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Abstract. One of the fundamental challenges in the field of autonomous
driving is the ability to detect dynamic objects, such as vehicles or pedes-
trians, and statics ones, such as lanes, in the surroundings of the vehicle.
The accurate perception of the environment under the long tale of driv-
ing scenarios is crucial for a safe decision making and motion planning.

Mainly, lane detection approaches still function on single-frame basis
and do not exploit the (high) temporal correlation of the signals rep-
resenting the perceived environment. Single-frame detection networks
might work well under circumstances where the lanes are perfectly visi-
ble, but show a lack of performance under certain situations, like occlu-
sions, shadows, rain, snow, lane degradation, etc. To address the afore-
mentioned problem, this work proves how adding temporal information
for lane binary segmentation improves substantially the performance of
single-frame architecture under challenging and adverse situations.

Keywords: Lane detection · Recurrent neuronal networks · Adverse
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1 Introduction

In recent years, the development of computer vision (i.e. new deep learning archi-
tectures), sensor technology (i.e. LIDAR) and processors units (i.e. GPU) has
made big advances in the field of autonomous driving possible. The ultimate goal
of many of these researches is to have a full picture of the environment around
the vehicle, detecting dynamic objects such as vehicles or pedestrians, and stat-
ics ones such as lanes, and having a semantic understanding of the surroundings
which allows a proper motion planning. One of the key and at the same time
basic features needed to enable autonomous driving is camera based lane detec-
tion. Once the lanes are detected, the vehicle can have a reference to position
itself in the surrounding world, so the trajectory planning can calculate where
to go, reducing the possibility of collision with vehicles driving in other lanes
[4]. Therefore designing robust camera-based real-time lane detection systems is
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a key milestone for autonomous vehicles (AD) and advanced driver-assistance
systems (ADAS).

Most of these systems are based on the information contained in one single
frame, and just a few of them take advantage of the information contained in
previous frames [6]. This, of course, is not like human drivers work, being able
to extrapolate and infer the position of the lanes under challenging situations,
like shadows, light reflections, lane occlusion, etc. referring to the information
of the past. This can be done because lanes are static, continuous objects on
the street, with a huge overlapping between frames, meaning a highly related
and temporal correlation of the signals. So the lanes in the actual frame could
be partially inferred from the information in the n-last frames, even though the
lanes might not be totally visible anymore.

Under those circumstances the performance of the state of-the-art meth-
ods decreases, detecting the lanes erroneously, in another direction, or even not
detecting it at all like in Fig. 1. The reason might be that with the information
contained in the actual frame, is very difficult or even impossible to completely
infer the position of all lanes. Due to the fact that modern systems have to work
under really variable driving scenarios, working under all possible conditions is
crucial to develop robust algorithms. This work shows how including tempo-
ral information can dramatically increase the performance of a network under
challenging situations.

Fig. 1. Lane detection using LaneNet [6] under driving scenarios with shadows, light
reflections and lane occlusions from the TuSimple dataset. Green lanes represent the
ground truth and red, the ones inferred by the network.

Therefore, the main hypothesis that tries to prove this work is that the use
of recurrent neuronal networks (or, in a more general way, the use of temporal
information) improves the performance of neuronal networks under challenging
and adverse situations.
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2 Methodology

To prove this hypothesis we have selected a state-of-the-art neuronal network,
LaneNet [5]. LaneNet is a real time lane detection architecture where the lane
edge network is based on a light weight encoder/decoder. To reduce computa-
tional cost the encoder is based on the combination of depthwise separable con-
volutions and pointwise convolutions (1× 1 convolutions). On the other hand,
to recover input image resolution the decoder is based on sub-pixel convolution
layers.

