
Basic Arithmetic Calculations Through
Virus-Based Machines

Antonio Ramı́rez-de-Arellano1(B), David Orellana-Mart́ın1 ,
and Mario J. Pérez-Jiménez1,2

1 Research Group on Natural Computing, Department of Computer Science
and Artificial Intelligence,Universidad de Sevilla, Avda. Reina Mercedes s/n,

41012 Seville, Spain
{aramirezdearellano,dorellana,marper}@us.es

2 SCORE Lab, I3US, Universidad de Sevilla, 41012 Seville, Spain

Abstract. In Natural Computing, several models of computation based
on processes occurring in nature exist. While some of them are well-
established computing framework, there are some types of devices that
are underdeveloped. This is the case of Virus Machines, framework
inspired by the movement of viruses between hosts, and how can they be
replicated while certain events happen. The relevance of this work lies in
the formal definition of the framework and both the insights presented
about the formal verification of the different designs and the possible
new research lines.

In this work, Virus Machines are studied from a numerical point of view.
In this sense, five different devices regarding the four basic arithmetic oper-
ators are created, and some insights about the proofs of their correctness
are stated. While addition, subtraction and multiplication require only of
one device, for division two different machines will be designed: one for the
quotient of the division and the other for the remainder.

Keywords: Natural computing · Virus machine · Arithmetic
calculator · Information fusion

1 Introduction

This work can be considered as a contribution to the area of Natural Computing,
which is a field of research that investigates both human-designed computing
inspired by nature and computing that occurs in nature.

In virology, a virus is a parasitic biological agent that can only reproduce after
infecting a host cell. Every animal, plant, and protist species on this planet has
been infected by viruses. Viruses can transmit from one host to another through
various routes (e.g., conjunctival route, mechanical route, etc.). For additional
details on viruses, refer to [2].

In this study, a new computing paradigm, introduced in [1], based on the
transmissions and replications of viruses, is introduced. This paradigm provides
non-deterministic computing models that consist of several cell-like hosts con-
nected to one another by channels. Viruses are placed in the hosts and can
c© Springer Nature Switzerland AG 2022
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2022, LNCS 13259, pp. 403–412, 2022.
https://doi.org/10.1007/978-3-031-06527-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06527-9_40&domain=pdf
http://orcid.org/0000-0002-2892-6775
http://orcid.org/0000-0002-5055-0102
https://doi.org/10.1007/978-3-031-06527-9_40


404 A. Ramı́rez-de-Arellano et al.

transmit from one host to another by passing through a channel, and can repli-
cate itself while transmitting. These processes are controlled by several instruc-
tions, which are attached to the channels. These systems can be considered as a
heterogeneous network that consists of:

– A virus transmission network : a weighted directed graph, wherein each node
represents a hostand each arc represents a transmission channel through
which viruses can transmit between hosts or exit to the environment. In
addition, each arc has associated a weight (natural number w > 0), which
indicates the number of viruses that will be transmitted.

– An instruction transfer network : a weighted directed graph, wherein each
node represents a control instruction unit and each edge represents an
optional instruction transfer path with a positive integral weight.

– An instruction-channel control network : an undirected graph, wherein each
node represents either a control instruction or a transmission channel and
each edge represents a relationship between an instruction and a channel.

The computing models of this paradigm are universal (equivalent in power
to Turing machines) when there is no limit on the number of viruses present in
any host during a computation. The paper is organized as follows. Next section,
the computing paradigm of virus machines is presented. In Sect. 3, the different
modules concerning the basic arithmetic operators are presented. The paper ends
with some open problems and concluding remarks.

2 Virus Machines

In what follows we formally define the syntax of the Virus Machines.

