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Abstract. In this paper, we introduced the novel concept of advisor
network to address the problem of noisy labels in image classification.
Deep neural networks (DNN) are prone to performance reduction and
overfitting problems on training data with noisy annotations. Weighting
loss methods aim to mitigate the influence of noisy labels during the
training, completely removing their contribution. This discarding process
prevents DNNs from learning wrong associations between images and
their correct labels but reduces the amount of data used, especially when
most of the samples have noisy labels. Differently, our method weighs
the feature extracted directly from the classifier without altering the loss
value of each data. The advisor helps to focus only on some part of
the information present in mislabeled examples, allowing the classifier to
leverage that data as well. We trained it with a meta-learning strategy
so that it can adapt throughout the training of the main model. We
tested our method on CIFAR10 and CIFAR100 with synthetic noise, and
on Clothing1M that contains real-world noise, reporting state-of-the-art
results.
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1 Introduction

Modern image classification systems are based on using deep neural networks
models that are trained on a huge number of labeled images [11]. Due to the
extreme cost of labeling such an amount of images and difficulty in covering
many concepts, researchers recently have looked into methods that generate
labels automatically. One significant line of research exploits available labeled
images from non-experts (e.g. from social networks, online stores) that can be
easily retrieved in large quantities but may have mislabeled [1].

Deep neural networks typically consist of a large number of parameters that
are highly shared among feature dimensions and states, enabling flexibility in
learning different tasks and classes. This flexibility has the advantage to lead
to strong discriminative models unless data annotations are corrupted by noise,
leading to performance reduction and overfitting problems [9]. Recent methods
tried to address the problem by using curriculum learning [4], directly estimating
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the labels noise in the set [8], or measuring the confidence of the network during
training [12], also using another co-trained network [7]. The idea was usually to
understand mislabeled samples out of distribution and reduce their influence on
the learning by dampening their loss or decreasing their impact directly from
the training set.

In this paper, we proposed a meta-learning approach to address the problem
of noisy labels in image classification based on an advisor network, developed to
help the classifier. While a standard image classification model is trained, the
advisor network observes the main network activations and adjusts features at
training time when noisy label images are identified as input. This allows the
classifier model to get information even from mislabeled samples where some
noise structure is present. We only retained the main model as the final classi-
fier, while the advisor was discarded. Unlike the teacher-student paradigm, the
advisor network was not trained to solve the image classification task, but only
to help the learning process of the classifier model by its altering activations.

In summary, our contribution is:

– We propose the use of an advisor network, i.e. the use of an additional network
at training time, learned by meta-learning, that can adjust activations and
gradient of the main network that is being trained.

– We develop such concept for the task of image classification, allowing the
training of an image classification network in presence of artificial label noise.

– We test our approach in presence of artificial label noise and on a popular
noisy dataset, obtaining state-of-the-art performance.

2 Related Works

2.1 Noisy Training Labels

Numerous works deal with the problem of noisy labels in training data. It has
been shown that the performance of machine learning systems degrades in the
presence of label noise [18,21]. A first solution involves a loss correction to mit-
igate the effect of mislabeled samples on the classifier network. For example
GLC [8], Reed [22], M-correction [2], F-correction [6] and S-adaptation [20] esti-
mated the matrix of corruption probabilities used to change the wrong labels to
the correct ones. Instead, [17,25,32] modeled the annotations noise distribution
linearly combining the output of the network and the noisy label to estimate
true labels. Another different approach was assigning a weight to each sample.
A lower weight value avoids the contribution of that sample to the training of
the network. In this way, it is possible to assign low values to mislabeled exam-
ples and high values to correct ones. MentorNet [10] and MentorMix [9] found
the latent weights with data-driven curriculum learning and the student-teacher
paradigm. Other contributions include data augmentation strategies like Mixup
[33], Advaug [5] and DevideMix [13]. Differently from these methods, we modified
the network activation using an advisor instead of the loss value.



