
Investigating Bidimensional
Downsampling in Vision Transformer

Models

Paolo Bruno, Roberto Amoroso(B) , Marcella Cornia , Silvia Cascianelli ,
Lorenzo Baraldi , and Rita Cucchiara

University of Modena and Reggio Emilia, Modena, Italy
225975@studenti.unimore.it, {roberto.amoroso,marcella.cornia,
silvia.cascianelli,lorenzo.baraldi,rita.cucchiara}@unimore.it

Abstract. Vision Transformers (ViT) and other Transformer-based
architectures for image classification have achieved promising perfor-
mances in the last two years. However, ViT-based models require large
datasets, memory, and computational power to obtain state-of-the-art
results compared to more traditional architectures. The generic ViT
model, indeed, maintains a full-length patch sequence during inference,
which is redundant and lacks hierarchical representation. With the goal
of increasing the efficiency of Transformer-based models, we explore the
application of a 2D max-pooling operator on the outputs of Transformer
encoders. We conduct extensive experiments on the CIFAR-100 dataset
and the large ImageNet dataset and consider both accuracy and efficiency
metrics, with the final goal of reducing the token sequence length with-
out affecting the classification performance. Experimental results show
that bidimensional downsampling can outperform previous classification
approaches while requiring relatively limited computation resources.

Keywords: Vision Transformer · ViT · Bidimensional downsampling

1 Introduction

Computer vision tasks such as image classification [14,31], object detec-
tion [28,29], or semantic segmentation [5,13] have been tackled for years by
employing convolutional neural networks (CNNs), which combine the use of a
local operator (i.e. the convolution) and of strategies for building hierarchical
representations through spatial downsampling, which is usually carried out either
via pooling layers or by adopting strided convolutions. Recently, the Transformer
architecture [35] has received a relevant interest from the natural language pro-
cessing community [10,27] and is now being adopted to solve computer vision
tasks as well [4,11,34,44]. In the case of a Transformer, the architecture fea-
tures an infinite receptive field, which is achieved through the computation of
content-based pairwise similarities and, differently from CNNs, does not feature
a hierarchical structure.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Sclaroff et al. (Eds.): ICIAP 2022, LNCS 13232, pp. 287–299, 2022.
https://doi.org/10.1007/978-3-031-06430-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06430-2_24&domain=pdf
http://orcid.org/0000-0002-1033-2485
http://orcid.org/0000-0001-9640-9385
http://orcid.org/0000-0001-7885-6050
http://orcid.org/0000-0001-5125-4957
http://orcid.org/0000-0002-2239-283X
https://doi.org/10.1007/978-3-031-06430-2_24


288 P. Bruno et al.

While a Transformer can achieve non-locality and infinite receptive field with-
out requiring a significant increase in the number of parameters, its overall archi-
tecture usually features an increased computational cost in terms of multiply-add
operations [11,34]. This can be explained by the fact that Transformers maintain
a full-length sequence across all layers so that the computational cost of running
a single layer does not decrease with the layer depth. While this appears to
be an issue from a computational point of view, it also hinders the fact that
Transformers lacks a structure that is specifically designed for images.

In this paper, we address both issues and investigate the use of bidimensional
pooling in Vision Transformers. Our proposal is in line with recent literature
which has tackled either the optimization of the Vision Transformer model [6,
19,33] or the application of one-dimensional pooling [26]. In our approach, the
sequence of visual tokens is re-arranged into its original spatial configuration at
each architectural block, and bidimensional pooling is then applied to connect
different patches together and downsample the sequence length. In this way, we
both decrease the computational requirements of the architecture and create a
hierarchy in the feature extraction process which resembles that of a CNN.

Experiments are carried out on both a small scale scenario, that of CIFAR-
100 [21], and in a larger scale setup, that of ImageNet [30]. By comparing with
both a baseline Vision Transformer and with the usage of one-dimensional pool-
ing, we demonstrate the effectiveness of our proposal, both in terms of accuracy
and reduction of the number of operations.

2 Related Work

Despite having been initially proposed for machine translation and natural
language processing, Transformer-based architectures [10,27,35] have recently
demonstrated their effectiveness also in many computer vision tasks [20,32],
either combining self-attention with convolutional layers or using pure attention-
based solutions. Approaches based on these architectures reached state-of-
the-art results in several tasks, including image classification [11,34], object
detection [4,46], semantic segmentation [1,2,17,44], image and video caption-
ing [7,8,42], and image generation [18].

