
Chapter 4
Braking Performance

Driving a vehicle involves, among other things, braking [1]. Fortunately, most of the
times, we brake very softly, far from the braking performance limit. Most drivers,
perhaps, never need to experience the limit braking performance of their car in
everyday traffic. However, engineers must know very well the mechanics of braking
a vehicle, to allow it to stop as soon as possible in case of emergency. Actually, this
problem has been somehow mitigated by the advent of ABS systems [2], which now
equip every road car. However, many race cars do not have ABS and hence brake
design and balance is still a relevant topic in vehicle dynamics.

By brake balance or bias, we mean how much to brake the front wheels with
respect to the rear wheels. The goal is to stop the vehicle as soon as possible, but
avoiding wheel locking. Cars have only one pedal to brake all wheels and brake
balance is left to the car. By the way, wheel locking should be avoided because, in
order of importance:

1. the steering/directional capability is totally impaired (most important);
2. the grip is lower;
3. energy dissipation switches from the brakes to the contact patches and tires get

damaged.

On the other hand, almost all motorcycles and bicycles have independent brake
commands for the front wheel and for the rear wheel, thus leaving the duty of brake
balance to the rider. Many bicyclists fear using the front brake because they believe
it might cause the bicycle to overturn. Actually, overturning a bicycle with the front
brake is much harder than it seems. Not using the front brake is a bad habit, since it
drastically impairs the braking performance.
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4.1 Pure Braking

As anticipated, we extract tailored models from the fairly general vehicle model
developed in Chap. 3.

When braking on a flat, straight road, with uniform grip, we know beforehand
that

Y = 0

N = 0

ΔXi = 0

ΔZi = 0

(4.1)

that is, there are no lateral forces, no yaw moment and no lateral load transfers.
Accordingly, the vehicle goes straight, with no lateral acceleration and yaw rate (and
also no lateral velocity)

ay = 0
.
r = 0

v = 0

r = 0

(4.2)

Other quantities are usually very small. In particular, if the wheels of the same
axle have a bit of convergence (also called toe-in), that means that there are small
steering angles and, accordingly, very small lateral slips. Similarly, if the wheels of
the same axle have some camber, the tires are subject to a small spin slip:

δi j � 0

σyi j � 0

ϕi j � 0

(4.3)

At first, all these quantities can be set equal to zero.

4.2 Vehicle Model for Braking Performance

A simple, yet significant, model to study the limit braking performance of a road
vehicle is shown in Fig. 4.1. We are dealing here with road vehicles, without signifi-
cant aerodynamic downforces (however, have a look at Fig. 3.24). Formula cars are
dealt with in Sect. 4.12.

We suppose to brake on a flat and straight road, with uniform grip. Therefore, the
vehicle goes straight. Moreover, we assume to apply a constant force to the brake
pedal. Therefore, pitch oscillations are negligible.

Summing up, we can employ the two-dimensional model shown in Fig. 4.1. The
vehicle is just a single rigid body with mass m, moving horizontally with forward
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Fig. 4.1 Model for braking performance analysis of road cars

speed u and forward acceleration
.
u < 0. Beside its own weight mg, it receives two

vertical forces Z1 and Z2 from the road, one per axle, and two longitudinal (braking)
forces X1 and X2, again one per axle.

In this chapter only we assume X1 and X2 to be positive if directed like in Fig. 4.1.
It is more convenient to deal with positive quantities.

4.3 Equilibrium Equations

The three equilibrium equations are readily obtained from Fig. 4.1

m
.
u = −(X1 + X2)

0 = Z1 + Z2 − mg

0 = (X1 + X2) h − Z1 a1 + Z2 a2

(4.4)

which must be supplemented by the following inequalities

|Xi | ≤ μx
p Zi and Zi ≥ 0 (4.5)

where μx
p is the global longitudinal friction coefficient defined in (2.87). It is quite

obvious that the braking forces cannot exceed the traction limit, nor the vertical
forces be negative. For brevity, we will use the symbol μ for μx

p in this chapter.
The aerodynamic drag Xa has not been included because in road cars it is really

small compared to the braking forces.
The rolling resistance is also very small. The braking forces Xi already include

this small contribution.
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4.3.1 Rigorous Moment Equation

In the third equation in (4.4) we omitted the rotating inertia J1 and J2 of the two
axles. The complete equation is

(J1 + J2)
.
u

rr
= (X1 + X2) h − Z1 a1 + Z2 a2 (4.6)

where rr is the wheel rolling radius. However, the contribution of the rotating inertia
is usually negligible. Typically, (J1 + J2)/rr � 1 kgm, while, e.g., mh � 600 kgm.