444 S. Ricci et al.

2.2 Meta Learning

There are methods [3,15,26,27] that needs supplemental clean label to handle
the noise. This assumption of clean data is also true for a solution that exploits
the Meta-learning paradigm. It consists of the use of machine learning algorithms
to assist the training and optimization of other machine learning models. Meta-
learning [14,23,24,28] had used to address the noisy labels problem. With small
clean validation data, the meta-model learns how to correct the biased training
labels. For example, L2R [23] weighed each example giving less importance to the
mislabels samples. MLNT [14] simulated regular training with synthetic noisy
labels. MW-Net [24] learned an explicit weighting function that can be easily
adapted to different types of annotations noise. MLC [28] estimated the label
noise transition matrix. Contrary to all aforementioned meta-learning solutions,
our method does not act by directly modifying the loss of the neural network.
We applied a meta-attention layer inside a neural network. The weights of the
attention are learned by the advisor network. In this way, the mislabeled data
can be leveraged to improve the overall performance of the main model.

3 Method

3.1 Task

In this paper, we developed a method that can handle images with noisy labels
when training networks for image classification. We started from the idea that
also a mislabeled example contain information that can contribute to a greater
generalization of the network. The model should concentrate only on some con-
venient parts of these data. Our idea was to exploit the attention mechanism to
enhance the useful parts of the information and lower the rest. We made use of
an auxiliary advisor network that learns automatically a function that weighs
the features extracted from a DNN during its training. This advisor network
should be aware of the state of the main model and the meta-learning training
solves this constraint. Our method Meta Feature Re-Weighting (MFRW) acts
like a meta-attention layer. Different from weighting loss methods that tend to
completely remove the influence of mislabeled examples during the training our
MFRW can take advantage of them.

We first introduce meta-learning basics and formulation typical of methods
that learn robust deep neural networks from noisy labels. Then in Sect. 3.3, we
explain our method showing the architecture of the whole process.

3.2 Meta Learning for Noisy Image Classification

In general meta-learning (ML) is referred to the process of improving a learning
algorithm over multiple learning episodes, also called commonly learning to learn.
Usually, ML is divided into two learning algorithms: an inner (or base) algorithm
that solves a task, such as images classification, defined by a training dataset and
objective function; an outer (or upper/meta) algorithm that updates the inner
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one, such that the main model it learns improves an outer objective function.
ML was applied to solve the problem of noisy labels in training data [23,24].
We introduce the symbols useful for understanding ML in this particular setting
and the three basic steps into which the entire learning process is divided.

Let Dtrain = {xtra
i , ytra

i }N
i=1 be the noisy annotated training set, where N is

the total number of examples, composed of an image xi and the correspondent
one-hot label yi over c classes. In general if we have a deep neural network (DNN)
model Φ(·;w), where w are its parameters and ŷ = Φ(x;w) is its prediction on
the input image x, we can obtain the optimal parameters w∗ by minimizing the
softmax cross-entropy loss �(ŷ, y) on the training set Dtrain. ML, applied to the
Noisy Image Classification task, requires the presence of an additional verified
dataset. This validation set Dval = {xval

j , yval
j }M

j=1 is much smaller than the
training set, M � N .

In [24] a meta-model was used to implement the ML process. A multilayer
perceptron network with only one hidden layer learns how to weigh each training
example. Let Ψ(·; θ), parameterized by θ, be the meta-model that maps a loss
value to a scalar weight. In this case, the optimal parameters w∗ are derived
using the following weighted loss:

w∗(θ) = argmin
w

1
N

N∑

i=1

Vtra
i (θ)Ltra

i (w) (1)

with Vtra
i (θ) = Ψ(Ltra

i (w); θ) as the weight predicted by the meta model for
the i-th training example. Instead the meta model is trained minimizing the
validation loss:

θ∗ = argmin
θ

1
M

M∑

j=1

Lval
j (w∗(θ)) (2)

where Lval
j (w∗(θ)) = �(Φ(xval

j ;w∗(θ), yval
j )) is the loss for the j-th validation

example.
Equations (1) and (2) can be minimized alternating optimization via gradi-

ent descent. One solution that ensures the efficiency of the algorithm and its
convergence [24] adopt an online strategy to update θ and w through a single
optimization loop, which is divided into three main steps.

The first step is called Virtual-Train because the original DNN will not be
updated and the optimization is carried out on a virtual model that is the
copy of the original one. Consider the t-th iteration and associated mini batches
Btrain = {(xtra

i , ytra
i )}n

i=1 and Bval = {(xval
j , yval

j )}m
j=1, where n and m are the

size of mini-batch respectively. The virtual update can be derived by:

ŵ(θ) = w − α
1
n

n∑

i=1

Vtra
i (θ)∇wLtra

i (w) (3)

where α is the learning rate for the DNN and w is its parameter at the current
iteration. Then there is the Meta-Train step, where given the optimized virtual
model the meta model is updated by:
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θ′ = θ − β
1
m

m∑

j=1

∇θLval
i (ŵ(θ)) (4)

with β the learning rate for the meta model. In last step, Actual-Train, the
base DNN model is optimized taking into account the previously updated meta
model.

w′ = w − α
1
n

n∑

i=1

Vtra
i (θ′)∇wLtra

i (w) (5)

w′ becomes the w in Eq. (3) for the (t + 1)-th iteration.

