
Chapter 5
The Kinematics of Cornering

Cars have to negotiate corners. Everybody knows that. But not all cars do that the
same way [4]. This is particularly evident in race cars, where the ability to negotiate
a corner is a crucial aspect to minimize lap time.

In this chapter we will exploit the kinematics of a vehicle while taking a corner. At
first sight, taking a corner looks quite a trivial task. But designing a vehicle that does
it properly is one of the main challenges faced by a vehicle engineer [2]. Therefore,
there is the need to investigate what really happens during the cornering process. It
will be shown that some very significant kinematical quantities must follow precise
patterns for the car to get around corners in a way that makes the driver happy. In
some sense, the geometric features of the trajectory must adhere to some pretty neat
criteria.

Before digging into the somehow mysterious kinematics of cornering, we will
recall some kinematical concepts. Strangely enough, it appears that they have never
been employed before in vehicle dynamics, although all of them date back to Euler
or so.

5.1 Planar Kinematics of a Rigid Body

As discussed at the beginning of Chap. 3, in many cases a vehicle can be seen as
a rigid body in planar motion. Basically, we need a flat road and small roll angles.
The congruence (kinematic) equations for this case were given in Sect. 3.2. We will
extensively use the symbols defined therein.

Here we recall some fundamental concepts of planar kinematics of a rigid body
[1, 3, 6]. They will turn out to be very useful to understand how a car takes a corner.
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Fig. 5.1 Relationship between the velocities of two points of the same rigid body in planar motion

5.1.1 Velocity Field and Velocity Center

In a rigid body, by definition, the distance between any two points is constant. Accord-
ingly, taken two such points, say A and B, their velocities must have the same compo-
nent along the direction AB, as shown in Fig. 5.1. More precisely, the two velocities
are related by the following equation

VB = VA + � × AB = VA + VBA (5.1)

where � is the angular velocity. This is the fundamental equation of the kinematics
of rigid bodies, planar or three-dimensional. It had been already given in (2.1) and
(3.3).

It is worth noting that � is the same for all points. It is a kinematic feature of the
rigid body as a whole.

Another way to state the fundamental equation (5.1) is saying that the relative
velocity VBA = VB − VA is orthogonal to the segment AB and proportional to the
length of AB, that is |VBA| = |�||AB| (Fig. 5.1).

It can be shown [1, 3, 6] that in case of planar motion, that is � = r k, and with
r �= 0, at any instant there is one point C of the (extended) rigid body that has zero
velocity. Therefore, applying (5.1) to A and C , and then to B and C we have

VA = r k × CA and VB = r k × CB (5.2)

as shown in Fig. 5.1.
Several different names are commonly in use to refer to point C :

• instantaneous center of velocity;
• velocity center;
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Fig. 5.2 Velocity field of a rigid wheel σm rolling on a flat road σ f

• instantaneous center of zero velocity;
• instantaneous center of rotation.

5.1.2 Fixed and Moving Centrodes

As the body changes its position, the point of the rigid body with zero velocity
changes as well. If we follow the positions of this sequence of points we obtain a
curve σ f in the fixed plane, called the fixed centrode or space centrode, and another
curve σm on the moving plane, called the moving centrode or the body centrode. It
can be shown that the moving centrode rolls without slipping on the fixed centrode,
the point of rolling contact being C .

A simple example should help clarify the matter. Just consider a rigid circle rolling
without slipping on a straight line, as shown in Fig. 5.2. It is exactly like a rigid wheel
rolling on a flat road. The two centrodes are the circle σm and the straight line σ f .
Point C as a point of the circle has zero velocity. However, the geometric point1 Ĉ
that at each instant coincides with C moves on the road with a speed

VĈ = rd (5.3)

1 By geometric point we mean a point not belonging to the rigid body.
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where d is the diameter of the inflection circle (already defined in Sect. 3.2.10 and
to be discussed in detail in Sect. 5.1.4).

The velocity field is like a pure rotation around C (Fig. 5.1). But the acceleration
field is not! In fact, the wheel is travelling on the road, not turning around C .

