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v

Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.
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As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep-
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany� Thomas Penzel
Valladolid, Spain� Roberto Hornero 
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1An Overview on Sleep Medicine

Alex Iranzo

Abstract

Sleep plays an important role in homeostasis, 
brain plasticity, clearance of neurotoxins, cog-
nition, memory, concentration, performance, 
and the regulation of the temperature, endo-
crine and immunological systems. Insufficient, 
disorganized, and poor-quality sleep impacts 
performance, cognition, and safety, carries 
social and economic consequences and pre-
disposes to obesity, excessive daytime sleepi-
ness, fatigue, arterial hypertension, diabetes, 
stroke, coronary arterial disease, Alzheimer’s 
disease, depression, and anxiety. Consequently, 
the search of sleeping well and sufficiently 
aims to be happy, healthy, and being produc-
tive at work, social and family levels. 
Therefore, one of the fundamental pillars of 
health is sleeping an adequate number of 
hours, follow regular sleep-wake habits and 
identify sleep disorders. There is a wide vari-
ety of sleep disorders that may impact the 
patient quality of life such as obstructive sleep 
apnea, chronic insomnia, narcolepsy, delayed 
sleep-wake phase disorder and Kleine-Levin 
syndrome. The need to study sleep and its dis-

turbances made the appearance of Sleep 
Medicine. This is a relatively new discipline 
that was born in the second half of the twenti-
eth century and aims to promote good sleep 
hygiene and detect and treat those sleep disor-
ders impairing the subject quality of life. 
Moreover, the field has expanded to fields 
such as the evaluation of pediatrics, women, 
aging, shift work, sports, forensic aspects, and 
its socioeconomic impact.

Keywords

sleep medicine · sleep · wakefulness · sleep 
habits · sleep habits · sleep-wake cycle · sleep 
hygiene · sleep disorders · obstructive sleep 
apnea

1.1	� The Origin and Regulation 
of Sleep

General Considerations on Sleep and Its 
Biological Importance  We spend about one-
third of our lives asleep. Animals (e.g., mammals, 
birds, reptiles) also sleep. But sleeping seems to 
be a waste of time because while we are asleep, 
we do not enjoy, we do not work, we do not 
acquire new information, we do not love, and we 
do not relate to other people or perform social 
activities. However, it is obvious that if sleeping 
served no purpose, it would be a major evolution-
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ary mistake. Then, why do we sleep and what is 
the point of sleeping? The answer seems obvious 
and is based on common sense; we sleep at night 
to rest, to recover, and to acquire maximum 
energy and vitality when we wake up each morn-
ing to a start a bright new day. We get tired men-
tally and physically throughout the day, and then 
we must go back to sleep to rest again. And this 
occurs every day, repeating itself throughout life 
in cycles that our brain programs about every 
24 hours.

Sleep is a state characterized by the suspen-
sion of consciousness, loss of response to exter-
nal stimuli, and decreased motor activity, 
adopting a typical posture in humans of lying 
down with eyes closed. Sleep is a function of the 
brain. It is a natural state that is necessary, peri-
odic, cyclic, and reversible. It is essential for life, 
since its absolute deprivation, at least in mam-
mals and rodents, leads to death in less than a few 
weeks. Although there is increasing information 
about its organization and functioning, we still do 
not know its ultimate biological meaning. 
However, the scientific study of sleep has allowed 
us to learn that sleep is not a passive state because 
when we are asleep, the cells, especially the neu-
rons, carry out processes that they do not perform 
while the subject is awake (Sullivan et al., 2022; 
Bódizs & European Sleep Research Society, 
2021). In other words, neurons perform functions 
and adopt different roles depending on whether 
the subject is asleep or awake. Although it may 
seem that sleep is a passive behavior, the truth is 
that this state is characterized by a complex 
network of neurological mechanisms that con-
verge in a state where the energetic and metabolic 
needs of the brain do not disappear. On the con-
trary, the metabolic rate in some regions of the 
brain is even higher than those of wakefulness in 
some specific stages. Sleep, then, is a dynamic 
state where neurons remain active, performing 
functions different from those they perform dur-
ing wakefulness. It has been suggested that dur-
ing sleep it is possible to consolidate memory, 
control body temperature, regulate the immune 
and endocrine systems, and encode our emotions, 
temperamental and psychological stability. In 

addition, the sleep state promotes cortical plastic-
ity, neuronal synapses, receptor replacement, and 
the clearance of some proteins such as amyloid 
(Sullivan et al., 2022; Bódizs & European Sleep 
Research Society, 2021).

Sleep Organization  Scientific interest in the 
function and functioning of sleep has advanced 
significantly since around 1970 when the first 
sleep laboratories and medical centers special-
ized in sleep disorders and research were set up 
in the United States. We have been able to learn 
partially how sleep is organized and regulated 
thanks to information obtained through cellular 
records, neuroanatomy, laboratory experiments 
with animals and human healthy volunteers, 
genetic manipulation in animals, optogenetics, 
neuroimaging, the development of nocturnal 
polysomnography, and the study of certain 
human diseases. Researchers looked for the holy 
grail by trying to find the part of the brain and the 
substance that was the regulator of sleep onset 
and maintenance. They failed to identify a single 
brain region and a single neurotransmitter sys-
tem. Scientists found that the situation was much 
more complex and that there was no single player. 
Thus, it has been identified that various structures 
of the nervous system located in the brainstem, 
thalamus, hypothalamus, basal forebrain, and 
limbic system are specifically involved in the ori-
gin and regulation of sleep. Numerous neu-
rotransmitters are also involved in the origin and 
maintenance of sleep such as noradrenaline, ace-
tylcholine, serotonin, histamine, dopamine, ade-
nosine, GABA, glutamate, glycine, melatonin, 
and hypocretin (Adamantidis et al., 2021; Siegel, 
2022).

The modulation of the sleep-wake cycle 
depends on homeostatic factors (the more time 
awake means the greater the need to sleep, and 
the more time asleep means the greater the need 
to be awake), circadian factors (the greatest pres-
sure to fall asleep is during the day around 15:00 
and during the night around 3:00, body tempera-
ture decreases throughout the night, and the pres-
ence of light and darkness), external factors 
(noise, change of schedule, boredom, anxiety), 

A. Iranzo
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and individual differences (age, sex, ethnicity, 
animal species). Humans sleep at night and are 
awake during the day while rodents sleep during 
the day and are awake at night. Healthy women 
tend to have a more continuous and deeper sleep 
than men. Asians have an easier time falling 
asleep in common situations (e.g., riding the sub-
way) or are less able to withstand jet lag. Dolphins 
and other aquatic mammals may have one hemi-
sphere asleep and the other awake (Sullivan et al., 
2022; Bódizs & European Sleep Research 
Society, 2021).

Most sleep data have been obtained by con-
tinuous nocturnal recording of three electrophys-
iological variables: cortical electrical activity 
(electroencephalogram, EEG), eye movements 
(electrooculogram, EOG), and muscle activity 
(electromyogram, EMG). During wakefulness, 
with eyes closed, the EEG records a mixture of 
relatively fast moderate-amplitude frequencies 
designated as beta (13–25  cycles/s or Hz) and 
alpha (8–12 Hz), the EMG of the mentalis mus-
cle in the chin shows the greatest degree of tonic 
activity, and the EOG records rapid eye move-
ments and eye blinking (Berry. et al., 2020).

Sleep Stages  Sleep is divided into the non-REM 
stage (without rapid eye movements) and the 
REM stage (with rapid eye movements). In a 
young healthy adult, non-REM sleep occupies 
approximately 75% of the time and REM sleep 
the remaining 25%. Non-REM sleep is divided 
into the stages N1 (drowsiness, 10% of the total 
sleep time), N2 (light sleep, 45% of the time), 
and N3 (deep sleep, 20% of the time) (Berry. 
et al., 2020) (Fig. 1.1).

During stage N1, eye movements become 
slow, EMG activity decreases compared to wake-
fulness and the EEG shows slow frequencies 
(4–7  Hz theta) of low amplitude and isolated 
bursts of higher voltage waves appear over the 
center of the skull (vertex sharp waves). In stage 
N2, K-complexes (bursts of slow 1  Hz, high 
amplitude waves in the central and frontal areas) 
and sleep spindles (bursts of rhythmic activity at 
12–15 Hz) appear. K-complexes have a cortical 
activation origin. Sleep spindles represent the 

block in the thalamus of the transmission from 
sensory impulses to the cortex. As the depth of 
sleep increases, delta activity (1–3  Hz) of high 
amplitude is recorded, which, if it occupies more 
than 20% of the time analyzed, is designated as 
stage N3. In this period of deep sleep N3, eye 
movements are undetectable and muscle tone is 
still present. In REM sleep there are rapid eye 
movements, disorganized EEG with muscle ato-
nia (Berry. et al., 2020).

The Effect of Age on Sleep  In a young healthy 
adult, sleep begins with several minutes of stage 
N1, followed by stages N2 and N3. At this point, 
the sequence is reversed, and after N3 and N2 are 
recorded again, the first REM sleep stage appears. 
This first period of REM sleep occurs about 
60–100 min after sleep onset. REM sleep is char-
acterized by rapid eye movements like those of 
wakefulness (although with eyes closed), mini-
mal or absent muscle activity (the subject is prac-
tically paralyzed) and the cortical activity seen in 
the EEG is intermediate between that of wakeful-
ness and stage N1. After this sequence of sleep 
stages (N1-N2-N3-N2-REM), the process is 
repeated, alternating 60–90  min of non-REM 
sleep (N1, N2, and N3 phases) with 15–30 min of 
REM sleep. N3 sleep predominates in the first 
third of the night and REM sleep in the last third. 
Overall, 75% of sleep is non-REM and 25% is 
REM in the healthy young adult (Berry. et  al., 
2020).

These proportions change throughout life. 
Newborns and infants experience longer total 
sleep time than any other age groups. In new-
borns, the total daily duration of sleep may be 14 
to 16 hours. REM sleep in infants accounts for a 
higher percentage of total sleep, at the expense of 
N2 sleep. Newborns move directly from 
wakefulness to REM sleep until they are 3 to 
4 months of age, after which they move directly 
to non-REM sleep, and then to non-REM sleep. 
In the elderly, there is an overall decrease in total 
sleep time compared to adults. In the elderly, the 
N3 stage decreases by 10% or more, and the N2 
stage of sleep increases by 5%. Sleep latency 
increases, as well as the number and duration of 
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Fig. 1.1  The normal hypnogram of a young adult. W wakefulness, R REM sleep. 1: Stage N1; 2: Stage N2; 3: Stage 
N3

nocturnal brief awakening periods. There is also 
an increase in daytime naps, an earlier sleep and 
awakening phase, and greater intolerance to time 
changes (Sullivan et al., 2022; Bódizs & European 
Sleep Research Society, 2021).

The Effect of Medications and Diseases on 
Sleep  Medications can influence sleep architec-
ture; antidepressants decrease the proportion of 
REM sleep and increase REM sleep latency, 
while benzodiazepines increase the proportion of 
light N2 sleep by decreasing deep N3 sleep. It is 
important to note that in neurodegenerative dis-
eases such as Alzheimer’s disease and Parkinson’s 
disease the neurodegenerative process affects the 
brain structures that regulate sleep. In these dis-
eases the sleep architecture becomes abnormal 
and typical findings are reduction or absence of 
both K complexes and sleep spindles, REM sleep 
without muscular atonia, reduction in total sleep 
time and in stage N3. In severe cases, the sleep 
stages are impossible to recognize and a new sys-
tem to score sleep needs to be defined because the 
classic (N1, N2, N3, REM stages) cannot be rec-
ognized. These are the cases of several dementias 
(e.g., dementia with Lewy bodies), parkinsonisms 
(e.g., multiple system atrophy, progressive supra-

nuclear palsy), autoimmune diseases (e.g., anti-
IgLON 5 parasomnia), and prion diseases (e.g., 
fatal familial insomnia). In the extreme form of 
this situation wakefulness and sleep are almost 
impossible to recognize, a state that has been 
termed status dissociatus. Besides, in healthy 
people medications can influence sleep architec-
ture; benzodiazepines increase the proportion of 
light N2 sleep by decreasing deep N3 sleep, while 
antidepressants decrease the proportion of REM 
sleep and increase REM sleep latency. As million 
of people take antidepressants and subsequently, 
they have a chronic REM sleep reduction, it is 
striking to see that these people apparently do not 
present any (cognitive) deficits due to the loss of 
REM sleep.

Biological and Circadian Influences on 
Sleep  In addition to changes in EEG, EOG, and 
EMG, there are an important number of physio-
logical variables that are modified during normal 
sleep. For example, in the REM phase, tempera-
ture control becomes dependent on ambient tem-
perature, unlike in non-REM sleep and 
wakefulness, where it is independent. In the REM 
phase, the ventilatory response to CO2 decreases, 
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blood pressure increases, and cardiac output, 
respiratory rate, cerebral oxygen consumption, 
and blood flow in the limbic system, visual asso-
ciative cortex, and brainstem also increase. In 
this phase, above all, the dreams that we usually 
remember upon awakening are produced. 
Another of the most outstanding characteristics 
of the REM phase is the paralysis of the volun-
tary musculature to protect ourselves physically 
from dream-enacting. Only the diaphragm and 
the extrinsic ocular muscles partially maintain 
their usual activity (although brief distal move-
ments of the limbs can be detected, and newborns 
grimace). This paralysis is due to an inhibition of 
the spinal motor neurons by the reticular forma-
tion nuclei of the brainstem (Sullivan et al., 2022; 
Bódizs & European Sleep Research Society, 
2021).

The 24-hourly rhythmic oscillation of sleep-
wake behavior does not depend only on the pres-
ence of light and darkness, but is imprinted in our 
organism, since after suppressing external influ-
ences, a similar biological rhythm persists. Many 
biological functions have rhythmic variations of 
about 24  hours, including hormone secretion, 
body temperature, urinary potassium excretion, 
gastric secretion, and renal acid secretion. Body 
temperature, for example, has a very stable circa-
dian rhythm of about 24 h, with a minimum in the 
early morning hours and a maximum in the late 
afternoon. The period of lowest temperature is 
usually synchronized with the period of night-
time sleep (Sullivan et  al., 2022; Bódizs & 
European Sleep Research Society, 2021).

Neuromodulation of sleep  The origin, modula-
tion, and regulation of sleep are very complex, 
and we still have much to learn. Many neu-
rotransmitters and brain structures are involved 
(Figs. 1.2 and 1.3). In a very simplified way, we 
can say that the areas and transmitters that are 
activated in wakefulness are the posterior and lat-
eral region of the hypothalamus (containing 
hypocretin/orexin), the dorsal raphe in the pons 
(containing serotonin), the locus coeruleus in the 
pons (containing noradrenaline), the pedunculo-
pontine nucleus in the pons (containing acetyl-

choline), the ventral tegmental area in the 
midbrain (containing dopamine), and the mam-
millary tubercles in the midbrain (containing his-
tamine). In wakefulness, all these structures 
innervate with their neurotransmitters the cere-
bral cortex which makes it receptive to sensory 
stimuli and ready to perform motor and cognitive 
actions. The transition from wakefulness to sleep 
is made by a gradual flip-flop switch system 
where the forces of sleep overcome those of 
wakefulness, as if it were a balance that tipped on 
the onset of sleep. One of these factors that mod-
ulate the origin of sleep is the accumulation of 
adenosine during wakefulness (which comes 
from cell catabolism) and the secretion of 
melatonin released from the pineal gland (or 
epiphysis) during darkness. The onset of non-
REM sleep is determined by influences reaching 
the preoptic nucleus of the hypothalamus (which 
contains GABA) after a decrease in the activity 
of the nuclei that maintained wakefulness (poste-
rior hypothalamus, dorsal raphe, locus coeruleus, 
pedunculopontine nucleus, ventral tegmental 
area, and mammillary tubercles) and its transmit-
ters (hypocretin/orexin, serotonin, noradrenaline, 
acetylcholine, dopamine, and histamine). In non-
REM sleep there is a 40% decrease in metabo-
lism with respect to wakefulness, with increased 
metabolism in the thalamus (sleep spindles) and 
cortex (K-complexes and delta waves). In REM 
sleep there is an important decrease of hypocre-
tin, noradrenaline, serotonin, and histamine, with 
increased activity of acetylcholine, GABA, gluta-
mate, and glycine. During REM sleep the cells of 

Wakefulness No REM REM

Hypocretin › › › 0

Ach › › › ›

NA, Ser, His › › › 0

GABA 0 › › › ›

Fig. 1.2  Main neurotransmitters and their activity during 
wakefulness, non-REM sleep, and REM sleep
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Neurotransmittters Neurological regions Function promoted

Noradrenaline Locus coeruleus in the pons Wakefulness (N1 y N2)

Serotonin Dorsal raphe in the pons Wakefulness (N1 y N2)

Histamine Tuberommamilary nucleus 
(hypothalamus) 

Wakefulness (N1 y N2)

Acetylcholine Pedunculopontine nucleus 
(pons), Meynert nucleus (Basal 
prosencephalon), amygdala

Wakefulness and REM

GABA Ventrolateral preoptic nucleus 
(hypotahalamus), locus 
subcoeruleus (pons), lateral 
dorsal pontin area (pons)
magnocelularis nucleus (bulb)

N1, N2, N3 and REM

Glutamate Locus subcoeruleus (pons), 
amygdala, cortex

Wakefulness and REM

Hypocretin/orexin Posterior hypothalamus Wakefulness (N1, N2, N3)
Melatonin Epiphysis, suprachiasmtic

nucleus (Hypothalamus)
N1, N2, N3, REM

Fig. 1.3  Neurotransmitters and brain areas involved in wakefulness, non-REM sleep, and REM sleep

the nucleus subcoeruleus of the pons (containing 
GABA) stimulate those of the nucleus magnocel-
lularis of the medulla (containing glycine) and 
these inhibit the motor neurons of the anterior 
horn of the spinal cord resulting in muscle paral-
ysis (Fig. 1.4). Other cells of the nucleus subcoe-
ruleus (containing glutamate) activate the 
occipital cortex during REM sleep. The amyg-
dala and hippocampus (containing glutamate and 
acetylcholine) are also active in REM sleep and 
they regulate emotions, mood, and memory. In 
REM sleep there is hyperactivation of the brain-
stem, limbic system, and occipital cortex, while 
there is inhibition of the frontal cortex. This 
explains why in REM sleep, there is muscular 
paralysis, and experienced dreams have visual 
components and emotional content. Darkness 
stimulates the suprachiasmatic nucleus of the 
hypothalamus which sends a signal to the epiphy-
sis to secrete melatonin. Melatonin will synchro-
nize the biological rhythms of our organism 

including the endocrine, hormonal, immunologi-
cal, and neuronal activity. Therefore, the supra-
chiasmatic nucleus is called the circadian clock. 
(Sullivan et al., 2022; Bódizs & European Sleep 
Research Society, 2021; Adamantidis et al., 2021; 
Siegel, 2022).

Still, there are many open issues to be cov-
ered. They include the ultimate role of sleep, 
the reason why the structure of sleep and its 
stages are so different between different ani-
mals and different species, the function of 
dreams and dream content, the role of REM 
sleep when many people take antidepressants 
which are drugs that reduce the quantity of 
REM sleep, to learn the most important brain 
regions and neurotransmitter systems that mod-
ulate sleep to implement therapeutic targets, 
and to know why among humans, there are peo-
ple and groups prone to daytime sleepiness and 
others not.
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Hypothalamus

Amygdala

Locus subcoeruleus

Muscle paralysis

orexin - orexin -

Glu +

+

Magnocellularis

-

Glu

Gly

Fig. 1.4  Modulation of sleep atonia in REM sleep. Glu 
glutamate, Gly glycine. Green cross indicates activation. 
Red mark indicates inhibition

1.2	� Sleep Impairment

The importance of sleep is reflected in two dis-
tinct situations which lead to impairment and 
negative consequences: sleep deprivation (when 
the amount of sleep is not sufficient) and sleep 
disorders (when the systems that regulate sleep 
cease to function properly).

Loss of Sleep Quantity  In adults, a continuous 
sleep of 7–8  hours is restorative. In some cul-
tures, total sleep may be divided into a 7-hour 
night period and a physiological mid-afternoon 
nap of half an hour. Sleep in the industrialized 
world is in chronic deficit, due in part to evening 
light exposure, which delays sleep onset and 
truncates sleep depending on morning work or 
school schedules. In societies with electricity that 
live modern lifestyles, sleep onset is delayed, and 
nocturnal sleep duration is reduced. The frenetic 

pace of social life and economic demands has 
changed our lifestyle habits (Banks et al., 2022a; 
Holst et al., 2021). In the United States, the per-
centage of individuals between 45 and 64 years 
of age who said they slept less than 7 hours at 
night was 23% in 1985 and 33% in 2004. The 
same was true for the younger and older age 
groups; in individuals between 18 and 29 years of 
age, the percentage of subjects who slept less 
than 7  hours in 1985 and 2004 increased from 
22% to 26%, and in subjects between 65 and 
74 years of age it increased from 15% to 21%. 
Thus, we are facing a reduction of total sleep 
time imposed by the lifestyle we have chosen. 
This was very different in the time of Sherlock 
Holmes, whose creator, Sir Arthur Conan Doyle, 
slept enough hours at night to lead an orderly life, 
and thus be able to be fresh in the morning and 
create authentic masterpieces of literature. 
However, other literary genius such as Kafka and 
Dickens chose to write at night, stealing hours of 
their sleep.

Accumulative data obtained from animal and 
human experiments have shown that sleep depri-
vation is associated with poorer cognitive perfor-
mance, poorer working memory, poorer attention, 
poorer concentration, increased daytime sleepi-
ness, increased anxiety and irritability, low self-
esteem and emotional tone, fatigue, decreased 
libido and reduced creativity and productivity 
(Banks et  al., 2022a). This situation leads to 
errors (wrong decisions, wrong planning), per-
sonal conflicts, traffic accidents, economic con-
sequences, abuse of stimulants, sedatives, 
hypnotics, alcohol, drugs, and predisposition to 
certain diseases. Insufficient or poor-quality 
sleep at night has been associated with an imbal-
ance of some substances that regulate mood, 
appetite, and weight such as orexin, leptin, ghre-
lin, insulin, and cortisol. This predisposes to dis-
eases such as obesity, arterial hypertension, type 
2 diabetes mellitus, myocardial infarction, stroke, 
depression, some types of cancer, Alzheimer’s 
disease, and infections. In short, little, or frag-
mented sleep leads to poorer health and economic 
productivity (Banks et  al., 2022a; Holst et  al., 
2021).
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Loss of Sleep Quality  Not only may be affected 
by reduction of total sleep time but also by poor 
sleep quality due to sleep disorders. Sleep disor-
ders can be classified into four major groups: (1) 
disorders associated with difficulty in falling and 
maintaining sleep (e.g., chronic insomnia, rest-
less legs syndrome); (2) disorders associated 
with excessive daytime sleepiness (e.g., insuffi-
cient nigh time sleep, narcolepsy, obstructive 
sleep apnea, idiopathic hypersomnia); (3) disor-
ders characterized by abnormal sleep behaviors 
or parasomnias (e.g., sleepwalking, night terrors, 
REM sleep behavior disorder), and (4) sleep-
wake rhythm disorders, e.g. (jet lag, shift work, 
delayed sleep phase syndrome, advanced sleep 
phase syndrome). The study of these disorders 
and the evaluation of the patients that suffer from 
them has shown the same consequences in health 
and social and economic life that I have described 
in the situation of sleep deprivation.

The causes of these disorders are multiple and 
consist of a genetic predisposition (e.g., polymor-
phisms in restless legs syndrome, HLA haplo-
types related to sleepwalking and narcolepsy, 
gene mutations in some circadian disorders), an 
anatomical defect (e.g., narrowing of the upper 
airway in obstructive sleep apnea), damage of 
brain structures that regulate sleep (e.g., the 
suprachiasmatic nucleus in Alzheimer’s disease, 
the nucleus subcoeruleus in REM sleep behavior 
disorder), deficiency of neurotransmitters (e.g., 
hypocretin in narcolepsy), deficiency of 
substances (e.g., iron in restless legs syndrome), 
a predisposing personality (e.g., insomnia), 
poorly acquired habits (e.g., insomnia, circadian 
rhythm disorder), psychiatric disorders such as 
anxiety and depression that induce insomnia or 
hypersomnia, other symptoms that may hinder 
the onset and maintenance of sleep (pain, muscle 
stiffness, cardiac and respiratory failure) and the 
effect of some drugs that cause insomnia, hyper-
somnia, sleep-related eating syndrome, and 
nightmares (Malow, 2022; American Academy of 
Sleep Medicine, 2014).

Sleep disorders are very common in the gen-
eral population, affecting approximately 25% of 
individuals (Banks et  al., 2022b; Malow, 2022; 

American Academy of Sleep Medicine, 2014). 
They affect children, adults, and the elderly. The 
most frequent disorder is insomnia, both acute 
and chronic forms. Snoring, obstructive apneas, 
sleepwalking, sleep paralysis and restless legs 
syndrome are also very frequent, each of them 
separately affecting up to 5% of the population in 
a transient or chronic manner. Other less frequent 
disorders such as idiopathic REM sleep behavior 
disorder, nocturnal eating syndrome, catathrenia, 
narcolepsy, anti-IgLON 5 disease and fatal famil-
ial insomnia are less frequent, but it is important 
to know about them because of their importance. 
From the point of view of gender, we should also 
know that pregnancy and menopause are associ-
ated with specific sleep disorders in women, and 
that in men nocturia due to prostate problems is a 
cause of sleep fragmentation. From the neuro-
logical point of view, we should know that some 
autoimmune diseases (anti-IgLON5 disease, 
multiple sclerosis), neurodegenerative diseases 
(Parkinson’s disease, multiple system atrophy, 
Alzheimer’s disease) and neoplastic diseases 
(tumors of the central nervous system, paraneo-
plastic syndromes) are frequently associated with 
sleep disorders and that these can be a frequent 
cause of consultation with the neurologist. 
Psychiatric conditions such as depression, anxi-
ety, bipolar disorder, autism, attention deficit 
hyperactivity disorder, and posttraumatic stress 
disorder are usually associated with sleep disor-
ders such as insomnia, changes in sleep, pattern, 
excessive daytime sleepiness, and nightmares.

1.3	� Sleep Medicine

The knowledge that sleep deprivation and sleep 
disorders are harmful to the health of the indi-
vidual led to the birth of sleep medicine in the 
second half of the twentieth century; the disci-
pline that studies the origin, characteristics diag-
nosis, and therapy of sleep disturbances and 
disorders.

Sleep as a Medical Discipline  The fact that 
people began to visit the doctor seeking medical 
advice for unrefreshed sleep, insomnia, excessive 
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daytime sleepiness, or abnormal sleep behaviors 
led to the establishment of Sleep Medicine 
Centers in the United States, Japan, and some 
European countries by the 1970s (Pelayo & 
Dement, 2022). These centers are composed by 
medical staff, technicians, and beds to attend to 
patients and perform sleep studies at night. 
Physicians, psychologists, nurses, technicians, 
dentists, and biologists began to take interest in 
sleep and its disorders and to specialize in sleep 
medicine (Cirignotta et  al., 2021; Dogas et  al., 
2021). Organizations devoted to sleep medicine 
such as the American Academy of Sleep 
Medicine, Sleep Research Society, World 
Association of Sleep Medicine, World Federation 
of Sleep Research, World Sleep Society, 
European Sleep Research Society, Asian Sleep 
Research Society, Australian Sleep Association, 
Canadian Sleep Society, and Federation of Latin 
American Sleep Societies were founded. Thus, 
the figure of the sleep expert or sleep doctor was 
born but training and official certification was 
needed not only for physicians but also for tech-
nicians and dentists (Cirignotta et  al., 2021; 
Dogas et al., 2021). Sleep expert is now an offi-
cial title accredited by societies such as the 
European Research Society or the Spanish Sleep 
Society. These sleep experts came from various 
medical specialties such as neurology, pulmonol-
ogy, internal medicine, psychiatry, surgery, and 
otorhinolaryngology. They realized that the 
patient with a sleep problem could benefit from 
several of these experts from different medical 
specialties working together. This is how the con-
cept of the multidisciplinary sleep center was 
born. In addition, several journals devoted to 
sleep exist including Sleep, Sleep Medicine, 
Journal of Sleep Research, Journal of Clinical 
Sleep Medicine and Sleep Breathing (Pelayo & 
Dement, 2022).

Sleep as an Important Factor of Public 
Health  The correct quality and quantity of sleep 
has become a public health problem, besides hav-
ing social and economic repercussions (Upender, 
2022). This has led to a growing interest in 
obtaining the right quality of sleep (along with a 

healthy diet, exercise, and proper mental health). 
This is executed in social programs, documenta-
ries, books for the general population, confer-
ences, and debates. The idea is that institutions 
and health programs, advised by physicians and 
sleep experts, promote quality sleep as a thera-
peutic and wellness weapon. Herein, I show three 
different examples of how sleep medicine is rec-
ognized as an important factor in performance 
and quality of life.

One example is how good sleep quality and 
quantity may impact on a well performance in 
professional sports such as football (soccer). In 
addition to the coach, the soccer teams incorpo-
rated physical trainers, cooks, dieticians, and 
psychologists into their staff. Now important 
local teams and national teams have started to 
look for experts in sleep medicine to teach the 
players how to sleep well and sufficient time 
before playing a match or starting an important 
tournament such as the World Cup. Hotels or 
resorts where players stay before the game should 
be selected properly avoiding a noisy placement 
and distance from supporters. Achieving a good 
night’s sleep, the night before the game is impor-
tant, and it is said that this was one of the several 
factors why the Netherlands lost to Germany the 
1974 World Cup final in Munich. In addition, 
when tournaments are held on another continent, 
it is advisable for teams to travel a few weeks or 
days before the first match to mitigate the impact 
of jet lag. Teams know that in these situations the 
advice of a sleep expert can help their players’ 
performance. In these cases, behavioral sleep 
medicine and proper sleep habits are essential, 
especially when most medications used as sleep 
inducers are banned and are not recommended to 
be taken chronically. Institutions such as the 
Fútbol Club Barcelona have understood very 
well this situation and are investigating the qual-
ity and quantity of sleep among lower categories 
in male and female players between 7 and 
25 years of age (Merayo et al., 2021).

Another example is the campaign that exits to 
incorporate a permanent winter time with more 
daylight in the mornings to promote health and 
higher performance, particularly in children 
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(Czeisler & Buxton, 2022). Researchers, institu-
tions, and Sleep Societies, including the Spanish 
Sleep Society, advise that the most convenient for 
health is that there should be a stable timetable 
without changes during the year, and to perma-
nently maintain winter time (GMT + 1). This pro-
vides greater exposure to sunlight during the 
most common work and school hours (from eight 
in the morning to five in the afternoon), espe-
cially in the early hours of the morning. This 
position is supported by scientific studies that 
show that winter time (1) promotes a more stable 
biological rhythm than summer time, (2) 
improves intellectual performance, and (3) helps 
to reduce the onset of diseases such as cardiovas-
cular disease, obesity, insomnia, and depression. 
Winter time would be the most beneficial for the 
population, especially for the groups most sensi-
tive to time changes (besides those suffering from 
sleep and health disorders) such as children and 
the elderly. However, there is a thorny, long, and 
winding road to achieve this change, which is full 
of difficulties and obstacles, such as the social 
and economic impact it would entail (Czeisler & 
Buxton, 2022).

Finally, the coronavirus disease pandemic 
(COVID-19) has also put sleep medicine in 
check. The lockdown situation has exposed the 
individual to social isolation, fear, anxiety, 
depressive symptoms, changes in sleep pattern, 
insomnia, and nightmares (Kryger & Goldstein, 
2022). This emphasizes the importance of mental 
health and sleep health interventions in unex-
pected situations such as social isolation and 
posttraumatic stress disorder. The lockdown led 
to expansion of telemedicine, a tool that many 
sleep doctors have learnt to use since the pan-
demia while following patients with insomnia, 
obstructive sleep apnea, sleepwalking, and rest-
less legs syndrome.

Sleep Management  From the clinical point of 
view, the diagnosis approach is usually made by 
clinical history, specific sleep scales, and sleep 
studies such as polysomnography, the multiple 
sleep latency test, home sleep testing, and actig-
raphy (Grote et  al., 2021; Mathis et  al., 2021; 
Penzel, 2022). The new sleep medicine was born 

when the physician had to learn to inquire about 
sleep habits and to learn, understand, and recog-
nize a wide variety of sleep complaints and sleep 
disorders (Grote et  al., 2021). Doctors learned 
that a good medical history is the first step to 
approach an individual who consults for a sleep 
problem. It should always be done with the 
patient present and if possible, with an observer 
who is able to corroborate or identify alterations 
during sleep of which the patient himself/herself 
may not be aware while is asleep. The clinical 
sleep history consists first of asking about sleep 
habits: what he/she does before going to bed, 
what time he/she goes to bed, how long it takes to 
fall asleep, what he/she does before falling 
asleep, what he/she does to fall asleep, the occur-
rence of noises or movements of the bed partner, 
the use of a cell phone or television or radio or 
book in bed before falling asleep, the postures 
adopted when sleeping, how often the patient 
wakes up at night, what he/she does when waking 
up in the middle of the night, how long it takes to 
fall back to sleep, the presence of enuresis and 
nocturia, the presence of an alarm clock or a 
watch where the subject may look at in the idle of 
the night, the time of last awakening, if the last 
awakening is spontaneous or with alarm clock, 
work shifts, variations of schedules between 
working days and holidays, variations of habits 
between working and holiday periods. Physicians 
also have to identify sleep disorders asking about 
issues such as the difficulty encountered in fall-
ing asleep or staying asleep, whether on waking 
up in the morning the sleep has been restful, 
whether the patient wakes up with a dry mouth, 
whether he/she takes naps and their duration, 
whether there is excessive daytime sleepiness, 
snoring and witnessed apneas, the content of 
dreams and nightmares, whether there is discom-
fort in the legs, whether he/she has fallen out of 
bed and whether nocturia is a problem to be taken 
into account. It has also to pay attention at the 
type of medication the subject takes, if any. It is 
also important to ask partners, relatives, and care-
givers if they agree with the patients’ impression 
of their sleep quality. People close to the patient 
can tell us about situations that the patients do not 
recognize or are not aware such as hypersomnia, 
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snoring, apneas, or abnormal behaviors during 
their sleep. Physicians also need to pay attention 
to family history and past medical history. It is 
important to note that the diagnoses of restless 
legs syndrome, insomnia, and snoring are made 
by clinical history and no sleep scales or sleep 
studies are needed to make their diagnoses (Grote 
et al., 2021).

Sleep scales and questionnaires were devel-
oped for screening purposes to identify sleep dis-
orders and sleep symptoms, and to evaluate their 
magnitude and impact. For example, the 
Pittsburgh Sleep Quality Index is a widely used 
instrument that evaluates the subject quality of 
sleep, sleep habits, and sleep disturbances. The 
Insomnia Severity Index evaluates the severity of 
sleep initiation, sleep maintenance, and early 
awakening. Excessive Daytime Sleepiness can be 
evaluated by the Epworth Sleepiness Scale, the 
Stanford Sleepiness Scale, and the Karolinska 
Sleepiness Scale, that were designed for the pub-
lic. As screening, obstructive sleep apnea may be 
suggested by instruments such as STOP-BANG 
and the Berlin Questionnaire. Formal diagnostic 
criteria for restless legs syndrome were devel-
oped by the International Restless Legs Syndrome 
Study Group. This group also developed a rating 
scale as a measurement instrument for assessing 
severity of restless legs syndrome’s symptoms. 
This scale can be used to monitor the effect of a 
medication for the symptomatology of the syn-
drome. The diagnosis of REM sleep behavior dis-
order requires video-polysomnography. There 
are several screening questionnaires and single 
questions for the screening of this parasomnia. 
However, the specificity of these instruments is 
low, making video-polysomnography the gold 
standard for the diagnosis of REM sleep behavior 
disorder. Besides, the third edition of the book 
International Classification of Sleep Disorders, 
published in 2014 by the American Academy of 
Sleep Medicine, contains the diagnostic criteria 
of most of the sleep disorders.

The sleep expert has also investigated the 
sleep disorders, and the scientific advances in the 
field during the last 40 years have been very 
important. Advances have been in nearly all 

fields; clinical (e.g., the description of different 
disorders such as cathatrenia, sexsomnia, REM 
sleep behavior disorder), genetic (e.g., the asso-
ciation of periodic leg movements in sleep to 
polymorphisms in the gene MEIS1), immuno-
logic (e.g., the association of narcolepsy linked to 
some adjuvants of vaccines), biological (e.g., the 
discovery that narcolepsy was linked to hypocre-
tin deficit), imaging (e.g., thalamic abnormalities 
in Klein-Levine syndrome), technical (home 
sleep studies) and therapeutic (e.g., mandibular 
advancement devices). Here I give three exam-
ples of (1) how a new disease has been identified 
in patients who first sought medical advice 
because of sleep problems, (2) how a sleep disor-
der may be the first manifestation of a neurode-
generative disease, and (3) how a sleep disorder 
is recognized as a cardiovascular risk factor.

Anti-IgLON5 disease is a novel neurological 
disease initially described in 2014 that affects the 
adult (Sabater et  al., 2014). As in fatal familial 
insomnia, the cases described in the seminal 
description of the disease initially sought medical 
advice in a sleep center complaining of restless 
and unrefreshed sleep, nocturia, abnormal behav-
iors during sleep and mild sleepiness. 
Polysomnography showed abnormal sleep archi-
tecture where conventional stages were difficult 
to recognize, obstructive sleep apnea, stridor, 
purposeful behaviors in non-REM sleep and 
REM sleep behavior disorder. This unique sleep 
pattern has been well characterized. Later, it has 
been shown that the first manifestation may also 
consist in abnormal gait, cognitive impairment, 
or bulbar symptoms such as dysphagia. The dis-
ease is identified when the serum and cerebrospi-
nal fluid contains antibodies against the neuronal 
protein IgLON5. There is a strong HLA associa-
tion, absence of coexistent autoimmune disor-
ders, neoplasms, and neurodegenerative diseases. 
Neuropathology shows a unique pattern defined 
by tau deposits in the brainstem and hypothala-
mus impairing some nuclei that regulate sleep. 
The challenge is to find an effective therapeutic 
approach since conventional immunotherapies 
(e.g., steroids, rituximab, immunoglobulins) are 
usually ineffective and the disease seems to be 
disabling and progressive.

1  An Overview on Sleep Medicine
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Isolated REM sleep behavior disorder is a 
condition that affects people over 50 years of age 
which is manifested by unpleasant dreams (e.g., 
being attacked or chased) and vigorous behaviors 
during sleep (e.g., punching, screaming) that may 
result in injuries (Iranzo et al., 2016). In this con-
dition, polysomnography shows REM sleep with 
increased muscle activity linked to abnormal 
behaviors. The formal description in the medical 
literature of this parasomnia was made in 1986, 
but 10 years later the same group of investigators 
showed that patients with this REM sleep abnor-
mality develop dementia and parkinsonism ful-
filling the diagnostic criteria of dementia with 
Lewy bodies, Parkinson’s disease, and multiple 
system atrophy. As these three neurodegenerative 
diseases are originated by abnormal deposits in 
the nervous system of the protein synuclein, sleep 
experts looked for this protein in subjects with 
IRBD and this was found in the cerebrospinal 
fluid and peripheral organs (colon, salivary 
glands, and skin). This indicates that IRBD is in 
most of the cases the first manifestation of a 
synucleinopathy. The challenge is to implement a 
neuroprotective strategy in these patients to stop 
the neurodegenerative process and avoid the 
appearance of dementia and motor abnormalities. 
Today, development of a neuroprotective therapy 
is an unmet need in IRBD.

Obstructive sleep apnea is recognized to be 
one of the most common sleep disorders affect-
ing about 2–4% of the adult population. It is 
caused by repetitive episodes of upper way col-
lapse during sleep which are associated with 
arousals that produce sleep fragmentation and 
oxyhemoglobin desaturation. From the clinical 
point of view it is usually linked to snoring, 
unrefreshed sleep upon awakening, and exces-
sive daytime sleepiness. The first thing that 
attracted attention in this syndrome is that exces-
sive daytime sleepiness could be severe and 
affect the social, family, and marital life of the 
patients. Moreover, it was highlighted that 
obstructive sleep apnea predisposed to road acci-
dents as the patients had an important tendency 

to fall asleep at the wheel. However, follow-up 
of these patients and extensive research has 
shown that obstructive sleep apnea impacts not 
only performance and safety but is recognized as 
a condition that is associated with several cardio-
vascular factors including obesity, hypertension, 
arrhythmias, congestive heart failure, diabetes 
plus vascular diseases such as stroke and coro-
nary artery disease (Randerath et  al., 2018). 
Obstructive sleep apnea belongs to the metabolic 
syndrome. The link between obstructive sleep 
apnea and cancer is also a subject of recent 
investigations.

1.4	� Future Directions

Sleep Medicine is a very wide and new field. 
Based on ongoing research we can expect several 
developments in the diagnosis and management 
of sleep disorders. They include the following:

•	 New technology is required to simplify the 
access to polysomnography and easier and 
faster ways to score sleep.

•	 The implementation of artificial intelligence, 
telemedicine, new devices and instruments, 
cell phone applications, development of new 
medications and neuroprotective strategies are 
promising issues under development in the 
field of sleep medicine.

•	 There is a need to reach the general population 
to teach them how important is sleep. 
Governmental social programs should include 
the implementation of good sleep quality and 
quantity to promote health, in association with 
other aspects such as adequate exercise and 
diet and bad habits such as smoking and 
alcoholism.

•	 To find an effective treatment to manage dis-
orders such as insomnia without the need of 
medications. When medications are needed, 
they should target the physiopathological 
basis of the disorder (e.g., hypocretin agonists 
in narcolepsy).

A. Iranzo
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2Covering the Gap Between Sleep 
and Cognition – Mechanisms 
and Clinical Examples

Javier Gomez-Pilar, Gonzalo C. Gutiérrez-Tobal, 
and Roberto Hornero

Abstract

A growing number of studies have shown the 
strong relationship between sleep and differ-
ent cognitive processes, especially those that 
involve memory consolidation. Traditionally, 
these processes were attributed to mechanisms 
related to the macroarchitecture of sleep, as 
sleep cycles or the duration of specific stages, 
such as the REM stage. More recently, the 
relationship between different cognitive traits 
and specific waves (sleep spindles or slow 
oscillations) has been studied. We here present 
the most important physiological processes 
induced by sleep, with particular focus on 
brain electrophysiology. In addition, recent 
and classical literature were reviewed to cover 
the gap between sleep and cognition, while 
illustrating this relationship by means of clini-
cal examples. Finally, we propose that future 

studies may focus not only on analyzing spe-
cific waves, but also on the relationship 
between their characteristics as potential bio-
markers for multiple diseases.

Keywords

Sleep · Cognition · Sleep spindles · Slow 
oscillations · Slow waves

2.1	� Why We Need to Sleep?

Surprisingly, after decades of research, there is 
still no consensus or a clear answer to this ques-
tion. This is probably not due to a lack of knowl-
edge of the sleep functions, but to the number of 
functions it performs both for the brain and for 
the whole body. Finally, after multiple studies, 
we are now able to understand some of them.
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More than 40 years ago, the famous researcher 
Allan Rechtschaffen, accepted that sleep func-
tions should be of unquestionable utility, since “if 
sleep does not serve an absolutely vital function, 
then it is the biggest mistake the evolutionary pro-
cess has ever made”. Although Rechtschaffen’s 
intuition was correct, he probably did not imagine 
the number of functions of sleep, which include 
the elimination of toxins (Xie et al., 2013), regula-
tion of glucose level (Van Cauter et al., 2008) and 
endocrine functions (van Cauter et  al., 2007), 
stimulation of immune function (Ganz, 2012), 
modulation of emotional brain processes (Walker, 
2009), or reinforcement of learning and memory 
mechanisms (Antony et  al., 2019; Fang et  al., 
2019; Fernandez & Lüthi, 2020; Schabus et  al., 
2004), among others (see the review from Assefa 
and colleagues (ZAssefa et al., 2015) for different 
theories of the sleep functions).

In this chapter, we are interested in addressing 
one of these sleep functions, in particular delving 
into the proven relationship between sleep and cog-
nition across the lifespan (Murawski et al., 2018; 
Ohayon et  al., 2004; Reynaud et  al., 2018; Yaffe 
et al., 2014), as well as its link with a large number 
of diverse pathologies (Ferrarelli & Tononi, 2017; 
Gutiérrez-Tobal et al., 2021; Vgontzas & Pavlović, 
2018; Weng et al., 2020). Accordingly, it is essen-
tial to mention sleep spindles as a mechanism that 
plays a central role in cognitive processes, such as 
memory consolidation (Fogel, Albouy, et al., 2017; 
Fogel & Smith, 2011; Fogel, Vien, et  al., 2017). 
Therefore, our main aim is to provide a synthesis of 
the role of sleep, with special focus on sleep spin-
dles, and the relationship between sleep abnormali-
ties and diverse pathologies.

2.2	� Sleep Electrophysiology

2.2.1	� Acquisition 
of the Electroencephalogram

The usual way to acquire the neuronal electrical 
signal is the use of the electroencephalogram 
(EEG). The equipment usually used is between 8 
and 64 channels, although there are already sys-

tems with more than 1000 electrodes (ref). The 
sampling frequency depends on the equipment 
but is usually not less than 128 Hz or more than 
1000 Hz. Although these are the usual character-
istics, the acquisition of the EEG during sleep is 
usually performed in specialized Sleep Units, 
where many other signs are usually acquired, 
such as those from a polysomnography (PSG) 
(Jafari & Mohsenin, 2010).

Given the great variability of acquisition char-
acteristics, the American Academy of Sleep 
Medicine (AASM) suggests minimum character-
istics for EEG acquisition during sleep (Iber 
et  al., 2007). Among them, they recommend a 
desirable sampling rate of 500  Hz, establishing 
the minimum into 200 Hz. In this way, according 
to Nyquist’s theorem, it is possible to analyze fre-
quencies up to 100 Hz. However, for clinical util-
ity a high-frequency filter of 35  Hz is also 
recommended. Additionally, electrode imped-
ance must keep under 5 KΩ and the minimum 
resolution should be 12 bits per sample.

2.2.2	� Sleep Stages and the Cyclical 
Sleep

Sleep is far from uniform. Conversely, it is essen-
tially cyclical, with cycles lasting about 90 min-
utes on average. However, the duration of each 
cycle is highly variable, increasing its duration 
throughout the night (Březinová, 1974). During a 
typical 8-hour restful sleep, there are usually 
between four to six cycles chained in a row 
(Keenan, 1999). Within these cycles, there are 
different stages of sleep that, according to the lat-
est version of the AASM guide (Iber et al., 2007), 
are divided into two main periods: rapid eye 
movement (REM) and non-rapid eye movement 
(NREM). While REM stage is not divided into 
other subphases, NREM, in turn, consists of three 
different stages: N1, N2, and N3.

It is known that the duration of these sleep 
stages is not constant with age. In particular, as 
we get older, there is an increasing percentage of 
sleep in N1 and N2 stages, while the percentage 
of time in N3 and REM is decreased, resulting in 
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less restful sleep and, sometimes, increased age-
related cognitive decline (Feinsilver, 2003; 
Ohayon et  al., 2004). It seems, therefore, that 
each stage of sleep has a specific function and 
that small percentual alterations in their duration 
have a great influence in both the short and the 
long term.

If we take a closer look at what happens in 
each of the stages of sleep, we can see that each 
one has well-differentiated characteristics:

N1) Stage 1 is essentially a transition stage from 
“wake” to “sleep” states, and it usually lasts 
just one to five minutes (Březinová, 1974). 
During N1 sleep, the body starts to slow down, 
giving rise to periods of brief and sudden 
movements (hypnogogic jerks) (Vetrugno & 
Montagna, 2011). Brain activity slows down 
too, and the alpha frequencies (in adults) are 
no longer the most dominant (Iber et  al., 
2007). As sleep cycles occur, phase N1 serves 
as a reset to restart a new cycle, but an uninter-
rupted sleep may not spend much more time 
in N1 throughout the night.

N2) During N2, the body reduces its temperature, 
relaxes the muscles, and slows the heart and 
breathing rates. At the same time, eye move-
ment stops, and brain waves lower their domi-
nant frequency relative to N1 (Schönauer & 
Pöhlchen, 2018). At this time, brief bursts of 
activity, characteristic of this stage, begin to 
emerge: the sleep spindles (Schönauer & 
Pöhlchen, 2018). Among the various func-
tions of spindles (some of them are addressed 
in the next subsection), it is known that they 
help resist being woken up by external stimuli 
(Walker, 2009). Although the N2 stage can 
last from 10 to 25  minutes during the first 
sleep cycle, it lengthens as the night pro-
gresses, reaching approximately half of the 
total sleep time (Březinová, 1974).

N3) Stage 3 is also known as deep sleep. During 
this stage it is more difficult to wake someone 
up. Muscle tone, pulse, and respiratory rate 
decrease further (Diekelmann & Born, 2010). 
Something similar occurs with brain activity: 
thalamocortical neurons fall into a hyperpo-
larized state, resulting in slow waves (SW) 

between 0.5 and 4.5  Hz (i.e., delta activity) 
(Bernardi et  al., 2018). During the first few 
sleep cycles, the N3 stages typically last 
between 20 and 40  minutes. As one goes 
through the cycles, this stage gets shorter, and 
more time is spent in REM sleep instead.

REM) Paradoxically, during REM sleep, brain 
activity increases, reaching levels of complex-
ity that resemble activity during wakefulness, 
or at least N1 (Zilio et  al., 2021). The body 
experiences atony except for the eyes that 
move rapidly, reason why this stage receives 
its name. Although dreams can occur at any 
stage of sleep, they are more common and 
intense in REM sleep, which is believed to be 
related to certain cognitive functions such as 
memory, learning, and creativity (Cai et  al., 
2009). REM stages are lengthened, especially 
in the second half of the night, lasting up to an 
hour.

The cyclical repetitions of the sleep phases 
described above are chained in a repeating 
pattern, which is usually represented by a hyp-
nogram (see Fig. 2.1). Although with certain 
limitations, there are various automatic meth-
ods to identify the sleep phases from the EEG 
signal (Boostani et al., 2017), so it is common 
in clinical practice that this identification is 
not carried out manually (Aboalayon et  al., 
2016).

2.2.3	� The Nested Hierarchy 
of Electrophysiological Waves 
during Sleep

In each of the sleep stages, there is a dominant 
oscillation activity easily measurable by means 
of the EEG signal. This dominant signal is funda-
mentally slower than the EEG during wakeful-
ness. Nonetheless, there is a complex 
microarchitecture, comprising both slow and fast 
non-stationary burst events (Gorgoni et al., 2020). 
Thus, while some networks such as visual, audi-
tory, somatomotor, and the default mode remain 
almost unchanged during sleep relative to wake-
fulness (Larson-Prior et al., 2009), different brain 
waves, such as slow oscillations (SOs), spindles 
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Fig. 2.1  Hypnogram. Representation of sleep stages as a 
function of time. This hypnogram shows typical sleep 
architecture with the majority of slow-wave sleep (N3) in 

the first half of the night, while REM sleep majority is in 
the last half, with progressive longer durations

and ripples, are generated through activation of 
rhythmic neuronal thalamocortical connections. 
These waves do not occur in isolation, but are 
elicited within a well-defined nested hierarchy, 
where SOs are thought to have a relevant role in 
their organization (Gomez-Pilar et  al., 2021; 
Staresina et al., 2015).

SOs are oscillations around 0.75  Hz that, 
during their up-state, facilitate the production 
of spindles (Ngo et  al., 2019; Staresina et  al., 
2015), which are easily recognized as burst 
between 11 and 16  Hz (Antony et  al., 2019), 
i.e., signa band (see Fig. 2.2 for an example of 
the nesting between SOs and spindles). In turn, 
sleep spindles facilitate the firing of ripples in 
the hippocampus, high frequency bursts around 
100 Hz (Axmacher et al., 2008; Staresina et al., 
2015).

Although the function of these neuronal trig-
gering chain reactions is still not fully under-
stood, the dynamic interaction of these waves is 
believed to be closely related to the exchange of 
information between distributed cortical regions, 
promoting various cognitive functions (Axmacher 
et  al., 2008; Ngo et  al., 2019; Staresina et  al., 
2015).

2.3	� Memory Consolidation – 
The Role of Sleep Spindles

Memory processes begin with the neural encod-
ing of experiences, which results in storage 
“within” the brain (Harrison & Horne, 2000; Poh 
& Chee, 2017; Stickgold & Walker, 2005). 
However, without post-encoding memory pro-
cesses, this initial encoding does not persist over 
time. Therefore, the so-called memory consolida-
tion is necessary for long-term storage.

Thanks to sleep deprivation studies, it is 
known that sleep plays an important role in the 
encoding processes during wakefulness 
(Drummond et al., 2000). Even more interesting 
are some recent studies that have shown that 
sleep strongly influences memory consolidation 
(Fogel, Albouy, et al., 2017; Hahn et al., 2019). 
Although the precise underlying processes are 
still unknown, we have gained valuable clues 
about them.

Traditionally, a link between REM and mem-
ory has been stablished both in human (Siegel, 
2001) and animal studies (Pearlman, 1979). More 
recently, NREM sleep has been associated with 
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Fig. 2.2  Oscillatory hierarchy nested during sleep. The 
upper panel shows the EEG signal at the Cz electrode dur-
ing a spindle event (during N2). The lower panel repre-
sents the signal filtered to show the slow oscillation (low 

pass filtering between 0 and 1  Hz) and show the sleep 
spindle (bandpass filtering between 11 and 16 Hz). It can 
be seen how, just after the up-state of the slow oscillation, 
the spindle is elicited

memory consolidation, especially the stages 
related to the appearance of sleep spindles 
(Cairney et al., 2018). These memory consolida-
tion processes during NREM stages are based on 
the strengthening of particular memory pathways 
through the delivery of auditory cues (Cairney 
et  al., 2017), a procedure known as targeted 
memory reactivation (TMR) (Cairney et  al., 
2018). Interestingly, the time window that coin-
cides with spindle activity overlaps with the TMR 
process (Cairney et al., 2018). This fact, together 
with the positive correlation between spindle 
density and cognitive performance (Fogel & 
Smith, 2011), procedural memory (Fogel & 
Smith, 2006), or IQ (Fang et al., 2017), highlights 
the role of sleep spindles in the service of mem-
ory consolidation.

2.4	� Is There Room for Slow 
Oscillations?

As previously stated, sleep spindles are not iso-
lated events. Changes in electrophysiological 
activity are often mediated by an external stimu-
lus, varying from ongoing activity to task-related 
activity elicited by external stimulus. However, 
this transition between states can also be medi-
ated by “internal stimulus”, eliciting what is 
known as internally evoked activity (i.e., 
internally-guided cognition) (Nakao et al., 2012). 
Sleep spindles could be considered an example of 
this internal evoked activity triggered by SOs and 
elicited during their up-state.

This relationship was evidenced in a recent 
study in which pre-spindle and spindle activity 
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strong correlations were reported (Gomez-Pilar 
et  al., 2021). Curiously, these correlations were 
stronger than wake-related evoked activity (Wolff 
et al., 2019). In other words, this suggests that the 
brain dynamics associated with SOs determine 
with great fidelity the characteristics of the fol-
lowing spindle. Whether SOs and the posterior 
spindle interact with the sleep spindles following 
an additive (Arieli et  al., 1996) or non-additive 
(Huang et al., 2017) model remains unclear. Non-
additive models are based on the assumption that 
there is a nonlinear superposition between the dif-
ferent waves of the brain activity, which is 
between SOs and sleep spindles. It would be asso-
ciated with higher uniformity of the activity, 
which facilitates the information processing in the 
cortex (Monier et al., 2003; White et al., 2012). 
This increased stability would lead to a more 
structured dynamics enhancing the data predict-
ability (Gershenson & Fernández, 2012). Being 
aware of the repetitive and uniform patterns in 
closed loop between the thalamus, reticular 
nucleus, and the neocortex during SOs and spin-
dle generation (Schönauer & Pöhlchen, 2018), 
this stability would play a fundamental role for 
sending information units to distributed neocorti-
cal sites for long-term storage. Therefore, a non-
additive model in which SOs have a fundamental 
role is, in principle, presented as a more likely 
model during sleep for memory consolidation. 
This is supported by a previous study focused on 
boosting SOs through transcranial stimulation 
(Marshall et al., 2006), instead of stimulating the 
generation of spindles (Berner et  al., 2006; 
Ladenbauer et al., 2017). However, future work is 
required to support this hypothesis.

2.5	� Consequences of Poor Sleep 
Quality – Illustrative 
Examples

At this point, we can be confident of the relevant 
role that sleep has not only in a number of cogni-
tive processes, especially those related to encod-
ing and memory consolidation processes, but 
also in metabolic processes (van Cauter et  al., 
2007; Van Cauter et al., 2008). Then, it is worth 

asking what effects may arise related to patholo-
gies that cause a reduction in the quality of sleep. 
Or, in the opposite direction, a poor quality of 
sleep can increase the probability of developing 
(or worsening) certain diseases?

The number of diseases in which a close rela-
tionship with sleep has been found is far from 
negligible, and it seems to be constantly increas-
ing, such as sleep apnea, migraine, Alzheimer’s 
disease, schizophrenia (all the above are 
explained below in this section), schizoaffective 
disorders (Castelnovo et  al., 2018), Parkinson 
(Latreille et  al., 2015), or Asperger’s syndrome 
(Godbout et  al., 2000), among others. We here 
present some illustrative examples about the 
importance of sleep quality and health. Although 
in some cases the consequences of poor sleep 
quality that are not related to cognition are men-
tioned, the main focus is cognition from a neuro-
physiological point of view.

2.5.1	� Non-pathological or Quasi-
Pathological Consequences

The effects of a poor sleep quality on behavior 
and cognition have been fundamentally assessed 
by sleep deprivation studies. These cognitive  – 
and metabolic  – deficits are accentuated if the 
poor quality of sleep is prolonged in time, with-
out the affected individual being fully aware of it 
(Goel et al., 2009).

The causes for sleep deprivation, or at least a 
reduction in its quality, that are not directly 
related to any pathology are very diverse and 
range from individual lifestyle to specific shifting 
in sleep period in relation to the circadian cycle 
(e.g., due to shift work) (Orzeł-Gryglewska, 
2010). If sleep deprivation is total, the conse-
quences depend largely on the number of sleep-
less nights (Orzeł-Gryglewska, 2010). However, 
there is great interindividual variability that sug-
gests the influence of genetic alleles associated 
with differential cognitive vulnerability to sleep 
loss (Goel et al., 2009). The consequences range 
from tremor and increased muscle tone (when 
sleep deprivation is for a single night) to distur-
bances in reasoning and orientation, visual and 
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tactile hallucinations, fatigue, irritability, and 
delusions, when sleep deprivation is for 4 or 
5 days (Orzeł-Gryglewska, 2010).

Although sustained total sleep deprivation is 
not common in healthy individuals, sleep prob-
lems constitute a global epidemic that threatens 
the health and quality of life of around 40% of the 
adult population (Ohayon & Partinen, 2002). 
This prevalence is similar in children (Fricke-
Oerkermann et al., 2007) and is even increased in 
the elderly (Foley et al., 1995). These problems 
often do not have a direct tangible effect, but the 
long-term consequences are of paramount impor-
tance, highlighting obesity, diabetes mellitus, 
hypertension, and decreased cognitive perfor-
mance, among others (Calhoun & Harding, 2010; 
Van Cauter & Knutson, 2008).

2.5.2	� Sleep Apnea and Cognitive 
Consequences

Obstructive sleep apnea (OSA) is probably one 
of the pathologies that most obviously affects 
healthy and restorative sleep. OSA is mainly 
characterized by repetitive pharyngeal collapse 
during sleep, leading to intermittent interruptions 
of breathing (apnea) (Malhotra & White, 2002). 
This usually leads to arousals that disrupt the 
cyclical architecture of sleep (Ferreira et  al., 
2020; Korkalainen et al., 2021).

Interestingly, recent studies have reported that 
OSA also has effects on specific oscillations, such 
as the progressive slowdown of SOs directly related 
to the severity of the disease (Gutiérrez-Tobal et al., 
2021). It has been suggested that this deceleration 
could be due to an inhibitory effect on thalamus 
produced by OSA (Gutiérrez-Tobal et  al., 2021). 
Previous studies in rats have shown that suppression 
of the role of the thalamus leads to a deceleration of 
the typical frequency of SO, leading to cortical 
attempts to substitute the role of the thalamus 
(David et al., 2013). Together, although speculative, 
we hypothesize that OSA directly influences the 
neural underpinning involved in the SOs generation 
(Gutiérrez-Tobal et al., 2021).

As previously stated, SOs are precursors and 
facilitators of the generation of spindles. 

Therefore, if SOs are affected, it seems reason-
able to think that there would be alterations in the 
density of spindles beyond the interruptions of 
the sleep cycle. This is supported by previous 
studies that show alterations in the spindles in 
patients with OSA, both in the pediatric popula-
tion (Brockmann et  al., 2018; Weichard et  al., 
2016), as well as in adults (Ahuja et al., 2018).

The effects on different cognitive processes 
(especially those related to memory consolida-
tion) that patients with OSA may develop due to 
hypoxia and sleep fragmentation are still not 
entirely understood. What is clear, however, is 
that the fastest intellectual changes happen dur-
ing school-age (Fry & Hale, 2000), which 
explains the focus of the increasing number of 
OSA studies and its related changes in micro and 
macro sleep architecture in this population 
(Brockmann et  al., 2018; Gruber et  al., 2013; 
Gutiérrez-Tobal et al., 2021).

2.5.3	� Migraine and Sleep – 
A Bidirectional Relationship?

The relationship between sleep and migraine 
can be interpreted as a bidirectional relation-
ship. In fact, insomnia can be seen as both a 
cause and a consequence of migraine (Vgontzas 
& Pavlović, 2018). This leads researchers to 
think that migraine and sleep problems are “two 
sides of the same coin”, that is, that they both 
have a common underlying pathophysiology 
(Vgontzas & Pavlović, 2018). In the outstanding 
review of Vgontzas and Pavlović (2018), the 
glymphatic system was proposed as a possible 
common mechanism. This system is responsible 
for macroscopic waste removal, primarily active 
during sleep (Iliff et  al., 2012). On the other 
hand, cortical spreading depression – a wave of 
excitation followed by inhibition in cortical 
neurons that may be a direct cause of aura phase 
that precedes migraine headache  – has been 
shown to cause impaired glymphatic flow 
(Schain et al., 2017). Therefore, a deterioration 
in this system could produce an accumulation of 
waste products that would contribute to later 
migraine attacks.
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2.5.4	� The Role of Glymphatic 
System and Sleep Spindles 
in Alzheimer’s Disease

The accumulation of amyloid-β peptide in the 
brain appears to be the trigger for a series of 
events that lead to Alzheimer’s disease (Ju et al., 
2014). Given that sleep deprivation increases the 
amyloid-β peptide concentrations, glymphatic 
system  – in charge of removing this toxic sub-
stance (Iliff et al., 2012) – seems to be the link 
between sleep Alzheimer’s disease (AD).

Nonetheless, this does not appear to be the 
only link between AD and sleep. It is well-known 
that AD is a disease characterized by memory 
impairments. On the other hand, we have previ-
ously shown a number of studies that link sleep 
spindles functions and memory consolidation. 
With these precedents, previous studies have 
searched for a direct relationship between spin-
dles and AD (see (Weng et al., 2020) for a recent 
review). As might be expected, it is observed that 
a higher density of spindles is inversely related to 
the evolution of AD (Gorgoni et  al., 2016; Liu 
et al., 2019). Even more noticeable, a recent posi-
tron emission tomography (PET) study showed 
that the nesting hierarchy between SOs and spin-
dles was altered and predicted accumulated tau 
levels in the medial frontal cortex (Winer et al., 
2019), which is significantly more hyperphos-
phorylated in AD than in the normal adult brain 
(Iqbal et al., 2010). Therefore, albeit speculative, 
the alterations in SOs and spindles produced by 
OSA could be a potential underlying mechanism 
for the well-known relationship between OSA 
and AD (Kheirandish-Gozal et al., 2016). These 
findings in AD support our previous hypothesis 
about the importance of the relationship between 
SOs and spindles (and not spindles alone) for 
memory consolidation processes.

2.5.4.1	� Sleep Spindles as Biomarker 
of Schizophrenia

Sleep disorders have been associated with the 
onset of psychosis (Benson, 2015; Zhang et al., 
2020). These disorders are unrelated to pharma-
cological treatment since this association has 
been reproduced in patients with schizophrenia 

without antipsychotic medication (Chouinard 
et al., 2004). Sleep disturbances in schizophrenia 
patients do not only correspond to alterations in 
its macroarchitecture (Poulin et al., 2003; Yang & 
Winkelman, 2006) (i.e., the distribution of time 
spent in different sleep stages), but also in its 
microarchitecture (Ferrarelli et al., 2007; Göder 
et  al., 2015) (i.e., characteristics of the waves 
associated with each stage of sleep). This concor-
dance could have a genetic origin, since both 
sleep fingerprints, such as spindles (Goldschmied 
et al., 2021), and schizophrenia (Cao et al., 2019) 
appear to be highly heritable and share common 
aspects. For example, the risk gene in schizo-
phrenia that encodes a calcium channel (Lubeiro 
et al., 2020), CACNA1I, plays a critical role in 
the generation of spindles in the thalamus 
(Steullet et al., 2018).

Among the abnormalities found in the sleep 
microarchitecture in schizophrenia, the reduction 
in the density of spindles stands out (Ferrarelli 
et al., 2007). The production of spindles begins 
with the inhibition of the thalamocortical neurons 
mediated by the gabaergic inhibition of the retic-
ular nucleus (Berry et al., 2012; Steriade, 2003). 
This process is followed by glutamatergic 
rebound peaks that cause cortical neurons to 
oscillate at the typical spindle frequency 
(Contreras & Steriade, 1996). Therefore, spindle 
production depends entirely on the inhibitory 
onset of the reticular nucleus, which is known to 
show structural and biochemical abnormalities in 
schizophrenia (Court et  al., 2002; Smith et  al., 
2001; Steullet et al., 2018). Furthermore, spindle 
production is governed by an orchestrated orga-
nization of inhibitory (gabaergic) and excitatory 
(glutamatergic) neurons. This excitatory-
inhibitory balance is altered in schizophrenia 
(Kehrer, 2008; Northoff & Gomez-Pilar, 2021), 
especially affecting the thalamus, as has recently 
been discovered (Quiñones et al., 2021).

Together, these findings show that the spindle 
generation process in schizophrenia is disrupted, 
reducing the density of spindles and likely pro-
ducing other changes in sleep architecture. 
Therefore, spindles are postulated as a noticeable 
biomarker of increasing importance in 
schizophrenia.
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2.6	� Conclusion

As new studies appear, the relationship between 
restful sleep and health is increasingly evident. In 
this relationship, the role of spindles has gained 
much relevance due to its proven importance 
with memory consolidation processes. However, 
recent studies have shown that SOs are at least 
equally important in many of these processes. 
Future studies should be directed to analyze 
whether the relationship between SOs and spin-
dles is altered in different sleep-related patholo-
gies – and not just the spindles themselves. If so, 
changes in their relationship could shed new light 
on the pathophysiological mechanisms involved.

Acknowledgments  This research has been developed 
under the grants PID2020-115468RB-I00 and RTC-
2017-6516-1 funded by “Ministerio de Ciencia e 
Innovación/Agencia Estatal de 
Investigación/10.13039/501100011033/” and ERDF A 
way of making Europe; under the R  +  D  +  i project 
“Análisis y correlación entre la epigenética y la actividad 
cerebral para evaluar el riesgo de migraña crónica y 
episódica en mujeres” (“Cooperation Programme Interreg 
V-A Spain-Portugal POCTEP 2014–2020”) funded by 
‘European Commission’ and ERDF; and by “CIBER en 
Bioingeniería, Biomateriales y Nanomedicina (CIBER-
BBN)” through “Instituto de Salud Carlos III” co-funded 
with ERDF funds.

References

Aboalayon, K., Faezipour, M., Almuhammadi, W., & 
Moslehpour, S. (2016). Sleep stage classification 
using EEG signal analysis: A comprehensive survey 
and new investigation. Entropy, 18(9), 272. https://doi.
org/10.3390/e18090272

Ahuja, S., Chen, R.  K., Kam, K., Pettibone, W.  D., 
Osorio, R. S., & Varga, A. W. (2018). Role of normal 
sleep and sleep apnea in human memory processing. 
Nature and Science of Sleep, 10, 255–269. https://doi.
org/10.2147/NSS.S125299

Antony, J. W., Schönauer, M., Staresina, B. P., & Cairney, 
S. A. (2019). Sleep spindles and memory reprocess-
ing. Trends in Neurosciences, 42(1), 1–3. https://doi.
org/10.1016/j.tins.2018.09.012

Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). 
Dynamics of ongoing activity: Explanation of the 
large variability in evoked cortical responses. Science 
(New York, N.Y.), 273(5283), 1868–1871. https://doi.
org/10.1126/science.273.5283.1868

Axmacher, N., Elger, C. E., & Fell, J. (2008). Ripples in 
the medial temporal lobe are relevant for human mem-
ory consolidation. Brain, 131(7), 1806–1817. https://
doi.org/10.1093/brain/awn103

Benson, K.  L. (2015). Sleep in Schizophrenia. Sleep 
Medicine Clinics, 10(1), 49–55. https://doi.
org/10.1016/j.jsmc.2014.11.001

Bernardi, G., Siclari, F., Handjaras, G., Riedner, B. A., & 
Tononi, G. (2018). Local and widespread slow waves 
in stable NREM sleep: Evidence for distinct regula-
tion mechanisms. Frontiers in Human Neuroscience, 
12, 248. https://doi.org/10.3389/fnhum.2018.00248

Berner, I., Schabus, M., Wienerroither, T., & Klimesch, 
W. (2006). The significance of sigma neurofeed-
back training on sleep spindles and aspects of 
declarative memory. Applied Psychophysiology and 
Biofeedback, 31(2), 97–114. https://doi.org/10.1007/
s10484-006-9013-7

Berry, R. B., Budhiraja, R., Gottlieb, D. J., Gozal, D., Iber, 
C., Kapur, V. K., … Tangredi, M. M. (2012). Rules for 
scoring respiratory events in sleep: Update of the 2007 
AASM manual for the scoring of sleep and associated 
events. Journal of Clinical Sleep Medicine, 08(05), 
597–619. https://doi.org/10.5664/jcsm.2172

Boostani, R., Karimzadeh, F., & Nami, M. (2017). A com-
parative review on sleep stage classification methods 
in patients and healthy individuals. Computer Methods 
and Programs in Biomedicine, 140, 77–91. https://doi.
org/10.1016/j.cmpb.2016.12.004

Březinová, V. (1974). Sleep cycle content and sleep 
cycle duration. Electroencephalography and 
Clinical Neurophysiology, 36, 275–282. https://doi.
org/10.1016/0013-4694(74)90169-2

Brockmann, P. E., Damiani, F., Pincheira, E., Daiber, F., 
Ruiz, S., Aboitiz, F., … Bruni, O. (2018). Sleep spindle 
activity in children with obstructive sleep apnea as a 
marker of neurocognitive performance: A pilot study. 
European Journal of Paediatric Neurology, 22(3), 
434–439. https://doi.org/10.1016/j.ejpn.2018.02.003

Cai, D.  J., Mednick, S.  A., Harrison, E.  M., Kanady, 
J. C., & Mednick, S. C. (2009). REM, not incubation, 
improves creativity by priming associative networks. 
Proceedings of the National Academy of Sciences, 
106(25), 10130–10134. https://doi.org/10.1073/
pnas.0900271106

Cairney, S.  A., Vali Guttesen, A.  A., El Marj, N., & 
Staresina, B.  P. (2018). Memory consolidation is 
linked to spindle-mediated information processing 
during Sleep. Current Biology, 28(6), 948–954.e4. 
https://doi.org/10.1016/j.cub.2018.01.087

Cairney, S.  A., Sobczak, J.  M., Lindsay, S., & Gaskell, 
M.  G. (2017). Mechanisms of memory retrieval in 
slow-wave sleep. Sleep, 40(9), zsx114. https://doi.
org/10.1093/sleep/zsx114

Calhoun, D.  A., & Harding, S.  M. (2010). Sleep and 
hypertension. Chest, 138(2), 434–443. https://doi.
org/10.1378/chest.09-2954

Cao, H., Ingvar, M., Hultman, C.  M., & Cannon, T. 
(2019). Evidence for cerebello-thalamo-cortical 

2  Covering the Gap Between Sleep and Cognition – Mechanisms and Clinical Examples

https://doi.org/10.3390/e18090272
https://doi.org/10.3390/e18090272
https://doi.org/10.2147/NSS.S125299
https://doi.org/10.2147/NSS.S125299
https://doi.org/10.1016/j.tins.2018.09.012
https://doi.org/10.1016/j.tins.2018.09.012
https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1093/brain/awn103
https://doi.org/10.1093/brain/awn103
https://doi.org/10.1016/j.jsmc.2014.11.001
https://doi.org/10.1016/j.jsmc.2014.11.001
https://doi.org/10.3389/fnhum.2018.00248
https://doi.org/10.1007/s10484-006-9013-7
https://doi.org/10.1007/s10484-006-9013-7
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.1016/j.cmpb.2016.12.004
https://doi.org/10.1016/j.cmpb.2016.12.004
https://doi.org/10.1016/0013-4694(74)90169-2
https://doi.org/10.1016/0013-4694(74)90169-2
https://doi.org/10.1016/j.ejpn.2018.02.003
https://doi.org/10.1073/pnas.0900271106
https://doi.org/10.1073/pnas.0900271106
https://doi.org/10.1016/j.cub.2018.01.087
https://doi.org/10.1093/sleep/zsx114
https://doi.org/10.1093/sleep/zsx114
https://doi.org/10.1378/chest.09-2954
https://doi.org/10.1378/chest.09-2954


26

hyperconnectivity as a heritable trait for schizophre-
nia. Translational Psychiatry, 9(1), 192. https://doi.
org/10.1038/s41398-019-0531-5

Castelnovo, A., Graziano, B., Ferrarelli, F., & D’Agostino, 
A. (2018). Sleep spindles and slow waves in schizo-
phrenia and related disorders: main findings, chal-
lenges and future perspectives. European Journal 
of Neuroscience, 48(8), 2738–2758. https://doi.
org/10.1111/ejn.13815

Chouinard, S., Poulin, J., Stip, E., & Godbout, R. (2004). 
Sleep in untreated patients with schizophrenia: A 
meta-analysis. Schizophrenia Bulletin, 30(4), 957–
967. https://doi.org/10.1093/oxfordjournals.schbul.
a007145

Contreras, D., & Steriade, M. (1996). Spindle oscilla-
tion in cats: The role of corticothalamic feedback 
in a thalamically generated rhythm. The Journal of 
Physiology, 490(1), 159–179. https://doi.org/10.1113/
jphysiol.1996.sp021133

Court, J., Spurden, D., Lloyd, S., McKeith, I., Ballard, 
C., Cairns, N., … Perry, E. (2002). Neuronal nicotinic 
receptors in dementia with Lewy bodies and schizo-
phrenia. Journal of Neurochemistry, 73(4), 1590–1597. 
https://doi.org/10.1046/j.1471-4159.1999.0731590.x

David, F., Schmiedt, J.  T., Taylor, H.  L., Orban, G., Di 
Giovanni, G., Uebele, V.  N., … Crunelli, V. (2013). 
Essential thalamic contribution to slow waves of natural 
sleep. Journal of Neuroscience, 33(50), 19599–19610. 
https://doi.org/10.1523/JNEUROSCI.3169-13.2013

Diekelmann, S., & Born, J. (2010). The memory func-
tion of sleep. Nature Reviews Neuroscience, 11(2), 
114–126. https://doi.org/10.1038/nrn2762

Drummond, S. P. A., Brown, G. G., Gillin, J. C., Stricker, 
J. L., Wong, E. C., & Buxton, R. B. (2000). Altered 
brain response to verbal learning following sleep 
deprivation. Nature, 403(6770), 655–657. https://doi.
org/10.1038/35001068

Fang, Z., Ray, L.  B., Owen, A.  M., & Fogel, S.  M. 
(2019). Brain activation time-locked to sleep spindles 
associated with human cognitive abilities. Frontiers 
in Neuroscience, 13, 46. https://doi.org/10.3389/
fnins.2019.00046

Fang, Z., Sergeeva, V., Ray, L. B., Viczko, J., Owen, A. M., 
& Fogel, S. M. (2017). Sleep spindles and intellectual 
ability: Epiphenomenon or directly related? Journal of 
Cognitive Neuroscience, 29(1), 167–182. https://doi.
org/10.1162/jocn_a_01034

Feinsilver, S.  H. (2003). Sleep in the elderly. Clinics 
in Geriatric Medicine, 19(1), 177–188. https://doi.
org/10.1016/S0749-0690(02)00064-2

Fernandez, L.  M. J., & Lüthi, A. (2020). Sleep spin-
dles: Mechanisms and functions. Physiological 
Reviews, 100(2), 805–868. https://doi.org/10.1152/
physrev.00042.2018

Ferrarelli, F., Huber, R., Peterson, M. J., Massimini, M., 
Murphy, M., Riedner, B.  A., … Tononi, G. (2007). 
Reduced sleep spindle activity in schizophrenia 
patients. American Journal of Psychiatry, 164(3), 
483–492. https://doi.org/10.1176/ajp.2007.164.3.483

Ferrarelli, F., & Tononi, G. (2017). Reduced sleep spin-
dle activity point to a TRN-MD thalamus-PFC cir-
cuit dysfunction in schizophrenia. Schizophrenia 
Research, 180, 36–43. https://doi.org/10.1016/j.
schres.2016.05.023

Ferreira, C.  B., Schoorlemmer, G.  H., Rocha, A.  A., & 
Cravo, S. L. (2020). Increased sympathetic responses 
induced by chronic obstructive sleep apnea are 
caused by sleep fragmentation. Journal of Applied 
Physiology, 129(1), 163–172. https://doi.org/10.1152/
japplphysiol.00811.2019

Fogel, S., Albouy, G., King, B. R., Lungu, O., Vien, C., 
Bore, A., … Doyon, J. (2017). Reactivation or trans-
formation? Motor memory consolidation associated 
with cerebral activation time-locked to sleep spindles. 
PLoS One, 12(4), e0174755. https://doi.org/10.1371/
journal.pone.0174755

Fogel, S., & Smith, C. (2006). Learning-dependent 
changes in sleep spindles and stage 2 sleep. Journal 
of Sleep Research, 15(3), 250–255. https://doi.
org/10.1111/j.1365-2869.2006.00522.x

Fogel, S., & Smith, C. (2011). The function of the sleep 
spindle: A physiological index of intelligence and 
a mechanism for sleep-dependent memory consoli-
dation. Neuroscience and Biobehavioral Reviews, 
35(5), 1154–1165. https://doi.org/10.1016/j.
neubiorev.2010.12.003

Fogel, S., Vien, C., Karni, A., Benali, H., Carrier, J., & 
Doyon, J. (2017). Sleep spindles: A physiological 
marker of age-related changes in gray matter in brain 
regions supporting motor skill memory consolida-
tion. Neurobiology of Aging, 49, 154–164. https://doi.
org/10.1016/j.neurobiolaging.2016.10.009

Foley, D.  J., Monjan, A.  A., Brown, S.  L., Simonsick, 
E. M., Wallace, R. B., & Blazer, D. G. (1995). Sleep 
complaints among elderly persons: An epidemiologic 
study of three communities. Sleep, 18(6), 425–432. 
https://doi.org/10.1093/sleep/18.6.425

Fricke-Oerkermann, L., Plück, J., Schredl, M., Heinz, 
K., Mitschke, A., Wiater, A., & Lehmkuhl, G. (2007). 
Prevalence and course of sleep problems in childhood. 
Sleep, 30(10), 1371–1377. https://doi.org/10.1093/
sleep/30.10.1371

Fry, A. F., & Hale, S. (2000). Relationships among pro-
cessing speed, working memory, and fluid intelligence 
in children. Biological Psychology, 54(1–3), 1–34. 
https://doi.org/10.1016/S0301-0511(00)00051-X

Ganz, F. D. (2012). Sleep and immune function. Critical 
Care Nurse, 32(2), e19–e25. https://doi.org/10.4037/
ccn2012689

Gershenson, C., & Fernández, N. (2012). Complexity and 
information: Measuring emergence, self-organization, 
and homeostasis at multiple scales. Complexity, 18(2), 
29–44. https://doi.org/10.1002/cplx.21424

Göder, R., Graf, A., Ballhausen, F., Weinhold, S., Baier, 
P. C., Junghanns, K., & Prehn-Kristensen, A. (2015). 
Impairment of sleep-related memory consolidation 
in schizophrenia: Relevance of sleep spindles? Sleep 
Medicine, 16(5), 564–569. https://doi.org/10.1016/j.
sleep.2014.12.022

J. Gomez-Pilar et al.

https://doi.org/10.1038/s41398-019-0531-5
https://doi.org/10.1038/s41398-019-0531-5
https://doi.org/10.1111/ejn.13815
https://doi.org/10.1111/ejn.13815
https://doi.org/10.1093/oxfordjournals.schbul.a007145
https://doi.org/10.1093/oxfordjournals.schbul.a007145
https://doi.org/10.1113/jphysiol.1996.sp021133
https://doi.org/10.1113/jphysiol.1996.sp021133
https://doi.org/10.1046/j.1471-4159.1999.0731590.x
https://doi.org/10.1523/JNEUROSCI.3169-13.2013
https://doi.org/10.1038/nrn2762
https://doi.org/10.1038/35001068
https://doi.org/10.1038/35001068
https://doi.org/10.3389/fnins.2019.00046
https://doi.org/10.3389/fnins.2019.00046
https://doi.org/10.1162/jocn_a_01034
https://doi.org/10.1162/jocn_a_01034
https://doi.org/10.1016/S0749-0690(02)00064-2
https://doi.org/10.1016/S0749-0690(02)00064-2
https://doi.org/10.1152/physrev.00042.2018
https://doi.org/10.1152/physrev.00042.2018
https://doi.org/10.1176/ajp.2007.164.3.483
https://doi.org/10.1016/j.schres.2016.05.023
https://doi.org/10.1016/j.schres.2016.05.023
https://doi.org/10.1152/japplphysiol.00811.2019
https://doi.org/10.1152/japplphysiol.00811.2019
https://doi.org/10.1371/journal.pone.0174755
https://doi.org/10.1371/journal.pone.0174755
https://doi.org/10.1111/j.1365-2869.2006.00522.x
https://doi.org/10.1111/j.1365-2869.2006.00522.x
https://doi.org/10.1016/j.neubiorev.2010.12.003
https://doi.org/10.1016/j.neubiorev.2010.12.003
https://doi.org/10.1016/j.neurobiolaging.2016.10.009
https://doi.org/10.1016/j.neurobiolaging.2016.10.009
https://doi.org/10.1093/sleep/18.6.425
https://doi.org/10.1093/sleep/30.10.1371
https://doi.org/10.1093/sleep/30.10.1371
https://doi.org/10.1016/S0301-0511(00)00051-X
https://doi.org/10.4037/ccn2012689
https://doi.org/10.4037/ccn2012689
https://doi.org/10.1002/cplx.21424
https://doi.org/10.1016/j.sleep.2014.12.022
https://doi.org/10.1016/j.sleep.2014.12.022


27

Godbout, R., Bergeron, C., Limoges, É., Stip, E., & 
Mottron, L. (2000). A laboratory study of sleep in 
Aspergerʼs syndrome. NeuroReport, 11(1), 127–130. 
https://doi.org/10.1097/00001756-200001170-00025

Goel, N., Rao, H., Durmer, J., & Dinges, D. (2009). 
Neurocognitive consequences of sleep deprivation. 
Seminars in Neurology, 29(04), 320–339. https://doi.
org/10.1055/s-0029-1237117

Goldschmied, J. R., Lacourse, K., Maislin, G., Delfrate, 
J., Gehrman, P., Pack, F. M., … Warby, S. C. (2021). 
Spindles are highly heritable as identified by different 
spindle detectors. Sleep, 44(4), zsaa230. https://doi.
org/10.1093/sleep/zsaa230

Gomez-Pilar, J., Gutiérrez-Tobal, G. C., Poza, J., Fogel, 
S., Doyon, J., Northoff, G., & Hornero, R. (2021). 
Spectral and temporal characterization of sleep 
spindles—Methodological implications. Journal 
of Neural Engineering, 18(3), 036014. https://doi.
org/10.1088/1741-2552/abe8ad

Gorgoni, M., Lauri, G., Truglia, I., Cordone, S., Sarasso, 
S., Scarpelli, S., … De Gennaro, L. (2016). Parietal 
fast sleep spindle density decrease in Alzheimer’s 
disease and amnesic mild cognitive impair-
ment. Neural Plasticity, 2016, 1–10. https://doi.
org/10.1155/2016/8376108

Gorgoni, M., Scarpelli, S., Reda, F., & De Gennaro, L. 
(2020). Sleep EEG oscillations in neurodevelop-
mental disorders without intellectual disabilities. 
Sleep Medicine Reviews, 49, 101224. https://doi.
org/10.1016/j.smrv.2019.101224

Gruber, R., Wise, M. S., Frenette, S., Knäauper, B., Boom, 
A., Fontil, L., & Carrier, J. (2013). The association 
between sleep spindles and IQ in healthy school-age 
children. International Journal of Psychophysiology, 
89(2), 229–240. https://doi.org/10.1016/j.
ijpsycho.2013.03.018

Gutiérrez-Tobal, G.  C., Gomez-Pilar, J., Kheirandish-
Gozal, L., Poza, J., Álvarez, D., Campo, F., … 
Hornero, R. (2021). Pediatric sleep apnea: The over-
night electroencephalogram as a phenotypic bio-
marker. Forntiers in Neuroscience, 15, 644697.

Hahn, M., Joechner, A., Roell, J., Schabus, M., Heib, D. P., 
Gruber, G., … Hoedlmoser, K. (2019). Developmental 
changes of sleep spindles and their impact on sleep-
dependent memory consolidation and general cogni-
tive abilities: A longitudinal approach. Developmental 
Science, 22(1), e12706. https://doi.org/10.1111/
desc.12706

Harrison, Y., & Horne, J. A. (2000). Sleep loss and tem-
poral memory. The Quarterly Journal of Experimental 
Psychology Section A, 53(1), 271–279. https://doi.
org/10.1080/713755870

Huang, Z., Zhang, J., Longtin, A., Dumont, G., Duncan, 
N.  W., Pokorny, J., … Northoff, G. (2017). Is there 
a nonadditive interaction between spontaneous and 
evoked activity? Phase-dependence and its relation 
to the temporal structure of scale-free brain activ-
ity. Cerebral Cortex, 27(2), 1037–1059. https://doi.
org/10.1093/cercor/bhv288

Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. 
(2007). The AASM manual for the scoring of sleep 
and associated events: Rules. Terminology and 
Technical Specification. Retrieved from http://ci.nii.
ac.jp/naid/10024500923/en/

Iliff, J.  J., Wang, M., Liao, Y., Plogg, B.  A., Peng, W., 
Gundersen, G.  A., … Nedergaard, M. (2012). A 
Paravascular pathway facilitates CSF flow through 
the brain parenchyma and the clearance of intersti-
tial solutes, including amyloid. Science Translational 
Medicine, 4(147), 147ra111–147ra111. https://doi.
org/10.1126/scitranslmed.3003748

Iqbal, K., Liu, F., Gong, C.-X., & Grundke-Iqbal, I. 
(2010). Tau in Alzheimer disease and related tauopa-
thies. Current Alzheimer Research, 7(8), 656–664. 
https://doi.org/10.2174/156720510793611592

Jafari, B., & Mohsenin, V. (2010). Polysomnography. 
Clinics in Chest Medicine, 31(2), 287–297. https://doi.
org/10.1016/j.ccm.2010.02.005

Ju, Y.-E.  S., Lucey, B.  P., & Holtzman, D.  M. (2014). 
Sleep and Alzheimer disease pathology—A bidirec-
tional relationship. Nature Reviews Neurology, 10(2), 
115–119. https://doi.org/10.1038/nrneurol.2013.269

Keenan, S. A. (1999). Normal human sleep. Respiratory 
Care Clinics of North America, 5(3), 319–331, 
vii. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/10419578.

