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Abstract. Alarms in industrial control rooms are defined by their ability to alert
an operator of abnormal events that require prompt response. However, when
vigilant, operators may anticipate upcoming alarms, rendering those alarms less
informative if not a nuisance. Three gaze-based alarm acknowledgement methods
were designed by estimating operator awareness based on their eye fixations on
the parameter/area of interest and parameter behavior shortly before the alarm.
The three designs differed in acknowledging the types of parameter behaviors,
which could be: a) near the alarm threshold, b) fluctuating drastically, or c) trend-
ing towards an alarm threshold. These three parameter behaviors correlate with
increased visual sampling, which suggests higher operator awareness or expec-
tation of alarms. In a simulator study comparing the three gaze-based acknowl-
edgement methods against no gaze acknowledgement, 24 participants completed
24 trials of alarm monitoring task while maintaining a single parameter within a
predefined range. Analysis of variance revealed that usability ratings were higher
for conditions with than without gaze acknowledgements, demonstrating promise
for this alarm management approach.
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1 Introduction

Industrial control room alarms alert operators to abnormal events for prompt response;
however, alarm informativeness changes with respect to monitoring behavior, making
expected alarms potentially nuisance [1—4]. Both focused and selective attention [5] of
the operator for mitigating abnormal events may be compromised if alarms are unin-
formative, difficult to ignore, and onerous to manage [6]. To alleviate operators from
attention and workload demand of managing alarms, we designed three gaze-based alarm
acknowledgement methods that estimated operator anticipation of impending alarms and
reduce the salience of alarm presentation to match the amount of redirection needed.
Inspiration for this interaction design came from previous work on Attentive User
Interfaces (AUI) [8]. AUIs use gaze, scan paths, body orientation, and/or proximity to
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determine the location of the display/environment that a person is attending, and alter
the interface based on the indirect estimation/computation of user attention [7]. AUI
essentially uses the design metaphor of a dialogue that requires turn-taking and eye
contact to determine whether interruption is timely and aligned with the user’s priorities
[8].

Like AUI, our design for gaze-based acknowledgement focuses on adapting the
display and interaction based on the operator’s attention estimated with eye tracking
data. Utilizing eye-tracking enables unobtrusive estimation of the operator awareness of
parameters and passive acknowledgement of alarms, alleviating operators from distrac-
tion and manual acknowledgment. This gaze interaction design is envisioned as addi-
tional support to manual acknowledgement in traditional alarm systems. A successfully
implemented gaze interaction system that reduces anticipated alarms could improve the
safety of industrial operations by increasing the speed at which those nuisance alarms
are acknowledged, thereby reducing the distraction from less informative alarms.

The remainder of this paper is organized as follows: Sect. 2 describes the three gaze-
based acknowledgement methods; Sect. 3 describes the human-participant study and
reports the results of our analysis on usability; and finally, conclusions of our work are
presented in Sect. 4.

2 Three Designs

The primary objective of gaze-based acknowledgement is to adjust the salience according
to operator awareness. Flashing and loud auditory cues of an alarm force the operator
to reorient their attention and are difficult to ignore any peripheral cue, regardless of its
informative nature or validity [6].

For this reason, our gaze-based acknowledgement, when activated, reduces the alarm
salience by eliminating audio alert and replacing the yellow highlight of the parameter
with a yellow outline (Fig. 1). The gaze-based acknowledgement design deliberately
maintains a visual marker to communicate that the alarm is unresolved while reducing
salience on an alarm that operator likely has awareness of. For activating the gaze-
based acknowledgement that reduces the alarm salience, three methods based on two
conditions have been investigated: 1) the operator’s fixations on the parameter/Area of
Interest (AOI), and 2) parameter behavior associated with increased visual sampling.

The first condition is met (for all three methods) when there are at least two fixations
on the parameter or AOI during a short 3-s window prior to the alarm (i.e., t-4 to t-1
until the alarm where t denotes time in Fig. 2). A minimum fixation threshold was
set because of the association between the number of fixations and dwell duration on
relevant AOI and operator manual performance [9]. Similarly, a fixation cluster that
occurs before an event has been interpreted as anticipation [10]. For these gaze-based
alarm acknowledgement methods, fixations were computed with the Velocity-Threshold
Identification (I-VT) algorithm, which distinguishes fixations from saccades based on
the difference in angular speed [11]. The 3-s time window was derived from intention-
based research in the automotive industry which has shown that a three to five second
window was the most accurate for predicting intention [12]. Our design disregarded
fixations that occurred less than one second before the alarm occurs because the time
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Fig. 1. Alarm without gaze-acknowledgement (left) versus alarm with gaze-based acknowledge-
ment (right).

interval between the glance and alarm would likely be too short for a human to anticipate
the alarm in an endogenous manner.

