
Chapter 11
Tire Models

The global mechanical behavior of the wheel with tire has been addressed in Chap. 2.
Basically, we have first found a way to describe the kinematics of a wheel with tire.
This effort has led to the definition of the tire slips, as quantities that measure how far
a tire is from pure rolling conditions. Then, the forces and couples that a tire receives
from the road have been defined. The final step has been to investigate experimentally
the link between these kinematic parameters and forces/couples.

In Chap. 2 no attempt was made to analyze what happens in the contact patch.
That is, how the forces and couples are built by the elementary actions that arise at
each point of the contact patch. This kind of analysis, however, is quite relevant for
a real comprehension of the subtleties of vehicle setup.

In this chapter, what happens in the contact patch will be investigated by means of
the so-called brush model. Great care will be devoted to clearly stating the assump-
tions on which this model is based. Moreover, the investigation will also cover the
transient tire behavior. The final results are really interesting and enlightening.

11.1 Brush Model Definition

The brush model is perhaps the simplest physical tire model, yet it is quite significant
and interesting. It is a tool to analyze qualitatively what goes on in the contact patch
and to understand why the global mechanical behavior of a wheel with tire is, indeed,
like in Figs. 2.20–2.25. Due to its simplicity,1 the brush model is not always able to
provide quantitative results. However, it is of great help in grasping some of the
fundamental aspects of tire mechanics.

1 Actually, the formulation presented here of the brush model is quite general, and hence it is a bit
involved.
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484 11 Tire Models

The Magic Formula, discussed in Sect. 2.11, provides curves that fit fairly well
the experimental results, while the brush model attempts to describe the complex
interaction between the tire and the road and how forces are generated. They are
complementary approaches.

Basically, in the brushmodel, a belt equippedwith infinitelymany flexible bristles
(the thread) is wrapped around a cylindrical rigid body (the rim), which moves on
a flat surface (the roadway). In a well defined area (the contact patch), the tips of
the bristles touch the ground, thus exchanging with the road normal pressures p and
tangential stresses t, provided the bristles also have a horizontal deflection e. Each
bristle is undistorted (e = 0) when it enters the contact patch. A schematic of the
brush model is shown in Fig. 11.1.

The brush model, as any mathematical model, relies on very many assumptions,
more or less realistic. An attempt is made to clearly establish all of them, so that the
impact of possible improvements can be better appreciated.

For generality, the model is first formulated for transient conditions. Steady-state
behavior follows as a special case. The simplest case of translational slip only is
discussed in Sect. 11.5.

Sound extensions of the brushmodel here presented have been recently published:
[11–14].

11.1.1 Roadway and Rim

The brush model, like the tire, is something that connects the rim to the road. The
roadway is assumed to be perfectly flat, like a geometric plane. The rim is modelled
like a non-rolling cylindrical rigid body moving on the road, carrying on its outer
surface a belt equipped with infinitely many flexible bristles (like a brush), which
touch the road in the contact patch (Figs. 11.1 and 11.2). To simulate the rolling of
the wheel, the belt slides on the rigid body with speed Vr (i.e., the rolling velocity
defined in (2.50)).

11.1.2 Shape of the Contact Patch

As shown in Fig. 11.3, the contact patch P is assumed to be a convex, simply con-
nected region. Therefore, it is quite different from a real contact patch, like the one
in Fig. 2.4, which usually has lugs and voids.

It is useful to define a reference system Ŝ = (x̂, ŷ, ẑ; D) attached to the contact
patch, with directions ( i, j, k) and origin at point D. Usually D is the center of the
contact patch, as in Fig. 11.3. Directions ( i, j, k) resemble those of Fig. 2.6, in the
sense that k is perpendicular to the road and i is the direction of the wheel pure
rolling.

More precisely, the contact patch is defined as the region between the leading
edge x̂ = x̂0(ŷ) and the trailing edge x̂ = −x̂0(ŷ), that is
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Fig. 11.1 Schematic of the brush model during braking (very important figure)

Fig. 11.2 Four sequential positions of the same bristle during braking (|VD | > Vr ): a undeformed
at the leading edge; b with growing deflection due to the tip stuck to the ground; c with lowering
deflection with tip sliding on the ground; d undeformed at the trailing edge, with tip sliding on the
ground

P = {(x̂, ŷ) : x̂ ∈ [−x̂0(ŷ), x̂0(ŷ)], ŷ ∈ [−b, b]} (11.1)
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Fig. 11.3 Possible simple shapes of the contact patch

It is assumed for simplicity that the shape and size of the contact patch are not affected
by the operating conditions, including the camber angle γ. Of course, this is not true
in real tires.

For mathematical convenience, the contact patch is assumed here to be either a
rectangle, centered at D, of length 2a and width 2b (Fig. 11.3, left), or an ellipse,
again with axes of length 2a and 2b (Fig. 11.3, right). In the first case we have x̂0 = a,
whereas in the second case

x̂0(ŷ) =
√
a2
(
1 − ŷ2

b2

)
(11.2)

Typical values for a and b are in the range 0, 04–0, 08m. The rectangular shape is
not a bad approximation of the contact patch of car tires (Fig. 2.4), while the elliptical
one is better formotorcycle tires (Fig. 11.5). Occasionally, also a rounded rectangular
contact patch is considered, as in Fig. 11.12.

11.1.3 Pressure Distribution and Vertical Load

Figures 11.4 and 11.5 show a typical pressure distribution as measured in a real
motionless tire. The average ground pressure in the tire contact patch, considered as
a single region, is not much higher than the tire inflation pressure. Of course there
are high peaks near the tread edges.

A very simple pressure distribution p(x̂, ŷ) on the contact patchP, which roughly
mimics the experimental results, may be parabolic along x̂ and constant along ŷ

p = p(x̂, ŷ) = p0(ŷ)
(x̂0(ŷ) − x̂)(x̂0(ŷ) + x̂)

x̂0(ŷ)2
(11.3)
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Fig. 11.4 Experimental results: pressure distribution for a motionless motorcycle tire [5]

Fig. 11.5 Experimental results: contact patch and envelope of pressure distribution for amotionless
motorcycle tire [5]
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where p0(ŷ) = p(0, ŷ) is the pressure peak value. The corresponding vertical load
is given by

Fz =
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
p(x̂, ŷ)dx̂ (11.4)

Other pressure distributions may be used as well in the brush model, including
nonsymmetric ones like in Fig. 2.43 to take into account the rolling resistance.

On a rectangular contact patch x̂0(ŷ) = a. Equation (11.3), with the same p0 for
all ŷ, becomes simply

p = p(x̂, ŷ) = p0

[
1 −

(
x̂

a

)2
]

(11.5)

and hence

Fz =
∫ b

−b
d ŷ
∫ a

−a
p(x̂, ŷ)dx̂ = 2

3
p02a2b (11.6)

which yields

p0 = 3

2

Fz

(2a)(2b)
(11.7)

On an elliptical contact patch formulas (11.2) and (11.3) provide

p = p(x̂, ŷ) = p0

⎡
⎢⎢⎣1 − x̂2

a2
(
1 − ŷ2

b2

)
⎤
⎥⎥⎦ (11.8)

again with the same peak value p0 for any ŷ. The total vertical load is given by

Fz =
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
p(x̂, ŷ)dx̂ = 1

6
πp02a2b (11.9)

The aspect ratio a/b of the contact patch is mainly determined by the shape of the
tire. However, if Fz and p0 are kept fixed, the product ab, and hence the total area of
the contact patch, is not affected by the aspect ratio, as shown in Fig. 11.6.

11.1.4 Force–Couple Resultant

Exactly like in (2.14), the tangential stresses t(x̂, ŷ, t) exerted by the road on the tire
at each point of the contact patch yield a tangential force Ft
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Fig. 11.6 Footprints with
different aspect ratio, but
equal area

Ft (t) = Fx i + Fy j =
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
t(x̂, ŷ, t)dx̂ (11.10)

and a vertical moment MD
z with respect to point D

MD
z (t)k =

∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
(x̂ i + ŷ j) × t(x̂, ŷ, t)dx̂ (11.11)

All inertial effects, of any nature, are neglected.

11.1.5 Elastic Compliance of the Tire Carcass

Under pure rolling steady-state conditions, that is Fx = Fy = Mz = 0, let the position
of D be the same of the point of virtual contact C , defined in (2.35) and in Fig. 2.14.
We recall that, owing to the geometrical effect of camber γ, pointC may not coincide
with the origin O of the reference system defined in Sect. 2.4.1. However, in a car
the camber angle is very small and hence O � C .

Under general operating conditions, points D and C may have different positions
on the road, mainly due to the elastic compliance of the carcass, as can be seen in
Fig. 2.10. Therefore, as shown in Fig. 11.7

CD = q(t) = qx (t) i + qy(t) j (11.12)

To approximately model the lateral and longitudinal compliance of the carcass,
it has been assumed that the contact patch (with its reference system Ŝ) can have
small rigid displacements qx and qy with respect to the rim, without changing its
orientation. A linear relationship between Ft and q is the simplest option

Ft = Wq (11.13)
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Fig. 11.7 Model of the
contact patch for taking into
account the carcass
compliance

that is, using the vector components

Fx = wxqx (t) and Fy = wyqy(t) (11.14)

if

W =
[
wx 0
0 wy

]
(11.15)

with constant carcass stiffnesses wx and wy . Typically, wy � wx . Therefore, Ft and
q are not parallel vectors.

The displacements qx and qy are usually quite small (i.e., |qx |, |qy | � a) and
hence they can be neglected with respect to some phenomena, as will be discussed.

More advanced tire models may also include small rigid rotations of the contact
patch [10], or employ the stretched string approach to model the carcass flexibility
[1, 7, 9].

11.1.6 Friction

Let V P
μ = |VP

μ | be the magnitude of the sliding velocity VP
μ , that is the velocity with

respect to the road of a generic bristle tip with root at point P = (x̂, ŷ),2 and μ the
local friction coefficient.3

Fairly general rules for adhesion and sliding between the bristle tip and the road
are as follows

2 For the very first time we look at the kinematics of points in the contact patch.
3 Not to be confused with the global friction coefficients (2.87) and (2.89).
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V P
μ = 0 ⇐⇒ |t| < μ p (adhesion) (11.16)

t = −μ p
VP

μ

V P
μ

⇐⇒ V P
μ �= 0 (sliding) (11.17)

Equation (11.17) simply states that, at sliding, t and VP
μ have opposite direction and

|t| = μp. As a matter of fact, the ratio VP
μ /V P

μ is just a unit vector directed like the
sliding velocity.

If thermal effects are neglected, μ may reasonably depend on the local value of
the pressure p and of V P

μ

μ = μ(p, V P
μ ) (11.18)

It is common practice to call μ0 = μ(p, 0) the coefficient of static friction and μ1 =
μ(p, V P

μ �= 0) the coefficient of kinetic friction. In the present analysis, to keep it
simple, we assume μ0 and μ1 to be constant all over the contact patch

μ0 = (1 + χ)μ1, with χ > 0 (11.19)

thus discarding all dependencies on p and V P
μ , except the switch from μ0 to μ1.

Typically,μ0 ≈ 1, 2μ1, that isχ ≈ 0, 2.More advanced frictionmodels can be found,
e.g., in [2, 3, 10].

11.1.7 Constitutive Relationship

The brush model owes its name to this section. It is indeed the constitutive relation
that makes it possible to think of this model as having a moving belt equipped with
infinitely many independent flexible bristles (Fig. 11.1).

Each massless bristle, while traveling in the contact patch, may have a horizontal
deflection e(x̂, ŷ, t) = ex i + ey j (Fig. 11.1). The key point is to assume that this
deflection e(x̂, ŷ) does depend solely on the tangential stress t(x̂, ŷ, t) = tx i + ty j
at the very same point in the contact patch. In other words, each bristle behaves
independently of the others: the constitutive relation is purely local. It is quite a
strong assumption. Not very realistic, but terribly useful to get a simple model.

Actually, a truly simple model requires three further assumptions. In addition to
being local, the constitutive relation need to be linear, isotropic and homogeneous,
that is simply

t(x̂, ŷ, t) = k e(x̂, ŷ, t) (11.20)

where k is the bristle stiffness. In practical terms, it is the local thread stiffness.
Usually, k ranges between 30 and 60MN/m3.

A linear, but anisotropic and non homogeneous constitutive relation would be like
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Fig. 11.8 a isotropic
behavior, b anisotropic
behavior

[
tx
ty

]
=
[
kxx (x̂, ŷ) kxy(x̂, ŷ)
kyx (x̂, ŷ) kyy(x̂, ŷ)

] [
ex
ey

]
that is t = Ke (11.21)

with kxy = kyx and often equal to zero. It is anisotropic if kxx �= kyy . It is non homo-
geneous, if k’s depend on their position (x̂, ŷ) in the contact patch.

As shown in Fig. 11.8 and according to (11.20), isotropy implies that t and e
always have the same direction.

It is worth noting that in (11.20) (and also in (11.21)) all quantities, including t
and e, are associated with the coordinates of the root, not of the tip of the bristle.
Much like in the classical theory of linear elasticity, we are assuming that the problem
can be safely formulated with reference to the undeformed state. This is reasonable
provided the bristle deflections e are small, that is |e| � a, which is usually the case.

11.1.8 Kinematics

We can define two fundamental global motions in the kinematics of a tire in contact
with the ground (Fig. 11.9):

1. the continuous flow of undeformed rubber tread in the contact patch (due to the
wheel rolling);

2. the motion of the contact patch with respect to the road.

The superposition of these twomotions leads to what we call here the skating velocity
field of the roots of the bristles.

