
Chapter 2
Mechanics of the Wheel with Tire

All road vehicles have wheels and almost all of them have wheels with pneumatic
tires. Wheels have been around for many centuries, but only with the invention,
and enhancement, of the pneumatic tire it has been possible to conceive fast and
comfortable road vehicles [5].

The main features of any tire are its flexibility and low mass, which allow for
the contact with the road to be maintained even on uneven surfaces. Moreover, the
rubber ensures high grip. These features arise from the highly composite structure
of tires: a carcass of flexible, yet almost inextensible cords encased in a matrix of
soft rubber, all inflated with air.1 Provided the (flexible) tire is properly inflated, it
can exchange along the bead relevant actions with the (rigid) rim. Traction, braking,
steering and load support are the net result.

It should be appreciated that the effect of air pressure is to increase the structural
stiffness of the tire, not to support directly the rim. How a tire carries a vertical load
Fz if properly inflated is explained in Fig. 2.1.2 In the lower part the radial cords
encased in the sidewalls undergo a reduction of tension because they no longer have
to balance the air pressure pa acting on the contact patch [10, p. 279]. The net result
is that the total upward pull of the cords on the bead exceeds that of the downward
pull by an amount equal to the vertical load Fz [26, p. 161]. A very clear explanation
can also be found in [31].

1 Only in competitions it is worthwhile to employ special (and secret) gas mixtures instead of air.
The use of nitrogen, as often recommended, is in fact almost equivalent to air [18], except for the
cost.
2 As pointed out by Jon W. Mooney in his review, in Noise Control Engineering Journal, Vol. 62,
2014, the explanation and the figure provided in the first edition of this book were not correct. A
similar (incorrect) explanation has appeared in [9, Fig. 1.19], published in 2017.
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Fig. 2.1 How a tire carries a vertical load if properly inflated

The contact patch, or footprint, of the tire is the area of the tread in contact with
the road. This is the area that transmits forces between the tire and the road via
pressure and friction. To truly understand some of the peculiarities of tire mechanics
it is necessary to get some insights on what happens in the contact patch.

Handling of road vehicles is strongly affected by the mechanical behavior of the
wheels with tire, that is by the relationship between the kinematics of the rigid rim
and the force exerted by the road. This chapter is indeed devoted to the analysis of
experimental tests. The development of simple, yet significant, tire models is done
in Chap. 11.
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2.1 The Tire as a Vehicle Component

Awheel with tire is barely a wheel, in the sense that it behaves quite differently from
a rigid wheel.3 This is a key point to really understand the mechanics of wheels with
tires. For instance, a rigid wheel touches the (flat) road at one point C , whereas a
tire has a fairly large contact patch. Pure rolling of a rigid wheel is a clear kinematic
concept [17], but, without further discussion, it is not obvious whether an analogous
concept is even meaningful for a tire. Therefore, we have to be careful in stating as
clearly as possible the concepts needed to study the mechanics of wheels with tire.

Moreover, the analysis of tiremechanicswill be developedwith no direct reference
to the dynamics of the vehicle. This may sound a bit odd, but it is not. The goal here
is to describe the relationship between the motion and position of the rim and the
force exchanged with the road through the contact patch:

rim kinematics ⇐⇒ force and moment

Once this description has been obtained and understood, then it can be employed
as one of the fundamental components in the development of suitable models for
vehicle dynamics, but this is the subject of other chapters.

Three basic components play an active role in tire mechanics:

1. the rim, which is assumed to be a rigid body;
2. the flexible carcass of the inflated tire;
3. the contact patch between the tire and the road.

2.2 Carcass Features

The tire carcassC is a highly composite and complex structure.Herewe look at the tire
as a vehicle component [19] and therefore it suffices to say that the inflated carcass,
with its flexible sidewalls, ismoderately compliant in all directions (Figs. 2.1 and 2.2).
The external belt is also flexible, but quite inextensible (Fig. 2.3). For instance, its
circumferential length is not very much affected by the vertical load acting on the
tire. The belt is coveredwith tread blocks whose elastic deformation and grip features
highly affect the mechanical behavior of the wheel with tire [13–15].

Basically, the carcass can be seen as a nonlinear elastic structure with small
hysteresis due to rate-dependent energy losses. It is assumed here that the carcass
and the belt have negligible inertia, in the sense that the inertial effects are small in
comparison with other causes of deformation. This is quite correct if the road is flat
and the wheel motion is not “too fast”.

3 A rigid wheel is essentially an axisymmetric convex rigid surface. The typical rigid wheel is a
toroid.
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Fig. 2.2 Radial flexibility of
the tire carcass [13]

Fig. 2.3 Structure of a radial
tire [13]

2.3 Contact Patch

Tires are made from rubber, that is elastomeric materials to which they owe a large
part of their grip capacity [25]. Grip implies contact between two surfaces: one is
the tire surface and the other is the road surface.

The contact patch (or footprint) P is the region where the tire is in contact with
the road surface. Most tires have a tread pattern, with lugs and voids, and hence the
contact patch is the union of many small regions (Fig. 2.4). It should be emphasized
that the shape and size of the contact patch, and also its position with respect to the
rim, depend on the tire operating conditions.

Grip depends, among other things, on the type of road surface, its roughness and
whether it is wet or not. More precisely, grip comes basically from road roughness
effects and molecular adhesion.

Road roughness effects, also knownas indentation, require small bumpsmeasuring
a fewmicrons to a fewmillimeters (Fig. 2.5), which dig into the surface of the rubber.
On the other hand,molecular adhesion necessitates direct contact between the rubber
and the road surface, i.e. the road must be dry.
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Fig. 2.4 Typical contact patches with tread pattern (1 bar = 0.1 MPa = 14.5 psi) [13]

Fig. 2.5 Road roughness description [13]

Twomain features of road surface geometrymust be examined and assessed when
considering tire grip, as shown in Fig. 2.5:

Macroroughness: this is the namegiven to the road surface texturewhen the distance
between two consecutive rough spots is between 100microns and
10 millimeters. This degree of roughness contributes to indenta-
tion, and to the drainage and storage of water. The load-bearing
surface, which depends on road macroroughness, must also be
considered since it determines local pressures in the contact patch.

Microroughness: this is the name given to the road surface texture when the dis-
tance between two consecutive rough spots is between 1 and 100
microns. It is this degree of roughness that is mainly responsible
for tire grip via the road roughness effects. Microroughness is
related to the surface roughness of the aggregates and sands used
in the composition of the road surface.

In Fig. 2.6 the contact patch is schematically shown as a single region.
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Fig. 2.6 Wheel with tire: nomenclature and reference system Sw = (x, y, z; O)

2.4 Rim Position and Motion

For simplicity, the road is assumed to have a hard and flat surface, like a geometric
plane. This is a good model for any road with high quality asphalt paving, since the
texture of the road surface is not relevant for the definition of the rim kinematics
(while it highly affects grip [13]).

The rimR is assumed to be a rigid body, and hence, in principle, it has six degrees
of freedom. However, only two degrees of freedom (instead of six) are really relevant
for the rim position because the road is flat and the wheel rim is axisymmetric. Let Q
be a point on the rim axis yc (Fig. 2.6). Typically, although not strictly necessary, a
sort of midpoint is taken. The position of the rim with respect to the flat road depends
only on the height h of Q and on the camber angle γ (i.e., the inclination) of the
rim axis yc. More precisely, h is the distance of Q from the road plane and γ is the
angle between the rim axis and the road plane.

In [32] and [22] the distance h is called loaded tire radius. In our opinion, the
word “radius” may be misleading. There is no circle with radius h.

Now, we can address how to describe the rim velocity field.
The rim, being a rigid body, has a well defined angular velocity Ω . Therefore,

the velocity of any point P of the (space moving with the) rim is given by the well
known equation [12, p. 124]

VP = VQ + Ω × QP (2.1)
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where VQ is the velocity of Q and QP is the vector connecting Q to P . The three
components ofVQ and the three components ofΩ are, e.g., the six parameters which
completely determine the rim velocity field.

2.4.1 Reference System

Amoving reference systemSw = (x, y, z; O) is depicted in Fig. 2.6. It is defined in a
fairly intuitive way. The y-axis is the intersection between a vertical plane containing
the rim axis yc and the road plane. The x-axis is given by the intersection of the road
plane with a plane containing Q and normal to yc. The intersection between axes
x and y defines the origin O as a point on the road. The z-axis is vertical, that
is perpendicular to the road, with the positive direction upward.4 The unit vectors
marking the positive directions are ( i, j, k), as shown in Fig. 2.6.

An observation is in order here. The directions ( i, j, k) have a physical meaning,
in the sense that they clearlymark some of the peculiar features of the rimwith respect
to the road. As a matter of fact, k is perpendicular to the road, i is perpendicular
to both k and the rim axis jc, j follows accordingly. However, the position of the
Cartesian axes (x, y, z) is arbitrary, since there is no physical reason to select a point
as the origin O . This is an aspect whose implications are often underestimated.

The selected point O is often called center of the footprint, or center of the wheel.

2.4.2 Rim Kinematics

The moving reference system Sw = (x, y, z; O) allows a more precise description
of the rim kinematics. On the other hand, a reference system S f = (x f , y f , z f ; O f )

fixed to the road is not very useful in this context.
Let jc be the direction of the rim spindle axis yc

jc = cos γ j + sin γ k (2.2)

where the camber angle γ of Fig. 2.6 is positive. The total rim angular velocity Ω is

Ω = .
γ i + .

θ jc + .
ζ k

= .
γ i + ωc jc + ωz k

= .
γ i + ωc cos γ j + (ωc sin γ + ωz)k

= �x i + �y j + �z k

(2.3)

4 Sw is the system recommended by ISO (see, e.g., [20, Appendix 1])
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where .
γ is the time derivative of the camber angle, ωc = .

θ is the angular velocity
of the rim about its spindle axis jc, and ωz = .

ζ is the yaw rate, that is the angular
velocity of the reference system Sw about the vertical axis k.

It is worth noting that there are two distinct contributions to the spin velocity �z k
of the rim,5 a camber contribution ωc sin γ and a yaw rate contribution ωz

�z = ωc sin γ + ωz (2.4)

Therefore, as will be shown in Fig. 2.19, the same value of �z can be the result of
different operating conditions for the tire, depending on the amount of the camber
angle γ and of the yaw rate ωz .

