
Chapter 7
Handling of Road Cars

Ordinary road cars are by far the most common type of motor vehicle. Almost all of
them share the following features relevant to handling:

1. four wheels (two axles);
2. two-wheel drive;
3. open differential;
4. no wings (and hence, no significant aerodynamic downforces);
5. no intervention by electronic active safety systems like ABS or ESP under ordi-

nary operating conditions.

Moreover, in the mathematical models it is also typically assumed that the vehi-
cle moves on a flat road at almost constant forward speed u, thus requiring small
longitudinal forces by the tires.

The handling analysis of this kind of vehicles is somehow the simplest that can
be envisaged.1 That does not mean that it is simple at all.

The vehiclemodel developed inChap. 3 is employed.However, owing to the above
listed features of road cars, several additional simplifications can bemade, which first
lead to the double track model and eventually to the celebrated single track model.
All the steps that lead to the single track model are thoroughly discussed to clarify
when it is a suitable model for vehicle dynamics.

The original version of this chapter was revised: Figures 7.12, to 7.19 has been updated with high
resolution. The correction to this chapter is available at https://doi.org/10.1007/978-3-031-06461-
6_12

1 Some sports cars and all race cars have a limited-slip differential. Several race cars also have wings
that provide fairly high aerodynamic downforces at high speed. The handling of these vehicles is
somehow more involved than that of ordinary road cars and will be addressed in Chap. 8.
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7.1 Additional Simplifying Assumptions for Road Car
Modeling

The vehicle model introduced in Chap. 3, and whose equations were collected in
Sect. 3.14, is simplified hereafter, taking into account the distinguishing features
relevant to handling of road cars (Fig. 7.1).

7.1.1 Negligible Vertical Aerodynamic Loads

Aerodynamics of road cars ismostly concernedwith attaining lowdrag, because of its
impact on fuel consumption. Therefore, road cars normally do not have aerodynamic
devices to generate significant vertical loads, that is Za

1 � 0 and Za
2 � 0. Basically,

this means that the handling features of a road car are (almost) speed insensitive.

7.1.2 Open Differential

The main simplification is that the vehicle is equipped with an open differential.
Since there is almost no friction inside an open differential mechanism, in (3.178)
we have that its internal efficiency ηh � 1, and hence Ml � Mr . In other words, both
driving wheels receive always the same torque from the engine. Therefore, in the
global equilibrium equations (3.94), the tire longitudinal forces Fxi j (Fig. 7.1) are
such that Fx11 = Fx12 and Fx21 = Fx22 , and hence do not contribute to the yawmoment
N applied to the vehicle. Summing up, in (3.87)

ΔX1 = −[Fy12 sin(δ12) − Fy11 sin(δ11)]/2
ΔX2 = 0

(7.1)

Basically, this means that the handling features of a road car are (almost) insensitive
to the radius of curvature of its trajectory, provided the radius is not too small.

A look at Fig. 3.28 can be useful to better understand ΔX1 = (X12 − X11)/2.

7.1.3 Almost Constant Forward Speed

If the forward speed u is almost constant (
.
u � 0, and hence ax � 0), and the aerody-

namic drag is not very high (like in ordinary cars, but not in a Formula 1 car, which,
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Fig. 7.1 Vehicle basic
scheme (double track model)

however, does not have an open differential),2 the tire longitudinal forces are quite
small (Fig. 7.1). That means that also the longitudinal slips are small and can be
neglected. Therefore,

Fxi j � 0

σxi j � 0
(7.2)

which means that all wheels are almost under longitudinal pure rolling conditions.
As a consequence, we have

u � ωhr2 (7.3)

where ωh is the angular velocity of the differential housing, and r2 is the rolling
radius of the rear wheels.

2 The left and right wheels of the same axle are normally equipped with the same kind of brake.
Therefore, the braking torque is pretty much the same under ordinary operating conditions, and,
again, (7.1) holds true. However, there are important exceptions. The left and right braking forces
can be different if: (a) the grip is different and at least onewheel is locked; (b) the friction coefficients
inside the two brakes is different (for instance, because of different temperatures, which is often the
case in racing cars); (c) some electronic stability system, like ESP or ABS, has been activated.
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7.2 Mathematical Model for Road Car Handling

The equations collected in Sect. 3.14 for the fairly general vehicle model described
in Chap. 3 are now tailored to the case of road cars with open differential, no wings,
and almost constant forward speed.

The general definitions (3.87) for the horizontal (in-plane) forces acting on the
vehicle now become (Figs. 7.1 and 7.2)

X1 � −[Fy11 sin(δ11) + Fy12 sin(δ12)]
X2 � 0

Y1 � Fy11 cos(δ11) + Fy12 cos(δ12)

Y2 = Fy21 + Fy22

ΔX1 � −[Fy12 sin(δ12) − Fy11 sin(δ11)]/2
ΔX2 � 0

(7.4)

7.2.1 Global Equilibrium

Since the forward speed u in (3.94) is given, the vehicle has basically only lateral
and yaw dynamics (often simply called lateral dynamics), described by the following
system of two differential equations (Fig. 7.2)

may = m(
.
v + ur) = Y = Y1 + Y2

Jz
.
r = N = Y1a1 − Y2a2 + ΔX1t1

(7.5)

while

X2 = m(
.
u − vr) + [Fy11 sin(δ11) + Fy12 sin(δ12)] + 1

2
ρa SaCxu

2 (7.6)

is now an algebraic equation, the unknown being the tire longitudinal force X2

(see (7.4)).
It looks like we are playing a dirty game. First we say X2 � 0, and now we are

computing it. This is indeed to check whether X2 is actually very small.
We recall that u is the vehicle longitudinal velocity, r is the vehicle yaw rate, v is

the lateral velocity of G, ax is the longitudinal acceleration of G, and ay is the lateral
acceleration of G. The vehicle has mass m and moment of inertia Jz with respect to
a vertical axis located at G. It is worth noting that u and r are not affected by the
position of G.
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Fig. 7.2 Global dynamics of
the double track model

7.2.2 Approximate Lateral Forces

In all two-axle vehicles with an open differential, it is possible to solve (7.5) with
respect to the front and rear lateral forces (cf. (3.100))

Y1 = ma2
l

ay + Jz
.
r − ΔX1t1

l
� ma2

l
ay

Y2 = ma1
l

ay − Jz
.
r − ΔX1t1

l
� ma1

l
ay

(7.7)

where, in the last terms, we took into account that |Jz .r | � |mayai |, since in a car
Jz < ma1a2 and | .rai | � |ay |. The other term ΔX1t1 becomes relevant if the wheel
steer angle is at least 15 degrees. It is common practice to ignore this contribution.
In most cases it is hardly mentioned, and almost always neglected, although it can
be far from negligible. The main reason for this “ostracism” is that the analysis is
much simpler if ΔX1t1 is set to zero. Well, not quite a reasonable reason…

Moreover, under ordinary operating conditions |.v| � |ur | (Fig. 3.7), and we can
use

ãy = ur = u2ρ (7.8)

already defined in (3.28), instead of the full expression ay = .
v + ur of the lateral

acceleration, to approximately evaluate the axle lateral forces (cf. (3.100))

Y1 � ma2
l

ãy and Y2 � ma1
l

ãy (7.9)

Therefore, in a two-axle vehicle with open differential, the axle lateral forces are
approximately linear functions of the lateral acceleration ãy . This is a simple, yet
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fundamental result in vehicle dynamics of road cars, which greatly impacts on the
whole vehicle model.

Equations (7.9) hold true only when
.
v = .

r = 0, that is when the vehicle is in
steady-state conditions. However, they are sufficiently accurate when employed to
estimate lateral load transfers and roll angles, as will be shown. Actually, we should
never forget that in the present analysis there is no roll dynamics (except in Chap. 9).
Therefore, the roll angle is always assumed to be the angle at steady state.

7.2.3 Lateral Load Transfers and Vertical Loads

According to (3.151) and (3.155), both lateral load transfers ΔZ1 and ΔZ2 are linear
functions of both lateral forces Y1 and Y2.

Inserting (7.9) into (3.151), we obtain the following simplified equations for the
lateral load transfers in vehicles with open differential and linear springs

ΔZ1 � kφ1kφ2

t1kφ

(
h − q

kφ2

+ a2q1
lksφ1

+ a2q1
lksφ2

+ a2q1 + a1q2
lk p

φ2

)
mãy = η1mãy

ΔZ2 � kφ1kφ2

t2kφ

(
h − q

kφ1

+ a1q2
lksφ1

+ a1q2
lksφ2

+ a2q1 + a1q2
lk p

φ1

)
mãy = η2mãy

(7.10)

or, equivalently

ΔZ1 � 1

t1

[
kφ1

kφ

(h − q) + a2q1
l

+ kφ1kφ2

kφl

(
a1q2
k p
φ2

− a2q1
k p
φ1

)]
mãy = η1mãy

ΔZ2 � 1

t2

[
kφ2

kφ

(h − q) + a1q2
l

+ kφ1kφ2

kφl

(
a2q1
k p
φ1

− a1q2
k p
φ2

)]
mãy = η2mãy

(7.11)
where l = a1 + a2 is the wheelbase, q = (a2q1 + a1q2)/ l, and

kφ = kφ1 + kφ2 = ksφ1
k p
φ1

ksφ1
+ k p

φ1

+ ksφ2
k p
φ2

ksφ2
+ k p

φ2

(3.148′)

is the global roll stiffness.
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Fig. 7.3 Geometric parameters that affect lateral load transfers

The two quantities η1 and η2, and hence the ratio ΔZ1/ΔZ2 = η1/η2, depend in a
peculiar way on the track widths ti , on the roll stiffnesses of the suspensions ksφi

, on
the roll stiffnesses of the tires k p

φi
, on the heights qi of the no-roll centers Qi ,3 on the

longitudinal position (a1, a2) and height h of the center of gravity G (Fig. 7.3). The
roll stiffnesses are defined in Sect. 3.10.6, and in particular in (3.148). The no-roll
centers are defined in Sect. 3.10.9.

If the tires are supposed to be perfectly rigid, that is k p
φi

→ ∞ and ksφi
= kφi , the

expressions of the lateral load transfers (7.11) become much simpler

ΔZ1 � 1

t1

[
kφ1(h − q)

kφ

+ a2q1
l

]
mãy = η1mãy

ΔZ2 � 1

t2

[
kφ2(h − q)

kφ

+ a1q2
l

]
mãy = η2mãy

(7.12)

as in (3.158).
Taking (7.9) into account we also obtain that

ΔZ1 = η1
l

a2
Y1 and ΔZ2 = η2

l

a1
Y2 (7.13)

The total vertical loads (3.109) on each tire can be further simplified because, in
the present case, the longitudinal load transfer ΔZ is negligible. Moreover, cars with
an open differential are not so sporty to have significant aerodynamic vertical loads.
Therefore, combining (3.109) and (7.10), we obtain

3 We call no-roll center what is commonly called roll center.
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Fig. 7.4 Roll angle φs
i due

to suspension deflections
only, roll angle φ

p
i due to tire

deformations only, and total
vehicle roll angle φ (front
view)

Z11 = Fz11 = Z0
1

2
− ΔZ1(ãy) = mga2

2l
− η1mãy

Z12 = Fz12 = Z0
1

2
+ ΔZ1(ãy) = mga2

2l
+ η1mãy

Z21 = Fz21 = Z0
2

2
− ΔZ2(ãy) = mga1

2l
− η2mãy

Z22 = Fz22 = Z0
2

2
+ ΔZ2(ãy) = mga1

2l
+ η2mãy

(7.14)

which shows that the variations of vertical loads are (linear) functions of the lateral
acceleration ãy = ur .
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7.2.4 Roll Angles

Also the (steady-state) roll angles due to suspension deflections (3.147) depend
upon Y1 and Y2, and hence, according to (7.9), can be set as functions of the lateral
acceleration only4

φs
1 = 1

ksφ1

kφ1kφ2

kφ

[
h − q

kφ2

− a2q1
lk p

φ1

+ a1q2
lk p

φ2

]
mãy = ρs

1mãy

φs
2 = 1

ksφ2

kφ1kφ2

kφ

[
h − q

kφ1

− a1q2
lk p

φ2

+ a2q1
lk p

φ1

]
mãy = ρs

2mãy

(7.15)

The same applies to roll angles φ
p
i due to tire deformations. According to (3.144)

and (7.10) we obtain

φ
p
1 = ΔZ1t1

k p
φ1

= η1t1
k p
φ1

mãy = ρ
p
1 mãy

φ
p
2 = ΔZ2t2

k p
φ2

= η2t2
k p
φ2

mãy = ρ
p
2mãy

(7.16)

If the tires are supposed to be rigid, we have ρ
p
1 = ρ

p
2 = 0, and ρs

1 = ρs
2 = (h −

q)/kφ .
The roll angles (Fig. 7.4) are important because they affect camber angles and

steer angles of the wheels, as shown hereafter.

7.2.5 Camber Angle Variations

Let, γ 0
i2 = −γ 0

i1 = γ 0
i be the camber angles under static conditions (Fig. 7.5), and let

Δγi1 = Δγi2 = Δγi be the camber variations due to vehicle roll motion (Fig. 7.6).
The camber angles of the two wheels of the same axle are thus given by

γi1 = −γ 0
i + Δγi γi2 = γ 0

i + Δγi (7.17)

where the camber variation Δγi , according to (3.113), (7.15) and (7.16), depends on
the roll angles, and hence on the lateral acceleration ãy

Δγi �
[
−

(
ti/2 − ci

ci

)
ρs
i + ρ

p
i

]
mãy = χimãy (7.18)

4 In this model the roll inertial effects are totally disregarded.
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Fig. 7.5 Positive static
camber γ 0

i (front view)

Fig. 7.6 Positive camber
variations Δγi due to roll
motion (front view, left turn)

since the term ±zsi /ci is usually negligible in road cars on flat roads.
Three suspensions with the same ti , but with different values of ci , are shown in

Fig. 7.7. We see that, as expected, the same amount of vehicle roll angle φs
i yields

different camber variations (tire roll angle φ
p
i not considered). In all cases the roll

angle is due to a left turn. Camber variations are negative in the first case.

7.2.6 Steer Angles

According to (3.210) and taking into account (7.15),we obtain the following (approx-
imate, but very good) expressions for the steering angles of the two wheels of the
same axle

δi1 = −δ0i + τiδv + εi
ti
2l

(τiδv)
2 + Υiρ

s
i mãy = δi1(δv, ãy)

δi2 = δ0i + τiδv − εi
ti
2l

(τiδv)
2 + Υiρ

s
i mãy = δi2(δv, ãy)

(7.19)

which are, obviously, functions of the steering wheel rotation δv imposed by the
driver and, possibly, of the lateral acceleration ãy = ur .

In (7.19), as discussed in Sect. 3.4, δ0i is the static toe angle, τi is the first-order
gear ratio of the whole steering system, εi is the Ackermann coefficient for dynamic
toe, Υi is the roll steer coefficient and ρs

i mãy is the suspension roll angle φs
i . If

the tires are supposed to be rigid, we have ρs
1 = ρs

2 = (h − q)/kφ . The analysis is
considerably simpler if Υi = 0, that is if there is no roll steer. Most cars have τ2 = 0,
that is no direct steering of the rear wheels.
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Fig. 7.7 Front view of three different suspensions (right), and their camber variations (left) due to
the same positive vehicle roll angle φs

i (tire roll angle φ
p
i not considered)

7.2.7 Tire Slips

As already stated in Sect. 7.1.3, in themodel under investigation all wheels are almost
under longitudinal pure rolling conditions, that is σxi j � 0. Therefore, according to
(3.59)

ω11r1 = (u − r t1/2) cos(δ11) + (v + ra1) sin(δ11)

ω12r1 = (u + r t1/2) cos(δ12) + (v + ra1) sin(δ12)

ω21r2 = (u − r t2/2) cos(δ21) + (v − ra2) sin(δ21)

ω22r2 = (u + r t2/2) cos(δ22) + (v − ra2) sin(δ22)

(7.20)

where ωi j is the angular velocity of the corresponding rim and ri is the wheel rolling
radius, as defined in (2.38).

Under these assumed operating conditions, the tire lateral slips (3.60) become
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σy11 = (v + ra1) cos(δ11) − (u − r t1/2) sin(δ11)

(u − r t1/2) cos(δ11) + (v + ra1) sin(δ11)

σy12 = (v + ra1) cos(δ12) − (u + r t1/2) sin(δ12)

(u + r t1/2) cos(δ12) + (v + ra1) sin(δ12)

σy21 = (v − ra2) cos(δ21) − (u − r t2/2) sin(δ21)

(u − r t2/2) cos(δ21) + (v − ra2) sin(δ21)

σy22 = (v − ra2) cos(δ22) − (u + r t2/2) sin(δ22)

(u + r t2/2) cos(δ22) + (v − ra2) sin(δ22)

(7.21)

where δi j = δi j (δv, ur) as in (7.19).
Therefore, more compactly

σyi j = σyi j

(
v, r; u, δi j (δv, ur)

)
(7.22)

It will turn useful to have these very same slips expressed in terms of β = v/u
and ρ = r/u

σy11 = (β + ρa1) cos(δ11) − (1 − ρt1/2) sin(δ11)

(1 − ρt1/2) cos(δ11) + (β + ρa1) sin(δ11)

σy12 = (β + ρa1) cos(δ12) − (1 + ρt1/2) sin(δ12)

(1 + ρt1/2) cos(δ12) + (β + ρa1) sin(δ12)

σy21 = (β − ρa2) cos(δ21) − (1 − ρt2/2) sin(δ21)

(1 − ρt2/2) cos(δ21) + (β − ρa2) sin(δ21)

σy22 = (β − ρa2) cos(δ22) − (1 + ρt2/2) sin(δ22)

(1 + ρt2/2) cos(δ22) + (β − ρa2) sin(δ22)

(7.23)

and, more compactly
σyi j = σyi j

(
β, ρ; δi j (δv, ur)

)
(7.24)

We see that the “main” dependence on u has disappeared.

7.2.8 Simplified Tire Slips

Equations (7.21) can be simplified without impairing their accuracy too much. More
precisely, taking into account that u � |v|, u � |r ti |, |δi j | � 1, and ωi j ri � u, we
obtain (see (3.55) and (3.57))
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σy11 � v + ra1
u

− δ11 = β1 − δ11

σy12 � v + ra1
u

− δ12 = β1 − δ12

σy21 � v − ra2
u

− δ21 = β2 − δ21

σy22 � v − ra2
u

− δ22 = β2 − δ22

(7.25)

More explicitly, according to (7.19), we have

σy11 � v + ra1
u

−
(

τ1δv − δ01 + ε1
t1
2l

(τ1δv)
2 + Υ1ρ

s
1mur

)

σy12 � v + ra1
u

−
(

τ1δv + δ01 − ε1
t1
2l

(τ1δv)
2 + Υ1ρ

s
1mur

)

σy21 � v − ra2
u

−
(

τ2δv − δ02 + ε2
t2
2l

(τ2δv)
2 + Υ2ρ

s
2mur

)

σy22 � v − ra2
u

−
(

τ2δv + δ02 − ε2
t2
2l

(τ2δv)
2 + Υ2ρ

s
2mur

)
(7.26)

Most cars have τ2 = 0, that is no direct steering of the rear wheels.
Equations (7.21)–(7.26) show how the lateral tire slips σi j are related to the global

vehicle motion, to the kinematic steer angles, to the toe-in/out angles, and to the roll
steer angle. None of these contributions can be neglected, in general.

We can also look at the actual tire slip angles αi j (Fig. 7.8), defined in (3.55) and
(3.58). In this model (not to be taken as a general rule) we have

σyi j � −αi j (7.27)

Just compare (3.58) with (7.25).

7.2.9 Tire Lateral Forces

The lateral force exerted by each tire on the vehicle depends on many quantities, as
shown in the second equation in (2.82). For sure, there is a strong dependence on
the vertical loads Zi j and on the lateral slips σyi j , while, in this vehicle model, the
longitudinal slips σxi j are negligible. The camber angles γi j need to be considered
as well, since they are quite influential, even if small. According to (3.212), the spin
slips ϕi j are directly related to γi j . Therefore, a suitable model for the lateral force
of each wheel with tire is (Fig. 7.1)
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Fig. 7.8 Actual slip angles
αi j in the double track model
(see also Fig. 3.13)

Fyi j = Fyi j

(
Zi j , γi j , σyi j

)
(7.28)

Of course, extensive tire testing is required to make these functions available.
Needless to say, many other parameters affect the tire performance: road surface,

temperature, inflation pressure, etc.
The lateral force Yi for each axle of the vehicle is obtained by adding the lateral

forces of the left wheel and of the right wheel (cf. (3.85) and (7.4), with Fxi j � 0)

Y1 = Fy11 cos(δ11) + Fy12 cos(δ12)

Y2 = Fy21 + Fy22

ΔX1 = [Fy11 sin(δ11) − Fy12 sin(δ12)]/2
(7.29)

In general, the two wheels of the same axle undergo different vertical loads,
different camber angles, and different lateral slips. Therefore, the two lateral forces
are very different, as shown, e.g., in Fig. 3.28 and also in Fig 7.12. Equations (7.14)
and (7.18), when inserted into (7.28), allow to take all these aspects into account.
Therefore (Fig. 7.1)
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Y1 = Fy11

(
Z11(ur), γ11(ur), σy11

)
cos

(
δ11(δv, ur)

)
+ Fy12

(
Z12(ur), γ12(ur), σy12

)
cos

(
δ12(δv, ur)

)
= Fy1(σy11 , σy12 , δv, ur),

Y2 = Fy21

(
Z21(ur), γ21(ur), σy21

)
+ Fy22

(
Z22(ur), γ22(ur), σy22

)
= Fy2(σy21 , σy22 , ur),

ΔX1 = Fy11

(
Z11(ur), γ11(ur), σy11

)
sin

(
δ11(δv, ur)

)
− Fy12

(
Z12(ur), γ12(ur), σy12

)
sin

(
δ12(δv, ur)

)
= ΔX1(σy11 , σy12 , δv, ur)

(7.30)

It should be clearly understood that the functions in (7.30) are known algebraic
functions.