5.1.3 Acceleration Field and Acceleration Center

The counterpart of (5.1) for the accelerations of points of a rigid body is

aB = aA + .
� × AB + � × (� × AB) = aA + aBA (5.4)

In case of planar motion it simplifies into (Fig. 5.3)

aB = aA + .
r k × AB − r2AB (5.5)

The relative acceleration aBA = aB − aA between any two points is proportional to
the length |AB| and forms an angle ξ with the segment AB (Fig. 5.3)

tan ξ =
.
r

r2
(5.6)

As discussed in Sect. 3.2.9, it can be shown that in case of planar motion, that is
� = r k, and with r �= 0, at any instant there is one point K of the (extended) rigid
body that has zero acceleration. In general, K �= C . The absolute acceleration of any
point A forms an angle ξ with the segment KA, as shown in Fig. 5.3. Therefore, the
acceleration field is like a pure rotation around K .

Several different names are commonly in use to refer to point K :

• instantaneous center of acceleration;
• acceleration center;
• instantaneous center of zero acceleration.

The velocity and acceleration fields are superimposed in Fig. 5.4.

5.1.4 Inflection Circle and Radii of Curvature

Let us consider again, as an example, the rigid wheel rolling on a flat road. For
the moment let us also assume that it rolls at constant speed. The center O of the
wheel has zero acceleration, and hence it is the acceleration center K , as shown in
Fig. 5.5. The acceleration field is centripetal towards O = K . It is worth noting that
the acceleration of C is not zero

aC = nr2d (5.7)
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Fig. 5.3 Relationship between the acceleration of two points of the same rigid body in planar
motion

Fig. 5.4 Velocity center, acceleration center, and inflection circle
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Fig. 5.5 Acceleration field of a rigid wheel rolling at constant speed on a flat road

Fig. 5.6 Trajectory with two inflection points

where d is the diameter of the inflection circle (already mentioned in Sect. 3.2.10).
Comparing Figs. 5.2 and 5.5, we see that at a given instant of time there are

points, like F1 and F2, whose velocities and accelerations have the same direction.
They all belong to the inflection circle [5, Sect. 4.5]. Even if we apply an angular
acceleration

.
r , as in Fig. 5.7, the points on the inflection circle still have collinear

velocity and acceleration. The points of the rigid body on the inflection circle, as
the name implies, have a trajectory with an inflection point, that is a point with zero
curvature, as shown in Fig. 5.6.

Point C has a nice property: its acceleration is not affected by
.
r . In other words,

Eq. (5.7) holds true even if
.
r �= 0. Therefore, it is possible to obtain the diameter d

of the inflection circle from the knowledge of aC and r .
The inflection circle turns out to be very useful to evaluate the radius of curvature

of the trajectory of any point of the rigid body. The rule is very simple, and it is
exemplified in Fig. 5.8. Let us take, for instance, point A. The center of curvature
E A of its trajectory must fulfill the following relationship

|AC |2 = |AE A||AFA| or, more compactly a2 = e f (5.8)
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Fig. 5.7 Acceleration field
of a rigid wheel rolling at
non-constant speed on a flat
road

where E A and FA are always on the same side with respect to A (this is why point A
is always first in the three terms in (5.8)). As a consequence, points E A and FA are
always on opposite sides with respect to C . The distance RA = |AE A| is the radius
of curvature of the trajectory of A.

Exactly the same rules apply to any other point, like point B in Fig. 5.8.
Quite interestingly, we can obtain the following formula for the centripetal (nor-

mal) component of the acceleration of A

an
A = V 2

A

|AE A| = (ra)2

e
= r2 f = r2|AFA| (5.9)

The same kind of formula applies to any other point of the rigid body.

5.2 The Kinematics of a Turning Vehicle

Driving a vehicle to make a turn amounts, roughly speaking, to forcing it to follow
a path with variable radius of curvature. The traditional approach looks only at the
kinematics for a given instant of time, as shown in Fig. 5.9. This is a good starting
point, but not the whole story. For instance, from Fig. 5.9 we cannot know the radius
of curvature of the trajectory of G (which, of course, is not equal to CG, in general).
But let us make the reasoning more precise.

A vehicle has infinitely many points and hence infinitely many trajectories. How-
ever, as a rigid body, these trajectories are not independent of each other. It suffices
to look at the trajectory (path) of two points. It is perhaps advisable to select the
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Fig. 5.8 How the inflection circle relates to the centers of curvature of the trajectories of the points
of a rigid body

Fig. 5.9 Definition of front slip angle β̂1 and rear slip angle β̂2 for a turning vehicle
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Fig. 5.10 Inflection circle and definition of some relevant quantities

midpoint A1 of the front axle and the midpoint A2 of the rear axle (Fig. 5.9). It is not
mandatory at all, but maybe convenient.