4.4 Longitudinal Load Transfer

When going at constant speed, that is with
.
u = 0, we have from (4.4) (or, directly,

from (3.105)) that the static vertical loads on each axle are

Z0
1 = mga2

l
Z0
2 = mga1

l
(4.7)

During braking with
.
u < 0, the two loads change, although their sum must be

constantly equal to the vehicle weight mg. We have the so-called longitudinal load
transfer ΔZ

Z1 = Z0
1 + ΔZ and Z2 = Z0

2 − ΔZ (4.8)

where (cf. (3.104))

ΔZ = −mh

l
.
u (4.9)

with
.
u < 0. The front axle is subject to a higher load (Z1 > Z0

1), while the rear axle
to a lower load (Z2 < Z0

2). It is worth noting that the load transfer does not depend
on the type of suspensions.

We have overturning of the vehicle if Z2 = 0, that is if

| .u| = a1g/h (4.10)

This condition is never met in cars, whereas it may limit the brake performance in
some motorcycles.

4.5 Maximum Deceleration

The best braking performance | .u|max is obtained if both axles brake at their traction
limit, that is if

X1 = μ Z1 and X2 = μ Z2 (4.11)
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From the equilibrium equations (4.4), it is straightforward to obtain the limit decel-
eration

| .u| = μg (4.12)

Of course, the maximum deceleration is the minimum between (4.10) and (4.12)

| .u|max = min(μg, a1g/h) (4.13)

Cars have μ < a1/h, whereas in some motorcycles it can be the other way around.
Here we are mainly dealing with cars, and therefore we have

| .u|max = μg (4.14)

4.6 Brake Balance

Whenbraking at the best braking performance, that iswith
.
u = −μg, the longitudinal

forces are

X1P = μ Z1P = μ

(
Z0
1 + mh

l
μg

)
= μ

mg

l
(a2 + μh)

X2P = μ Z2P = μ

(
Z0
2 − mh

l
μg

)
= μ

mg

l
(a1 − μh)

(4.15)

The optimal brake balance (or brake bias)βP to have the best braking performance
is promptly obtained as

βP = X1P

X2P
= Z1P

Z2P
= a2 + μh

a1 − μh
(4.16)

Typical values in road cars are βP � 2 on dry asphalt (μ � 0.8) and βP � 1.5 on
wet asphalt (μ � 0.4). More commonly, the same concepts would be expressed as
front/rear = 66/33 and front/rear = 60/40, respectively.

Let μ1 be the coefficient of friction of the front axle, and μ2 be the coefficient of
friction of the rear axle. Then, the optimal brake balance βP is given by

βP = X1P

X2P
= μ1(a2 + μ2h)

μ2(a1 − μ1h)
(4.17)

which generalizes (4.16) when μ1 (front) �= μ2 (rear).
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4.7 All Possible Braking Combinations

If the best braking performance is our ultimate goal, we should also look around to
see what happens if we employ a brake balance not equal to βP . All possible braking
combinations can be visualized in a simple, yet very useful, figure.

First solve the equilibrium equations (4.4) with X1 = μZ1, thus getting

Z1 = X1

μ
= Z0

1 + h

l
(X1 + X2) (4.18)

and hence

X1 = μ

⎛
⎜⎝
Z0
1 + h

l
X2

1 − μ
h

l

⎞
⎟⎠ (4.19)

This is the relationship between X1 and X2 to have limit (threshold) braking at the
front wheels.

