
Elite Artificial Bee Colony for Makespan
Optimisation in Job Shop with Interval

Uncertainty

Hernán Dı́az1 , Juan José Palacios1 , Inés González-Rodŕıguez2(B) ,
and Camino R. Vela1

1 Department of Computing, University of Oviedo, Gijón, Spain
{diazhernan,palaciosjuan,crvela}@uniovi.es

2 Departamento de Matemáticas, Estad́ıstica y Computación,
Universidad de Cantabria, Santander, Spain

gonzalezri@unican.es

Abstract. This paper addresses a variant of the Job Shop Scheduling
Problem with makespan minimisation where uncertainty in task dura-
tions is taken into account and modelled with intervals. Given the prob-
lem’s complexity, we tackle it using a metaheuristic approach. Specif-
ically, we propose a novel Artificial Bee Colony algorithm incorporat-
ing three different selection mechanisms that help in guiding the search
towards more promising areas. A parametric analysis is conducted and
a comparison of the different selection strategies is performed on a set
of benchmark instances. The results illustrate the benefit of using the
new guiding strategies, improving the behaviour of the ABC algorithm,
which compares favourably to the state-of-the art in the problem. An
additional study is conducted to assess the robustness of the solutions
obtained under each guiding strategy.

Keywords: Job Shop Scheduling · Makespan · Interval Uncertainty ·
Artificial Bee Colony

1 Introduction

The job shop scheduling problem (JSP) is considered to be one of the most rel-
evant scheduling problems. It consists in allocating a set of resources to execute
a set of jobs under a set of given constraints, with the most popular objective
in the literature of minimizing the project’s execution timespan, also known as
makespan. Solving this problem improves the efficiency of chain production pro-
cesses, optimising the use of energy and materials [12] and having a positive
impact on costs and environmental sustainability. However, in real-world appli-
cations, the available information is often imprecise. Interval uncertainty arises
as soon as information is incomplete, and contrary to the case of stochastic and

Supported by the Spanish Government under research grant PID2019-106263RB-I00
and by the Asturias Government under research grant Severo Ochoa.

c© Springer Nature Switzerland AG 2022
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2022, LNCS 13259, pp. 98–108, 2022.
https://doi.org/10.1007/978-3-031-06527-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06527-9_10&domain=pdf
http://orcid.org/0000-0003-2615-0042
http://orcid.org/0000-0002-0479-1490
http://orcid.org/0000-0003-3266-009X
http://orcid.org/0000-0001-9271-2360
https://doi.org/10.1007/978-3-031-06527-9_10


Elite ABC for Makespan Optimisation in JSP with Interval Uncertainty 99

fuzzy scheduling, it does not assume any further knowledge, thus representing a
first step towards solving problems in other frameworks [1]. Moreover, intervals
are a natural model whenever decision-makers prefer to provide only a minimal
and a maximal duration, and obtain interval results that can be easily under-
stood. Under such circumstances, interval scheduling allows to concentrate on
significant scheduling decisions and to produce robust solutions.

Contributions to interval scheduling in the literature are not abundant.
In [10], a genetic algorithm is proposed for a JSP minimizing the total tardiness
with respect to job due dates with both processing times and due dates repre-
sented by intervals. In [5] a different genetic algorithm is applied to the same
problem, including a study of different interval ranking methods based on the
robustness of the resulting schedules. A population-based neighbourhood search
for an interval JSP with makespan minimisation is presented in [9]. In [11], a
hybrid between PSO and a genetic algorithm is used to solve a flexible JSP with
interval processing times as part of a larger integrated planning and scheduling
problem. Recently, in [6] a genetic algorithm is applied to the JSP with inter-
val uncertainty minimizing the makespan and achieving the results that are the
current state of the art.