Kehrer, C. (2008). Altered excitatory-inhibitory balance 
in the NMDA-hypofunction model of schizophrenia. 
Frontiers in Molecular Neuroscience, 1. https://doi.
org/10.3389/neuro.02.006.2008

Kheirandish-Gozal, L., Philby, M.  F., Alonso-Álvarez, 
M.  L., Terán-Santos, J., & Gozal, D. (2016). 
Biomarkers of Alzheimer disease in children with 
obstructive sleep apnea: Effect of adenotonsillectomy. 
Sleep, 39(6), 1225–1232. https://doi.org/10.5665/
sleep.5838

Korkalainen, H., Leppanen, T., Duce, B., Kainulainen, S., 
Aakko, J., Leino, A., … Toyras, J. (2021). Detailed 
assessment of sleep architecture with deep learning 
and shorter epoch-to-epoch duration reveals sleep 
fragmentation of patients with obstructive sleep apnea. 
IEEE Journal of Biomedical and Health Informatics, 
25(7), 2567–2574. https://doi.org/10.1109/
JBHI.2020.3043507

Ladenbauer, J., Ladenbauer, J., Külzow, N., de Boor, 
R., Avramova, E., Grittner, U., & Flöel, A. (2017). 
Promoting sleep oscillations and their functional 
coupling by transcranial stimulation enhances mem-
ory consolidation in mild cognitive impairment. The 
Journal of Neuroscience, 37(30), 7111–7124. https://
doi.org/10.1523/JNEUROSCI.0260-17.2017

Latreille, V., Carrier, J., Lafortune, M., Postuma, R. 
B., Bertrand, J.-A., Panisset, M., Chouinard, S., & 
Gagnon, J.-F. (2015). Sleep spindles in Parkinson’s 
disease may predict the development of dementia. 
Neurobiology of Aging, 36(2), 1083–1090. https://doi.
org/10.1016/j.neurobiolaging.2014.09.009

Larson-Prior, L.  J., Zempel, J.  M., Nolan, T.  S., Prior, 
F. W., Snyder, A. Z., & Raichle, M. E. (2009). Cortical 

2  Covering the Gap Between Sleep and Cognition – Mechanisms and Clinical Examples

https://doi.org/10.1097/00001756-200001170-00025
https://doi.org/10.1055/s-0029-1237117
https://doi.org/10.1055/s-0029-1237117
https://doi.org/10.1093/sleep/zsaa230
https://doi.org/10.1093/sleep/zsaa230
https://doi.org/10.1088/1741-2552/abe8ad
https://doi.org/10.1088/1741-2552/abe8ad
https://doi.org/10.1155/2016/8376108
https://doi.org/10.1155/2016/8376108
https://doi.org/10.1016/j.smrv.2019.101224
https://doi.org/10.1016/j.smrv.2019.101224
https://doi.org/10.1016/j.ijpsycho.2013.03.018
https://doi.org/10.1016/j.ijpsycho.2013.03.018
https://doi.org/10.1111/desc.12706
https://doi.org/10.1111/desc.12706
https://doi.org/10.1080/713755870
https://doi.org/10.1080/713755870
https://doi.org/10.1093/cercor/bhv288
https://doi.org/10.1093/cercor/bhv288
http://ci.nii.ac.jp/naid/10024500923/en/
http://ci.nii.ac.jp/naid/10024500923/en/
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.2174/156720510793611592
https://doi.org/10.1016/j.ccm.2010.02.005
https://doi.org/10.1016/j.ccm.2010.02.005
https://doi.org/10.1038/nrneurol.2013.269
http://www.ncbi.nlm.nih.gov/pubmed/10419578
http://www.ncbi.nlm.nih.gov/pubmed/10419578
https://doi.org/10.3389/neuro.02.006.2008
https://doi.org/10.3389/neuro.02.006.2008
https://doi.org/10.5665/sleep.5838
https://doi.org/10.5665/sleep.5838
https://doi.org/10.1109/JBHI.2020.3043507
https://doi.org/10.1109/JBHI.2020.3043507
https://doi.org/10.1523/JNEUROSCI.0260-17.2017
https://doi.org/10.1523/JNEUROSCI.0260-17.2017
https://doi.org/10.1016/j.neurobiolaging.2014.09.009
https://doi.org/10.1016/j.neurobiolaging.2014.09.009


28

network functional connectivity in the descent to sleep. 
Proceedings of the National Academy of Sciences, 
106(11), 4489–4494. https://doi.org/10.1073/
pnas.0900924106

Liu, S., Benson, T. A., & Reiter, M. K. (2019). Efficient 
and safe network updates with suffix causal con-
sistency. In  Proceedings of the fourteenth EuroSys 
conference 2019 (pp.  1–15). ACM. https://doi.
org/10.1145/3302424.3303965

Lubeiro, A., Fatjó-Vilas, M., Guardiola, M., 
Almodóvar, C., Gomez-Pilar, J., Cea-Cañas, B., 
… Molina, V. (2020). Analysis of KCNH2 and 
CACNA1C schizophrenia risk genes on EEG func-
tional network modulation during an auditory odd-
ball task. European Archives of Psychiatry and 
Clinical Neuroscience, 270(4), 433–442. https://
doi.org/10.1007/s00406-018-0977-0

Malhotra, A., & White, D.  P. (2002). Obstructive sleep 
apnoea. The Lancet, 360(9328), 237–245. https://doi.
org/10.1016/S0140-6736(02)09464-3

Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. 
(2006). Boosting slow oscillations during sleep poten-
tiates memory. Nature, 444(7119), 610–613. https://
doi.org/10.1038/nature05278

Monier, C., Chavane, F., Baudot, P., Graham, L.  J., & 
Frégnac, Y. (2003). Orientation and direction selec-
tivity of synaptic inputs in visual cortical neurons. 
Neuron, 37(4), 663–680. https://doi.org/10.1016/
S0896-6273(03)00064-3

Murawski, B., Wade, L., Plotnikoff, R. C., Lubans, D. R., 
& Duncan, M.  J. (2018). A systematic review and 
meta-analysis of cognitive and behavioral interven-
tions to improve sleep health in adults without sleep 
disorders. Sleep Medicine Reviews, 40, 160–169. 
https://doi.org/10.1016/j.smrv.2017.12.003

Nakao, T., Ohira, H., & Northoff, G. (2012). Distinction 
between externally vs. internally guided decision-
making: Operational differences, meta-analytical com-
parisons and their theoretical implications. Frontiers 
in Neuroscience, 6, 31. https://doi.org/10.3389/
fnins.2012.00031

Ngo, H.-V.  V., Seibold, M., Boche, D.  C., Mölle, M., 
& Born, J. (2019). Insights on auditory closed-loop 
stimulation targeting sleep spindles in slow oscillation 
up-states. Journal of Neuroscience Methods, 316, 117–
124. https://doi.org/10.1016/j.jneumeth.2018.09.006

Northoff, G., & Gomez-Pilar, J. (2021). Overcoming 
rest–task divide—Abnormal temporospatial dynam-
ics and its cognition in schizophrenia. Schizophrenia 
Bulletin, 47(3), 751–765. https://doi.org/10.1093/
schbul/sbaa178

Ohayon, M. M., Carskadon, M. A., Guilleminault, C., & 
Vitiello, M.  V. (2004). Meta-analysis of quantitative 
sleep parameters from childhood to old age in healthy 
individuals: Developing normative sleep values across 
the human lifespan. Sleep, 27(7), 1255–1273. https://
doi.org/10.1093/sleep/27.7.1255

Ohayon, M.  M., & Partinen, M. (2002). Insomnia and 
global sleep dissatisfaction in Finland. Journal 

of Sleep Research, 11(4), 339–346. https://doi.
org/10.1046/j.1365-2869.2002.00317.x

Orzeł-Gryglewska, J. (2010). Consequences of sleep 
deprivation. International Journal of Occupational 
Medicine and Environmental Health, 23(1). https://
doi.org/10.2478/v10001-010-0004-9

Pearlman, C. A. (1979). REM sleep and information pro-
cessing: Evidence from animal studies. Neuroscience 
& Biobehavioral Reviews, 3(2), 57–68. https://doi.
org/10.1016/0149-7634(79)90034-4

Poh, J.-H., & Chee, M. W. L. (2017). Degradation of cor-
tical representations during encoding following sleep 
deprivation. NeuroImage, 153, 131–138. https://doi.
org/10.1016/j.neuroimage.2017.01.080

Poulin, J., Daoust, A.-M., Forest, G., Stip, E., & Godbout, 
R. (2003). Sleep architecture and its clinical correlates 
in first episode and neuroleptic-naive patients with 
schizophrenia. Schizophrenia Research, 62(1–2), 147–
153. https://doi.org/10.1016/S0920-9964(02)00346-8

Quiñones, G.  M., Mayeli, A., Yushmanov, V.  E., 
Hetherington, H.  P., & Ferrarelli, F. (2021). 
Reduced GABA/glutamate in the thalamus of 
individuals at clinical high risk for psychosis. 
Neuropsychopharmacology, 46(6), 1133–1139. 
https://doi.org/10.1038/s41386-020-00920-4

Reynaud, E., Vecchierini, M.-F., Heude, B., Charles, 
M.-A., & Plancoulaine, S. (2018). Sleep and its rela-
tion to cognition and behaviour in preschool-aged chil-
dren of the general population: A systematic review. 
Journal of Sleep Research, 27(3), e12636. https://doi.
org/10.1111/jsr.12636

Schabus, M., Gruber, G., Parapatics, S., Sauter, C., 
Klösch, G., Anderer, P., … Zeitlhofer, J. (2004). Sleep 
spindles and their significance for declarative memory 
consolidation. Sleep, 27(8), 1479–1485. https://doi.
org/10.1093/sleep/27.7.1479

Schain, A.  J., Melo-Carrillo, A., Strassman, A.  M., & 
Burstein, R. (2017). Cortical spreading depression 
closes paravascular space and impairs glymphatic 
flow: Implications for migraine headache. The Journal 
of Neuroscience, 37(11), 2904–2915. https://doi.
org/10.1523/JNEUROSCI.3390-16.2017

Schönauer, M., & Pöhlchen, D. (2018). Sleep spindles. 
Current Biology, 28(19), R1129–R1130. https://doi.
org/10.1016/j.cub.2018.07.035

Siegel, J.  M. (2001). The REM sleep-memory consoli-
dation hypothesis. Science, 294(5544), 1058–1063. 
https://doi.org/10.1126/science.1063049

Smith, R. E., Haroutunian, V., Davis, K. L., & Meador-
Woodruff, J. H. (2001). Expression of excitatory amino 
acid transporter transcripts in the thalamus of subjects 
with schizophrenia. American Journal of Psychiatry, 
158(9), 1393–1399. https://doi.org/10.1176/appi.
ajp.158.9.1393

Staresina, B.  P., Bergmann, T.  O., Bonnefond, M., Van 
Der Meij, R., Jensen, O., Deuker, L., … Fell, J. (2015). 
Hierarchical nesting of slow oscillations, spindles 
and ripples in the human hippocampus during sleep. 
Nature Neuroscience, 18(11), 1679–1686. https://doi.
org/10.1038/nn.4119

J. Gomez-Pilar et al.

https://doi.org/10.1073/pnas.0900924106
https://doi.org/10.1073/pnas.0900924106
https://doi.org/10.1145/3302424.3303965
https://doi.org/10.1145/3302424.3303965
https://doi.org/10.1007/s00406-018-0977-0
https://doi.org/10.1007/s00406-018-0977-0
https://doi.org/10.1016/S0140-6736(02)09464-3
https://doi.org/10.1016/S0140-6736(02)09464-3
https://doi.org/10.1038/nature05278
https://doi.org/10.1038/nature05278
https://doi.org/10.1016/S0896-6273(03)00064-3
https://doi.org/10.1016/S0896-6273(03)00064-3
https://doi.org/10.1016/j.smrv.2017.12.003
https://doi.org/10.3389/fnins.2012.00031
https://doi.org/10.3389/fnins.2012.00031
https://doi.org/10.1016/j.jneumeth.2018.09.006
https://doi.org/10.1093/schbul/sbaa178
https://doi.org/10.1093/schbul/sbaa178
https://doi.org/10.1093/sleep/27.7.1255
https://doi.org/10.1093/sleep/27.7.1255
https://doi.org/10.1046/j.1365-2869.2002.00317.x
https://doi.org/10.1046/j.1365-2869.2002.00317.x
https://doi.org/10.2478/v10001-010-0004-9
https://doi.org/10.2478/v10001-010-0004-9
https://doi.org/10.1016/0149-7634(79)90034-4
https://doi.org/10.1016/0149-7634(79)90034-4
https://doi.org/10.1016/j.neuroimage.2017.01.080
https://doi.org/10.1016/j.neuroimage.2017.01.080
https://doi.org/10.1016/S0920-9964(02)00346-8
https://doi.org/10.1038/s41386-020-00920-4
https://doi.org/10.1111/jsr.12636
https://doi.org/10.1111/jsr.12636
https://doi.org/10.1093/sleep/27.7.1479
https://doi.org/10.1093/sleep/27.7.1479
https://doi.org/10.1523/JNEUROSCI.3390-16.2017
https://doi.org/10.1523/JNEUROSCI.3390-16.2017
https://doi.org/10.1016/j.cub.2018.07.035
https://doi.org/10.1016/j.cub.2018.07.035
https://doi.org/10.1126/science.1063049
https://doi.org/10.1176/appi.ajp.158.9.1393
https://doi.org/10.1176/appi.ajp.158.9.1393
https://doi.org/10.1038/nn.4119
https://doi.org/10.1038/nn.4119


29

Steriade, M. (2003). The corticothalamic system in 
sleep. Frontiers in Bioscience, 8(4), 1043. https://doi.
org/10.2741/1043

Steullet, P., Cabungcal, J.-H., Bukhari, S.  A., Ardelt, 
M.  I., Pantazopoulos, H., Hamati, F., … Berretta, 
S. (2018). The thalamic reticular nucleus in schizo-
phrenia and bipolar disorder: Role of parvalbumin-
expressing neuron networks and oxidative stress. 
Molecular Psychiatry, 23(10), 2057–2065. https://doi.
org/10.1038/mp.2017.230

Stickgold, R., & Walker, M. (2005). Memory consolida-
tion and reconsolidation: What is the role of sleep? 
Trends in Neurosciences, 28(8), 408–415. https://doi.
org/10.1016/j.tins.2005.06.004

van Cauter, E., Holmbäck, U., Knutson, K., Leproult, R., 
Miller, A., Nedeltcheva, A., … Spiegel, K. (2007). 
Impact of sleep and sleep loss on neuroendocrine and 
metabolic function. Hormone Research in Pædiatrics, 
67(1), 2–9. https://doi.org/10.1159/000097543

Van Cauter, E., & Knutson, K. L. (2008). Sleep and the 
epidemic of obesity in children and adults. European 
journal of endocrinology, 159(suppl_1), S59–S66. 
https://doi.org/10.1530/EJE-08-0298

Van Cauter, E., Spiegel, K., Tasali, E., & Leproult, 
R. (2008). Metabolic consequences of sleep and 
sleep loss. Sleep Medicine, 9, S23–S28. https://doi.
org/10.1016/S1389-9457(08)70013-3

Vetrugno, R., & Montagna, P. (2011). Sleep-to-wake tran-
sition movement disorders. Sleep Medicine, 12, S11–
S16. https://doi.org/10.1016/j.sleep.2011.10.005

Vgontzas, A., & Pavlović, J.  M. (2018). Sleep disor-
ders and migraine: Review of literature and potential 
pathophysiology mechanisms. Headache: The Journal 
of Head and Face Pain, 58(7), 1030–1039. https://doi.
org/10.1111/head.13358

Walker, M.  P. (2009). The role of sleep in cognition 
and emotion. Annals of the New  York Academy 
of Sciences, 1156(1), 168–197. https://doi.
org/10.1111/j.1749-6632.2009.04416.x

Weichard, A. J., Walter, L. M., Hollis, S. L., Nixon, G. M., 
Davey, M. J., Horne, R. S. C., & Biggs, S. N. (2016). 
Association between slow-wave activity, cognition and 
behaviour in children with sleep-disordered breathing. 
Sleep Medicine, 25, 49–55. https://doi.org/10.1016/j.
sleep.2016.06.004

Weng, Y.-Y., Lei, X., & Yu, J. (2020). Sleep spindle abnor-
malities related to Alzheimer’s disease: A systematic 
mini-review. Sleep Medicine, 75, 37–44. https://doi.
org/10.1016/j.sleep.2020.07.044

White, B., Abbott, L. F., & Fiser, J. (2012). Suppression 
of cortical neural variability is stimulus- and state-
dependent. Journal of Neurophysiology, 108(9), 
2383–2392. https://doi.org/10.1152/jn.00723.2011

Winer, J.  R., Mander, B.  A., Helfrich, R.  F., Maass, 
A., Harrison, T.  M., Baker, S.  L., … Walker, M.  P. 
(2019). Sleep as a potential biomarker of tau and 
β-amyloid burden in the human brain. The Journal 
of Neuroscience, 39(32), 6315–6324. https://doi.
org/10.1523/JNEUROSCI.0503-19.2019

Wolff, A., Yao, L., Gomez-Pilar, J., Shoaran, M., Jiang, 
N., & Northoff, G. (2019). Neural variability quench-
ing during decision-making: Neural individuality and 
its prestimulus complexity. NeuroImage, 192. https://
doi.org/10.1016/j.neuroimage.2019.02.070

Xie, L., Kang, H., Xu, Q., Chen, M.  J., Liao, Y., 
Thiyagarajan, M., … Nedergaard, M. (2013). Sleep 
drives metabolite clearance from the adult brain. 
Science, 342(6156), 373–377. https://doi.org/10.1126/
science.1241224

Yaffe, K., Falvey, C. M., & Hoang, T. (2014). Connections 
between sleep and cognition in older adults. The 
Lancet Neurology, 13(10), 1017–1028. https://doi.
org/10.1016/S1474-4422(14)70172-3

Yang, C., & Winkelman, J.  W. (2006). Clinical signifi-
cance of sleep EEG abnormalities in chronic schizo-
phrenia. Schizophrenia Research, 82(2–3), 251–260. 
https://doi.org/10.1016/j.schres.2005.10.021

ZAssefa, S., Diaz-Abad, M., Wickwire, E.  M., & 
Scharf, S.  M. (2015). The functions of sleep. AIMS 
Neuroscience, 2(3), 155–171. https://doi.org/10.3934/
Neuroscience.2015.3.155

Zhang, Y., Quiñones, G. M., & Ferrarelli, F. (2020). Sleep 
spindle and slow wave abnormalities in schizophre-
nia and other psychotic disorders: Recent findings 
and future directions. Schizophrenia Research, 221, 
29–36. https://doi.org/10.1016/j.schres.2019.11.002

Zilio, F., Gomez-Pilar, J., Cao, S., Zhang, J., Zang, D., Qi, 
Z., … Northoff, G. (2021). Are intrinsic neural tim-
escales related to sensory processing? Evidence from 
abnormal behavioral states. NeuroImage, 226, 117579. 
https://doi.org/10.1016/j.neuroimage.2020.117579

2  Covering the Gap Between Sleep and Cognition – Mechanisms and Clinical Examples

https://doi.org/10.2741/1043
https://doi.org/10.2741/1043
https://doi.org/10.1038/mp.2017.230
https://doi.org/10.1038/mp.2017.230
https://doi.org/10.1016/j.tins.2005.06.004
https://doi.org/10.1016/j.tins.2005.06.004
https://doi.org/10.1159/000097543
https://doi.org/10.1530/EJE-08-0298
https://doi.org/10.1016/S1389-9457(08)70013-3
https://doi.org/10.1016/S1389-9457(08)70013-3
https://doi.org/10.1016/j.sleep.2011.10.005
https://doi.org/10.1111/head.13358
https://doi.org/10.1111/head.13358
https://doi.org/10.1111/j.1749-6632.2009.04416.x
https://doi.org/10.1111/j.1749-6632.2009.04416.x
https://doi.org/10.1016/j.sleep.2016.06.004
https://doi.org/10.1016/j.sleep.2016.06.004
https://doi.org/10.1016/j.sleep.2020.07.044
https://doi.org/10.1016/j.sleep.2020.07.044
https://doi.org/10.1152/jn.00723.2011
https://doi.org/10.1523/JNEUROSCI.0503-19.2019
https://doi.org/10.1523/JNEUROSCI.0503-19.2019
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1126/science.1241224
https://doi.org/10.1126/science.1241224
https://doi.org/10.1016/S1474-4422(14)70172-3
https://doi.org/10.1016/S1474-4422(14)70172-3
https://doi.org/10.1016/j.schres.2005.10.021
https://doi.org/10.3934/Neuroscience.2015.3.155
https://doi.org/10.3934/Neuroscience.2015.3.155
https://doi.org/10.1016/j.schres.2019.11.002
https://doi.org/10.1016/j.neuroimage.2020.117579


31

3Obstructive Sleep Apnoea: Focus 
on Pathophysiology

Walter T. McNicholas

Abstract

Obstructive sleep apnoea (OSA) is character-
ized by recurring episodes of upper airway 
obstruction during sleep and the fundamental 
abnormality reflects the inability of the upper 
airway dilating muscles to withstand the nega-
tive forces generated within the upper airway 
during inspiration. Factors that result in nar-
rowing of the oropharynx such as abnormal 
craniofacial anatomy, soft tissue accumulation 
in the neck, and rostral fluid shift in the recum-
bent position increase the collapsing forces 
within the airway. The counteracting forces of 
upper airway dilating muscles, especially the 
genioglossus, are negatively influenced by 
sleep onset, inadequacy of the genioglossus 
responsiveness, ventilatory instability, espe-
cially post arousal, and loop gain. Recent 
reports indicate that multiple endotypes 
reflecting OSA pathophysiology are present in 
individual patients. A detailed understanding 
of the complex pathophysiology of OSA 
encourages the development of therapies tar-
geted at these pathophysiological endotypes 
and facilitates a move towards precision medi-
cine as a potential alternative to continuous 

positive airway pressure therapy in selected 
patients.

Keywords

Obstructive sleep apnoea · Pathophysiology · 
Upper airway anatomy · Ventilatory control · 
Arousal · Endotype · Treatment

3.1	� Introduction

Obstructive sleep apnoea (OSA) is characterized 
by recurring episodes of upper airway obstruc-
tion during sleep, leading to markedly reduced 
(hypopnoea) or absent (apnoea) airflow at the 
nose/mouth. The condition is usually associated 
with loud snoring and intermittent hypoxaemia, 
and apnoeas are typically terminated by brief 
micro-arousals, which result in sleep fragmenta-
tion and diminished amounts of slow wave sleep 
(SWS) and rapid-eye-movement (REM) sleep 
(Deegan & Mcnicholas, 1995). Patients with 
OSA are usually unaware of this sleep distur-
bance, but the changes in sleep architecture con-
tribute significantly to the prominent symptoms 
of unrefreshing sleep and excessive daytime 
sleepiness (EDS) typically reported by many of 
these patients (Lévy et  al., 2015). Furthermore, 
the intermittent hypoxaemia and sleep fragmen-
tation associated with OSA generate cell and 
molecular responses that generate systemic 
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inflammation, sympathetic excitation, and other 
responses that predispose to comorbidities, espe-
cially cardiometabolic and neuropsychiatric 
(McNicholas, 2019).

While the detailed pathophysiology of OSA is 
complex, the fundamental abnormality reflects 
the inability of the upper airway dilating muscles 
to withstand the negative forces generated within 
the upper airway during inspiration. In the nor-
mal setting, upper airway dilating muscles con-
tract in a coordinated manner that is timed with 
each inspiration, thus counteracting the negative 
pressures that are generated within the upper air-
way during inspiration. Factors that increase 
these negative pressures or diminish the efficacy 
of dilating muscle contraction upset this balance 
and thus predispose to upper airway obstruction 
(Deegan & Mcnicholas, 1995). Any factor that 
results in narrowing of the upper airway will 
increase upper airway negative pressures during 
inspiration, thus promoting collapse (Fig. 3.1).

The present review explores the various fac-
tors contributing to an imbalance of forces within 
the upper airway that predispose to obstruction, 
discusses the mechanisms by which obstruction 
occurs, reviews the more recent evidence regard-
ing pathophysiological endotypes and pheno-
types that may help predict the development of 
OSA, and, finally, reviews the emerging role of 

targeted therapy for OSA based on individual 
pathophysiological mechanisms.

3.2	� Pharyngeal Pressure

The most important factor contributing to 
increased negative pharyngeal pressure during 
inspiration is narrowing of the oropharyngeal air-
way, which results in increased upper airway 
resistance during inspiration (Lévy et al., 2015). 
There are many potential causes of such narrow-
ing, which include structural narrowing because 
of craniofacial bony morphology, soft tissue 
accumulation in and around the oropharynx 
because of factors such as obesity or adenotonsil-
lar hypertrophy, and transient factors such as 
fluid accumulation that gravitates towards the 
neck in the recumbent position.

3.2.1	� Craniofacial Morphology

Most patients with OSA demonstrate a narrowed 
oropharyngeal airway that can be clinically 
assessed by the Mallampati score, which is 
graded 1–4 depending on the degree of narrow-
ing (McNicholas, 2008a). The typical patient 
with OSA has a score of 3 or 4 (Yu & Rosen, 
2020). There is increasing evidence that genetic 

Fig. 3.1  Balance of forces affecting the patency of the upper airway with factors resulting in increased negative intrap-
haryngeal pressure and factors that reduce dilating muscle contraction promoting airway collapse
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factors play a major role in this anatomical nar-
rowing and, thus, are present from birth (Chen 
et al., 2018; Chi et al., 2014). Cephalometric and 
computed tomographic (CT) studies of the head 
and neck have demonstrated bony dimensions in 
the lower face and neck that result in narrowing 
of the upper airway (Neelapu et al., 2017; Sakat 
et al., 2016) (Abramson et al., 2010), and clinical 
assessment demonstrates micro/retrognathia in 
many of these patients (McNicholas, 2008a). On 
lateral cephalometry studies, OSA patients have 
a variety of anatomical abnormalities, including 
an abnormally small airway below the base of the 
tongue, a long bulky soft palate, an inferiorly 
placed hyoid bone and retrognathia (Rivlin et al., 
1984).

Children with the Robin sequence (Bravo 
et  al., 2005) or Treacher-Collins syndrome 
(Moraleda-Cibrián et  al., 2014) are especially 
prone to OSA because of bony changes to the 
lower face and/or mandible that result in struc-
tural narrowing of the oropharyngeal airway (Tan 
et al., 2016). Micrognathia, which is the central 
feature of the Robin sequence, is particularly 
associated with OSA, as a small and/or retroposi-
tioned mandible places the base of the tongue 
closer to the posterior pharyngeal wall and inter-
feres with the efficiency of the genioglossus mus-
cle in keeping the tongue out of the narrowed 
pharynx (Sher, 1992). Indeed, the important role 
of such factors in this context is demonstrated by 
a case report from our department of a young girl 
with the Robin sequence who presented at the 
age of 12 with severe OSA complicated by right 
heart dysfunction and was successfully treated 
with nasal continuous airway pressure (CPAP) 
but resolved the OSA following growth of the 
mandible during puberty to the extent that CPAP 
therapy was no longer necessary (Kiely et  al., 
1998).

3.2.2	� Soft Tissue Accumulation

Soft tissue accumulation in and around the upper 
airway can predispose to OSA by narrowing the 
oropharyngeal lumen. The two major entities in 

this context are obesity and adenotonsillar 
hypertrophy.

Obesity is closely linked to OSA and the role 
of central obesity in the pathophysiology of OSA 
occurs at different levels. The accumulation of fat 
in the neck results in oropharyngeal narrowing, 
which increases the collapsibility of the upper 
airway, and abdominal obesity reduces traction 
on the upper airway, which further predisposes to 
increased collapsibility (Deegan & Mcnicholas, 
1995). 70% of patients with OSA are obese 
(Tuomilehto et al., 2013), and conversely, 50% of 
patients with a body mass index over 40 have an 
AHI over 10 (Resta et al., 2001). A higher body 
mass index (BMI) typically results in more severe 
OSA, especially in males and in younger 
subjects.

Adenotonsillar hypertrophy is associated with 
increased soft tissue within the oropharyngeal 
airway, which reduces the cross-sectional area 
and increases oropharyngeal collapsibility. 
Adenotonsillar hypertrophy is an important con-
tributing factor in paediatric OSA, often in asso-
ciation with obesity (Dayyat et  al., 2009). This 
form of OSA is amenable to surgical treatment 
by tonsillectomy (Stradling et al., 1990), although 
surgery may not be curative if there is co-existing 
obesity and/or an otherwise narrowed upper air-
way (Dayyat et al., 2009).

Infiltration of the upper airway soft tissues can 
reduce the upper airway lumen, as occurs in 
myxoedema, acromegaly, involvement by neo-
plastic processes, and mucopolysaccharidoses, 
and all such disorders have been associated with 
a predisposition to OSA (Grunstein et al., 1991; 
Orr et al., 1981).

3.2.3	� Fluid Accumulation

Fluid accumulation, as occurs in patients with 
congestive heart failure, predisposes to OSA by 
the gravitational behaviour of oedema. Nocturnal 
redistribution of fluid in the recumbent position 
to dependent areas of the body such as the para-
pharyngeal soft tissues increases upper airway 
resistance and collapsibility (White & Bradley, 
2013). Dietary sodium intake has been reported 
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to be closely correlated with the severity of OSA 
in patients with heart failure, likely as a conse-
quence of fluid retention and redistribution 
(Kasai et  al., 2011). Furthermore, non-obese 
male subjects with venous insufficiency who 
wore compression stockings during the day to 
limit fluid accumulation had a reduction in AHI 
of 36% when compared to those not wearing 
stockings (Redolfi et  al., 2011). While these 
observations imply that diuretic therapy to 
remove excess fluid should benefit OSA, a ran-
domized controlled trial of patients with severe 
OSA reported that sodium restriction and diuretic 
therapy resulted in only a modest improvement in 
AHI, implying that fluid accumulation only par-
tially explains the aetiology of OSA in patients 
with heart failure (Fiori et al., 2018).

In patients with end-stage renal failure, fluid 
accumulation with associated nocturnal redistri-
bution in the recumbent position results in oro-
pharyngeal narrowing, like heart failure, which 
predisposes to OSA. In a group of 40 patients 
with end-stage renal failure on haemodialysis, 
70% had an AHI >15, and these patients had a 
greater total body extracellular fluid volume, 
including neck, thorax and leg volumes despite 
no difference in BMI compared to those with an 
AHI <5 (Lyons et  al., 2017). Furthermore, 
excess fluid removal by dialysis has been dem-
onstrated to reduce the severity of OSA. One 
report indicated that removal of 2.2  L of fluid 
during a single ultrafiltration session resulted in 
a 36% fall in AHI, which also correlated with 
the volume of fluid removed (Lyons et  al., 
2015).

Patients with chronic obstructive pulmonary 
disease (COPD) may also develop OSA and the 

chronic bronchitis phenotype appears to be most 
susceptible (McNicholas, 2017). This phenotype 
is more prone to right heart failure, and the asso-
ciated peripheral oedema may be an important 
factor in predisposing to OSA.

3.2.4	� Nasal Obstruction

The primary route of breathing, especially while 
asleep, is through the nose, and there has been 
considerable interest in the role of nasal obstruc-
tion in the pathophysiology of OSA. The upper 
airway can be viewed as a Starling Resistor 
(Fig.  3.2) with the nose as the fixed inlet for 
breathing and the oropharyngeal airway as the 
collapsible segment leading to the fixed down-
stream segment of the lower respiratory tract 
(McNicholas, 2008b). This model supports a 
role for nasal obstruction in increasing upper air-
way collapsibility. Nasal obstruction can be 
fixed, such as occurs with a deviated nasal sep-
tum, or variable, as may be seen in seasonal rhi-
nitis. The available evidence supports a role for 
variable nasal obstruction in the pathophysiol-
ogy of OSA (McNicholas, 2008b; McNicholas 
et al., 1982), and active therapy of rhinitis with 
intranasal corticosteroids has been reported to 
reduce AHI in patients with mild to moderate 
OSA (Kiely et al., 2004). On the other hand, a 
randomized control trial of surgery for fixed 
nasal obstruction in patients with OSA reported 
little benefit in terms of AHI reduction 
(Koutsourelakis et  al., 2008), supporting the 
view, somewhat surprisingly, that fixed nasal 
obstruction is not a significant factor in the 
pathophysiology of OSA.

Fig. 3.2  Starling 
resistor model of the 
upper airway
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3.2.5	� Other Factors Influencing 
Upper Airway Calibre

The position of the head and neck has a signifi-
cant influence on pharyngeal patency and vary-
ing head position between flexion and extension 
can cause significant variations in size of the ret-
roglossal space and hyoid position on lateral 
cephalometry (Davies & Stradling, 1990). Neck 
flexion makes the upper airway more collaps-
ible, whereas neck extension makes it more 
resistant to collapse, irrespective of changes in 
general body posture (Wilson et al., 1980). The 
supine posture also has an adverse effect on 
upper airway patency. Pharyngeal cross-sec-
tional area is reduced from the upright to the 
supine position in both apnoeic and nonapnoeic 
snorers (Yildirim et  al., 1991), and the supine 
posture effect appears to be due to gravitational 
forces acting to narrow the upper airway (Fouke 
& Strohl, 1987).

3.3	� Upper Airway Dilator Muscle 
Function

The oropharyngeal airway is not a rigid structure 
and patency of this segment of the upper airway 
is dependent on the contraction of pharyngeal 
dilator muscles, especially the genioglossus, 
which act to stiffen the collapsible segment dur-
ing inspiration (Deegan & Mcnicholas, 1995). 
These muscles contract in a phasic manner that is 
coordinated with inspiration and contraction of 
these muscles precedes the contraction of the dia-
phragm by milliseconds. Activity of these upper 
airway muscles is modulated by chemical stim-
uli, vagal input, changes in upper airway pressure, 
and baroreceptor activity (Brouillette & Thach, 
1980).

In the setting of OSA, breathing through a nar-
rowed upper airway generates a greater suction 
pressure and, thus, greater collapsing force, and 
pharyngeal dilator muscles must, therefore, con-
tract more forcefully to prevent upper airway 
obstruction. This situation results in higher dilat-
ing muscle activity being evident during wake-
fulness, which diminishes to a greater extent than 

normal subjects during sleep, thus predisposing 
to upper airway obstruction (Mezzanotte et  al., 
1996). Progressive hypercapnia, hypoxia, 
asphyxia and negative pressure application all 
produce an augmenting drive to upper airway 
dilator muscles (Brouillette & Thach, 1980). 
Furthermore, genioglossus muscle activity varies 
with sleep stage, and is lowest in rapid-eye-
movement (REM) sleep (Carberry et al., 2016), 
thus making the upper airway most collapsible in 
this sleep stage. This reduction across sleep 
stages is similar in patients with OSA to that seen 
in normal subjects and is similar in males and 
females (Eckert et  al., 2009). Increased genio-
glossus muscle tone is associated with spontane-
ous periods of stable flow limited breathing in 
OSA and reductions in genioglossus activity dur-
ing REM may explain the higher severity of OSA 
in that stage (Jordan et al., 2009).

The complexity of the upper airway muscula-
ture makes it unlikely that dysfunction of a single 
muscle group is responsible for OSA, but the 
genioglossus appears to be the most important, 
which pulls the tongue forward and opposes pha-
ryngeal collapse. Muscles causing forward move-
ment of the hyoid bone (geniohyoid, sternohyoid, 
and thyrohyoid) result in enlargement and stabili-
zation of the pharyngeal airway, and the supine 
posture is associated with forward movement of 
the hyoid bone, which acts to limit the collaps-
ibility of the airway in this position (Yildirim 
et al., 1991).

The degree of upper airway muscle preactiva-
tion prior to diaphragmatic contraction varies 
with respiratory drive (Strohl et  al., 1980), and 
this could represent a compensatory attempt to 
open the airway before airway pressure is low-
ered by contraction of the diaphragm. Overall, 
the role of upper airway muscles in the patho-
physiology of OSA appears to be more relating to 
inadequate compensation in the face of increas-
ingly negative pressure during inspiration in 
patients with OSA, rather than a primary defi-
ciency in the function of these muscles. This 
inadequacy is compounded by the observation 
that upper airway dilating muscles, as skeletal 
muscles, demonstrate a greater decrease in activ-
ity during sleep than the diaphragm as a normal 
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physiological response to sleep, especially dur-
ing REM (Mezzanotte et al., 1996).

3.4	� Respiratory Control

Contraction of the upper airway muscles and dia-
phragm respond in a similar manner to hypercap-
nia, hypoxia and airway occlusion (Brouillette & 
Thach, 1980), which suggests that central control 
mechanisms of upper airway and respiratory 
pump muscles in humans are closely related. 
However, there appear to be quantitative differ-
ences in the response to different stimuli. For 
example, oxygen breathing decreases genioglos-
sal more than diaphragmatic electromyographic 
(EMG) activity, whereas hypercapnia and pro-
longed occlusion produce greater increase in 
genioglossal compared to diaphragmatic EMG 
(Brouillette & Thach, 1980).

The pattern of recurring apnoea frequently 
observed in OSA supports an instability of venti-
latory control similar to periodic breathing and 
upper airway obstruction is most likely when dia-
phragmatic and genioglossal inspiratory EMG 
activity are at the lowest point of the cycle 
(Deegan & Mcnicholas, 1995). EMG activity 
progressively increases through the later stages 
of apnoea until the upper airway reopens, at 
which time the increase in genioglossal EMG is 
typically greater than that of the diaphragm 
(Dempsey et al., 2010). The period immediately 
following resolution of the apnoea is usually 
characterized by hyperventilation for several 
breaths, following which both EMGs then 
decrease in activity, which predisposes to further 
obstruction.

3.4.1	� Apnoea Threshold

Normal subjects demonstrate fluctuations in ven-
tilation associated with the transition from wake-
fulness to non-REM sleep, which is due to a 
reduction in the carbon dioxide (CO2) drive to 
breathe and the exposing of a sensitive apnoeic 
threshold that is critically CO2 dependent 
(Phillipson, 1978). The pivotal role of hypocap-

nia in this apnoea threshold is demonstrated by 
the observation that adding even small amounts 
of CO2 to the inspired air of patients with Cheyne 
Stokes Breathing can be sufficient to resolve the 
associated central apnoeas (Dempsey et  al., 
2010).

In OSA, the apnoea threshold is further ampli-
fied by the ventilatory overshoot that occurs after 
the termination of obstructive apnoea resulting in 
CO2 reduction and thus predisposing to further 
apnoea. Such predisposition is initially towards 
central apnoea but the associated reduction in 
upper airway muscle activity contributes to upper 
airway collapse and associated obstructive 
apnoea. The CO2-responsive apnoea threshold is 
particularly evident in non-REM sleep and there 
appears to be no evident threshold during phasic 
REM sleep (Skatrud & Dempsey, 1983). 
Furthermore, the periodic breathing associated 
with heart failure is rarely present in REM sleep. 
Additional factors that may contribute to further 
apnea post hyperventilation include lung stretch 
receptor and baroreceptor stimulation (Deegan & 
Mcnicholas, 1995).

3.5	� Sleep Effects

During wakefulness, patients with OSA typically 
breathe normally, which is a consequence of the 
waking stimulus to breathe and associated tonic 
stimulation of the upper airway dilating muscles. 
However, with sleep onset, upper airway muscle 
tone diminishes, resulting in a more collapsible 
upper airway. EMG activity of the diaphragm and 
upper airway dilating muscles in healthy humans 
show reductions in amplitude associated with the 
transition from wakefulness to non-REM sleep, 
typically accompanied by a mild hypoventilation 
and a significant increase in upper airway resis-
tance (Dempsey et al., 2010). Sleep is associated 
with a bigger reduction in upper airway EMG 
activity compared to that of the respiratory pump 
muscles, and this effect is greatest in REM sleep. 
This differential effect further compromises 
upper airway patency during inspiration.

The relative timing of phasic inspiratory EMG 
activity of the upper airway to diaphragmatic and 
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ribcage muscle activity varies during sleep in 
OSA (Hudgel & Harasick, 1990). Around the 
onset of obstruction, upper airway muscle EMG 
activity may fall behind the ribcage EMG, which 
facilitates airway collapse, but the normal pattern 
is restored as the apnoea progresses, thus facili-
tating airway reopening (Hudgel & Harasick, 
1990). A clinical model of a disturbed timing 
relationship between upper airway and diaphrag-
matic contraction predisposing to OSA is seen in 
patients with diaphragmatic palsy treated with an 
electrophrenic pacemaker. Such patients are sus-
ceptible to OSA because the pacemaker results in 
diaphragmatic contraction at times other than 
when upper airway muscles contract.

3.5.1	� Loop Gain

The predisposition to apnoea associated with 
recurring cycles of hyper/hypoventilation during 
sleep varies considerably relating to the respira-
tory control system gain and sleep state stability. 
Ventilatory instability depends on the loop gain 
of the respiratory control system. In general 
terms, loop gain refers to the stability of a system 
controlled by a feedback loop. In the context of 
respiratory control, loop gain refers to the gain of 
the negative-feedback loop that regulates ventila-
tion in response to a ventilatory disturbance. 
Variations in loop gain may constitute an impor-
tant potential contributing factor to obstructive 
apnoea. A high loop gain occurs where the mag-
nitude of the increase in ventilation following 
apnoea is high, thus increasing ventilatory sys-
tem instability and increasing the likelihood of 
subsequent apnoea.

Two types of respiratory control system gain 
are evident, namely plant gain and controller 
gain, which are both determinants of loop gain 
and consequent ventilatory stability. Plant gain 
relates to the background drive to breathe. A 
higher ventilatory drive protects against apnoea 
by requiring a larger additional transient hyper-
ventilation and hypocapnia to reach the apnoeic 
threshold (low plant gain). Conversely, a reduced 
ventilatory drive and associated hypoventilation 
increases susceptibility to apnoea, by requiring 

only small transient ventilatory overshoots to 
reach the apnoeic threshold (high plant gain). 
Controller gain relates to chemoreponsiveness, 
especially the hypercapnic ventilatory response, 
and quantitively describes the slope of the change 
in ventilation in response to CO2. An increased 
slope results in an increased susceptibility to 
apnoea even in the setting of background hyper-
ventilation and low plant gain. However, loop 
gain can be difficult to measure, and there are few 
clinical studies that have explored this variable in 
the setting of OSA. Thus, the importance of loop 
gain as an inherent contributor to OSA patho-
physiology remains uncertain.

3.5.2	� Arousal

Termination of apnoea is usually associated with 
brain arousal, and thus, the arousal response may 
be an important protective mechanism (Eckert & 
Malhotra, 2008). However, the physiological 
events associated with arousal may have deleteri-
ous consequences that contribute to the patho-
physiology of OSA, both by contributing to 
daytime sleepiness because of sleep disturbance, 
but more importantly, by predisposing to further 
upper airway collapse, thus predisposing to repeti-
tive apnoeas (McNicholas, 1998). Studies of tran-
sient upper airway occlusion in normal sleeping 
subjects demonstrate that, if the occlusion is asso-
ciated with arousal, hyperventilation and associ-
ated hypocapnia occurs following apnoea 
termination, whereas if no arousal occurs, hyper-
ventilation is limited, and CO2 may rise. OSA 
patients appear to more reliant on arousal at the 
termination of apnoea than normal subjects 
(Jordan et al., 2007). The post-apnoeic hyperventi-
lation and fall in PCO2 associated with arousal 
may reduce respiratory drive, and the resulting 
reduced drive to the UA muscles may predispose 
to further obstructive apnoea, and a repetitive 
cycle of recurring apnoeas may ensue (McNicholas, 
1998). It has been proposed that arousal is not nec-
essary for the upper airways to reopen and that the 
consequences of arousal at apnea termination are 
largely deleterious by promoting ventilatory insta-
bility (Younes, 2004). However, a recent report 
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indicated that the intensity of respiratory cortical 
arousals is a distinct pathophysiologic feature and 
is associated with disease severity in patients with 
OSA (Bahr et al., 2021).

Factors relating to obstructive apnoea that 
contribute to the arousal response include inspi-
ratory efforts against an occluded airway, 
hypoxia, and hypercapnia. In humans, hypercap-
nia is a more important stimulus to arousal than 
hypoxia. Increasing ventilatory effort is an 
important factor in the arousal response, possibly 
mediated by mechanoreceptor feedback from 
respiratory muscles and/or from pressure-
sensitive mechanoreceptors in the upper airway. 
Overall, increasing ventilatory effort appears to 
be the most important stimulus to arousal, and 
the stimulus to arousal from hypoxia and hyper-
capnia may be mediated principally through 
stimulating an increased ventilatory effort 
(Deegan & Mcnicholas, 1995).

The arousal response varies in patients with 
OSA and can be quantified by the arousal thresh-
old. Experimentally, this threshold is measured 
as the minimum oesophageal pressure generated 
on the breath preceding arousal during a respira-
tory load or occlusion, and can be quantified non-
invasively by polysomnography (Sands et  al., 
2017). As a group, OSA patients tend to have a 
higher arousal threshold than normal subjects, 
although there is considerable inter-subject vari-
ability in both groups. A low arousal threshold is 
an important potential contributing factor to OSA 
pathophysiology and may represent a therapeutic 
target in selected patients (Eckert et al., 2011).

3.6	� Pathophysiological 
Endotypes and Phenotypes

The relevance of physiological, non-anatomic 
factors in the pathophysiology of OSA has been 
generating major interest in recent years 
(Randerath et  al., 2018). These factors can be 
related to the underlying aetiology, referred to as 
endotype, and/or clinical manifestation, referred 
to as phenotype (Edwards et al., 2019), and may 
be viewed as a continuum from the genotype to 
personalized treatment options based on the indi-

vidual endotype. Inadequate responsiveness of 
the genioglossus muscle, the arousal threshold, 
the critical closing pressure of the upper airway, 
and the stability of the respiratory control system 
defined by factors such as loop gain, define dis-
tinct endotypes of OSA that may be amenable to 
specific treatment approaches (Randerath et  al., 
2018). In one report of subjects with and without 
OSA, similar proportions of subjects, roughly 
one third each, had the endotypic traits of a mini-
mal genioglossus muscle responsiveness during 
sleep, a low arousal threshold, or a high loop 
gain, and 28% of subjects had more than one of 
these traits (Eckert et al., 2013).

Phenotypes of pharyngeal dysfunction in 
OSA, such as collapsibility and pharyngeal mus-
cle compensation, are evident from spontaneous 
changes in ventilation and ventilatory drive dur-
ing sleep, which may be noninvasively assessed 
by polysomnography (Sands et al., 2018). There 
appear to be gender differences in OSA endo-
types, with one report indicating that women 
demonstrate lower loop gain, less airway 
collapsibility, and lower arousal threshold in 
NREM sleep (Won et al., 2019), and endotypes 
explained 30% of the relative sex differences in 
NREM.

3.7	� Integrated Pathophysiology

While the fundamental deficit in the pathophysi-
ology of OSA relates to the inability of the upper 
airway dilating muscles to maintain a patent air-
way, the foregoing discussion indicates that many 
factors contribute to this basic pathophysiology. 
These factors vary in importance in different 
patients and in different sleep stages. For exam-
ple, ventilatory drive withdrawal has recently 
been reported to be a more important mechanism 
of OSA than reduced genioglossus muscle com-
pensation in REM sleep (Messineo et al., 2022). 
Overall, an insufficiency in drive to the upper air-
way dilating muscles for whatever reason, be it 
due to sleep-related factors such as the arousal 
threshold, respiratory control factors such as loop 
gain, or inadequate dilating muscle compensa-
tion, these factors interact to varying and overlap-
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ping degrees to result in the increased negative 
intrapharyngeal pressure that is a consequence of 
airway narrowing being sufficient to collapse the 
oropharyngeal airway (Fig. 3.1).

3.8	� Implications for Treatment

While the basic deficit of increased upper airway 
collapsibility in OSA can be readily reversed by 
CPAP therapy, a detailed understanding of the 
pathophysiology opens the potential for other 
management options and has the subject of exten-
sive research, especially in recent years (Schütz 
et  al., 2021). Inadequate upper airway dilating 
muscle compensation may be improved by tar-
geted pharmacotherapy. Desipramine, which is a 
tricyclic antidepressant (TCA) that inhibits the 
norepinephrine reuptake receptor in the central 
nervous system, reduces the sleep-related loss of 
genioglossus activity and improves pharyngeal 
collapsibility in healthy humans (Taranto-
Montemurro, Edwards, et  al., 2016), and has 
been reported to reduce the AHI in OSA patients 
who demonstrate minimal genioglossus muscle 
compensation (Taranto-Montemurro, Sands, 
et  al., 2016). Another norepinephrine reuptake 
inhibitor (atomoxetine) combined with an anti-
muscarinic (oxybutynin) have also been reported 
to substantially reduce AHI in patients with OSA 
(Taranto-Montemurro et al., 2019).

Sleep-induced reduction in respiratory motor 
neurone output can be reversed by electrical 
stimulation of the hypogossal nerve and this 
therapeutic approach is gaining support as a 
potential alternative therapy to CPAP (Heiser 
et al., 2021; Strollo et al., 2014). Acetazolamide 
may benefit OSA in selected patients with a high 
loop gain and has the added potential benefit of 
reducing blood pressure (Edwards et  al., 2012; 
Eskandari et  al., 2018). Diuretic therapy may 
also benefit OSA, especially in patients with 
fluid overload, by reducing nocturnal rostral 
fluid shift (Revol et  al., 2020). Zolpidem 
increases sleep efficiency and the respiratory 
arousal threshold without changing sleep apnoea 
severity and pharyngeal muscle activity 
(Messineo et al., 2020).

Soft tissue accumulation in and around the 
oropharynx that contributes to airway narrowing 
can be treated medically or surgically, as appro-
priate. Children with adenotonsillar hypertrophy 
and OSA benefit from surgical removal (Stradling 
et  al., 1990) and adults with OSA and central 
obesity benefit from weight reduction, induced 
by bariatric surgery (Currie et al., 2021) or medi-
cally by intensive dietary measures and/or phar-
macological therapy (Chirinos et  al., 2014). 
Liraglutide, which is a long-acting glucagon-like 
peptide one receptor agonist, has been reported to 
induce weight loss and lead to a significant reduc-
tion in AHI in patients with OSA (Blackman 
et al., 2016).

The role of oxygen therapy in the manage-
ment of OSA is uncertain, although a recent 
report suggests that oxygen supplementation may 
benefit OSA acutely, possibly by reducing the 
arousal response (Joosten et al., 2021).

3.9	� Conclusion

The complex pathophysiology of OSA offers 
opportunities to develop targeted therapy based 
on an understanding of the multiple interacting 
factors that contribute to upper airway collapse in 
individual patients. These measures offer the 
opportunity for precision therapy as an alterna-
tive to the established uniform therapy of CPAP.
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4Diagnosis of Obstructive Sleep 
Apnea in Patients with Associated 
Comorbidity

Félix del Campo, C. Ainhoa Arroyo, 
Carlos Zamarrón, and Daniel Álvarez

Abstract

Obstructive sleep apnea (OSA) is a heteroge-
neous disease with many physiological impli-
cations. OSA is associated with a great 
diversity of diseases, with which it shares 
common and very often bidirectional patho-
physiological mechanisms, leading to signifi-
cantly negative implications on morbidity and 
mortality. In these patients, underdiagnosis of 
OSA is high. Concerning cardiorespiratory 
comorbidities, several studies have assessed 
the usefulness of simplified screening tests for 
OSA in patients with hypertension, COPD, 
heart failure, atrial fibrillation, stroke, morbid 
obesity, and in hospitalized elders.

The key question is whether there is any 
benefit in the screening for the existence of 
OSA in patients with comorbidities. In this 
regard, there are few studies evaluating the 
performance of the various diagnostic proce-
dures in patients at high risk for OSA. The 
purpose of this chapter is to review the exist-
ing literature about diagnosis in those diseases 
with a high risk for OSA, with special refer-
ence to artificial intelligence-related methods.

Keywords

Obstructive sleep apnea · Comorbidities · 
Diagnosis · Polysomnography · Respiratory 
event · Sleep staging · Home sleep apnea 
testing · Screening · Decision support system 
· Artificial intelligence · Machine learning

4.1	� Introduction

Obstructive sleep apnea (OSA) is a chronic, com-
plex, and heterogeneous respiratory disease of 
high prevalence in the general population, with 
important health consequences. OSA is associ-
ated with a great diversity of diseases. In the 
clinical evaluation of these patients cardiorespi-
ratory, cerebrovascular, and metabolic comorbid-
ities potentially linked with OSA should be 
investigated (Bonsignore et al., 2019; Marin-Oto 
et  al., 2019). It shares common and very often 
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bidirectional pathophysiological mechanisms, 
which have significant implications on morbidity 
and mortality. The most frequent comorbidities 
are found in the vascular field, respiratory or met-
abolic among others. Associated diseases vary 
according to sex, being more frequent in patients 
with a higher severity of OSA.

Table 4.1 shows the most frequent comorbidi-
ties in which screening studies have been per-
formed due to the high possibility of presenting 
OSA. In these patients, underdiagnosis of OSA is 
high. There are many reasons for this, including 
the fact that these patients often do not present 
with daytime sleepiness or the usual symptoms 
of OSA. Moreover, the symptoms of the disease 
themselves often mask the presence of OSA. 
Added to this is the fact that there is little diag-
nostic suspicion on the part of the physician 
(Costa et  al., 2015). Hence the importance of 
early diagnosis in order to initiate treatment as 
soon as possible. In most of these comorbidities, 
the treatment of OSA is a therapeutic objective in 
itself, as it acts as a risk factor.

The key question is whether there is any ben-
efit in the screening for the existence of OSA in 
patients with comorbidities. Currently, there are 
not enough studies to establish the existence of a 
benefit in the general asymptomatic population 
(Jonas et al., 2017; Rosen et al., 2017). Given the 
high frequency of OSA in these diseases with the 
possible benefit of treatment, the need for 

diagnostic studies in these patients can be 
assumed. However, some authors advocate the 
need to confirm the benefits of treatment through 
randomized studies, especially in relation to 
CPAP treatment, as a step prior to the need for 
screening (Sanchez-de-la-Torre et al., 2021, Kee 
et  al., 2018). Moreover, there are few studies 
evaluating the performance of the various diag-
nostic procedures in patients at high risk for OSA 
(Treptow et al., 2015).

Table 4.2 summarizes the main approaches to 
the abbreviated diagnosis of OSA in the pres-
ence of comorbidities using simplified tools. 
Among the level IV procedures, pulse oximetry 
has been one of the most exhaustively studied 
biological signals for screening. Table 4.3 shows 
the characteristics of the main approaches to 
OSA diagnosis in patient with comorbidities 
based on the analysis of pulse oximetry. 
Biomedical signal processing techniques and 
artificial intelligence-based tools have hardly 
been applied to evaluate their usefulness in the 
group of diseases where there is a high risk of 
associated OSA.

The purpose of this chapter is to review the 
existing knowledge regarding diagnosis in those 
diseases with a high risk for OSA, with special 
reference to artificial intelligence-related 
methods.

4.2	� Chronic Obstructive 
Pulmonary Disease (COPD)

Both COPD and OSA are two very prevalent dis-
eases in the general population, which are associ-
ated with high morbidity, especially in the area of 
cardiovascular disease. Their association has 
been widely described in the literature. Both dis-
eases are characterized by low-grade inflamma-
tion (Zamarrón et  al., 2008). Their association 
increases morbimortality and the costs associated 
with them, which makes it necessary to maintain 
an integral vision of the patient, being able to 
identify both diseases early and optimize their 
control (Jelic, 2008). The use of CPAP in these 
patients has been shown to reduce mortality 
(Marin et al., 2010).

Table 4.1  Main conditions commonly related to OSA 
where abbreviated screening tests have been assessed

High-risk 
patients

Obesity (BMI >35)
Chronic obstructive pulmonary 
diseases
Asthma
Congestive heart failure
Atrial fibrillation
Refractory hypertension
Type 2 diabetes
Stroke
TIA
Pulmonary hypertension
High-risk driving populations
Preoperative for bariatric surgery
Chronic renal failure
Retinal vein occlusion
Pregnancy
Down syndrome

F. del Campo et al.
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Table 4.3  Summary of the studies using oximetry to assist in OSA diagnosis in patients with comorbidities and espe-
cial risk groups

Author (year) Dataset (n)
Gold 
standard Aim

Variables 
from 
oximetry

Classification 
technique

Se 
(%)

Sp 
(%)

Acc 
(%)

Ward et al., 
(2012)

173 patients 
with 
congestive 
heart failure 
regardless 
suspicion of 
OSA

Unattended 
PSG (either 
in-lab or 
at-home)

Binary 
classification 
(AHI ≥15 
events/h)

ODI3 from 
portable 
oximetry

ODI3 > 7.5 
desaturations/h

97 32 –

Aaronson 
et al., (2012)

56 stroke 
patients 
admitted to 
rehabilitation 
regardless 
suspicion of 
OSA

In-hospital 
attended 
RP

Binary 
classification 
(AHI ≥15 
events/h)

ODI4 from 
RP

ODI4 > 15 
desaturations/h

77 100 –

Scott et al., 
(2014)

59 COPD 
admitted for 
pulmonary 
rehabilitation 
regardless of 
suspicion of 
OSA

In-hospital 
PSG

Binary 
classification 
(AHI ≥15 
events/h)

Visual 
inspection 
and ODI4 
from 
in-lab 
portable 
oximetry

Manual visual 
inspection
Automated 
ODI4

59
60

60
63

–
–

Andrés-Blanco 
et al., (2017)

407 patients 
suspected of 
OSA with 
and without 
COPD

In-hospital 
PSG

Regression of 
AHI, 
common 
cut-offs

Statistical, 
spectral, 
and 
nonlinear

MLP ANN: 
AHILAB ≥ 15
 �� Non-COPD 97.5 58.6 87.3
 �� COPD 96.2 56.3 86.8

AHIHOME ≥ 15
 �� Non-COPD 97.5 24.1 78.2
 �� COPD 86.5 37.5 75.0

Lajoie et al., 
(2020)

674 COPD 
patients

In hospital 
PSG
Home 
nocturnal 
oximetry

Binary 
Classification

Visual 
inspection

Cyclical 
changes

Mohammadieh 
et al., (2021)

98 patients 
atrial 
fibrillation

In hospital 
PSG
Home 
HSAT III

Severity 
categories 
AHI

AHI
ODI3

ODI 4,95
AHI=5.15

84.4
79.7

79.4
88.2

0.87 
0.89

Sharma et al., 
(2017)

105 patients 
hospitalized 
heart failures

In-hospital 
Apnea link
High 
resolution 
oximetry

Binary
Classification
AHI >5

ODI3 ODI>5 89.8 50 83.8

Siarnick et al., 
(2021)

49 patients 
hospitalized 
stroke

In hospital 
PSG
Oximetry 
before 
7 days

Binary 
classification
(AHI ≥15 
events/h)

Variability 
index
ODI3

ODI 15.3 90.5 75

Lin et al., 
(2018)

Stroke Home 
HSAT

Binary 
classification

Variability 
index
ODI3

ODI>5 88.4 91.7 89.3

Acc accuracy, AHI apnea-hypopnea index, AHIHOME estimated apnea-hypopnea index from at-home oximetry, AHILAB 
apnea-hypopnea index from PSG, ANN artificial neural network, COPD chronic obstructive pulmonary disease, HSAT 
home sleep apnea test, MLP Multilayer perceptron, ODI3 oxygen desaturation index ≥3%, ODI4 oxygen desaturation 
index ≥4%, OSA obstructive sleep apnea, PSG polysomnography, RP respiratory polygraphy, Se sensitivity; Sp speci-
ficity, Var. ind. variability index

F. del Campo et al.
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Despite the high prevalence of its association, 
nocturnal polysomnography is not routinely rec-
ommended in COPD patients. In the same regard, 
spirometry is not routinely performed in clinical 
practice in patients with OSA.

As in the rest of the comorbidities, the diagno-
sis of OSA is often underestimated even though 
these patients often present symptomatology in 
relation to sleep quality. Gunduz found in his 
study that 58% of patients with COPD and no 
symptoms had OSA (Gunduz et al., 2018).

Nocturnal polysomnography would be indi-
cated in patients with COPD in the presence of 
excessive daytime sleepiness, observed nocturnal 
apneas, morning headache as well as if cor pul-
monale or polycythemia is present (McNicholas, 
2017). Similarly, the presence of clinical deterio-
ration disproportionate to pulmonary function, 
with the presence of excessive daytime sleepi-
ness, polycythemia, or pulmonary hypertension 
with a baseline PaO2 greater than 60 mmHg point 
to the diagnosis of OSA. Recently, the American 
Thoracic Society in its clinical guidelines on 
non-invasive ventilation in patients with COPD 
and chronic hypercapnic respiratory failure rec-
ommends that before starting ventilation it is nec-
essary to perform an OSA screening using the 
STOP-BANG questionnaire (Macrea et  al., 
2020).

The most optimal method of diagnosing OSA 
in these patients is not determined (Malhotra 
et  al., 2018). Very different clinical question-
naires have been used for the prediction of OSA 
in COPD patients: Epworth, STOP-BANG, 
Berlin Questionnaire, and Sleep Apnea Clinical 
Score. Most of them include small population 
sizes, presenting poor performance with high 
sensitivity and moderate specificity.

Thus, in a study carried out in a Chinese popu-
lation using the Berlin and STOP-BANG ques-
tionnaires, the sensitivity and specificity achieved 
was similar to that obtained in patients without 
COPD (Wu et al., 2020), although greater diag-
nostic accuracy was obtained in patients with less 
pulmonary involvement measured in terms of 
forced expiratory volume in 1 second (FEV1) or 
forced vital capacity (FVC). Xiong et  al., com-
pared the diagnostic performance of various 

questionnaires in 335 patients with COPD and 
OSA, finding that the questionnaire with the best 
performance was the Berlin questionnaire (Xiong 
et  al., 2019). Particularly, for an AHI >15 
events/h, they obtained a sensitivity of 77.6%, 
and a specificity of 55% and an area under the 
receiver operating characteristics curve (AUC) 
equal to 0.737. The specificity was higher in 
patients with severe OSA.

Arsian et  al., in a comparative study of the 
usefulness of various questionnaires (Berlin, 
STOP-BANG and Epworth) in patients with sus-
pected OSA, evaluated the impact of various 
comorbidities in 1003 patients, finding that the 
STOP-BANG showed the highest sensitivity and 
the highest PPV (97% and 91.4%, respectively) 
(Arsian et al., 2020). The STOP-BANG showed 
high sensitivity in the group of patients with 
comorbidities (hypertension, diabetes mellitus, 
coronary artery disease, COPD, asthma), while 
notably lower values of specificity were reached 
with respect to the group without comorbidity 
(Arsian et al., 2020).

Other authors have evaluated the symptoms of 
OSA themselves in the development of other pre-
dictive models. Thus, the study by Soler et  al. 
does not show that clinical features such as male 
sex, body mass index (BMI), or neck circumfer-
ence are relevant in the prediction of OSA in 
these patients (Soler et al., 2017) Other authors, 
such as Faria et al., were interested in a new pre-
dictive model called Sleep Apnea Clinical Score 
and randomly applied it to 24 patients with 
COPD referred to PSG, in order to assess both 
the BQ and the Epworth sleepiness scale. They 
reported that their predictive model had a better 
diagnostic performance, with an AUC of 0.82, 
higher than that obtained by the other question-
naires. In addition, a sensitivity close to 60% was 
obtained, although in this study the STOP-BANG 
was not included (Faria et al., 2015).

There are very few studies that evaluated the 
usefulness of respiratory polygraphy in patients 
with COPD.  Oliveira et  al., in one of the first 
studies in this regard, evaluated the usefulness of 
a respiratory polygraphy (Stardust) in patients 
with COPD (Oliveira et al., 2012). The study was 
initially performed in 72 patients, in GOLD 
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stages II and III, but due to difficulties during 
enrollment, finally only 26 patients were 
included, which implied the presence of a high 
failure rate. The intra-class correlation coefficient 
(ICC) between the AHI derived from the respira-
tory polygraphy and that from standard PSG was 
0.61 (0.28–0.8) in the hospital setting and 0.47 
(0.11–0.72) at the patient’s home. Graphical 
analysis showed a tendency to overestimate the 
AHI in mild cases and underestimate it in the 
more severe ones. The authors conclude that 
there is insufficient significant evidence to sup-
port the use of this diagnostic procedure in these 
subgroups of patients.

For the same aim, Chang et al. evaluated 90 
patients diagnosed with COPD with a high prob-
ability of OSA who underwent home polygraphy 
(NoxT3) followed by a one-week in-hospital 
polysomnographic and polygraphic recording 
(Chang et  al., 2019). The home study showed 
good agreement with the AHI and the rest of the 
studies, especially in the most severe cases. The 
authors reported 95% sensitivity, 78% specificity, 
88% positive predictive value (PPV), and 89% 
negative predictive value (NPV) compared to 
PSG, with a kappa coefficient of 0.746 for an 
AHI >5 events/h. The failure rate was 5.6%. The 
CT90 obtained was higher in polygraphic record-
ings, both at home and in the hospital. The 
authors highlight the usefulness of these systems 
in patients with COPD, whose results are similar 
to those obtained in patients without comorbidity. 
Additionally, they reported similar results 
between manual and automatic analyses. The 
same equipment has been used for this purpose in 
the presence of various comorbidities: psychiatric 
diseases, stroke, ischemic heart disease, chronic 
kidney disease, and others, obtaining an underes-
timation of severity in each of the groups of dis-
eases, finding a greater dispersion in relation to 
the concordance of NOX-T3 and polysomnogra-
phy (To et al., 2021).

The usefulness of peripheral arterial tonome-
try in patients with COPD versus polysomnogra-
phy was evaluated by Holmedahl et  al. in 16 
patients with COPD (Holmedahl et  al., 2019). 
Concerning sleep staging, they obtained an accu-
racy of 63% and an agreement of 0.418 kappa, 

while an ICC of 0.957 (CI95% 0.878–0.985) was 
reached for the AHI estimation task. It is notice-
able that the concordance was lower than that 
previously obtained in control patients and OSA 
(lower specificity). However, the accuracy for 
AHI was adequate. One of the limitations of the 
study was the small sample size, as well as its 
inability to differentiate between central and 
obstructive apneas.

Jen et  al. evaluated the usefulness of the 
WatchPAT system with respect to polysomnogra-
phy in 33 patients diagnosed with COPD (Jen 
et  al., 2020). WatchPAT is a new device that 
records the peripheral arterial tone (PAT), heart 
rate, oximetry, actigraphy, position, snoring, and 
chest movements. It shows good agreement with 
the AHI, unaffected by the severity of lung func-
tion. The WatchPAT system overestimated total 
sleep and REM sleep time. The agreement with 
polysomnography was 78.8%, with an overesti-
mation of the AHI in 18.2% of the cases, con-
cluding that the WatchPAT is a good alternative 
test in patients with COPD for a severe-to-
moderate degree of OSA. In patients with an AHI 
>15 events/h, they obtained a sensitivity of 92.3% 
and a specificity of 65%. A cut-off point of 20 
events/h allowed for the same degree of severity, 
a sensitivity of 76.9%, and a specificity of 90%. 
Its main difficulty lies when the events are very 
close in time.

The role of nocturnal oximetry as an aid in the 
diagnosis of OSA in patients with COPD pres-
ents important limitations, because of the desatu-
rations linked to COPD that these patients present 
during sleep. However, it has the advantage of 
being easy to access, being one of the tools most 
widely used as a screening test in patients with 
suspected of OSA. (Del Campo et  al., 2018). 
Therefore, the design and validation of auto-
mated techniques for OSA detection based on 
unsupervised oximetry at home is justified in the 
context of COPD patients, which can benefit 
from an early therapy by means of CPAP.

One of the first approaches to the diagnostic 
utility of nocturnal oximetry in the diagnosis of 
OSA in patients with respiratory diseases was 
performed by Pépin et al. (1991). These authors 
attempted to evaluate the diagnostic behavior of 
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the delta index in different respiratory diseases. 
The number of COPD patients included in the 
study was notably small (only eight subjects), 
which significantly limits the generalizability of 
their results. The value of the delta index obtained 
in patients with COPD was very low compared to 
other respiratory diseases also analyzed in the 
study, although they obtained a high and more 
balanced sensitivity-specificity pair.

Scott et  al. sought to develop a strategy to 
interpret nocturnal pulse oximetry and evaluate 
its ability to detect OSA in patients with stage 3 
and 4 COPD (Scott et  al., 2014). Consecutive 
COPD patients referred for simultaneous oxime-
try and polysomnography were studied. Patients 
were diagnosed with OSA if the polysomno-
graphic AHI was >15 events/h. These criteria 
consisted of visually identifying oximetry 
“events” (sustained desaturation ≥4% in 1 hour 
time scale), “patterns” (≥ 3 similar desaturation 
cycles/15 minutes time scale), and the automated 
oxygen desaturation index (ODI). AUC, sensitiv-
ity, specificity, and accuracy were computed. Of 
the 59 patients (27 males), 31 had OSA (53%). 
Among these 59 patients, 35 were correctly iden-
tified as having OSA corresponding to an accu-
racy of 59%, with a sensitivity and specificity of 
59% and 60%, respectively. The AUC was 0.57 
(CI95%: 0.55 to 0.59). Using a computerized 
software for scoring desaturation events (hypox-
emia ≥4% for ≥10 s) and using a cutoff of ≥15 
events/h (of sleep time) for diagnostic criteria, 
the sensitivity was 60%, the specificity 63%, and 
the AUC was 0.64 (CI95% 0.62–0.66) (Scott 
et  al., 2014). Interpretation of pulse oximetry 
tracing was of modest diagnostic value in 
identifying OSA in patients with moderate to 
severe COPD.

Lajoie et  al., within the INOX clinical trial 
(multicenter, randomized, double-blind, placebo-
controlled trial of nocturnal oxygen therapy in 
patients with COPD and nocturnal oxygen desat-
uration), performed a polysomnography on those 
desaturating patients who presented a cyclic 
desaturation pattern suggestive of OSA, confirm-
ing the existence of OSA in 50% of the patients 
and concluding that the oximetry tracing is not 
useful (Lajoie et al., 2020). However, the study 

was performed in a small sample population and 
with particular constraints.

In one of the few existing studies applying 
machine learning techniques, Andrés et al. evalu-
ated the usefulness of an automated diagnostic 
algorithm for OSA diagnosis in COPD patients 
based on nocturnal oximetry. They extracted sta-
tistical, spectral, and nonlinear characteristics 
from the oximetry signal, which fed a regression 
multilayer perceptron (MLP) artificial neural net-
work aimed at estimating the AHI, both in the 
hospital and at home (Andrés-Blanco et al.,  
2017). The algorithm was validated in patients 
with and without COPD. A high ICC was obtained 
both in the hospital (0.937 vs. 0.936) and at the 
patient’s home (0.731 vs. 0.788). For an AHI >15 
events/h, the algorithm reached 87.3% and 86.8% 
accuracy in patients with and without COPD in 
the supervised hospital setting, respectively, while 
it reached 78.2% and 75% at home. It is con-
cluded that an algorithm based on a MLP neural 
network model can be a good, simplified test in 
patients with moderate-to-severe OSA regardless 
of the presence of associated COPD.

Another area of interest, given the implica-
tions between OSA and the different comorbidi-
ties, is the diagnosis of these conditions in 
patients referred for OSA (Bar et al., 2021). This 
is the case of Levy et al., who tried to identify the 
presence of COPD using nocturnal oximetry in 
patients undergoing diagnostic PSG due to clini-
cal suspicion of OSA on the basis that very often 
these patients are underdiagnosed (Levy et  al., 
2021). The study was performed in 350 patients, 
70 of whom had COPD. Clinical and oximetric 
characteristics were used as input to the auto-
mated algorithm. Both logistic regression and 
random forest were assessed for this task. The 
random forest model obtained an AUC of 0.94 
and a F1 score of 0.89.

COPD, like other respiratory comorbidities, 
may need continuous monitoring of CO2. Often 
the presence of hypoventilation is not easily evi-
denced in these patients. The measurement of 
CO2 in exhaled air (end-tidal CO2) has become a 
reliable diagnostic method to assess the presence 
of hypoventilation during sleep in these patients 
(Mayer et al., 2017).
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4.3	� Cardiovascular Diseases

Several studies have shown the existence of a 
high prevalence of OSA in patients with cardio-
vascular disease, estimated at 40–60%, although 
the prevalence varies depending on the type of 
cardiovascular disease. Despite this, as in the rest 
of the comorbidities, OSA is very often underdi-
agnosed (Costa et al., 2015), mainly because 
these patients do not present the usual symptoms. 
Given the high prevalence of OSA in cardiovas-
cular diseases together with the benefits of treat-
ment, it is useful to design and assess abbreviated 
tests for these patients (McEvoy et al., 2016).

A recent scientific statement by the American 
Heart Association regarding OSA and cardiovas-
cular disease (Yeghiazarians et al., 2021) recom-
mends the following indications for screening for 
OSA: resistant/poorly controlled hypertension, 
pulmonary hypertension, and recurrent atrial 
fibrillation after cardioversion or ablation. 
Screening for the presence of symptoms was rec-
ommended as well in the following situations: 
heart failure, tachy-brady syndrome, sick sinus 
syndrome, ventricular tachycardia, survivors of 
sudden cardiac death, and stroke. Likewise, as 
future research directions and areas of research, it 
should be highlighted the use of artificial intelli-
gence and machine learning for the processing 
and identification of actionable data in OSA 
patients and the development of personalized 
therapies (Gutierrez-Tobal et al., 2019).

4.3.1	� Atrial Fibrillation

Atrial fibrillation is one of the most prevalent 
arrhythmias in the general population. It is highly 
frequent in patients with OSA (Traaen et  al., 
2020), both in men and women, with a preva-
lence ranging from 49% to 62%. Both entities 
share common pathophysiological mechanisms 
of a complex nature. It is accepted that treatment 
with CPAP can reduce recurrences of these epi-
sodes, especially in patients with episodes of par-
oxysmal atrial fibrillation, although most of these 
studies are observational (Youssef et al., 2018). It 
is important to know that atrial fibrillation is cur-

rently a common reason for consultation in sleep 
units, which demands further analysis.

OSA is considered a modifiable risk factor by 
most clinical guidelines, recommending its 
screening in a broad sense (Calkins et al., 2017), 
although it is not clearly specified how and when 
the sleep study should be indicated. The European 
Cardiology Society recommends screening for 
OSA in patients with asymptomatic AF before 
initiating rhythm control treatment such as cath-
eter ablation (Hindricks et al., 2021), although its 
implementation in clinical practice is not estab-
lished. For other authors, screening would be jus-
tified in patients with AF if the patient had an 
episode of stroke or suffer from recurrent arrhyth-
mias (Marulanda-Londoño & Chaturvedi, 2017). 
In this regard, there is great interest in determin-
ing the most optimal option for diagnosing these 
patients (Kadhim et  al., 2020), as well as opti-
mizing their diagnosis and treatment, given that 
very often there is a lack of coordination between 
cardiologists and sleep units (Desteghe et  al., 
2021).

OSA is frequently underdiagnosed in patients 
with AF. As with other comorbidities, it is always 
necessary to ask patients about symptoms related 
to sleep-disordered breathing. Several question-
naires have been used for screening (BQ, STOP-
BANG, Non-OSA), although these questionnaires 
have not been validated in this population (Genta 
et  al., 2017; Mohammadieh et  al., 2021), being 
considered of little value as a screening method 
as they have a low negative predictive value and a 
low specificity (Ranjan, 2020). A main limitation 
is the absence of somnolence in these patients, so 
that the application of the Epworth test will pro-
vide a low sensitivity. The Berlin questionnaire 
shows high sensitivity (86–100%) but lower 
specificity (30–89%). In 579 patients with AF, 
Traaen et  al. reported a sensitivity of 84% and 
specificity of 45% using the STOP-BANG, with 
respiratory polygraphy as a diagnostic method 
(Traaen, 2020). The authors attributed the lower 
performance to the lack of drowsiness reported 
by these patients.

In one of the few comparative studies, May 
et  al. evaluated the efficacy of these question-
naires in patients with atrial fibrillation with 
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respect to a control group, with polysomnogra-
phy being the reference method (May et  al., 
2020). They included 150 patients in each of the 
groups. The authors assessed the Epworth, 
STOP-BANG, BQ, and NoSAS questionnaires, 
as well as a new model based on snoring, age, 
neck circumference, and BMI.  In both groups, 
the clinical questionnaires showed worse perfor-
mance in patients with AF, except for the STOP-
BANG. Thus, in the presence of AF they obtained 
an AUC of 0.75 (CI95% 0.66–0.86) and 0.79 
using the NoSAS, for an AHI> 15 events/h as 
cutoff for clinical diagnosis. The inclusion in the 
model of clinical variables such as neck circum-
ference, BMI, snoring, and age improves the 
results obtained by the STOP-BANG. The model 
reached a sensitivity of 45% and a specificity of 
97% for an AHI> 15 events/h. The inclusion of 
physiological variables such as heart rate or left 
atrial volume did not improve the performance of 
model.

Starkey et al. tried to evaluate the usefulness 
of the Berlin and NoSAS questionnaires, as well 
as a technique called acoustic pharyngometry, in 
188 patients using the ApneaLink as a diagnostic 
method (Starkey et  al., 2021). They concluded 
that the questionnaires were not useful to predict 
OSA in these patients. With the same purpose, 
Delesie et  al. evaluated the usefulness of these 
questionnaires in 100 patients referred to study 
for atrial fibrillation, to whom a polysomno-
graphic study was performed (Delesie et  al., 
2021). None of them showed sufficient discrimi-
native ability (OSA50, BQ, STOP-BANG, 
MOODS, SACS, and Epworth), with an AUC 
<0.70  in the detection of severe OSA. In these 
patients, Abumuamar et al. also found that these 
questionnaires present low specificity 
(Abumuamar et al., 2018).

With respect to the use of respiratory polygra-
phy, its diagnostic accuracy is not as clearly 
established as in studies performed with oxime-
try, which makes it necessary to search for accu-
rate and validated techniques (Hendricks, 2020). 
Thus, Linz et al. performed in-hospital polysom-
nography independent of clinical suspicion in 
439 patients, subsequently obtaining the oxime-
try signal from the PSG (Linz et al., 2018). The 

prevalence of severe-to-moderate OSA was 
33.9%. The authors evaluated the performance of 
the desaturation index using a new automatic 
algorithm that takes into account resaturation 
after desaturation in order to increase specificity. 
For AHI >15 events/h, they found an AUC of 
0.951(0.929–0.972), while 0.932 was reached for 
an AHI >30 events/h. With a desaturation index 
cutoff point of 4.1, they obtained a sensitivity of 
91% and a specificity of 83% for an AHI >15 
events/h, thus being useful to rule out the disease, 
showing a negative predictive value of 95%.

Mohammadieh et al. evaluated the usefulness 
of various clinical questionnaires and the value of 
the oximetry tracing extracted from a respiratory 
polygraph (apnea-link) performed at the patient’s 
home in a series of 98 patients referred for AF 
(Mohammadieh et  al., 2021). In this study, the 
ODI showed excellent diagnostic accuracy for an 
AHI >5 events/h, with an AUC of 0.874. 
Similarly, using the automated scoring tool, the 
ApneaLink reached 0.925 AUC for moderate and 
0.925 AUC for severe OSA.

In a multicenter study, Tauman et al. evaluated 
the usefulness of automatic analysis with 
WatchPAT versus PSG in 101 patients with AF 
(Tauman et al., 2020). He obtained a good corre-
lation, as well as 88% sensitivity and 63% speci-
ficity, with 0.89 PPV and an AUC of 0.85 for a 
cutoff of AHI >15 events/h. A kappa agreement 
of 0.42 was obtained with respect to sleep phases, 
being higher in the absence of AF episodes dur-
ing the night. There were no significant differ-
ences neither in relation to the persistence or not 
of episodes of AF during the night nor concern-
ing medication.

In these patients, the use of new generation 
implanted pacemakers has been used to assess 
the presence of OSA by incorporating a respira-
tory monitoring algorithm, although one of its 
drawbacks is the inability to assess the duration 
of apneas. A recent meta-analysis evaluated 5 
cohort studies using the measurement derived 
from transthoracic impedance provided by vari-
ous electronic devices and Holters, in order to 
assess its usefulness in screening for OSA 
(Wyckmans et  al., 2021), being of particular 
interest in patients with severe OSA. In the same 
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regard, Gonçalves et al. achieved a diagnosis of 
62% in 81 patients who underwent pacemaker 
implantation, reporting an AUC 0.76 and a sensi-
tivity of 78% (Gonçalves et al., 2019). Algorithms 
implemented in implanted defibrillators (apnea 
scan system) have also been used for this aim. 
Thus, in 25 patients with AF, Defaye et  al. 
obtained an ICC of 0.67 (CI 95% 0.39–0.84) with 
respect to polysomnography. For a cut-off point 
of 30 events/h, they obtained a sensitivity of 
100% and a specificity of 80% (Defaye et  al., 
2019).

This type of device has also proven usefulness 
in monitoring AF patients, especially those for 
whom OSA is not evident in the first study. An 
example of monitoring is the non-contact biomo-
tion radar sensor (SleepMinder™; ResMed) that 
allows monitoring over long periods of time and 
has been used in the evaluation of patients with 
atrial fibrillation or in patients with heart failure.

4.3.2	� Chronic Ischemic Heart 
Disease

In chronic ischemic heart disease, clinical ques-
tionnaires do not accurately predict the presence 
of OSA in the patients. Szymanski et al. used a 
model for the identification of risk factors in the 
development of OSA based on clinical parame-
ters. In their model, they use logistic regression 
based on clinical and echocardiographic data 
from patients who have suffered an acute myo-
cardial infarction (Szymanski et al., 2015). Their 
model takes into account left ventricular diastolic 
diameter, interventricular septal thickness, diag-
nosis of hypertension, BMI, and diastolic pres-
sure, all of which are independent risk factors for 
a high risk of OSA, reaching 0.87 AUC.

4.3.3	� Chronic Heart Failure

OSA is highly prevalent in patients with heart 
failure, estimated at 47–76%. It is accepted that 
the association between OSA and heart failure 
has implications in the prognosis of the disease 
(Valika & Costanzo 2017), being frequent in the 

presence of both central and obstructive apneas. 
Various societies such as the American College 
of Cardiology (ACC), the American Heart 
Association (AHA), and the Heart Failure Society 
of America have pointed out in their respective 
guidelines the importance of diagnosing the exis-
tence of a sleep-disordered breathing and initiat-
ing the correct treatment in these patients (Yancy 
et al., 2017). Screening in these types of patients 
has been performed in two contexts: in the stable 
phase or during hospital admission because of an 
exacerbation, the latter being considered a good 
opportunity, although the performance of screen-
ing methods in these patients is widely debated 
(Series, 2015).

The Epworth sleepiness scale, Stop-Bang, and 
the Berlin questionnaire have been used as the 
main screening questionnaires. Parisot et al. pro-
posed a clinical scale in which age, BMI, the 
New York Heart Association (NYHA) scale, and 
sex are combined to help identify OSA in patients 
with heart failure using multivariate logistic 
regression (Parisot et al., 2015). For an AHI ≥ 5 
events/h, they obtained 78.9% sensitivity, 61.5% 
specificity, and an AUC of 0.73.

Type III polygraphs have been shown to be 
useful in these subjects, both in patients hospital-
ized for exacerbation and in chronic forms. In 
one of the first studies, Quintana-Gallego et  al. 
evaluated the usefulness of home polygraphy in 
75 patients with heart failure who underwent hos-
pital polysomnography and respiratory polygra-
phy in a randomized way over a period of 30 days 
(Quintana-Gallego et al., 2004). For an AHI cut-
off point >5 events/h, the diagnostic accuracy 
was 78.6%, while for an AHI>15 events/h the 
sensitivity was 68.4% and the specificity 94.6%. 
On the other hand, respiratory polygraphy was 
able to detect the presence of both central and 
obstructive apneas (Quintana-Gallego et  al., 
2004).

De Vries et al. used the ApneaLink device in 
90 patients with stable chronic heart failure, 
using home polysomnography as a reference (De 
Vries et  al., 2015). These authors obtained an 
ICC of 0.85 (0.78–0.90) with a kappa coefficient 
of 0.59 for classification into the common degrees 
of OSA severity using automated scoring with 
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ApneLink. For an AHI >15 events/h, the sensitiv-
ity obtained was 92.9% and the specificity 91.9%. 
In this study, the AHI was overestimated in more 
than two-thirds by the portable device, consider-
ing its usefulness just to rule out the disease (De 
Vries et al., 2015).

Araujo et al. used the ApneaLink in 35 patients 
with heart failure, simultaneously performing a 
PSG as reference (Araujo et al., 2018). Using a 
cutoff of AHI >15 events/h, they obtained a sen-
sitivity of 83.3%, specificity of 91.3%, accuracy 
of 88.6%, and 0.93 AUC. For values above AHI 
>20 events/h, automated scoring with the 
ApneaLink showed a trend towards underesti-
mate. The authors found greater efficacy in 
patients with more severe OSA (Araujo et  al., 
2018).

Similarly, Aurora et  al. evaluated the useful-
ness of this portable sleep monitoring in 57 
patients admitted for heart failure. They reported 
a significant performance, with 95.8% sensitivity 
and 80% specificity, obtaining better results in 
relation to central apneas (Aurora et al., 2018).

Li et al. used a type 3 equipment to identify 
the different respiratory events in 84 patients 
admitted for exacerbation of heart failure. For an 
AHI >5 events/h, they reported a sensitivity of 
86.7%, specificity of 76.5%, and a PPV of 92.9%. 
The equipment used was able to identify both 
obstructive and central apneas, as well as Cheyne-
Stokes respiration (Li et al., 2021).

Sharma et al. performed a prospective study in 
a population composed of 105 patients admitted 
for heart failure who underwent simultaneous 
high-resolution oximetry and respiratory polyg-
raphy (ApneaLink) as a reference method 
(Sharma et al., 2017). The presence of OSA was 
confirmed in 87% of the sample. For an ODI of 5 
events/h, the sensitivity was 89.8%, specificity 
50%, and accuracy 83%. In patients with an AHI 
>30 events/h, sensitivity remained high and spec-
ificity increased to 87.6%. However, saturation 
values differed between methods, probably due 
to the use of different oximeters (Sharma et al., 
2017).

Central sleep apneas are frequent in patients 
with heart failure, and there are hardly any 

studies that evaluate the usefulness of simpli-
fied diagnostic approaches in this type of 
apneas. Thus, polysomnography continues to 
be the reference diagnostic method in this con-
text. However, it is advisable for this type of 
equipment to use inductive plethysmography 
bands for the detection of respiratory effort. 
Within the simplified procedures, such as 
ApneaLink, an algorithm for Cheyne-Stokes 
breathing detection using the flow cannula is 
available. Using this algorithm, the recognition 
of this respiratory pattern achieved a sensitiv-
ity of 87% and a specificity of 94% (Weinreich 
et al., 2009). These same authors used spectral 
entropy to automatically detect this pattern 
(Weinreich et al., 2008). Similarly, the useful-
ness of detecting the presence of Cheyne-
Stokes respiration by means of neural networks 
based on the spectral analysis of oximetry has 
been described, obtaining also a high perfor-
mance. Using respiratory polygraphy, Li et al. 
obtained a sensitivity of 94.6% for the detec-
tion of Cheyne-Stokes respiration (Li et  al., 
2021).

In its initial design, the WatchPAT system did 
not have the possibility of identifying the pres-
ence of central apneas, an aspect of particular 
importance in diseases such as heart failure, 
where patients may present central sleep apnea. 
This device currently has a specific module for 
the identification of central apneas. Accordingly, 
in a recent multicenter study performed in 11 
centers that included 84 patients with heart fail-
ure and/or atrial fibrillation, correlations higher 
than 0.8 were reached for both AHI and central 
AHI, obtaining in the latter case 67% sensitivity, 
100% specificity, 100% PPV, and 94.7% NPV for 
an AHI >15 events/h, with a kappa index of 0.77 
(Pillar et al., 2020).

Concerning the use of machine learning 
approaches, artificial neural networks have been 
applied to identify certain respiratory patterns, 
such as the presence of Cheyne-Stokes respira-
tion, using a probabilistic neural network based 
on spectral analysis, oximetric indices, and the 
delta index (El-Solh et al., 2003; Weinreich et al., 
2008).
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4.4	� Cerebrovascular Diseases

In a systematic review by Dong et al., an overall 
prevalence of OSA in patients with cerebrovascu-
lar disease was found to be 61.9% (Dong et al., 
2018). In this framework, OSA is considered an 
independent risk factor for stroke. Treatment 
with CPAP reduces the risk of suffering a stroke 
episode, as well as having a beneficial effect on 
sleepiness, quality of life, and blood pressure 
control. However, its efficacy on the occurrence 
of new events is in doubt, as the researchers of 
the SAVE study found no evidence of a reduction 
in events including stroke episodes (McEvoy 
et al., 2016).

The high prevalence and possible treatment 
implications in these patients (Seiler et al., 2019) 
have led various scientific societies, such as the 
American Heart Association-American Stroke 
Association, to publish secondary stroke preven-
tion guidelines in order to recommend that 
patients with ischemic stroke or transient isch-
emic attack (TIA) should consider an OSA 
assessment for diagnosis (Kleindorfer et  al., 
2021). However, these recommendations have 
hardly been implemented in clinical practice or 
accepted by all societies (Warner et al., 2019). In 
a study involving a total of 1000 patients, only 
17% were offered a sleep test (Brown et  al., 
2020) and were hardly asked about symptoms 
related to OSA within the first 3 months. 
Unfortunately, the guidelines on this subject have 
not changed significantly. This emphasizes the 
need for randomized studies to ascertain the ben-
efits of CPAP in these types of patients.

The study of the association between sleep 
apnea and stroke has been carried out both at the 
hospital level in the acute phase (Huhtakangas 
et al., 2019) and in the follow-up of these patients, 
although in the latter case the prevalence of OSA 
may be overestimated.

Clinical questionnaires have not been shown 
to be useful as screening methods in patients who 
have had a stroke (Sico et al., 2017; Takala et al., 
2018), since they have moderate sensitivity and 
low specificity. Other authors even question the 
need for a pretest questionnaire given the high 

pretest probability of OSA in patients with cere-
brovascular disease.

Several questionnaires have been used in these 
types of patients, mainly the Berlin and the Stop-
Bang questionnaires (Boulos et  al., 2016; 
Senaratna et al., 2017). Some authors have pro-
posed modifications to the Stop-Bang question-
naire (Boulos et  al., 2019) to increase its 
diagnostic performance, removing the neck cir-
cumference item due to its low impact in these 
patients, and incorporating oxygen saturation 
values, either ODI4% or presenting an oxyhemo-
globin saturation < 88%, which added one point 
to the questionnaire. For their study, Boulos et al. 
used either polysomnography or the ApneaLink 
at home in 231 patients. For an AHI >15 events/h 
and a cutoff point of 3 desaturations, they 
obtained a sensitivity of 98.5%, but a very low 
specificity of 23%, although the diagnostic per-
formance was superior to that of the question-
naire. This is a consequence of the absence of 
somnolence and obesity in these patients.

Katzan et al. retrospectively assessed a modi-
fication of the Stop-Bang questionnaire in 
patients who had previously undergone the ques-
tionnaire and polysomnography (Katzan et  al., 
2016). In 208 patients, they created six logistic 
regression-based predictive models, obtaining 
better results with the use of continuous variables 
than with dichotomous variables as in the STOP-
BANG. The authors found high sensitivity in all 
the automated models, while low specificity. The 
proposed model was able to detect 14% more 
patients with OSA.

Similarly, the development of predictive mod-
els based on logistic regression has been 
attempted by other authors (Siarnick et al., 2021). 
Thus, Siarnik et al. included clinical and echocar-
diographic characteristics, such as BMI, diastolic 
dysfunction, and history of wake-up stroke onset, 
as input variables to a model, which was applied 
to 120 stroke patients. The proposed model 
reached a sensitivity of 82.9%, a specificity of 
71.9%, and an AUC of 0.81  in patients with 
severe-to-moderate OSA. The performance was 
lower for central apneas (Siarnick et al., 2021).

Sico et  al. developed a new model (sleep 
inventory) based on symptoms and anthropomet-
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ric measurements, using home polysomnography 
as a reference (Sico et  al., 2017). This model 
achieved an AUC of 0.73, failing to classify 25% 
of patients. It reached high sensitivity and very 
low specificity both in development and valida-
tion stages.

Respiratory polygraphy is a good alternative 
to polysomnography in these patients (Boulos 
et  al., 2021; Bravata et  al., 2017; Saletu et  al., 
2018), although it is necessary to select the 
appropriate diagnostic procedure. Using the 
SOMNOcheck polygraph for detecting moderate-
to-severe OSA, Kepplinger et al. found a sensi-
tivity of 94.7% in 61 patients with mild ischemic 
accidents (Kepplinger et al., 2013). Similarly, in 
the context of a rehabilitation unit, Saletu et al. 
only studied those patients who presented a posi-
tive result in the polygraphy, so he eventually 
assessed 33 patients, reporting a good concor-
dance in the Bland-Altman plot (Saletu et  al., 
2018).

Boulos et al. conducted a comparative study in 
250 post-stroke patients randomized to home 
study versus PSG (Boulos et al., 2021), although 
94 patients were included in the group of home 
sleep apnea test and 71 in the polysomnography 
group. They found a higher prevalence of OSA in 
the group of patients who underwent a home 
study, with a higher proportion of patients with 
CPAP being more cost-effective.

Huhtakangas et al. assessed the feasibility of 
OSA screening in the acute phase of ischemic 
stroke using automatically and manually scored 
cardiorespiratory polygraphy (Huhtakangas 
et al., 2019). A diagnosis of OSA was confirmed 
in 111 (59.3%) out of 187 subjects. Automated 
scoring properly identified respiratory events. A 
high agreement was obtained (ICC  =  0.869), 
being inferior for central and mixed apneas.

In a multicenter, prospective study conducted 
in 1330 patients who presented an ischemic 
stroke, Brown et al. found a prevalence of 67%. 
They used machine learning algorithms to build 
different models for automated diagnosis 
(Random Forests, Boosted Regression Models, 
XGBoost, Deep Learning and Stacked 
Ensembles) (Brown et al., 2019). One of the limi-
tations of the study is that the reference test is the 

ApneaLink. For an AHI >10 events/h and by 
means of a Random Forest approach, they 
reached an AUC of 0.75, correctly classifying 
72.5% of the validation samples. Superior perfor-
mance was achieved compared to that obtained 
with a logistic regression and the rest of the algo-
rithms assessed, but the gain was small, showing 
AUC ranging 0.68–0.73. The most important 
variables in the model were neck circumference, 
BMI, waist circumference, age, NIHSS, and pre-
stroke daytime sleepiness (Brown et al., 2019).

Oximetry has been widely used in these 
patients. In patients recovering from stroke, 
ODI4% provided a sensitivity of 77% and a spec-
ificity of 100% in patients with moderate-to-
severe OSA (Aaronson et al., 2012). In the same 
regard, Lin et al. studied 254 patients undergoing 
an ApneaLink study, showing that an ODI <5 
ruled out the disease and an ODI >5 confirmed 
moderate-to-severe OSA for an RDI >15 
events/h, with a specificity of 96.4% (Lin et al., 
2018). However, they did not perform polysom-
nography as reference standard.

Siarnick et  al. evaluated the usefulness of 
pulse oximetry in 420 patients with acute stroke 
(Siarnik et  al., 2020). A control polysomnogra-
phy was conducted, although the proportion of 
patients performing both tests was low. With an 
ODI-based cutoff point of 15.3, the authors found 
a sensitivity of 90.5%, specificity of 75% for 
moderate-to-severe OSA, correctly classifying 
81.6% with an AUC of 0.86 (CI95% 0.76–0.97) 
(Siarnik et al., 2020).

Boulos et  al. extracted the oximetry from 
either the PSG or the ApneaLink in 231 patients 
who had a stroke in the previous year (Boulos 
et  al., 2016). The STOP-BANG was performed 
as abbreviated test as well. A score < 3 achieved 
the highest sensitivity, while 4 led to the highest 
specificity. They included in the STOP-BANG 
questionnaire certain oximetric values, improv-
ing the performance of this tool, being capable of 
identifying both high- and low-risk patients. It is 
important to note that the authors removed the 
neck circumference item from the questionnaire 
(Boulos et al., 2016).

Although deep learning techniques have been 
applied in the field of sleep-disordered breathing 
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(Vaquerizo-Villar et  al., 2021), they have been 
scarcely used in patients with additional comor-
bidities. Bernardini et al. proposed an algorithm 
based on ECG and saturation monitoring obtained 
from unselected patients, to which they applied a 
convolutional-based deep-learning framework to 
detect apneas events (Bernardini et  al., 2021). 
The authors validated their algorithm in 30 
patients using in-laboratory polysomnograpy as 
reference.

Leino et  al. used the oximetric recording as 
input to an algorithm also based on a convolu-
tional neural network and they assessed its use-
fulness as a screening test for OSA in patients 
with cerebrovascular disease (Leino et al., 2021). 
The algorithm was previously developed in 
patients without cerebrovascular disease, while 
the authors proposed to assess its generalizability 
in these types of patients. The design group was 
composed of 1379 oximetry recordings obtained 
by means of a home polygraph (Embletta) and 
validated in 77 patients admitted for ischemic 
stroke or TIA who underwent a polygraph study, 
as well as in 394 patients with suspected OSA. A 
4% drop in hypopneas was used instead of the 
common 3% decrease. The deep-learning model 
was trained to estimate the respiratory event 
index (REI). The agreement was close to 80% in 
the classification by degree of severity, although 
it was higher in the suspected OSA group. Errors 
in REI estimation appeared in apneas without 
desaturation. The main inconvenience is that cen-
tral apneas, which are frequent in these patients, 
are not estimated. The ICC was 0.982 in patients 
with OSA and 0.972  in cerebrovascular disease 
patients, being the sensitivity and specificity high 
in both groups and in all degrees of severity. A 
correct classification of the categories was 
obtained in 88.3% and 77.9%, although the accu-
racy was better in the OSA suspicion group for a 
cutoff point of AHI >15 events/h. The sensitivity 
was 97.3% and the specificity 98.6% in the first 
group, while 92.3% sensitivity and 96.1% speci-
ficity were achieved in the second group.

Capnography monitoring has been used as a 
screening method for OSA in stroke patients. 
Dziewas et al. (2005) found a significant correla-
tion between the AHI estimated from capnogra-

phy and that derived from respiratory polygraphy. 
Assessing a population composed of patients 
with an AHI >15 events/h and using a cutoff 
point of 5 events/h for the estimated AHI from 
capnography, they achieved 100% positive pre-
dictive value, 86% negative predictive value, 
87% sensitivity, and 100% specificity. 
Nevertheless, a trend to overestimation was 
observed.

All these studies have great heterogeneity in 
terms of design and timing of the disease, while 
the post-stroke data underestimate the true 
prevalence.

4.5	� Diabetes

OSA is frequently associated with type 2 diabe-
tes mellitus. It is estimated that 55%–85% of 
patients with this type of diabetes have also con-
comitant OSA (Tahrani et  al., 2015). Several 
studies have shown that OSA contributes to the 
presence of glucose intolerance and the develop-
ment of insulin resistance, hindering its control 
and leading to the appearance of vascular compli-
cations (Lindberg et al., 2012). The influence of 
CPAP treatment on glucose metabolism is not 
well known. The studies found in the literature 
report contradictory findings, although better 
results are linked with long-term therapy. 
Currently, there is a lack of evidence concerning 
the potential benefit of screening for OSA in 
these patients. Nevertheless, it is accepted to per-
form a diagnostic test in those patients showing 
symptoms (Donovan et  al., 2017), although the 
most appropriate diagnosis method is not clearly 
established. In one of the few studies in this con-
text, Chen et al. analyze the diagnostic ability of 
nocturnal oximetry derived from standard PSG 
along with other clinical variables in 440 patients 
with diabetes. The authors report a high diagnos-
tic accuracy (AUC 0.94) for an ODI >5 events/h, 
with a sensitivity of 92% and a specificity of 
73%, while for an ODI >25 events/h the sensitiv-
ity was 93% and the specificity 85% (Chen et al., 
2021). Kurinami et al. (2018) analyze body com-
position data obtained via electrical bioimped-
ance of 186 patients with decompensated type 2 
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diabetes mellitus who required admission. They 
obtained an AUC of 0.70, with a great imbalance 
in the sensitivity-specificity pair (27.1% vs. 
90.5%). In addition, the presence of OSAS was 
confirmed using a conservative diagnostic thresh-
old (RDI >19 events/h). The use of clinical ques-
tionnaires (STOP-BANG, Berlin) shows no 
difference among them in terms of performance, 
being their overall diagnostic capacity 
suboptimal.
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5Pediatric Obstructive Sleep Apnea: 
What’s in a Name?

