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Abstract. Since the beginning of the COVID-19 pandemic, more than
350 million cases and 5 million deaths have occurred. Since day one, mul-
tiple methods have been provided to diagnose patients who have been
infected. Alongside the gold standard of laboratory analyses, deep learn-
ing algorithms on chest X-rays (CXR) have been developed to support
the COVID-19 diagnosis. The literature reports that convolutional neu-
ral networks (CNNs) have obtained excellent results on image datasets
when the tests are performed in cross-validation, but such models fail to
generalize to unseen data. To overcome this limitation, we exploit the
strength of multiple CNNs by building an ensemble of classifiers via an
optimized late fusion approach. To demonstrate the system’s robustness,
we present different experiments on open source CXR datasets to sim-
ulate a real-world scenario, where scans of patients affected by various
lung pathologies and coming from external datasets are tested. Promis-
ing performances are obtained both in cross-validation and in external
validation, obtaining an average accuracy of 93.02% and 91.02%, respec-
tively.

Keywords: COVID-19 · X-ray · Convolutional neural networks ·
Fusion of classifiers

1 Introduction

Since the start of the pandemic, the [1] recorded more than 350 million cases
and 5 million deaths caused by the acute respiratory syndrome COVID-19. To
control and reduce the spread of the pandemic, different testing modalities, like
the reverse transcriptase-polymerase chain reaction (RT-PCR), have been intro-
duced to validate the presence of the virus in patients.

Further to laboratory tests, there have also been efforts to use medical images
as a means to diagnose COVID-19 pneumonia [2], mainly using computed tomog-
raphy (CT) and chest X-ray (CXR) scans. The choice of the imaging modality
carries pros and cons. Thanks to its high specificity and its facility of recognizing
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the different stages of the pathology, CT is the key modality for diagnosing lung
pathologies. However, on CT scans it is hard to differentiate between COVID-19
positive patients and those affected by other lung pathologies [2]. Moreover, with
CT scanning there is a high risk of contamination for both patients and clinicians,
since the cleaning procedure of the scanners is not trivial. Conversely, although
CXR has less sensitivity than CT, it is more used for its cost-effectiveness, com-
pactness and limited cross-infection. With the CXR modality there is also the
possibility of using portable scanners, useful in emergency care units or at the
patients’ house, facilitating the control of the virus also in underdeveloped coun-
tries.

Over the last decade, deep-learning (DL) has demonstrated to be one of the
best solutions to overcome challenges coming from multiple fields of study since it
can extrapolate information from data useful for the task at hand [7,22]. There-
fore, during the COVID-19 pandemic, researchers have developed DL models
able to diagnose COVID-19 on CXR. The state-of-the-art has focused mainly on
two classification tasks. The first detects COVID-19 pneumonia in a binary clas-
sification task distinguishing between images of patients suffering from COVID-
19 and those not affected by this disease, including healthy subjects and those
affected by other pneumonia. This task is shortly referred to as COVID-19
vs. non-COVID-19 in the following. The second aims to discriminate images
of patients affected by COVID-19 pneumonia, other types of pneumonia and
healthy subjects shortly named COVID-19 vs. Pneumonia vs. Healthy here-
inafter. Providing a survey of the work on these tasks is out of the scope of
this contribution, but the interested readers can refer to [31] for further details.
However, it is worth noting that the analysis of the literature reveals a major
limitation: such models do not reflect a real-world where patients affected by dif-
ferent lung diseases, further to pneumonia, arrive at hospitals and are scanned
for diagnosis. For instance, a model trained on the non-COVID-19 vs. COVID-19
task, where the non-COVID-19 class includes only healthy patients, is not useful
in this scenario since the model is not specific to the COVID-19 diseases. Sim-
ilarly, in the Healthy vs. Pneumonia vs. COVID-19 task, the algorithm learns
how to classify between patients affected by COVID-19, healthy patients and
pneumonia, but it is not able to detect other lung diseases. These motivations
go hand-in-hand with clinical motivations, which state that it is important to
detect if a patient is healthy or is affected by pulmonary disease, discriminating
between a generic pulmonary disease, COVID-19 pneumonia and other types of
pneumonia [5] since each therapy is different [21].