For an in-depth discussion of some related topics, like the definitions of the trans-
lational slip vector σ and of the spin slip ϕ, we refer to Sect. 2.8.
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Fig. 11.9 Kinematics of the
brush model (traction)

11.1.8.1 Belt Flow

As shown in Figs. 11.1 and 11.2, the first motion is modelled by assuming that the
belt (i.e., the root of each bristle) moves with respect to the rim with a velocity equal
to minus the rolling velocity Vr

Vr = Vr i = ωcrr i (11.22)

as defined in (2.50). This flow is always along parallel lines directed like − i in the
reference system Ŝ.

It is worth noting that in the brush model the rolling velocity may change in time
(Vr = Vr (t)), but it must be the same at all points of the contact patch (it is a global
parameter).

This property makes it possible to define a sort of global rolling distance s(t)

s(t) =
∫ t

0
Vr (t)dt that is

ds

dt
= Vr (t) (11.23)

If Vr > 0, the function s(t) is one-to-one. It will be shown that, in some cases, the
use of s as the independent variable is more convenient than the use of time t .

As already stated, the forefront border of the contact patch is called the leading
edge. It is very important to realize that it is through the leading edge that undeformed
rubber tread enters the contact patch (Fig. 11.1).

11.1.8.2 Motion of the Contact Patch

As shown in Fig. 11.7, the second fundamental motion is modelled by considering
the contact patch P as a rigid region that moves with respect to the road.

The velocity Vc = VC , of the point of virtual contact C (see Sect. 2.7.2) is, by
definition, the travel velocity Vc, defined in (2.55) for a real wheel.
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From (2.57) and (2.66) it follows that

Vs = Vc − Vr = Vrσ (11.24)

whereVs = Vrσ is the slip velocity, and σ is the translational slip vector

σ = Vs

Vr
= Vc − Vr

Vr
(11.25)

defined in Sect. 2.8 for real wheels.
Differentiating (11.12), we obtain the velocity VD of the center D of the contact

patch (Fig. 11.7)
VD = VC + .q = Vc + .

qx i + .
qy j (11.26)

Therefore, the generic point P̂ = (x̂, ŷ) of the contact patch P (not of the tire)
has a velocity VP̂ equal to

VP̂ = VD + ωsz k × DP̂ = Vc + .q + ωsz k × (x̂ i + ŷ j) (11.27)

where ωsz is the slip yaw rate, as defined in (2.61). In the brush model there is slip
yaw rate ωsz only within the contact patch, as if it were entirely due to the camber
angle γ. Of course, if ωsz = 0, we have VP̂ = VD .

11.1.8.3 Skating Velocity Field of the Bristle Roots

The combination of these two global motions yields the local kinematics, that is the
motion of each bristle root.

The root of the bristle (momentarily) at point P̂ = (x̂, ŷ) = (x̂b(t), ŷ) of the con-
tact patch has a velocity VP

s with respect to the ground given by the superimposition
of the two global motions

VP
s (x̂, ŷ, t) = VP̂(x̂, ŷ, t) − Vr (t)

= (Vc + ωsz k × (x̂ i + ŷ j) + .q
)− Vr

= (Vc − Vr ) + ωsz k × (x̂ i + ŷ j) + .q
= Vs + (x̂ j − ŷ i)ωsz + .q
= Vr [σ − (x̂ j − ŷ i)ϕ] + .q

(11.28)

where ϕ is the spin slip

ϕ = −ωsz

Vr
(11.29)

as in (2.65).
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The velocity VP
s of each bristle root is called here the skating velocity.4 It is the

velocity of the root of a bristle with respect to the road, not to be confused with the
sliding velocity VP

μ of the bristle tip. Perhaps, a look at Fig. 11.18 can be useful to
clarify the matter.

11.1.9 Brush Model Slips

The skating velocity field (11.28) of the brush model depends on the translational
slip σ (11.25) and on the spin slip ϕ (11.29), exactly like in Sect. 2.8 for the rim of
a real wheel with tire. This is no coincidence, as the kinematics of the brush model
has been built around these slips.

However, the brush model behavior is better described if some other non-
dimensional vectorial slips are defined.

11.1.9.1 Skating Slips

Equation (11.28) suggests to define the field of skating slips ε(x̂, ŷ, t)

ε = VP
s

Vr

= σ − (x̂ j − ŷ i)ϕ +
.q
Vr

(11.30)

Equation (11.28) can now be rewritten as

VP
s = Vrε (11.31)

Quite a compact formula.
A peculiar feature of the field of skating slips is that, whenever the spin slip

ϕ �= 0, they are local, in the sense that each point in the contact patch has its own
ε = ε(x̂, ŷ, t). The bristle roots behave according to ε(x̂, ŷ, t).

11.1.9.2 Steady-State Skating Slips

Since it is very common to analyze the brushmodel assuming steady-state conditions
(
.q = 0), it is convenient to define, at each point (x̂, ŷ) in the contact patch, the field
of steady-state skating slips λ(x̂, ŷ)

λ(x̂, ŷ) = σ − (x̂ j − ŷ i)ϕ (11.32)

4 The use of the practical slip κ would not have provided an equally neat formula.
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11.1.9.3 Transient Translational Slip

By setting ϕ = 0 in (11.30), we can define the transient translational slip ρ(t)

ρ(t) = σ(t) +
.q(t)

Vr (t)
(11.33)

We see that ρ is a global quantity, like σ. They are the same at all points in the
contact patch. However, unlike σ, it is not defined in a real wheel with tire, because
it involves the velocity of the carcass deformation

.q.
Of course, both λ(x̂, ŷ) and ρ(t) are special cases of ε(x̂, ŷ, t)

ε(x̂, ŷ, t) = λ(x̂, ŷ) +
.q(t)

Vr
= ρ(t) − (x̂ j − ŷ i)ϕ (11.34)

We will see shortly that in the transient brush model the bristle roots behave
according to ε, whereas the rim, by definition, behaves according to λ. This is the
key to understand the physical meaning of ε.

11.1.10 Sliding Velocity of the Bristle Tips

To study the possible sliding of each bristle tip on the ground, let us consider the
bristle root with coordinates (x̂, ŷ) = (x̂ b(t), ŷ).

According to (11.28), its rootmoveswith respect to the roadwith a skating velocity
VP
s (x̂, ŷ, t) (Figs. 11.1 and 11.2).
At the same time, the bristle has a deflection e(x̂, ŷ, t), and hence, by definition,

its tip has a velocity with respect to the root5

.e = de
dt

= .e(x̂, ŷ, t) (11.35)

Therefore, the (possible) sliding velocity VP
μ of a bristle tip with respect to the

road is given by the sum of these two vectorial contributions

VP
μ (x̂, ŷ, t) = VP

s + .e (11.36)

However, exactly like in fluid dynamics, it is more convenient to take a so-called
Eulerian approach,6 which provides

.e = de(x̂ b(t), ŷ, t)
dt

= ∂e
∂ x̂

dx̂ b
dt

+ ∂e
∂t

= −e,x̂ Vr + e,t (11.37)

5 The total time derivative is evaluated within Ŝ, that is as if i and j were fixed.
6 As reported in [16, p. 4], this approach is actually due to d’Alembert.
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since d ŷ/dt = 0 andwhere, for brevity, e,x̂ = ∂e/∂ x̂ and e,t = ∂e/∂t . The rationale
of this last formula is that, again like in fluid dynamics, it is easier to keep fixed the
observation point, rather than follow each bristle.

Combining (11.36) and (11.37), the sliding velocityVP
μ of a bristle tip with respect

to the road is
VP

μ (x̂, ŷ, t) = VP
s + .e

= Vrε − Vre,x̂ + e,t
= Vr (ε − e,x̂ ) + e,t

(11.38)

Of course, there is adhesion (i.e., no sliding) between the tip and the road if and only
if VP

μ = 0, like in (11.16) (see also Fig. 11.2a and b).

11.1.11 Summary of Relevant Velocities

A number of velocities, either global or local, have been defined or recalled in this
section. It is perhaps useful to list all of them:

1. rolling velocity: Vr , global;
2. sliding velocity: VP

μ , local;
3. travel velocity: VC = Vc, global;
4. carcass deformation velocity:

.q, global;
5. velocity of the center D: VD , global;
6. slip velocity: Vs , global;
7. velocity of a generic point of the footprint: VP̂ , local;
8. skating velocity: VP

s , local;
9. bristle deflection velocity:

.e, local.

11.2 General Governing Equations of the Brush Model

The brush model has been completely defined in the previous section. A schematic
was shown in Fig. 11.1. Its most distinguishing feature is that each bristle behaves
independently of the others.

The fundamental governing equations for the transient behavior are to be obtained
by combining all the relationships given in the brush model definition. Of course,
the goal is

rim kinematics ⇐⇒ force and moment (11.39)

like in (2.85).
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Therefore, we assume as given the following parameters:

• the shape of the contact patch (rectangular, elliptical, etc.);
• the size of the contact patch: a and b;
• the pressure distribution p(x̂, ŷ);
• the grip coefficients μ0 = (1 + χ)μ1;
• the bristle stiffness k;
• the carcass stiffnesses wx and wy ;

and the following kinematic input functions:

• the rolling speed Vr (t);
• the translational slip σ(t);
• the spin slip ϕ(t).

We consider as unknown the functions e(x̂, ŷ, t) and q(t), that is the field of bristle
deflections and the longitudinal and lateral deflections of the carcass. Of course, the
differential equations have to be suppliedwith suitable initial conditions on thewhole
contact patch and boundary conditions at the leading edge.

That said, let us dig into equations (relax, they look awful at first, but after a while
their interplay will start to fascinate you, maybe…).

According to (11.16) and (11.38), and as exemplified in Fig. 11.2b, wherever
there is adhesion between the tip and the road, the deflection emust change with the
following time rate

.e + VP
s = 0 ⇐⇒ |ke| < μ0 p (adhesion) (11.40)

This is a complicated way to say simply that the tip does not move with respect to
the road, while its root does.

The bristle tip starts sliding as soon as the friction limit is reached (|t = ke| =
μ0 p). In some sense, adhesion has a higher priority than sliding.

Switching from adhesion to sliding means that the governing equation changes
abruptly into (11.17), which, owing to (11.20) and (11.38), is equivalent to

ke = −μ1 p
.e + VP

s

|.e + VP
s | ⇐⇒ |.e + VP

s | > 0 (sliding) (11.41)

This vectorial differential equation states that, whenever there is sliding, we have
k|e| = μ1 p, and the vectors t = ke andVP

μ = .e + VP
s have the same, unknown, direc-

tion.
Let us expand these observations. Sliding means that the deflection e is a vector

whose intensity is equal to μ1 p/k, and is directed like the local sliding velocity
VP

μ . To fulfill simultaneously these two requirements there must be a nice interplay
between VP

s and
.e.

According to (11.37) and (11.38), Eqs. (11.40) and (11.41) canbe recast as follows,
where ε = ρ − (x̂ j − ŷ i)ϕ
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e,x̂ − e,t/Vr − ε = 0 ⇐⇒ k|e| < μ0 p (adhesion)

(11.42)

ke = μ1 p
e,x̂ − e,t/Vr − ε

|e,x̂ − e,t/Vr − ε| ⇐⇒ |e,x̂ − e,t/Vr − ε| > 0 (sliding)

(11.43)

with given boundary conditions at the leading edge x̂ = x̂0(ŷ)

e(x̂0(ŷ), ŷ, t) = 0 (11.44)

and initial conditions
e(x̂ , ŷ, 0) = e0(x̂, ŷ) (11.45)

This is a two-state system, in the sense that only one partial differential equation
applies at each point of the contact patch: we can either have adhesion or sliding,
but not both (or none). By definition, adhesion means |VP

μ | = 0 and the differential
equation (11.43) of sliding is indeed meaningless.

A closer look shows that we have a different two-state system for any value of ŷ.
Indeed, the spatial derivatives in (11.42) and (11.43) are only with respect to x̂ , that
is in the direction i of the rolling velocity Vr i. The rubber flows along parallel lines
that do not interact to each other (in this model!).

However, the problem formulation needs an additional vectorial equation since
.q

is unknown, and so is ρ(t) = σ + .q/Vr . Differentiating (11.13) with respect to time
and taking (11.33) into account provides

.
Ft = W .q = W (ρ − σ)Vr (11.46)

Also useful is to insert the constitutive relationship (11.20) into (11.10) and then
differentiate with respect to time

.
Ft = d

dt

(
k
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
e dx̂

)
= k

∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
e,tdx̂ (11.47)

Combining (11.46) and (11.47) yields the missing additional governing equation

k
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
e,tdx̂ = W .q = W (ρ − σ)Vr (11.48)

Summing up, the behavior of the transient brush model, that is the functions
e(x̂, ŷ, t) and ρ(t), for given boundary conditions e(x̂0(ŷ), ŷ, t) = 0 at the leading
edge and initial conditions e(x̂ , ŷ, 0) = e0(x̂, ŷ) andρ(0) = ρ0, is completely defined
by the governing equations (11.42) or (11.43), and (11.48).
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Actually, a somehow more compact formulation of the very same problem can
be obtained employing, instead of time t , the rolling distance s, defined in (11.23).
Since there is a one-to-one correspondence between t and s, that is t = t (s), and
all time derivatives in the brush model are divided by Vr (t) = ds/dt , the general
governing equations can be reformulated in terms of e(x̂, ŷ, s) in the following way,
with ε = ρ − (x̂ j − ŷ i)ϕ

e,x̂ − e,s − ε = 0 ⇐⇒ k|e| < μ0 p (adhesion) (11.49)

ke = μ1 p
e,x̂ − e,s − ε

|e,x̂ − e,s − ε| ⇐⇒ |e,x̂ − e,s − ε| > 0 (sliding) (11.50)

along with

k
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
e,s dx̂ = W

dq
ds

= W (ρ − σ) (11.51)

where e,s = ∂e/∂s. This formulation shows that the rolling velocity Vr (t) does not
have any influence on the behavior of the brush model with respect to the rolling
distance s. Themain reason is that all inertial effects have been neglected, as in (2.24).