A general comment on this vehicle model is in order here: some quantities depend
(linearly) only on the lateral acceleration ãy = ur . However, it must be remarked that
this peculiarity needs an open differential, no aerodynamic forces, almost constant
forward speed.

7.3 Double Track Model

7.3.1 Governing Equations of the Double Track Model

Summing up, the double track vehicle model for studying the handling of road cars
is governed by the following three sets of equations:

• two equilibrium equations (lateral and yaw), as in (7.5)

m(
.
v + ur) = Y1 + Y2 = Y

Jz
.
r = Y1a1 − Y2a2 + ΔX1t1 = N

(7.31)

• three constitutive equations, as in (7.30),which are affected by several setup param-
eters and by the vertical loads

Y1 = Fy1(σy11 , σy12 , δv, ur)

Y2 = Fy2(σy21 , σy22 , ur)

ΔX1 = ΔX1(σy11 , σy12 , δv, ur)

(7.32)
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• four congruence equations (tire lateral slips), as in (7.21), which take care, among
other things, of the Ackermann coefficient

σy11 = σy11(v, r; u, δ11(δv, ur))

σy12 = σy12(v, r; u, δ12(δv, ur))

σy21 = σy21(v, r; u, δ21(δv, ur))

σy22 = σy22(v, r; u, δ22(δv, ur))

(7.33)

We have simply δi j = δi j (δv) if there is no roll steer.
This vehicle model for road vehicle handling is fairly general, and it is usually

calleddouble trackmodel.Amore classical formulationof the samemodel is obtained
taking (7.27) into account. However, using σi j instead of αi j is conceptually clearer.

7.3.2 Dynamical Equations of the Double Track Model

The dynamical equations for road vehicle handling are now promptly obtained. As
a final step, it suffices to insert (7.32) and (7.33) into (7.31)

m(
.
v + ur) = Y (v, r; u, δv)

Jz
.
r = N (v, r; u, δv)

(7.34)

This is a dynamical system with two state variables, namely, but not necessarily, v(t)
and r(t), as discussed in Sect. 7.3.3. The driver controls the steering wheel angle
δv(t) and the forward speed u.

The double track model can be used to simulate and investigate the vehicle han-
dling behavior under steady-state or transient conditions (i.e., nonconstant δv(t)).

Unfortunately, the double track model is not as popular as the single track model
(often and mistakenly also named “bicycle model”). The effort required to build a
computer program and to run simulations with the double track model is comparable
to the effort required by the less accurate single trackmodel (introduced and discussed
in Sect. 7.5).

7.3.3 Alternative State Variables (β and ρ)

The use of v(t) and r(t) as state variables is not mandatory, and other options can be
envisaged. Other state variables may provide a better insight into vehicle handling,
if properly handled.
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The state variables β(t) and ρ(t) have been already introduced in (3.16) and
(3.17). They are repeated here for ease of reading

β = v

u
= − S

R
(3.16′)

and

ρ = r

u
= 1

R
(3.17′)

They are just v and r normalized with respect to u.
The corresponding three sets of equations of the double track model become:

• equilibrium equations (cf. (3.23), (3.27) and (7.31))

m(
.
βu + β

.
u + u2ρ) = Y = Y1 + Y2

Jz(
.
ρu + ρ

.
u) = N = Y1a1 − Y2a2 + ΔX1t1

(7.35)

• constitutive equations (as in (7.32), with ãy = ur = u2ρ)

Y1 = Fy1(σy11 , σy12 , δv, u
2ρ)

Y2 = Fy2(σy21 , σy22 , u
2ρ)

ΔX1 = ΔX1(σy11 , σy12 , δv, u
2ρ)

(7.36)

• congruence equations (cf. (7.33), with ãy = ur = u2ρ)

σy11 = σy11(β, ρ; δ11(δv, u
2ρ))

σy12 = σy12(β, ρ; δ12(δv, u
2ρ))

σy21 = σy21(β, ρ; δ21(δv, u
2ρ))

σy22 = σy22(β, ρ; δ22(δv, u
2ρ))

(7.37)

Therefore, in this case, the two dynamical equations (7.34) of the double track
model become

m(
.
βu + β

.
u + u2ρ) = Y (β, ρ; δv, u

2ρ)

Jz(
.
ρu + ρ

.
u) = N (β, ρ; δv, u

2ρ)
(7.38)

where | .u| � 0 and can be discarded. The dependence of Y and N on the lateral
acceleration u2ρ, and hence on the forward speed u, disappears if there is no roll
steer. This is the main advantage in using β and ρ as state variables in the double
track model for road cars.
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Quite remarkably, we will see in (7.75) that in the single track model, when β

and ρ are used as state variables, there is no dependence of Y and N on u even if roll
steer is taken into account.

7.4 Vehicle in Steady-State Conditions

An essential step in understanding the behavior of a dynamical system, and therefore
of a motor vehicle, is the determination of the steady-state (equilibrium) configura-
tions (vp, rp). In physical terms, a vehicle is in steady-state conditions when, with
fixed position δv of the steering wheel and at constant forward speed u, it goes around
with circular trajectories of all of its points.

After having set
.
δv = 0 and

.
u = 0, the mathematical conditions for the system

being in steady state is to have
.
v = 0 and

.
r = 0 in (7.34). Accordingly, the lateral

acceleration drops the
.
v term and becomes at steady state

ãy = ur = u2ρ = u2

R
(7.39)

This equation was already introduced in (3.28).
Finding the equilibrium points (vp, rp), that is how the vehicle moves under given

and constant δv and u, amounts to solving the system of two algebraic equations

mur = Y (v, r; u, δv)

0 = N (v, r; u, δv)
(7.40)

or, equivalently and more formally

0 = Y (v, r; u, δv) − mur = fv(v, r; u, δv)

0 = N (v, r; u, δv) = fr (v, r; u, δv)
(7.41)

to get (vp, rp) such that

fv(vp, rp; u, δv) = 0 and fr (vp, rp; u, δv) = 0 (7.42)

Because of the nonlinearity of the tire behavior, the number of possible solutions
(vp, rp), for given (u, δv), is not known a priori. Typically, if more than one solution
exists, at most only one is stable.

Equations (7.42) define implicitly the two maps

vp = v̂p(u, δv) and rp = r̂ p(u, δv) (7.43)
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that is, the totality of steady-state (equilibrium) conditions as functions of the forward
speed u and of the steeringwheel angle δv. Given and kept constant the forward speed
u and the steering wheel angle δv, after a while (a few seconds at most) the vehicle
reaches the corresponding steady-state condition, characterized by a constant lateral
speed vp and a constant yaw rate rp.

For a more “geometric”, and hence more intuitive, analysis of the handling of
vehicles, it is convenient to employ β = v/u and ρ = r/u instead of v and r , as done
in Sect. 7.3.3. Therefore, (7.43) can be replaced by

βp = β̂p(u, δv) and ρp = ρ̂p(u, δv) (7.44)

The steady-state handling behavior is completely characterized by these handling
maps of β and ρ, both as functions of two variables, namely, but not necessarily, u
and δv

(u, δv) =⇒ (βp, ρp) (7.45)

Indeed, it is common practice to employ (δv, ãy), instead of (u, δv), as parameters
to characterize a steady-state condition. This is possible because

ãy = u rp(u, δv) which can be solved to get u = u(δv, ãy) (7.46)

Therefore, (7.43) becomes

vp = v̂p
(
δv, u(δv, ãy)

) = vp(δv, ãy)

rp = r̂ p
(
δv, u(δv, ãy)

) = rp(δv, ãy)
(7.47)

and, accordingly, (7.44) becomes

βp = β̂p
(
δv, u(δv, ãy)

) = βp(δv, ãy)

ρp = ρ̂p
(
δv, u(δv, ãy)

) = ρp(δv, ãy)
(7.48)

At first it may look a bit odd to employ (δv, ãy) instead of (u, δv), but it is not, since it
happens that in most road cars a few steady-state quantities are functions of ãy only.
This is quite a remarkable fact, but it should not be taken as a general rule.5

Similarly, we could use (u, ãy) as parameters to characterize a steady-state con-
dition.

Equations (7.44) or (7.48) provide a fairly general point of view that led to the
new global approach that we called Map of Achievable Performance (MAP) in
Chap. 6. Additional, relevant information are provided in Sects. 7.7 and 7.8. These
MAPs can be obtained experimentally or through simulations. Therefore, they are not
limited to mathematical models. Actually, as will be discussed in the next chapter,

5 For instance, vehicles equipped with a locked differential and/or with relevant aerodynamic down-
forces always need (at least) two parameters.
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they exist also for race cars, including Formula cars with very high aerodynamic
downforces.

Now we address more classical topics, like the single track model and the asso-
ciated handling diagram.

7.5 Single Track Model

The goal of this Section is to present a comprehensive analysis of the single track
model [2, 5, 6, 8, 12, 17, 19], thus showing also its limitations. In many courses
or books on vehicle dynamics (e.g., [8, p. 199]) the single track model, shown in
Fig. 7.9, is proposed without explaining in detail why, despite its awful appearance,
it can provide in some cases useful insights into vehicle handling, particularly for
educational purposes. Vehicle engineers should be well aware of the steps taken to
simplify the model, and hence realize that in some cases the single track model may
miss some crucial phenomena, and the double track model should be used instead.

7.5.1 From Double Track to Single Track

The double track model is shown in Figs. 7.1 and 7.2. Of course, it has four wheels.
In the corresponding schematic representations of the single track model shown in
Fig. 7.9 it looks like there are only two wheels. It is not so. It is not a bicycle. In the

Fig. 7.9 Equivalent schematic representations of the single track model (with δ2 = 0)
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single track model we look at each axle as a whole. Therefore, better names would
be “four wheel” model and “two axle” model, respectively.

To go from the double track model to the single track model (Fig. 7.9) we need
to further simplify (7.26): the Ackermann corrections have to be set equal to zero,
that is

ε1 = ε2 = 0 (7.49)

which is consistent with small steering angles. Indeed the Ackermann correction is a
second order contribution in (7.26) and, important as it can be, it cannot be included
in the single track model. You see that we are missing something.

This (not necessarily true) hypothesis (7.49) on the Ackermann coefficients, if
combined with the simplified expressions (7.26), leads to the following (first-order)
expressions for the lateral slips of the four wheels

σy11 �
(
v + ra1

u
− τ1δv

)
+ δ01 − Υ1ρ

s
1mãy

σy12 �
(
v + ra1

u
− τ1δv

)
− δ01 − Υ1ρ

s
1mãy

σy21 �
(
v − ra2

u
− τ2δv

)
+ δ02 − Υ2ρ

s
2mãy

σy22 �
(
v − ra2

u
− τ2δv

)
− δ02 − Υ2ρ

s
2mãy

(7.50)

where we can still take into account the toe-in/toe-out terms δ0i , and also the roll steer
contributions.

In (7.50) it is convenient to define what may be called the apparent slip angles α1

and α2 of the front and rear axles, respectively (Fig. 7.20)

α1 = τ1δv − v + ra1
u

= τ1δv − β − ρa1

α2 = τ2δv − v − ra2
u

= τ2δv − β + ρa2

(7.51)

Combining (7.50) and (7.51), we obtain that both front lateral slips σy11 and σy12
are known functions of the same two variables α1 and ãy . Similarly, both rear lateral
slips σy21 and σy22 are known functions of the same two variables α2 and ãy
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σy11 � −α1 + δ01 − Υ1ρ
s
1mãy = σy11(α1, ãy)

σy12 � −α1 − δ01 − Υ1ρ
s
1mãy = σy12(α1, ãy)

σy21 � −α2 + δ02 − Υ2ρ
s
2mãy = σy21(α2, ãy)

σy22 � −α2 − δ02 − Υ2ρ
s
2mãy = σy22(α2, ãy)

(7.52)

The two wheels of the same axle undergo the same apparent slip angle, but not
necessarily the same lateral slip. The key point for the model to be single track is that
the difference between left and right lateral slips must be a function only of ãy = ur .
This is the peculiar feature of the single track model (cf. (7.26)). It is the fundamental
brick for the next step.

But before doing that, it is worth noting the crucial difference between the actual
slip angles αi j of each wheel, defined in (3.58) (and also in (7.26)), and the apparent
slip angles αi of each axle, defined in (7.51).

α11 = α1 − δ01 + Υ1ρ
s
1mur + ε1

t1
2l

(τ1δv)
2

α12 = α1 + δ01 + Υ1ρ
s
1mur − ε1

t1
2l

(τ1δv)
2

α21 = α2 − δ02 + Υ2ρ
s
2mur + ε2

t2
2l

(τ2δv)
2

α22 = α2 + δ02 + Υ2ρ
s
2mur − ε2

t2
2l

(τ2δv)
2

(7.53)

In general, the two apparent slip angles αi can be defined only in the single track
model (Fig. 7.20). In real vehicles there are four actual slip angles αi j .

It is very common in traditional (oversimplified) vehicle dynamics not to take into
account toe-in/toe-out and roll steering, thus having

σy11 � σy12 � −α1

σy21 � σy22 � −α2

(7.54)

7.5.2 “Forcing” the Lateral Forces

Owing to (7.52), the first two equations in (7.30) become
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Y1 = Fy11

(
Z11(ãy), γ11(ãy), σy11(α1, ãy)

)
+ Fy12

(
Z12(ãy), γ12(ãy), σy12(α1, ãy)

)
= Fy11(α1, ãy) + Fy12(α1, ãy)

= Fy1(α1, ãy);
Y2 = Fy21

(
Z21(ãy), γ21(ãy), σy21(α2, ãy)

)
+ Fy22

(
Z22(ãy), γ22(ãy), σy22(α2, ãy)

)
= Fy21(α2, ãy) + Fy22(α2, ãy)

= Fy2(α2, ãy),
(7.55)

while the third equation in (7.30) is set to zero because of the assumed very small
steer angles

ΔX1 = 0 (7.56)

It is really crucial for a vehicle engineer to understand and keep in mind the
differences between (7.30) and (7.55). In the final expressions of Yi in (7.55) there
appear only variables associated to the corresponding axle, not anymore to the single
wheel.

As already obtained in (7.9) at the beginning of this chapter, we have that the
lateral forces are basically linear functions of ãy (open differential)

Y1 � ma2
l

ãy and Y2 � ma1
l

ãy (7.57)

Therefore, Fy1(α1, ãy) and Fy2(α2, ãy) must be such that

Fy1(α1, ãy) = ma2
l

ãy and Fy2(α2, ãy) = ma1
l

ãy (7.58)

which can be solved with respect to the lateral acceleration, to obtain6

ãy = g1(α1) and ãy = g2(α2) (7.59)

These relationships are affected by many setup parameters, like camber angles, roll
steer, toe-in/toe-out, etc., as discussed in detail in Sect. 7.5.3.

The final, crucial, step is inserting (i.e., “forcing”) these results back into (7.55),
thus obtaining the axle characteristics of the single track model

Y1(α1) = Fy1

(
α1, g1(α1)

)
and Y2(α2) = Fy2

(
α2, g2(α2)

)
(7.60)

that is, two functions, one per axle, that give the axle lateral force as a function of only
the corresponding apparent slip angle. In other words, each axle behaves formally
as an equivalent single wheel with tire.

6 This step would not be possible with Fyi as in (7.30).
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Fig. 7.10 Tire tested under symmetric vertical loads with respect to the static load Z0/2

Forcing the lateral forces to be as in (7.60) is an approximation when the vehicle is
in transient conditions. Moreover, to go from (7.30) to (7.55) we made assumptions
(7.49) about the steer kinematics (parallel steering) and small steer angles.

The double trackmodel providesmore accurate results when running simulations.
On the other hand, the single track model is a useful tool for educational purposes
and for investigating steady-state conditions. It is less accurate, but more intuitive.

Equation (7.59) implies that in the single track model there is a link between α1

and α2

g1(α1) = ãy = g2(α2) (7.61)

and that this link is not affected by u or δv. In a real vehicle this is not necessarily
true. Vehicle engineers should be aware that the single track model is somehow an
inconsistent model, albeit very appealing.

7.5.3 Axle Characteristics

As done in (7.60), by axle characteristics we mean two algebraic functions (one per
axle) of the form

Yi = Fyi = Yi (αi ) (7.62)

which provide the total lateral force as a function of the apparent slip angle only,
with the effects, e.g., of the lateral load transfers already accounted for. They were
obtained in (7.60), but the topic is so relevant to deserve an in-depth discussion.
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Fig. 7.11 Basic graphic construction of the axle characteristic and influence of changing the roll
stiffness

7.5.3.1 The Basics

The basic procedure to obtain the axle characteristics is described here. The goal is
to provide an intuitive and physical approach to the construction of the axle charac-
teristics in the single track model. “Basic” means that only the effects of the lateral
load transfers ΔZi are taken into account. Of course, lateral load transfers cannot be
omitted. Theymust necessarily be included in the analysis (unless linear tire behavior
is assumed, Fig. 7.62).

The first step is to test the tire under symmetric vertical loads with respect to the
reference value Z0

i /2, as shown in Fig. 7.10. “Symmetric” means that tests have to
be carried out in pairs, that is with Fz = Z0

i /2 ± ΔZi . In Fig. 7.10 two such pairs are
shown.

The second step is to add the two tire curves obtained with symmetric vertical
loads, as shown in Fig. 7.11(top), thus getting a sort of axle curve for each value of
the lateral load transfer. To legitimate this second step it is mandatory that the inner
wheel and the outer wheel of the same axle undergo the same apparent slip angle αi .
As expected, the higher the lateral load transfer ΔZi , the lower the corresponding
axle curve.
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The third step is to draw a straight line according to (7.13), to linearly relate the
lateral load transfer ΔZi to the axle lateral force Fyi .

The fourth and final step is to pick the unique point on each axle curve that
corresponds to a real operating (steady-state) condition for the vehicle, as shown in
Fig. 7.11(top). As a matter of fact, each axle curve was obtained testing the tire with
given and constant ±ΔZi , but this amount of lateral load transfer requires a definite
value of the lateral force Fyi in the vehicle, and hence a definite value of αi .

The sought axle characteristic Yi (αi ) is just the curve connecting all these points,
as schematically shown in Fig. 7.11.

Changing the value of ηi in (7.13) results in a different straight line and hence in
different axle characteristics, as shown in Fig. 7.11(bottom). The axle curves are not
affected by ηi , but the points corresponding to real operating conditions are.

7.5.3.2 The General Case

Now we are ready to address the construction of the axle characteristics with greater
generality. It means that we will use the lateral acceleration ãy as a parameter.

According to (7.30), (7.52), (7.55) and (7.57), the general framework, at steady
state, for a given vehicle is that:

1. each axle lateral force Yi is determined solely by the lateral acceleration ãy ,
see (7.9) (open differential);

2. there is a one-to-one correspondence between the lateral acceleration ãy and the
following quantities:

• lateral load transfers ΔZi , see (7.10);
• camber angles γi j , see (7.17) and (7.18);
• roll steer angles Υiφ

s
i ãy , see (7.19);

3. both left and right tire lateral forces are known functions of the lateral acceler-
ation ãy and of the same apparent slip angle αi , see (7.55).

Therefore, as discussed in Sect. 7.5.2, for any given value of ãy we can obtain the
corresponding load transfers, camber angles and roll steer angles. Consequently, we
can plot (measure) the lateral forces Fyi j (αi ) of each wheel as functions only of the
apparent slip angle αi

Y11(α1) = Fy11

(
α1, g1(α1)

)
Y12(α1) = Fy12

(
α1, g1(α1)

)
Y21(α2) = Fy21

(
α2, g2(α2)

)
Y22(α2) = Fy22

(
α2, g2(α2)

)
(7.63)

This way we can single out the contribution of each wheel. Typical curves for the
inner and the outer tires of the same axle are shown in Fig. 7.12. As expected, the
outer wheel (green plot) provides a lateral force larger than the inner wheel (red plot).
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Fig. 7.12 Lateral forces exerted by the inner wheel (red), by the outer wheel (green) of the same
axle, and resulting axle characteristic (blue). Maximum lateral force is 5 kN at 10.34 deg

Each axle characteristic is given by (Fig. 7.12, blue plot)

Yi (αi ) = Yi1(αi ) + Yi2(αi ) (7.64)

Of course, any calculation of this type assumes the availability of tire data.
As shown in Fig. 7.12, the maximum lateral forces of the two wheels are not

attained, in general, for the same apparent slip angle. This is not desirable, if we are
interested in maximising the lateral acceleration. To mitigate this phenomenon we
can resort on tuning some setup parameters. We have to understand the effects on
the axle characteristics of changing these setup parameters. This extremely relevant
practical topic is discussed hereafter, taking into account the effects of changing the:

1. lateral load transfer;
2. static camber angles;
3. roll camber;
4. toe-in/toe-out;
5. roll steer.