Although many improvements of convolutional neural networks for image
classification are inspired by Transformers (e.g. squeeze and excitation [16], selec-
tive kernel [22], and split-attention networks [40]), the first work that transfers
a pure Transformer-based architecture to the classification task has been pro-
posed by Dosovitskiy et al. [11] with the introduction of the Vision Transformer
model. This architecture takes as input a sequence of square image patches and
directly applies Transformer layers over raw pixels. While it has achieved promis-
ing results on ImageNet [30] bridging the gap with state-of-the-art convolutional
neural networks, a pre-training stage on a large amount of data is required to
achieve these remarkable performances. To solve this issue and to manage the
high computational requirements typical of Transformer-based models, many
different solutions have been proposed including the use of low-bit quantiza-
tion [43], network pruning [25,33], and knowledge distillation [34].



Investigating Bidimensional Downsampling in Vision Transformer Models 289

Other solutions, more specific to Transformer models, tackle the quadratic
complexity of the self-attention operator. For example, Child et al. [6] proposed
to factorize the self-attention matrix into smaller and faster attention operators,
thus obtaining a O(n

√
n) complexity. Further, linear complexity can be obtained

via a kernel-based formulation of self-attention, as proposed by Katharopoulos
et al. [19], or by performing the self-attention operator on non-overlapping local
windows, as proposed in [23].

On a different line, some works go in the direction of limiting the length of the
input sequence to process [12,26,37,38]. For example, the approach proposed by
Yuan et al. [38] consists in structuring the image into tokens for capturing local
patterns. Other strategies consist of downsampling the sequence length, either
merging 2D patches, as done in [37], or applying 1D pooling to the intermediate
tokens, as done in [26]. This work follows this direction and proposes to apply
bidimensional downsampling to visual tokens at the intermediate blocks of the
Vision Transformer architecture, which is closer to what is commonly done with
2D max-pooling layers in convolutional neural networks.

3 Proposed Method

We first revisit the Vision Transformer (ViT, in the following) architecture [11]
and, in the following sections, introduce our proposal which applies 2D down-
sampling in Vision Transformers.

3.1 Preliminaries

The ViT model [11] has shown that attention and feed-forward mechanisms
can be employed to solve image classification tasks. Given an input image I ∈
R

H×W×C , where H, W and C denote height, width, and the number of channels,
this is transformed into a sequence of N square patches [x1

p;x
2
p; ...,x

N
p ], where

xi
p ∈ R

P 2C is the i-th patch of the input image. Being P × P the resolution of
square patches, H and W usually are multiple of P and the number of patches is
N = (H ·W )/P 2. A linear layer is then applied to each flattened patch to project
it to the input dimensionality of the model so that patches can be employed as
input tokens for a Transformer encoder.

An additional classification token xclass is usually added to the sequence of
patch embeddings. This is implemented as a trainable vector that goes through
the Transformer layers and is then projected with a linear layer to predict the
final output class. Positional embeddings are then added to the patch embeddings
to inject information about the position of patches inside the image. Formally,
the model input can be written as:

z0 = [xclass,x
1
pE,x2

pE, ...,xN
p E] + Epos, (1)

where E indicates the token embedding matrix and Epos the positional embed-
ding matrix.



290 P. Bruno et al.

Fig. 1. Overview of the proposed architecture. To reduce redundancy and computa-
tional complexity, we progressively shrink the patches sequence length through 2D
max-pooling. To this aim, we divide the ViT [11] layers into M stages. Each stage is
composed of a Transformer layer, a 2D max-pooling, and a variable number of Trans-
former layers after the pooling operator. Instead of using the CLS token, the output of
the last stage is average pooled and given as input to an FC layer to compute the final
prediction. Best seen in color. (Color figure online)

The Transformer encoder [35] implemented in ViT consists of L identical
layers, each being composed of a multi-head self-attention layer (MSA) and a
multi-layer perceptron (MLP). Layer normalization (LN) is applied before every
layer [36] and residual connections are applied after every MSA and MLP. Given
the input sequence z0, the classification output of the model can be written as:

z′
l = MSA(LN(zl−1)) + zl−1 l = 1, ..., L (2)

zl = MLP(LN(z′
l)) + z′

l l = 1, ..., L (3)

y = LN(z0
L), (4)

where z0
L is the first output of the last encoder layer, corresponding to xclass.