Either in terms of t or s, this is quite a difficult mathematical problem if tackled in
its full generality. Indeed, the transient behavior of a real wheel with tire (cf. (2.18))
is a rather difficult matter.

Fortunately, the brush model becomes much simpler under steady-state condi-
tions, as discussed in Sect. 11.3. However, to deal with the simplest (and most clas-
sical) brush model you have to wait till Sect. 11.5, where the spin slip is set equal
to zero and there is only translational slip. With a rectangular contact patch, as in
Sect. 11.5.1, the whole model can be worked out analytically. Notwithstanding the
very many simplifying assumptions, it is still an interesting and significant model.

11.2.1 Data for Numerical Examples

Almost all figures from here onwards in this chapter have been obtained with the
following numerical values:

a = 7.5 cm b = 5.6 cm rr = 25 cm

μ0 = 1 χ = 0.2 p0 = 0.3MPa

k = 30MN/m3 wx = 500KN/m wy = 125KN/m

(11.52)
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11.3 Brush Model Steady-State Behavior

The main, and most common, simplification is assuming the brush model to be
in steady-state conditions (Fig. 11.1). Therefore, by definition, the field of bristle
deflections e and the carcass deformation q are both time independent.

These conditions can be formulated as

• e,t = 0, and hence e = e(x̂(t), ŷ), with no explicit time dependence;
• .q = 0, which means that ρ = σ is an input quantity for the tire model and it is
constant in time.

The problem is substantially simpler, since the only unknown function is the field of
bristle deflections e(x̂, ŷ), and both the adhesion and sliding zones are governed by
first-order ordinary differential equations, with respect to the variable x̂ .

More in detail, the skating slip ε, defined in (11.30), becomes the steady-state
skating slip λ, defined in (11.32)

λ(x̂, ŷ) = VP
s (x̂, ŷ, t)

Vr (t)
= σ − (x̂ j − ŷ i)ϕ (11.53)

with constant translational slip σ and constant spin slip ϕ. Therefore, the skating
slip ε = λ is a given, purely kinematic quantity, a known input to the model. It is
worth noting that VP

s and Vr may be still time dependent, but their ratio λ is not.
According to (11.37), the total time derivative of the deflection of each bristle tip is
given by .e

Vr (t)
= − ∂e

∂ x̂
= −e′(x̂, ŷ) (11.54)

where e′ was introduced to stress that, in the brush model, ŷ is more a parameter
than a variable. Whenever e′ �= 0, the bristle deflection changes as the bristle root
changes its position with respect to the footprint (Fig. 11.2).

The sliding velocity (11.38) of each bristle tip becomes

VP
μ (x̂, ŷ, t) = Vr (λ − e′) (11.55)

Again, the ratio VP
μ (x̂, ŷ, t)/Vr (t) is not time dependent.

11.3.1 Steady-State Governing Equations

According to (11.53) and (11.54), in the steady-state case the governing equations
(11.42) and (11.43) of the brush model become (cf. [1, p. 761], [9, p. 83])
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e′ − λ = 0 ⇐⇒ k|e| < μ0 p (adhesion) (11.56)

ke = μ1 p
e′ − λ

|e′ − λ| ⇐⇒ |e′ − λ| > 0 (sliding) (11.57)

where e′ = e,x̂ .
These first-order differential equations in the unknown function e(x̂, ŷ), along

with the boundary conditions at the leading edge, completely describe the behavior
of the brush model.7 Indeed, in this case the other Eq. (11.48) simply states ρ = σ.

As already remarked, this is a two-state system, since at each point there is,
obviously, either adhesion or sliding. To distinguish between the solutions in the
adhesion and in the sliding regions, we will use the symbols ea and es , respectively.

11.3.2 Adhesion and Sliding Zones

Each bristle, which behaves independently of the others, is undeformed when it
enters the contact patch through the leading edge x̂0(ŷ). Its tip sticks to the ground
(Fig. 11.2a) and, due to the skating velocityVP

s between the bristle root and the road, a
deflection e immediately starts to build up (Fig. 11.2b), along with a tangential stress
t = ke. The physical interpretation of the adhesion equation e′ = λ is that the growth
of the bristle deflection is completely and solely ruled by the wheel kinematics. It is
not affected directly by the bristle stiffness k, neither by the pressure distribution.

On the other hand, the physical interpretation of the sliding equation is that the
tangential stress t is always directed like the sliding velocity

Fig. 11.10 Adhesion and sliding zones in the case λ = σ = const. (very unusual pressure distri-
bution!)

7 More convenient governing equations for the sliding state are given in (11.62) and (11.63).



11.3 Brush Model Steady-State Behavior 503

To better understand the roles played by adhesion and sliding, we refer to
Fig. 11.10, where a fairly unusual pressure pattern has been depicted.

11.3.2.1 Adhesion

At first there is adhesion, and Eq. (11.56) applies with initial condition ea = 0 at x̂0
(point A in Fig. 11.10). A simple integration provides the behavior of the bristle
deflection ea in the adhesion zone

ea(x̂, ŷ) =
∫ x̂

x̂0

e′dx̂ =
∫ x̂

x̂0

λdx̂ =
∫ x̂

x̂0

[
σ − ϕ(x̂ j − ŷ i)

]
dx̂

= −σ (x̂0 − x̂) + ϕ

[
(x̂0 − x̂)(x̂0 + x̂)

2
j − ŷ(x̂0 − x̂) i

] (11.58)

It is worth noting that this expression is linear with respect to σ and ϕ. Moreover, it
is not affected directly by the pressure distribution.

The magnitude of ea is given by

|ea| = √
ea · ea = (x̂0 − x̂)

√
(σx + ϕŷ)2 +

(
σy − ϕ

x̂0 + x̂

2

)2

(11.59)

Expressions (11.58) and (11.59) simplify considerably if ϕ=0, that is λ=σ= const.
Line A–B in Fig. 11.10 shows an example of linear growth (λ = σ). According

to (11.56), the adhesion state is maintained as far as k|ea| < μ0 p, that is up to
x̂ s = x̂ s(σ,ϕ, ŷ) (point B in Fig. 11.10) where

|t| = k|ea(x̂ s, ŷ)| = μ0 p(x̂ s, ŷ) (11.60)

In the proposed model, as soon as the static friction limit is reached at point
x̂ = x̂ s , the following sudden change in the deflection (massless bristle) occurs

es(x̂ s, ŷ) = μ1

μ0
ea(x̂ s, ŷ) (11.61)

Therefore, at the transition from adhesion to sliding the deflection preserves its
direction, but with a sudden reduction in magnitude (line B–C in Fig. 11.10).

11.3.2.2 Sliding

The sliding state starts with es(x̂ s, ŷ) as initial condition and evolves according to
(11.57), that is to a system of two nonlinear first-order ordinary differential equations.
However, (11.57) can be recast in a simpler, more convenient form
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es · es =
(μ1 p

k

)2
(es × (λ − e′

s)) · k = 0
(11.62)

that is, using components

e2x + e2y =
(μ1 p

k

)2
ex (λy − e′

y) = ey(λx − e′
x )

(11.63)

which is a differential–algebraic system. Indeed, the sliding state requires:

• the magnitude of the tangential stress t to be equal to the kinetic coefficient of
friction times the pressure (curved line C–D in Fig. 11.10)

• the direction of t (and hence of es) to be the same as that of the sliding velocityVP
μ =

Vr (λ − e′
s).

These are precisely the two conditions stated by (11.62) or (11.63).
Although, in general, the exact solution cannot be obtained by analytical methods,

some features of the solution are readily available.
Let s be a unit vector directed like the sliding velocity VP

μ , that is such that

VP
μ = |VP

μ |s (11.64)

or, equivalently, t = −|t|s and e = −|e|s.
As well known, for any unit vector we have s · s′ = 0, where s′ = ∂s/∂ x̂ . There-

fore, m = s′/|s′| is a unit vector orthogonal to s (and hence to VP
μ ), and the skating

slip λ can be expressed as

λ = (λ · s)s + (λ · m)m (11.65)

Moreover, according to (11.57)

es = −μ1 p

k
s =⇒ e′

s = −μ1 p′

k
s − μ1 p

k
s′ (11.66)

Combining (11.64)–(11.66) we get

VP
μ

Vr
= |VP

μ |
Vr

s = λ − e′
s

= (λ · s)s + (λ · m)m + μ1 p′

k
s + μ1 p

k
|s′|m

=
(

λ · s + μ1 p′

k

)
s

(11.67)

which shows which terms actually contribute to the sliding velocity VP
μ .
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In most cases, the sliding regime is preserved up to the trailing edge, that is till
the end of the contact patch. However, it is interesting to find the conditions that can
lead the bristle to switch back to adhesion (like point D in Fig. 11.10). From (11.67)
it immediately arises that

|VP
μ | = 0 ⇐⇒ kλ · s + μ1 p

′ = 0 (11.68)

Since s depends on the solution es of the algebraic-differential system of Eq. (11.63),
this condition has to be checked at each numerical integration step.

The governing equation (11.57) of the sliding state deserves some further discus-
sion. The “annoying” term (λ − e′

s)/|λ − e′
s | is simply equal toλ/|λ| if es andλ are

parallel vectors. This observation may suggest the following approximate approach
to (11.57)

ke f = −μ1 p
λ − e′

f

|λ|
kẽs = −μ1 p

e f

|e f |
(11.69)

First we solve two separate linear differential equations (not a system) for the two
components of the “fictitious” deflection e f . Then, we obtain the approximate deflec-
tion ẽs in the sliding region as a vector with magnitude μ1 p/k and directed like e f .
We remind that linear first-order differential equations can always be solved by inte-
gration (see, e.g., [17, p. 410]).8 In many cases ẽs is a very good approximation
of es .

An even simpler, less accurate, but often employed idea is to assume that the
governing equation in the sliding state is just an algebraic equation

kês = −μ1 p
λ

|λ| (11.70)

Therefore, we allow a sudden discontinuity of the direction of the deflection at the
transition from adhesion to sliding.9 This is not correct, but very appealing because
of its simplicity. Of course, as already mentioned, (11.70) is exact if es and λ happen
to be parallel throughout the whole sliding region, that is if ϕ = 0 and hence λ = σ.

8 The solution of y′ + f (x)y = g(x) is

y(x) = exp

(
−
∫ x

f (t)dt

)[∫ x

exp

(∫ z

f (t)dt

)
g(z)dz + C

]
.
9 This approach can be found in [4].
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11.3.3 Force–Couple Resultant

The solution of the steady-state brush model shows whether there is adhesion or
sliding at each point of the contact patch P and provides the corresponding bristle
deflection ea(x̂, ŷ) or es(x̂, ŷ). Therefore, the tangential stress t at each point of P is

t(x̂, ŷ) =
{
ta = kea(x̂, ŷ) (adhesion)

ts = kes(x̂, ŷ) (sliding)
(11.71)

Like in (2.14) and (11.10), the tangential force Ft = Fx i + Fy j that the road
applies on the tire model is given by the integral of t over the contact patch

Ft (σ,ϕ) =
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
t(x̂, ŷ)dx̂ (11.72)

which is a function, among other things, of the global slips σ and ϕ.10

It may be convenient to use the nondimensional or normalized tangential force
Fnt and its components [8]

Fnt = Fn
x i + Fn

y j = Ft
Fz

= Fx i + Fy j
Fz

(11.73)

Of course, under whichever operating condition of the brush model, we always have
|Fnt | < μ0. It is quite interesting to find the combination of σx , σy and ϕ which
provides the highest possible value. Equations (2.87) and (2.89) address a similar
issue in an experimental context.

The overall moment of the tangential stresses with respect to point D is given by

MD
z (σ,ϕ)k =

∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
(x̂ i + ŷ j) × t(x̂, ŷ)dx̂ (11.74)

However, in general, we are more interested in the vertical moment (usually
called self-aligning torque) Mz , that is the moment with respect to the origin O of
S. According to (11.12) and (11.14), we have to take into account the effects of the
carcass compliance and of camber (Fig. 2.14) to locate D with respect to O

Mz(γ,σ,ϕ) = MD
z − Fx (cr (γ) + qy) + Fyqx

= MD
z − Fx

(
cr (γ) + Fy

wy

)
+ Fy

Fx

wx

= MD
z − Fxcr (γ) + Fx Fy

wy − wx

wxwy

(11.75)

10 Since the tangential force is constant in time, it is possible to exploit its dependence on the given
slips.
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11.3.4 Examples of Tangential Stress Distributions

To gain insights into the steady-state brush model behavior, we will address some
particular cases. Some of them can be solved analytically, while others require a
numerical approach.