Allan Damian and David Gozal

Abstract

Obstructive sleep apnea is a highly prevalent 
disease across the lifespan and imposes sub-
stantial morbidities, some of which may 
become irreversible if the condition is not 
diagnosed and treated in a timely fashion. 
Here, we focus on the clinical and epidemio-
logical characteristics of pediatric obstructive 
sleep apnea, describe some of the elements 
that by virtue of their presence facilitate the 
emergence of disrupted sleep and breathing 
and its downstream consequences, and also 
discuss the potential approaches to diagnosis 
in at-risk children.

Keywords
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· Upper airway · Craniofacial · 
Neuromuscular tone · Upper airway reflexes · 
Polysomnography · Polygraphy · Intermittent 
hypoxia · Hypercapnia · Alveolar 
hypoventilation

Obstructive sleep apnea (OSA) is defined by 
the American Academy of Sleep Medicine 
(AASM) as a sleep-related breathing disorder 
that involves the presence of recurrent decrease 
or complete cessation of airflow despite ongo-
ing efforts to breathe (American Academy of 
Sleep Medicine (AASM), 2021). In turn, these 
events may cause progressive reductions in the 
blood oxygen concentration along with eleva-
tions in carbon dioxide, and ultimately may be 
terminated arousals (either electroencephalo-
graphic or autonomic) corresponding to the 
occurrence of sleep fragmentation and leading 
among multiple other potential consequences to 
excessive daytime sleepiness (EDS). Unlike in 
adults however, the explicit manifestations of 
EDS in children may vary with such daytime 
symptoms often including behavioral problems 
like hyperactivity, sometimes leading to a 
(mis)diagnosis of attention deficit hyperactivity 
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disorder (ADHD) (Chung et al., 2016; Chervin 
et al., 2002; Chervin & Archbold, 2001; Smith 
et  al., 2017; Spruyt & Gozal, 2011; O'Brien 
et al., 2004a). Of note, the typical presentation 
of EDS consists in the inordinate tendency to 
fall asleep in common situations such as watch-
ing tv, during school class, etc., in other words, 
reflecting the high propensity for sleep that is 
induced by the lack of sleep continuity and the 
changes in sleep states provoked by the respira-
tory events. Regardless of whether the patient 
has predominantly EDS or presents with EDS-
induced hyperactive symptoms, the presence of 
such morbidities interferes with the quality of 
life, and especially in children, with their cog-
nitive and academic performance (Gozal & 
Pope, 2001; Gozal, 1998; Beebe & Byars, 2011; 
Wu et al., 2021; Harding et al., 2021). Since the 
reversibility of such consequences is still 
unclear, particularly when OSA is left untreated 
or treated late in the course of the disease, early 
recognition and treatment are imperative. The 
disturbances in airflow in the upper respiratory 
tract may be due to specific physiologic and 
anatomic factors, including congenital malfor-
mations, although it is usually a combination of 
such elements that accounts for the majority of 
the cases. The gold standard in diagnosis 
remains the in-lab attended polysomnogram 
(PSG), despite the emerging popularity of home 
sleep apnea tests (HSAT) and arterial tonome-
try (e.g., WatchPat™) in adult Sleep Medicine 
practice. The latter two are not yet approved for 
routine use in Pediatric Sleep Medicine below a 
certain age, and as such access to testing may 
be somewhat problematic in underserved areas. 
Treatment of OSA in children initially consists 
of optimization of the therapy of concurrent 
issues such as weight management, orthodon-
tics, allergic rhinitis, and asthma, but for the 
most part, children suffering from OSA will 
traditionally undergo adenotonsillectomy 
(T&A) as their first line of therapy, and eventu-
ally positive airway pressure (PAP) treatment 
when residual OSA occurs after T&A.

This chapter aims to provide an overview of 
pediatric OSA. We aim to present the pathophysi-
ology and presentation of OSA in children. We 

also emphasize key differences in the pediatric 
clinical phenotypes versus the phenotypes of 
OSA in adults.

5.1	� Historical Perspective 
and Epidemiology

Pediatric OSA was first described by 
Guilleminault, and colleagues in 1976 as a dis-
tinct entity, different from the one in adults, 
whereas the same author emphasized in 1981 that 
compared to adult OSA, pediatric OSA presented 
with more behavioral problems, particularly 
school problems, hyperactivity, nocturnal enure-
sis, sleep terrors, depression, insomnia, and psy-
chiatric issues (Huang & Guilleminault, 2017).

A 2012 technical report by the American 
Academy of Pediatrics (AAP) estimated the 
prevalence of pediatric OSA as ranging from 1.1 
to 5.7% (Marcus et  al., 2012). However, this 
estimate may be lower than the actual frequency 
of the condition, owing to the under-diagnosis 
of sleep problems, including sleep-disordered 
breathing (SDB) in children, and the increasing 
trends in obesity affecting the pediatric popula-
tion. Other factors contributing to underestima-
tion of the actual true prevalence may include 
the low, albeit increasing awareness of parents 
to snoring and OSA in general, the under-
documentation of the diagnosis in patients’ 
charts, and the overall lack of screening for 
sleep-related issues during well-child visits 
(Meltzer et al., 2010). For example, the preva-
lence of habitual snoring, i.e., snoring three or 
more times per week and loud enough to gain 
recognition by the caretakers, was 11.7% in the 
pediatric community (O'Brien et  al., 2003), 
while a more recent study in Japan estimated 
possible OSA in school-aged children at around 
9.5% (Tsukada et al., 2018).

5.2	� Risk Factors

Disturbances in upper airway functioning, 
mainly a reduction in upper airway functional 
dimensions during sleep, contribute to OSA. 
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Table 5.1  Common pediatric disorders affecting upper 
airway characteristics and associated with obstructive 
sleep apnea syndrome

I. Craniofacial anomalies
Apert syndrome
Crouzon syndrome
Pfeiffer syndrome
Treacher-Collins syndrome
Pierre Robin sequence
Stickler syndrome
Nager syndrome
Hallerman-Streif syndrome
Goldenhar syndrome
Rubenstein-Taybi syndrome
Down syndrome (trisomy 21)
Beckwith-Wiedemann syndrome
Achondroplasia
Klippel-Feil syndrome
Marfan syndrome
Choanal stenosis
Mucopolysaccharidoses (e.g., Hunter syndrome, hurler 
syndrome)
Trisomies 13 and 18
II. Neuromuscular disorders
Cerebral palsy
Spina bifida
Syringobulbia
Syringomyelia
Myasthenia gravis
Moebius syndrome
Arnold-Chiari malformation
Poliomyelitis
III. Miscellaneous disorders
Adenotonsillar hypertrophya

Obesitya

Allergic rhinitis
Sickle cell disease
Asthma
Tonsillar tumors
Glossomegaly (macroglossia)
Thyroid tumors

aConstitute the majority of cases in otherwise healthy 
children

Risk factors can be divided into anatomic, 
mostly congenital or developmental; physio-
logic, comprising neurologic and inflamma-
tory conditions; and miscellaneous conditions 
that encompass complications of certain other 
conditions or disorders. A summary is pre-
sented in Table 5.1.

5.3	� Anatomic Considerations

The upper respiratory tract comprises the region 
from the external nares, all the way down to the 
larynx and trachea. Its main purpose is to warm 
and conduct the air to the lower respiratory tract. 
Several areas in this region can cause narrowing, 
and therefore partial or complete obstruction, 
which in turn may lead to OSA (Katz & 
D’Ambrosio, 2008).

5.4	� Upper Airway Anatomy

5.4.1	� Nasal Passages

Infants are thought to be obligate nose breathers. 
Therefore, any obstruction in the nasal passages, 
such as caused by congenital malformations 
(e.g., choanal stenosis, craniofacial syndromes), 
or inflammation (e.g., upper respiratory infec-
tion), or poor tone (e.g., hypotonia, decreased 
neuromotor tone) may result in OSA. Apart from 
frank obstruction (e.g., bilateral choanal atresia), 
obstruction may be caused by narrowing of pas-
sages or crowding of structures. Congenital mal-
formations involving the facial, especially the 
maxillary and mandibular bones, such as pre-
sented in Table 5.1 can lead to crowding of the 
tonsils, adenoids, and other soft tissues. Children 
with all these conditions may present with OSA 
soon after birth (Arens et al., 2021). Macroglossia 
by itself may not necessarily lead to OSA 
(Follmar et al., 2014), but rather be the risk deter-
minant of glossoptosis (Schaaf Jr et  al., 2010). 
Decreased neuromotor tone may further reduce 
the airways size by facilitating the occurrence of 
glossoptosis, and hypopharyngeal collapse dur-
ing sleep (Arens et  al., 2021). Children with 
Down syndrome may be more prone to OSA 
owing to hypotonia and upper airway crowding 
(Arens et  al., 2021; Goffinsky et  al., 2015). 
Obstruction can also occur with irritation of the 
mucosa that leads to edema and laryngospasm, 
such as in the case of gastroesophageal reflux dis-
ease (GERD). GERD appears to be the most 
common co-morbidity in younger children, even 
if the temporal association between gastroesoph-

5  Pediatric Obstructive Sleep Apnea: What’s in a Name?



66

ageal episodes and upper airway obstruction is 
not consistently present (Goffinsky et al., 2015; 
Qubty et al., 2014; Nobile et al., 2019; Quitadamo 
et al., 2020).

5.4.2	� Pharynx

There are key differences in the upper airways of 
infants versus those of older children and adults 
(Otteson et al., 2021; Arens et al., 2021; Chun & 
Arvedson, 2021). The infant larynx is higher in 
the neck, at the level of the second and fourth cer-
vical vertebrae (Otteson et al., 2021). This brings 
the epiglottis closer to the uvula, which allows 
for temporally independent suckling and breath-
ing alternations (Arens et al., 2021). As the infant 
matures, the larynx migrates down the level of 
the fifth vertebra at around 18  months of age 
(Arens et al., 2021), and eventually at the level of 
the seventh cervical vertebra in adulthood 
(Otteson et al., 2021).

The pharynx is generally divided into three 
regions (Arens et al., 2021):

	1.	 The nasopharynx is located superior to the 
soft palate and is continuous with the nasal 
passages.

	2.	 The oropharynx is below the soft palate, and 
above the larynx  – it is continuous with the 
oral cavity and is bounded by the posterior 
third of the tongue, anteriorly. It can be further 
divided into two regions: the retropalatal 
region, between the hard and soft palates; and 
the retroglossal region, between the tip of the 
soft palate up to the tip of the epiglottis. Of 
note that because of the more superior loca-
tion of the larynx, infants and young children 
are more likely to sustain obstructive episodes 
within the retropalatal region (Katz et  al., 
2012).

	3.	 The hypopharynx from the tip of the epiglottis 
communicates with the cavity of the larynx.

The minimum cross-sectional area of the upper 
airway is usually situated at the level of the ade-
noids and soft palate (Arens et  al., 2021; Isono 
et al., 1998). This “overlap region” in the retro-

palatal region was further defined as being the 
area where the adenoids overlap with the tonsils 
and soft palate (Arens et al., 2003; Fregosi et al., 
2003). Various studies have shown that the 
dynamic fluctuations in this overlap region are 
sixfold higher in pediatric OSA than in controls 
(Arens et  al., 2005), attesting to the increased 
instability and collapsibility of the upper airway 
(Gozal & Burnside, 2004; Huang et al., 2012).

5.4.3	� Soft Tissues: Tonsils 
and Adenoids

Arens et al. studied the somatic growth relation-
ships between the soft and bony tissues surround-
ing the upper airways in children ranging from 1 
to 11  years of age (Arens et  al., 2002). They 
reported that in healthy children there was pro-
portional growth of the tongue, soft palate, and 
adenoids with the nasopharyngeal airway. There 
was also proportional growth of the mandible. 
Lastly fat pads appear to grow proportionally as 
well (Arens et  al., 2002). However, in children 
with OSA, disproportional overgrowth of the ton-
sils and adenoids was apparent (Arens et  al., 
2021).

In most cases, adenotonsillectomy leads to 
improvement of breathing symptoms in OSA 
(Suen et  al., 1995). One meta-analysis showed 
improvement in sleep outcomes, compared with 
no surgery, but sustainability of such findings 
beyond 12  months follow-up was not studied 
(Chinnadurai et  al., 2017). It is thought that in 
about 10–15% of otherwise healthy children with 
OSA, adenotonsillectomy will not result in nor-
malization of the breathing patterns (Arens et al., 
2021; Tal et  al., 2003; Martinot et  al., 2018). 
Moreover, the success rates of adenotonsillec-
tomy in obese children are remarkably low (See 
Table 5.2) (Bhattacharjee et al., 2010), such that 
presumed “cure” is estimated by some as yield-
ing only 25–35% (Tauman et al., 2006a). Several 
risk factors have been identified for persistence 
of OSAS after adenotonsillectomy (Alonso-
Álvarez et  al. 2015; Lee et  al. 2020; Huang & 
Guilleminault, 2017; Marcus et  al., 2013; 
Bhattacharjee et al., 2010; Tauman et al., 2006a; 
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Boudewyns et al., 2017; Suri et al., 2015), as pre-
sented in Table 5.2:

5.4.4	� Functional Considerations 
Underlying OSA in Children

It is clear that simply having marked adenotonsil-
lar hypertrophy (sometimes referred to as “kiss-
ing tonsils”) or a small retrognathic mandible are 
not sufficient to manifest as OSA in children 
(Fig. 5.1). Therefore, other elements contribute to 
the pathophysiology of OSA. Functional consid-
erations that provide important determinants to 
the generation of OSA in at-risk children include 
ventilatory drive, response to resistive loading, 
and neuromotor tone.

5.4.5	� Ventilatory Drive

Children with associated central nervous system 
disorders, such as spina bifida, may also have 
associated disordered breathing that is particu-

larly manifest during sleep. This may be due to 
an altered central chemosensitivity, dysfunctional 
or insensitive carotid peripheral chemoreceptors, 
or a combination of both, as well as intervening 
reductions in muscle tone.

Central apnea or the occurrence of pauses in 
airflow without any respiratory effort is an impor-
tant form of sleep-disordered breathing but is 
clearly outside the scope of this chapter and will 
not be the main subject of this discussion. In 
brief, these events occur in healthy infants and 
also in older children, are particularly prominent 
in premature infants, and are related to ongoing 
maturation of the respiratory control system. It 
appears, however that central apneas can occur 
more frequently in children with OSA (Del-Rio 
Camacho et  al., 2019). Del-Rio Camacho et  al. 
also showed that CA worsens with increasing 
OSA severity, and that adenotonsillectomy may 
improve both. A high central apnea index is 
thought to be related to a hypersensitive, rather 
than depressed peripheral chemoreceptors 
(Harman et al., 2020). Of note, in otherwise nor-
mal children the relative contribution of central 
chemosensitivity is probably small except in spe-
cific circumstances, such as when accompanied 
by long-term adaptations to elevated carbon 
dioxide related to increased upper airway resis-
tance loads (Marcus et  al., 1994; Gozal et  al., 
2013; Nava-Guerra et al., 2016).

5.4.6	� Inspiratory Resistive Loading

In the context of Respiratory Muscle Training 
(RMT), Inspiratory Resistive Loading (IRL) 

Table 5.2  Factors associated with persistence of OSA 
after surgical adenotonsillectomy

High pre-operative AHI
Obesity
High-arched palate
Mallampati score III–IV
Male gender
Age > 7 years
African-American ethnicity
Allergic rhinitis
Asthma

Fig. 5.1  Examples of 
enlarged adenoids (panel 
a) and retrognathia 
(panel b)
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refers to the imposition of increasing respiratory 
resistances during the inspiratory phase, whereby 
the subject breathes through a tubing with a one-
way valve. Exhalation is unimpeded, whereas 
inspiration can be loaded to varying resistances. 
In children with OSA, there appears to be a 
blunted arousal response to the increased upper 
airway resistive loads that occur with the narrow-
ing or collapse of the airway during sleep (Marcus 
et  al., 2013; Kohyama & Hasegawa, 2002; 
Marcus et  al., 1999). The adaptive mechanisms 
of arousal in the context of the balance between 
sleep pressure generated from sleep fragmenta-
tion and the arousal response to inspiratory and 
expiratory loads are important determinants of 
apnea duration and overall thresholds at which 
the autonomic or cortical arousals will occur 
(Marcus et al., 1998b; Saito et al., 2002).

5.4.7	� Arousals from Sleep

In general, arousals occur as a result of an 
obstructive event. Arousals during sleep are 
thought to be a protective mechanism since tran-
sition to wakefulness immediately recruits neural 
mechanisms governing the drive to breathe and 
restore many of the functional elements that due 
to their relative compromise were determinants 
of the upper airway increased resistance during 
sleep states. Accordingly, arousals coincide with 
increased dilator muscle activity, reduced upper 
airway resistance, and restoration of normal ven-
tilation (Arens et  al., 2021). In fact, during the 
initial few breaths immediately following an 
arousal, increased ventilation (hyperventilation) 
and often sighs (augmented breaths) will occur. 
This phenomenon is the result of the wakefulness 
drive to breathe at the same time that the eupneic 
carbon dioxide threshold is lowered by the 
transition from sleep to wakefulness. However, 
since the duration of such arousals is usually 
short-lived and sleep resumes, the eupneic thresh-
old will increase again, and central apnea may 
emerge and will last until the carbon dioxide lev-
els increase till reaching the eupneic threshold. 
Such events, which may occur in situations where 
the respiratory mechanics are not optimal and 

functional residual capacity of the lungs is still 
reduced, may lead to hypoxemia, the latter poten-
tially resulting in periodic breathing. The 
increased number of arousals during sleep will 
lead to fragmentation (discontinuity of sleep), 
which even if it does not reduce the total duration 
of sleep will alter the microarchitecture and 
homeostasis of sleep, promoting the emergence 
of EDS. Indeed, in a murine model of sleep frag-
mentation mimicking the recurrent arousals 
observed in OSA patients, many of the conse-
quences of OSA can be recapitulated and suggest 
potent induction of oxidative stress and inflam-
mation (Ramesh et  al., 2012; Nair et  al., 2011; 
Gozal et al., 2010; Kim et al., 2011; Wang et al., 
2014; Carreras et al., 2014).

There are unique aspects to the relationship 
between obstructive events and arousals in chil-
dren, compared to adults. First, arousals in chil-
dren occur more during REM sleep (Nino et al., 
2021; Seppä-Moilanen et  al., 2021; Bathory & 
Tomopoulos, 2017). Second, arousals associ-
ated with obstructive events are less frequent 
compared to adults, most likely because of the 
increased sleep pressure and the elevated arousal 
thresholds in children. Indeed, healthy children 
in general, and more so those with OSA, appear 
to have a higher threshold for arousal compared 
to adults (Moreira et  al., 2005; Marcus et  al., 
1998a; Arens & Marcus, 2004). Nevertheless, 
in both adults and children there are recipro-
cal interactions between the occurrence of 
respiratory-related arousals and spontaneous 
arousals, attesting to the overall initial ability to 
compensate and maintain homeostasis but upon 
reaching a respiratory arousal index threshold, 
sleep pressure (an equivalent of EDS) will start 
becoming manifest and increase with increasing 
severity of OSA (O’Brien et al., 2004b; Tauman 
et al., 2004, 2006b).

5.4.8	� Neuromotor Tone

Changes in upper airway neuromotor tone also 
play an important role in the etiology of OSA. 
Upper airway neuromotor tone and reflexes are 
increased in normal infants and children com-
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pared to adults, perhaps as a compensatory 
response for the relatively narrow airway 
(Follmar et  al., 2014). However, subtle reduc-
tions in neuromotor recruitment or diseases that 
are characterized by reduced neuromotor tone 
can markedly aggravate underlying anatomical 
predisposition to increased upper airway resis-
tance and thereby facilitate the emergence of 
OSA. Clinical examples include conditions such 
as neuromuscular disorders, cerebral palsy, but 
also genetic syndrome with hypotonia (e.g., 
Down syndrome, Prader-Willi syndrome, etc.).

5.4.9	� Special Population: Childhood 
Obesity

Even though we have already alluded to the 
contribution of obesity to the risk and sever-
ity of OSA in children, it seems important to 
further emphasize this issue. In a study of 
approximately 250 prospectively community 
recruited, otherwise healthy obese children, 
we found a prevalence of OSA ranging from 
21.5% to 39.5%, depending on the specific 
cut-off being selected for diagnosis (Alonso-
Álvarez et al., 2014). Thus, there is an over-
all increased prevalence of OSA among 
children with obesity compared to those with 
normal weight, which is likely contributed 
by the crowdedness of the upper airway 
structures (as reflected for example by the 
Mallampati score) (Dayyat et  al., 2009). A 
more recent cross-sectional study estimated 
that the OSA prevalence was about 44.6% in 
children with overweight/obesity compared 
with 9.1% in the normal-weight group 
(Andersen et  al., 2019), thereby confirming 
many of the previous studies. Likewise, OSA 
was associated with a significantly increased 
risk of obesity (Bachrach et  al., 2021). The 
exact mechanism of this relationship is not 
known. However, it is known that both OSA 
and obesity share a common inflammatory 
pathway (Hakim et  al., 2015; Kheirandish-
Gozal & Gozal, 2019), and that they may 
therefore facilitate the increased risk of each 
other.

5.5	� Clinical Presentation

5.5.1	� History

It is quite uncommon for parents to mention any 
concerns with their child’s sleep unless explicitly 
asked. Snoring is frequently viewed by caretak-
ers as a normal “trait” and not a worrisome symp-
tom of a disease. Clinicians should screen for 
snoring and other concerning symptoms like 
frank apnea, as well as daytime symptoms such 
as excessive daytime sleepiness (EDS), behav-
ioral problems (e.g., hyperactivity, inattention), 
or academic underachievement. Older children 
are able to verbalize EDS when asked. Screening 
tools are available such as the Epworth Sleepiness 
Scale for Children (Boudewyns et  al., 2017; 
Janssen et al., 2017).

Other clues to the presence of OSA and other 
less severe forms of sleep-disordered breathing 
include a history of prematurity, neuromuscular 
disorders, or congenital anomalies involving the 
structures of the face and neck. Other conditions 
commonly associated with OSA include obesity, 
which may present with associated co-morbidities 
encompassing the metabolic syndrome. Bedtime 
enuresis, bruxism, sleepwalking and other para-
somnias including night terrors and nightmares, 
morning headaches, and mood disorders are all 
frequent manifestations of underlying OSA in 
children and therefore should be not only 
screened for but also evaluated for underlying 
OSA (Tan & Kaditis, 2021; Kaditis et al., 2017; 
Joosten et al., 2017).

5.5.2	� Physical Examination

Oropharyngeal examination should include an 
assessment of the Mallampati score and tonsillar 
size, as both are associated with the severity of 
OSA (Gipson et al., 2019). Nasal passages should 
be evaluated for patency and if possible endo-
scopic assessment of the nasal turbinates and 
adenoids would be desirable. The configuration 
of the jaw in relation to the maxilla (i.e., overbite 
or overjet) should be noted. Micrognathia or ret-
rognathia can contribute to a reduced oropharyn-
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geal space, even for a normal-sized tongue 
(Fig. 5.1). Scalloping on the edges of the tongue 
may indicate this reduced space. Children with 
obesity, especially if severe, may present with 
physical signs like excess fat around the neck and 
acanthosis nigricans.

5.5.3	� Differential Diagnosis

The differential diagnosis for OSA is given in 
Table 5.2.

Primary snoring
Central sleep apnea
Periodic breathing
GERD
Obesity hypoventilation syndrome
Narcolepsy
Idiopathic hypersomnia
Insufficient sleep syndrome
Sleep-related movement disorder
Sleep-related epilepsy

5.6	� Diagnosis

The gold standard in the diagnosis of OSA is an 
in-lab attended overnight polysomnographic 
study (PSG). It is recommended that the child be 
evaluated by a duly accredited sleep center (Kirk 
et  al., 2017a). During this study, multiple leads 
will be placed to monitor parameters such as 
electroencephalogram (EEG), electromyogram 
(EMG), and several breathing parameters includ-
ing nasal airflow, carbon dioxide and oximetry, 
and chest and abdominal movements. There are 
several handouts available on how to help desen-
sitize younger children to this procedure such as 
to minimize what has been termed a “first-night 
effect”, i.e., reduction in sleep efficiency and in 
sleep state representation that may yield mislead-
ing conclusions. Many sleep centers also offer 
acclimatization walk-throughs to improve the 
reliability of the single-night PSG.

5.6.1	� AASM Scoring Guidelines

The AASM has set forth guidelines consisting of 
recommended parameters to be reported and 
scoring rules in its manual (Berry et al., 2020). 
These parameters can be grouped into several 
categories. General parameters include deriva-
tions for electrooculogram (EOG), EEG, chin 
EMG, airflow signals, respiratory signals, oxy-
gen saturation, body position, and electrocardio-
gram, among others (Figs.  5.2 and 5.3). Other 
categories listed in the manual include sleep scor-
ing data (e.g., recording time, total sleep time, 
etc.), arousal events, cardiac events, movement 
events, and respiratory events. The rules for chil-
dren apply from two months post-term and older 
(<18  year of age). A summary of the different 
types of respiratory events scored in children, and 
their corresponding AASM rules are summarized 
in Table 5.3.

The apneas and hypopneas are averaged per 
hour and leads to the Apnea-Hypopnea Index 
(AHI). On the other hand, when the RERAs are 
averaged together with the former two, this leads 
to the Respiratory Disturbance Index (RDI). The 
cutoff pediatric values are given in Table 5.4.

5.7	� Alternatives to PSG

The PSG remains as the gold standard in the 
diagnosis of pediatric OSA (Dehlink & Tan, 
2016). This test, however, may be technically dif-
ficult to perform or impractical in certain set-
tings. Younger children may need a high degree 
of acclimatization or desensitization due to the 
large number of leads being placed on them, or 
simply because they are sleeping in an unfamiliar 
place (Gipson et  al., 2019). In resource-limited 
settings, PSGs simply may be too expensive if at 
all available due to economic circumstances. As 
alternatives, several modalities have been pro-
posed (Dehlink & Tan, 2016), and they are given 
in the following subsections.
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Fig. 5.2  Multiple obstructive apneic events (left arrow and blue highlights) followed by oxyhemoglobin desaturations 
(green highlights) and arousals (right arrow)

Fig. 5.3  Snoring with flow limitation (arrow) but no evidence of gas exchange abnormalities or sleep disruption

5.7.1	� Sleep Clinical Record (SCR)

Villa et  al. proposed a scoring system (Sleep 
Clinical Score or SCS) that takes into account 
items from the patients’ history and physical 
examination (Villa et  al., 2013). The first item 

considered in the SCR consists of physical exam-
ination findings like nasal septum deviation, 
nasal obstruction, oral breathing, orthodontic 
examination findings, and tonsillar grading, 
among others. The second item considered is 
based on a questionnaire to calculate the 
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Table 5.3  Respiratory events and a summary of the cor-
responding summary description (Tauman et al., 2004)

Apnea Obstructive apneas are scored when there 
is at least a 90% decrease in the signal 
from the oronasal thermal airflow sensor.

Hypopnea This is sometimes referred to as “partial 
apneas,” because they represent a 
decrease in peak signal excursion from at 
least 30% to below 90%. The duration 
must last at least 2 breaths, with a 
decrease in oxygen saturation of at least 
3%, or is associated with an arousal.

RERA This stands for respiratory effort-related 
arousal. These are respiratory events that 
do not meet the above criteria for apneas 
and hypopneas but are related to arousals. 
It is also characterized by one or more of 
the following: Increasing respiratory 
effort, flattening of the inspiratory portion 
of the nasal pressure transducer, snoring, 
or an elevation in EtCo2 above the 
pre-event baseline.

Snoring Snoring is not scored and its reporting is 
optional.

Table 5.4  Pediatric AHI cutoff values (per hour) for the 
diagnosis of OSA (Dehlink & Tan, 2016)

Normal <1
Mild 1 to </= 5
Moderate >5 to </=10
Severe >10

Table 5.5  McGill oximetry scoring system and levels of 
severity of nocturnal hypoxemia (Kaditis et  al., 2016; 
Nixon et al., 2004)

1 (normal or 
inconclusive)

Baseline SpO2 > 95% with fewer 
than 3 clusters of events

2 (mildly 
abnormal)

3 or more clusters of desaturations 
are present with at least 3 SpO2 
drops <90% but not less than 85%

3 (moderately 
abnormal)

3 or more clusters of desaturations 
are present with at least 3 SpO2 
drops <85% but not less than 80%

4 (severely 
abnormal)

3 or more clusters of desaturations 
are present with at least 3 SpO2 
drops <80%

Brouillette score (Brouillette et  al., 1984). The 
third item is based on a questionnaire about 
ADHD symptoms (Villa et  al., 2013; DuPaul 

et  al., 2001). The SCS was defined as positive 
when the final score was >/=6.5. Their study 
showed that this value had a positive correlation 
with AHI: a positive score had an increased prob-
ability of OSA while a negative score (<6.5) had 
a lowered probability of OSA. Their study con-
cluded that their scoring may accurately exclude 
OSA, with no further testing or treatment 
necessary.

5.7.2	� Nocturnal Oximetry

Many authors have proposed overnight oximetry 
as an alternative to PSG for the diagnosis of OSA 
(Kaditis et  al., 2016; Brouillette et  al., 2000; 
Nixon et  al., 2004; Hornero et  al., 2017). The 
main argument for it is the practicality of only 
having a single channel and therefore, a much 
lower technical and financial cost of its perfor-
mance. Several studies have looked at clusters of 
desaturation events. It is assumed that clusters of 
desaturations probably occur with respiratory 
events during REM and N2 sleep (Kaditis et al., 
2016). The study is considered diagnostic for 
OSA if three or more clusters of desaturations are 
present with at least three SpO2 drops <90%. 
Brouillette et al. proposed that the above trend in 
SpO2 had an increased probability of OSA, but it 
did not rule it out (Brouillette et al., 2000). On the 
other hand, Nixon et al. proposed that overnight 
oximetry can also be used to estimate the severity 
of OSA (Nixon et al., 2004). Table 5.5 shows this 
scoring system.

Villa et al proposed a combination algorithm 
of using both the McGill oximetry score, and 
SCR in resource-limited settings (Villa et  al., 
2015). In their study, children with positive SCR 
scores (>/=6.5) were further classified as having 
a MOS score of either 1 or > 1. They showed that 
a positive SCR and a MOS score > 1 had a high 
positive predictive value, but low negative pre-
dictive value for identifying an AHI greater than 
5 in children. They concluded that this algorithm 
was applicable in about two-thirds of children – 
accurately classifying their severity of OSA.
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5.7.3	� Polygraphy

Respiratory polygraphy is similar to PSG but 
without the EOG, EEG, and EMG channels 
(Dehlink & Tan, 2016). This method of diagnosis 
is used in Europe and is proposed by some as 
being a valid alternative to PSG (Alonso Alvarez 
et al., 2008). However, the official AASM posi-
tion is that this may underestimate the total AHI 
(Tan et al., 2014).

5.7.4	� Portable Studies

Home Sleep Apnea Tests (HSAT) that could be 
done at home are an accepted way of diagnosing 
OSA in adult Sleep Medicine practice, as per the 
AASM guideline (Caples et  al., 2021). Several 
vendors are available with multiple channel 
options which usually include nasal airflow, 
thermistor, chest effort, abdominal movement, 
pulse oximetry, and body position. Another 
modality is the WatchPAT™ which uses periph-
eral arterial tonometry (PAT) technology. 
WatchPAT™ combines actigraphy with a PAT 
signal probe that measures changes in arterial 
volume, which corresponds with activation of the 
sympathetic nervous system (Tanphachitr et al., 
2018). An algorithm was developed to character-
ize the association between this sympathetic acti-
vation and REM (Tanphachitr et  al., 2018; 
Herscovici et al., 2007).

There have been many suggestions of per-
forming some of these home sleep studies in chil-
dren (Ross & Redline, 2020; Bhattacharjee, 
2019; Gozal et al., 2015) owing to reasons men-
tioned at the top of this section.

The official position of the AASM is that 
HSATs are not recommended for use in diagnos-
ing OSA below 18  years of age (Kirk et  al., 
2017b). At the time of publication (2017) of their 
official position statement, the AASM identified 
several issues with the use of HSATs in children. 
First, the success rate in having an adequate study 
may be diminished when a caregiver places the 
sensors instead of a technician. Second, there was 
paucity of data in children at the time of publica-
tion of the position statement. Last, HSATs 

lacked EEG and CO2 channels that may lead to 
an underestimation of AHI (Kirk et al., 2017b). 
However, this is an evolving area, and in light of 
substantial advances in technology and other 
considerations, it is likely that such recommenda-
tions will be modified soon, and home-based 
diagnostic studies will become the routine 
approach to the snoring child (Gozal et al., 2015).
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6Treatment of Cheyne-Stokes 
Respiration in Heart Failure 
with Adaptive Servo-Ventilation: 
An Integrative Model

Wen-Hsin Hu and Michael C. K. Khoo

Abstract

The SERVE-HF (Treatment of Predominant 
Central Sleep Apnea by Adaptive Servo 
Ventilation in Patients with Heart Failure) 
multicenter trial found a small but significant 
increase in all-cause and cardiovascular mor-
tality in patients assigned to adaptive servo-
ventilation (ASV) versus guideline-based 
medical treatment. To better understand the 
physiological underpinnings of this clinical 
outcome, we employ an integrative computer 
model to simulate congestive heart failure 
with Cheyne-Stokes respiration (CHF-CSR) 
in subjects with a broad spectrum of underly-
ing pathogenetic mechanisms, as well as to 
determine the in silico changes in cardiopul-
monary and autonomic physiology resulting 
from ASV. Our simulation results demonstrate 
that while the elimination of CSR through 
ASV can partially restore cardiorespiratory 
and autonomic physiology toward normality 
in the vast majority of CHF phenotypes, the 
degree of restoration can be highly variable, 
depending on the combination of CHF mecha-
nisms in play. The group with the lowest left 
ventricular ejection fraction (LVEF) appears 
to be most vulnerable to the potentially 

adverse effects of ASV, but the level of pulmo-
nary capillary wedge pressure (PCWP) plays 
an important role in determining the nature of 
these effects.

Keywords

Heart Failure · Cheyne-Stokes Respiration · 
Sleep Apnea · Adaptive Servo-Ventilation · 
Mathematical Model · Computer Simulation · 
Autonomic Regulation · Integrative 
Physiology

6.1	� Introduction

Congestive heart failure (CHF) is recognized to 
be a clinical syndrome associated with a constel-
lation of symptoms and signs that occur in the 
presence of structural and functional cardiac 
abnormalities (Cowie & Poole-Wilson, 2013). In 
the course of CHF progression, diminished car-
diac output resulting from a dysfunctional heart 
and maladaptive peripheral vasculature, abnor-
mally high chemoreceptor sensitivity, impaired 
baroreflex function, hypervolemia, and other fac-
tors may act in combination to promote ventila-
tory instability in the form of Cheyne-Stokes 
respiration (CSR) (Cowie & Poole-Wilson, 2013; 
Emdin et  al., 2017; Dempsey & Smith, 2014; 
Naughton, 1998). The presence of CSR generally 
signals poor prognosis in the advanced stages of 
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CHF, and statistical analyses have shown CSR to 
be an independent risk factor for higher mortality 
in patients with this syndrome (Linz et al., 2018; 
Lorenzi-Filho et  al., 2005; Lanfranchi et  al., 
1999; Naughton, 2016; Javaheri et al., 2007).

Beyond pharmacological treatment with acet-
azolamide and theophylline, the therapeutic 
options for CSR include supplemental O2 admin-
istration, phrenic nerve stimulation, and ventila-
tory assistance of various modalities – continuous 
positive airway pressure (CPAP), bilevel positive 
airway pressure (BiPAP), and adaptive servo-
ventilation (ASV). For two decades, ASV has 
been reported to consistently and effectively 
eliminate CSR, ameliorate sleep quality, restore 
blood oxygen level, and improve cardiac function 
in terms of left ventricular ejection fraction 
(LVEF) (Teschler et  al., 2001). However, an 
international multicenter, large-scale randomized 
control trial (Treatment of Predominant Central 
Sleep Apnea by Adaptive Servo Ventilation in 
Patients With Heart Failure, or “SERVE-HF”) 
reported the somewhat surprising finding of 
higher cardiovascular mortality among ASV-
treated subjects (Cowie et al., 2015). Since then, 
both the American Academy of Sleep Medicine 
and a joint task force of the American College of 
Cardiology Foundation and the American Heart 
Association have updated their guidelines for 
treating central sleep apnea in heart failure with 
reduced ejection fraction (HFrEF) to specify 
ASV as a contraindication (Aurora et al., 2016; 
Yancy et al., 2017). Following this large clinical 
trial, several smaller follow-up studies have been 
undertaken to better understand the unexpected 
results. A sub-study based on cardiac imaging 
and biomarkers ruled out adverse cardiac remod-
eling or worsening of the CHF syndrome as 
likely mechanisms contributing to increased car-
diovascular mortality (Cowie et  al., 2018). 
Moreover, a post-hoc multi-state analysis 
revealed that the increased mortality was derived 
from cardiovascular death without previous hos-
pital admission, presumably sudden cardiac 
death, and occurred at higher rate in subjects with 
low left ventricular ejection fraction 
(LVEF < 30%) (Eulenburg et al., 2016). Based on 

other studies, there was no dose dependence of 
ASV usage on cardiovascular mortality in the on-
treatment analysis (Woehrle et al., 2017) and the 
stratification of biomarkers for CSR percentage 
and mortality showed no overlap suggesting CSR 
severity itself was likely not responsible for the 
higher mortality (Ferreira et al., 2020a,b).

To better understand the physiological under-
pinnings of the SERVE-HF outcomes, we adopt 
an alternative approach by employing an integra-
tive computer model of cardiorespiratory control 
to determine how the autonomic nervous system, 
cardiovascular system, and respiratory system 
respond to ASV in “simulated patients” with a 
diversity of conditions in CHF that are accompa-
nied by CSR. The rationale for this “in silico” 
approach is that the complexities of the outcomes 
that arise from multiple interacting physiological 
mechanisms make it difficult to distinguish cause 
from effect, and thus it becomes useful to turn to 
the rigorous, though simplified, framework inher-
ent in a mathematical model to help extricate the 
various influences from one another.

6.2	� Methods

6.2.1	� “In Silico Subjects”

To take into account the broad range of physio-
logical conditions that have been measured in 
CHF patients with CSR as well as the various 
stages in CHF progression, we vary the parame-
ters/initial conditions in three major domains—
left ventricular function, total blood volume, and 
chemoreflex gain to simulate a large subject pop-
ulation with different combinations of patho-
physiologic changes and a broad range of 
severities (Table  6.1). Left ventricular systolic 
function characterized by the elastance (deter-
mined by both the baseline value and the 
sympathetic-modulated gain) has been demon-
strated to correlate well with LVEF (Mirsky 
et al., 1987) and is varied in our model to simu-
late the HFrEF population. Hypervolemia, in the 
form of intravascular volume overload, is fre-
quently detected even in non-edematous CHF 

W.-H. Hu and M. C. K. Khoo



81

Table 6.1  Simulated subject populations defined by dif-
ferent combinations of model parameters or initial condi-
tions representing a range of levels of left ventricular 
dysfunction (LVD), intravascular hypervolemia (IVH), 
and chemoreflex gain upregulation (CGU)

CHF 
factor Description
LVD 
level

LV systolic 
functiona 
(normalized)

LV diastolic 
functionb 
(normalized)

0c 1.00 1.0
1 0.50 0.7
2 0.40 0.7
3 0.35 0.7
4 0.30 0.7
5 0.25 0.7
6 0.20 0.7
7 0.15 0.7
IVH 
level

Total blood volumed (mL)

0c 5300
1 6300
2 7300
CGU 
level

Chemoreflex gain factore (normalized)

0c 1
1 3
2 6

aFactor multiplying maximum LV elastance and maxi-
mum septum elastance in normal subjects
bFactor multiplying LV diastolic compliance in normal 
subjects
cBaseline case: parameters assume values for healthy 
adult
dInitial volume of each vascular compartment is propor-
tionally scaled to total blood volume
eFactor by which both central and peripheral chemoreflex 
gains are increased in heart failure; these gain changes are 
assumed to be the same for both respiratory and cardio-
vascular parameters influenced by the chemoreflexes

(Androne et al., 2004). These two factors contrib-
ute to prolonged circulation time. The ventilatory 
response to hypercapnia has been found to be 
increased in CHF (Solin et  al., 2000; Wilcox 
et al., 1998), and thus in the model we introduced 
factors consistent with chemoreflex gain upregu-
lation. It is well-established that prolonged circu-
latory delay and augmented ventilatory 
chemoreflex gain work together to promote respi-
ratory instability (Khoo, 1991).

6.2.2	� Computer Model

The model we employed in this work used as its 
foundation “PNEUMA”, an existing integrative 
computational model, originally developed to 
integrate the cardiovascular, respiratory, and 
sleep/wake control systems in the context of a 
variety of sleep-related breathing disorders 
(Cheng et al., 2010). The main systems are con-
structed in a hierarchical manner with interac-
tions within each level and across hierarchical 
levels. These multiple sets of interactions under-
score the complexities inherent in real-life physi-
ological control. Figure 6.1 depicts the scope of 
the model and the interactions among the sys-
tems. The “controller” portion of the model 
includes local vascular autoregulation at the level 
of the brain and elsewhere, along with the three 
major groups of reflexes: (a) the baroreflex, (b) 
pulmonary slow adaptive stretch reflex, and (c) 
peripheral and central chemoreflexes. The param-
eters representing all these reflexes are modified 
by slow wave activity regulated by the sleep 
mechanism. In the original version of PNEUMA, 
the baroreflex consisted of only the reflex arc 
with input from the arterial baroreceptors. 
However, in the current model, we also incorpo-
rate input from the cardiopulmonary barorecep-
tors from changes in left atrial pressure, with the 
net effect of blunting overall baroreflex gain and 
exaggerating sympathovagal balance at high fill-
ing pressures, as suggested by studies in human 
heart failure (Millar et  al., 2015; Floras, 2009; 
Floras & Ponikowski, 2015).

The single compartment that was used to rep-
resent CO2 and O2 exchange in the body tissues in 
PNEUMA is now divided into five parallel 
peripheral body compartments (brain, coronary 
circulation, muscle, splanchnic, extra-splanchnic) 
receiving arterial blood. The mixing of blood 
gases during transport of blood from the lungs to 
the chemoreceptors was previously characterized 
by a volume-invariant time delay and fixed time-
constants in PNEUMA, but in the current model, 
these processes are modeled with time delays and 
mixing and convection compartments that can 
vary dynamically.
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Fig. 6.1  A schematic diagram of the comprehensive 
physiology-based model (based on PNEUMA) that 
includes the “plant” portions of the respiratory (gas 
exchange & pulmonary mechanics) and cardiovascular 
(circulatory mechanics and hemodynamics) systems, and 
the “controller” portion that consists of cerebral and local 
vascular autoregulation, respiratory drive generation 
(RD), sleep mechanism, and autonomic nervous system 
(ANS). The respiratory and cardiovascular systems are 
coupled through the physiological processes occurring at 
multiple levels in the model, including mechanical cou-
pling through the common pleural space. Pressures (P), 
volumes (V), and flows (Q) in either media of gas (blue) or 

blood (red) are interdependent. Gas exchange and mixing 
occurring within each body compartment are modeled to 
yield local oxygen (O2) and carbon dioxide (CO2) levels at 
all air-blood interfaces and blood-interstitium interfaces. 
The large array of cardiovascular, respiratory, and neural 
variables generated by the plant portions are fed back to 
the controller that in turn adjusts the parameters of and 
inputs to the plant. Key parameters and inputs include: 
Pmus pressure generated by inspiratory muscle move-
ment, Rua upper airway resistance, HP heart period, 
Emax maximum ventricular elastance, Vu unstressed vol-
ume of vascular bed, R vascular resistance

In the coronary circulation, the metabolic 
rates (O2 consumption and CO2 production) are 
now adjusted in proportion to the rate stress prod-
uct (RSP) (Braunwald, 1971; Strauer, 1979; 
Devereux et al., 2015). The dynamic myocardial 
metabolic demand and supply relationship 
enables the current model to predict various sce-
narios of burden imposed on the myocardium by 
CHF, as well as the potential effects resulting 
from ASV therapy. In the current model of the 
heart, the effect of elastance in the septum is 
incorporated to simulate interventricular volume 
redistribution or effectively the dynamic change 
of both ventricular elastance or compliance 
beyond pacemaker-activated ventricular contrac-
tion. This introduces the capability of addressing 
different conditions in which blood is returned to 
the heart under CHF as well as during ASV 
therapy.

The model is implemented using the Simulink® 
(Mathworks, Inc., Natick, MA) programming 
environment that is platform-independent. 

Simulink programs take the form of intercon-
nected graphical objects, similar to the block dia-
grams of classical control theory.

6.2.3	� ASV

The intervention of ASV is incorporated in the 
model by simulating the settings in SERVE-HF 
study using the algorithm employed in the 
AutoSet CS system (Resmed, Sydney, Australia). 
There is positive end-expiratory pressure (PEEP) 
set to a fixed 5 cmH2O; along with pressure sup-
port varying between a minimum of 3  cmH2O 
and a maximum of 10 cmH2O. The servomecha-
nism takes the feedback from the subject’s min-
ute ventilation and provides pressure support 
through a high-gain integral controller 
(0.3 cmH2O per L/min per sec) to match 90% of 
a moving average of the minute ventilation in the 
past 3 minutes (Teschler et al., 2001; Cowie et al., 
2015).
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6.2.4	� “Protocol” for Model 
Simulations and Subsequent 
Analyses

Each simulation starts 1 hour before sleep onset. 
The duration of sleep in any given simulation run 
is determined by the in-built sleep mechanism 
(Cheng et al., 2010), depending on how much the 
sleep process is fragmented by arousals or rever-
sion to the waking state during the night; thus 
predicted sleep duration can vary from simula-
tion run to simulation run. The running sleep 
index (SI) is set to 0  in wakefulness and 1  in 
sleep; thus, the average SI value that is close to 
unity indicates high sleep continuity in the night-
time, but values that are substantially lower than 
unity indicate substantial sleep fragmentation. 
The total simulation time for each run is 12 hours, 
including the hour of wakefulness (“daytime”) 
before sleep, a variable duration of sleep (“night-
time”), and the subsequent period of wakefulness 
(“daytime”). In our analyses of the simulated 
“data”, computations are made on the nighttime 
sleep segment or daytime segment after allow-
ance of 1000  seconds transition time from the 
start of each state. To quantify the degree of ven-
tilatory instability, we used the apnea-hypopnea 
index (AHI) and selected the threshold of AHI 
≥15 events per hour, consistent with the criteria 
used in SERVE-HF, to screen for cases represent-
ing CSR (Cowie et  al., 2015). The feature of 
upper airway collapsibility is bypassed in this 
model, although the original version of PNEUMA 
was capable of simulating obstructive sleep 
apnea. Thus, the apneas simulated by this model 
are purely central in nature. Table  6.2 lists the 
pertinent indices and model variables/parameters 
analyzed in the current study. In particular, we 
highlight PCWP (pulmonary capillary wedge 
pressure) which we deduce from the model simu-
lations by capturing the value of end-diastolic left 
ventricular pressure at the end of expiration; at 
this point in the cardiac and breathing cycles, left 
ventricular pressure is equilibrated with left atrial 
pressure. We focused only on simulated CHF 
“subjects” with nighttime LVEF ≤45%, repre-
senting HFrEF.

6.3	� Results

6.3.1	� Illustration of ASV Effect 
on Respiratory, 
Cardiovascular, 
and Autonomic Variables

A typical response of CHF-CSR “subject” treated 
with ASV, as simulated by the model, is shown in 
Fig. 6.2. Before ASV intervention, the character-
istic CSR breathing pattern of waxing and wan-
ing is not only observed in the respiratory 
variables but also entrained across cardiovascular 
and neural variables through cardiorespiratory 
coupling and interaction with other regulatory 
subsystems. ASV works to provide out-of-phase 
positive airway pressure to complement the sub-
ject’s insufficient spontaneous ventilatory drive. 
Once it is applied to the subject, the output of the 
ventilator is adjusted according to the input from 
the subject, so that more ventilatory assistance is 
provided when the subject is breathing less and 
minimal assistance is given when there is ade-
quate drive, thus stabilizing the ventilatory pat-
tern. The stabilized pattern lasts only during ASV 
application. After ASV is disconnected, the sub-
ject resumes spontaneous breathing and the pre-
vious CSR patterns recur.

6.3.2	� Comprehensive Summary 
of ASV Effect on Ventricular 
Function and Respiratory 
Stability

Figure 6.3 provides a comprehensive “map” of 
the relationships among key cardiac, vascular, 
and respiratory indices derived from the model 
simulations in the untreated state and during ASV 
application, covering the large range of parame-
ter combinations that represent the span of CHF 
conditions explored in this study. Out of 72 simu-
lations, 55 cases show CHF with night-time 
LVEF ≤45%, among which 48 cases exhibit CSR 
with AHI ≥15 events per hour (eph). The pre-
dicted AHI in each untreated case (closed circles) 
is coded on a color scale, ranging from dark blue 
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Table 6.2  Clinical indices investigated in the study

Index Description Definition/calculation References
Respiratory
AHI Apnea-hypopnea index 

(eph)
Measured in episodes per hour
Apnea event: >95% reduction in tidal volume 
lasting for ≥10 seconds
Hypopnea event: one of the following
 �� Recommended: >30% reduction in tidal 

volume with ≥4% O2 desaturation and lasting 
for ≥10 seconds

 �� Alternative: >50% reduction in tidal volume 
with either ≥3% O2 desaturation or an arousal, 
and lasting for ≥10 seconds

Berry et al. (2012)

CL Cycle length (s) Time span between two consecutive apnea/
hypopnea; CL = AHL + hyperpnea length

AHL Apnea-hypopnea length 
(s)

Time span across the beginning and end of apnea/
hypopnea

CSR Cheyne stokes respiration 
(%)

Proportion of time spent on CSR – defined by ≥3 
consecutive central apnea/hypopnea cycles

Berry et al. (2012)

VT Tidal volume (mL) Lung volume change during each breath
BF Breathing frequency 

(bpm)
Measured in breath per minute

VE Ventilation (L/min) VT × BF
WOB Work of breathing (J/min) BF × ∫breath Pmus, in dVlung, expressed in power

Pmus,in: pressure exerted by inspiratory muscle and 
assumes passive expiration

Peripheral tissue health
SaO2 Arterial oxygen saturation 

(%)
PaCO2 Arterial carbon dioxide 

partial pressure (mmHg)
O2ERt Peripheral tissue oxygen 

extraction rate (%)
The model assumes fixed metabolic rate and no 
extraction limitation of the peripheral tissue

Cardiovascular
 �� Cardiac (left ventricular) performance
CO Cardiac output (L/min) HR × SV
HR Heart rate (bpm) Measured in beat per minute
SV Stroke volume (mL) Difference in left ventricular end-diastolic and 

end-systolic volume
CW Cardiac work (J/min) HR × ∫beat Ptm, lv dVlv, expressed in power

Ptm,lv: left ventricular transmural pressure
SW Stroke work (mmHg*L) (ESPtm − EDPtm) × SV

ESPtm/ EDPtm: left ventricular transmural 
end-systolic/diastolic pressure

CE Mechanical cardiac 
efficiency (%)

HR SW

mVO
LVS

LVS RVS

×

×
+

×

2 f

f: factor converting O2 utilization to energy 
production, which assumes myocardium oxidizes 
free fatty acid and glucose equally, f = 20.4 J/mL 
of O2

The middle term in the denominator reflects the 
factor by which myocardial oxygen consumption 
of the left heart is adjusted in proportion to SW 
(calculated for the left heart only) in the 
numerator

Schipke (1994), 
Steendijk and Brinke 
(2008), Westerhof 
(2000), Wong et al. 
(2011)

(continued)
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Table 6.2  (continued)

Index Description Definition/calculation References
LVEF Left ventricular ejection 

fraction (%)
SV

EDV
 �� Myocardial health
CcO2 Coronary oxygen 

concentration (mL/mL)
CcCO2 Coronary carbon dioxide 

concentration (mL/mL)
O2ERc Myocardial oxygen 

extraction rate (%)
The model assumes variable myocardial 
metabolic rate and no extraction limitation

LVS/
RVS

Left/ right ventricular wall 
stress (mmHg) LVS RVStm lv lv tm rv rv=

×
=

×P V

h

P V

h
, ,

3 3

2 2
where h = ventricular wall thickness.
Assumption in calculations: isotropic volume 
change

Aurigemma (2017)

RSP Rate stress product 
(bpm*mmHg)

HR × (LVS + RVS)
Adopted in the model to dynamically modify 
myocardial metabolic rate

Devereux et al. 
(2015), Hoffman and 
Buckberg (2014)

mVO2 Myocardial oxygen 
consumption rate (mL/s)

Qc × (CaO2 − CcO2)

Qc Coronary flow (mL/s) =myocardial perfusion
MOB Myocardial oxygen 

balance ((mL/s)/(mL/s))
Q ac C O

mVO

× 2

2

 �� Other
EDV Left ventricular end-

diastolic volume (mL)
EDPtm Left ventricular transmural 

end-diastolic pressure 
(mmHg)

Left ventricular filling pressure referenced to 
pleural pressure

PCWP Pulmonary capillary 
wedge pressure (mmHg)

Clinical index of left ventricular filling pressure
=EDP measured at end expiration

Ryan et al. (2012)

TPR Total peripheral vascular 
resistance (mmHg*s/mL)

MAP CVP

CO

−
, MAP: mean arterial pressure, 

CVP: central venous pressure
 �� Neural/sleep regulation
snaP/
snaH

Efferent sympathetic 
neural activities to the 
peripheral vasculature/ the 
heart (spikes/s)

snaP: regulates peripheral vascular resistance
snaH: regulates heart rate and contractility of both 
ventricles

Vagal Efferent parasympathetic 
neural activities to the 
heart (spikes/s)

Regulates heart rate

SI Sleep index (unitless) Determined by interaction of modeled sleep 
mechanism and respiratory drive.
SI = 0: wakefulness, SI = 1: deep sleep
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Fig. 6.2  The response of a “subject” with CHF-CSR set-
tings (LVD = 2, IVH = 0, CGU = 1, see Table 6.2) to ASV 
applied during 0 ~ 500 seconds (shaded in yellow). Vlung 
lung volume, VE ventilation, CO cardiac output, HR heart 
rate, ABP arterial blood pressure, snaH sympathetic neu-

ral activity to regulate the heart, Vagal parasympathetic 
neural activity to regulate the heart. The middle column 
shows an expanded view of the time-window of 
385 ~ 400 seconds, displayed within the thin vertical box 
(black borders) in the left column

representing AHI~0 eph to bright yellow repre-
senting AHI~120 eph (Fig. 6.3).

The colored dotted curves in Fig. 6.3 represent 
the equivalents of the Frank-Starling relationship 
between left ventricular performance and preload 
over the range of CHF conditions simulated in 
the study. Left ventricular performance is quanti-
fied using stroke work (SW), since SW takes into 
account both left ventricular pressure and stroke 
volume. Preload is quantified using transmural 
end-diastolic pressure (EDPtm), in which end-
diastolic pressure is referenced to pleural 
pressure.

Starting with the blue dotted curves and 
accompanying symbols that are closest to the top 

left of the graph, these represent the cases where 
left ventricular function is normal (LVD = 0). As 
total blood volume increases with intravascular 
hypovolemia (IVH  >  0), both SW and EDPtm 
also increase (following the trajectories repre-
sented by the blue dotted curves). At normal lev-
els of chemoreflex gain (small dark blue circles), 
these cases exhibit no periodic breathing (dark 
blue color representing AHI~0  eph). But with 
substantially increased chemoreflex gain (large 
yellow circles), periodic breathing with high val-
ues of AHI (~100 eph) occurs. SW and EDPtm 
are little changed by the increases in chemoreflex 
gain. Treating these periodic breathing (including 
CSR) cases with ASV leads to the elimination of 
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Fig. 6.3  Ventricular function-respiratory stability dia-
gram. Ventricular function is shown with stroke work 
(SW)-transmural end-diastolic pressure (EDPtm). The 
degree of ventilatory instability is quantified using the 
apnea-hypopnea index (AHI, color-mapped marker). 
There are 72 cases uniquely defined by left ventricular 
dysfunction (LVD, connected by color-coded line), intra-

vascular hypervolemia (IVH, connected by thickness-
coded grey line), and chemoreflex gain upregulation 
(CGU, coded by marker size). Those with AHI ≥15 eph 
(59 cases of circle beyond blue color on the left) are fur-
ther treated with ASV (results with ASV displayed as 
squares each connected by line to its untreated baseline 
(circles))

periodic breathing (represented by the dark blue 
squares). ASV also produces a significant reduc-
tion in both SW and EDPtm.

LVD is increased in integer steps from zero to 
simulate progressive impairment in left ventricu-
lar systolic function. In Fig. 6.3, the relationships 
between SW and EDPtm (Frank-Starling curves) 
become progressively flatter until they almost 
assume a slightly negative slope in the most 
severe case studied (LVD = 7, displayed in pur-
ple), consistent with the depressed ventricular 
function conditions first explored in humans by 
Braunwald and colleagues in the 1960s 
(Braunwald et  al., 1967). The factor that most 
influences the extent to which these SW-EDPtm 

curves are depressed is the degree of LVD, 
whereas intravascular hypervolemia works to 
stretch these curves toward the right, i.e., the 
effect is largely the elevation of EDPtm. 
Chemoreflex gain, on the other hand, primarily 
influences ventilatory instability  – in general, 
with higher gain contributing to higher AHI. For 
example, in mild CHF (LVD  =  1 & IVH  =  0), 
CSR with AHI ≥15 eph appears when chemore-
flex gains are larger than in normal subjects. 
Nevertheless, it should be noted that all three fac-
tors (LVD, IVH, and CGU) contribute in varying 
degrees to the occurrence and severity of CSR. 
For instance, with increasing LVD, more cases 
show AHI beyond the threshold for CSR (marked 
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with color beyond dark blue); however, AHI par-
adoxically displays a clear tendency to decrease. 
Similarly, as IVH increases, more AHI surpasses 
the threshold while its value becomes lower but 
the effect from IVH is noticeably weaker than the 
effect from LVD. While these results may appear 
odd, closer inspection of the simulations shows 
that increasing LVD and IVH act to increase the 
cycle duration of the CSR periodicities. When 
quantified in terms of the number of “events per 
hour”, the longer cycle durations translate to 
smaller values of AHI. With progressively dete-
riorating left ventricular systolic function (e.g., 
LVD > 2), application of ASV continues to elimi-
nate CSR, but unlike the cases with mild CHF, 
there is now a tendency for little reduction or 
even increase in SW whereas EDPtm is substan-
tially decreased (lower parts of Fig. 6.3).

Based on our finding from all our model simu-
lations of a strong monotonic relationship 
between left ventricular systolic function and left 
ventricular ejection fraction (LVEF), we stratify 
the large number of simulation cases by their 
LVD levels into three categories which corre-
spond to a spectrum of LVEF below 45%. As dis-
played in Table 6.3, these categories are (a) “L” 
representing low LVEF (LVEF ≤30%) in the 
group of LVD  =  6  ~  7, (b) “M” representing 
medium LVEF (30%  <  LVEF  ≤  36%) in the 
group of LVD = 4 ~ 5, and (c) “H” representing 
high LVEF (36% < LVEF ≤ 45%) in the group of 
LVD = 2 ~ 3. It should be noted that the range of 
LVEF values explored in each group is consistent 
with that reported in the sub-study of SERVE-HF 
(Eulenburg et  al., 2016); “high LVEF” merely 
refers to the highest tertile of the CHF range, 
which is still substantially lower than the levels 
(~60%) found in healthy subjects.

Figure 6.4 displays box-plots (displaying 
25th, median and 75th percentiles) of several key 
physiologic parameters at baseline (untreated 
state during sleep, left panel) for each of the 3 
LVEF levels, along with their corresponding val-
ues or changes following ASV therapy (right 
panel). For comparison, the corresponding simu-
lation values for the normal (healthy) subject are 
displayed as purple horizontal lines and the quar-
tiles for the CHF only subjects (LVEF ≤45% and 

AHI <15  eph) are displayed as blue lines and 
bands. To the right of the simulation results, the 
corresponding experimental values of these 
parameters, as reported in SERVE-HF for all the 
subjects studied, are shown for comparison, dis-
played as burgundy horizontal lines (means or 
medians) with the-same-tone shaded regions 
((interquartile) ranges or 95% confidence inter-
vals). The top left plot shows that increasing 
LVEF level (progressively improved left ventric-
ular function) is associated with increased AHI. 
This echoes what was presented in Fig.  6.3: as 
LVD increases (and LVEF decreases), the accom-
panying reduction in cardiac output occurring 
with or without hypervolemia leads to prolonged 
circulatory delay, which in turn increases CSR 
cycle duration, thereby reducing AHI. ASV acts 
to eliminate CSR in all these cases (right panel).

The simulation results show a small improve-
ment on the order of ~2% in LVEF for all LVEF 
levels with ASV application, remarkably similar 
to the data reported in SERVE-HF (mean 
change  ~  +1.83%). ASV is predicted to reduce 
left ventricular stress (LVS) by ~13% on average 
for all LVEF levels. In SERVE-HF, LVS was not 
measured directly, but measurements of 
NT-proBNP, a biomarker for LVS, showed a 
roughly 10% reduction (Braunwald, 2008; 
Krittayaphong et al., 2008).

Table 6.3 (first line of each row) provides a 
comparison of these LVEF groups in terms of the 
various key clinical indices associated with their 
untreated baseline states. The values showing 
significant difference among groups include 
clinical indices associated with severity and pat-
tern of the CSR periodicities, nadir arterial O2 
saturation, cardiac performance in terms of car-
diac output, cardiac efficiency, and LVEF, as 
well as sympathetic neural drives. There are 
common features among the untreated baseline 
states of the 3 LVEF groups: (a) all exhibit hypo-
capnia (average ~ 35.9 mmHg vs 43.8 mmHg in 
the normal subject and 43.4 mmHg in the CHF-
only group); (b) increased left ventricular stress 
at the expense of the augmented ventricular vol-
ume and end-diastolic pressure; and (c) reduced 
vagal tone. Upon ASV application (second line 
of each row in Table 6.3), all three groups show: 
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Table 6.3  ASV treatment effect stratified by LVEF group

Group (LVEF) L (<30%) M (30–36%) H (36–45%)
n = 17 n = 16 n = 15

AHI (eph) 37.89 (±5.65) 48.52 (±8.39) 58.45 (±9.76)
0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

CL (s) 96.67 (±13.38) 76.11 (±12.70) 63.08 (±10.14)
0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

AHL (s) 62.76 (±14.01) 48.72 (±11.73) 38.54 (±7.12)
0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

VT (mL) 320.31 (±51.88) 321.62 (±45.88) 335.05 (±43.19)
512.36 (±17.74) 508.11 (±13.95) 508.22 (±12.89)

VE (L/min) 7.28 (±0.80) 6.69 (±0.58) 6.49 (±0.42)
6.48 (±0.33) 6.39 (±0.24) 6.37 (±0.21)

WOB (J/min) 8.03 (±1.31) 7.19 (±1.34) 6.72 (±1.30)
0.99 (±0.23) 0.93 (±0.16) 0.91 (±0.12)

SaO2min (%) 92.63 (±1.73) 93.42 (±1.20) 94.14 (±1.01)
97.13 (±0.31) 97.11 (±0.26) 97.12 (±0.25)

PaCO2 (mmHg) 35.03 (±2.43) 36.00 (±2.41) 36.76 (±2.30)
38.18 (±2.38) 38.87 (±2.10) 39.07 (±1.87)

O2ERt (%) 39.49 (±2.56) 33.07 (±1.69) 29.74 (±1.56)
38.88 (±3.34) 32.75 (±2.46) 29.68 (±2.49)

TPR (mmHg*s/mL) 0.65 (±0.04) 0.70 (±0.04) 0.74 (±0.04)
0.58 (±0.07) 0.66 (±0.08) 0.70 (±0.08)

SBP (mmHg) 53.71 (±6.83) 71.66 (±8.39) 84.12 (±10.06)
51.69 (±8.50) 70.24 (±11.09) 82.28 (±13.95)

CO (L/min) 3.26 (±0.30) 3.98 (±0.28) 4.43 (±0.35)
3.21 (±0.37) 3.94 (±0.38) 4.37 (±0.48)

HR (bpm) 67.98 (±6.26) 65.56 (±4.14) 65.00 (±3.19)
64.58 (±5.48) 64.31 (±3.14) 64.02 (±2.26)

SV (mL) 48.88 (±6.38) 61.27 (±6.46) 68.63 (±7.59)
50.04 (±6.75) 61.55 (±7.40) 68.52 (±8.82)

EDV (mL) 189.57 (±15.20) 182.52 (±17.57) 174.57 (±19.44)
182.00 (±18.23) 174.66 (±20.90) 166.48 (±22.80)

EDPtm (mmHg) 28.52 (±7.54) 25.83 (±7.61) 23.00 (±7.37)
25.00 (±7.61) 22.67 (±7.65) 20.20 (±7.33)

LVEF (%) 25.85 (±2.63) 33.64 (±1.69) 39.40 (±1.53)
27.53 (±2.74) 35.30 (±1.97) 41.25 (±1.97)

CW (J/min) 11.93 (±3.71) 24.78 (±4.73) 36.26 (±5.46)
11.06 (±4.18) 24.03 (±5.47) 34.95 (±7.75)

LVS (mmHg) 98.21 (±20.38) 100.16 (±21.60) 99.14 (±22.90)
85.11 (±21.50) 88.71 (±23.77) 88.35 (±25.61)

RSP (bpm*mHg) 12.30 (±1.94) 11.98 (±2.28) 11.79 (±2.56)
9.97 (±2.25) 10.32 (±2.60) 10.28 (±2.86)

mVO2 (mL/s) 0.53 (±0.09) 0.54 (±0.11) 0.55 (±0.13)
0.43 (±0.10) 0.46 (±0.12) 0.48 (±0.14)

Qc (mL/sec) 5.91 (±0.98) 6.10 (±1.21) 6.23 (±1.43)
4.68 (±1.08) 5.16 (±1.34) 5.36 (±1.56)

O2ERc (%) 45.92 (±0.35) 45.26 (±0.26) 44.99 (±0.23)
46.43 (±0.58) 45.63 (±0.46) 45.24 (±0.36)

MOB ((mL/s)/(mL/s)) 2.17 (±0.02) 2.21 (±0.01) 2.22 (±0.01)
2.15 (±0.03) 2.19 (±0.02) 2.21 (±0.02)

(continued)
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Table 6.3  (continued)

Group (LVEF) L (<30%) M (30–36%) H (36–45%)
n = 17 n = 16 n = 15

CE (%) 4.60 (±1.74) 9.19 (±2.07) 13.25 (±2.01)
5.01 (±1.86) 9.74 (±1.90) 13.64 (±1.60)

snaP (spikes/s) 8.37 (±3.36) 5.58 (±2.04) 4.30 (±0.55)
2.98 (±0.43) 3.01 (±0.38) 3.01 (±0.33)

snaH (spikes/s) 6.09 (±1.64) 5.13 (±1.22) 4.86 (±0.97)
4.42 (±1.68) 4.62 (±1.24) 4.71 (±0.94)

vagal (spikes/s) 4.89 (±0.48) 4.96 (±0.25) 4.99 (±0.16)
5.01 (±0.28) 5.16 (±0.22) 5.26 (±0.20)

SI (unitless) 0.68 (±0.04) 0.71 (±0.03) 0.73 (±0.02)
0.98 (±0.04) 0.99 (±0.01) 1.00 (±0.01)

Data in each cell: mean (±SD) of the untreated nighttime cases in the 1st row (shaded in grey) and following application 
of ASV in the 2nd row
AHI apnea-hypopnea index, CL cycle length, AHL apnea-hypopnea length, VT tidal volume, VE ventilation, WOB work 
of breathing, SaO2min nadir arterial O2 saturation, PaCO2 arterial CO2 partial pressure, O2ERt tissue oxygen extraction 
rate, TPR total peripheral resistance, SBP arterial systolic blood pressure, CO cardiac output, HR heart rate, SV stroke 
volume, EDV left ventricular end-diastolic volume, EDPtm left ventricular end-diastolic transmural pressure, LVEF left 
ventricular ejection fraction, CW cardiac work, LVS left ventricular stress, RSP rate stress product, mVO2 myocardial O2 
consumption, Qc coronary flow, O2ERc myocardial O2 extraction rate, MOB myocardial oxygen balance, CE cardiac 
efficiency, snaP sympathetic neural activity to peripheral vasculature, snaH sympathetic neural activity to the heart, 
vagal parasympathetic neural activity to the heart, SI sleep index

(a) consistent alleviation of the burden of hypox-
emia, (b) reduced work of breathing, (c) reduced 
ventricular stress, (d) reduction in sympathetic 
cardiac and peripheral vascular neural tone, and 
(e) reduced peripheral vascular resistance.

The model predicts on average a roughly 20% 
decrease in coronary perfusion during ASV and 
thus about the same reduction in oxygen supply 
to the heart (Table 6.3 and Fig. 6.5). At the same 
time, with ASV application, left ventricular stress 
is reduced, along with systolic blood pressure 
and heart rate. As such, myocardial oxygen 
demand is also reduced. Thus, myocardial oxy-
gen balance remains largely unchanged between 
the untreated nighttime state and nighttime ASV. 
Model simulations of daytime wakefulness, 
where it is assumed that the “subject” would be 
breathing spontaneously without ASV, generally 
display no CSR. Comparison between the 
untreated nighttime (sleep) and the untreated 
daytime (wake) conditions suggests that elimina-
tion of CSR without the application of ASV 
increases coronary blood flow. On the other hand, 
elimination of CSR through ASV reduces coro-
nary blood flow below its untreated nighttime 

(sleep) baseline. This is due largely to the appli-
cation of the positive end-expiratory pressure 
(PEEP) that accompanies ASV. Similar effects 
can be observed for cardiac output (Table 6.3 and 
Fig. 6.5, lower panel), except that the changes are 
substantially smaller (on the order of ~5% on 
average across all cases). However, the coronary 
blood flow levels for all 3 LVEF groups in the 
untreated nighttime (sleep) state are roughly the 
same, whereas there are significant differences in 
baseline (untreated nighttime/sleep) cardiac out-
put across LVEF groups. In the low LVEF (“L”) 
group, the baseline cardiac output is 16% lower 
than the group with mild CHF without CSR (blue 
line and band) and 35% lower than the normal 
subject (purple line). The very large variability in 
coronary blood flow and cardiac output between 
the various cases within the L group should also 
be noted. In particular, the effect of ASV on car-
diac output in the cases within the L group can 
range between ~ −10% (i.e., reduction) and 
~ +10% (i.e., increase).

The model predicts higher peripheral sympa-
thetic activity (snaP) and lower vagal tone in the 
majority of all LVEF groups in the untreated 
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Fig. 6.4  ASV effects predicted by model vs correspond-
ing results reported in SERVE-HF study. Left: untreated 
CSR cases of untreated nighttime values, with the back-
ground of the normal “subject” (LVD  =  0, IVH  =  0, 
CGU  =  0) in purple and the CHF-only group in blue. 
Along with the simulation data are the baseline values 
reported in SERVE-HF shown in burgundy. Right: 
overnight-ASV data from PNEUMA vs post-12-month-
ASV data from SERVE-HF.  The simulation CSR cases 
are grouped by their left ventricular dysfunction resulting 
in low (L), medium (M), and high (H) left ventricular 
ejection fraction. The box plots of our simulation data 
highlight the 25th, 50th, and 75th percentile whereas 
those of SERVE-HF are presented with their mean & 
range in AHI and SaO2min (n = 666, (Cowie et al., 2015)), 

and in the rest of the metrics with quartile values of the 
untreated while mean & 95% confidence interval of the 
change by ASV (n  =  159, (Cowie et  al., 2018)). AHI 
apnea-hypopnea index, SaO2min minimum O2 saturation, 
HR heart rate, LVEF left ventricular ejection fraction, 
EDV end-diastolic volume, ESV end-systolic volume, 
LVS left ventricular stress, NT-proBNP N-terminal pro-
hormone of B-type natriuretic peptide. The bottom left 
panel shows our simulation data in LVS compared to 
SERVE-HF subgroup study data in NT-proBNP (* refer-
enced to the normal as 0.45 ng/mL, (Krittayaphong et al., 
2008; Januzzi et al., 2006)), while the bottom right panel 
shows both data sets in terms of percentage change from 
untreated (nighttime) levels
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Fig. 6.5  Myocardial perfusion and cardiac output under 
various conditions. Top: coronary flow (Qc, part of the 
determinant of myocardial oxygen supply). Bottom: car-
diac output (CO). Left: nighttime untreated CSR cases 
characterized by low (L), medium (M), and high (H) 
LVEF groups shown with quartile values in box plots and 
individual case values in scatter plots. They are referenced 
to the normal subject (purple line) and CHF-only group 
(blue line and band) in the background. Right: percentage 

change of the corresponding indices of various conditions 
with respect to their untreated nighttime selves. The con-
ditions include nighttime treated with ASV and untreated 
daytime. Also displayed for reference are the changes due 
to changes in state from sleep (nighttime, untreated) to 
wakefulness (daytime but without ASV treatment) in the 
normal subject (purple line) and CHF-only group (blue 
line and band)

nighttime state versus the corresponding auto-
nomic activity levels in the normal (purple line) 
and CHF only group (blue line and band) 
(Fig.  6.6, left panel). Interestingly, sympathetic 
drive to the heart (snaH) is predicted to be below 
the corresponding levels in CHF only. Application 
of ASV during sleep reduces snaP substantially 
and snaH to a smaller extent, while increasing 
vagal drive in the majority of cases (Fig.  6.6, 
right panel). The daytime (wakefulness) state 
without ASV leads to similar reductions in snaP 
and snaH, but there is a substantial withdrawal of 
vagal drive.

The results presented in Fig. 6.7 enable further 
exploration of the large degree of variability 
observed in some of the key indices within and 
across LVEF groups, particularly within the low-
est LVEF group. For simplicity, the sub-groups 

are categorized based on untreated nighttime 
LVEF level (“L” or ≤30% vs “M+H” or >30%) 
and pulmonary capillary wedge pressure (PCWP: 
≤25 mmHg vs >25 mmHg). The thin lines that 
connect the untreated cases (shown in pink) to 
their ASV counterparts (displayed in turquoise) 
highlight the changes produced by ASV applica-
tion. The key results that stand out are: (a) for the 
“L” group with low PCWP, ASV leads to signifi-
cant drops in both coronary blood flow and car-
diac output to levels that are much lower (in 
absolute terms) than their corresponding values 
in the normal and CHF-only groups; (b) ASV 
produces a reduction in sympathetic activity and 
increase in vagal tone in all cases, except for a 
subgroup of “L” cases with high PCWP where 
there is instead a reduction in vagal tone along 
with very large decrease in sympathetic drive.
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Fig. 6.6  Autonomic efferent activities under various con-
ditions. Top: sympathetic neural activities to peripheral 
vasculature (snaP). Middle: sympathetic neural activities 
to the heart (snaH). Bottom: parasympathetic neural activ-
ities to the heart (vagal). Left: nighttime untreated CSR 
cases characterized by low (L), medium (M), and high (H) 
LVEF groups shown with quartile values in box plots and 
individual case values in scatter plots. They are referenced 
to the normal subject (purple line) and CHF-only group 

(blue line and band) in the background. Right: percentage 
change of the corresponding indices of various conditions 
with respect to their untreated nighttime selves. The con-
ditions include nighttime treated with ASV and untreated 
daytime. Also displayed for reference are the changes due 
to changes in state from sleep (nighttime, untreated) to 
wakefulness (daytime but without ASV treatment) in the 
normal subject (purple line) and CHF-only group (blue 
line and band)

6.4	� Discussion

6.4.1	� Is CSR the Consequence of or 
Compensatory Mechanism 
to CHF?

The simulations conducted with the current 
model demonstrate that CSR in CHF can be pro-
duced by a combination of different levels of 
ventricular dysfunction, intravascular hypervol-
emia, and chemoreflex gain upregulation. It is 
well known that CSR frequently accompanies 

CHF at various stages of disease progression and 
the effects of this ventilatory instability are often 
viewed as an indicator of poor prognosis. A coun-
tervailing perspective is that the entrained venti-
lation, perfusion, and neural activities in CSR, 
though occurring on a temporally non-uniform 
fashion, can be viewed as an exaggerated form of 
respiratory sinus arrhythmia that works, on aver-
age, to optimize the efficacy of pulmonary gas 
exchange (Yasuma & Hayano, 2017). Moreover, 
the associated respiratory alkalosis resulting 
from the tendency for CSR to result in hypocap-
nia is thought to shield cardiac myocytes from 
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Fig. 6.7  ASV effect stratified by left ventricular ejection 
fraction (LVEF) and pulmonary capillary wedge pressure 
(PCWP). From top to bottom, there are sympathetic neu-
ral activities to peripheral vasculature (snaP), vagal tone, 
coronary flow (Qc), and cardiac output (CO). CSR groups 
of the four combinations of high and low in LVEF and 

PCWP are displayed from left to right. Each of the four 
groups is further shown with within-subject comparison 
between the untreated nighttime (pink) and ASV-treated 
nighttime (turquoise). The corresponding predictions for 
the normal subject (purple line) and CHF-only group 
(blue line and band) are displayed for reference
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cell death promoted by hypoxia-acidosis (Graham 
et al., 2004), as well as prevent cardiac arrhyth-
mia or reduced contractility caused by acidosis 
(Crampin et al., 1842). Thus, CSR could repre-
sent a compensatory strategy to improve cardio-
pulmonary function in CHF. On the other hand, 
the periodic surges of sympathetic activity (which 
can lead to increased probability of life-
threatening arrhythmia), fragmented sleep due to 
intermittent arousals, with the accompanying 
elevated risk of mortality, provide the key ratio-
nale for treatment to suppress CSR (Naughton, 
2012).

An unexpected finding from this simulation 
study is that, while the apnea-hypopnea index 
(AHI) is considered the “gold standard” for 
assessing severity of CSR and other forms of 
periodic respiration, ventilatory patterns with the 
same degree of modulation can have lower AHI 
simply due to an increase in cycle duration, since 
there will be fewer “respiratory events” within a 
fixed time-frame. Increased cycle duration will 
generally occur with prolonged circulation delay 
as a consequence of hypervolemia and/or signifi-
cant reduction in cardiac output.

6.4.2	� The Impact of ASV on CHF-
CSR Includes Restoring Stable 
Breathing and Elevating 
Intrathoracic Pressure

The beneficial effects of ASV have been reported 
extensively when considered from a variety of 
perspectives: overnight impact (Teschler et  al., 
2001; Oldenburg et al., 2015; Haruki et al., 2011), 
steady improvement over months/years (Cowie 
et  al., 2015; Philippe et  al., 2006; O’Connor 
et al., 2017; Oldenburg et al., 2018; Miyata et al., 
2012; Koyama et  al., 2013), and in responding 
patient populations, such as subjects with heart 
failure with preserved ejection fraction (HFpEF) 
(Bitter et  al., 2010; Yoshihisa et  al., 2013) or 
reduced ejection fraction (HFrEF) (Bitter et al., 
2013; Arzt et al., 2013), and CSR with or without 
OSA (Arzt et al., 2013; Kasai et al., 2010; Lyons 
et al., 2017; O’Connor et al., 2017). Compared to 
other types of respiration-related therapy – such 

as nasal oxygen, continuous positive airway pres-
sure (CPAP), or bilevel positive airway pressure 
(BiPAP), a number of previous studies have 
reported ASV to be more efficacious (Kasai et al., 
2010, 2013; Teschler et  al., 2001; Randerath 
et  al., 2012; Philippe et  al., 2006; Fietze et  al., 
2008); on the other hand, some meta-analyses 
have been more equivocal about its relative ben-
efits (Sharma et al., 2012; Yang & Sawyer, 2016; 
Schwarz et  al., 2019; Wang et  al., 2021). 
SERVE-HF was the first large-scale, randomized 
multicenter trial to compare the effects of ASV 
therapy to conventional medical treatment in 
CHF patients with HFrEF (LVEF ≤  45%) and 
predominantly central sleep apnea with AHI ≥15. 
Unexpectedly, the study found significantly 
higher all-cause mortality and cardiovascular 
mortality in the patients who received ASV. A 
follow-up study (Woehrle et  al., 2017) showed 
similar findings to SERVE-HF in that patients 
treated with ASV had higher risk of cardiovascu-
lar death, but this risk was not related to the dura-
tion of nighttime usage of ASV.

In general, our simulation results confirm the 
efficacy of ASV in eliminating CSR, improving 
arterial O2, and alleviating breathing workload, 
as has been demonstrated in experimental stud-
ies. As for the cardiovascular and neurohormonal 
variables, our results are compatible with pub-
lished clinical findings that ASV facilitates stress 
release of the heart chambers, improves LVEF 
and cardiac function, reduces sympathetic neural 
activity, and improves sleep continuity by reduc-
ing arousals from sleep. However, it is important 
to note that all the effects predicted from the 
model are based on simulations reflecting over-
night ASV application and these effects are tem-
porary and reversible following the 
discontinuation of ASV. The current model codi-
fies only what is known quantitatively about the 
physiological mechanisms operating in CHF and 
does not include any mechanisms for a “carry-
over effect”. In contrast, some clinical reports 
have suggested potential sustained improvement 
of the underlying disease (i.e., cardiac reverse 
remodeling) (Haruki et  al., 2011; Miyata et  al., 
2012; Yoshihisa et  al., 2011), but these remain 
speculative at this time.
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6.4.3	� ASV Significantly Reduces 
Coronary Flow

During ASV intervention, the positive airway 
pressure reduces ventricular stress thus curtailing 
myocardial oxygen demand. The increase in 
pleural pressure in ASV also mechanically 
impedes coronary flow (Fessler et  al., 1990). 
Accompanying the metabolic change, there is a 
reduction in coronary flow and therefore a reduc-
tion in myocardial oxygen supply. Indeed, the 
model predicts a very small, and likely insignifi-
cant, reduction in myocardial oxygen balance. 
However, the model calculations are relatively 
simple and do not take into account coronary 
microvasculopathy (i.e., capillary rarefaction and 
impaired endothelium-dependent vasodilation or 
chronic hypoxia-induced systemic vasoconstric-
tion (van de Wouw et al., 2020; Tsagalou et al., 
2008)) or altered myocardial energetics (i.e., 
shifted myocardial metabolism with limited 
cardiac metabolic reserve and flexibility under 
mitochondrial dysfunction (De Marco et  al., 
1988; Neglia et al., 2007; Snyder et al., 2020)). 
These additional factors may contribute toward 
undermining myocardial oxygen reserve in these 
patients and put the heart tissue at risk of isch-
emia, which the current model does not predict.

The model predicts small reductions (~<5%) 
in cardiac output and somewhat larger (~20%) 
decrease in coronary blood flow during ASV for 
most of the conditions examined in our study 
(Fig. 6.5). These changes are most heterogenous 
and variable in the lowest LVEF group. A sec-
ondary factor that can account for some of this 
variability is the baseline PCWP level. If the low 
LVEF group is partitioned into a sub-group that 
has low PCWP (≤25 mmHg) and higher PCWP 
(>25 mmHg), the cases with low LVEF and low 
PCWP have the most severe reductions in cardiac 
output (>10%) and coronary blood flow (~40%). 
As well, application of ASV during the night 
reduces coronary blood flow by ~20% from the 
untreated (nighttime) state. But assuming that 
ASV is not used in daytime wakefulness, the 
simulations show that coronary blood flow can 
become 20% higher than the untreated nighttime 
level. Thus, a patient who is on ASV during sleep 

at nighttime but is off ASV during the day could 
experience diurnal swings in coronary blood flow 
of 40% amplitude (Fig. 6.5). This raises the ques-
tion of whether the repetitive reduction and 
reperfusion of cardiac tissue over the 24-hour 
cycle in the long term might have adverse effects 
akin to small-scale ischemia-reperfusion injury, 
and thus promote the occurrence of arrhythmias 
(Yellon & Hausenloy, 2007; Manning & Hearse, 
1984).

6.4.4	� ASV Further Alters 
Sympathovagal Balance That 
Is Already Abnormal 
in CHF-CSR

In heart failure progression, sympathetic hyper-
activity and reduced vagal tone play a pivotal role 
in regulating not only cardiac but also renal, sys-
temic vasculature, and metabolic function. It is 
involved in the beginning of cardiac dysfunction 
as a compensatory mechanism to restore sys-
temic perfusion; however, over time this compen-
satory measure exhausts the heart, further 
deteriorating cardiac function, triggering mal-
adaptive remodeling as part of the vicious cycle 
(Cowie & Poole-Wilson, 2013; van Bilsen et al., 
2017). There have been debates in the literature 
as to whether CSR causes further sympathetic 
excitation under parasympathetic withdrawal due 
to the intermittent hypercapnic hypoxia and 
arousals that accompany the periodic ventilation 
and apneas (Lanfranchi et al., 1999) or if it is the 
consequence of the deteriorating CHF associated 
with upregulated circulating catecholamines 
(Mansfield et al., 2003). It is recognized that the 
autonomic imbalance toward sympathetic domi-
nance can lead to increased risk of lethal arrhyth-
mias in CHF (Schwartz & De Ferrari, 2011; 
Sanchez et  al., 2020). Nevertheless, our model 
predicts that CSR leads to a substantial elevation 
of peripheral sympathetic drive (especially in the 
low EF group) accompanied paradoxically with 
diminished central sympathetic drive and signifi-
cant withdrawal of vagal tone. These combina-
tions of changes in autonomic activities bring 
about peripheral vasoconstriction and ineffec-
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tiveness in cardiac pumping leading to fluid 
redistribution that promotes central congestion. 
However, it should be cautioned that the model 
equations relating autonomic activity to other 
physiological variables are based largely on 
empirical relationships derived from animal stud-
ies (Cheng et  al., 2010). Thus, the aforemen-
tioned predictions of this model require validation 
in humans. Future studies of CHF-CSR would 
benefit from surrogate measures of cardiac sym-
pathetic activity, such as heart rate variability, or 
peripheral sympathetic activity derived from 
noninvasively measured peripheral arterial 
tonometry.

The model also predicts differential effects of 
ASV on autonomic activity in the lowest LVEF 
versus the other 2 LVEF groups (Fig. 6.6). The 
lowest LVEF group appears to be most impacted 
by ASV, but the effects are also very heteroge-
neous within the group. Considering sub-groups 
with low versus high PCWP provides a better 
accounting of this variability. As displayed in 
Figs. 6.6 and 6.7 (upper 2 panels), although there 
is variability in the magnitude of the effects, ASV 
generally reduces sympathetic tone and increases 
vagal tone across LVEF levels. This partial resto-
ration toward more normal levels of sympathova-
gal balance is likely a beneficial change. However, 
in the case of the sub-group that has the lowest 
LVEF and high PCWP, sympathetic drive is 
decreased from very high levels, but this occurs 
in conjunction with a concomitant depression of 
vagal tone toward levels even further from nor-
mality (Fig.  6.7). It remains unclear what the 
clinical implications are for the anomalous 
changes in autonomic drives in this sub-group, 
but one would suspect that interventions that 
reduce rather than increase vagal tone in the face 
of large decreases in sympathetic activity are 
more likely to favor susceptibility to arrhythmias. 
The significant effect of PCWP suggests that left 
ventricular filling pressure or central congestion 
plays a pivotal role in the model. Not only is it the 
index that reflects left ventricular function and 
demonstrates the correlation with intravascular 
hypervolemia (Androne et al., 2004), but it also is 
the source that blunts baroreflex sensitivity via 
the activation of the paradoxical cardiopulmo-
nary reflex (Mortara et al., 1997).

6.4.5	� What Could Explain 
the Higher Mortality Among 
CHF-CSR with Low EF Treated 
with ASV?

The clinical evidence so far revealed that the 
unexpected higher cardiovascular mortality 
comes from the ASV arm in the low ejection frac-
tion group (LVEF < 30%) without previous hos-
pital admission or life-saving intervention 
(Eulenburg et al., 2016); moreover, a subset anal-
ysis rules out adverse remodeling and worsening 
heart failure as the cause (Cowie et  al., 2018); 
thus leaving sudden cardiac death (arrhythmia) as 
the potential culprit. There are two main mecha-
nisms we found from our simulation results that 
could contribute to arrhythmogenicity: (1) the 
large diurnal swing of coronary flow upon noc-
turnal ASV treatment especially in low EF group 
that is most vulnerable to ischemic reperfusion 
injury, and (2) autonomic imbalance with higher 
sympathetic and lower vagal tone. Our model 
predicts the differential responses of CHF-CSR 
to ASV among various EF groups. On top of that, 
our model highlights PCWP as another potent 
factor in determining the ASV effects. While 
CSR is consistently eliminated by ASV in all 
groups, removing CSR appears to result in differ-
ent outcomes in the various groups of CHF-
CSR.  This may be in part due to the varying 
degrees of elevation in intrathoracic pressure 
resulting from ASV in the various CHF-CSR 
endotypes. CSR appears to be more than just the 
consequence of severe CHF during disease pro-
gression. Perhaps, instead of directly targeting 
CSR elimination, the treatment regimen should 
focus more on addressing myocardial reverse 
remodeling or closely monitoring the pertinent 
parameters to finetune the treatment regime (e.g., 
fluid intake) in the various stages of CHF.

6.5	� Limitations

The current simulation model omits the inclusion 
of some factors pertinent to CHF that might ren-
der the impact of either ASV or CSR less appre-
ciated in the results. For example, the provision 
of intrinsic PEEP or elevated lung volume for 
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oxygen stores during the hyperventilation phase 
in CSR would benefit those with atelectasis 
(Naughton, 2012; Linz et al., 2016). As well as 
those with obstructive sleep apnea, pulmonary 
edema, or mitral regurgitation could benefit from 
the PEEP setting or mean positive airway pres-
sure of ASV (Piper, 2020; Chadda et  al., 2002; 
Kinoshita et al., 2017). Additionally, altered skel-
etal muscle/myocardial energetics and endothe-
lial dysfunction whether caused by chronic 
hypoxia, which lead to ventricular dysfunction 
and further hypoxia, could contribute to the 
vicious cycle in CHF progression (Ventura-
Clapier et al., 2004; Mettauer et al., 2006). Not 
incorporating these complications in the model 
might explain our predictions of relatively higher 
baseline oxygen level than what was reported in 
the SERVE-HF study.

An important limitation in this model is the 
focus on only central apnea and hypopnea and 
the exclusion of any obstructive component, even 
though in many people with CHF there is signifi-
cant prevalence of both central and obstructive 
sleep apnea (Javaheri, 2006; Schulz et al., 2007). 
The original version of this model (PNEUMA) 
was in fact developed to study the pathogenesis 
and effects of obstructive sleep apnea (Cheng 
et al., 2010), and thus the inclusion of upper air-
way obstruction can be included in the simula-
tions relatively easily. This represents a direction 
we would pursue in future work, the results of 
which could be compared with the outcomes of 
the ongoing ADVENT-HF trial (Lyons et  al., 
2017), which includes patients with both central 
and obstructive apneas.

There are many other details in the model that 
are missing, since the physiological underpin-
nings remain largely unexplored. The quantita-
tive characterization of some of the neural 
reflexes is inadequate. For instance, we adopted 
Ursino’s model of autonomic regulation 
(Magosso & Ursino, 2001; Albanese et al., 2016) 
and factored in the pathological cardiopulmonary 
excitatory reflex by expanding the submodel that 
was originally meant to represent the arterial 
(carotid) baroreflex. However, using this extended 
combination of the arterial and cardiopulmonary 
baroreflexes leads to a simplification of the scope 

and dynamics of the control of responses to inde-
pendent changes in arterial and atrial pressure. 
Moreover, the cardiopulmonary reflex not only 
takes both excitatory and inhibitory pathways 
that result in nonuniform and nonlinear behavior 
in efferent fibers (Millar et  al., 2015) but also 
exhibits interaction with the chemoreflexes (Du 
& Chen, 2007). Also not included in our model 
are other pathological reflexes such as pulmonary 
C fiber reflex that may become important with 
pulmonary edema or influences from the renin-
angiotensin aldosterone system. The former 
causes a rapid and shallow breathing pattern that 
undermines baseline pulmonary function and 
may modulate the influence of PCWP on trigger-
ing central apnea (Solin et al., 1999). The renin-
angiotensin aldosterone system likely plays an 
important role in neurohumoral activation in 
response to hypervolemia (Packer, 1988) but this 
system is missing from the current model.

The current model also assumed that ASV 
would not be applied during daytime and CSR 
would not occur spontaneously by introducing a 
“wakefulness” neural drive that substantially 
reduces the PaCO2 apneic threshold. However, in 
cases with severe CHF-CSR, periodic breathing 
could persist during daytime wakefulness if ASV 
is not administered. Further investigation with 
the model could also be directed at determining 
whether continuing ASV through daytime is nec-
essary to mitigate the adverse consequences that 
contribute to cardiovascular mortality.