Looking at the trajectories also implies monitoring the radii of curvature and how
they relate to each other.

To monitor whether a vehicle is performing well, or not so well, we can consider
also the fixed and moving centrodes, along with the inflection circle (Fig. 5.10).
Indeed, we should have clear in mind that the position of the velocity center C changes
continuously in time, thus tracing the two centrodes. Therefore, the two centrodes
“contain” all the geometric features of the kinematics of the turning vehicle.

However, the centrodes of a vehicle are “built” by the vehicle itself, under the
driver actions. In some sense, a vehicle can be seen as a centrode builder. It is not
like in Fig. 5.2, or in single-degree-of-freedom planar linkages, where the centrodes
are completely determined and cannot be modified.

5.2.1 Moving and Fixed Centrodes of a Turning Vehicle

By definition, the centrodes are generated by the successive positions of the velocity
center C .

The moving centrode σm is given by the successive positions of C in the body-
fixed reference system S = (x, y, z; G), that is with respect to the vehicle. As already
obtained in (3.11), the position of C with respect to the vehicle is given by (Fig. 5.9)

D = GC = S i + R j (5.10)

where, as usual, S = −v/r and R = u/r . More explicitly, the parametric equations
of the moving centrode in S are
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xm(t̂) = S(t̂)

ym(t̂) = R(t̂)
(5.11)

where we use t̂ , instead of t , to remark that it is a parameter (like in (3.9)).
The parametric equations (x f (t̂), y f (t̂)) of the fixed centrode σ f in the ground-

fixed reference system S0 can be obtained from the knowledge of the absolute coor-
dinates of G, given in (3.9), and of the yaw angle (3.8)

x f (t̂) = xG
0 (t̂)+ S(t̂) cosψ(t̂)− R(t̂) sinψ(t̂)

y f (t̂) = yG
0 (t̂)+ S(t̂) sinψ(t̂)+ R(t̂) cosψ(t̂)

(5.12)

By definition, the vehicle belongs precisely to the same rigid plane of the moving
centrode. They move together. Therefore, the parametric equations of the moving
centrode, at time t , in the ground-fixed reference system are

x f
m(t, t̂) = xG

0 (t)+ S(t̂) cosψ(t)− R(t̂) sinψ(t)

y f
m(t, t̂) = yG

0 (t)+ S(t̂) sinψ(t)+ R(t̂) cosψ(t)
(5.13)

Again, the parameter to draw the moving centrode is t̂ , while t sets the instant of
time.

The typical shape of the fixed and moving centrodes of a vehicle making a turn
are shown in Figs. 5.11 and 5.12. We see that the moving centrode σm is pretty much
a straight line, while the fixed centrode σ f is made of two distinct parts, as is the
kinematics of turning: entering the curve and exiting the curve. The velocity center
C is the point of rolling contact of the two centrodes.

Actually, the centrodes shown in Figs. 5.11 and 5.12 are typical of a vehicle
making a curve the good way. The centrodes changes abruptly if the vehicle does not
make the curve properly. This may happen, e.g., if the speed is too high. An example
of “bad” centrodes, and hence of bad performance, is shown in Fig. 5.13. We see
that the centrodes for the exiting phase (Fig. 5.13c) are totally different from those
in Fig. 5.12. The vehicle spins out.

Quite interestingly, as shown in Fig. 5.13b, the two centrodes start having a bad
shape although the vehicle still has an apparent good behavior. Therefore, the two
centrodes could be used as a warning of handling misbehavior. They depart from the
proper shape a little before the vehicle shows unwanted behavior.

To confirm that this is real stuff, we show in Fig. 5.14 the centrodes of a Formula
car making Turn 5 of the Barcelona circuit. In this case everything was fine, as
confirmed by the “good” shape of both centrodes. Also shown are the trajectory of
G and the inflection circle.