Without modifying this enconder/decoder structure we have incorporated
a recurrent neuronal network similar as proposed in [6]. This architecture can
therefore be understood as a fully convolutional neuronal network with a recur-
rent intermediate step to process time information. The encoder abstracts n-
input images to n-feature maps which can be seen as time sequence information
and be fed into the recurrent neuronal network. These feature maps contain the
necessary information to detect the lanes and keep the time related information
but have the advantage of its reduced size, which means that they can be han-
dled well by the long short-term memory layers. The output of the ConvLSTM
[2] is used as input to the convolutional neuronal network decoder which outputs
an array of the same size as the input image containing the probability of each
pixel belonging to a lane or not. The complete architecture is shown in Fig. 2.

This idea allows us to compare the same basic encoder/decoder network
with just the influence of the recurrent neuronal network gathering temporal
information.

3 Training

3.1 Dataset

The TuSimple dataset [1] is used for training and validation. It contains 6408
video clips (3626 for training and 2782 for testing) taken at different daytime and
traffic conditions on US highways, under good and medium weather situations.
Each video clip is a set of 20 frames with until 5 lanes, where just the last frame
is labeled, and with a resolution of 1280× 720.

The annotation of each lane is done using polylines, defined by the inter-
section points between evenly horizontal distributed lines and each lane. On the
other hand, because the proposed architecture is conceived to work at pixel level,
classifying each one as lane or not lane (binary segmentation). Therefore, using
these polylines as basis, ground truth frames have been generated where each
pixel belongs to the class 0 (background) or 1 (lane). To do so, each lane has
been segmented with a width of 5 pixels.

Since the proposed deep learning architecture is designed to work at pixel
level, classifying each pixel as lane or non-lane (binary segmentation), these
polylines have been used as a basis to generate a ground truth in which each
pixel belongs to class 0 (background) or 1 (lane). For this purpose, each lane has
been segmented with a width of 5 pixels.
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Fig. 2. Network architecture for the special case of 5 frames and ConvLSTM with
2 layers. The basic idea of this architecture for lane detection was proposed in [6],
however the encoder/decoder has been adapted to match LaneNet structure.

Table 1. Characteristic of TuSimple dataset [1]. ∗Just the frame 20th is labeled.

Dataset Train clips Test clips Frames per clip∗ Resolution Lanes

TuSimple 3626 2782 20 1280× 720 ≤5

3.2 Data Augmentation

In order to avoid over-fitting problems and increase performance, data augmen-
tation has been used to train all models. Brightness shifting, gamma correction,
adding small amount of noise and random horizontal flip and translation has
been implemented.

3.3 Loss and Optimizer

To train the proposed model a binary cross entropy loss function and an ADAM
optimizer with a learning rate of 3e-4 has been used. The number of epochs is 500
with a batch size of 15 and 6 for LaneNet and LaneNet-ConvLSTM respectively.

binary cross entropy =
n∑

i=1

yi ∗ log(ŷi) + (1 − yi) ∗ log(1 − ŷi) (1)

where yi is the ground truth value and ŷi the predicted one.
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4 Results

4.1 Metrics

Lane detection is an imbalanced binary classification problem, where the amount
of ones, which represents lanes, is much less than the amount of zeros, which
represents the background. In general, ones are just 4% of the dataset, this
means that classifying all pixels as no-lane gives an accuracy of 96%. Therefore,
accuracy is just a reference index, and it should not be used as key performance
indicator. Therefore precision, recall and false positive rate are metrics which
can indicate with higher precision the performance of the system:

precision =
TP

TP + FP
(2)

recall or true positive rate =
TP

TP + FN
(3)

false positive rate =
FP

FP + TN
(4)

F1 = 2
precision · recall
precision + recall

(5)

where TP stands for true positive, TN for true negative, FP for false positive
and FN for false negative. Evaluating these metrics under different thresholds,
ROC (receiver operating characteristic curve) and PRC (precision recall curve)
can be generated. These curves offer the advantage of analyzing the complete
classifier behavior instead of selecting an arbitrary threshold, and therefore give
a better idea of the overall network performance.