Scaled Dot-Product Attention. The attention function performed in MSA
layers can be seen as a mapping between queries and a set of key-value pairs
with an output. Queries and keys have size dk, the values dimension is dv, and
all are obtained as linear projections of the input sequence. Given the matrix of
queries Q, and those of keys and values K and V , the output of the attention
operator is:

Attention(Q,K,V ) = softmax
(
QKᵀ
√
dk

)
V . (5)

Multi-head Attention. The above-defined attention function is computed for
h different sets of keys, values, and queries, each obtained from separate and
learned linear projections. The results after the h parallel operations are con-
catenated and projected, as follows:

MultiHead(Q,K,V ) = Concat(head1, ...headh)WO. (6)



Investigating Bidimensional Downsampling in Vision Transformer Models 291

Each head is defined by the following equation:

headi = Attention(QWQ
i ,KWK

i ,V W V
i ), (7)

where W ∗
i indicates the parameters of each attention head.

3.2 How Pooling Layers Can Help Vision Transformers

The ViT model maintains a fixed-length sequence that passes through all the
layers of the network. This choice, although simple, neglects two considerations:
(i) each layer contributes differently to the accuracy and efficiency of the model,
and (ii) using a sequence with a fixed length can introduce excessive redundancy,
with a consequent increase in memory consumption and FLOPs without a corre-
sponding benefit in performance. A multi-level hierarchical representation that
would solve both issues is, indeed, missing. CNNs achieve this through inten-
sive use of the pooling layer (or of the stride mechanism) to reduce the spatial
dimension of the inputs [14,31] and, at the same time, significantly reduce the
computational cost and increase the scalability of the model.

Bidimensional Downsampling. Inspired by Pan et al. [26], who investigated
the usage of one-dimensional pooling in ViT-like structures, we propose to apply
bidimensional pooling to shrink the patch embeddings sequence and create a
hierarchical representation.

Without loss of generality, a max-pooling operation is considered for all the
experiments. Clearly, while a 1D max-pooling can only collapse adjacent tokens,
in a 2D configuration the kernel window includes all the neighboring elements
with respect to the application point and considers the spatial arrangement of
tokens in the input image. Our pooling strategy is thus capable of summarizing
intermediate features in a spatially-aware manner. The result is a better localiza-
tion of relevant features inside the feature map. While the rest of the architecture
is left unchanged, we also replace the class token by average pooling the entire
sequence after the last encoder layer [26].

To perform a 2D operation over a mono-dimensional sequence of intermediate
activations, we firstly re-arrange the sequence of activations in matrix form, thus
recovering the original spatial arrangement, and then apply the 2D max-pooling
and flatten the result back into a sequence of vectors. The spatial dimensions
(Hout,Wout) obtained after the application of the 2D pooling operation, and
before flattening, are thus:

Hout =
⌊
Hin − K

S
+ 1

⌋
Wout =

⌊
Win − K

S
+ 1

⌋
, (8)

where K indicates the kernel size and S the stride. We do not apply any padding
or dilation. Considering that the pooling operation alters the relative spatial
positions of the activations, positional embeddings are re-computed and added
after each pooling stage.



292 P. Bruno et al.

3.3 Overall Architecture

To build our architecture, we conceptually divide the encoder layers into M
stages, as shown in Fig. 1. Before the first stage, the input is arranged in flat-
tened patches, linearly projected into a sequence of tokens. A learnable positional
encoding, initialized as in DeiT [11], is also added to inject information about
the positions of the patches. Each stage is composed of a Transformer layer, a
max-pooling 2D, and a variable number of Transformer layers. Note that the
sequence length is reduced only after the pooling layer. The first Transformer
layer input is described by the following equation:

z0 = [x1
pE,x2

pE, ...,xN
p E] + Epos, (9)

where Epos represents the learnable position embedding. We define the output
after a layer b which precedes a max-pooling layer, with also the addition of a
new positional encoding, as:

ẑb = MaxPool2D (zb) + Eb, (10)

where zb is defined as in Eq. 2 and Eb is the new learnable positional embed-
dings applied after the application of the 2D max-pooling. An average pooling is
applied after the last Transformer layer of the last stage, then a fully-connected
layer (FC) is used to make the final predictions. Formally, predictions can be
formulated as:

y = FC(AvgPool(LN(zL))). (11)

4 Experiments

To evaluate the effectiveness of our proposal, we perform experiments on two
image classification datasets and compare our approach with different variants
and baselines. In the following, we first provide implementation and experimental
details and then describe our experimental results.