But not all laps are the same. Figure 5.15 shows the centrodes for the same curve
in a case in which the Formula car did not perform well.
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Fig. 5.11 Vehicle entering a
curve: moving centrode
rolling on the fixed centrode

Fig. 5.12 Vehicle exiting a
curve: moving centrode
rolling on the fixed centrode
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Fig. 5.13 Centrodes of a turning vehicle with handling misbehavior in the final part of the curve
(the car spins out)
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Fig. 5.14 Centrodes of a
Formula car making Turn 5
of the Barcelona circuit (the
inflection circle is also
shown)

Fig. 5.15 Centrodes of a
Formula car badly making
Turn 5 of the Barcelona
circuit (the inflection circle is
also shown)
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Fig. 5.16 Comparison of the
fixed centrodes and of the
trajectories of a Formula car
making Turn 5 of the
Barcelona circuit

Fig. 5.17 Comparison of the
moving centrodes of a
Formula car making Turn 5
of the Barcelona circuit

The fixed centrodes for the two cases are compared in Fig. 5.16. The entering part
is pretty much the same, whereas the central and the exiting parts are very different.
It is worth noting that the trajectories of G are almost the same.

The moving centrodes are compared in Fig. 5.17. Again, they differ markedly in
the exiting part.

5.2.2 Inflection Circle of a Turning Vehicle

The inflection circle (Fig. 5.10), that is all those points whose trajectory have an
inflection point, can be obtained at any instant of time from telemetry data. Perhaps,
the main formula is (5.7), that links the diameter d of the inflection circle to the
acceleration of the velocity center C . The acceleration aC was given in (3.48), which
is repeated here for ease of reading (see also (5.19))
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aC = (ax + vr − .
ru/r) i + (ay − ur − .

rv/r) j

=
( .

ur − u
.
r

r

)
i +

( .
vr − v

.
r

r

)
j

= r(
.
R i − .

S j)

(3.48′)

We see that we also need
.
r , which is not commonly measured directly, although it

should be.
Here we list, with reference to Fig. 5.10, some relevant formulas

σ = χ − π, sin χ = − sin σ, cosχ = − cos σ (5.14)

d = 1

r2

√( .
vr − v

.
r

r

)2

+
( .

ur − u
.
r

r

)2

=
√ .

R2 + .
S2

r2
(5.15)

d cosχ =
( .

ur − u
.
r

r

)
1

r2
=

.
R

r
(5.16)

d sin χ =
( .

vr − v
.
r

r

)
1

r2
= −

.
S

r
(5.17)

d = d cosχ i + d sin χ j =
.
R i − .

S j
r

(5.18)

aC = r2d = r(
.
R i − .

S j) = r2d(cosχ i + sin χ j) (5.19)

VĈ = .
S i + .

R j = rd(− sin χ i + cosχ j) (5.20)

D = S i + R j (5.21)

rd · D = .
RS − R

.
S (5.22)

.
D = .

S i + .
R j − S

.
χ j + R

.
χ i = (

.
S + R

.
χ) i + (

.
R − S

.
χ) j (5.23)

.
d = 1

r3d

[
r(

.
R

..
R + .

S
..
S)− .

r(
.
R2 + .

S2)
]

(5.24)

d

dt

(
D
d

)
=

.
Dd − D

.
d

d2
= 1

d2

{[( .
S + R

.
χ)d − S

.
d] i + [( .

R − S
.
χ)d − R

.
d] j

}
(5.25)

These equations cover many aspects (Fig. 5.10):

• the diameter d of the inflection circle;
• the orientation χ of aC , and hence also of the inflection circle, with respect to the

vehicle longitudinal axis;
• the acceleration aC of the velocity center C ;
• the speed VĈ of the geometric point Ĉ ;
• the rate of change of d;
• the rate of change of the vector D = GC .
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It is worth noting that almost all quantities depend on r , Ṙ and
.
S, that is on u, v, r ,.

u,
.
v, and

.
r

.
R =

.
ur − u

.
r

r2
= ax − r2S − .

r R

r

− .
S =

.
vr − v

.
r

r2
= ay − r2 R + .

r S

r

(5.26)

As already discussed in Sect. 3.2.8, mathematically equivalent formulas may not be
equivalent at all when dealing with experimental data. Probably, it is better avoiding.
u and

.
v, and use ax and ay instead. It would be also very beneficial to measure directly.

r , instead of differentiating the yaw rate r .
It is worth noting that, although S is the longitudinal coordinate of the velocity

center C with respect to center of mass G, the quantity
.
S is not related to G. It is

a global quantity, like u, r ,
.
r , R,

.
R. Quantities strictly related to G, and hence less

general and less reliable, are v,
.
v, β,

.
β.