4.2 Performance

The performance of the networks have been analyzed using two different
datasets. The first one containing the whole TuSimple validation dataset, so
mostly ideal conditions (without occlusions, shadows, etc.). The second one con-
taining exclusively the subset of the original TuSimple validation dataset with
challenging situations, adding a further step of complexity to the inference.

Performance Under General Situations: in Table 2, the results for the two
different architectures in terms of area under receiver operating characteristic
curve, area under precision recall curve, maximum accuracy and its associate F1
are presented. These metrics are the average of five training runs to be able to
make better statistical conclusions.
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Table 2. Area under ROC (receiver operating characteristic curve), under PRC (pre-
cision recall curve), maximum accuracy and its corresponding F1 for the compared
state-of-the-art networks.

Network AUROC AUPRC Accuracy F1

LaneNet 99.276 87.616 98.291 78.832

LaneNet-ConvLSTM 99.274 87.685 98.300 78.965

Although, it seems that LaneNet-ConvLSTM outperforms LaneNet in most
of the metrics, their performance is quite similar and applying the Student’s t-
test with 5% significance level revels that there is no statistical difference between
both (the p-value for the null hyphotesis H0 : µ1 = µ2 is 0.40517).

Performance Under Challeging Situations: one important point of this
analysis is that the TuSimple dataset has been taken mostly under favorable
conditions, with no shadows, no lane occlusions, etc. On the other hand, the dis-
cussed methods should outperform single-frame detection algorithms specially
under challenging situations, therefore the proposed metrics have been recalcu-
lated just for these situations (to do so a manual classification of the validation
set has been done). The results of this analysis are presented in Table 3 and
show that multi-frame detection algorithms clearly outperform single-frame ones
under challenging situations.

Table 3. Area under ROC (receiver operating characteristic curve), under PRC (pre-
cision recall curve), maximum accuracy and its corresponding F1 for the compared
state-of-the-art networks for only the challenging situations contained in the TuSimple
validation set.

Network AUC-ROC AUC-PRC Accuracy F1

LaneNet 96.487 67.234 96.724 57.437

LaneNet-ConvLSTM 97.282 70.445 96.877 60.943

Semantic segmentation architectures should work robustly at a coarse level,
identifying the total number of lanes correctly, and at a fine level, detecting solid
and robust lanes with a high overlapping with the ground truth. With theses two
requirements in mind, the experimental results show visually that ,in general ,
multi-frame architectures outperform single-frame ones under adverse situations.
Figure 3 shows three examples of the predictions of the above mentioned archi-
tectures (LaneNet and LaneNet-ConvLSTM) under challenging situations.
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Fig. 3. Three examples of images in challenging situations. Top row: LaneNet. Bottom
row: LaneNet-ConvLSTM. Green indicates ground truth and red indicates inference.

Multi-frame architectures show a more robust behavior, inferring more solid
and robust lanes specially when the contrast is changing rapidly (e.g. entrance
of a tunnel). Under these challenging situations, they also show higher capa-
bilities on detecting the lines of the neighboring lanes. The proposed LaneNet-
ConvLSTM architecture is also even able to correctly infer complex side lines,
which are not in the ground truth, decreasing erroneously the quantitative per-
formance.

5 Conclusions

One key conclusion is that most of the well established datasets in the field of
autonomous driving just consider “ideal” conditions, and although two different
architectures could show similar performance under those, the long tale influence
has to definitely be taken into account. In the analyzed case, the performance of
single-frame networks drops more abruptly than multi-frame architectures under
challenging situations, leading to the conclusion that temporal information helps
under these adverse situations and validating the initial hypothesis.

In future works, the ConvLSTM can be replaced by other types of archi-
tectures like transformers [3], which have outperformed RNN in recent years.
Another important aspect is that in this work we have focused on 2D segmen-
tation, but this information has to be transformed to 3D in order to be used for
motion planning. The use of temporal information for this conversion might be
also investigated in further projects.
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