Metaheuristic search methods are especially suited for job shop due to its
complexity. In particular, artificial bee colony (ABC) is a swarm intelligence
optimiser inspired by the intelligent foraging behaviour of honeybees that has
shown very competitive performance on JSP with makespan minimisation. For
instance, [13] propose an evolutionary computation algorithm based on ABC that
includes a state transition rule to construct the schedules. Taking some princi-
ples from Genetic Algorithms, [14] present an Improved ABC (IABC) where a
mutation operation is used for exploring the search space, enhancing the search
performance of the algorithm. Later, [2] propose an effective ABC approach
based on updating the population using the information of the best-so-far food
source.

In the following, we consider the JSP with makespan minimisation and inter-
vals modelling uncertain durations. The problem is presented in Sect. 2. In Sect. 3
we propose several variants of an ABC algorithm to address this problem. These
variants are compared in Sect. 4, where the most successful one is also compared
with the state-of-the-art and a robustness analysis is also included.

2 The Job Shop Problem with Interval Durations

The classical job shop scheduling problem consists of a set of resources M =
{M1, . . . ,Mm} and a set of jobs J = {J1, . . . , Jn}. Each job Jj is organised in
tasks (o(j, 1), . . . , o(j,mj)) that need to be sequentially scheduled. We assume
w.l.o.g. that tasks are indexed from 1 to N =

∑n
j=1 mj , so we can refer to

task o(j, l) by its index o =
∑j−1

i=1 mi + l and denote the set of all tasks as
O = {1, . . . , N}. Each task o ∈ O requires the uninterrupted and exclusive use
of a machine νo ∈ M for its whole processing time po.



100 H. Dı́az et al.

A solution to this problem is a schedule s, i.e. an allocation of starting times
for each task, which, besides being feasible (all constraints hold), is optimal
according to some criterion, in our case, minimal makespan Cmax.

2.1 Interval Uncertainty

Following [9] and [5], uncertainty in the processing time of tasks is modelled using
a closed intervals. Therefore, the processing time of task o ∈ O is represented
by an interval po = [p

o
, po], where p

o
and po are the available lower and upper

bounds for the exact but unknown processing time po.
The interval JSP (IJSP) with makespan mimisation requires two arithmetic

operations: addition and maximum. Given two intervals a = [a, a],b = [b, b], the
addition is expressed as [a+ b, a+ b] and the maximum as [max(a, b),max(a, b)].
Also, given the lack of a natural order in the set of closed intervals, to determine
the schedule with the “minimal” makespan, we need an interval raking method.
For the sake of fair comparisons with the literature, we shall use the midpoint
method: a ≤MP b ⇔ m(a) ≤ m(b) with m(a) = (a + a)/2. This is used in [5]
and it is equivalent to the method used in [10]. Notice that m(a) coincides with
the expected value of the uniform distribution on the interval E[a].

A schedule s for the IJSP establishes a relative order π among tasks requiring
the same machine. Conversely, given a task processing order π the schedule s
may be computed as follows. For every task o ∈ O, let so(π) and co(π) denote
respectively the starting and completion times of o, let PMo(π) and SMo(π)
denote the predecessor and successor tasks of o in the machine νo according to
π, and let PJo and SJo denote the tasks preceding and succeeding o in its job.
Then the starting time of o is given by so(π) = max(sPJo

+ pPJo
, sPMo(π) +

pPMo(π)), and the completion time by co(π) = so(π) + po. The makespan is
computed as the completion time of the last task to be processed according to
π thus, Cmax(π) = maxo∈O{co(π)}. If there is no possible confusion regarding
the processing order, we may simplify notation by writing so, co and Cmax.