6.6	� Conclusion

The present in silico model of CHF-CSR incor-
porates the key mechanisms of ventricular dys-
function, intravascular hypervolemia, and 
chemoreflex hypersensitivity. By exploring a 
range of parameter combinations across these 
mechanisms, the model is able to simulate a 
broad spectrum of phenotypes in levels of LVEF, 
CSR cycle length, and chemoreflex gain. The 
impact of ASV includes both positive airway 
pressure in the lungs and the effective regulariza-
tion of CSR. But the model simulations clearly 
demonstrate that while the elimination of CSR 
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through ASV can partially restore cardiorespira-
tory and autonomic physiology back toward 
more normal conditions in most cases, the degree 
of restoration can be highly variable, depending 
on the combination of mechanisms in play. The 
lowest LVEF group appears to be most vulnera-
ble to the potentially adverse effects of ASV. The 
subgroup with lowest LVEF and low PCWP 
tends to have the greatest reductions in cardiac 
output and coronary blood flow during ASV at 
nighttime but significant reversals in the daytime 
when ASV is not applied. The subgroup with 
lowest LVEF and high PCWP appears to be sus-
ceptible to excessive sympathetic reduction along 
with concomitant vagal withdrawal during the 
administration of ASV, which works against the 
restoration of normal sympathovagal balance. 
Based on the findings generated by the model, we 
speculate that the increased risk of myocardial 
ischemia/reperfusion injury following long-term 
exposure to repetitive large diurnal fluctuations 
in coronary blood and/or reduced vagal protec-
tion from arrhythmia might be potential factors 
that could explain the small but significant 
increase in cardiovascular mortality reported in 
the SERVE-HF study.
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7Automated Scoring of Sleep 
and Associated Events

Peter Anderer, Marco Ross, Andreas Cerny, 
and Edmund Shaw

Abstract

Conventionally, sleep and associated events 
are scored visually by trained technologists 
according to the rules summarized in the 
American Academy of Sleep Medicine 
Manual. Since its first publication in 2007, the 
manual was continuously updated; the most 
recent version as of this writing was published 
in 2020. Human expert scoring is considered 
as gold standard, even though there is increas-
ing evidence of limited interrater reliability 
between human scorers. Significant advances 
in machine learning have resulted in powerful 
methods for addressing complex classification 
problems such as automated scoring of sleep 

and associated events. Evidence is increasing 
that these autoscoring systems deliver perfor-
mance comparable to manual scoring and 
offer several advantages to visual scoring: (1) 
avoidance of the rather expensive, time-
consuming, and difficult visual scoring task 
that can be performed only by well-trained 
and experienced human scorers, (2) attain-
ment of consistent scoring results, and (3) 
proposition of added value such as scoring in 
real time, sleep stage probabilities per epoch 
(hypnodensity), estimates of signal quality 
and sleep/wake-related features, identifica-
tions of periods with clinically relevant ambi-
guities (confidence trends), configurable 
sensitivity and rule settings, as well as cardio-
respiratory sleep staging for home sleep apnea 
testing. This chapter describes the develop-
ment of autoscoring systems since the first 
attempts in the 1970s up to the most recent 
solutions based on deep neural network 
approaches which achieve an accuracy that 
allows to use the autoscoring results directly 
for review and interpretation by a physician.
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7.1	� Development of Autoscoring 
Systems: From Simple 
Decision Trees to Deep 
Neural Network Classifiers

7.1.1	� Problem Statement

The first generally accepted rules for visual sleep 
scoring were provided by the recommendations 
of Rechtschaffen and Kales (R&K) published in 
1968. According to this manual, wake, rapid eye 
movement (REM) sleep, non-rapid eye move-
ment (NREM) sleep stages S1 to S4, and move-
ment time were distinguished. In 2007, the 
Manual for the Scoring of Sleep and Associated 
Events was published by the American Academy 
of Sleep Medicine (AASM, Iber et  al., 2007). 
Concerning the visual classification of sleep 
stages, these rules were intended to replace the 
rules by Rechtschaffen and Kales (1968). An 
important advance of the AASM manual was the 
inclusion of technical and digital specifications 
for polysomnographic (PSG) recordings, a sec-
tion on parameters to be reported for PSGs, and 
rules for visual scoring of cortical arousals as 
well as cardiac, respiratory, and movement 
events. Since publication, the AASM manual has 
been updated several times. As of this writing, 
the most recent update, version 2.6, was pub-
lished in January 2020 (Berry et al., 2020). While 
the rules for the visual classification of sleep 
stages remained more or less unchanged from 
version to version, other sections, most notably 
the scoring of respiratory events, have had major 
updates. Nevertheless, even in the most recent 
version, two definitions for the scoring of hypop-
neas coexist, a recommended and an acceptable 
rule. Which rule applied must be specified in the 
PSG report because the resulting apnea-hypop-
nea index (AHI, i.e., number of apneas + hypop-
neas per hour sleep) can vary significantly 
depending on the applied rule. A full PSG scor-
ing includes the scoring of sleep stages, arousals, 
cardiac events, periodic limb movements, and 
respiratory events such as obstructive apneas, 
mixed apneas, central apneas, (obstructive and 
central) hypopneas, oxygen desaturations, and 
snoring events. Consequently, visual scoring of a 

PSG not only is time-consuming but also requires 
well-trained and experienced human scorers. 
Nevertheless, visual scoring of PSGs is always 
subjective, and studies investigating interrater 
reliability revealed that the consistency between 
scorers is rather limited (Danker-Hopfe et  al., 
2004, 2009; Penzel et  al., 2013; Rosenberg & 
Van Hout, 2013; Younes et  al., 2016, 2018; 
Cesari et al., 2021).

7.1.2	� Autoscoring According 
to Rechtschaffen and Kales

Given the shortcomings of visual scoring, it is not 
surprising that right after the R&K manual for 
visual sleep scoring was presented in 1968, 
numerous attempts at a computer-assisted identi-
fication of sleep stages have been published (Itil, 
1969; Larsen & Walter, 1970; Smith & Karacan, 
1971; Martin et  al., 1972; Gaillard & Tissot, 
1973; Hoffmann et al., 1984; Kubicki et al., 1989; 
Schwaibold et  al., 2002). Martin et  al. (1972) 
applied a simple decision tree using electroen-
cephalographic (EEG) and electrooculographic 
(EOG) signals. Stanus et  al. (1987) developed 
and compared two methods for automatic sleep 
scoring: one based on an autoregressive model 
and another one based on spectral bands and 
Bayesian decision theory using one EEG, two 
EOG, and an electromyographic (EMG) channel. 
The EOG was used to detect eye movements and 
the EMG to assess the muscle tone. Schaltenbrand 
et al. (1993) applied artificial neural networks for 
sleep stage classification using 17 features 
extracted from PSG signals, and Pardey et  al. 
(1996) combined artificial neural networks with 
fuzzy logic. Fell et  al. (1996) examined auto-
matic sleep scoring using in addition to spectral 
features nonlinear features (correlation dimen-
sion, Kolmogorov entropy, Lyapunov exponent) 
and concluded that such measures carry addi-
tional information not captured with spectral fea-
tures. Park et al. (2000) built a hybrid rule- and 
case-based system. A decision tree-like algorithm 
was used by Louis et al. (2004). Many of these 
methods were developed only based on a limited 
set of data and/or had never been validated in an 
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independent sample. To produce a robust and 
valid automatic sleep stager suitable for clinical 
and pharmacological studies, the method must be 
validated in a large sample of subjects of both 
sexes covering the respective age range, includ-
ing both healthy controls and patients with sleep 
disturbances. Since the visual scorings of the 
training set serve as the “gold standard” for the 
automatic classifier, their quality is crucial as 
well.

Our first version of the Somnolyzer autoscor-
ing system was developed and validated based on 
a dataset that fulfilled all these requirements 
(Anderer et al., 2005). The used SIESTA dataset 
consists of 588 PSGs, 394 PSGs from healthy 
subjects (2 PSGs each in 98 males and 99 females 
aged 20–95 years with approximately the same 
number of males and females per decade) and 
194 PSGs from patients with sleep-disordered 
breathing, insomnia related to generalized anxi-
ety disorder, as well as mood disorders, periodic 
limb movement disorders, and Parkinson’s dis-
ease (Klösch et  al., 2001). One random half of 
this dataset was used for training and the other 
half for validation. Each recording was first 
scored by an expert from the recording lab and 
thereafter independently by a randomly assigned 
second scorer from one of the other seven partici-
pating sleep labs. Finally, the two scorings were 
reviewed by a scorer in a third lab, who took the 
final (consensus) decision. In total, 30 human 
experts from 8 European sleep labs participated 
in this study, and thus there was no bias due to a 
preference of 1 scorer or sleep lab (school). For 
determining the thresholds and optimization of 
the total procedure, the consensus scorings were 
considered as “gold standard.” In addition, 9 
types of sleep/wake-related patterns were visu-
ally identified and marked by 12 experienced 
scorers from 7 sleep labs, including episodes 
with alpha waves, vertex sharp waves, sleep spin-
dles, k-complexes, delta waves, saw-tooth waves, 
slow eye movements (SEMs), rapid eye move-
ments, and artifacts. The final scoring system 
(Somnolyzer) consisted of a raw data quality 
check, a feature extraction algorithm (density and 
intensity of sleep/wake-related patterns such as 
sleep spindles, delta waves, SEMs, and REMs), a 

classifier designed as an expert system, and a 
rule-based smoothing procedure for the start and 
the end of stage REM.  The validation in 286 
PSGs revealed an overall epoch-by-epoch agree-
ment of 80% (Cohen’s kappa: 0.72) between the 
Somnolyzer and the human expert scoring, as 
compared with an interrater reliability of 77% 
(Cohen’s kappa: 0.68) between 2 human experts 
scoring the same 286 PSGs. Comparing two 
Somnolyzer-assisted analyses after a structured 
quality control by two human experts revealed an 
interrater reliability close to 1 (Cohen’s kappa: 
0.991), which confirmed that the variability 
induced by the quality control procedure can be 
neglected. Thus, the validation study proved the 
high reliability and validity of the Somnolyzer-
assisted scoring system. Indeed, this study was 
acknowledged as one of only two evidence level 
1 studies for sleep classification according to 
R&K by the Digital Task Force Committee of the 
American Academy of Sleep Medicine (AASM) 
(Penzel et al., 2007). The applicability in clinical 
routine and sleep studies was demonstrated in a 
sleep laboratory study on single and repeated 
dose effects of paroxetine, alprazolam, and their 
combination in healthy young volunteers 
(Barbanoj et al., 2005) and in a sleep laboratory 
studies in insomnia in somatoform pain disorder 
on differences to controls and acute effects of tra-
zodone (Saletu et  al., 2005). This validity was 
further confirmed by Svetnik et al. (2007) in 164 
PSGs of 82 subjects in a clinical trial using zolpi-
dem in a phase advance model of transient 
insomnia.

7.1.3	� Autoscoring According 
to AASM

After the AASM Manual for the Scoring of Sleep 
and Associated Events was published in 2007 
(Iber et al., 2007), the scoring algorithm had to be 
adapted to the new rules and had to be tested 
again for validity as compared with visual scor-
ing. In the AASM classification, sleep stages S1–
S4 are referred to as N1, N2 and N3, with N3 
comprising the slow-wave sleep stages S3 and 
S4. The stage rapid eye movement (REM) is 
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referred to as stage R and wake as stage W, and 
the stage “movement time” does not exist any-
more. According to the AASM manual, a mini-
mum of three EEG derivations sampling activity 
from the frontal, central, and occipital regions 
have to be recorded. One major change in the 
rules defining the start and end of the different 
sleep stages concerns the termination of stage N2 
due to a cortical arousal. According to the AASM 
manual, cortical arousals, whether or not associ-
ated with an increase in EMG muscle tone, may 
reflect a change from N2 to N1. Changing back to 
N2 thereafter requires the reappearance of a 
K-complex unassociated with an arousal or a 
sleep spindle. For updating the Somnolyzer algo-
rithm, 72 PSGs from the SIESTA database were 
visually rescored according to the AASM rules 
by 2 independent scorers out of a pool of 7 sleep 
experts from 3 European sleep labs. Interrater 
reliability testing showed that the overall agree-
ment for human scorings according to the AASM 
standard was slightly higher than that for scor-
ings according to the R&K standard. Cohen’s 
kappa was 0.76 for the AASM standard and 0.74 
for the R&K standard (Danker-Hopfe et  al., 
2009). The authors concluded that the integration 
of frontal, central, and occipital leads improved 
interrater reliability, but that this advantage was 
counteracted by the rather low interrater reliabil-
ity for scoring cortical arousals, which may 
define the end of N2. The agreement between 
Somnolyzer-assisted and the visual scorings 
revealed a kappa value of 0.75–0.76 and was thus 
comparable to that of the human experts (Anderer 
et al., 2010). In 2015, Punjabi et al. (2015) vali-
dated the Somnolyzer autoscoring system in 
PSGs from 97 patients, which had been scored by 
4 technologists for sleep staging, arousals, and 
respiratory events. The authors reported a high 
degree of agreement between manual and auto-
mated scoring of the apnea-hypopnea index and 
substantial concordance in the arousal index, 
total sleep time, and sleep efficiency. They con-
cluded that automated analysis of PSGs using the 
Somnolyzer system provides results that are 
comparable to manual scoring for commonly 
used metrics in sleep medicine.

7.1.4	� Machine Learning Approaches

In recent years, several papers have been pub-
lished that applied deep neural network 
approaches for sleep staging based on large data-
sets for training and validation. For a comprehen-
sive review, see Fiorillo et al. (2019). Sun et al. 
(2017) reported a kappa of 0.68  in an indepen-
dent validation sample from a clinical dataset 
(n = 1000). Biswal et al. (2018) used a recurrent 
neural network (RNN) approach and reported a 
kappa value of 0.73 in a large independent valida-
tion set from the Sleep Heart Health Study 
(SHHS, n = 5804). Also, in 2018, Patanaik et al. 
(2018)  applied a deep learning approach and 
reported a kappa of 0.74 in an independent vali-
dation dataset from the Sleep Disorder Unit in 
Singapore (n  =  210). Stephansen et  al. (2018) 
presented a neural network analysis for diagnos-
ing narcolepsy and reported kappa values 
between 0.72 and 0.77 versus unbiased consen-
sus scorings derived from six expert scorings in a 
validation set from a study examining the impact 
of sleep-disordered breathing in women aged 
40–57 years (n = 70). Malafeev et al. (2018) com-
pared machine learning algorithms for sleep clas-
sification based on random forests or artificial 
neural networks using features or raw data as 
inputs and reported high performance for all four 
combinations for all stages except for stage N1. 
They reported, however, no kappa values for the 
five-class comparison. Zhang et al. (2019) trained 
again a recurrent neural network with long short-
term memory (LSTM) units and reported a kappa 
up to 0.70 in an independent validation set from 
the Study of Osteoporotic Fractures (SOF, 
n = 461) and the Osteoporotic Fractures in Men 
study (MrOS, n  =  2907). More recently, Abou 
Jaoude et  al. (2020) used once more a similar 
RNN approach and reported kappa values up to 
0.69  in another large independent validation set 
study from the Home Positive Airway Pressure 
(homePAP) study (n = 243) and Apnea, Bariatric 
Surgery, and CPAP (ABC) study (n  =  129). In 
2021, Cesari et al. (2021) applied the Stanford-
STAGES algorithm as described in Stephansen 
et al. (2018) to 1066 records from the Study of 
Health in Pomerania and reported kappa values 
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of 0.55 and 0.68 versus 2 independent expert 
scorings, respectively, with a kappa value of 0.66 
between the 2 expert scorings.

In a further development step of the 
Somnolyzer algorithm, we kept the artifact pro-
cessing and feature extraction module unchanged, 
but replaced the expert system based on a deci-
sion tree by a bidirectional RNN with LSTM 
units. The supervised deep learning algorithm 
was trained to obtain R&K sleep stage probabili-
ties in 472 out of the 588 PSGs from the SIESTA 
database, and the remaining 116 PSGs were used 
for early stopping to prevent the model from 
overfitting. Note that the large number of training 
samples is an essential requirement for using 
machine learning approaches; Sun et  al. (2017) 
showed that epoch-by-epoch Cohen’s kappa 
improved with increasing training PSG record-
ings until saturation was reached when at least 
300 recordings have been included in the training 
phase. RNNs differ from feed-forward neural 
networks by redirecting outputs back to inputs. 
This enables bidirectional models to consider 
context from the past and the future, which makes 
it especially suitable for modeling temporal data. 
Thus, for the assignment of a sleep stage to a 
given 30-s epoch, not only the features derived 
from this 30-s epoch but rather the feature distri-
bution throughout the entire recording is consid-
ered. In a further step, onset and duration of 
arousals, sleep spindles, and k-complexes were 
added to the feature set, and a convolutional neu-
ral network (CNN) followed by another bidirec-
tional LSTM layer was trained using the data 
from the 72 SIESTA PSGs that had been scored 
according to AASM criteria, to sub-classify 
NREM sleep stages accordingly. The resulted 
network was integrated in the Somnolyzer sleep 
scoring system version 4.0. The first validation 
was based on the dataset that had been used in the 
Punjabi et al. (2015) validation (n = 97). Epoch-
by-epoch Cohen’s kappa agreement was deter-
mined as compared to a consensus scoring 
without the assessed scorer included in the 
consensus. The kappa coefficients between the 
four manual scorers and the manual consensus 

scoring ranged between 0.70 and 0.79. The kappa 
coefficient between auto and consensus scoring 
was 0.79, showing that the autoscoring based on 
the RNN classifier was equal to the best human 
expert scorer (Anderer et al., 2018).

Thus, there is now convincing evidence that 
sleep staging using deep neural network 
approaches can achieve agreements to the “gold 
standard” of manual scoring with an accuracy 
comparable to the interrater reliability between 
manual scorers, suggesting that these artificial 
intelligence systems are valid alternatives to 
manual scoring while having the advantage of 
consistency.

7.2	� Validation of an Artificial 
Intelligence-Based 
Autoscoring System for PSGs

PSG autoscoring systems must score sleep 
stages and the associated events, such as cortical 
arousals, apneas and hypopneas, oxygen desatu-
ration, and periodic leg movements. Thus, in 
addition to Cohen’s kappa reflecting the epoch-
by-epoch agreement for categorical sleep stages, 
measures reflecting the agreement in event scor-
ing must be presented. Many of the metrics used 
in clinical practice are event indices, indicating 
the number of events per hour of sleep. A com-
mon measure for comparing the reliability 
between two measurement methods for such 
continuous parameters is the intraclass correla-
tion coefficient (ICC) for absolute agreement 
(ICC (2,1) according to Shrout & Fleiss, 1979 
and Koo & Li, 2016). Here, we are presenting a 
clinical validation study for the Somnolyzer 
autoscoring system for scoring sleep and associ-
ated events using Cohen’s kappa and ICC statis-
tics. The purpose of this validation study was to 
demonstrate the robustness of algorithm perfor-
mance when applied to data drawn from the 
National Sleep Research Resource (NSRR) 
(Dean 2nd et  al., 2016; Zhang et  al., 2018), a 
publicly available dataset of sleep studies, each 
scored by a single technologist.
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7.2.1	� Methods

This study was approved by the Western 
Institutional Review Board (20192296). All PSG 
data were de-identified, and therefore the require-
ment for informed consent was waived.

7.2.1.1	� PSG Identification and Scoring
The PSGs used in this study were originally col-
lected in the Apnea, Bariatric Surgery, and CPAP 
trial (ABC; n  =  24) (Bakker et  al., 2018), the 
HomePAP trial (n  =  180) (Rosen et  al., 2012), 
and the Multi-Ethnic Study of Atherosclerosis 
study (MESA; n = 224) (Chen et al., 2015). After 
applying parameters to ensure a wide range of 
disease severity and to ensure a recording of 
≥4  hours per study, PSGs were selected from 
each dataset at random. The original sleep stag-
ing and event identification were left unchanged 
from the manual scoring originally performed for 
each study following American Academy of 
Sleep Medicine (AASM) recommendations. For 
the MESA and ABC studies, hypopneas were 
identified when associated with a ≥3% SpO2 
desaturation and/or an arousal. In the HomePAP 
study, hypopneas were identified when associ-
ated with a ≥4% SpO2 desaturation. Limb move-
ments data based on leg-EMG were available 
only in the HomePAP study. Each PSG was ana-
lyzed in Sleepware G3 software containing 
Somnolyzer 4.1 (Philips, Monroeville, PA, USA) 
following the original scoring criteria after apply-
ing the same lights off/on times.

Somnolyzer scored sleep stages and arousals 
based on all available EEG, EOG, and chin EMG 
channels (ABC and HomePAP, F4-M1, C4-M1, 
O2-M1, F3-M2, C3-M2, O1-M2; MESA, F4-M1, 
C4-M1, O2-M1; left and right EOG and chin 
EMG for all three studies). In all three studies, 
Somnolyzer scored respiratory events based on 
oronasal thermal airflow, airflow recorded with a 
nasal pressure transducer, respiratory effort with 
thoracic and abdominal respiratory inductance 
plethysmography (RIP) belts, and the oxygen 
saturation signal based on pulse oximetry. In the 
HomePAP study, Somnolyzer scored leg move-
ments based on EMG from left and right anterior 

tibialis muscle. No leg EMG channels were avail-
able in the ABC and MESA study.

Based on published interrater reliability stud-
ies that present epoch-by-epoch comparisons of 
sleep stages (Danker-Hopfe et  al., 2009; 
Magalang et  al., 2013; Cesari et  al., 2021), 
Cohen’s kappa for all sleep stages, as well as for 
wake and REM, typically show substantial agree-
ment (>0.60), while for N1, N2, and N3, Cohen’s 
kappa values typically show only moderate 
agreement (>0.4). Published studies that have 
included the ICC for assessing continuous sleep 
variables (Punjabi et al., 2015; Magalang et al., 
2013; Malhotra et al., 2013) typically show good 
inter-reliability (>0.75) for apnea-hypopnea 
index (AHI), total sleep time (TST), sleep effi-
ciency (SE), oxygen desaturation index (ODI), 
and periodic leg movements in sleep index 
(PLMSI), while only moderate inter-reliability 
(>0.50) has been demonstrated for arousal index 
(ArI) and respiratory sleep events (total apneas, 
obstructive apneas, central apneas, mixed apneas, 
and hypopneas). Thus, our predefined thresholds 
for the lower 95% confidence intervals (CIs) 
were 0.60 for Cohen’s kappa based on epoch-by-
epoch comparisons of all sleep stages, 0.75 for 
the ICC between the Somnolyzer-AHI and the 
manual-AHI, 0.5 for the ICC between the 
Somnolyzer-ArI and the manual-ArI, and 0.75 
for the ICC between the Somnolyzer-PLMSI and 
the manual-PLMSI.

7.2.1.2	� Statistical Power
An a priori power calculation was undertaken for 
all four endpoints described in our hypotheses 
above. The study was powered based on the 
weakest effect size (ICC between the Somnolyzer-
ArI and manual-ArI).

7.2.1.3	� Statistical Analyses
All analyses were performed using MATLAB 
R2019b, validated against IBM SPSS (version 
19.0.0.2). To assess sleep staging performance, 
we undertook an epoch-by-epoch comparison of 
manual staging and Somnolyzer staging and cal-
culated a kappa statistic across all sleep stages 
(W/N1/N2/N3/R), as well as each individual 
stage, along with 95% CIs. We also calculated 
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accuracy for each sleep stage discrimination, that 
is, the percentage of all epochs that were cor-
rectly identified by Somnolyzer. To assess the 
performance of respiratory event, arousal, and 
limb movement identification, we computed the 
ICC for absolute agreement between Somnolyzer 
and manual scoring of the AHI, ArI, and PLMSI, 
along with a 95% CI.  In addition to the perfor-
mance targets adopted in our hypotheses, we 
compared the lower limit of the kappa 95% CI 
values to the thresholds defined by Landis and 
Koch (1977) as follows: 0.0–0.2 slight agree-
ment; 0.21–0.40 fair agreement; 0.41–0.60 mod-
erate agreement; 0.61–0.80 substantial 
agreement; and 0.81–1.0 almost perfect or per-
fect agreement. The lower limits of the ICC 95% 
CIs were compared against the thresholds defined 
by Koo and Li (2016) as follows: <0.5 poor reli-
ability; 0.5 to <0.75 moderate reliability, 0.75 to 
<0.90 good reliability; and ≥0.90 excellent 
reliability.

7.2.2	� Results

A total of 428 PSGs were randomly selected 
from within disease severity categories (AHI<5, 
5 to <15, 15 to <30 and ≥30 events/hour). A 
small number were removed due to invalid sig-
nals (complete or partial) or missing manual 
scoring. The final sample sizes for each hypoth-
esis were therefore n  =  426 (sleep staging and 
AHI), n = 425 (ArI), and n = 174 (PLMSI; based 
on HomePAP data only). Descriptive information 
is provided in Table 7.1. As anticipated, with the 
sampling strategy and the nature of each study, 
each sample contained participants with a wide 
range of disease severity (AHIs in MESA 0–88 
events/hour; HomePAP 0–113 events/hour; ABC 
15–115 events/hour).

7.2.2.1	� Sleep Staging
Cohen’s kappa based on an epoch-by-epoch 
comparison of all sleep stages between 
Somnolyzer and manual scoring was 0.739 (95% 
CI 0.737–0.741); see Table 7.2. The lower bound 
of the CI (0.737) exceeded the prespecified 
threshold of 0.60, supporting this hypothesis. 

Sleep staging accuracy was 80.7% across all 
sleep stages (W/N1/N2/N3/R), 94.2% for wake, 
87.5% for N1, 86.6% for N2, 95.9% for N3, and 
97% for REM. The results of the epoch-by-epoch 
comparison of sleep stage scoring are presented 
as confusion matrix in Table 7.3.

7.2.2.2	� Respiratory Events
The ICC between the Somnolyzer-AHI and the 
manual-AHI was 0.969 (95% CI 0.957–0.976); 
see upper part of Table 7.4. The lower bound of 
the CI (0.957) was higher than the prespecified 
threshold of 0.75, supporting this hypothesis. 
Figure 7.1 presents the Bland-Altman plot of the 
Somnolyzer-AHI against the manual-AHI.

7.2.2.3	� Arousals
The ICC between the Somnolyzer-ArI and the 
manual-ArI was 0.794 (95% CI 0.668–0.864); 
see upper part of Table 7.4. The lower bound of 
the CI (0.668) was higher than the prespecified 
threshold of 0.50, supporting this hypothesis.

7.2.2.4	� Periodic Limb Movements
In a sample of 174 PSGs, the ICC between the 
Somnolyzer-PLMSI and the manual-PLMSI was 
0.907 (95% CI 0.877–0.930); see upper part of 
Table 7.4. The lower bound of the CI (0.877) was 
higher than the prespecified threshold of 0.75, 
supporting this hypothesis.

7.2.3	� Discussion

In this study, an automated review of key sleep 
staging and event detection parameters met pre-
specified performance thresholds, demonstrating 
that the Somnolyzer scoring solution generates 
results that agree with human scoring. Our per-
formance targets were set at the lower margin of 
the agreement across expert human scorers in the 
literature. In these studies, Cohen’s kappa for dis-
crimination of all sleep stages (W/N1/N2/N3/R), 
as well as for wake and REM individually, typi-
cally show substantial agreement (>0.60), while 
for N1, N2, and N3, Cohen’s kappa values typi-
cally show only moderate agreement (>0.4) 
(Danker-Hopfe et  al., 2009; Magalang et  al., 
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Table 7.1  Descriptive demographic and clinical information (n = 426 PSGs)

Variable
MESA
(n = 224) HomePAP (n = 178)

ABC
(n = 24)

Age (years) 69.8 ± 8.8 46.1 ± 12.1 50.5 ± 9.1
Gender (number; %)
•  Female 110; 49.1% 89; 50.0% 14; 58.3%
•  Male 114; 50.9% 89; 50.0% 10; 41.7%
Ethnicity (number; %) –
•  Hispanic 14; 7.9% 2; 8.3%
•  Non-Hispanic 163; 91.6% 22; 91.7%
•  Unknown 1; 0.6% –
Race (number; %) –
•  White 124; 69.7% 16; 66.7%
•  African American 44; 2.7% 4; 16.7%
•  Other 10; 5.6% 16.7%
Ethnicity/race composite (number) – –
•  White/Caucasian 84; 37.5%
•  Chinese American 36; 16.1%
•  African American 53; 23.7%
•  Hispanic 51; 22.8%
•  Other –
Body mass index (kg/m2) – 40.0 ± 9.2 38.6 ± 2.9
Neck circumference (cm)
Systolic blood pressure (mmHg) – 125.4 ± 12.9 –
Diastolic blood pressure (mmHg) – 79.8 ± 9.0 –
AHIPSG (events/hour) 28.0 ± 17.6

(range 1–88)
13.0 ± 16.7
(range 0–113)

50.5 ± 9.1
(range 15–115)

SDB severity (number; %)
•  None 17; 7.6% 36; 38.8% 0; 0.0%
•  Mild 17; 7.6% 59; 33.1% 0; 0.0%
•  Moderate 107; 47.8% 31; 17.4% 4; 16.7%
•  Severe 83; 37.1% 19; 10.7% 20; 83.3%
Epworth Sleepiness Scale score (/24) 5.8 ± 3.9 14.2 ± 3.7 –
Total sleep time per PSG (hours) 5.9 ± 1.4 5.7 ± 1.1 7.0 ± 1.5
Recording time (hours) 10.6 ± 1.2 7.8 ± 1.1 8.4 ± 0.2

2013). Good interrater reliability (ICC >0.75) has 
been demonstrated for the AHI, TST, sleep effi-
ciency, ODI, and PLMSI, while only moderate 
interrater reliability (ICC >0.50) has been dem-
onstrated for the ArI (Punjabi et  al., 2015; 
Magalang et al., 2013; Malhotra et al., 2013). By 
exceeding our performance targets, we can con-
clude that the variability between Somnolyzer 
and human scoring in the current study is no 
more than the variability observed across expert 
scorers and, therefore, Somnolyzer scoring pro-
vides output that is ready for review and interpre-
tation by a physician.

Key strengths of the current study include the 
large, ethnically/racially diverse sample, which 

supports the generalizability of algorithm perfor-
mance, as well as the fact that the PSGs were col-
lected in a range of clinical and research settings 
using various data collection platforms and mon-
tages. Our selection criteria ensured that the per-
formance of Somnolyzer was assessed across the 
full range of disease severity. The most important 
limitation of our study was the fact that each PSG 
was scored by a single technologist. Given the 
aforementioned variability across scorers 
(Rosenberg & Van Hout, 2013, 2014), our com-
parator may not represent the true “gold stan-
dard” of manual scoring (Penzel et  al., 2013). 
Note that, however, numerous different technolo-
gists scored the 426 PSGs and thus the aforemen-
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Table 7.2  Comparison of Somnolyzer- and manually 
scored sleep staging

Sleep 
stage

Kappa (95% 
CI)

Performance 
threshold

Accuracy 
(%)

W/N1/
N2/N3/R

0.739 
(0.737–
0.741)

0.60 80.7

Wake 0.853 
(0.851–
0.855)

94.2

N1 0.457 
(0.452–
0.461)

87.5

N2 0.721 
(0.719–
0.723)

86.8

N3 0.731 
(0.727–
0.735)

95.9

REM 0.868 
(0.865–
0.870)

97.0

All analyses n = 426
The lower limits of each CI can be compared against 
thresholds defined by Landis and Koch (1977) as follows: 
0.0–0.2 slight agreement; 0.21–0.40 fair agreement; 0.41–
0.60 moderate agreement; 0.61–0.80 substantial agree-
ment; and 0.81–1.0 almost perfect or perfect agreement
The figures relevant to predefined hypothesis are 
underlined

tioned variability across scorers is reflected in the 
manual scorings used as the comparator in this 
study. In that respect, the comparator reflects 
standard practice in most clinical settings in 
which a single technologist is responsible for 
scoring each sleep study. The Somnolyzer 4.1 
automatic scoring solution is a validated tool that 
offers operational efficiencies and can be easily 
implemented into existing workflows. The auto-
mated scoring results have been shown to agree 
with human scoring in a variety of settings and 
with the use of multiple data acquisition technol-
ogies. The consistency of an automated scoring 
process can be beneficial in both clinical and 
research settings by minimizing inter- and 
intra-scoring variability. The implementation of 
Somnolyzer 4.1 has the potential to free up clini-
cal staff to perform other duties and improve the 
end-to-end sleep care experience; confirmation 
of these outcomes would be beneficial.

7.3	� Added Value of Autoscoring 
Systems: 
From the Hypnodensity 
to Confidence Trends

Besides the high reproducibility of autoscoring 
systems, they offer several additional benefits 
that could help in interpreting a sleep study faster 
and more accurate.

7.3.1	� Scoring in Real Time

Autoscoring systems can be integrated in acqui-
sition systems to perform scoring in real time. 
The Somnolyzer autoscoring system was inte-
grated in Sleepware G3. Due to the real-time 
analysis, the results are available during the 
acquisition (with a delay of 7 min to ensure the 
necessary context information), and the final 
scoring, ready for review and interpretation by 
the physician, is available immediately after the 
end of the recording. Scoring results during the 
acquisition are, for instance, valuable in split-
night studies where a patient is diagnosed and, if 
applicable, receives treatment titration in a single 
night. According to the AASM guidelines, a 
split-night study may be performed if an AHI 
≥40 events/hour is documented during 2 h of a 
diagnostic study or may be considered for an AHI 
of 20–40 events/hour based on clinical judgment 
(Epstein et al., 2009). For the example of a split-
night study shown in Fig.  7.2, the autoscoring 
revealed in real time that the total sleep time in 
the diagnostic part was 115 min with both slow 
wave sleep and REM sleep periods and the 94 
obstructive events (predominantly obstructive 
hypopneas) resulted in an AHI of 49.1 events/
hour.

7.3.2	� Scoring According to Different 
Rules

Specifically, for the scoring of hypopneas, vari-
ous criteria have been used. In the first version 
of the AASM manual, for instance, the recom-
mended rule for scoring hypopneas required a 
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≥30% drop in flow amplitudes for ≥10 s and a 
≥4% oxygen desaturation from pre-event base-
line. The alternative rule required a ≥50% drop 
in flow amplitudes for ≥10 s and a ≥3% oxygen 
desaturation and/or an associated arousal for 
confirmation. In version 2.6 of the AASM man-
ual, the recommended rule requires a ≥30% 
drop in flow amplitudes for ≥10 s and a ≥3% 
oxygen desaturation and/or an associated 
arousal for confirming a hypopnea. The recom-
mended rule from 2007 is labeled as “accept-
able” in version 2.6. Several studies have 
described the large impact of the various crite-
ria for scoring hypopneas on the apnea hypop-
nea index (Redline et al., 2000; Ruehland et al., 
2009; Duce et al., 2015; Kapur et al., 2017); see 
Berry et al. (2012) for a comprehensive review. 
Indeed, autoscoring systems can offer the abil-
ity to select and, if required, to change the cri-
teria settings which allows direct comparisons 
between the different rule settings for individ-
ual patients.

In 2012, we investigated the effects of chang-
ing the scoring criteria for hypopneas on the AHI 
and the resulting sleep-disordered breathing 
(SDB) severity classification in a study based on 
15 PSGs in patients with suspected OSAS (8 
females, 7 males, aged 28–56  years) (Anderer 
et  al., 2012). An AHI <5 indicates no SDB, 
5 ≤ AHI < 15 indicates mild SDB, 15 ≤ AHI 30 
indicates moderate, and an AHI  ≥  30 indicates 
severe SDB. Table 7.5 summarizes the AHIs for 
the 15 patients using 5 different scoring criteria: 
4.A (recommended 2007 rule, acceptable 2020 
rule), 4.B (alternative 2007 rule), 4.A* (recom-
mended 2020 rule for HSAT), 4.AB (recom-
mended 2020 rule for PSG), and Chicago (the 
American Academy of Sleep Medicine Task 
Force consensus paper  rule (1999)). Changing 
the desaturation criteria from 4% to 3% affected 
the classification in just one patient (compare 4.A 
with 4.A* in Table 7.5). If, however, an arousal 
could confirm a hypopnea as well, the classifica-
tion in 10 out of the 15 patients is affected (com-

Manual staging

Wake N1 N2 N3 REM

gnigatsrezylon
moS

Wake

99,828

87.1%

5,705

12.2%

1,880

1.2%

101

0.3%

1,439

2.6%

N1

10,405

9.1%

28,843

61.7%

19,761

12.3%

120

0.3%

3,545

6.4%

N2

2,207

1.9%

10,359

22.2%

130,683

81.5%

9,823

27.2%

2,357

4.2%

N3

112

0.1%

47

0.1%

6,826

4.3%

26,100

72.2%

14

0.0%

REM

2,093

1.8%

1,802

3.9%

1,281

0.8%

2

0.0%

48,271

86.8%

Table 7.3  Confusion matrix for epoch-by-epoch sleep staging (n = 426)

All analysis n = 426
Gray cells indicate the raw count and percentage of epochs of each manually scored sleep stage that were correctly 
identified by Somnolyzer
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pare 4.A with 4.AB). Thus, while the higher 
sensitivity for detecting desaturations increased 
the AHIs only minorly (in patient a90000173, for 
instance, from 0.8 to 2.6 events/hour), the inclu-
sion of arousals significantly increased the AHIs 
(in the same patient from 2.6 to 24.6 events/
hour). All four patients classified as normal if 
arousals are not considered for hypopnea confir-
mation (4.A, acceptable 2020 rule) showed a 
mild to moderate abnormal AHI when hypopneas 
could be confirmed by arousals as well (4.AB, 
recommended 2020 rule). Thus, autoscoring 
enables to explore the impact of the different cri-
teria for confirming hypopneas and to report the 
AHI based both on the acceptable and on the rec-
ommended rule for individual patients, offering 
the interpreting physician further insights in 
patient’s disease characteristics.

7.3.3	� Scoring with Different 
Sensitivity Settings

While there are the well-established AASM rules 
for scoring PSGs, the interpretation of the rules 
may vary substantially between scorers, specifi-
cally for epochs or events with equivocal features 
(Rosenberg & Van Hout, 2013, 2014; Younes et al., 
2016, 2018). Experts, when scoring these epochs, 
may be biased toward sensitivity or specificity. 
Younes et  al. (2018) showed, for instance, that 
some technologists scored stage N3 sleep when 
delta wave duration was well below 6 s, whereas 
for others, much greater durations were required. 
Thus, by varying sensitivity settings, an autoscor-
ing can mimic these different interpretations, 
assuming that each scorer interprets the rules con-
sistently. The autoscoring system Somnolyzer has 
the option to select different sensitivities for 
arousal, spindle/k-complex, slow wave, apnea, and 
hypopnea event detection. We investigated the 
effects of changing these sensitivity settings in a 
study based on ten PSGs in ten apnea patients (five 
diagnostic, two titration, and three split nights; 
Anderer et  al., 2016). All PSGs were manually 
scored independently by eight experts and by 

Table 7.4  Comparison of Somnolyzer- and manually 
scored sleep and event metrics

Metric ICC (95% CI)
Performance 
threshold

Respiratory, limb movement, and desaturation events:
AHI (events/hour) 0.969 

(0.957–
0.976)

0.75

ArI (events/hour) 0.794 
(0.668–
0.864)

0.50

PLMSI (events/
hour)

0.907 
(0.877–
0.930)

0.75

Total apneas 
(number)

0.848 
(0.733–
0.904)

Total hypopneas 
(number)

0.898 
(0.757–
0.946)

ODI (events/hour) 0.990 
(0.987–
0.992)

Sleep staging:
Sleep efficiency 
(%)

0.927 
(0.904–
0.943)

Total sleep time 
(minutes)

0.938 
(0.920–
0.951)

Time in N1 
(minutes)

0.690 
(0.372–
0.826)

Time in N2 
(minutes)

0.815 
(0.778–
0.846)

Time in N3 
(minutes)

0.772 
(0.728–
0.809)

Time in NREM 
(minutes)

0.919 
(0.875–
0.944)

Time in REM 
(minutes)

0.908 
(0.888–
0.925)

All analyses n = 426 except for ArI which was based on 
n  =  425 and PLMSI which was based on n  =  174 
(HomePAP data only)
The lower limits of each CI can be compared against 
thresholds defined by Koo and Li (2016), as follows: 
<0.5 poor agreement; 0.5 to <0.75 moderate agreement, 
0.75 to <0.90 good agreement; and ≥0.90 excellent 
agreement
The figures relevant to the predefined hypotheses are 
underlined
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Fig. 7.1  Bland-Altman 
plot of the Somnolyzer-
AHI against the 
manual-AHI (n = 426)
Mean difference of −1.60 
events/hour; lower and 
upper limits of agreement 
−11.68 and 8.48, 
respectively

Somnolyzer with various sensitivity settings 
according to the recommended AASM version 2.2 
rules (Berry et al., 2015). As can be seen in Fig. 7.3, 
sleep parameters derived from the manual scorings 
varied considerably between the eight scorers (time 
in N1, 29–127 min; time in N2, 125–209 min; time 
in N3, 19–56 min; time in R, 42–63 min; number 
of arousals, 86–193 events; number of 
apneas+hypopneas, 173–255 events). With the 
default (= balanced) setting, Somnolyzer autoscor-
ing was close to the mean of the eight manual scor-
ings (time in N1, 82 and 85 min; time in N2, 184 
and 176 min; time in N3, 41 and 42 min; time in R, 
59 and 56 min; number of arousals, 160 and 142 
events; number of apneas+hypopneas, 246 and 219 
events, for the Somnolyzer scoring and the mean of 
the eight manual scorings, respectively; Fig. 7.3). 
As can be seen in Fig. 7.4, showing precision (posi-
tive predictive value)-recall (sensitivity) plots for 
the manual scorings (crosses) and the autoscoring 
with five different sensitivity settings (circles), the 
autoscoring perfectly mimics the variability 
observed in the eight manual scorers, by varying 
the sensitivity settings from maximal precision to 
maximal sensitivity. Note that the manual arousal 
scoring with a sensitivity of 33% as shown in the 

left upper precision-recall plot in Fig. 7.4 is consid-
ered as outlier and thus it is not covered with any of 
the autoscoring sensitivity settings. Most impor-
tantly, Somnolyzer autoscoring with default set-
tings (green circles in Fig. 7.4) is perfectly balanced 
between sensitivity and precision, and by merely 
varying the sensitivity settings, the variability 
observed in manual scorings can be explained.

7.3.4	� Estimating Sleep Stage 
Probabilities per Epoch 
(Hypnodensity)

The primary output of an RNN used for scoring 
sleep stages are sleep stage probabilities per 
30-s epoch. They can be plotted in pseudo-color 
graphs (see Figs. 7.2 and 7.5, 7.6, 7.7 for exam-
ples) and have been referred to as hypnodensity 
by Stephansen et  al. (2018). Interestingly, if 
multiple human scorings are available, a hyp-
nodensity graph can be derived also based on 
the human scorings, visualizing ambiguous 
epochs (MAN-Hypnodensity in Fig.  7.5). 
Consequently, the sleep stage probabilities 
derived from multiple manual scorers and from 
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Fig. 7.2  A representative example for autoscoring trends 
as visualized in Sleepware G3: Split-night study in a 
patient with sleep apnea (female, 34 years)
The trends from top to bottom are as follows: “Arousal,” 
scored arousal events; “WK, REM, N1, N2, N3,” the hyp-
nogram superimposed on the hypnodensity graph with the 
color codes W, gray; REM, red; N1, cyan; N2, blue; and 
N3, green; “Staging/Arousal Confidence,” confidence 
trend for guiding the reviewer by a traffic light system to 
areas that need more careful review of sleep and arousal 
scoring; “EEG Quality,” estimation of the signal quality of 
the EEG derivation most relevant for the staging; “Delta 
Intensity,” intensity (based on duration and amplitude) of 
delta waves per 30-s epoch; “Spindle Intensity,” intensity 
(based on duration and amplitude) of sleep spindle activ-
ity per 30-s epoch; “Alpha/Theta Index,” quotient of the 
activity in the alpha band to the activity in the theta band 
per 30-s epoch; “Fast Beta Intensity,” intensity (based on 
duration and amplitude) of the activity in the fast-beta 
band per 30-s epoch; “SEM Density,” density (based on 
duration) of slow eye movements per 30-s epoch; “REM 
Density,” density (based on duration) of rapid eye move-

ments per 30-s epoch; “Tonus,” chin EMG tonus; “Resp 
Event Confidence,” confidence trend for guiding the 
reviewer by a traffic light system to areas that need more 
careful review of respiratory event scoring; “Resp Event 
Type Confidence,” confidence trend for guiding the 
reviewer by a traffic light system to areas that need more 
careful review of scoring the type of a respiratory event; 
“Flow Quality,” estimation of the signal quality of the 
flow channel most relevant for the scoring respiratory 
events; “Effort Quality,” estimation of the signal quality of 
the effort channel most relevant for scoring the type of a 
respiratory event; “Cheyne Stokes Res,” indicates the 
presence/absence of Cheyne-Stokes breathing; “Central 
Apnea,” scored central apnea events; “Mixed Apnea,” 
scored mixed apnea events; “Obstructive Apnea,” scored 
obstructive apnea events; “Central Hypopnea,” scored 
central hypopnea events; “Obstructive Hypopnea,” scored 
obstructive hypopnea events; “RERA,” scored respiratory 
effort-related arousal events; “Snore,” intensity of snor-
ing; “Relative Desaturations,” scored oxygen desatura-
tions ≥3%; “SpO2,” arterial oxygen saturation level; 
“Position,” body position; “Leg Movement,” scored leg 
movements; “CPAP,” CPAP pressure

RNN classifiers can be directly compared. In 
Fig. 7.6, the manually derived and the autoscor-
ing-derived probability curves per sleep stage 
are compared for the same study shown in 
Figs. 7.2 and 7.5. The respective ICCs for abso-
lute agreement (ICC (2,1) according to Shrout 
& Fleiss, 1979) between these probabilities are 
as follows: for stage W, 0.97; for N1, 0.79; for 
N2, 0.89; for N3, 0.96; for R, 0.95; and over all 
five stages, 0.93. Table 7.6 summarizes the ICCs 
for the studies used in the Punjabi et al. (2015) 

paper. Thus, the ICC between manually derived 
probabilities and autoscoring-derived probabili-
ties was 0.862 over all five stages indicating 
good agreement (>0.75) according to Koo and 
Li (2016). For stages W and R, the agreement 
was even excellent (>0.90) and as expected 
from the rather low interrater reliability for 
NREM sub-classification (e.g., Younes et  al., 
2018) only moderate for N1 and N3 (>0.50) but 
good for N2 (>0.75). These results demonstrate 
that the sleep stage probabilities derived from 
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Acq-Number 4.A

≥30% drop &

≥4% des

4.B

≥50% drop &

≥3% des or 

arousal

4.A*

≥30% drop &

≥3% des

4.AB

≥30% drop &

≥3% des or 

arousal

Chicago

≥50% drop or

≥30% drop &

≥3% des or 

arousal

a9000173 .8 8.7 2.6 24.6 32.6

a9000172 1.3 10.6 4.6 26.2 31.1

a9000159 1.9 5.6 3.7 9.8 17.5

a9000164 1.7 6.7 4.0 15.0 20.9

a9000161 5.3 13.0 9.5 23.5 28.6

a9010175 6.8 19.1 11.3 27.8 37.8

a9020221 7.3 7.2 9.4 12.0 15.2

a9000174 8.4 16.3 14.1 25.0 32.0

a9020222 10.4 16.8 13.1 27.6 35.6

a9020337 14.3 30.0 21.4 36.0 49.3

a9020339 15.1 17.1 16.5 17.7 51.9

a9000165 26.1 28.2 29.2 34.5 42.9

a9020331 67.9 78.2 74.3 79.6 86.4

a9000157 83.4 94.2 88.5 99.4 106.6

a9000171 107.8 111.1 110.8 113.0 115.4

Table 7.5  Classification of apnea severity based on AHI in patients with suspected OSAS for various hypopnea scor-
ing criteria (n:15)

Normal (green), AHI < 5; mild (yellow), 5 ≤AHI<15; moderate (blue), 15 ≤AHI<30; severe (red), AHI ≥ 30
Note: 4.A (recommended AASM 2007 rule, acceptable AASM 2020 rule), 4.B (alternative AASM 2007 rule), 4.A* 
(recommended AASM 2020 rule for HSAT), 4.AB (recommended AASM 2020 rule for PSG), and Chicago (the 1999 
Chicago consensus paper)

Table 7.6  Intraclass correlation coefficients (ICC) as well as the upper and lower 95% confidence intervals (CI) com-
paring sleep stage probabilities based on four human scorings with Somnolyzer autoscoring (n = 97)

Sleep stage Lower 95% CI ICC Upper 95% CI
W/N1/N2/N3/R 0.861 0.862 0.862
W 0.938 0.939 0.940
N1 0.562 0.598 0.630
N2 0.727 0.801 0.849
N3 0.657 0.727 0.778
R 0.951 0.953 0.955

autoscoring are in good agreement with the 
sleep stage probabilities derived from multiple 
human scorers. Moreover, all sleep scoring 
parameters to be reported for PSG studies 
according to the AASM manual (total sleep 
time, time and percentage in each sleep stage, 

sleep and REM latency, and wake after sleep 
onset) can be derived directly from the hyp-
nodensity. This provides the possibility to obtain 
robust estimates of the sleep scoring parameters 
that mimic averaging the results from a large 
pool of human experts (Bakker et al., 2022).
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Fig. 7.3  Comparison of parameters derived from 
autoscoring and multiple manual scoring in ten apnea 
patients (five diagnostic studies, two titration studies, and 
three split-night studies)
Autoscoring with balanced (= default) sensitivity settings 
(Scorer SOM, black) as compared to eight independent 

manual scorers (Scorer S1–S8). In addition, the mean of 
all eight manual scorers (Scorer Mean, white with thin 
horizontal lines to facilitate comparisons) is shown for the 
parameters derived from sleep staging (upper part) and for 
the number of scored events (lower part)

7.3.5	� Estimating Signal Quality

Artifact processing is a critical step in scoring 
PSG signals (see Anderer et  al., 1999 for a 
review). As part of the Somnolyzer feature 
extraction for the electrophysiological signals, 
we minimize artifacts due to line and ECG inter-
ference and identify continuous and transient 
low-frequency artifacts (such as sweat and elec-
trode pop artifacts), high-frequency artifacts 
(such as muscle bursts or movement artifacts), as 
well as ocular artifacts (such as eye movements 
and eye blinks). Concerning respiratory signals, 
artifacts due to body movements or sensor dis-
placements are identified. Quality trends (EEG 
Quality, Flow Quality, and Effort Quality in 
Fig.  7.2) based on the detected artifacts allow 

both, an overview of the respective signal quality 
in the total recording and references to periods 
with poor signal quality.

7.3.6	� Identification of Periods 
with Clinically Relevant 
Ambiguities (Confidence 
Trends)

Low interrater reliability is a well-known limi-
tation with manual scoring of sleep stages (spe-
cifically N1) and cortical arousals as well as 
with manual scoring of disordered breathing 
events (Whitney et  al., 1998; Bliwise et  al., 
1984; Loredo et al., 1999; Collop, 2002; Redline 
et al., 2007; Bonnet et al., 2007; Rosenberg & 
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Fig. 7.4  Somnolyzer autoscoring with five different sen-
sitivity settings as compared to eight manual scorings for 
the same dataset shown in Fig. 7.3
The plots depict sensitivities (x-axis) versus positive pre-
dictive values (y-axis) based on epoch-by-epoch compari-
son for sleep stages N3 and N2 and event-by-event 

comparison for arousals, apneas, and apneas+hypopneas 
(A + H). The contour lines (magenta) indicate constant F1 
scores. The scale for the F1 score is given in the diagonal 
line. The five different sensitivity settings of the 
Somnolyzer autoscoring are plotted as colored circles; the 
eight manual scorings are plotted as black crosses

Van Hout, 2013, 2014; Younes et  al., 2016, 
2018). Luckily, not all ambiguities are clinically 
relevant, i.e., affect the parameters that influ-
ence clinical diagnosis. In respect to sleep stag-
ing and arousal detection, the RNN-derived 
sleep stage probabilities can be used to identify 
clinically relevant periods with ambiguities pos-
sibly affecting sleep onset (sleep latency), the 
first REM epoch (REM latency), and the sleep 
cycles (REM periods). Visualizing such periods 
in a confidence trend might help to concentrate 
the reviewer to these clinically relevant periods. 
The trend “Staging/Arousal Confidence” in 
Fig.  7.2 gives an example of such periods at 
sleep onset (first marked yellow period) and 
REM onset (second marked yellow period). As 
shown in Fig.  7.5, these periods of ambiguity 
based on the hypnodensity from autoscoring 
(from 10% to 90% probability of the respective 
sleep stage) correspond perfectly with the ambi-
guities seen for sleep onset and REM onset 
between the four human scorers. Averaged over 

the 97 studies that had been used in the Punjabi 
et al. (2015) paper, only 2.7% of the recording 
time was labeled as periods with clinically rele-
vant ambiguities for scoring sleep stages, 1.8% 
for scoring respiratory events, and 2.2% for 
scoring the types of the respiratory events. 
Consequently, the confidence trends are 
designed to guide the reviewer by a traffic light 
system to the few areas of a study (in the aver-
age 2–3% of the recording time) that need a 
more careful review.

7.3.7	� Visualization of Sleep/Wake-
Related Features

The sleep staging rules in the AASM manual 
define the frequency bands for EEG background 
activity as well as various sleep/wake-related fea-
tures such as slow waves, sleep spindles, 
k-complexes, or slow and rapid eye movements 
(Berry et al., 2020). The Somnolyzer autoscoring 
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Fig. 7.5  A representative example of four individual-
scored hypnograms, the hypnodensity charts derived from 
manual and autoscoring and the confidence trend derived 
from the autoscored hypnodensity for the same PSG 
shown in Fig. 7.2
The figure displays the hypnograms (MAN-1 to MAN-4), 
the hypnodensity graphs derived from the four manual 
scorings (MAN-Hypnodensity) and from autoscoring 
(SOM-Hypnodensity), as well as the confidence trend 
(Staging/Arousal Confidence) derived from the autoscored 
hypnodensity. Color codes for the hypnodensity: W, gray; 
REM, red; N1, cyan; N2, blue; and N3, green. The color-

coded confidence trend guides the reviewer by a traffic 
light system to areas of a study that need a more careful 
review. In case of little ambiguity in the data, the confi-
dence trend is green. The areas marked in yellow indicate 
ambiguity for the first epoch scored as sleep (sleep 
latency) and the first epoch scored as REM (REM latency). 
The yellow areas start with the first epoch with at least 
10% probability for stage N1 or R and end with the first 
epoch with at least 90% probability of the respective sleep 
stage. Note that these areas based on the autoscored hyp-
nodensity perfectly reflect the sleep onset and REM onset 
variability between the four manual scorers

system detects most of these patterns in the fea-
ture extraction module. An overview of the main 
electrophysiological patterns and the methods 
used for their automatic detection can be found  
in Anderer et al. (2005). In Fig. 7.2, a representa-
tive subset of these features is visualized as trends 
together with the hypnogram superimposed on 
the hypnodensity: delta intensity (a measure of 
sleep depth, indicating N3), spindle intensity (an 
indicator specifically for N2), alpha/theta index 
(a measure of vigilance in wake with eyes closed), 
fast beta intensity (indicating excitatory activity 

in wake with eyes open), SEM and REM densi-
ties (indicating eye movements in wake or REM 
periods), and chin EMG tonus (for differentiating 
wake and REM periods). As can be seen in 
Fig.  7.2, these features, detected from different 
sensors (EEG, EOG, and EMG), speak in most 
epochs for a certain sleep stage and therefore 
confirm each other, both in the diagnostic and in 
the titration part. Consequently, in this example, 
the confidence trend for staging and arousals is 
green (high confidence) almost all over the 
recording.
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Fig. 7.6  A representative example comparing the proba-
bilities per sleep stage as derived from multiple manual 
scorings (left) and from autoscoring (right) for the same 
PSG shown in Fig. 7.2
The figure displays the probabilities for stages W, N1, 
N2, N3, and R as well as the hypnodensity chart which 
combines the individual sleep stage probabilities into a 
stacked area graph. The bottom graph shows the hypno-
gram. The plots on the left side are from the four manual 
scorings, and the hypnogram is based on the majority 
vote (in the case of ties, scorers demonstrating a higher 

consensus with the group were considered more reliable, 
and thus their assessments were weighted heavier than 
the other scorers); the plots on the right side are the 
Somnolyzer autoscoring results. Color codes for the hyp-
nodensity: W, gray; REM, red; N1, cyan; N2, blue; and 
N3, green. The ICC between the manually derived and 
autoscored probabilities are as follows: for W, 0.97; N1, 
0.79; N2, 0.89; N3, 0.96; R, 0.95; and over all five stages, 
0.93. Cohen’s kappa between the human majority hypno-
gram (bottom left) and the autoscored hypnogram (bot-
tom right) is 0.82

7.3.8	� Cardiorespiratory Sleep 
Staging for Home Sleep 
Apnea Testing (HSAT)

Typically, no neurological signals are recorded in 
HSAT, and thus standard sleep scoring is not 
applicable. Consequently, HSATs are less sensi-
tive than PSGs in the detection of sleep-disordered 
breathing (SDB) since recording time (RT) rather 
than total sleep time (TST) is used to define the 
denominator of the respiratory event index (REI). 
A false negative test based on the REI may lead to 
harm to the patient resulting from denial of benefi-
cial therapy (Bianchi &  Goparaju 2017). Thus, 

estimating sleep reliably based on cardiorespira-
tory signals in HSATs could compensate for this 
shortcoming. In 2015, Fonseca et al. (2015) pre-
sented their first attempts to estimate sleep based 
on cardiorespiratory signals using manually engi-
neered features and a linear discriminant classifier 
and reported a Cohen’s kappa of 0.49 for the four-
stage comparison (wake, light sleep, deep sleep, 
and REM sleep) validated in 48 healthy subjects. 
By incorporating time information and replacing 
the classifier by a conditional random field, 
Cohen’s kappa increased to 0.53  in 100 healthy 
subjects (Fonseca et al., 2018). In a further devel-
opment, we trained a deep neural network (CNN + 
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Fig. 7.7  A representative example for cardiorespiratory 
sleep staging (CReSS) as visualized in Sleepware G3 for 
the same study shown in Fig. 7.2
Upper part (entire night): The trends from top to bottom 
are as follows: “WK, REM, LS, DS,” the hypnogram 
superimposed on the hypnodensity graph with the color 
codes W, gray; REM, red; light sleep (LS), blue; and deep 
sleep (DS), green; “Resp Event Confidence,” confidence 
trend for guiding the reviewer by a traffic light system to 
areas that need more careful review of respiratory event 
scoring; “Resp Event Type Confidence,” confidence trend 
for guiding the reviewer by a traffic light system to areas 
that need more careful review of scoring the type of a 
respiratory event; “Resp. Events,” respiratory events; 

“Cheyne Stokes Res,” indicates the presence/absence of 
Cheyne-Stokes breathing; “Snore,” intensity of snoring; 
“Relative Desaturations,” scored oxygen desaturations 
≥3%; “SpO2,” arterial oxygen saturation level; and 
“Position,” body position
Lower part (30-s window): The signals from top to bottom 
are as follows: “PulseR,” pulse rate in beats/min; “Pleth,” 
photoplethysmography signal; “PFlow,” nasal pressure 
airflow; “THO,” thoracic effort; “SpO2,” arterial oxygen 
saturation level; and “Snore,” snoring sound signal
Note that the cardiorespiratory sleep staging shown in the 
upper panel is based on the “Pleth,” “PFlow,” and “THO” 
signals, as shown for the 30-s window in the lower panel, 
with an autoscored obstructive hypopnea with associated 
oxygen desaturation

LSTM) and further increased kappa to 0.61 in 195 
healthy subjects and 97 patients (Radha et  al., 
2019) as well as to 0.60 in 389 patients (Fonseca 
et  al., 2020). In a recent development step, we 
used a deep learning approach not only for the 
classifier but also for determining high-level fea-
tures and thereby increased kappa to 0.68 in 296 
studies from the MESA dataset with photople-
thysmography (PPG), nasal pressure airflow, and 
respiratory inductance plethysmography (RIP) as 
input signals (Bakker et  al., 2021). Most impor-
tantly, the kappa of 0.68 reflecting substantial 
agreement between sleep staging determined by 
the algorithm and the gold standard of manual 
PSG-based sleep staging was consistent across the 
full spectrum of sleep-disordered breathing sever-
ity (for further details, see Bakker et al., 2021).

To demonstrate the performance of the cardio-
respiratory sleep staging (CReSS) for the study 
shown in Fig. 7.2, we deleted all electrophysio-
logical channels from the PSG recording and 
reanalyzed the study with CReSS based on the 
HSAT channels (PPG, airflow, thoracic RIP belt). 
The resulting hypnogram superimposed on the 
hypnodensity is shown in Fig. 7.7. Cohen’s kappa 
for the four-stage comparison between the 
CReSS-derived and the PSG-derived hypno-
grams (W, LS=N1 + N2, DS=N3, REM) is 0.70 
for the diagnostic part and 0.74 for the titration 
part. The substantial agreement between the 
CReSS-derived and the PSG-derived sleep stage 
probabilities (compare the hypnodensities in 
Figs.  7.2 and 7.7) is confirmed by the ICCs 
between the two probability curves aggregated 
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over all four stages of 0.83 for the diagnostic part 
and 0.85 for the titration part.

To demonstrate the clinical relevance of 
CReSS, we determined the number of correctly 
diagnosed patients by HSAT as compared to the 
gold standard AHI based on PSG-derived total 
sleep time (TST) in the 296 studies from the 
MESA dataset for a threshold of 15 events per 
hour. As can be seen in Table  7.7, using the 
CReSS-derived TST instead of the recording 
time as denominator for the calculation of the 
indices reduced the false negative diagnosis from 
33 patients (11.1%) to 5 patients (1.7%). The ICC 
between the apnea-hypopnea index based on 
CReSS-determined total sleep time (AHICReSS) 
and the manual AHIPSG was 0.971 (95% CI 0.955 
to 0.980) indicating excellent agreement 
(0.955 > 0.9) according to Koo and Li (2016). In 
contrast, the ICC between the respiratory event 
index based on recording time (REIRT) and the 
manual AHIPSG was only 0.853 (95% CI 0.512–
0.934) indicating only moderate agreement 
(0.512 > 0.5). Note that the lower bound of the 
95% CI of the ICC between AHICReSS and AHIPSG 
is higher than the upper bound of the 95% CI of 
the ICC between REIRT and AHIPSG 
(0.955 > 0.934) and thus the AHICReSS is a more 
accurate estimate of the AHIPSG than the REIRT.

The autoscoring system may offer the option 
of using autonomic responses (respiratory event-
related increases in heart rate) as surrogates of 
cortical arousals to increase the sensitivity for 
detecting SDB in HSAT even further by 
approximating the hypopnea scoring rules as rec-
ommended in the AASM scoring manual version 
2.6 for PSG recordings. As shown in the para-
graph “Scoring according to different rules,” con-
sidering the arousals for hypopnea confirmation 
increases the SDB severity classification for sev-
eral patients (compare values in columns 4.A*, 
corresponding to recommended 2020 rule for 
HSAT, and 4.AB, corresponding to recommended 
2020 rule for PSG, in Table 7.5). Moreover, REM-
related OSA according to the definition by 
Mokhlesi and Punjabi (2012) could be detected 
based on CReSS-determined REM sleep with a 
clinically relevant accuracy (sensitivity, 91%, and 
specificity, 98%). Note that patients with a rela-
tively low overall AHI may be experiencing 

severe OSA during REM, which is particularly 
important given that events taking place during 
REM are longer and are associated with more 
pronounced hypoxemia, higher sympathetic acti-
vation, and greater surges in blood pressure and 
heart rate (Findley et  al., 1985; Somers et  al., 
1995; Peppard et al., 2009). Consequently, REM-
related OSA is associated with adverse cardiovas-
cular, metabolic, and neurocognitive outcomes. 
For a comprehensive review on risks for adverse 
health outcomes and on novel treatments of REM-
related OSA, see Varga and Mokhlesi (2019).

7.4	� Future Directions

Further studies should investigate whether the 
traditional assignment of a sleep stage per epoch 
(hypnogram) might be replaced by sleep stage 
probabilities (hypnodensity) since the latter 
reflects the ambiguity observed between human 
scorers while providing all the information con-
tained in a hypnogram. Moreover, all sleep stage 
parameters required for reporting per AASM 
guidance can be determined directly from sleep 
stage probabilities.

Further head-to-head analyses should be 
undertaken to evaluate the various publicly or 
commercially available autoscoring systems in 
large datasets with multiple scorers, such as the 

Table 7.7  Confusion matrices comparing the diagnostic 
performance of HSAT with and without CReSS to gold 
standard PSG (n = 296)

AHIPSG

<15 events/
hour

≥15 events/
hour

REIRT <15 events/
hour

139 (47.0%) 33 (11.1%)

≥15 events/
hour

0 (0.0%) 124 (41.9%)

AHICReSS <15 events/
hour

139 (47.0%) 5 (1.7%)

≥15 events/
hour

0 (0.0%) 152 (51.4%)

AHIPSG: Apnea-hypopnea index based on PSG-determined 
total sleep time
REIRT: Respiratory event index based on recording time 
(RT)
AHICReSS: Apnea-hypopnea index based on CReSS-
determined total sleep time
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dataset generated via the AASM inter-scorer reli-
ability program (Rosenberg & Van Hout, 2013, 
2014). For systems offering full PSG analysis 
including arousals, respiratory events, and peri-
odic leg movement detection in addition to sleep 
staging, evaluation of the scoring performance of 
all scored events and calculated indices would 
have to be included in the analysis. Access of 
autoscoring systems to quality assurance pro-
grams such as those utilized for accreditation of 
technologists would allow for more thorough and 
systematic assessments of autoscoring perfor-
mance, enabling clinicians and researchers to 
determine the best fit-for-purpose approach for 
their needs. Depending on the results of this 
endeavor, the AASM Facility Standards for 
Accreditation concerning autoscoring will need 
to be reconsidered. As of this writing, these 
guidelines require that automated scoring must 
be reviewed epoch-by-epoch and edited by staff 
for accuracy (https://j2vjt3dnbra3ps7ll1clb4q2-
w p e n g i n e . n e t d n a - s s l . c o m / w p - c o n t e n t /
uploads/2019/05/AASM-Facility-Standards-for-
Accreditation-8.2020.pdf).

Moreover, alternative metrics beyond the tradi-
tional AHI for determining the severity of sleep 
apnea could be implemented in autoscoring sys-
tems, such as the hypoxic burden as suggested by 
Azarbarzin et  al. (2019). The hypoxic burden is 
determined by measuring the respiratory event-
associated area under the desaturation curve from 
pre-event baseline. The authors showed in a large 
sample from the Sleep Disorder in Older Men 
(MrOS) and the SHHS that the hypoxic burden 
strongly predicted cardiovascular disease-related 
mortality, indicating that not only the frequency 
(as measured by the AHI) but the depth and dura-
tion of sleep-related upper airway obstructions (as 
measured by the hypoxic burden) are important 
disease-characterizing features. For the split-night 
study, presented in Fig. 7.2, Sleepware G3 reported 
for the diagnostic part a hypoxic burden of 67.5 
(%min)/hour and for the therapeutic part 6.7 
(%min)/hour indicating a 90% reduction of the 
hypoxic burden due to treatment. A hypoxic bur-
den of 67.5 (%min)/hour is equivalent to approxi-
mately 23 min of 3% desaturation per hour, while 
a hypoxic burden of 6.7 (%min)/hour is equivalent 
to approximately 2  min of 3% desaturation per 

hour. Malhotra et al. (2021) listed further alterna-
tive metrics of sleep apnea severity: arousal inten-
sity (as a distinct pathophysiological trait); odds 
ratio product (as a metric that quantifies sleep 
depth); and cardiorespiratory coupling (measuring 
cardiopulmonary interactions dynamically during 
sleep using a single-lead ECG signal).

Finally, the aforementioned large number of 
successfully applied machine learning approaches 
for scoring sleep confirms impressively the 
potential of artificial intelligence applications for 
sleep diagnostics. These methods can identify 
complex patterns in empirical data and can take 
(spatio)-temporal context into account, which 
allows a direct application of deep learning algo-
rithms to raw data. Deep learning algorithms can 
be trained on targets such as manually scored 
sleep stages (supervised deep learning), but also 
hypothesis-free without targets (unsupervised 
deep learning) based on large datasets (big data), 
which preferably contain also clinical outcome 
data. Such datasets could also be used to identify 
physiological biomarkers based on the recorded 
PSG signals to complement the usual biomarkers 
taken from clinical chemistry as suggested by 
Penzel et  al. (2017). The authors suggest that 
such physiological biomarkers might be more 
appropriate to characterize functional character-
istics, as seen in the variety of sleep disorders. An 
example for a successful construction and evalu-
ation of a narcolepsy biomarker can be found in 
Stephansen et  al. (2018). They created a bio-
marker for narcolepsy that achieved with a speci-
ficity of 96% and a sensitivity of 91% similar 
performance to the current clinical gold standard, 
the multiple sleep latency test (MSLT), but only 
requires a single sleep study. Moreover, they 
showed that addition of human leukocyte antigen 
(HLA) or other genetic typing in the model can 
increase the specificity above 99% without loss 
of sensitivity. Steiger et  al. (2015) presented a 
review on sleep EEG biomarkers for the diagno-
sis, treatment, and prognosis of depression. The 
authors concluded that sleep EEG variables are 
among the biomarkers that should be included in 
the classification of mood disorders. Even healthy 
volunteers with a risk gene of depression show 
subtle sleep EEG changes. In healthy subjects at 
high risk for affective disorders, elevated REM 
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density was found. In patients with depression 
disturbed sleep continuity, REM sleep disinhibi-
tion and impaired non-REM sleep were the char-
acteristic findings.
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Diagnosis of Sleep Apnea
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Abstract

The overnight polysomnography shows a 
range of drawbacks to diagnose obstructive 
sleep apnea (OSA) that have led to the search 
for artificial intelligence-based alternatives. 
Many classic machine learning methods have 
been already evaluated for this purpose. In this 
chapter, we show the main approaches found 
in the scientific literature along with the most 
used data to develop the models, useful and 
large easily available databases, and suitable 
methods to assess performances. In addition, a 
range of results from selected studies are pre-

sented as examples of these methods. Very 
high diagnostic performances are reported in 
these results regardless of the approaches 
taken. This leads us to conclude that conven-
tional machine learning methods are useful 
techniques to develop new OSA diagnosis 
simplification proposals and to act as bench-
mark for other more recent methods such as 
deep learning.

Keywords

Sleep apnea · Machine learning · Sleep Heart 
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8.1	� Introduction

The technical complexity, costs, and logistic-
associated problems in the diagnosis of obstruc-
tive sleep apnea (OSA) have driven the scientific 
community to search for new simpler and auto-
matic alternatives to standard polysomnography 
(PSG) (Ghegan et  al., 2006). One of the most 
common and ambitious approximations to 
achieve this goal has been the implementation of 
systems or algorithms based on the study of a 
reduced set of information from the PSG. Usually, 
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the automatic analysis of only a very small set of 
signals – out of a maximum of 32 recorded dur-
ing PSG – has been conducted, with the investi-
gation on a single one being a very frequent 
approach (Uddin et  al., 2018; Mendonça et  al., 
2019; Gonzalo C Gutiérrez-Tobal et al., 2021c). 
In this regard, overnight blood oxygen saturation 
(SpO2), airflow (AF), and electrocardiogram 
(ECG) are among the most analyzed signals 
(Uddin et  al., 2018; Mendonça et  al., 2019; 
Gutiérrez-Tobal et al., 2021c).

Since the beginning of the twenty-first cen-
tury, machine learning techniques have gained an 
increasing role when improving the performance 
of automatic health-related diagnostic tools, and 
OSA has not been an exception. A three-step 
methodology, the so-called feature engineering 
approach, has been traditionally applied to the 
problem (Vaquerizo-Villar et  al., 2021). This 
strategy begins with the “feature extraction” 
stage, in which the data  – usually an overnight 
signal  – are analyzed following one or several 
complementary analytical techniques, such as 
spectral, non-linear, or time-frequency methods. 
The purpose of this step is to characterize the sig-
nal or signals under study, so that the original raw 
or pre-processed data becomes information of 
interest for the problem. Then, an optional but 
useful automatic “feature selection” stage is con-
ducted to ensure that all the information extracted 
in the previous step is as relevant for your prob-
lem and as complementary to each other as pos-
sible (Guyon & Elisseeff, 2003). The third stage 
is what involves machine learning. It could be 
termed simply “machine learning” stage or, 
depending on the context, “classification” stage, 
“regression” stage, or, in a more general way, 
“pattern recognition” stage (Bishop, 2006).

Certainly, the latest deep learning methods are 
able to avoid the two first stages in the above-
described feature engineering approach (Ian 
et al., 2016). However, many traditional methods 
are still used nowadays in the context of OSA 
diagnosis and constitute a valid and very useful 
benchmark to compare the results obtained with 
any new approximation to the problem. 
Accordingly, this chapter aims at exposing the 
interested readers to a set of conventional 

machine learning tools that have proven their 
usefulness to help in the automatic OSA 
diagnosis. As shown in the next sections, it is not 
a minor challenge to outperform some of these 
methods, so any new algorithm must demonstrate 
that demanding an extra effort, on either data or 
computation, is justified.

This chapter continues with a data section, 
which is dedicated to briefly present the informa-
tion traditionally analyzed in the OSA diagnosis 
simplification. Then, a methods section explains 
the two main machine learning approaches (clas-
sification and regression) that have shown useful-
ness in this problem. It includes introducing some 
specific examples used in OSA context along 
with a brief explanation on their rationale, as well 
as appropriate references where the readers will 
be able to gain insight into these methods. Next, 
a results section shows some of the highest per-
formances achieved using them. Finally, the 
“Discussion and Conclusions” section analyzes 
the most important information included in this 
chapter.

8.2	� Data Analyzed 
in the Simplification of Sleep 
Apnea Diagnosis

Several chapters of this book are specifically 
devoted to describing useful sources of informa-
tion in the context of sleep apnea. Therefore, this 
section is only a short introduction on those that 
have been more frequently used along with 
machine learning approaches. These include 
some overnight biomedical signals recorded dur-
ing PSG and other clinical and demographic data. 
In addition, we present some popular public data-
bases that have been used in dozens of different 
studies to gain insight into sleep apnea in both 
adults and children.

8.2.1	� Typical Overnight Biomedical 
Signals

AF, SpO2, and ECG (including the ECG-derived 
heart rate variability or HRV) have been exten-
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sively analyzed in the context of simplifying 
OSA diagnosis in the last decades (Uddin et al., 
2018; Mendonça et  al., 2019; Gutiérrez-Tobal 
et al., 2021c). Usually, the recordings are acquired 
during the night with the same equipment used in 
the PSG, but there exist a substantial number of 
scientific studies using devices specifically dedi-
cated to acquiring each signal alone. In addition, 
the most common approach has focused on the 
analysis of single-channel signals, but some stud-
ies also analyzed the usefulness of automatically 
combining the information from two or more of 
them.

8.2.1.1	� Airflow (AF)
As explained in dedicated chapters of this book, 
one of the most important indicators of the pres-
ence and severity of OSA is the apnea-hypopnea 
index (AHI) (Iber et al., 2007; Berry et al., 2012, 
2017). AHI accounts for the number of apnea – 
complete cessation of the respiratory cycle – and 
hypopnea events, significant reduction of the 
respiratory amplitude, per hour of sleep (Berry 
et  al., 2012). These qualitative definitions of 
apneas and hypopneas are detailed in the rules for 
scoring respiratory events published and updated 
by the American Academy of Sleep Medicine 
(Iber et  al., 2007; Berry et  al., 2012, 2017). A 
reduction of 90% in AF is mandatory to annotate 
an apnea event (Berry et  al., 2012), showing a 
duration of a minimum of two respiratory cycles 
in pediatric patients and 10 seconds in adults. In 
the case of hypopneas, a 30% drop in AF suffices, 
but the event needs to be accompanied by either a 
3% drop in the SpO2 signal or an arousal (Berry 
et al., 2012). The minimum duration requirement 
of the AF drop is also two respiratory cycles for 
children and 10 seconds for adults. According to 
these definitions, in which AF plays a key role, 
the study of this signal is a natural choice to 
search for simpler OSA diagnostic alternatives.

When scoring these respiratory events, it is 
necessary to consider that apneas must be counted 
using an oronasal thermal sensor, whereas hypop-
neas are annotated using a nasal pressure sensor 
(Berry et al., 2012). This is because of the com-

plementary performances of these two kinds of 
probes when detecting each of the event types 
(Bahammam, 2004). This also needs to be con-
sidered when using machine learning techniques 
that only focus on detecting apneas and hypop-
neas. However, in machine learning approaches 
not conducting event detection, but full charac-
terization of the overnight AF signal, recent stud-
ies have shown similar performances using 
single-channel AF approaches regardless if ther-
mal or nasal pressure sensors were used 
(Gutiérrez-Tobal et  al., 2013; Gutierrez-Tobal 
et al., 2016).

8.2.1.2	� Blood Oxygen Saturation 
(SpO2)

Blood oxygen drops – or desaturations – are typi-
cal effects caused by apneic events (Iber et  al., 
2007; Berry et al., 2012, 2017). Actually, we have 
already shown that 3% desaturations are directly 
involved in the hypopnea definition. Additional 
important advantages need to be considered that 
have led SpO2 to be probably the most analyzed 
and successful signal when simplifying OSA 
diagnosis, in both adults and children. The first 
one is that it is easily acquired using a single-
channel pulse oximetry placed on a finger (or a 
toe in babies). This is very comfortable compared 
to all the channels required to conduct a full 
PSG. As a result, the associated portable technol-
ogy is highly developed, which facilitates to 
move the diagnostic test to patients’ homes. A 
second advantage is that the overnight blood oxy-
gen saturation gathers not only the information 
regarding the apneic events but also the health 
prognosis associated with the condition. In this 
regard, 3% and 4% oxygen desaturation indices 
(ODI3 and ODI4), cumulative time under 90% of 
saturation (CT90), or, more recently, hypoxic 
burden have been linked to different negative 
health consequences in OSA presence 
(Azarbarzin et  al., 2019; Karhu et  al., 2021). 
Finally, as shown in the next sections, the results 
reached when applying machine learning meth-
ods to SpO2 are among the highest in the related 
scientific literature.
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8.2.1.3	� Electrocardiogram and Heart 
Rate Variability (ECG/HRV)

The natural cardiorespiratory coupling is one of 
the main reasons behind the study of ECG to help 
simplify OSA diagnosis. This coordination has 
been found to increase during the night in the 
presence of sleep apnea (Riedl et al., 2014), being 
one of its expressions the occurrence of a clear 
bradycardia/tachycardia pattern following the 
apneic events (Penzel et al., 2003). Moreover, the 
ECG was one of the first biomedical signals stud-
ied, and it is still one of the most analyzed in dif-
ferent health contexts, which very often provides 
a comfortable scientific knowledge background 
on which to justify the interpretations of eventual 
results (Acharya et al., 2006). Similarly, OSA in 
adults is known to be significantly associated 
with cardiovascular morbidity (Newman et  al., 
2001). Together, these aspects have led to an 
intensive scientific activity regarding the simpli-
fication of OSA diagnosis based on ECG infor-
mation (Penzel et al., 2002). Particularly common 
has been the investigations on HRV, which offers 
a nexus between OSA and the autonomic nervous 
system (Acharya et  al., 2006). An additional 
advantage of the HRV information is that it can 
be surrogated in some contexts by the pulse rate 
variability signal (PRV) (Gil et al., 2010), which 
can be easily obtained from a pulse oximeter.

8.2.2	� Other Sources of Information

The clinical analysis of PSG is the result of the 
examination of a range of up to 32 biomedical 
channels. Consequently, it is not surprising that 
several approaches explored the combination of 
the information from two or three of the above-
mentioned biomedical signals along with the use 
of machine learning techniques (Garde et  al., 
2014; Álvarez et al., 2020; Jiménez-García et al., 
2020). In addition, other single- or combined-
channel approaches have been evaluated. In this 
regard, the use of overnight snoring sounds (Solà-
Soler et  al., 2012), thoracic and/or abdominal 
movements (Lin et al., 2017), photoplethysmog-
raphy (Gil et al., 2010; Lázaro et al., 2014), or the 
electroencephalography (Gonzalo C.  Gutiérrez-

Tobal, Gomez-Pilar, et al., 2021b), among others, 
have been also explored with promising results.

Moreover, machine learning has been also 
used with data other than those from 
PSG.  Demographic, social, clinical, and 
anthropometric variables have been also used as 
source of information to train machine learning 
models with ability to diagnose OSA (El-Solh 
et  al., 1999; Skotko et  al., 2017; Gonzalo C 
Gutiérrez-Tobal et al., 2021c). These have been 
used most often combined within them and with 
the information obtained from the PSG, such as 
overnight biomedical signals.

8.2.3	� Important Databases

Large and commonly used databases are very 
useful both to properly train and validate the 
machine learning models and to share a reference 
to which compare the performance from different 
methods. Unfortunately, freely available large 
databases are very uncommon in OSA context, if 
there exist. However, the National Research 
Sleep Resource offers several very large sleep-
related databases with only minor requirements 
to be accomplished. Here, we briefly introduce 
two of them that have been used in dozens of 
OSA-related studies from adults and children, 
namely, the Sleep Heart Health Study (SHHS) 
database and the Childhood Adenotonsillectomy 
Trial (CHAT) database, respectively.

8.2.3.1	� Sleep Heart Health Study 
(SHHS)

The SHHS was originally designed to evaluate 
whether OSA is an independent risk factor for the 
development of cardiovascular morbidity in 
adults (Newman et al., 2001). The database com-
prises at-home conducted PSGs from 5804 indi-
viduals older than 40 years who were recruited 
from several previous cohorts aimed at evaluat-
ing cardiovascular risks (Quan et al., 1997). It is 
divided into SHHS1, with a first round of sleep 
data and recordings from all the participants, and 
SHHS2, with a follow-up at-home PSG con-
ducted on 2647 participants 5  years later. 
Accordingly, longitudinal studies are possible 
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when using this database. In total, 8451 full PSGs 
are available to use it as source of information in 
machine learning-based studies, including anno-
tations such as respiratory events or sleep stages, 
along with a wide range of clinical, social, and 
anthropometric variables (Quan et  al., 1997; 
Newman et al., 2001).

8.2.3.2	� Childhood Adenotonsillectomy 
Trial (CHAT)

The aim of the CHAT randomized study was to 
analyze the effects of a treatment based on the 
removing of tonsils and adenoids in a cohort of 
OSA-affected children (Marcus et al., 2013). To 
assess these effects, PSGs from 1447 children 
between 5 and 9 years were conducted, from 464 
who were randomized to adenotonsillectomy 
treatment (206 children) or the alternative watch-
ful waiting with supportive care (198 children) 
(Marcus et al., 2013). Accordingly, these partici-
pants underwent a baseline PSG and a follow-up 
PSG 7 months later, once completing the treat-
ment or the alternative. A wide range of clinical, 
sociodemographic, cognitive, and anthropomet-
ric variables is also available (Marcus et  al., 
2013). As in the case of SHHS, the follow-up 
conducted on the children allows for longitudinal 
studies taking into account that there is a thera-
peutic intervention between the two PSGs. In 
addition to the randomized children, the PSGs 
from the non-randomizing are also available to 
develop the machine learning approaches. 
However, the set of additional variables is dra-
matically reduced compared to the randomized 
set.

8.3	� Methods: Classic Machine 
Learning Approaches 
in Sleep Apnea Diagnosis

In accordance with the purpose of automatically 
diagnosing OSA, supervised learning is the most 
common strategy followed in the scientific litera-
ture. Particularly, both classification and regres-
sion approaches have been frequently 
implemented. OSA presence and severity are 
routinely categorized by using AHI thresholds in 

clinical practice, which leads to classification 
methods. Moreover, AHI can be also directly 
estimated, thus leading to regression approaches. 
In this section, we also introduce the ways in 
which the performance of the OSA-related 
machine learning methods should be assessed for 
both classification and regression.

8.3.1	� Classification

There are two typical ways to implement classifi-
cation approaches in OSA diagnosis context: 
binary classification and multiclass classification. 
In addition, these may have different purposes. 
On the one hand, classification may focus on 
directly assigning subjects into two (presence vs. 
absence of OSA) or more (presence and severity 
of OSA) categories. This should be the final goal 
of any automatic diagnostic approach. On the 
other hand, however, classification may also 
focus on detecting apneic events, and this can be 
also implemented as binary classification (apneic 
vs. normal signal segments) or multiclass classi-
fication (apneas/hypopneas/normal or obstructive 
apneas/central apneas/normal, etc.).

8.3.1.1	� Binary Classification
Over the years, the clinicians have focused on 
AHI thresholds to assess whether a person suffers 
from OSA. Ten and 15 events per hour (e/h) have 
been commonly used in adults, and 1 e/h, 3 e/h, 
and 5 e/h in children, the exact cut-off evolving 
as the corresponding medical associations pro-
posed new rules (Iber et  al., 2007; Berry et  al., 
2012, 2017). In accordance with these thresholds, 
one of the machine learning approaches has 
focused on automatically detecting the presence 
of the illness, that is, classifying subjects into 
OSA positive (above or equal the AHI cut-off) or 
OSA negative (below the AHI cut-off). Different 
classic machine learning methods have been used 
to implement this approach. Linear discriminant 
analysis (LDA) is one of the most typical classi-
fication procedures (Bishop, 2006) and has been 
evaluated in both adults and children in OSA 
context. LDA assumes a linear relationship 
between the predictors (variables used as the data 

8  Conventional Machine Learning Methods Applied to the Automatic Diagnosis of Sleep Apnea



136

to predict OSA) and the target (the variable con-
taining the OSA-positive and OSA-negative 
labels). Despite its relatively simplicity, LDA has 
reached promising results when discriminating 
OSA-positive and OSA-negative patients using 
information from SpO2 (Marcos et  al., 2009), 
SpO2  +  PRV (Garde et  al., 2014), and HRV 
(Martín-Montero et  al., 2021). Logistic regres-
sion (LR) (Hosmer & Lemeshow, 1989) is a stan-
dard in binary classification and has been also 
evaluated with SpO2 (Marcos et al., 2009; Álvarez 
et al., 2010, 2013) and AF (Barroso-García et al., 
2017), in both adults and children. LR uses the 
logistic formulae to transform the output result-
ing from a linear regression into a non-linear pos-
terior probability (Hosmer & Lemeshow, 1989), 
that is, given the predictors, the probability of 
belonging to the OSA-positive class – as defined 
by the AHI cut-off used. Accordingly, LR avoids 
the limitation of the linear relationship 
assumption.

This limitation can be also minimized with 
more complex and modern methods such as arti-
ficial neural networks (ANNs) and support vector 
machines (SVMs) (Bishop, 2006). SVMs are 
machine learning algorithms that transform the 
data into a higher-dimensional space so that the 
distance between data points with different 
labels – in this case, OSA positive and negative – 
is maximized (Bishop, 2006). This is equivalent 
to choosing a decision boundary between classes 
for which the distance to the closest data point, 
the so-called margin, is maximized (Bishop, 
2006). Accordingly, the decision boundary is 
defined by several of these data points termed 
support vectors. Some examples of SVM binary 
classification in OSA context can be found 
applied to SpO2 (Álvarez et al., 2013) and ECG 
(Khandoker et al., 2009; Chen et al., 2015). On 
the other hand, several ANNs have been evalu-
ated in OSA binary classification approaches 
(Marcos et  al., 2008; Morillo & Gross, 2013), 
being multi-layer perceptron (MLP) one com-
mon approach that has become one of the most 
successful machine learning methods in any 
problem. ANNs are algorithms inspired in the 
biological neural networks, such as the human 
brain. Accordingly, MLP arrange computing 

units, also known as perceptrons or neurons, in 
several massively connected layers: input, hid-
den, and output (Bishop, 2006). The input layer is 
composed of one neuron for each feature or vari-
able used as predictor. These input neurons are 
connected through weights with all the neurons 
in the next layer, which is part of the hidden lay-
ers. There can be as many hidden layers as the 
designers may consider appropriate. However, 
one single hidden layer is known to be able to 
provide universal approximations (Bishop, 
2006). This means that, provided that your data 
gather information enough for your problem, one 
single hidden layer should suffice to model the 
function that transform your predictors into your 
desired target. In any case, both the number of 
hidden layers and the number of neurons per hid-
den layer are hyperparameters of the model to be 
tuned during the training process. Finally, each 
neuron of the last hidden layer – if there is more 
than one – is connected to all the neurons in the 
output layer, which in the case of the binary clas-
sification approach is a single neuron that offers 
the posterior probability of belonging to the 
OSA-positive class. During the training process 
of the MLP (and other ANNs), all the weights 
connecting all the neurons of the network are 
optimized using the well-known backpropaga-
tion algorithm (Bishop, 2006), which is one of 
the most remarkable milestones of machine 
learning. Another feature of ANNs is that each 
neuron has an associated activation function that 
combines the outputs – including weights – from 
previous layers into a single output, being logis-
tic or softmax functions typically used in classifi-
cation and linear functions in regression problems 
(Bishop, 2006).

8.3.1.2	� Multiclass Classification
In recent years, as more sleep data has been avail-
able for scientific purposes, the focus of OSA 
diagnosis simplification has gone from binary 
classification to the determination of both OSA 
presence and severity, which naturally fits multi-
class classification. There exist AHI thresholds 
for the definition of OSA severity categories in 
both adults and children, being the latter much 
more restrictive. Nowadays, the most clinically 
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used ones are probably as follows (Flemons 
et al., 1999; Tan et al., 2014, 2017):

•	 Adults: no OSA if AHI < 5 e/h; mild OSA if 5 
e/h ≤ AHI < 15 e/h; moderate OSA if 15 e/h ≤ 
AHI < 30 e/h; and severe OSA if 30 e/h ≤ AHI

•	 Children: no OSA if AHI < 1 e/h; mild OSA if 
1 e/h ≤ AHI < 5 e/h; moderate OSA if 5 e/h ≤ 
AHI < 10 e/h; and severe OSA if 10 e/h ≤ AHI

As in the case of binary classification, several 
multiclass approaches have been already evalu-
ated in OSA context. LDA and LR models were 
also used in the multiclass problem along with 
SpO2 data (Gutiérrez-Tobal et al., 2019), the lat-
ter needing an additional “one-vs.-all” strategy to 
upgrade the binary approach. MLP and other 
ANNs have been also developed with both SpO2 
data (Gutiérrez-Tobal et  al., 2019), SpO2  +  AF 
data (Barroso-García et  al., 2021), and clinical, 
anthropometric, and demographic variables 
(Skotko et  al., 2017). In this regard, from an 
implementation point of view, only minor 
changes in the architecture are needed to develop 
multiclass ANNs instead of binary ones, such as 
equaling the number of output neurons to the 
number of classes. The interested readers should 
notice, however, that data requirements usually 
increase as more classes are targeted and that 
multiclass overall performance tends to be lower 
than the binary one.

Ensemble learning methods have been also 
used to address the multiclass problem. As 
deduced from its name, this family of machine 
learning methods conduct the classification task 
as the result of the combination of the classifica-
tion of several single models, typically termed 
“base classifiers.” These can be any of the above-
mentioned methods, but simpler ones are pre-
ferred to increase the generalization ability of the 
final classification (Witten et al., 2011). Bagging 
ensemble learning algorithms have been tested, 
including the remarkable random forest (RF) 
method used with SpO2 data (Deviaene et  al., 
2019). Bagging is the acronym for “bootstrap 
aggregating,” which indicates the basic method-
ology behind this method. In essence, the origi-
nal data is subsampled with replacement to form, 

typically, a high number of bootstrap replicates 
of these data (Kuncheva, 2014). A different clas-
sifier is trained for each of these replicates, and 
its decision is only one vote for the final classifi-
cation task, which is conducted based on the 
decisions from all classifiers. RF follows this 
elementary scheme using decision trees as base 
classifiers. In addition, RF includes more sources 
of variability in the training of its classifiers by 
randomly varying the features and the decision 
trees hyperparameters involved within each boot-
strap iteration (Kuncheva, 2014). Boosting 
ensemble learning methods have been also 
applied in OSA-related multiclass tasks, as is the 
case of the well-known AdaBoost (for “adaptive 
boosting”), used with SpO2 (Gutiérrez-Tobal 
et  al., 2019), AF (Gutierrez-Tobal et  al., 2016), 
and SpO2  +  AF (Jiménez-García et  al., 2020; 
Barroso-García et al., 2021). In contrast to bag-
ging, boosting methods are iterative algorithms 
in which each new classifier is trained using the 
same data, but accounting for the errors made by 
previous classifiers. In this regard, misclassified 
data points in previous iterations are weighted to 
give them more importance, thus increasing the 
chances to be rightly classified in the current and 
next iterations (Witten et al., 2011). Another dif-
ference with bagging is that the vote of each clas-
sifier is dependent on its error so that the ones 
with higher performance contribute more to the 
final decision (Witten et al., 2011).

8.3.2	� Regression

The automatic AHI estimation is another popular 
approach when simplifying OSA diagnosis. 
Instead of training machine learning methods to 
directly assign subjects (or epochs) into different 
OSA severity categories (or events), this strategy 
looks for assigning an AHI to each subject. As the 
clinical use of AHI thresholds has evolved over 
the years, and there are still some limitations 
regarding the OSA severity categories and the 
actual health state of the patients (Penzel et al., 
2015; Korkalainen et al., 2019), the AHI estima-
tion has the advantage of being relatively trans-
parent to future changes in thresholding criteria. 
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There exists an extensive literature focused on 
regression methods and OSA diagnosis simplifi-
cation. They focus on both simpler algorithms, 
such as multiple linear regression applied to clin-
ical data (Wu et  al., 2017) and more complex 
methods already mentioned such as MLP or 
SVM applied to clinical (El-Solh et  al., 1999), 
SpO2 (Marcos et al., 2012; Hornero et al., 2017; 
Rolón et al., 2017; Xu et al., 2019; Rolon et al., 
2020), AF (Álvarez et al., 2020; Barroso-García 
et al., 2021), and SpO2 + AF data (Álvarez et al., 
2020; Barroso-García et  al., 2021). Moreover, 
boosting ensemble learning methods have been 
also evaluated, such as least-square boosting 
(LSBoost) using SpO2 information (Gonzalo 
C. Gutiérrez-Tobal, Álvarez, et al., 2021a). In this 
regression task, rather than focusing on previ-
ously misclassified data points, the boosting 
algorithm LSBoost looks for computing the 
remaining residual error (between the actual and 
the estimated AHI) that was not able to be esti-
mated in previous iterations (Bühlmann & 
Hothorn, 2007).

8.3.3	� Machine Learning 
Performance Assessment 
and Validation

8.3.3.1	� Underfitting and Overfitting
Machine learning faces two main issues regard-
less of the problem and the approach considered. 
The first one, underfitting, relates to the inability 
of the method to learn the function it is intended 
for. Two aspects are often behind underfitting, 
unsuitable learning algorithm or unsuitable input 
information, the latter caused by either data scar-
city or low quality. However, provided that a 
proper study design has been conducted, under-
fitting is not the main drawback that machine 
learning may confront. Very often, overfitting is a 
much more challenging aspect. Overfitting refers 
to an excessive fitting of the machine learning 
algorithm to the training sample, thus resulting in 
poor generalization ability when evaluated in 
new (test) data (Bishop, 2006). Most of machine 
learning methods can be affected by overfitting. 
Accordingly, several strategies can be followed 

to minimize this effect. Increasing the size of the 
training set is a common option but it is not 
always possible. More usual are the methods 
based on “regularization.” Under this name, there 
are a wide range of strategies based on adding a 
penalty term to the learning of the method during 
the training process, so that it can model a more 
general function instead of adjusting to the par-
ticularities of the training data (Bishop, 2006). 
The interested reader should be aware that this is 
not an issue that can be obviated, especially when 
using relatively complex methods such as ANNs 
or SVM.  Even the ensemble learning methods, 
which have a natural well-known robustness 
against overfitting (Witten et al., 2011), can ben-
efit from using regularization techniques 
(Bühlmann & Hothorn, 2007).

