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Abstract. Binarization of document images is an important pre-
processing step in the field of document analysis. Traditional image
binarization techniques usually rely on histograms or local statistics to
identify a valid threshold to differentiate between different aspects of
the image. Deep learning techniques are able to generate binarized ver-
sions of the images by learning context-dependent features that are less
error-prone to degradation typically occurring in document images. In
recent years, many deep learning-based methods have been developed
for document binarization. But which one to choose? There have been
no studies that compare these methods rigorously. Therefore, this work
focuses on the evaluation of different deep learning-based methods under
the same evaluation protocol. We evaluate them on different Document
Image Binarization Contest (DIBCO) datasets and obtain very hetero-
geneous results. We show that the DE-GAN model was able to perform
better compared to other models when evaluated on the DIBCO2013
dataset while DP-LinkNet performed best on the DIBCO2017 dataset.
The 2-StageGAN performed best on the DIBCO2018 dataset while
SauvolaNet outperformed the others on the DIBCO2019 challenge.
Finally, we make the code, all models and evaluation publicly avail-
able (https://github.com/RichSu95/Document Binarization Collection)
to ensure reproducibility and simplify future binarization evaluations.
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1 Introduction

Image binarization is a process that converts a color or grayscale image into an
image whose pixels can have only two different values, usually black and white.
In the domain of document image analysis, binarization typically consists in
separating the text (foreground) from its support (background), e. g., the paper.
While it became less popular for text recognition, it remains an important pre-
processing step in many other tasks, such as writer identification [4,5], word
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spotting or optical character recognition (OCR) [10]. In traditional global bina-
rization, the grayscale intensity frequency histogram of an image is analyzed and
an appropriate threshold is set, e. g., Otsu’s thresholding [17]. Alternatively, bina-
rization is applied locally using statistics such as mean and standard deviation
like the popular Sauvola method [27]. However, these methods have problems
with ink bleed-through artifacts and other artifacts such as stains, blurring, faint
characters and noise [15]. An error that may be generated through incorrect bina-
rization may propagate forward and lead to performance reduction in subsequent
tasks. Document binarization also acts as a means to filter out these undesirable
features. A thorough overview of binarization techniques, datasets, and metrics
is given in a survey by Tensmeyer and Martinez [31].

In recent years, rather than relying on traditional image binarization tech-
niques, many studies have been conducted that employ deep learning models
to binarize document images. The advent of deep learning has brought a mul-
titude of changes to the domain of computer vision and image processing. Con-
volutional neural networks (CNNs) identify features automatically by learning
from training data. The image features are discovered at multiple layers and are
learned gradually from lower-levels to higher-levels. This multi-layered architec-
ture performs a series of convolutions on the input image. A training process
is implemented to adjust the parameters of the network to achieve the desired
output.

In the past decade, there have been immense progress in the field of bina-
rization of contemporary and historical documents using deep learning tech-
niques. Although many approaches using deep learning for document binariza-
tion have been put forward, it is difficult to identify which among these mod-
els perform best when compared to one another. The root cause of this prob-
lem is the fact that most of these models have never been trained and tested
on a common dataset using the same evaluation protocol. This paper aims to
resolve this disparity by training and testing some well-known binarization mod-
els [2,8,10,13,28,29,32] on common datasets from the well-known Document
Image Binarization Contests (DIBCO) [6,16,18–25]. While we evaluated the
results of the models using four metrics, we omitted investigations on the rela-
tionship between result quality and processing time as Lins et al.. did [11]. Our
evaluations draw a very heterogeneous picture. All four evaluation datasets have
a different winner. Overall, DE-GAN ranks best across the four chosen DIBCO
test datasets while metric-wise, the 2-Stage GAN outperforms the other models.

The following Sect. 2 of the paper provides a brief overview on the network
architectures and methodologies used in the different binarization models that
would be compared against one another. Section 3 gives a detailed description on
the various datasets, validation metrics and on how all the models were trained.
Section 4 shows the results of evaluating all models on the various test datasets
and provides a brief discussion on the outcome of the experiments.
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2 Overview of Evaluated Binarization Methods

2.1 Document Enhancement Generative Adversarial Network

The work presented by Souibgui et al. [28] models the document binarization
problem as an image-to-image translation task. The Document Enhancement
Generative Adversarial Network (DE-GAN) model basically consists of a gener-
ator and a discriminator. The generator follows a U-Net architecture [26] and
its objective is to generate a clean image given the original degraded image. The
goal of the discriminator is then to determine if the image shown is a fake image
generated by the generator or the original binarized ground truth. An adversarial
loss function is employed for training the model [28]:

LGAN (φG, φD) = EIW ,IGT log[DφD(IW , IGT )]

+ EIW ,IGT log[1 − DφD(IW , GφG(IW ))],
(1)

where GφG and DφD are the generator and discriminator functions respectively,
IW is the degraded image and IGT is the ground truth. After a few epochs, the
network is able to generate images similar to the ground truth. To maintain a
good text quality and to improve training speed an additional log loss function
is added. The objective is that the text output from the generator is identical
to the ground truth text [28]:

Llog(φG) = EIGT ,IW [−(IGT log(GφG(IW )) + ((1 − IGT ) log(1 − GφG(IW )))].
(2)

The overall loss of the network is denoted as [28]:

Lnet(φG, φD) = min
φG

max
φD

LGAN(φG, φD) + λLlog(φG), (3)

where LGAN is the adversarial loss function used to train the cGAN and λ is
a hyper-parameter that is set to 500 for document binarization. The generator
follows an encoder-decoder structure. The encoder performs down-sampling of
the given input up to a certain layer and the decoder then up-samples the encoder
output. The discriminator used is a simple Fully-Connected Network (FCN) with
6 convolutional layers. To train the DE-GAN model, overlapped patches of size
256 × 256 pixel are obtained from the degraded images and fed as input to the
generator.

2.2 SauvolaNet

Inspired by the traditional Sauvola thresholding algorithm [27], the work by Li et
al. [10] presents a deep learning approach to learn the Sauvola parameters, called
the “SauvolaNet”. The network aims to making the model computationally effi-
cient. The model also comprises of an attention mechanism that aims to estimate
the required Sauvola window sizes for each pixel location. One main drawback of
the traditional Sauvola thresholding approach is that the algorithm achieves its
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highest performance only when the right hyperparameters are manually tuned
for each input image (window size, estimated level of document degradation
and dynamic range of input image intensity). SauvolaNet uses three modules,
the Multi-Window Sauvola (MWS), Pixelwise Window Attention (PWA), and
Adaptive Sauvola Threshold (AST) to learn an auxiliary threshold estimation
function.

The MWS module takes an image as input and uses the Sauvola algorithm
to estimate the local thresholds for different window sizes. The PSA module also
takes the same image as input to estimate the window sizes for each pixel location.
The AST module then predicts the final threshold for each pixel location by
fusing the thresholds of different windows from the MWS and weights from the
PWA modules. The SauvolaNet function is modelled as [10]:

T = gSauvolaNet(D), (4)

where, T is the output, gSauvolaNet is the auxiliary threshold estimation function
and D is the input image. The PWA uses instance normalization instead of batch
normalization in order to avoid overfitting when training with a small dataset.
When training the SauvolaNet, the input image D is normalized to values in the
range (0,1) and a modified hinge loss was developed [10]:

loss[i, j] = max(1 − α · (D[i, j] − T [i, j]) · B[i, j], 0), (5)

where B is the binarization ground truth with values −1 for foreground and +1
for the background. i and j are indices that specify the location of a pixel. α is
a parameter to control the margin of the decision boundary and only the pixels
close to the decision boundary are used in gradient-backpropagation.

2.3 Two-Stage GAN

The work presented by Suh et al. proposes a two-stage color document image
binarization deep learning architecture using generative adversarial neural net-
works (GANs) [29]. The GAN architecture generally consists of two networks,
i.e., the generator and the discriminator. For this model, the EfficientNet [30]
was used as the generator on account of its efficiency in the domain of image
classification. In the case of the discriminator, the discriminator network from
the PatchGAN [9] was implemented.

The first part of the network consists of four color independent generators
that are trained with the red, green, blue, and gray channels in order to generate
an enhanced image by removing background color information. The resulting
channel images and corresponding ground truths first concatenated and then
fed to the discriminator network. The binarization in the first stage is performed
using local predictions in small patches. In order to cater to regions with larger
backgrounds, the second stage of the network performs global binarization with
the resized original input image and local binarization using the first stage output.
Except for the input image channels, the structure for the generators in the
second stage is identical to that of the first stage. During training, the images
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are divided into patches of 256 × 256 pixels resolution without scaling. When
training GANs in general, it is common to observe an instability in loss function
convergence [29]. To solve this issue, the Wasserstein GAN with penalty was
used which implements the Wasserstein K-distance as the loss function. Further,
instead of the typically used L1 loss, pixel-wise binary cross-entropy is defined
as the additional loss term for the generator update.