Definition 1. A Virus Machine of degree (p, q), p ≥ 1, q ≥ 1 is a tuple Π =
(Γ,H, I,DH ,DI , GC , n1, . . . , np, i1, hout), where:

– Γ = {v} is the singleton alphabet;
– H = {h1, . . . , hp} and I = {i1, . . . , iq} are ordered sets such that v �∈ H ∪

I, H ∩ I = ∅ and hout �∈ I ∪ Γ : either hout ∈ H or hout represents the
environment (denoted by h0);

– DH = (H ∪ {hout}, EH , wH) is a weighted directed graph, where EH ⊆ H ×
(H ∪ {hout}), (h, h) �∈ EH for each h ∈ H, out-degree(hout) = 0 and wH is a
mapping from EH onto N \ {0};

– DI = (I, EI , wI) is a weighted directed graph, where EI ⊆ I × I, wI is a
mapping from EI onto N\{0} and the out-degree of each node is less than or
equal to 2;

– GC = (VC , EC) is an undirected bipartite graph, where VC = I ∪ EH being
{I, EH} the partition associated with it: every edge connects an element from
I with, at most, an arc from EH ;

– nj ∈ N(1 ≤ j ≤ p).



Basic Arithmetic Calculations Through Virus-Based Machines 405

h1 h2

h3 h4

2

2

i1

i2

i3

i4

i5

i6

2

2

2 2

Fig. 1. Structure of a Virus Machine

A Virus Machine (VM, for short) Π = (Γ,H, I,DH ,DI , GC , n1, . . . , np,
i1, hout) of degree (p, q), can be viewed as an ordered set of p hosts labelled with
h1, . . . , hp, where host hj initially contains exactly nj viruses, and an ordered
set of q control instruction units labelled with i1, . . . , iq. Symbol hout represents
the output region: it can be a host in the case that hout ∈ H or hout can refer
to the environment in the case that hout = h0. Arcs from the directed graph
DH represent transmission channels through which viruses can transmit from
one host hs (different from hout) to another different host hs′ , or to the envi-
ronment. If s′ = 0, viruses may exit to the environment. In any moment, at
most one instruction is activated and then the channel (hs, hs′) (arc in GC)
with weight ws,s′ attached with it, will be opened. Then, ws,s′ viruses will be
transmitted/replicated from hs to hs′ . By default, each channel is closed.

Arcs from the directed graph DI represent instruction transfer paths, and
they have associated within a weight. Finally, the undirected bipartite graph
GC represents the instruction-channel network by which an edge {ij , (hs, hs′)}
indicates a control relationship between instruction ij and channel (hs, hs′).

Graphically, a virus machine of degree (4, 6) with 4 hosts and 6 control
instructions can be represented as a heterogeneous network consisting of three
graph, as illustrated in Fig. 1. Each host is depicted as a rectangle and each
instruction is depicted as a circle. Each arrow is either a virus transmission
channel linking the hosts (or pointing to the environment), or an instruction
transfer path linking the instructions; in both cases, each arrow is assigned with
a positive integral weight (the weight 1 is not marked for simplicity). The control
relationships between instructions and channels are represented as dotted lines.

In what follows, the semantics associated with the computing model
of the virus machines is described. An instantaneous description or a con-
figuration Ct at an instant t of a virus machine is described by a tuple
(a0,t, a1,t, . . . , ap,t, ut) where a0,t, a1,t, . . . , ap,t are natural numbers, ut ∈ I∪{#},
where # �∈ H ∪ h0 ∪ I is an object for characterizing halting configura-
tions. The meaning of Ct is the following: at instant t the environment con-
tains exactly a0,t viruses and the host hs contains exactly as,t viruses, and
if ut ∈ I, then the instruction ut will be activated at step t + 1 (other-
wise, if ut = #, then no instruction will be activated). The initial config-



406 A. Ramı́rez-de-Arellano et al.

uration of the system Π = (Γ,H, I,DH ,DI , GC , n1, . . . , np, i1, iout) is C0 =
(0, n1, . . . , np, i1). A configuration Ct = (a0,t, a1,t, . . . , ap,t, ut) yields configura-
tion Ct+1 = (a0,t+1, a1,t+1, . . . , ap,t+1, ut+1) in one transition step if we can pass
from Ct to Ct+1 if we can pass from Ct to Ct+1 in the following form.