In the literature, the few papers which extend the 2-class and the 3-class clas-
sification tasks to other pulmonary diseases are few in number. In [21] the authors
used a pre-trained CNN which uses texture descriptors of CXR images [8,30]
to recognize different types of pneumonia: COVID-19, SARS, MERS, Pneumo-
cystis, Streptococcus, Varicella and healthy cases. In [9] the authors proposed
a CNN model similar to the InceptionNetV3 that screens COVID-19 positive
cases from other types of Pnuemonia, Tubercolosis patients and healthy cases,
using a CXR dataset [8,18,25,30]. Finally, in [3] the authors presented a trans-
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Fig. 1. Example of CXR scans for each class.

fer learning approach working with a pre-trained CNN on a CXR dataset [8,30]
to discriminate between four classes: COVID-19 pneumonia, other pneumonia,
other diseases and healthy patients.

A general limitation of most approaches processing CXR scans for classifi-
cation goals is that they do not externally validate the models on never-seen
data because only a simple hold-out or a cross-validation (CV) scheme are usu-
ally used to compute the performance. This favorably biases the performance
concerning a real-world scenario where CXR scans come from different scanners
and hospitals, which makes non-trivial the generalization of the model. Such
issue is also confirmed by our results reported in the next sections: we find that
state-of-the-art CNNs have high performance when tested in CV, but they drop
when tested on an external data source. To overcome this limitation, and also
to deal with the need of extending the 2- and 3-class task to more classes, in
this paper we present a method to algorithmically build an ensemble of pre-
trained CNNs that performs a 4-class classification task on CXR scans, where
we have patients affected by COVID-19, other pneumonia, other lung diseases
and healthy subjects, shortly referred as COVID-19 vs. Pneumonia vs. Other vs.
Healthy. Figure 1 shows examples of images belonging to those four classes. The
extension to a 4-class scenario may seem straightforward, but given that many
lung diseases are collected in the new class, it extends the capabilities of the
system, which now can work with a vast number of lung conditions. To make
the DL model usable in clinical practice, we present an approach that performs
well not only in CV but is also robust to external validation.

The manuscript is organized as follows: Sect. 2 presents the datasets used
for training and testing, Sect. 3 shows the proposed method and explains the
experiments followed, and Sect. 4 shows and discusses the results obtained, and
finally Sect. 5 provides the concluding remarks.

2 Materials

The scientific community has focused on gathering various COVID-19 open-
access datasets. Among them, here we focus on those containing CXR images
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that we put together to reflect as much as possible a real-world scenario where
different lung diseases are studied and where the scans are collected from multiple
centers, augmenting the variance in the data. As also discussed in [21], inter-
center variability is a crucial step [9] to make the algorithms more robust.

We collected images of patients affected by COVID-19 by exploiting two
COVID-19 multi-centric datasets, namely AIforCOVID [27] and COVIDX [29].
The former is used for training, whilst the latter is for external validation. Fur-
thermore, images for the other three classes (i.e. pneumonia, other pulmonary
diseases and healthy cases) were retrieved from the NIH CXR dataset [30] and
they are used to set up the training and validation datasets.

The AIforCOVID dataset [27] is composed of anteroposterior and posteroan-
terior views of 1100 COVID-19 positive patients, with a mild or severe outcome
collected from six different Italian hospitals.

The well-known COVIDX dataset [29] is composed of both COVID-19 posi-
tive and negative CXR scans: here we retrieved 16690 scans of the positive class
since the non-COVID-19 cases came from the NIH CXR dataset [30].

The NIH CXR dataset [30] contains 112120 CXR images in anteroposterior
view collected from NIH clinical center’s internal PACS systems: it includes
60361 scans of healthy cases, 1431 scans of patients affected by pneumonia and
50328 scans of cases affected by other lung pathologies, which are atelectasis,
cardiomegaly, effusion, infiltration, mass, nodule, and pneumothorax. To have a
balanced dataset for training, we randomly selected 1100 images for each of the
three classes. The remaining 108820 scans were used for external validation.