4.1 Experimental Setting

In the following experiments, we consider different configurations of our ViT-
based model equipped with 2D-pooling (which we refer to as VT2D) and com-
pare against a ViT model with no pooling and a ViT-based model with 1D-
pooling [26]. In the following, we refer to these baselines as VT and VT1D,
respectively.

Datasets and Evaluation Protocol. We perform experiments on the CIFAR-
100 dataset [21], which contains 100 classes and 60k images, and the ILSVRC-
2012 ImageNet dataset [30], which has 1, 000 classes and 1.3M images. All trained
models are compared in terms of FLOPs and number of parameters and evalu-
ated in terms of top-1 and top-5 accuracy on the considered datasets.



Investigating Bidimensional Downsampling in Vision Transformer Models 293

Table 1. Experimental results on the CIFAR-100 dataset [21]. For each experiment,
we indicate the indexes of network stages in which we perform 1D or 2D pooling and
the max-pooling kernel size.

Pooling Kernel Params FLOPs Top-1 Acc. Top-5 Acc.

stages size (M) (G) (%) (%)

VT-Ti (no pooling) – – 5.54 1.25 72.92 92.88

VT1D-Ti-4 0,1,2,3 3 5.58 0.38 72.76 92.67

VT2D-Ti-1 0 3 × 3 5.55 0.31 71.86 92.03

VT2D-Ti-1 1 3 × 3 5.55 0.57 73.39 92.94

VT2D-Ti-1 2 3 × 3 5.55 0.82 73.04 92.78

VT2D-Ti-1 3 3 × 3 5.55 1.08 71.49 92.53

VT2D-Ti-2 0,2 3 × 3 5.55 0.24 70.31 91.27

VT2D-Ti-2 0,2 2 × 2 5.55 0.29 70.92 91.82

VT2D-Ti-2 1,3 3 × 3 5.55 0.54 72.25 92.32

VT2D-Ti-2 1,3 2 × 2 5.55 0.58 72.17 92.36

VT2D-Ti-4 0,1,2,3 3 × 3 5.61 0.61 72.87 92.61

VT2D-Ti-4 0,1,2,3 2 × 2 5.65 0.88 75.31 93.47

VT-S (no pooling) – – 21.70 4.58 75.62 93.01

VT1D-S-4 0,1,2,3 3 21.77 1.39 76.09 93.43

VT2D-S-1 0 3 × 3 21.71 1.15 75.31 92.32

VT2D-S-1 1 3 × 3 21.71 2.08 76.59 93.16

VT2D-S-1 2 3 × 3 21.71 3.02 76.18 93.35

VT2D-S-1 3 3 × 3 21.71 3.95 75.13 93.34

VT2D-S-2 0,2 3 × 3 21.71 0.86 73.31 91.65

VT2D-S-2 0,2 2 × 2 21.73 1.04 74.44 92.02

VT2D-S-2 1,3 3 × 3 21.71 1.97 76.26 92.91

VT2D-S-2 1,3 2 × 2 21.73 2.13 75.51 93.13

VT2D-S-4 0,1,2,3 3 × 3 21.83 2.28 75.68 92.26

VT2D-S-4 0,1,2,3 2 × 2 21.91 3.26 77.61 93.57

Implementation Details. Following recent literature on ViT-based models [11,
34], we devise two model configurations varying the model dimensionality d and
the number of attention heads h: Tiny (d = 192, h = 3) and Small (d = 384,
h = 6). Regardless of the model configuration, we always employ 12 layers,
divided in M = 4 stages with 3 Transformer layers each.