As shown in Fig. 5.10, along the axis of the vehicle there are, at any instant of
time, some special points. Point Z has zero slip angle, that is, βZ = 0, or equivalently
VZ = u i. Point N has

.
βN = 0. Good handling requires these two points Z and N

to be fairly close to each other and not too far from the front axle. Therefore, good
handling behavior, like in Fig. 5.14, maybe requires small values of | .

S| or |r .
S|. This

is a topic that deserves further investigation. See also Sect. 5.2.3.
Also interesting is to observe that

|aC | = r2d and |VĈ | = |rd| (5.27)

They are strictly related.

5.2.3 Tracking the Curvatures of Front and Rear Midpoints

To better understand the kinematics of a turning vehicle, we also consider the curva-
ture of the trajectories and how they change in time under the driver action on the steer-
ing wheel. In particular, we monitor the trajectories of the midpoints A1 = (a1, 0)
and A2 = (−a2, 0) of both axles (Fig. 5.9), and their centers of curvature E1 and E2,
respectively. There is a nice interplay between radii of curvature, the velocity center
and the inflection circle.

We know from (3.3) that the velocities V1 and V2 of A1 and A2 are

V1 = u i + (v + ra1) j

V2 = u i + (v − ra2) j
(5.28)

and hence V1 = |V1| = √
u2 + (v + ra1)2 and V2 = |V2| = √

u2 + (v − ra2)2. The
corresponding front and rear vehicle slip angles β̂1 and β̂2 (Fig. 5.9), respectively,
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are such that
tan(β̂1) = v + ra1

u
= β1

tan(β̂2) = v − ra2

u
= β2

(5.29)

From (3.39) we obtain the accelerations of A1 and A2

a1 = (ax − r2a1) i + (ay + .
ra1) j

a2 = (ax + r2a2) i + (ay − .
ra2) j

(5.30)

Through the knowledge of velocity and acceleration we can compute the cen-
tripetal (normal) component of the two accelerations, as in (3.40)

a1n = −(ax − r2a1)(v + ra1)+ (ay + .
ra1)u

V1

a2n = −(ax + r2a2)(v − ra2)+ (ay − .
ra2)u

V2

(5.31)

or, more explicitly (but numerically less reliably)

a1n = −( .u − vr − r2a1)(v + ra1)+ (
.
v + ur + .

ra1)u

V1

a2n = −( .u − vr + r2a2)(v − ra2)+ (
.
v + ur − .

ra2)u

V2

(5.32)

The curvatures ρ1 and ρ2 of the trajectories of A1 and A2 are now promptly
obtained (cf. (3.37))

ρ1 = a1n

V 2
1

= r

V1
+ (

.
v + .

ra1)u − (v + ra1)
.
u

V 3
1

= r + dβ̂1/dt

V1
� r + .

β1

u

ρ2 = a2n

V 2
2

= r

V2
+ (

.
v − .

ra2)u − (v − ra2)
.
u

V 3
2

= r + dβ̂2/dt

V2
� r + .

β2

u

(5.33)

The entering phase of making a left turn is characterized by increasing steer
angles and diminishing radii of curvature. Moreover, as we have already seen, the
velocity center C gets closer and closer to the vehicle. The corresponding transient
kinematics is shown in Fig. 5.18. It is worth noting that, according to (5.8), the radius
of curvature of point A1 is equal to E1 A1, and hence it is shorter than C A1. On the
contrary, the radius of curvature of point A2 is equal to E2 A2, which is longer than
C A2. This happens because the vehicle slip angle β̂1 at point A1 is increasing, while
the vehicle slip angle β̂2 at point A2 is diminishing (in the sense that it gets bigger,
but it is negative), as shown in Fig. 5.18 and according to (5.33).
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Fig. 5.18 Radii of curvature of a vehicle entering a turn properly

Fig. 5.19 Radii of curvature of a vehicle exiting a turn properly

The kinematics of a vehicle exiting properly a turn is shown in Fig. 5.19. We see
that many things go the other way around with respect to entering.

In both cases, the knowledge of the inflection circle immediately makes clear the
relationship between the position of the velocity center C and the centers of curvature
E1 and E2.

