efficient bioactive protein solubilization method. In addition,
trifluoroethanol (TFE) has also demonstrated a remarkable potential to achieve
functional protein from IBs (Upadhyay et al. 2016). Nevertheless, organic solvents
can generate non-desirable chemical modifications, and in many cases they need to
be used in combination with low concentrations of chaotropic agents (Singhvi et al.
2020).
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Another strategy is based in the use of high hydrostatic pressure to disaggregate
the insoluble aggregates and refold them back in their native structure (Ferrer-
Miralles et al. 2018; St John et al. 2001). In addition, the use of heat (Cai et al.
2020), pH oscillations (Panda 2003), and freeze-thaw cycles (Qi et al. 2015) with the
combination of low amounts of denaturant agents has been postulated as efficient
methods to solubilize and recover bioactive protein from IBs (Ferrer-Miralles et al.
2018).

6 Conclusions

Inclusion bodies arise as a new protein-based biomaterial that is spontaneously
formed in bacterial hosts during recombinant protein production. Several character-
ization procedures based on electron microscopy, molecular techniques, and phys-
icochemical analyses can be used to finely determine their structure and
composition. IBs have been demonstrated to be a promising biomaterial for bioca-
talysis, tissue regeneration, drug delivery, and antimicrobial therapy applications. It
is likely that the IBs’ stability along with their slow-release properties is the basis for
its potential and successful use. Although the soluble version of a recombinant
protein is needed in some cases, the target protein can be easily obtained from IBs
under mild solubilization protocols and free of host cell proteins and other impuri-
ties. In short, IBs are valuable in the world of recombinant proteins and new protein-
based biomaterials, which motivates to deeply study new microorganisms as IBs
producers to tune those features that can be further optimized.
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