Similarly, solve the equilibrium equations (4.4) with X2 = μZ2, thus getting

X2 = μ

⎛
⎜⎝
Z0
2 − h

l
X1

1 + μ
h

l

⎞
⎟⎠ (4.20)

This is the relationship between X1 and X2 to have limit (threshold) braking at the
rear wheels.

In the plane (X2, X1)we can now draw the two straight lines (4.19) and (4.20), as
shown in Fig. 4.2. The region inside the two lines contains all possible (admissible)
braking combinations. Trying to trespass the upper line means front wheels lock-up.
Trying to trespass the right line means rear wheels lock-up. Point P is the condition
of best braking performance. It requires the combination of the braking forces X1P
and X2P , which were obtained in (4.15).

Pointswith the same level of deceleration all belong to straight lineswith slope45◦,
that is lines with constant X1 + X2 = −m

.
u. Themaximumdeceleration corresponds

to the line passing through point P . Braking with balance βP means moving along
the line OP .

Some other relevant cases are shown in Fig. 4.3. Region 1 corresponds to low
decelerations. So small that they can be obtained with any balance between front and
rear braking forces, or even with only a rear braking force X20

X20 = μZ0
2

1 + μ
h

l

(4.21)
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Fig. 4.2 Region of all
admissible braking
combinations

Fig. 4.3 Region of all
admissible braking
combinations with indication
of some particular cases

Region 2 needs necessarily some braking force at the front wheels, but even the front
wheels alone, with a braking force X10 , would do (front/rear = 100/0)

X10 = μZ0
1

1 − μ
h

l

(4.22)

Region 3, that is high decelerations, require intervention of both axles. The higher
the deceleration, the narrower the range A–B.
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To complete our discussion we have to address the effects of changing the grip
coefficient μ and/or the position of G, that is a1/a2, and maybe h.

4.8 Changing the Grip

The formulation developed so far includes the grip coefficient as a parameter. There-
fore, we have already obtained all formulas to deal with different values of μ. To
understand what happens it is helpful to draw the admissible region for, say, three
different values μl < μo < μh of the grip coefficient,1 as shown in Fig. 4.4.

Let us assume that our car has a brake balance that follows line OP2, that is
optimized for μ = μo. If the grip is lower, that is μl < μo, there will be less load
transfer ΔZ and a lower brake balance would be optimal. If we still follow line OP2,
we exit the admissible region at point A, that is for a deceleration lower than μl g
and with the front wheels at lock-up. It can be shown that the deceleration is equal
to εlμl g, with the braking efficiency εl < 1 given by

εl = a2
a2 + h(μo − μl)

, if μl < μo (4.23)

Fig. 4.4 Region of all admissible braking combinations for three different grip coefficients (left)
and parabola of limit points (right)

1 In this section we assume to have the same grip in both axles.
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Braking efficiency εh < 1 is also obtained when the out-of-balance is due to a
higher value μh > μo of the grip coefficient. As shown in Fig. 4.4, we exit the
admissible region at point B, which is not optimal. Rear wheels are about to lock up
and the deceleration is equal to εhμhg, with the braking efficiency εh < 1 given by

εh = a1
a1 + h(μh − μo)

, if μh > μo (4.24)

Also shown in Fig. 4.4 is the parabola that collects all vertices P when varying
the coefficient μ. Point P located on the X1 axis means that maximum deceleration
is limited by overturning.

4.9 Changing the Weight Distribution

The longitudinal position ofG affects the static load distribution. Therefore, it affects
the brake balance, but not the maximum deceleration μg. Accordingly, we get an
admissible region like in Fig. 4.5, with a new vertex P̂ still on the same line at 45◦,
and with sides parallel to those of the original region.

Fig. 4.5 Region of admissible braking combinations for two different weight distributions
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4.10 A Numerical Example

A numerical example may be useful to understand better the braking performance
of a road car. We take a small car with the following features: mass m = 1000 kg,
wheelbase l = 2.4m, a1 = a2 = l/2, height of the center of mass h = 0.5m.