8.3.3.2	� Validation Strategy
There exists an intimate relationship between 
overfitting and the way in which the machine 
learning models should be validated. As the risk 
for overfitting exists, evaluating the models using 
training data would most probably lead to over-
optimistic performance results (Bishop, 2006; 
Witten et  al., 2011). For the same reason, the 
hyperparameters needed for some of the above-
mentioned methods  – including the regulariza-
tion term – should be chosen based on the results 
from an independent dataset. Finally, a reliable 
performance should be derived from a third pre-
viously unseen (test) dataset. This would be a 
classic and robust validation strategy, which 
would include a training group for model param-
eter estimation, a validation group for hyperpa-
rameter tuning, and a test group for assessing the 
performance of the final model.

Ideally, there should be a validation group for 
each freedom degree of the machine learning 
method used, including hyperparameters and 
possible previous feature selection stages. 
However, data scarcity is very common in health-
care problems, and the use of only three groups 
(training/validation/test) is usually accepted. 
Several cautions need to be considered when dis-
tributing the data among these three groups. First, 
the more the data in your training set, the better 
the chances for developing a more accurate 
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model. Second, the data distribution of the vali-
dation and test groups should be as similar as 
possible. This means that if your test group has 
50% OSA-positive and 50% OSA-negative sub-
jects, your validation group should have similar 
proportions. Third, machine learning methods 
tend to favor the correct classification of the 
majority classes in classification problems, as 
well as the range of values more represented in 
regression problems. Consequently, provided 
that the classification of all your classes (or the 
estimation within all range of values) is equally 
important, it is also advisable that your training 
data is well-balanced. Finally, commonly used 
proportions in data distribution include 60–80% 
for training and 10–20% for each of the valida-
tion and test groups. However, in the rare cases in 
which data availability is not a problem, these 
proportions can vary if the other advice is 
considered.

A final consideration is needed regarding data 
scarcity. As mentioned above, healthcare-related 
machine learning problems tend to lack data, and 
OSA diagnosis simplification is not an exception 
(Gonzalo C Gutiérrez-Tobal et  al., 2021c). 
Accordingly, split data in three independent 
groups is not often possible. A usual solution is to 
emulate one of the groups (typically the valida-
tion or the test group) using statistical methodol-
ogies such as bootstrapping, jackknife, 
leave-one-out cross-validation, or k-fold cross-
validation (Bishop, 2006; Witten et al., 2011).

8.3.3.3	� Performance Statistics
Performance assessment in binary problems is 
based on different combinations of the number of 
true positive (TP), false negative (FN), true nega-
tive (TN), and false positive (FP) subjects or 
events. In this sense, sensitivity (Se, also known 
as recall), specificity (Sp), and accuracy (Acc) 
are important metrics to evaluate the percentage 
of positive, negative, and total number of sub-
jects/events rightly classified, respectively:

	
Se

TP

TP FN
�

�
�100

	
(8.1)

	
Sp

TN

TN FP
�

�
�100

	
(8.2)

	
Acc

TP TN

TP TN FN FP
�

�
� � �

�100.
	

(8.3)

Useful statistics are also positive and negative 
predictive values (PPV, also known as precision, 
and NPV), which account for the percentage of 
success when assigning a data point within one 
class (e.g., positive) or the another (e.g., 
negative):

	
PPV

TP

TP FP
�

�
�100

	
(8.4)

	
NPV

TN

TN FN
�

�
�100.

	
(8.5)

Moreover, positive and negative likelihood 
ratios (LR+ and LR−) account for the ratios of 
the true positive rate to the false positive rate and 
the false negative rate to the true negative rate, 
respectively. In the next definitions, Se and Sp are 
also taken as rates instead of percentages:

	
LR

Se

Sp
� �

�1 	
(8.6)

	
LR

Se

Sp
� �

�1
.
	

(8.7)

These metrics, however, are affected by class 
imbalance to some extent. Therefore, they are 
often complemented with the receiver-operating 
characteristics (ROC) analysis (Zweig & 
Campbell, 1993). ROC is based on a plot repre-
senting Se vs. 1-Sp (in unit proportion) com-
puted for a range of possible decision thresholds 
from the same output, which in the case of 
binary machine learning could be the posterior 
probability of belonging to the class of interest. 
One possible application of this analysis is the 
estimation of a suitable threshold to act as a 
trade-off between Se and Sp (Zweig & 
Campbell, 1993), i.e., the threshold that mini-
mizes biases due to class imbalance. Other pos-
sible uses include to measure the overall 
performance of a model and, in turn, the com-
parison of the performance of different models. 
In this sense, the perfect performance would be 
achieved by a machine learning model that 
reaches the point of the plot Se = 1 and 1-Se = 0. 
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To properly quantify the overall performance, 
however, it is common to estimate the area 
under the ROC curve (AROC), which may range 
between 0 and 1, showing AROC = 0.5 the less 
discriminative power (Zweig & Campbell, 
1993).

All the abovementioned metrics can be also 
used for evaluating the performance of a multi-
class classification approach in each of the 
thresholds used to determine OSA severity cate-
gories. In addition, specific statistics can be used 
to assess the overall performance in the multi-
class problem. Cohen’s kappa, which can be also 
used in binary classification, is one of the most 
helpful as it measures the agreement between the 
actual and the estimated class by correcting it by 
the agreement occurred by chance (Witten et al., 
2011). Values closer to 1 (or 100%) mean higher 
agreement, whereas values closer to 0 indicate 
lower agreement. Acc adapted to the number of 
classes is another useful metric to evaluate multi-
class performance.

As the definition of OSA severity classes, 
either binary or multiclass, is conducted based on 
AHI, the corresponding assessing metrics can be 
also used to evaluate regression approaches pro-
vided that the estimated AHI is properly trans-
formed into the OSA-related classes. Moreover, 
there exist specific analytical tools to evaluate the 
similarity between the estimated and the actual 
AHI. One typical example is the intraclass cor-
relation coefficient (ICC) (Chen & Barnhart, 
2008), which measures the agreement between 
continuous variables. Accordingly, values closer 
to 1 indicate higher degree of agreement, whereas 
values closer to 0 mean lower degree of agree-
ment. However, contrary to other statistics such 
as Pearson’s correlation, ICC accounts for sys-
tematic errors to estimate agreement (Chen & 
Barnhart, 2008). Finally, a typical and very use-
ful method to graphically assess the agreement in 
AHI estimations is the Bland-Altman plot (Bland 
& Altman, 1986). This method shows the differ-
ence between the estimated and the actual con-
tinuous variable against the mean of the two 
values (Bland & Altman, 1986). In addition, it 
provides possible bias for the estimation (the 
mean of the differences of all data points) and the 

limits of the agreement (mean  ±  1.96*standard 
deviation of the differences of all data points). 
These limits are useful to evaluate whether the 
estimation can be used as a surrogate for the 
actual continuous variable (Giavarina, 2015).

8.4	� Selected Results 
from the Literature

Table 8.1 displays some results selected from the 
literature regarding classic machine learning per-
formance in OSA diagnosis simplification. 
Showing as many approaches as possible has 
been one important objective when selecting the 
results to be included in the table. Accordingly, 
there are studies focused on adults and children, 
using different overnight signals (alone and com-
bined) and clinical data, and up to eight different 
machine learning methods. Validation strategies 
also vary among studies. In addition, these works 
are divided into the three main approaches 
explained above: binary classification, multiclass 
classification, and regression. The metrics 
included in the table have been chosen as a trade-
off between those reported in the studies and 
those highlighted as important in the previous 
sections. An interesting point is the range of 
methods that can be used to evaluate performance 
in each machine learning approach. Whereas 
binary classification is limited to very specific 
statistics, multiclass classification and, specially, 
regression approaches can be assessed with an 
increasing number of methods, thus providing a 
more complete picture of their performance. 
Unfortunately, not all the studies provided data to 
show or estimate all the statistics. Moreover, in 
some of the studies, the machine learning task 
focuses on the subjects, whereas in others it 
focuses on the apneic events. However, as we 
think that the most valuable approach implies to 
provide a final diagnosis, we only show those 
results that end up assigning subjects into one 
OSA class, regardless the specific purpose of the 
machine learning method.

As observed, very high diagnostic perfor-
mance can be achieved using classic machine 
learning methods. Similarly, all the data involved 
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in the studies can reach high statistics. The reader 
should notice that the results from those works 
with higher number of participants  – and more 
independent groups in the validation strategy  – 
should be initially considered as more robust. We 
kindly invite them to examine the original studies 
to evaluate whether this assumption is true. It is 
also observed that those studies focused on chil-
dren achieved lower diagnostic performances. 
The reader can also check in the literature that 
this is not an effect due to the non-systematic 
selection of the studies, but a general tendency. 
Traditionally, the study of pediatric OSA has 
gathered much less attention than adult OSA. 
Consequently, efforts, resources, and data have 
been scarce, thus resulting in lower knowledge 
compared to adult OSA. In addition, the AHI 
rules for establishing pediatric OSA are tighter. 
All these limitations have favored that there is 
still a gap between the performances reached in 
adults and children.

Among the studies, Martin-Montero et  al. 
(Martín-Montero et  al., 2021) involve the non-
randomized group of the CHAT database along 
with a private database from the University of 
Chicago, USA.  Similarly, Deviaene et  al. and 
Gutiérrez-Tobal et  al. (Deviaene et  al., 2019; 
Gonzalo C.  Gutiérrez-Tobal, Álvarez, et  al., 
2021a) involved the SHHS database. For the sake 
of simplicity, only results from 5793 subjects (the 
SHHS1 subgroup) are shown. However, the stud-
ies also reported diagnostic results from the fol-
low-up subgroup (SHHS2) with 2647 recordings 
and, in the case of Gutiérrez-Tobal et al., a high 
pre-test probability subgroup with 322 record-
ings from Hospital Universitario Rio Hortega 
from Valladolid, Spain.

8.5	� Discussion and Conclusions

In this chapter, we focused on the most typical 
classic machine learning approaches involved in 
OSA diagnosis simplification, thus setting aside 
deep learning techniques. We have shown spe-
cific machine learning methods, the data regu-
larly used with them, as well as large and easily 
available adult’s and children’s databases. We 

have also exposed useful strategies to measure 
and validate the performance of the machine 
learning methods, and we have shown a variety 
of studies in which this performance is high.

One first take-away idea to be highlighted is 
that there exists a wide range of successful 
machine learning methods applied to OSA diag-
nosis simplification. They covered both classifi-
cation (either binary or multiclass) and regression 
approaches, the latter being more easily evalu-
ated in depth. Other interesting key point is that 
many of the data from the PSG (SpO2, AF, 
ECG/HRV, etc.) gather information enough to 
obtain accurate machine learning methods, as 
reflected by the high diagnostic performances 
shown in the studies involved in Table 8.1, and in 
many others referenced within this chapter. This 
implies that those methods to be evaluated in the 
future would need to not only justify a possible 
increase in the performance but also the eventual 
rise in data requirements and computational 
costs.

The studies we chose as examples also reflect 
a lack of homogeneity in the validation strategy. 
This is an issue that is also present in the scien-
tific literature (Gonzalo C Gutiérrez-Tobal et al., 
2021c) and hinders the comparison between the 
different methods. As mentioned in the past sec-
tions, the ideal training/validation/test strategy is 
greatly influenced by data scarcity. Accordingly, 
the problem is closely related to the different 
sample sizes of the studies, which involve a num-
ber of subjects ranging from moderate (102) to 
high (5793). This underlines the need to make 
available for the scientific community large data-
bases such as CHAT and SHHS.

The previous idea is particularly important in 
the case of pediatric OSA. The gap between the 
machine learning performance in adults and chil-
dren can be partially attributed to the more 
restrictive diagnosis rules for children. However, 
large samples such as CHAT can be very useful 
to increase the knowledge of pediatric OSA and 
develop more accurate machine learning 
models.

Finally, despite the high performance shown 
in several of the studies referenced in this chap-
ter, it is very difficult to find machine learning-

8  Conventional Machine Learning Methods Applied to the Automatic Diagnosis of Sleep Apnea
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based systems implemented in real clinical 
environments. One possible reason for this issue 
is that clinicians and healthcare providers and 
managers perceive these methods as a black box, 
thus preventing them from completely relying on 
their predictions (Gonzalo C Gutiérrez-Tobal 
et al., 2021c). Accordingly, the machine learning 
designers who expect their work to be finally 
implemented will need to put extra efforts in 
explaining the decisions taken by their automatic 
models (Adadi & Berrada, 2018).

To sum up, traditional machine learning meth-
ods have proven to be very useful in the auto-
matic OSA diagnosis simplification. Accordingly, 
they are still valid options both to develop new 
proposals and to act as benchmark for future 
methods.
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9Home Sleep Testing of Sleep 
Apnea

Martin Glos and Dora Triché

Abstract

Measurement methods with graded complex-
ity for use in the lab as well as for home sleep 
testing (HST) are available for the diagnosis 
of sleep apnea, and there are different classifi-
cation systems in existence. Simplified HST 
measurements, which record fewer parame-
ters than traditional four- to six-channel 
devices, can indicate sleep apnea and can be 
used as screening tool in high-prevalence 
patient groups. Peripheral arterial tonometry 
(PAT) is a technique which can be suitable for 
the diagnosis of sleep apnea in certain cases. 
Different measurement methods are used, 
which has an influence on the significance of 
the results. New minimal-contact and non-
contact technologies of recording and analysis 
of surrogate parameters are under develop-
ment. If they are validated by clinical studies, 
it will be possible to detect sleep apnea in need 
of treatment more effectively. In addition, this 

could become a solution to monitor the effec-
tiveness of such treatment.

Keywords

Obstructive sleep apnea · Sleep-related 
breathing disorders · Simplified sleep apnea 
diagnostics · Home sleep apnea testing · 
SCOPER criteria

9.1	� Introduction

The diagnostic procedure for sleep apnea depends 
on the occurrence of symptoms, comorbidities, 
and the medical history of the patient. The refer-
ence method is the lab-based polysomnography 
(PSG), which allows comprehensive diagnostics 
for all kind of sleep-related breathing disorders 
(SRBD) by recording and characterization of dif-
ferent types of breathing pattern, cardiac activity, 
sleep structure, arousal, and behavior under con-
trolled conditions. For home sleep apnea testing 
(HSAT), portable four- to six-channel systems 
and alternatively peripheral arterial tonometry 
(PAT) are used as out-of-center (OOC) proce-
dures allowing diagnosis of obstructive sleep 
apnea (OSA) in a number of subjects (Stuck 
et al., 2020).

In addition, HSAT devices with a reduced 
number of channels, typically one to three, are 
available for initial screening for sleep apnea. 
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Recently, smart wearable devices with new, 
minimal-contact, and non-contact measurement 
techniques have been developed, and they are 
currently under investigation for clinical use.

This chapter will give an overview of HSAT 
techniques, focusing on technologies using a lim-
ited number of channels, non-obtrusive sensors, 
and promising forward-looking technologies. 
The potential and limitations of diagnostic tools 
will be explained, and their diagnostic value will 
be outlined.

9.2	� Classification of Methods 
for the Monitoring of Sleep 
Apnea at Home 
and in the Lab

An initial classification of methods of sleep mea-
surement was introduced in 2003 by the American 
Association of Sleep Medicine (AASM) 
(Chesson et al., 2003), suggesting four categories 
(“levels”) of recording systems:

•	 Type 1: supervised PSG, performed in sleep 
lab

•	 Type 2: non-supervised PSG, performed at 
home

•	 Type 3: portable sleep apnea monitoring with 
at least four channels (two respiratory vari-
ables, oxygen saturation, and pulse or heart 
rate)

•	 Type 4: the continuous measurement of one to 
two signals during sleep

The current AASM manual, version 2.6 (Berry 
et al., 2020), defines two different kinds of HSAT 
technologies for sleep apnea:

•	 Devices utilizing flow and/or effort 
measurement

•	 Devices utilizing PAT

This takes into account more recent device 
developments and new sensor technologies. In 
this context, the introduction of a new system of 
categorization, based on the so-called “SCOPER” 
criteria, has come to prominence. This system 

does not classify devices according to the number 
of recorded channels, but instead makes it possi-
ble to qualitatively graduate which of the func-
tions affected by sleep apnea are recorded (Collop 
et  al., 2011). The following functions are 
assessed:

•	 Of the sleep (Sleep – S)
•	 Of the cardiovascular system 

(Cardiovascular – C)
•	 Of the oxygen saturation (Oximetry – O)
•	 Of the body position (Position – P)
•	 Of the respiratory effort (Effort – E)
•	 Of the respiratory flow (Respiratory – R)

The complete diagnostic procedure for sleep 
apnea is country-specific. The AASM published 
a clinical practice guideline for diagnostic test-
ing for OSA in adults (Kapur et  al., 2017), 
whereas the German Sleep Society (DGSM) 
issued a S3 guideline initially in 2017 (Mayer 
et  al., 2017), followed by a “Partial Update of 
the German S3 Guidelines on Sleep-Related 
Breathing Disorders in Adults” in 2020 (Stuck 
et  al., 2020). According to these guidelines, 
polysomnography (PSG) is still the reference 
technique for diagnosing OSA.

The procedure, scoring, and documentation of 
the PSG technique are described in a manual of 
the AASM (Berry et al., 2020).

For the OOC diagnosis of OSA, the mentioned 
HSAT technologies are used, which are sufficient 
for the final diagnosis of OSA in cases of high 
pretest probability, i.e., with signs and symptoms 
that indicate an increased risk of moderate to 
severe OSA. However, this is true only for 
uncomplicated cases and does not apply if comor-
bid pulmonary, psychiatric, or neurological/neu-
romuscular diseases are present or if other forms 
of SRBD or other sleep disorders are suspected 
(Stuck et al., 2020; Kapur et al., 2017).

HSAT is usually performed unsupervised in 
the home environment with no objective record-
ing of sleep structure. This may lead to an 
increased amount of measurement artifacts com-
pared to PSG and subsequently to lower accuracy 
in the assessment of severity of nocturnal breath-
ing disorders (Escourrou et al., 2015).
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In addition, there are reduced systems record-
ing typically one to three channels used for 
ambulatory diagnostics in OSA. At present, these 
simplified devices can only be used as an initial 
screening tool, e.g., to determine the pretest prob-
ability. They are currently not recommended for 
the final diagnosis of OSA (Stuck et  al., 2020; 
Kapur et al., 2017).

9.3	� Home Sleep Apnea Testing 
(HSAT) with Type 3 Portable 
Monitors

9.3.1	� HSAT Utilizing Flow and/or 
Effort Parameters

The most established HSAT method is portable 
monitoring by using four to six signals. As a mini-
mum, this must record airflow, chest and abdomi-
nal respiratory inductance plethysmography 
(RIP), and oximetry (Berry et  al., 2020; Kapur 
et al., 2017). The standard HSAT procedures for 
airflow measurement are the use of either a nasal 
pressure transducer (nasal cannula) or an oronasal 
thermal airflow sensor. Nasal pressure sensors 
allow semi-quantitative measurements of airflow 
related to tidal volume and therefore are superior 
for hypopnea detection, although measuring the 
changes of temperature in front of the nose and 
mouth in inspiration and expiration by means of 
an oronasal thermal airflow sensor allows valid 
detection of respiratory events, especially hypop-
neas, in cases of mouth breathing (Berry et  al., 
2012). If HSAT is used for the monitoring of posi-
tive airway pressure therapy, the flow is derived 
from the device flow. To distinguish between 
obstructive and central apneas and hypopneas, 
movements of the thorax and abdomen are 
recorded. The change of circumference should 
preferably be recorded using RIP technology; 
alternative sensors are listed in the AASM manual 
(Berry et al., 2020). Changes in an electrical wire 
arranged as a coil lead to changes in a magnetic 
field, which is converted into differences of cir-
cumference. This measurement method is more 
exact but also more vulnerable and more expen-
sive, as a strong pull on the wire leads to a defect. 
The snoring noise is either calculated from the 

flow curve or recorded by a snoring microphone 
placed at the neck. For cardiac rhythm monitor-
ing, the standard method for HSAT is pulse 
recording performed by pulse oximetry. The more 
exact possibility of heart rate detection is to derive 
a single-channel ECG (Caples et al., 2007). The 
subject’s body position is determined by using a 
3D accelerometer sensor. Figure 9.1 illustrates a 
typical HSAT recording snapshot of 5  minutes 
duration during occurrence of episodes with 
obstructive apneas Fig. 1.

Some HSAT systems provide in addition 
information about the sleep-wake state by evalu-
ating data from an inbuilt accelerometer sensor. 
Depending on the subject of investigation, it is 
possible to integrate EEG channels as well or to 
measure leg movements using EMG electrodes 
(Collop et al., 2011).

9.3.2	� HSAT Utilizing Peripheral 
Arterial Tonometry (PAT)

As stated, PAT has been accepted as an additional 
OOC measurement method for the diagnosis of 
OSA and is included in the AASM manual (Berry 
et  al., 2020). The measuring principle of PAT is 
based on recording the peripheral arterial vascular 
tone and thus the vascular volume. Activation of 
the sympathetic tone caused by apneas, hypop-
neas, respiratory effort-related arousals (RERAs), 
or other types of events accompanied by central 
nervous activation/arousal leads to vasoconstric-
tion, controlled by α-adrenergic receptors in the 
smooth vascular muscles. A finger cuff tracks 
changes in light transmission through the finger-
tip, this factor being related to changes in the ves-
sel diameter due to sympathetic and vagal 
modulation. In addition, the signal varies rhythmi-
cally with the frequency of heartbeats due to the 
pulsatile character of the vessel volume. For signal 
amplification and enhancement of signal-to-noise 
ratio, a subdiastolic pressure is applied in the cuff 
while recording (Penzel et  al., 2004). A typical 
measuring device worn around the wrist records 
the following signals: PAT signal, pulse, oxygen 
saturation, and actimetry. As an optional addition, 
the body position and snoring sounds are recorded 
by an external sensor worn on the chest. An auto-
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Fig. 9.1  Five-minute sample of a HSAT type 3 recording 
with channels of airflow (nasal cannula), thoracic and 
abdominal respiratory effort, oxygen saturation, pulse, 
snoring, and body position. The occurrence of obstructive 

apneas led to cessation of airflow (red marks), oxygen 
desaturations (purple marks), cyclic variation of heart rate 
(CVHR, green marks), as well as intermittent snoring epi-
sodes (yellow marks)

matic algorithm performs a preliminary analysis 
of the recorded data; a manual evaluation is possi-
ble and recommended. An advantage of this 
method compared to HSAT utilizing nasal flow 
and effort signals is the possibility of detecting 
arousals by changing the peripheral arterial vascu-
lar tone by activating the sympathetic nervous sys-
tem. A differentiation between wakefulness and 
sleep and even individual sleep stages seems to be 
possible in this way, so that the method allows the 
calculation of an AHI based on total sleep time 
(TST) (Schöbel et  al., 2018). This was demon-
strated in a meta-analysis of Yalamanchali et  al. 
(2013) which showed a very good correlation to 
PSG with regard to the sleep stage analysis. When 
it comes to the positive predictive value for OSA, 
this method is likewise considered to be well 
suited (Collop et al., 2011). In Germany, PAT tech-
nology became part of the 2020 update of the S3 
guidelines on sleep-related breathing disorders in 
adults (Stuck et al., 2020).

9.4	� Motivation and Indication 
for Use of Simplified HSAT 
Devices for Sleep Apnea

The clinical OOC and in-lab resources available 
for the abovementioned diagnostic procedures 
for sleep apnea are limited in terms of personnel, 
infrastructure, and technical equipment. The con-

sequences are, on the one hand, long waiting lists 
for the diagnosis and for the start of appropriate 
therapy and, on the other, the difficulty of reduc-
ing the high number of previously undiagnosed 
affected persons with the existing structures. The 
ultimate aim in the future will be to identify more 
quickly those patients affected who require ther-
apy. So broader screening and more effective 
therapy management are called for. This is par-
ticularly true of patients with certain underlying 
diseases that have a high prevalence of sleep 
apnea, especially for patients with cardiovascular 
risk diseases (arterial hypertension, pulmonary 
hypertension, CHD, stroke, arrhythmias, chronic 
heart failure) without the presence of all typical 
symptoms (Oldenburg et al., 2015).

From a clinical perspective, this puts a priority 
on the need to assess the value of the available 
simplified systems for sleep apnea and, at the 
same time, to test new digital technologies and 
low-contact/no-contact measurement methods 
for their clinical diagnostic functionality and 
suitability (Penzel et al., 2020).

Furthermore, these developments can also 
contribute to an increase in comfort by having the 
sensors on the body, a better sleep quality, and the 
improved accuracy of measurement systems. 
This also opens up opportunities of improving 
therapy monitoring  – and thus the therapy out-
come – of patients with sleep apnea in conjunc-
tion with new telemedical technologies.
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9.5	� Measurement Techniques 
Used for Simplified HSAT

9.5.1	� Oximetry and Pulse Wave 
Analysis

Apnea and hypopnea events as markers of disor-
dered breathing typically cause oxygen desatura-
tions. Event-associated oxygen desaturation of 
≥3% or  ≥  4% and respiratory flow reduction 
≥30% for ≥10 seconds are criteria for detecting 
hypopnea events (Berry et al., 2020). The sever-
ity of oxygen desaturation depends on the dura-
tion of the event and the baseline oxygen 
saturation level. The exact drop in oxygen satura-
tion is further determined by the oxygen binding 
curve and the placement of the sensor. Regardless 
of the complexity of the signal gathered by signal 
processing of red and infrared photoplethysmo-
graphic (PPG) signals from the small vessels in 
the fingertip, this itself is very intuitive and is 
therefore used without further measurement 
parameters as a diagnosis tool for sleep apnea. 
Typical scoring criteria of an ambulatory mea-
surement are the number of oxygen desaturations 
(3% or 4%) per hour of recording time (Oxygen 
Desaturation Index – ODI); the minimum, mean, 
as well as maximum oxygen saturation during 
the recording time; and the percentage of the 
recording time with values below certain thresh-
olds of oxygen saturation, e.g., ≤88% (Berry 
et  al., 2020). Studies with home sleep testing 
investigating the ODI and the AHI in OSA 
patients have demonstrated a high measure of 
agreement (Dawson et al., 2015) and have shown 
a similar night-to-night variability (Fietze et al., 
2004), although it should be noted that there are 
some sleep apnea patients who do not exhibit 
nocturnal desaturations to a large extent and may 
go undetected when this procedure is used alone 
(Fietze et al., 2004). The temporal dynamics of 
oxygen desaturation rates appear to be related to 
the degree of apnea-associated increases in blood 
pressure, as reported in a study by Wang et  al. 
(Wang et al., 2020). Thus, a new marker of car-
diovascular impairment due to sleep apnea may 
be available in the future. The degree of the ten-
dency to fall asleep during the day also seems to 

correlate with apnea-associated oxygen desatura-
tions during sleep (Zhang et al., 2020).

Devices from various manufacturers are avail-
able, which usually include a wrist-worn record-
ing unit with display function in addition to the 
finger clip sensor as seen in Fig. 9.2.

In addition to oxygen saturation, the pulse rate 
is recorded typically. Some devices perform elab-
orated analysis of the PPG-based pulse wave 
morphology, for example, to estimate measures 
of cardiovascular risk (Cardiac Risk Indicator – 
CRI; Fig. 9.2, left panel) (Sommermeyer et  al., 
2016) or, in combination with a single-channel 
ECG, to evaluate pulse transit time (PTT). 
Considering the individual distance from the 
heart to the finger, one can subsequently calculate 
the pulse wave velocity (PWV) from beat-to-beat 
PTT values (Pielmus et al., 2021). PWV values 
are a marker of the vessel’s stiffness, but tempo-
ral changes also reflect the blood pressure dynam-
ics (Pielmus et  al., 2021). By calibration 
considering intra-individual vessel properties, 
one gets an estimate of nocturnal BP dynamics 
during sleep, which allows, e.g., recognition of 
BP increases due to sleep apnea (Gehring et al., 
2018).

The recorded data can be downloaded to a 
computer and visualized and evaluated offline. 
Some devices also enable data exchange with 
apps on mobile devices via a Bluetooth 
interface.

More recent developments from the consumer 
sector integrate LED-based photoplethysmogra-
phy into the bottom of smartwatches or as shown 
in the example in Fig.  9.3 into finger ring-like 
devices. It enables the measurement of heart rate 
as well as of nocturnal oxygen saturation and 
subsequent estimation of sleep apnea severity 
“for everyone” by means of coupled apps, inde-
pendent of a medical indication.

For the evaluation of these measurements with 
regard to SRBD, in addition to observing the 
abovementioned boundary conditions for the 
behavior of oxygen saturation, the fact remains 
that these devices have so far generally not been 
approved as medical devices and thus cannot 
replace medical diagnostics. In addition, data 
security issues for the cloud-based data storage 
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Fig. 9.2  Example of simplified HSAT devices (left panel, 
SOMNOcheck micro CARDIO, Weinmann/Löwenstein 
Medical SE & Co. KG; right panel, WristOx2 Model 3150, 
Nonin Medical, Inc.) using photoplethysmographic sig-

nals from the finger for analysis of SpO2 and pulse rate. In 
addition, the analysis of pulse wave morphology and con-
comitant cardiac risk is performed by the SOMNOcheck 
micro CARDIO (Sommermeyer et al., 2016)

Fig. 9.3  Example of a mobile device out of the consumer 
sector (“wearable”) for the estimation of sleep apnea 
severity by analysis of heart rate and oxygen saturation 
using finger photoplethysmography. Left panel shows the 

finger ring device which is connected to an app on the 
mobile phone for online data display and data transfer. 
Right panel shows results for sleep apnea severity based 
on cloud data analysis

and data processing remain unclear in many 
cases. Nevertheless, these and similar devices 
(“wearables”) are becoming increasingly wide-
spread. Some manufacturers are also conducting 
clinical-scientific studies and are striving to 
obtain approval for these measurements and eval-
uations for medical diagnostics in the future.

9.5.2	� Nasal Flow

Changes of respiratory flow are key features of 
patterns of disturbed breathing during sleep in 
SRBD.  These are characterized as either com-
plete cessation (apneas) or partial reduction 
(hypopneas, RERAs) of flow for at least 10 sec-
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onds (Berry et  al., 2020). For home testing as 
well as for in-lab recordings, thermistor/thermo-
couple and nasal pressure sensors (nasal cannula) 
are established qualitative measurement meth-
ods. They are a proven approach as an alternative 
to the gold standard technique – the pneumotach-
ograph. In comparison to the thermistor/thermo-
couple, the nasal pressure sensors have the 
advantage of being able to detect respiratory flow 
reductions more sensitively and, in some cases, 
to a semi-quantitative degree, which is particu-
larly important for hypopnea scoring. Reliable 
detection of events, especially apneas, with the 
nasal pressure sensor may however be limited in 
cases of mouth breathing.

In the field of simplified home sleep apnea 
testing using typically one to three channels, a 
number of devices are available which use nasal 
pressure signals (Crowley et al., 2013; Keshavarzi 
et al., 2018). Those may be supplemented by fin-
ger oximetry/plethysmography and, if necessary, 
by measurement of respiratory effort. By apply-
ing signal processing, the parameters respiratory 
flow and snoring can be determined from the 
“raw” signals of the nasal pressure sensor, while 
the additional parameters oxygen saturation and 
pulse rate are obtained from finger oximetry/
plethysmography. Thus, apneas and hypopneas 
can be detected by these devices on an out-of-
center basis. Furthermore, with additional respi-
ratory effort measurement, these can in principle 
also be characterized as obstructive, mixed, or 
central apneas as well as patterns of periodic 
breathing, although reliability is limited due to 
the out-of-center setting. Another limitation is 
that the arousal criterion for hypopnea detection 
cannot be applied due to the absence of EEG 
recording.

9.5.3	� ECG Measures

In SRBD, changes in autonomic tone occur due 
to sympathetic activation during apnea and 
hypopnea events. As a result, there is typically a 
temporal cyclic alternation of bradycardiac and 
tachycardiac episodes in the rhythm of each pat-
tern of disordered breathing, which is called 

cyclic variation of heart rate (CVHR) (Penzel 
et al., 2016). CVHR is obtained from the ECG by 
beat-to-beat detection of the QRS complex and 
subsequently calculation of the resulting time 
series of heart rate.

Because CVHR is so characteristic of apneas 
and hypopneas, it is a suitable tool to elicit evi-
dence for the presence of SRBD. In addition, the 
ECG exhibits respiration-dependent amplitude 
fluctuations of the QRS complex. This can also 
be used for the detection of SRBD and is called 
ECG-derived respiration (EDR) (De Chazal 
et al., 2009).

The combination of CVHR and EDR, as well 
as spectral analysis of heart rate variability 
(HRV), has been implemented in commercial 
analysis software of 24-hour ECG recorders 
(“Holter monitor”). It can give cardiologists an 
indication of the need for further investigations 
for SRBD. Figure 9.4 shows a sample of CVHR, 
EDR, and HRV from a Holter recording during 
the occurrence of apneas.

Furthermore, using mostly pulse rate instead 
of heart rate, the methods of analyzing CVHR 
and HRV along with other recorded information 
have already been implemented in wearable/con-
sumer devices in order to provide the user with 
hints of the presence of SRBD (Fontana et  al., 
2019).

9.5.4	� Transthoracic Impedance (TTI)

Measurement of TTI is a measurement technique 
mainly used in cardiology to obtain indications 
for SRBD. The measurement principle of TTI is 
that respiratory-associated volume changes of the 
thorax are recorded by measurement of electrical 
impedance. The SRBD pattern modulates the 
TTI signal accordingly, and amplitude-based 
detection algorithms and timing criteria are used 
to detect events. According to the pathophysiol-
ogy, the sensitivity for central events is higher 
than for obstructive ones. Essentially, this method 
has been integrated into two classes of devices, a 
Holter ECG system (Mueller et  al., 2006) and 
cardiac implantable electronic devices (CIED), 
such as pacemakers, cardioverter/defibrillators, 
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Fig. 9.4  Analysis for sleep apnea out of a 24-hour ECG 
recording (“Holter monitor”): 3-minute sample with 
cyclic variation of heart rate (CVHR, top) and 
electrocardiographic-derived respiration (EDR, middle) 
during apneas, as well as 24-hour time-frequency analysis 

of heart rate variability (spectrogram, bottom) showing 
increased low frequency (LF; 0.04 .. 015 Hz) indicating 
sympathetic activity at night due to the occurrence of 
sleep apnea. (Modified from (Glos & Schöbel, 2021))

and CRT defibrillators (Chen et al., 2019; Defaye 
et al., 2019; Dias et al., 2017). The advantage of 
both applications is that no additional device or 
electrodes are needed to perform the TTI mea-
surement. Of course, the detected events usually 
cannot be characterized as apneas or hypopneas, 
nor can a distinction be made between obstruc-
tive, mixed, and central genesis. Nevertheless, a 
number of studies comparing this method with 
PSG have provided evidence that it is possible to 
reliably screen patients with cardiovascular dis-
ease for the risk of SRBD (Mueller et al., 2006; 
Chen et  al., 2019; Defaye et  al., 2019). Such 
patients can then be referred for further guideline-
based SRBD diagnosis.

9.6	� Surrogates of Respiration 
Gained by Minimal-Contact 
and Contactless Techniques

9.6.1	� Sound Analyses

The recording and analysis of respiratory sounds 
(breathing, snoring, choking, gasping) can be 
used to estimate occurrence of SRBD as well. 

Measurement is performed in a low-contact 
fashion either by using an appropriate sensor 
applied to the skin or by using non-contact tech-
niques such as microphones built into external 
devices.

An innovative approach is the combination of 
microphone and pressure transducer in one sen-
sor. Use of such a combined sensor applied on the 
suprasternal notch makes it possible to calculate 
the respiratory flow, the respiratory effort, and the 
snoring by means of signal analysis (Fig.  9.5). 
Studies in comparison with PSG (partly also with 
esophageal pressure measurement) have shown 
that with high sensitivity and specificity, apneas 
and hypopneas can be detected and obstructive 
and central events can also be differentiated (Glos 
et al., 2019; Sabil et al., 2019).

In addition, there are numerous developments 
from the consumer sector which either use sound 
analyses of built-in mobile phone microphones 
or else work as stand-alone devices in order to 
obtain hints for the occurrence of 
SRBD. Scientifically substantiated clinical stud-
ies with these devices/smartphone apps have 
indeed been conducted and published (Narayan 
et al., 2019; Tiron et al., 2020), but they are gen-
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Fig. 9.5  Illustration showing a combination sensor in 
which respiratory flow and snoring are calculated from 
the microphone signal and respiratory effort is derived 

from the pressure sensor signal. The application of the 
sensor at a suprasternal position is shown on the bottom 
left. (Modified from (Glos & Schöbel, 2021))

erally not yet certified as medical devices for 
diagnostic purposes.

9.6.2	� Movement Analyses

The movements of the thorax and abdomen 
caused by respiratory effort, the mechanical 
vibrations during snoring, and the mechanical 
cardiac action can be used as additional surrogate 
parameters for the detection of SRBD. As with 
sound analyses, data can also be acquired in a 
minimal-contact or non-contact fashion. With 
regard to this, these methods are particularly suit-
able for long-term recording, e.g., in connection 
with the monitoring of therapeutic outcome. A 
technological approach is the detection of micro-
gravitations via pressure-sensitive/charge-
sensitive sensor mattresses/strips (Tenhunen 
et al., 2013). Since heart movements are simulta-
neously present with respiratory mechanics (bal-
listocardiography), respiratory activity (Tenhunen 
et al., 2013), snoring (Perez-Macias et al., 2018), 
and heart rate (Paalasmaa et al., 2015) can also be 
recorded and analyzed using advanced signal 
processing algorithms. A number of such appli-
cations, usually coupled with dedicated smart-
phone apps on wearable devices, are already 
available commercially. A number of clinical 
studies suggest the suitability in principle of 

these methods for SRBD screening. However, 
further validation is needed to establish this 
method as a clinical tool (Fino & Mazzetti, 2019).

Additional approaches to screen for SRBD 
using movement analysis are technologies that 
either measure the reflection of high-frequency 
electrical impulses (radar) (Weinreich et  al., 
2014), of auditory waves (sonar) (Tiron et  al., 
2020), or of infrared light reflections (3D depth 
camera) (Coronel et  al., 2019; Veauthier et  al., 
2019). The advantage of all these applications is 
that they operate “from the bedside table,” com-
pletely without contact. Studies in comparison 
with PSG concluded the suitability of these meth-
ods for the calculation of pretest probability of 
SRBD, e.g., in patients with hypertension or 
heart failure (Crinion et al., 2020; Savage et al., 
2016). As with other techniques analyzing surro-
gate parameters, approval procedures for autho-
rizing this application as a medical device have 
not yet been completed.

9.7	� Conclusion

Well-researched methods of examination for the 
diagnosis of sleep-related breathing disorders, 
such as four- to six-channel HSAT devices, have 
been established for many years. New tools are 
being developed and are increasingly coming to 
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be validated. Some methods that are currently 
only used as wearables will be approved as medi-
cal devices in the future. All this will lead to an 
enrichment of diagnostic capabilities and an 
increase in resources to reduce the number of 
undiagnosed patients, as well as contributing to 
improvement in the treatment management of 
sleep apnea.
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Abstract

Here we discuss the current perspectives 
of comprehensive heart rate variability 
(HRV) analysis in electrocardiogram 
(ECG) signals as a non-invasive and reli-
able measure to assess autonomic function 
in sleep-related breathing disorders (SDB). 
It is a tool of increasing interest as differ-
ent facets of HRV can be implemented to 
screen and diagnose SDB, monitor treat-
ment efficacy, and prognose adverse car-
diovascular outcomes in patients with 
sleep apnea. In this context, the technical 
aspects, pathophysiological features, and 

clinical applications of HRV are discussed 
to explore its usefulness in better under-
standing SDB.
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10.1	� Introduction

Sleep-disordered breathing (SDB) has a detri-
mental impact on the autonomic nervous system 
(Dissanayake et al., 2021; Dempsey et al., 2010). 
The International Classification of Sleep 
Disorders (ICSD-3) classifies sleep-related 
breathing disorders into four categories: obstruc-
tive sleep apnea (OSA) disorders, central sleep 
apnea (CSA) syndromes, sleep-related hypoven-
tilation disorders, and sleep-related hypoxemia 
disorder (Sateia, 2014). OSA and CSA are the 
most common disorders. Neither of these two 
main types would lead to intrinsic autonomic 
modulation as they have distinctive practical 
hemodynamic implications (Leung, 2009). 
Electrocardiogram (ECG) records the electrical 
activity generated by the polarization and depo-
larization of myocardial cells (Israel et al., 2005). 
ECG is an integrated signal manifested by mor-
phology and cardiac rhythms. Specific waves (P 
wave, QRS complex, T wave) are formed in ECG 
morphology. The rate and regularity of heartbeats 
are regulated by the sinus node. Not limited to the 
identification of abnormal morphologies, numer-
ical analysis techniques are also applied to the 
etiology of ECG, such as heart rate variability 
(HRV). HRV measures the variation between 
successive heartbeats in a sinus rhythm time 
series (Task Force of the European Society of 
Cardiology and the North American Society of 
Pacing and Electrophysiology, 1996). In HRV 
analysis, the R peak is the most frequently used 
to detect the normal sinus to normal sinus (NN) 
intervals. Both animal and human studies show 
that HRV may contribute to assessing the degree 
of central autonomic network to autonomic ner-
vous system integration and central-peripheral 
neural feedback in a complex environment (Task 
Force of the European Society of Cardiology and 
the North American Society of Pacing and 
Electrophysiology, 1996; Pagani et  al., 1986). 
Based on that, HRV provides information about 
the capacity of the heart for adaptive regulation to 
internal and external environmental challenges.

Research on HRV in sleep disorders has pro-
gressively increased. To date, HRV has been 
widely accepted as a common non-invasive test 

to evaluate autonomic nervous system function. 
In sleep studies, a single lead modified II ECG is 
recommended in polysomnography (PSG) 
according to the American Academy of Sleep 
Medicine (AASM) guidelines (Iber et al., 2007). 
Current apnea-hypopnea index (AHI) severity 
definitions only capture the respiratory aspects of 
disease heterogeneity among patients with SDB. 
Combining AHI with additional measures, such 
as HRV, may help to refine the characterization of 
disease severity and cardiovascular implications.

Given the easy access to ECG data extracted 
from PSG, HRV is a promising tool for the detec-
tion and prediction of respiratory events, identifi-
cation of different sleep stages, monitoring and 
prognosis of cardiovascular outcomes, and 
assessment of treatment efficacy in sleep-
disordered breathing (SDB) populations (Roche 
et  al., 1999; Penzel et  al., 2002; Le & 
Bukkapatnam, 2017; Penzel et  al., 2003; Qin 
et  al., 2021a; Zhang et  al., 2020; Khoo et  al., 
2001; Glos et al., 2016). HRV during sleep serves 
as simple objective method for the evaluation of 
excessive daytime sleepiness, cognitive impair-
ment, and mental disorders (e.g., depression and 
bipolar disorder) (Taranto Montemurro et  al., 
2014; Kong et al., 2021; Pawlowski et al., 2017; 
Idiaquez et  al., 2014; Migliorini et  al., 2012). 
Importantly, reduced HRV is strongly associated 
with cardiovascular mortality in a diverse spec-
trum of clinical populations (Hillebrand et  al., 
2013). Previous studies have shown that HRV 
during both daytime and night-time potentially 
facilitates the detection of abnormal cardiac auto-
nomic modulation, suggesting the predictive and 
prognostic value of HRV in cardiovascular out-
comes (Singh et al., 2018).

Another possible ECG morphology feature is 
R-wave amplitude. However, the use of this is 
limited, and there is little available literature in 
sleep apnea. A previous study investigated the 
use of a combinatorial R-wave amplitude-based 
respiratory sinus arrhythmia (RSA) and ECG-
derived respiration (EDR) approach as a surro-
gate for respiratory inductance plethysmography 
to detect OSA and CSA, showing its ability to 
detect pre-recorded OSA and CSA diagnoses 
with 92.5% and 95.0% accuracy, respectively 
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(Khandoker & Palaniswami, 2011). These results 
indicated that an ECG-based neural network 
classification method could act as a potential sur-
rogate to detect sleep apnea.

In this chapter, we address the technical 
aspects of HRV and its clinical applications in 
sleep study. Advanced methods and tools for 
ECG analysis and physiological interpretation 
for statistical, geometrical, spectral, and nonlin-
ear HRV metrics derived from time-domain anal-
ysis, frequency-domain analysis, detrended 
fluctuation analysis, Poincaré plot, correlation 
dimension, entropies analysis, and symbolic 
dynamics will be presented.

10.2	� Rationale and Scientific 
Basis of HRV in SDB

Fluctuations in heart rate during sleep apnea are 
obvious phenomena (Guilleminault et al., 1984). 
Heart rate is determined by sinoatrial node input 
from the central nervous system and medullary 
cardiovascular center autonomic outflow. Heart 
rate increases are mediated by the sympathetic 
nervous system, while decreases are mediated by 
the parasympathetic nervous system. The circa-
dian pattern of HRV is a manifestation of alterna-
tions of sympathetic and parasympathetic 
activities during the day and night. The electro-
cardiographic changes observed in a 24-hour 
Holter recording show a periodic cosine HRV 
circadian pattern in healthy subjects (Bilan et al., 
2005; Li et al., 2011). The sympathetic predomi-
nance assessed by LF (low frequency) possibly 
peaks in two periods (5:00–9:00  am and 4:00–
6:00 pm), and the ratio of low frequency and high 
frequency (LF/HF) peaks in the afternoon (2:00–
4:00  pm) and then keeps attenuating until the 
early hours of the night (Bilan et  al., 2005; Li 
et al., 2011). The vagal control measured by high 
frequency (HF) and square root of the mean 
squared differences of consecutive NN intervals 
(RMSSD) remains increased during sleep hours 
at night, reaching its acrophase (3:00–5:00 am), 
and reaches its bottom in the afternoon 
(3:00–6:00 pm).

Previous findings demonstrated that OSA may 
have an abnormal circadian variation of auto-
nomic activity, which may help explain the tim-
ing of the occurrence of cardiovascular events 
(Aydin et al., 2004; Noda et al., 1998). It appeared 
that the severity of OSA has a determined influ-
ence on the circadian rhythms of spectral HRV as 
LF, HF, and LF/HF differentiated significantly 
between mild and severe OSA (Noda et  al., 
1998). Significantly lower HF and higher LF/HF 
were found from 4:00 am to 12:00 pm in severe 
OSA compared to mild OSA and the non-OSA 
control (Noda et al., 1998). Compared to normal 
sleep, a dip in HF and a rise in LF/ HF from the 
early morning to daytime in severe OSA implied 
suppressed parasympathetic tone and vibrant 
sympathetic tone. The disturbed circadian pat-
terns of autonomic modulation may contribute to 
daytime hypertension and an increased incidence 
of cardiovascular events such as myocardial 
infarction, stroke, and sudden cardiac death in 
early mornings.

In particular, the control of heart rate is criti-
cally dependent on sleep stages (Tobaldini et al., 
2013). The time courses of sleep are classified to 
different sleep stages. There are three phases of 
non-rapid eye movement (NREM) sleep, includ-
ing stage 1 (N1), stage 2 (N2), and stage 3 (N3) 
(Iber et al., 2007). It is shown that autonomic bal-
ance shifts from higher vagal activity during 
NREM sleep to higher sympathetic activity dur-
ing rapid eye movement (REM) sleep in healthy 
subjects (Tobaldini et  al., 2013; Vanoli et  al., 
1995). Autonomic regulation during wakefulness 
appears to be similar to that during REM.

It is known that OSA is characterized by par-
tial and complete cessation of breathing, arousal, 
hypoxia, and sleep fragmentation (Dempsey 
et  al., 2010). Given the genesis of HRV, those 
occurrences of OSA-related perturbations would 
result in various HRV patterns (Dissanayake 
et al., 2021; Sequeira et al., 2019). A cyclic bra-
dycardia and tachycardia pattern is observed dur-
ing sleep apneas (Guilleminault et  al., 1984). 
This cardiac phenomenon, connected to central 
and autonomic reflexes, is featured by a decrease 
in heart rate during apnea episodes and an 
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increase in heart rate during respiratory restora-
tion. Parasympathetic tone predominates the time 
course of apnea, and sympathetic tone rises pro-
gressively and reaches the peak of outflow traffic 
at the termination of sleep apnea. Moreover, 
abnormal blood pressure variability and absolute 
heart rate occur later than abnormal cardiovascu-
lar variability. SDB is thought to exert deleterious 
effects on alterations in the autonomic nervous 
system through multiple mechanisms. Current 
findings suggest that autonomic dysfunction in 
OSA may be induced by vagal withdrawal, sym-
pathetic hyperactivity, impaired baroreflex sensi-
tivity, or a combination of these responses 
mediated by the baroreflex, chemoreflex, and 
mechanical reflex due to hypoxia, arousal, and 
pleural pressure swings (Narkiewicz et al., 1998; 
Somers et al., 1991, 1995). In addition, OSA may 
enhance the autonomic, hemodynamic, and ven-
tilatory response to peripheral chemoreceptor 
activation stimulated by hypoxia due to elevated 
chemoreflex sensitivity. The duration of OSA and 
the degree of oxygen saturation also contribute to 
the sympathetic activation during OSA episodes 
(Narkiewicz & Somers, 2001; Jiang et al., 2017).

Recently, a systematic review attempted to 
summarize the evidence of associations between 
autonomic function and OSA (Dissanayake et al., 
2021). It has generally shown that OSA is related 
to increased risk of cardiovascular diseases and 
worsened health outcomes as indicated by 
reduced HRV. Spatiotemporal HRV patterns in 
OSA population have been extensively investi-
gated. The association between OSA and time-
domain HRV was found to be clearer, while the 
relationship between OSA and frequency-domain 
HRV was less consistent.

Some studies find no significant differences in 
HRV between OSA subjects and healthy control. 
The reasons for confusing and inconsistent find-
ings regarding temporal, spectral, and nonlinear 
HRV measures in OSA remain unclear. There are 
several important determinants of HRV. Age-
related decline, gender, and racial differences in 
autonomic nervous system functions would be 
the important demographic confounders (Liao 
et  al., 1995; Sloan et  al., 2008). Breathing pat-
terns, comorbidities, and other lifestyle behaviors 

like smoking, alcohol, caffeine intake, and physi-
cal activity are also known to have a recognizable 
influence on HRV analysis (Ucak et  al., 2021; 
Gerritsen et  al., 2001; Hayano et  al., 1990; 
Malpas et  al., 1991; Sondermeijer et  al., 2002; 
Soares-Miranda et al., 2014). In addition, studies 
sometimes do not control for the aforementioned 
potential covariates in adjusted statistical analy-
sis, which may result in misleading interpreta-
tions of data. Methodologically, the differences 
in HRV measurement protocol, recording length, 
resolution of raw data and analysis unit, as well 
as processing of the raw data (transformation 
methods and filters) also contribute to the mixed 
results. Nevertheless, time-domain measures 
demonstrate generally better reproducibility than 
frequency-domain measures under various exper-
imental protocols.

HRV is associated with the severity of OSA 
(Aydin et al., 2004; Narkiewicz et al., 1998; Qin 
et  al., 2021b). There is a trend with gradually 
decreased standard deviation of NN intervals 
(SDNN), increased LF, and decreased HF from 
mild to severe OSA. Furthermore, previous stud-
ies indicated long-lasting alterations in auto-
nomic function in snoring subjects and OSA 
patients even during without the presence of 
respiratory events (Qin et al., 2021b; Gates et al., 
2004; Ferini-Strambi et  al., 1992). However, 
OSA screening in the mild cases is challenging as 
autonomic dysfunction may not always appear in 
patients with mild OSA (Blomster et al., 2015). 
Balachandran et al. found significantly decreased 
LF, decreased HF, and increased LF/HF between 
moderate to severe OSA without any symptoms 
and non-OSA subjects during daytime waking 
state using 5-minute ECG data (Balachandran 
et al., 2012). To determine which HRV feature is 
more sensitive to pre-clinical or subtle autonomic 
alternation in patients with OSA needs further 
large-scale studies.

OSA is a recognized risk factor for multiple 
adverse cardiovascular events such as hyperten-
sion, heart failure, arrhythmia, stroke, coronary 
heart disease, and sudden cardiac death 
(McNicholas & Bonsigore, 2007; Gami et  al., 
2005). Risk of cardiovascular morbidity and 
mortality varies among different OSA pheno-
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types such as symptom-based clusters. 
Particularly, OSA patients with excessive sleepi-
ness have a significantly increased risk for the 
development of cardiovascular incidence and 
prevalence of adverse cardiovascular diseases 
than non-sleepy patients, which suggests exces-
sively sleepy OSA patients are more likely to 
express certain underlying physiopathological 
traits that puts them at higher risk. Montemurro 
et al. found that sleepy patients with severe OSA 
have a lower very low frequency (VLF) in HRV 
than those who are non-sleepy, suggesting 
depressed sympathetic control (Taranto 
Montemurro et  al., 2014). The possible mecha-
nisms of high prevalence and risk of unpleasant 
health outcomes are poorly understood. 
Exploration of the role of HRV in OSA pheno-
types and associated cardiovascular outcomes 
may contribute to discovering the explanation to 
those research questions.

However, electrocardiography can also give 
additional information. In particular, EDR can 
derive respiration rate from several sources, such 
as R-wave area, principal component analysis, 
and amplitude demodulation (Moody et  al., 
1985). Cardiopulmonary coupling (CPC) 
observes the phase difference between EDR and 
RR intervals to view the degree of influence res-
piration has on the cardiovascular system (Sadr 
& de Chazal, 2019). Several studies have shown 
that CPC can be used as an additional tool in the 
measure of sleep quality (Thomas et al., 2014). 
Additionally, CPC has shown promise as an 
accurate diagnostic tool in OSA, being able to 
diagnose OSA comparably to PSG-derived AHI 
and produce an automated AHI with a strong cor-
relation with conventional PSG-derived AHI 
(Khandoker et al., 2009a). Overall, subjects with 
severe OSA show significantly less phase cou-
pling than control subjects. Moreover CPC anal-
yses the interactions between respiratory 
dysregulation and upper airway anatomical 
obstruction and different respiratory events 
(Thomas et al., 2005; Thomas et al., 2007). Due 
to the vast amounts of information that is recorded 
during sleep studies, the analysis of additional 
markers may prove vital to improving the diag-

nostic and monitoring efficiency in OSA as 
shown by the promise of HRV, EDR, and CPC.

10.3	� HRV Measurements

Practice guidelines and guidance statements on 
HRV, a task force report of the European Society 
of Cardiology and the North American Society of 
Pacing and Electrophysiology, were published in 
1996 (Task Force of the European Society of 
Cardiology and the North American Society of 
Pacing and Electrophysiology, 1996). In this 
respect, Fig. 10.1 shows an overview of the main 
steps for HRV extraction and analysis. This 
process starts with the ECG acquisition. As afore-
mentioned, a single modified ECG lead II is rec-
ommended in PSG sleep studies. The guidelines 
of the AASM recommend ECG recordings with a 
minimum sample rate of 200 Hz and 500 Hz as 
recommended (Iber et al., 2007).

After acquisition, algorithms include a prepro-
cessing to adapt ECG signals to the processing of 
HRV signal. ECG waveform is commonly dis-
torted by noise and artifacts, such as baseline 
wander, electrode motion, and electromyographic 
interference. For this reason, filtering-based 
methods are applied to the ECG signals, which 
include bandpass linear filters to remove noise, as 
well as nonlinear transformations that correct 
inverted QRS complexes (Bansal et al., 2009).

The next step consists of R peak detection. 
Taking as input the preprocessed ECG signal, 
many automatic approaches have been proposed 
for the detection of QRS complexes, which 
includes the R peak position and amplitude. For 
this, many algorithms based on signal deriva-
tives, digital filters, the wavelet transform, neural 
networks, the Hilbert transform, adaptive filters, 
and morphological transformations exist (Kohler 
et  al., 2002). A popular one is the Pan and 
Tompkins method, which includes a two-stage 
bandpass filter, a derivative operation, a nonlin-
ear transformation, an integration, and a thresh-
olding operation (Pan & Tompkins, 1985).

Then the RR interval time series is derived. 
However, false R peak detection due to non-
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ECG acquisition

ECG preprocessing

R peaks detection

Extraction and correction of 
non-normal RR intervals

Nonlinear
Analysis

Time
domain
analysis

Frequency 
domain
analysis

HRV measurements

Fig. 10.1  Flowchart of 
heart rate variability 
analysis

removed noise can result in abnormal RR inter-
vals. Ectopic beats can introduce irregularities in 
the HRV signal that affect HRV measurements. 
Therefore, a detection and correction of non-
normal RR intervals follow using methods based 
on the empirical mode decomposition, neural 
network approaches, and wavelet-based meth-
ods. Conversely, the correction of non-normal 
beats can be performed using the deletion 
method, interpolation-based approaches, and 
adaptive methods.

Finally, HRV is analyzed using time-domain, 
frequency-domain, and nonlinear methods. 
Time-domain and frequency-domain analysis are 
utilized to measure the temporal and spectral 
properties of the RR tachogram (Figs. 10.2 and 
10.3). In the case of frequency-domain analysis, 
the irregularly time-sampled HRV signal is inter-
polated and sampled before the application of 
Fourier transform-based methods These two 
classic approaches limited in nonstationary sig-
nal analysis as ECG signals are highly nonlinear 
and nonstationary. Sophisticated mathematical 
nonlinear approached toward RR variability to 
evaluate the nonlinearity of HRV. Furthermore, 
increasing data shows that nonlinear HRV mea-
sures may be superior to conventional HRV 

parameters in cardiovascular risk stratification 
(Voss et al., 1996).

Regarding HRV analysis, a chosen time win-
dow is critical for comparable HRV measure-
ments as some variables are associated with time 
duration of data (Li et al., 2019a). With regard to 
this, there are ultra-short (<5  min), short-term 
(typically 5  min), and long-term (24  h) HRV 
analysis according to the selected length of ECG 
segments. Ultra-short HRV favors the HRV 
assessment involved in associations with events 
such as arousal and oxygen desaturation. Ultra-
low frequency (ULF) and VLF computed from at 
least 20–30 min windows would be more robust 
and reliable. However, the reliability of ultra-
short HRV features is an open question, partially 
due to the lack of well-established algorithms 
guiding investigators to systematically assess 
ultra-short HRV reliability. It is controversial that 
ultra-short time period HRV provides insufficient 
resolution to the feature of some HRV parame-
ters. Long-term HRV could reflect the effects of 
metabolism, circadian rhythm, and daily activity 
on cardiovascular system. HRV from 24-h ECG 
recordings also has been proven to have high 
reproducibility. However, Dissanayake et  al. 
found that it is more common to collect ECG data 
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Fig. 10.2  Schematic representation of changes in beat-
to-beat intervals (BBI) and power spectral density (PSD) 
from a patient without obstructive sleep apnea during 

5-minute (A) non-rapid eye movement sleep stage 2 and 
(B) rapid eye movement sleep

from overnight PSG for HRV analysis than from 
24-hour Holter recordings (Dissanayake et  al., 
2021). The strength of short-term HRV is easier 
to apply in the clinical practice and is affected by 
fewer factors. How to choose the time window 
for HRV analysis depends on the context of 
analysis.

The distributions of time-domain and 
frequency-domain measures are skewed in statis-
tical analysis; the natural log transform of those 
values is frequently used. However, the absolute 
values of the HRV results (e.g., mean, standard 
deviations, median values, and interquartile 
ranges) would better facilitate comparisons to 
other studies, and mostly in clinical setting, thus, 
they should be reported. In terms of the elucida-
tion for the heterogeneous findings, some meth-
odological concerns such as insufficient 
resolution in ECG data and low sample size (e.g., 

underpowered samples or selective samples) 
should be taken into consideration.

10.3.1	� Time-Domain Heart Rate 
Variability Analysis

Time-domain HRV analysis quantifies the 
amount of variation of heart rate in a given time 
series based on statistical methods. A majority of 
temporal HRV parameters measure the disper-
sion around their mean value in a recording 
period, including the mean value of normal-to-
normal interval time series (meanNN), SDNN, 
the standard deviation of the 5-minute average of 
NN intervals (SDANN), the mean of the standard 
deviations of all the 5-minute NN intervals of a 
24-h ECG recording (SDNNI), the ratio of SDNN 
divided by meanNN (CVNN), the square root of 
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Fig. 10.3  Schematic representation of changes in beat-
to-beat intervals (BBI) and power spectral density (PSD) 
from a patient with severe obstructive sleep apnea during 

5-minute (A) non-rapid eye movement sleep stage 2 and 
(B) rapid eye movement sleep

the mean squared differences of consecutive NN 
intervals (RMSSD), and the percentage of 
NN > 50 ms counts divided by the total number 
of all NN intervals (pNN50).

Abnormalities in cardiovascular variability 
are correlated with an increased risk of cardio-
vascular events and mortality (Gerritsen et  al., 
2001). In myocardial patients with impaired 
autonomic function, increased risk can be attrib-
uted to life-threatening arrhythmias (La Rovere 
et al., 2001). Additionally, low HRV or low baro-
reflex sensitivity is also associated with increased 
risk of non-fatal cardiovascular events and hyper-
tension in the general population. Lower HRV 
demonstrates 32–45% higher risk for the first 
emerging cardiovascular events in patients with 

no known history of cardiovascular diseases 
(Hillebrand et al., 2013). Kikuya et al. indicated 
that cardiovascular complications increased with 
reduced daytime HRV in the general population 
(Kikuya et  al., 2000). Huikuri et  al. found that 
nonlinear power-law relationship was the best 
predictor of all-cause mortality with significant 
7.9 relative risk in population who is over 
65 years old (Huikuri et al., 1998).

Notably, previous studies presented cut-off 
points of statistical HRV metrics for increased 
mortality risk. For example, reduced SDNN (e.g., 
<40 ms) or RMSSD (e.g., <25 ms) could be an 
indicator for cardiovascular risk stratification in 
certain population (Bigger Jr. et al., 1992). SDNN 
is the most common used time-domain index, 
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which measures the total variance of HRV in the 
selected ECG length. SDNN plays an important 
role in predicting cardiovascular risk and the 
prognosis of cardiovascular outcomes in various 
pathophysiological conditions, such as in patients 
after myocardial infarction and the elderly 
(Hillebrand et  al., 2013; Singh et  al., 2018). 
Reduced SDNN is related to increased risk and 
incidence of adverse cardiovascular outcomes. 
Hillebrand et al. demonstrated a 1% decrease in 
SDNN is correlated with approximately a 1% 
increase in fatal and non-fatal cardiovascular 
events in individuals without recognized cardio-
vascular diseases in a dose-response meta-
regression analysis (Hillebrand et  al., 2013). 
Many cut-off points of SDNN are reported to 
have increased risk of all-cause and cardiovascu-
lar mortality in various populations (Singh et al., 
2018). Findings on 24-hour SDNN calculated 
from Holter ECG data demonstrated up to 5.3 of 
risk ratio for cardiovascular death using 
SDNN<70 ms and 1.62–5.3 of risk ratio for all-
cause mortality using SDNN<50  ms, 
SDNN<70  ms, and SDNN<93  ms (La Rovere 
et al., 1998; Kleiger et al., 1987; Zuanetti et al., 
1996; Nolan et  al., 1998). For mortality risk 
assessment using ultra-short-term resting SDNN, 
SDNN <20  ms is related to increased risk of 
5-year CHD mortality (risk ratio 2.1, 95% CI 
[1.1–4.1]) and all-cause mortality (risk ratio 2.1, 
95% CI [1.4–3.0]) (Dekker et al., 1997).

In SDB populations, Sankari et al. used total 
and sleep RR interval dip index (RRDI), com-
puted by the number of RRI dips divided by total 
recording time and sleep time, respectively, to 
investigate the role of overnight alternation in 
heartbeats in cardiovascular risk in OSA patients 
from the Wisconsin Sleep Cohort (Sankari et al., 
2019). Their findings suggested that the increased 
dips in sleep RRI are related to cardiovascular 
disease onset with a hazard ratio of 1.21 per 
10-unit increment in RRDI. Patients with greater 
total RRDI are at higher risk of increased inci-
dence of cardiovascular diseases and mortality 
with a 7.4 hazard ratio. However, there are no 
generally accepted cut-off points of SDNN to 

identify the risk of mortality in SDB population. 
Whether HRV measures are a good indicator of 
different cardiovascular risk phenotypes in OSA 
requires more investigation.

Geometric Measures
RR time series can also be converted in geomet-
ric patterns. From these patterns, the following 
geometric measures have been commonly used to 
characterize HRV dynamics (Task Force of the 
European Society of Cardiology and the North 
American Society of Pacing and 
Electrophysiology, 1996):

•	 HRV triangular index (HRVi), which is the 
integral of the histogram (total number of RR 
intervals) divided by the height of the histo-
gram. It measures overall variability of RR 
intervals.

•	 Triangular interpolation of the NN interval 
histogram (TINN). TINN is the baseline width 
of the distribution measured as a base of a tri-
angle, approximating the distribution of NN 
intervals using the mean square difference. 
TINN also expresses overall HRV.

Geometrical methods are highly insensitive to 
the analytical quality of RR time series, thus not 
being affected by artifacts or ectopic beats. These 
parameters are recommended in RR intervals of 
at least 20 minutes, being preferred 24 h record-
ings (Task Force of the European Society of 
Cardiology and the North American Society of 
Pacing and Electrophysiology, 1996; Rajendra 
Acharya et  al., 2006). Thus, these methods are 
not appropriate to measure short-term changes in 
HRV, such as heart rate response to individual 
apneic events. Kim et  al. extracted HRVi and 
TINN from HRV during sleep (Kim et al., 2015). 
TINN did not show statistical relevance among 
OSA groups, whereas HRVi was significantly 
higher in OSA patients (AHI≥15) than in con-
trols (AHI<5), agreeing with other time-domain 
parameters that indicated that OSA patients have 
a diminished HRV and vagal predominance of 
heart control (Sequeira et al., 2019).
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10.3.2	� Frequency-Domain Heart Rate 
Variability Analysis

10.3.2.1	� Conventional Frequency-
Domain Analysis

Conventional frequency-domain analysis, also 
known as spectral analysis, identifies oscillatory 
components and quantifies the sympathetic and 
parasympathetic activities (Akselrod et  al., 
1981). It divides the power spectrum of HRV into 
individual frequency bands, including the ULF 
range (0–0.01  Hz), the VLF range (0.01–
0.04 Hz), the LF range (0.04–0.15 Hz), and the 
HF range (0.15–0.4  Hz). Many transformation 
methods are used to decompose HRV spectra 
such as fast Fourier transform (FFT), autoregres-
sive models, and wavelet transform. Limitations 
of FFT may include assumptions about the lin-
earity and the stationary nature of the ECG data.

Based on these frequency ranges in power 
spectral density, their relative strengths are quan-
tified as power. Relative spectral metrics are cal-
culated, including low frequency expressed in 
normalized units (LF nu), high frequency 
expressed in normalized units (HF nu), and low-
frequency to high-frequency power ratio (LF/
HF). LF nu and HF nu are calculated as relative 
proportions, which equal to LF/(LF + HF) × 100 
and HF/(LF + HF) × 100, respectively. The rela-
tive distribution of power in each frequency com-
ponent is calculated as a percentage of TP minus 
ULF to give percentages of VLF (%VLF), LF 
(%LF), and HF (%HF). The HF component 
mainly reflects parasympathetic activity, corre-
sponding to RSA. The reflection of LF is criti-
cized as the LF component may present pure 
sympathetic tone or both sympathetic and vagal 
activity. However, LF is affected by other cardiac 
mechanisms such as baroreflex sensitivity. The 
physiological reflection of VLF is not clear, but it 
is believed that VLF is associated with regulatory 
mechanisms such as the renin-angiotensin sys-
tem, thermoregulation, circadian oscillations, 
body temperature, and metabolism activity of the 
renin-angiotensin system (Taylor et al., 1998).

It is shown that there are strong correlations 
between time-domain and frequency-domain 
parameters (r = 0.85) (Kleiger et al., 1991). TP is 

approximately equal to the square of SDNN. ULF 
is closely associated with SDNN and SDANN. LF 
and VLF are linked to SDNNI. HF is related with 
RMSSD and PNN50. These correlations further 
help the verification of data quality. Increased 
sympathetic or decreased parasympathetic activ-
ity or both are considered as decreased HRV and 
vice versa.

Many of the aforementioned parameters have 
been investigated in sleep staging. Zemaityte 
et al. found that HR, mean, and SDNN decreased 
in sleep stages N1, N2, and N3, but increased dur-
ing REM sleep (Zemaityte et al., 1984). Bonnet 
et al. and Otzenberger et al. confirmed these find-
ings (Bonnet & Arand, 1997; Otzenberger et al., 
1998). Scholz et  al. showed that synchronized 
sleep was associated with a decreased LF/HF 
ratio and REM sleep with an increased LF/HF 
ratio (Scholz et  al., 1997). The effect of age on 
nighttime cardiac vagal activity has also been 
explored. Crasset et  al. compared young and 
elderly healthy subjects during wakefulness and 
sleep and found that elderly subjects had a lower 
HF during non-REM sleep than young subjects in 
the Sleep Heart Health Study (Crasset et  al., 
2001). The elderly patients showed HRV time- 
and frequency-domain parameters were at their 
lowest in slow-wave sleep. However, they also 
showed higher parameters in REM sleep than 
wakefulness, and the LF/HF ratio was not at its 
highest in REM sleep (Crasset et al., 2001).

Sleep stage estimation in diseased patients has 
also been explored. Post-MI patients showed a 
significantly higher LF/HF ratio than normal sub-
jects in non-REM and REM sleep and then wake-
fulness (Vanoli et  al., 1995). Contrastingly, 
normal subjects typically have a decrease in LF/
HF ratio from wake to non-REM sleep. As men-
tioned before, SDB groups have had varied 
results in HRV studies compared to normal sub-
jects (Dissanayake et al., 2021; Ucak et al., 2021). 
Shinar et al. found that there is no difference in 
VLF, LF, HF, LF/HF ratio, mean, and SDNN 
between control, OSA, and various sleep disor-
der groups (Shinar et al., 2006). It is evident that 
use of HRV in sleep stage estimation is possible, 
but that it needs to be adjusted for a host of con-
founding factors, including age and diseases.
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Previous findings applying frequency-domain 
analysis demonstrated significantly diminished 
vagal activity and enhanced sympathetic activity 
with decreased HF, increased LF, and discordant 
LF/HF in patients with OSA compared to those 
without during sleep and daytime (Ucak et  al., 
2021). Numerous publications reported that HF 
gradually decreases and LF progressively 
increases from mild to severe OSA during wake-
fulness and sleep (Dissanayake et al., 2021; Ucak 
et al., 2021). Interestingly, Gula et al. suggested 
that changes in autonomic activity are dispropor-
tional to OSA severity, demonstrating elevated 
sympathetic predominance and discordant auto-
nomic imbalance from mild to moderate OSA, 
compared to blunted responses in severe OSA 
(Gula et al., 2003). Qin et al. found similar pat-
terns of cardiac autonomic control during wake-
fulness prior to sleep onset in only obese patients 
with different levels of OSA severity (Qin et al., 
2021b). Their results suggested that among obese 
OSA patients, there was evidence of a shift to 
sympathetic hyperactivity in more severe OSA, 
as shown by a higher LF/HF ratio during wake-
fulness compared to obese non-OSA patients. 
Physiological and clinical values of these differ-
ences in autonomic response toward levels of 
OSA severity are unknown.

Low vagal tone is strongly associated with 
higher risk of cardiovascular diseases. Zhang 
et  al. suggested sleep HRV metrics, particularly 
HF nu during all three sleep stages, HF during 
REM sleep, and LF during N3 sleep as precursors 
of potential cardiovascular disease outcomes 
using the subset data from the Sleep Heart Health 
Study (Zhang et al., 2020). Liao et al. also found 
that reduced HF is a 1.72 times greater hazard for 
incident coronary heart disease (95% confidence 
interval (Cl) 1.17–2.51) in the Atherosclerosis 
Risk in Communities cohort (Liao et al., 1997). In 
contrast, Tsuji et al. implicated that lnLF is linked 
with all-cause mortality after adjusting for other 
risk factors in the early population recruited from 
the Framingham Heart Study (Tsuji et al., 1994).

10.3.2.2	� Bispectral Analysis
Conventional frequency-domain analysis based 
on the Fourier transform cannot characterize 
nonlinear behaviors and non-Gaussian events, 
as the phase information is lost (Task Force of 
the European Society of Cardiology and the 
North American Society of Pacing and 
Electrophysiology, 1996). In contrast, bispectral 
analysis preserves both phase and amplitude 
information of the spectral components of a 
time series, which allows to reflect deviations 
from linearity and Gaussianity in the HRV, 
which typically occur during sleep in OSA 
patients (Martín-Montero et  al., 2021). The 
bispectrum of a RR time series is obtained as 
follows:
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where X(f) is the Fourier transform of the RR 
time series and f1 and f2 are the frequency indices 
of the 2-D representation of the bispectrum.

Atri et al. showed that the bispectrum plot of a 
normal HRV contains numerous quadratic (non-
linear) phase couplings (QPCs) between very low 
and respiratory-range frequencies, whereas the 
bispectrum of HRV in an OSA event has QPCs 
more concentrated on intermediate frequencies, 
which may be due to a loss in the synchronized 
rhythm of the heart. They also obtained 95% 
accuracy for apneic episodes detection using 
spectral and bispectral features (Atri & Mohebbi, 
2015). Similarly, Martin-Montero et  al. found 
that the nonlinear coupling observed in the 
bispectrum around VLF and respiratory peaks in 
severe OSA children are redistributed to fre-
quency ranges related to apneic events. Their 
results also indicated that bispectral features 
computed in classical (VLF, LF, and HF) and 
OSA-specific bands (BW1, BW2, and BWres) 
can detect pediatric OSA more accurately than 
conventional spectral ones (Martín-Montero 
et al., 2021).
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10.3.2.3	� Wavelet Analysis
HRV dynamics is composed of slowly varying 
components (e.g., heart rate during sleep stages) 
and rapidly changing transient events (e.g., heart 
rate response to apneic events) (Qin et al., 2021a). 
Conventional spectral analysis is based on the 
short-time Fourier transform (STFT), which 
applies a fixed length window to analyze each 
segment of the time series, assuming stationarity. 
This fixed time-frequency resolution limits its 
capability to analyze HRV content. This limita-
tion is overcome by the wavelet transform (WT), 
which employs short windows at high frequen-
cies and long windows at low frequencies (Rioul 
& Vetterli, 1991), which makes it more suitable 
to analyze the nonstationary properties of HRV 
during sleep. Given a RR time series, the continu-
ous wavelet transform (CWT) decomposes it 
onto a set of base functions, called wavelets, 
using the following expression (Rioul & Vetterli, 
1991):
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where g(t) is the basic wavelet prototype, known 
as mother wavelet, and τ and a are the time trans-
lation and scale factor, respectively. In the dis-
crete wavelet transform (DWT), wavelet 
coefficients are computed only for power of 2 
scales (Rioul & Vetterli, 1991).

Khandoker et al. reported that the variability 
of the DWT coefficients of the RR time series in 
the frequency range (0.019–0.071  Hz) allows 
better quantification of the frequency compo-
nents associated with OSA events. Their results 
indicated that wavelet analysis of HRV and EDR 
signals provides useful information regarding the 
effect of sleep-related breathing disorder on car-
diac rhythms (Khandoker et al., 2009b). Similarly, 
Mendez et al. observed that dynamic of the car-
diorespiratory system is contained in the decom-
position levels of the DWT that represent the 
recurrence of apneic events and the respiratory 
frequency, suggesting that the respiratory 
arrhythmia in the heart rate and the frequency of 

apneic episodes are the most important HRV-
related information for OSA detection (Mendez 
et al., 2010).

10.3.3	� Nonlinear Analysis

Conventional methods for HRV analysis in the 
time and frequency domains are often not enough 
to characterize the dynamics of HRV, as the 
mechanisms involved in the generation of the 
heartbeat also interact in a nonstationary and 
nonlinear way (Sunkaria, 2011). In this regard, 
nonlinear methods derived from the chaos theory 
have demonstrated its usefulness to further char-
acterize the HRV. The main nonlinear methods 
used for HRV analysis are described in the fol-
lowing subsections.

10.3.3.1	� Detrended Fluctuation 
Analysis

Detrended fluctuation analysis (DFA) is a nonlin-
ear analysis technique widely used to quantify 
the fractal correlation properties of RR intervals 
(Peng et  al., 1995). DFA provides a modified 
root-mean square analysis that allows to detect 
short-range and long-range correlations in non-
stationary signals (Penzel et al., 2003; Rajendra 
Acharya et al., 2006). Given a RR time series of 
length N, the signal is first integrated (Peng et al., 
1994):

	
y j RR i RR k N

i

k
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�
�

1
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where RR(i) is the i-th RR interval and RRavg is 
the average of the RR time series. Then, the inte-
grated signal is divided into B non-overlapping 
time windows of equal length n. For each win-
dow, a least square line fit, yn(j), is obtained. 
Next, the integrated signal y(j) is detrended by 
subtracting the local trend, yn(j), in each window. 
The root-mean square fluctuation of the inte-
grated and detrended RR time series is calcu-
lated for all windows using the following 
expression:
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This process is repeated over all window sizes 
(time scales) to obtain the relationship between 
the fluctuation function, F(n), and the scale (n). 
The value of F(n) typically increases with the 
scale of the RR time series (Peng et  al., 1994). 
The fluctuations of HRV can be characterized by 
the scaling exponent, α, which measures the 
slope of the log-log plot representing F(n) vs. n.

The slope of DFA describes the roughness of a 
time series, and the time series becomes smoother 
with larger values of α. In DFA, white Gaussian 
noise (totally random signal) leads to a scaling 
exponent value of 0.5, while Brownian noise gen-
erates a scaling exponent value of 1.5. The slope 
of DFA is close to 1 in a healthy young popula-
tion. It decreases varying degrees according to 
different conditions. For example, the fractal 
scaling is low in patients with highly variable 
ECG signals (e.g., pre-ventricular contraction, 
atrial fibrillation, and ventricular fibrillation) and 
is high in patients with slowly variable ECG data 
(e.g., sick sinus syndrome, complete heart block, 
left bundle branch block, and ischemic/dilated 
cardiomyopathy) compared to α = 1.

In general, the DFA plot (F(n) vs. n) yields 
two scaling exponents: α1, for short time scales, 
and α2, for long time scales. In the analysis of 
HRV, Francis et al. compared the values of fractal 
α computed from DFA with the one from 
frequency-weighted spectral analysis to improve 
the understanding of the clinical implications of 
the scaling exponent. They suggested that a low 
α1 is related with low LF/HF and low %LF, while 
a low α2 is associated with high VLF/LF and 
high VLF/LF. These results establish not only a 
mathematical relationship between DFA and con-
ventional frequency-domain analysis but also a 
clinical explanation for fractal parameters 
(Francis et al., 2002). In the OSA context, Penzel 
et  al. identified two scaling regions of HRV: a 
short-time scale region (10  ≤  n  <  40  beats), 
related to the effect of breathing on the heart rate, 
and a long-time scale region (70 ≤ n < 300 beats), 
related to the effects of sleep stages and the circa-

dian rhythm. Penzel et  al. suggested that the 
accuracy for scoring sleep apnea severity and 
sleep stages using scaling analysis increased to 
74.4% and 85%, respectively, compared to 
frequency-domain analysis, 69.7% and 54.6% 
(Penzel et  al., 2003). Compared to linear HRV 
metrics, Da Silva et al. demonstrated that DFA α2 
derived from the full length of sleep ECG could 
be a potential indicator of identification of OSA 
severity (da Silva et  al., 2015). Their results 
showed α2 > 0.32 referred to an 80% accuracy of 
prediction of moderate OSA (15 < AHI<30) and 
α2 > 0.47 referred to a 76% accuracy of predic-
tion of moderate OSA (AHI>30). The advantage 
of DFA is that it addresses the methodological 
limitations of spectral analysis for nonlinear and 
nonstationary physiological data and easily 
removes noise and trends. The DFA method was 
commonly used to analyze long-term ECG data, 
which is limited in short-term HRV analysis.

10.3.3.2	� Entropy Analysis
The nonlinear features of heartbeats evaluated by 
entropy have been reported as a sensitive indica-
tor for the abnormal autonomic regulation in 
OSA. Entropy measures show the probability 
that similar patterns observed in time series 
sequence do not repeat. Many entropy-based 
approaches have been established to provide the 
amount of information in heart rate complexity 
such as approximate entropy (ApEn), sample 
entropy (SampEn), Shannon entropy, wavelet 
entropy, compression entropy, and multiscale 
entropy based on different algorithms (Henriques 
et  al., 2020). In information theory, ApEn is 
introduced to evaluate the regularity and the 
unpredictability of oscillation presented in the 
time series data (Pincus, 1991). SampEn is a 
refinement of ApEn, condensing short and noisy 
time series data without assessing self-similar 
patterns in the equation (Richman & Moorman, 
2000). The advantages of SampEn over ApEn are 
data length independence and relatively trouble-
free implementation. Multiscale entropy (MSE) 
is an extension of SampEn to multiple time scales 
or signal resolutions (Costa et  al., 2002). MSE 
can conduct the calculation even when the time 
scale of relevance in the time series is not known. 
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In terms of interpretation, a low value of ApEn 
reflects a regular pattern in the signal, while a 
high value of ApEn refers to a random pattern. 
For example, a reduction in ApEn is related with 
the high possibility of the presence of cardiac dis-
ease. Shannon entropy is also used to measure the 
complex dynamics of heartbeats. A higher 
Shannon entropy is reflective of more irregularity 
in HRV. Here, we briefly discuss some entropy 
measures used in sleep apnea.

•	 Shannon entropy: Shannon entropy of the 
HRV histogram allows to quantify the distri-
bution of NN intervals:

	

Shannonentropy � � � �
�
�
j

j jq q
�

log

	

where qj is the histogram of the RR time series. A 
higher value of the Shannon entropy indicates 
that there is more irregularity in HRV. Zhang 
et  al. reported a positive correlation of the 
Shannon entropy of the degree distribution with 
OSA severity (Zhang et al., 2019). Qin et al. sug-
gested that severe OSA patients (AHI>30) have a 
lower Shannon entropy during wakefulness, thus 
suggesting that OSA reduces HRV irregularity 
during wakefulness (Qin et al., 2021b).

•	 Approximate entropy (ApEn): In information 
theory, ApEn is introduced by Pincus et al. to 
evaluate the regularity and the unpredictabil-
ity of oscillation presented in short and noisy 
time series data. ApEn allows to discriminate 
time series for which clear feature recognition 
is difficult by the evaluation of both dominant 
and subdominant patterns (Pincus, 1991). 
Given a RR time series of length N, 
RR(n) = {RR(n), RR(2), …, RR(N)}, ApEn is 
computed using the following expression:
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where 
C ri

m � �  is the correlation integral, defined 
as:
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where θ is the Heaviside function and m, the 
length, and r, the tolerance window, are user-
specified parameters. In terms of interpretation, a 
low value of ApEn reflects a regular pattern in the 
signal, while a high value of ApEn refers to a 
random pattern. For example, a reduction in 
ApEn is related with the high possibility of pres-
ence of cardiac disease (Rajendra Acharya et al., 
2006). ApEn has an intrinsic bias caused by self-
matching during its calculation, which makes it 
relatively inconsistent. This has led to the defini-
tion of modified versions of it. Li et al. proposed 
the sliding trend fuzzy approximate entropy 
(SlTr-fApEn) as a novel parameters to analyze 
HRV in OSA. They found that SlTr-fApEn had 
85% accuracy for OSA screening, higher than the 
obtained with the LF/HF ratio (80%) (Li et  al., 
2019b). More recently, the same authors pro-
posed the variance delay fuzzy approximate 
entropy (VD_fApEn), which reported 90% accu-
racy for OSA screening (Li et al., 2019b).

•	 Sample entropy (SampEn): Richman and 
Moorman introduced the SampEn to reduce 
the inherent bias caused by self-matching, in 
the ApEn, as well as to provide a result more 
independent on the time series length 
(Richman & Moorman, 2000). Given a RR 
time series of length N, RR(n)  =  {RR(1), 
RR(2), …, RR(N)}, N − m + 1 template vec-
tors of length m are formed as RRm(i) = {RRi, 
RRi + 1, RRi + m − 1}. SampEn is defined as the 
negative natural logarithm of the conditional 
probability that two templates similar for m 
points remain similar (distance lower than the 
tolerance r) it if their lengths are increased in 
one sample (length m + 1):

	

SampEn , ,m r N
A r

B r
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where Am(r) and Bm(r) are the total number of 
similar template vectors of lengths m + 1 and m 
that meet the distance criterion for each combi-
nation of RRm(i) and RRm(j), given i ≠ j, respec-
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tively. SampEn has been widely employed to 
analyze HRV in many clinical domains, includ-
ing the OSA context. Al-Angari et al. found sta-
tistically significant higher values of the 
SampEn in no-OSA than in OSA subjects, sug-
gesting that complexity of HRV was signifi-
cantly different between normal and OSA 
patients (Al-Angari & Sahakian, 2007). 
Similarly, Chang et  al. also found a lower 
SampEn in the HRV of OSA patients than in 
controls. They also observed an increased 
SampEn which increased after continuous posi-
tive airway pressure (CPAP) treatment, suggest-
ing that CPAP treatment normalized both 
cardiorespiratory decoupling and sympathova-
gal imbalance (Chang et al., 2013). Liang et al. 
proposed the nonparametric sample entropy 
(NPSampEn) as a novel index for short-term 
HRV analysis in the case of OSA. They reported 
a higher OSA screening accuracy (83.3%) than 
the LF/HF ratio (73.3%) and the SampEn 
(68.3%) (Liang et  al., 2021a). Liang et  al. 
reported a decreased SampEn during sleep-to-
wake transitions in OSA patients, suggesting 
that a threshold-based SampEn could non-
invasively detect them (Liang et al., 2021b).

•	 Multiscale entropy (MSE): On the basis of 
ApEn and SampEn, Costa et al. proposed the 
MSE.  In contrast to conventional entropy 
measures, MSE computes entropy for differ-
ent time scales of the time series, thus provid-
ing a measure of signal complexity (Costa 
et al., 2005). Given a RR time series of length 
N, RR(n) = {RR(1), RR(2), …, RR(N)}, the 
coarse-grained versions for each time scale τ 
is computed as follows:
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Hence, yτ is is obtained by averaging the RR 
time series every τ samples without overlap-
ping, being y1 the original RR time series. Then, 
a single-scale entropy measure is computed for 
each of the coarse-grained versions. ApEn and 
SampEn are typically used as single-scale 
entropy measures (Costa et  al., 2005). The 

curve representing the value of the single-scale 
entropy measure versus the scale allows to ana-
lyze the signal complexity. Pan et al. performed 
a MSE analysis of RR intervals during 10 min-
utes of N2 stage. They demonstrated that there 
is a high correlation between MSE and the AHI 
(Pan et  al., 2015). Gutierrez-Tobal et  al. also 
reported a higher value of MSE in OSA-positive 
subjects, as well as a high discrimination abil-
ity, with 85% accuracy for OSA detection. They 
also observed higher differences in MSE 
between OSA-positive (AHI≥10) and OSA-
negative (AHI<10) in women than in men 
(Gutiérrez-Tobal et al., 2015).

10.3.3.3	� Symbolic Dynamics
Symbolic dynamics is employed to measure ran-
domness and predictability of cardiac rhythm. 
Symbolic dynamics transform RR intervals into a 
symbol sequence in order to analyze dynamic 
behavior (Kurths et al., 1995). Given a RR time 
series of length N, RR(i) = {RR(1), RR(2), …, 
RR(N)}, the RR intervals are first transformed 
into a symbolic dynamic representation using 
three-symbol (w = 3) words and an alphabet com-
posed of four symbols.
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S1, S2, S3,…SN. Si∈ A, being A the alphabet of 
symbols = {0, 1, 2, 3, μ refers to the mean beat-
to-beat interval, and α is a special parameter, with 
a typical value of 0.05. Then, the dynamics of the 
symbol sequence is analyzed by different param-
eters (Voss et al., 1996):

•	 Shannon entropy from the word distribution 
of the symbol sequence (Fwshannon). The 
Fwshannon measures complexity of the cor-
responding tachograms, with larger values 
meaning higher complexity.

•	 Renyi entropy from the word distribution of 
the symbol sequence (Fwrenyiq). Fwrenyiq 
also measures the complexity of the 
tachogram.
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•	 Forbidden words (Forbword). Forbword is the 
number of words in the distribution of three-
symbol words that never or seldom occur. 
Larger values of Forbword indicate a higher 
stability, since the number of forbidden words 
will be low when the time series is highly 
irregular.

•	 Standard deviation of the word sequence 
(wsdvar).

•	 Portion of low-variability (plvarxx) and high-
variability patterns (phvarxx) in the NN inter-
val time series. To compute these parameters, 
a simplified alphabet consisting of symbols 
“0” (difference between successive beats 
lower than xx) and “1” (difference between 
successive beats exceeds xx) is obtained. 
Observing six successive symbols of this 
alphabet, plvarxx (xx  =  5, 10, 20, 50, and 
100 ms) is computed as the probability of the 
word “000000,” whereas phvarxx (xx = 5, 10, 
20, 50, and 100 ms) is computed as the prob-
ability of the word “111111.” plvarxx and 
phvarxx allow to detect intermittent decreased 
and intermittent increased variability, 
respectively.

•	 Percentage of probability of words consisting 
only of the symbols “0” and “2” (wpsum02) 
and the symbols “1” and “3” (wpsum13). 
Wpsum02 is a measure quantifying low varia-
tion in the mean of heartbeat intervals for 
decreased HRV, while wpsum13 is for 
increased HRV by quantifying high variation 
in the mean of heartbeat intervals.

Kabir et al. analyzed cardiorespiratory coor-
dination in OSA patients using joint symbolic 
dynamics. They found that coupling between 
HRV and respiratory phase is reduced by OSA 
(Kabir et al., 2012) while being higher during 
slow wave sleep (Kabir et  al., 2011). Ravelo-
Garcia et al. developed a novel model using the 
combination of a symbolic dynamic maker 
(e.g., WPSUM13) and clinical variables (e.g., 
age, neck circumference, ESS, and intensity of 
snoring) for OSA screening with increased 
accuracy of 94% (sensitivity 88.71% and speci-
ficity 82.86%) than only using clinical informa-

tion with the accuracy of 90% (sensitivity 
87.10% and specificity 80%) (Ravelo-García 
et al., 2014). Recently, Qin et al. analyzed HRV 
in OSA patients recruited from the Sleep Apnea 
Global Interdisciplinary Consortium cohort 
during wakefulness using Fwshannon and 
Forbword from symbolic dynamics. 
Significantly lower values of Fwshannon and 
higher values of Forbword were obtained in 
patients with severe OSA, which displays the 
patterning of NN interval sequences becoming 
more monotonous as AHI increases. This indi-
cates that heart rate in severe OSA patients does 
not adequately respond and adapt to endoge-
nous and exogenous changes, due to blunted 
cardiac autonomic modulation (Qin et  al., 
2021b).

Information-based similarity indices proposed 
by Cui et  al. used binary sequences to develop 
symbolic sequences derived from RR intervals 
(Cui et  al., 2017). Wu et  al. found that mild to 
moderate OSA tends to be overlooked when 
using HF, LF, and LF/HF calculated from 
frequency-domain analysis (Wu et  al., 2021). 
Information-based similarity can differentiate 
mild to moderate OSA from severe OSA. 
However, it is disputable that they used 1-minute 
ECG instead of the 5-minute time window that is 
the standard recommended interval for spectral 
and dynamic HRV analysis. Preliminary evi-
dence showed that minute-by-minute nonlinear 
HRV analysis has a good ability of real-time 
monitoring for OSA detection (Al-Angari & 
Sahakian, 2007; Li et al., 2018). The validity of 
those ultra-short-term HRV results still needs to 
be proven.

10.3.3.4	� Poincaré Plots
The Poincaré plot analysis of HRV measures the 
nonlinearity of beat-to-beat dynamics based on a 
geometrical method, which portrays a scatter 
graph of RR intervals (RRn) plotted against next 
RR intervals (RRn + 1) (Brennan et al., 2001). The 
following descriptors of the Poincaré plot are 
computed to display the geometrical and nonlin-
ear features of the HRV dynamics.
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•	 Standard deviation of the projection of the 
Poincaré plot in the perpendicular line to the 
line of identity, which is defined as:

	
SD

SD RR RRn n1
2
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where SD denotes the standard deviation. SD1 
measures the short-term NN interval variability 
(Brennan et al., 2001). SD1 is thought to reflect 
instantaneous beat-to-beat variability.

•	 Standard deviation of the projection of the 
Poincaré plot in the line of identity, which is 
defined as:
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where SD denotes the standard deviation. 
SD2  measures the long-term NN interval vari-
ability. SD2 is considered to be an index of global 
cardiac autonomic variability.

•	 Area of the ellipse characterized by SD1 and 
SD2 (A), which quantifies the total variability 
and is computed as:

	 A SD SD� �� �2 1 2� 	

•	 SD1/SD2 ratio, which measures the influence 
of short-term vs. long-term NN variability.

Aljadeff et al. observed a greater dispersion in 
the Poincaré plots of the RR time series in chil-
dren with OSA than in controls. They also found 
that beat-to-beat variation at slow rates was sig-
nificantly increased in children with OSA, while 
variation at fast and intermediate heart rates was 
significantly reduced in these pediatric subjects 
(Aljadeff et al., 1997). Similarly, Rahman et al. 
reported significantly higher values in SD1 and 
SDRR of the RR intervals in adults with severe 
OSA than in adults with non-severe OSA, as well 
as an increase in the dispersion of the Poincaré 
plot with the increase of the hypopnea index 
(Rahman et al., 2018). In addition, an ensemble 

classifier fed with time-domain, frequency-
domain, and Poincaré features obtained 87.5% 
for the detection of severe OSA. Chaidas et  al. 
obtained that the width of the Poincaré plot of the 
RR intervals is reduced and morning urine nor-
epinephrine concentration is increased in chil-
dren with OSA (AHI>1) and moderate-to-severe 
nocturnal hypoxemia (Chaidas et al., 2014). This 
reflects that subjects with OSA have enhanced 
sympathetic activity and reduced parasympa-
thetic drive. Limitations of Poincaré plot analysis 
include assumptions about normal distribution of 
RRI time series data and the elliptical shape of 
the plot.