2.4 Robin U-Net Model

The implementation by Mikhail Masyagin [13] presents the Robust Documenta-
tion Binarization (ROBIN) tool. ROBIN makes use of a simple U-Net model [26]
to perform document binarization. The U-Net model was originally developed
for the purpose of semantic segmentation of medical images. The U-Net architec-
ture can be described as an encoder-decoder network. The input image is first fed
into the encoder network, where multiple convolution blocks are applied followed
by a maxpool downsampling layer. The idea here is to encode the input image
into feature representations at multiple levels. The output from the encoder is
then sent to the decoder where the activation map undergoes upsampling or
deconvolution. Skip connections are also introduced between the encoder and
decoder structure such that the deep and shallow features can be combined.

When training the model, the input images are split into patches of 128 ×
128 px resolution. The learning rate was set to 0.0001 with the Adam optimizer.
The training is trained using the dice coefficient loss and run for 250 epochs with
an early stopping criteria.

2.5 DP-LinkNet

The DP-LinkNet is a segmentation model introduced by Xiong et al.. It makes
use of the D-LinkNet [33] and LinkNet [3] models with a pre-trained encoder as
the backbone.

The model consists of: 1) an encoder, 2) a hybrid dilated convolution module,
3) a spatial pyramid pooling (SPP) module, and 4) a decoder [32]. Firstly, the
input image is fed to the encoder where the text stroke features are extracted.
The series of convolutions and down-sampling occurring at the encoder causes a
reduction in the resolution of the obtained feature map. To counter this effect,
dilated convolutions are introduced into the model. Dilated convolutions help
in exponentially increasing the size of the receptive field without affecting the
spatial resolution. An issue that still persists here is the fact that the dilated
convolution module may still find it difficult to identify objects of different sizes
with a fixed-sized field-of-view. To counter this effect, the spatial pyramid pooling
is employed. This helps to present the input feature maps at different scales.
Lastly, the decoder performs transposed convolution. Skip connections between
the decoder and encoder structure are present to combine the shallow-level and
high-level features, helping to compensate any loss encountered by convolution
and pooling operations. When training the model, the binary cross entropy and
dice coefficient losses are used. The input images were split into patches of size
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128×128 px. The adam optimizer was set with an initial learning rate of 2×10−4.
The model was trained for 500 epochs with an early stopping criteria to avoid
overfitting.

2.6 Selectional Auto-Encoder

The work presented by Calvo-Zaragoza et al. [2] uses an auto-encoder network
topology to perform an image-to-image processing task. Such a task results in
higher computational efficiency since all pixels in the input image are processed
at the same time. Generally, an auto-encoder network is trained to learn the
identity function. However, in the selectional auto-encoder (SAE), the network
is trained to learn a selectional map over a w × h image, preserving the input
shape. The activation of each pixel depends on whether the pixel belongs to
the foreground or the background. When training the SAE, the images along
with their corresponding ground-truth (binarized image) are fed as input to
the network. Auto-encoders are feed-forward networks and generally consist of
two sections, i.e., the encoder and decoder. The encoder learns to extract the
latent representation given an input image, downsampling the image until an
intermediate representation is achieved. The output from the encoder is then
upsampled and reconstructed to the original input image dimensions by the
hidden layers of the decoder. The last layer consists of a set of neurons and
a sigmoid activation layer which then gives an output prediction between the
range of 0 and 1.

Since the binarized output image should consist of pixel values being 0 or 1
and not in between, a thresholding process is implemented to decide whether the
certain pixel belongs to the background or foreground. The encoder and decoder
both consisted of 5 layers each and the sampling operators were fixed at 2 × 2.
Network weights were initialized using Xavier initialization [7]. Optimization is
handled with stochastic gradient descent and a mini-batch size of 10. The initial
learning rate is set to 0.001 and the network is trained for 200 epochs with an
early stopping criteria kept in place.