By definition, the position vector OQ is (Fig. 2.6)

OQ = h(− tan γ j + k) (2.5)

This expression can be differentiated with respect to time to obtain

VQ − VO = .
h(− tan γ j + k) + h

(
ωz tan γ i −

.
γ

cos2 γ
j
)

= h ωz tan γ i −
( .
h tan γ + h

.
γ

cos2 γ

)
j + .

h k
(2.6)

since d j/dt = −ωz i. Even in steady-state conditions, that is
.
h = .

γ = 0, we have
VQ = VO + h ωz tan γ i and hence the velocities of points Q and O are not exactly
the same, unless also γ = 0. The camber angle γ is usually very small in cars, but
may be quite large in motorcycles (up to 60 deg).

The velocity Vo = VO of point O has, in general, longitudinal and lateral compo-
nents (Fig. 2.6)6

Vo = Vox i + Voy j

= Vox ( i − tan α j)
(2.7)

where α is the wheel slip angle.
As already stated, the selection of point O is arbitrary, although quite reasonable.

Therefore, the velocities Vox and Voy do not have much of a physical meaning. A
different choice for the point O would provide different values for the very same
motion. However, a wheel with tire is expected to have longitudinal velocities much
higher than lateral ones, that is |α| < 12◦, as will be discussed with reference to
Fig. 11.33.

Summing up, the position of the rigid rim R with respect to the flat road is
completely determined by the following six degrees of freedom:

h(t) distance of point Q from the road (often, improperly, called loaded radius);

5 In the SAE terminology, it is ωc jc that is called spin velocity [6, 16].
6 The two symbols Vo and VO are equivalent. Using Vo is just a matter of taste.
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γ (t) camber angle;
θ(t) rotation of the rim about its axis yc;
x f (t) first coordinate of point O w.r.t. S f ;
y f (t) second coordinate of point O w.r.t. S f ;
ζ(t) yaw angle of the rim.

However, owing to the circular shape of rim and the flatness of the road, the kine-
matics of the rigid rim R is also fully described by the following six functions of
time:
h(t) distance of point Q from the road;
γ (t) camber angle;

ωc(t) angular velocity of the rim about its axis yc;
Vox (t) longitudinal speed of O;
Voy (t) lateral speed of O;
ωz(t) yaw rate of the moving reference system Sw.

The rim is in steady-state conditions if all these six quantities are constant in time.
However, this is not sufficient for the wheel with tire to be in a stationary state. The
flexible carcass and tire treads could still be under transient conditions.

Now, there is an observation whose practical effects are very important. If we are
interested only in the truly kinematic (geometric) features of the rim motion, we can
drop the number of required functions from six to five:

h, γ,
Vox

ωc
,

Voy

ωc
,

ωz

ωc
(2.8)

Essentially, we are looking at the relative values of speeds, as if their magnitude were
of no relevance at all. This is what is commonly done in vehicle dynamics, as we
will see soon. Again, we emphasize that a vehicle engineer should be aware of what
he/she is doing.

2.5 Footprint Force

Aswell known (see, e.g., [27]), any set of forces or distributed loads is statically equiv-
alent to a force–couple system at a given (arbitrary) point O . Therefore, regardless
of the degree of roughness of the road, the distributed normal and tangential loads
in the footprint yield a resultant force Fand a resultant couple vector MO

F= Fx i + Fy j + Fz k

MO = Mx i + My j + Mz k
(2.9)

The resultant couple MO is simply the moment about the point O , but any other
point could be selected. Therefore it has no particular physical meaning. However,



16 2 Mechanics of the Wheel with Tire

Fig. 2.7 Forces acting on the tire from the road

if O is somewhere within the footprint, the magnitude |MO | is expected to be quite
“small” for the wheel with tire to resemble a rigid wheel.

Traditionally, the components of Fand MO have the following names:

Fx longitudinal force (Fx < 0 when braking);
Fy lateral force;
Fz vertical load or normal force;

Mx overturning moment;
My rolling resistance moment;
Mz self-aligning torque, called vertical moment here.

The names of the force components simply reaffirm their directions with respect to
the chosen reference systemSw, and hencewith respect to the rim. On the other hand,
the names of themoment components, whichwould suggest a physical interpretation,
are all quite questionable. Their values depend on the arbitrarily selected point O ,
and hence are arbitrary by definition.

For instance, let us discuss the name “self-aligning torque” of Mz , with reference
to Fig. 2.7 and Eq. (2.11). The typical explanation for the name is that “Mz produces
a restoring moment on the tire to realign the direction of travel with the direction
of heading”, which, more precisely, means that Mz and the slip angle α are both
clockwise or both counterclockwise. But the sign and magnitude of Mz depend
on the position of O , which could be anywhere! The selected origin O has nothing
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special, nothing at all. Therefore, the very samephysical phenomenon, like inFig. 2.7,
may be described with O anywhere and hence by any value of Mz . The inescapable
conclusion is that the name “self-aligning torque” is totally meaningless and even
misleading.7 For these reasons, herewe prefer to callMz the vertical moment. Similar
considerations apply to Mx and My .

It is a classical result that any set of forces and couples in space, like (F,MO), is
statically equivalent to a unique wrench [27]. However, in tire mechanics it is more
convenient, although not mandatory, to represent the force–couple system (F,MO)

by two properly located perpendicular forces (Fig. 2.7): a vertical force Fp = Fz k
having the line of action passing through the point with coordinates (ex , ey, 0) such
that

Mx = Fzey and My = −Fzex (2.10)

and a tangential force Ft = Fx i + Fy j lying in the xy-plane and having the line of
action with distance |dt | from O , properly located according to the sign of dt

Mz =
√
F2
x + F2

y dt = |Ft | dt (2.11)

We remark that the two “displaced” forces Fp and Ft (Fig. 2.7) are completely
equivalent to Fand MO .

These forces are transferred to the rigid rim (apart for a small fraction due to
the inertia and weight of the tire carcass and belt). Indeed, the equivalence of the
distributed loads in the contact patch to concentrated forces and/or couples makes
sense precisely because the rim is a rigid body.

2.5.1 Perfectly Flat Road Surface

To perform some further mathematical investigations, it is necessary to completely
discard road roughness (Fig. 2.5) and to assume that the road surface in the contact
patch is perfectly flat, exactly like a geometric plane (Figs. 2.6 and 2.7).8 This is a
fairly unrealistic assumption whose implications should not be underestimated.

Owing to the assumed flatness of the contact patch P , we have that the pressure
p(x, y)k, by definition normal to the surface, is always vertical and hence forms a
parallel distributed load.Moreover, the flatness ofP implies that the tangential stress
t(x, y) = tx i + ty j forms a planar distributed load. Parallel and planar distributed
loads share the common feature that the resultant force and the resultant couple vector
are perpendicular to each other, and therefore each force–couple system at O can be

7 What is relevant in vehicle dynamics is the moment of (F,MO ) with respect to the steering axis
of the wheel. But this is another story (Fig. 3.1).
8 More precisely, it is necessary to have a mathematical description of the shape of the road surface
in the contact patch. The plane just happens to be the simplest.
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further reduced to a single resultant force applied along the line of action (in general
not passing through O). A few formulas should clarify the matter.

The resultant vertical force Fp and horizontal coupleM O
p of the distributed pres-

sure p(x, y) are given by

Fp = Fz k = k
∫∫
P

p(x, y)dxdy

M O
p = Mx i + My j =

∫∫
P

(x i + y j) × k p(x, y)dxdy
(2.12)

where

Mx =
∫∫
P

y p(x, y)dxdy = Fzey, My = −
∫∫
P

x p(x, y)dxdy = −Fzex

(2.13)
As expected, Fp and M O

p are perpendicular. As shown in (2.13), the force–couple
resultant (Fp,M O

p ) can be reduced to a single force Fp having a vertical line of action
passing through the point with coordinates (ex , ey, 0), as shown in Fig. 2.7.

The resultant tangential force Ft and vertical couple M O
t of the distributed tan-

gential (grip) stress t(x, y) = tx i + ty j are given by

Ft = Fx i + Fy j =
∫∫
P

(tx (x, y) i + ty(x, y) j)dxdy

M O
t = Mz k =

∫∫
P

(x i + y j) × (
tx (x, y) i + ty(x, y) j

)
dxdy

= k
∫∫
P

(
x ty(x, y) − y tx (x, y)

)
dxdy = k dt

√
F2
x + F2

y

(2.14)

where

Fx =
∫∫
P

tx (x, y)dxdy, Fy =
∫∫
P

ty(x, y)dxdy (2.15)

dt = Mz√
F2
x + F2

y

(2.16)

Also in this case Ft andM O
t are perpendicular. As shown in (2.14), the force–couple

resultant (Ft ,M O
t ) can be reduced to a tangential force Ft , lying in the xy-plane and

having a line of action with distance |dt | from O (properly located according to the
sign of dt ), as shown in Fig. 2.7.



2.6 Global Mechanical Behavior 19

Fig. 2.8 Example of
distributed tangential stress
in the contact patch, along
with the corresponding
resultant tangential force Ft .
Reference system as in
Fig. 2.7 (bottom)

Obviously, the more general (2.9) still holds

F= Fp + Ft

MO = M O
p + M O

t

(2.17)

An example of distributed tangential stress is shown in Fig. 2.8. It was obtained
by means of the tire brush model, a topic developed in Chap. 11.

2.6 Global Mechanical Behavior

The analysis developed so far provides the tools for quite a precise description of
the global mechanical behavior of a real wheel with tire interacting with a road.
More precisely, as already stated on Sect. 2.1, we are interested in the relationship
between the motion and position of the rim and the force exchanged with the road in
the contact patch.

We assume as given, and constant in time, both the wheel with tire (including its
inflation pressure and temperature field) and the road type (including its roughness).
Therefore we assume all grip features as given and constant in time.

2.6.1 Tire Transient Behavior

Knowing the mechanical behavior means knowing the relationships between the six
kinematical parameters (h, γ, ωc, Vox , Voy , ωz) that fully characterize the position
and the motion of the rigid rim and the force–couple resultant (F,MO). We recall
that the inertial effects of the carcass are assumed to be negligible.