10.3.3.5	� Recurrence Plots
Recurrence plots (RP) were proposed by 
Eckmann et al. to visualize the recurrences of a 
dynamical system (Eckmann et  al., 1987). RP 
analysis of HRV allows to capture nonlinear 
dynamics of a complex cardiorespiratory system 
during SDB. Nguyen et al. founded the cardiore-
spiratory change that occurs during apneic epi-
sodes leads to the appearance of diagonal and 
vertical patterns in the RP matrix. A soft decision 
fusion classifier using RQA features of HRV 
achieved 85.3% accuracy in the context of OSA 
diagnosis (Nguyen et  al., 2014). Similarly, 
Martin-Gonzalez et  al. demonstrated that RQA 
features from HRV contribute valuable informa-
tion for apnea minutes discrimination (Martín-
González et  al., 2018). Rolink et  al. suggested 
that RQA features from ECG, heart rate, and 
respiratory effort can discriminate between 
wakefulness and sleep stages (Rolink et  al., 
2015).

10.3.3.6	� Chaotic Invariant Analysis
Beat-to-beat interval time series exhibit hetero-
geneous correlations in different disease states 
(Iyengar et al., 1996). Fractal behavior of HRV is 
highly correlated with abnormal respiratory pat-
terns in patients with OSA (D’Addio et al., 2013). 
The correlation dimension (CD) is a commonly 
used indicator of the fractal dimension 
(Grassberger & Procaccia, 1983). CD is applied 
to capture correlations and feedback nonlineari-
ties between the dynamic respiratory and cardio-
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vascular systems by using a set of physiological 
signals from PSG to create a prediction model in 
sleep apnea. Nevertheless, limited articles on its 
significance and application in sleep medicine 
are available. From available literature, it has 
been shown that the value of D2 will be high for 
the chaotic RRI series and low for the less rhyth-
mic RRI series. Previous studies indicated that 
D2  in respiratory movement obtained from 
inductive plethysmography could be a marker for 
OSA detection during daytime wakefulness and 
sleep. When applying correlation dimension to 
ECG signals, Naghsh et al. found that correlation 
dimension could differentiate between OSA and 
healthy subjects based on non-linear behavior of 
heartbeat (Naghsh et al., 2020).

10.4	� Future Research Direction

The causal relationship between sleep apnea and 
autonomic abnormalities is not fully understood. 
Whether impaired autonomic modulation con-
tributes to the development or worsening of sleep 
apnea via alterations in cardiorespiratory control 
or vascular stability of the upper airway requires 
longitudinal investigation. Additionally, increas-
ing evidence supports that autonomic dysfunc-
tion may precede the development of functional 
cardiovascular impairment. Whether abnormal 
HRV is involved in the underlying etiology in 
SDB population-associated cardiovascular mor-
bidity and mortality beyond as a risk factor is still 
a matter to discuss.

Advancements in big data management and 
predictive tools (e.g., machine learning) encour-
age the extensive study of HRV features. More 
research studies are encouraged to investigate the 
continuous  physiological processes chang-
ing  from normal breathing to apneic/hypopneic 
episodes during sleep. The prediction algorithms 
and approaches facilitate not only the potential 
mechanisms on how SDB predisposes the devel-
opment of autonomic abnormalities and cardio-
vascular diseases but also the prediction of the 
onset of sleep apnea, which is in favor of proac-
tive treatment.

Future research could take advantage of sleep 
and big data (https://sleepdata.org/) as well as 
existing datasets (e.g., the Sleep Heart Health 
Study, the Wisconsin Sleep Cohort, and the 
Sleep Apnea cardioVascular Endpoints (SAVE) 
Trial) to examine and validate the HRV as a car-
diovascular risk stratification indicator to pre-
dict cardiovascular morbidity and mortality. 
However, there is a lack of evidence regarding 
the predictive and prognostic implication of 
altered HRV for cardiovascular events among 
different OSA subgroups (e.g., clinical symp-
tom clusters, PSG-based phenotypes, cardiac 
phenotypes, and genomic phenotypes). These 
findings would improve decision-making capac-
ity and lead to more precise treatment 
pathways.

In terms of the selection of HRV metrics, 
numerous HRV features help further the under-
standing of underlying associations between auto-
nomic modulation and sleep apnea-related 
physiological changes. However, those that need 
to be reported depend on the research question. 
An evidence-based approach of HRV feature 
choice would reduce high computational load, 
particularly in machine learning models. Of par-
ticular note is that statistical properties in the time 
series of physiologic signals change over time, 
which make it complex and nonstationary. The 
combination of linear and nonlinear HRV analysis 
may provide more comprehensive information. 
The combination of EDR and CPC may also pro-
vide more information, as they have shown posi-
tive correlations. It is thus imperative to continue 
to extract more features of ECG morphology and 
apply them to PSG uses to create the most accu-
rate diagnostic and monitoring tool possible.

The field is thus trending toward machine 
learning model tools with combinatorial analysis 
approaches, but this requires more investigation, 
particularly for explaining the results obtained 
with these models. However, it would inevitably 
be the most implementable and affordable clini-
cal tool that does not require constant expert 
supervision and analysis.

Furthermore, it is important to investigate 
other sleep-disturbing diseases that may have 
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HRV changes during sleep. Hyperarousal pro-
cesses are central to the pathophysiology of pri-
mary insomnia, and short sleep duration is known 
to be a risk factor for cardiovascular mortality. 
The autonomic effects of short sleep on mortality, 
however, have not convincingly been shown yet. 
There are a small number of studies comparing 
HRV between insomniacs and control subjects 
with mixed results, requiring more investigation 
to elucidate a definitive relationship. In depres-
sion, autonomic changes are correlated with 
altered mood states, sleep disturbance, and physi-
cal dysfunction. Some studies have shown 
reduced HRV indices due to altered autonomic 
activity in depression, signaling its potential for 
use in the diagnosis and monitoring of depres-
sion. However, more research is needed in animal 
models to provide supporting evidence for the 
investigation of HRV in such a capacity. Overall, 
further investigation of the HRV changes in other 
conditions with sleep disturbances could be help-
ful in exploring the detection of the condition and 
its underlying pathophysiology, as well as pre-
dicting the cardiovascular mortality risk in each 
of these conditions.
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11Cardiopulmonary Coupling

Mi Lu, Thomas Penzel, and Robert J. Thomas

Abstract

Cardiopulmonary coupling (CPC) is a tech-
nique that generates sleep spectrogram by cal-
culating the cross-spectral power and 
coherence of heart rate variability and respira-
tory tidal volume fluctuations. There are sev-
eral forms of CPC in the sleep spectrogram, 
which may provide information about normal 
sleep physiology and pathological sleep states. 
Since CPC can be calculated from any signal 
recording containing heart rate and respiration 
information, such as photoplethysmography 
(PPG) or blood pressure, it can be widely used 
in various applications, including wearables 
and non-contact devices. When derived from 
PPG, an automatic apnea-hypopnea index can 
be calculated from CPC-oximetry as PPG can 
be obtained from oximetry alone. CPC-based 

sleep profiling reveals the effects of stable and 
unstable sleep on sleep apnea, insomnia, car-
diovascular regulation, and metabolic disor-
ders. Here, we introduce, with examples, the 
current knowledge and understanding of the 
CPC technique, especially the physiological 
basis, analytical methods, and its clinical 
applications.

Keywords

Autonomic nervous system · 
Cardiopulmonary coupling · Heart rate 
variability · Sleep apnea · Sleep spectrogram · 
Insomnia

11.1	� Introduction

Everyone sleeps and sleep is essential for a vari-
ety of biological functions. However, it is esti-
mated that nearly 2  billion people worldwide 
suffer from one or both of the two most common 
sleep disorders – sleep apnea (Benjafield et  al., 
2019) and insomnia (Roth et  al., 2011). Most 
people with both diseases remain undiagnosed 
and untreated, thus resulting in major adverse 
outcomes on health, performance, and safety 
(Young et  al., 1997). The current diagnostic 
approaches mainly rely on full-night polysom-
nography (PSG) or home sleep tests utilizing 
direct cardiopulmonary recording (e.g., effort, 
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nasal pressure), which are relatively labor-
intensive, time-consuming, expensive, and 
uncomfortable for patients. Moreover, both a 
first/lab-night effect of PSG and night-to-night 
variability of sleep are found during recordings 
(Agnew Jr. et  al., 1966; Mosko et  al., 1988). 
Therefore, to better capture the physiological and 
pathological dynamics of sleep, it is advisable to 
assess patients’ sleep in a natural sleep environ-
ment over multiple nights and on multiple occa-
sions. In addition, poor adherence to continuous 
positive airway pressure (CPAP) as the first-line 
treatment for obstructive sleep apnea (OSA) may 
be related to poor subjective sleep quality in 
patients (Cistulli et al., 2019). As such, a nimble 
and effective approach to help clinicians and 
patients evaluate, diagnose, and track sleep disor-
ders is highly desirable.

The cardiopulmonary coupling (CPC) tech-
nique, which only requires a continuous electro-
cardiogram (ECG) or photoplethysmography 
(PPG) signal as an input, is becoming more 
widely used in formal medical and consumer 
wearable devices (Hilmisson et al., 2020; Thomas 
et al., 2005). The CPC technique is based on ana-
lyzing the synchronization intensity of heart rate 
variability (HRV) and respiration data gathered 
during sleep, two bio signals that are both highly 
modulated by the autonomic nervous system 
(ANS) (Thomas et al., 2005; Waxenbaum et al., 
2022), which is in turn highly modulated by sleep 
state, type, and depth. We can observe coupling 
between the heart and respiratory systems when 
external stimuli affect the ANS during sleep, 
allowing us to measure sleep and sleep stages.

The conventional approach to sleep has the 
rapid eye movement (REM) and non-rapid eye 
movement (NREM) stages, with three grades of 
NREM sleep. However, there are several other 
methods of quantifying sleep, including cyclic 
alternating pattern (CAP, a measure of sleep elec-
troencephalogram [EEG] stability), the Odds 
Ratio Product (ORP, a measure of continuous 
sleep depth), and fine movement analysis beyond 
conventional actigraphy. While type, grade, and 
depth are useful metrics, sleep also has spontane-
ously shifted bimodal characteristics, independent 
of conventional grading, readily evident from 

respiratory stability or CPC analysis (Wood et al., 
2020). High-frequency coupling (HFC) is one of 
them, and it’s linked to stable NREM sleep, while 
low-frequency coupling (LFC) is associated with 
unstable NREM sleep (Thomas et  al., 2005). A 
third CPC form, very-low-frequency coupling 
(VLFC), occurs during both REM sleep and 
wakefulness and can be distinguished by signal 
quality and motion artifact analysis (Al Ashry 
et  al., 2021). These distinct CPC patterns logi-
cally vary with disease state and treatment. For 
example, patients with OSA have increased LFC, 
whereas successful CPAP therapy decreases it 
(Cho & Kim, 2017). In a recent study, CPC data 
and oxygen desaturation data were combined to 
calculate the automatic apnea-hypopnea index 
(AHI), which has been clinically validated and 
FDA-approved for the diagnosis and manage-
ment of OSA in both children and adults (Al 
Ashry et al., 2021; Hilmisson et al., 2020).

In this chapter, we will introduce the current 
state of knowledge and understanding of the CPC 
technique. A greater focus is directed on the 
physiological basics, standard analytical meth-
ods, and the clinical application of the CPC tech-
nique in the evaluation, diagnosis, and 
management of sleep disorders.

11.2	� Physiological Basics

The interaction between heart rate and respira-
tory tidal volumes was first documented in 1733 
by Stephen Hales (Hales, 1733). Subsequent 
studies have shown that the synchronization 
between HRV and respiration improves gas 
exchange at the lung level through efficient ven-
tilation/perfusion matching while minimizing the 
workload on the heart (Ben-Tal et  al., 2012; 
Yasuma & Hayano, 2004). Such cardiopulmo-
nary synchronization is optimal during deep 
sleep, sedation, and anesthesia (Dick et al., 2014). 
The degree of cardiopulmonary coupling is mod-
ulated by the ANS, and its characteristics vary by 
the type and depth of sleep. In comparison to the 
waking state, normal NREM sleep is associated 
with reduced sympathetic-nerve activity and 
heart rate (Somers et al., 1993), covarying with 
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increased depth of sleep. High vagal tone, sinus 
arrhythmia, stable breathing, high relative delta 
power, blood pressure dipping, and stable arousal 
threshold are all characteristics of stable NREM 
sleep, whereas unstable NREM sleep has the 
opposite characteristics, including low-frequency 
tidal volume fluctuations, cyclic variation in heart 
rate, low relative delta power, non-dipping of 
blood pressure, and variable arousal thresholds. 
In contrast, during rapid eye movement (REM) 
sleep, sympathetic-nerve activity increases above 
that observed during wakefulness, and blood 
pressure and heart rates are similar to those 
observed during wakefulness (Somers et  al., 
1993). According to spectral analysis, high-
frequency power components have been associ-
ated with parasympathetic activity dominance, 
while low-frequency power components have 
been associated with the dominance of sympa-
thetic activity.

11.3	� Analytical Methods 
for Cardiopulmonary 
Coupling

The CPC technique extracts HRV/pulse rate vari-
ability and an ECG/PPG-derived respiration 
(EDR/PDR) signal from a single-channel ECG or 
PPG. The cross-power and coherence of these 
two signals are then calculated using the Fourier 
transform to generate a sleep spectrogram of car-
diopulmonary coupling dynamics (Thomas et al., 
2005).

The following are the detailed steps in calcu-
lating the cardiopulmonary coupling measure: 
(1) An automated beat detection algorithm is 
applied to detect beats, classifying them as nor-
mal or ectopic, and to determine amplitude fluc-
tuations in the QRS complex. An EDR was 
calculated using these amplitude fluctuations. (2) 
From the RR interval time series, the time series 
of the normal sinus to normal sinus (N-N) inter-
val and its associated EDR interval are extracted. 
(3) A sliding window average filter is used to 
remove outliers resulting from false or missed 
R-wave detections. This filter has a window of 41 
data points, and center points that lie outside 20% 

of the window mean are rejected. (4) A cubic 
spline is used to resample the resulting N-N inter-
val sequence and its associated EDR at 2 Hz. (5) 
The fast Fourier transform is performed to the 3 
overlapping 512 sample sub-windows within the 
1024-sample coherence window to calculate the 
cross-spectral power and coherence of these 2 
signals across a 1024-sample (8.5 min) frame. (6) 
After that, the 1024-sample coherence window is 
advanced by 256 samples (2.1 min), and the cal-
culation is repeated until the entire N-N interval/
EDR series is analyzed. For each 1024-sample 
window, the product of the coherence and cross-
spectral power is used to calculate the ratio of 
coherent cross-power in the low-frequency 
(0.01–0.1 Hz) band to that in the high-frequency 
(0.1–0.4 Hz) band. The logarithm of the high- to 
low-frequency cardiopulmonary coupling ratio 
[log (HFC/LFC)] is then computed to yield a 
continuously varying measure of cardiopulmo-
nary coupling. Although the ECG signal was 
originally utilized as an input, the CPC sleep 
spectrogram can now be computed using any sig-
nal recordings that include an ECG signal or a 
similar information-content signal, such as PPG. 
The steps of calculating CPC are depicted in 
Fig. 11.1.

11.4	� Distinct Patterns 
of Cardiopulmonary 
Coupling and Its Association 
with CAP and PSG

High-frequency (0.1–0.4  Hz) coupled pattern 
appears as the (upper) dark blue peaks on the 
sleep spectrogram (Fig. 11.2), which represents 
integrated, stable NREM sleep with the charac-
teristics of stable breathing, high vagal tone, gen-
erally a non-CAP on the EEG, high relative delta 
power, and blood pressure dipping. Stable NREM 
sleep is equivalent to part of stage 2 and usually 
all of stage 3 NREM sleep derived from PSG; N3 
can be unstable and exhibit LFC in conditions 
such as epilepsy and NREM parasomnias. There 
is a link between stable NREM sleep (HFC) and 
delta waves (deep sleep). We therefore consider 
this pattern as “effective” NREM sleep. Effective 
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Fig. 11.1  Algorithm outline for CPC analysis. ECG elec-
trocardiogram, PPG photoplethysmogram, EDR ECG-
derived respiration, PDR photoplethysmogram-derived 
respiration, R-S and QRS are ECG waveforms, N-N inter-

vals normal sinus to normal sinus intervals, Hz frequency, 
HFC high-frequency coupling, LFC low-frequency 
coupling

sleep enables the desired functions of sleep 
across multiple dimensions (e.g., metabolic, 
immune, etc.), allowing for recovery and restor-
ative processes to occur. Low-frequency (0.01–
0.1  Hz) coupled patterns appear as light blue 
peaks on the sleep spectrogram (Fig. 11.2), which 
represent unstable NREM with the exact oppo-
site characteristics of stable sleep: low-frequency 
tidal volume fluctuations, cyclic variation in heart 
rate, CAP, EEG low relative delta power, and 
non-dipping of blood pressure and variable 
arousal thresholds. Unstable NREM sleep 
equates to all of stage 1 and part of stage 2 NREM 

sleep from PSG, and it is also considered as 
“ineffective” NREM sleep. Ineffective sleep fails 
to accomplish the functions that a healthy sleep 
should. A subset of LFCs called elevated low-
frequency coupling (e-LFC) pattern has two fur-
ther subsets: one with broad-band coupling 
spectra and the other with narrow-band coupling 
spectra (e-LFCBB and e-LFCNB). Very-low-
frequency (0.004–0.01  Hz) coupling (VLFC), 
shown as orange peaks on the sleep spectrogram 
(Fig. 11.2), occurs during both awake and healthy 
REM sleep; fragmented REM sleep is character-
istic of LFC.
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Fig. 11.2  The oximeter-extracted CPC spectrogram. The basic graphical representation of the CPC spectrogram has 
high-, low-, and very-low-frequency coupling (HFC, LFC, and VLFC, respectively) components

HFC and LFC are mutually incompatible and 
do not coexist. Some LFC, up to about 20–30% 
of NREM sleep in adults, is normal, occurring at 
sleep onset, during brief periods within a given 
NREM cycle, and just prior to REM sleep. These 
“lightening” periods may serve a biological dis-
engagement function as sleep processes move 
from NREM to REM sleep and exhibit other 
kinetics. Sleep fragmenting disease states 
“hijack” LFC and increase both duration and bio-
logical hostility at the expense of HFC. Similarly, 

conditions that enhance sleep drive and continu-
ity suppress LFC while amplifying HFC.

The CPC spectrogram showed a strong corre-
lation with CAP scoring, with LFC associated 
with CAP and HFC with non-CAP (Thomas 
et  al., 2005). The kappa statistic, a measure of 
interscorer reliability, showed higher agreement 
between the ECG-based detector and visual scor-
ing of CAP/non-CAP (training set, 74%, and test 
set, 77.3% agreement, respectively) than between 
the ECG-based state estimate and standard 
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NREM stages (training set, 62.7%; test set, 
43.9% agreement). The agreement between 
visual CAP/non-CAP scoring and stage 2/delta 
sleep (conventional stages 3 + 4) was not signifi-
cantly better than chance (54%).

Even though CPC and PSG analyze and pres-
ent biological activity during sleep from different 
brain structures (ANS regulation vs. cortical 
brain wave regulation, respectively), they both 
reflect sleep. As shown in Fig.  11.3, the two 
methods share important similarities but also 
exhibit some key differences.

11.5	� Sleep Stability Is 
Independent of Continuous 
Sleep Depth

The CPC analysis provides a measure of sleep 
stability and complements conventional poly-
somnographic analysis. The 30-second epoch-
based scoring of sleep heavily down-samples the 
relevant biology and provides a low-resolution 
view of the continuous nature of sleep. Stage N2 
is especially problematic as this stage can show a 
wide range of morphologies and oscillatory 
information content across low amplitude slow 
waves, spindles, and K-complexes. The ORP is a 
novel approach to estimate continuous sleep 
depth in 3-second epochs, utilizing the power 

content at classic sleep-related frequencies, esti-
mating the probability of arousability (Penner 
et al., 2019; Younes et al., 2015). A natural ques-
tion is the correlation of while night sleep depth, 
especially in NREM sleep, between CPC and 
ORP measures – there is virtually none. This can 
be readily understood by consideration of what is 
being measured – the proportion of stable sleep 
vs. the overall EEG sleep depth. Stable sleep 
(HFC) covaries with relative slow-wave power 
and may be expected to align with low ORP 
(deeper sleep), but K-complex enriched periods 
of sleep, for example, can be profoundly unstable 
yet have increased sleep depth. Thus, in the most 
extreme instances, such as marked increases in 
slow-wave sleep or severe whole night sleep 
fragmentation, the measures may agree some-
what, but not across the entire range of sleep sta-
bility and sleep depth. This idea is confirmed by 
analysis of the Sleep Heart Health Study-I data-
set (5781 subjects, age: 63.1 ± 11.2 years, 46.7% 
male), where all correlations between the Sleep 
Quality Index (a measure that integrates high- 
and low-frequency coupling, sleep fragmenta-
tion, and total sleep time) and HFC with NREM, 
REM, or whole night ORP were all statistically 
non-significant (all correlation coefficients 
<0.05). Thus, CPC and ORP provide information 
about non-overlapping dimensions of sleep phys-
iology and pathology.

Fig. 11.3  The relationship between the CPC scoring system and conventional sleep scoring system
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11.6	� Clinical Application 
of Cardiopulmonary 
Coupling Technique

11.6.1	� Diagnosis of Sleep Apnea

Sleep apnea disrupts rhythmic breathing and 
increases sympathetic-nerve activity, which 
results in pathological oscillations in heart rate 
and breathing. They are represented in the CPC 
sleep spectrogram as the LF-coupled band spec-
tra. Analysis of the PhysioNet Sleep Apnea 
Database showed that e-LFC (a subset of LFC) 
coincided highly with the manually scored 
apneas and hypopneas. There are two further 
bands within e-LFC, namely, e-LFCBB and 
e-LFCNB. Given that other causes of sleep frag-
mentation may also contribute to the e-LFC spec-
trum, especially e-LFCNB, the latest methods of 
AHI calculation have combined oxygen desatu-
ration analysis and CPC analysis to minimize this 
limitation. Thus, a spectrographic apnea-
hypopnea index (sAHI) is defined as (broad-band 
index  +  narrow-band index  +  oxygen desatura-
tion index) per hour of sleep as determined by 
CPC, which has been approved by the USA FDA 
(K182618) in 2019 and to be accepted as compa-
rable to manual scoring of AHI from PSG in 
adults and children.

Numerous studies have validated the diagnos-
tic performance of the CPC technique against 
PSG in the adult populations (Table  11.1; Liu 
et  al., 2012; Magnusdottir & Hilmisson, 2018; 
Hilmisson et al., 2019; Lu et al., 2019; Ma et al., 
2020; Seo et al., 2021; Al Ashry et al., 2021; Xie 
et al., 2018; Feng et al., 2017). We further per-
formed a meta-analysis of relevant studies pub-
lished in the past 10 years, to summarize pooled 
diagnostic performance. The comprehensive 
meta-analysis of 6 validation studies (including 
1524 patients) that recorded CPC and PSG simul-
taneously demonstrated that the pooled sensitiv-
ity, specificity, positive likelihood ratio, negative 
likelihood ratio, and diagnostic odds ratio were 
94% (95%CI: 92–95%), 63% (95%CI: 56–71%), 
2.4 (95%CI: 1.97–2.92), 0.12 (95%CI: 0.04–
0.35), and 20.43 (95%CI: 6.49–64.34), respec-
tively, when we used PSG-AHI  ≥  5 as the 

threshold. The summary receiver operating char-
acteristic curve was shown in Fig. 11.4, and the 
area under the curve was 0.76. In addition, there 
are two validation studies performed on children 
(Guo et  al., 2011; Hilmisson et  al., 2020). The 
recent large study showed that the novel sAHI 
combining PPG data with oximetry desaturation 
data has a significant correlation with manually 
AHI derived from PSG studies (Pearson correla-
tion = 0.954, P < 0.0001) (Hilmisson et al., 2020).

11.6.2	� Distinguishing Sleep Apnea 
Types

Sleep apnea can be caused by several driver 
endotypes, including high loop gain, a low 
arousal threshold, an inadequate negative pres-
sure reflex, and increased upper airway collaps-
ibility. At least two types of sleep apnea can be 
distinguished using spectral profiles of CPC 
(Thomas et al., 2007). In the sleep spectrogram, 
the differences between OSA (broad spectral 
band pattern e-LFC) and CSA or periodic breath-
ing (narrow spectral band pattern e-LFC, high 
loop gain sleep apnea) are both computationally 
and visually distinctive and easily quantifiable. 
As seen in Fig. 11.5a, a broad band of gray peaks 
suggests that the upper airway obstruction is the 
primary pathophysiological factor causing the 
patient’s sleep apnea. The presence of a narrow 
spectral band indicates abnormal chemoreflex 
regulation of respiration during sleep, which is a 
hallmark of high loop gain expression (Thomas 
et  al., 2007). It is represented by a narrow red 
peak in the 3D spectrogram view (Fig.  11.5b). 
Cheyne-Stokes respiration, a subtype of CSA, 
shows similar peaks on the CPC sleep spectro-
gram. As seen in Fig. 11.6, both pathologies can 
coexist.

11.6.3	� Treatment Tracking in Sleep 
Apnea

Several studies were conducted to evaluate the 
efficacy of various treatments for OSA, such as 
CPAP, upper airway surgery, and mandibular 
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Fig. 11.4  Summary receiver operating characteristic (ROC) curves comparing CPC and PSG studies. ROC for apnea-
hypopnea index ≥5 events/h

Fig. 11.5  The 3D view spectrogram – (a) Obstructive sleep apnea is presented as a “broad” distribution of the peaks 
colored gray. (b) Central sleep apnea is presented as a line of narrow peaks colored red

advancement (Table  11.2). Harrington et  al. 
(2013) revealed that patients with successful 
CPAP therapy have more HFC, less LFC, and 
e-LFCBB than those with unsuccessful CPAP 
therapy. Cho and Kim (2017) looked at how 
CPC variables changed after CPAP titrations 
and discovered that HFC increased while LFC 

and e-LFC decreased. Treatment of OSA with 
an oral appliance or upper airway surgery pro-
duces similar results (Choi et  al., 2015; Lee 
et al., 2016). In addition, Lee et al. (2012) and 
Chen and He (2019) both found that adenoton-
sillectomy resulted in a significant change in 
CPC parameters (increased HFC, decreased 
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Fig. 11.6  Mixed physiology sleep apnea. A 55-year-old 
male with classic sleep apnea symptoms, CPC from a ring 
oximeter. Note (1) poor sleep quality and (2) two patterns 
of oxygen desaturation: V-shaped in REM sleep consis-

tent with obstructive pathology and band-like oxygen 
desaturation in NREM sleep associated with detected 
“periodicity” (narrow-band e-LFC), consistent with addi-
tional high loop gain effects

LFC) in pediatric OSA patients. As previously 
mentioned, in addition to dynamically tracking 
the change in sleep stability after treatment, the 
CPC technique can also detect and phenotype 
residual apnea, predicting PAP failure (Thomas 
et al., 2007).

In the sleep apnea population, there are sev-
eral advantages to using the CPC technique 
through wearable devices, particularly the cur-
rent device of a ring-form oximeter. These 
include (1) easy to use, low cost, and comfort-

able for patients, allowing for repeated testing 
and ambulatory tracking of sleep apnea; (2) the 
automatically generated AHI reduces the scor-
ing burdens; (3) detecting expressed high loop 
gain (central apnea and periodic breathing) may 
help improve risk stratification and capture 
therapy effects, such as treatment-emergent 
CSA; (4) aging does not appear to negatively 
affect the ability of CPC technology to detect 
OSA accurately. According to AI Ashry et  al. 
(2021), the patients were divided into three 
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Table 11.2  Studies that used cardiopulmonary coupling in following treatment effect of sleep apnea

Author and year Number of subjects Main finding
Adults
Lee et al. (2016) 98 OSA patients treated 

with surgery or with a 
MAD therapy

The reduction in the apnea-hypopnea index greater than 50% 
was significantly associated with the reduction in LFC and 
increment in HFC

Cho and Kim (2017) 115 OSA patients with 
CPAP

In the CPAP titration group, HFC increased, while LFC and 
e-LFC decreased linearly as AHI decreased

Choi et al. (2015) 62 OSA patients treated 
with surgery

Patients with surgical success were found to have a significant 
increase in HFC and a significant decrease in LFC compared 
to those without successful surgery

Lee et al. (2014) 52 OSA patients with 
MAD therapy

LFC decreased, while HFC increased as AHI improved by 
MAD therapy

Harrington et al. 
(2013)

24 OSA patients with 
CPAP

The successful CPAP therapy group had more HFC, less LFC, 
and e-LFCBB compared to the unsuccessful CPAP therapy 
group

Ramar et al. (2013) 106 complex sleep apnea 
patients with ASV

The percentage of e-LFCNB did not relate to the success of 
ASV treatment

Schramm and 
Thomas (2012)

Case report of 1 patient 
with mild OSA with the 
mandibular advancing 
appliance, sleep position 
restriction, oxygen 
therapy

The HFC/LFC ratio was higher on mandibular advancing 
appliance nights than oxygen therapy and positional therapy

Children
Chen and He (2019) 126 children with OSA There was an improvement in RDI collected from CPC after 

surgery
Lee et al. (2012) 37 children with OSA Adenotonsillectomy significantly increased HFC and 

decreased LFC, which were paralleled by the improvement in 
the apnea-hypopnea and arousal index

groups based on their age: <45, 45–55, and 
>55. They discovered that none of these age 
groups had a significant effect on the accuracy 
of AHI. As a result, CPC is a desirable method 
for evaluating sleep apnea in elderly adults 
because it is not constrained by the dependence 
of conventionally scored slow-wave sleep 
which deteriorates with age when measured 
through EEG from the cortex; (5) it can be 
applied regardless of autonomic dysfunction. 
Even with a flat heart rate, the EDR comes 
through. Of course, it is also worth considering 
its potential limitation. CPC output is less 
meaningful in patients with chronic atrial fibril-
lation, due to complex patterns that cannot be 
identified and the chaos of the ANS. Therefore, 
the results should be interpreted cautiously. 
Figures  11.7, 11.8, and 11.9 show the sleep 
apnea and sleep quality phenotyping in apnea 
utility of the CPC technique.

11.7	� Cardiopulmonary Coupling 
Spectrogram in Other 
Disorders

11.7.1	� Insomnia/Mental Health

In the field of insomnia and related adverse men-
tal and psychological diseases, CPC technology 
has been widely applied (Table  11.3). Primary 
insomnia patients had lower HFC and higher 
LFC, VLFC, and e-LFC compared to good 
sleepers, according to Schramm et al. (2013). A 
similar finding has been observed by Thomas 
et al. (2018), and they found that patients with 
insomnia had a higher e-LFCBB percentage than 
healthy participants. Zhang et al. (2021) assessed 
the relationship between cognitive function and 
sleep stability in insomnia patients and discov-
ered that insomnia patients with cognitive 
impairment had lower HFC and higher LFC than 
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Fig. 11.7  Diagnostic assessment of milder sleep apnea. A 44-year-old male. Note generally good sleep quality but 
clusters of oxygen desaturation and cyclic variation in heart rate

insomnia patients with normal cognition. 
However, CPC characteristics did not differ sub-
stantially between participants with restless legs 
syndrome and those with insomnia (Na et  al., 
2015). Furthermore, Jarrin et  al. (2016) evalu-
ated the potential benefits of cognitive-behavioral 
therapy for insomnia and found that sleep 
improvements were related to reduced HF fol-
lowing therapy. Because insomnia is linked to a 

variety of medical and psychiatric conditions 
(Sivertsen et al., 2014), the CPC technique has 
been utilized to study and track therapy responses 
in these patients. In comparison to controls, 
unmedicated depressive patients exhibited a 
lower HFC and a higher LFC, according to Yang 
et al. (2011). Ma et al. (2018) studied the effects 
of tai chi training on sleep quality in patients 
with depression. When the patients got tai chi 
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Fig. 11.8  Failure of CPAP to improve sleep quality. The 
same patient as in Fig. 11.6, after 3 months of CPAP, with 
a complaint of persistent fatigue despite good use of 
CPAP and low (less than 5) event index on CPAP. Note the 
severe loss of HFC, suggesting worse sleep quality, asso-

ciated with an increase in cyclic variation in heart rate. 
This could be from non-apnea causes (such as anxiety) or 
CPAP-induced respiratory instability or sleep 
fragmentation

training, their CPC analysis revealed an increase 
in stable sleep percentages and a decrease in 
unstable sleep percentages. Sun et  al. (2019) 
looked at 41 depressed patients and found that 
there were significant associations between CPC 
characteristics at baseline and depression symp-
tom improvement after 2  weeks of antidepres-
sant drug treatment. As sleep apnea syndromes 
often have comorbid insomnia and mood disor-
ders, CPC spectrograms provide a method to 

assess sleep quality relatively independent of 
respiratory abnormality.

11.7.2	� Cardio-Cerebral Metabolic 
Health

Sleep health, as measured by CPC analysis, 
including sleep duration, sleep quality, and 
OSA, has been linked to cardio-cerebral meta-

11  Cardiopulmonary Coupling



198

Fig. 11.9  Failure of adaptive servo-ventilation for 
treatment-emergent central sleep apnea. A 55-year-old 
male who has been using an ASV for over 10 years, with 
improvement from CPAP yet residual fatigue. Machine 
residual AHI is less than 1/h of sleep. Note near absence 

of stable NREM sleep. Note also unstable oximetry trace. 
Though residual machine estimated AHI is low, clearly 
there is ongoing sleep disruption, which can occur from 
excessive pressure cycling of the ventilator

bolic illnesses in numerous studies (Table 11.4). 
Thomas and colleagues (2009) found that 
e-LFCNB is linked to more severe sleep apnea, as 
well as a higher prevalence of hypertension and 
stroke. Pogach et al. demonstrated that HFC is 
an independent driver of the glucose disposal 
index (Pogach et  al., 2012). In a study of 615 

patients with acute non-cardioembolic ischemic 
stroke, Kang et  al. (2020) discovered narrow-
band coupling could predict severe and pro-
tracted functional impairment at 3  months. 
Magnusdottir et  al. (2020) found that CPC-
derived sleep quality influenced 24-h mean arte-
rial blood pressure and mean diastolic blood 
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Table 11.3  Studies that used cardiopulmonary coupling in insomnia/mental health

Author and 
year Simple size Main finding
Zhang et al. 
(2021)

43 patients with insomnia Insomnia-cognitive impairment patients had lower HFC and higher 
LFC compared to the insomnia-normal cognition patients

Sun et al. 
(2019)

41 patients with 
depression

Significant correlations were found between CPC variables at 
baseline and depression symptom improvement after 2 weeks of 
treatment

Hilmisson 
et al. (2019)

110 patients with chronic 
insomnia

The prevalence of moderate-severe SDB (REI > 15) was 25% based 
on HSAT. Surrogate markers of moderate-severe SDB detected by 
CPC analysis identified the prevalence of 33%, with a negative 
predictive value of 96%

Ma et al. 
(2018)

12 depressed patients CPC analysis showed decreased stable sleep onset latency, increased 
stable sleep percentages, and decreased unstable sleep percentages 
after tai chi training

Thomas 
et al. (2018)

20 insomnia patients, 10 
healthy participants

Patients with insomnia had increased LFC duration and increased 
e-LFCBB percentage than healthy participants

Schramm 
et al. (2016)

25 chronically depressed 
patients

By post-treatment night 6, the Cognitive Behavioral Analysis System 
of Psychotherapy group had more stable sleep and less wake 
compared with Treatment as Usual group and less wake than 
Mindfulness-based Cognitive Therapy group

Jarrin et al. 
(2016)

65 patients with chronic 
insomnia

Following cognitive-behavioral therapy, sleep improvements were 
related to reduced HF in S2 and REM

Park et al. 
(2015)

200 OSA subjects divided 
into OSA with insomnia 
group and OSA without 
insomnia group

There was no significant difference in CPC parameters between the 
two groups after adjustment of AHI

Na et al. 
(2015)

109 subjects with restless 
legs syndrome and 86 
with insomnia

CPC parameters were not significantly different between groups

Sylvia et al. 
(2014)

8 patients with bipolar 
disorder

SleepImage M1 device is a feasible means to obtain objective sleep 
quality and quantity data in individuals with bipolar disorder

Schramm 
et al. (2014)

19 subjects with 
depression

Bupropion did not impact CPC variables

Schramm 
et al. (2013)

50 subjects with primary 
insomnia and 36 good 
sleepers

Relative to good sleepers, primary insomnia patients on adaptation 
night had lower HFC and HFC/LFC ratio and higher LFC, VLFC, and 
e-LFC. On baseline night, the primary insomnia group had increased 
LFC, VLFC, and e-LFC and a lower HFC/LFC ratio. Except for HFC, 
good sleepers had larger CPC variable differences between adaptation 
and baseline nights compared to the primary insomnia group

Yang et al. 
(2011)

100 patients with major 
depressive disorder and 91 
healthy controls

Relative to controls, unmedicated depressed patients had a reduction 
in high-frequency coupling and an increase in low-frequency coupling 
and very-low-frequency coupling. The medicated depressed group 
showed a restoration of stable sleep to a level comparable with that of 
the control group

pressure, as well as blood pressure during wake-
fulness, in a study of 241 patients with OSA at 
high cardiovascular risk. They also found that 
better sleep quality was associated with 
increased serum adiponectin levels and 
decreased insulin levels (Magnusdottir et  al., 

2021). For patients with chronic heart failure, 
tai chi training is likely to increase HFC and 
decrease LFC (Yeh et  al., 2008). Similarly, in 
patients with paroxysmal atrial fibrillation, the 
HFC and VLFC were significantly elevated after 
radio-frequency catheter ablation, whereas LFC 
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Table 11.4  Studies that used cardiopulmonary coupling in cardio-brain-metabolic health and diseases

Author and year Simple size Main finding
Thomas et al. 
(2021)

504 patients from 
Offspring/Omni-1 
database

Stable sleep computed using CPC was positively associated with white 
matter health

Magnusdottir 
et al. (2021)

241 patients with 
OSA at high 
cardiovascular risk

Improvements in CPC-sleep quality were associated with higher serum 
adiponectin levels and improved measures of glycemic metabolism

Magnusdottir 
et al. (2020)

241 patients with 
OSA at high 
cardiovascular risk

CPC-derived sleep quality impacted 24-h mean arterial blood pressure 
and mean diastolic blood pressure, as well as blood pressure during 
wake, in patients participating in the Heart Biomarker Evaluation in 
Apnea Treatment study

Kim et al. 
(2020)

225 patients with 
paroxysmal atrial 
fibrillation

Six months after radio-frequency catheter ablation, the HFC and VLFC 
were significantly increased, while LFC was decreased. The recurrence 
rate of atrial fibrillation was significantly lower in the patient who had 
unstable sleep before radio-frequency catheter ablation

Kang et al. 
(2020)

615 patients with 
acute non-
cardioembolic 
ischemic stroke

Narrow-band coupling was an independent predictor of a higher risk of 
severe and persistent functional impairment at 3 months

Pogach et al. 
(2012)

118 nondiabetic 
subjects with and 
without SDB

HFC duration was associated with increased and VLFC was associated 
with reduced disposition index

Thomas et al. 
(2009)

5247 patients from the 
SHHS database

(1) Increasing age and male sex are associated with an increase in the 
prevalence of e-LFCNB. (2) The presence of e-LFCNB is a biomarker 
of severity of sleep-disordered breathing. (3) Use of diuretics, calcium 
blockers, and β-blockers was associated with increased e-LFCNB. (4) 
e-LFCNB was associated with prevalent stroke and hypertension

Yeh et al. (2008) 18 patients with 
chronic stable heart 
failure

At 12 weeks, those who participated in tai chi showed a significant 
increase in HFC and a significant reduction in LFC compared to 
patients in the control group

decreased (Kim et al., 2020). A recent study of 
Thomas et  al. (2021) found stable sleep com-
puted using CPC was positively associated with 
white matter health.

11.8	� Conclusion

The CPC technique provides an accurate, prac-
tical, and low-cost alternative to traditional 
PSG and home sleep apnea testing for the 
objective assessment, diagnosis, and tracking 
of sleep health and disease over time. The tech-
nology may be used in both adults and children. 
It also offers the potential for individualized 
management of sleep disorders as it allows for 
repeatable sleep monitoring in the patient’s nat-
ural sleep environment, as well as automated 
analysis.

11.9	� Clinical Practice Points

•	 CPC technique generates sleep spectrograms 
by calculating the cross-spectral power and 
coherence of HRV and respiratory tidal vol-
ume fluctuations.

•	 The CPC spectrogram shows only a weak cor-
relation with conventional sleep staging, but 
better follows CAP scoring, with LFC associ-
ated with CAP and HFC with non-CAP.

•	 The CPC sleep spectrogram provides a 
clear visual view of sleep health during the 
sleep period and helps healthcare providers 
manage sleep disorders in their patients, 
including evaluating sleep quality, diag-
nosing sleep apnea, and tracking therapy 
response.

•	 For the diagnosis of sleep apnea, the spectro-
graphic AHI calculated combining CPC output 
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and hypoxic events shows strong agreement 
with AHI calculated manually from PSG.

11.10	� Research Points

•	 The CPC analysis shows a fundamental sleep 
characteristic – that of bimodal stability, most 
clearly evident in NREM sleep. This dimen-
sion of sleep does not have a known neurobio-
logical explanation, posing a unique research 
opportunity.

•	 The presence of a narrow spectral band indi-
cates abnormal chemoreflex regulation of res-
piration during sleep, which is a hallmark of 
high loop gain expression.

•	 The pre- and post-treatment effects of sleep 
apnea with CPAP or upper airway surgery can 
be traced by changes in the ratio of HFC to 
LFC.

•	 e-LFCNB is associated with higher prevalence 
of hypertension and stroke.

•	 HFC is an independent driver of the glucose 
disposal index.

•	 Narrow-band coupling was an independent 
predictor of a higher risk of severe and 
persistent functional impairment in acute isch-
emic stroke.

•	 Better sleep quality was associated with 
increased serum adiponectin levels and 
decreased insulin levels.

•	 Sleep quality and sleep hypoxia were associ-
ated with white matter injury.
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Pulse Oximetry: The Working 
Principle, Signal Formation, 
and Applications

Timo Leppänen, Samu Kainulainen, 
Henri Korkalainen, Saara Sillanmäki, Antti Kulkas, 
Juha Töyräs, and Sami Nikkonen

Abstract

Pulse oximeters are routinely used in various 
medical-grade and consumer-grade applica-
tions. They can be used to estimate, for exam-
ple, blood oxygen saturation, autonomic 
nervous system activity and cardiac function, 
blood pressure, sleep quality, and recovery 
through the recording of photoplethysmogra-
phy signal. Medical-grade devices often 

record red and infra-red light-based photople-
thysmography signals while smartwatches 
and other consumer-grade devices usually rely 
on a green light. At its simplest, a pulse oxim-
eter can consist of one or two photodiodes and 
a photodetector attached, for example, a fin-
gertip or earlobe. These sensors are used to 
record light absorption in a medium as a func-
tion of time. This time-varying absorption 
information is used to form a photoplethys-
mography signal. In this chapter, we discuss 
the working principles of pulse oximeters and 
the formation of the photoplethysmography 
signal. We will further discuss the advantages 
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and disadvantages of pulse oximeters, which 
kind of applications exist in the medical field, 
and how pulse oximeters are utilized in daily 
health monitoring.

Keywords

Pulse oximetry · Photoplethysmography · 
Oxygen saturation · Application

Abbreviations

AC	 Alternating current
AHI	 Apnea-hypopnea index
C	 Concentration
COHb	 Carboxyhemoglobin
DC	 Direct current
ECG	 Electrocardiography
EEG	 Electroencephalogram
H2O	 Water
HF-AC	 High-frequency alternating current
HRV	 Heart rate variability
ICU	 Intensive care unit
IR	 Infrared
Itrans	 Transmitted intensity
LED	 Light-emitting diode
LF-AC	 Low-frequency alternating current
MetHb	 Methemoglobin
OHb	 Oxygenated hemoglobin
OSA	 Obstructive sleep apnea
PPG	 Photoplethysmography
PRV	 Pulse rate variability
PTT	 Pulse transit time
RHb	 Deoxygenated hemoglobin
SaO2	 Arterial oxygen saturation
SpO2	 Peripheral blood oxygen saturation

12.1	 Working Principle

Pulse oximetry is a method initially developed 
for the measurement of peripheral blood oxygen 
saturation (SpO2). It is an optical technique based 
on differences in light absorption spectra of oxy-
genated (OHb) and deoxygenated (RHb) hemo-
globin (Nitzan et al., 2014). More precisely, the 
estimation of the SpO2 is based on photoplethys-

mography (PPG, see Sect. 12.2). As a noninva-
sive method, having a high correlation with 
invasive arterial oxygen saturation (SaO2) defined 
based on arterial blood gas analysis (Nitzan et al., 
2014), it has become a valuable technique for 
measuring oxygen saturation in clinical settings.

In addition to being noninvasive, pulse oxim-
etry has several other advantages. It is a safe, 
comfortable, and inexpensive method with no 
need for end-user calibration. As the oximeter is 
usually placed to the fingertip or earlobe in a 
medical setting, it can usually be self-applied and 
does not require a medical specialist. Furthermore, 
various consumer-grade health technology solu-
tions, such as smartwatches and smartphones, are 
also capable of estimating SpO2 with a reason-
able correlation to SaO2. As pulse oximetry is a 
simple and inexpensive method already integrated 
into various settings, it is ideal for long-term 
monitoring of overall well-being, stress, recov-
ery, quality of sleep, and based on the recent 
research, also for detection of sleep disturbances 
and disorders.

Pulse oximetry can rely either on the trans-
mission or the reflection of light (Fig. 12.1). Out 
of these, transmissive pulse oximetry is the most 
common in medical devices. In transmissive 
pulse oximetry, light sensors are placed usually 
on a fingertip or earlobe. The response time of 
conventional oximeter probes varies and, for 
example, ear probes respond quicker to a change 
in blood oxygen saturation than finger probes 
(Young et  al., 1992). Also, the sensors can be 
attached to a toe in newborns. The sensors emit 
light usually with two different wavelengths, 
and the light passes through the skin and reaches 
a photodetector that measures the changes in 
absorption of both wavelengths. The reflective 
mode, on the other hand, can be applied to dif-
ferent parts of the body, not only on the finger-
tips or the thin portion of the ear, to measure the 
saturation and PPG signal. Similarly, as in the 
transmissive pulse oximetry, the sensors emit 
light with two different wavelengths. However, 
the main difference is that in reflectance pulse 
oximetry the photodetector is located next to the 
light-emitting sensors and detects reflected and 
backscattered photons of both emitted wave-
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Fig. 12.1  Obtaining the photoplethysmogram and saturation signal with a pulse oximeter. A transmissive mode, on the 
left-hand side, and a reflective mode, on the right-hand side, are presented. A: a light source (emitting, for example, red 
and infrared light) and B: a detector

lengths. In some cases, pulse oximeters may uti-
lize more than two different wavelengths of 
light.

Pulse oximetry is widely used in different 
clinical domains and is, for example, a basic 
measurement at intensive care units (ICUs) and 
always included in polysomnographic evalua-
tions. Pulse oximetry is mainly used to mea-
sure SpO2, but the measured PPG signal 
contains a vast amount of information and 
works as a proxy for several physiological 
functions. For example, it can be used to evalu-
ate indirectly blood pressure (Nachman et al., 
2020), depth of anesthesia (Shelley, 2007), 
pulse rate (Shelley, 2007), heart rate variability 
(Gil et  al., 2010), cardiac arrhythmias (Blanc 
et  al., 1993), respiratory rate (Shelley, 2007), 
sleep stages (Huttunen et  al., 2021), presence 
of sleep disorders (Lazazzera et  al., 2021; 
Nikkonen et  al., 2019), and sleep disorder-
related daytime symptoms (Kainulainen et al., 
2020a, b). The sampling frequency of a pulse 
oximeter depends on its intended use and is 
typically between 1 and 256 Hz. For the deter-
mination of SpO2 in clinical settings, 10–25 Hz 
sampling frequency is currently recommended 
(Iber et al., 2007). However, a minimum sam-
pling frequency of 200  Hz is required to get 
more accurate estimation on, for example, 
pulse rate and heart rate variability from PPG 
signal (Béres et  al., 2019). Thus, the typical 
sampling frequency for PPG signal acquisition 
is 256 Hz.

12.1.1	� Green, Red, and Infrared Light

Transmissive pulse oximeters with two light 
sources are the most commonly used type of 
oximeters in clinical practice and their working 
principle is based on the light absorption in the 
peripheral arterial blood (Fig.  12.2), more spe-
cifically, the absorption induced by the OHb and 
RHb (Damianou, 1995; Mannheimer, 2007). 
When oxygen binds with the iron ion in the 
blood, the structure of the heme group in the 
binding site changes from a non-planar to a pla-
nar orientation (Benesch et  al., 1975). These 
molecular structure changes with oxygenation 
result in differences in light absorption between 
OHb and RHb (Fig. 12.2).

As illustrated in Fig.  12.2., at 660  nm (red 
light), the absorption of light is mainly caused by 
RHb in blood. In contrast, at 530 nm and 900 nm 
(green and infrared, respectively), the absorption 
of light is mainly caused by OHb as the molar 
extinction coefficient of OHb is higher compared 
to that of RHb. The green, red, and infrared light 
can penetrate through soft tissue (mostly consist-
ing of water) and the amount of transmitted light 
can be measured. This information can be used to 
estimate the level of oxygen in the blood. The 
measurement is, of course, disturbed by the light 
scattering within the medium and reflections 
from the light source-skin surfaces, but these 
interactions are not significant (Tuchin, 2015).

In transmissive pulse oximeters, red light is 
more often used than green light. This is because 
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Fig. 12.2  Illustration of 
the logarithmic molar 
extinction coefficients as 
a function of light 
wavelength. 530 nm, 
660 nm, and 900 nm 
correspond to the green, 
red, and infrared light 
wavelengths commonly 
used in pulse oximeters, 
respectively (Tuchin, 
2015; Kainulainen, 
2020). OHb oxygenated 
hemoglobin, RHb 
deoxygenated 
hemoglobin, H2O water

the use of red light increases the accuracy and pre-
cision of the measurements of, for example, heart 
rate and blood oxygen saturation. Also, the human 
body poorly absorbs red light allowing it to pen-
etrate much deeper than green light. Therefore, 
the usefulness of green light in determining mus-
cle saturation or total hemoglobin is limited. Also, 
red light is not affected as much by dark skin tone 
or tattoos which can distort the measurements 
done with green light. However, consumer-grade 
devices are most often reflective pulse oximeters 
utilizing green light to measure PPG. This is 
because the use of green light has several benefits. 
First, green PPG amplitudes are the strongest 
across the range of visible light (Verkruysse et al., 
2008). Second, the human tissues are good 
absorbers of green light and, thus, green light 
coming from external sources does not disturb the 
measurement affecting the signal quality.

Pulse oximeters utilizing more than two wave-
lengths (usually four) also exist. They are usually 
transmissive pulse oximeters and can differenti-
ate between more than two blood components. 
This is, they can detect other hemoglobin types in 
addition to RHb and OHb, such as carboxyhemo-
globin (COHb) and methemoglobin (MetHb) 
also called dyshemoglobins. Therefore, multiple 

wavelength pulse oximeters are often called 
CO-oximeters (Zaouter & Zavorsky, 2012). Four-
wavelength CO-oximeters are typically used as a 
gold standard reference when evaluating the 
accuracy of standard oximeters as they are more 
accurate (Sinex, 1999) or when the standard 
oximeter is not sufficient, for example, when car-
bon monoxide poisoning is suspected.

12.2	� Photoplethysmogram

With transmissive pulse oximeters, an absorption 
signal is formed at a photodetector which mea-
sures transmitted light passed through a medium. 
For example, soft tissue, bony structures, and 
blood absorb light differently and these struc-
tures affect the absorption signal characteristics 
when measuring the absorption signal from a fin-
gertip. Cardiac and respiratory functions cause 
changes in the blood volume and composition in 
the arterial blood. Therefore, the concentrations 
of OHb and RHb, and the optical path length of 
the light change constantly as a function of time 
(Damianou, 1995; Mannheimer, 2007). This light 
absorption signal varying as a function of time is 
called a photoplethysmogram.
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The wavelength of the light affects the PPG 
signal, i.e., the absorbance. Red light is more sen-
sitive to changes in oxygenation than infrared 
light as the molar extinction coefficient of RHb is 
higher and water absorption lower (Fig.  12.2). 
The absorption of infrared light is similar to 
water and both oxygenated and deoxygenated 
hemoglobin. Moreover, the total absorption is 
lower with infrared light compared to red light. 
Therefore, the PPG signal measured with infra-
red wavelength is more stable and is more com-
monly used than red light (Alian & Shelley, 
2014). However, both red and infrared light mea-
surements are needed to estimate SpO2.

The absorbance signal is formed by three 
components: the direct current (DC), the low-
frequency alternating current (LF-AC), and the 
high-frequency alternating current (HF-AC) 
components (Fig. 12.3). The DC component rep-
resents the absorption of light in static mediums 
and has no pulsatile time-varying component. In 
contrast, the LF-AC and HF-AC vary temporar-
ily. The LF-AC component carries information 
on changes in blood volume which can be caused 
by alterations in breathing, thermal regulation, 

autonomic nervous system activity, and hemo-
globin concentration. The HF-AC component 
mainly represents the pulsatility of the arteries 
and forms the basis of the PPG signal.

One PPG waveform can be separated into sys-
tolic and diastolic phases (Gamrah et al., 2020). 
The systolic phase starts when the aortic valve 
opens. During the systolic phase, blood pressure 
increases as blood flows into the aorta. This can 
be seen as a decrease in the transmitted light 
intensity as a function of time. After the systolic 
maximum pressure is reached (the first maximum 
peak), the blood pressure starts to decrease and 
the aortic valve closes. When the aortic valve 
closes, another increase in the blood pressure can 
be seen (the second maximum peak) (Hogan 
et al., 2014). Between these two maximum peaks 
is the Dicrotic Notch representing the end of the 
systolic phase and the start of the diastolic phase 
(Gamrah et al., 2020). During the diastolic phase, 
blood flows out from the aorta and blood pressure 
decreases (transmitted light intensity increases as 
a function of time) until the minimum diastolic 
pressure is reached. Then, the aortic valve opens 
again, and a new cycle starts from the beginning. 

Fig. 12.3  Illustrative 
example of the 
formation and waveform 
of 
photoplethysmography 
signal. (Figure modified 
from Tiihonen (2008), 
Kainulainen (2020). AC 
alternating current, DC 
direct current, LF-AC 
low-frequency AC 
component, HF-AC 
high-frequency AC 
component, Itrans(max) 
transmitted intensity 
when the optical path 
length is the longest, 
Itrans(min) transmitted 
intensity when the 
optical path length is 
shortest
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However, it has to be noted that the strengths of 
both LF-AC and HF-AC components are only a 
few percentages from the total absorption.

Green light with a wavelength of 530 nm can-
not penetrate as deep in tissue as red (660 nm) or 
infrared light (900 nm) (Huang et al., 2011). The 
green light can only penetrate through the epider-
mis and papillary layer while red and infrared 
lights can reach the dermis, subcutaneous, and 
deeper layers (Sviridova et al., 2018). When using 
red or infrared light, the PPG waveform is mainly 
determined by blood volume changes in the 
peripheral arteries. However, especially with large 
vessels, green light cannot penetrate deep enough 
to reach the arteries, and information on blood 
volume and flow changes cannot be directly 
obtained. Therefore, contrary to what has been 
thought before (Damianou, 1995; Mannheimer, 
2007), it has been proposed that the PPG signal is 
formed based on the pulsatile transmural pressure 
of the arteries, i.e., the pressure difference between 
walls of the thinnest capillaries in the papillary 
dermis (Kamshilin et  al., 2015). The distance 
between nearby capillaries changes as the inter-
capillary tissue stretches and compresses caused 
by the beating of the heart. Thus, changes in the 
density of the capillaries in the papillary dermis 
lead to changes in the optical properties of the tis-
sue (Kamshilin et al., 2015; Volkov et al., 2017).

12.2.1	� Blood Oxygen Saturation

The blood oxygen saturation is defined as a ratio 
between concentrations of OHb and RHb:
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where C is the concentration. However, inva-
sive measurement is required for accurate defini-
tion of the concentrations and, thus, in noninvasive 
transmissive mode applications, the estimation of 
SpO2 is based on the absorption of red and infra-
red light. PPG signals of red light and infrared 
light oscillate at the same phase, but the PPG sig-
nal of infrared light has a smaller amplitude. 
During one heart cycle, hemoglobin concentra-

tion and body temperature are nearly constant; 
thus, the only time-varying component is the 
optical path length of light that is mainly affected 
by the arterial blood volume changes. This leads 
to a situation where the AC component (Fig. 12.3), 
for both PPG signals, can be defined based on the 
differential absorption during one pulse wave 
(Damianou, 1995; Mannheimer, 2007). By fur-
ther dividing the differential absorption of red 
light with differential absorption of infrared light, 
the SpO2 value can be estimated (Damianou, 
1995, Mannheimer, 2007). To summarize, both 
red and infrared PPG signals are required to esti-
mate peripheral blood oxygen saturation 
noninvasively.

12.2.2	� Pulse

Although pulse oximeters are colloquially said to 
also measure heart rate, this is not strictly true. 
Instead, pulse oximeters can only record pulse 
rate (Schäfer & Vagedes, 2013). Generally, the 
pulse rate and heart rate are highly correlated. 
Thus, in most everyday applications, heart rate 
can accurately be estimated by pulse rate. 
However, minor differences do exist. Since the 
pressure wave generated by the heart will take a 
short time to reach the fingertip, there is a small 
delay between the systole and the time the pulse is 
detected at the periphery (Smith et al., 1999). This 
time delay is also called the pulse transit time 
(PTT), and it can be accurately recorded with 
simultaneous electrocardiography (ECG) and 
PPG recording (Smith et  al., 1999). Since the 
pulse through the artery is a mechanical wave, it 
travels at the speed of sound, making the PTT 
very short, but still significant. PTT varies 
between study subjects and is affected by the elas-
ticity of the artery wall and blood pressure among 
many other factors (Mukkamala et  al., 2015). 
Thus, PTT can also be used for various purposes 
such as continuous blood pressure estimation 
(Mukkamala et al., 2015; Smith et al., 1999).

Heart rate variability (HRV) analysis is a com-
mon method for evaluating autonomic nervous 
system function (Pinheiro et al., 2016; Hietakoste 
et al., 2020). HRV parameters are obtained from 
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ECG by detecting the fiducial point of R waves 
and generating the R-R intervals. Since ECG sig-
nal is not always available during sleep record-
ings and there can be artifacts influencing R wave 
detection, the information on HRV can be also 
obtained by using the pulse signal. As the detec-
tion of the exact time point of the R-peak is 
important, accurate pulse peak detection is 
equally essential. However, as the pulse wave is 
relatively wide (Fig. 12.3) and not as sharp as the 
R-peak, there is intrinsically more inaccuracy in 
the pulse wave detection (Schäfer & Vagedes, 
2013). However, since there are factors beyond 
cardiac electrophysiology affecting the PPG sig-
nal (Gil et al., 2010), pulse rate variability (PRV) 
is not directly comparable to HRV. Still, it can be 
used as an indicator to quantify the activity of the 

autonomic nervous system (Pinheiro et al., 2016; 
Mejía-Mejía et al., 2020).

12.3	� Error Sources 
and Limitations

Even though pulse oximetry is a powerful tool, it 
also has certain limitations (Table 12.1) some of 
which are discussed in this section. One major 
limitation of pulse oximetry is that it measures 
the ratio of oxygenated and deoxygenated hemo-
globin rather than ventilation or the amount of 
oxygen in the tissue (Mcmorrow & Mythen, 
2006). While these are normally tightly linked in 
a healthy subject, some conditions can cause 
hypoxia in the tissue level even if the measured 

Table 12.1  Possible error sources of a pulse oximeter

Error source Type of error Reference
Poor peripheral circulation
Hypotension
Hypothermia/cold periphery
Vasoconstriction

Intermittent drop-outs or 
inability to read SpO2 or 
false readings

Hakemi and Bender (2005), 
Chan and Chan (2013)

Movement artifacts
Especially when estimated from a fingertip

Falsely low SpO2 Mcmorrow and Mythen (2006), 
Tsien and Fackler (1997), Chan 
and Chan (2013)

Venous pulsation
Probe too tight around the finger
Severe tricuspid regurgitation
Heart failure

Falsely low SpO2 Chan and Chan (2013)

Dyshemoglobinemia
Carboxyhaemoglobinaemia
Methemoglobinemia

False readings Tremper (1989)

Carbon monoxide poisoning Falsely normal or elevated 
SpO2

Vegfors and Lennmarken 
(1991), Barker and Tremper 
(1987)

Lightning
Light-emitting diodes, infrared, ultraviolet, 
fluorescent lamps (the effect can be tested by 
covering the probe)

False readings Amar et al. (1989), Schulz and 
Ham (2019)

Light barriers
Nail polish, artificial nails (influence depends on 
the color)
Tattoos
Skin discoloration (caused by tobacco, dirt, or 
paint)

False readings Coté et al. (1988), Samman 
et al. (2006), Ralston et al. 
(1991b)

Dark skin tone Possible false readings Ries et al. (1989, Cecil et al. 
(1988), Ralston et al. (1991b), 
Bickler et al. (2005)

Severe anemia Falsely low SpO2 in 
hypoxemic patients

Chan and Chan (2013)

SpO2: peripheral blood oxygen saturation
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oxygen saturation is normal. For example, unde-
tected major loss of blood (e.g., internal bleed-
ing) may cause a lack of oxygen in the tissue 
level, even though the SpO2 reading is still high. 
Severe anemia can cause a similar condition. 
However, it is critical to note that in these cases, 
the pulse oximeter reading is not false and the 
blood can be highly oxygenated; there may just 
not be enough blood volume to keep the tissue 
fully oxygenated (Mcmorrow & Mythen, 2006).

Pulse oximetry does not require calibration 
before use for different individuals (Ralston 
et al., 1991a). The zero calibration is performed 
automatically due to measuring light absorption 
both during the diastolic and systolic phases. 
Gain calibration is not required either as the 
absolute light intensity at the photoreceptor does 
not affect the estimated oxygen saturation. Only 
the ratio of the absorbed light in the two (or more) 
wavelengths is considered. While the lack of cali-
bration is certainly one of the greatest advantages 
of pulse oximetry, it is also a major error source. 
As no calibration is needed, the device simply 
uses a pre-determined look-up table to estimate 
the peripheral oxygen saturation based on the 
ratio of the absorbed light (Ralston et al., 1991a). 
The values in the look-up table are derived exper-
imentally by simultaneous measurement of true 
SaO2 and the light absorbance (Jubran, 1998). An 
absorption ratio curve can then be formed based 
on these measurements (Sinex, 1999). Thus, the 
result of using this standardized look-up table is 
that if some unaccounted factors are affecting the 
light absorption ratio other than the fraction of 
oxygenated hemoglobin, the pulse oximeter can 
give false readings. In addition, the population in 
which this curve is produced, i.e., the calibration 
population, will affect the ultimate accuracy of 
the pulse oximeter (Sinex, 1999; Mcmorrow & 
Mythen, 2006). As the experimental data cannot 
be obtained for arbitrarily low saturation values, 
the accuracy of pulse oximeters decreases with 
lower saturation (Sinex, 1999; Jubran & Tobin, 
1990). Accuracy rates reported for individual 
instruments are often in the range of ±2–3% 
(Balady et al., 2010). Wider confidence limits are 
not unusual, particularly in the saturation less 
than 85%, but SpO2 values of less than 70% are 

usually considered unreliable (Mcmorrow & 
Mythen, 2006).

The theoretical foundation behind transmis-
sive pulse oximetry assumes that the blood con-
tains only oxygenated and deoxygenated 
hemoglobin, which is strictly not true as the 
hemoglobin can also form other compounds such 
as carboxyhemoglobin or methemoglobin 
(Ralston et  al., 1991a; Zaouter & Zavorsky, 
2012). These compounds, also called dyshemo-
globins, affect the absorption and, thus, affect the 
oximeter reading. Normally, the dyshemoglobins 
have little effect on the oximeter reading, but in 
some cases, they can be a major source of error 
(Tremper, 1989). If the person is suffering from 
carbon monoxide poisoning, the amount of car-
boxyhemoglobin in the blood is high. However, 
standard pulse oximeters cannot reliably distin-
guish between carboxyhemoglobin and oxygen-
ated hemoglobin (Vegfors & Lennmarken, 1991). 
True oxygenation of as low as 30% can still give 
>90% saturation readings when carboxyhemo-
globin concentration in the blood is high (Barker 
& Tremper, 1987). Smoking a cigarette also 
increases the level of carboxyhemoglobin and 
can thus temporarily elevate the pulse oximeter 
reading (DeMeulenaere, 2007). If the concentra-
tion of methemoglobin is high, it can dominate 
the absorption spectrum and erroneously cause a 
reading of around 85% regardless of the true sat-
uration (Barker et  al., 1989). The errors caused 
by the presence of dyshemoglobin in blood could 
be eliminated by using multi-wavelength 
CO-oximeters. However, due to their higher cost, 
they are commonly only used in specialized 
applications, such as when carbon monoxide poi-
soning is suspected or as a reference (Sinex, 
1999).

Newborn infants have a different type of 
hemoglobin in their blood called fetal hemoglo-
bin. It has a different composition and bonds to 
oxygen more strongly than adult hemoglobin. 
However, it has a similar absorption spectrum in 
the wavelength 650-1000  nm (Ralston et  al., 
1991b). As this is the wavelength range most 
two-wavelength oximeters operate in, the pres-
ence of fetal hemoglobin has little effect on the 
oximeter reading. However, the fetal hemoglobin 
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will affect the reading of a multi-wavelength 
CO-oximeter and, thus, its presence should be 
considered and the oximeter reading corrected 
(Ralston et al., 1991b).

As the transmissive pulse oximeter assumes 
that the other tissue and venous blood absorption 
are constant, limb motion can also cause move-
ment artifacts and is a significant error source 
(Mcmorrow & Mythen, 2006). Movement arti-
facts are the most common type of error in the 
oximeter reading and have been reported to cause 
as much as half of the false alarms in pulse oxim-
eters in the ICUs (Tsien & Fackler, 1997). In a 
diagnostic test setting (for example during a car-
diac-pulmonary test), the amount of movement 
artifacts can be reduced by placing a sensor on to 
forehead skin. Furthermore, excess sweating can 
affect SpO2 readings; however, the effect of 
sweating is easily reduced by wiping the 
electrode.

Pulse oximetry can also be affected by skin 
tone and the accuracy of measurements can be 
decreased in persons with dark skin tone (Ries 
et  al., 1989; Cecil et  al., 1988; Ralston et  al., 
1991b), although contradicting results have also 
been reported (Bothma et al., 1996; Adler et al., 
1998). However, a slight decrease in accuracy 
due to skin tone is not usually clinically signifi-
cant (Cecil et al., 1988). Tattoos, artificial nails, 
and nail polish can also decrease the pulse oxim-
eter accuracy as they can change the light absorp-
tion (Jubran, 1999; Coté et  al., 1988; Ralston 
et al., 1991b). However, these issues are usually 
easily avoided simply by using a non-tattooed 
skin surface and by removing nail polish or artifi-
cial nails.

Low perfusion can also cause errors in pulse 
oximetry readings (Hakemi & Bender, 2005). 
Low perfusion could be caused by vasoconstric-
tion, low cardiac output, or even hypothermia. 
Extremities can be warmed with a mitten (for 
example during tilt table test) to maintain a reli-
able transmittance of pulse oximetry and PPG 
signals. In a case of low perfusion, it might be 
difficult for the pulse oximeter to reliably detect 
the HF-AC component of the signal from the 
noise and, thus, may give erroneous readings. To 
be considered reliable, the pulse signal from the 

oximeter should be regular and match the heart 
rate from the ECG if available. Similarly, if a 
subject has very low blood pressure, the pulse 
oximeter readings should be considered unreli-
able (DeMeulenaere, 2007).

The components used in the pulse oximeters 
may affect the accuracy of the device, especially 
if the components are not of the highest quality 
(Mcmorrow & Mythen, 2006). For example, 
cheap light-emitting diodes (LEDs) may emit a 
slightly different frequency of light as designed 
or the photodetectors may report slightly errone-
ous intensities. These error sources could be 
eliminated by only using high-quality compo-
nents but should still be accounted for especially 
in consumer-grade devices.

Although there are several limitations in pulse 
oximetry, the error sources can usually be 
accounted for or corrected if the error sources are 
acknowledged. However, a considerable propor-
tion of users, either healthcare professionals or 
consumers, may not be aware of what exactly a 
pulse oximeter is recording and that the pulse 
oximeter is not a direct measure of partial pres-
sure of oxygen in the blood (Stoneham et  al., 
1994). Therefore, some of the limitations in pulse 
oximetry may be magnified by these misconcep-
tions as the error sources may not be acknowl-
edged and, thus, false readings may not be 
noticed.

12.4	� Applications

12.4.1	� Consumer Use

Consumer pulse oximeters are widely available. 
Most of these low-cost pulse oximeters have not 
been rigorously tested and validated against clini-
cal measurement and do not meet standards for 
medical devices. However, most devices can 
safely rule out hypoxemia in the vast majority of 
patients (Harskamp et al., 2021). This is impor-
tant since the demand for oximeters has increased 
during the COVID-19 pandemic, and the World 
Health Organization has recommended home 
oximetry monitoring for patients with COVID-19 
and with risk factors for progression to severe 
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disease (Organization, 2021). Simultaneously, 
PPG recording has gained popularity in 
consumer-grade wearable devices. The solutions 
come with multiple forms and arrangements 
depending on the manufacturer, but most often 
the basic principles are the same. Wearables most 
often utilize reflective mode and green light, or a 
combination of different light colors. Vulcan 
et al. (2021) published an extensive review that 
summarizes the current status of wrist-worn 
consumer-grade products for sleep tracking. The 
study reveals that devices perform well when 
considering the basic PRV estimation, heart rate 
tracking, and other physical activity, especially if 
the tracker is equipped with an accelerometer. 
When tested against PSG measurements, most of 
the consumer-grade sleep trackers perform rela-
tively poor in epoch-by-epoch sleep staging 
(Vulcan et  al., 2021; Chinoy et  al., 2021). 
Furthermore, it has to be noted that most of the 
sleep trackers use multiple information sources 
for the sleep stage estimation, not just the PPG. 
However, they can measure total sleep time and 
differentiate wake from sleep with sufficient 
accuracy surpassing, for example, plain actigra-
phy. Therefore, it could be speculated that these 
devices would fit well in long-term evaluations 
together with sleep diaries.

In the clinical setting, the PPG is most often 
measured with transmissive mode from the fin-
gertip or earlobe. In contrast, most of the trackers 
are wrist-worn devices and exploit reflective 
mode. A variety of studies show that the mea-
surement location affects the measured signal 
quality and the achieved correspondence with the 
gold standard measurement. For example, the 
respiratory rate, heart rate, and RR-interval eval-
uation are not as accurate from the wrist with 
reflective mode oximeters as from the fingertip 
with transmissive mode oximeters (Hartmann 
et al., 2019; Longmore et al., 2019).

The PPG-based consumer-grade approaches 
show a lot of potential but most of them lack vali-
dation against the gold standard measurements. 
Other disadvantages are the non-harmonized 
measurement techniques, measurement loca-
tions, and signal processing algorithms (Vulcan 
et  al., 2021). However, it has to be noted that 

these devices are designed for commercial, not 
medical use, and, therefore, the performance 
demands are very different.

12.4.2	� Clinical Use

A pulse oximeter is a vital part of standard clini-
cal assessment. It is routinely used in emergency 
rooms and patient wards because it can quickly 
give information on ventilation and perfusion 
deficits. Saturation measurement is also an 
important tool for diagnostics. For example, 
pulse oximeter measurements are obtained rou-
tinely during cardiopulmonary exercise testing 
(Balady et al., 2010). A decrease in saturation by 
>5% is commonly used as an indication of pul-
monary limitation to exercise (Balady et  al., 
2010). Normally, the SpO2 of a healthy subject is 
at least 95%, while values <90% are considered 
low and possibly alarming (Broaddus, 2016; 
Duncan, 2017). The most common causes for 
decreased SpO2 levels are ventilation-perfusion 
mismatch (for example due to apnea or obstruc-
tive pulmonary disease), cardiovascular shunt, 
abnormal pulmonary diffusion capacity, 
hypoventilation, or decreased oxygen content of 
the inhaled air (Bhutta et al., 2021).

The SpO2 is constantly measured and fol-
lowed in the ICU. However, critically ill patients’ 
pulse oximeter-based oxygenation estimation has 
been criticized for its tendency to overestimate 
the readings (Van de Louw et al., 2001). Also in 
these patients, periphery vasocontraction is prev-
alent. For example, low perfusion and sepsis 
among other conditions can lead to over 90% 
pulse oximeter readings, even though the true 
SpO2 is below 90% (Wilson et  al., 2010). For 
these reasons, ICU perfusion is often screened 
with more robust methods. Global oxygenation 
may be also monitored intermittently through 
blood gas analysis or continuously with special-
ized catheters (Kipnis & Valle, 2016).

In sleep medicine, especially when assessing 
obstructive sleep apnea (OSA), a pulse oximeter 
is a cornerstone of the measurements. When con-
sidering the SpO2, conventional parameters such 
as the apnea-hypopnea index (AHI), oxygen 
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desaturation index, time spent under 90% satura-
tion, mean SpO2, and nadir SpO2 can be estimated. 
Based on the latest research, the AHI can be eval-
uated utilizing only a pulse oximeter recording 
(Nikkonen et al., 2019; Leino et al., 2021; Álvarez 
et  al., 2017). In addition, the frequency domain 
information in PPG and the desaturation areas can 
be exploited independently to assess the severity 
of sleep apnea beyond the AHI (Kainulainen 
et  al., 2020a, b; Kainulainen et  al., 2019; 
Azarbarzin et al., 2019). Thus, it could be specu-
lated that OSA screening in various patient popu-
lations and measurement conditions could be 
conducted based even solely on a pulse oximeter.

However, a pulse oximeter provides a lot 
more information besides the SpO2. The PPG 
signals contain information on the pulse rate, 
PRV, peripheral vasoconstriction, and perfusion 
(Jubran, 2015; Lima et al., 2002; Pinheiro et al., 
2016; Rauh et al., 2004; Tusman et al., 2019). 
The recurrent breathing cessations and flow 
limitations cause the cardiorespiratory system 
to respond to changes in intrathoracic pressure 
and deoxygenation. The responses are further 
seen in the PPG signal as deviations from nor-
mal waveform, amplitude drops, and frequency 
modulations. For simplistic analysis and to gain 
a better overview of the condition of the patient, 
normal PRV metrics can be assessed while 
keeping in mind its limitations (see Sect. 
12.2.2).

Moreover, the parasympathetic nervous sys-
tem controls not just the cardiorespiratory system 
and various body functions but also sleep stages 
(Fink et  al., 2018). For these reasons, the PPG 
signal carries information also on the depth of 
sleep. PPG could be used as a surrogate for elec-
troencephalogram (EEG) in detecting rapid eye 
movement (REM) sleep, non-REM sleep, and 
wakefulness (Huttunen et al., 2021; Korkalainen 
et al., 2020). In addition to sleep stage scoring, 
PPG could be used for arousal detection 
(Karmakar et  al., 2014). Arousals cause rapid 
changes in pulse and short periods of vasocon-
striction. These phenomena are visible in the 
PPG signal as frequency increases and amplitude 
decreases, respectively. Simultaneously, the 
amplitude drops in PPG are surrogates for sub-

cortical brain activity, even though EEG-based 
arousal is undetectable (Delessert et al., 2010). In 
summary, the utility of the pulse oximeter in 
sleep medicine is evident.
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13Oximetry Indices 
in the Management of Sleep 
Apnea: From Overnight Minimum 
Saturation to the Novel 
Hypoxemia Measures

Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal, 
Fernando Vaquerizo-Villar, Fernando Moreno, 
Félix del Campo, and Roberto Hornero

Abstract

Obstructive sleep apnea (OSA) is a multidi-
mensional disease often underdiagnosed due to 
the complexity and unavailability of its stan-
dard diagnostic method: the polysomnography. 
Among the alternative abbreviated tests search-
ing for a compromise between simplicity and 
accurateness, oximetry is probably the most 
popular. The blood oxygen saturation (SpO2) 
signal is characterized by a near-constant pro-
file in healthy subjects breathing normally, 
while marked drops (desaturations) are linked 
to respiratory events. Parameterization of the 
desaturations has led to a great number of indi-
ces of severity assessment commonly used to 
assist in OSA diagnosis. In this chapter, the 
main methodologies used to characterize the 
overnight oximetry profile are reviewed, from 

visual inspection and simple statistics to com-
plex measures involving signal processing and 
pattern recognition techniques. We focus on the 
individual performance of each approach, but 
also on the complementarity among the great 
amount of indices existing in the state of the art, 
looking for the most relevant oximetric feature 
subset. Finally, a quick overview of SpO2-based 
deep learning applications for OSA manage-
ment is carried out, where the raw oximetry 
signal is analyzed without previous parameter-
ization. Our research allows us to conclude that 
all the methodologies (conventional, time, fre-
quency, nonlinear, and hypoxemia-based) dem-
onstrate high ability to provide relevant 
oximetric indices, but only a reduced set pro-
vide non-redundant complementary informa-
tion leading to a significant performance 
increase. Finally, although oximetry is a robust 
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tool, greater standardization and prospective 
validation of the measures derived from com-
plex signal processing techniques are still 
needed to homogenize interpretation and 
increase generalizability.

Keywords

Apnea · Blood oxygen saturation · Deep 
learning · Desaturation · Hypopnea · 
Hypoxemia · Hypoxic burden · Nonlinear 
dynamics · Obstructive sleep apnea · 
Oximetry, oxygen desaturation index · 
Resaturation · Signal processing · Spectral 
analysis

13.1	� Introduction

The blood oxygen saturation (SpO2) signal from 
nocturnal oximetry is one of the most valuable 
tools in the framework of abbreviated diagnosis of 
obstructive sleep apnea (OSA). Overnight SpO2 
has shown to gather the relevant changes in the 
respiratory pattern linked to the presence and 
severity of OSA while being non-intrusive for 
patients, portable, and highly available (Del 
Campo et al., 2018; Terrill, 2020). Parameterization 
of the overnight oximetry profile focused the 
effort of many researchers, looking for indices 
able to characterize the number, duration, and 
severity of desaturations (Levy et al., 2021). The 
oxygen desaturation index (ODI) and the cumula-
tive time (CT) below a certain saturation level 
have been traditionally used due to their simple 
computation and interpretation (Terrill, 2020). 
Indeed, many commercial oximeters provide the 
values of these indices in their summary reports, 
besides the mean and the minimum saturation val-
ues throughout the night (Otero et al., 2012).

Despite its widely known usefulness (Tsai 
et al., 2013; Dawson et al., 2015; Sharma et al., 
2017), traditional measures just based on the 
number of events or the cumulative duration of 
the desaturations seem to be insufficient to com-
pletely characterize the severity of the disease, 
particularly in complex patients. In order to over-

come this limitation, new measures have been 
proposed in the last years, aimed at quantifying 
the amount of hypoxemia involving the depth and 
duration of the events jointly (Kulkas et  al., 
2013a). Simultaneously, advanced signal pro-
cessing techniques have provided clinicians with 
a number of automated oximetry indices during 
the past two decades, looking for a better charac-
terization of oximetry dynamics in OSA patients 
(Zamarrón et  al., 1999, 2003; Álvarez et  al., 
2006, 2010, 2012, 2013; Hornero et  al., 2017; 
Terrill, 2020). Besides avoiding the problem of 
lack of standardization (as they are computed 
from well-known mathematical algorithms), 
these indices have demonstrated significant 
effectiveness in OSA diagnosis, though are some-
times difficult to interpret in terms of the physio-
pathology of the disease. Similarly, machine 
learning has been also applied to build oximetry-
based models for decision support in the frame-
work of OSA (Marcos et al., 2009; Álvarez et al., 
2013; Uddin et al., 2018; Gutiérrez-Tobal et al., 
2019). Additionally, the joint analysis of oximet-
ric features by means of pattern recognition and 
artificial intelligence has allowed the detection of 
complementary (non-redundant) indices able to 
improve the diagnostic capability of oximetry 
(Álvarez et al., 2012, 2013). Concerning the use-
fulness of artificial intelligence, the raising of 
deep learning approaches has recently opened a 
new way to exhaustively analyze biomedical sig-
nals. Particularly, deep neural networks have 
been found appropriate tools to automatically 
learn discriminant features from the raw oxime-
try signal (Vaquerizo-Villar et al., 2021), poten-
tially allowing to provide new oximetric indices 
if these new models (highly complex) are thor-
oughly interpreted.

Performance of oximetry-based methods for 
OSA diagnosis shows significant variability 
among studies (Uddin et al., 2018; Del Campo 
et al., 2018). In order to minimize this variabil-
ity, it would be interesting to clarify some major 
points: search for the top-performance index; 
quantify the actual performance increase linked 
to the use of complex mathematical algorithms 
compared to the conventional ones (i.e., the 
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complexity-effectiveness balance); or investi-
gate the degree of complementarity among avail-
able indices, owing that they are all obtained 
from the same data source. The main goal of this 
chapter is to review and analyze the current 
knowledge concerning the diagnostic informa-
tion derived from automatic processing of noc-
turnal oximetry recordings in the context of OSA 
management: from the conventional desatura-
tion indices to the popular new measures of 
hypoxemia and the novel deep learning 
approaches. Accordingly, both individual (uni-
variate) and joint (multivariate) performance of 
the most common characteristics found in the 
literature are assessed, which are categorized in 
the following groups: conventional indices, fre-
quency-domain features, nonlinear measures, 
morphology-based parameters, and deep learn-
ing architectures. Furthermore, when possible, 
the performance increase concerning the inclu-
sion of a particular set of features (statistical, 
spectral, nonlinear) is analyzed, in order to gain 
insight into the complementarity of the available 
oximetry indices.

13.2	� Approaches 
for Parameterizing Changes 
in the Dynamics 
of the Oximetry Signal

A plethora of oximetric features derived from 
many different manual and automatic method-
ologies can be found in the literature. In order to 
facilitate its analysis throughout this chapter, 
oximetry measures are grouped in the following 
categories: (i) conventional measures (visual 
inspection, simple statistics, and the oxygen 
desaturation index); (ii) frequency-domain fea-
tures (power spectral density, high-order spec-
tra, wavelet); (iii) nonlinear measures (entropy, 
complexity, multiscale analysis); (iv) 
morphology-based parameters (hypoxic burden 
measures, characteristics of the desaturation 
curve); and (v) application of deep learning to 
the raw oximetry signal.

13.2.1	� Conventional Approaches 
to Characterize the Overnight 
Oximetry Profile: Visual 
Inspection, Common 
Statistics, and the Oxygen 
Desaturation Index

Table 13.1 summarizes the main traditional meth-
odologies applied for easy assessment and 
interpretation of the nocturnal oximetry profile. 
Visual inspection of the overnight SpO2 tracing 
was predominantly used in the 1990s, in order to 
identify consecutive drops in the saturation value 
leading to the common “saw-tooth” pattern 
linked to the presence of OSA. The specificity of 
manual analysis is particularly high in severe 
OSA subjects. Subjectivity and complexity when 
analyzing long nocturnal profiles are major limi-
tations even for trained sleep experts. 
Nevertheless, examination of overnight oximetry 
tracings is still used to perform preliminary OSA 
screening in especial patient groups, such as chil-
dren (Brouillette et  al., 2000; Velasco-Suarez 
et  al., 2013; Tsai et  al., 2013; Van Eyck et  al., 
2015) and those with concomitant respiratory 
comorbidities, such as chronic obstructive pul-
monary disease (COPD) (Scott et  al., 2014). In 
these studies, sensitivity ranges from 40.6% to 
91.6%, while specificity varies between 40.6% 
and 98.9%.

Simple statistics derived from the data his-
togram of the nocturnal oximetry signal are 
also commonly used to characterize averages 
and trends potentially indicative of pathologi-
cal states. Overall mean, variance, skewness (a 
measure of histogram asymmetry), and kurto-
sis (a measure of data concentration) have been 
proposed as an easy to obtain measures able to 
further complement more advanced automated 
features in numerous studies (Marcos et  al., 
2010a; Marcos et  al., 2012; Álvarez et  al., 
2010, 2012, 2013, 2020; Gutiérrez-Tobal et al., 
2019, 2021a). It is remarkable that at least one 
of these indexes is systematically included in 
the final optimum feature subset when a vari-
able selection procedure is implemented, 
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Table 13.1  Visual inspection approaches and conventional oximetric parameters commonly used to characterize 
oximetry in the context of OSA diagnosis

Approach Indices
Visual inspection
Brouillette et al. (2000), Nixon et al. (2004), Velasco-Suarez 
et al. (2013), Tsai et al. (2013), Van Eyck et al. (2015), Scott 
et al. (2014), Villa et al. (2015)

•	 Recurrent drops in the SpO2 profile 
along the night

•	 Saw-tooth pattern
•	 Clusters of desaturations (mainly in 

pediatric OSA)
SpO2 data histogram and simple statistics
Lévy et al. (1996), Olson et al. (1999), Magalang et al. (2003), 
Marcos et al. (2010a, 2012), Álvarez et al. (2010, 2012, 2013, 
2017, 2018, 2020), Garde et al. (2014), Crespo et al. (2018), 
Vaquerizo-Villar et al. (2018c), Gutiérrez-Tobal et al. (2019, 
2021a)

•	 Mean (central tendency), variance 
(dispersion), skewness (asymmetry), 
kurtosis (peakedness)

•	 Median (central tendency), quantiles, 
and interquartile range (dispersion) are 
less used

•	 Delta index (variability measure)
Intermittent hypoxemia
Gyulay et al. (1993), Magalang et al. (2003), Rofail et al. 
(2010), Chung et al. (2012), Schlotthauer et al. (2014), Dawson 
et al. (2015), Kirk et al. (2003), Chang et al. (2013), Malbois 
et al. (2010), Ward et al. (2012), Aaronson et al. (2012), Mazière 
et al. (2014), Sharma et al. (2017)

•	 Oxygen desaturation index (ODI) of 
2% (children) and 3% or 4% (adults)

Persistent hypoxemia
Chaudhary et al. (1998), Golpe et al. (1999), Magalang et al. 
(2003)

•	 Overnight minimum saturation
•	 Percentage of cumulative time (CT) 

spent with a saturation below a thresh-
old: in the range 80–90% in adults and 
95% in children

which highlights the importance and comple-
mentarity of the information provided by these 
simple measures. In the pediatric framework, 
the same behavior has been reported (Álvarez 
et  al., 2017, 2018; Crespo et  al., 2018; 
Vaquerizo-Villar et  al., 2018c), showing sig-
nificant complementarity among these com-
mon statistical moments and other techniques, 
such as spectral, wavelet, and nonlinear 
measures.

In addition to conventional standard deviation 
and variance, the delta index was also proposed 
to estimate the variability of the overnight SpO2 
recording (Lévy et al., 1996). It quantifies varia-
tion as the sum of the absolute differences 
between the saturation values corresponding to 
the upper and lower limits of each SpO2 segment 
(commonly 12 s length with no overlap), normal-
ized by the total number of intervals. Large 
imbalance in the sensitivity-specificity pair was 
shown, with high sensitivities ranging 88–98% 

and notably lower specificities ranging 40–59% 
(Lévy et al., 1996; Olson et al., 1999; Magalang 
et al., 2003).

Parameterization of the desaturations by quan-
tifying their number, duration, and depth, either 
manually or automated, has been traditionally 
used to characterize oximetry patterns in patho-
logical patients. The number of desaturations 
from baseline greater than a threshold (usually 
3% or 4%) per hour of sleep, i.e., the widely 
known oxygen desaturation index (ODI) (Gyulay 
et al., 1993; Magalang et al., 2003), and the over-
all minimum saturation value and the cumulative 
time (CT) with a saturation below a cutoff value 
(usually 90% for adults and 95% for children) 
relative to the total recording time (Chaudhary 
et al., 1998; Golpe et al., 1999) have been exten-
sively used and commonly embedded in com-
mercial pulse oximeters. Overall, the ODI has 
been found to remarkably outperform CT 
(Magalang et  al., 2003). Individually, the ODI 
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has demonstrated to be a high-performance oxi-
metric feature for OSA detection, both in the 
adult (Rofail et  al., 2010; Chung et  al., 2012; 
Schlotthauer et  al., 2014; Dawson et  al., 2015) 
and the pediatric context (Kirk et  al., 2003; 
Chang et al., 2013) and also even in the presence 
of comorbidities (Malbois et  al., 2010; Ward 
et al., 2012; Aaronson et al., 2012; Mazière et al., 
2014; Sharma et al., 2017). Reported sensitivities 
and specificities ranged 70.0–96.3% and 67.3–
97.2% for adults, 59.26–70.59% and 60.0–86.0% 
for children, and 33.3–100% and 32.0–100% in 
the presence of comorbidities.

In addition, the ODI raised as an essential 
index in studies using multivariate approaches, 
being systematically selected to be part of the 
final optimum models, for both adult (Álvarez 
et al., 2020; Gutiérrez-Tobal et al., 2019, 2021a) 
and pediatric (Hornero et al., 2017; Crespo et al., 
2017, 2018; Álvarez et al., 2017, 2018; Vaquerizo-
Villar et al., 2018a, b, c) OSA automated detec-
tion. Similarly, the ODI has been combined with 
features from other biomedical signals in the 
context of pediatric sleep apnea diagnosis, show-
ing significant correlation with novel spectral 
cardiac indices (Martín-Montero et al. 2021a, b) 
and remarkable complementarity with frequency/
scale (power spectrum, bispectrum, and wavelet) 
and nonlinear (recurrence plots) characteristics 
from airflow recordings (Gutiérrez-Tobal et  al., 
2015; Barroso-García et  al., 2020, 2021a, b; 
Jiménez-García et al., 2020). In the latter case, it 
is important to note that the ODI was selected 
100% of times within the optimum feature sub-
set. Interestingly, the studies by Barroso-García 
et al. (2020, 2021a, b) and Jiménez-García et al. 
(2020) design and assess their models with and 
without including the ODI, allowing to quantita-
tively measure the complementarity of this index 
in terms of the performance increase. In this 
regard, Jiménez-García et  al. (2020) reported 
minor accuracy increments (from +0.77% to 
+1.28%) for the most restrictive cutoff for posi-
tive OSA (1 event/h) when the ODI is included in 
the analysis, while the increase was notably 
higher for larger cutoffs, particularly when the 
ODI is combined with airflow-derived measures 
(+19.23% for 5 events/h and +  11.29% for 10 

events/h). Similarly, Barroso-García et al. (2020, 
2021a, b) also reported higher performance 
increase when using cutoffs for detecting moder-
ate-to-severe cases, achieving increments in the 
accuracy value ranging from +10.4% to +25.0%.

13.2.1.1	� An Especial Oximetric Index 
in Childhood OSA: Clusters 
of Desaturations

This approach exploits the widely known recur-
rent behavior of desaturations, which tend to 
group in different time periods along the sleep 
time. This characteristic is closely related with 
the periodicity of desaturations and hence with 
the analysis of the signal in the frequency domain. 
However, while spectral analysis has been exten-
sively applied regardless the context (either adult 
or pediatric), the characterization of the depth, 
number, and clustering of desaturations has been 
mostly used as a marker of childhood OSA. The 
intuition is that the larger the number of clusters, 
the larger the probability of OSA. However, there 
is not a clear definition of what a cluster is, and 
they are mainly detected by visual inspection 
(Nixon et al., 2004; Velasco-Suarez et al., 2013; 
Van Eyck et al., 2015; Villa et al., 2015). Recent 
reviews of the state of the art pointed out that this 
approach is particularly useful for the detection 
of moderate-to-severe OSA cases (Van Eyck & 
Verhulst, 2018).

Brouillette et al. (2000) firstly pointed out the 
screening ability of clusters of desaturations in 
children. They reported that the presence of three 
or more clusters showing falls greater than 4% 
from baseline and three or more falls in the satu-
ration value below the threshold of 90% was pre-
dictive of pediatric OSA, though sensitivity was 
notably lower than specificity (42.9% vs. 97.8%, 
respectively). Based on this study, Nixon et  al. 
(2004) defined the McGill oximetry score (MOS), 
reporting that the number and depth of the clus-
ters could be used to estimate the severity of 
pediatric OSA, prioritize treatment, and schedule 
perioperative interventions. Similarly, Velasco-
Suarez et  al. (2013) reported higher and more 
balanced sensitivity and specificity values (86.6% 
vs. 98.9%) using a lower number of clusters (>2) 
and drops below 90% (>1) for positive OSA in 
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children with adenotonsillar hypertrophy. 
Recently, Van Eyck et  al. (2015) prospectively 
assessed the methods by Brouillette et al. (2000) 
and Velasco-Suarez et  al. (2013) for childhood 
OSA detection based on the characterization of 
clusters of desaturations. Accuracies ranging 
68–78% were reported using a conservative diag-
nostic threshold of 2 events/h for childhood OSA. 
Looking for a performance increase, Villa et al. 
(2015) combined the parameterization of clusters 
with data from the patient’s clinical history, 
reaching 85.8% accuracy in the detection of this 
condition, while accurateness decreases to 69.4% 
for the detection of moderate-to-severe cases.

13.2.2	� Analysis of Nocturnal 
Oximetry in the Frequency 
Domain

In addition to simple statistics and the ODI, one 
of the first attempts to automatically characterize 
the SpO2 signal relied on the use of tools in the 
frequency domain. Nocturnal desaturations com-
monly present in the oximetry signal from OSA 
patients show a relative periodicity. The parame-
terization of the changes in the power spectrum 
of the signal linked to this pseudo-periodicity has 
been found to provide relevant and discriminative 
features able to discern OSA patients from 
healthy subjects.