For the experiments on the CIFAR-100 dataset, we use a batch size of 128
and an initial learning rate of 1.25 · 10−4, while for the ImageNet dataset, the
batch size is set to 1024 and the initial learning rate is equal to 5 · 10−4. The
input image resolution is set to 224 × 224 for both datasets. For training, we
use the AdamW optimizer [24], with momentum and weight decay set to 0.9



294 P. Bruno et al.

Fig. 2. Performance comparison in terms of top-1 accuracy and FLOPs on the CIFAR-
100 dataset [21].

and 0.25 respectively, and train the models for 300 epochs on both the datasets.
Note that, during the training phase, we use a cosine scheduler, so that the initial
learning rate is reached only after 5 warm-up epochs, and a stochastic depth of
0.1 to facilitate convergence. In all experiments, model weights are initialized
with a truncated normal distribution.

To obtain the required amount of data to train Transformer-based models, we
follow the same data augmentation strategy used to train the DeiT model [34].
In particular, we apply rand-augment [9] and random erasing [45], together with
mixup [41] and cutmix [39]. The magnitude and standard deviation of rand-
augment are set to 9 and 0.5, respectively. Random erasing is applied with a
probability equal to 0.25. We also employ repeated augmentation [3,15,34]. We
run our experiments on 4 RTX 2080 GPUs.

4.2 Experimental Results

Experiments on CIFAR-100. To identify the best strategy to apply the 2D
pooling for reducing the model complexity while maintaining competitive per-
formance, we conduct an ablation study in which we vary the kernel size and
stride of the pooling layers and the network configuration. The configurations
considered differ in terms of the stages in which the pooling layer is applied. In
particular, we vary the number of stages, from 1 to 4, and the depth of the stage
in which 2D pooling is performed in the model. For all VT2D configurations, we
use 2D pooling with stride 2 except when applying the 2D pooling in all four
stages of the model, where we use stride equal to 1. As already mentioned, as
our baselines, we also consider the VT1D approach, in which 1D pooling with
stride 2 is applied at all four stages of the model, and the VT model, which
has no pooling layers for downsampling. Results on the CIFAR-100 dataset are
reported in Table 1, using Tiny and Small configurations. A noteworthy aspect



Investigating Bidimensional Downsampling in Vision Transformer Models 295

Table 2. Experimental results on the ImageNet dataset [30].

Pooling Kernel Params FLOPs Top-1 Acc. Top-5 Acc.

stages size (M) (G) (%) (%)

VT1D-Ti-4 0,1,2,3 3 5.75 0.38 67.28 87.70

VT2D-Ti-1 0 3 × 3 5.72 0.31 65.56 86.47

VT2D-Ti-1 1 3 × 3 5.72 0.57 70.39 89.84

VT2D-Ti-4 0,1,2,3 2 × 2 5.82 0.88 70.60 89.83

VT1D-S-4 0,1,2,3 3 22.12 1.40 74.83 92.05

VT2D-S-1 0 3 × 3 22.06 1.15 73.92 91.17

VT2D-S-1 1 3 × 3 22.06 2.08 78.19 93.87

VT2D-S-4 0,1,2,3 2 × 2 22.26 3.26 78.02 93.66

that emerges from the presented experimental results is that applying downsam-
pling at early stages brings the most noticeable saving in terms of computational
complexity. Moreover, performing a finer-grained pooling by applying kernels of
size 2 compared to 3 benefits the most the performance, at the cost of a slightly
higher computational complexity.

Our approach with 2D pooling applied at all four stages obtains better per-
formance compared to both the model without pooling and the 1D pooling
version, with a significant reduction of the computational complexity, especially
when compared to the VT model without pooling layers. Specifically, it can be
noticed that some of the tested configurations with bidimensional pooling in one
or two stages perform on par with the VT model in terms of accuracy but require
on average 50% fewer FLOPs. The best-performing variant, the VT2D with four
stages featuring pooling, brings to an accuracy increase of 2.39% and 1.99% for
the Tiny and Small configurations, respectively, while reducing the FLOPs by
one third. When comparing with the VT1D version, instead, it can be seen that
the best configuration of the VT2D model is always significantly better in terms
of accuracy but brings to an increase of the number of FLOPs. However, con-
sidering the variants with a single pooling stage, we can notice a computational
complexity similar to the 1D pooling version, but with better performance in
terms of accuracy, thus further demonstrating the effectiveness of our approach.

In Fig. 2, we show the performance comparison of our approach and the
considered baselines in terms of top-1 accuracy and FLOPs, using both Tiny
and Small configurations. From the graph, we can notice that our model obtains
the best trade-off between overall performance and computational complexity,
outperforming the VT and VT1D models in terms of accuracy while keeping
FLOPs comparable or even reduced.