3.3 Meta Feature Re-Weighting (MFRW)

Attention for a DNN is a mechanism that tries to mimics the cognitive attention
of the human brain. It intensifies the important parts of the input and reduces
the rest. In Meta Feature Re-Weighting (MFRW) the attention is applied with
a Hadamard product between the feature extracted from a DNN and a vector
of weights automatically learned from a meta-model. In order to get this, we
separated the main model Φ(·;w) in two-part: the backbone Φb(·;wb), that has
an image x as input and gives out a feature vector f , and the classifier Φc(·;wc),
that has f as input and a probability score vector s as output. In this way, it
was possible to manipulate the feature f directly with our meta-model Ψ .

The meta-model takes two different inputs Ψ(f,L) and gives back a vector
of weights Wf . The first input f is the feature extracted from the backbone Φb

relative to the example x. This is important for the meta-model because it makes
the Wf strictly connected to the feature that needs to be modified. The other
input is the loss L of the example x calculated from the prediction obtained
by the main full model Φ. This gives the meta-model information about how
much x is a “hard” or an “easy” example for the main model. The two inputs
together let the meta-model differentiate a feature belonging to a noisy x from
the one related to a correct x. In dot-product attention the multiplication is done
element-wise, so the Wf has to be of the same size of f , and its values must be
in the range ∈ (0, 1).

MFRW is divided into 4 main phases for each iteration. Figure 1 shows the
overall process of our method divided by step. We put our method at the t-th
iteration and we will describe each step to reach the (t + 1)-th.

Our method needs an additional initial phase Loss Pre-Calculation respect
to [24] and what is described in Sect. 3.2. We must calculate in advance the value
of loss Lpre related to the training batch xtrain. This is done at the beginning
to obtain a loss value dependent on the original feature and not on the weighted
one. It is not an expensive step because it is a direct loss inference, without
gradient calculation.

The second step is the Virtual-Train. Here Φt
b and Φt

c are temporary clone of
the original ones. The train batch xtrain is passed in Φt

b to obtain the features
f train. Then f train goes inside Ψ t with the relative loss values Lpre to get the
vector of weights Wf . We multiplied element-wise f train with Wf to get a new
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Fig. 1. Illustration of an iteration of the proposed Meta Feature Re-Weighting (MFRW)
method. Each iteration is divided into four steps. First, a Loss Pre-Calculation is
performed to calculate in advance the loss Lpre value of the training batch xtrain. The
second step is the Virtual-Train, where a clone of the main model is virtually updated.
Here the meta-model modifies the feature of the main model multiplying it with a vector
of weights. The purple color indicates the weighted features. The third step shows the
Meta-Train process. With a meta batch of clean example xmeta the meta-model is
updated minimizing the loss Lmeta given by the previous virtually updated network.
In the last phase Actual-Train, the real main model is trained with the meta-model
optimized (yellow color). (Color figure online)
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feature vector with attention fatt. This is given to Φt
c to obtain the score strain

and then the correspondent loss Ltrain. We now virtually update Φt
b and Φt

c

parameters, but not the one of Ψ t.
Like [24] we have a clean and balanced meta dataset that will be used to train

the meta-model Ψ in the third steps Meta-Train. Here we have Φt+1
b and Φt+1

c

virtually updated from the step before. Now we pass a meta batch xmeta through
them in order to get a validation loss Lmeta. Then Ψ t is updated minimizing
Lmeta. In this way, the meta-model is optimized to help the main model minimize
its error on clean data. Here the optimization takes into consideration also the
previous Virtual-Train, thus this is the most expensive part of the method.

The last phase is the Actual-Train where the original Φt
b and Φt

c are optimized
taking into account the updated meta-model Ψ t+1.

The meta-model is used only during the training time of the main network.
It will be discarded at test time when only the main network is retained as the
final model.