In the framework of frequency analysis, a 
major decision is to define the spectral band of 
frequencies that is going to be analyzed. In this 
regard, standardized spectral bands exist in other 
biomedical signals, such as heart rate variability 
(HRV) or electroencephalogram (EEG). The 
low-frequency (LF: 0.04–0.15 Hz) and the high-
frequency (HF: 0.15–0.40 Hz) bands were pro-
posed many years ago to assess the influence of 
diseases in the cardiac autonomic function using 
the HRV signal as a surrogate of more intrusive 
techniques (Stein & Pu, 2012). Similarly, the 
power spectra in the classical EEG bands delta 
(0.1–3.5 Hz), theta (4–7.5 Hz), alpha (8–13 Hz), 
and beta (14–30  Hz) have been widely used to 
quantitatively measure the impact of diseases in 
the brain activity (Penttonen & Buzsáki, 2003). 
On the contrary, no standardized frequency bands 
are defined concerning the spectral analysis of 
the oximetry signal.

In the literature, different oximetry-based 
spectral bands have been proposed to character-
ize the severity of the disease. Table 13.2 sum-
marizes the main spectral bands of interest used 
to assess the oximetry signal in the frequency 
domain. In the context of adult OSA, the fre-
quency band 0.014–0.033 Hz has been predomi-
nantly used (Zamarrón et al., 2003; Chen-Liang 
et  al., 2009; Álvarez et  al., 2010, 2012, 2013). 
Shiomi et al. (1996) firstly identified a synchro-
nization between decreased arterial oxygen satu-

Table 13.2  Most common spectral bands of interest of the oximetry signal in the frequency domain

Frequency bands for adults Frequency bands for children
•	 0.008–0.04 Hz (VLF)

Shiomi et al. (1996)
•	 0.014–0.033 Hz (T30–70)

Zamarrón et al. (1999)
•	 0.017–0.1 Hz (T10–60)

Sánchez-Morillo and Gross (2013)
•	 0.017–0.05 Hz (T20–60)

Sánchez-Morillo and Gross (2013)
•	 0.013–0.1 Hz (T10–75)

Sánchez-Morillo and Gross (2013)
•	 0.013–0.05 Hz (T20–75)

Sánchez-Morillo and Gross (2013)
•	 <0.2 Hz (artifact removal)

Schlotthauer et al. (2014)

•	 ±0.02 around the peak in 0.005–0.1 Hz
Garde et al. (2014)

•	 0.01755–0.03433 Hz (for AHI ≥1 event/h)
Álvarez et al. (2017)

•	 0.02136–0.03967 Hz (for AHI ≥3 events/h)
Álvarez et al. (2017)

•	 0.01755–0.03357 Hz (for AHI ≥5 events/h)
Álvarez et al. (2017)

•	 0.02136–0.03357 Hz
Álvarez et al. (2017)

•	 0.018–0.050 Hz
Vaquerizo-Villar et al. (2018a, c)

•	 0.020–0.044 Hz
Hornero et al. (2017)

•	 0.021–0.040 Hz
Crespo et al. (2018)
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ration and a power increase in the 
very-low-frequency components of the heart rate 
variability signal (VLF: 0.008–0.04 Hz). In this 
study, the authors laid the foundations of subse-
quent analysis of oximetry in the frequency 
domain, relating the upper and lower limits of 
the VLF band to the maximum and minimum 
durations of apneas, respectively: 120 s is stated 
as the maximum cycle length (i.e., 0.008  Hz), 
while 25 s is considered the minimum duration 
(i.e., 0.04 Hz), including the recovery (awaken-
ing response) after apnea episodes (Shiomi et al., 
1996). Then, Zamarrón et al. (1999, 2003) thor-
oughly analyzed the spectral content of the 
oximetry signal within this band, reporting a 
characteristic and highly discriminative power 
increase in the period 30–70  s, i.e., the widely 
used 0.014–0.033 Hz band. Other authors used 
similar approaches, leading to slightly different 
bands. Sánchez-Morillo and Gross (2013) and 
Sánchez-Morillo et al. (2014) analyzed the his-
togram of the duration of the desaturations to 
determine the most common desaturation peri-
ods. They reported that 83.4% of the desatura-
tions last between 10 and 60  s and that 90.5% 
between 10 and 75 s (Sánchez-Morillo and Gross, 
2013). Accordingly, they defined the following 
periods of interest in order to parameterize the 
power spectrum of the oximetry signal: 10–60 s 
(i.e., 0.017–0.1 Hz), 20–60 s (i.e., 0.017–0.05 Hz), 
10–75  s (0.013–0.1  Hz), and 20–75  s (0.013–
0.05 Hz). Other authors used a more conservative 
approach when locating the spectral content of 
oximetry. In this regard, Schlotthauer et al. (2014) 
considered that desaturations linked to apneas 
have periods larger than 5  s, leading to relevant 
frequency components below 0.2 Hz.

In the framework of childhood OSA, there is a 
larger variability regarding the spectral band of 
interest of the oximetry signal compared to adults 
(see Table 13.2). Garde et al. (2014) used a fre-
quency interval of 0.02 Hz centered around the 
peak amplitude of the power spectrum that they 
searched from 0.005 to 0.1  Hz. Álvarez et  al. 
(2017) performed a statistical analysis searching 
for the frequencies leading to the highest dis-
criminant ability between OSA groups. 
Accordingly, they identified three different bands 

of interest for pediatric OSA: 0.01755–0.03433 
Hz for a cutoff of 1 event/h, 0.02136–0.03967 Hz 
for a cutoff of 3 events/h, and 0.01755–0.03357 
Hz for 5 events/h. Finally, they proposed a single 
spectral frequency range as the broadest interval 
showing significant differences regardless the 
clinical threshold for positive OSA: 0.02136–
0.03357  Hz. Similarly, Vaquerizo-Villar et  al. 
(2018a, c) searched for a spectral band of interest 
able to maximize the differences between differ-
ent OSA severity groups (AHI < 5 events/h, 5 
≤AHI < 10 events/h, and AHI ≥10 events/h), 
leading to the interval 0.018–0.050  Hz. Other 
authors used slight variations of these bands, 
such as Hornero et al. (2017) (0.020–0.044 Hz) 
and Crespo et al. (2018) (0.021–0.040 Hz).

Concerning the methodology used to inspect 
the frequency content of oximetry, different 
approaches have been assessed. The estimation 
of the power spectral density (PSD) using the 
non-parametric Welch method based on the fast 
Fourier transform has been predominantly used 
(Zamarrón et al., 1999, 2003; Chen-Liang et al., 
2009; Álvarez et  al., 2010, 2012, 2013, 2017; 
Hornero et  al., 2017; Crespo et  al., 2018). 
Alternatively, autoregressive methods were used 
by Sánchez-Morillo and Gross (2013) and Garde 
et al. (2014) to estimate the PSD. A number of 
measures have been used to parameterize the 
power spectrum (see Table 13.3), mainly based 
on amplitudes and total or relative power in the 
spectral band of interest. Additionally, common 
statistics, such as first-to-fourth statistical 
moments and the median frequency, as well as 
regularity measures as the Shannon spectral 
entropy have been also widely used to further 
characterize the spectral content of the signal. In 
this regard, peak amplitude, relative power, skew-
ness, and spectral entropy have been found to 
jointly summarize oximetry dynamics in the 
frequency domain, for both adults (Álvarez et al., 
2010, 2012, 2013, 2020; Sánchez-Morillo & 
Gross, 2013) and children (Garde et  al., 2014; 
Hornero et al., 2017; Álvarez et al., 2017; Crespo 
et al., 2018).

On the other hand, novel and complementary 
approaches have been recently proposed to fur-
ther assess the recurrent behavior of desatura-
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Table 13.3  Measures commonly used to characterize the power spectrum of oximetry in the frequency domain

Method Indices
Power spectral density (PSD)
•	 Non-parametric fast Fourier transform (FFT)-

based methods (Welch, Blackman-Tukey)
�Zamarrón et al. (1999, 2003), Chen-Liang et al. 
(2009), Álvarez et al. (2010, 2012, 2013, 2017), 
Hornero et al. (2017), Crespo et al. (2018)

•	 Autoregressive methods (Yule-Walker)
�Sánchez-Morillo and Gross (2013),  
Garde et al. (2014)

•	 First-to-fourth statistical moments (mean, vari-
ance, skewness, kurtosis), median frequency

•	 Shannon spectral entropy (SSE), mobility, 
Wootters’ distance, Euclidean distance (mea-
sures of the concentration of the signal power)

•	 Peak and minimum amplitudes, total power, 
relative power in the band of interest

Bispectrum (high-order spectra)
Vaquerizo-Villar et al. (2018a) •	 Mean amplitude

•	 Sum of the logarithmic amplitudes of the whole 
bispectrum, sum of the logarithmic amplitudes 
in the main diagonal, first-order spectral moment 
of amplitudes in the main diagonal

•	 Normalized bispectral entropy and normalized 
bispectral squared entropy

•	 Phase entropy
•	 Mean and variance of the bispectrum invariant

Wavelet transform
Vaquerizo-Villar et al. (2018c), Poupard et al. (2012)

•	 First-to-fourth-order moments of the wavelet 
coefficients in the 9th detail band (D9: 
0.0244–0.0488 Hz)

•	 Maximum amplitude of wavelet coefficients in 
D9

•	 Energy of the coefficients in D9

•	 Wavelet entropy
•	 Ventilatory hypoxemic index

tions and to obtain complementary information 
to that provided by the PSD.  In this regard, 
Vaquerizo-Villar et  al. (2018a) used high-order 
spectra (HOS) to detect deviations from 
Gaussianity, linearity, and stationarity of the 
oximetry signal potentially linked to the apneic 
events. Particularly, they applied the bispectrum, 
a representation of the spectral decomposition of 
the third-order cumulant (skewness) of a signal 
over the frequency. In this study, two bispectral 
measures showed complementarity with PSD, 
the mean amplitude of the bispectrum and the 
mean of the bispectrum invariant, which account 
for magnitude differences and for phase coupling 
between spectral components, respectively. The 
authors reported a remarkable performance 
increase (+6.7% three-class accuracy) when 
including these bispectral features in a model for 
automated pediatric OSA diagnosis. Similarly, in 

a subsequent study in the same research line, 
Vaquerizo-Villar et  al. (2018c) applied wavelet 
analysis in order to further characterize the spec-
tral content of the signal, particularly in the very 
low frequencies owing that oximetry is character-
ized by very slow variations. In such low 
frequencies, traditional methods lack for appro-
priate spectral resolution, while the wavelet 
transform performs a multilevel analysis able to 
provide high frequency resolution at low frequen-
cies and high time resolution at high frequencies. 
In the study by Vaquerizo-Villar et al. (2018c), 
the skewness and the energy of the coefficients in 
the level 9 detail signal (D9, corresponding to the 
frequency range 0.0244–0.0488 Hz), as well as 
the overall wavelet energy, showed complemen-
tarity with conventional oximetric indices, 
including ODI, statistical moments, and features 
from the PSD.

D. Álvarez et al.



227

In the context of adult OSA, the wavelet trans-
form has been also applied to the oximetry signal 
to obtain a new measure of hypoxemia. Poupard 
et al. (2012) implemented a wavelet-aggregation 
procedure to quantify the overall absolute varia-
tions (both increases and decreases of amplitude) 
along the overnight oximetry recording. The ven-
tilatory hypoxemic index (VHI) was defined as 
the cumulative time with absolute variations 
>4%, divided by the theoretical apnea cycle 
period, which was defined as the middle point in 
the interval 30–70 s identified by Zamarrón et al. 
(2003), i.e., 50 s. The VHI showed higher corre-
lation with standard AHI than ODI (0.87 vs. 
0.81), as well as lower bias (+5.7 vs. +13.5). In 
the same regard, VHI achieved more balanced 
sensitivity-specificity pair than the ODI for the 
common cutoffs for OSA (91–88% vs. 65–100%, 
AHI ≥5 events/h; 81–98% vs. 58–100%, AHI 
≥15 events/h; 67–99% vs. 59–100%, AHI ≥30 
events/h).

13.2.3	� Methods Derived 
from Nonlinear Dynamics 
in the Oximetry Signal

Despite the usefulness shown by conventional 
oximetric indices, statistics, and frequency-
domain methods, they are unable to completely 
explain all the dynamics of the oximetry signal. In 
addition to periodicities linked to the recurrent 
apneic events, there are also nonlinear changes 
typical of natural systems present in biomedical 
signals. In this regard, nonlinear methods derived 
from the chaos theory have demonstrated to pro-
vide relevant and complementary information in 
the automated diagnosis of OSA from oximetry. 
Table  13.4 shows the methods predominantly 
used to quantify nonlinear dynamics in the SpO2 
signal.

Approximate (ApEn) and sample (SampEn) 
entropies, central tendency measure (CTM), and 
Lempel-Ziv complexity (LZC) have been pre-
dominantly used. Individually, the quantification 
of irregularity in the overnight oximetry record-
ing by means of ApEn shows remarkable perfor-
mance in the detection of adult OSA (Del Campo 

et al., 2006; Hornero et al., 2007), reaching bal-
anced sensitivity and specificity, as well as area 
under the ROC curve >0.90. In the same regard, 
CTM matches the behavior of ApEn, achieving 
accuracy values >87% with balanced sensitivity-
specificity pair and area under the ROC curve 
>0.90 (Álvarez et al., 2006, 2007). Finally, LZC 
has shown slightly lower performance than single 
CTM or ApEn, although reaching notable accu-
racy (>82%) and area under the curve (>0.85) 
(Álvarez et al., 2006).

Concerning multivariate approaches, nonlin-
ear measures have shown valuable complemen-
tarity with conventional oximetric indices for 
automated OSA diagnosis in both adults and 
children. In the adult context, nonlinear measures 
are systematically included in the final optimum 
subset from automated feature selection proce-
dures. Particularly, the width of the Poincaré plot 
(SD1) is complemented with different desatura-
tion and resaturation indices as well as with spec-
tral power (Sánchez-Morillo & Gross, 2013), 
LZC shows remarkable joint relevance with sta-
tistical moments in the time domain and the spec-
tral power (Álvarez et al., 2010, 2013), and CTM 
fits with statistical moments in both the time and 
frequency domains and the peak spectral ampli-
tude (Álvarez et al., 2012, 2013). Under a multi-
class approach, SD1, SampEn, CTM, and LZC all 
together combined with the ODI and a histogram-
based index to discern between no-OSA and mild 
OSA individuals, whereas ApEn combined with 
histogram-based indexes, resaturation measures, 
and the ODI to classify moderate and severe OSA 
patients (Sánchez-Morillo et al., 2014). Without 
an appropriate feature selection stage, comple-
mentarity of nonlinear measures is not properly 
exploited, as shown in the study by Marcos et al. 
(2009), where the combination of nonlinear and 
spectral features did not significantly improve the 
accuracy reached with each individual approach 
(spectral vs. nonlinear). Alternatively, dimen-
sionality reduction by means of principal compo-
nent analysis showed a remarkable performance 
increase (+6.20% accuracy) when combining 
spectral and nonlinear features (Marcos et  al., 
2010b). Under a regression approach aimed at 
estimating the apnea-hypopnea index (AHI), 
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Table 13.4  Nonlinear methods commonly used to quantify changes in nonlinear dynamics of oximetry

Method Indices
Irregularity or disorderliness measures by means of 
entropy
del Campo et al. (2006), Hornero et al. (2007), 
Álvarez et al. (2006, 2010, 2012, 2013, 2017, 2020), 
Marcos et al. (2009, 2012); Marcos et al. (2010b), 
Sánchez-Morillo et al. (2014), Garde et al. (2014), 
Hornero et al. (2017), Crespo et al. (2018)

•	 Approximate entropyEntropies (ApEn) and 
cross-approximate entropy (cross-ApEn)

•	 Sample entropy (SampEn)
•	 Kernel entropy (KerEn)

Variability measures from scatter plots
Álvarez et al. (2006, 2007, 2010, 2012, 2013, 2017, 
2020), Marcos et al. (2009, 2012), Marcos et al. 
(2010b), Sánchez-Morillo and Gross (2013), 
Sánchez-Morillo et al. (2014), Garde et al. (2014), 
Hornero et al. (2017), Crespo et al. (2018)

•	 Length of the main (SD1) and secondary (SD2) 
axes of the ellipse that encloses the points in 
Poincaré plots

•	 Central tendency measure (CTM) from second-
order difference plots

Complexity measures
Álvarez et al. (2006, 2010, 2012, 2013, 2020), 
Marcos et al. (2009, 2010b, 2012), Sánchez-Morillo 
et al. (2014), Hornero et al. (2017), Crespo et al. 
(2018)

•	 Lempel-Ziv complexity

Multiscale approaches
Crespo et al. (2017), Vaquerizo-Villar et al.  
(2018a, b)

•	 Multiscale entropy (MSE): Individual entropy 
values in single scales; entropy value in the 
scale reaching the maximum margin between 
groups under study; slope of the MSE curve 
between a pair of scales; area enclosed under 
the MSE curve between a pair of scales; area 
enclosed between the first and the maximum 
margin scales; time scale where maximum 
entropy is reached

•	 Detrended fluctuation analysis (DFA): slopes 
(scaling exponents) of the lines fitting the 
regions identified in the DFA curve; coordinates 
of the intersection of the line fitting these 
regions; value of the fluctuation function in the 
scale that maximizes its correlation with the 
AHI

Symbolic dynamics
Álvarez et al. (2018)

•	 Probability of the words (particular sequence of 
symbols) representative of different states (high 
and low saturation values) and changes (desatu-
rations and resaturations) of the signal

•	 Forbidden words
•	 Symbolic entropy

SampEn, CTM, and LZC from oximetry showed 
reliable completeness with statistical, spectral, 
and conventional oximetric indices (Marcos 
et al., 2012; Álvarez et al., 2020).

In the framework of pediatric OSA, the use-
fulness of traditional nonlinear indexes (SampEn, 

CTM, and LZC) from overnight oximetry has 
been less investigated, and their relevance seems 
to be slightly lower than in the adult context. The 
studies by Álvarez et al. (2017) and Crespo et al. 
(2018) include these measures in the beginning 
of a feature selection process, and only SampEn 
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was found non-redundant and finally selected to 
be part of the optimum model for binary classifi-
cation of children (non-OSA vs. OSA) using dif-
ferent cutoffs for the disease (1, 3, and 5 events/h). 
Additionally, Garde et  al. (2014) and Hornero 
et  al. (2017) also used nonlinear measures to 
characterize the nocturnal oximetry profile of 
children with suspicion of OSA, but no nonlinear 
index was included in the optimum model (binary 
classification and regression approaches) due to 
redundancy.

In addition to these conventional nonlinear 
measures of irregularity, variability, and com-
plexity, novel nonlinear methods have been 
recently applied to the oximetry signal in order to 
obtain as much information as possible from the 
recording. This is particularly important in the 
pediatric context, where pattern recognition and 
machine learning methods face a more challeng-
ing task compared to adults. In the study by 
Crespo et al. (2017), multiscale sample entropy 
(MSE) was applied to quantify entropy changes 
in the oximetry signal along larger time scales. 
Features derived from the MSE curve shown high 
performance (AUC 0.80) both individually and 
jointly. It is remarkable the complementarity of 
MSE variables and conventional oximetric indi-
ces (ODI, CT, minimum and average saturation), 
leading to a significant performance increase 
(+4.5% accuracy; +6% AUC) when properly 
combined using a stepwise approach. Similarly, 
Vaquerizo-Villar et  al. (Vaquerizo-Villar et  al., 
2018b) applied detrended fluctuation analysis 
(DFA) to analyze changes in the correlation prop-
erties of the nocturnal oximetry profile for differ-
ent ranges of scales. The slope in the first scaling 
region of the DFA curve showed high relevancy 
and complementarity with the ODI. Both were 
combined using a regression neural network 
aimed at estimating the AHI, reaching high 
agreement with actual AHI (0.891 intra-class cor-
relation coefficient; 0.412  kappa) and notably 
outperforming the ODI alone (0.866 intra-class 
correlation coefficient; 0.355  kappa). Finally, 
Álvarez et  al. (2018) analyzed nonlinearities 
present in the oximetry recording using a sym-
bolic dynamics approach, which stablishes an 
alternative framework for investigating complex 

nonlinear systems. Features from the histogram 
of symbols reached the highest performance 
compared to conventional indexes, anthropomet-
ric measures, and common statistical moments. 
Moreover, symbolic dynamics features showed 
significant complementarity with these variable 
subsets, leading to a significant performance 
increase (+4.8% accuracy; +7% AUC) when used 
together after appropriate feature selection.

13.2.4	� Quantifying the Morphology 
of Desaturation: Influence 
of the Area and the Velocity 
of Events

The conventional oxygen desaturation index has 
demonstrated to provide highly relevant informa-
tion on the severity of OSA, reaching high per-
formance when used individually as well as being 
systematically selected within the optimum fea-
ture subset under multivariate approaches. 
Nevertheless, the ODI is just based on counting 
the number of desaturations, regardless the total 
depth and length of these events. Hence, there is 
room for improvement if all these characteristics 
are put together in the same index. Table  13.5 
shows several indices found in the literature 
aimed at parameterizing the morphology of the 
desaturation.

First attempts for joint characterization of 
both the length and depth of the desaturations 
were made by Chesson et al. (1993, 2001). They 
proposed the so-called saturation impairment 
time (SIT), an automated index aimed at quanti-
fying cumulative nocturnal oxygen desaturation 
as a measure of hypoxemia in the context of 
respiratory-related breathing disorders. Contrary 
to traditional indices of hypoxemia just based on 
the percentage of time spent below a predeter-
mined threshold (CTx%, being x% the cutoff), 
the SIT index integrates both time (length) and 
severity (depth) of the desaturations (Chesson 
et al., 1993). To measure the joint contribution of 
both characteristics, SIT is computed as the area 
enclosed under a fixed saturation value (similar 
to the threshold in CT indices) and the saturation 
curve. The authors reported good correlation 
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Table 13.5  Measures used to parameterize the morphology of the desaturation curve

Method Indices
Severity of desaturations (quantification of the 
total or partial area of the desaturation)
Chesson et al. (1993, 2001), Kulkas et al. (2013a, 
b, 2017), Muraja-Murro et al. (2014), Leppänen 
et al. (2017), Kainulainen et al. (2019, 2020), 
Linz et al. (2018), Khoshkish et al. (2018), 
Azarbarzin et al. (2019), Kim et al. (2020)

•	 Saturation impairment time (SIT)
•	 Apnea severity, hypopnea severity, obstruction 

severity, and desaturation severity
•	 Hypoxia load (HL)
•	 Hypoxic burden

Parameterization of the sections of the 
desaturation
Otero et al. (2012)

•	 Duration of the desaturation
•	 Average and minimum (nadir) values of the satura-

tion throughout the event
•	 Elapsed time from the beginning of the event until 

the nadir point and from the nadir to the end of the 
desaturation

•	 Overall drop in the saturation during the fall part of 
the event and overall increase in the rise section

•	 Slope of both the fall and the rise parts of the event
•	 Desaturation area

with CT (r2  >  0.8) as well as complementarity 
with the respiratory disturbance index (RDI), i.e., 
patients with similar RDI showed variability in 
their SIT values.  Accordingly, they concluded 
that the SIT index may provide additional and 
useful information in the characterization of 
desaturations during sleep.

The standard AHI from nocturnal PSG is com-
monly criticized due to its low correlation with 
physiological symptoms and consequences of 
OSA. In a similar way to the ODI, this problem is 
attributed to the own definition of the parameter, 
which is just based on counting the number of 
apneas and hypopneas throughout the time of 
sleep regardless their severity. Motivated by the 
increasing demand for alternatives to the standard 
AHI due to these limitations, different respiratory 
disturbance indices have been recently proposed 
aimed at gathering the severity of each individual 
event. These indices are commonly known as 
measures of “hypoxic burden.” In 2013, Kulkas 
et al. (2013a) proposed a set of indices they named 
severity parameters, aimed at accounting for both 
the morphology and the duration of desaturations: 
apnea severity, hypopnea severity, obstruction 
severity, and desaturation severity. They are all 
based on the quantification of the desaturation 
area for each single event, which is the area 

enclosed between a saturation level determined 
by the starting point of the event and the oximetry 
curve until the minimum saturation value (nadir), 
i.e., the resaturation part of the event is not con-
sidered. The desaturation severity index is com-
puted as the cumulative sum of the desaturation 
area of each single event and normalized by the 
total analyzed time. Apnea severity, hypopnea 
severity, and obstruction severity are based on the 
same definition, but the desaturation area is 
weighted by the duration of each kind of event, 
and only those events (apnea, obstructive, or 
hypopnea) followed by a desaturation event 
within the next 60 s are considered (Kulkas et al., 
2013a). The authors reported moderate correla-
tion of the novel severity indices with the standard 
AHI (r2  <  0.7; p  <  0.001) and with the ODI 
(r2 < 0.75; p < 0.001) (Kulkas et al., 2013a), as 
well as remarkable variability for patients within 
the same AHI/severity range (Kulkas et al. 2013a, 
b), suggesting that the proposed severity parame-
ters might provide complementary information on 
the assessment and management of the severity of 
OSA. In a subsequent study by the same group, 
Muraja-Murro et al. (2014) used the obstruction 
severity parameter to adjust the AHI. Interestingly, 
the adjusted AHI correlated better than standard 
AHI with mortality (both all-cause and cardiovas-
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cular) and non-fatal cardiovascular events, lead-
ing to significantly higher association (higher risk 
ratios) for these outcomes in the corrected moder-
ate and severe groups. In addition, using the novel 
severity indices, Kulkas et  al. (2017) and 
Leppänen et al. (2017) were able to gain insight 
into the differences among OSA patients concern-
ing gender, while Kainulainen et al. (2019, 2020) 
found that severity of desaturations had a great 
impact on the level of daytime sleepiness and 
vigilance/reaction time in patients with OSA.

More recently, Linz et al. (2018) proposed a 
new measure for the quantification of the 
hypoxemic burden during sleep that they 
termed hypoxia load. The hypoxia load is 
defined as the integrated area of the desatura-
tion curve to the theoretical maximal satura-
tion, i.e., 100%. This way, the hypoxia load 
encompasses all the changes in the saturation 
signal linked to respiratory events (baseline 
saturation, number and length of desaturations, 
time below 90%, and minimum saturation 
value) regardless any threshold. This index is 
presented in the context of cardiovascular risk 
assessment in patients with sleep-disordered 
breathing (SDB). Linz et  al. (2018) reported 
that the hypoxia load showed significant mod-
erate correlation (r2  =  0.316; p  <  0.05) with 
epicardial fat volume, an established marker of 
cardiovascular risk, in patients with SDB after 
acute myocardial infarction. On the contrary, 
the AHI and conventional measures of hypox-
emia did not show significant association. 
Additionally, Khoshkish et al. (2018) reported 
significant correlation (r2  ≈  0.1; p  <  0.05) 
between hypoxia load and pulse pressure dur-
ing both the day and the night, while standard 
AHI did not. These findings led the authors to 
suggest that the new measures of hypoxic bur-
den could be used to predict blood pressure 
patterns and help in the management of hyper-
tensive patients.

In 2019, Azarbarzin et  al. (2019) defined a 
similar index of OSA-related hypoxemia, the 
hypoxic burden, which was presented as a poten-
tial predictor of cardiovascular disease (CVD)-
related mortality. The hypoxic burden index aims 
to characterize just intermittent hypoxemia typi-

cal of OSA and not persistent hypoxemia com-
monly present in other respiratory diseases. 
Accordingly, it was defined as the area under the 
oxygen saturation curve only in the desaturations 
associated with apneas or hypopneas. A subject-
specific search window is defined by segmenting, 
overlapping using a common synchronization 
point at the end of each event, and finally averag-
ing all the oximetry segments linked to annotated 
respiratory events of the individual (i.e., apneas 
and hypopneas both obstructive and central, 
regardless their association to a desaturation or an 
arousal). Finally, the total hypoxic burden is com-
puted as the cumulative sum of individual areas 
normalized by the total sleep time. The authors 
found that the hypoxic burden index was a strong 
predictor of CVD mortality in different popula-
tions (Osteoporotic Fractures in Men Sleep Study, 
hazard ratio 2.73, 95%CI 1.71–4.36; Sleep Heart 
Health Study, hazard ratio 1.96, 95%CI 1.11–
3.43) independent of the AHI/ODI and traditional 
measures of hypoxemia (CT90, minimum satura-
tion). In a subsequent study, Kim et  al. (2020) 
found a significant association between an incre-
ment (1 SD increment in a log-transformed space) 
in the hypoxic burden index and the increase in 
blood pressure (1.1% increase in systolic blood 
pressure, 95%CI 0.1–2.1%; 1.9% increase in dia-
stolic blood pressure, 95%CI 1.0–2.8%) in 
patients not using hypertensive medication.

Concerning the morphology of events, Otero 
et al. (2012) proposed a set of indices aimed at 
parameterizing additional features of desatura-
tions that are not usually considered in the diag-
nosis and characterization of OSA severity. These 
indices include not only measures of duration 
and depth but also features related to the velocity 
of both the fall and rise parts of the desaturation. 
The following measures were defined: (i) dura-
tion of the desaturation; (ii) average and mini-
mum (i.e., nadir point) values of the saturation 
throughout the whole event; (iii) elapsed time 
from the beginning of the event until the nadir 
point is reached as well as from the nadir to the 
end of the desaturation; (iv) overall drop in the 
saturation during the fall part of the event and 
overall increase in the rise section; (v) slope of 
both the fall and the rise parts of the event; and 
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(vi) the desaturation area, measured as the area 
enclosed between the straight line joining the 
starting and ending points on the event and the 
saturation curve. In addition, these oximetry-
based measures were computed to characterize 
the whole overnight oximetric recording: (i) 
mean saturation throughout the recording; (ii) 
basal saturation; (iii) difference between the 
basal value and the mean value; (iv) percentage 
of the sleep time while the patient is in hypox-
emia; and (v) area between a straight line set to 
the basal saturation value and the oximetry curve.

When assessing the relevance of these indices 
in the context of OSA diagnosis, the authors 
found that the most common oximetry features 
(duration of the desaturation, average, and mini-
mum values) were not selected using a battery of 
automated feature selection processes. The most 
relevant oximetry indices were the following: (i) 
percentage of time in hypoxemia; (ii) difference 
between basal and average values; (iii) area 
between basal level and the oximetry profile; (iv) 
saturation increase during the rise part of the 
desaturation associated with apnea events; and 
(v) saturation drop during the fall section of the 
desaturation associated with apnea events. 
Individually, the performance of these 
morphology-related desaturation indices in the 
detection of OSA ranged 81–90.9% accuracy 
(86.5–95.7% sensitivity; 47.8–76.1% 
specificity).

13.2.5	� Oximetry and Deep Learning 
Approaches

Deep learning is changing the paradigm of both 
image and signal processing in the field of medi-
cine. Traditional machine learning methods rely 
on the so-called feature engineering, where mod-
els are fed with features previously derived from 
the signals based on the knowledge of the prob-
lem under study. Thus, this is a human-driven 
approach, and so it is highly dependent on the 
skills of the researchers to compose a relevant fea-
ture set. On the contrary, deep learning is able to 
learn hidden complex patterns directly from the 
raw signal (Faust et al., 2018), avoiding the bias 
linked to an a priori known limited set of indices. 
To do that, deep learning techniques use architec-
tures with multiple levels of representation or data 
abstraction (Goodfellow et al., 2016), commonly 
different types of neural networks, such as convo-
lutional or recurrent deep neural networks.

In the context of OSA, deep neural networks 
have been used in the last years for automated 
decision-making (Mostafa et  al., 2019). 
Table  13.6 summarizes the main goals of deep 
learning approaches in the framework of OSA 
involving the oximetry signal. Main tasks focus 
on abbreviated OSA diagnosis and automated 
sleep staging. Nikkonen et  al. (2019) applied a 
fully connected deep neural network to estimate 
the AHI directly from overnight oximetry (10-

Table 13.6  Techniques and approaches involving deep learning and oximetry in the management of OSA

Goals Methods
Automated diagnosis
Classification of segments (normal vs. apneic) and 
subsequent estimation of the AHI (short segments: 1- to 
5-min length epochs, with or without overlapping)
Mostafa et al. (2020a, b), Bernardini et al. (2021)
Direct regression of the AHI (larger segments: 10- to 
20-minute length epochs, with or without overlapping)
Nikkonen et al. (2019), Leino et al. (2021), Vaquerizo-Villar 
et al. (2021)

Dense fully connected neural networks
Convolutional neural networks (CNN)
Recurrent neural networks (RNN)
Long short-term memory (LSTM)
Convolutional + dense (CNN+ dense)
Convolutional + recurrent (CNN + RNN)

Sleep staging (short segments: 30 s epochs)
Casal et al. (2021)
2-class categorization (wake vs. sleep)
3 class (wake vs. NREM (N1/N2/N3) vs. REM)
4-class (wake vs. light sleep (N1/N2) vs. deep sleep (N3) vs. 
REM)
5-class (wake vs. N1 vs. N2 vs. N3 vs. REM)

Recurrent neural networks (RNN)
Long short-term memory (LSTM)
Gated recurrent unit (GRU)
Convolutional + recurrent (CNN+ RNN)
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min epochs with 98% overlap were used), achiev-
ing 0.96 intra-class correlation coefficient (ICC) 
with actual AHI. Using the estimated AHI, 90.9% 
of patients were classified in the correct OSA 
severity group. On a subsequent study by this 
research group, Leino et  al. (2021) proposed a 
convolutional neural network instead, in order to 
estimate the rate of respiratory events overnight 
using single-channel oximetry (10-min epochs 
with 98% overlap). They obtained 0.97 ICC and 
88.3% overall four-class accuracy in a test set 
composed of patients commonly referred to the 
sleep unit due to suspicion of OSA, while 0.97 
ICC and 77.9% four-class accuracy were reached 
in a test set of patients with acute cardiovascular 
disease. Similarly, Vaquerizo-Villar et al. (2021) 
implemented a convolutional neural network 
aimed at estimating the AHI from oximetry alone 
(20-minute segments with no overlapping), 
reaching ICC values ranging 0.58–0.96 in differ-
ent extensive test datasets. Using the estimated 
AHI, the overall three-class accuracy varies 
between 60.2% and 72.8%.

Mostafa et al. (2020a) used shorter epochs (1, 
3, and 5  min with 1-minute overlap) to imple-
ment an event-based approach (detection of 
apneas) using different architectures of convolu-
tional neural networks, achieving accuracies 
ranging 84.8–94.2%. In a subsequent study 
(Mostafa et  al., 2020b), the same group imple-
mented a new convolutional neural network 
architecture based in the same approach, report-
ing patient-based accuracies of 95.7% and 100% 
in different test datasets. In a recent study by 
Bernardini et  al. (2021), oximetry (2.5-minute 
epochs) is analyzed under a deep learning 
approach both alone (using a recurrent neural 
network) and together with ECG (combining 
convolutional and recurrent neural networks). A 
long short-term memory (LSTM) neural network 
(a kind of recurrent deep neural network) reached 
67.6% and 63.3% accuracies under per-second 
and per-patient classification approaches, respec-
tively. Using ECG segments as inputs to a deep 
learning architecture that combines convolutional 
and recurrent blocks, 76.9% and 73.3% accura-
cies were reported for the same performance 
assessment schemes. Interestingly, when both 

ECG and oximetry were analyzed jointly (2D 
input), the network achieved 81.5% and 93.3% 
accuracies for per-second and per-patient classi-
fication, respectively, i.e., +4.6% and +20.0% 
increase compared to the use of ECG alone.

In automatic sleep staging, only one study has 
used the raw oximetry signal (Casal et al., 2021). 
In this work, recurrent neural networks are used 
to discern wakefulness from sleep (binary classi-
fication) using blood oxygen saturation and heart 
rate from pulse oximetry (30-sec epochs), report-
ing 90.1% accuracy and 0.74 Cohen’s kappa. 
Similar approaches exist using the photoplethys-
mogram (PPG) signal from pulse oximetry 
instead of the blood oxygen saturation or pulse 
rate times series, achieving promising perfor-
mance (84.2% accuracy) in a two-class classifi-
cation problem (Malik et  al., 2018), while the 
accuracy decreases to 80.1%, 68.5%, and 64.1% 
for three-, four-, and five-stage classification 
tasks, respectively (Korkalainen et al., 2020).

13.3	� Discussion and Conclusions

The great amount of indices derived from the 
oximetry signal existing in the literature (Del 
Campo et  al., 2018; Terrill, 2020; Levy et  al., 
2021) is representative of the high relevance of 
this biomedical recording in the framework of 
OSA. Recent reviews and meta-analyses summa-
rizing all the research made around oximetry dur-
ing the last years confirm this intuition. In a 
systematic review by Uddin et al. (2018), single-
channel oximetry raises as an effective biomedi-
cal signal to implement binary expert systems for 
automated OSA detection (OSA positive vs. 
OSA negative). Similarly, in the recent meta-
analysis by Wu et al. (2020), oximetry is found to 
yield remarkable specificity in the detection of all 
OSA severity groups. In the context of pediatric 
OSA, the meta-analysis by Gutiérrez-Tobal et al. 
(2021b) revealed that top performance method-
ologies were those involving oximetry, particu-
larly for the detection of moderate and severe 
cases, showing also less variability among stud-
ies. Beyond its diagnostic ability, nocturnal 
oximetry dynamics have been also found to be 
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associated with clinical and epidemiological out-
comes (Suen et al., 2019; Terrill, 2020), increas-
ing its usefulness as essential tool for integrated 
management of OSA.

Since first attempts to characterize changes in 
overnight oximetry by means of the minimum 
saturation value, ODIs, and CTs, different 
approaches have been applied to obtain as much 
information as possible from the recording, 
including characterization of the data histogram 
using different statistics, analysis in the fre-
quency domain with different methods of power 
spectral density estimation, nonlinear analysis, 
parameterization of the parts of the desaturation, 
quantification of the area enclosed within each 
desaturation, and, recently, deep learning. All 
these methodologies have yielded relevant indi-
ces in the characterization of OSA severity. 
Despite being one of the first measures developed 
for that aim, usually used as benchmark for com-
parison purposes, the ODI stands out for its great 
individual accuracy, rarely outperformed by uni-
variate approaches. Moreover, the ODI has been 
found as an essential predictor under multivariate 
schemes, being systematically selected within 
the final optimum feature subsets. In the same 
regard, statistical, spectral, and nonlinear vari-
ables, as well as the novel hypoxic burden mea-
sures, have shown major complementarity, 
leading to a significant performance increase 
when input features are properly selected via 
automated variable selection procedures (Álvarez 
et al., 2010, 2012, 2013). Additionally, oximetry 
in general, and particularly ODI, has also shown 
significant complementarity with other cardiore-
spiratory signals related to OSA, such as pulse 
rate (Álvarez et al., 2009; Garde et al., 2014) and 
airflow (Gutiérrez-Tobal et  al., 2015; Álvarez 
et al., 2020; Barroso-García et al., 2021b) in both 
adults and children.

Besides the nonlinear methods based on tradi-
tional entropy and complexity measures, novel 
nonlinear methods, such as multiscale entropy, 
detrended fluctuation analysis, and symbolic 
dynamics, recently demonstrated major effi-
ciency when applied to the oximetry signal. 
Nevertheless, ApEn, SampEn, CTM, and LZC 
are predominantly used under multivariate 

approaches instead of MSE scales, DFA slopes, 
and symbolic entropy. Although these methods 
are computationally demanding, it would be 
important to promote their use to prospectively 
validate their accuracy and to include them in the 
available toolboxes for automated signal process-
ing of oximetry.

Concerning the novel measures of hypoxemia 
named hypoxic burden indices (saturation impair-
ment time, desaturation severity, hypoxia load, 
and hypoxic burden), they have been found to pro-
vide complementary data to the AHI/ODI and con-
ventional hypoxemia measures (CT90, minimum 
saturation). This suggests that not only the recur-
rence but also the morphology (depth and dura-
tion) of the events have jointly a significant impact 
on the characteristics of respiratory-related dis-
eases and associated comorbidities. Nevertheless, 
this “information gain” has not become a signifi-
cant performance increase regarding automated 
detection of OSA from oximetry. Thus, further 
research is encouraged to exploit all the diagnostic 
capability available in these indices. On the other 
hand, hypoxic burden measures have demon-
strated to be robust predictors of cardiovascular 
status and mortality due to the intermittent hypox-
emia typical of OSA (Muraja-Murro et al., 2014; 
Khoshkish et  al., 2018; Azarbarzin et  al., 2019; 
Kim et  al., 2020). These novel hypoxemia mea-
sures seem to outperform conventional indices 
(overnight minimum saturation, CT90, and ODIs), 
which performed modestly as predictors of cardio-
vascular events (stroke, heart failure) and related 
mortality (Kendzerska et  al., 2014; Stone et  al., 
2016; Gellen et al., 2016). Nonetheless, due to the 
dissimilarities in the computation of these new 
parameters, thorough research and prospective 
validation are still needed to fully understand the 
link between each particular index and patient 
outcomes.

In regard to the usefulness of artificial intel-
ligence, relevant recent reports highlight its 
potential to boost sleep medicine (Goldstein 
et  al., 2020; Watson & Fernandez, 2021; 
Malhotra et al., 2021). Concerning the oximetry 
signal, a number of automated expert systems 
have been developed for OSA diagnosis, mostly 
using feature engineering and traditional 
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machine learning models for both binary and 
multiclass classification of patients, as well as 
regression of the AHI. Nevertheless, deep learn-
ing approaches recently raised as valuable tool 
able to boost the diagnostic ability of oximetry, 
mainly when applied to categorize segments 
(apneic vs. normal) and predict the AHI using 
oximetry alone. The next step (individual indi-
ces, multivariate analysis, artificial intelligence, 
deep learning) should be the application of 
eXplainable Artificial Intelligence (XAI) tech-
niques to thoroughly interpret the particularly 
complex models derived from deep learning. 
XAI methods are able to identify which parts of 
the oximetry signal mainly contribute to the 
final decision. Thus, XAI might be used to con-
firm the relevance of sections of the desaturation 
event highlighted in some studies, whose wide-
spread application is commonly hindered by 
more popular indices. For example, higher satu-
ration values and resaturations have shown sig-
nificant relevancy and complementarity 
(Sánchez-Morillo & Gross, 2013; Sánchez-
Morillo et  al., 2014; Álvarez et  al., 2018), 
although they have been marginally used in 
multivariate subsequent studies. Furthermore, 
XAI approaches have the potential to provide 
clinicians with new oximetric features with the 
upmost diagnostic capability hidden until now 
in the raw oximetry signal.

During the last two decades, the oximetry sig-
nal has been found to provide high-performance 
indices in the framework of OSA management. 
With the improvement of medical technology in 
terms of portability, autonomy, and computa-
tional capability, and taking into account the sim-
plicity, low cost, and high availability of 
oximeters, peripheral blood oxygen saturation 
raises as a key signal in the development of sim-
ple as well as accurate diagnostic tests for OSA. 
Moreover, oximetry could be an essential tool to 
foster sleep medicine toward the concept of pre-
cision and personalized medicine. However, both 
greater standardization in the definition of avail-
able indices and extensive validation of the novel 
measures derived from the signal processing the-
ory are still needed to increase generalizability of 
overnight oximetry as an alternative abbreviated 
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14Airflow Analysis in the Context 
of Sleep Apnea

Verónica Barroso-García, Jorge Jiménez-García, 
Gonzalo C. Gutiérrez-Tobal, and Roberto Hornero

Abstract

The airflow (AF) is a physiological signal 
involved in the overnight polysomnography 
(PSG) that reflects the respiratory activity. 
This signal is able to show the particularities 
of sleep apnea and is therefore used to define 
apneic events. In this regard, a growing num-
ber of studies have shown the usefulness of 
employing the overnight airflow as the only or 
combined information source for diagnosing 
sleep apnea in both children and adults. Due to 
its easy acquisition and interpretation, this 
biosignal has been widely analyzed by means 
of different signal processing techniques. In 
this chapter, we review the main methodologi-
cal approaches applied to characterize and 
extract relevant information from this signal. 
In view of the results, we can conclude that the 
overnight airflow successfully reflects the par-
ticularities caused by the occurrence of apneic 
and hypopneic events and provides useful 

information for obtaining relevant biomarkers 
that characterize this disease.

Keywords

Airflow · Automatic analysis · Sleep apnea · 
Sleep disorders

14.1	� Introduction

Simplification of sleep apnea diagnosis has 
become a major concern in the field of sleep 
medicine and the motivation of several investiga-
tions in recent years. Currently, the standard 
method for diagnosing the disease in children 
and adults remains overnight polysomnography 
(PSG) (Jon, 2009; Patil et al., 2007). This is an 
effective medical test, but it has some limitations 
that should be pointed out. Firstly, a high number 
of physiological parameters are monitored during 
PSG, which requires appropriate and expensive 
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acquisition equipment (Collop et al., 2007; Ryan 
et  al., 1995). In addition, specialized medical 
staff should be present during its performance. 
Then, they should visually assess all acquired 
recordings, which makes it a complex and inten-
sive task (Collop et al., 2007; Ryan et al., 1995). 
Another limitation is that patient should spend a 
night hospitalized in a sleep unit. This involves 
sleeping in a different environment than usual, 
which can affect sleep development and charac-
teristics (Bennett & Kinnear, 1999). Moreover, 
the large number of sensors attached to the 
patient’s body can be very uncomfortable and 
even distressing, particularly for children (Jon, 
2009). It should also be noted that not all hospi-
tals have specialized sleep units, or these are 
overwhelmed by increasing demand. This fact 
hinders access to PSG, which causes long wait-
ing lists, thereby leading to diagnosis and treat-
ment delays (Alonso-Álvarez et  al., 2015; 
Ghegan et al., 2006).

Accordingly, great efforts have been made to 
search and develop simpler alternative methods 
that help diagnose the sleep apnea. A common 
approach is to automatically analyze physiologi-
cal signals with ability to reflect the particulari-
ties of the disease (Álvarez et al., 2020; Koley & 
Dey, 2013c). In this regard, apneic and hypopneic 
events are defined based on airflow reductions 
(Berry et al., 2012). When the respiratory cessa-
tion is partial (hypopnea), the amount of inspired 
and expired air is limited. Consequently, airflow 
(AF) signal experiences a reduction of between 
30% and 90% (Berry et  al., 2012). When the 
respiratory cessation is total (apnea), the airflow 
into the lungs is blocked, causing AF signal to 
present a ≥90% reduction and values ≈ 0 
(Barroso-García et al., 2020; Berry et al., 2012). 
Hence, the analysis of this signal is a natural way 
of determining the presence and severity of the 
disease.

Regarding the overnight AF acquisition, the 
American Academy of Sleep Medicine (AASM) 
recommends using a thermistor sensor to suit-
ably identify apneas and a nasal pressure sensor 
to identify hypopneas (Berry et  al., 2012). 
Thermistor sensor is placed in the nostrils and 
mouth from patient to measure the difference of 

temperature between inspired (cold air) and 
expired air (warm air). In the case of nasal pres-
sure sensor, it is also placed in the nostrils from 
patient to measure the pressure changes that 
occur during inspiration, when airway pressure 
is negative respect to atmospheric, and during 
expiration, when airway pressure becomes pos-
itive. Thereby, AF signal acquired by these sen-
sors allows modeling the behavior of respiratory 
activity and detecting the abnormalities caused 
by apneic and hypopneic events (Berry et  al., 
2012). The specifications for routine PSG 
recordings indicate that AF should be acquired 
at a minimum sampling rate of 25  Hz, being 
100  Hz the recommended rate (Iber et  al., 
2007).

AF signal can be obtained by means of a por-
table equipment with built-in thermistor sensor 
and/or nasal pressure sensor (Collop et al., 2007; 
Flemons et al., 2003; Tan et al., 2015). Thus, the 
required equipment is less expensive than for 
PSG as fewer signals are monitored (Collop 
et  al., 2007). Moreover, the portable equipment 
can be used at patient’s home, without disturbing 
their usual sleep patterns (Bennett & Kinnear, 
1999). This test is also less uncomfortable due to 
a decreased number of sensors involved. Another 
advantage is that a single channel is analyzed 
(AF), resulting in a less complex and less time-
consuming task (Ferber et  al., 1994). All this 
would make the diagnostic test more accessible, 
which would reduce waiting lists and streamline 
diagnosis. Therefore, the use of AF is a poten-
tially promising way for simplifying sleep apnea 
diagnosis.

All the above mentioned have led multiple 
works to be focused on the automatic analysis 
and characterization of the AF signal, in both 
pediatric and adult sleep apnea context (Gutiérrez-
Tobal et al., 2021; Mendonca et al., 2019). These 
analyses are conducted from three different per-
spectives: (i) the evolution of AF signal in the 
time domain, (ii) its characterization in the fre-
quency domain, and (iii) its study in the time–fre-
quency domain. Thus, the main techniques used 
to analyze the behavior of AF in the presence of 
apneic events from these three methodological 
approaches are reviewed in Sects. 14.2, 14.3, and 
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14.4 of this chapter. In addition, Sect. 14.5 is 
devoted to studies that combine the aforemen-
tioned approaches. Finally, the discussion and 
conclusions of our study are presented in Sect. 
14.6.

14.2	� Analysis in Time Domain

As can be seen in Fig. 14.1, apneic events alter 
the behavior of AF in the time domain by causing 
significant reductions in its amplitude. Thus, sev-
eral studies have focused on automatic detection 
of these events based on the temporal analysis of 
AF signal.

One of the first approaches to analyze the 
information of AF focused on the analysis of the 
instantaneous respiratory amplitude (IRA) and 
interval (IRI) signals, directly obtained from AF 
(Várady et  al., 2002). Várady et  al. (2002) used 
the raw AF and respiratory inductive plethys-
mography (RIP) signals and the IRA and IRI sur-
rogates of them to discriminate between apnea, 
hypopnea, and normal breathing segments. An 
artificial neural network (ANN) fed with the IRI 
and IRA from AF was subsequently trained to 
perform the detection task.

Cabrero-Canosa et  al. (2004) proposed an 
algorithm based on the identification of respira-
tory cycles and quantification of AF, in combina-
tion with the information provided by other 
biosignals (Cabrero-Canosa et al., 2004). In their 
study, symbolic classification was used to deter-
mine intervals of normal respiration and different 
types of airflow reduction (apnea, total reduction; 
hypopnea, clear reduction). These intervals were 

subsequently grouped and classified as apneic 
events or normal respiration.

Other approaches combined the information 
of AF and thoracic effort signals to detect and 
classify apneic events as obstructive, mixed, or 
central (Fontenla-Romero et  al., 2005). The 
apneic segments were identified from AF signal 
by applying a moving average filter together with 
an adaptive threshold. Then, these segments were 
classified according to their origin using the addi-
tional information provided by the thoracic effort.

In the study of Pépin et  al. (2009), an auto-
matic time-domain analysis of the AF signal from 
a Holter device with an additional nasal pressure 
sensor was performed and compared to the medi-
cal specialists’ annotations. The algorithm relied 
on the calculation of period, inspiratory surface, 
and maximum amplitude of breathing cycles. 
From the information provided by these features, 
amplitude reductions and cessations lasting at 
least 10 s were scored, and the apnea–hypopnea 
index (AHI) was automatically obtained.

The work of Álvarez-Estévez and Moret-
Bonillo (2009) proposed the application of fuzzy 
reasoning methodology to detect apneic events 
from AF combined with other PSG-derived sig-
nals. The method relied on amplitude reductions 
of AF and oximetric desaturations to build rea-
soning units, which allow the fuzzy algorithm to 
determine if these reductions were actual apneic 
events.

Aydoğan et  al. (2016) employed the nasal 
pressure AF jointly with the thoracic effort and 
the oxygen saturation (SpO2) signals to evaluate 
two automatic scoring algorithms (Aydoğan 
et  al., 2016). These algorithms calculated the 

Fig. 14.1  Apneic events presented in overnight airflow (AF) signal. Sleep apnea causes reductions in AF amplitude 
(≥30%). Consequently, AF signal decreases toward 0 values during the occurrence of these events
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mean of the absolute values and power from the 
signal to derive a rule-based method and an ANN, 
respectively. It is remarkable that the rule-based 
method obtained a slightly higher scoring accu-
racy than the ANN.

In order to predict the pre-apneic and regular 
breathing events, the work of Ozdemir et  al. 
(2016) extracted 39 statistical and temporal fea-
tures from the AF signal and its first derivative, 
since the latter can contribute to reduce false 
apneic detections (Ozdemir et  al., 2016). These 
features were used to train and evaluate several 
classifiers, being the support vector machine 
(SVM) model the one that showed the highest 
diagnostic performance.

In the case of Kim et al. (2019) and Elmoaqet 
et  al. (2020), they focused their studies on the 
characterization of the changes caused in the AF 
signal by the presence of apneic events. They 
developed an algorithm based on the location of 
peaks (relative maximum amplitude) and valleys 
(relative minimum amplitude) of oronasal 
AF.  Then, peak-to-valley amplitudes and peak-
to-peak intervals were computed. The apneic 
event detection relied on the comparison of these 
metrics in a baseline window and a consecutive 
detection window. The optimization of this 
framework was carried out both manually (Kim 
et al., 2019) and automatically using a Gaussian 
mixture model (Elmoaqet et al., 2020).

Envelope analysis is also a natural way to 
characterize the amplitude reductions of AF sig-
nal. Hence, several studies have focused on the 
estimation and analysis of the envelope of AF for 
detecting apneic events. This is the case of 
Selvaraj and Narasimhan (2013), who focused on 
the AF envelope analysis to reflect the changes 
produced by the apneic events in the respiration. 
They extracted the amplitude of the envelope and 
characterized it using three parameters: variabil-
ity of the respiratory instantaneous amplitudes up 
to 0.4 Hz, the adaptive trend to quantify the very-
low-frequency variations, and the dispersion of 
the amplitude in a 120-s window. In the study 
conducted by Diaz et  al. (2014), the authors 
applied the Hilbert transform to derive a respira-
tory disturbance variable (RDV) from the coeffi-
cient of variation of the envelope (Diaz et  al., 

2014). The RDV was then used as a predictor 
variable in regression models aimed at estimating 
the AHI. Other approaches identified the apneas 
and hypopneas as an amplitude modulation of the 
normal respiration waveform in AF signal (Ciolek 
et  al., 2015). The apnea detection algorithm 
relied on the envelope extraction using the 
following methods: square-law and Hilbert trans-
form. In order to minimize distortions caused by 
these envelope detectors, standard and recursive 
median filtering were proposed in substitution of 
classical linear low-pass filters. The empirical 
mode decomposition (EMD) was also applied to 
AF signal to extract and subsequently analyze its 
envelope. Wang et al. (2019) derived the intrinsic 
mode functions (IMFs) by means of the EMD 
algorithm and computed the root-sum-square of 
the first four (IMFs) (Wang et al., 2019). Then, 
they obtained the instantaneous respiratory inten-
sity signal and extracted the respiratory fluctua-
tion index. In a recent study conducted by Uddin 
et  al. (2021), a novel method was proposed to 
detect apneic events based on the analysis of the 
AF peak excursion (difference between upper 
and lower envelopes of AF) (Uddin et al., 2021). 
Thus, an adaptive thresholding was applied to the 
drops from the maximum peak excursion to 
determine the presence of apneas and hypopneas. 
The latter were scored when a drop ≥30% in AF 
was accompanied to a drop ≥3% in SpO2, or a 
drop >2% during at least 20 s.

Among time-domain characterization tech-
niques applied to AF, non-linear methods have 
been widely used in the sleep apnea context. The 
study of Kaimakamis et  al. (2016) focused on 
predicting the AHI from a linear equation of non-
linear variables (Kaimakamis et  al., 2016). The 
non-linear variables were derived from the larg-
est Lyapunov exponent (LLE), detrended fluctua-
tion analysis (DFA), and approximate entropy 
(ApEn). Some of these non-linear features 
showed significant correlation with the AHI. 
Rathnayake et  al. (2010) and Barroso-García 
et al. (2020) also proposed a methodology based 
on the non-linear analysis of AF signal. In the 
first of these studies, the authors segmented the 
AF signal and extracted several features derived 
from its corresponding recurrence plots (RPs) to 
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obtain useful apnea-related information 
(Rathnayake et al., 2010). After, this information 
was used to compute the respiratory disturbance 
index (RDI) and discriminate between segments 
of apneic events and normal breathing in adults. 
In the case of Barroso-García et  al. (2020), the 
RPs from AF signal were used to characterize the 
behavior of the pediatric overnight AF in the 
presence of apneas and hypopneas (Barroso-
García et  al., 2020). This characterization was 
carried out by computing up to 9 RP-derived fea-
tures: 1 from the recurrence density, 5 from the 
diagonal structures, and 3 from the vertical struc-
tures of the RP. The results showed that sleep 
apnea modifies underlying dynamics and phase 
space of overnight AF. Particularly, apneic events 
reduce the variability, stationarity, and complex-
ity of AF, as well as the exponential divergence of 
its phase space. In addition, this disease also 
increments the dwell time in the same phase 
space state, the mean prediction time, and the 
irregularity of pediatric AF.

14.3	� Analysis in Frequency 
Domain

As can be seen in Fig. 14.2, the recurrent behav-
ior of apneic and hypopneic events modifies the 
AF spectrum. This has led several studies to 
focus on the automatic processing of AF signal 
from a frequency point of view.

Nakano et  al. (2007) proposed a method to 
detect apneas based on the analysis of the power 
spectrum of 12.8 s AF segments (Nakano et al., 
2007). Thus, the AF recordings from 399 subjects 
were automatically processed to extract the flow 
power by means of the fast Fourier transform 
(FFT). Flow power decays in the respiratory band 
were associated to the presence of apneic events. 
Once these dips were detected in the overnight 
AF signal, the RDI was subsequently derived.

The work conducted by Gutiérrez-Tobal et al. 
(2015) was the first study that applied a spectral 
analysis to AF signals from pediatric subjects 
(Gutiérrez-Tobal et  al., 2015). Thus, overnight 
AF was investigated by means of the power spec-
tral density (PSD), and new spectral bands of 

interest were specifically defined for children: 
0.119–0.192 Hz and 0.784–0.890 Hz. These fre-
quency bands were characterized by calculating 
the maximum and minimum amplitude and first-
to-fourth statistical moments. The results indi-
cated that the spectral power in these bands is 
higher in the presence of sleep apnea, suggesting 
that the repetitive occurrence of apneic events 
modifies the spectral components of pediatric AF.

In order to overcome the limitations of classical 
spectral analysis, such as the assumption of sta-
tionarity and linearity, the work of Barroso-García 
et al. (2021a) proposed the bispectral analysis of 
AF signal (Barroso-García et  al., 2021a). They 
defined a frequency band adapted to the normal 
respiratory rate of each pediatric subject. This 
band was characterized by computing up to 13 fea-
tures derived from bispectrum: 3 from the ampli-
tude of the bispectral band, 4 from the entropy of 
distribution, 4 from the bispectral moments of the 
band, and 2 from the weighted center of the bispec-
trum. The four types of bispectral features showed 
complementarity with each other. In addition, the 
obtained results suggest that the presence of sleep 
apnea reduces the non-gaussianity and the non-
linear interaction of harmonic components of AF, 
increments its irregularity, and displaces the activ-
ity to lower frequencies that are associated with 
apnea occurrence.

14.4	� Time–Frequency Analysis

A common approach to characterize the presence 
of sleep apnea in AF is to conduct a time–fre-
quency analysis employing the Hilbert–Huang 
transform (Fig.  14.3). This method applies an 
EMD process followed by the Hilbert spectrum 
computation. In this regard, Salisbury and Sun 
(2007) obtained the first and second IMFs and 
computed the Hilbert–Huang spectrum and its 
histogram in the frequency domain. Afterward, 
the apnea percentage was derived from the latter 
(Salisbury & Sun, 2007). Similarly, Caseiro et al. 
(2010) also employed the Hilbert–Huang trans-
form and extracted features from the spectral his-
togram: frequency value in the first quarter, ratio 
between the first and the second halves, and ratio 
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Fig. 14.2  Average spectrum of airflow (AF) signal from 
974 subjects with and without sleep apnea (405 patients 
and 569 controls). The recurrence of apneic events leads 
to an AF spectrum with less power in the normal breathing 

band. This spectral power is redistributed in a wide range 
of frequency components. Particularly, the power increase 
at certain frequencies would be associated with the 
repeated occurrence of these event

Fig. 14.3  Apneic 
events in the Hilbert 
envelope transform and 
spectrum of AF signal. 
Sleep apnea causes 
reductions in AF 
envelope. Consequently, 
Hilbert spectrum of AF 
vanishes during the 
occurrence of these 
events

between the maxima found in the first and second 
halves (Caseiro et al., 2010). Both methods were 
applied to the AF during an awake period rather 
than an overnight recording (Caseiro et al., 2010; 
Salisbury & Sun, 2007).

Another time–frequency mathematical tool is 
the wavelet transform. Several studies have 
applied this method to analyze the AF dynamics 
during sleep apnea. Kermit et al. (2000) applied 
the Haar wavelet to decompose the AF signal into 
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16 coefficients, which were directly used to feed a 
predictive model (Kermit et  al., 2000). Further 
work from the same authors generated templates 
of apneas and normal respiration using a Haar 
wavelet decomposition. These templates were 
used to test the similarity of AF segments with the 
normal and apneic patterns (Kermit et al., 2002). 
Based on the continuous wavelet transform, Koley 
and Dey (2013a) used the cross wavelet analysis 
for the first time to differentiate between central, 
obstructive, and mixed apnea (Koley & Dey, 
2013a). They assessed three pairwise combina-
tions of signals to be analyzed via cross wavelet 
transform: AF, thoracic effort, and abdominal 
effort. The combination of the cross wavelet 
amplitude and phase coefficients from AF and 
thoracic effort showed to be more effective dif-
ferentiating the apnea types. Avci and Akbaş 
(2015) also employed a wavelet decomposition 
approach to analyze respiratory signals (Avci & 
Akbaş, 2015). They selected the Daubechies 
wavelet family and extracted up to 8 features from 
the coefficients of 11 detail levels. In the same 
way, AF recordings from 946 children were ana-
lyzed by means of the discrete wavelet transform 
in Barroso-García et  al. (2021b). They used the 
Haar and Daubechies mother wavelets for the AF 
analysis and extracted features from the eighth 
detail level. This detail level approximately cor-
responds to the normal breathing activity. 
Consequently, the AF reductions and cessations 
caused by sleep apnea modified the frequency 
components and the energy in this frequency band 
(0.195–0.391 Hz) (Barroso-García et al., 2021b).

McCloskey et  al. (2018) employed wavelet 
spectrograms to generate graphic representations 
of AF that were analyzed by a convolutional neu-
ral network (CNN) for discriminating between 
normal breathing, apneic, and hypopneic events 
(McCloskey et al., 2018). The method was also 
compared with a 1D CNN trained with raw AF 
data. The 2D CNN trained with wavelet spectro-
grams outperformed the 1D CNN trained with 
raw AF data, thus highlighting the usefulness of 
the wavelet analysis. Similarly, Wu et al. (2021) 
proposed a method to detect apneic and hypop-
neic events from the AF signal by computing 
spectrograms with the short-time Fourier trans-

form (STFT) (Wu et  al., 2021). These spectro-
grams fed a CNN aimed at classifying 15-s 
segments as normal, hypopnea, and apnea.

14.5	� Other Combined Approaches

In addition to the joint time–frequency analysis, 
other studies have shown the usefulness of com-
bining the time and frequency domain informa-
tion of the AF signal. In the study of Han et al. 
(2008), the mean magnitude of the second deriva-
tive (MMSD) of AF was analyzed, and an adap-
tive thresholding method was applied to detect 
apneic events (Han et  al., 2008). The MMSD 
minimizes the contribution of baseline drifts and 
offset of the AF signal and, thus, is easier to inter-
pret. The algorithm was designed and tested 
using the signals from 24 subjects. The normal 
respiration activity was also analyzed in the fre-
quency domain between 0.2  Hz and 0.4  Hz to 
establish the reference behavior of the MMSD in 
normal respiration.

Novel time-domain features were proposed in 
Bricout et  al. (2021), where non-periodic rate, 
low energy rate, and variance of the dispersion 
metric were analyzed along with statistical mea-
surements, spectral power from the conventional 
heart rate variability (HRV) frequency bands 
(VLF, LF, HF), the ratio LF/HF, and the spectral 
kurtosis (Bricout et al., 2021). It is important to 
highlight that diagnostic performance of these 
features was higher using the AF signal from 
nasal pressure sensor than that obtained with a 
novel accelerometry sensor.

Koley and Dey (2013b, c) proposed apneic 
event detection models based on the analysis of 
short AF segments (Koley & Dey, 2013b, c). 
Statistical metrics were computed from the IRA 
and IRI signals, directly obtained from the air-
flow. The raw signal was also characterized by 
means of spectral (total and relative powers in the 
full spectrum, in the LF, and HF bands, respira-
tory frequency and its corresponding power, 
mean, and variance of the spectrum) and non-
linear features (ApEn, Lempel–Ziv complexity, 
LLE-derived features, Higuchi fractal dimension, 
and correlation dimension).
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In the study conducted by Gutiérrez-Tobal 
et  al. (2012, 2013), the authors investigated the 
diagnostic ability of the AF signal obtained by a 
thermistor and the respiratory rate variability 
(RRV) signal derived from AF (Gutiérrez-Tobal 
et al., 2012, 2013). These two signals were char-
acterized using statistical, spectral, and non-
linear features. Two spectral bands of interest 
were defined from AF and RRV: 0.022–0.059 Hz 
and 0.095–0.132  Hz, respectively. The features 
that obtained the highest diagnostic ability were 
the mean, standard deviation, peak amplitude, 
and power in the interest band of AF together 
with the central tendency measurement (CTM), 
skewness, and kurtosis of the full spectrum of 
RRV (Gutiérrez-Tobal et  al., 2012). The com-
bined use of AF and RRV improved the diagnos-
tic performance reached by several classification 
and regression models to estimate the severity of 
sleep apnea (Gutiérrez-Tobal et al., 2012, 2013).

The combination of spectral and non-linear 
features from thermistor-recorded AF and RRV 
was also conducted in the pediatric sleep apnea 
context (Barroso-García et  al., 2017). In this 
work, the spectral information was obtained 
using the first- to third-order spectral entropies 
(SEs) and the non-linear behavior by means of 
the CTM. These measurements characterized 
the irregularity (through SE) and variability 
(through CTM) of AF and RRV.  The study 
showed the complementarity between both 
methodological approaches and that existing 
between both respiratory signals. The results 
suggest that the presence of apneic events 
reduce the variability and increase the irregular-
ity of AF, while the variability of RRV is 
increased. The diagnostic ability of pediatric 
overnight AF was also assessed in combination 
with the nocturnal SpO2 signal (Jiménez-García 
et  al., 2020). The authors calculated time-
domain statistics, spectral, and non-linear fea-
tures from both AF and SpO2, as well as the 3% 
oxygen desaturation index (ODI3). A spectral 
interest band of AF was obtained: 0.134–
0.176 Hz, which is very similar to the low fre-
quency band defined in the study of 
Gutiérrez-Tobal et al. (2015). A model combin-
ing the CTM of AF and ODI3 obtained the high-

est diagnostic ability, suggesting that the 
variability of AF provides relevant and comple-
mentary information to the ODI3 to diagnose 
pediatric sleep apnea.

Finally, other studies jointly employed time 
and frequency features from a nasal pressure 
signal. The work of Gutiérrez-Tobal et al. (2016) 
aimed to distinguish the different severity degrees 
of sleep apnea in adults. The authors defined a 
new band of interest characteristic of AF from 
nasal pressure sensor: 0.025–0.050  Hz, which 
covers the typical duration of apneic events (20–
40 s) and matches the frequency band obtained 
using thermistor. A total of 12 features were 
extracted: 9 spectral and 3 non-linear features. 
The mean, standard deviation, minimum, and 
maximum from the frequency band, as well as 
the CTM, showed statistically significant differ-
ences among severity groups, suggesting that 
these approaches are useful to establish the sever-
ity degree of sleep apnea. Álvarez et  al. (2020) 
combined the nasal pressure-derived AF with 
SpO2 to evaluate the diagnostic ability of these 
two signals jointly (Álvarez et  al., 2020). Both 
signals were characterized using time, spectral, 
and non-linear features, as well as clinical vari-
ables such as conventional oximetric indices and 
the respiratory disturbance index. The regression 
algorithm trained with features from both signals 
largely outperformed the individual diagnostic 
ability of these signals, suggesting that the infor-
mation of AF and SpO2 can be jointly used to 
diagnose sleep apnea.

14.6	� Discussion

In this chapter, we have reviewed a variety of 
methodological approaches aimed at character-
izing and extracting relevant information from 
the AF signal that can be used to help in the auto-
matic diagnosis of sleep apnea. These approaches 
have been categorized from the four main per-
spectives: time domain, frequency domain, time–
frequency analysis, and other combined 
strategies. Each of these perspectives focused on 
different characteristics that AF manifest in the 
presence of apneas and hypopneas. We have dis-
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tinguished these particularities between children 
and adults throughout this section.

14.6.1	� AF Characterization in Adults

The alterations caused by sleep apnea in the AF 
signal have motivated the development of algo-
rithms for apneic event detection. Most of these 
algorithms were intended to obtain the localiza-
tion of apneas and hypopneas by analyzing the 
changes of amplitude caused by respiratory 
cessations (Elmoaqet et  al., 2020; Kim et  al., 
2019; Koley & Dey, 2013b). In this regard, 
algorithms based on the time-domain behavior 
of AF have been widely investigated. The 
reductions of amplitude in the AF signal led to 
the detection of apneic events in most of these 
algorithms (Uddin et  al., 2021). In the same 
way, the amplitude reductions were character-
ized by the differences between AF peaks and 
valleys, as well as the differences between con-
secutive peaks, which are also reduced in the 
presence of apneas (Elmoaqet et al., 2020; Kim 
et  al., 2019). Some authors have focused on 
envelope analysis (Diaz et  al., 2014; Uddin 
et  al., 2021). This is an intuitive way to track 
the amplitude of the AF in the time domain 
since it is narrowly related with the AASM 
manual scoring guidelines (Berry et al., 2012). 
A reduction of the amplitude level of the enve-
lope with respect to the previous baseline 
described the presence of an apneic event 
(Ciolek et  al., 2015; Selvaraj & Narasimhan, 
2013). It is also observed that the apneas and 
hypopneas increase the long-term correlations 
of the AF and its irregularity in the time domain. 
Variability and complexity alterations are other 
particularities presented by sleep apnea in AF 
(Gutiérrez-Tobal et al., 2012, 2016). However, 
there is no consensus to it. While some studies 
observed a reduction in both variability and 
complexity, others characterized AF as more 
variable and more complex as severity 
increased, even using the same analysis tech-
niques (Gutiérrez-Tobal et al., 2012, 2016).

Regarding frequency-domain approaches, 
the oscillatory pattern of the respiration and, 
therefore, the AF signal, have motivated the 
use of spectral analysis methods. The normal 
respiration generates activity in a narrow spe-
cific frequency band that is altered by the 
repeated occurrence of apneic events (Nakano 
et  al., 2007). These respiratory bands ranges 
from 0.2 Hz to 0.4 Hz, which matches the nor-
mal breathing periods (every 2.5–5  s). 
However, the presence of sleep apnea leads to 
a redistribution of the spectral power, displac-
ing the activity focus of AF to frequencies 
below the normal respiratory frequency 
(Gutiérrez-Tobal et  al., 2012, 2013). This is 
also observed in the typical frequency range 
of the apneic events (around 0.04 Hz), where 
AF presents a higher spectral power, as well 
as a more asymmetric and peaked distribution 
of its frequency components as severity 
increased. In these cases, the spectral distri-
bution of AF has higher statistical distance to 
the uniform distribution (Gutiérrez-Tobal 
et al., 2016).

These two previous approaches can be fused 
to exploit simultaneously their strengths in 
order to characterize the particularities of sleep 
apnea in the AF. Instantaneous variations of the 
respiratory activity due to apneas and hypop-
neas lead to changes in the spectrum of AF. The 
reviewed studies revealed that these changes 
can be analyzed using time–frequency 
approaches, since these can characterize spec-
tral alterations that occur in short time intervals 
(Koley & Dey, 2013a). In this regard, it has been 
observed that the spectrogram of AF estimated 
by the STFT presents lower activity in the nor-
mal respiratory frequency during the occurrence 
of apneic events (Wu et al., 2021). This was also 
observed in the wavelet spectrograms, where 
the amplitude around the respiratory frequency 
is significantly reduced during the apneic/
hypopneic events (McCloskey et  al., 2018). 
Nevertheless, an exhaustive characterization of 
the AF signal using the wavelet transform is still 
lacking in adults.
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14.6.2	� AF Characterization 
in Children

The analysis of the AF signal has been much less 
studied in children than in adults, and some stud-
ies suggest that the diagnosis of sleep apnea in 
children is more challenging due to more restric-
tive criteria to define apneic events and severity 
degrees (Rosen et  al., 2012). In view of the 
reviewed studies, apneic events reduce the vari-
ability, stationarity, and complexity of AF 
(Barroso-García et  al., 2017, 2020; Jiménez-
García et al., 2020). Moreover, when the AF was 
characterized in the phase space, the exponential 
divergence was reduced as the severity of sleep 
apnea increased (Barroso-García et  al., 2020). 
This disease also increments the dwell time in the 
same phase space state, the mean prediction time, 
and the irregularity of pediatric AF in the time 
domain (Barroso-García et al., 2020).

The pediatric overnight AF also experiences 
variations in the frequency domain (Gutiérrez-
Tobal et al., 2015; Jiménez-García et al., 2020). 
As in the case of adults, the spectral power in spe-
cific low frequency bands is higher in the pres-
ence of sleep apnea. This suggests that the 
recurrence of apneic events displaces the spectral 
power of AF to frequencies below the normal 
respiratory frequency (Gutiérrez-Tobal et  al., 
2015). By extension of the classic spectral analy-
sis, the bispectrum also revealed that the severity 
of the disease localizes more activity around 
lower frequencies associated with apnea occur-
rence (Barroso-García et  al., 2021a). Moreover, 
the pediatric AF has a more gaussian behavior as 
the severity of sleep apnea increases. In addition, 
the non-linear interaction of harmonic compo-
nents of AF is reduced in the presence of apneic 
events, leading to lower phase coupling in the 
normal breathing band (Barroso-García et  al., 
2021a).

As far as we know, the combined time–fre-
quency approach was only explored using the 
wavelet transform (Barroso-García et al., 2021b). 
In this case, the wavelet coefficients in the detail 
level related to the normal breathing are reduced 
as the severity degree of sleep apnea increases. At 

the same time, the distribution of these wavelet 
coefficients is more skewed and peaked around 
lower values. This is in accordance with the 
reduction of the energy in the frequency band 
related to normal respiration (Barroso-García 
et al., 2021b).

Lastly, it was observed that the AF character-
ization can improve using of a combination of 
methodological approaches both in adults and 
children (Álvarez et  al., 2020; Barroso-García 
et al., 2017; Jiménez-García et al., 2020; Koley & 
Dey, 2013b, c). According to the reviewed stud-
ies, the joint use of different analyses is able to 
provide useful and complementary information 
to aid in the detection of sleep apnea. This com-
binational approach has also been applied to the 
analysis of AF along with other cardiorespiratory 
signals (Álvarez et  al., 2020; Aydoğan et  al., 
2016; Cabrero-Canosa et  al., 2004; Jiménez-
García et al., 2020). These studies show that other 
signals can be complementary to AF and enhance 
its diagnostic ability.

14.7	� Conclusions

In view of the results, we can conclude that the 
overnight AF successfully reflects the particulari-
ties caused by the occurrence of apneic and 
hypopneic events. The automatic signal process-
ing methods provide useful information to define 
AF-based biomarkers for characterizing and 
helping in the diagnosis of this disease.

Regarding future research directions on the 
AF signal analysis in the sleep apnea context, 
deep-learning methods have revolutionized the 
automatic diagnosis of this disease in the last few 
years. It is true that these techniques are more 
focused on the classification tasks (apneic events 
versus normal respiration, or sleep apnea severity 
degree), rather than for the characterization of AF 
signal. However, explainable artificial intelli-
gence (XAI) methods are expected to clarify the 
functional interpretation of deep-learning mod-
els, identify novel relevant information from AF 
signal, and thus improve the diagnosis of sleep 
apnea in future studies.
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15Deep-Learning Model Based 
on Convolutional Neural Networks 
to Classify Apnea–Hypopnea 
Events from the Oximetry Signal

Fernando Vaquerizo-Villar, Daniel Álvarez, 
Gonzalo C. Gutiérrez-Tobal, C. A. Arroyo-
Domingo, F. del Campo, and Roberto Hornero

Abstract

Automated analysis of the blood oxygen satu-
ration (SpO2) signal from nocturnal oximetry 
has shown usefulness to simplify the diagno-
sis of obstructive sleep apnea (OSA), includ-
ing the detection of respiratory events. 
However, the few preceding studies using 
SpO2 recordings have focused on the auto-
mated detection of respiratory events versus 
normal respiration, without making any dis-
tinction between apneas and hypopneas. In 
this sense, the characteristics of oxygen desat-
urations differ between obstructive apnea and 
hypopnea episodes. In this chapter, we use the 
SpO2 signal along with a convolutional neural 
network (CNN)-based deep-learning architec-
ture for the automatic identification of apnea 

and hypopnea events. A total of 398 SpO2 sig-
nals from adult OSA patients were used for 
this purpose. A CNN architecture was trained 
using 30-s epochs from the SpO2 signal for the 
automatic classification of three classes: nor-
mal respiration, apnea, and hypopnea. Then, 
the apnea index (AI), the hypopnea index 
(HI), and the apnea–hypopnea index (AHI) 
were obtained by aggregating the outputs of 
the CNN for each subject (AICNN, HICNN, and 
AHICNN). This model showed a promising 
diagnostic performance in an independent test 
set, with 80.3% 3-class accuracy and 0.539 
3-class Cohen’s kappa for the classification of 
respiratory events. Furthermore, AICNN, HICNN, 
and AHICNN showed a high agreement with the 
values obtained from the standard PSG: 
0.8023, 0.6774, and 0.8466 intra-class corre-
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lation coefficients (ICCs), respectively. This 
suggests that CNN can be used to analyze 
SpO2 recordings for the automated diagnosis 
of OSA in at-home oximetry tests.

Keywords

Apnea · Apnea index (AI) · Apnea–hypopnea 
index (AHI) · Blood oxygen saturation 
(SpO2) · Convolutional neural networks 
(CNN) · Deep learning · Hypopnea · 
Hypopnea index (HI) · Obstructive sleep 
apnea (OSA) · Oximetry

15.1	� Introduction

Obstructive sleep apnea (OSA) has become a 
major issue in recent years (Senaratna et  al., 
2017). OSA is marked by recurrent episodes of 
apneas (complete absences of airflow) and 
hypopneas (considerable reductions of airflow), 
which leads to fragmented and restless sleep 
(Berry et al., 2012). Despite its high prevalence 
in the adult population (9–38%), OSA is an 
underdiagnosed condition (Benjafield et  al., 
2020; Senaratna et al., 2017). This contributes to 
an increased risk of cardiovascular, metabolic, 
and psychiatric alterations, such as hypertension, 
cerebrovascular diseases, diabetes, and depres-
sion (Eastwood et al., 2010; Park et al., 2011).

Despite serving as the gold standard for OSA 
diagnosis, overnight polysomnography (PSG) 
presents important limitations. PSG is a costly 
test, highly intrusive for the patients, and techni-
cally complex and lacks availability (del Campo 
et al., 2018; Redline, 2017). In addition, apneas 
and hypopneas must be manually annotated by 
trained specialists, which is labor intensive and 
may lead to errors and inconsistencies in the 
diagnosis (Shokoueinejad et al., 2017). In order 
to overcome these PSG limitations, multiple 
investigations have focused on the use of simpli-
fied approaches aimed at the automated detection 
of OSA from a reduced subset of cardiorespira-
tory signals. Among these approaches, the auto-
mated analysis of the single-channel blood 
oxygen saturation (SpO2) signal from nocturnal 

oximetry has been frequently proposed due to its 
easy acquisition and interpretation (del Campo 
et al., 2018). SpO2 signal provides a continuous 
measure of the oxygen content in the hemoglobin 
(McClatchey, 2002), which allows to detect oxy-
gen desaturations induced by OSA-related respi-
ratory events, i.e., apneas and hypopneas (Berry 
et al., 2012).

Different studies have examined the SpO2 sig-
nal as a simplified alternative to PSG in the 
automated detection of respiratory events and in 
the automated diagnosis of OSA (del Campo 
et al., 2018). A majority of these studies have fol-
lowed conventional feature-engineering method-
ologies, which are based on feature extraction 
and selection stages (del Campo et  al., 2018). 
Nonetheless, these methodologies require a sub-
stantial human-based knowledge to identify, a 
priori, a set of relevant features to extract from 
the signal under study (Goodfellow et al., 2016), 
which limits its ability to obtain all the ad-hoc 
information from the SpO2 recordings related to 
respiratory events. This limitation can be over-
come by deep-learning methods, which can 
directly analyze raw data and automatically make 
decisions based on non-human-driven knowl-
edge (Faust et al., 2018; Goodfellow et al., 2016).

In the last few years, deep-learning algorithms 
have outperformed conventional approaches in 
many fields (Goodfellow et  al., 2016), such as 
image recognition, autonomous driving, natural 
language processing, and time series analysis 
(Faust et al., 2018; Goodfellow et al., 2016). In 
the OSA context, recent studies have demon-
strated the usefulness of deep-learning approaches 
to analyze cardiorespiratory signals in the auto-
mated detection of apneic events (Mostafa et al., 
2019). Particularly, Mostafa et al. (2020a, b) and 
Vaquerizo-Villar et  al. (2019) applied a deep-
learning architecture based on convolutional neu-
ral networks (CNNs) to the oximetry signal to 
detect respiratory events in adult and pediatric 
OSA patients, respectively. However, these stud-
ies have only addressed the automated detection 
of respiratory events versus normal respiration, 
without making any distinction between apneas 
and hypopneas (Mostafa, Baptista, et al., 2020a; 
Mostafa, Mendonca, et  al., 2020b; Vaquerizo-
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Villar et  al., 2019). Conversely, Kulkas et  al. 
(2017) stated that the severity of oxygen desatu-
rations differs between obstructive apnea and 
hypopnea events.

In the present chapter, a CNN architecture is 
proposed to automatically identify apnea and 
hypopnea events. Despite being originally 
designed for image analysis (Goodfellow et al., 
2016), CNNs have become one of the most rele-
vant deep-learning methods for time series clas-
sification (Ismail Fawaz et  al., 2019) in many 
fields, including biomedical signal processing 
(Ebrahimi et al., 2020; Faust et al., 2019; Murat 
et al., 2020; Roy et al., 2019). Accordingly, we 
hypothesized that a deep-learning architecture 
based on CNNs could help to automatically learn 
the most relevant information from the oximetry 
signal in the detection and classification of apnea 
and hypopnea events. Consequently, the main 
objective of this chapter is to design and evaluate 
a deep-learning model based on CNNs to auto-
matically classify respiratory events from the 
SpO2 signal in OSA patients. In addition, the sec-
ondary goal of this research is to assess the use-
fulness of the CNN model to estimate the 
apnea–hypopnea index (AHI: the number of 
apneas and hypopneas per sleep hour), which is 
the clinical parameter used to establish OSA 
diagnosis.

15.2	� Materials and Methods

15.2.1	� Subjects and Signals

This chapter involved a database composed of 
398 adult patients diagnosed with OSA (AHI ≥5 
events per hour). All of them were referred to the 
sleep laboratory of the Hospital Universitario Río 
Hortega (Valladolid, Spain), where they under-
went overnight PSG.  The Ethics and Drugs 
Research Committee of the hospital approved the 
protocol (CEIm 47/16).

All subjects were diagnosed by medical spe-
cialists following the standards of the American 
Academy of Sleep Medicine (AASM) (Berry 
et  al., 2012). Accordingly, an episode of apnea 
was annotated when there was a drop in the 

amplitude of the oronasal thermal airflow signal 
higher than 90% during at least 10 seconds (Berry 
et  al., 2012). Similarly, a hypopnea was scored 
when there was a minimum of 30% reduction in 
the amplitude of the nasal pressure airflow signal, 
lasting at least 10 seconds and accompanied by 
an oxygen desaturation of at least 3% or/and an 
electroencephalographic arousal (Berry et  al., 
2012). Subsequently, the apnea index (AI: the 
number of apneas per hour), hypopnea index (HI: 
the number of hypopneas per hour), and AHI 
from each subject were computed as the total 
number of each type of event divided by the total 
sleep time.

SpO2 signals were acquired during PSG at a 
sampling rate of 16  Hz. In order to reduce the 
computational requirements, all the SpO2 record-
ings were downsampled to a sample rate of 1 Hz. 
SpO2 recordings from each subject were then 
divided into 30-second non-overlapping epochs, 
being each epoch labelled as normal respiration 
(N), apnea (A), or hypopnea (H) using the anno-
tations provided by the clinicians. The dataset 
was divided into three groups: training set (first 
199 subjects, 50%), employed to train the CNN 
architecture; validation set (the following 79 sub-
jects, 20%), used to monitor the convergence of 
the CNN; and test set (the last 120 subjects, 
30%), employed to evaluate the proposed CNN-
based methodology. Table 15.1 summarizes poly-
somnographic and clinical data from the 
population under study. No statistically signifi-
cant differences (p-value < 0.05) were found in 
age, sex, body mass index (BMI), AI, HI, or AHI 
between the three groups.

15.2.2	� Proposed CNN Architecture

Figure 15.1 shows the main components of the 
proposed CNN architecture. The input section of 
the CNN consists of the SpO2 samples for the 
30-s epoch (i.e., 30 samples) to be classified, con-
catenated with the four preceding and the five 
following epochs, thus having a 10-epoch length 
(300 samples) 1D input vector. The reason for 
using preceding and following epochs is twofold: 
(i) it enhances the identification of oxygen 
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Table 15.1  Clinical and polysomnographic data of the population under study

All Training Validation Test
Clinical characteristics in each data subset
Subjects (n) 398 199 79 120
Age (years) 56 [47–65] 56 [47–64] 56 [47–67] 55 [44–65]
Males (n) 278 (69.9%) 144 (72.4%) 59 (74.6%) 75 (62.5%)
BMI (kg/m2) 29.1 [26.1–33.1] 29.4 [26.0–33.5] 28.9 [26.8–31.7] 29.2 [25.6–34.0]
AI (e/h) 8.2 [1.8–24.8] 9.1 [1.6–25.3] 6.1 [2.1–24.1] 7.7 [2.0–24.8]
HI (e/h) 19.4 [10.4–32.5] 19.0 [10.1–29.7] 19.8 [10.9–32.9] 19.9 [10.6–36.5]
AHI (e/h) 35.0 [17.3–59.4] 33.2 [15.9–59.7] 35.6 [18.1–59.2] 36.2 [18.3–61.4]
Number and type of events in each data subset
Normal (n) 250,669 (72.5%) 127,292 (73.2%) 49,932 (72.5%) 73,445 (71.3%)
Apnea (n) 40,838 (11.8%) 20,174 (11.6%) 7972 (11.6%) 12,692 (12.3%)
Hypopnea (n) 54,165 (15.7%) 26,350 (15.2%) 10,989 (15.9%) 16,826 (16.4%)

Data are presented as median [interquartile range], n, or %
BMI: body mass index, AHI: apnea index, HI: hypopnea index, AHI: apnea–hypopnea index, e/h events per hour

Fig. 15.1  Overview of the proposed CNN architecture. 
Each convolutional block (conv block) includes a 1D con-
volution (1D Conv), BN, a RELU activation function, and 
pooling

desaturations associated to respiratory events, 
since the onset of oxygen desaturations may 
occur more than 30 seconds after the start of the 
respiratory events (Kulkas et al., 2013); and (ii) it 
allows for a better modeling of the temporal dis-

tribution of respiratory events, which are typi-
cally grouped in clusters.

The proposed CNN architecture processes this 
input using six convolutional blocks (conv block), 
and each one composed of the following:

•	 1D convolution (1D conv). This layer extracts 
feature maps using the 1D convolution opera-
tion (Goodfellow et al., 2016):

	 x n w a n k bi
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k

k

k
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i k
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1

1
size

, 	 (15.1)

•	 where xj
i is the feature map generated by the 

jth convolutional filter (j = 1, …, 64) in the ith 
convolutional block (i = 1, …, 6); ksize = 5 is 
the filter (kernel) size; wj

k and bj
k are the filter 

weights and biases, respectively; and ai is the 
input of the ith convolutional block. The num-
ber of convolutional blocks, the number of fil-
ters, and the kernel size were chosen according 
to the optimum values obtained in Vaquerizo-
Villar et al. (2021).

•	 Batch normalization (BN). BN is applied to 
normalize the feature maps obtained in the 1D 
convolution layer (Goodfellow et al., 2016).

•	 Rectified linear unit (ReLU). ReLU is the 
standard activation function in CNNs. It is 
applied to introduce nonlinearity to the nor-
malized feature maps, which provides univer-
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sal approximation to any function (Goodfellow 
et al., 2016):

	 f x xi
j

i
j� � � � �max 0, , 	 (15.2)

•	 Pooling. After the ReLU function, a max-
pooling layer was applied to the activations 
with a pooling factor of 2 to reduce dimen-
sionality, while the most relevant features are 
kept (Goodfellow et al., 2016).

Following the last convolutional block, the 2D 
feature maps are converted into 1D feature vec-
tors using a flattening operation. Finally, a soft-
max activation function is used to obtain the 
output of the CNN architecture, i.e., the probabil-
ity of belonging to each class (N/A/H) for the 
input 30-s SpO2 epoch.

15.2.3	� CNN Training Process

The CNN architecture was implemented using 
the Keras framework with TensorFlow backend. 
A workstation with a NVIDIA GeForce RTX 
2080 GPU running on a Windows 10 environ-
ment was used for this purpose. The training data 
were fed into the CNN using minibatches of size 
100 during 200 epochs. The weights of each layer 
of the network were initialized using He-normal 
initialization (He et al., 2014). Then, the adaptive 
moment estimation (Adam) algorithm was used 
with an initial learning rate of 0.0001 (Kingma & 
Ba, 2015), and a categorical cross entropy loss 
function was applied to update the weights and 
biases at each minibatch. As the whole training 
data does not fit on the memory of the worksta-
tion, training data were fed at each epoch in ran-
dom order from different patients to the network 
using 50 reading queues (Sors et al., 2018), which 
also improves the convergence of the Adam algo-
rithm (Goodfellow et al., 2016; Sors et al., 2018). 
The validation data was used during the training 
process to monitor the convergence of the CNN 
by means of the validation loss. In this respect, 
the learning rate was reduced by a factor of 2 
when the validation loss did not improve for ten 

consecutive epochs, and early stopping was 
applied to finish the learning process after 30 
epochs of non-improvement in the validation 
loss, restoring the network weights to those that 
minimized the validation loss (Goodfellow et al., 
2016).

15.2.4	� Statistical Analysis

The Kruskal–Wallis test was used to assess statis-
tical differences (p-value < 0.05) between groups. 
The overall performance of the CNN architecture 
to automatically classify respiratory events was 
assessed by means of confusion matrices 
(3-class), which were used to compute the 
Cohen’s kappa index (kappa) and the 3-class 
accuracy. The performance for each individual 
class was measured by means of sensitivity (per-
centage of epochs belonging to the class rightly 
classified), specificity (percentage of epochs not 
belonging to the class rightly classified), positive 
predictive value (proportion of epochs assigned 
to the class that are true positives), negative pre-
dictive value (proportion of epochs not assigned 
to the class that are true negatives), and accuracy 
(proportion of epochs rightly classified). In addi-
tion, AI, HI, and AHI were obtained for each sub-
ject based on the CNN scoring (AICNN, HICNN, and 
AHICNN) and compared with those from the stan-
dard PSG (AIPSG, HIPSG, and AHIPSG) using 
Bland–Altman plots and the intra-class correla-
tion coefficient (ICC).

15.3	� Results

15.3.1	� CNN Model Performance

Figure 15.2 shows the confusion matrix of the 
CNN model in the test set for the 3-class classifi-
cation procedure (N/A/H). This model rightly 
classified 80.3% (82,628/102963) of the 30-s 
SpO2 epochs in the test set, with a 3-class kappa 
value of 0.539. Table 15.2 presents the diagnostic 
ability for each individual class. Notice that 
higher performance metrics were obtained for the 
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Fig. 15.2  Confusion matrix of the CNN architecture in 
the test set. This matrix compares the type of respiratory 
event from standard PSG with the corresponding assigna-
tion using the CNN model

Table 15.2  Diagnostic ability of the CNN model in the 
test set for the detection of normal respiration, apnea, and 
hypopnea events

Epoch type
Se 
(%)

Sp 
(%)

PPV 
(%)

NPV 
(%)

Acc 
(%)

Normal 
respiration

92.7 69.4 88.3 79.3 86.0

Apnea 47.2 96.9 68.4 92.9 90.8
Hypopnea 50.7 90.1 50.0 90.3 83.7

Se: sensitivity, Sp: specificity, PPV: positive predictive 
value, NPV: negative predictive value, Acc: accuracy

detection of normal respiration than for apnea 
and hypopnea events.

15.3.2	� Estimation of Respiratory 
Indices

Figure 15.3 shows the Bland–Altman plots com-
paring AICNN, HICNN, and AHICNN with AIPSG, 
HIPSG, and AHIPSG in the test set, respectively. 
ICC is also shown. It can be seen that the respira-
tory indices predicted by the CNN (AICNN, HICNN, 
and AHICNN) are underestimating those from 
standard PSG (AIPSG, HIPSG, and AHIPSG), as 
reported by their mean difference (bias). HICNN 

reached a lower bias (−4.22) than AICNN (−7.87) 
and AHICNN (−12.09), whereas AHICNN achieved 
a slightly lower confidence interval (40.82) than 
AICNN (45.49) and HICNN (45.66). In addition, 
AHICNN showed a higher agreement with manual 
scoring (ICC = 0.8466) than AICNN (ICC = 0.8023) 
and HICNN (ICC = 0.6774).

15.4	� Discussion

In this chapter, we evaluated the potential useful-
ness of a CNN architecture to automatically clas-
sify respiratory events (apnea, hypopnea, and 
normal respiration) from the SpO2 signal in adult 
OSA patients. To our knowledge, this is the first 
study applying a deep-learning model to auto-
matically identify apnea and hypopnea events 
from the oximetry signal.

The proposed CNN-based deep-learning 
model reached a high performance, with 80.3% 
3-class Acc and 0.539 kappa for the classification 
of respiratory events. According to the guidelines 
of McHugh (2012), a kappa value between 0.41 
and 0.60 indicates that there is a moderate agree-
ment between our CNN architecture and manual 
PSG-based scoring (McHugh, 2012). Hence, our 
approach could be potentially used to detect 
respiratory events in at-home pulse oximetry 
tests for OSA diagnosis (del Campo et al., 2018).