2.2 Robustness on Interval JSP

When uncertainty is present, solution robustness may become a concern. In fact,
makespan values obtained for IJSP are not exact values, but intervals. It is only
after the solution is executed on a real scenario that actual processing times
for tasks P ex = {pex

o ∈ [p
o
, po], o ∈ O} are known. Therefore, it is not until

that moment that the actual makespan Cex
max ∈ [Cmax, Cmax] can be found. It

is desirable that this executed makespan Cex
max does not differ much from the

expected value of the makespan according to the interval Cmax.
This is the idea behind the concept of ε-robustness first proposed in [3] for

stochastic scheduling, and later adapted to the IJSP in [5]. For a given ε ≥ 0,
a schedule with makespan Cmax is considered to be ε-robust in a real scenario
P ex if the relative error made by the expected makespan E[Cmax] with respect
to the makespan Cex

max of the executed schedule is bounded by ε, that is:



Elite ABC for Makespan Optimisation in JSP with Interval Uncertainty 101

|Cex
max − E[Cmax]|

E[Cmax]
≤ ε. (1)

Clearly, the smaller the bound ε, the more robust the interval schedule is.
This measure of robustness is dependent on a specific configuration P ex of

task processing times obtained upon execution of the predictive schedule s. In
the absence of real data, as is the case with the usual synthetic benchmark
instances for job shop, we may resort to Monte-Carlo simulations. We simmulate
K possible configurations P k = {pk

o ∈ [p
o
, po], o ∈ O} using uniform probability

distributions to sample durations for every task and compute for each config-
uration k = 1, . . . ,K the exact makespan Ck

max that results from executing
tasks according to the ordering provided by s. Then, the average ε-robustness
of the predictive schedule across the K possible configurations, denoted ε, can
be calculated as:

ε =
1
K

K∑

k=1

|Ck
max − E[Cmax]|

E[Cmax]
. (2)

This value provides an estimate of how robust the solution s is across different
processing times configurations.

3 An Artificial Bee Colony Algorithm

The Artificial Bee Colony Algorithm is a bioinspired swarm metaheuristic for
optimisation based on the foraging behaviour of honey bees. Since it was intro-
duced in [7] it has been successfully adapted to a variety of problems [8]. In this
paper, we adapt it to solve the Interval Job Shop Scheduling problem.

In ABC, a swarm of bees exploit a changing set of food sources with two
leading models of behaviour: recruiting rich food sources and abandoning poor
ones. In our case, each food source fs encodes an IJSP solution using permuta-
tions with repetition [4] and the decoding of a food source follows an insertion
strategy, consisting in iterating along the food source and scheduling each task
at its earliest feasible insertion position [5]. The richness or nectar amount of
each food source is proportional to the makespan of the schedule it represents,
so lower makespan values translate into richer food sources.

The ABC starts by generating and evaluating initial pool P0 of random food
sources, so the best food source in the pool is assigned to the hive queen. Then,
ABC iterates over a number of cycles, each consisting of three phases mimicking
the behaviour of three types of foraging bees: employed, onlooker and scout. In
the employed bee phase, each food source is assigned to one employed bee, so this
employed bee explores a new candidate food source between its own food source
and the queen’s one, evaluating the candidate and sharing this information with
the rest of the hive. If the new food source is equivalent to queen’s (i.e. the best
food source found so far), it is discarded for the sake of maintaining diversity in
the pool. If it is not discarded and it improves the original food source (i.e. smaller
makespan value), it replaces it. Otherwise, the number of improvement trials
fs.numTrials of the original food source is increased by one. In the next phase,



102 H. Dı́az et al.

each onlooker bee chooses a food source and tries to find a better neighbouring
one. The new food source receives the same treatment as in the previous phase.
Finally, in the scout bee phase, if the number of improvement trials of a food
source reaches a maximum number NTmax, the scout bee finds a new food
source to replace the former one in the pool of solutions. Finally, the algorithm
terminates after a number maxIter of consecutive iterations without finding a
food source that improves the queen’s one. The following subsections provide
more detail on each of the phases; the pseudo-code of the resulting ABC is given
in 1.