Owing mostly to the flexibility of the tire structure, these relationships are of
differential type, that is there exist differential equations
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f(
.
F,F, h, γ, ωc, Vox , Voy , ωz) = 0

g(
.
MO ,MO , h, γ, ωc, Vox , Voy , ωz) = 0

(2.18)

In general, differential equations of higher order may be needed.
The identification of these differential equations by means solely of experimental

tests is a formidable task. The point here is not to find them, but to appreciate that
the transient behavior of a wheel with tire does indeed obey differential equations,
maybe like in (2.18). Which also implies that initial conditions have to be included
and the values of (F,MO) at time t depend on time history.

In Chap. 11, suitable models will be developed that allow to partially identify
(2.18).

2.6.2 Tire Steady-State Behavior

If all features are constant (or, at least, slowly varying) in time, the overall system
is in steady-state conditions. Mathematically, it means that there exist, instead of
(2.18), the following algebraic functions

F= F(h, γ, ωc, Vox , Voy , ωz)

MO = MO(h, γ, ωc, Vox , Voy , ωz)
(2.19)

which relate the rim position and steady-state motion to the force and moment acting
on the tire from the footprint. In other words, given the steady-state kinematics of
the rim, we know the (constant in time) forces and couples (but not viceversa).9

The algebraic functions in (2.19) are, by definition, the equilibrium states of the
differential equations (2.18)

f(0,F, h, γ, ωc, Vox , Voy , ωz) = 0

g(0,MO , h, γ, ωc, Vox , Voy , ωz) = 0
(2.20)

Equations (2.19) can be split according to (2.17)

Fp = Fz k = Fp(h, γ, ωc, Vox , Voy , ωz)

Ft = Fx i + Fy j = Ft (h, γ, ωc, Vox , Voy , ωz)

M O
p = Mx i + My j = M O

p (h, γ, ωc, Vox , Voy , ωz)

M O
t = Mz k = M O

t (h, γ, ωc, Vox , Voy , ωz)

(2.21)

9 We remark that, as discussed in Chap. 11, steady-state kinematics of the rim does not necessarily
implies steady-state behavior of the tire.
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Fig. 2.9 Flat roadway testing machine (Calspan’s Tire Research Facility)

2.6.3 Simplifications Based on Tire Tests

Typical tire tests (like those in Figs. 2.9 and 2.10) are aimed at investigating some
aspects of these functions. It arises that the pressure-dependent forces and torques
can be simplified drastically, since they are functions of h and γ only

Fp = Fz(h, γ )k

M O
p = Mx (h, γ ) i + My(h, γ ) j

(2.22)

Actually, quite often the vertical load Fz takes the place of h as an independent
variable, as discussed in Sect. 2.9. This is common practice, although it appears
to be rather questionable in a neat approach to the analysis of tire mechanics. As
already stated, a clearer picture arises if we follow the approach “impose the whole
kinematics of the rim, measure all the forces in the contact patch” [20, p. 62].

2.6.3.1 Speed Independence (Maybe)

Moreover, tire tests suggest that the grip force Ft = Fx i + Fy j and momentM O
t =

Mz k are almost speed-independent, if ωc is not too high. Essentially, it means that

Fx = Fx (h, γ, ωc, Vox , Voy , ωz)

Fy = Fy(h, γ, ωc, Vox , Voy , ωz)

Mz = Mz(h, γ, ωc, Vox , Voy , ωz)

(2.23)
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Fig. 2.10 Drum testing
machine [13]

can be replaced by the following functions of only five variables, as anticipated in
(2.8):

Fx = F̃x

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)

Fy = F̃y

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)

Mz = M̃z

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
(2.24)

In other words, we assume that the grip-dependent forces and moments depend on
the geometrical features of the rim motion (i.e., the trajectories), and not on how fast
the motion develops in time. Therefore, we are discarding all inertial effects and any
influence of speed on the phenomena related to grip. Of course, this may not be true
at very high speeds, like in competitions.

Actually, as will be discussed in Sect. 2.9, it is convenient to employ the tire slips
as independent kinematic variables. Therefore, (2.24) is usually replaced by (2.79).
But to do that we need first to define the pure rolling condition for tires, as done in
(2.25), (2.26), and (2.27).

2.7 Definition of Pure Rolling for Tires

Pure rolling, in case of rigid bodies in point contact, requires two kinematical con-
ditions to be fulfilled: no sliding and no mutual spin. However, the term pure rolling
is somehow ambiguous, since absence of sliding does not exclude the transmission
of a tangential force, lower in magnitude than the limiting friction. In [10, p. 242],
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the terms free rolling and tractive rolling are used therefore to describe pure rolling
of rigid bodies in which the tangential force is zero and non-zero, respectively.

These concepts and results are not, however, immediately applicable for the def-
inition of pure rolling of a wheel with tire. As a matter of fact, there are no rigid
surfaces in contact and the footprint is certainly not a point (Fig. 2.4). Therefore,
even if it is customary to speak of pure rolling of a wheel with tire, it should be clear
that it is a different concept than pure rolling between rigid bodies.

A reasonable definition of pure rolling for a wheel with tire, in steady-state con-
ditions10 and moving on a flat surface, is that the grip actions t have no global effect,
that is

Fx = 0 (2.25)

Fy = 0 (2.26)

Mz = 0 (2.27)

These equations donot imply that the local tangential stresses t in the contact patch are
everywhere equal to zero, but only that their force–couple resultant is zero (cf. (2.14)
and see Fig. 11.52). Therefore, the road applies to the wheel only a vertical force
Fp = Fz k and a horizontal moment M O

p = Mx i + My j � My j.
Therefore, in our analysis, pure rolling of a wheel with tire means torque rolling.

However, owing to the small values of the rolling resistance coefficient fr (defined
in Sect. 2.13), there is not much quantitative difference between torque rolling and
tractive rolling for a wheel with tire.

The goal now is to find the kinematical conditions to be imposed to the rim to
fulfill Eqs. (2.25)–(2.27), that is to have the just defined pure rolling conditions. In
general, the six parameters in Eqs. (2.21) should be considered. However, it is more
common to assume that five parameters suffice, like in (2.24) (as already discussed,
it is less general, but simpler, to assume that the speed is not relevant)

F̃x

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
= 0 (2.28)

F̃y

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
= 0 (2.29)

M̃z

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
= 0 (2.30)

2.7.1 Zero Longitudinal Force (Rolling Radius)

First, let us consider Eq. (2.28) alone

10 Wehave basically a steady-state behavior even if the operating conditions do not change “too fast”.
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Fig. 2.11 Longitudinal pure
rolling of a cambered wheel.
Definition of cr < 0 and of
point C

F̃x

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
= 0 (2.31)

which means that Fx = 0 if11

V r
ox

ωc
= fx

(
h, γ,

Voy

ωc
,
ωz

ωc

)
(2.32)

Under many circumstances, there is experimental evidence that the relation above
almost does not depend on Voy . Moreover, it can be recast in the following, more
explicit form

V r
ox

ωc
= rr (h, γ ) + ωz

ωc
cr (h, γ ) (2.33)

that is
V r
ox = ωc rr (h, γ ) + ωz cr (h, γ ) (2.34)

where cr is a (short) signed length, as shown in Fig. 2.11. This equation means that
there exists a special point C of the y-axis such that

OC = cr (h, γ ) j (2.35)

Like O , also point C belongs to the moving reference system Sw.
Therefore, (2.33) can be rearranged to get

V r
cx (ωc, h, γ ) = ωcrr (h, γ ) = V r

ox − ωzcr (h, γ ) (2.36)

11 As a general rule, a subscript or a superscript r means “pure rolling”.
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This is quite a remarkable result and clarifies the role of pointC : the condition Fx = 0
requires point C to have a longitudinal velocity V r

cx = ωcrr (h, γ ), regardless of the
value of the yaw rate ωz .

The function rr (h, γ ) in (2.33) can be seen as a sort of longitudinal rolling radius
[30, p. 18], although this name would be really meaningful only for a rigid wheel.
In [22, p. 3] rr is called effective rolling radius .

Point C would be the point of contact in case of a rigid wheel (Fig. 2.11). For a
wheel with tire, we can call C the point of virtual contact.

If γ = 0, the origin O of the reference system Sw (Fig. 2.6) coincides with C .
That is

cr (h, 0) = 0 (2.37)

and equations become much simpler.
The value of rr (h, γ ) for given (h, γ ) can be obtained by means of the usual

indoor testing machines (Figs. 2.9 and 2.10) with ωz = 0. In most practical cases,
particularly for radial tires, the rolling radius is quite insensitive to (reasonable)
variations of h [22, p. 461]. Therefore

rr (h, γ ) � rr (γ ) (2.38)

Moreover, car tires operate at low values of γ and hence have almost constant rr .
This is not true for motorcycle tires.

An additional, more difficult, test with ωz �= 0 is required to obtain also cr (h, γ )

and hence the variable position of the point of virtual contact C with respect to O .
Only for large values of the camber angle γ , that is for motorcycle tires, the distance
|cr | can reach a few centimeters (Fig. 2.14).

A rough estimate shows that the ratio |ωz/ωc| is typically very small, ranging
from zero (straight running) up to about 0.01. It follows that usually |(ωz/ωc)cr | is
negligible and points O andC have almost the same velocity.12 However, particularly
in competitions, it could be worthwhile to have a more detailed characterization of
the behavior of the tire which takes into account even these minor aspects.

2.7.2 Zero Lateral Force

We can now discuss when the lateral force and the vertical moment are equal to zero.
According to (2.29), we have that Fy = 0 if

F̃y

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
= 0 (2.39)

12 However, in the brush model, and precisely on Sect. 11.1.5, the effect on C of the elastic com-
pliance of the carcass is taken into account.
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which means
Voy

ωc
= fy

(
h, γ,

ωz

ωc

)
(2.40)

where, as suggested by the experimental tests, there is no dependence on the value
of Vox . Nevertheless, it seems that (2.40) does not have a simple structure like (2.33).

2.7.3 Zero Vertical Moment

Like in (2.30), the vertical moment with respect to O is zero, that is Mz = 0 if

M̃z

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
= 0 (2.41)

which provides
Voy

ωc
= fz

(
h, γ,

ωz

ωc

)
(2.42)

where, like in (2.40), there is no dependence on the value of Vox . Also in this case,
it is not possible to be more specific about the structure of this equation.