(a) First, given that Ct is a non-halting configuration we have ut ∈ I. Then the
control instruction unit ut is activated.

(b) If ut is attached to a channel (hs, hs′) then the channel will be opened and:
– If as,t ≥ 1 then only one virus is consumed from host hs and ws,s′ copies

of v are produced in the region hs′ .
– If as,t = 0 then no virus is consumed from host hs and no virus is produced

in the region hs′ .
(c) If ut is not attached to any channel then there is no transmission of viruses.
(d) Object ut+1 ∈ I ∪ {#} is obtained as follows:

– If out-degree(ut) = 2 then there are two different instructions ut′ and
ut′′ such that (ut, ut′) ∈ EI (with weight wt,t′) and (ut, ut′′) ∈ EI (with
weight wt,t′′).

• If instruction ut is attached to a channel (hs, hs′):
∗ If as,t ≥ 1 then ut+1 is the instruction corresponding to the highest

weight path (max{wt,t′ , wt,t′′}). If wt,t′ = tt,t′′ , the next instruc-
tion is selected in a non-deterministic way.

∗ If as,t = 0 then ut+1 is the instruction corresponding to the lowest
weight path (min{wt,t′ , wt,t′′}). If wt,t′ = wt,t′′ , the next instruc-
tion is selected in a non-deterministic way.

• If instruction ut is not attached to a channel, then the next instruction
ut+1 (ut′ or ut′′) is selected in a non-deterministic way.

– If out-degree(ut) = 1 then the system behaves deterministically and ut+1

is the instruction that verifies (ut, ut+1) ∈ EI .
– If out-degree(ut) = 0 then ut+1 = #, and Ct+1 is a halting configuration.

Definition 2. A Virus Machine with input, of degree (p, q, r), p ≥ 1, q ≥ 1, r ≥ 1
is a tuple Π = (Γ,H,Hr, I,DH , I,DH ,DI , GC , n1, . . . , np, i1, hout), where:

– (Γ,H, I,DH ,DI , GC , n1, . . . , np, i1, hout) is a Virus Machine of degree (p, q).
– Hr = {hi1 , . . . , hir} ⊆ H is the ordered set of r input hosts and hout �∈ Hr.

If Π is a virus machine with input of degree (p, q, r), p ≥ 1, q ≥ 1, r ≥ 1
and (α1, . . . , αr) ∈ N

r, the initial configuration of Π with input (α1, . . . , αr) is
(0, n1, . . . , ni1 + α1, . . . , nir + αr, . . . , np, i1). Thus, each r-tuple (α1, . . . , αr) ∈
N

r, is associated with an initial configuration (0, n1, . . . , ni1 + α1, . . . , nir +
αr, . . . , np, i1).

A computation of a virus machine Π with input (α1, . . . , αr), denoted
by Π + (α1, . . . , αr), starts with configuration (0, n1, . . . , ni1 + α1, . . . , nir +
αr, . . . , np, i1) and proceeds as stated above. The result of a halting compu-
tation of Π + (α1, . . . , αr) is the total number of viruses sent to the output
region during the computation.

Next, a particular kind of virus machines providing function computing
devices, is introduced.



Basic Arithmetic Calculations Through Virus-Based Machines 407

Definition 3. Let f : Nk− → N be a partial function. We say that function f is
computable by a virus machine Π with k input hosts if for each (x1, . . . , xk) ∈ N

k

we have the following:

– If (x1, . . . , xk) ∈ dom(f) and f(x1, . . . , xk) = z, then every computation of
Π + (x1, . . . , xk) is a halting computation and the output is z.

– If (x1, . . . , xk) ∈ N
k \ dom(f), then every computation of Π + (x1, . . . , xk) is

a non-halting computation.