3.1 Employed Bee Phase

Originally, the employed bees search is always guided by the queen’s food source.
However, this strategy may in some occasions cause a lack of diversity in the
swarm and lead to premature convergence [2]. To address this issue, we propose
to modify the original algorithm and select the guiding food source from an
elite group that will contain the most suitable food sources according to one of
the following strategies. In the first strategy, denoted Elite1, it only contains the
best-found food source, so it is equivalent to the classical ABC. In the second
strategy, denoted Elite2, the elite group contains the food sources with the highest
number of improvement trials at the beginning of the iteration and the best
food source in the set is selected to guide the employed bee. Finally, in the third
strategy, denoted Elite3, the elite group contains the best B food sources in the
current swarm and a solution from this group is chosen at random to guide the
employed bee. B is a parameter of the algorithm that helps balancing diversity:
when B = 1, this strategy is equivalent to Elite1, and the larger B is, the more
diversity is inserted into the phase.

Once two food sources are selected for each employed bee, a recombination
operator is applied with probability pemp to find a new food source to explore.
Here, taking advantage of the solution encoding, we propose to use the following
operators: Generalised Order Crossover (GOX), Job-Order Crossover (JOX) and
Precedence Preservative Crossover (PPX).

3.2 Onlooker Bee Phase

In this phase, food sources are selected from those that have not reached the
maximum number of improvement trials. Each selected food source is assigned to
an onlooker bee that will explore a neighbouring solution with probability pon to
explore a neighbouring solution. Neighbours are obtained by performing a small
change on the food source using one of the following operators for permutations:
Swap, Inversion or Insertion.



Elite ABC for Makespan Optimisation in JSP with Interval Uncertainty 103

Table 1. Final parameter setup for each variant of ABC

Instance ABCE1 ABCE2 ABCE3

Recombination operator JOX JOX GOX

Employed probability pemp 0.75 1 1

Neighbourhood operator Insertion Insertion Swap

Onlooker probability pon 0.75 0.75 1

Improvement trials fs.numTrials 10 15 20

3.3 Scout Bee Phase

In this last phase, a scout bee is assigned to each food source that has reached
the maximum number of improvement trials. Since this food source has not
been improved after the given number of attempts, it is discarded and the scout
bee is in charge of finding a replacement. To implement this phase, every food
source fs having fs.numTrials > NTmax is replaced by a random one fs ′ with
fs ′.numTrials = 0.

4 Experimental Results

The objective of this Section is to evaluate the performance of the three variants
of the ABC algorithm in comparison with the state-of-the-art for interval JSP
with makespan minimization, which, to our knowledge is the genetic algorithm
from [5], referred to as GA hereafter.

We consider 12 well-known instances for the job shop problem (in brackets,
the size n × m): FT10 (10 × 10), FT20 (20 × 5), La21, La24, La25 (15 × 10),
La27, La29 (20 × 10), La38, La40 (15 × 15), ABZ7, ABZ8, and ABZ9 (20 × 15).
Processing times are modified to be intervals, so given the original deterministic
processing time of a task po, the interval time is po = [po − δ, po + δ], where δ is
a random value in [0, 0.15po]. The resulting IJSP instances are available online1.
We use a PC with Intel Xeon Gold 6132 processor at 2.6 Ghz and 128 Gb RAM
with Linux (CentOS v6.10) and a C++ implementation. Every variant of the
algorithm is run 30 times on each instance to obtain representative data.

A parameter tuning process has been carried out for the three variants of
ABC, namely ABCE1, ABCE2 and ABCE3, where ABCEi incorporates the
strategy Elitei, i = 1, 2, 3, in the employed bee phase. In all cases, the popu-
lation size is equal to 250 and the stopping criterion consists in maxIter = 25
consecutive iterations without improving the best solution found so far. For
ABCE3, the size of the elite set is B = 50 food sources. The final configuration
for the remaining parameters for each variant of ABC is shown in Table 1.