2.7.4 Zero Lateral Force and Zero Vertical Moment

However, the fulfilment of both conditions (2.40) and (2.42) together, that is Fy = 0
and Mz = 0, yields these results

V r
oy (h, γ ) = V r

cy (h, γ ) = 0 (2.43)

ωr
z = −ωc sin γ

(
1 − εr

)
�r

z = ωc sin γ εr (h, γ ) (2.44)

which have a simple structure. Sometimes εr (h, γ ) is called the camber reduction
factor [20, p. 119], [21]. Usually, εr is almost constant for a given tire. Therefore, it
does not really depend on h and γ

εr (h, γ ) � εr (2.45)

A car tire has 0.4 < εr < 0.6, while a motorcycle tire has εr almost equal to 0.
Equation (2.43) requires the lateral velocity of point O , and hence also of point

C , to be equal to zero.
Equation (2.44) is equivalent to
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Fig. 2.12 Yaw rate ωz to
compensate the camber
induced spin (γ > 0,
ωz < 0)

ωr
z

ωc
= − sin γ

(
1 − εr

)
(2.46)

that is, the camber effects have to be compensated by the proper amount of yaw rate
(Fig. 2.12). As a special case, to have pure rolling, the yaw rate ωz must be equal to
zero only when γ = 0.

The physical interpretation of (2.46) is that, to have Fy = 0 and Mz = 0, a cam-
bered wheel with tire must go round as shown in Fig. 2.12 and in Fig. 2.16, with no
lateral velocity and with a precise combination of ωc and ωz . Since no condition is
set by (2.46) on the speed Vcx , the radius of the circular path traced on the road by
point C does not matter, unless we also want Fx = 0.

It is worth remarking that (2.43) alone does not imply zero lateral force (Fig. 2.13).
A cambered wheel can yield a lateral force even if it has no lateral velocity. Similarly,
(2.44) alone does not imply zero vertical moment.

2.7.5 Pure Rolling Summary

Summing up, we have obtained the following kinematic conditions for a wheel with
tire to be in what we have defined pure rolling in (2.25)–(2.27):

Fx = 0 ⇐⇒ V r
ox = ωc rr (h, γ ) + ωzcr (h, γ )

{
Fy = 0

Mz = 0
⇐⇒

{
V r
oy = 0

ωr
z = −ωc sin γ (1 − εr )

(2.47)

or, equivalently
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Fig. 2.13 A cambered
wheel under two different
working conditions (see also
Fig. 2.19)

Fx = 0 ⇐⇒ V r
cx

ωc
= rr (h, γ )

{
Fy = 0

Mz = 0
⇐⇒

⎧⎪⎨
⎪⎩
V r
cy = 0

ωr
z

ωc
= − sin γ (1 − εr )

(2.48)

These equations provide a sort of reference condition for the behavior of a wheel
with tire (Fig. 2.14).Moreover, they are of key relevance for the subsequent definition
of tire slips.

The complete characterization of pure rolling conditions essentiallymeans obtain-
ing the following functions (Fig. 2.14)

cr (h, γ ), rr (h, γ ) � rr (γ ), εr (h, γ ) � εr (2.49)

Of them, the rolling radius rr is themost important, followed by the camber reduction
factor εr . Of course, everything becomes much simpler if there is no camber: cr = 0,
and εr becomes irrelevant.

The fulfillment of only the first condition in (2.47) or (2.48) corresponds to lon-
gitudinal pure rolling. The fulfillment of only the last two conditions in (2.47) or
(2.48) corresponds to lateral pure rolling.

It is worth recalling the main assumptionsmade (which are not always verified in
real life):
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Fig. 2.14 Pure rolling of a cambered wheel with tire (γ > 0, ωz < 0, cr < 0, εr > 0)

• negligible inertial effects (five instead of six parameters);
• grip features unaffected by speed;
• point O defined as in Fig. 2.6;
• point C not affected by ωz ;
• lateral velocity not affecting Fx = 0;
• longitudinal velocity not affecting Fy = 0 and Mz = 0.

2.7.6 Rolling Velocity and Rolling Yaw Rate

Point C and the first two equations in (2.48) provide the basis for the definition of
the rolling velocity Vr (Fig. 2.14)

Vr = ωc rr i = Vr i = V r
cx i (2.50)

Similarly, the third equation in (2.47) leads to the definition of the rolling yaw rate
ωr of the reference system Sw

ωr k = −ωc sin γ (1 − εr )k = ωr
z k (2.51)

Therefore, for a wheel with tire to be in total pure rolling it is necessary (according
to (2.48)) that

Vc = Vr and ωz k = ωr k (2.52)
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Fig. 2.15 Pure rolling of a
cambered rigid wheel
(εr = 0)

To fulfill both these conditionswemustmove thewheel on a circular path centered
at A, with radius AC = dr (h, γ ) j such that (Figs. 2.14 and 2.16)

ωzdr = −ωcrr with ωz = −ωc sin γ (1 − εr ) (2.53)

which yields, for given γ , the radius dr of the circular path for total pure rolling

dr = rr
sin γ (1 − εr )

(2.54)

Typically the tire rolling radius rr is slightly bigger than the distance of point C
from the rim axis (Fig. 2.14). We recall that a car tire has 0.4 < εr < 0.6, while
a motorcycle tire has εr almost equal to 0. Therefore, if we take a car tire and a
motorcycle tire with the same rolling radius rr and the same camber angle γ , to have
total pure rolling we must move the car tire on a circle about twice bigger than that
of the motorcycle tire.

To help, hopefully, better understand Fig. 2.14, we also provide in Fig. 2.15 its
counterpart in case of a rigid wheel. We can see that it behaves like a rolling rigid
cone.

It is often stated that a free-rolling tire with a camber angle would move on a
circular path [28, p. 163], [29, p. 128]. This statement is clearly incorrect. It should
be reformulated as “a tire with camber must be moved on a definite circular path
to have pure/free rolling” (Fig. 2.16). We are not doing dynamics here, but only
investigating the (almost) steady-state behavior of wheels with tire. Therefore, we
can say nothing about what a wheel would do by itself.

2.8 Definition of Tire Slips

Let us consider a wheel with tire under real operating conditions, that is not neces-
sarily in pure rolling. The velocity of point C (defined in (2.35)) is called the travel
velocity Vc of the wheel (Fig. 2.14)
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Fig. 2.16 Cambered wheel forced to move on a circular path (courtesy of M. Gabiccini)

Vc = Vcx i + Vcy j = (Vox − ωzcr ) i + Voy j (2.55)

The components of Vc also have specific names: Vcx is the forward velocity and Vcy
is the lateral velocity. In almost all practical cases, ωz � 0, and hence

Vo � Vc (2.56)

To describe any steady-state conditions of a wheel with tire we need at least
two parameters plus three kinematical quantities, as in (2.24). However, it is more
informative to say how “distant” these three quantities are from pure rolling. It is
therefore convenient to define the slip velocity [24] Vs

Vs = Vc − Vr (2.57)

= (Vcx i + Vcy j) − ωc rr i (2.58)

= [(Vox − ωzcr ) i + Voy j] − ωc rr i (2.59)

= Vsx i + Vsx j (2.60)

as the difference between the actual travel velocity (2.55) and the rolling velocity Vr .
Similarly, it is useful to define what can be called the slip yaw rate ωsz

ωsz = ωz − (−ωc sin γ (1 − εr )
)

= ωz − ωr
(2.61)

as the difference between the actual yaw rate ωz of the reference system Sw and the
rolling yaw rate ωr .
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2.8.1 Theoretical Slips

Consistently with the assumed speed independence as in (2.24), it is meaningful to
divide (2.57) and (2.61) by

Vr = ωcrr (2.62)

which leads to the definition of the well known (wheel with) tire slips σx , σy , and ϕ:

σx = Vcx − ωc rr
ωc rr

= Vcx − Vr

Vr
= Vsx

Vr
(2.63)

σy = Vcy

ωc rr
= Vcy

Vr
= Vsy

Vr
(2.64)

ϕ = −ωz + ωc sin γ (1 − εr )

ωc rr
= −ωz − ωr

Vr
= −ωsz

Vr
(2.65)

where the slip angle α was introduced in Fig. 2.6 and in (2.7). Car tires operate
with very small camber angles. Therefore, we have cr � 0, that is Vox � Vcx and
Voy � Vcy .

These quantities have the following names [20, 21]:

σx theoretical longitudinal slip (σx > 0 means braking);
σy theoretical lateral slip (σy > 0 means a right turn);
ϕ spin slip.

The first two can be thought of as the components of the (translational) theoretical
slip σ

σ = σx i + σy j = Vc − Vr
Vr

= Vs

Vr
(2.66)

while
ϕ = −ωz − ωr

Vr
= − ωsz

Vr
(2.67)

The longitudinal and lateral slips are dimensionless, whereas the spin slip is not:
[ϕ] = m−1.

Quite often tire tests are conducted with ωz = 0. In that case, Vo = Vc and the
spin slip simply becomes

ϕ = ωr

Vr
= − sin γ (1 − εr )

rr
(2.68)

On the other hand, if only the yaw rate contribution is present (i.e., γ = 0), it is
customary to speak of turn slip ϕt

ϕt = −ωz

Vr
(2.69)
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Summing up, the pure rolling conditions (2.47) are therefore equivalent to

⎧⎪⎨
⎪⎩

σx = 0

σy = 0

ϕ = 0

(2.70)

which look simpler, but are useless without the availability of rr , cr , and εr in (2.49).

2.8.2 The Simple Case (No Camber)

Since in most cars the camber angles are very small, the following simplified expres-
sions can be safely used

σx = Vox − ωc rr
ωc rr

= Vox − Vr

Vr
and σy = Voy

ωc rr
= Voy

Vr
(2.71)

where the rolling radius rr is almost constant. They are indeed much simpler than
(2.63) and (2.64).