All plots in this section are for a car making a left turn (ãy > 0). In all plots in
this section, the apparent slip angles are in degrees and the lateral forces are in kN.

7.5.3.3 Lateral Load Transfer ΔZi

Two additional basic examples are shown in Fig. 7.13. They are basic in the sense
that it is assumed that the lateral acceleration ãy affects only the lateral load transfer
ΔZi . More precisely, it is assumed that γi j = δ0i = Υi = 0.
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Fig. 7.13 As in Fig. 7.12, but with lower load transfer (left: max force 5.15 kN at 8.20 deg) or
higher load transfer (right: max force 4.97 kN at 10.95 deg)

The two cases in Fig. 7.13 have different values of ηi , and hence different load
transfers for the same lateral acceleration, with respect to the case in Fig. 7.12. One
has lower ηi (left: max force 5.15 kN at 8.20 deg) and one has higher ηi (right: max
force 4.97 kN at 10.95 deg).

A very relevant fact in vehicle dynamics, as stated in Sects 2.10.2 and 2.12, is that
the lateral force exerted by a single tire grows less than proportionally with respect
to the vertical load. This is clearly shown in Fig. 7.13, where the higher the lateral
load transfer, the lower the resulting curve of Yi .

7.5.3.4 Static Camber γ 0
i

The definition of static camber is given in Fig. 7.5 and in (7.17). The effects of
negative and positive static camber angles, i.e. γ 0

i 	= 0, are shown in Fig. 7.14, left
and right, respectively. If the top of the wheel is farther out than the bottom (that is,
away from the axle), it is called positive static camber. If the bottom of the wheel is
farther out than the top, it is called negative camber. We see in Fig. 7.14 that there are
lateral forces on each wheel (camber thrust) when the car is going straight. We also
see that the peak (max) value of the axle lateral force is higher with negative static
camber. The main reason is that the inner and outer wheel reach their peak values
for apparent slip angles that are less far away from each other.
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Fig. 7.14 As in Fig. 7.12, but with negative static camber (left: max 5.03 kN at 10.23 deg) or
positive static camber (right: max 4.97 kN at 10.47 deg)

7.5.3.5 Roll Camber Δγi

As shown in Fig. 7.15 and in (7.18), roll camber Δγi is an anti-symmetric setup
modification. Therefore, it also affects the slope in the origin of the axle characteristic.
Negative and positive camber variations due to roll motion are shown in Fig. 7.6.
Also useful may be Fig. 7.7, which shows how the suspension architecture strongly
affects roll camber.

Fig. 7.15 As in Fig. 7.12, but with negative roll camber (left: max 5.02 kN at 10.29 deg) or positive
roll camber (right: max 4.98 kN at 10.40 deg)
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7.5.3.6 Toe-in/Toe-out δ0i

The definition of toe-in/toe-out is given in Fig. 3.15 and in (7.19). The effects of toe-
in (δ0i > 0) and toe-out (δ0i < 0), are shown in Fig. 7.16, left and right, respectively.
We see that also in this case there are lateral forces on the wheels when the car is
going straight.

The beneficial cumulative effects of negative static camber, negative roll camber
and toe-in are shown in Fig. 7.17. We see that the peak value from 5 kN reached
5.09 kN. This result was achieved because the inner and outer wheel reach their peak
values for apparent slip angles that are now closer to each other.

Fig. 7.16 As in Fig. 7.12, but with toe-in (left: max 5.03 kN at 9.40 deg) or toe-out (right: max
4.97 kN at 11.42 deg)

Fig. 7.17 As in Fig. 7.12, but with the cumulative effects of negative static camber, negative roll
camber, and toe-in (max 5.09 kN at 9.24 deg)
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7.5.3.7 Roll Steer Υiρ
s
i mãy

Also interesting is the case of roll steer, i.e. Υi 	= 0, shown in Fig. 7.18. While most
effects are symmetric with respect to the vehicle axis, and hence the contributions
of the two wheels cancel each other at low lateral acceleration, the roll steer is anti-
symmetric, and hence it affects the axle characteristic also at low lateral accelerations.
However, contrary to all other setup parameters here considered, it does not affect
the peak value of the axle lateral force.

Fig. 7.18 As in Fig. 7.12, but with positive roll steer (left: max 5 kN at 9.12 deg) or negative roll
steer (right: max 5 kN at 11.61 deg)

7.5.3.8 General (Mixed-up) Case

As already shown in Fig. 7.17, in general all these effects may very well coexist in a
real car. The axle characteristics are what most characterize vehicle dynamics. They
may differ in the initial slope (slip stiffness) and in the maximum value. Both aspects
have a big influence on vehicle handling.

We remark that the axle characteristics, under an apparent simplicity, contain a
lot of information about the vehicle features and setup (see also [12, Chap. 6]).

7.5.3.9 Look at the Peak Positions

For just a moment, let us assume the grip coefficient being not dependent on the
vertical load. More precisely, set a1 = 0 in (2.99). Even in this case, the amount of
lateral load transfer does affect the peak value of the axle lateral force, as shown in
Fig. 7.19. Therefore, we should do our best to keep the apparent slip angles of the
inner and outer peaks as close together as possible. This issue is rarely discussed,
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Fig. 7.19 Higher load transfers lower the peak value of the axle characteristic even if assuming
(erroneously) load independent grip

maybe because it is unusual to draw Figures like 7.12, 7.13, 7.14, 7.15, 7.16, 7.17,
7.18 and 7.19.

7.5.4 Governing Equations of the Single Track Model

Summing up, the single track model is governed by the following three sets of fairly
simple equations:

• two equilibrium equations (lateral and yaw), as in (7.5)

m(
.
v + ur) = Y = Y1 + Y2

Jz
.
r = N = Y1a1 − Y2a2

(7.65)

• two constitutive equations (axle characteristics, which include the effects of several
setup parameters), as in (7.60)

Y1 = Y1(α1)

Y2 = Y2(α2)
(7.66)

• two congruence equations (apparent slip angles), as in (7.51)

α1 = τ1δv − v + ra1
u

α2 = τ2δv − v − ra2
u

(7.67)
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Fig. 7.20 Single track model

A comparisonwith the governing equations of the double trackmodel (Sect. 7.3.1)
shows that in the single track model:

• the term ΔX1t1 has disappeared from the equilibrium equations;
• there are two, instead of four, constitutive equations;
• there are two, instead of four, congruence equations.

A pictorial version of the single track model is shown in Fig. 7.20, where

δ1 = τ1δv = (1 + κ)δ

δ2 = τ2δv = χτ1δv = κδ
(7.68)

with
δ = δ1 − δ2 = (τ1 − τ2)δv = (1 − χ)τ1δv = τδv (7.69)

Reasonably, but also arbitrarily, we call δ1 the steer angle of the front axle. A similar
thing can be done for the rear axle.

The angle δ is called net steer angle of the (single track model of the) vehicle.
Usually, κ = 0 and hence δ is just the steering angle δ1 of the front axle. However,
κ 	= 0 leaves room for rear steering δ2 as well, without affecting δ.

In this single track model there is a one-to-one relationship between δ and δv, that
is we have a rigid steering system. A vehicle model with compliant steering system
is developed in Sect. 7.16.
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Indeed, the equations governing the dynamical system of Fig. 7.20 are precisely
(7.65), (7.66) and (7.67). Therefore, Fig. 7.20 can be used as a shortcut to quickly
obtain the simplified equations of a vehicle. However, the vehicle model still has four
wheels, lateral load transfers, camber and camber variations, roll steer, as discussed
in Sect. 7.5.3 on the axle characteristics.

The main feature of this model is that the two wheels of the same axle undergo
the same apparent slip angle αi , and hence can be replaced by a sort of equivalent
wheel, like in Fig. 7.20. However, that does not imply that the real slip angles of the
two wheels of the same axle are the same. Neither are the camber angles, the roll
steer angles, the vertical loads. Therefore, the single track model is not really single
track! It retains many of the features of the double track model.

It is not necessary to assume that the center of mass G of the vehicle is at road
level [11, p. 170], neither that the lateral forces of the left and right tires to be equal
to each other [1, p. 53]. Actually, both assumptions would be strikingly false in any
car.

Assuming the total mass to be concentrated at G, as if the vehicle were like a
point mass [18, p. 223], is another unrealistic, and unnecessary, assumption.

7.5.5 Dynamical Equations of the Single Track Model

Among the governing equations, only the two equilibrium equations are differential
equations, andboth arefirst-order. The other four algebraic equationsmust be inserted
into the equilibrium equations to ultimately obtain the two dynamical equations of
the single track model

m(
.
v + ur) = Y1

(
δvτ1 − v + ra1

u

)
+ Y2

(
δvτ2 − v − ra2

u

)

Jz
.
r = a1Y1

(
δvτ1 − v + ra1

u

)
− a2Y2

(
δvτ2 − v − ra2

u

) (7.70)

or, more compactly
m(

.
v + ur) = Y (v, r; u, δv)

Jz
.
r = N (v, r; u, δv)

(7.71)

Therefore, the single track model is a dynamical system with two state variables,
namely, but not necessarily, v(t) and r(t), as discussed in Sect. 7.5.6. The driver
controls the steering wheel angle δv(t) and the forward speed u.

7.5.6 Alternative State Variables (β and ρ)

As already done in Sect. 7.3.3, instead of v(t) and r(t), we can use β(t) = v/u and
ρ(t) = r/u to describe the handling of a vehicle.

The corresponding governing equations of the single track model become:
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• equilibrium equations (cf. (7.65))

m(
.
βu + β

.
u + u2ρ) = Y = Y1 + Y2

Jz(
.
ρu + ρ

.
u) = N = Y1a1 − Y2a2

(7.72)

• constitutive equations (cf. (7.66))

Y1 = Y1(α1)

Y2 = Y2(α2)
(7.73)

• congruence equations (cf. (7.67))

α1 = δvτ1 − β − ρa1

α2 = δvτ2 − β + ρa2
(7.74)

Combining these three sets of equations, we obtain the dynamical equations, that
is the counterpart of (7.70)

m(
.
βu + β

.
u + u2ρ) = Y (β, ρ; δv)

Jz(
.
ρu + ρ

.
u) = N (β, ρ; δv)

(7.75)

where | .u| � 0.
It is worth noting that, differently from (7.38) of the double track model, the axle

lateral forces Y1 and Y2, and hence also the total lateral force Y and the yaw moment
N , do not depend explicitly on the forward speed u, even if roll steer is taken into
account. All the effects of the lateral acceleration ãy = ur = u2ρ on Y and N are
already included in the axle characteristics. Moreover, the expressions of Y and N
in (7.75) are even simpler than those in (7.71).

7.5.7 Inverse Congruence Equations

The state variables v and r appear in both congruence equations (7.67). However, it
is possible to invert these equations to obtain two other equivalent equations, with
ρ = r/u appearing only in the first equation and β = v/u only in the second equation

ρ = r

u
= δ1 − δ2

l
− α1 − α2

l

β = v

u
= δ1a2 + δ2a1

l
− α1a2 + α2a1

l

(7.76)

where the more compact notation δ1 = δvτ1 and δ2 = δvτ2 has been used.
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It is important to realize that all these inverse congruence equations are not limited
to steady-state conditions, although they are mostly used for the evaluation of some
steady-state features.

Another very common way to rewrite the first equation in (7.76) is as follows

α1 − α2 = (δ1 − δ2) − l

R
= δ − l

R
(7.77)

where R = u/r . Should α1 = α2 = 0 (very low speed), then δ = l/R, which is often
called Ackermann angle (not to be confused with Ackermann steering geometry,
discussed in Sect. 3.4).

7.5.8 β1 and β2 as State Variables

Another useful set of state variables may be the vehicle slip angles at each axle
midpoint (Fig. 7.20)

β1 = β + ρa1 = δ1 − α1 = τ1δv − α1 = (1 + κ)τδv − α1

β2 = β − ρa2 = δ2 − α2 = τ2δv − α2 = κτδv − α2

(7.78)

The inverse equations are

ρ = β1 − β2

l
= 1

R

β = β1a2 + β2a1
l

(7.79)

The corresponding governing equations of the single track model become:

• equilibrium equations

.
β1u + β1

.
u + (β1 − β2)

u2

l
= Y

m
+ N

Jz
a1

.
β2u + β2

.
u + (β1 − β2)

u2

l
= Y

m
− N

Jz
a2

(7.80)

• constitutive equations (from the axle characteristics)

Y1 = Y1(α1)

Y2 = Y2(α2)
(7.81)

• congruence equations
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α1 = δvτ1 − β1 = δ1 − β1

α2 = δvτ2 − β2 = δ2 − β2

(7.82)

The twofirst-order differential equations (7.70) or (7.75), governing the dynamical
system, become

.
β1u + β1

.
u + (β1 − β2)

u2

l
= Jz + ma21

mJz
Y1(δvτ1 − β1) + Jz − ma1a2

mJz
Y2(δvτ2 − β2)

.
β2u + β2

.
u + (β1 − β2)

u2

l
= Jz + ma22

mJz
Y2(δvτ2 − β2) + Jz − ma1a2

mJz
Y1(δvτ1 − β1)

(7.83)
where, again, the terms on the r.h.s. do not depend on u.
These equations highlight an interesting feature. The terms (Jz − ma1a2), which

appear in both equations, are often very small in road cars, and could even be pur-
posely set equal to zero. Therefore, the coupling between the two equations is fairly
weak.

We observe that (7.77) becomes

α1 − α2 = (δ1 − δ2) − (β1 − β2) (7.84)

and we also have

α1a2 + α2a1 = (δ1a2 + δ2a1) − (β1a2 + β2a1) (7.85)

7.5.9 Driving Force

At the beginning of this chapter, and precisely in (7.2), we made the assumption of
small longitudinal forces. But small does not mean zero. Indeed, a small amount of
power is necessary even for keeping a vehicle in steady-state conditions. To make
this statement quantitative, let us consider a rear-wheel-drive single track model
(Fig. 7.20, with Fx1 = 0). The power balance

(Fx2 − Fy1δ1)u + Fy1(vp + rpa1) + Fy2(vp − rpa2) −
(
1

2
ρSCxu

2

)
u = 0 (7.86)

provides the following driving force Fx2
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Fx2 = Fy1

(
δ1 − vp + rpa1

u

)
+ Fy2

(
−vp − rpa2

u

)
+ 1

2
ρSCxu

2

= Fy1α1 + Fy2α2 + 1

2
ρSCxu

2

and, assuming linear tire behavior:

= C1α
2
1p + C2α

2
2p + 1

2
ρSCxu

2

(7.87)

This force Fx2 has to counteract the aerodynamic drag (obvious) and also the drag
due to tire slips (maybe not so obvious at first). Indeed, lateral axle forces Fyi are not
orthogonal to the corresponding velocity and hence absorb mechanical power.

That tire slips induce drag can be better appreciated from Fig. 7.21 (where, for
simplicity, the aerodynamic drag is not considered). Points C and A do not coincide
because of the apparent slip angles α1 and α2. Therefore, a longitudinal driving force
Fx2 is required to achieve the dynamic equilibrium (cf. [12, p. 67]).

Of course, Fig. 7.21 is just a scheme. In real cases, slip angles are much smaller.
The last line in (7.87), which is valid for about |αi | < 0.05 rad, clearly shows that
Fx2 is much smaller than Fyi , as assumed in (7.2).

Fig. 7.21 Graphical evaluation of the driving force Fx2 at steady state



7.5 Single Track Model 277

7.5.10 The Role of the Steady-State Lateral Acceleration

As already stated in Sect. 7.4, it is common practice to employ (δv, ãy), instead of
(u, δv), as parameters to characterize a steady-state condition. In the single track
model some steady-state quantities are functions of ãy only.

The reason for such a fortunate coincidence in the case under examination is
promptly explained. Just look at the equilibrium equations at steady state, with the
inclusion of the constitutive equations (axle characteristics), that is for the single
track model

mãy = Y1(α1) + Y2(α2)

0 = Y1(α1)a1 − Y2(α2)a2
(7.88)

They yield this result (already obtained in (7.9) and (7.57))

Y1(α1)l

ma2
= ãy and

Y2(α2)l

ma1
= ãy (7.89)

which can be more conveniently rewritten as

Y1(α1)l

mga2
= Y1(α1)

Z0
1

= ãy
g

and
Y2(α2)l

mga1
= Y2(α2)

Z0
2

= ãy
g

(7.90)

where Z0
1 and Z0

2 are the static vertical loads on each axle.
Therefore, if we take the monotone part of each axle characteristic, there is a

one-to-one correspondence between ãy and the apparent slip angles at steady state
(Fig. 7.24)

α1 = α1(ãy) and α2 = α2(ãy) (7.91)

This is the key fact for using ãy as a parameter.
Both apparent slip angles α1 and α2 only “feel” the lateral acceleration, no matter

if the vehicle has small u and large δv or, vice versa, large u and small δv. In other
words, the radius of the circular trajectory of the vehicle does not matter at all (in
this model). Only ãy matters to the lateral forces and hence to the apparent slip
angles. Actually, this very same property has been already used to build the axle
characteristics. Equations (7.91) are just the inverse functions of (7.59).

We remark that (7.91) must not be taken as a general rule, but rather as a fortunate
coincidence (it applies only to vehicles with two axles, open differential, no wings
and parallel steering).

Another very important result comes directly from (7.90)

Y1(α1)

Z0
1

= Y2(α2)

Z0
2

(7.92)



278 7 Handling of Road Cars

that is, at steady state, the lateral forces are always proportional to the corresponding
static vertical loads. Therefore, the normalized axle characteristics

Ŷ1(α1) = Y1(α1)

Z0
1

and Ŷ2(α2) = Y2(α2)

Z0
2

(7.93)

are what really matters in the vehicle dynamics of the single track model. The nor-
malized axle characteristics are non-dimensional. Their maximum value is equal to
the grip available in the lateral direction and is, therefore, a very relevant piece of
information.

7.5.11 Slopes of the Axle Characteristics

It turns out that vehicle handling is pretty much affected by the slopes (derivatives)
of the axle characteristics

Φ1 = dY1
dα1

and Φ2 = dY2
dα2

(7.94)

Obviously, Φi > 0 in the monotone increasing part of the axle characteristics.
According to (7.91), in the single track model we have that the slopes Φi of the

axle characteristics are functions of the lateral acceleration only

Φ1 = Φ1(α1) = Φ1(α1(ãy))

Φ2 = Φ2(α2) = Φ2(α2(ãy))
(7.95)

From (7.89)
dãy
dα1

= lΦ1

ma2
and

dãy
dα2

= lΦ2

ma1
(7.96)

and hence
dα1

dãy
= ma2

lΦ1
and

dα2

dãy
= ma1

lΦ2
(7.97)

7.6 Double Track, or Single Track?

Equations for the double track model and equations for the single track model are
quite similar. Therefore, the effort for building a numerical model and running simu-
lations is pretty much the same. Of course the double track model is more general. It
does not require the assumptions of parallel steering and open differential. Moreover,
it can deal with cases in which u � |r ti | does not hold.
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The single trackmodel is less realistic, but simpler, and hencemore predictable for
a human being. Almost all the complexity boils down to the axle characteristics. As
already mentioned, the single track model can provide in many cases useful insights
into vehicle handling, particularly for educational purposes. But “many cases” does
not mean “all cases”.

7.7 Steady-State Maps

Wehave already stated that the two functions (7.48) define all steady-state conditions
of the double track model. However, the topic is so relevant to deserve additional
attention and discussion.

From (7.46), (7.47), (7.68), (7.76) and (7.91)wehave, at steady state, the following
maps

ρp = ρp(δv, ãy) = rp
u

=
(

τ1 − τ2

l

)
δv − α1(ãy) − α2(ãy)

l

βp = βp(δv, ãy) = vp
u

=
(

τ1a2 + τ2a1
l

)
δv − α1(ãy)a2 + α2(ãy)a1

l

(7.98)

A vehicle-road system has unique functions ρp(δv, ãy) and βp(δv, ãy). As will be
shown, they tell us a lot about the global vehicle steady-state behavior. In other
words, these two maps fully characterize any steady-state condition of the vehicle.
Of course, the r.h.s. part of (7.98) is strictly related to the single track model, and it
is useful to the vehicle engineer to understand how to modify the vehicle behavior.

The two functions ρp(δv, ãy) and βp(δv, ãy) can also be obtained experimentally
[4], once a prototype vehicle is available, by performing some rather standard tests
on a flat proving ground. With the vehicle driven at almost constant speed u and a
slowly increasing steering wheel angle δv (Slow Ramp Steer, often performed at 80
km/h), it suffices to measure the following quantities: rp, vp, u, ãy and δv. It is worth
noting that none of these quantities does require to know whether the vehicle has
two axles or more, or how long the wheelbase is. In other words, they are all well
defined in any vehicle, including race cars.
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Fig. 7.22 Curves at constant
ρ (1/m) in the plane (δ, ãy),
for an understeer vehicle

Fig. 7.23 Curves at constant
β (deg) in the plane (δ, ãy),
for an understeer vehicle

A key feature, confirmed by tests on real road cars (with open differential and no
wings), is that the δv-dependence and the ãy-dependence are clearly separated.7

As shown in Figs. 7.22 and 7.23, bothmaps in (7.98) are (in the single trackmodel)
linear with respect to the steering wheel angle δv, whereas they are nonlinear with
respect to the steady-state lateral acceleration ãy . The linear parts are totally under
control, in the sense that both of them are simple functions of the steer gear ratios
and of a1 and a2. The nonlinear parts are more challenging, coming directly from
the interplay of the axle characteristics.