Table 2 summarises the results obtained by the GA from [5] and the three
ABC variants. For each algorithm and instance it reports the expected makespan
(or midpoint) of the best-found solution (m(Best)), the average expected

1 Repository section at http://di002.edv.uniovi.es/iscop.

http://di002.edv.uniovi.es/iscop


104 H. Dı́az et al.

Table 2. Computational results and times of GA and ABC

GA ABCE1 ABCE2 ABCE3

Instance m(Best) Avg. σ Time m(Best) Avg. σ Time m(Best) Avg. σ Time m(Best) Avg. σ Time

ABZ7 697.5 738.0 12.87 1.80 703.0 722.3 8.27 1.66 691.5 713.0 18.90 6.35 690.5 704.0 7.27 4.45

ABZ8 718.0 764.2 13.82 1.76 721.5 741.7 10.36 2.07 702.0 730.9 19.31 7.00 703.0 722.8 7.49 4.19

ABZ9 747.0 779.8 15.91 2.19 729.5 761.7 19.24 2.27 715.0 757.0 19.41 6.59 725.0 747.8 10.37 5.97

FT10 947.0 978.6 19.70 0.48 945.0 982.1 19.47 0.78 939.0 966.7 16.73 1.14 940.0 968.2 11.87 1.56

FT20 1182.0 1215.7 15.82 0.69 1177.0 1199.0 16.36 0.77 1173.0 1190.2 13.17 2.06 1173.0 1185.1 7.70 2.74

LA21 1079.0 1098.4 13.45 1.13 1067.5 1112.6 18.19 0.90 1069.5 1098.4 15.55 2.54 1073.0 1098.4 13.54 1.82

LA24 973.0 994.3 14.66 0.81 972.0 999.9 14.71 0.70 965.0 986.5 15.18 2.06 956.0 982.3 11.72 2.74

LA25 996.0 1026.9 23.39 0.97 1010.5 1037.5 18.00 0.71 992.0 1019.5 16.02 3.80 996.0 1014.9 8.71 2.44

LA27 1291.5 1361.2 24.67 1.30 1281.0 1319.8 16.95 1.38 1268.5 1300.5 18.49 4.55 1269.0 1292.6 12.25 4.11

LA29 1280.0 1315.9 18.63 1.08 1223.0 1281.1 27.14 1.35 1208.0 1250.1 26.03 5.00 1215.5 1251.6 15.13 4.40

LA38 1268.0 1305.5 27.26 1.41 1249.5 1304.5 27.50 1.27 1251.5 1289.4 21.17 3.41 1250.0 1278.3 17.61 5.96

LA40 1284.0 1328.8 28.50 1.20 1252.0 1302.1 21.70 1.43 1256.0 1283.4 17.94 4.04 1245.0 1273.4 13.81 3.01

makespan across all runs, the standard deviation, and the average CPU time
in seconds. The best result for each instance is highlighted in bold. Additionally,
ANOVA or Kruskall Wallis statistical tests have been performed on the results
depending on the normality of the data, followed by a multi-variable analysis.
Grey cells highlight those algorithms with no significant difference w.r.t. the best
solution on that instance.

In terms of m(Best), GA is outperformed by ABCE2 and ABCE3 on every
instance. ABCE2 improves GA 1.82% on average, being up to 5.63% for instance
La29. If we pay attention to the average behaviour, ABCE3 obtains the best
results on 10 out of 12 instances, while it is not significantly different from
the best on the remaining 2 instances. On average, its results are 3.02% better
than those of GA. However, it is not significantly different than ABCE2 on
any instance. What is more interesting is that ABCE1 is never in the set of best
methods, which reinforces the hypothesis that the standard ABC is not adequate
for our problem and the proposed alternatives offer a significant improvement
both w.r.t. the standard ABC and the state-of-the-art GA.