Assuming a grip coefficient μ = 0.8, the maximum deceleration is vehicle inde-
pendent and it is equal to | .u|max = μg = 7.84m/s2, with g = 9.81m/s2.

According to (4.7), the static vertical loads for both axles are Z0
1 = Z0

2 = 4900N.
The load transfer at maximum deceleration is ΔZ = 1633N. Therefore, the vertical
loads acting on each axle are Z1P = 6533N and Z2P = 3267N, whichmeans a brake
balance βP = 2. This is the optimal value for that car if μ = 0.8.

Should the grip coefficient drop to 0.4 because, e.g., of rain, we would end up
with a braking efficiency ε1 = 0.86. An increase of the grip coefficient up to 1.2
would still bring a reduced braking efficiency ε2 = 0.86.

4.11 Braking, Stopping, and Safe Distances

The braking distance refers to the distance a vehicle will travel from the point when
its brakes are fully applied to when it comes to a complete stop.

The total stopping distance is the sum of the perception-reaction distance and the
braking distance. The perception-reaction time ranges from 0.75 to 1.5 s.

In everyday traffic, the driver must keep a safe distance between his/her vehicle
and the vehicle in front in order to avoid collision if the car in front brakes or
stops. The safe distance corresponds to the distance covered by the vehicles in the
perception-reaction time. This is the rationale for the three-second rule, by which
a driver can easily maintain a safe trailing distance at any speed. The rule is that a
driver should ideally stay at least three seconds behind any vehicle that is directly in
front. Of course, it can be applied at any speed and with any weather condition.

4.12 Braking Performance of Formula Cars

Formula cars have aerodynamic devices that provide very high downforces at high
speed, as briefly explained in Sect. 3.7.2. These loads affect braking pretty much.
The first, obvious, effect is that the maximum longitudinal deceleration is speed
dependent. In a Formula 1 car it can be up to 5g at 350 km/h, although the physical
grip μ rarely exceeds 1.6. The second, perhaps less obvious, effect is that also the
optimal brake balance βP is speed dependent.
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Fig. 4.6 Vehicle model for braking performance of a Formula car (all forces are positive)

4.12.1 Equilibrium Equations

The equilibrium equations (4.4) must be supplemented by the aerodynamic loads.
According to Sect. 3.7.2 and as shown in Figs. 3.22 and 4.6, the total aerodynamic
force Fa is equivalent to three forces: a drag force Xa at road level and two vertical
forces Za

1 and Za
2 acting directly on the front and rear axles, respectively. Therefore,

the equilibrium equations become

m
.
u = −(X1 + X2) − Xa

0 = Z1 + Z2 − mg − Za
1 − Za

2

0 = (X1 + X2 + Xa) h − (Z1 − Za
1 ) a1 + (Z2 − Za

2 ) a2

(4.25)

Unlike in (3.94) and (3.95), here we assume X1 and X2 to be positive if directed like
in Fig. 4.6, that is to be indeed braking forces. As shown in Fig. 2.43, the tire rolling
resistance is part of the braking (grip) forces Xi .

We recall that (cf. (3.81) and (3.82))

Xa = 1

2
ρa SaCxu

2 = ξu2

Za
1 = 1

2
ρa SaCz1u

2 = ζ1u
2

Za
2 = 1

2
ρa SaCz2u

2 = ζ2u
2

(4.26)

where, as it is common practice among race engineers, Cx > 0 and Czi > 0.
For simplicity, here we assume SaCx , SaCz1 and SaCz2 to be constant (i.e., speed

independent). Actually, this is not strictly true, as shown in Fig. 4.7, because the
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Fig. 4.7 Measured values of SaCz and SaCx in one lap of an F1 race car

height from the ground of the car is not constant. Therefore, the assumption of
constant coefficients should be removed in more advanced analyses.