3 Arithmetic Operation Modules

In this section, we provide different modules for the different basic arithmetic
operations; that is, addition, substraction, multiplication and division (both quo-
tient and remainder). In these types of machines, the encoding of natural num-
bers will be given by an unary encoding; that is, the input number n ∈ N will be
encoded by vn; that is, n copies of the object v. In what follows, we introduce
the different modules and some of their properties.

3.1 Add Module

This module is a Virus Machines with two input hosts, where the two terms of
the addition are introduced as an input. The Virus Machine

Πadd = (Γ,H,Hr, I,DH ,DI , GC , n1, n2, i1, hout)

of range (2, 3, 2) where:

1. Γ = {v}, H = Hr = {h1, h2}, I = {i1, i2, i3};
2. DH = ({h0}∪H,EH , wH), where EH = {(h1, h0), (h2, h0)} and wH(h1, h0) =

wH(h2, h0) = 1;
3. DI = (I, EI , wI), where EI = {(i1, i1), (i1, i2), (i2, i2), (i2, i3)} and

wI(i1, i1) = wI(i2, i2) = 2, wI(i1, i2) = wI(i2, i3) = 1;
4. GC = (I ∪ EH , EC), where EC = {{i1, (h1, h0)}, {i2, (h2, h0)}};
5. ni = 0, i ∈ {1, 2};
6. hout = h0.

A visual representation of this Virus Machine can be found in Fig. 2a. The
idea is that all the viruses present in the initial configuration to the environment
(i.e. the output region). Let (a, b) be the input of Π; then the following invariants
hold in this machine.

φ(k) ≡ Ck = (k, a − k, b, i1), for 0 ≤ k ≤ a
In the first k steps, a viruses go from h1 to the environment. Then, in con-

figuration a no viruses are available in h1, therefore the next instruction is i2.
φ′(k) ≡ Ca+1+k = (a + k, 0, b − k, i2), for 0 ≤ k ≤ b
From configuration Ca+1, instruction i2 is executed until no more viruses are

available in the host h2, and thus i3 will be selected as the next instruction.
Finally, in configuration Ca+b+2, instruction i3, that is not attached to

any channel, thus next instruction is # and the computation halts. Therefore,
Ca+b+3 = (a + b, 0, 0,#).



408 A. Ramı́rez-de-Arellano et al.

(a)

a

h1

b

h2

i1 i2 i3

2 2

(a) Virus Machine Πadd + (a, b)

(b)

a

h1

b

h2h3

i1 i2

i3 i4

2

22

(b) Virus Machine Πsub + (a, b)

Fig. 2. Virus Machines for addition and subtraction operations

3.2 Sub Module

The Virus Machine presented computes the reduced difference, represented with
the symbol

•− operation; that is, a
•− b = a − b if a ≥ b, 0 otherwise. The Virus

Machine
Πsub = (Γ,H,Hr, I,DH ,DI , GC , n1, n2, n3, i1, hout)

of range (3, 4, 2) where:

1. Γ = {v}, H = {h3} ∪ Hr, where Hr = {h1, h2}, I = {i1, i2, i3, i4};
2. DH = ({h0} ∪ H,EH , wH), where EH = {(h1, h3), (h1, h0), (h2, h3)} and

wH(h1, h0) = wH(h2, h0) = 1;
3. DI = (I, EI , wI), where EI = {(i1, i2), (i1, i3), (i2, i1), (i2, i4), (i3, i3), (i3, i4)}

and wI(i1, i2) = wI(i2, i1) = wI(i3, i3) = 2, wI(i1, i3) = wI(i2, i4) =
wI(i3, i4) = 1;

4. GC = (I ∪ EH , EC), where EC = {{i1, (h2, h3)}, {i2, (h1, h3)}, {i3, (h1, h0)}};
5. ni = 0, i ∈ {1, 2, 3};
6. hout = h0.