Fig. 11.11 Examples of tangential stress distributions in rectangular contact patches. Also shown
the line separating the adhesion region (top) and the sliding region (bottom), and the components
of the normalized tangential force. Values of ϕ are in m−1
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Fig. 11.12 Examples of tangential stress distributions in rounded rectangular contact patches.
Also shown the line separating the adhesion region (top) and the sliding region (bottom), and the
components of the normalized tangential force. Values of ϕ are in m−1

The shape of the contact patch is taken to be rectangular or elliptical, although it
would not be much more difficult to deal with more realistic shapes, like the one in
the center of Fig. 11.3.
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Fig. 11.13 Examples of tangential stress distributions in elliptical contact patches. Also shown the
line separating the adhesion region (top) and the sliding region(s) (bottom), and the components of
the normalized tangential force. Values of ϕ are in m−1 and correspond to a camber angle of about
38◦
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Figure11.11, obtained with the data listed in (11.52), shows the tangential stress
pattern in rectangular contact patches, along with the adhesion and sliding regions,
for four combinations of (σx ,σy,ϕ). The corresponding values of the normalized
longitudinal and lateral forces are also reported. As typical in car tires, the value of
ϕ is small.

Exactly the same combinations of slips, but for rounded rectangular contact
patches, are shown in Fig. 11.12.

In Fig. 11.13, four cases for elliptical contact patches are shown. In these cases,
the spin slip ϕ is quite high, as typical in motorcycle tires.

As expected, large values of ϕmake the stress distributions strongly non-parallel,
thus reducing the value of the maximum achievable resultant tangential force.

11.4 Adhesion Everywhere (Linear Behavior)

If themagnitude of the skating slipλ is everywhere very small, then there is adhesion
almost everywhere in the contact patch. More precisely, small skating slips means

|λ| � μ0 p0
2ak

(11.76)

that is |λ| < 0, 03 on a dry paved road. Of course, we are still dealing with steady-
state conditions.

According to (11.58) and (11.72), the tangential force is

Ft (σ,ϕ) = Fx i + Fy j =
∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
kea(x̂, ŷ)dx̂

=
∫ b

−b
d ŷ
∫ x̂0

−x̂0

k

(
−σ(x̂0 − x̂) + ϕ

[
(x̂0 − x̂)(x̂0 + x̂)

2
j − ŷ(x̂0 − x̂) i

])
dx̂

= −Cσσ + Cϕϕ j

= −Cσσx i − (Cσσy − Cϕϕ) j
(11.77)

which, as expected, is linear in both σ and ϕ. This is a crude approximation of the
real tire behavior, unless all the force components are very small.

It is worth noting that the longitudinal force Fx is a function of σx only, whereas
the lateral force Fy depends on both σy and ϕ.

The coefficient Cσ may be called slip stiffness. In the isotropic brush model, Cσ

is the same for any direction of the tangential force, that is for any combination of
σx and σy . Moreover, in the brush model

Cσ = Cα = Cκx (11.78)

where Cα and Cκx were defined in (2.88) and (2.86).
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The coefficientCϕ is the spin stiffness for the lateral force. Owing to the symmetric
shape of the contact patch, the spin slip does not contribute to the longitudinal force.

It is possible to insert (2.75) and (2.76), that is the practical slip components, into
(11.77), but the resulting function is no longer linear

Ft (κ,ϕ) = Fx i + Fy j = −Cσ
κx i + κy j
1 − κx

+ Cϕϕ j (11.79)

Once again, the practical slip does not do a good job.
As shown in (2.68),

ϕ = − sin γ(1 − εr )

rr
(2.68’)

if the yaw rate ωz is zero or at least negligible (as discussed at Sect. 2.10), the spin
slip ϕ becomes a function of the camber angle γ only (besides Fz). In this case, we
can define the camber stiffness Cγ

Cγ = −Cϕ

rr
(1 − εr ) < 0 (11.80)

and obtain (sin γ ≈ γ)

Ft (σ, γ) = Fx i + Fy j = −Cσ(σx i + σy j) + Cγγ j (11.81)

Typically, Fz/Cγ ≈ 1 for a motorcycle tire. Quite often,−Cσσy j is called cornering
force and Cγγ j is called camber force (or camber thrust). Obviously, only under the
very strong assumption of adhesion all over the contact patch, that is for very small
values of the skating slip λ, we have two separate and independent contributions to
the lateral force.

Under the same conditions and according to (11.75) we can compute the vertical
moment with respect to the center D of the contact patch

MD
z (σy,ϕ)k =

∫ b

−b
d ŷ
∫ x̂0(ŷ)

−x̂0(ŷ)
(x̂ i + ŷ j) × kea(x̂, ŷ)dx̂

= (CMσ
σy + CMϕ

ϕ
)
k = −Fytc k

(11.82)

where tc is thepneumatic trailwith respect to the contact center D. The last expression
states quite a remarkable fact: that Fy = 0 means MD

z = 0 as well. The minus sign
makes tc > 0 under standard operating conditions.

Combining (11.75), (11.77) and (11.82) we obtain the vertical moment with
respect to point O

Mz(γ,σ,ϕ) = CMσ
σy + CMϕ

ϕ + Cσσx

[
cr (γ) + wx − wy

wxwy
(−Cσσy + Cϕϕ)

]
(11.83)
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For a rectangular contact patch (i.e., x0(ŷ) = a) we have

Cσ = 4ka2b (11.84)

and

Cϕ = CMσ
= a

3
Cσ CMϕ

= b2

3
Cσ Cγ = −a(1 − εr )

3rr
Cσ (11.85)

Typically,Cγ � |Cσ|. From (11.77), (11.82) and (11.85)we can obtain the pneumatic
trail tc for a rectangular contact patch

tc = σya + ϕb2

3σy − ϕa
(11.86)

Special, but quite important cases are:
ϕ = 0, which yields

tc = a

3
(11.87)

and σy = 0, that yields

tc = −b2

a
(11.88)

For an elliptical contact patch the algebra is a bit more involved. The final expres-
sion of the tangential force Ft is exactly like in (11.77), but with the following
stiffnesses

Cσ = 8

3
ka2b and Cϕ = CMσ

= 3ßa

32
Cσ (11.89)

We recall that the contact patch has length 2a and width 2b. The product ab,
and hence also the area of the contact patch, are determined by the vertical load
Fz and the tire inflation pressure p0, as obtained in (11.6) and (11.9). However, in
the expressions (11.84) and (11.89) of the slip stiffness Cσ there appear the term
a2b = a(ab). That means that the aspect ratio a/b of the footprint does affect Cσ.
The reason for this dependence is promptly explained with the aid of Fig. 11.14.

If we compare Fig. 11.14a and b, we see that, for given slip angle α, the longer the
footprint, the higher the final deflection of the bristles. This phenomenon is partly
compensated by the fact that bristle deflections act on a wider strip in case (b). As
predicted by (11.84), the net result is that tire (a) has a slip stiffnessCσ twice as much
as tire (b). In other words, to obtain the same lateral force Fy from the wider tire we
need to double the slip angle, as shown in Fig. 11.14c.

All tires in Fig. 11.14 share the same Fz , p0 and k.
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Fig. 11.14 Comparison of tires with the same Fz , p0 and k, but different width

11.5 Translational Slip Only (σ �= 0, ϕ = 0)

The investigation of the steady-state behavior of the brush model is much simpler if
there is no spin slip ϕ. Indeed, the first two figures in this chapter referred to the case
of pure braking. It is not a bad idea to go back and have another look.

According to (11.28), ifϕ = 0 and
.q = 0 all points in the contact patchP have the

same skating velocity VP
s = Vs . Therefore, from (11.53) we obtain that the skating

slip λ is equal to the translational slip σ

λ = σ (11.90)

and the governing equation (11.56) in the adhesion region becomes (Fig. 11.15)

e′
a = σ = const. (11.91)

whose solution, which is a linear function of x̂ , is readily obtained as a special case
of (11.58)

ea(x̂, ŷ) = −(x̂0(ŷ) − x̂)σ = −(x̂0(ŷ) − x̂)σs (11.92)

As shown in Fig. 11.15, all vectors ea have the same direction s = σ/σ, withσ = |σ|.
Moreover, they grow linearly in the adhesion region. A look at Fig. 11.15 should
clarify the matter.

The physical interpretation of these equations is simply that in the adhesion region
everything is ruled by the kinematics of the wheel.

Like in (11.60), the adhesion state is maintained up to x̂ s = x̂ s(σ, ŷ), whichmarks
the point where the friction limit is reached (Fig. 11.15)
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Fig. 11.15 Linear pattern in
the adhesion region and
parabolic pattern in the
sliding region

k|ea(x̂ s, ŷ)| = kσ (x̂0(ŷ) − x̂ s) = μ0 p(x̂ s, ŷ) (11.93)

For the parabolic pressure distribution (11.3) we obtain

x̂ s(σ, ŷ) = x̂0(ŷ)

[
kx̂0(ŷ)

μ0 p0(ŷ)
σ − 1

]
(11.94)

It is worth noting that, if ϕ = 0, the line separating the adhesion and the sliding
regions depends solely on the magnitude σ of the slip. It is not affected by the
direction s of σ. However, this separating line depends on the shape of the contact
patch. It is a straight line for a rectangular footprint, as in Fig. 11.15. For an elliptical
contact patch, Fig. 11.16 shows the lines between adhesion and sliding for a sequence
of growing values of σ.

At x̂ s the friction coefficient switches from μ0 to its kinetic value μ1, and the
sliding state starts according to (11.61), that is with a parabolic pattern (Fig. 11.15)

kes(x̂ s, ŷ) = −μ1 p(x̂ s, ŷ)s (11.95)

The really important aspect is that sliding begins with the bristle deflection ea that
has already the same direction s as λ = σ. Therefore, also e′

s is directed like s, and
the governing equation (11.57) (or (11.62)) for the sliding region becomes simply

kes(x̂, ŷ) = −μ1 p(x̂, ŷ)s (11.96)
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Fig. 11.16 Lines separating
the adhesion region (top) and
the sliding region (bottom)
for σ =
(0.01, 0.05, 0.10, 0.15, 0.20, 0.266)
and ϕ = 0. Pressure
distribution as in (11.8)

which is no longer a differential equation. Actually this is already the definition of
es in the sliding region.

Equations (11.92) and (11.96) provide the complete solution for this case. There-
fore, the tangential stress t at each point of the contact patchP is given by (Fig. 11.15)

t(x̂, ŷ) =
{
ta = −tas = −(x̂0(ŷ) − x̂)σk s, (adhesion)

ts = −tss = −μ1 p(x̂, ŷ) s, (sliding)
(11.97)

where s = σ/σ, ta = |ta| and ts = |ts |. Actually, as in Fig. 11.17, we have assumed
that, for any ŷ, a single adhesion region (x̂ s(σ, ŷ) ≤ x̂ ≤ x̂0(ŷ)) is followed by a
single sliding region (−x̂0(ŷ) ≤ x̂ < x̂ s(σ, ŷ)), as it is normally the case. However,
as shown in Fig. 11.10 for a fairly unrealistic pressure distribution, it is possible, at
least in principle, to have multiple regions.

Summing up, we have the following features (Figs. 11.15, 11.17 and 11.18):

• the tangential stress t is directed like σ, with opposite sign;
• ta grows linearly in the adhesion region;
• ts follows the μ1 p parabolic pattern in the sliding region;
• both ta and ts are not affected by the direction of σ;
• the higher σ, the steeper the growth of ta and hence the closer the transition point
x̂ s to the leading edge x̂0.

All these features can be appreciated in Figs. 11.19 and 11.20, which show the
tangential stress pattern, as predicted by the brushmodel, in rectangular and elliptical
contact patches under pure translational slip σ. It is worth remarking that in each
contact patch all arrows are parallel to each other.

The global tangential force Ft = Fx i + Fy j that the road applies to the tire model
is given by the integral of t on the contact patch, like in (11.72). Of course, here the
analysis will provide Ft (σ, 0). Since all tangential stresses t have the same direction
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−s, the computation simply amounts to integrating |t| (shaded area in Figs. 11.17
and 11.18)

Ft = −s Ft (σ) = −s

[∫ b

−b
d ŷ
∫ x̂0(ŷ)

x̂ s (σ,ŷ)
ta(σ, x̂, ŷ)dx̂ +

∫ b

−b
d ŷ
∫ x̂ s (σ,ŷ)

−x̂0(ŷ)
ts(x̂, ŷ)dx̂

]
(11.98)

where Ft = |Ft |. The two components, that is the longitudinal force Fx and the lateral
force Fy , are given by

Fx = Fx (σx ,σy) = −σx

σ
Ft (σ),

Fy = Fy(σx ,σy) = −σy

σ
Ft (σ)

(11.99)

which imply σx/Fx = σy/Fy .
Summing up, in the brushmodelwithϕ = 0, themagnitude Ft (σ) of the tangential

force Ft depends on the magnitude σ = √
σ2
x + σ2

y of the translational slip, and the
vectors Ft and σ have the same direction, but opposite signs

Ft = −σ

σ
Ft (σ) (11.100)

In practical applications, it is a good idea to employ the Magic Formula for Ft (σ)

in (11.99), since it follows better the real tire behavior.