To sum up, the dataset used for experiments performed in CV is composed of
1100 scans for each of the four classes, whereas the one used in external validation
accounts for 16690 scans for the COVID-19 class, 331 scans for the pneumonia
class, 49228 scans for the other lung pathologies class, and 59261 scans for the
healthy class.

3 Methods

Our DL approach works with CXR images to perform a 4-class classification
task, which discriminates between COVID-19 cases, pneumonia cases, healthy
patients and patients affected by other lung diseases, and it algorithmically builds
an optimized late fusion ensemble of multiple pre-trained CNNs. The idea stems
from observing that today many pre-trained CNNs are available, permitting
researchers and practitioners to explore many different deep architectures by
exploiting transfer learning even when the available dataset would not permit
training from scratch. Furthermore, once several CNNs have been trained, a
question arises: is it better to pick the CNN with the best performance on a val-
idation set or to explore the possibility to build an ensemble of CNNs? Indeed,
it is well known that in many cases, ensembles of classifiers combined in late
fusion have provided better performance than single learners [14]. This happens
since fusing multiple models provides complementary and more powerful data
representation, and the success of such a mixture relies on having diverse clas-
sifiers [14] offering different and complementary points of view to the ensemble.
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Fig. 2. Schematic representation of our proposal.

Moreover, in the case we opt for the ensemble, there is another question: which
are the CNNs to be included in the ensemble? To this end, denoting with n
and k the number of available CNNs and the number of CNNs to included in
the ensemble, a researcher should explore γ =

∑n
k=2

(
n
k

)
combinations to find

which is the best one. But putting together the CNNs with the largest perfor-
mance not always retrieves the best ensemble. This happens because the CNNs
should provide wrong classifications on the same samples: this phenomenon can
be measured by the diversity score, which measures how much the classifications
returned by a mixture of classifiers vary on a set of data. In this respect, here
we present a multi-objective solution to this search that returns the ensemble
and therefore the set of CNNs, maximizing accuracy and diversity scores on a
validation set. Figure 2 shows the whole pipeline that is further described in the
next subsections.

3.1 Pre-processing

As a first step, there is the need to align the CXR images because they are
collected from different centers: the goal is to obtain a cropped image of the
bounding box containing the patient’s lung, excluding unnecessary regions of
the scan. This is performed using a U-Net [23] trained on the Montgomery
County CXR collection [18] and the Japanese Society of Radiological Technology
repository [25] with a total of 7717 CXR scans of non-COVID-19 patients, which
extrapolates the mask of the lung pixels. Given the mask, the cropped image is
the minimum squared bounding box containing both lungs.

The U-Net was trained for 100 epochs using a binary cross-entropy loss func-
tion and an Adam optimizer after resizing the images to a 3× 256× 256 normal-
ized tensor. To prevent overfitting, we applied a random augmentation, which
consists of a random rotation (±25◦), random horizontal and vertical shift (±25
pixels), and random zoom (0–0.2%). To remove any artifact, we selected the
top two biggest segmented regions representing the lungs. We also assessed the
U-Net performance by running a 5-fold CV on the two aforementioned datasets
that returned an average Dice score equal to 96.32%.
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3.2 Training of Single CNNs

We individually trained and tested 20 different CNNs with a stratified 10-fold
CV where the train-validation-test split is 70-20-10%. They are well-known state-
of-the-art CNNs [20] pre-trained on the ImageNet dataset [10]: AlexNet [19],
VGG11, VGG13, VGG16, VGG19 [26], GoogLeNet [28], ResNet18, ResNet34,
ResNet50, ResNet101, ResNet152 [15], WideResNet50 [33], ResNeXt50 [32],
SqeezeNet1(0), SqeezeNet1(1) [17], DenseNet121, DenseNet161, DenseNet169,
DenseNet201 [16], and MobileNetV2 [24].