4.12.2 Vertical Loads

The vertical loads on each axle are given by the static loads (4.7) (zero speed), plus the
aerodynamic (speed dependent) loads (4.26), plus or minus the inertial longitudinal
load transfer (cf. (4.8))

Z1 = Z0
1 + ζ1u

2 + ΔZ

Z2 = Z0
2 + ζ2u

2 − ΔZ
(4.27)

Like in (4.9), the inertial longitudinal load transfer ΔZ is given by

ΔZ = −mh

l
.
u (4.28)

with
.
u < 0. When braking, the front axle is subject to a higher load, while the rear

axle to a lower load, with respect to the static loads. It is a purely inertial effect.
However, at high speed the drag force Xa is not negligible and can significantly
affect the vertical loads, even if Cz = 0 as shown in Fig. 3.24.

4.12.3 Maximum Deceleration

The maximum deceleration is promptly obtained by assuming that both axles are at
their limit braking conditions, that is X1 = μZ1 and X2 = μZ2

| .u|max = μ

(
g + ζ1 + ζ2

m
u2

)
+ ξ

m
u2 (4.29)
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Fig. 4.8 Regions of all admissible braking combinations of a Formula car at 200 km/h, with and
without aerodynamic downforces

This formula generalizes (4.14). Of course | .u|max is very speed dependent, as also
shown in Fig. 4.8.

More detailed information can be obtained by looking at (4.29) as a differential
equation in the unknown function u(t)

.
u = −μg − u2

k
(4.30)

where
k = m

μ(ζ1 + ζ2) + ξ
(4.31)

Setting the initial speed u(0) = u0, the analytical solution is as follows

u(t) = ud tan

(
arctan

(u0
ud

)
− t

td

)
(4.32)

where

ud = √
μgk and td =

√
k

μg
(4.33)

Moreover, to have u(t) > 0, it must be t < t0, with
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t0 = td arctan

(
u0
ud

)
(4.34)

Therefore, t0 is the shortest time to stop the car from speed u0. Integrating (4.32),
we can obtain the distance s0 travelled by the car to come to a stop

sb = 1

2
tdud ln

(
1 + u20

u2d

)
= k

2
ln

(
1 + u20

μgk

)
(4.35)

It is worth comparing this equation with its counterpart (4.52) for cars without aero-
dynamic devices.

A plot of (4.35) is available in Fig. 4.12 (lower curve), along with a plot of (4.52)
(upper curve).

4.12.4 Brake Balance

To brake at the best braking performance, that is with
.
u = −| .u|max, the longitudinal

forces must be

X1P = μ

(
Z0
1 + ζ1u

2 + mh

l
| .u|max

)

= μ

(
Z0
1 + ζ1u

2 + h

l
[μgm + μ(ζ1 + ζ2)u

2 + ξu2]
)

X2P = μ

(
Z0
2 + ζ2u

2 − mh

l
| .u|max

)

= μ

(
Z0
2 + ζ2u

2 − h

l
[μgm + μ(ζ1 + ζ2)u

2 + ξu2]
)

(4.36)

Having the right brake balance is very important for lap performance. The optimal
brake balance (or brake bias) βP to have the best braking performance is promptly
obtained as

βP(u) = X1P

X2P
= (a2 + hμ)gm + u2[(a1 + a2)ζ1 + hξ + h(ζ1 + ζ2)μ]

(a1 − hμ)gm + u2[(a1 + a2)ζ2 − hξ − h(ζ1 + ζ2)μ] (4.37)

which generalizes (4.16). As expected, in general now βP is explicitly speed depen-
dent.
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Fig. 4.9 The line of action
of the global aerodynamic
force must pass through G to
have speed independent
brake balance

4.12.5 Speed Independent Brake Balance

To avoid explicit speed dependence of βP , and hence to enhance the lap performance,
it must be in (4.37)

βP = a2 + hμ

a1 − hμ
= (a1 + a2)ζ1 + hξ + h(ζ1 + ζ2)μ

(a1 + a2)ζ2 − hξ − h(ζ1 + ζ2)μ
(4.38)

that is, with Cz = Cz1 + Cz2

βP = a2 + hμ

a1 − hμ
= (a1 + a2)Cz1 + h(Cx + Czμ)

(a1 + a2)Cz2 − h(Cx + Czμ)
(4.39)

This condition should be taken into account during setup (see also the next two
sections).