Fig. 11.17 Typical pattern of the tangential stress in the adhesion region (left) and in the sliding
region (right)



11.5 Translational Slip Only (σ �= 0, ϕ = 0) 517

Fig. 11.18 Brush model for rectangular contact patch under braking conditions. The shaded area
(left) is proportional to the global tangential force Ft , marked by a point on the plot (right). Green
bristles have the tip stuck to the ground, red bristles have the tip sliding on the ground
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Fig. 11.19 Examples of tangential stress distributions in rectangular contact patches under pure
translational slip σ. All arrows have the same direction. Also shown is the line separating the
adhesion region (top) and the sliding region (bottom)
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Fig. 11.20 Examples of tangential stress distributions in elliptical contact patches under pure
translational slip σ. All arrows have the same direction. Also shown is the line separating the
adhesion region (top) and the sliding region (bottom)
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Fig. 11.21 Tangential stress distributions in rounded rectangular contact patches under pure lateral
slip σy . Also shown the global tangential force. Values of σ as in Fig. 11.18



11.5 Translational Slip Only (σ �= 0, ϕ = 0) 521

Partial derivatives can be readily obtained from (11.99)

−∂Fx

∂σx
= ∂

∂σx

(σx

σ
Ft (σ)

)
=
(σx

σ

)2 (
F ′
t − Ft

σ

)
+ Ft

σ

−∂Fx

∂σy
= ∂

∂σy

(σx

σ
Ft (σ)

)
=
(σxσy

σ2

)(
F ′
t − Ft

σ

) (11.101)

Those of Fy simply need interchanging x and y.
Equation (11.74) provides the vertical moment MD

z with respect to point D. How-
ever, it can be considerably simplified in the case of ϕ = 0. As a matter of fact, we
see from (11.97) that t(x̂, ŷ) = t(x̂,−ŷ)11 and hence

MD
z (σx ,σy) = −σy

σ

[∫ b

−b
d ŷ
∫ x̂0(ŷ)

x̂ s (σ,ŷ)
x̂ ta(σ, x̂, ŷ)dx̂ +

∫ b

−b
d ŷ
∫ x̂ s (σ,ŷ)

−x̂0(ŷ)
x̂ ts(x̂, ŷ)dx̂

]
(11.102)

It may be convenient to recast this equation in the following form

MD
z (σx ,σy) = σy

σ
Ft (σ) tc(σ) = −Fy(σx ,σy) tc(σ) (11.103)

which is, indeed, the definition of the pneumatic trail tc, that is the (signed) distance
from the contact center D of the line of action of the lateral force Fy j. As shown
in Fig. 11.21, a positive tc stands for a lateral force behind D, which is the standard
case.

11.5.1 Rectangular Contact Patch

Assuming a rectangular shape (Fig. 11.3) essentially means setting x̂0(ŷ) = a as the
equation of the leading edge. Therefore, any dependence on ŷ disappears and the
problem becomes one-dimensional, that is ea = ea(x̂) and es = es(x̂).

As shown in Fig. 11.19, in this case the line between the adhesion and the sliding
regions is simply a straight line directed like j

x̂ s(σ) = a

(
ka

μ0 p0
σ − 1

)
= a

(
2

σ

σs
− 1

)
(11.104)

where

σs = 2μ0 p0
ka

= 3μ0Fz

Cσ
= μ0

k
|p′(a)| (11.105)

with the slip stiffness Cσ defined in (11.78).

11 If, as usual, also x̂0(x̂, ŷ) = x̂0(x̂,−ŷ) and p(x̂, ŷ) = p(x̂,−ŷ).
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Fig. 11.22 Tangential stress
if σ = σs (total sliding)

The physical interpretation of σs is promptly obtained. If σ ≥ σs , regardless of
the direction of σ, there is sliding on the whole rectangular contact patch, that is
x̂ s = a. For instance, with the numerical values of (11.52) on Sect. 11.3, we have
σs = 0.27, that is a fairly low value.

At first, it may be surprising to have full sliding without wheel locking (i.e.,
σ = ∞). The phenomenon is explained in Fig. 11.22 (and also in Fig. 11.18d): to have
total sliding it suffices that the straight line to be tangent to the upper parabola at the
leading edge. The value (11.105) ofσs predicted by the brushmodel is therefore quite
“weak”, in the sense that it is verymuch affected by the assumed pressure distribution.
However, the existence of full sliding without (necessarily) wheel locking is an
important result.

Also interesting is to observe that

σsCσ = 3μ0Fz (11.106)

A simple formula that shows the strong relationship between σs and Cσ: the stiffer
the tire, the smaller σs . The quantity μ1 plays no role.

Application of (11.98) with x̂0 = a and x̂ s(σ) as in (11.104) (and hence 0 ≤ σ ≤
σs), provides the expression of the magnitude Ft of the tangential force

Ft = Ft (σ) = Cσσ

[
1 − σ

σs

(
1 + 2χ

1 + χ

)
+
(

σ

σs

)2 ( 1 + 3χ

3(1 + χ)

)]
(11.107)

where μ0 = (1 + χ)μ1 as in (11.19). In this model and under these specific operating
conditions, Ft (σ) is a polynomial function of σ, whose typical behavior is shown in
Fig. 11.23, along with its linear approximation (“good” only up to σ ≈ 0.03). From
Fig. 11.24 we can also appreciate how the adhesion and sliding regions contribute
separately to build up the total tangential force.
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Fig. 11.23 Magnitude Ft of
the tangential force as a
function of σ, and
corresponding linear
approximation

Fig. 11.24 Contributions to
Ft (solid line) of the
adhesion region
(long-dashed line) and of the
sliding region (short-dashed
line)

The derivative of Ft (σ) is

F ′
t (σ) = dFt

dσ
= Cσ

[
1 − 2

σ

σs

(
1 + 2χ

1 + χ

)
+
(

σ

σs

)2 (1 + 3χ

1 + χ

)]
(11.108)

which, among other things, clearly provides the important result

dFt

dσ

∣∣∣∣
σ=0

= Cσ (11.109)

that clarifies why Cσ is called slip stiffness.
As expected, the force with total sliding is

Ft (σs) = μ1Fz (11.110)

since all tangential stresses t have the same direction.
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The peak value of Ft is

Fmax
t = Ft (σp) = μ0

[
4 − 3(μ1/μ0)

[3 − 2(μ1/μ0)]2
]
Fz = μ1

[
1 + 4χ3

(3χ + 1)2

]
Fz = μpFz

(11.111)
and it is achieved at σ = σp (Fig. 11.23)

σp = 1 + χ

1 + 3χ
σs (11.112)

Typically, as in Fig. 11.23, good tires have low values of σp. In this model, the global
friction coefficient μp is given by (cf. (2.87) and (2.89))

μp = Fmax
t

Fz
= μ1

[
1 + 4χ3

(3χ + 1)2

]
(11.113)

which means that, as expected

μ1 < μp � μ0 (11.114)

For instance, if μ0 = 1.2μ1, we have Fmax
t = 0.84μ0Fz = 1.013μ1Fz , that is a value

only marginally higher than Ft (σs). Indeed, as shown in Fig. 11.27 (and also in
Fig. 11.18c), themechanics of the tiremakes it verydifficult to have tangential stresses
close to μ0 p. In practical terms, attempts at increasing μ1 are more worthwhile than
those at increasing μ0.

It may be interesting to fit the curve of Ft (σ) shown in Fig. 11.23 by means of
the Magic Formula y(x) given in (2.90). According to Sect. 2.11, the four unknown
coefficients can be obtained by matching the peak value ym = Ft (σp) = 2.84 kN,
the asymptotic value ya = Ft (σs) = 2.80 kN, the slope at the origin y′(0) = Cσ =
37.8 kN = rad and the abscissa of the peak value xm=σp=0.2.
The resulting coefficients are B = 12.1, C = 1.10, D = 2.835 kN and
f E= − 3.63. The comparison is shown in Fig. 11.25. The agreement between
the two curves is quite poor. Particularly unacceptable is the initial increase of the
slope, which is never found in experimental curves (cf. Figs. 2.20 and 2.22). Indeed,
E < −(1 + C2/2) and hence y′′′(0) > 0.

A better agreement is shown in Fig. 11.26, where the asymptotic value was arbi-
trarily lowered to ya = 0.7Ft (σs), thus obtaining B = 8.81,C = 1.51, D = 2.84 kN
and E = 0.1. The lesson to be learnt is, perhaps, that the Magic Formula may
occasionally provide unexpected results and, therefore, should be used with care
(Fig. 11.27).

Going back to the brush model, the explicit expressions of Fx (σx ,σy) and
Fy(σx ,σy), that is of the longitudinal and lateral components, can be obtained by
inserting (11.107) into (11.99). Figure 11.28 illustrates the combined effect of σx and
σy . Quite remarkable is the effect on the slope at the origin, that is on the generalized
slip stiffness C̃σ. From (11.101) and (11.107) it follows that
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Fig. 11.25 Brush model curve (solid line) and the corresponding classical fitting by the Magic
Formula (dashed line)

Fig. 11.26 Brush model curve (solid line) and another possible fitting by the Magic Formula
(dot-dashed line)

C̃σ(σy) = − ∂Fx

∂σx

∣∣∣∣
σx=0

= Cσ

[
1 − |σy|

σs

1 + 2χ

1 + χ
+
(

σy

σs

)2 1 + 3χ

3(1 + χ)

]
(11.115)

and, interchanging x and y

C̃σ(σx ) = − ∂Fy

∂σy

∣∣∣∣
σy=0

= Cσ

[
1 − |σx |

σs

1 + 2χ

1 + χ
+
(

σx

σs

)2 1 + 3χ

3(1 + χ)

]
(11.116)

Of course C̃σ(0) = Cσ . This stiffness reduction has strong practical implications on
the handling behavior of vehicles. σs was defined in (11.105).
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Fig. 11.27 Tangential stress
if σ = σp (maximum
tangential force). See also
Fig. 11.18c

Fig. 11.28 Fy and Fx as functions of σy , for σx = (0, 0.05, 0.1, 0.2)

It should be observed that the generalized cornering stiffness C̃α(σx ) is no longer
equal to C̃σ(σx ) (cf. (11.78))

C̃α(σx ) = (1 + σx)C̃σ(σx ) (11.117)

whereas C̃κx (σy) = C̃σ(σy).
Another useful plot is the one shown in Fig. 11.29. For any combination of

(σx ,σy), a point in the plane (Fx , Fy) is obtained such that σx/σy = Fx/Fy . All
these points fall within a circle of radius Fmax

t , usually called the friction circle.
Lines with constant σy are also drawn in Fig. 11.29. Because of the symmetry of this
tire model, lines with constant σx are identical, but rotated of 90◦ around the origin,
as shown in Fig. 11.38b.
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Fig. 11.29 Friction circle with lines at constant σy

Fig. 11.30 Friction circle of Fig. 11.29, but with lines at constant α

Fig. 11.31 Comparison
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Fig. 11.32 Same slip angle
α, but different σy if: a
σx = 0, b σx < 0 (driving),
c σx > 0 (braking)

More often, the plot employed is the one in Fig. 11.30, where lines with constant
slip angle α are drawn. Since α is a function of σx and σy (Eq. (2.78)), the two plots
contain exactly the same information. While the lines in Fig. 11.29 are symmetric
with respect to the vertical axis, lines in Fig. 11.30 are not, as shown in Fig. 11.31. The
asymmetry arises simply because the slip angle is not the parameter to be used for a
neat description of the tire mechanics. Indeed, as schematically shown in Fig. 11.32,
the bristles may have different lateral deformations under the same slip angle.

As already mentioned on Sect. 2.9, tires have to be built in such a way to provide
the maximum tangential force Ft in any direction with small slip angles α, as shown
in Fig. 11.33. This is a fundamental requirement for a wheel with tire to behave
almost like a wheel, that is to have a directional capability. In other words, while Ft
can have any direction, the travel velocity Vc must undergo just small deviations α.
According to (2.78), this condition will be fulfilled if and only if the tire exhibits the
peak value of Ft for small values of the theoretical slip σp, typically below 0.2. On
the contrary, in a locked wheel the two vectors Ft and Vc always point in opposite
directions.

Equation (11.102), with x̂0 = a and x̂ s as in (11.104), provides the vertical
moment MD

z with respect to the center D of the rectangular contact patch

MD
z (σx ,σy) = σyCσ

a

3

[
1 − 3

σ

σs

1 + 2χ

1 + χ
+ 3

(
σ

σs

)2 1 + 3χ

1 + χ
−
(

σ

σs

)3 1 + 4χ

1 + χ

]

= σy

σ
Ft (σ)tc(σ) = −Fy(σx ,σy)tc(σ)

(11.118)
where tc is the pneumatic trail. The typical behavior of MD

z is shown in Fig. 11.34.
However, under combined slip conditions, to obtain Mz with respect to point O it

is necessary to take into account the carcass compliance, according to (11.75). The
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Fig. 11.33 Typical relationships between the tangential force Ft and the travel velocityVc for a tire

with the same theoretical slip σ =
√

σ2
x + σ2

y = σp , but different σx/σy

typical behavior of Mz(σx ,σy) is shown in Fig. 11.35. The difference with Fig. 11.34
is quite relevant.

Also of practical interest may be the plots of Mz versus Fx (Fig. 11.36) and of Fy

versus −Mz (Fig. 11.37), this one being often called Gough plot if σx = 0.
The three functions Fx (σx ,σy), Fy(σx ,σy) and Mz(σx ,σy) can be seen as the

parametric equations of a three-dimensional surface that fully describes, at constant
vertical load Fz , the tire mechanical behavior. Such surface is shown in Fig. 11.38a,
alongwith its three projections, which are precisely like Figs. 11.28, 11.36 and 11.37,
respectively. The surface in Fig. 11.38a is called here the tire action surface.

As already mentioned, a wheel with tire can be called a wheel because:

1. the tire action surface is regular, in the sense that it does not fold onto itself, for
a limited set of values (σx ,σy). It has therefore a limited contour and, hence,
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Fig. 11.34 Vertical moment MD
z versus σy , at constant σx

Fig. 11.35 Vertical moment Mz versus σy , at constant σx and γ = 0

the slip angle α is always quite low, according to (2.78). The goal of ABS [15]
is to avoid wheel locking and also to keep |α| very low, thus maintaining the
directional capability of the wheels;

2. the vertical moment Mz is always moderate. A wheel must provide forces applied
not far from the center of the contact patch.