We can also observe that all ABC variants take longer running times than
GA. The reason is that one iteration of ABC takes longer than an iteration
of GA and also the dynamic stopping criterion translates into more iterations
(hence, longer running times) for ABC. However, the efficiency of ABCEi per
time unit is comparable to if not better than that of GA. Figure 1 depicts the
evolution of the midpoint of the best makespan for representative instances La29
and La40. In both cases, ABCE1 (red line) and ABCE3 (green line) not only
outperform GA (black line) in the final result, but also present a better makespan
improvement rate per time unit. For ABCE2 (blue line) this improvement rate
is very similar to that of GA, but ABCE2 achieves a better final result by taking
longer to converge. This longer time to converge is also observed in ABCE3, the
version that achieves better results in average.

Finally, we perform a robustness analysis on the solutions obtained by each
method. To do so, for each variant of ABC, each instance and each one of the
30 runs we take the expected makespan according to the obtained solution as
well as the associated task processing order. This task order is then executed



Elite ABC for Makespan Optimisation in JSP with Interval Uncertainty 105

Fig. 1. Evolution along time of the makespan’s midpoint for the best schedules obtained
with GA (in black) and the different variants of ABC on instances La40 and La29.
(Color figure online)

Elite1 Elite2 Elite30.
00

0
0.
00

4
0.
00

8
0.
01

2
ε−

ro
bu

st
ne

ss

(a) La29
Elite1 Elite2 Elite30.

00
0

0.
00

4
0.
00

8
0.
01

2
ε−

ro
bu

st
ne

ss

(b) La38
Elite1 Elite2 Elite30.

00
0

0.
00

4
0.
00

8
0.
01

2
ε−

ro
bu

st
ne

ss

(c) La40

Fig. 2. ε-robustness of schedules obtained with the different variants of ABC on
instances La29, La38 and La40.

for K = 1000 deterministic realisations of each instance to calculate the ε value.
Figure 2 shows the boxplots of the resulting ε values on three representative
instances. Statistical tests on all instances allow to conclude that there is no
significant difference between the robustness of the three variants of the ABC.
This homogeneity shows that the newly proposed variants ABCE2 and ABCE3

can obtain better results than a standard ABC (ABCE1) and GA without dete-
riorating the robustness of the solutions.



106 H. Dı́az et al.

Algorithm 1. Schema of the ABC Algorithm
Require: An IJSP instance
Ensure: A schedule

Generate a pool P0 of food sources
Best ← Best solution in P0

numIter ← 0
while numIter < maxIter do

/* Employed bee phase*/
E ← Elite group from Pi based on Elitex strategy
for each food source fs in Pi do

fs ′ ← Select food source from E using Elitex strategy
newfs ← Apply crossover to (fs, fs ′) with probability pemp

if newfs is better than fs and different than Best then
fs ← newfs

if newfs is better than Best then
Best ← newfs

numIter ← 0
else

fs.numTrials ← fs.numTrials + 1

/* Onlooker bee phase*/
for each food source fs in Pi do

if fs.numTrials < NTmax then
newfs ← Apply onlooker operator to fs with probability pon

if newfs is better than fs and different than Best then
fs ← newfs

if newfs is better than Best then
Best ← newfs

numIter ← 0
else

fs.numTrials ← fs.numTrials + 1

/* Scout bee phase*/
for each food source fs in Pi do

if fs.numTrials > NTmax then
fs ← find new food source
fs.numTrials ← 0
if newfs is better than Best then

Best ← newfs ;
numIter ← 0

numIter ← numIter + 1

return Best

5 Conclusions

We have considered the IJSP, a version of the JSP that models the uncertainty
on task durations appearing in real-world problems using intervals. We have
used an ABC approach as solving method, adapting the general scheme to our
problem, and we have tackled the issue of lack of diversity in the swarm by



Elite ABC for Makespan Optimisation in JSP with Interval Uncertainty 107

redesigning certain aspects of the employed and onlooker bee phases. This has
resulted in three variants of the ABC algorithm. An experimental analysis has
shown the potential of these variants, especially those introducing more diversity,
ABCE2 and ABCE3, which outperform the results of a more standard ABCE1 as
well as the state-of-the-art from the literature. This improvement is present not
only when all methods are allowed to converge and stop after maxIter iterations
without improvement, but it would also be the case if the stopping criterion
were changed and they were given equal runtime to the state-of-the-art method.
Finally, a robustness analysis has shown that the makespan improvement of
the new methods is not obtained at the expense of deteriorating the solutions’
robustness.