After the alignment phase, the images are resized to a 3× 224× 224 tensor
and normalized. To prevent overfitting, during training a random augmentation
is performed: random horizontal and vertical random shift (±7 pixels), flip along
the vertical axis, random rotation (±45◦) and elastic transformation (α = 20−40,
σ = 7). All the CNNs are trained using the cross-entropy as loss function, with
a maximum of 300 epochs and an early stopping of 25 epochs on the validation
set. We used a batch size of 32 and used stochastic gradient descent as optimizer
with an initial learning rate of 0.001 and a momentum of 0.9, a learning rate
scheduler with a step size of 7, and γ = 0.1.

3.3 Ensemble Optimization

As already mentioned, the composition of the ensemble is determined by maxi-
mizing both the accuracy and the diversity scores provided by the ensemble itself
on a validation set. While the accuracy ACC is uniquely defined, the diversity
can be measured using different scores heuristically set, which are divided into
pairwise and non-pairwise measures, although the former usually perform better
than the latter [6]. In this work, the used the pairwise double-fault score DFi,j ,
which is the proportion of samples miss-classified by the classifiers i and j. For a
team of c classifiers, the averaged double-fault DF over all pairs of classifiers is
given by DF = 2

c(c−1)

∑c−1
i=1

∑c
j=i+1 DFi,j . Both ACC and DF range in [0, 1],

and the higher the values, the more accurate and diverse the models. In prac-
tice, given c classifiers collected in the set C = {Ci}c

i=1 our method looks for the
combination of k ≤ c models maximizing both the accuracy and the double-fault
score (DF ) on a validation set among all the θ possible combinations which are
collected in the set Θ = {Θj}θ

j=1, where Θj denotes one of the possible mixture
of classifiers. The method returns Θ̂ containing the set of k classifiers from C that
constitute the best ensemble so that Θ̂ = {Ci ∈ Θj |j = arg minΘj∈ΘF}, where
F is the objective function defined as F = (1−ACC(Θj))2 +(1−DF (Θj))2. Let
us also notice that, as proofed in [12,13], solving this two-objective minimization
problem corresponds to finding the Pareto optimum of the optimization problem
that has a unique solution.

Furthermore, the method can work with any aggregation rule combining the
outputs provided by the single classifier in the ensemble. In this respect, here
we use the majority voting rule, which assigns the most common label among
the classifications since it has demonstrated to be the most performing in many
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Table 1. Results of single CNNs in CV.