11.5 Translational Slip Only (σ �= 0, ϕ = 0) 531

Fig. 11.36 Vertical moment Mz versus longitudinal force Fx , with lines at constant σy (solid) and
constant σx (dashed: ±0.01,±0.05,±0.1,±0.2)

Fig. 11.37 Lateral force Fy versus vertical moment Mz , with lines at constant σx (solid) and
constant σy (dashed: −0.01,−0.02,−0.04,−0.08,−0.16)
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(a) (b)

(c) (d)

Fig. 11.38 Tire action surface, and its three projections (forces in kN and moments in Nm). Also
shown lines at constant σx (blue) and constant σy (black)

11.5.2 Elliptical Contact Patch

Assuming an elliptical shape (Fig. 11.3) essentially means setting x̂0(ŷ) according to
(11.2). As shown in Figs. 11.16 and 11.20, in this case the line between the adhesion
and the sliding regions is curved. Its explicit equation is obtained inserting (11.2)
into (11.94). To have sliding on the whole elliptical contact patch, a very high value
of σ is necessary (Fig. 11.16).

Application of (11.98) with suitable x̂0(ŷ) and x̂ s(σ, ŷ) provides the expression
of the magnitude Ft of the tangential force

Ft = Ft (σ) = Cσσ

[
1 − 18ß

64

σ

σs

(
1 + 2χ

1 + χ

)
+ 12

45

(
σ

σs

)2 (1 + 3χ

1 + χ

)]
(11.119)
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where Cσ was obtained in (11.89) and σs is as in (11.105), although it has no special
meaning in this case. Again, Ft (σ) is a polynomial function of σ, whose typical
behavior is much like in Fig. 11.23, but with a less evident peak.

11.6 Wheel with Pure Spin Slip (σ = 0, ϕ �= 0)

The investigation of the behavior of the brush model becomes much more involved if
there is spin slip ϕ. Even if σ = 0, the problem in the sliding region has to be solved
in full generality according to the governing equations (11.63). Therefore, numerical
solutions have to be sought.

The definition of ϕ was given in (2.65) and is repeated here

ϕ = −ωz + ωc sin γ (1 − εr )

ωc rr
(2.65’)

It involves ωz , sin γ, εr , ωc and rr . However, in most applications spin slip means
camber angle γ, sinceωz/ωc ≈ 0. Figure 11.39 reports an example of the relationship
between γ and ϕ, if εr = 0 (motorcycle tire), rr = 0.25m and ωz = 0.

Large values of ϕ are attained only in motorcycles.12 Therefore, in this section
the analysis is restricted to elliptical contact patches. Figure 11.40 shows the almost
linear growth of the (normalized) lateral force Fn

y (0,ϕ) = Fn
y (ϕ) = Fy/Fz , even for

very large values of the spin slip. A similar pattern can be observed in Fig. 11.41 for
the vertical moment MD

z = Mz . In both cases, the main contribution comes from the
adhesion regions.

Fig. 11.39 Relationship between the camber angle γ and the spin slip ϕ, if ωz = 0, εr = 0, and
rr = 0.25m

12 More generally, in tilting vehicles, which may have three wheels, like MP3 by Piaggio, or even
four.
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Fig. 11.40 Normalized lateral force versus spin slip (solid line). Also shown is the contribution of
the adhesion zone (short-dashed line) and of the sliding zone (long-dashed line)

Fig. 11.41 Vertical moment versus spin slip (solid line). Also shown is the contribution of the
adhesion zone (short-dashed line) and of the sliding zone (long-dashed line)

The lateral force plotted in Fig. 11.40 is preciselywhat is usually called the camber
force, that is the force exerted by the road on a tire under pure spin slip.

Some examples of tangential stress distributions are shown in Fig. 11.42. They
are quite informative. There is adhesion along the entire central line, and the stress
has a parabolic pattern. The value of ϕ does not affect the direction of the arrows
in the adhesion region, but only their magnitude. Even at ϕ = 3.33m−1, i.e. a very
high value, the two symmetric sliding regions have spread only on less than half the
contact patch.

Another important observation is that there are longitudinal components of the
tangential stress, although the longitudinal force Fx = 0. In some sense, these com-
ponents are wasted, and keeping them as low as possible is a goal in the design of
real tires.



11.6 Wheel with Pure Spin Slip (σ = 0, ϕ �= 0) 535

Fig. 11.42 Examples of tangential stress distributions in elliptical contact patches under pure spin
slip ϕ. Also shown is the line separating the adhesion region (top) and the two sliding regions
(bottom). Values of ϕ are in m−1
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Fig. 11.43 Elliptical contact
patch with inverted
proportions.
(σx ,σy,ϕ) = (0, 0, 3.33),
(Fn

x , Fn
y ) = (0, 0.36)

The comparison of Figs. 11.42d and 11.43 gives an idea of the effect of the shape
of the contact patch. In the second case the lengths of the axes have been inverted,
while all other parameters are unchanged. Nevertheless, the normalized lateral force
is much lower (0.36 vs 0.61).

In the brush model developed here, the lateral force and the vertical moment
depend on ϕ, but not directly on γ. Therefore, there is no distinction between operat-
ing conditions with the same spin slip ϕ, but different camber angle γ as in Fig. 2.19.
This is a limitation of the model with respect to what stated on Sect. 2.10.

It should be appreciated that a cambered wheel under pure spin slip can-
not be in free rolling conditions. According to (2.109), there must be a torque
T = Mz sin γ jc = T jc with respect to the wheel axis. Conversely, T = 0 requires a
longitudinal force Fx and hence a longitudinal slip σx .

11.7 Wheel with Both Translational and Spin Slips

From the tire point of view, there are fundamentally two kinds of vehicles: cars,
trucks and the like, whose tires may operate at relatively large values of translational
slip and small values of spin slip, andmotorcycles, bicycles and other tilting vehicles,
whose tires typically operate with high camber angles and small translational slips.
In both cases, the interaction between σ and ϕ in the mechanics of force generation
is of great practical relevance. The tuning of a vehicle often relies on the right balance
between these kinematical quantities.

11.7.1 Rectangular Contact Patch

Rectangular contact patches mimic those of car tires. Therefore, we will address the
effect of just a bit of spin slip on the lateral force of awheelmainly subjected to lateral
slips. The goal is to achieve the highest possible value of Fn

y . Unfortunately, it is not
possible to obtain analytical results and a numerical approach has to be pursued.
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Fig. 11.44 Rectangular
contact patch under pure spin
slip (arrows magnified by a
factor 5 with respect to the
other figures).
(σx ,σy,ϕ) = (0, 0, 0.21),
(Fn

x , Fn
y ) = (0, 0.06)

Fig. 11.45 Normalized lateral force Fn
y versus σy , for ϕ = 0 (solid line), ϕ = −0.21m−1 (dashed

line), ϕ = 0.21m−1 (dot-dashed line). Rectangular contact patch and σx = 0 in all cases

A rectangular contact patch under pure spin slip (arrows magnified by a factor
5) is shown in Fig. 11.44. The global effect is a small lateral force, usually called
camber force.

Indeed, as shown in Fig. 11.45, the effect of a small amount of spin slip ϕ is,
basically, to translate horizontally the curve of the lateral force versus σy .13 However,
the peak value is also affected, as more clearly shown in Fig. 11.46. By means of a
trial-and-error procedure it has been found, in the case at hand, that ϕ = 0.21m−1

does indeed provide the highest positive value of Fn
y . In general, car tires need just a

13 Of course, the effect cannot be to “add” the camber force, that is to translate the curve vertically.
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Fig. 11.46 Detail of
Fig. 11.45 showing different
peak values

Fig. 11.47 Rectangular
contact patch under lateral
and spin slips. (σx ,σy,ϕ) =
(0,−0.185, 0.21),
(Fn

x , Fn
y ) = (0, 0.84)

few degrees of camber to provide the highest lateral force as a function of the lateral
slip σy (Fig. 11.47).

Such small values of spin slip have very little influence on the longitudinal force
generation.

11.7.2 Elliptical Contact Patch

Elliptical contact patches mimic those of motorcycle tires. Therefore, in this case we
will study the effect of just a bit of lateral slip σy on the lateral force of a cambered
wheel. Again, the goal is to achieve the highest possible value of Fn

y .
The large effect of even a small amount of σy on the normalized lateral force Fn

y
as a function of ϕ is shown in Fig. 11.48. However, this is quite an expected result
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after (11.89). Consistently, also the vertical moment MD
z changes a lot under the

influence of small variations of σy (Fig. 11.49).
Figures 11.50 and 11.51 provide a pictorial representation of the tangential stress

in two relevant cases, that is those that yield the highest lateral force. Quite remark-
ably, a 10% higher value of Fn

y is achieved in case (b) with respect to case (a). In
general, a little σy has a great influence on the stress distribution in the contact patch.
Conversely, the same lateral force can be obtained by infinitely many combinations
(σy,ϕ). This is something most riders know intuitively. Obviously, Fx = 0 in all
cases of Figs. 11.50 and 11.51.

Under these operating conditions, according to (2.78), the slip angle α never
exceeds two degrees. Therefore, the wheel has excellent directional capability.

It should be observed that the larger value of Fn
y of case (b) in Fig. 11.50 is

associated with a smaller value of MD
z . Basically, it means that the tangential stress

distribution in the contact patch is better organized to yield the lateral force, without
wasting much in the vertical moment (mainly due to useless longitudinal stress
components). The comparison shown in Fig. 11.50c confirms this conclusion.

A lateral slip in the “wrong” direction, like in Fig. 11.50d, yields a reduction of
the lateral force and an increase of the vertical moment.

As reported in Figs. 11.48 and 11.49, there are particular combinations of (σy,ϕ)

which provide either Fn
y = 0 or MD

z = 0. The stress distributions in such two cases
are shown in Fig. 11.52.

Fig. 11.48 Elliptical contact
patch: normalized lateral
force versus spin slip, at
different values of lateral slip

Fig. 11.49 Elliptical contact
patch: vertical moment
versus spin slip, at different
values of lateral slip
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Fig. 11.50 Comparison between contact patches under a large spin slip only and b still quite large
spin slip with the addition of a little of lateral slip. Case d shown for completeness. Values of ϕ are
in m−1
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Fig. 11.51 Normalized lateral force in elliptical contact patches under a large spin slip only and b
still quite large spin slip with the addition of a little of lateral slip

Fig. 11.52 Special cases: a zero lateral force and b zero vertical moment
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Fig. 11.53 Elliptical contact patch: normalized longitudinal and lateral forces versus spin slip, at
σx = 0 (solid line) and σx = −0.15 (dashed lines)

The interaction of longitudinal slip σx and spin slip ϕ yields the effects reported
in Fig. 11.53 on the longitudinal and lateral forces. A fairly high value σx = −0.15
has been employed. Examples of stress distributions are given in Fig. 11.54.

11.8 Brush Model Transient Behavior

Understanding and describing the transient behavior of wheels with tires has become
increasingly importantwith the advent of electronic systems likeABS [15] or traction
control, which may impose very rapidly varying slip conditions (up to tens of cycles
per second).

Addressing the problem in its full generality like in Sect. 11.2, even in the sim-
ple brush model, looks prohibitive (but not impossible to good will researchers).
However, with the aid of some additional simplifying assumptions, some interesting
results can be achieved which, at least, give some hints on what is going on when a
tire is under transient operating conditions.

In the next sections some simplified transient models will be developed. In all
cases, inertia effects are totally neglected.

11.8.1 Transient Models with Carcass Compliance Only

A possible way to partly generalize the steady-state brush model discussed in
Sect. 11.3 is to relax only the second condition of Sect. 11.3, while still retaining
the first one, that is:



11.8 Brush Model Transient Behavior 543

Fig. 11.54 Examples of tangential stress distributions: a pure spin slip ϕ, b pure longitudinal slip
σx and c both ϕ and σx . Values of ϕ are in m−1

• e,t = 0, which means e = e(x̂, ŷ), with no time dependence;
• .q �= 0, which means that ρ(t) �= σ(t).
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This approach, which leads to some simple and very popular transient tire models,
discards the transition in the bristle deflection pattern e and takes care only of the
transient deformation q(t) of the carcass.

This kind of models are often referred to as single contact point transient tire
models [9]. Actually, the contact is not at one point. More precisely, it is assumed
that all points of the contact patch have the same motion, as in Fig. 11.7.

Although rarely stated explicitly, these models can be safely employed whenever
the carcass stiffnesses wx and/or wy are much lower than the total tread stiffness kt

wi � kt , i = x, y (11.120)

Indeed, owing to (11.47), this condition allows for
.
Ft �= 0 even if e,t ≈ 0. The physi-

cal interpretation of these inequalities is that the transient phenomenon in the contact
patch is much faster than that of the carcass.

In a rectangular contact patch 2a × 2b, the total tread stiffness kt is related to the
local tread stiffness k by this very simple formula

kt = 4abk (11.121)

For instance, with the data reported on Sect. 11.3, we havewx = kt andwy = 0.25kt .
Therefore, we see that (11.120) in not fulfilled in the longitudinal direction!

In these models, the transient translational slip

ρ(t) = σ(t) + .q(t)/Vr (t) (11.122)

is an unknown function, like q(t), while σ(t) is, as usual, an input function, along
with ϕ(t) and Vr (t).