Experiments on ImageNet. As a further analysis, we explore the effects of
applying 2D pooling in the case of a bigger and more complex dataset than
CIFAR-100, and consider the ImageNet dataset. In this analysis, we include a
subset of variants previously described, i.e. those with best accuracy/FLOPs



296 P. Bruno et al.

Table 3. Comparison with state-of-the-art models on the CIFAR-100 [21] and Ima-
geNet [30] datasets.

CIFAR-100 ImageNet

FLOPs Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

(G) (%) (%) (%) (%)

DeiT-Ti [34] 1.25 – – 72.20 91.10

DeiT-Ti+SCOP [33] 0.80 – – 68.90 89.00

DeiT-Ti+PoWER [12] 0.80 – – 69.40 89.20

HVT-Ti-1 [26] 0.64 – – 69.64 89.40

HVT-Ti-4 [26] 0.38 69.51 91.78 – –

VT2D-Ti-1 0.57 73.39 92.94 70.39 89.84

VT2D-Ti-4 0.88 75.31 93.47 70.60 89.83

DeiT-S [34] 4.60 – – 79.80 95.00

DeiT-S+SCOP [33] 2.60 – – 77.50 93.50

DeiT-S+PoWER [12] 2.70 – – 78.30 94.00

HVT-S-1 [26] 2.40 74.27 93.07 78.00 93.83

HVT-S-4 [26] 1.39 75.43 93.56 75.23 92.30

VT2D-S-1 2.08 76.59 93.16 78.19 93.87

VT2D-S-4 3.26 77.61 93.57 78.02 93.66

trade-off, and the baseline model with 1D pooling. Again, for all VT2D config-
urations, we use 2D pooling with stride equal to 2, except for the model variant
that applies bidimensional pooling in all four stages of the network. The results
of this comparison are reported in Table 2.

Considering the Tiny configuration, our best model is VT2D-Ti-4 which
applies a 2D pooling with kernel size 2 in all four stages, followed by VT2D-
Ti-1 in which a single bidimensional downsampling is applied in the second
stage of the network. Noticeably, VT2D-Ti-1 outperforms the one-dimensional
pooling baseline with a slight increase in terms of FLOPs. Similar results can be
also observed when turning to the Small configuration. Specifically, the VT2D-
S-1 with two-dimensional pooling at the second stage of the network overcomes
the VT1D baseline by 3.36% and 1.82% in terms of top-1 and top-5 accuracy,
respectively.

Comparison with State-of-the-Art Models. As a final analysis, we report
the comparison of our best variants and other state-of-the-art models based on
the Vision Transformer architecture that apply different strategies to achieve
efficiency (see Table 3). For the competitors, we use the same notation as for our
models. In particular, we consider the knowledge distillation-based approach
proposed in [34] (DeiT), two variants of DeiT that additionally perform pruning
(one following the strategy proposed in [33] - SCOP, the other the strategy
proposed in [12] - PoWER), and the monodimensional pooling-based approach



Investigating Bidimensional Downsampling in Vision Transformer Models 297

proposed in [26] (HVT). From the table, it can be observed that bidimensional
pooling is comparable to the considered state-of-the-art approaches both in terms
of FLOPs saving and accuracy.

5 Conclusion

In this work, we proposed to apply the concept of bidimensional pooling, which is
commonly used in CNNs, to the intermediate patch sequences processed in ViT
architectures. As happens in CNNs, this downsampling strategy allows reducing
the computational requirement and memory footprint of the model. Moreover,
it benefits the performance by enforcing a hierarchical input representation.
We evaluated our proposal on two commonly used classification datasets and
demonstrated its effectiveness for reducing the computational complexity and
increasing the classification accuracy. In fact, with respect to standard ViT, the
required FLOPs can be almost halved for equal performance while the classifi-
cation accuracy can be increased by around 2% with 30% FLOPs reduction in
both the Tiny and Small configurations.

Acknowledgment. This work has been partially supported by the project “ROAD-
STER: Road Sustainable Twins in Emilia Romagna”, funded by the International
Foundation Big Data and Artificial Intelligence for Human Development.