Rank CNN ACC Recall

COVID-19 Pneumonia Other Healthy

1 VGG13 89.87± 0.14 96.34± 0.07 87.24± 0.16 86.53± 0.20 89.35± 0.20

2 MobileNetV2 89.80± 0.11 97.56± 0.04 87.83± 0.18 84.38± 0.26 89.42± 0.16

3 VGG11 89.55± 0.01 98.78± 0.23 87.25± 0.03 84.52± 0.08 87.63± 0.12

4 DenseNet121 88.27± 0.05 100.0± 0.00 84.44± 0.14 81.44± 0.20 87.21± 0.30

5 DenseNet201 88.20± 0.16 98.78± 0.25 85.55± 0.18 82.74± 0.23 85.74± 0.22

6 ResNet34 88.11± 0.13 97.56± 0.26 85.00± 0.02 83.62±0.12 86.26± 0.01

7 ResNet101 87.43± 0.12 98.78± 0.11 83.62± 0.25 82.31± 0.24 85.00± 0.08

8 DenseNet161 87.02± 0.04 98.78± 0.03 83.89± 0.08 80.89± 0.05 84.52± 0.19

9 GooLeNet 86.76± 0.13 98.78± 0.22 80.15± 0.08 82.19± 0.04 85.91± 0.13

10 SqueezeNet1(1) 86.61± 0.19 96.34± 0.27 82.46± 0.29 82.31± 0.28 85.31± 0.22

11 VGG16 86.32± 0.11 98.78± 0.11 76.30± 0.02 83.74± 0.03 86.47± 0.11

12 WideResNet50 86.25± 0.03 97.56± 0.04 81.41± 0.06 78.41± 0.01 87.63± 0.15

13 SqueezeNet1(0) 86.14± 0.14 97.56± 0.20 78.79± 0.19 82.92± 0.25 85.29± 0.17

14 AlexNet 85.75± 0.24 97.56± 0.14 82.22± 0.14 79.23± 0.09 84.00± 0.28

15 ResNeXt50 85.53± 0.28 98.78± 0.04 81.61± 0.21 79.31± 0.15 82.40± 0.14

16 VGG19 85.48± 0.13 97.56± 0.07 76.72± 0.26 82.31± 0.30 85.31± 0.10

17 DenseNet169 85.13± 0.04 98.78± 0.06 80.28± 0.09 79.42± 0.11 82.04± 0.18

18 ResNet18 84.80± 0.08 100.0± 0.00 75.74± 0.17 80.31± 0.14 83.13± 0.23

19 ResNet152 84.77± 0.15 97.56± 0.22 80.01± 0.28 77.15± 0.19 84.36± 0.19

20 ResNet50 83.83± 0.11 96.34± 0.12 80.31± 0.16 77.13± 0.04 81.55± 0.25

applications [4]. To prevent any tie, we considered only odd values of k in [3, 20],
resulting in 9 combinations.

Notice also that, to prevent any bias, the optimization is performed on a
validation set without intersections with the test and external validation sets.

4 Results and Discussions

Tables 1, 2, 3 and 4 show all the results achieved in terms of accuracy and
recall for each of the four classes. On the one hand, Tables 1 and 2 present
the performance attained by each of the 20 CNNs when the experiments were
performed in 10 fold CV and on the external dataset, respectively. On the other
hand, in the case of CV, each row of Table 3 reports the scores achieved by the
ensemble returning the minimum F among all the possible mixture of classifiers
in Θ; note that such ensembles were built considering only odd values of k to
avoid any ties in the final decision. Furthermore, for any k, we fixed the ensemble
in Table 3 and applied it to the external dataset: the corresponding results are
shown in Table 4. All such four tables also show in the first column the rank of
each row.
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Table 2. Results of single CNNs in external validation.