A visual representation of this Virus Machine can be found in Fig. 2b. The
idea is that viruses from h1 are “countered” by viruses from h2 and, if any virus
remains in h1, then goes to the environment. Let (a, b) be the input of Π, and
let mod(a, b) be the modulus operator; then the following invariants hold in this
machine.

φ(k) ≡ Ck = (0, a − k
2 �, b − �k

2 �, k, i1+mod(k,2)), for 0 ≤ k ≤ min{2(a + 1) −
1, 2b)}.

Here, two different cases can arise. If a < b, then the first 2(a + 1) − 1 steps,
instructions i1 and i2 will alternate one after the other, in order to send to h3

(a “garbage” host) one virus each host alternaly. As h1 will run out of viruses
before h2, in the configuration C2(a+1)−1, since no more viruses are available
in host h1, instruction i4 is selected as the next instruction, and configuration



Basic Arithmetic Calculations Through Virus-Based Machines 409

C2(a+1)+1 is a halting configuration. Otherwise, if a ≥ b, then the first 2b steps,
instructions i1 and i2 will alternate one after the other. In this case, h2 will run
out of viruses before h1, thus in the configuration C2b, instruction i3 will be the
next instruction. Then, from that point, the following invariant holds:

φ′(k) ≡ C2b+k = (k, a − b − k, 0, k, i3), for 0 ≤ k ≤ a − b
After a − b steps, a − b viruses will be sent to the environment and, since no

more viruses are available in host h1, next instruction is i4, that will lead to a
halting configuration C2b+a−b+2.

3.3 Mul Module

A Virus Machine capable of returning the multiplication of two given numbers
is given below. The Virus Machine

Πmul = (Γ,H,Hr, I,DH ,DI , GC , n1, n2, n3, n4, i1, hout)

of range (4, 5, 2) where:

1. Γ = {v}, H = {h3, h4} ∪ Hr, where Hr = {h1, h2}, I = {i1, i2, i3, i4, i5};
2. DH = ({h0} ∪ H,EH , wH), where EH = {(h1, h3), (h2, h4), (h3, h1), (h3, h0)}

and wH(h1, h3) = 2, wH(h2, h4) = wH(h3, h1) = wH(h3, h0) = 1;
3. DI = (I, EI , wI), where EI = {(i1, i2), (i1, i5), (i2, i2), (i2, i3), (i3, i1),

(i3, i1), (i4, i3)} and wI(i1, i2) = wI(i2, i2) = wI(i3, i4) = 2, wI(i1, i5) =
wI(i2, i3) = wI(i3, i1) = wI(i4, i3) = 1;

4. GC = (I ∪ EH , EC), where
EC = {{i1, (h2, h4)}, {i2, (h1, h3)}, {i3, (h3, h1)}, {i4, (h3, h0)}};

5. ni = 0, i ∈ {1, 2, 3, 4};
6. hout = h0.

We can see the idea of this Virus Machine in Fig. 3. Let (a, b) the the input
of Π. The following invariant holds:

φ(k) ≡ Ck(3a+3) = (a · k, a, b − k, 0, k, i1), for 0 ≤ k ≤ b
From the first configuration, viruses from h2 will be sent to host h4 (a

“garbage” host) in order to “count” the number of times that viruses from h1

must be sent to the environment. Then, instruction i2 will send two times the
number of viruses in h1 to h3 in a steps. When it finishes, it goes to instruction
i3, that will be executed alternately with i4 until no viruses remain in h3. This
will happen in 2a+1 steps. When this happens, the next instruction selected is,
again, i1. This process will go on until no viruses remain in h2, where instruction
i5 is selected and leads to a halting configuration in the next step, in configura-
tion Cb(3a+3)+2.