Figures 7.22 and 7.23, where δ = τδv, anticipate the Map of Achievable Per-
formance (MAP) approach, discussed in Sect. 7.8.

7 We remark that this is no longer true in vehicles with limited-slip differential and/or aerodynamic
vertical loads.
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7.7.1 Steady-State Gradients

It is informative, and hence quite useful, to define and compute/measure the gradients
of the two maps βp(δv, ãy) and ρp(δv, ãy), defined in (7.98)

grad ρp =
(

∂ρp

∂ ãy
,
∂ρp

∂δv

)
= (ρy, ρδ)

grad βp =
(

∂βp

∂ ãy
,
∂βp

∂δv

)
= (βy, βδ)

(7.99)

As well known, gradients are vectors orthogonal to the level curves.
For the single track model, the explicit expressions of the components of the

gradients grad ρp and grad βp are as follows

ρy = −m

l2

(
Φ2a2 − Φ1a1

Φ1Φ2

)

βy = −m

l2

(
Φ1a21 + Φ2a22

Φ1Φ2

)
ρδ = τ1 − τ2

l

βδ = τ

(
τ1a2 + τ2a1

l

) (7.100)

where, to compute βy and ρy , we took into account (7.97).
It is worth noting that, for a given single track model of a vehicle, the two gradient

components βδ and ρδ are constant, whereas the other two gradient components βy

and ρy are functions of ãy only.
As will be discussed shortly, only one out of four gradient components is usually

employed in classical vehicle dynamics,8 thus missing a lot of information. But this
is not the only case in which classical vehicle dynamics turns out to be far from
systematic and rigorous. This lack of generality of classical vehicle dynamics is the
motivation for some of the next sections.

7.7.2 Alternative Steady-State Gradients

Although not commonly done, we evaluate the gradients of the front and rear slip
angles β1(δv, ãy) and β2(δv, ãy), which were defined in (7.78)

8 It is the well known understeer gradient K , defined in (7.117). Unfortunately, it is not a good
parameter and should be replaced by the gradient components (7.99), as demonstrated in Sect.
7.14.1.
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β1y = −ma2
lΦ1

β1δ = (1 + κ)τ

β2y = −ma1
lΦ2

β2δ = κτ

(7.101)

A fairly obvious result, but that can turn out to be useful in some cases.

7.7.3 Understeer and Oversteer

For further developments, it is convenient to rewrite (7.98) in a more compact form

ρp = ρp(δv, ãy) =
(

τ1 − τ2

l

)
δv − fρ(ãy)

βp = βp(δv, ãy) =
(

τ1a2 + τ2a1
l

)
δv − fβ(ãy)

(7.102)

where, in the single track model

fρ(ãy) = α1(ãy) − α2(ãy)

l

fβ(ãy) = α1(ãy)a2 + α2(ãy)a1
l

(7.103)

The two known functions fρ(ãy) and fβ(ãy) are nonlinear functions, peculiar to
a given road vehicle. They are called here slip functions.

Let us discuss this topic by means of a few examples.
First, let us consider the normalized axle characteristics (7.93) (multiplied by g)

shown in Fig. 7.24(left). In this example, it has been assumed that both axles have
the same lateral grip equal to 1. Moreover, to keep, for the moment, the analysis as
simple as possible, we also assume that Ŷ1(x) = Ŷ2(kx), with k > 0. When inverted,
they provide the apparent slip angles α1(ãy) and α2(ãy) shown in Fig. 7.24(right).
Assuming a wheelbase l = 2.5m, a1 = 1.125m, and a2 = 1.375m, we get from
(7.103) the two slip functions fρ and fβ of Fig. 7.25.

In all figures, angles are in degree, accelerations in m/s2, and ay should be read
as ãy .

A vehicle with a monotone increasing slip function fρ(ãy), as in Fig. 7.25, is said
to be an understeer vehicle. A more precise definition is given in (7.108).
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Fig. 7.24 Normalized axle characteristics (multiplied by g) of an understeer vehicle (left) and
corresponding apparent slip angles (right)

Fig. 7.25 Slip functions of an understeer vehicle

As a second example, let us consider the normalized axle characteristics (multi-
plied by g) shown inFig. 7.26(left). They are like in Fig. 7.24, but interchanged.When
inverted, they provide the two functions α1(ãy) and α2(ãy) shown in Fig. 7.26(right).
In this case the two slip functions fρ and fβ are as in Fig. 7.27.

A vehicle with a monotone decreasing function fρ(ãy), as in Fig. 7.27, is said to
be an oversteer vehicle. A more precise definition is given in (7.110).
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Fig. 7.26 Normalized axle characteristics (multiplied by g) of an oversteer vehicle (left) and
corresponding apparent slip angles (right)

Fig. 7.27 Slip functions of an oversteer vehicle
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7.7.4 Handling Diagram

Usually, only the function fρ(ãy) is considered in classical vehicle dynamics, while
fβ(ãy) is neglected.
Since, at steady state, ρp = ãy/u2 = r/u = 1/R, the first equation in (7.102)

becomes
ãy
u2

=
(

τ1 − τ2

l

)
δv − α1(ãy) − α2(ãy)

l
(7.104)

which, for given u and δv, is an equation for the unknown ãy = ãy(u, δv). See also
(7.46).

Another, most classical, way to recast (7.104) is

δ − l

R
= α1(ãy) − α2(ãy) = fρ(ãy)l (7.105)

where
δ = (τ1 − τ2) δv (7.106)

is the net steer angle, already defined in (7.69).
It is customary [13–15] to rewrite (7.104) as a system of two equations

⎧⎪⎨
⎪⎩
y =

(
τ1 − τ2

l

)
δv − ãy

u2

y = fρ(ãy) = α1(ãy) − α2(ãy)

l

(7.107)

Solving this system amounts to obtaining the values of (ãy, fρ) attained under
the imposed operating conditions (u, δv). Geometrically, that can be seen as the
intersection between a straight line (i.e., the first equation in (7.107)) and the so-
called handling curve y = fρ(ãy) (i.e., the second equation in (7.107)).

Together, the handling curve and the straight lines form the celebrated handling
diagram [13–15]. Examples are shown in Figs. 7.28 and 7.29 (where ay is indeed ãy
and y is in deg/m).

The handling curve y = fρ(ãy) is peculiar to each vehicle-road system (in the
single trackmodel it depends on the normalized axle characteristics only). Therefore,
for a given vehicle-road system it has to be drawn once and for all.

On the other hand, the straight line depends on the selected operating conditions
(u, δv). For instance, in Fig. 7.28 the two intersecting lines correspond to two operat-
ing conditions with the same value of δv, while the two parallel lines share the same
value of u.

Perhaps, the best way to understand the handling diagram (Figs. 7.28 and 7.29)
is by assuming that the steering wheel angle δv is kept constant, while the forward
speed u is (slowly) increased.
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Fig. 7.28 Handling diagram of an understeer vehicle (y in deg/m)

Fig. 7.29 Handling diagram of an oversteer vehicle (y in deg/m)

In Fig. 7.28, an increasing u, with constant δv, results also in an increasing y.
Therefore, from (7.105) with constant δv (and hence constant δ), the higher the
forward speed u, the larger the radius R of the trajectory of the vehicle. This is called
understeer behavior. More precisely, we have understeer whenever

d fρ
dãy

> 0 (7.108)

where, in the single track model

d fρ
dãy

= m

l2

(
Φ2a2 − Φ1a1

Φ1Φ2

)
(7.109)

On the contrary, if the handling curve is, e.g., like in Fig. 7.29, the higher the
forward speed u, with constant δv, the smaller the radius R. This is called oversteer
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behavior. More precisely, we have oversteer whenever

d fρ
dãy

< 0 (7.110)

Actually, when the straight line becomes tangent to the handling curve, as shown
in Fig. 7.29, the vehicle becomes unstable. It means that the vehicle has reached the
critical speed associated to that value of δv. The concept of critical speed will be
discussed in Sect. 7.13 in a more general framework.

A less classical, but maybe more interesting formula is (see (7.84))

δ − (α1 − α2) = β1 − β2 (7.111)

The relevance of this result is that it combines a very weak term δ − (α1 − α2) with
a very robust term β1 − β2. The first one is not well defined in real vehicles, whereas
the last one is. Understeer/oversteer should be defined and evaluated using the robust
term.

Vehicles with aerodynamic devices and/or limited-slip differential do not exhibit
a handling curve [13, p. 172], but a handling surface [7], instead. More precisely,
(7.105) still holds true, but with fρ(ãy, 1/R). Therefore, definitions (7.108) and
(7.110) of understeer/ovesteer become meaningless. This topic is addressed in
Sect. 8.5.2.

Classical vehicle dynamics stops about here. In the next section a fresh, more
comprehensive, global approach is developed. It brings new insights into the global
steady-state behavior of real vehicles, along with some new hints about the transient
behavior.

7.8 Map of Achievable Performance (MAP)

The handling diagram [13–15], although noteworthy, does not provide a complete
picture of the handling behavior. Just consider that the use of ãy as input variable, that
is one variable instead of two, hides some features of the vehicle handling behavior.

It would be better to have a more general approach, able to unveil at a glance the
overall steady-state features of the vehicle under investigation, thus making it easier
to distinguish between a “good” vehicle and a “not-so-good” one.

As already stated in (7.44), the steady-state handling behavior is completely
described by the handling maps

ρp = ρ̂p(u, δv) =
(

τ1 − τ2

l

)
δv − α1(u, δv) − α2(u, δv)

l

βp = β̂p(u, δv) =
(

τ1a2 + τ2a1
l

)
δv − α1(u, δv)a2 + α2(u, δv)a1

l

(7.112)
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where the last terms are peculiar to the single track model.
In the single track model, it is convenient to define the net steer angle δ, as already

done in (7.69) and in (7.106)

(1 + κ)δ = δ1 = τ1δv

κδ = δ2 = τ2δv
(7.113)

Usually,κ = 0 andhence δ = δ1 is just the steering angle of the frontwheel.However,
κ 	= 0 leaves room for direct rear steering as well. In general,

δ = δ1 − δ2 = (τ1 − τ2)δv (7.114)

With this notation, the handling maps (7.112) become

ρ = ρ̂(u, δ) = δ

l
− α1(u, δ) − α2(u, δ)

l

β = β̂(u, δ) =
(

(1 + κ)a2 + κa1
l

)
δ − α1(u, δ)a2 + α2(u, δ)a1

l

(7.115)

where, for the sake of compactness, we dropped the subscript p.
These two maps fully characterize the steady-state behavior of the vehicle. This is

a fairly general point of view that leads to the global approach presented in Chap. 6,
that we called Map of Achievable Performance (MAP).

Actually, under the acronymMAPwewill present several types of possible graph-
ical representations of the handling maps, each one on the corresponding achievable
region. This is another key concept.

Figures in this section are for road cars with the following features: mass m =
2000 kg, wheelbase l = 2.5m, a1 = 1.125m, a2 = 1.375m, grip coefficient μ = 1,
maximum speed umax = 40m

/
s, maximum steer angle of the front wheels δmax =

15◦. The understeer version has normalized axle characteristics as in Fig. 7.24. The
oversteer version has normalized axle characteristics as in Fig. 7.26. In all figures,
angles are in degree, accelerations in m/s2, and ρ in m−1.

7.8.1 MAP Fundamentals

The main idea behind the MAP approach is simple: the driver controls (u, δ), the
vehicle reacts with (ρ, β). That is

(u, δ) =⇒ (ρ, β) (7.116)

The input values (u, δ) that a given vehicle can really achieve are subject to three
limitations:
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Fig. 7.30 Achievable input region (left) and achievable output region (right) for an understeer
vehicle

Fig. 7.31 Lines at constant lateral acceleration ãy for an understeer vehicle

• maximum steer angle δmax;
• maximum speed umax, or critical speed ucr, if ucr < umax;
• maximum lateral acceleration (grip limited).

This is shown in Fig. 6.1 (left). Each achievable point (δ, u) results in the vehicle
performing with precise values (ρ, β). Therefore, the achievable input region of
Fig. 6.1 (left) is mapped onto the achievable output region shown in Fig. 6.1 (right).

Quite interesting are the MAPs (Maps of Achievable Performance) that can be
drawn inside these achievable regions. For instance, curves at constant ãy are drawn
on both regions in Fig. 7.31. In an understeer vehicle without significant aerodynamic
vertical loads, the grip-limited bound is just the curve at constant ãy = μg.

While the yaw rate rp has typically the same sign as δ, the same does not apply
to the lateral speed vp. As shown in Fig. 7.32, in a left turn the vehicle slip angle
β = vp/u can either be positive or negative. As a rule of thumb, at low forward speed
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Fig. 7.32 Steady-state behavior: a nose-out (low speed), b nose-in (high speed)

Fig. 7.33 u-δ MAP with curves at constant vehicle slip angle β for an understeer vehicle

the vehicle goes around “nose-out” (β > 0), whereas at high speed the vehicle goes
around “nose-in” (β < 0). This statement can be made quantitative by drawing the
curves at constant β on the achievable input region, as shown in Fig. 7.33. The almost
horizontal line β = 0 clearly splits the region into a lower part with β > 0, and an
upper part with β < 0.

Drawing curves at constant curvature ρ also highlights the overall understeer/
oversteer behavior of a vehicle. For instance, it is quite obvious that the pattern of
Fig. 7.34 is typical of an understeer vehicle: the faster you go, the more you have
to steer to keep ρ constant. Moreover, it is worth comparing Fig. 7.22, which is the
contour plot of ρ(δ, ãy), and Fig. 7.34, which is the contour plot of ρ(u, δ). For
instance, the first MAP is linear with respect to δ, whereas the second one is not. The
reason is that the other independent variable is different: linear behavior with respect
to δ requires constant lateral acceleration ãy , not constant forward speed u.



7.8 Map of Achievable Performance (MAP) 291

Fig. 7.34 u-δ MAP with
curves at constant curvature
ρ for an understeer vehicle

Fig. 7.35 ρ-β MAP with
curves at constant u and lines
at constant δ for an
understeer vehicle

Curves at constant speed u, and also lines at constant steer angle δ, are shown in
Fig. 7.35 for an understeer vehicle. As expected, moving top to bottom along each
line at constant steer angle, that is with increasing speed, brings smaller values of the
curvature ρ. Also interesting is to observe that at low speed the slip angle β grows
with δ, whereas at high speed it is the other way around. The same phenomena can
be observed more clearly in Fig. 7.33.

These MAPs can be obtained experimentally or through simulations. Therefore,
they are not limited to the single track model. Actually, as will be discussed in the
next chapter, they exist also for race cars, including cars with very high aerodynamic
downforces.
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Fig. 7.36 Effects of rear steering on the achievable region: rear wheels turning opposite of the front
wheels (left), rear wheels turning like the front wheels (right)

Fig. 7.37 ρ-β MAP for a vehicle with rear wheels turning opposite of the front wheels at low speed
and like the front wheels at high speed

The effects of rear steering (in addition to front steering, of course) are shown in
Fig. 7.36. The picture on the left is for the case of rear wheels turning opposite of the
front wheels with δ2 = −0.1δ1, whereas the picture on the right is for rear wheels
turning like the front wheels, with δ2 = 0.1δ1. The vehicle slip angle β is affected
pretty much. Basically, a positive χ = δ2/δ1 moves the achievable region upwards,
and vice versa. On the other hand, rear steering does not impinge on the achievable
region in the plane (δ, ρ), as will be discussed in Sect. 7.8.2.

Vehicles behave in a better way if the vehicle slip angle β spans a small range. To
have a narrower achievable output region in the plane (ρ, β) we have to move down
the upper part and move up the lower part. This is indeed the effect of a steering
system with rear wheels turning opposite of the front wheels at low speed, and
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Fig. 7.38 Example of the effects of rear steering on β: front steering only (top); front and rear
steering (bottom). All cases have the same ãy , and hence the same α1 and α2

Fig. 7.39 Oversteer vehicle: u-δ MAPs with curves at constant ρ (both), constant ãy (left) and
constant β (right)

turning like the front wheels at high speed. That is a steering system (7.113) with,
e.g., κ(u) = −κ0 cos(πu/umax). The net result can be appreciated by comparing
Fig. 7.37 with Fig. 7.35. The MAP approach provides a better insight into rear
steering effects than by looking at, e.g., Fig. 7.38.
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Fig. 7.40 Oversteer vehicle:
ρ-β MAP with curves at
constant speed u and lines at
constant steer angle δ

Fig. 7.41 Vehicle with too
much understeer: ρ-β MAP
with lines at constant u, ãy
and δ

The achievable region in case of an oversteer vehicle is limited by the critical
speeds, not by grip. A typical achievable input region, with noteworthy lines, is
shown in Fig. 7.39.

The achievable region in the plane (ρ, β) for an oversteer vehicle is shown in
Fig. 7.40, along with curves at constant speed u and lines at constant steer angle δ.
As expected, moving top to bottom along the lines at constant steer angles, that is
with increasing speed, entails larger values of the curvature ρ.

Very instructive is the comparison between Figs. 7.35 and 7.40, that is between
an understeer and an oversteer vehicle. The two achievable regions have different
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Fig. 7.42 Constant speed lines on the ρ-δ MAP for an understeer vehicle

shapes also because an oversteer vehicle becomes unstable for certain combinations
of speed and steer angle. These critical combinations form a sort of stability boundary
which collects all points where the u-curves and δ-lines are tangent to each other, as
shown in Fig. 7.40.

On the opposite side, a vehicle with too much understeer has an achievable region
like in Fig. 7.41 (see also Fig. 7.45 for a more intuitive MAP).

7.8.2 MAP Curvature ρ Versus Steer Angle δ

A central issue in vehicle dynamics is how a vehicle responds to the driver input
commands (namely, the steering wheel angle δv and the forward speed u). Well, let
us map it. The plane (δ, ρ) suits the purpose in a fairly intuitive and quantitative way.

Let us consider again a vehicle with the front and rear normalized axle charac-
teristics (multiplied by g) shown in Fig. 7.24.9 We recall that it is an understeer
vehicle and that the corresponding slip functions and handling diagram are shown in
Fig. 7.25 and Fig. 7.28, respectively.

If we draw the lines at constant speed u in the plane (δ, ρ), we get the plot shown
in Fig. 7.42, if ρ ≥ 0. In the same achievable region, we can draw the lines at constant

9 To keep, for the moment, the analysis as simple as possible, we also assume that Ŷ1(x) = Ŷ2(kx),
with k > 0.
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Fig. 7.43 Constant lateral
acceleration lines on the ρ-δ
MAP for an understeer
vehicle

Fig. 7.44 ρ-δ MAP for an
understeer vehicle

lateral acceleration ãy , as shown in Fig. 7.43. According to (7.98), they are parallel
straight lines. In Fig. 7.44, both lines at constant u and constant ãy are drawn on the
whole achievable region.

The achievable region is bounded by:

1. maximum speed (dashed line in Fig. 7.43);
2. maximum lateral acceleration (dashed line in Fig. 7.42);
3. zero lateral acceleration;
4. maximum steer angle.
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Fig. 7.45 ρ-δ MAP for a
vehicle with too much
understeer

We see that the driver must act on both u and δ to control the vehicle, that is to
drive it on a curve with curvature ρ and lateral acceleration ãy . But, the key feature is
that it can be done fairly easily because the lines at constant speed are “well shaped”,
that is quite far apart from each other and neither too flat, nor too steep (Fig. 7.42).

In Fig. 7.44, all lines at constant speed intersect all lines at constant lateral accel-
eration. This is typical of all vehicles without significant aerodynamic vertical loads.
This is another piece of information that is provided by this kind of maps on the
achievable region.

An example of a not-so-nice achievable region is shown in Fig. 7.45. A vehicle
with a map like in Fig. 7.45 shows too much understeer: the lines at high speed are
too flat, showing that the driver can increase δ without getting a significant increase
in ρ. Not a desirable behavior.

Another example of undesirable behavior, but for opposite reasons, is shown in
Fig. 7.46. This is a vehicle with too little understeer. It has a very narrow achievable
region, which means that the driver has a very heavy task in controlling the vehicle:
the lines at zero and maximum lateral acceleration are very close together.

An oversteer vehicle (whose corresponding slip functions and handling diagram
are shown in Fig. 7.27 and Fig. 7.29, respectively) has an achievable region as in
Fig. 7.47. The lines at constant ãy , shown in Fig. 7.47, are quite far apart like in
Fig. 7.43, but the lines at constant speed u are very badly shaped. At high speed they
are too steep, meaning that a small variation of δ drastically changes ρ and ãy .

Moreover, the vehicle becomes unstable when the u-lines have vertical slope.
Accordingly, the truly achievable region becomes smaller, as shown in Fig. 7.48,
where the truly achievable region is bounded by the stability boundary (long-dashed
line).
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Fig. 7.46 Constant lateral
acceleration lines on the ρ-δ
MAP for a vehicle with too
little understeer

Fig. 7.47 Apparent
achievable region on the ρ-δ
MAP for an oversteer vehicle

All these examples showhow themap curvature versus steer angle provides a very
clear and global picture of the vehicle handling behavior. It makes clear why a well
tuned vehicle must be moderately understeer. Too much or too little understeer are
not desirable because the vehicle becomes much more difficult to drive (for opposite
reasons).
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Fig. 7.48 Constant speed
lines and truly achievable
region on the ρ-δ MAP for
an oversteer vehicle
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The difference between understeer and oversteer is laid bare (Figs. 7.44 and 7.47).
Both have far apart ãy-lines, but covering achievable regions on opposite sides. In
fact, the u-lines are totally different.