The second condition is based on the parameter behavior of the impending alarm
shortly before occurrence. In other words, acknowledgement is driven by the character-
istics of the parameter trendline. Research indicates that an operator’s visual sampling
changes with respect to parameter behaviors, thereby indicating increased attention and
subsequent alarm anticipation. Our three designs vary based three types of parameter
behavior that is: a) near the alarm threshold, b) fluctuating drastically, or c) trending
towards an alarm threshold. Therefore, the three designs were named Proximity-based
(Sect. 2.1), Entropy-based (Sect. 2.2), and Prediction-based (Sect. 2.3), respectively.
Figure 2 illustrates how the gaze-based acknowledgement methods function by example.

2.1 Proximity-Based Acknowledgement Method

Operators increase their visual sampling rate on parameters near the control limit [13,
14]. In some cases, operators set mental targets for when they need to watch a parameter
value more closely, which are more conservative than the original alarm settings [15,
16]. Similarly, [17] observed that operators tightened alarm limits, creating pre-alarms,
if they suspected that parameters would drift. This implies that when a parameter is at
risk of reaching abnormal values, operators would monitor the parameter more closely to
make sure those parameters do not alarm. These findings suggest that frequent sampling
of a parameter near its control limit is likely correlated with the expectation of an alarm.

Therefore, in addition to counting fixations, the proximity-based method would
acknowledge an alarm only when the parameter value exceeded the acknowledgement
thresholds from the past four seconds. The gaze acknowledgement thresholds were
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Fig. 2. Each graphic shows an instance where the gaze-based acknowledgement methods would
activate (black trendline) and an instance where it would not (red trendline). X-axis represents time
scale in seconds and y-axis represents parameter scale in percent across (a) to (c). (a) Proximity-
based acknowledgment method, (b) Entropy-based acknowledgement method, and (c) Prediction-
based acknowledgement method. (Color figure online)
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another static threshold set at 10% and 90% of the operable range between the high
and low alarms of the parameter (e.g., for a parameter with an operating range of 25
to 75% the acknowledgement thresholds would be at 30 and 70%). These acknowl-
edgement thresholds were not displayed on the parameter but determined activation of
the acknowledgement. Figure 2a depicts an instance of when acknowledgement would
occur for this method (black line) and an instance where it would not (red line).

2.2 Entropy-Based Acknowledgement Method

Monitoring behavior is also influenced by the entropy or fluctuation level of the param-
eters. Fluctuating parameters are less predictable than stable ones and provide more
information per visual sample. Models of monitoring behavior emphasize that opera-
tors tend to sample parameters to maximize their return value of information on each
gaze [13, 18]. Operators often would not visually sample a parameter until their per-
ceived entropy was sufficiently high [19]. Slope variability of a parameter hindered a
person’s ability to predict future values, and therefore induced higher visual sampling
rates compared to parameters changing at constant rates [20]. These behaviors suggest
that operators sample parameters with high entropy more often. A frequently monitored
parameter due to the constant risk of an alarm would suggest a higher likelihood that the
operator would know when an alarm would occur.

The entropy-based method acknowledges an alarm when the entropy of parameter
over the past 15 s exceeded 1.2 and if two or more fixations occurred within the set time
window of four seconds prior to the alarm. Entropy of the parameter was calculated
using a histogram estimator of the parameter value frequencies during the past 15 s
(i.e., the amount of time visible on the trendline) [21, 22]. The entropy threshold was
determined by the simulator used for this study by calculating the average entropy of a
parameter that would crest and drop at least three times in the last 15 s. Figure 2b depicts
an instance of when acknowledgement would occur for this method (black line) and an
instance where it would not (red line).
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2.3 Prediction-Based Acknowledgement Method

Operators also rely on parameter trends to inform their expectancy of alarms. Trend
graphs reveal patterns of past data, allowing operators to predict future behavior [23].
When watching random step changes of a dial, [24] observed that a person’s estimation
of the next value was the difference between their current observation and the average
change of their earlier observations. This shows that people rely upon past visual sam-
pling to systematically estimate the next value. Similarly, an operator’s estimation of
parameter values has been modelled as calculating the likelihood of a parameter reach-
ing a self-set limit [15]. The more consistent the trendline has been, the smaller the
range of the probability distribution curve. Empirical studies have shown that fixation
frequency is positively correlated to parameter’s rate of change [20, 25]. Together, these
studies suggest that an operator has greater expectancy of an impending alarm when the
parameter shows a steady slope.