3.4 Quotient Module

The division operation can be seen as a function f : N
2 → N

2, such that
f(D, d) = (q, r), fulfilling the following requirement: D = d · q + r. q is said



410 A. Ramı́rez-de-Arellano et al.

a

h1

b

h2

h3 h42

i1 i2i3i4

i5

2

2

2

Fig. 3. Virus Machine Πmul + (a, b)

to be the quotient of the division, while r is the remainder. The device returning
the quotient is the Virus Machine

Πquo = (Γ,H,Hr, I,DH ,DI , GC , n1, n2, n3, n4, i1, hout)

of range (4, 5, 2) where:

1. Γ = {v}, H = {h3, h4} ∪ Hr, where Hr = {h1, h2}, I = {i1, i2, i3, i4, i5};
2. DH = ({h0} ∪ H,EH , wH), where

EH = {(h1, h3), (h2, h4), (h3, h0), (h4, h2)} and wH(h2, h4) = wH(h1, h3) =
wH(h3, h0) = wH(h4, h2) = 1;

3. DI = (I, EI , wI), where EI = {(i1, i2), (i1, i3), (i2, i1), (i2, i5), (i3, i4), (i4,
i1), (i4, i4)} and wI(i1, i2) = wI(i2, i1) = wI(i4, i4) = 2, wI(i1, i3) =
wI(i2, i5) = wI(i3, i4) = wI(i4, i1) = 1;

4. GC = (I ∪ EH , EC), where
EC = {{i1, (h2, h4)}, {i2, (h1, h3)}, {i3, (h1, h0)}, {i4, (h4, h2)}};

5. ni = 0, i ∈ {1, 2, 3, 4};
6. hout = h0

This Virus Machine can be depicted as in Fig. 4a
By definition, we will say that a/0 = 0, a ∈ N. Let (a, b) be the input of Π.

Then the following invariant holds:
φ(k) ≡ Ck(3b+3) = (k, a − b · k, b, b · k − k, 0, i1), for 0 ≤ k ≤ a

b �
From the first configuration, instructions i1 and i2 will alternately be exe-

cuted until h1 or h2 go out of viruses. If h2 goes out of viruses first, then it means
that we can add 1 to the temporary quotient (i.e. the number of viruses in the
environment). If this is the case, from i1, the instruction i3 is selected, and one
virus is sent from h3 to the environment (taking into account that viruses in h3

are not useful in any other sense, therefore we use them as “counters”). When
h1 runs out of viruses, and instruction i2 is executed, the instruction selected is
i5, leading to a halting configuration in C�a/b�·(3b+3)+2. Let us recall that in this
case we say that, by definition, a/0 = 0, a ∈ N.



Basic Arithmetic Calculations Through Virus-Based Machines 411

a

h1

b

h2

h3 h4

i1 i2

i3

i4

i5

2

2

2

(a) Virus Machine Πquo + (a, b)

a

h1

b

h2

h3 h4h5

i1 i2i3

i4 i5 i6

2

2
2

2

2

(b) Virus Machine Πrem + (a, b)

Fig. 4. Virus machines for the quotient and remainder of division operations

3.5 Remainder Module

While in the previous subsection, the Virus Machine answering the quotient of
the division of two given numbers was given, below is presented one returning
the remainder of such operation. The Virus Machine

Πrem = (Γ,H,Hr, I,DH ,DI , GC , n1, n2, n3, n4, n5, i1, hout)

of range (5, 6, 2) where:

1. Γ = {v}, H = {h3, h4, h5}∪Hr, where Hr = {h1, h2}, I = {i1, i2, i3, i4, i5, i6};
2. DH = ({h0} ∪ H,EH , wH), where

EH = {(h1, h3), (h2, h4), (h3, h5), (h3, h0), (h4, h2)} and wH(h1, h3) =
wH(h2, h4) = wH(i3, i5) = wH(h3, h0) = wH(h4, h2) = 1;