Interestingly enough, there is a simple physical interpretation of (4.38) and (4.39):
the line of action of the global aerodynamic force Fa = −ξu2 i − (ζ1 + ζ2)u2 k
must pass through the center of mass G, as shown in Fig. 4.9 and as discussed
in Sect. 4.13.4.

4.12.6 Practical Brake Balance

In addition to the brake balance β = X1/X2, we define, as commonly done by race
engineers, the practical brake balance η

η = X1

X1 + X2
(4.40)

along with the weight distribution ω

ω = Z0
1

Z0
1 + Z0

2

= a2
a1 + a2

(4.41)
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and the aero balance α

α = Cz1

Cz1 + Cz2

= ζ1

ζ1 + ζ2
= ζ1

ζ
(4.42)

where
ζ = ζ1 + ζ2 (4.43)

We obtain the following result2 for the optimal practical brake balance ηP

ηP = mg(μ h
l + ω) + ζu2(μ h

l + α) + ξu2 h
l

mg + ζu2
(4.44)

which is the counterpart of (4.37). Using ηP or βP is just a matter of taste.
In case of different front to rear grip (μ1 �= μ2), we have3

ηP = μ1
[
mg(μ2

h
l + ω) + ζu2(μ2

h
l + α) + ξu2 h

l

]
mg[μ1ω + μ2(1 − ω)] + ζu2[μ1α + μ2(1 − α)] + ξu2 h

l (μ1 − μ2)

(4.45)

4.12.7 Speed Independent Practical Brake Balance

Of course, in general, ηP is speed dependent. To avoid speed dependence of ηP , it
must be ∂ηp/∂u = 0, that means (see also Fig. 4.9)

(ω − α)ζ − h

l
ξ = 0 (4.46)

or, equivalently

(ω − α)Cz − h

l
Cx = 0 (4.47)

which can be rewritten as

ω = α + Cx

Cz

h

l
(4.48)

Quite a compact and interesting formula. We see that, to avoid speed dependence
of ηp, it is necessary that ω > α, but just a little. For instance, in a Formula car, it
results in ω − α � 0.02.

The last three equations are the counterpart of (4.39). However, they look simpler
to be kept in mind.

2 Ernesto Desiderio, personal communication, 6 May 2020.
3 Federico Sánchez Motellón, personal communication, 22 June 2020.
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4.12.8 Sensitivities

From (4.44) we can easily compute the sensitivities of ηP .
The sensitivity of the optimal practical brake balance ηp with respect to the aero

balance α is
∂ηP

∂α
= ζu2

mg + ζu2
(4.49)

Very simple formula. No μ, no h/ l, no Cx . Strong speed dependence at high speed.
Similarly, the sensitivity of the optimal practical brake balance ηp with respect to

the weight distribution ω is
∂ηP

∂ω
= mg

mg + ζu2
(4.50)

Again, a very simple formula. No μ, no h/ l, no Cx . Strong speed dependence at low
speed.

It may be interesting to observe that

∂ηP

∂α
+ ∂ηP

∂ω
= 1 (4.51)

4.12.9 Typical F1 Braking Performance

A typical braking performance of an F1 car is shown in Fig. 4.10. The deceleration
grows suddenly up to about 38m/s2. Then, as the speed u (m/s) decreases, also the
aerodynamic load decreases, thus requiring the driver to gradually release the brake
pedal. Meanwhile, the car is already negotiating the curve, as shown by the lateral
acceleration and wheel steer angle (deg). Also shown in Fig. 4.10 is the acceleration
(ax > 0) when the car exits the curve.