2.7 DeepOtsu

The work presented by He et al. [8] proposes an iterative deep learning approach
to obtain binarized images called the DeepOtsu model. However, unlike the
aforementioned methods in this section, the deep learning network in this case
aims to remove artifacts and generate a non-degraded version of the input image.
The degraded input image x is modeled as:

x = xu + e, (6)

where xu is the latent uniform image and e is the degradation. The aim of the
deep learning network is to ultimately obtain xu.
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The network was trained with images split into patches of size 256 × 256.
The patches are first fed to the CNN model and the obtained output is then
compared to the ground truth, which in this case should be representative of
the uniform, clean version of the input image. To obtain this ground truth, the
degraded input image is compared to the already available binarized images from
the dataset. Then, the ground truth image is computed as the average pixel value
with the same label within the image patch. Once the non-degraded, uniform
version of the input image is obtained, the binarized version of the image can
be easily obtained using Otsu thresholding [17]. The basic U-Net model [26]
is used for learning the degradation. The down-sampling path of the network
consisted of 5 convolutional layers with a 3 × 3 kernel size, followed by a leaky-
ReLU activation [12] and 2 × 2 max pooling. The batch size was set to 8 and
the learning rate set to 10−4.

3 Materials and Methods

3.1 Datasets

All models mentioned in the previous section are trained and tested on document
images from the DIBCO dataset. To keep the comparison between the models
fair and precise, the training set and validation set remain the same for all
models. The training set consists of the DIBCO2009, DIBCO2010, DIBCO2011,
DIBCO2012, DIBCO2014, and DIBCO2016 datasets. The models are evaluated
on DIBCO2013, DIBCO2017, DIBCO2018, and DIBCO2019 datasets. The four
test sets were chosen based on the unique properties present in the three sets.
DIBCO2013 consists of both handwritten and printed documents. The images
from DIBCO2017 had more textual content in them. The DIBCO2018 dataset
consisted of images of textual content present towards the borders or corners
of the papers and higher intensity of bleed-through artifacts. The DIBCO2019
dataset had large variations in the types of images. Note that we used only
track A since track B, containing text content on papyri, are not present in any
training data which lead to rather poor learning-based results. Evaluations based
on these four datasets give an idea of how well the models are able to generalize
on different types of unseen images. Figure 1 shows some samples of images that
belong to the DIBCO datasets used for validating the models.

3.2 Metrics

Our evaluation of the various models is based on the standard evaluation met-
rics used in the DIBCO challenges: (1) F-measure (FM), (2) pseudo F-measure
(pFM), (3) peak signal to noise ratio (PSNR), and (4) distance reciprocal dis-
tortion (DRD). The FM and pFM reach their best value at 1 and worst at 0
(Eqs. (7) and (8)). PSNR describes how close the binarized and ground truth
images are (Eq. (9)). The higher the PSNR, the better is the binarized result.
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Fig. 1. Image examples from the different DIBCO datasets used for testing the models.

The DRD is based on the reciprocal of distance, matching well to subjective
evaluation by human visual perception (Eq. (10)).

FM =
2 × Recall × Precision

Recall + Precision
, (7)

where, Recall = TP
TP+FN and Precision = TP

TP+FP . TP, FP and FN denote true
positive, false positive and false negative values respectively.

pFM =
2 × pRecall × pPrecision

pRecall + pPrecision
, (8)

where, pRecall and pPrecision, respectively the pseudo-recall and the pseudo-
precision, are metrics weighted based on the distance to the contours of the
foreground in the ground truth. For the pseudo-recall, pixels around strokes
have weights starting from 1, and reaching 0 at a distance corresponding to the
stroke’s width, and pixels inside of the strokes have a weight of 1. For the pseudo-
precision, pixels outside strokes but not further than the stroke’s thickness have
a weight of 1, and inside the stroke their weight increase toward the center, where
they reach a value of 2.
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PSNR = log10

(
C2

MSE

)
, (9)

where, MSE =
∑m

x=1
∑n

y=1(L(x,y)−L′(x,y))2

mn . The terms m and n denote the dimen-
sions of the image. C denotes the difference present between the text and back-
ground.

DRD =
∑

k DRDk

NUBN
, (10)

where DRDk is the distortion of the kth flipped pixel and NUBN is the number
of non-uniform 8 × 8 blocks in the ground truth image.