But things may go wrong. Bad kinematic behaviors are shown in Fig. 5.20. We
see that the time derivatives of β̂1 and β̂2 are not as they should be. Indeed, point C is
travelling also longitudinally. Again, the positions and orientations of the inflection
circle immediately convey the information about the unwanted kinematics of the
vehicle.
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Fig. 5.20 Examples of undesirable kinematics in a turn

5.2.4 Evolutes

Let us go back to good turning behavior. The evolute of a curve is the locus of all
its centers of curvature. The evolutes of the trajectories of points A1 and A2, that
is the midpoints of each axle, are shown in the lower part of Figs. 5.22 and 5.21.
Also shown are the centers of curvature E1 and E2 at a given instant of time, along
with the corresponding inflection circle (this one drawn in the upper part with the
centrodes). We see that the two evolutes are almost coincident. The relative positions
of E1 and E2 are consistent with Figs. 5.18 and 5.19.

At the onset of bad turning behavior, the two evolutes depart abruptly from each
other. Therefore, monitoring the evolutes of A1 and A2 can be another objective way
to investigate the handling features of a vehicle.
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Fig. 5.21 Vehicle entering a curve: inflection circle (top) and centers of curvatures with the corre-
sponding evolutes (bottom)
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Fig. 5.22 Vehicle exiting a curve: inflection circle (top) and centers of curvatures with the corre-
sponding evolutes (bottom)



222 5 The Kinematics of Cornering

Fig. 5.23 Yaw rate r(t), in rad/s: comparison between raw and filtered data

Table 5.1 Radii of curvature of the trajectories of the axle midpoints

t
(s)

Turn
No

R1
(m)

R2
(m)

1 10.87 1 −135.01 −148.94

2 12.66 1 −52.54 −50.58

3 30.98 4 −104.20 −102.97

4 61.84 10 75.55 125.94

5 63.87 10 26.19 25.23

6 64.87 10 73.65 59.86

5.3 Exercises

5.3.1 Front and Rear Radii of Curvature

With the data of Tables 8.1 and 8.2 and assuming a1 = 1.68 m and a2 = 1.32 m,
compute the radii of curvature R1 and R2 of the trajectories of the axle midpoints
A1 and A2 (Fig. 5.18). Discuss the results.
Solution
According to (5.33), to compute Ri = 1/ρi we need the centripetal component ain

of the acceleration and the speed Vi . The most reliable formula for ain should be
(5.31), because it avoids the computation of

.
u and

.
v. Unfortunately, with the usual

telemetry sensors, we cannot avoid the computation of
.
r . Therefore, the results will

strongly depend upon the filter applied to the raw yaw rate before differentiating it,
as obvious from Fig. 5.23.

The computed radii of curvature are shown in Table 5.1. The reader is invited
to check whether they are consistent with Figs. 5.18 and 5.19, and also to compare
them with RG , already computed in Table 8.2.
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5.3.2 Drawing Centrodes

Select the parametric equations to be employed to draw the moving centrode in
Fig. 5.17. Then, do the same for Fig. 5.13.

Solution

In Fig. 5.17 the moving centrodes are plotted in the vehicle reference plane. Therefore,
we must use (5.10).

On the other hand, in Fig. 5.13 there are three different positions of the moving
centrodes. That means that we must use (5.13), for three different instants of time t .

5.4 List of Some Relevant Concepts

Section 5.1.2—the moving centrode rolls without slipping on the fixed centrode, the
point of rolling contact being C ;
Section 5.1.2—the velocity field is like a pure rotation around C , but the acceleration
field is not;
Section 5.1.3—the acceleration field is like a pure rotation around K ;
Section 5.1.4—the inflection circle makes it possible to easily evaluate the radius of
curvature of the trajectory of any point of a rigid body;
Section 5.2.2—handling misbehavior strongly affects the shape of centrodes;
Section 5.2.4—monitoring the evolutes can be another objective way to investigate
the handling features of a vehicle.

5.5 Key Symbols

aC acceleration of C
ax longitudinal acceleration of G
ay lateral acceleration of G
C velocity center
d diameter of the inflection circle
G center of mass;
K acceleration center
r yaw rate
R lateral coordinate of G
S longitudinal coordinate of G
u longitudinal velocity
v lateral velocity of G

χ orientation of aC

ψ yaw angle
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