Rank CNN ACC Recall

COVID-19 Pneumonia Other Healthy

2 VGG13 82.83± 0.95 90.26± 0.87 80.46± 0.93 81.49± 0.58 82.24± 0.65

1 MobileNetV2 83.68± 0.91 91.84± 0.57 83.16± 0.73 77.65± 0.60 84.35± 0.45

3 VGG11 82.70± 0.52 93.98± 0.40 82.07± 0.68 78.44± 0.89 80.26± 0.85

6 DenseNet121 81.64± 0.97 94.18± 0.79 78.85± 0.80 74.74± 0.96 80.06± 0.66

7 DenseNet201 81.49± 0.59 93.97± 0.92 78.18± 0.60 78.01± 0.59 80.17± 0.61

5 ResNet34 82.37± 0.77 90.75± 0.67 80.17± 0.80 76.66± 0.82 80.83± 0.73

4 ResNet101 82.69± 0.49 93.01± 0.42 77.11± 0.69 75.76± 0.44 78.32± 0.77

8 DenseNet161 80.97± 0.45 93.70± 0.95 77.10± 0.52 74.57± 0.56 79.92± 0.79

11 GooLeNet 80.86± 0.52 93.78± 0.80 74.22± 0.57 75.02± 0.53 79.69± 0.52

13 SqueezeNet1(1) 80.13± 0.98 90.27± 0.65 76.87± 0.92 76.84± 0.80 78.93± 0.51

9 VGG16 80.94± 0.94 91.82± 0.92 71.33± 0.74 76.41± 0.45 79.07± 0.49

12 WideResNet50 80.42± 0.61 91.97± 0.76 75.04± 0.71 73.35± 0.64 82.94± 0.63

10 SqueezeNet1(0) 80.94± 0.69 91.12± 0.61 74.28± 0.55 76.64± 0.97 78.80± 0.65

16 AlexNet 79.47± 0.74 92.68± 0.79 76.44± 0.86 74.28± 0.87 78.21± 0.60

17 ResNeXt50 79.15± 0.71 93.01± 0.77 74.71± 0.51 73.97± 0.42 77.49± 0.87

20 VGG19 78.22± 0.79 91.89± 0.41 70.65± 0.52 76.95± 0.47 77.91± 0.45

15 DenseNet169 79.50± 0.85 91.86± 0.75 75.17± 0.87 72.03± 0.59 75.31± 0.81

18 ResNet18 78.70± 0.91 94.68± 0.75 68.98± 0.80 72.93± 0.79 78.37± 0.43

14 ResNet152 80.01± 0.76 92.02± 0.48 74.31± 0.88 70.34± 0.77 78.49± 0.68

19 ResNet50 78.70± 0.53 89.26± 0.90 73.78± 0.64 71.06± 0.70 74.12± 0.90

In Table 1 we notice that the models provide satisfactory performance in
CV, but Table 2 reveals that they do not generalize well to images belonging
from a cohort different from the one used for training, as the drop of 5–8% in
accuracy suggests. Similar behavior occurs for the recalls of each class. This
observation is strengthened by the fact that the results in external validation
are attained on a set of thousands of images, much larger than the set used
for training. This finding also confirms previous work showing that DL suffers
from this limitation in several bio-medicine applications [11]. This behavior also
occurs for the models used by the authors in [3], which worked with the AlexNet,
VGG16, and ResNet50.

Let us now focus on the results attained by the optimized ensembles (Tables 3
and 4). We notice in all the cases in Table 3 that the accuracy is larger than 90%
and the ensembles, whatever the number of single CNNs used, always outper-
form the results provided by the single deep networks. This suggests that the
ensemble of classifiers successfully exploits the diversity introduced by the dif-
ferent CNNs. Furthermore, the ensemble is robust to external validation since
its performance drops to a lesser extent, i.e. around 2–3%, for any k. Among
all the ensembles, the combination with the highest accuracy in both the exper-
iments has k = 3, showing that the best choice of k can be obtained prior to
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Table 3. Results of ensembles in CV.

Rank k ACC Recall

COVID-19 Pneumonia Other Healthy

1 3 93.02± 0.04 98.78± 0.21 90.40± 0.15 88.51± 0.25 94.71± 0.13

4 5 91.60± 0.22 100.0± 0.00 89.38± 0.26 87.68± 0.07 89.33± 0.23

2 7 92.09± 0.27 98.78± 0.21 89.38± 0.26 87.68± 0.07 92.59± 0.07

3 9 92.08± 0.15 98.78± 0.21 90.40± 0.15 88.51± 0.25 90.42± 0.29

8 11 90.53± 0.25 98.78± 0.21 89.38± 0.26 87.68± 0.07 86.52± 0.15

9 13 90.33± 0.22 98.78± 0.21 89.38± 0.26 87.68± 0.07 85.46± 0.21

7 15 90.77± 0.23 98.78± 0.21 90.40± 0.15 88.51± 0.25 85.46± 0.21

6 17 91.28± 0.17 97.56± 0.30 91.42± 0.06 89.75± 0.28 86.52± 0.15

5 19 91.31± 0.17 97.56± 0.30 91.42± 0.06 89.75± 0.28 86.52± 0.15

Table 4. Results of ensembles in external validation.