3.3 Training

All models are trained on the DIBCO datasets as mentioned in the previous
sections. Based on the configuration of the models, the degraded images along
with the accompanying ground truths are first split into patches of size 256 × 256
pixel or 128 × 128 pixel resolutions. The patches are further augmented by ran-
dom horizontal flipping, vertical flipping and rotations. The number of epochs
for training each model is set based on the recommendation of the authors for
each model, along with an early stopping criteria to monitor any possibility of
overfitting the models. If the validation loss of the model does not show signifi-
cant changes for 15 consecutive epochs, the training would stop and the model
would be saved. Certain pre-processing and post-processing operations on the
images exclusive to specific models have also been implemented. Such an exam-
ple is the application of Otsu’s thresholding on the output of the DeepOtsu
method. The hyper-parameters for the models are optimized using the python
library “optuna” [1].

4 Evaluation

The results of testing each model on the different test DIBCO datasets are
as shown in the following tables. Table 1a shows the results of validating the
models on the DIBCO2013 dataset. The DIBCO2013 dataset contains images
that have a good representation of the training data, without any major artifacts
or degradation present. All methods display comparable performance with the
DE-GAN performing best. For reference, we also show the DIBCO winners of
the respective challenge. Note that the participants of 2017 and later potentially
used more data for training.

Table 1b shows the results of validating the models on the DIBCO2017
dataset. Here, the performance of the models start to fluctuate more when com-
pared to Table 1a. This might be due to the fact that the DIBCO2017 dataset
contains more images that have more densely packed textual content. The DP-
LinkNet model outperforms the other models in terms of PSNR, FM and DRD
whereas the DE-GAN model has a higher performance in terms of pFM. However,
it can be observed that the DRD value for DE-GAN is quite high, indicating
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(a) Input image (b) Ground Truth (c) DE-GAN

(d) Robin (U-Net) (e) DeepOtsu (f) 2-Stage GAN

(g) DP-LinkNet (h) SAE (i) SauvolaNet

Fig. 2. Illustration of some results for an image from DIBCO-2017. Pixels in cyan are
false positives. The few pixels in orange are false negatives. Pixels in white or black
match the ground truth. (Color figure online)

that the resulting binarized images have higher rate of distortions. This may be
attributed to the training process of the DE-GAN model, which may have intro-
duced distortions to the generated images. Qualitative results for a randomly
chosen sample from DIBCO2017 can be seen in Fig. 2.

The results for the DIBCO2018 dataset is shown in Table 1c. The winner
is clearly the 2-Stage GAN approach, outperforming all other methods in each
metric. For the pFM and the DRD metrics, the DE-GAN ranks second. Inter-
estingly, the DP-LinkNet struggles with black page borders, see Fig. 3b. While
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Table 1. Results of different image binarization methods on the (a) DIBCO2013, (b)
DIBCO2017, (c) DIBCO2018, and (d) DIBCO2019 datasets. Note that the winners
of the respective DIBCO2017, DIBCO2018 and DIBCO2019 challenge had more data
available.

Model PSNR↑ FM↑ pFM↑ DRD↓

DE-GAN 24.08 97.68 98.09 1.11

Robin (U-Net) 22.81 95.07 95.82 1.99

DeepOtsu 21.19 93.46 95.99 2.25

2-Stage GAN 22.60 95.75 96.40 1.46

DP-LinkNet 23.63 96.49 97.24 1.10

SAE 20.88 93.35 94.44 3.17

SauvolaNet 23.41 96.31 97.53 1.28

Winner [21,24] 20.68 92.12 94.19 3.10

(a) DIBCO2013

PSNR↑ FM↑ pFM↑ DRD↓

18.31 96.23 98.10 3.22

19.99 92.05 94.06 2.23

18.02 89.01 91.84 3.50

20.89 95.56 96.54 1.33

22.84 97.92 97.94 0.77

16.73 87.59 90.41 5.60

19.40 93.33 96.26 2.20

18.28 91.04 92.86 3.40

(b) DIBCO2017

Model PSNR↑ FM↑ pFM↑ DRD↓

DE-GAN 15.98 76.21 83.29 8.01

Robin (U-Net) 15.78 78.80 81.11 12.20

DeepOtsu 12.72 66.60 68.83 42.52

2-Stage GAN 19.93 92.40 94.90 2.67

DP-LinkNet 15.73 78.56 80.70 13.72

SAE 14.48 73.45 76.33 15.45

SauvolaNet 16.03 77.94 81.92 10.41

Winner [22,25] 19.11 88.34 90.24 4.92

(c) DIBCO2018

PSNR↑ FM↑ pFM↑ DRD↓

15.12 70.86 70.69 6.23

14.39 65.55 65.34 7.36

14.82 70.81 70.91 7.59

12.87 65.09 65.72 12.71

14.20 61.84 61.55 7.58

12.50 62.17 61.90 13.43

15.83 72.04 71.59 5.55

14.48 72.88 72.15 16.24

(d) DIBCO2019

it wins for the 2017 dataset that does not have borders, it performed poorly on
images that have borders that are present in the DIBCO2018 dataset, cf. Fig. 1c.