It is interesting to compare the total acceleration
√
a2x + a2y (lower line in Fig. 4.11)

with the potential maximum deceleration (4.29) (upper line in Fig. 4.11). Whenever
possible, the driver tries to stay as close as possible to the limit. This can be done in
all curves that are grip-limited. Of course, not in those curves that are speed-limited
(like, e.g., curve 3 in the Barcelona circuit).
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Fig. 4.10 Typical braking performance of an F1 car

Fig. 4.11 Comparison between the total acceleration (lower line) and the potential maximum
acceleration (upper line) of an F1 car

4.13 Exercises

4.13.1 Minimum Braking Distance

For the road car described in Sect. 4.10, compute the minimum braking distance
assuming the following data:

• grip coefficient μ = 0.8 (dry asphalt);
• initial speed u0 = 100 km/h;
• braking efficiency ε = 1.
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Then, for the sake of comparison, repeat the same calculation in case the car has
only the front brakes, and then in case the car has only the rear brakes.

Solution

First we convert the initial speed in SI units: u0 = 100/3.6 = 27.8m/s.
In our model, the maximum deceleration is equal to μg = 7.85m/s2. Therefore,

it is not affected by the position of G and by the mass m.
Weknowby elementary physics that the speed decreases from u0 to zero according

to u(t) = u0 − μgt . Therefore, we obtain the braking time tb = u0/(μg) = 3.54 s,
which is a linear function of the initial speed.

We can now compute the distance covered by the car to come to a stop

sb = 1

2
μgt2b = u20

2μg
= 49m (4.52)

Of course, to get this minimum distance, the brake balance βP must be set according
to (4.16). In this case βP = 2, as shown in Sect. 4.10.

It can be of some interest to compare this expression of sb for road cars with (4.35)
for Formula cars.

The braking distance can also be found by determining the work required to
dissipate the vehicle kinetic energy, that is 0.5mu20 = mμgsb. Of course, the result
is the same, but without the byproduct of the braking time tb.

As well known, the braking distance of a road car is a quadratic function of the
initial speed u0. Doubling the speed makes the braking distance four times longer.

If braking with the front wheels only, we can at most get the braking force X10
given by (4.22). We see that now the position of G becomes relevant. With a bit of
algebra, we obtain that in this case the maximum deceleration is

a f = μg
a2
l

⎛
⎜⎝ 1

1 − μ
h

l

⎞
⎟⎠ = μg

a2
l − μh

= 4.71m/s2 (4.53)

The braking distance is therefore given by 7.85/4.71 × 49 = 82m, that is

s f = u20
2a f

(4.54)

Similarly, but employing (4.21), we obtain that in case of rear braking only the
deceleration is

ar = μg
a1
l

⎛
⎜⎝ 1

1 + μ
h

l

⎞
⎟⎠ = μg

a1
l + μh

= 3.36m/s2 (4.55)
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and the braking distance is 7.85/3.36 × 49 = 114m. As expected, front braking
only is more efficient than rear braking only. This is particularly true in bicycles and
motorcycles. Try to guess why.

4.13.2 Braking with Aerodynamic Downforces

A GP2 race car has the following features (notation as in Sect. 3.7.2):

• m = 680 kg;
• l = a1 + a2 = 3.025m;
• a1/a2 = 1.27, that is weight distribution front/rear of 0.44/0.56;
• Sa Cz1 = 1.5m2;
• Sa Cz2 = 2.1m2;
• Sa Cx = 1.1m2;
• μ = 1.35;
• h = 0.27 m;
• air density 1.25 kg/m3.

Compute the minimum braking distance and the minimum braking time when it is
running straight at 150 km/h and at 300 km/h.

Solution

In this race car we have (see (4.26))

• ζ1 = 0.5 × 1.25 × 1.5 = 0.9375 kg/m
• ζ2 = 0.5 × 1.25 × 2.1 = 1.3125 kg/m
• ξ = 0.5 × 1.25 × 1.1 = 0.6875 kg/m

Therefore, in (4.32) we obtain ud = 49.17 m/s and td = 3.71 s.
If the initial speed is 150/3.6 = 41.67 m/s, we obtain from (4.34) the minimum

braking time t0 = 2.61 s. According to (4.29), the highest deceleration is 22.75 m/s2.
The braking distance is sb = 49.4 m. It is obtained integrating numerically (7.237)
from 0 to 2.61 s.