The more one observes these handling MAPs on the corresponding achievable
regions, the more the global handling behavior becomes clear.

7.8.3 Other Possible MAPs

So far we have discussed the fundamental MAPs (δ, u) and (ρ, β), and also the fairly
intuitive, and very useful, MAP (ρ, δ).

Of course, several other MAPs are possible. For instance, in Fig. 7.49, curves at
constant δ are drawn in the planes (ρ, u) and (β, u) for an understeer vehicle. The
same kind ofMAPs, but for an oversteer vehicle, are shown in Fig. 7.50. The onset of
instability is clearly indicated, e.g., by the vertical tangent of the curves at constant
δ in the plane (β, u).

Moreover, the MAP (δ, ãy) was introduced in Sect. 7.7 and is extensively
employed in Sect. 7.10.

7.9 Weak Concepts in Classical Vehicle Dynamics

Some “fundamental” concepts in vehicle dynamics are indeed veryweak if addressed
with open mind. They are either not well defined, particularly when we look at real
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Fig. 7.49 Constant steer curves for an understeer vehicle

Fig. 7.50 Constant steer curves for an oversteer vehicle

vehicles, or they are commonly defined in an unsatisfactory way. This is a serious
practical drawback that can lead to wrong results and conclusions.

7.9.1 The Understeer Gradient

According to the SAE J266 Standard, Steady-State Directional Control Test Proce-
dures For Passenger Cars and Light Trucks

understeer/oversteer gradient K is defined as the difference between steer angle gradient and
Ackermann steer angle gradient.

This definition of K is equivalent to the following formula
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Fig. 7.51 Case not covered by the classical theory

K = d

dãy

(
δ − l

R

)
= l

d fρ(ãy)

dãy
(7.117)

which comes directly from (7.105). See also (7.109).
Therefore, to compute/measure K we need both the net steer angle δ and the

Ackermann steer angle l/R. Unfortunately, none of them is clearly defined in a real
vehicle. In fact, they are well defined only in the single track model, as it is done,
e.g., in Figure A1 in the SAE J266 Standard.

In a real vehicle, the two front wheels have typically different steer angles
(Fig. 7.51). Therefore, the net steer angle δ is not precisely defined.

The Ackermann steer angle l/R also gets in trouble whenever a vehicle has three
or more axles, as the wheelbase l is no longer a clear concept (Fig. 7.51). One may
object that almost all cars have two axles. Nonetheless, we cannot ground a theory
on such a weak concept.

The understeer gradient K has been an important performancemetric in analyzing
the handling behavior of vehicles. Unfortunately, it should not have been. It will be
demonstrated in Sect. 7.14.1 that it is not a good parameter to measure the handling
behavior of a vehicle. Nor even of a single track model. A much better parameter is
ρy , discussed in Sect. 7.13.

7.9.2 Popular Definitions of Understeer/Oversteer

Perhaps, the most astonishing case of use of unclear concepts is the popular way to
“define” understeer and oversteer:

Oversteer iswhat occurswhen a car steers bymore than the amount commanded by the driver.
Conversely, understeer is what occurs when a car steers less than the amount commanded
by the driver.10

10 From Wikipedia.
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Fig. 7.52 What did the driver intend to do?

Understeer: a tendency of an automobile to turn less sharply than the driver intends (or would
expect).

The term understeer means that you have to give your car more steering input than the corner
should require to get it to go around.

What is the “amount commanded by the driver”? What is the scientific, quantitative
meaning of what “the driver intends”? What does “than the corner should require”
mean?

Figure 7.52 exemplifies this paradoxical situation. Three different curves, three
identical trajectories, onlyone is fine in each case.What about the understeer/oversteer
behavior of the car? What did the driver intend to do?

7.10 Double Track Model in Transient Conditions

Steady-state analysis cannot be the whole story. Indeed, a vehicle is quite often in
transient conditions, that is with time-varying quantities (forces, speeds, yaw rate,
etc.). Addressing the transient behavior is, of course, more difficult than “simply”
analyzing the steady state. More precisely, the steady-state conditions (also called
trim conditions) are just the equilibrium points from which a transient behavior can
start or can end.

Thegeneralway to study the transient behavior of anydynamical system is through
in-time simulations. However, this approach has some drawbacks. Even after a large
number of simulations it is quite hard to predict beforehand what the outcome of the
next simulation will be.

One way to simplify the analysis of a non-linear dynamical system is to consider
only small perturbations (oscillations) about steady-state (trim) conditions. This idea
leads to the approach based on stability derivatives and control derivatives (as they
are called in aerospace engineering [12, p. 151]).

The nonlinear equations of motion of the double track model of the vehicle are
(cf. (7.38))
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m(u
.
β + .

uβ + u2ρ) = Y (β, ρ; u, δv)

Jz(u
.
ρ + .

uρ) = N (β, ρ; u, δv)
(7.118)

We prefer to use (ρ, β) as state variables, instead of (v, r), because they provide a
more “geometric” description of the vehicle motion. Since β = v/u and ρ = r/u, it
is pretty much like having normalized with respect to the forward speed u.

7.10.1 Equilibrium Points

At steady state we have, by definition,
.
v = .

r = 0, that is
.
β = .

ρ = 0. The driver has
direct control on u and δv, which are kept constant and whose trim values are named
ua and δva . The subscript a is introduced here to distinguish clearly between the
generic and the trim values (i.e., assigned values).

The equations of motion (7.118) become

mu2aρ = Y (β, ρ; ua, δva)
0 = N (β, ρ; ua, δva)

(7.119)

which can be solved to get the steady-state maps (exactly like in (7.44) or (7.112))

βp = β̂p(ua, δva) = vp(ua, δva)

ua

ρp = ρ̂p(ua, δva) = rp(ua, δva)

ua

(7.120)

These maps have been thoroughly discussed in Sect. 7.8, where the new concept of
MAP (Map of Achievable Performance) was introduced.

Actually, when applying the MAP approach to the vehicle transient behavior it is
more convenient to do like in (7.98), that is to use ãy = uarp(ua, δva), which provides
(exactly like in (7.46))

ua = ua(δva, ãy) (7.121)

and hence
βp = βp(δva, ãy) = β̂p(ua(δva, ãy), δva)

ρp = ρp(δva, ãy) = ρ̂p(ua(δva, ãy), δva)
(7.122)

An example of achievable region in (δ, ãy) is shown in Fig. 7.53 for an understeer
vehicle, along with lines at constant β (left) and constant ρ (right). In a real vehicle,
these maps can be obtained by means of classical steady-state tests. Therefore, they
do not require departing from the traditional way of vehicle testing.
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Fig. 7.53 MAPs in the plane (δ, ãy) with curves at constant β (left) and constant ρ (right) for an
understeer vehicle

7.10.2 Free Oscillations (No Driver Action)

The basic idea is to linearize around an equilibrium point to obtain information in
its neighborhood about the dynamical behavior. It is a standard approach for almost
any kind of nonlinear dynamical systems.

Assuming that the driver takes no action (i.e., both u = ua and δv = δva are con-
stant in time), the first-order Taylor series expansion of the equations of motion
(7.118) around the equilibrium point (7.120) are as follows

m(ua
.
β + u2aρ) = Y0 + Yβ(β − βp) + Yρ(ρ − ρp)

Jzua
.
ρ = N0 + Nβ(β − βp) + Nρ(ρ − ρp)

(7.123)

where

Y0 = Y (βp, ρp; ua, δva) = mu2aρp, N0 = N (βp, ρp; ua, δva) = 0 (7.124)

The stability derivatives Yβ , Yρ , Nβ and Nρ are simply the partial derivatives

Yβ = ∂Y

∂β
, Yρ = ∂Y

∂ρ
, Nβ = ∂N

∂β
, Nρ = ∂N

∂ρ
, (7.125)

all evaluated at the equilibrium (trim) conditions (βp, ρp; ua, δva). LikeY and N , each
stability derivative depends on the whole set of chosen coordinates. When evaluated
at an equilibrium point, they depend ultimately on the two input coordinates.

According to Maxwell’s Reciprocal Theorem

Yρ = Nβ (7.126)
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and hence there are only three independent stability derivatives. See Sect. 7.14 for
an example.

It is convenient to introduce the shifted coordinates

βt (t) = β(t) − βp and ρt (t) = ρ(t) − ρp (7.127)

into the linearized system of Eqs. (7.123), thus getting

mua
.
βt = Yββt + (Yρ − mu2a)ρt

Jzua
.
ρt = Nββt + Nρρt

(7.128)

where
.
β = .

βt and
.
ρ = .

ρt . The shifted coordinates are just the distance of the current
values from the selected trim values.

The same system of two first-order linear differential equations with constant
coefficients can be rewritten in matrix notation as

[ .
βt.
ρt

]
=

⎡
⎢⎢⎣

Yβ

mua

Yρ − mu2a
mua

Nβ

Jzua

Nρ

Jzua

⎤
⎥⎥⎦

[
βt

ρt

]
= A

[
βt

ρt

]
(7.129)

where the matrix A is not time dependent.
As a possible further analytical step, we can reformulate the problem as two

identical second order linear differential equations, with constant coefficients, one
in ρt (t) and the other in βt (t) (see Sect. 7.18.6 for details)

..
ρt + .

ρt

(−mNρ − JzYβ

Jzmua

)
+ ρt

(
YβNρ − YρNβ + mu2aNβ

Jzmu2a

)

= ..
ρt − tr(A)

.
ρt + det(A)ρt

= ..
ρt + 2ζωn

.
ρt + ω2

nρt = 0

= ..
βt + 2ζωn

.
βt + ω2

nβt = 0

(7.130)

where

2ζωn = − tr(A) = −mNρ + JzYβ

Jzmua
= −(λ1 + λ2)

ω2
n = det(A) = (YβNρ − YρNβ) + mu2aNβ

Jzmu2a
= λ1λ2

(7.131)

The solutions of (7.129) depend on two initial conditions, i.e. βt (0) and ρt (0).
From the system of equations (7.128) we get

.
β(0) and .

ρ(0), which are the two
additional initial conditions needed in (7.130). Therefore, the two state variables
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have identical dynamic behavior (i.e., same ζ and ωn) and are not independent from
each other.

From (7.130) and (7.131)we see that the vehicle behaves as amechanical vibrating
system with

equivalent mass = Jzmu2a

equivalent damping = −ua(mNρ + JzYβ)

equivalent stiffness = (YβNρ − YρNβ) + mu2aNβ

(7.132)

The derivatives Yβ and Nρ are always negative and act as viscous dampers. Appar-
ently, the quantity YβNρ − YρNβ is always positive (see (7.194)). The derivatives
Yρ = Nβ can be positive or negative. Understeer vehicles have Nβ > 0, oversteer
vehicles have Nβ < 0. It is important to understand the physical significance of each
stability derivative [12, p. 151].

The matrix A in (7.129) has two eigenvalues

λ j = −ζωn ± ωn

√
ζ 2 − 1, j = 1, 2 (7.133)

From (7.131) we can obtain the damping ratio ζ

ζ = − mNρ + JzYβ

2
√
Jzm

√
YβNρ − (Yρ − mu2a)Nβ

(7.134)

If ζ < 1, the two eigenvalues are complex conjugate

λ j = −ζωn ± iωn

√
1 − ζ 2 = −ζωn ± iωs (7.135)

and the system has a damped oscillation with natural angular frequency ωs

ωs = ωn

√
1 − ζ 2 (7.136)

It is kind of interesting to observe that all these relevant dynamic parameters ζ ,
ωn and ωs depend on the following four quantities

YβNρ − YρNβ + mu2aNβ mNρ + JzYβ Jzm ua (7.137)

Of course, the eigenvalues depend on (ua, δva), as shown in Figs. 7.54 and 7.55 for
(the single track model of) an understeer vehicle. In these figures, the real part (gray
lines) and the imaginary parts (black lines) are plotted as functions of the forward
speed ua . In Fig. 7.54 the car is going straight, that is with δ = 0. In Fig. 7.55 the
car has a net steer angle δ = 5◦ (defined in (7.68)). In both cases, the eigenvalues are
complex conjugate for speeds higher than about 4m

/
s.
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Fig. 7.54 Real and
imaginary parts of the two
eigenvalues (7.135), for
δ = 0

Fig. 7.55 Real and
imaginary parts of the two
eigenvalues (7.135), for
δ = 5◦

Interestingly enough, when the car goes straight (Fig. 7.54), the real part −ζωn

and the imaginary part ωs are almost constant for ua > 25m
/
s, that is for about

ua > 90 km
/
h. Indeed, it is at ua � 100 km

/
h that car makers typically perform the

steering harmonic sweep test, in which the steer input is a harmonic function but
with a slowly increasing frequency.

As expected, Fig. 7.55 is almost like Fig. 7.54 for low speeds, say ua < 10m
/
s.

For higher speeds, the two figures are very different. The maximum speed is limited
by grip when a vehicle is making a turn.

A clearer picture of the global dynamical features of the vehicle is provided by the
MAP approach (7.122) when applied to the damping ratio ζ(δ, ãy) and to the damped
natural frequency ωs(δ, ãy), as in Fig. 7.56. It immediately arises that the closer the
vehicle is to the grip limit (maximum lateral acceleration), the lower both ζ and ωs .
Therefore, the dynamical behavior of the vehicle changes significantly. Perhaps, an
expert driver may take advantage of these phenomena to “feel” how close the vehicle
is to the grip limit.

Summing up, we have seen that the dynamical features of the vehicle in the
neighborhood of an equilibriumpoint depend on the four stability derivatives (7.125),
besides m, Jz and ua . Actually, we know that Yρ = Nβ , and hence there are only
three independent stability derivatives. See also Sect. 7.14.
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Fig. 7.56 MAP in the plane
(δ, ãy) with curves at
constant damping ratio ζ

(dashed lines) and constant
damped natural angular
frequency ωs (solid lines)

The characterization of the vehicle requires knowledge of these stability deriva-
tives.

7.10.3 Stability of the Equilibrium

An equilibrium point can be either stable or unstable. The typical way to assess
whether there is stability or not is by looking at the eigenvalues (7.133). As well
known

stability ⇐⇒ Re(λ1) < 0 and Re(λ2) < 0 (7.138)

that is, both eigenvalues must have a negative real part. A convenient way to check
this condition without computing the two eigenvalues is

stability ⇐⇒ (
λ1 + λ2 = tr(A)

)
< 0 and

(
λ1λ2 = det(A)

)
> 0 (7.139)

Typically, vehicles may become unstable because one of the two real eigenvalues
becomes positive. From (7.131), the mathematical condition is

(YβNρ − YρNβ) + mu2aNβ < 0 (7.140)

As already mentioned, instability may occur only if Nβ < 0.
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7.10.4 Forced Oscillations (Driver Action)

Linearized systems can also be used to study the effect of small driver actions on
the forward speed and/or on the steering wheel angle to control the vehicle. More
precisely, we have u = ua + ut and δv = δva + δvt .

The linearized inertial terms in (7.118) are

m(u
.
β + .

uβ + u2ρ) � m(ua
.
β + .

uβp + u2aρp + u2aρt + 2uautρp)

Jz(u
.
ρ + .

uρ) � Jz(ua
.
ρ + .

uρp)
(7.141)

where mu2aρp = Y0, according to (7.119).
The linearized system becomes

m(ua
.
βt + .

uβp + u2aρt + 2uaρput ) = Yββt + Yρρt + Yuut + Yδδvt

Jz(ua
.
ρt + .

uρp) = Nββt + Nρρt + Nuut + Nδδvt

(7.142)

where, in addition to the four stability derivatives (7.125), there are also four control
derivatives

Yδ = ∂Y

∂δv
> 0, Nδ = ∂N

∂δv
> 0, Yu = ∂Y

∂u
� 0, Nu = ∂N

∂u
� 0 (7.143)

evaluated, like the others, at the equilibrium point (βp, ρp; ua, δva). A better way to
write (7.142) is

mua
.
βt = Yββt + (Yρ − mu2a)ρt + (Yu − 2muaρp)ut + Yδδvt − mβp

.
ut

Jzua
.
ρt = Nββt + Nρρt + Nuut + Nδδvt − Jzρp

.
ut

(7.144)

which generalizes (7.128).
The most intuitive case is the driver acting only on the steering wheel, which is

described by the simplified set of equations

mua
.
βt = Yββt + (Yρ − mu2a)ρt + Yδδvt

Jzua
.
ρt = Nββt + Nρρt + Nδδvt

(7.145)

since ut = .
u = 0. Moreover,

.
u = 0 is consistent with the assumptions made at the

beginning of this chapter.
In matrix notation, (7.144) become

[ .
βt.
ρt

]
= A

[
βt

ρt

]
+ B

⎡
⎣ut

δvt.
ut

⎤
⎦ = A

[
βt

ρt

]
+ b (7.146)
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or, in an even more compact notation

.w = Aw + b (7.147)

where the entries of matrix A are, exactly as in (7.129)

a11 = Yβ/(mua) a12 = (Yρ − mu2a)/(mua) (7.148)

a21 = Nβ/(Jzua) a22 = Nρ/(Jzua)

and the components of vector b are

b1 = 1

mua
[(Yu − 2muaρp)ut + Yδδvt − mβp

.
ut ]

b2 = 1

Jzua
[Nuut + Nδδvt − Jzρp

.
ut ]

(7.149)

Like in (7.130), we can recast the problem (7.144) as two second-order linear
differential equations, only apparently independent from each other

..
βt + 2ζωn

.
βt + ω2

nβt = −a22b1 + a12b2 + .
b1 = Fβ

..
ρt + 2ζωn

.
ρt + ω2

nρt = a21b1 − a11b2 + .
b2 = Fρ

(7.150)

where
.
b1 = 1

mua
[(Yu − 2muaρp)

.
ut + Yδ

.
δv − mβp

..
ut ]

.
b2 = 1

Jzua
[Nu

.
ut + Nδ

.
δv − Jzρp

..
ut ]

(7.151)

Again, if the driver acts only on the steering wheel, like in (7.145), all these expres-
sions become much simpler. More precisely

b1 = Yδ

mua
δvt , b2 = Nδ

Jzua
δvt ,

.
b1 = Yδ

mua

.
δv,

.
b2 = Nδ

Jzua

.
δv (7.152)

and hence

Fβ =
(−NρYδ + (Yρ − mu2a)Nδ

mJzu2a

)
δvt + Yδ

mua

.
δv

Fρ =
(
NβYδ − YβNδ

mJzu2a

)
δvt + Nδ

Jzua

.
δv

(7.153)
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The two differential equations (7.150) have identical values of ζ and ωn , but
different forcing terms Fβ and Fρ . However, in (7.153)we still find the four quantities
listed in (7.137).

The fundamental result of this analysis is that the transient dynamics of a vehicle
in the neighborhood of an equilibrium point is fully characterized by a finite number
of normalized stability derivatives and control derivatives:

• normalized stability derivatives Yβ/m, Yρ/m, Nβ/Jz , and Nρ/Jz ;
• normalized control derivatives Yu/m, Yδ/m, Nu/Jz , and Nδ/Jz .

It will be discussed shortly that in most cases Yu = Nu = 0, thus leaving six deriva-
tives. It is worth noting that the equality Yρ = Nβ does not reduce the number of
relevant derivatives to five. Indeed, we still have Yρ/m 	= Nβ/Jz .

The key point is how to measure (identify) all the stability derivatives and all the
control derivatives. Their knowledge would be very relevant practical information.
The next section presents indeed a novel method to extract these data from the results
of steady-state tests. This approach appears to be simpler andmore reliable than direct
measurements.

7.11 Relationship Between Steady-State Data
and Transient Behavior

Most classical vehicle dynamics deals with steady-state data. Understeer and over-
steer are steady-state concepts. Or they are not? This is a crucial question. What
does a professional driver mean when he/she complains about his/her car being
understeer or oversteer? Does it have anything to do with the classical definition of
understeer/oversteer as discussed in Sect. 7.7?

Two aspects should be carefully taken into account. While the concepts of veloc-
ity, acceleration, mass, stability etc. arise in any branch of mechanics, why do the
concepts of understeer and oversteer only belong to vehicle dynamics? This is rather
surprising. Why are vehicles so special dynamical systems that they need concepts
conceived uniquely for them?

The other aspect is somehow more practical. Why should steady-state tests tell
us anything about the transient behavior of a vehicle? In more technical terms, why
should steady-state data be related to stability derivatives? Are they or not? If they are
related, what is the relationship? Indeed, in [3] it is admitted “Transient responses are
related to understeer to some extent, but there is no one-to-one relationship between
steady-state and transient response”.

This section is devoted to the investigation of the link between the universe of
steady-state data and the universe of the dynamical, hence transient, behavior of a
vehicle. It will be shown that a link does indeed exist, but it is not direct, not to
mention obvious.