Rank k ACC Recall

COVID-19 Pneumonia Other Healthy

1 3 91.02± 0.86 96.24± 0.82 87.83± 0.42 85.62± 0.51 92.60± 0.84

5 5 88.84± 0.58 97.81± 0.91 86.99± 0.52 85.46± 0.45 86.58± 0.86

3 7 89.94± 0.96 95.99± 0.57 86.42± 0.40 85.26± 0.89 90.49± 0.58

2 9 90.03± 0.73 96.44± 0.83 87.89± 0.95 85.84± 0.50 88.17± 0.57

9 11 87.53± 0.74 96.44± 0.58 86.58± 0.98 85.50± 0.85 83.68± 0.87

8 13 87.73± 0.85 96.40± 0.66 87.29± 0.55 85.29± 0.51 83.12± 0.52

6 15 88.51± 0.45 95.79± 0.63 88.28± 0.83 86.07± 0.98 82.90± 0.84

7 17 88.44± 0.93 94.66± 0.94 89.25± 0.66 86.93± 0.42 84.48± 0.52

4 19 89.21± 0.68 94.90± 0.47 88.79± 0.73 87.07± 0.41 84.31± 0.57

the external validation. This combination is composed of the VGG11, ResNet34,
and DenseNet161 CNNs, which do not correspond to the top 3 single models.

Furthermore, we assess if the performance of the CNNs and of the ensembles
are different. To this goal, rather than focusing on the best models, we run the
pairwise t-test between the distributions of each performance score. In other
words, both in CV and external validation, we compare the performance scores
between the single CNNs and the ensembles, finding that they are statistically
different (p-value ≤ 0.05). In particular, this result holds not only for the global
accuracy but also for the recall of each class. The statistical significance of the
performance differences is also confirmed when comparing the best CNN and
the best ensemble.

Finally, we deepen how the optimization works on the validation set. To this
goal, the left panel in Fig. 3 shows the values of accuracy and diversity com-
puted for any of the θ ensembles we tested. Straightforwardly, the best ensemble
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Fig. 3. Left panel: diversity vs accuracy plot of all the possible Θj for all ks. Right
panel: diversity vs accuracy plot of the optimal Θ̂ for each k. The objective function
F is plotted in red, the darker the color the better the value. (Color figure online)

is the one lying in the top right corner of this plot. Furthermore, we notice
that the lowest diversity values correspond to the lowest accuracy, confirming
the empirical observation that any mixture of classifiers should include learners
making errors on different samples. Observing the colors, we notice that there is
a concentric scheme as k rises, showing that ensembles of lower values of k have
a higher range of accuracy and diversity. This suggests that randomly picking
three or even more CNNs and including them in an ensemble does not guar-
antee to get larger performance than using one of the CNNs. To further prove
the importance of having the diversity in the objective function F we also per-
formed an ablation experiment where its contribution is neglected: this means
that the composition of the best ensemble is determined only by maximizing the
accuracy. The results, not shown here for space reason, reveal that for any k
the performance of an ensemble built using our F is better than those attained
maximizing only the accuracy. Let us now focus on the right panel, which zooms
the plot close to the top right corner, showing level curves that correspond to
points where F is constant. As already reported, the two-objective optimization
problem is solved by an ensemble of 3 classifiers. We also notice that sub-optimal
performances are attained not by other ensembles with other three classifiers but,
rather, by ensembles with more classifiers. Nevertheless, the positions of the col-
ored circles confirm that maximizing one of the two scores is not enough to get
the best performance. Indeed we note that the diversity drops as the accuracy
increases. Furthermore, as the number of classifiers in the mixture increases, the
multi-objective function F drops, and in some cases also the diversity and the
accuracy drop. This empirically suggests that ensuring diversity while keeping
large accuracy becomes more difficult as the number of classifiers in the ensemble
increases.

5 Conclusions

In this manuscript we presented an approach to build an optimized ensemble
combining several CNNs via a late fusion approach. The goal is to obtain a
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classifier robust to CXR scans of multiple pulmonary diseases coming from mul-
tiple data sources, as it happens in the real world. In an effort to deploy the
solution in practice, the results on the one side show that our approach is able
to generalize to unseen data, overcoming the limits of single classifiers. On the
other side, the rankings shown in Tables 3 and 4 reveal that the best ensemble
in CV is also the best in the external validation, an observation that does not
hold in the case of single CNNs, confirming the robustness of the method. Future
works are directed towards the external validation on other public, as well as to
extend the number of classes.
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