11.8.1.1 Transient Nonlinear Tire Model

The general governing equations (11.42) and (11.43), with the assumption e,t = 0,
become

e′ − ε = 0 ⇐⇒ k|e| < μ0 p (adhesion) (11.123)

ke = −μ1 p
e′ − ε

|e′ − ε| ⇐⇒ |e′ − ε| > 0 (sliding) (11.124)

where ε = ρ − (x̂ j − ŷ i)ϕ and e′ = e,x̂ .
These equations are formally identical to the governing equations (11.56) and

(11.57) of the steady-state case. Both cases share the assumption e,t = 0. Therefore,
the whole analysis developed in Sect. 11.3 holds true in this case as well, with the
important difference that ρ = σ + .q/Vr (t) has to replace any occurrence ofσ, since
now

.q �= 0.
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Of particular importance is to understand that the global tangential force Ft =
Ft (ρ,ϕ) is exactly the same function of (11.72). For instance, in a rectangular contact
patch with ϕ = 0 the magnitude of Ft is given by a formula identical to (11.107),
that is

Ft = Ft (ρ(t)) = Cσρ

[
1 − ρ

σs

(
1 + 2χ

1 + χ

)
+
(

ρ

σs

)2 ( 1 + 3χ

3(1 + χ)

)]
(11.125)

with ρ = |ρ|.
Consequently, the components Fx (ρx , ρy) and Fy(ρx , ρy) of Ft are

Fx = −ρx

ρ
Ft (ρ), Fy = −ρy

ρ
Ft (ρ) (11.126)

Of course, ρ = ρx i + ρy j. The partial derivatives are given by (11.101), again with
ρ replacing σ.

Since ρ(t) = σ(t) + .q(t)/Vr (t), the transient slip ρ(t) is an unknown function
and an additional vectorial equation is necessary (it was not so in the steady-state
case, which had

.q = 0). The key step to obtain the missing equation is getting
.
Ft and

inserting it into (11.46), as already done in Sect. 11.2 for the general case.
The simplification with respect to the transient general case, as already stated, is

that here Ft (ρ,ϕ) is a known function and hence⎧⎪⎪⎨
⎪⎪⎩
.
Fx = ∂Fx

∂ρx

.
ρx + ∂Fx

∂ρy

.
ρy + ∂Fx

∂ϕ

.
ϕ = wxVr (ρx − σx )

.
Fy = ∂Fy

∂ρx

.
ρx + ∂Fy

∂ρy

.
ρy + ∂Fy

∂ϕ

.
ϕ = wyVr (ρy − σy)

(11.127)

is a system of linear differential equations with nonconstant coefficients in the
unknown functions ρx (t) and ρy(t). In general, it requires a numerical solution.
The influence of the spin slip rate .

ϕ is negligible and will be discarded from here
onwards.

Generalized relaxation lengths can be defined in (11.127)

sxx (ρx , ρy) = −∂Fx

∂ρx

1

wx
, sxy(ρx , ρy) = −∂Fx

∂ρy

1

wx

syx (ρx , ρy) = −∂Fy

∂ρx

1

wy
, syy(ρx , ρy) = −∂Fy

∂ρy

1

wy

(11.128)

where the minus sign is there to have positive lengths. System (11.127) can be
rewritten as {

−sxx
.
ρx − sxy

.
ρy = Vr (ρx − σx )

−syx
.
ρx − syy

.
ρy = Vr (ρy − σy)

(11.129)
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In [9, p. 346] this kind of model is called nonlinear single point.
In classical handling analysis, only lateral slips are supposed to be significant.

The model becomes simply

− syy
.
ρy = Vr (ρy − σy) (11.130)

11.8.1.2 Transient Linear Tire Model

The simplest version of (11.127) assumes a linear functionFt (ρ) = −Cσ(ρx i + ρy j),
like in (11.77). Accordingly, Eq. (11.127) become

−Cσ
.
ρx = wxVr (ρx − σx )

−Cσ
.
ρy = wyVr (ρy − σy)

(11.131)

often conveniently rewritten as

sx
.
ρx + Vrρx = Vrσx

sy
.
ρy + Vrρy = Vrσy

(11.132)

where the positive constants

sx = Cσ

wx
and sy = Cσ

wy
(11.133)

are called, respectively, longitudinal and lateral relaxation lengths. With the data
listed in (11.52), we have sx = a and sy = 4a: as expected the lateral relaxation
length is much higher than the longitudinal one. The two equations in (11.132) are
now uncoupled, which simplifies further this model, called linear single point.

If we compare the linear and the non linear single point models, we see that
sx ≥ sxx and sy ≥ syy .

Consistently with the assumption of linear tire behavior, inserting Ft = −Cσρ
into (11.132) leads to the most classical transient linear tire model (i = x, y)

si
.
Fi + Vr (t)Fi = −Vr (t)Cσσi (t) (11.134)

that is, to nonhomogeneous linear first-order differential equations [6]. It is worth
noting that (11.132) and (11.134) are perfectly equivalent.

The simplest, canonical, case is with constant Vr , whichmakes the equations with
constant coefficients. The homogeneous counterpart of (11.134) has solution

F O
i (t) = Ae− Vr

si
t (11.135)
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Fig. 11.55 Lateral force asymptotic response to a step change of σy and measurement of the
relaxation length sy

If also σi is constant, a particular solution F p
i is simply

F p
i = −Cσσi (11.136)

Therefore, in this case the general solution of (11.134), with initial condition Fi (0) =
0, is

Fi (t) = F O
i (t) + F p

i = −Cσσi

(
1 − e− Vr

si
t
)

(11.137)

In Fig. 11.55 this solution is plotted using the travel distance s = Vr t instead of time.
Also shown is how to experimentally measure the relaxation length. Just take the
value of s that makes 63% of the asymptotic value of the force. This is much more
reliable than trying to use the tangent in the origin of a noisy experimental signal.

Also interesting is the particular solution if σi (t) = σ0 sin(ωt) (the homogeneous
solution decays very rapidly)

F p
i (t) = − Cσσ0√

1 + (ωsi/Vr )2
sin
(
ωt − arctan(ωsi/Vr )

)
(11.138)

It is worth noting how the term ωsi/Vr affects both the amplitude (reducing it) and
the phase shift. The tire force is delayed with respect to the sinusoidal input.

However, this completely linear model provides acceptable results only if the tire
slips are very small. An alternative, a little better approach is presented hereafter.

11.8.1.3 Transient Semi-nonlinear Tire Model

It is very common in vehicle dynamics to combine the linear equations (11.132) for
ρ(t) with a nonlinear function for the tangential force, like, e.g., Ft = −(ρ/ρ)Ft (ρ),
as in (11.125). Things are a bit mixed up, but the allure of simplicity is quite powerful.
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Indeed, the differential equations in (11.127) are much more involved than those
in (11.132), while combining (11.127) with a nonlinear function for Ft is fairly
straightforward. In [9, p. 345] this kind of model is called semi-nonlinear single
point.

Results are much more realistic than those provided by the linear model.

11.8.2 Transient Model with Carcass and Tread Compliance

If the carcass and tread stiffnesses are comparable, that is if (11.120) does not hold,
the effects of e,t should also be taken into account, particularly under severe transient
conditions. Therefore, both conditions listed at Sect. 11.3 are relaxed, that is:

• e,t �= 0;
• .q �= 0.

To keep the formulation rather simple, while still grasping the main phenomena,
it is useful to work under the following simplifying assumptions:

1. rectangular shape of the contact patch, which means x0(ŷ) = a;
2. no spin slip ϕ;
3. either pure longitudinal slip σx or pure lateral slip σy , but not both;
4. μ0 = μ1, that is both equal to μ.

It is worth noting that complete adhesion in the contact patch is not assumed (cf. [9,
p. 220]). Like in Sect. 11.2, boundary conditions at the leading edge and initial
conditions on the whole contact patch need to be supplied, that is

e(a, ŷ, t) = 0, and e(x̂, ŷ, 0) = 0 (11.139)

Nonzero initial conditions are possible, but may lead to more involved formulations.
Like in Sect. 11.5.1, the first two simplifying assumptions (rectangular shape and

no ϕ), along with zero initial conditions, make e, and actually the whole formula-
tion, not dependent on ŷ. That means that we have to deal with ordinary differential
equations, instead of partial differential equations. The additional effect of the third
assumption (σxσy = 0) is to have ρ(t), q, and e(x̂, t) with only one nonzero com-
ponent (i.e., directed like either i or j). That means that we have to deal with scalar
functions, not vectorial functions. The fourth assumption (Δμ = 0) makes all func-
tion continuous.

With ϕ = 0, the first general governing equation (11.42) (adhesion region)
becomes

Vre,x̂ − e,t = Vrρ (11.140)

which is a nonhomogeneous transport equation in the unknown function e(x̂, t) =
ea(x̂, t). The tangential stress in the adhesion region is given by ta(x̂, t) = kea .
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The adhesion state starts at the leading edge x̂ = a and is maintained up to x̂ =
x̂ s(t), which marks, at time t , the moving point where the friction limit is reached

k|ea(x̂ s(t), t)| = μp(x̂ s(t)) (11.141)

and hence where the sliding region begins.
Exactly like in (11.96), the onset of sliding is with the bristle deflection that has

the same direction as ea(x̂ s(t), t). Therefore, the governing equation (11.43) for the
sliding region becomes simply

ts(x̂) = kes(x̂) = μp(x̂)
ea(x̂ s(t), t)
|ea(x̂ s(t), t)| , with − a ≤ x̂ < x̂ s(t) (11.142)

which is already the definition of es and hence of ts . It is important to note that in
the sliding region the bristle deflections es do not depend on time and, therefore, are
known. It is the moving transition point x̂ s(t) that has to be found as a function of
time.

The global tangential force Ft (t) = Fx i + Fy j that the road applies to the tire
model is given by the integral of t = ke on the contact patch, like in (11.72), with
all tangential stresses t having the same direction

Ft (t) = −s Ft (t) = k

[
2b
∫ a

x̂s (t)
ea(x̂, t)dx̂ + 2b

∫ x̂ s (t)

−a
es(x̂)dx̂

]
(11.143)

Since also ρ(t) = σ(t) + .q(t)/Vr (t) is unknown, an additional equation is nec-
essary. Exactly like in (11.47), it is obtained by differentiating Ft (t). But here, owing
to the simplifying assumptions, some further steps can be carried out,14 thus getting

.
Ft = 2bk

∫ a

x̂s (t)
e,tdx̂ = 2bkVr

∫ a

x̂s (t)

(
e,x̂ − ρ

)
dx̂

= 2bkVr
[−e(x̂ s(t), t) − (a − x̂ s(t)

)
ρ(t)

] (11.144)

since e(a, t) = 0.This result can be inserted into (11.48) to get the sought for equation

− 2bk
[
e(x̂ s(t), t) + (a − x̂ s(t)

)
ρ(t)

] = W
[
ρ(t) − σ(t)

]
(11.145)

where W is a diagonal matrix, as in (11.15).
Summingup, the problem is therefore governed by either of the two following (for-

mally identical) systems of differential–algebraic equations, with suitable boundary
and initial conditions

14 The crucial aspects are: es not depending on time, ea(x̂ s , t) = es(x̂ s).
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vr ex,x̂ − ex,t = Vrρx , x̂ s (t) < x̂ < a

k|ex (x̂ s (t), t)| = μp(x̂ s (t))

ρx (t) = wxσx (t) − 2bk ex (x̂ s (t), t)

wx + 2bk(a − x̂ s (t))
ex (a, t) = 0

ex (x̂, 0) = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vr ey,x̂ − ey,t = Vrρy
k|ey(x̂ s (t), t)| = μp(x̂ s (t))

ρy(t) = wyσy(t) − 2bk ey(x̂ s (t), t)

wy + 2bk(a − x̂ s (t))
ey(a, t) = 0

ey(x̂, 0) = 0

(11.146)
where, possibly, Vr = Vr (t). Zero initial conditions imply that

ρi (0) = wiσi (0)

wi + 4abk
(11.147)

It is quite counterintuitive that ifwe apply a step function toσ(t), we obtainρi (0) �= 0.
This model can be called nonlinear full contact patch.
It should be remarked that, unlike the commonly used approaches described in the

previous section, the proposed model accounts not only for the transient deformation
of the carcass (i.e.,

.q �= 0), but also for the transient behavior of the bristle deflection
pattern (i.e., e,t �= 0). It will be shown that this last effect may be far from negligible
in some important cases, particularly in braking/driving wheels. More precisely, the
larger any of the ratios

θx = wx

kt
θy = wy

kt
(11.148)

where kt = 4abk is the tread stiffness, the more relevant the effect of the bristle
deflection in that direction. Since wx � wy , the transient behavior in the bristle
deflection pattern has more influence when the wheel is subject to time-varying
longitudinal slip. For instance, with the data reported on Sect. 11.3, we have θx = 1
and θy = 0.25. In practical terms, bristle transient pattern has some relevance in ABS
systems and also in launch control systems.

11.8.3 Model Comparison

The proposed models for the transient behavior of tires are compared on a few
numerical tests. The goal is to show the range of applicability and to warn about
employing a model without really understanding its capabilities.

In particular, three models of increasing complexity are compared:

• semi-nonlinear single point, (11.132) with (11.125);
• nonlinear single point, (11.127);
• nonlinear full contact patch, (11.146).

The linear single point model is not considered because of its limitations.
Of course, all the simplifying assumptions listed at the beginning of Sect. 11.8.2

have to be fulfilled. Therefore, tests are performed with the data listed in (11.52),
except forχ = 0, andunder either pure longitudinal slip or pure lateral slip.Moreover,
a rectangular contact patch and parabolic pressure distribution is assumed.
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All models are tested applying step functions to either σx or σy , the step values
being −0.21 and −0.07. In all cases, the index i means either x (longitudinal) or y
(lateral) direction.