It is worth noting that this section is not strictly related to the single track model.
The theory developed here is applicable to real road vehicles.
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7.11.1 Stability Derivatives from Steady-State Gradients

The starting point is a sort of mathematical trick. At steady state, the lateral force Y
and the yawing moment N have very simple values

Y0 = mãy and N0 = 0 (7.154)

Nevertheless, by combining (7.119), (7.121), and (7.122), they can be given, as
functions, the following expressions

Y0(δva, ãy) = Y
(
βp(δva, ãy), ρp(δva, ãy); ua(δva, ãy), δva

) = mãy

N0(δva, ãy) = N
(
βp(δva, ãy), ρp(δva, ãy); ua(δva, ãy), δva

) = 0
(7.155)

Now, the key idea is to take the partial derivatives of the just defined function
Y0(δva, ãy), thus obtaining

∂Y0
∂ ãy

= Yβ

∂βp

∂ ãy
+ Yρ

∂ρp

∂ ãy
+ Yu

∂ua
∂ ãy

= m
∂ ãy
∂ ãy

= m

∂Y0
∂δva

= Yβ

∂βp

∂δva
+ Yρ

∂ρp

∂δva
+ Yu

∂ua
∂δva

+ Yδ = m
∂ ãy
∂δva

= 0

(7.156)

The same steps can be taken for the yawing moment N0(δva, ãy), getting

∂N0

∂ ãy
= Nβ

∂βp

∂ ãy
+ Nρ

∂ρp

∂ ãy
+ Nu

∂ua
∂ ãy

= 0

∂N0

∂δva
= Nβ

∂βp

∂δva
+ Nρ

∂ρp

∂δva
+ Nu

∂ua
∂δva

+ Nδ = 0

(7.157)

In a road vehicle, that is without significant aerodynamic vertical loads, it is
reasonable to assume

Yu = Nu = 0 (7.158)

if we take β and ρ as state variables to describe the vehicle motion.11 In other words,
Y and N do not change if we modify only u, keeping constant β, ρ and δv, that is
keeping constant α1 and α2 (cf. (7.51)). It would not be so in Formula cars, that is in
cars with aerodynamic devices.

The two equations in (7.156), with Yu = Nu = 0, yield the system of linear equa-
tions

11 Actually, as discussed right after (7.38), these partial derivatives are not zero if there is roll steer
in a double track model. However, they should be very small. See also (7.75).



7.11 Relationship Between Steady-State Data and Transient Behavior 313

⎧⎪⎨
⎪⎩
Yβ

∂βp

∂ ãy
+ Yρ

∂ρp

∂ ãy
= m

Yβ

∂βp

∂δva
+ Yρ

∂ρp

∂δva
= −Yδ

(7.159)

and, similarly, from (7.157)

⎧⎪⎨
⎪⎩
Nβ

∂βp

∂ ãy
+ Nρ

∂ρp

∂ ãy
= 0

Nβ

∂βp

∂δva
+ Nρ

∂ρp

∂δva
= −Nδ

(7.160)

These two systems of equations

[
βy ρy

βδ ρδ

] [
Yβ

Yρ

]
=

[
m

−Yδ

]
and

[
βy ρy

βδ ρδ

] [
Nβ

Nρ

]
=

[
0

−Nδ

]
(7.161)

have the same matrix, whose coefficients are the four components of the gradients
defined in (7.99)

grad ρp =
(

∂ρp

∂ ãy
,

∂ρp

∂δva

)
= (ρy, ρδ)

grad βp =
(

∂βp

∂ ãy
,

∂βp

∂δva

)
= (βy, βδ)

(7.99′)

of the two steady-state maps (7.122). After having performed the standard steady-
state tests, all these gradient components (already introduced in Sect. 7.7.1) are
known functions.

The four stability derivatives are the solution of the two systems of equations
(7.161)

Yβ = Yδρy + mρδ

βyρδ − βδρy
Yρ = − Yδβy + mβδ

βyρδ − βδρy

Nβ = Nδρy

βyρδ − βδρy
Nρ = − Nδβy

βyρδ − βδρy

(7.162)

Therefore, they are known functions of the gradient components and of the control
derivatives Yδ and Nδ . This is a fundamental original result, as it shows why steady-
state data can indeed provide information about the transient behavior, although not
in an obvious way.

Moreover, from (7.126) (i.e., Yρ = Nβ) and (7.162) we have that
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βyYδ + ρy Nδ = −mβδ

which means

Yδ = −Nδρy + mβδ

βy
or Nδ = −Yδβy + mβδ

ρy

(7.163)

The transient behavior of the vehicle is characterized by the stability derivatives.
This is well known. What is new is that the stability derivatives are strictly related
to the gradients of steady-state maps. This result opens up new perspectives in the
objective evaluation of the handling of vehicles (cf. [10]).

7.11.2 Equations of Motion

Now, we can go back to the linearized equations of motion (7.145). The stability
derivatives can be replaced by the expressions in (7.162), thus obtaining

mua
.
βt =

(
Yδρy + mρδ

βyρδ − βδρy

)
βt +

(
− Yδβy + mβδ

βyρδ − βδρy
− mu2a

)
ρt + Yδδvt

Jzua
.
ρt =

(
Nδρy

βyρδ − βδρy

)
βt +

(
− Nδβy

βyρδ − βδρy

)
ρt + Nδδvt

(7.164)

where βt and ρt are the shifted coordinates defined in (7.127).
In some cases it is convenient to define and use the generalized control derivatives

Ŷδ = Yδ

m
and N̂δ = Nδ

Jz
(7.165)

thus obtaining

ua
.
βt =

(
Ŷδρy + ρδ

βyρδ − βδρy

)
βt +

(
− Ŷδβy + βδ

βyρδ − βδρy
− u2a

)
ρt + Ŷδδvt

ua
.
ρt =

(
N̂δρy

βyρδ − βδρy

)
βt +

(
− N̂δβy

βyρδ − βδρy

)
ρt + N̂δδvt

(7.166)

This is quite a remarkable (and original) result. It shows how the equations of motion
can be given in terms of data collected in steady-state tests. It is the link between the
realm of steady-state gradients and the realm of transient behavior.
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7.11.3 Estimation of the Control Derivatives

The control derivatives Ŷδ and N̂δ can be estimated by means of standard dynamic
tests. For instance, let us consider a generalized step steering input, that is a sudden
increase δvt of the steering wheel angle δv applied to a vehicle in a steady-state
(equilibrium) configuration. We say “generalized” since it should and can be done
from any steady-state configuration, not necessarily from a straight-line trajectory.
Since, by definition βt (0) = 0 and ρt (0) = 0, from (7.166) we obtain

Ŷδ = ua
.
βt (0)

δvt
and N̂δ = ua

.
ρt (0)

δvt
(7.167)

Combining this result with (7.163), we also get that in a step steering input

βy
.
βt (0) + Jz

m
ρy

.
ρt (0) = −δvt

ua
βδ (7.168)

7.11.4 Objective Evaluation of Car Handling

The two coefficients 2ζωn = −(λ1 + λ2) andω2
n = λ1λ2 of the differential equations

(7.130), can now be expressed as combinations of steady-state gradient components
and control derivatives

2ζωn = 1

ua(βyρδ − βδρy)

[(
N̂δβy − Ŷδρy

)
− ρδ

]
= − tr(A) = n1(δva, ãy)

ω2
n = N̂δ

(βyρδ − βδρy)

(
ρy − 1

u2a

)
= det(A) = n2(δva, ãy)

(7.169)
or, equivalently

2ζωn = 1

Jzmua

(mNδβy − JzYδρy) − Jzmρδ

(βyρδ − βδρy)
= − tr(A) = n1(δva, ãy)

ω2
n = 1

Jzmua

mNδ(u2aρy − 1)

ua(βyρδ − βδρy)
= det(A) = n2(δva, ãy)

(7.170)

Exactly like in (7.132), we have the physical interpretation as a vibrating system
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equivalent mass = Jzmu2a

equivalent damping = ua
(mNδβy − JzYδρy) − Jzmρδ

βyρδ − βδρy

equivalent stiffness = mNδ(u2aρy − 1)

βyρδ − βδρy

(7.171)

Once again, the dynamic features of the vehicle are strictly related to the gradients
of data obtained in steady-state tests.

From (7.169), we see that the vehicle becomes unstable (det(A) < 0) if

ρy − 1

u2a
> 0 (7.172)

which requires ρy > 0 (oversteer). This condition is completely equivalent to (7.140)
(see also Sect. 7.13). From (7.162), we obtain that Nβ and ρy have opposite signs

Nβ = Nδρy

βyρδ − βδρy
(7.173)

since Nδ > 0 and (βyρδ − βδρy) < 0.
Following the same path of reasoning, the two forcing terms Fβ and Fρ in (7.153)

can be rewritten as

Fβ = − N̂δ

u2a

(
βδ

βyρδ − βδρy
+ u2a

)
δvt+ Ŷδ

ua

.
δv

= n3(δva, ãy)δvt + n4(δva, ãy)
.
δv (7.174)

and

Fρ = − N̂δ

u2a

(
ρδ

βyρδ − βδρy

)
δvt + N̂δ

ua

.
δv

= n5(δva, ãy)δvt + n6(δva, ãy)
.
δv (7.175)

Typical patterns are shown in the MAP in Fig. 7.57 for Fβ , and in the MAP of
Fig. 7.58 for Fρ .
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Fig. 7.57 MAP in the plane (δ, ãy) for Fβ , with curves at constant n3 (left) and constant n4 (right)

Fig. 7.58 MAP in the plane (δ, ãy) for Fρ , with curves at constant n5 (left) and constant n6 (right)

7.11.4.1 Vehicle “DNA”

Equations (7.169), (7.174) and (7.175) show that the dynamical behavior of a road
vehicle in the neighborhood of any equilibrium point is fully described by six maps
ni (δva, ãy). These maps (functions) can be seen as a sort of “DNA” of the vehicle, in
the sense that they determine the vehicle transient behavior. To help the reader, these
six maps are listed below:
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n1(δva, ãy) = 1

ua(βyρδ − βδρy)

[(
N̂δβy − Ŷδρy

)
− ρδ

]
= 2ζωn

n2(δva, ãy) = N̂δ

(βyρδ − βδρy)

(
ρy − 1

u2a

)
= ω2

n

n3(δva, ãy) = − N̂δ

u2a

(
βδ

βyρδ − βδρy
+ u2a

)

n4(δva, ãy) = Ŷδ

ua

n5(δva, ãy) = − N̂δ

u2a

(
ρδ

βyρδ − βδρy

)

n6(δva, ãy) = N̂δ

ua

(7.176)

However, all these quantities are, ultimately, combinations of the following six fun-
damental “handling bricks”:

s1 = βy, s2 = ρy, s3 = βδ, s4 = ρδ, s5 = N̂δ, s6 = Ŷδ (7.177)

all of them, in general, functions of two variables like, e.g., ãy and δv.
Two vehicleswith the same si , and hencewith the same ni , have identical transient

handling behavior, notwithstanding their size, weight, etc. In other words, the two
vehicles react in exactly the sameway to given driver input. Therefore, there is indeed
a strong relationship between data collected in steady-state tests and the transient
dynamical behavior of a vehicle.

Objective measures of car handling should be based on the quantities defined in
(7.176).

On the practical side, we see that the components of the gradients (7.99) of the
steady-statemapsβp(δv, ãy) and ρp(δv, ãy) provide four out of six “handling bricks”,
the other two being the generalized control derivatives. Basically, we have found a
more feasible way, based on the gradient components of the steady-state MAPs, to
measure the six stability and control derivatives listed on Sect. 7.11.

7.12 Stability (Again)

According to (7.139), an equilibrium point is stable if and only if tr(A) < 0 and
det(A) > 0. These two conditions, after (7.169), can be expressed in terms of the
six fundamental handling bricks (7.177) and the forward speed. However, provided
Φ1 > 0 and Φ2 > 0, the onset of instability is given by (7.172).
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7.13 New Understeer Gradient

Let us discuss in detail the component ρy of the new understeer gradient introduced
in (7.99). In general it is a function of two variables

ρy = ρy(δva, ãy) (7.178)

except in some special cases, like the single track model with open differential,
where, according to (7.102), ρy = ρy(ãy) = −d fρ/dãy .

More explicitly,

ρy = ∂ρp

∂ ãy
= ∂

∂ ãy

(
1

R

)
= −K

l
(7.179)

This is similar to the definition (7.117) of the classical understeer gradient K , but
with a few fundamental differences.

The definition of ρy does not involve any weak concept, like the wheelbase l or
the Ackermann steer angle, as discussed in Sect. 7.9. Therefore, it is much more
general. This new understeer gradient is defined for any vehicle.

Moreover, it is the correct measure of understeer/oversteer, while K is not. This
may look surprising, but that is the way it is, as will be shown in Sect. 7.14.1 (see in
particular Table 7.1).

Of course, the partial derivative in (7.179) requires the steer angle to be kept
constant, according to (7.178).12

But there are other reasons that support ρy as a good handling parameter. Let us
consider a constant steering wheel test and monitor the yaw rate rp = rp(ua; δva) as
a function of the forward speed ua , keeping constant the steering wheel angle δva .
For brevity, let r ′

p = drp/dua . Equation (7.179) can be rewritten as

dρp

dãy
= d(rp/ua)

d(rp ua)
= d(rp/ua)

dua

(
d(rp ua)

dua

)−1

= 1

u2a

(
r ′
pua − rp

r ′
pua + rp

)
= ρy(ua; δva)

(7.180)
This general equation provides away to obtain the critical speed and the characteristic
speed.

If ρy < 0 (understeer), the characteristic speed uch is, by definition [12, pp. 181–
185], the speed at which r ′

p = 0, that is the yaw velocity gain rp(ua; δva) is maximum.
By letting r ′

p → 0 in (7.180), we obtain that the characteristic speed must satisfy the
following equation

1

u2a
= −ρy(ua; δva) that is uch(δva) =

√
− 1

ρy(uch; δva)
(7.181)

12 Tests with constant steer angle are themost general: they can be performed on any kind of vehicle.



320 7 Handling of Road Cars

Similarly, if ρy > 0 (oversteer), the critical speed ucr is, by definition [12, p. 177],
the speed at which r ′

p → ∞, which means

1

u2a
= ρy(ua; δva) that is ucr(δva) =

√
1

ρy(ucr; δva)
(7.182)

Summing up:

• ρy has been definedwithout any recourse toweak concepts, like a reference vehicle
having Ackermann steering [16];

• ρy can be easily measured in constant steering wheel tests;
• the critical speed and the characteristic speed come out naturally as special cases.13

A similar treatment applies to the other gradient component βy . In this case vp =
vp(ua; δva), thus obtaining

βy = dβp

dãy
= d(vp/ua)

d(uarp)
= 1

u2a

(
v′
pua − vp

r ′
pua + rp

)
(7.183)

In general
βy = βy(δva, ãy) (7.184)

except in cases like the single track model with open differential, where, according
to (7.102), βy = βy(ãy) = −d fβ/dãy .

7.14 The Nonlinear Single Track Model Revisited

The general approach presented in Sect. 7.11, which explains why steady-state data
are also relevant for the transient behavior, is applied here to the single track model.
The goal is to clarify the matter by a significant worked-out example.

For simplicity, we assume u = ua and
.
u = 0 and hence start with the linearized

equations of motion (7.145).
In the single track model (with open differential), the stability derivatives (7.125)

can be obtained directly (cf. (7.88)), taking into account the congruence equations
(7.51) and the axle characteristics (7.73)

13 Actually, the real critical speed can be lower than the value predicted by (7.182), as shown in
Sect. 7.16.3 [9, pp. 216–219]. Basically, (7.182) may not predict the right value because in real
vehicles we control the longitudinal force, not directly the forward speed. Therefore, a real vehicle
is a system with three state variables, not just two. This additional degree of freedom does affect
the critical speed, unless the vehicle is going straight.
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Yβ = dY1
dα1

∂α1

∂β
+ dY2

dα2

∂α2

∂β
= −dY1

dα1
− dY2

dα2
= −Φ1 − Φ2

Yρ = dY1
dα1

∂α1

∂ρ
+ dY2

dα2

∂α2

∂ρ
= −a1

dY1
dα1

+ a2
dY2
dα2

= −a1Φ1 + a2Φ2

(7.185)

and

Nβ = a1
dY1
dα1

∂α1

∂β
− a2

dY2
dα2

∂α2

∂β
= −a1

dY1
dα1

+ a2
dY2
dα2

= −a1Φ1 + a2Φ2

Nρ = a1
dY1
dα1

∂α1

∂ρ
− a2

dY2
dα2

∂α2

∂ρ
= −a21

dY1
dα1

− a22
dY2
dα2

= −a21Φ1 − a22Φ2

(7.186)

where

Φ1 = dY1
dα1

and Φ2 = dY2
dα2

(7.187)

are the slopes of the axle characteristics at the equilibrium point, defined in (7.94).
Obviously, Φi > 0 in the monotone increasing part of the axle characteristics. These
slopes are simple to be defined, but not so simple to be measured directly.

It is also worth recalling that
Yρ = Nβ (7.188)

To proceed further, as already done in (7.68), let

δ1 = (1 + κ)τδv and δ2 = κτδv (7.189)

thus linking the rear steer angle δ2 to the front steer angle δ1 in such a way to keep
constant the net steer angle τδv = δ1 − δ2 = δ. To have front steering only it suffices
to set κ = 0.

We can now obtain also the explicit expressions of the control derivatives

Yδ = [(1 + κ)Φ1 + κΦ2]τ, Nδ = [(1 + κ)Φ1a1 − κΦ2a2]τ (7.190)

In this vehicle model, all stability derivatives and all control derivatives are func-
tions of ãy only, that is Yβ = Yβ(ãy), and so on.

The linearized equations of motions (7.145) become

m(ua
.
βt + u2aρt ) = −(Φ1 + Φ2)βt − (Φ1a1 − Φ2a2)ρt + ((1 + κ)Φ1 + κΦ2)τδvt

Jzua
.
ρt = −(Φ1a1 − Φ2a2)βt − (Φ1a

2
1 + Φ2a

2
2)ρt + ((1 + κ)Φ1a1 − κΦ2a2)τδvt

(7.191)
Similarly, (7.131) becomes, in this case



322 7 Handling of Road Cars

2ζωn = − tr(A) = 1

ua

(
Φ1 + Φ2

m
+ Φ1a21 + Φ2a22

Jz

)

= Φ1(Jz + ma21) + Φ2(Jz + ma22)

Jzmua

(7.192)

and

ω2
n = det(A) = 1

Jzmu2a

[
Φ1Φ2(a1 + a2)

2 − mu2a(Φ1a1 − Φ2a2)
]

(7.193)

Quite remarkable is that in (7.131)

YβNρ − YρNβ = Φ1Φ2(a1 + a2)
2 (7.194)

Therefore this quantity is always positive, provided the vehicle operates with positive
Φ1 and Φ2.

The damping ratio (7.134) has the following expression

ζ = (Φ1 + Φ2)Jz + (Φ1a21 + Φ2a22)m

2
√
Jzm

√
Φ1Φ2(a1 + a2)2 − mu2a(Φ1a1 − Φ2a2)

(7.195)

and the natural angular frequency (7.136) becomes

ω2
s =Φ2a2 − Φ1a1

Jz

− 1

(2Jzmua)2

[
(Φ1 + Φ2)

2 J 2
z + 2(Φ2a2 − Φ1a1)

2 Jzm

− 2(a1 + a2)
2Φ1Φ2 Jzm + (Φ1a

2
1 + Φ2a

2
2)

2m2

]
(7.196)

or, equivalently

ω2
s = −Φ1a1

Jz
+ Φ2a2

Jz

− Φ1Φ2

[
J 2
z − (a21 + 4a1a2 + a22)Jzm + a21a

2
2m

2

2(Jzmua)2

]

− Φ2
1

(
Jz + ma21
2Jzmua

)2

− Φ2
2

(
Jz + ma22
2Jzmua

)2

(7.197)

These parameters characterize the handling behavior in the neighborhood of an equi-
librium point. More explicitly, like in (7.132), we have that the vehicle behaves as a
mechanical vibrating system with
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equivalent mass = Jzmu2a

equivalent damping = ua[Φ1(Jz + ma21) + Φ2(Jz + ma22)]
equivalent stiffness = Φ1Φ2(a1 + a2)

2 − mu2a(Φ1a1 − Φ2a2)

(7.198)

It is a kind of interesting comparing (7.132), (7.171), and (7.198). They provide the
same information with very different tools.

In the single track model, the explicit expressions of the two forcing functions
(7.153) can also be obtained

Fβ =
[
(a1 + a2)Φ1Φ2((1 + κ)a2 + κa1)

Jzmu2a
− (1 + κ)a1Φ1 − κa2Φ2

Jz

]
τδvt

+ (1 + κ)Φ1 + κΦ2

mua
τ
.
δv

Fρ = (a1 + a2)Φ1Φ2

Jzmu2a
τδvt + (1 + κ)a1Φ1 − κa2Φ2

Jzua
τ
.
δv

(7.199)
with obvious simplifications if κ = 0 (front steering only).

All the equations obtained in this section show that for a single track model there
are seven design parameters

Φ1

m
,

Φ2

m
, a1, a2,

Jz
m

, κ, τ (7.200)

in addition to the control parameters u and δv(t), with constant u = ua .
Now, we can relate these design parameters to the six fundamental “handling

bricks” of (7.177).
The components of the gradients grad βp and grad ρp, defined in (7.99), have been

obtained for the single track model in (7.100)

βy = −m

l2

(
Φ1a21 + Φ2a22

Φ1Φ2

)

ρy = −m

l2

(
Φ2a2 − Φ1a1

Φ1Φ2

)
βδ = τ

(
(1 + κ)a2 + κa1

a1 + a2

)

ρδ = τ
(1 + κ) − κ

a1 + a2

(7.100′)

As already stated, all these components can be measured experimentally from stan-
dard steady-state tests, and without having to bother about Ackermann steer angle
and the like.