References

1. Allahverdi, A., Aydilek, H., Aydilek, A.: Single machine scheduling problem with
interval processing times to minimize mean weighted completion time. Comput.
Oper. Res. 51, 200–207 (2014)

2. Banharnsakun, A., Sirinaovakul, B., Achalakul, T.: Job shop scheduling with the
best-so-far ABC. Eng. Appl. Artif. Intell. 25(3), 583–593 (2012)

3. Bidot, J., Vidal, T., Laboire, P.: A theoretic and practical framework for scheduling
in stochastic environment. J. Sched. 12, 315–344 (2009)

4. Bierwirth, C.: A generalized permutation approach to jobshop scheduling with
genetic algorithms. OR Spectrum 17, 87–92 (1995)

5. Dı́az, H., González-Rodŕıguez, I., Palacios, J.J., Dı́az, I., Vela, C.R.: A genetic
approach to the job shop scheduling problem with interval uncertainty. In: Lesot,
M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1238, pp. 663–676. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50143-3 52

6. Dı́az, H., Palacios, J.J., Dı́az, I., Vela, C.R., González-Rodŕıguez, I.: Tardiness
minimisation for job shop scheduling with interval uncertainty. In: de la Cal, E.A.,
Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI),
vol. 12344, pp. 209–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-61705-9 18

7. Karaboga, D.: An idea based on honey bee swarm for numerical optimization,
technical report - tr06. Technical report, Erciyes University, January 2005

8. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1),
21–57 (2012). https://doi.org/10.1007/s10462-012-9328-0

9. Lei, D.: Population-based neighborhood search for job shop scheduling with interval
processing time. Comput. Ind. Eng. 61, 1200–1208 (2011)

10. Lei, D.: Interval job shop scheduling problems. Int. J. Adv. Manuf. Technol. 60,
291–301 (2012)

11. Li, X., Gao, L., Wang, W., Wang, C., Wen, L.: Particle swarm optimization
hybridized with genetic algorithm for uncertain integrated process planning and
scheduling with interval processing time. Comput. Ind. Eng. 235, 1036–1046 (2019)

12. Pinedo, M.L.: Scheduling. Theory, Algorithms, and Systems. Springer, New York
(2016). https://doi.org/10.1007/978-1-4614-2361-4

https://doi.org/10.1007/978-3-030-50143-3_52
https://doi.org/10.1007/978-3-030-61705-9_18
https://doi.org/10.1007/978-3-030-61705-9_18
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1007/978-1-4614-2361-4


108 H. Dı́az et al.

13. Wong, L.P., Puan, C.Y., Low, M.Y.H., Chong, C.S.: Bee colony optimization algo-
rithm with big valley landscape exploitation for job shop scheduling problems. In:
2008 Winter Simulation Conference, pp. 2050–2058 (2008)

14. Yao, B., Yang, C., Hu, J., Yin, G., Yu, B.: An improved artificial bee colony
algorithm for job shop problem. Appl. Mech. Mater. 26–28, 657–660 (2010)


	Elite Artificial Bee Colony for Makespan Optimisation in Job Shop with Interval Uncertainty
	1 Introduction
	2 The Job Shop Problem with Interval Durations
	2.1 Interval Uncertainty
	2.2 Robustness on Interval JSP

	3 An Artificial Bee Colony Algorithm
	3.1 Employed Bee Phase
	3.2 Onlooker Bee Phase
	3.3 Scout Bee Phase

	4 Experimental Results
	5 Conclusions
	References