2.8.3 From Slips to Velocities

Inverting (2.63), (2.64), and (2.65), with the realistic assumption cr = 0, we obtain

Vox

ωc
= (1 + σx )rr

Voy

ωc
= σyrr

ωz

ωc
= −ϕrr − sin γ (1 − εr )

(2.72)

2.8.4 (Not so) Practical Slips

Although, as will be shown, the theoretical slip σ is a better way to describe the tire
behavior, it is common practice to use the components of the practical slip κ instead
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κx =
(
Vr

Vcx

)
σx = 1

1 + σx
σx = Vcx − Vr

Vcx

(2.73)

κy =
(
Vr

Vcx

)
σy = 1

1 + σx
σy = Vcy

Vcx

= − tan α � −α (2.74)

or, conversely

σx = 1

1 − κx
κx = κx (1 + κx + O(κ2

x )) (2.75)

σy = 1

1 − κx
κy = κy(1 + κx + O(κ2

x )) (2.76)

which also shows that practical and theoretical slips are almost equal only when the
longitudinal slip is small.

Practical slips are only apparently simpler and their use should be discouraged
(for instance, have a look at Fig. 11.32 to appreciate why practical slips are not so
practical). The slip ratio κ = −κx is also often employed, along with the slip angle
α � −κy . This approximation is quite good because the slip angle normally does not
exceed 15◦, that is 0.26 rad.

As discussed in [16, p. 39] and also in [20, p. 597], a number of slip ratio definitions
are used worldwide [3, 6–8, 30]. A check, particularly of the sign conventions, is
therefore advisable. This can be easily done for some typical conditions like locked
wheel (ωc = 0), or spinningwheel (ωc = ∞). For instance, with the definitions given
here we have σx = +∞, κx = 1 and κ = −1 for a travelling locked wheel.

2.8.5 Tire Slips are Rim Slips Indeed

It is worth remarking that all these tire slip quantities are just a way to describe the
motion of the wheel rim, not of the tire. Therefore they do not provide any direct
information on the amount of sliding at any point of the contact patch.

More precisely, sliding or adhesion are local features of any point in the contact
patch, whereas slip is a global property of the rim motion as a rigid body. They are
completely different concepts. In this regard the name “tire slips”may bemisleading.
A more appropriate name would have been “rim slips”.

This statement is corroborated by the observation that all kinematic quantities
introduced in this chapter refer to the rim motion. Actually, to find the kinematics of
some points of the tire you have to await till the last chapter.
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Fig. 2.17 Point O and point C , and slip angle α (top view)

2.8.6 Slip Angle

The slip angle α is defined as the angle between the rolling velocity Vr = Vr i and
the travel velocity Vc � Vo (Figs. 2.6 and 2.17)

tan α = −Vcy

Vcx

� −Voy

Vox

(2.77)

that is Vcy = −Vcx tan α, basically as in (2.7). For convenience, α is positive when
measured clockwise, that is when it is like in Fig. 2.17.13

Of course, a non-sliding rigid wheel has a slip angle constantly equal to zero. On
the other hand, a tire may very well exhibit slip angles. However, as will be shown, a
wheel with tire can exchange with the road very high longitudinal and lateral forces
still with small slip angles (as shown in Fig. 11.33). This is one of the reasons why
a wheel with tire behaves quite close to a wheel, indeed.

More precisely, (2.77) can be rewritten as

tan α = − σy

1 + σx
= −σy

σx

⎛
⎜⎝ σ

σ + σ

σx

⎞
⎟⎠ (2.78)

whereσ = |σ | =
√

σ 2
x + σ 2

y . As shown inFig. 2.18, ifσ < 0.2wehave |α| < 10deg.

This is why real tires are built in such a way to provide the best performances with
values of σ below 0.2, as will also be discussed later on with reference to Fig. 11.33.

13 All other angles are positive angles ifmeasured counterclockwise, as usually done inmathematical
writing.
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Fig. 2.18 Slip angle α as a
function of σx and σy

2.9 Grip Forces and Tire Slips

In (2.24) it was suggested that the steady-state global mechanical behavior of a wheel
with tire could be described by means of forces and moments depending on (h, γ )

to identify the rim position, and on other three kinematical parameters to determine
the rim motion

Fx = F̃x

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)

Fy = F̃y

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)

Mz = M̃z

(
h, γ,

Vox

ωc
,
Voy

ωc
,
ωz

ωc

)
(2.24′)

Moreover, we have shown that the definition of the pure rolling conditions (Fx =
Fy = Mz = 0) leads naturally to the definition of three tire slips σx , σy , and ϕ.

Inserting (2.72) into (2.24), we end up with these new functions

Fx = F̂x (h, γ, σx , σy, ϕ)

Fy = F̂y(h, γ, σx , σy, ϕ)

Mz = M̂z(h, γ, σx , σy, ϕ)

(2.79)

which provide a better and clearer description of the global mechanical behavior of
a tire. Indeed, by definition

Fx = F̂x (h, γ, 0, 0, 0) = 0

Fy = F̂y(h, γ, 0, 0, 0) = 0

Mz = M̂z(h, γ, 0, 0, 0) = 0

(2.80)
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Instead of the vertical height h, it is customary to employ the vertical load Fz as
an input variable. This can be safely done since

h = h(Fz, γ ) (2.81)

with very little influence by the other parameters (cf. (2.22)). Therefore, the (almost)
steady-state global mechanical behavior of a wheel with tire moving not too fast on
a flat road is conveniently described by the following functions

Fx = Fx (Fz, γ, σx , σy, ϕ)

Fy = Fy(Fz, γ, σx , σy, ϕ)

Mz = Mz(Fz, γ, σx , σy, ϕ)

(2.82)

Similarly, (2.49) can be recast as

cr (Fz, γ ) � 0, rr (Fz, γ ) � rr (γ ), εr (Fz, γ ) � εr (2.83)

Unfortunately, it is common practice to employ the following functions, instead
of (2.82)

Fx = F p
x (Fz, γ, κx , α, ωz)

Fy = F p
y (Fz, γ, κx , α, ωz)

Mz = Mp
z (Fz, γ, κx , α, ωz)

(2.84)

They are, in principle, equivalent to (2.82). However, using the longitudinal practical
slip κx , the slip angle α and the yaw rate ωz provides a less systematic description
of the tire mechanical behavior. It looks simpler, but ultimately it is not.

It is often overlooked that Fx , Fy and Mz (Eqs. (2.79) and (2.82)) depend on both
the camber angle γ and the spin slip ϕ. In other words, two operating conditions
with the same ϕ, but obtained with different γ ’s, do not provide the same values of
Fx , Fy and Mz , even if Fz , σx and σy are the same. For instance, the same value of
ϕ can be obtained with no camber γ and positive yaw rate ωz or with positive γ and
no ωz , as shown in Fig. 2.19. The two contact patches are certainly not equal to each
other, and so the forces and moments. The same value of ϕ means that the rim has
the same motion, but not the same position, if γ is different.

We remind that the moment Mz in (2.82) is with respect to a vertical axis passing
through a point O chosen in quite an arbitrary way. Therefore, any attempt to attach
a physical interpretation to Mz must take care of the position selected for O .
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Fig. 2.19 Two different operating conditions, with the same spin slip ϕ < 0, but different camber
angle γ (see also Fig. 2.13)

2.10 Tire Testing

Tire testing, as in Fig. 2.9, aims to fully identify the three functions (2.82) or (2.84),
that is the relationship between the motion and position of the rim and the force and
moment exchanged with the road through the contact patch

rim kinematics ⇐⇒ force and moment (2.85)

Actually, this goal had already been stated in Sect. 2.1. The difference is that now
we have defined the tire slips, that is a precise set of parameters to control the rim
kinematics.14

Indoor tire testing facilities (Fig. 2.9) usually have ωz = 0 in steady-state tests,
and hence lack in generality by imposing a link between γ and ϕ, as shown in (2.68).
However, in most practical applications in road vehicles we have |ωz/ωc| < 0, 01
and ωz can indeed be neglected.15

Owing to (2.47) and (2.70), it is meaningful to perform experimental tests for
the so-called pure slip conditions. Basically it means setting γ = ϕ = 0 and either
σy = 0 or σx = 0. In the first case we have pure longitudinal slip and hence only the

14 Once again, we called tire slips what should be called rim slips.
15 In a step steer the steering wheel of a car may reach ωz = 20◦/s=0.35 rad/s. At a forward speed
of 20 m/s, the same wheels have about ωc = 80 rad/s. The contribution of ωz to ϕ is therefore like
a camber angle γ � 0, 5◦.
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longitudinal force Fx = Fx(Fz, 0, σx , 0, 0), which is a very special case of (2.82). In
the second case we have pure lateral slip, which allows for the experimental identifi-
cation of the functions Fy = Fy(Fz, 0, 0, σy, 0) andMz = Mz(Fz, 0, 0, σy, 0), which
are also very special cases.

Unfortunately, the practical longitudinal slip κx and the slip angle α usually take
the place of σx and σy , respectively [4].

2.10.1 Tests with Pure Longitudinal Slip

This kind of tests are often called drive/brake tests. Typically, they use longitudinal
slip ratio sweeps with constant vertical load, constant forward velocity, and zero
lateral velocity (i.e, zero slip angle).

Figure 2.20 shows the typical behavior of the longitudinal force Fx as a function
of the practical longitudinal slip κx under pure braking conditions, for several values
of the vertical load Fz . More precisely, it is the plot of F p

x (Fz, 0, κx , 0, 0). It is very
important to note that:

• the maximum absolute value of Fx (i.e., the peak value Fmax
x ) was obtained for

κx � 0, 1 (i.e., σx � 0, 11);
• Fx grows less than proportionally with respect to the vertical load.

Both these aspects of tire behavior have great relevance in vehicle dynamics.

Also quite relevant are the values of the longitudinal slip stiffness Cκx , that is
minus the slope of each curve at zero slip

Cκx (Fz) = − ∂F p
x

∂κx

∣∣∣∣
κx=0

(2.86)

and the global longitudinal friction coefficient μx
p, that is the ratio between the peak

value Fmax
x = max(|F p

x |) and the corresponding vertical load

μx
p(Fz) = Fmax

x

Fz
(2.87)

Typically, as shown in Fig. 2.21, it slightly decreases as the vertical load grows.
On the practical side, it is of some interest to observe that:

• the experimental values are affected by significant errors;
• the tests were carried out till κx � 0.3, to avoid wheel locking and excessive
damage to the tire tread;

• the offset of Fx for κx = 0 is due to the rolling resistance: the wheel was (erro-
neously, but typically) under free rolling conditions, not pure rolling.
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Fig. 2.20 Experimental results for a road tire: longitudinal force Fx vs practical longitudinal slip
κx for four values of the vertical load Fz

Fig. 2.21 Global
longitudinal friction
coefficient μx

p vs vertical
load Fz

2.10.2 Tests with Pure Lateral Slip

This kind of tests are also called cornering tests. Typically, they use slip angle sweeps
with pure rolling, constant vertical load, and constant belt speed Vb (Fig. 2.9). It is
worth noting that the wheel forward velocity is Vox = Vb cosα.