3.4 Meta Model Architecture

Our meta-model Ψ has a really simple architecture. The inputs of the network
are a feature f and a loss value Lx. Each input is projected in a fixed size
embedding space through a separate fully connected layer. Then the embeddings
are concatenated and passed to another fully connected layer that projects them
into a larger common space. Its size is the sum of the dimension of each previous
embedding. Finally, a linear layer is used to pass the data from the common
space to a vector with a size equal to the one of the feature f , that is given as
input. Because the output must be an attention weight in the range ∈ (0, 1) we
put a sigmoid activation after the last layer.

4 Experiments

To demonstrate the effectiveness of our method, we conducted experiments on
synthetically generated datasets with controlled noise structure and level. Then
we tested its ability to generalize with experiments on a real-world dataset.

4.1 Datasets

Following previous work [10,23,24], we used CIFAR-10 and CIFAR-100 which
are the typical choice to generate synthetic datasets containing different types of
noise structure. They are composed of 50K training images and 10K test images
of size 32 × 32. Of the training set, 1000 images with clean labels are randomly
selected to create the validation set for meta-training.

In addition to synthetic datasets, there is a collection of data containing real-
world noise. Clothing1M [30] is a dataset that is composed of 1 million images
of clothing taken from online shopping websites. There are 14 categories like T-
shirt, Shirt, Knitwear, etc. The labels are obtained from the text of the images
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provided by the sellers and not from expert annotators, that’s why there are
errors. The validation set of 7k clean data is as the meta dataset. This dataset
allowed our strategy to be evaluated as a concrete application for fine-grained
classification with noisy training annotations.

4.2 Implementation Details

We used the same settings for the experiments on CIFAR-10 and CIFAR-100.
The backbone was a Resnet-32 trained through SGD with a momentum of 0.9,
weight decay of 5e−4, batch size of 128, and a starting learning rate of 0.1.
Learning rate decreased to its 1

10 at the 50 epoch and 70 epoch, stopped at the
100 epochs.

With Clothing1M we used as backbone a ResNet-50 pre-trained on ImageNet.
It was trained through SGD with a momentum of 0.9, weight decay of 1e−3, and
a starting learning rate of 0.01. The batch size was 32 and it was preprocessed
resizing the image to 256 × 256, crop the center 224 × 224, and performing
normalization. The learning rate was divided by 1

10 after 5 epochs and stops at
10 epochs.

In every experiment, the meta-model was optimized with Adam and a learn-
ing rate of 1e−4. The embedding space size was set always to 100.

4.3 Results

Flip (or asymmetric) is a noise that is designed to mimic the structure where
labels are only replaced by similar classes, e.g. dog ↔ cat. We choose to test our
method on that type of noise because it usually appends that the label error
could depend on the ambiguity between classes and similar visual patterns [30].
We created a synthetic version of CIFAR-10 and CIFAR-100. The noise ratio
was controlled by a parameter p, which represents the probability that a clean
example is contaminated by noise. In this way we could test our method on
different level of noise, from p = 0.0 (no noise), to p = 0.8 (heavy noise).

Table 1 shows the accuracy results on the test set of CIFAR-10 and CIFAR-
100 datasets with flip label noises. The compared methods are directly cited with
the result on their paper. For MW-Net [24] and the direct training (CrossEn-
tropy) we report also our reproduced results. The accuracy gained over the
other methods were significant. We can see that at a higher noise rate our result
outperforms MW-Net and CrossEntropy by a large margin, indicating the effec-
tiveness of our method on the synthetic Flip noise. From the results of Table 1 is
possible to notice a limitation of our strategy that occurs when there is no noise
(p = 0.0) in the training annotations. We obtained worse accuracy values than
the training with the classic softmax cross-entropy loss on both CIFAR-10 and
CIFAR-100. The advisor network introduces a bias from the distribution of the
meta set to the training data. Because the training annotations are completely
correct the introduction of this meta bias makes the accuracy a little worse than
without.
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Table 1. Top-1 accuracy on CIFAR10 and CIFAR100 dataset with Flip noise. The
backbone used was a ResNet-32. p denotes the different levels of noise. The results for
the cited method are reported directly from their original papers. † indicates the results
obtained by our implementation. The first and the second best results are respectively
marked with bold and underline.