References

1. Amoroso, R., Baraldi, L., Cucchiara, R.: Assessing the role of boundary-level objec-
tives in indoor semantic segmentation. In: CAIP (2021)

2. Amoroso, R., Baraldi, L., Cucchiara, R.: Improving indoor semantic segmentation
with boundary-level objectives. In: IWANN (2021)

3. Berman, M., Jégou, H., Vedaldi, A., Kokkinos, I., Douze, M.: Multigrain: a unified
image embedding for classes and instances. arXiv preprint arXiv:1902.05509 (2019)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV (2020)

5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. IEEE Trans. PAMI 40(4), 834–848 (2017)

6. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509 (2019)

7. Cornia, M., Baraldi, L., Cucchiara, R.: Explaining transformer-based image cap-
tioning models: an empirical analysis. In: AI Communications, pp. 1–19 (2021)

8. Cornia, M., Baraldi, L., Fiameni, G., Cucchiara, R.: Universal captioner: long-
tail vision-and-language model training through content-style separation. arXiv
preprint arXiv:2111.12727 (2021)

9. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: RandAugment: practical automated
data augmentation with a reduced search space. In: NeurIPS (2020)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL (2018)

http://arxiv.org/abs/1902.05509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2111.12727


298 P. Bruno et al.

11. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. In: ICLR (2021)

12. Goyal, S., Choudhury, A.R., Raje, S., Chakaravarthy, V., Sabharwal, Y., Verma,
A.: PoWER-BERT: accelerating BERT inference via progressive word-vector elim-
ination. In: ICML (2020)

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
15. Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., Soudry, D.: Augment

your batch: improving generalization through instance repetition. In: CVPR (2020)
16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
17. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross

attention for semantic segmentation. In: CVPR (2019)
18. Jiang, Y., Chang, S., Wang, Z.: TransGAN: two pure transformers can make one

strong GAN, and that can scale up. In: NeurIPS (2021)
19. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are RNNs: fast

autoregressive transformers with linear attention. In: ICML (2020)
20. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers

in vision: a survey. ACM Comput. Surv. (2021)
21. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images

(2009)
22. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR (2019)
23. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-

dows. In: ICCV (2021)
24. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)
25. Michel, P., Levy, O., Neubig, G.: Are sixteen heads really better than one? In:

NeurIPS (2019)
26. Pan, Z., Zhuang, B., Liu, J., He, H., Cai, J.: Scalable vision transformers With

hierarchical pooling. In: ICCV (2021)
27. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language

understanding by generative pre-training (2018)
28. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,

real-time object detection. In: CVPR (2016)
29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NeurIPS (2015)
30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J

Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR (2015)
32. Stefanini, M., Cornia, M., Baraldi, L., Cascianelli, S., Fiameni, G., Cucchiara, R.:

From show to tell: a survey on deep learning-based image captioning. IEEE Trans.
PAMI 1–20 (2022)

33. Tang, Y., et al.: Scop: scientific control for reliable neural network pruning. In:
NeurIPS (2020)

34. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: ICML (2021)

35. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
36. Wang, Q., et al.: Learning deep transformer models for machine translation. In:

ACL (2019)
37. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense pre-

diction without convolutions. In: ICCV (2021)

https://doi.org/10.1007/s11263-015-0816-y


Investigating Bidimensional Downsampling in Vision Transformer Models 299

38. Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on
imageNet. In: ICCV (2021)

39. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization
strategy to train strong classifiers with localizable features. In: ICCV (2019)

40. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint
arXiv:2004.08955 (2020)

41. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk
minimization. In: ICLR (2018)

42. Zhang, P., et al.: VinVL: revisiting visual representations in vision-language mod-
els. In: CVPR (2021)

43. Zhang, W., et al.: TernaryBERT: distillation-aware ultra-low bit BERT. In:
EMNLP (2020)

44. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers. In: CVPR (2021)

45. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. In: AAAI (2020)

46. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable
transformers for end-to-end object detection. In: ICLR (2021)

http://arxiv.org/abs/2004.08955

	Investigating Bidimensional Downsampling in Vision Transformer Models
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Preliminaries
	3.2 How Pooling Layers Can Help Vision Transformers
	3.3 Overall Architecture

	4 Experiments
	4.1 Experimental Setting
	4.2 Experimental Results

	5 Conclusion
	References