3. DI = (I, EI , wI), where
EI = {(i1, i2), (i1, i3), (i2, i1), (i2, i5), (i3, i3), (i3, i4), (i4, i1), (i4, i4), (i5, i5),
(i5, i6)} and wI(i1, i2) = wI(i2, i1) = wI(i3, i3) = wI(i4, i4) = wI(i5, i5) =
2, wI(i1, i3) = wI(i2, i5) = wI(i3, i4) = wI(i4, i1) = wI(i5, i6) = 1;

4. GC = (I ∪ EH , EC), where
EC = {{i1, (h2, h4)}, {i2, (h1, h3)}, {i3, (h4, h2)}, {i4, (h3, h5)}, {i5, (h3, h0)}};

5. ni = 0, i ∈ {1, 2, 3, 4, 5};
6. hout = h0

This Virus Machine is represented visually in Fig. 4b.
In order to fulfil the basics of the division, that is, D = d · q + r, we say that

the remainder of the division a/0, a ∈ N is equal to a. Let (a, b) be the input of
Π. Then the following invariant holds:

φ(k) ≡ Ck(4b+3) = (0, a − b · k, b, 0, 0, b · k, i1), for 0 ≤ k ≤ a
b �

The idea is similar to the quotient module. First, we alternate between
instructions i1 and i2, until one of them run out of viruses. On the one hand, if



412 A. Ramı́rez-de-Arellano et al.

h2 runs out of viruses first, then it means that b can be subtracted once again
from a. When this happens, instruction i5 is selected, that takes back all the
viruses from h4 to h2, when this process finishes, all the viruses from h3 are sent
to the host h5, that is a “garbage” collector, and it goes back to instruction i1.
This happens each 4b + 3 steps. On the other hand, if h1 runs out of viruses
first, the finalization protocol starts, first by activating the instruction i5, that
sends all of the viruses from h3 to the environment. This whole process leads to
a halting configuration C�a/b�·(4b+3)+remainder(a,b)+3.

4 Conclusions and Future Work

The idea of this work is to establish some ideas for later applications in the
framework of information fusion. In [3], the four basic arithmetical operators
are used to give an explicit basic probability assignment (BPA) calculator by
means of Spiking Neural P systems. Since the encoding is totally different in
this framework, some changes must be introduced in order to obtain such kind
of calculator.

Apart from that, and since the framework is in a very early stage, several
research lines are open, as well as some ideas for extension of the model, in a
similar way to extensions in the framework of Membrane Computing.

Acknowledgements. This work was supported by “Junta de Andalućıa (Consejeŕıa
de Economı́a, Conocimiento, Empresas y Universidad)” (P20 00486) – Desarrollo de
modelos computacionales de especies invasoras en el Guadalquivir: herramientas de
gestión para su control y prevención. D. Orellana-Mart́ın also acknowledges Con-
tratación de Personal Investigador Doctor. (Convocatoria 2019) 43 Contratos Capital
Humano Ĺınea 2. Paidi 2020, supported by the European Social Fund and Junta de
Andalućıa.

References

1. Chen, X., Pérez-Jiménez, M.J., Valencia-Cabrera, L., Wang, B., Zeng, X.: Comput-
ing with viruses. Theoret. Comput. Sci. 623, 146–159 (2016)

2. Dimmock, N.J., Easton, A.J., Leppard, K.: Introduction to Modern Virology. Black-
well Publication, Malden (2007)

3. Zhang, G., Rong, H., Paul, P., He, Y., Neri, F., Pérez-Jiménez, M.J.: A complete
arithmetic calculator constructed from spiking neural P systems and its application
to information fusion. Int. J. Neural Syst. 31(1), 2050055 (2001)


	Basic Arithmetic Calculations Through Virus-Based Machines
	1 Introduction
	2 Virus Machines
	3 Arithmetic Operation Modules
	3.1 Add Module
	3.2 Sub Module
	3.3 Mul Module
	3.4 Quotient Module
	3.5 Remainder Module

	4 Conclusions and Future Work
	References