Also interesting is that

βyρδ − βδρy = −τm
(1 + κ)Φ1a1 − κΦ2a2

Φ1Φ2(a1 + a2)2
= − m Nδ

YβNρ − YρNβ

< 0 (7.201)
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In case of no rear steering (i.e., κ = 0) it becomes

βyρδ − βδρy = − τma1
Φ2(a1 + a2)2

(7.202)

The generalized control derivatives Ŷδ = Yδ/m and N̂δ = Nδ/Jz are immediately
obtained from (7.190).

Summing up, for the single track model the six “handling bricks” si (δva, ãy) in
(7.177) are

s1 = βy = − m

(a1 + a2)2

(
Φ2a22 + Φ1a21

Φ1Φ2

)

s2 = ρy = − m

(a1 + a2)2

(
Φ2a2 − Φ1a1

Φ1Φ2

)

s3 = βδ = τ
(1 + κ)a2 + κa1

a1 + a2

s4 = ρδ = τ
(1 + κ) − κ

a1 + a2
= τ

a1 + a2

s5 = N̂δ = τ
(1 + κ)Φ1a1 − κΦ2a2

Jz

s6 = Ŷδ = τ
(1 + κ)Φ1 + κΦ2

m

(7.203)

Therefore, we have six “handling bricks” depending on seven design parame-
ters. This means that there exist infinitely many different vehicles sharing the same
handling transient behavior. This observation opens upmany new paths of reasoning.

One of these paths of reasoning is worked out in the next section. The results are
quite surprising.

7.14.1 Very Different Vehicles with Identical Handling

As a test of the new theory presented in Sect. 7.14, we are going to compare the
transient handling behavior of, say, three linear single track models. These vehicles
will be very different, and identical at the same time. How is it possible?

These three vehicles will share exactly the same values of all the six handling
bricks listed in (7.203). Therefore, they will have the same handling behavior. How-
ever, they need not to be exactly alike, since we can play with seven design parameter
to fulfill the six handling requirements.

A good test is to define a first vehicle with front steer only, a second vehicle with
also negative rear steer, and a third one with also positive rear steer. This can be
easily done by means of parameter κ , introduced in (7.189)
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δ1 = (1 + κ)τδv and δ2 = κτδv (7.189′)

Parameter κ controls the amount of rear steerwith respect to front steer,while keeping
constant the net steer angle δ = τδv = δ1 − δ2. The rear wheels turn opposite to the
front wheels if κ < 0, while both front and rear wheels turn alike if κ > 0. Typically,
|κ| < 0.1, that is the rear wheels cannot turn as far as the front wheels.

But, let us do some numerical examples. Let us consider a vehicle with front
steering only (κ = 0), with the following features:

• τ = 1/20;
• m = 1300 kg;
• Jz = 2000 kgm2;
• a1 = 1m;
• a2 = 1.60m;
• Φ1 = Φ1(0) = 70000N/rad;
• Φ2 = Φ2(0) = 90000N/rad.

From (7.203) we can compute all six handling bricks si for this vehicle, and then
use them for the other two vehicles. This way, it is possible to create vehicles that
look very different, but which ultimately have exactly the same handling behavior.

The vehicle features for κ ± 0.1, that is two very high amounts of rear steer,
are shown in Table 7.1. The three vehicles there reported are strikingly different
(Fig. 7.71), yet they have the same handling behavior, and not limited to steady state.
For the driver, they behave exactly the same way under any transient conditions.

For instance, starting from a straight trajectory, let us impose a step steering input
δv = 60◦, the forward velocity being u = 30m

/
s. Figures 7.59 and 7.60 show the

lateral velocity v(t) and the yaw rate r(t), respectively. They are identical for the
three vehicles, thus confirming the theoretical claims.

Of course, the slip angles are not identical, as shown in Fig. 7.61. The three
vehicles are indeed different. It is left to the reader to figure out which curve is for
κ = 0.1, etc.

Just out of curiosity, the most extreme vehicles that can be obtained with this
algorithm are shown in Table 7.2. Of course, we are not suggesting that they
are feasible vehicles. They are reported here because they provide some rigorous

Table 7.1 Design parameters of vehicles with different amounts of rear steering κ , but with iden-
tical transient handling behavior. Note that the classical understeer gradient K conveys misleading
information

κ Φ1 Φ2 a1 a2 Jz m τ K −ρy

[−] [N/rad] [N/rad] [m] [m] [kg m2] [kg] [−] [deg/g] [deg/(mg)]
−0.10 86332 73668 0.73 1.86 2000 1300 0.99/20 3.28 1.27

0.00 70000 90000 1.00 1.60 2000 1300 1.00/20 3.30 1.27

+0.10 49065 110935 1.48 1.32 2000 1300 1.08/20 3.55 1.27
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Fig. 7.59 Lateral velocity v(t) of any of the three vehicles after a step steering input

Fig. 7.60 Yaw rate r(t) of any of the three vehicles after a step steering input

Fig. 7.61 Front and rear slip angles of the three vehicles after a step steering input
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Table 7.2 Design parameters of vehicleswith extreme amounts of rear steering κ , but with identical
transient handling behavior

κ Φ1 Φ2 a1 a2 Jz m τ K −ρy

[−] [N/rad] [N/rad] [m] [m] [kg m2] [kg] [−] [deg/g] [deg/(mg)]
−0.60 141316 18684 0.01 4.01 2000 1300 1.55/20 5.10 1.27

0.00 70000 90000 1.00 1.60 2000 1300 1.00/20 3.30 1.27

+0.166 22426 137574 2.73 0.98 2000 1300 1.42/20 4.71 1.27

evidence that rear steer must be kept small to have good handling behavior, as intu-
itively everybody knows.

But perhaps the most astonishing result obtained in this section is that all these
vehicles of Tables 7.1 and 7.2, although with identical handling behavior, do not have
the same classical understeer gradient K . Just have a look at the next to last column
in Table 7.1. In other words, they would have been classified as very different if
evaluated in terms of their classical understeer gradient K [16].

The conclusion is that the classical understeer gradient K is not a good parameter
and should be abandoned. It should be replaced by the gradient components proposed
in (7.99) and discussed in Sect. 7.13, which have proven to really provide a measure
of the dynamic features of a vehicle. In particular, the gradient component ρy , shown
in the last column in Tables 7.1 and 7.2, is the real measure of understeer/oversteer.

7.15 Linear Single Track Model

The simplest dynamical systems are those governed by linear ordinary differential
equations with constant coefficients. The single track model of Fig. 7.20 is governed
by the nonlinear ordinary differential equations (7.162), unless the axle characteris-
tics are replaced by linear functions

Y1 = C1α1 and Y2 = C2α2 (7.204)

where

C1 = dY1
dα1

∣∣∣∣
α1=0

= Φ1(0) and C2 = dY2
dα2

∣∣∣∣
α2=0

= Φ2(0) (7.205)

The axle lateral slip stiffness Ci is usually equal to twice the tire lateral slip stiffness,
firstly introduced in (2.88). It is affected by the static vertical load (Fig. 2.23), but
not by the load transfer, neither by the amount of grip. The influence of roll steer is
quite peculiar (Fig. 7.18).

However, as shown in Fig. 7.62, this linear approximation is acceptable only if
|αi | < 2◦, that is for very low values of ãy .
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Fig. 7.62 Linear
approximation of the axle
characteristics

The main advantage of the linear single track model lies in its simplicity, the
main disadvantage is that it does not model the vehicle behavior at all, unless the
lateral acceleration is really small (typically, ãy < 0.2g on dry asphalt). In some
sense, it is a “dangerous” model because one may be tempted to use it outside its
range of validity. Indeed, too often it is the only handling model that is presented and
discussed in detail.

However, in some cases it is useful to have a model where everything can be
obtained analytically. For this reason, the linear single track model is included in this
book as well, albeit not in a prominent position.

7.15.1 Governing Equations

The linear single track model differs from the more general nonlinear model only
in its constitutive equations. However, we list here all relevant equations, that is
equilibrium equations (7.5)

m(
.
v + ur) = Y = Y1 + Y2

Jz
.
r = N = Y1a1 − Y2a2

(7.206)

congruence equations (7.67) (with |χ | � 1, and often equal to zero)

α1 = τ1δv − v + ra1
u

α2 = χτ1δv − v − ra2
u

(7.207)
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and the just defined linear constitutive equations (7.204) [12, Chap. 5]

Y1 = C1α1

Y2 = C2α2
(7.208)

Combining congruence and constitutive equations we get

Y1 = C1α1 = C1

(
τ1δv − v + ra1

u

)

Y2 = C2α2 = C2

(
τ1χδv − v − ra2

u

) (7.209)

which are linear in v and r , but not in u.
Inserting these equations into the equilibrium equations, we obtain the governing

equations, that is two linear differential equations

.
v = −

(
C1 + C2

mu

)
v −

(
C1a1 − C2a2

mu
+ u

)
r + C1 + χC2

m
τ1δv

.
r = −

(
C1a1 − C2a2

Jzu

)
v −

(
C1a21 + C2a22

Jzu

)
r + C1a1 − χC2a2

Jz
τ1δv

(7.210)

In matrix notation, (7.210) becomes

.w = Aw + bδv (7.211)

where w(t) = (
v(t), r(t)

)
is the vector of state variables, the r.h.s. known vector is

b(t) = τ1

⎡
⎢⎣

C1 + χC2

m
C1a1 − χC2a2

Jz

⎤
⎥⎦ (7.212)

and

A = A(u(t)) = −
⎡
⎢⎣

C1 + C2

mu

C1a1 − C2a2
mu

+ u

C1a1 − C2a2
Jzu

C1a21 + C2a22
Jzu

⎤
⎥⎦ (7.213)

is the coefficient matrix. It is important to note that A depends on the forward speed
u, but not on the steer angle δv, which multiplies the known vector b.
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7.15.2 Solution for Constant Forward Speed

As well known, the general solution w(t) of (7.211) is given by the solution wo of
the homogeneous equation plus a particular solution wp

w(t) = wo(t) + wp(t) (7.214)

Unfortunately, analytical solutions are not available if u(t) 	= const.
If u is constant (

.
u = 0), the system (7.211) has constant coefficients and the

homogeneous solution must fulfill

.wo = Awo (7.215)

with a constant matrix A. Assuming constant u is therefore a very relevant assump-
tion. We look for a solution among the exponential functions

wo(t) = (
vo(t), ro(t)

) = xeλt (7.216)

which implies
.wo(t) = λxeλt , and consequently yields an eigenvalue problem for

the matrix A
Ax = λx (7.217)

The eigenvalues are the solutions of the characteristic equation

det(A − λI) = 0 (7.218)

which, for a (2 × 2) matrix, becomes

λ2 − tr(A)λ + det(A) = 0 (7.219)

The two eigenvalues λ1 and λ2 are

λ1,2 = tr(A) ± √
tr(A)2 − 4 det(A)

2
= −ζωn ± ωn

√
ζ 2 − 1 (7.220)

If the discriminant is negative, that is if ζ < 1, the dynamical system is underdamped
and the eigenvalues are complex conjugates.

From (7.213) we get the trace

tr(A) = −1

u

(
C1 + C2

m
+ C1a21 + C2a22

Jz

)
< 0 (7.221)

and the determinant
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det(A) = 1

u2mJz

[
C1C2(a1 + a2)

2 − mu2(C1a1 − C2a2)
]

(7.222)

These two quantities are very important because they provide handy information
about the two eigenvalues λ1 and λ2 of A, since

tr(A) = λ1 + λ2 (7.223)

det(A) = λ1λ2 (7.224)

These two relationships can be obtained easily writing the characteristic equation as
(λ − λ1)(λ − λ2) = 0.

Once the two eigenvalues have been obtained, we can compute the two eigenvec-
tors x1 and x2.

Therefore, the solution of the homogeneous system is

wo(t) = γ1x1eλ1t + γ2x2eλ2t (7.225)

where γ1 and γ2 are constants still to be determined. In components we have

vo(t) = γ1x11e
λ1t + γ2x12e

λ2t

ro(t) = γ1x21e
λ1t + γ2x22e

λ2t
(7.226)

where x1 = (x11, x21) and x2 = (x12, x22).
The particular integralwp(t) = (vp(t), rp(t)) depends on the known vector b and

on the steering wheel angle δv(t). The simplest case is for constant δv, but analytical
solutions are available also when δv(t) is a polynomial or trigonometric function.

Summing up, the general solution of the system (7.211) is

w(t) = wo(t) + wp(t) = γ1x1eλ1t + γ2x2eλ2t + wp(t) (7.227)

in which the two constants γ1 and γ2 are to be determined from the initial conditions
w(0) = (v(0), r(0)), that is solving the system

Sy = w(0) − wp(0) (7.228)

where y = (γ1, γ2) and S is the matrix whose columns are the two eigenvectors of
A.

7.15.3 Critical Speed

The two parts wo and wp of the general solution have distinct physical meanings.
The particular integral is what the vehicle does asymptotically, that is basically at
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steady-state. The solution of the homogeneous system shows how the vehicle behaves
before reaching the steady-state condition, if the vehicle is stable.

As already discussed in Sect. 7.10.3, the stability of the vehicle is completely
determined by the two eigenvalues λ1 and λ2, or better, by the sign of their real parts
Re(λ1) and Re(λ2). The rule is very simple: the system is asymptotically stable if
and only if both eigenvalues have negative real parts

stability ⇐⇒ Re(λ1) < 0 and Re(λ2) < 0 (7.229)

If just one eigenvalue has a positive real part, the corresponding exponential solution
grows without bound in time, and the system is unstable.

Fortunately, we can check the stability without computing the two eigenvalues
explicitly, but simply looking at (7.223) and (7.224). To have an asymptotically stable
vehicle it suffices to check that

stability ⇐⇒ tr(A) < 0 and det(A) > 0 (7.230)

From (7.221) we see immediately that tr(A) < 0 is always fulfilled. Stability is
therefore completely due to the second condition in (7.230). Setting det(A) = 0 in
(7.193) yields an equation in the unknown forward speed u, whose solution, if it
exists, is the critical speed ucr

ucr =
√

C1C2l2

m(C1a1 − C2a2)
. (7.231)

Beyond the critical speed the vehicle becomes unstable. It is worth noting that ucr
does not depend on Jz .

In the linear single track model, the critical speed exists if and only if

C1a1 − C2a2 > 0 (7.232)

that is, if the vehicle is oversteer. In this vehicle model (which, we recall, has a very
limited range of applicability), the critical speed is not affected by the steer angle.

7.15.4 Transient Vehicle Behavior

It may be of some interest to know how the eigenvalues evolve as speed changes. To
this end, it is useful to plot tr(A) vs det(A), which, according to (7.221) and (7.222),
can be compactly expressed as14

14 Here α, β and γ are just constants. They have no connection with slip and camber angles.
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Fig. 7.63 Evolution of det(A) and tr(A) when u grows

det(A) = α

u2
+ β, tr(A) = −γ

u
(7.233)

where α and γ are always positive, while β = (C2a2 − C1a1)/Jz can be either posi-
tive or negative, depending on the vehicle being understeer or oversteer, respectively.

Both functions are monotone in u (if u > 0). They can be combined to get

det(A) = α

γ 2
tr(A)2 + β. (7.234)

Moreover, it is easy to show that

lim
u→+∞ tr(A) = 0−, lim

u→+∞ det(A) = β (7.235)

Therefore, as u grows, we draw parabolas, as shown in Fig. 7.63, up to their vertex
in (0, β).

Also plotted in Fig. 7.63 is the parabola det = tr2 /4. According to (7.220), it
corresponds to the points where λ1 = λ2. Below this parabola, i.e. u < ut , the two
eigenvalues are real, whereas above it they are complex conjugates.

It can be shown that(
α

γ 2
= C1C2k2l2

[k2(C1 + C2) + C1a21 + C2a22]2
)

≤ 1

4
(7.236)

where Jz = mk2. Since it attains its maximum value 1/4 whenC1a1 = C2a2 (neutral
vehicle) and Jz = ma1a2, we see that all vehicles at sufficiently low speed have real
negative eigenvalues.

As the speed increases, the following evolutions are possible. An oversteer vehicle
(actually, an oversteer linear single track model) has always two real eigenvalues.



334 7 Handling of Road Cars

Fig. 7.64 Evolution of the
real part and of the imaginary
part of λ1 and λ2 as functions
of the forward speed u, for
an understeer vehicle

When the parabola in Fig. 7.63 crosses the horizontal axis (det = 0), one eigenvalue
becomes positive and the vehicle becomes unstable. That happens for u = ucr.

An understeer vehicle has two negative real eigenvalues at low speed. For
speeds higher than u = ut , they become complex conjugate with negative real parts
(Fig. 7.63): λ1 = −ζωn + iωn

√
1 − ζ 2, λ2 = −ζωn − iωn

√
1 − ζ 2. Therefore, at

sufficiently high speed, the transient motion is a damped oscillation (very damped,
indeed). The speed ut is given by

ut =
√

γ 2 − 4α

4β
=

√
[Jz(C1 + C2) + m(C1a21 + C2a22)]2 − 4JzmC1C2l2

4m2 Jz(C2a2 − C1a1)
(7.237)

From Fig. 7.64, we see that the imaginary part of the eigenvalues, that is the
angular frequency ωs = ωn

√
1 − ζ 2, is almost constant up to relatively high speeds.

This is typical andmakes the classical sine sweep test quite insensitive to the selected
speed.

The general solution is given by (7.227). However, when the eigenvalues are
complex conjugates, also the eigenvectors x1 and x2 and the constants γ1 and γ2 are
complex conjugates. Having to deal with so many complex numbers to eventually
get a real function w(t) is not very convenient. Fortunately, we can rearrange it in
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a way that it involves only real numbers. As well known, e(ζ+iω)t = eζ t [cos(ωt) +
i sin(ωt)], and the general solution can be written as

w(t) = wo(t) + wp(t)

= γ1x1eλ1t + γ2x2eλ2t + wp(t)

= e−ζωn t [(γ1x1 + γ2x2) cos(ωs t) + i(γ1x1 − γ2x2) sin(ωs t)] + wp(t)

= e−ζωn t [z1 cos(ωs t) + z2 sin(ωs t)] + wp(t)
(7.238)

where ωs = ωn

√
1 − ζ 2.

To obtain z1 and z2 we can proceed as follows. Vector z1 is simply obtained setting
t = 0 in the last expression in (7.238)

z1 = w(0) − wp(0) (7.239)

where w(0) is the vector of the initial conditions. To obtain the other vector, just
consider that .wo(0) = Awo(0) = −ζωnz1 + ωsz2 = z1 (7.240)

and hence

z2 = 1

ωs
(A + ζωnI)z1 (7.241)

7.15.5 Steady-State Behavior: Steering Pad

As already stated, the particular integralwp(t) = (vp(t), rp(t)) is determined, in this
linear model, by the known vector b, and hence by the function δv(t). The simplest
case is when δv = const.

Keeping the steering wheel in a fixed position and driving at constant speedmakes
the vehicle go round in a circle. This is called steering pad. To obtain the steady-state
solution, we have to solve the system

− Awp = bδv (7.242)

thus getting

vp = [C1C2l(a2 + a1χ) − mu2(C1a1 − C2a2χ)]u
mJzu2 det(A)

τ1δv,

rp = C1C2l(1 − χ)u

mJzu2 det(A)
τ1δv = C1C2l(1 − χ)u

C1C2l2 − mu2(C1a1 − C2a2)
τ1δv.

(7.243)

Once we have obtained vp and rp, we can easily compute all other relevant quan-
tities, like the vehicle slip angle βp and the curvature ρp



336 7 Handling of Road Cars

βp = vp
u

=
(
a2 + a1χ

l

)
τ1δv − m

l2

(
C1a21 + C2a22

C1C2

)
ãy = Sp

Rp

ρp = rp
u

=
(
1 − χ

l

)
τ1δv − m

l2

(
C2a2 − C1a1

C1C2

)
ãy = 1

Rp

(7.244)

According to (7.207), we can compute the steady-state front and rear slip angles

α1p = τ1δv − vp + rpa1
u

= ma2
lC1

ãy

α2p = χτ1δv − vp − rpa2
u

= ma1
lC2

ãy

(7.245)

A non-zero lateral speed vp at steady state may look a bit strange, at first sight. It
simply means that the trajectory of G is not tangent to the vehicle longitudinal axis,
as shown in Fig. 7.32.

The speed uβ that makes βp = vp = 0 is given by (7.243) and is equal to (if
χ = 0)

uβ =
√
C2a2l

a1m
(7.246)

It is called tangent speed [12, p. 174].

7.15.6 Lateral Wind Gust

It is of some practical interest to study the behavior of a vehicle (albeit a very linear
one) when suddenly subjected to a lateral force, like the force due to a lateral wind
gust hitting the car when, e.g., exiting a tunnel. As shown in Sect. 7.15.7, the same
mathematical problem also covers the case of a car going straight along a banked
road.

We have only to modify the equilibrium equations (7.206) by adding a lateral
force Fl = −Fl j, applied at a distance x from G

m(
.
v + ur) = Fy1 + Fy2 − Fl

Jz
.
r = Fy1a1 − Fy2a2 − Flx .

(7.247)

where x > 0 if Fl is applied between G and the front axle. The other equations are
not affected directly by Fl .