Figure 2.22 shows the typical behavior of the lateral force Fy as a function of the
slip angle α, for three values of Fz . More precisely, it is the plot of F p

y (Fz, 0, 0, α, 0).
It is very important to note that:
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Fig. 2.22 Experimental results for a road tire: lateral force Fy vs slip angle α for three values of
the vertical load Fz

• the maximum absolute value of Fy (i.e., the peak value Fmax
y ) was obtained for

α � ±8◦ (i.e., tan α = −σy = ±0, 14);
• Fy grows less than proportionally with respect to the vertical load.

Also quite relevant are the values of the lateral slip stiffness Cα , also called
cornering stiffness

Cα(Fz) = ∂F p
y

∂α

∣∣∣∣
α=0

(2.88)

that is the slope at the origin. As shown in Fig. 2.23,Cα grows less than proportionally
with Fz , and actually it can even decrease at exceedingly high values of the vertical
load.

Another important quantity is the global lateral friction coefficient μ
y
p, that is the

ratio between the peak value Fmax
y = max(|F p

y |) and the vertical load

μy
p(Fz) = Fmax

y

Fz
(2.89)
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Fig. 2.23 Cornering stiffness Cα vs vertical load Fz

Fig. 2.24 Global lateral friction coefficient μy
p vs vertical load Fz

As shown in Fig. 2.24, it slightly decreases with Fz .
Comparing Figs. 2.21 and 2.24 we see that similar peak values for Fx and Fy are

obtained for the same vertical load, that is μx
p � μ

y
p. Typically, μx

p is slightly greater
than μ

y
p.

On the practical side it is to note that:

• the experimental values are affected by small errors;
• the tests were carried out till α � 12◦, to avoid damaging the tire tread.
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Fig. 2.25 Experimental results: vertical moment Mz vs slip angle α for three values of the vertical
load Fz

Figure 2.25 shows an example of the vertical moment Mz as a function of the slip
angle α, for three values of Fz , that is the plot of M

p
z (Fz, 0, 0, α, 0). The tests are

the same of Fig. 2.22 and similar observations apply.
The behavior of Mz(α) is obviously very much affected by the position of the z-

axis, which should be always clearly stated. Therefore, it is hard to speak of “typical
behavior” of Mz , unless there is general agreement on where to locate the origin O
of the reference system. This aspect could be quite relevant in the comparison and
interpretation of tests performed by different institutions, particularly for motorcycle
tires at large camber angles.

2.11 Magic Formula

In vehicle dynamics it is useful to have mathematical functions that fit experimental
tire response curves, like those in Figs. 2.20 and 2.22. Usually, these curves have
similar shapes: they grow less than proportionally, reach amaximum and then tend to
a horizontal asymptote. Among the very many functions that share all these features,
there is one which is almost exclusively used in vehicle dynamics. It was called
Magic Formula (MF) by its inventors [1, 2, 23].
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Although, over the years, several versions of the Magic Formula have been devel-
oped, they are all based on the following anti-symmetric function [20, 24]

y(x) = D sin
{
C arctan

[
Bx − E

(
Bx − arctan(Bx)

)]}
(2.90)

where the four coefficients are usually referred to as

B stiffness factor

C shape factor

D peak value

E curvature factor

(2.91)

Of course, y can be either Fx or Fy , with x being the corresponding practical or
theoretical slip component.

The Magic Formula belongs to the so-called empirical tire models, in the sense
that they mimic some experimental curves, like those in Figs. 2.20 and 2.22, without
any modeling of the physical phenomena involved in tire mechanics.

2.11.1 Magic Formula Properties

Let
B > 0 E < 1 and 1 < C < 2 (2.92)

It is quite easy to show that the Magic Formula has the following properties:

• y(0) = 0;
• y′(0) = BCD (slope at the origin);
• y′′(0) = 0;
• y′′′(0) < 0, if −(1 + C2/2) < E ;
• the function is limited: |y(x)| ≤ D;
• the function has a relative maximum ym = y(xm) = D, with xm such that

B(1 − E)xm + E arctan(Bxm) = tan(π/(2C)); (2.93)

• the value of the horizontal asymptote is

ya = lim
x→+∞ y(x) = D sin(Cπ/2) (2.94)
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2.11.2 Fitting of Experimental Data

Probably, the most relevant features of an experimental curve like in Fig. 2.22 are
the peak value ym with the corresponding abscissa xm , the asymptotic value ya and
the slope at the origin y′(0). Therefore, to determine the four coefficients a possible
procedure is as follows. First set the peak value

D = ym (2.95)

then compute the shape factor C employing (2.94)16

C = 2 − 2

π
arcsin

( ya
D

)
(2.96)

obtain the stiffness factor B as

B = y′(0)
CD

(2.97)

and, finally, determine the curvature factor E from (2.93), that is by fitting the value
of xm

E = Bxm − tan(π/(2C))

Bxm − arctan(Bxm)
(2.98)

It is important that ya < ym . If they are equal (or almost equal), an unexpected plot
may result.

How the four coefficients affect the Magic Formula plot is shown in Figs. 2.26,
2.27, 2.28 and 2.29. In all these plots, the thick line was obtained with D = 3,
C = 1.5, B = 20 and E = 0.

Fig. 2.26 Changing the
peak value D in the Magic
Formula

16 sin(Cπ/2) = sin((2 − C)π/2), since 1 < C < 2.



46 2 Mechanics of the Wheel with Tire

Fig. 2.27 Changing the
shape factor C in the Magic
Formula

Fig. 2.28 Changing the
stiffness factor B in the
Magic Formula

Fig. 2.29 Changing the
curvature factor E in the
Magic Formula

TheMagic Formula usually does a good job at approximating experimental curves
like in Fig. 2.20 and Fig. 2.22, although, with only four coefficients, the fitting may
not be of uniform quality at all points. This aspect will be addressed in Figs. 11.25
and 11.26.
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2.11.3 Vertical Load Dependence

Quite often, some coefficients of the Magic Formula are made dependent on the
vertical load Fz . According to Figs. 2.21 and 2.24, the global friction coefficient
μp = D/Fz decreases almost linearly with Fz , and hence it is quite reasonable to
assume

D = D(Fz) = μpFz = (a1Fz + a2)Fz (2.99)

with a1 < 0.
To mimic the pattern shown in Fig. 2.23 for the slope at the origin y′(0), the

following formula has been suggested [24]

BCD = y′(0) = a3 sin(2 arctan(Fz/a4)) (2.100)

Actually, the formula to be used is

B = B(Fz) = y′(0)
CD(Fz)

= a3 sin(2 arctan(Fz/a4))

C (a1Fz + a2)Fz
(2.101)

According to Figs. 2.23 and 2.24, typical values for a road car tire may be a1 =
−0.05 kN−1, a2 = 1.25, a3 = 32 kN/rad = 1.8 kN/deg, a4 = 6.5 kN. The interpretation
of the parameters a3 and a4 is shown in Fig. 2.23.

2.11.4 Horizontal and Vertical Shifts

A simple generalization of the MF is by adding a vertical shift yv and/or a horizontal
shift xh

y(x) = yv + D sin
{
C arctan

[
B(x + xh) − E

(
B(x + xh) − arctan(B(x + xh))

)]}
(2.102)

This version of the MF can cope with rolling resistance and/or tire conicity etc.

2.11.5 Camber Dependence

The camber angle γ has a small, but significant, effect on the lateral force Fy , as will
be shown in Figs. 2.37 and 2.38. Therefore, the coefficients of theMF (2.102) should
depend on the camber angle as well. In particular, the Pacejka ’94 coefficients are
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C = a0

D = (a1Fz + a2)Fz(1 − a15γ
2)

BCD = a3 sin(2 arctan(Fz/a4))(1 − a5|γ |)
B = BCD/(CD)

E = (a6Fz + a7)(1 − (a16γ + a17) sign(x + xh))

xh = a8Fz + a9 + a10γ

yv = a11Fz + a12 + (a13Fz + a14)γ Fz

(2.103)

Fitting 18 coefficients may not be an easy task.
An extensive description of the Magic Formula and all its subtleties can be found

in [20]. Additional information is available in [11].

2.12 Mechanics of the Wheel with Tire

The main result of this chapter is that to describe the steady-state mechanics of the
wheel with tire we need, as a minimum, the functions given in (2.82), that is

Fx = Fx (Fz, γ, σx , σy, ϕ)

Fy = Fy(Fz, γ, σx , σy, ϕ)

Mz = Mz(Fz, γ, σx , σy, ϕ)

(2.82′)

However, taking (2.68) into account, an even simpler formulation for the tire consti-
tutive equations can be adopted in most cases

Fx = Fx (Fz, γ, σx , σy)

Fy = Fy(Fz, γ, σx , σy)

Mz = Mz(Fz, γ, σx , σy)

(2.104)

Of course, they are not the whole story, and the interested reader will find in Chap. 11
many hints to better understand steady-state and also transient tire behavior.

But let us go back to (2.104). It is very informative to analyze the functions in
(2.104) varying only one parameter at the time, while keeping constant (often equal
to zero) all the others. These plots are like the filtered (smoothed) version of the
experimental plots presented in Sect. 2.10 on tire tests. They are something that any
vehicle engineer should always have clear in mind.



2.12 Mechanics of the Wheel with Tire 49

The plots hereafter were drawn employing theMagic Formulawith the parameters
reported below Eq. (2.101). The shape factor C was set equal to 1.65 for the plots of
Fx , and equal to 1.3 for the plots of Fy . All forces are in kN.

2.12.1 Braking/Driving

We start with the function Fx (Fz, 0, σx , 0) = Fx (σx ). Most tires under pure longi-
tudinal slip σx behave like in Fig. 2.30. Very near the origin the function is almost
linear, but soon becomes strongly nonlinear. Relative maximum/minimum points are
attained for |σx | � 0.1. Positive σx means braking, negative σx means driving.