The first model (semi-nonlinear single contact point, Sect. 11.8.1.2) takes into
account only the carcass compliance and employs a constant relaxation length si ,
with i = x, y. This model is by far the most popular model for the transient behavior
of tires, if limited to pure lateral conditions. According to (11.132), the model is
defined by {

si
.
ρi + Vrρi = Vrσi

ρi (0) = 0
(11.149)

where si = Cσ/wi , with Cσ = 4ka2b as in (11.84). Once the function ρi (t) has been
obtained, the global tangential force is given by the nonlinear function

Fi (ρi ) = −Cσρi

[
1 − |ρi |

σs
+ 1

3

(
ρi

σs

)2
]

(11.150)

much like in (11.99) with (11.107).
The second model (nonlinear single contact point, Sect. 11.8.1) is similar, but

employs a nonconstant relaxation length, as in (11.127)

⎧⎨
⎩− F ′

i (ρi )

wi

.
ρi + Vrρi = Vrσi

ρi (0) = 0
(11.151)

where (cf. (11.108) with χ = 0)

F ′
i (ρi ) = −Cσ

[
1 − 2

|ρi |
σs

+
(

ρi

σs

)2
]

(11.152)

is the derivative of (11.150). A numerical solution is usually required. As in the
first model, the function ρi (t) is then inserted into (11.150) to obtain the longitudi-
nal/lateral force.

The third model (nonlinear full contact patch, Sect. 11.8.2) takes into account
both the carcass and tread compliances, as in (11.146)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vr ei,x̂ − ei,t = Vrρi

k|ei (x̂ s(t), t)| = μp(x̂ s(t))

ρi (t) = wiσi (t) − 2bk ei (x̂ s(t), t)

wi + 2bk(a − x̂ s(t))
ei (a, t) = 0

ei (x̂, 0) = 0

(11.153)
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To obtain a numerical solution, an iterative method can be employed. First make an
initial guess for ρ(0)

i (t) (for instance ρ(0)
i (t) = (σi (t) + ρsi (t))/2, where ρsi (t) is the

solution of (11.149)). By means of the first equation, numerically obtain e(0)
x (x̂, t),

and then, using the second equation, evaluate the function x̂ (0)
s . At this stage, the

first iteration can be completed by computing ρ(1)
i (t) by means of the third equation.

The whole procedure has to be repeated (usually 5 to 15 times) until convergence is
attained.

Once a good approximation of ei (x̂, t) and x̂ s(t) (and also of ρi (t)) has been
computed, the tangential force can be obtained from the following integral over the
contact patch

Fi (t) = 2bk

[∫ a

x̂s (t)
ei (x̂, t)dx̂ + μ sign(ei (x̂ s(t), t))

∫ x̂ s (t)

−a
p(x̂)dx̂

]
(11.154)

11.8.4 Selection of Tests

A step change in the input (forcing) function σi (t) works well to highlight the dif-
ferences between the three models. With the data of (11.52), except χ = 0, the static
tangential force (11.150) has maximummagnitude for σ = 0.266. To test the models
in both the (almost) linear and nonlinear ranges, a small (σi = −0.07) and a large
(σi = −0.21) step have been selected. Sincewx = 4wy , both longitudinal and lateral
numerical tests are performed.

In all cases, results are plotted versus the rolling distance s, instead of time, thus
making Vr (t) irrelevant.

11.8.5 Longitudinal Step Input

The longitudinal force Fx (s), as obtained from the three tire models with step inputs
σx = −0.07 and σx = −0.21, is shown in Fig. 11.56. Because of the high value of
the longitudinal carcass stiffness wx (equal to the tread stiffness kt ), the transient
phenomenon is quite fast. Indeed, in the first model (dashed line) the relaxation
length sx = 7.5 cm.

Quite remarkably, the three models provide very different results for s < 0.25 cm,
thus showing that the selection of the transient tire model may be a crucial aspect in
vehicle dynamics, particularly when considering vehicles equipped with ABS.

Obviously, all models converge to the same asymptotic (i.e, steady-state) value
of Fx .
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Fig. 11.56 Longitudinal force asymptotic response to a small and to a large step change of σx .
Comparison of three tire models: semi-nonlinear single contact point (dashed line), nonlinear single
contact point (dot-dashed line), nonlinear full contact patch (solid line)

Fig. 11.57 Transient patterns of the tangential stress tx in the contact patch (third model)

The behavior of the firstmodel (dashed lines) is the same in both cases, except for a
vertical scaling. This is not the case for the second model (dot-dashed lines) because
of the nonconstant generalized relaxation length. The more detailed third model
(solid lines) behaves in quite a peculiar way, thus confirming that the contribution of
the transient tread deflection is far from negligible.

Figure 11.57 shows the transient pattern of the tangential longitudinal stress tx in
the contact patch as provided by the third model with σx = −0.21. It is worth noting
how greatly, in the adhesion region, the pattern departs from the linear behavior of
the static case (Fig. 11.17).
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11.8.6 Lateral Step Input

The lateral force Fy(s), as obtained from the three tire models with step inputs
σy = −0.07 and σy = −0.21, is shown in Fig. 11.58. Because of the low value of
the lateral carcass stiffness wy (equal to one fourth of the tread stiffness kt ), the
transient phenomenon is not as fast as in the longitudinal case. Indeed, in the first
model the relaxation length sy = 30 cm.

In this case, the three models provide not very different results in the linear range,
that is with σy = −0.07, while they depart significantly from each other in the non-
linear range, that is with σy = −0.21. Therefore, the selection of the transient tire
model may be crucial in lateral dynamics as well.

It should be observed from Figs. 11.56 and 11.58 that the first and second models
have the same “formal” behavior. Therefore, changing the carcass stiffness results
only in a horizontal scaling. This is not true for the third model.

Obviously, all models converge to the same asymptotic (i.e, steady-state) value
of Fy .

Figure 11.59 shows the transient pattern of the tangential lateral stress in the con-
tact patch as provided by the thirdmodel with σy = −0.21. There are still differences
with respect to the static case, although not as much as in Fig. 11.57.

Fig. 11.58 Lateral force asymptotic response to a small and to a large step changes of σy . Compar-
ison of three tire models: semi-nonlinear single contact point (dashed line), nonlinear single contact
point (dot-dashed line), nonlinear full contact patch (solid line)
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Fig. 11.59 Transient patterns of the tangential stress ty in the contact patch (third model)

11.9 Exercises

11.9.1 Braking or Driving?

Figure 11.1 shows a schematic of the brush model. Is it braking or driving? Explain
why.

Solution

It is obviously braking because all bristles are deflected backward. It is braking pretty
much like in Fig. 11.18b: the sliding part is about 1/3 of the footprint.

11.9.2 Carcass Compliance

Do you expect the tire carcass to be more compliant in the longitudinal or in the
lateral direction?

Solution

It is quite intuitive that it is more compliant in the lateral direction, at least in road
tires (Fig. 11.7).

11.9.3 Brush Model: Local, Linear, Isotropic, Homogeneous

To which of these four properties does the brush model owe its name?
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Solution

The answer is “local”. Indeed, this is the main simplification. Not very realistic, but
dramatically important to keep themodel formulation amenable to an almost analytic
treatment.

11.9.4 Anisotropic Brush Model

Assuming, as in (11.20), the same tread stiffness k in both longitudinal and lateral
directions may be not always correct. Try to figure out how to generalize the brush
model to have different stiffnesses.

Solution

The solution is already in (11.21). Just replace any occurrence of ke with Ke, maybe
with K being diagonal. Particularly important is to upgrade the comments around
(11.96). Even under pure translational slip the transition from adhesion to sliding
involves a change in the direction of the bristle deflections, as governed by (11.57).

11.9.5 Carcass Compliance 2

Does the carcass compliance affect the mechanical behavior of tire under steady-
state conditions?

Solution

Well, yes and no. In this model the tangential force is not affected by the carcass
compliance. On the other hand, the moments with respect to the origin O of the
reference system Sw (Fig. 2.6) does indeed depend also on the carcass compliance,
as shown in Fig. 11.35.

11.9.6 Skating Versus Sliding

What is the difference between skating velocity and sliding velocity?

Solution

Let us consider a bristle in the tire brush model. The skating velocity is the velocity
of its root with respect to the ground. The sliding velocity is the velocity of its tip
with respect to the ground.



11.9 Exercises 557

11.9.7 Skating Slip

Is the skating slip ε local or global?

Solution

The skating slip is, in general, a local quantity. It becomes global if there is no spin
slip ϕ. Moreover, we can observe that ε is a transient slip, since it takes into account
also

.q.

11.9.8 Simplest Brush Model

Select the options to have the simplest brush model.

Solution

A fairly simple brush model is obtained with the following options (Fig. 11.15):

footprint shape: rectangular;
slips: translational;
working condition: steady-state.

11.9.9 Velocity Relationships

Find out under which operating conditions the following equations hold true:

1. VD = VC ;
2. VP

s = Vs ;
3. VP

s = −.e
4. ρ = σ + .

q
Vr
;

5. ε = ρ;
6. VP

s = εVr ;
7. VP

s = σVr ;
8. Vs = σVr .

Solution

1.
.q = 0;

2.
.q = 0 and ωsz = 0;

3. adhesion region;
4. always;
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5. ϕ = 0;
6. always;
7.

.q = 0 and ϕ = 0;
8. always.

11.9.10 Slip Stiffness Reduction

Figure 11.28 shows the effects of the combined action of σx and σy on Fx and Fy .
According to (11.116) and with the data in (11.52), evaluate the reduction of the slip
stiffness Cσ (i.e., the slope in the origin) under the combined working conditions of
Fig. 11.28.

Solution

We know from Sect. 11.5.1 that in this case σs = 0.27. Moreover, we have χ =
0.2. It is a simple calculation to find that C̃σ(0.05) = 0.80Cσ , C̃σ(0.1) = 0.63Cσ ,
C̃σ(0.2) = 0.38Cσ . These results show how strong is the interaction between σx and
σy .

Let us do the same calculation, but with χ = 0.1. First we observe that σs does
not change. The results are as follows: C̃σ(0.05) = 0.81Cσ , C̃σ(0.1) = 0.65Cσ ,
C̃σ(0.2) = 0.41Cσ . Not a big difference.

11.9.11 Total Sliding

Can a non-locked wheel have all bristle tips sliding on the road surface?

Solution

Yes. Just have a look at Fig. 11.18d.

11.9.12 Spin Slip and Camber Angle

According toFig. 11.39, obtain the camber angleγ corresponding to spin slipϕ equal
to −1, −2 and −3 m−1.

Solution

The camber angles are 14.5, 30.0 and 48.6◦, respectively. We see it is slightly non
linear.



11.11 List of Some Relevant Concepts 559

11.9.13 The Right Amount of Camber

In which figure it was shown that just a bit of camber can improve the maximum
lateral force?

Solution

This topic was addressed in Fig. 11.46. See also Fig. 11.47. In motorcycle tire it
is often the other way around: lot of camber and a little of lateral slip to adjust the
lateral force to the required value.

11.9.14 Slip Stiffness

Let us consider tires all with the same Fz , p0 and k. According to (11.84), the brush
model predicts a lower slip stiffness for wider tires. Elaborate mathematically this
concept with reference to Fig. 11.14.

Solution

Tire (a) has a footprint with length 2w and width w. Tires (b) and (c) have a footprint
with length w and width 2w. The area of the footprint is the same in all cases. From
(11.84) we obtain that the narrower tire has Cσ twice as much as that of the wider
tires.

11.10 Summary

In this chapter a relatively simple, yet significant, tire model has been developed. It
is basically a brush model, but with some noteworthy additions with respect to more
common formulations. For instance, the model takes care of the transient phenomena
that occur in the contact patch. A number of figures show the pattern of the local
actions within the contact patch (rectangular and elliptical).

11.11 List of Some Relevant Concepts

Section11.1.9—the skating slip takes into account both transient translational slip
and spin slip;
Section11.3.2—each bristle is undeformed when it enters the contact patch;
Section11.5—the analysis of the steady-state behavior of the brush model is quite
simple if there is no spin slip;
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Section11.5.1—full sliding does not imply wheel locking;
Section11.5.1—the slip angle α is not a good parameter for a neat description of tire
mechanics;
Section11.5.1—the tire action surface summarizes the tire characteristics under a
constant vertical load;
Section11.5.1—tires have to be built in such a way to provide the maximum tangen-
tial force in any direction with small slip angles. This is a fundamental requirement
for a wheel with tire to have directional capability;
Section11.5.2—the tire action surface summarizes the steady-state behavior of a tire;
Section11.7.2—good directional capability of a wheel means small slip angles.

11.12 Key Symbols

a longitudinal semiaxis of the contact patch
b lateral semiaxis of the contact patch
C point of virtual contact
Cγ camber stiffness
Cσ slip stiffness
Cϕ spin stiffness
D center of the contact patch
e bristle deflection
ea bristle deflection in the adhesion zone
es bristle deflection in the sliding zone
Ft tangential force
Fx longitudinal component of Ft
Fy lateral component of Ft
Fz vertical load
k bristle stiffness
MD

z vertical moment with respect to D
O origin of the reference system
p pressure
p0 pressure peak value
q horizontal deformation of the carcass
qx , qy components of q
rr rolling radius
sx , sy components of the relaxation length
t tangential stress
Vc travel velocity
Vr rolling velocity
Vs slip velocity
VP
s skating velocity

VP
μ sliding velocity

wx , wy carcass stiffnesses
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α slip angle
γ camber angle
ε skating slip
εr camber reduction factor
λ steady-state skating slip
μ local friction coefficient
μ0 coefficient of static friction
μ1 coefficient of kinetic friction
ρ transient translational slip
σ theoretical slip vector
ϕ spin slip
ωsz slip yaw rate
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