The equations of motion are like in (7.211), with the only difference that the term

bF = −
[
1/m
x/Jz

]
Fl (7.248)
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must be added to the known vector.
If we assume δv = 0, the steady-state conditions wp are obtained, as usual, by

solving the system of equations −Awp = bF , with A as given in (7.213). Accord-
ingly, we have the following quantities at steady-state

vp = [x(C1a1 − C2a2 + mu2) − (C1a
2
1 + C2a

2
2)]u

C1C2l2 − mu2(C1a1 − C2a2)
Fl ,

rp = [C1a1 − C2a2 − x(C1 + C2)]u
C1C2l2 − mu2(C1a1 − C2a2)

Fl = −(x − e)
(C1 + C2)u

C1C2l2 − mu2(C1a1 − C2a2)
Fl ,

(7.249)
where

e = C1a1 − C2a2
C1 + C2

(7.250)

Should the steer angle be non-zero, it suffices to superimpose the effects. This is
legitimate because of the linearity of the equations.

This quantity e in (7.250) is often called static margin. The yaw rate is zero, that
is rp = 0, if and only if the lateral force is applied at a distance e from G. This is
the distance that makes the vehicle translate diagonally under the action of a lateral
force, as shown in Fig. 7.65. The point Np on the axis of the vehicle at a distance e
from G is called neutral steer point.

Fig. 7.65 Lateral force
applied at the neutral point
Np (i.e., x = e)
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Fig. 7.66 Lateral force applied at a point ahead of the neutral point (x > e)

Obviously, the condition rp = 0 with δv = 0 is equivalent to α1p = α2p = αp.
Inserting this condition into (7.247) we get

0 = (C1 + C2)αp − Fl
0 = (C1a1 − C2a2)αp − Fle,

(7.251)

which provide another way to obtain e.
An oversteer vehicle has e > 0, whereas e < 0 in an understeer vehicle.
If δv = 0, the steady-state distance Rp is

Rp = u

rp
= C1C2l2 − mu2(C1a1 − C2a2)

−(x − e)(C1 + C2)Fl
. (7.252)

The numerator is always positive if u < ucr. Therefore, Rp > 0 if x < e, and vice
versa.

If the point of application of the lateral force is located ahead of the neutral point
Np, the vehicle behaves like in Fig. 7.66, turning in the same direction as the lateral
force. This is commonly considered good behavior.

If the point of application of the lateral force is behind the neutral point Np, the
vehicle behaves like in Fig. 7.67. This is commonly considered bad behavior.

Of course, since an oversteer vehicle has the neutral point Np ahead of G, the
likelihood that a wind gust applies a force behind the neutral point is higher, much
higher, than in an understeer vehicle.
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Fig. 7.67 Lateral force applied at a point behind the neutral point (x < e)

Fig. 7.68 Lateral force applied by means of a rocket (General Motors Corporation, circa 1960)
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To understandwhy the first case is considered good,while the second is considered
bad, we have to look at the lateral forces that the tires have to exert. In the first case,
the inertial effects counteract the wind gust, thus alleviating the tire job. In the second
case, the inertial effects add to the lateral force, making the tire job harder.

Figures 7.66 and 7.67 show a lateral force constantly perpendicular to the vehicle
axis, pretty much like if a rocket were strapped on the side of the car. Indeed, in
some cases a rocket has been really employed as shown in Fig. 7.68, taken from
a presentation by Tom Bundorf at the SAE Automotive Dynamics and Stability
Conference (2000).

7.15.7 Banked Road

A car going straight on a banked road is subject to a lateral force due to its own
weight. Therefore, it is a situation somehow similar to a lateral wind gust, but not
equal. The main difference is that the lateral force is now applied at G.

Understeer and oversteer vehicles behave differently, as shown in Fig. 7.69. Both
axles must exert lateral forces directed uphill to counteract the weight forcemg sin ε.
Therefore, bothmust workwith positive slip angles α1 and α2, if the banking is like in
Fig. 7.69. However, due to the different locations of the neutral point Np with respect
to G, the two front axles cannot have the same slip angle. To go straight, we must
steer the front wheels uphill in an understeer vehicle and (apparently) downhill in an
oversteer vehicle, as shown in Fig. 7.69. More precisely, in both cases α1 − δ1 = α2,
where δ1 > 0 if the vehicle is understeer, while δ1 < 0 if the vehicle is oversteer.

7.16 Compliant Steering System

Many modern cars use rack and pinion steering mechanisms. The steering wheel
turns the pinion gear, which moves the rack, thus converting rotational motion into
linear motion. This motion applies steering torque to the front wheels via tie rods
and a short lever arm called the steering arm.

So far we have assumed the steering system to be perfectly rigid, as stated on
Sects. 3.1 and 7.5.4. More precisely, equations (3.210) have been used to relate the
steer angles δi j of each wheel to the angle δv of the steering wheel.

In the single track model (Fig. 7.20) we have taken a further step, assuming that
the left and right gear ratios of the steering system are almost equal, that is

(τ11 = τ12) = τ1 and (τ21 = τ22) = τ2 (7.49′)

thus getting (7.68)
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Fig. 7.69 Understeer and
oversteer vehicles going
straight on a banked road

(1 + χ)δ = δ1 = τ1δv

χδ = δ2 = τ2δv
(7.68′)

Now, in the framework of the linear single trackmodel, we relax the assumption of
rigid steering system. This means to make a few changes in the congruence equations
(7.207), since δ1 and τ1δv are no longer equal to each other.

7.16.1 Governing Equations

As shown in Fig. 7.70, the steering system now has a finite angular stiffness ks1 with
respect to the axis about which the front wheel steers. In a turn, the lateral force Y1

Fig. 7.70 Single track model with compliant steering system
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exerts a vertical moment with respect to the steering axis A because of the pneumatic
trail tc1 and also of the trail ts1 due to the suspension layout (see Fig. 3.1). The effect
of this vertical moment Y1(tc1 + ts1) on a compliant steering system is to make the
front wheel steer less than τ1δv. More precisely, we have that (Fig. 7.70)

δ1 = τ1δv − Y1(tc1 + ts1)

ks1
(7.253)

The computation of the pneumatic trail tc1 is discussed on page 512.
Accordingly, the congruence equations (7.207) of the linear single track model

become
α1 = δ1 − v + ra1

u

α2 = χτ1δv − v − ra2
u

(7.254)

with the additional equation (7.253).
On the other hand, the equilibrium equations

m(
.
v + ur) = Y = Y1 + Y2

Jz
.
r = N = Y1a1 − Y2a2

(7.206′)

and the constitutive equations
Y1 = C1α1

Y2 = C2α2
(7.208′)

do not change at all.

7.16.2 Effects of Steer Compliance

Equation (7.253) can be rewritten taking the first equation in (7.208) into account

δ1 = τ1δv − C1(tc1 + ts1)

ks1
α1 = τ1δv − εα1 (7.255)

where

ε = C1(tc1 + ts1)

ks1
(7.256)

The first congruence equation becomes

(1 + ε)α1 = τ1δv − v + a1r

u
(7.257)
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which leads naturally to define a fictitious slip angle

α̃1 = (1 + ε)α1 (7.258)

and, consequently, a fictitious slip stiffness

C̃1 = C1

1 + ε
(7.259)

Summing up, the linear single track model with compliant steering system is
governed by the set of equations

m(
.
v + ur) = Y = Y1 + Y2

Jz
.
r = N = Y1a1 − Y2a2

α̃1 = τ1δv − v + ra1
u

α2 = χτ1δv − v − ra2
u

Y1 = C̃1α̃1

Y2 = C2α2

(7.260)

which is formally identical to the set governing the single track model with rigid
steering system. Therefore, the analysis developed in Sect. 7.15 applies entirely,
provided we take into account that C1 → C̃1 and α1 → α̃1.

Since C̃1 < C1, a compliant steering system makes the vehicle behavior more
understeer.

7.16.3 There Is Something Unsafe

Apparently, the critical speed of the linear single track model is not affected by the
steer angle, as shown in Sect. 7.15.3. However, according to (7.243), if det(A) = 0
the model predicts unlimited values of lateral velocity vp and yaw rate rp, unless
δv = 0. These unrealistic results suggest that in the analysis something relevant is
missing.

Indeed, instead of imposing the forward speed u, it wouldmore realistic to impose
the longitudinal force Fx2 , thus having also u as a state variable. Of course, the steady-
state results (7.243) do not change. But what about stability?

This more general single track model, with three state variables (u, v, r), is gov-
erned by the following differential equations
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.
u = 1

m

[
mvr + C1

(
v + a1r

u

)
δ1 − 1

2
ρSaCxu

2 + Fx2 − C1δ
2
1

]
.
v = 1

m

[
−mur − (C1 + C2)

v

u
+ (C2a2 − C1a1)

r

u
+ C1δ1

]
.
r = 1

J

[
(C2a2 − C1a1)

v

u
− (C1a

2
1 + C2a

2
2)
r

u
+ C1a1δ1

]
(7.261)

Even with linear tires, the governing equations are no longer linear.
The counterpart of matrix A in Sect. 7.10.2 is this matrix B

B =

⎡
⎢⎢⎢⎣

−C1δ1(vp+a1rp)+ρSaCxu3p
mu2p

C1δ1+muprp
mu p

C1a1δ1+mupvp
mu p

(C1+C2)vp−(C2a2−C1a1+mu2p)rp
mu2p

−C1+C2
mup

C2a2−C1a1−mu2p
mu p

−(C2a2−C1a1)vp+(C1a21+C2a22 )rp
Jzu2p

C2a2−C1a1
Jzu p

−C1a21+C2a22
Jzu p

⎤
⎥⎥⎥⎦ (7.262)

which contains A as a submatrix. It is worth noting that the new entries (first raw
and column) depend on vp, rp, and δ1.

Stability requires the real part of all eigenvalues of B to be negative.
In case of straight running δ1 = 0 and, obviously, vp = rp = 0. Two eigenvalues

are exactly the same of A. The third eigenvalue λ3 = −ρSCxu p is always negative.
Therefore, the classical critical speed ucr in (7.231) is confirmed.

What happens when δ1 	= 0? The characteristic equation is something like

b0λ
3 + b1λ

2 + b2λ + b3 = 0, with b0 > 0 (7.263)

According to Routh criterion, all eigenvalues have negative real part if and only if
b1 > 0, b3 > 0, and b1b2 − b0b3 > 0.

Since analytic expressions are very complex, we prefer to perform just a numerical
test. For instance, let m = 1000 kg, a1 = 1.4 m, a2 = 1.2 m, Jz = 1680 kg m2,
C1 = C2 = 100000 N/rad. Moreover, ρ = 1.3 kg/m3, Sa = 1.8 m2, Cx = 0.35.

This vehicle has, in straight running, a critical speed ucr = 58.14 m/s = 209 km/h.
However, if, e.g., δ1 = 6 deg, the quantity b1b2 − b0b3 becomes negative at the speed
ũcr = 53.21 m/s = 191 km/h, which is quite lower than ucr. Therefore, imposing u
may not be a safe assumption!

7.17 Road Vehicles with Locked or Limited Slip
Differential

The handling of cars equipped with either a locked or a limited-slip differential is
addressed in Chap. 8, that is in the chapter devoted to the handling behavior of race
cars. This has been done because the limited-slip differential is a peculiarity of almost
all race cars, whereas very few road cars have it.



7.18 Exercises 345

7.18 Exercises

7.18.1 Camber Variations

As shown in (7.18) and in Fig. 7.7, camber variations due to vehicle roll motion are
determined by some suspension parameters. Given the track length ti , find the values
of ci to have:

1. Δγi/φ
s
i = −1;

2. Δγi/φ
s
i = 0;

3. Δγi/φ
s
i = 1.

Solution

It is a simple calculation to obtain

1. ci = ti/4;
2. ci = ti/2;
3. ci = +∞.

Quite a big difference.

7.18.2 Ackermann Coefficient

According to (7.19), and assuming δ01 = 0, l = 2.6m, t1 = 1.6m, and ε1 = 1 (Ack-
ermann steering), compute δ11 and δ12 when τ1δv is equal to5 deg, 10 deg, and 15 deg.

Solution

It is a simple calculation to obtain

1. δ11 = 5.13 deg, δ12 = 4.87 deg;
2. δ11 = 10.54 deg, δ12 = 9.46 deg;
3. δ11 = 16.21 deg, δ12 = 13.79 deg.

We see that the Ackermann correction is relevant, with respect to parallel steering,
only for not so small steer angles.

7.18.3 Toe-In

Repeat the previous calculations now with 1 deg of toe-in.
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Solution

1. δ11 = 4.13 deg, δ12 = 5.87 deg;
2. δ11 = 9.54 deg, δ12 = 10.46 deg;
3. δ11 = 15.21 deg, δ12 = 14.79 deg.

Quite influential.

7.18.4 Steering Angles

With reference to (7.68), obtain the relationship between χ and κ for any steering
system.

Solution

From the following system of equations

(1 + κ)τ = τ1

κτ = χτ1
(7.264)

we obtain
χ = κ

1 + κ
(7.265)

7.18.5 Axle Characteristics

Axle characteristics are very important in vehicle dynamics. In Sect. 7.5.3, the effects
of the following setup parameters were discussed (not in this order):

1. roll stiffness;
2. static camber angles;
3. roll camber;
4. roll steer;
5. toe-in/toe-out.

Some of these parameters have similar effects on the axle characteristics. Before
going back to Sect. 7.5.3, think about the physics of each parameter and try to figure
out the similarities.

Solution

Have a look at Sect. 7.5.3.
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7.18.6 Playing with Linear Differential Equations

Find out how to go from (7.128) to (7.130), that is, from a system of two first-order
linear differential equationswith constant coefficients to two second-order equations.

Solution

Like in (7.128), the starting point is

.
βt = a11βt + a12ρt

.
ρt = a21βt + a22ρt

(7.266)

where ai j are the entries of matrix A, as in (7.148).
We can see (7.266) as a system of two algebraic equations and solve it with respect

to
.
βt and βt , thus getting

βt = −a22ρt + .
ρt

a21

.
βt = (a12a21 − a11a22)ρt + a11

.
ρt

a21

(7.267)

Differentiating the first equation in (7.267) and setting it equal to the second
equation in (7.267) provides the sought second-order linear differential equation

..
ρt − (a11 + a22)

.
ρt + (a11a22 − a12a21)ρt = 0 (7.268)

exactly like in (7.130).

7.18.7 Static Margin

Compute the static margin for the single track model defined on Sect. 7.14.1.

Solution

To compute the static margin we have to use (7.250). The result is e = −0.46m. A
negative value is typical of understeer vehicles.
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7.18.8 Banked Road

The same vehicle is travelling on a straight road with 6 deg of banking. Compute the
steering wheel angle required to have a trajectory parallel to the road (that is to go
straight ahead).

Solution

With the aid of Fig. 7.69, we see that the rear axle has to counteract a lateral force
Y2 = mg sin(6 deg)a1/ l = 452.8N. That means that the rear axle operates with a
slip angle α2 = Y2/Φ2(0) = 0.29 deg.

Similarly, the front axle has to balance a forceY1 = mg sin(6 deg)a2/ l = 724.4N,
which needs a slip angle α1 = Y1/Φ1(0) = 0.59 deg.

Therefore, the front steer angle has to be δ1 = 0.59 − 0.29 = 0.3 deg. The steering
wheel angle is δv = 20 × 0.3 = 6 deg.

Of course, the vehicle slip angle is β = −α2 = −0.29 deg.

7.18.9 Rear Steer

Repeat the calculations of the banked road for the two vehicles with rear steer whose
features are listed in Table 7.1.

Solution

First we consider the vehicle with κ = −0.1. We have Y2 = 331.8N and hence
α2 = 0.26 deg. Similarly, Y1 = 845.4N, and α1 = 0.56 deg.

To obtain the net steer angle δ we have to solve the equation

α1 − (1 + κ)δ = α2 − κδ (7.269)

with κ = −0.1, which provides δ = 0.3 deg, and hence a steering wheel angle δv =
0.3 × 20/0.99 = 6.0 deg.

The vehicle slip angle is β = −(0.26 + 0.1 × 0.3) = −0.29 deg.
Then we consider the vehicle with κ = 0.1. We have Y2 = 622.2N and hence

α2 = 0.32 deg. Similarly Y1 = 555.0N, and α1 = 0.65 deg.
To obtain the net steer angle δ we have to solve (7.269), with κ = 0.1, which pro-

vides δ = 0.33 deg, and hence a steering wheel angle δv = 0.3 × 20/0.99 = 6.0 deg.
The vehicle slip angle is β = −(0.32 − 0.1 × 0.33) = −0.29 deg.
As expected, for the driver the three vehicles behave exactly the same way: same

steer wheel angle δv, same vehicle slip angle β. The three vehicles also have the same
static margin e = −0.46m.
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Fig. 7.71 Comparison of the
three vehicles of Table 7.1
under a lateral wind gust

7.18.10 Wind Gust

Are the three vehicles of Table 7.1 fully equivalent with respect to a lateral wind gust?

Solution

These three vehicles are compared in Fig. 7.71. The point of application of a lateral
force Fl due to a wind gust depends on the shape of the vehicle. However, we can
reasonably assume Fl be applied like in Fig. 7.71. Should this be the case, the three
vehicles would behave very differently.

Vehicle (a), which has κ = 0, would do like in Fig. 7.65. Vehicle (b), which has
κ = −1, would do like in Fig. 7.67. Vehicle (c), which has κ = 1, would do like in
Fig. 7.66.

Therefore, the three vehicles are not equivalent with respect to a lateral wind gust.
Actually, their behaviors can be completely different.

7.19 Summary

Road cars are characterized by having an open differential and no significant aerody-
namic downforces. These two aspects allow for some substantial simplifications of
the vehicle model. With the additional assumption of equal gear ratios of the steering
system for both front wheels, we have been able to formulate the single track model.
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Quite contrary to common belief, we have shown that the axle characteristics can
take into account many vehicle features, like toe in/out, roll steering, camber angles
and camber angle variations.

The steady-state analysis has been carried out first using the classical handling
diagram. Then, the new global approach MAP (Map of Achievable Performance),
based on handling maps on achievable regions has been introduced and discussed in
detail. This new approach shows the overall vehicle behavior at a glance.

Stability and control derivatives have been introduced to study the vehicle transient
behavior. Moreover, the relationship between data collected in steady-state tests and
vehicle transient behavior has been thoroughly analyzed in a systematic framework.
To prove the effectiveness of these results, a number of apparently different vehicles
with almost the same handling characteristics have been generated.

7.20 List of Some Relevant Concepts

Section7.1.1—road cars are normally equipped with an open differential;
Section7.4—some steady-state quantities are functions of the lateral acceleration
only because of the open differential and no significant downforces;
Section7.5—to go from the double track to the single track model we need the
following additional assumption: the left and right gear ratios of the steering system
are almost equal;
Section7.5.4—the main feature of the single track model is that the two wheels of
the same axle undergo the same apparent slip angle;
Section7.9—some “fundamental” concepts in classical vehicle dynamics are indeed
very weak if addressed with open mind;
Section7.12—the classical understeer gradient is not a good parameter and should
be dismissed.

7.21 Key Symbols

a1 distance of G from the front axle
a2 distance of G from the rear axle
an centripetal acceleration
at tangential acceleration
ax longitudinal acceleration
ay lateral acceleration
ãy steady-state lateral acceleration
C velocity center
Ci lateral slip stiffness of i th axle
Cx , Cy , Cz aerodynamic coefficients
d diameter of the inflection circle
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Fl lateral force (wind gust)
Fxi j tire longitudinal force
Fyi j tire lateral force
Fzi j tire vertical force
g gravitational acceleration
G center of mass
h height of G
Jx , Jy , Jz moments of inertia
K acceleration center
K classical understeer gradient
kφ total roll stiffness
kφi global roll stiffness of i th axle
k p
φi

tire roll stiffness
ksφi

suspension roll stiffness
l wheelbase
m mass
N yaw moment
Nβ , Nρ stability derivatives
Nδ control derivative
q1 height of the front no-roll center
Q1 front no-roll center
q2 height of the rear no-roll center
Q2 rear no-roll center
r yaw rate
R lateral coordinate of C
ri rolling radii
S longitudinal coordinate of C
Sa frontal area
t1 front track
t2 rear track
u longitudinal velocity
v lateral velocity
X longitudinal force
Xa aerodynamic drag
Y lateral force
Yi lateral force on the i th axle
Yβ , Yρ stability derivatives
Yδ control derivative
Z vertical force
Zi vertical load on i th axle
Z0
i static vertical load on i th axle

Za
i aerodynamic vertical load on i th axle

ΔZ longitudinal load transfer
ΔZi lateral load transfer on i th axle
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αi apparent slip angles
αi j tire slip angles
β ratio v/u
β̂ vehicle slip angle
βt shifted coordinate
(βy, βδ) gradient components
γi j camber angles
δi j steer angle of the wheels
δv steering wheel angle of rotation
ε1 Ackermann coefficient
ζ damping ratio
ηh internal efficiency of the differential housing
ρ ratio r/u
ρa air density
ρt shifted coordinate
(ρy, ρδ) gradient components
σxi j tire longitudinal slips
σyi j tire lateral slips
τ steer gear ratio
φ roll angle
Φi slope of the axle characteristics
ϕi j spin slips
ψ yaw angle
ωi j angular velocity of the rims
ωn natural angular frequency
ωs damped natural angular frequency
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