If the initial speed is 300/3.6 = 83.33 m/s, we obtain from (4.34) the minimum
braking time t0 = 3.85 s. According to (4.29), the highest deceleration is 51.28 m/s2.
The braking distance is sb = 123.6 m. It is obtained integrating numerically (4.32)
from 0 to 3.85 s.

Just out of curiosity, this car would stop in about 25 m if running at 100 km/h.
The time would be less than 2 s.

From Fig. 4.12 we can appreciate how important the aerodynamic loads are in
Formula cars. The braking distances with all aerodynamic forces, with drag but no
downforces, with no aerodynamics at all, are quite far apart at high speeds.
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Fig. 4.12 Comparison between the braking distance of aGP2 car (lower curve), the braking distance
for the same car, but without any aerodynamic effect (upper curve), the braking distance with drag,
but no downforces (intermediate curve)

4.13.3 GP2 Brake Balance

The brake distances computed in the former exercise need a perfect brake balance
βP at any speed. Compute the value of the perfect brake balance for the same GP2
car at 100, 150 and 300 km/h, and comment on it.
Solution

First of all, let us test whether this car fulfills (4.39), which would make βP speed
insensitive. The l.h.s. term makes 1.275, while the r.h.s. term makes 1.295. Very
good.

Indeed, we have βP = 1.280 at 100 km/h, βP = 1.283 at 150 km/h, and βP =
1.290 at 300 km/h. We see that this car has a brake balance which is almost speed
independent.

4.13.4 Speed Independent Brake Balance

Check the physical interpretation of (4.38).

Solution

The physical interpretation of (4.38) requires the global aerodynamic force Fa =
−(Xa i + Za k) to pass through the center of mass G (Fig. 4.9). Therefore, we have
to solve the following system of equations (cf. (4.25))



198 4 Braking Performance

m
.
u = −(X1 + X2) − Xa

0 = Z1 + Z2 − mg − Za

0 = (X1 + X2) h − Z1a1 + Z2a2

X1 = μ1Z1

X2 = μ2Z2

(4.56)

where, for greater generality, the front grip μ1 is not necessarily equal to the rear
grip μ2.

The resulting brake balance is

βP = X1

X2
= μ1(a2 + hμ2)

μ2(a1 − hμ1)
(4.57)

which is, indeed, speed independent, and generalizes (4.38). Quite a useful result to
optimize the braking performance of a Formula car.

4.14 Summary

The goal of this chapter has been to understand how to stop a vehicle as soon as
possible, avoiding wheel locking. This result can be achieved only if the vehicle
has the right brake balance. Unfortunately, brake balance is affected by the value of
the grip and by the position of the center of mass. This topic has been addressed in
detail, both analytically and graphically, through the region of all possible braking
conditions. The peculiarity of the braking performance of a Formula car has been
also discussed.

4.15 List of Some Relevant Concepts

Section4.4—the longitudinal load transfer does not depend on the type of suspen-
sions;
Section4.5—maximum deceleration is limited by either grip or overturning (sup-
posing brakes are powerful enough);
Section4.6—brake balance depends on grip and weight distribution;
Section4.7—all possible braking combinations can be represented by a simple figure;
Section4.12.2—wings do not affect load transfer directly;
Section4.12.4—brake balance is affected by wings;
Section4.12.5—the line of action of the global aerodynamic force must pass through
G to have speed independent brake balance.
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4.16 Key Symbols

a1 distance of G from the front axle
a2 distance of G from the rear axle
Cx , Czi aerodynamic coefficients
g gravitational acceleration
G center of mass
h height of G
Jy moment of inertia
l wheelbase
m mass
Sa frontal area
u longitudinal velocity.
u longitudinal acceleration
Xi braking force acting on the i-th axle
Zi vertical load on i-th axle
Z0
i static vertical load on i-th axle

Za
i aerodynamic vertical load on i-th axle

ΔZ longitudinal load transfer

α aero balance
β brake balance
βP optimal brake balance
εi braking efficiency
η practical brake balance
ηP optimal practical brake balance
μ = μx

p coefficient of grip
ρa air density
ω weight distribution
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