The effect of changing the vertical load Fz is also shown in Fig. 2.30. Obviously,
the higher Fz , the higher Fx (σx ). However, as already mentioned on Sect. 2.10.1 and
shown in Fig. 2.20, the growth of Fx with respect to Fz is less than proportional,
particularly for low values of |σx |. This is more clearly shown in Fig. 2.31, where
we see that the vertical order of the plots of the normalized longitudinal force Fn

x =
Fx (σx )/Fz is reversed with respect to Fig. 2.30. This kind of drawings are often
called μ-slip curves.

Fig. 2.30 Longitudinal
force Fx due to pure
longitudinal slip σx , for
decreasing vertical loads Fz .
More precisely
Fx = Fx (Fz, 0, σx , 0)

Fig. 2.31 Normalized
longitudinal force Fx/Fz due
to pure longitudinal slip σx ,
for decreasing vertical loads
Fz (line dashing as in
Fig. 2.30)
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2.12.2 Cornering

Now we consider the function Fy(Fz, 0, 0, σy) = Fy(σy). Most tires under pure lat-
eral slip σy behave like in Fig. 2.32. Very near the origin the function is almost
linear, but it soon becomes strongly nonlinear. Relative maximum/minimum points
are attained for |σy| � 0.1. Positive σy means negative slip angle α, and viceversa.

Moreover, the effect of changing the vertical load Fz is shown in Fig. 2.32. Again,
the growth of Fy with respect to Fz is less than proportional, particularly for low
values of |σy|. It is precisely this nonlinearity that is, let us say, activated by anti-roll
bars to modify the handling setup of a car. This phenomenon is shown in Fig. 2.33,
where we see that the vertical order of the plots of the normalized lateral force
Fn
y = Fy(σy)/Fz is reversed with respect to Fig. 2.32.
It should be noted that functions Fx (Fz, 0, σx , 0) and Fy(Fz, 0, 0, σy) behave in

a similar way.
The experimental counterpart of Fig. 2.32 was presented in Fig. 2.22.

Fig. 2.32 Lateral force Fy
due to pure lateral slip σy ,
for decreasing vertical loads
Fz . More precisely
Fy = Fy(Fz, 0, 0, σy)

Fig. 2.33 Normalized
lateral force Fy/Fz due to
pure lateral slip σy , for
decreasing vertical loads Fz
(line dashing as in Fig. 2.32)
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2.12.3 Combined

The simultaneous application of σx and σy affects the grip forces Fx and Fy as
shown in Figs. 2.34 and 2.35. Basically, the total force Ft , with components Fx and
Fy , is directed like the slip vector σ , with opposite sign, and has a magnitude almost
dependent on σ = |σ |

Fx = −σx

σ
Ft (σ ),

Fy = −σy

σ
Ft (σ )

(2.105)

The function Ft (σ ) can be represented by the Magic Formula.
The tire behavior under combined operating conditions will be thoroughly

addressed in Chap 11, where the tire brush model will be developed. At the moment
you may have a look at Fig. 11.28, and also at Fig. 11.29.

It is worth noting that the two Figs. 2.34 and 2.35 convey, in differentways, exactly
the same information.

Another useful plot is the one shown in Fig. 2.36. For any combination of (σx , σy),
a point in the plane (Fx , Fy) is obtained. All these points fall within a circle of radius
Fmax
t , usually called the friction circle. Lines with constant σy are also drawn in

Fig. 2.36. Lines with constant σx are similar, but rotated by 90 degrees around the
origin, as shown in Fig. 11.38b.

Fig. 2.34 Longitudinal force Fx and lateral force Fy due to combined longitudinal slip σx and
lateral slip σy , for constant vertical load Fz . More precisely Fx = Fx (Fz, 0, σx , σy) and Fy =
Fy(Fz, 0, σx , σy)
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Fig. 2.35 Longitudinal force Fx and lateral force Fy due to combined longitudinal slip σx and
lateral slip σy , for constant vertical load Fz . More precisely Fx = Fx (Fz, 0, σx , σy) and Fy =
Fy(Fz, 0, σx , σy)

Fig. 2.36 Friction circle with lines at constant σy

2.12.4 Camber

Also quite relevant is the effect of the camber angle γ , alone or in combination
with σy , on the lateral force Fy , as shown in Fig. 2.37 and, for better clarity, also
in Fig. 2.38. We see that the camber effects are much stronger at low values of σy .
However, a right amount of camber can increase a little the maximum lateral force,
thus improving the car handling performance.
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Fig. 2.37 Lateral force Fy
due to lateral slip σy , for
different values of the
camber angle γ and constant
vertical load Fz . More
precisely
Fy = Fy(Fz, γ, 0, σy)

Fig. 2.38 Lateral force Fy
due to camber angle γ , for
different values of the lateral
slip σy and constant vertical
load Fz . More precisely
Fy = Fy(Fz, γ, 0, σy)

2.12.5 Grip

Finally, the effect of decreasing the grip coefficient μ is investigated. We see in
Figs. 2.39 and 2.40 that, as expected, we get lower maximum tangential forces.
However, it should also be noted that changing the grip does not affect the slope of
the curves at the origin. The reason is that near the origin the tangential force is,
by definition, very small, and hence the tire behavior is mainly affected by the tire
structure, not by the available amount of grip.

2.12.6 Vertical Moment

The vertical moment Mz as a function of σy , with σx = 0, behaves as shown in
Fig. 2.41. The reasons for this behavior will be discussed in Chap. 11. Basically,
since Mz = Ftdt (Fig. 2.7), it is the product of a growing force times a decreasing
length. It is zero when either of the two is zero.

For much more information on the mechanics of the wheel with tire we suggest
to carefully read Chap. 11 on tire models.
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Fig. 2.39 Longitudinal force
Fx due to pure longitudinal
slip σx , for constant vertical
load Fz and decreasing grip

Fig. 2.40 Lateral force Fy
due to pure lateral slip σy ,
for constant vertical load Fz
and decreasing grip

Fig. 2.41 Vertical moment
Mz due to pure lateral slip σy

2.13 Rolling Resistance

When a car is driven in a straight line without braking or accelerating, the rolling
resistance is mainly caused by the hysteresis in the tire due to the deflection of the
carcass while rolling. Microslippage in the footprint accounts for less than 5% of
total rolling resistance. As shown schematically in Figs. 2.42 and 2.43, the normal
pressure p in the leading half of the contact patch is higher than that in the trailing
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Fig. 2.42 Torque rolling:
T = Fzex and Fx = 0

Fig. 2.43 Tractive rolling:
Fxh = Fzex and T = 0

half. Therefore, the vertical resultant Fz k of the pressure distribution is offset by ex
towards the front of the contact patch, thus generating a rolling resistance moment

My = −Fzex (2.106)

as already done in (2.10).
The main source of energy dissipation is therefore the visco-elasticity of the

materials of which tires are made. Visco-elastic materials lose energy in the form
of heat whenever they are deformed. Deformation-induced energy dissipation is the
cause of about 90% of rolling resistance [15, 30].

A number of tire operating conditions affect rolling resistance. The most impor-
tant are load, inflation pressure and temperature. However, as speed increases, tire’s
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internal temperature rises, offsetting some of the increased hysteresis. Therefore, the
tire rolling resistancemoment is almost constant on a relatively wide range of speeds.

There are basically two different ways to balance the rolling resistance moment

My = −Fzex (2.107)

• torque rolling: T = Fzex and Fx = 0 (Fig. 2.42);
• tractive rolling: Fx = Fzex/h = Fz fr and T = 0 (Fig. 2.43).

In the first case (torque rolling) we apply a little torque T j to the rim to balance the
moment My j, while keeping Fx = 0. In the second case (tractive rolling), we apply
a horizontal force Fx i to the center of the rim, which requires an opposite force to
be generated in the contact patch.

In case of tractive rolling, we can define the rolling resistance coefficient fr

fr = ex
h

= Fx

Fz
(2.108)

The values given by tire manufacturers are measured on test drums, usually at 80
km/h in accordance with ISO measurement standards. A typical value of the rolling
resistance coefficient fr for a road car tire is fr = 0.006–0.016.

2.14 Driving Torque and Tractive Force

Let us apply a (large) driving torque T = T jc to the rim, thus generating a tractive
force Fx . Neglecting the (small) moment of inertia of the rim, we have

T = T jc = −((QO × F+ MO) · jc) jc
=

(
Fx

h

cos γ
− My cos γ − Mz sin γ

)
jc

(2.109)

where (2.2) and (2.5) were employed. This expression is fairly simple because the
rim axis yc intersects the z-axis and is perpendicular to the x-axis (Figs. 2.6 and 2.7).

A driving torque T > 0 applied to the rim can have a large impact on the offset ex
(Fig. 2.44), and hence on the rolling resistance. As the magnitude of torque applied
increases, the rolling resistance first increases mildly. Then, when slippage at the
road surface becomes significant, the rolling resistance increases very rapidly. This
rapid increase occurs as the maximum torque that the tire can transmit is approached
[5, p. 496].
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Fig. 2.44 Applying a really
large driving torque

2.14.1 Tractive Force

It is often of interest to evaluate the tractive force Fx generated by a drive torque T .
As shown in Fig. 2.45, if γ = 0, Eq. (2.109) becomes

T = Fxh + Fzex = Fx (h + ez) = Fxa (2.110)

where, obviously

ez = Fz
ex
Fx

(2.111)

We see that, ultimately, to know Fx we have to estimate the drive lever arm a.
In [32, p. 51] it is shown that this lever arm a can be approximated by the rolling

radius rr
a � rr (2.112)

Fig. 2.45 Driving torque T and tractive force Fx : two fully equivalent schemes
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Indeed, from power balance and (2.50) we have that

Tωc = FxVr = Fxωcrr (2.113)

It is worth noting that the center of the wheel (and hence the vehicle) moves with
speed Vx = (1 + σx )ωcrr , with σx < 0.

From (2.38) and (2.110)–(2.112) we obtain that the ratio ex/Fx should be almost
constant, for given Fz .

2.15 Exercises

2.15.1 Pure Rolling

Explain the difference between torque rolling and trailing rolling in a tire.