The prediction-based method would acknowledge an alarm when the parameter value
was predicted to exceed the alarm thresholds using an equation derived from past values
to forecast the future trend of the parameter. To predict whether the parameter would
exceed the alarm threshold in the next three seconds, a second-degree polynomial curve
was fitted based on parameter’s value over the past 15 s for predicting parameter values.
Figure 2c depicts an instance of when acknowledgement would occur for this method
(black line) and an instance where it would not (red line).

3 Preliminary Evaluation

A simulator study compared the three gaze-based acknowledgement methods against
no gaze acknowledgement/control with 24 trials of a dual-task. Additional details of the
human-participant study can be found at [26]. The 24 participants were Virginia Tech
students (M = 14, F = 10, age 18-45). Participants were tasked with keeping a single
parameter in range that would randomly drop in value. Simultaneously, participants
monitored seven other parameters of a chemical plant simulator for alarms and marked
their prediction of an alarm to occur with 4 s by clicking on the parameter. Participants
received training and practice for both tasks. Participants completed four blocks of six
trials followed by a three-item usability questionnaire. Presentation of acknowledgement
methods was fully counterbalanced (i.e., 4! = 24). Participants were given a 2-min break
between each block and recalibration took place. After four blocks, participants were
debriefed and compensated for their time.

The usability questionnaire was used to determine participants’ perception of the use-
fulness of each acknowledgement method. A one-way Analysis of variance (ANOVA)
with a fixed factor of alarm acknowledgement method and a random factor of participant
was conducted. Usability ratings were averaged across the three items for every block of
trials per participant. The usability scale showed a Cronbach’s alpha (o = 0.829), a suf-
ficiently high internal consistency across the three items (i.e., o > 0.8). Two participants
were omitted based on questionnaire incompletion (N = 22 x 4). The usability ratings
were not normally distributed (Shapiro-Wilk test W = .0167, p = 0.017, k = —0.389,
Skp = —0.305). However, the type I error rate for non-normal data for ANOVA should
remain within the bounds of Bradley’s criterion (i.e., .025 and .075) if x or Sk, is between
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—1to 1[27, 28]. The sphericity assumption was satisfied according to the Mauchly cri-
terion (X?(3) = 3.836, p = 0.573). The ANOVA revealed that subjective usability ratings
were higher for conditions with than without gaze acknowledgements (F(3,63) = 3.744,
p = 0.015; Table 1). Proximity had the best usability score (M = 3.59, SE = 0.19),
followed by Prediction (M = 3.50, SE = 0.19), Entropy M = 3.30, SE = 0.19), and
then Control (M = 2.92, SE = 0.19; Fig. 3). Tukey’s HSD Test found that the mean
usability rating was significantly different between Control and Proximity (p < 0.05,
95% C.1. = [0.096, 1.237]) as well as Control and Prediction (p < 0.05, 95% C.I. =
[0.005, 1.146]). These results indicate that the participants seemed to prefer gaze-based
acknowledgement, and the three methods were indistinguishable in subjective ratings.
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Fig. 3. Box plot of usability ratings across gaze-based acknowledgement methods.

Table 1. ANOVA of usability ratings across acknowledgement methods

Source DF Adj SS Adj MS F-value P-value
Acknowledgement method 3 17.31 5.77 8.09 0.000
Participant 21 100.80 4.79 6.72 0.000
Error 239 170.44 0.71

Total 263 288.33

4 Conclusion

Alarm management could benefit from filtering alarms based on a real-time measure-
ment of operator monitoring behaviors. Alarms anticipated by operators may become
nuisance because the alarm cannot provide any new information. We investigated gaze-
based acknowledgement designs intended to acknowledge and reduce the salience of
anticipated alarms without any additional alarm management tasks. The usability ratings
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from the empirical study suggest that gaze-based acknowledgement could be a useful
alarm management approach. More analysis will be conducted to determine whether
gaze-based acknowledgement reduces distraction from on-going tasks and how well the
gaze-based acknowledgement matches explicit alarm prediction.
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