Dataset Flip CIFAR-10 Flip CIFAR-100

Noise p 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

CrossEntropy [24] 92.89 76.83 70.77 – – 70.50 50.86 43.01 – –

Reed-Hard [22] 92.31 88.28 81.06 – – 69.02 60.27 50.40 – –

S-Model [6] 83.61 79.25 75.73 – – 51.46 45.45 43.8 – –

Self-paced [12] 88.52 87.03 81.63 – – 67.55 63.63 53.51 – –

Focal Loss [16] 93.03 86.45 80.45 – – 70.02 61.87 54.13 – –

Co-teaching [7] 89.87 82.83 75.41 – – 63.31 54.13 44.85 – –

D2L [17] 92.02 87.66 83.89 – – 68.11 63.48 51.83 – –

Fine-tuning [24] 93.23 82.47 74.07 – – 70.72 56.98 46.37 – –

MentorNet [10] 92.13 86.3 81.76 – – 70.24 61.97 52.66 – –

L2RW [23] 89.25 87.86 85.66 – – 64.11 57.47 50.98 – –

GLC [8] 91.02 89.68 88.92 – – 65.42 63.07 62.22 – –

MW-net [24] 92.04 90.33 87.54 – – 70.11 64.22 58.64 – –

CrossEntropy† 92.33 90.56 86.25 26.67 13.58 70.18 65.02 50.25 18.67 4.32

MW-net† [24] 92.19 90.74 87.63 42.41 27.19 70.57 64.13 51.23 19.89 7.42

Ours 91.87 91.09 90.26 89.34 82.47 68.93 63.54 59.07 56.13 20.29

We introduced also two new noise settings, namely Flip2 and Flip3. The
difference from Flip is that the noise is equally distributed over multiple similar
classes, two and three respectively. Table 2 and 3 show respectively the result for
noise of type Flip2 and Flip3. We can see how our method performs better than
the others, especially in very noisy situations.

Table 2. Accuracy result on CIFAR10 and CIFAR100 dataset with Flip2 noise. p
denotes the different level of noise. † indicates the results obtained by our implemen-
tation. The first and the second best results are respectively marked with bold and
underline.

Dataset Flip2 CIFAR-10 Flip2 CIFAR-100

Noise p 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CrossEntropy† 90.71 87.83 75.83 11.86 64.91 57.7 36.55 7

MW-net† [24] 90.93 88.83 86.85 27.49 65.37 59 36.97 7.99

Ours 90.66 89.72 87.75 73.83 63.07 57.96 45.35 22.41

Table 4 shows the results on Clothing1M. As we can see our method outper-
forms the current state-of-the-art result.



Learning Advisor Networks for Noisy Image Classification 451

Table 3. Result for Flip3 noise on CIFAR10 and CIFAR100 dataset. p denotes the
different level of noise. † indicates the results obtained by our implementation. The
first and the second best results are respectively marked with bold and underline.

Dataset Flip3 CIFAR-10 Flip3 CIFAR-100

Noise p 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CrossEntropy† 90.13 88.44 82.31 20.34 65.29 59.35 44 11.07

MW-net† [24] 90.56 88.49 85.65 22.69 65.33 62.74 45.77 10.33

Ours 90.31 88.96 87.73 75.53 62.98 59.08 52.28 25.72

Table 4. Comparison with state-of-the-art methods in test accuracy (%) on Cloth-
ing1M dataset. Results for baselines are copied from original papers.

Method Accuracy (%)

CrossEntropy [24] 68.94

F-correction [20] 69.84

JoCoR [29] 70.30

S-Model [6] 70.36

M-correction [2] 71.00

MLC [28] 71.06

Joint-Optim [25] 72.16

MLNT [14] 73.47

P-correction [32] 73.49

MW-Net [24] 73.72

MentorMix [9] 74.30

FaMUS [31] 74.43

DivideMix [13] 74.76

AugDesc [19] 75.11

Ours 75.35

5 Conclusions

In this paper, we introduced Meta Feature Re-Weighting (MFRW), which makes
use of a novel concept of advisor network to mitigate the problem of train-
ing DNNs on corrupted labels. We empirically show the effectiveness of our
method on a synthetic and real-world noisy dataset for the classification task.
The experimental results demonstrate that advisor strategy can leverage infor-
mation present in noisy data helping the main network to achieve a better gen-
eralization performance. Our method yields state-of-the-art performance on the
Clothing1M dataset. Future research in this area may include adapting the advi-
sor network to different problems than noise, like class imbalance.
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