Solution

See Sect. 2.13.

2.15.2 Theoretical and Practical Slips

Obtain the relationships between theoretical and practical slip components.

Solution

See (2.73) and (2.74).

2.15.3 Tire Translational Slips and Slip Angle

Find the tire slip angle α in the following cases:

1. σy = 0;
2. σy = 0.1 and σx = 0 (only cornering);
3. σy = 0.1 and σx = 0.1 (cornering and braking);
4. σy = 0.1 and σx = −0.1 (cornering and driving).
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Solution

To solve these problems we can use (2.78).
The first case is trivial. Obviously α = 0.
The second case is also quite simple, since σx = 0. Therefore, α =

− arctan(0.1) = −5.7◦.
In the third casewe have both lateral and longitudinal slip (cornering and braking).

Still according to (2.78), α = − arctan(0.1/(1 + 0.1)) = −5.2◦.
Case number four is similar to case number three, but with negative σx (cornering

and driving). It provides α = − arctan(0.1/(1 − 0.1)) = −6.3◦.
It is quite interesting to observe how the longitudinal slip affects the slip angle,

for given lateral slip. All these results apply to all tires, regardless of their size, type,
etc., and are not affected by camber and spin slip. We have simply done kinematics
of the rigid rim.

2.15.4 Tire Spin Slip and Camber Angle

Let a tire have a rolling radius rr = 0.262m and a camber reduction factor εr = 0.5.
We set the camber angle γ = 3◦. Moreover, suppose the wheel is travelling at Vr =
10m/s, with σx = σy = 0. Find the spin slip ϕ in the following cases:

1. the wheel goes straight ahead;
2. the wheel moves clockwise on a circular path of radius rp = 10m;
3. as above, but counterclockwise;
4. the wheel moves clockwise on a circular path of radius rp = 50m.

Solution

Let ωc be the angular velocity of the rim around its spindle axis. Since σx = 0, in all
cases we have ωc = Vr/rr = 38.2 rad/s. Moreover, let ωz be the yaw rate of the rim.

To answer the first question, which requires ωz = 0, we can use (2.68). The
resulting spin slip is ϕ = −0.1m−1.

To answer question number two (Fig. 2.16) we first compute ωz = −Vr/rp =
−10/10 = −1rad/s. Then, we can employ (2.65) to get ϕ � 0. Therefore, according
to (2.70), the tire is in pure rolling conditions.

In the third question we have ωz = 1 rad/s. Therefore, again from (2.65), we
obtain ϕ = −0.2m−1.

In the last problem we have ωz = −Vr/rp = −10/50 = −0.2 rad/s. Applying
(2.65) we obtain ϕ = −0.08m−1.

Now we can comment on these results. A camber angle γ = 3◦ is quite high for
a car tire. The radius of the path rp = 10m, which is a rather sharp turn, was chosen
to get ϕ � 0 in question number two. Notably, it is more or less the kind of radius
of the FSAE skid-pad event.
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In this exercise we have done kinematics of the rigid rim, but taking also into
account two features of the tire.Namely, the rolling radius rr and the camber reduction
factor εr .

2.15.5 Motorcycle Tire

Let a tire have a rolling radius rr = 0.262m and a camber reduction factor εr = 0.
Moreover, suppose the wheel is travelling at Vr = 10 m/s, with σx = σy = 0 and a
camber angle γ = 45◦ Find the spin slip ϕ in the following cases:

1. the wheel goes straight ahead;
2. the wheel moves clockwise on a circular path of radius rp = 10 m.

Solution

Let ωc be the angular velocity of the rim around its spindle axis. Since σx = 0, in
all cases we have ωc = Vr/rr = 38.2 rad/s. Moreover, let ωz be the yaw rate of the
wheel.

To answer the first question, which requires ωz = 0, we can use (2.68). The
resulting spin slip is ϕ = −2.7m−1. As expected, the spin slip is very high.

To answer question number two (Fig. 2.16) we compute first ωz = −Vr/rp =
−10/10 = −1 rad/s. Then, we can employ (2.65) to get ϕ = −2.6m−1. We see that
the turn slip contribution to the spin slip is quite small.

To have pure rolling we should have ωz/ωc = − sin(γ ) = −rr/rp = −0.7. That
is a path with radius rp = rr/0.7 = 0.37 m.

2.15.6 Finding the Magic Formula Coefficients

The results obtained in a purely lateral test on an FSAE tire are shown in Fig. 2.46.
This test was conducted with an almost constant vertical load Fz = 700N on a free
rolling wheel with zero camber angle. We want to find a fairly good set of Magic
Formula coefficients to fit these data.

Solution

The first step is finding the peak value ym . We see that the positive and negative peak
values are not exactly the same. This is quite typical. Setting D = −ym = −1100N
seems a reasonable choice.

Incidentally, we observe that this tire has a global lateral friction coefficient
μ

y
p = 1100/700 = 1.57. Not bad.
The second step looksmore tricky.We need the asymptotic value ya , but this value

is not readily available from the plot, as tests are carried out up to about |σy| = 0.2,
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Fig. 2.46 Lateral force Fy due to pure lateral slip σy for an FSAE tire

that is |α| = 12◦, to avoid tire damage. We try ya = 800N, and, according to (2.96),
we get the shape factor coefficient C = 1.48.

The third step needs also the slope in the origin. FromFig. 2.46we obtain F ′
y(0) =

−20000N, and hence, according to (2.97), B = 20000/(CD) = 12.27.
Finally, we see that the peak values are attained for σy = xm = 0.15. Therefore,

according to (2.98) and employing the just found values of C and B, we get the
curvature factor E = 0.07.

Now we can check whether the Magic Formula with our set of parameters

Fy(σy) = −1100 sin
{
1.48 arctan

[
12.27σy − 0.07

(
12.27σy − arctan(12.27σy)

)]}
(2.114)

provides a good approximation of the experimental data of Fig. 2.46. This is done in
Fig. 2.47. We see that, indeed, the smooth curve hits the target.

Actually, we observe that it has been too easy. Indeed, our guess for ya was
not really supported by available data, but nonetheless the final result is very good.
Therefore, we repeat the whole procedure, employing the same values of ym , F ′

y(0),
and xm , but with a very different guess about the asymptotic value ya . For instance
ya = 550N. The resulting new set of parameters is D = −1100N, C = 1.67, B =
10.91, and E = 0.41. As expected, we got very different values.

Let us do it once more, with an unrealistic low value ya = 200N. After the same
steps we get D = −1100N, C = 1.88, B = 9.65, and E = 0.72.

You see,we selected three very different asymptotic values for ya .Which provided
very different values of C , B, and E . But what about their corresponding plots?
Surprisingly enough, as shown in Fig. 2.48, they are practically indistinguishable in
the range of interest, that is −0.2 < σy < 0.2. Therefore, the selection of ya is not
tricky at all, contrary to our first impression.Muchmore important are the other three
conditions on ym , F ′

y(0), and xm . Indeed, requiring a function to start with a given
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Fig. 2.47 Experimental tire data and Magic Formula fitting

Fig. 2.48 Comparison of three Magic Formula fittings with different ya

slope at the origin, and then to reach a maximum at a given point does not leave
much room.

These resultsmay have relevant practical implications: the very same tire behavior
can be associated to very different sets (C, B, E) of three out of four Magic Formula
parameters. For instance, in our case, the three sets of the coefficients (C, B, E)

• (1.48, 12.27, 0.07);
• (1.67, 10.91, 0.41);
• (1.88, 9.65, 0.72);

are pretty much equivalent in the range of interest for σy (Fig. 2.48). Therefore,
looking at the MF parameters may not be a good way to promptly understand the
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mechanical behavior of a wheel with tire. It is somehow an ill-conditioned problem.
More precisely, the final MF fitting plot is almost insensitive to the asymptotic value
ya , at least for 0.2 < ya/ym < 0.85, whereas (C, B, E) change a lot.

From another point of view, in most cases we can select ya in such a way to have
E = 0, thus simplifying the Magic Formula, but still with a very good fitting.

2.16 Summary

In this chapter we have first pursued the goal of clearly describing the relevant
kinematics of a wheel with tire, mainly under steady-state conditions. This had
led to the definitions of slips as a measure of the extent to which the wheel with
tire departs from pure rolling conditions. The slip angle has been also defined and
discussed. It has been shown that a wheel with tire resembles indeed a rigid wheel
because slip angles are quite small. Tire experimental tests show the relationships
between the kinematics and the forces/couples the tire exchanges with the road. The
Magic Formula provides a convenient way to represent these functions. Finally, the
mechanics of the wheel with tire has been summarized with the aid of a number of
plots.

2.17 List of Some Relevant Concepts

Section2.1 a wheel with tire is barely a wheel;
Section2.4.2 there are two distinct contributions to the spin velocity of the rim;
Section2.4.2 in a wheel, longitudinal velocities are expected to be much higher than
lateral ones;
Section2.5.1 the name “self-aligning torque” is meaningless and even misleading;
Section2.6.3.1 rim kinematics depends on six variables, but often (not always) only
five may be relevant for the tire;
Section2.7 a reasonable definition of pure rolling for a wheel with tire is that the grip
local actions have no global effect;
Section2.8 tire slips measure the distance from pure rolling;
Section2.8.5 tire slips do not provide any direct information on the amount of sliding
at any point of the contact patch;
Section2.10 tire forces and moments depend on both the camber angle and the spin
slip;
Section2.12.6 pure rolling and free rolling are different concepts.
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2.18 Key Symbols

a drive lever arm
B stiffness factor
C point of virtual contact
C shape factor
cr distance OC
D peak value
E curvature factor
Fx longitudinal force
Fy lateral force
Fz vertical force
h height above ground of the center of the rim
Mx overturning moment
My rolling resistance moment
Mz vertical moment
O center of the footprint
rr rolling radius
Vc travel velocity
Vox longitudinal velocity of O
Voy lateral velocity of O
Vr rolling velocity
Vs slip velocity

α slip angle
γ camber angle
εr camber reduction factor
μx

p longitudinal friction coefficient
μ

y
p lateral friction coefficient

σx longitudinal slip
σy lateral slip
ϕ spin slip
ωc angular velocity of the rim around its axis
ωr rolling yaw rate of the reference system
ωz yaw rate of the reference system
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