While SauvolaNet ranks behind these two methods in the DIBCO2018 chal-
lenge, it outperforms both methods on the DIBCO2019 dataset, see Table 1d.
The 2-Stage GAN, which performs very well for the 2013 to 2018 datasets had
some difficulties to deal with the squared paper (check paper, quadrille paper) of
the 2019 dataset, which can be observed in Fig. 3d. When we average all metrics
for all different evaluated datasets, see Table 2a, the 2-Stage GAN seems to be
on average the most suitable binarization method appearing to be consistent in
terms of performance. Interestingly, computing the average rank over all metrics,
i. e., the average over all 16 ranks for each method, it falls behind DE-GAN and
SauvolaNet, cf. Table 2b.

We also evaluated the runtime, reported as throughput, i. e., images per sec-
ond in the last column of Table 2a. The best throughput has the Robin bina-
rization method. Note, however that we evaluated the methods on a small-sized
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(a) (b)

(c) (d)

Fig. 3. Qualitative examples of failure modes: (b) shows that DP-LinkNet binarizes
the large black borders present in images of DIBCO2018 to white; (d) shows that the
2-Stage GAN struggles with the squared paper given in images of DIBCO2019, and
additionally produces halo-artifacts.

Table 2. Average over (a) all metrics and (b) all ranks. Runtimes evaluated using an
NVIDIA RTX 2060 GPU (12 GB RAM). Note that DeepOtsu and 2-Stage GAN were
limited by the available memory.

Model PSNR↑ FM↑ pFM↑ DRD↓ img/sec↑

DE-GAN 18.37 85.25 87.54 4.64 0.67

Robin (U-Net) 18.24 82.87 84.08 5.95 1.99

DeepOtsu 16.69 79.97 81.89 13.96 0.01

2-Stage GAN 19.07 87.20 88.39 4.54 0.01

DP-LinkNet 19.10 83.70 84.36 5.79 0.49

SAE 16.15 79.14 80.77 9.41 0.68

SauvolaNet 18.67 84.91 86.83 4.86 0.37

(a) Average metrics

Avg. rank↓

2.44

4.19

5.50

3.25

3.38

6.63

2.63

(b) Average ranks

GPU (NVIDIA RTX 2060) with 12 GB GPU-RAM. Unfortunately, this affected
the throughput of DeepOtsu and 2-Stage GAN because multiple images of the
DIBCO 2013 dataset contain very large images, e. g., image sizes of 4161× 1049.

5 Conclusion

In this paper, we thoroughly evaluated seven deep learning-based methods in a
fair evaluation where we fixed the data and augmentation used. We evaluated the
methods using all ten available DIBCO datasets. Therefore, we used six datasets
for training and the remaining four datasets for testing. Our evaluations show
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that the results are very diverse on the four different tested datasets and no clear
winner could be established. Overall, the DE-GAN approach achieved the best
rank averaged over all four different datasets followed by SauvolaNet. When we
compare the metrics individually, then the 2-Stage GAN approach performed
best followed by the DE-GAN. In the very different DIBCO2019 dataset, how-
ever, the SauvolaNet outperformed these methods.

For future work, we would like to evaluate the methods also with a different
protocol. In particular, we would like to simulate the DIBCO scenario of each
year’s challenge to be comparable with the single DIBCO papers, i. e., training
with the datasets 2015–2016, then evaluating with 2017, adding 2017 to the
training set, re-train and evaluate on 2018, and so on. The use of additional
augmentation techniques as well as additional training datasets is also worth
investigating and might have huge impact on the overall performance of the
binarization methods. Furthermore, pixel-based evaluation is not optimal [31].
While the pFM metric incorporates the distance to the script contour, it might
be worth investigating indirect measures, such as OCR/HTR accuracy or purely
skeleton-based metrics [14]. From a practical point of view, the inference time is
also worth investigating. This has been mainly studied in the competitions on
time-quality document image binarization.
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