Looking at the confusion matrix of 
Fig.  15.2., it can be seen that 93% of normal 
respiration epochs are rightly classified by the 
CNN model, which may indicate that oxygen 
desaturations infrequently occur without being 
associated to a respiratory event. Furthermore, 
47% of apnea and 51% of hypopnea epochs are 
rightly detected by the CNN architecture, 
which indicates that the characteristics of SpO2 
desaturations caused by apneas that differ from 
those related to hypopneas. This agrees with 
Kulkas et al. (2017), who reported that oxygen 
desaturations associated to obstructive apneas 
have significantly larger duration and depth 
than SpO2 desaturations related to hypopneas. 
In this sense, 35% of apnea epochs are misclas-
sified as hypopneas. This can be explained by 
the fact that oxygen desaturations related to 
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Fig. 15.3  Bland–Altman plots comparing (a) AICNN with AIPSG, (b) HICNN with HIPSG, and (c) AHICNN with AHIPSG

obstructive apnea events of short duration may 
have similar characteristics to those related to 
long-duration hypopneas, as the duration and 
area of SpO2 desaturations are significantly 
correlated to the duration of obstructive apnea 
and hypopnea events (Kulkas et  al., 2017). 
Conversely, 40% of hypopnea epochs are pre-
dicted as normal respiration by the CNN. These 
misclassified hypopneas may be associated to 
electroencephalographic arousals that do not 
produce any physiological perturbation in the 
oximetry signal (Berry et al., 2012).

Regarding the respiratory indices, the CNN 
model shows a trend to underestimate them, 
especially AICNN and AHICNN. Nonetheless, 
the CNN model showed promising results, 
reaching ICCs of 0.8023 (AICNN), 0.6774 
(HICNN), and 0.8466 (AHICNN). The higher 
ICC obtained by AICNN and AHICNN can be 
explained by the fact that their Bland–Altman 
plots show a linear underestimation trend, 
whereas HICNN has outliers in both directions. 
In this respect, an ICC value in the range 
0.50–0.75 indicates a moderate agreement, 
whereas an ICC value in the range 0.75–0.90 
indicates a good reliability (Koo & Li, 2016). 
Accordingly, our CNN-based deep-learning 
approach could be used to calculate these 
respiratory indices in oximetry tests.

Recent studies showed the usefulness of deep-
learning techniques to automatically score respi-
ratory events from raw cardiorespiratory signals 
in OSA patients, outperforming conventional 
feature-based methodologies (Mostafa et  al., 
2019). Particularly, some studies faced the auto-
mated detection of normal respiration, apneas 
and hypopneas from airflow; thoracic, abdomi-
nal, and chest respiratory signals; and the electro-
cardiogram (Haidar et  al., 2020; McCloskey 
et  al., 2018; Nikkonen et  al., 2021; Urtnasan 
et al., 2018; Van Steenkiste et al., 2020; Yue et al., 
2021), reaching a 3-class accuracy (normal, 
apnea, and hypopnea) in the range 73–91%. In 
contrast to these studies, our work achieved a 
3-class accuracy of 80% using only the SpO2 sig-
nal. In this regard, the oximetry signal has been 
frequently advocated for OSA screening due to 
its accessibility, simplicity, and reliability (del 
Campo et al., 2018).

Vaquerizo-Villar et  al. (2019) and Mostafa 
et al. (2020a, b) have also focused on the auto-
mated classification of respiratory events using 
oximetry-based deep-learning approaches. These 
studies employed CNNs to differentiate respira-
tory events from normal respiration episodes 
using 60-s SpO2 segments, reaching accuracies in 
the range 85–95% (Mostafa, Baptista, et  al., 
2020a; Mostafa, Mendonca, et  al., 2020b; 
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Vaquerizo-Villar et  al., 2019). In the present 
chapter, the 2-class accuracy (normal versus 
apnea/hypopnea) was included in this range 
(86%) with a 30-s segment size, which is more 
appropriate for the detection of clusters of respi-
ratory events that contain more than one respira-
tory event in a 60-s segment. Furthermore, our 
CNN-based model addresses for the first time the 
distinction between apneas and hypopneas from 
raw oximetry data and the estimation of respira-
tory indices (AI, HI, and AHI).

Despite the potential usefulness of our pro-
posed approach, some limitations need to be 
considered. First, the database employed in 
this work did not contain healthy control sub-
jects (AHI  <  5  e/h). The inclusion of these 
subjects could help to improve the character-
ization of normal respiration. Another limita-
tion concerns the use of 30-s SpO2 segments 
to automatically detect respiratory events, 
which does not allow to identify the onset and 
end of apneas and hypopneas. Nonetheless, 
SpO2 does not contain this information, as the 
delay of oxygen desaturations occurring after 
respiratory events is variable (Kulkas et  al., 
2013). Similarly, the proposed CNN does not 
differentiate between obstructive and central 
respiratory events. However, this would 
require information about breathing effort 
(Berry et al., 2012), which is not included in 
the oximetry signal. In this respect, the acqui-
sition of the photoplethysmography (PPG) 
signal with the pulse oximetry sensor may 
contribute to enhance the diagnostic ability of 
our proposal, as it contains information 
related to respiratory events (Karmakar et al., 
2014; Papini et  al., 2020). Furthermore, the 
use of novel deep-learning techniques (e.g., 
transformer or generative adversarial net-
works) may help improve the automatic clas-
sification of respiratory events at the cost of 
higher computational complexity. Finally, the 
application of eXplainable artificial intelli-
gence techniques could help to further under-
stand the perturbations in the oximetry signal 
linked with apnea and hypopnea events and 
the differences between them.

15.5	� Conclusions

Our CNN-based deep-learning model exhibited a 
high performance in the automatic identification 
of apnea and hypopnea events from the SpO2 sig-
nal. The CNN model also showed a high agree-
ment in the estimation of OSA-related respiratory 
indices (AI, HI, and AHI). According to our find-
ings, we can conclude that CNN-based SpO2 
approaches could be potentially used to provide 
an automated diagnosis of OSA in at-home oxim-
etry studies.
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16Tracheal Sound Analysis

AbdelKebir Sabil and Sandrine Launois

Abstract

Tracheal sound sensors provide multiple respira-
tory signals that are valuable for studying upper 
airway characteristics. This chapter reviews the 
original work and ongoing research on tracheal 
sound analysis in relation to upper airway obstruc-
tion during sleep. Past and current research sug-
gest that being associated with other sleep study 
recording sensors and advanced signal processing 
techniques, tracheal sound analysis can exten-
sively contribute to the diagnosis and assessment 
of sleep-disordered breathing.

Keywords

Tracheal sounds · Sleep-disordered breathing 
· Apnea and hypopnea detection · Alternative 
flow sensor · Alternative respiratory effort 
sensor · Heart rate variability

Supplementary Information  The online version 
contains supplementary material available at 
[https://doi.org/10.1007/978-3-031-06413-5_16].

16.1	� Introduction

The most common sleep-related respiratory dis-
order is sleep apnea syndrome, characterized by 
repeated partial (hypopneas) or complete cessa-
tions (apneas) of respiratory flow (Berry et  al., 
2012). The detection and classification of these 
respiratory events as obstructive or central are 
essential for the diagnosis and severity assess-
ment of the disorder and for the choice of treat-
ment. Reliable noninvasive recording of required 
physiological parameters for the diagnosis of 
sleep-disordered breathing (SDB) has been made 
possible through technological advances.

According to international guidelines, the 
method of choice for detecting flow variations 
defining respiratory abnormalities during sleep is 
oronasal airflow or tidal volume reduction (Berry 
et al., 2012). Pneumotachography (PNT) is con-
sidered the gold standard for this measurement 
but is not used in routine practice in a polysom-
nography (PSG) or home sleep apnea testing 
(HSAT). The American Academy of Sleep 
Medicine (AASM) recommends using an orona-
sal thermal airflow sensor as the first-choice sen-
sor for detection of apneas and a nasal pressure 
(NP) transducer as the first-choice sensor for 
hypopnea detection (Berry et al., 2012). Apneas 
are defined as a complete airflow cessation or 
more than 90% amplitude reduction from the ref-
erence value for at least 10 second (Berry et al., 
2012; Escourrou et al., 2010; Mayer et al., 2017). 
Hypopneas are sleep-related events where respi-
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ratory flow is reduced by more than 30% with 
associated oxygen desaturation of more than 3% 
and/or arousal (Berry et al., 2015).

Thermal airflow sensors use the difference 
between the temperature of exhaled air and ambi-
ent air to estimate airflow and detect mouth 
breathing. The use of temperature as a surrogate 
measurement of airflow works well for detecting 
apnea as it detects both nasal and oral airflow. 
Nasal cannulas are pressure sensors capable of 
detecting pressure changes during inspiration and 
expiration. Most sleep laboratories use signals 
from both a thermistor and nasal pressure (NP) to 
ensure adequate oronasal flow measurement. 
Combined, these sensors improve the identifica-
tion of apneas that are missed by thermistors or 
overestimated by NP in the case of mouth breath-
ing, for example. However, placed in the sensi-
tive same area, between the nose and the mouth, 
these sensors can cause patients much discomfort 
and, thus, impact their sleep (Goodwin et  al., 
2001). They are, therefore, often displaced or 
even removed by patients during sleep studies, 
potentially leading to lost or unanalyzable signals 
during part of the recording. The validity of 
thermistor and NP signals for more than 6 hours 
of recording is satisfactory for less than 60% for 
both children (Goodwin et al., 2001) and adults 
(Redline et al., 1998). This problem is more com-
mon in HSAT recording than in a monitored PSG 
recording at the sleep laboratory.

When nasal pressure and thermistor sig-
nals are missing or of poor quality, the AASM 
recommends the use of signals derived from 
the respiratory inductance plethysmography 
(RIP) as a surrogate respiratory flow (Berry 
et  al., 2012). Using two belts placed around 
the thorax and the abdomen, the RIP method 
allows semi-quantitative assessment of vol-
ume changes through the measurement of 
thoracic and abdominal movements (Eberhard 
et al., 2001). Either the RIP-sum- or the RIP-
flow-derived signals can be used as a surro-
gate signal for respiratory flow (Berry et al., 
2012).

Recordings of tracheal sounds (TS) correlate 
well with respiratory flow and provide valuable 
information about airway structure and respira-

tory disorders (Beckerman et  al., 1982; 
Cummiskey et  al., 1982; Nakano et  al., 2004). 
Tracheal sound analysis is a simple and noninva-
sive way to study the behavior of the upper air-
way (UAW). Tracheal sounds have been used for 
acoustical flow estimation (Gavriely & Cugell, 
1996; Que et  al., 2002; Yadollahi & Moussavi, 
2009) and investigation of the upper airway 
abnormalities such as airway obstruction (Nakano 
et  al., 2004; Yadollahi et  al., 2010) in patients 
with sleep apnea.

16.2	� Tracheal Sounds

Tracheal sounds, recorded at the sternal notch, 
reflect pressure variations transmitted through 
the inner surface of the trachea from turbulent 
airflow in the airways (Penzel & Sabil, 2018). 
These vibrations are defined by the pressure’s 
magnitude and frequency content and by the 
physiological characteristics of the tracheal wall 
and surrounding soft tissue. Thus, microphones 
recording tracheal sounds on the skin surface 
detect acoustic sounds reflecting these tracheal 
wall vibrations. This characteristic has been used 
not only to detect tracheal breathing sounds (flow 
and snoring) but also to record suprasternal pres-
sure (SSP), a good surrogate for respiratory effort 
(Amaddeo et al., 2016; Meslier et al., 2002; Glos 
et  al., 2018; Sabil et  al., 2019a). In addition, 
acoustic characteristics of TS allow the sensors to 
detect cardiac sounds, and TS signals may also 
include cardiogenic oscillations (Glos et  al., 
2018; Freycenon et al., 2021; Priftis et al., 2018).

The specific upper airway characteristics 
related to obstructive sleep apnea (OSA) influ-
ence the sound produced by the UAW superim-
posed on tracheal breathing sounds. Thus, apnea 
monitoring using tracheal sounds recording is of 
great interest to sleep physicians. However, most 
sleep recording systems that include tracheal 
sound sensors only use them for the recording and 
detection of snoring. To our knowledge, the only 
sleep recording systems currently using tracheal 
sound sensors for respiratory event detection and 
characterization are CIDELEC® (Sainte Gemmes 
sur Loire, France) and Nukute® (Oulu, Finland).
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16.3	� Tracheal Sound Sensors

Tracheal sound sensors are stethoscope-like 
transducers with a microphone inserted into a 
protective housing with a thick cuff creating a 
deep airtight space between the transducer and 
the patient’s skin (Fig. 16.1). The practicability 
of the sensor and the good quality of the recorded 
TS signal are ensured using a cylindrical shape of 
the sensor’s protective chamber. To fit the supra-
sternal notch curve, the skin contact face of the 
sensor has to be convex. An air gap of 2–3 mm 
between the sensor and the contact surface of the 
protective housing ensures that the microphone 
does not touch the patient skin during recording. 
A well-sealed contact surface above the sternal 
notch insulates against ambient noise, and the 
sensor should always be secured in place using a 
double-sided ring tape. Correct positioning of the 
transducer, about 1  cm right above the sternal 
notch, is an essential element to obtain a good 
quality signal. In terms of practicability, the 
placement of TS sensors on the skin surface just 
above the tracheal notch is relatively easily. If 
they are properly secured in place, the sensors are 
less likely to be displaced or removed by patients 
compared to other sensors during a recording 
session, especially for sleep studies. The robust-
ness of TS intensity allows the sensors to achieve 
an acceptable signal-to-noise ratio even when the 
airflow is reduced (Yadollahi & Moussavi, 2010). 
The signal is amplified and band-pass filtered to 
separate high-pitch frequencies of the breathing 

sound from low-pitch frequencies of snoring 
sounds. Frequency cutoffs of the filtered signal 
depend on the acoustic transducer characteristics. 
In the MESAM system, for instance, the flow 
sound was detected at frequencies between 800 
and 2000 Hz and snoring between 50 and 800 Hz 
(Penzel et al., 1990), while the TS sensor in the 
CIDELEC system filters flow sound between 200 
and 2000 Hz and snoring between 20 and 200 Hz 
(Penzel & Sabil, 2018). However, filtering ranges 
and threshold level for children may have to be 
adjusted. Before analysis, the recorded raw sig-
nal goes through low-pass antialiasing filter to 
avoid erroneous sampling. The choice of the 
sampling rate and the number of the A/D conver-
sion bits vary from one system to another depend-
ing on the sensitivity and the frequency range of 
the microphone. Tracheal sound intensity may 
vary with sleep stages in the same individual and 
among individuals of different age, height, and 
body mass index. These variations may result in 
reduced signal amplitude that could misclassify 
regular breathing as hypopneas or apneas. This 
problem may be solved by adjusting the gain on 
the acoustic sensor and by filtering out back-
ground noise more effectively to optimize the 
signal-to-noise ratio (Gavriely & Cugell, 1996).

In addition, most TS sensors have linear 
response characteristics over a wide range of fre-
quencies (Yadollahi & Moussavi, 2005), and if 
properly processed, they can easily distinguish 
inspiration from expiration (Beck et al., 2005). For 
a reliable SDB diagnosis, signal delimitation and 

Fig. 16.1  Illustration of the placement of a tracheal sound sensor and a diagram showing a microphone inserted into a 
protective housing used in the MESAM system (Penzel et al., 1988)
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differentiation of inspiratory from expiratory 
phases are necessary. Different envelope detection 
techniques, such as Hilbert transform, have been 
used for the detection of TS respiratory cycle 
delimitation (Harper et  al., 2003; Yadollahi & 
Moussavi, 2007) even in the presence of complete 
obstructions, such as during apneas or swallowing 
(Huq & Moussavi, 2012). Finally, several studies 
have shown that TS could be used to detect and dif-
ferentiate complete (apnea) from partial (hypop-
nea) UAW obstruction during sleep. Thus, the 
breathing sound signal extracted from TS record-
ing could be used as any other flow signal for the 
analysis of respiratory events during sleep. While 
few applications use time domain visual analysis to 
process tracheal sound signals, most studies use 
frequency domain automatic analysis.

16.4	� Tracheal Sound Technology: 
A Reliable Recording for SDB 
Diagnosis

16.4.1	� Time Domain Analysis: TS 
for Classical Manual Detection 
of Apneas and Hypopneas

Using a TS sensor, an apnea can be easily detected 
as a cessation of TS and/or the absence of definite 
respiratory cycles (Fig. 16.2) during respiratory 
monitoring (Cummiskey et al., 1982; Meslier & 
Racineux, 1987; Sabil et al., 2019b; Krumpe & 
Cummiskey, 1980). In the absence of snoring, 
hypopneas could be easily detected as a drop in 
the TS intensity (Fig. 16.3). However, for TS, the 
intensity is not only related to the airflow but also 
to the UAW characteristics that may change 
throughout the night for the same patient depend-
ing on body positions and sleep stages. For the 
same airflow, the higher the UAW resistance, the 
higher the TS intensity during both inspiration 
and expiration (Chuah & Moussavi, 2001). In the 
presence of snoring during obstructive hypop-
neas, for instance (Fig. 16.4), the intensity of the 
TS signal increases. Thus, compared to apneas, 
detecting hypopneas directly from TS intensity 
reduction is challenging, particularly with time 
domain visual analysis. Many tracheal sound 

automatic analysis techniques use either time 
domain or frequency domain TS signal analysis. 
Time domain analysis tracks tracheal intensity 
signal changes with the presence of respiratory 
events throughout the recoding time. Spectral 
analysis systematically explores frequency con-
tents (Fig. 16.5) of TS signals and examines how 
much of the signal lies within each given fre-
quency band over a range of frequencies (Alvarez 
et al., 2008; Solà-Soler et al., 2012; Azarbarzin & 
Moussavi, 2013).

The recording of TS for the evaluation of 
sleep-related respiratory disorders has been 
widely studied. In 1980, Krumpe et al. were the 
first to show that apneas could be identified by the 
cessation of laryngeal sounds during continuous 
monitoring (Krumpe & Cummiskey, 1980). In 
1982, Cummiskey et  al. used a TS sensor com-
bined with a thermistor, a nasal pressure cannula, 
and pulse oximeter for the detection of apneas and 
hypopneas. There was no significant difference in 
the number of events detected with either TS or 
the reference sensors (Cummiskey et al., 1982). In 
1988, Penzel et al. developed a new technique for 
real-time snoring analysis using a combination of 
signals from a laryngeal microphone. Their sys-
tem could differentiate snoring from physiologi-
cal breathing sounds and detect obstructive apneic 
events (Penzel et al., 1988). In 1989, Meslier et al. 
compared TS and thermistor flow signals to the 
gold standard PNT signal in healthy patients dur-
ing sleep. With the PNT as a reference, there was 
no difference in the number of apneas and their 
duration recorded using the TS method and the 
PNT (Meslier & Racineux, 1987). In 1995, a 
study by Van Surell et al. compared an HSAT sys-
tem that uses TS for apnea detection and classifi-
cation with a routine PSG recording. They 
concluded that the HSAT system with TS sensor 
can be used to screen patients with severe OSA 
(Van Surell et  al., 1995). Soufflet et  al. showed 
that ST correlated with respiratory flow measured 
by a PNT and could be used as a noninvasive 
method to measure airflow (Soufflet et al., 1990). 
Yadollahi et  al. evaluated TS associated with 
pulse oximetry compared with regular PSG 
recordings. They classified TS either as the pres-
ence of acoustic sound (breathing, snoring, noise) 
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Fig. 16.2  Example of 
an obstructive apnea 
detected separately on 
three different signals 
(flow sound intensity, 
nasal pressure, and 
thermistor). The AASM 
definition of apnea in 
terms of signal 
amplitude decrease and 
duration was applied to 
all three signals

Fig. 16.3  A respiratory event with the criteria for hypopnea without snoring sounds. Persistence of respiratory cycles 
in the flow sound signal but reduced in amplitude both at inspiration and expiration

or as the absence of sound (silence). Good agree-
ment was found between the events defined by TS 
and oxygen saturation changes and PSG-
recommended scoring rules (Yadollahi et  al., 
2010).The same team examined the concordance 
between TS measured directly at the sternal notch 
and those recorded with the sensor placed at 
20–30  cm from the patient and demonstrated a 
superiority of the suprasternal notch measurement 
(Yadollahi & Moussavi, 2010).

In a recent study evaluating the CIDELEC® 
system, apnea detection using a TS sensor, the 

PneaVox®, during sleep has been compared in 
OSA patients to apnea detection using thermis-
tor, nasal pressure, and RIP sum signals. This 
study showed that apneas could be visually iden-
tified by the cessation of TS during continuous 
monitoring. The TS device used in the study pro-
vides a sensitive, reliable, technically simple, and 
easily applied noninvasive means to monitor res-
piration during sleep. While NP signals tend to 
overestimate the number of apneas and cannot 
detect oral breathing, TS can detect apneas seen 
by a thermistor and/or a RIP sum and additional 
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Fig. 16.4  A respiratory event with the criteria for hypopnea with snoring sounds. Persistence of respiratory cycles in 
the flow sound signal but reduced in amplitude only on expiration

Fig. 16.5  Example of automatic apnea detection using spectral analysis of tracheal sound recorded with the Nukute® 
HSAT system

events that could be missed by these two sensors. 
Lastly, combined with NP, TS allow the detection 
of oral breathing and can reclassify as hypopneas 
or apneas that would be incorrectly detected by 
NP alone. TS can therefore be used as a substitute 
for oral thermistor to reliably detect apneas and 
associated with NP. TS meets the oronasal flow 
evaluation required by the AASM for apnea 
detection and is recommended by French guide-
lines (Escourrou et al., 2010).

16.4.2	� Frequency Domain Analysis: 
TS Spectral Analysis 
for Automatic Detection 
of Apneas and Hypopneas

TS spectral analysis was proposed in many stud-
ies. Nakano et al. performed a spectral analysis of 
TS and recommended the use of TS in HSAT 
devices, especially for patients with a high proba-

bility of OSA (Nakano et  al., 2004). Based on 
spectral analysis, Kulkas et al. proposed a TS anal-
ysis algorithm for separation of apneas from nor-
mal breathing or snoring sounds (Kulkas et  al., 
2008). The separation feature was defined as the 
ratio of the smoothed amplitudes of the two fre-
quency ranges from 0 to 50 Hz and 50 to 600 Hz. 
The proposed frequency-dependent method was 
more reliable for apnea analysis than the signal 
amplitude-dependent time domain analysis 
(Kulkas et al., 2008). Yadollahi et al. developed an 
acoustic analysis method for respiratory event 
detection using a TS coupled with SpO2 recording 
(Yadollahi & Moussavi, 2009). Automatically seg-
menting TS into sound (breathing, snoring, and 
noise) and silent segments, this method highly cor-
related (96%) with PSG results and performed 
well in differentiating simple snorers from OSA 
patients (Yadollahi & Moussavi, 2009). Other 
techniques using compressed TS analysis have 
been used to screen for SDB. Nonlinear filtering of 
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compressed TS provided an effective tool for 
respiratory events screening during sleep (Kulkas 
et al., 2008; Rauhala et al., 2008). Sanchez et al. 
explored the correlation between TS spectra and 
body length in children and adults. They found 
that, depending on body length, children had sig-
nificantly louder sounds and higher frequency 
components than in adults (Sanchez & Pasterkamp, 
1993). This finding was confirmed in another 
study showing that age, gender, and height are 
major factors that contribute to the modification of 
UAW length, wall thickness, and cross-sectional 
area, which cause narrowing, increased resistance, 
and UAW collapsibility. These changes have an 
impact on the TS frequency contents in OSA 
patients not only when they sleep but also during 
the day when awake (Yadollahi & Moussavi, 
2011). Characteristics of TS spectral features have 
been used in other studies to separate OSA patients 
from control subjects during wakefulness 
(Montazeri & Moussavi, 2010; Montazeri et  al., 
2012; Elwali & Moussavi, 2017). While clinical 
validation has yet to confirm the relevance of these 
novel techniques using TS spectral analysis, find-
ings from these studies extend the potential of TS 
technology as a possible tool that is reliable, fast, 
simple, noninvasive, and inexpensive for OSA 
screening in the awake subject.

Finally, in a recently published study, Mlynczak 
et al. used a neural network algorithm to analyze 
TS recorded with a wireless acoustic sensor. Their 
system was able to differentiate normal breathing 
sounds from snoring with good discriminatory 
accuracy (Mlynczak et al., 2017). This system was 
the first to propose a wireless TS sensor and to use 
a smartphone application as its interface.

16.5	� Respiratory Event 
Characterization

16.5.1	� Respiratory Effort Evaluation: 
The Gold Standard and Real-
Life Practice

To distinguish between obstructive and central 
sleep apnea, evaluation of inspiratory effort dur-
ing sleep is required. Esophageal pressure (Pes) 

is considered as the gold standard for the evalua-
tion of respiratory efforts and classification of 
events (Berry et al., 2015). However, this method 
is invasive, is not well tolerated by many patients, 
and can affect the quality of sleep (Goodwin 
et al., 2001; Chervin & Aldrich, 1997) and, thus, 
is not used for routine sleep studies. Indirect 
respiratory effort measurement techniques have 
been developed. In the absence of esophageal 
pressure recording in routine sleep studies, the 
AASM recommends the use of respiratory induc-
tance plethysmography (RIP) belts as a reference 
technique for the evaluation of respiratory efforts 
(Berry et al., 2015). During an apnea, the pres-
ence of RIP movements at the respiratory fre-
quency indicates respiratory effort and classifies 
the apnea as obstructive. In addition, the increased 
respiratory effort against a collapsed airway may 
result in an out-of-phase or paradoxical RIP sig-
nals. Central apneas are characterized by the 
absence of RIP movements with, occasionally, 
cardiogenic oscillations seen on the signals. 
However, the reliability of the RIP signals 
depends on accurate placement and stability of 
the thoracoabdominal belts, which is not always 
guaranteed, particularly in young children and 
obese patients.

16.5.2	� Suprasternal Pressure: A TS 
Signal for Respiratory Effort 
Evaluation

Tracheal sound sensors can be used not only to 
detect tracheal breathing sounds but also to 
record suprasternal pressure (SSP), an adequate 
substitute for assessing respiratory effort (Meslier 
et al., 2002; Sabil et al., 2019a, 2020; Glos et al., 
2018). The SSP is a nonaudible signal with low 
frequencies resulting from pressure variations 
induced by respiratory efforts. Respiratory efforts 
cause variations in pharyngeal pressure leading 
to pressure changes in the TS sensor chamber. 
These pressure variations are measured by move-
ments of the skin in contact with the sensor’s sur-
face at the sternal notch. Characterization of 
apneas and hypopneas using the SSP has been 
compared with the gold standard, Pes, and the 
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recommended alternative, the RIP signal. 
Provided that the scorer is familiar with the sig-
nal, the SSP is a reliable method to characterize 
apneas and hypopneas in both adults and children 
(Meslier et  al., 2002; Glos et  al., 2018; Sabil 
et al., 2019a). Figure 16.6 shows an example of 
an apnea that could be misclassified by the RIP 
signals as central, while it is clearly identified as 
obstructive on both the Pes and the SSP signals.

16.5.3	� Choking Noise Detection: A TS 
Noise for Apnea 
Characterization

The placement of the sensor on the suprasternal 
notch is recommended for a better analysis of 
snoring sounds. The presence of snoring can help 
characterize hypopneas as obstructive and avoid 
misclassifying hypopneas as apneas when the 
magnitude of airflow reduction is overestimated 
because of nasal obstruction or poor positioning 
of the nasal cannula. However, a snoring-like 
squeaky noise known as “choking sound” (CS) 
could be heard during apneas. With a different 
spectrum density than snoring, choking sounds 

are induced by intense respiratory effort with a 
slight inspiratory or expiratory transient reopen-
ing of the UAW during obstructive apneas and 
are characterized by the mid-inspiration snoring 
spectrum that could occur in any hyperventilation 
following the apnea. In a recent study, we used 
TS spectral analysis to detect CS (Sabil et  al., 
2017). Apneas were characterized as mixed or 
obstructive by the presence of CS at the end of 
apneas and sometimes during apneic events 
(Fig. 16.7). During central apneas, these CS are 
absent.

16.6	� Combination of TS 
with Other Sensors

16.6.1	� Tracheal Sounds and RIP Belts 
for a “Sensor-Face-Free” Sleep 
Recording

We investigated the use of TS in combination 
with RIP belt signals for the diagnosis of OSA in 
adult patients without placing any respiratory 
sensors on the patient’s face (Sabil et al., 2020). 
Results were compared with those obtained with 

Fig. 16.6  Example of an apnea that could be misclassi-
fied by the thoracoabdominal respiratory inductance ple-
thysmograph signals as central, while it is clearly 

identified as obstructive on both the esophageal pressure 
and the suprasternal pressure signals
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Fig. 16.7  Choking sounds during two consecutive obstructive apneas. Note the inspiratory resumption sound and snor-
ing amplification after the obstructive events

the use of the combination thermistor–nasal can-
nula–RIP sensors, as recommended by the 
AASM (Sabil et al., 2020). Assuming that the TS 
sensor is properly placed just above the sternal 
notch and that the scorer is familiar with the TS 
signal analysis, this method provides a correct 
detection and characterization of respiratory 
events and, thus, a highly accurate evaluation of 
OSA (Sabil et al., 2020). Indeed, this “face-free” 
HSAT recording is practical for patients who do 
not tolerate a nasal cannula and/or an oronasal 
thermistor, such as the case in children. The use-
fulness of a TS sensor as an alternative sensor for 
the detection and characterization of sleep respi-
ratory events in children has been evaluated 
(Amaddeo et al., 2020). Amaddeo et al. demon-
strated that TS sensors are well tolerated by chil-
dren for airflow detection compared to standard 
nasal cannulas and thermistor (Amaddeo et  al., 
2020). The addition of TS to standard HSAT sen-
sors correctly detected respiratory events even in 
the absence of the recommended airflow signals, 
allowing a “face-free” setting that may be of par-
ticular interest in children. Moreover, the study 
demonstrated that TS and SSP signals, in combi-
nation with SpO2 only and without RIP, allow the 

detection and characterization of respiratory 
events with a high degree of sensitivity and speci-
ficity. Thus, TS and SSP may represent a promis-
ing method for screening pediatric patients at risk 
of SDB (Amaddeo et al., 2020).

16.6.2	� Nasal Pressure and TS 
for the Detection of Oral 
Breathing

Oral breathing detection is important in sleep 
studies, and the AASM recommends their detec-
tion with oronasal thermistors. Oral breathing is 
characterized by the absence of nasal pressure 
signal, while the thermistor signal detects respi-
ratory variations (Fig. 16.8a). However, thermis-
tors can be displaced or removed by patients, 
particularly children, during sleep recordings. In 
this situation, the evaluation of respiratory flow 
by nasal pressure signal alone may result in false 
detection of apneas. In some patients, oral breath-
ing can also occur exclusively at the inspiratory 
phase or at the expiratory phase (Fig. 16.8b). As 
the TS sensor is taped right on the sternal notch, 
the signal is less likely to be lost during sleep 
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Fig. 16.8  Example of the tracheal sound signal used to 
confirm exclusive oral breathing or loss of nasal pressure 
signal. Expiratory mouth breathing could also be seen 

with the nasal pressure signal dropping to zero, while the 
sound signal remains present

study recording than thermistor or nasal cannula 
signals. Thus, in combination with nasal pres-
sure, TS are reliable sensors for oral breathing 
detection. There is, however, no study to date 
evaluating the reliability of TS analysis to detect 
oral breathing.

16.7	� Tracheal Sounds Beyond 
the Usual Respiratory 
Information

16.7.1	� Catathrenia: More Than Just 
a Regular Snoring

Catathrenia is a particular sleep-related respira-
tory phenomenon characterized by infrequent 
groaning sounds during episodes of prolonged 
expiration that occurs mainly during REM sleep 
(Guilleminault et al., 2008; Vetrugno et al., 2008). 
Catathrenia has the characteristics of a complex 
respiratory motor behavior, and its pathogenesis 
remains unclear and may be heterogeneous. It 
consists of a deep inspiration, followed by breath 
holding and slow release of air through a closed 
glottis, during which the groaning sound is pro-
duced (Guilleminault et al., 2008; Vetrugno et al., 
2008; Rodrigues et  al., 2021). Catathrenia has 
been compared to snoring in several studies 
where the recorded groaning sound was analyzed 
and characterized as vocal (Guilleminault et al., 
2008; Vetrugno et al., 2007; Siddiqui et al., 2008). 
Iriarte et  al. used spectral analysis and oscillo-
gram to compare catathrenia sounds recorded in 
two patients (one female) with snoring (Iriarte 
et al., 2011). Unlike snoring, catathrenia had har-

monics and a short jitter that establishes it laryn-
geal origin. None of the previously published 
studies measured the catathrenia sounds at the 
tracheal notch, which could probably help better 
in characterizing it. Figure  16.9 illustrates an 
example of catathrenia recorded using a TS sen-
sor. Periods of monotonous groaning sound usu-
ally lasting much longer than regular snoring are 
easily seen on the TS signal.

16.7.2	� Tracheal Sound Energy Ratio: 
An Advanced Analysis 
for Upper Airway Resistance 
Evaluation

Acoustic intensity increases with friction. 
When UAW resistance is increased, friction 
increases and so does the tracheal sound inten-
sity. In a study examining TS acoustic energy 
in patients with increased UAW resistance, a 
significant correlation was observed between 
the acoustic energy ratio Ei/Ee (Ei, inspiratory 
energy, and Ee, expiratory energy) and UAW 
resistance, regardless of the presence or 
absence of snoring. In the absence of UAW 
resistance, flow sound intensity increases 
equally throughout inspiratory and expiratory 
phases, and the energy ratio Ei/Ee remains sta-
ble. In the presence of UAW resistance, inspi-
ratory energy increases in comparison to 
expiratory energy, resulting in an increased 
energy ratio Ei/Ee (Fig. 16.10). Thus, the vari-
ation of the acoustic energy ratio Ei/Ee is a 
good indicator of UAW resistance evaluation 
(Racineux, 2006).
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Fig. 16.9  Example of a typical detection of catathrenia 
using tracheal sounds. Deep inhalation followed by a pro-
tracted exhalation. Catathrenia has a respiratory pattern 

that may mimic central apnea, but during which groaning 
sounds are produced, usually lasting much longer than 
regular snoring

Fig. 16.10  Illustration of tracheal sound energy signal 
showing how acoustic intensity increases with friction. 
With increased inspiratory upper airway resistance, the 

inspiratory energy (Ei) is greater than the expiratory 
energy (Ee), and the energy ratio Ei/Ee increases
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16.7.3	� Cardiogenic Oscillations: TS 
for Heart Rate Variability

Heart rate (HR) variability is an important physi-
ological parameter to be assess during sleep stud-
ies, and it is traditionally obtained through 
electrocardiography (ECG) or photoplethysmog-
raphy (PPG) recordings included in PSG or 
HSAT systems. However, phonocardiography 
(PCG), a recording of sounds and murmurs 
resulting from heart auscultation (Ismail et  al., 
2018), is a widely used method of listening to the 
heart sounds using a microphone sensor placed 
on the chest of a subject, an auscultation site 
where the heart sounds are loudest. Each heart 
cycle consists of two major sounds, S1 and S2, 
that can be used to determine the heart rate.

TS signals may include cardiogenic oscilla-
tions picked up by the sensor (Glos et al., 2018; 
Freycenon et al., 2021; Gómez et al., 2020). The 
origin of these oscillations is the same as that of 
the oscillations observed on the Pes signal or 
airflow signal, proposed as a marker of central 
apnea (Ayappa et al., 1999; Morrell et al., 1995). 
Given that the heart sound frequency is lower 
than the frequency of the tracheal breath sound, 
cardiogenic oscillations (Fig. 16.11) could be fil-
tered out, and in turn, the filtered signal could be 
used to evaluate the heart rate variability. Sharma 
et  al. proposed a novel algorithm for heart rate 
monitoring using acoustic signals from a TS sen-
sor placed at the suprasternal notch (Sharma 
et al., 2019). The algorithm constructs the Hilbert 
energy envelope of the signal by calculating its 
instantaneous characteristics to segment and 
classify a cardiac cycle into S1 and S2 sounds 
using their timing characteristics. Using this 
method, they achieved an accuracy of 94%, an 
RMS error of 3.96 bpm, and a correlation coeffi-
cient of 0.93 with reference to Somnoscreen® 
(Randersacker, Germany), a standard commer-
cial FDA-approved heart rate monitor (Sharma 
et  al., 2019). In another study, Freycenon et  al. 
tested algorithms based on optimal filtering to 
extract the cardiac signal from tracheal sounds 

(Freycenon et  al., 2021). Their method consists 
of denoising the tracheal signal by optimal filter-
ing followed by a low-pass filter and by estimat-
ing the heart rate (HR) using cross-correlation. 
When compared to a reference ECG signal, these 
algorithms extracting heart rate from TS signals 
reached an accuracy of 81–98% and an RMS 
error from 1.3 to 4.2 bpm depending on the level 
of snoring (Freycenon et al., 2021). These studies 
suggest that TS sensors can be used to monitor 
both breathing and heart rate, making it highly 
useful for monitoring heart rate variability during 
sleep studies.

16.7.4	� Detection of Obstruction 
Sites: Could TS 
Be an Alternative to DISE?

When considering surgical treatment of OSA, it 
is important to accurately determine the pre-
dominant upper airway obstructive site. The 
relationship between the acoustic property of 
snoring sound and the site of obstruction has 
been investigated (Herzog et  al., 2015; Peng 
et al., 2017; Xu et al., 2010). Xu et al. showed 
that there is a significant difference in sound 
spectrum between snoring sound immediately 
following velopharyngeal (above the free mar-
gin of the soft palate) and oropharyngeal (below 
the free margin of the soft palate) obstructive 
apneas. They suggest that sound spectrum anal-
ysis can be used as a method to determine 
obstruction sites in OSA patients. They demon-
strated that an obstruction level above the free 
margin of the soft palate produces a character-
istic frequency and energy in the low frequency 
domain (Fig.  16.12a), whereas an obstruction 
level below the free margin of the soft palate 
generates a characteristic frequency and energy 
in the high frequency domain (Fig. 16.12b) (Xu 
et al., 2010). In another study, Herzog et al. pro-
posed an acoustic analysis to classify patterns 
of obstructions and vibration during drug-
induced sleep endoscopy (DISE) and to evalu-
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Fig. 16.11  Example of 
cardiogenic oscillations 
seen during a central 
apnea on the 
suprasternal pressure 
derived from the 
tracheal sounds and on 
the photoplethysmogram 
signal derived from 
oximetry

Fig. 16.12  Comparison of power spectrum of the first snoring sound after upper-level (a) and lower-level (b) obstruc-
tions (Herzog et al., 2015)

ate acoustic characteristics between these 
different patterns of snoring. Obstructive snor-
ing patterns revealed a higher pitch than non-
obstructive patterns. Velar snoring showed 
more turbulence than tonsillar and post-apneic 
snoring and revealed the lowest center fre-
quency of all patterns. Tonsillar snoring pre-
sented the highest sharpness, whereas 

post-apneic snoring revealed the largest fluctu-
ation strength (Herzog et al., 2015). In a logis-
tic regression analysis comparing snoring 
sound analysis to DISE results, Lee et  al. 
showed that patients with at least two complete 
obstruction sites defined by DISE were signifi-
cantly associated with maximal snoring sound 
intensity (40–300 Hz) and a higher body mass 
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index. Tonsil obstruction was significantly and 
inversely correlated with mean snoring sound 
intensity (301–850 Hz). These findings suggest 
that snoring sound detection may be helpful in 
determining obstruction sites.

16.8	� Conclusion

The use of TS during sleep has been studied 
extensively for the last 40  years. The bulk of 
these studies shows that tracheal sounds 
recorded with appropriate sensors well placed 
just above the tracheal notch, rather than simple 
ambient microphones, can assess variations in 
breathing, snoring, and respiratory effort and 
heart rate variations and UAW obstruction sites. 
All these parameters are essential to diagnostic 
sleep studies. Compared to other PSG or HSAT 
respiratory sensors, TS sensors offer simple, 
noninvasive measurements. Their multiple-
derived signals are reliable and may have a sig-
nificant role in the diagnosis and classification 
of SDB. The development of new digital acous-
tic signal processing techniques and the 
enhancement of tracheal sound sensors over the 
past decade have led to improved accuracy for 
SDB diagnosis. Some aspects, such as detection 
and characterization of respiratory events, are 
well confirmed in several studies using auto-
matic algorithms based on spectral analysis and 
time domain visual analysis of TS-derived sig-
nals. Thus, TS technology meets the SCOPER 
criteria (Collop et  al., 2011) (sleep, cardiovas-
cular, oximetry, position, effort, and respiratory) 
for the diagnosis of SDB. However, heart rate 
variability and detection of UAW obstruction 
sites based on TS analysis could still be 
improved, and further studies are needed to 
establish the validity of these surrogate sensors 
for this valuable information.

In conclusion, associated with appropriate 
sensor placement and advanced signal processing 
techniques, the use of tracheal sound transducers 
as complementary with routine PSG or HSAT 
sensors can extensively contribute to the diagno-
sis and assessment of SDB and, thus, improve 
treatment strategies. In addition to their relevance 

in diagnostic sleep studies, standalone tracheal 
sound technology should also be used as a reli-
able SDB screening tool.
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with COVID-19

Ying Huang, DongMing Chen, Ingo Fietze, 
and Thomas Penzel

Abstract

The novel coronavirus disease-2019 
(COVID-19) and the ensuing pandemic have 
greatly impacted the global healthcare system 
due to its high infectiousness, associated high 
mortality, and a complete lack of immunity in 
the population. Globally, the COVID-19 pan-
demic has unleashed a health crisis that has 
not only seriously disrupted people’s lives but 
also affected their normal sleep, along with 
physical and mental health; this situation is 
especially exacerbated in people suffering 
from pre-existing conditions, such as sleep 
apnea. A recent meta-analysis of 18 studies by 
Miller et  al. (September 2020) showed that 
obstructive sleep apnea (OSA) is related to 
higher mortality and morbidity in patients 
with COVID-19 and is most likely indepen-

dent of other risk factors. A recent meta-
analysis indicated that COVID-19 patients 
with OSA are more severely affected than 
those without OSA, thereby providing further 
evidence that concurrent OSA may elevate the 
severity of COVID-19 infection, along with 
the risk of mortality. The COVID-19 pan-
demic has significantly impacted the diagno-
sis and therapeutic management of patients 
with OSA. Thus, it is necessary to identify and 
develop new diagnostic and therapeutic ave-
nues in the future. In this context, the current 
study summarizes known associations 
between COVID-19 and OSA and the regular 
diagnostic and therapeutic strategies for OSA 
in the light of COVID-19 pandemic preven-
tion and control.

Keywords

Obstructive sleep apnea · Coronavirus 
disease-2019 · Diagnosis · Treatment

17.1	� Introduction

Coronaviruses are common pathogens in humans 
associated with intestinal and respiratory dis-
eases (Cui et al., 2019). In most cases, infections 
due to the following human coronaviruses cause 
mild symptoms: human coronavirus 229E 
(HCoV-229E), human coronavirus NL63 
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(HCoV-NL63), human coronavirus OC43 
(HCoV-OC43), and HKU1. However, these coro-
naviruses can also lead to severe respiratory 
infections, including pneumonia, as observed 
previously in patients with the Middle East respi-
ratory syndrome (MERS) and severe acute respi-
ratory syndrome-coronavirus (SARS-CoV) (Cui 
et al., 2019). In December 2019, a novel respira-
tory coronavirus, SARS-CoV-2, was identified in 
Wuhan, China, that triggered a cascade of highly 
contagious respiratory infections, which spread 
and transmitted rapidly worldwide and resulted 
in a global pandemic (Zhu et  al., 2020). On 
March 11, 2020, the global spread of COVID-19 
(caused by SARS-CoV-2) forced the World 
Health Organization (WHO) to declare it as a 
pandemic (WHO Director, 2020). By November 
2021, the worldwide spread of COVID-19 had 
resulted in more than 256 million positive cases 
and over 5.13  million deaths in more than 200 
countries (World Health Organization, 2021).

The primary routes of transmission of SARS-
CoV-2 are close contact and via respiratory drop-
lets. The spike protein S mediates its entry into 
the host cells. This protein has high affinity, is 
tightly bound to, and acts as a receptor for the 
angiotensin-converting enzyme 2 (ACE2), abun-
dantly expressed in the airway epithelial cells. 
SARS-CoV-2 binds to ACE2 using a host prote-
ase (transmembrane protease serine 2, TMPRSS2) 
to activate the S protein, thereby facilitating entry 
into the cells (Cevik et al., 2020; Yao et al., 2020; 
Millet & Whittaker, 2015). After entering the 
host cells, the viruses use the host machinery to 
convert RNA into polypeptides, including the 
RNA-dependent RNA polymerases that the virus 
consequently uses for its RNA replication pro-
cesses. Following the structural protein synthesis 
and particle assembly, new viruses are secreted 
from the host cells through exocytosis. Host cells 
can get destroyed during the process, potentially 
triggering an innate immune response (Liu et al., 
2020). Depending on an individual’s immune 
response or the presence of risk factors, the pri-
mary clinical manifestations of COVID-19 range 
from an asymptomatic disease state to acute lung 
injury, acute respiratory distress syndrome 
(ARDS), severe pneumonia, multi-organ dys-

function, and eventually death (Yao et al., 2020; 
Tiwari et  al., 2020). A few days post-exposure 
(average of 4–7  days), people infected with 
SARS-CoV-2 may develop respiratory symptoms 
(e.g., runny nose, dyssomnia, cough, and dys-
pnea), along with fever, fatigue, myalgia, and/or 
diarrhea (Chhiba et  al., 2020). Several known 
factors are linked to poor prognosis in patients 
with COVID-19, including advanced age (over 
65 years), male gender, obesity, comorbid chronic 
respiratory disease, and the presence of cardio-
vascular and metabolic disorders (Chhiba et al., 
2020; Altibi et al., 2021; Zhou et al., 2020).

Obstructive sleep apnea (OSA), a disorder 
where a partial or complete collapse of the upper 
air tract occurs periodically during sleep, results 
in interrupted airflow, decreased oxygen satura-
tion during sleep, and nocturnal sleep fragmenta-
tion; these are important factors that affect the 
immune system (Besedovsky et  al., 2019; Said 
et  al., 2017). OSA is not only highly prevalent 
(increases with age) but also tightly linked to 
gender (male), hypertension, diabetes, obesity, 
and coronary heart disease (CHD). These dis-
eases are also associated with an unfavorable 
prognosis for COVID-19 (Gottlieb & Punjabi, 
2020; Sweed et  al., 2019; Cappuccio & Siani, 
2020). Therefore, the correlation between OSA 
and COVID-19 has attracted great research atten-
tion from clinicians and the scientific community. 
The current review summarizes the known rela-
tionship between COVID-19 and OSA, along 
with diagnostic and therapeutic strategies for 
OSA in the context of routine mitigation and con-
trol of the COVID-19 pandemic.

17.2	� Influence of OSA 
on Incidence, Disease 
Severity, and Mortality 
in COVID-19

OSA and COVID-19 share several risk factors 
and comorbidities in common, including age 
(increasing with age), gender (male), obesity 
(high body mass index), hypertension, diabetes, 
and CHD. In addition, cytokine storm and alveo-
lar macrophage activation are strongly associated 
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with disease exacerbation, resulting even in the 
death of patients with COVID-19. OSA is a 
chronic low-level inflammatory disease, and 
patients with untreated OSA are at a high risk of 
cardiovascular disease and death (Gottlieb & 
Punjabi, 2020; Sweed et al., 2019; Cappuccio & 
Siani, 2020; Mokmeli & Vetrici, 2020). Therefore, 
it is reasonably hypothesized that OSA may con-
tribute to SARS-CoV-2 infection. Once an infec-
tion develops, it may trigger higher incidences of 
cardiovascular diseases, including heart isch-
emia, arrhythmias, and hypercoagulability, even-
tually leading to an unfavorable clinical 
progression (Tufik et al., 2020).

Due to several changes in their everyday life, 
loneliness, fear, feelings of helplessness, and 
high mental burden during the COVID-19 pan-
demic, many people may have experienced diffi-
culty in sleeping where their sleep quality has 
been significantly impaired (Pinto et al., 2020). A 
cross-sectional study consists of 14 countries 
with a total of 20,598 participants, which is part 
of the International COVID-19 Sleep Study 
(ICOSS), has shown that participants with high 
risk of OSA had higher odds of reporting a 
COVID-19 diagnosis and were twofold increased 
odds of hospitalization or ICU treatment (Chung 
et al., 2021; Partinen et al., 2021). Peker and col-
leagues have shown that patients with COVID-19 
with high-risk OSA had poorer clinical outcomes 
compared with those with modified low-risk 
OSA (Peker et al., 2021). A study from France, 
wherein the researchers analyzed 124 patients 
with COVID-19, showed that after excluding 
confounding factors such as age, diabetes, and 
hypertension, obesity (body mass index 
[BMI] > 30 kg/m2) is an independent risk factor 
for the use of invasive mechanical ventilation 
(Simonnet et al., 2020). OSA is strongly associ-
ated with severe COVID-19-related major 
comorbidities, including diabetes, hypertension, 
cardiovascular disease (CVD), and obesity 
(Jordan et  al., 2014; Mashaqi et  al., 2021; Gill 
et al., 2021). Data from two small-sample size-
based investigations on patients with severe 
COVID-19 showed that a quarter of patients suf-
fered from OSA (Bhatraju et  al., 2020; Arentz 
et  al., 2020). Strausz et  al. using the FinnGen 

large biorepository (https://www.finngen.fi/en) 
examined whether OSA independently increased 
the risk in patients contracting the COVID-19 
infection and disease severity after infection after 
excluding other potential risk factors (including 
sex, age, BMI, diabetes, hypertension, etc.) 
(Strausz et al., 2021). The results showed that of 
the 445 patients positively diagnosed with 
COVID-19, 38 (8.5%) were previously diag-
nosed with OSA; of the 91 patients hospitalized 
with COVID-19, 19 (20.9%) suffered from OSA. 
Patients with OSA experienced a higher risk of 
hospitalization owing to the disease severity after 
contracting the COVID-19 infection as compared 
to those without OSA; the findings were indepen-
dent of age, gender, BMI, and other comorbidi-
ties that could lead to severe COVID-19. 
However, their study did not confirm whether 
OSA increased the risk of COVID-19 infection; 
however, they reported its correlation with severe 
COVID-19 infection (odds ratio [OR], 2.37; 95% 
confidence interval [CI], 1.14–4.95) (Strausz 
et al., 2021).

Another study reported the risk factors com-
monly shared between COVID-19 and OSA, 
including age, CVD, hypertension, pulmonary 
disease, and diabetes (Pazarlı et  al., 2021). A 
recent study comprising 4756 patients positive 
for SARS-CoV-2 infection in Iceland showed 
that among them, 185 had been previously diag-
nosed with OSA (Rögnvaldsson et al., 2021). Of 
the 238 COVID-19 patients who were either hos-
pitalized or died, 38 (20.9%) had OSA; after 
adjusting for the confounding factors of age, gen-
der, and BMI, OSA was found to be related to 
poor outcome (OR, 2.2; 95% CI, 1.4–3.5). 
Several studies examined the relationship 
between OSA and the COVID-19 infection risk, 
mortality risk, and infection severity. The find-
ings showed that OSA is strongly related to the 
infection severity of COVID-19 (Tufik et  al., 
2020; Cade et  al., 2020; Maas et  al., 2021). In 
addition, patients with OSA are not at a signifi-
cantly increased risk of COVID-19 infection as 
compared to the non-OSA individuals; however, 
they possess a significantly enhanced risk of 
developing grave complications and hospitaliza-
tion following the COVID-19 infection. OSA is 
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an independent risk factor for severe COVID-19 
infection. Therefore, OSA can be considered as 
an independent risk factor for patients with con-
firmed severe or suspected infection of COVID-19 
(Rögnvaldsson et al., 2021).

17.3	� Putative Mechanistic 
Pathways Underlying 
the Impact of COVID-19 
Infection on OSA

Several inflammatory and biochemical mecha-
nisms are associated with the progression of OSA 
and the related adverse outcomes; among them, 
some are associated with COVID-19 (Gill et al., 
2021). People bearing these risk factors and/or 
diseases are at an increased risk of developing 
severe symptoms following COVID-19 infec-
tion; the risk of death also increases (Strausz 
et al., 2021; Miller & Cappuccio, 2021). Among 
them, obesity is a predisposing risk factor for 
severe symptoms. A study from France compris-
ing 124 patients with COVID-19 infection 
reported that after excluding confounding factors 
such as age, hypertension, and diabetes, obesity 
(BMI > 30 kg/m2) is an independent risk factor 
for the use of IMC (Simonnet et  al., 2020). 
Cytokine storm and alveolar macrophage activa-
tion are strongly linked to disease exacerbation 
and even death in COVID-19 patients. OSA is a 
chronic low-level inflammatory disease (Gottlieb 
& Punjabi, 2020; Sweed et al., 2019; Cappuccio 
& Siani, 2020; Mokmeli & Vetrici, 2020). 
Fragmented sleep and intermittent blood–qi dis-
turbances (hypercapnia and hypoxemia) caused 
by OSA can enhance neuronal excitability in the 
sympathetic nervous system and increase inflam-
matory marker levels, especially in obese 
patients, thereby further exacerbating disease 
severity among the COVID-19 patients (Kohler 
& Stradling, 2010; Jose & Manuel, 2020).

Melatonin can improve the prognosis of 
patients with COVID-19 infection, particularly 
among those diagnosed with OSA. This may be 
attributed to its attenuating effects on oxidative 
stress, inflammation, and immune responses 
(Shneider et al., 2020; El-Missiry et al., 2020). In 

addition, melatonin also improves sleep quality, 
thereby facilitating better clinical outcomes 
among COVID-19-infected patients (Zhang 
et al., 2020).

Reduced levels of vitamin D are not only asso-
ciated with the severity of OSA but are also a risk 
factor for the body’s susceptibility to CVD and 
are related to poor prognoses among COVID-19 
patients (Archontogeorgis et  al., 2018; Kassi 
et al., 2013; Derakhshanian et al., 2021). Vitamin 
D can inhibit the activity of reactive oxygen spe-
cies, stimulate protective endothelial nitric oxide 
production, and reduce levels of inflammatory 
mediators (Kassi et al., 2013). In a previous study 
comprising 176 children, Kheirandish-Gozal 
et al. show that OSA is independently related to 
enhanced levels of high-sensitivity C-reactive 
protein and lipids and lower levels of vitamin D 
(Kheirandish-Gozal et al., 2014). High levels of 
vitamin D also enhance cellular immunity, reduce 
innate immune-system-induced cytokine storms, 
and are related to favorable prognoses of 
COVID-19 patients (Grant et al., 2020). However, 
a recent study conducted by the UK Biobank 
refuted this view due to the lack of any such evi-
dence in support (Hastie et  al., 2020). Of the 
348,598 participants, 449 were positive for 
COVID-19 infection. Although low vitamin D 
level was related to COVID-19 infection, this 
trend disappeared after adjusting for confounding 
factors. Therefore, these findings refuted the con-
clusions in favor of the likely association of vita-
min D level and the risk of contracting COVID-19 
infection.

A meta-analysis by Jin et al. using published 
reports on the relevance of OSA in the renin–
angiotensin–aldosterone system (RAAS) showed 
that OSA is linked to enhanced levels of angio-
tensin II and aldosterone, particularly in individ-
uals with hypertension (Jin & Wei, 2016). 
Therefore, an opinion that OSA may contribute 
to increased blood pressure through the RAAS 
system has been proposed (Jin & Wei, 2016). 
ACE2, a functional SARS-CoV-2 receptor, 
allows viral access to host cells (Letko et  al., 
2020). Therefore, patients with OSA have a 
higher probability of developing CVD following 
COVID-19 infection.
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In the early infection stages, the virus, SARS-
CoV-2, often invades the body’s immune system. 
The key to fighting the virus is dependent on the 
body’s immune status. Although sleep disorders 
alone do not significantly alter the number of 
immune cells, chronic insomnia changes the rela-
tive distribution of immune cell types; dramatic 
decreases in CD3+, CD4+, and CD8+ cell counts 
have been reported (Irwin, 2015; Mello et  al., 
2020). Patients with OSA often have disturbed 
sleep architecture, which negatively affects the 
immune system and reduces immunity, thereby 
increasing the risk of viral infections.

Idiopathic pulmonary fibrosis (IPF), a com-
mon chronic pulmonary disorder, leads to a 
decreased saturation of oxygen and pulmonary 
hypertension. OSA is frequent in patients diag-
nosed with IPF. Recent guidelines for IPF have 
identified OSA as crucial comorbidity affecting 
the survival of patients (Schiza et  al., 2015). 
Therefore, it is advised that the newly diagnosed 
IPF patients be referred to a sleep center for OSA 
diagnosis and treatment (Lancaster et al., 2009). 
Some patients with COVID-19 infection have 
remanent fibrosis of varying degrees in the lungs, 
even after recovery (Ye et al., 2020). Therefore, 
there is a need to screen for OSA in patients with 
pulmonary fibrosis who have had the COVID-19 
infection. However, it is unclear whether patients 
with OSA who have fibrosis are at an increased 
risk owing to the effects of COVID-19 infection, 
and this warrants further investigation.

17.4	� OSA Diagnosis During 
the COVID-19 Pandemic

With the global spread and increased risk of the 
COVID-19 infection, several sleep centers have 
been shut down to minimize the virus spread. 
Thus, initial consultations must now be per-
formed remotely, and home consultations are 
preferred for diagnosis of OSA, with devices 
being couriered by post to avoid interpersonal 
contact with patients. Indeed, the COVID-19 
pandemic has significantly impacted sleep 
services in the United Kingdom and abroad 
(Morin et al., 2021). Grote et al. in their recent 

study, analyzed the effects of the COVID-19 pan-
demic on consultations for individuals with 
respiratory sleep diseases in 19 European coun-
tries; a total of 40 centers were surveyed, and the 
results showed that patients in 31 centers were 
unable to attend in-person sessions due to travel 
restrictions (Grote et al., 2020). In terms of diag-
nosis, before the pandemic, 92.5% of the sleep 
laboratories diagnosed OSA using polysomnog-
raphy (PSG), 87.5% also used portable home-
based sleep monitors, and 30% conducted 
telemedical consultations. During the pandemic, 
however, the proportion of sleep laboratories that 
diagnose OSA by PSG decreased significantly to 
20%, while the proportion of home-based sleep 
monitors fell to 32.5%, and that through telemed-
ical consultations was only 27.5%. A significant 
decrease in the proportion of patients receiving 
different types of positive airway pressure (PAP) 
treatment for sleep breathing disorders (SDBs) in 
sleep centers in the majority of countries is also 
reported. Additionally, the proportion of physi-
cians and nursing or technical staff practicing 
sleep medicine fell to 25% and 19%, respectively, 
relative to the pre-pandemic levels. In areas hav-
ing a large number of reported infection cases, 
such as in Wuhan and the surrounding cities in 
the Hubei Province, China, sleep laboratories 
have suspended laboratory testing and non-
invasive PAP treatment (except in emergencies). 
In low-risk areas, laboratory sleep monitoring 
has gradually resumed following a rigorous 
screening procedure to rule out the possibility of 
infection. Moreover, other sleep diagnostic and 
treatment services and follow-up appointments 
are offered remotely or online (Zhang & Xiao, 
2020).

The American Academy of Sleep Medicine 
(AASM) released its revised recommendations in 
late April 2020 to assist clinicians practicing 
sleep medicine during the COVID-19 pandemic 
(American Academy of Sleep Medicine (AASM), 
2021). These recommendations were made under 
the guidance of the Center for Disease Control 
and Prevention to control and prevent the risk of 
COVID-19 infection spread in healthcare settings 
(Centers for Disease Control and Prevention 
(CDC), 2021). For necessary testing, the use of 
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disposable or completely disposable devices 
(components) is recommended. The 
European  Sleep Research  Society has released 
its guidelines on sleep management during the 
COVID-19 pandemic, particularly, concerning 
sleep perception (Altena et al., 2020). The British 
Sleep Society (BSS) has provided a statement on 
sleep management–related recommendations for 
patients during the pandemic (British Sleep 
Society (BSS), 2021). All of these aforemen-
tioned guidelines emphasize avoiding any con-
tact between doctors and patients to restrict the 
spread of the COVID-19 infection. Home sleep 
testing has received great attention during the 
COVID-19 pandemic, and sleep studies at differ-
ent levels are a major part of these guidelines. In 
this regard, sleep center facilities must be well 
equipped to serve patients for in-person visits or 
when sleep centers are reinstated in areas of low 
risk. It is recommended that long stay in waiting 
rooms be avoided, hand sanitizers must be placed 
everywhere, and contact with others should be 
minimized. Screening of patients for potential 
symptoms before consultation and on arrival is 
essential, and temperature testing of patients and 
staff is recommended. Patients should wear 
masks, and sleep technicians and doctors should 
wear personal protective equipment. Sleep stud-
ies during the COVID-19 pandemic can be con-
ducted at home or laboratory, based on the state 
of the sleep disorder and the risk of community 
transmission.

17.5	� Treatment of OSA During 
the COVID-19 Pandemic

Respiratory droplet is a mode of transmission of 
the COVID-19 virus, and the size of the exhaled 
aerosol diameter is influenced by several factors, 
including fluid properties, exhalation force, 
velocity, and environmental conditions. 
Continuous positive airway pressure (CPAP) is 
the main treatment prescribed for OSA; it is a 
non-invasive form of ventilation (Labarca et al., 
2021; Mutti et  al., 2020). CPAP improves the 
quality of life and health status of patients with 
OSA, reduces blood pressure to some extent, and 
is currently the main treatment recommended for 

patients with moderate-to-severe OSA. However, 
the efficacy of this treatment is still largely 
dependent on patient compliance. It is important 
to ensure that patients with OSA remain on 
timely and effective CPAP treatment despite the 
COVID-19 infection. The decision to continue or 
suspend the CPAP treatment should be made on 
an individual case basis, considering the comor-
bidities, the severity of OSA, and the risks associ-
ated with suspending treatment (Mutti et  al., 
2020; Barker et  al., 2020; Suen et  al., 2020). 
However, there are advantages and disadvantages 
in CPAP treatment during the COVID-19 pan-
demic (Thorpy et  al., 2020). Barker et  al. con-
cluded that CPAP and other forms of non-invasive 
ventilation treatments should be discontinued in 
the community unless in an emergency, as con-
tinued use of CPAP in the community may sig-
nificantly increase the risk of infection in family 
members or other caregivers (Barker et al., 2020).

In the United Kingdom, the BSS and the OSA 
alliance (including the British Thoracic Society, 
the BSS, the Association for Respiratory 
Technology & Physiology, and the Sleep Apnea 
Trust Association) have published guidelines for 
CPAP treatment utility during the pandemic 
(ARTP, 2021). The guidelines recommend that 
patients with OSA should continue CPAP treat-
ment as prescribed at home; however, these indi-
viduals are advised to take steps to maintain 
sufficient social distance from the vulnerable 
family members by moving to other bedrooms or 
temporarily suspending the use of CPAP. The 
guidelines encourage patients to continue CPAP 
if they develop symptoms of respiratory infec-
tion. In addition, the current National Health 
Service guidelines in the United Kingdom rec-
ommend that patients at home during the pan-
demic can continue their prescribed ventilation 
treatment.

The Association of Francaise Sommeil and 
Otorhinolaryngology (AFSORL) and the Society 
of Francaise of Otolaryngology (SFORL) pro-
posed a synopsis of measures to continue the 
treatment of sleep apnea syndrome during the 
pandemic (Bastier et al., 2020). During the initial 
stage of the COVID-19 pandemic, recommenda-
tions from international societies underline the 
risk for CPAP-induced aerosol and droplets, 
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which act as mediums to transmit or spread the 
virus (Barker et  al., 2020; Drummond, 2020). 
Contamination fears from using PAP may be 
contributing to deterioration in some patients 
with OSA (McSharry & Malhotra, 2020). Despite 
this, among OSA patients, compliance with 
CPAP therapy increased by 27% (del Campo 
et al., 2020). A study in France, which consisted 
of 7485 CPAP users with diagnosis of OSA, has 
shown that OSA patients significantly increased 
PAP adherence during the lockdown period, 
which was compared with data from a month ear-
lier and the same period in the previous year 
(Attias et  al., 2020). The findings suggest that 
publicity of COVID-19, as a disease affecting the 
airway, and fear of hospitalization may have 
motivated patients to comply with treatment. 
Moreover, spending greater time at home may 
also lead to an increase in sleep duration and 
access to CPAP treatment (Bastier et al., 2020).

Alternative treatments for OSA should be 
considered, such as oral appliances (Ramar et al., 
2015). Schwartz et al. have shown that oral appli-
ance therapy, including mandibular advancement 
devices, without increased risks for transmitting 
COVID-19, is an effective treatment for OSA and 
should be considered as first-line treatment dur-
ing the pandemic (Schwartz et  al., 2020). 
However, the study about oral appliance therapy 
for OSA is relatively less during the pandemic. In 
addition, treatment in the stomatological rooms 
may pose a risk to patients with OSA. In many 
stomatological practices, aerosols are formed 
during treatment, and droplets carrying viruses 
suspended in the air can increase the chances of 
infection for the staff. Additionally, cleaning the 
intraoral appliances used to treat OSA (e.g., man-
dibular advancement devices) can increase the 
risk of infection spread (Lavigne et al., 2020).

17.6	� Outcomes in Patients 
with OSA and COVID-19 
Infection

OSA is a chronic disease linked to COVID-19-
related morbidity, mortality, and social outcomes. 
The COVID-19 pandemic has led to an escalat-

ing number of infections and deaths, and the inci-
dence of OSA in COVID-19 patients increases 
the risk of hospitalization and death. Most 
patients positive for COVID-19 have mild or no 
symptoms, but a proportion of the symptomatic 
patients require admission to intensive care units 
and have a high mortality rate (Huang et  al., 
2020). In terms of pathogenesis, OSA shares 
many similarities with COVID-19, as both are in 
pro-inflammatory states, which may worsen the 
consequences of infection with SARS-CoV-2 
(Bikov et al., 2017). The novel coronavirus enters 
the host cells by binding to the ACE2 receptor, 
the expression of which is enhanced in the adi-
pose tissues due to obesity. Therefore, obese 
patients with OSA are more susceptible to infec-
tion by a novel coronavirus. The cardiac compli-
cations related to COVID-19 include acute 
myocardial infarction, myocarditis, arrhythmias, 
and heart failure (Bandyopadhyay et  al., 2020; 
Pack & Gislason, 2009); OSA is an identified risk 
factor of arrhythmias, hypertension, acute heart 
failure syndromes, and heart failure. Therefore, 
OSA may increase morbidity and mortality in 
patients having cardiovascular comorbidities 
along with COVID-19 infection. OSA is linked 
to a twofold rise in the risk of developing severe 
COVID-19 infection (Rögnvaldsson et al., 2021) 
and is an independent risk factor for severe 
COVID-19 infection (Strausz et al., 2021).

17.7	� Recommendations 
on the Management 
of Patients with OSA During 
the COVID-19 Pandemic

17.7.1	� Diagnostic Management

In the early stages of the COVID-19 pandemic, 
the AASM published guidelines on mitigation 
strategies in sleep practice, recommending the 
postponement and rescheduling of in-lab PSG 
and PAP administration (American Academy of 
Sleep Medicine, 2021). For essential sleep moni-
toring, disposable accessories or devices were 
recommended. It stated that if only reproducible 
monitoring equipment could be used, disinfect 
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and thoroughly clean the facility per the CDC-
recommended disinfection standards and manu-
facturer’s requirements for the facility; staff 
should wear appropriate personal protective 
equipment. Moreover, in addition to being rigor-
ously disinfected, reproducible equipment should 
be taken out of the service for at least 72 h before 
the next use. The same operation should be 
implemented in domestic-type monitoring facili-
ties, and courier services were preferred during 
the pandemic to ensure that patients could receive 
or return the equipment used without leaving 
their homes.

To minimize the risk of novel coronavirus 
infection, many sleep clinics and labs had to stop 
traditional offline consultations, and the manage-
ment of OSA in the European sleep medicine 
sector has been reduced by 80% (Grote et  al., 
2020). In contrast, Internet-based online telecon-
sultations have become more active, and national 
professional associations have encouraged 
remote diagnosis by testing select patients at 
home rather than in the laboratory (Bastier et al., 
2020; Bikov et al., 2021; Ayas et al., 2020). Sleep 
telemedicine has been in practice for almost 
20  years to provide clinical consultations for 
patients with sleep disorders. The AASM has 
defined key criteria related to its application 
(Singh et al., 2015). At this particular period, the 
AASM had to also update its recommendations 
for the diagnosis and treatment of sleep disorders 
through telemedicine (Shamim-Uzzaman et  al., 
2021), and the consultation of patients with OSA 
has been supported well by the sleep telemedi-
cine facility.

17.7.2	� Therapeutic Management

The BSS and the UK OSA alliance have jointly 
published guidelines for the use of CPAP during 
the COVID-19 pandemic. This recommends that 
patients with OSA should continue to use CPAP 
as prescribed at their homes without changing the 
parameters. However, they may change bed-
rooms or stop using CPAP briefly if necessary 
and maintain enough distance from susceptible 
family members. The UK National Health 
Service guidelines recommend that the usual 

mode of ventilation should be continued. The 
AFSORL and SFORL have also jointly proposed 
a strategy for the continued treatment of OSA 
during the COVID-19 pandemic. The Canadian 
Thoracic Society has also stated to this effect 
(Ayas et al., 2020).

Chang et al. (2019) evaluated the value of the 
home sleep apnea test (HSAT) for the diagnosis 
of concurrent obstructive sleep apnea–hypopnea 
syndrome (OSAHS) in patients with chronic 
obstructive pulmonary disease (COPD). HSAT 
has a higher sensitivity (95%) and a positive pre-
dictive value (94%) as compared to PSG. Other 
home-based monitoring devices, such as hand-
held pulse oximeter and radar respiratory motion 
monitor, have been greatly developed during the 
pandemic, as they were used as the primary 
screening devices. In addition, electronic ques-
tionnaires sent through the Internet can also be 
used as an aid to assess and better diagnose the 
patients. Several randomized controlled trials 
(Rosen et  al., 2012; Chai-Coetzer et  al., 2013) 
comparing functional outcomes and changes in 
compliance in OSAHS patients who received 
PSG and pressure titration in sleep centers with 
those treated through HSAT and APAP outside 
the sleep center show no significant differences 
between the two groups. In terms of satisfaction 
with care, Fields et al. (Watson, 2016) conducted 
a randomized trial for patients with OSAHS and 
showed no significant differences between tele-
medicine and face-to-face care; moreover, tele-
medicine was superior for ease and convenience 
of communication. No significant differences in 
clinical decision-making, patient compliance, 
and sleep functions between the combined physi-
cian and community primary care nurse working 
model and physician-led diagnosis and treatment 
in a sleep center were observed (Sánchez-Quiroga 
et  al., 2018; Nuria et  al., 2017; Ozdere et  al., 
2015).

In summary, the COVID-19 pandemic exerted 
a significant effect on the diagnosis and manage-
ment of SDBs. In the new prevention and control 
background, there is a need to develop novel 
models of diagnosis and management while min-
imizing any possible risk of exposure.

Since its outbreak, the COVID-19 pandemic 
has resulted in several sleep centers worldwide 
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switching from PSG and PAP treatments to 
remote online services. Notably, some services 
have continued to do so until now as a matter of 
routine, with no reduction in the number of 
patients served as compared to the traditional 
model. There has even been an increase in the 
number of patients due to convenient access and 
improved service capacity. The role of paramed-
ics in sleep medicine services is particularly 
important in the context of a great pandemic, 
resulting in a shortage of medical staff. 
Furthermore, telemedicine services have been 
extended from the traditional service audience 
consisting of the elderly, mobility impaired, and 
patients from remote and underdeveloped areas 
to cover the entire population in any part of the 
world.

The global effects of the COVID-19 pandemic 
cannot be understated. It has affected the diagno-
sis and treatment of many diseases, including 
OSA. Currently, there is limited research on the 
association between OSA and COVID-19, and 
more relevant studies are needed in the future. 
Clinical studies should be further strengthened to 
verify whether OSA is only related to comorbidi-
ties of COVID-19 or is also independently linked 
to the risk of death.

Clinical Practice Points

	1.	 Patients with OSA experienced a higher risk 
of hospitalization owing to the disease sever-
ity after contracting the COVID-19 infection 
as compared to those without OSA.

	2.	 The most effective therapeutic option cur-
rently available for patients with OSA remains 
PAP devices.

	3.	 Safety measures should be taken to avoid 
spread of the SARS-CoV-2 virus to protect 
both patients and personnel when performing 
sleep diagnostic and therapeutic procedures in 
sleep centers.
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Abstract

Positive airway pressure (PAP) is the primary 
treatment of sleep-disordered breathing includ-
ing obstructive sleep apnea, central sleep 
apnea, and sleep-related hypoventilation. Just 
as clinicians use pharmacological mechanism 
of action and pharmacokinetic data to optimize 
medication therapy for an individual, under-
standing how PAP works and choosing the 
right mode and device are critical to optimiz-
ing therapy in an individual patient. The first 
section of this chapter will describe the tech-
nology inside PAP devices that is essential for 
understanding the algorithms used to control 
the airflow and pressure. The second section 
will review how different comfort settings 
including ramp and expiratory pressure relief 
and modes of PAP therapy including continu-
ous positive airway pressure (CPAP), autoti-
trating CPAP, bilevel positive airway pressure, 
adaptive servoventilation, and volume-assured 
pressure support control the airflow and pres-
sure. Proprietary algorithms from several dif-
ferent manufacturers are described. This 
chapter derives its descriptions of algorithms 
from multiple sources including literature 

review, manufacture publications and web-
sites, patents, and peer-reviewed device com-
parisons and from personal communication 
with manufacturer representatives. Clinical 
considerations related to the technological 
aspects of the different algorithms and features 
will be reviewed.

Keywords

Obstructive sleep apnea · Central sleep apnea 
· Continuous positive airway pressure · 
Bilevel positive airway pressure · AutoPAP · 
Adaptive servoventilation · Volume assured 
pressure support · Sleep disordered breathing 
· Respiratory cycle · Adherence · Hypopnea · 
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COPD	� Chronic obstructive pulmonary 
disease

CPAP	 Continuous positive airway pressure
CSR	 Cheyne–Stokes respiration
DC	 Direct current
dyn	 Dynamic
eFl	 Epoch with flattening
eMO	 Epoch with mild obstruction
EPAP	 Expiratory positive airway pressure
EPR	 Expiratory pressure relief
eSO	 Epoch with severe obstruction
FOT	 Forced oscillation technique
HMV	 Home mechanical ventilator
IFL	 Inspiratory flow limitation
IPAP	 Inspiratory positive airway pressure
iVAPS	� Intelligent volume-assured pressure 

support
MEMS	 Microelectromechanical
MV	 Minute ventilation
NIPPV	� Non-invasive positive airway pres-

sure ventilation
NRAH	 Non-responsive apnea/hypopnea
OSA	 Obstructive sleep apnea
PAP	 Positive airway pressure
Pcrit	 Critical pressure
PDIFF	 Pressure difference
PEEP	 Positive end-expiratory pressure
Popt	 Optimal pressure
PS	 Pressure support
PSmax	 Pressure support maximum
PSmin	 Pressure support minimum
rAMV	 Relative average minute volume
REM	 Rapid eye movement
RERA	 Respiratory effort–related arousal
RMS	 Root mean squared
rRMV	 Relative respiratory minute volume
ST	 Spontaneous/timed
std.	 Standard
SV	 Servoventilation
Ti	 Inspiratory time
VAPS	 Volume-assured pressure support
VB	 Variable breathing
WPF	 Weighted peak flow

18.1	� Introduction

Positive airway pressure (PAP) is the primary 
treatment of sleep-disordered breathing includ-
ing obstructive sleep apnea (OSA), central sleep 

apnea, and sleep-related hypoventilation. This 
chapter will primarily focus on modes continu-
ous PAP (CPAP), autotitrating CPAP (APAP), 
bilevel PAP (BPAP), adaptive servoventilation 
(ASV), and volume-assured pressure support 
(VAPS) that are available in devices at the 
Centers for Medicare Services referred to as 
CPAP or respiratory assist devices, but some of 
these modalities are also available in non-inva-
sive home mechanical ventilators (HMVs). 
Device manufacturers have proprietary algo-
rithms so similar modes may work very differ-
ently, and limited data about those differences is 
available. This chapter derives its descriptions of 
algorithms from multiple sources including lit-
erature review, manufacture publications and 
websites, patents, and peer-reviewed device 
comparisons. Personal communication with 
ResMed (ResMed, San Diego, CA), Philips 
Respironics (Amsterdam, Netherlands) formerly 
Respironics (Murrysville, PA), DeVilbiss 
(DeVilbiss Healthcare, Somerset, PA), and 
Löwenstein (Löwenstein Medical Technologies, 
Hamburg, Germany) was used to obtain and/or 
verify all referenced and unreferenced algorithm 
descriptions presented. There are other manufac-
turers with APAP devices whose algorithms 
were unable to be obtained and were not 
included. This chapter and the included tables 
were adapted and updated from a previous arti-
cle by the author (Johnson & Johnson, 2015). As 
the focus will be primarily on the technology 
aspects of these modes, we will describe clinical 
considerations related to the algorithms and fea-
tures but will not review the overall clinical lit-
erature regarding the efficacy of modalities.

18.2	� Technology to Control 
Positive Airway Pressure 
Devices

Basic PAP equipment involves a device with a 
flow generator or “blower,” a mask that covers 
either or both the nose and/or the mouth and a 
tube that connects the device to the mask. Since 
the original devices, PAP therapy has evolved 
greatly to enhance the comfort, size, and quiet-
ness of the therapy, and current PAP devices are 
much more complex and may include air filters, 
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sensors (motor speed, airflow rate, pressure, 
snore transducer), microprocessor-based control-
ler, data storage, multilingual displays, internal 
modem for data transfer, and humidifiers with 
heated tubing. Additionally, more technologi-
cally advanced masks provide better seal, com-
fort, and quietness.

18.2.1	� Flow Generators

Flow generators or “blowers” are typically made 
up of a motor and impeller, which are essentially 
the fan blades. There are two primary functions 
of the blower: the first is to achieve the desired air 
pressure to open the airway and the second is to 
provide enough airflow to adequately ventilate 
and overcome dead space. The flow rates for 
some devices can be up to 180 L/min at the mask 
(Fleming & Grunberg, 2021).

The first generation of commercial CPAP 
devices utilized vortex blowers designed for 
whirlpool or spa bath (ResMed Origins, 2021). 
The size and noise of these motors limited their 
widespread utility as sleep therapy. Additionally, 
these used alternating current (AC), which did 
not have precise control over rotational speed 
and, thus, the flow and pressures of the PAP ther-
apy. The second-generation blowers were cen-
trifugal designs powered by single-staged 12 V 
brushed direct current (DC) motors. The voltage 
waveform, amplitude, and frequency of the DC 
motor can all be varied to allow for improved 
control over the pressure, which was essential for 
more advanced PAP modes and comfort features 
like ramping. The-third generation devices used 
by most current PAP systems are DC brushless 
motors, which allowed for further reduction in 
size and noise and ability to use electricity at 
either 120  V/AC/60  Hz or 240  V/AC/50  Hz 
around the world or with a 12-V battery such as 
when camping or long-haul trucking. Multistage 
DC brushless motors have multiple impellers, 
which allow for a higher flow at lower motor 
speeds. Lower speeds make the motor quieter and 
allow the device to achieve desired speeds more 
rapidly and efficiently (ResMed Origins, 2021). 
Blowers with different impeller shapes like cones 

or pyramids are being used to further reduce the 
size and noise (Kenyon, 2020; Velzy et al., 2018).

An alternative technology that is being 
designed to create a micro-sized PAP motor is an 
electrostatic micro air pump using microelectro-
mechanical (MEMS) technology (Marsh, 2021). 
Micro-bellows are created by applying an electri-
cal charge to a piezoelectric membrane to move 
the air. Placing thousands of these micro-bellows 
in sequence amplifies the airflow and, according 
to a conversation with the inventor, Marsh, allows 
it to achieve pressure ranges similar to CPAP 
devices and enough airflow to adequately venti-
late. Microsensors and microprocessors control-
ling the micro pumps can allow for quick 
adjustments, which could allow for similar func-
tionality as AutoCPAP or bilevel devices without 
requiring a large device. This technology has yet 
to be proven to be effective or become commer-
cially available.

18.2.2	� Flow Signal Processing

To control the blower speed, data is collected and 
processed by the device. The airflow is sampled 
many times per second by the transducer, and the 
data is then sent to the microprocessor. The first 
step of flow signal processing is to isolate respi-
ratory flow signal from other artifacts by scaling 
the data with a low-pass filter to remove large 
quick deviations in flow (i.e., cough or sneeze 
artifact) and a high-pass filter to exclude fast fre-
quencies including cardiogenic fluctuations. 
Feedback limits can be used to determine if 
expected flow is beyond the expected range of 
flow variation at a particular motor speed (i.e., 
break in the tubing) and prevent the device from 
delivering too much or too little pressure (Colla 
& Kenyon, 2013).

Next the filtered flow data can be used by the 
algorithms for detection of flow limitation, 
snoring, respiratory events, respiratory rate, 
minute ventilation (MV), and determination of 
other variables. For many of the algorithms, 
event detection relies on comparing current flow 
to recent mean flow. Peak flow can be a poor 
measure of breath volume, which can lead to 
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over- or underestimation of an apnea or hypop-
nea, so different techniques are used to more 
evenly compare the breath size even if the wave-
form is a different shape (see Fig.  18.1 and 
Table 18.1).

Philips Respironics’ algorithms utilize a 
weighted peak flow (WPF) method to estimate 
ventilation. WPF method first determines the 
inspiratory period and then the inspiratory volume 
and the points on the inspiratory flow curve that 
correspond to the 20% and 80% volume. The aver-
age flow of all points between the 20% and 80% 
points is used as the weighted peak flow, a mea-
sure of ventilation. The model uses weighted peak 
flow values over the prior 2 min and determines 
the average of values between the 80th and 90th 
percentiles. This baseline is then used to compare 
to the current weighted peak flow to assess for 
decreases in amplitude, which would indicate 
apnea, hypopnea, or other sleep-disordered breath-
ing events (Matthews et al., 2010).

ResMed’s algorithms use a scaled low-pass-
filtered absolute value of respiratory flow and a 
root mean squared (RMS) technique of the vari-
ance of the flow from the mean to compare one 
moving time period to another. RMS method 
determines ventilation from variance of the flow 
throughout the entire breath by comparing indi-
vidual flow points to the mean airflow over a 
defined time period. The mean airflow is the zero 
point between inspiration and expiration; thus, 
variance from this mean divided by two equals 
the amplitude of the inspiratory flow. By taking 
the square root of the variance squared, outlying 
values receive less weight (Berthon-Jones, 
2010).

Löwenstein’s algorithm uses a similar mea-
sure of relative respiratory minute volume 
(rRMV) with an exponentially smoothed inspira-
tory and expiratory peak flow to compare the 
minute volumes of different periods. The relative 
average minute volume (rAMV) is calculated by 
taking the total inspiratory volume of all inspira-
tions for a 2-min interval and dividing by 2 to get 
the current average minute volume. The long-
term average minute volume is a weighted sum of 
the long-term average and the current average 

(Lowenstein sleep therapy products: Clinical 
benefits whitepaper, 2021).

DeVilbiss’ Intellipap AutoAdjust uses an aver-
age scaled peak amplitude, while Intellipap 2 
AutoAdjust uses ratio metric relationship of RMS 
and a ranking filte  r applied to moving a 3-min 
window of flow to adjust for artifacts in peak flow.

Fig. 18.1  Example of weighted compared to peak flow

Table 18.1  Flow sampling and filtering

Airflow 
sampling 
rate (Hz) Filtered ventilation measure

ResMed 
AutoSet and 
Autoset for 
Her

50 RMS of the variance of 
moving average scaled 
low-pass-filtered absolute 
value of respiratory flow

Philips 
Respironics 
APAP

100 WPF of 20–80% of 
inspiratory volume

DeVilbiss 
IntelliPAP 2 
AutoAdjust

250 Ratio metric relationship 
of RMS of filtered flow 
with ranking filter to 
reduce peak excursions in 
the 3-min window

Löwenstein 
Prisma APAP

10 Respiratory flow is filtered 
by Butterworth low-pass 
filter with fcutoff = 0.75 Hz/
tinsp/s. rRMV: minute 
volume of current breath 
in relation to long-term 
exponentially smoothed 
minute volume. AMV: 
long-term average minute 
volume is weighted sum of 
the long-term average and 
the current average of 
prior 2 min

RMS root mean squared, WPF weighted peak flow, rRMV 
relative respiratory minute volume, AMV average minute 
volume
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18.2.3	� Respiratory Cycle 
Determination

Determination of the inspiratory and expiratory 
periods of the respiratory cycle is essential not 
only to provide BPAP but also for expiratory 
pressure relief (EPR) and determination of inspi-
ratory flow limitation (IFL) in APAP algorithms. 
Determining respiratory cycle is relatively simple 
in an invasive mechanical ventilation, because 
the double-limbed circuit has separate inspiratory 
and expiratory paths. In non-invasive PAP, inspi-
ratory and expiratory flows are combined, and 
there is intentional and non-intentional leak that 
must be accounted for.

A method to determine the start of inspiration 
and expiration was described in a patent filed in 
1989 by Sanders and Zdrojkowski (Sanders & 
Zdrojkowski, 1992). The average flow rate is 
compared to the instantaneous flow. An increase 
in instantaneous flow compared to the average 
flow rate is the start of inspiration. A decrease in 
flow compared to the average flow rate is the start 
of expiration. Because the sensor is removed from 
the airway, there is an inherent delay in detection. 
By altering cycle (change to expiratory positive 
airway pressure [EPAP]) and trigger (change to 
inspiratory positive airway pressure [IPAP]) sen-
sitivities farther from non-zero value in a flow 
algorithm can help synchronize the machine with 
the patient’s breathing pattern so that the patient 
will not encounter resistance to exhalation leading 
to dyssynchrony. For example, in a typical flow 
cycle algorithm, the change to EPAP occurs when 
the flow drops below 25% percent of the peak 
flow (Sanders & Zdrojkowski, 1995). The trigger 
to IPAP is typically set above zero flow to sense a 
significant patient effort so that the pressure 
change is not triggered by artifacts such as cardio-
genic pulsations. Alternatively in a pressure con-
trol algorithm, inhalation is assumed when the 
mask pressure falls below a certain threshold and 
exhalation when the pressure rises above that 
threshold (Farrugia & Finn, 2001). In addition to 
the flow and pressure cycle algorithms, shape 
cycle (Zdrojkowski & Estes, 2000), volume cycle, 
and timed cycle algorithms are alternative meth-
ods to activate the change to the EPAP.

Some servoventilation (SV) algorithms use 
more continuous respiratory cycle determination. 
Table 18.2 shows how ResMed’s ASV algorithm 
uses fuzzy inference rules using flow rate (rela-
tive to mean flow), direction, and size to deter-
mine the phase of the respiratory cycle 
(Berthon-Jones, 2014). ResMed’s intelligent 
volume-assured pressure support (iVAPS) algo-
rithm uses trigger and cycle sensitivities to deter-
mine respiratory phase. Philips Respironics’ 
servoventilator algorithm determines the length 
of inspiration and expiration of recent breaths to 
predict the future breath duration and divides the 
breaths into short time segments (64 ms) to deter-
mine the expected mid-inspiration and other 
points of the cycle (Hill, 2004).

18.2.4	� Pressure Control

Despite the name continuous positive airway pres-
sure, it is important to remember that the motor 
speed must dynamically change based on respira-
tory flow and to compensate for leak in order to 
maintain a steady pressure. Early devices were not 
able to respond to these changes. In 1936, Poulton 
described controlling positive end-expiratory pres-
sure (PEEP) through a valve on the mask that con-
trolled not only mask pressure but also provided 
an exhalation port to prevent rebreathing CO2 
(Poulton, 1936). Sullivan’s early devices con-
trolled the pressure by varying the resistance of the 
airflow port, which could be titrated to a pressure 
level at the level of the device, but then would not 

Table 18.2  ResMed’s fuzzy logic for phase 
determination

Flow Rate of change Fuzzy phase
Zero Increasing Start inspiration
Small positive Increasing slowly Early inspiration
Large positive Steady Peak inspiration
Small positive Decreasing 

slowly
Late inspiration

Zero Decreasing fast Start expiration
Small negative Decreasing 

slowly
Early expiration

Large negative Steady Peak expiration
Small negative Increasing slowly Late expiration
Zero Steady Expiratory phase
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adjust based on leak or position or respiratory 
changes to maintain a constant pressure at the level 
of the patient (Sullivan et al., 1981). In 1984, Berry 
et al. described a method of controlling pressure 
level using a column of water (Berry & Block, 
1984). In 1987, in both an article and patent, 
Rapoport described adding a leak port to the mask 
to prevent rebreathing and moved the PEEP valve 
to elsewhere within the airflow circuit (Sanders & 
Zdrojkowski, 1992; Rapoport, 1987, 1991). 
Allowing the PEEP control to be in the device 
itself is an important step for allowing the future 
dynamic (dyn) control of PEEP levels. Brown 
et al. describe an early device in which PAP valves 
were swapped out to provide progressively higher 
PEEP levels until the therapeutic level was found 
(Brown & Javaheri, 2017).

Axe and colleagues’ patent in 1993 first 
described a CPAP device with a DC motor con-
trolled by microprocessor technology, which 
allowed for a more dynamic control of pressure 
needed for ramp and APAP functionality (Axe 
et al., 1993). Internal sensors (also called transduc-
ers) that monitor blower speed, airflow, and pres-
sure provide feedback to the microprocessor 
controller that then controls blower speed. In order 
to maintain a stable mask pressure, the micropro-
cessor must adjust the blower speed in response to 
deviations in pressure that occur from leak or nor-
mal swings in air pressure from breathing.

Because the sensors are within the device and 
not in the mask, in order to provide the desired 
pressures to the patient’s airway, the device must 
calculate the predicted flow [Flow 
(q) = constant√(p1 – p2)] at the mask based on 
the pressure measurements at the transducer 
within the device (Farrugia & Finn, 2001). The 
length and diameter of the tubing and mask char-
acteristics affect the constant value pressure and 
flow, which is why it is important to set the 
machine with the correct mask and tube type.

With increasing altitude, fan speed needs to be 
increased to maintain the same pressure (Fromm 
Jr. et al., 1995). Some older devices had a switch 
to change from high, medium, or low altitude 
(Brown & Javaheri, 2017), but most newer 
devices adjust automatically using an altitude 
sensor.

For bilevel devices, the inspiratory and expira-
tory pressures must be able to rapidly change up to 
26 cm H2O in as little as 50–200 ms. This typically 
involved braking the motor to lower the pressure 
and accelerating the motor to increase the pres-
sure, which may require a peak load around 
60–90  W resulting in the need for a large and 
expensive power source (Farrugia et  al., 2019). 
Rather than relying solely on braking the motor, 
devices can allow the motor to freewheel upon 
detection of expiration, until the pressure falls to a 
predetermined level and then instructs the motor to 
control the speed at the second level. Low inertia 
motors are needed so that the rate of deceleration 
is fast relative to the typical duration of exhala-
tion—preferably less than 13,600  g/mm2. 
Freewheeling with a low inertia motor may result 
in a drop of about 3–4  cm H2O in about 1.7  s, 
while braking can reduce more quickly but uses 
much more power. The starting pressure will also 
affect the speed of the pressure drop with a more 
rapid drop when starting at a higher pressure. 
Combining both freewheeling and intermittent 
braking may achieve both the speed and lower 
power use (Farrugia et  al., 2019). Additionally, 
freewheeling can improve patient comfort over 
braking with a more natural airflow change.

18.2.5	� Leak Compensation

Unlike invasive ventilation through an endotra-
cheal tube, managing excessive air leak is an 
important factor that must be compensated for to 
optimize therapy. Leak affects aspects of perfor-
mance including pressure delivered, cycle and 
trigger thresholds, and respiratory event determi-
nation. Leak is pressure, flow, and mask depen-
dent. The leak can be determined from the flow 
rate at the end of exhalation (Zdrojkowski, 1994). 
It can also be calculated by subtracting the esti-
mated flow through the exhaust of the device 
from the flow through the tubing (Berthon-Jones 
& Farrugia, 2014).

Air leak falls into two categories: (1) inten-
tional or expected leak, which includes air leak 
from exhalation ports on the mask and varies by 
mask type and pressure level and (2) uninten-
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tional leak or excessive leak, which typically 
occurs from mouth opening or around the mask. 
In general, unintentional leak should be under 
24 L/min with nasal masks and under 36 L/min 
with full face masks, but at higher pressures, 
intentional leak increases.

Most devices can compensate for excessive 
leak. Leak compensation works by constantly 
monitoring flow, looking for deviations from the 
expected respiratory flow, and compensating by 
adjusting the motor speed to minimize excessive 
air leak. Because there are normal variations in 
the patient’s breathing cycle, the expected leak is 
usually averaged over several breaths. Leak may 
also be used to influence the control of auto-
algorithms. For example, if leak is high, APAP 
devices may compensate by lowering the pres-
sure, which may seal the mask and reduce unin-
tentional mask leak.

The lips and tongue sometimes act like a one-
way valve opening during exhalation when the 
pharyngeal pressure is at its highest. This is 
called valve leak or expiratory puffs. Expiratory 
puffs may falsely imply flow limitation, which 
can cause APAP to increase pressures unneces-
sarily. Some algorithms place less reliance on 
flow limitation when a large leak is present 
(Armitstead et al., 2011).

Whereas traditional ventilators with double-
limbed circuits include a pneumotach that can 
directly monitor ventilation through an exhala-
tion port, devices with a single airflow channel 
must estimate the expiratory tidal volume. If 
there is a leak, the double-limbed circuit tends to 
overestimate ventilation, which is why single-
limbed non-invasive ventilators and newer PAP 
technology with good leak compensation algo-
rithms may outperform double-limbed ventila-
tors in the setting of non-invasive ventilation 
(Park & Suh, 2020; Pavone et al., 2020).

18.2.6	� Apnea and Hypopnea 
Determination

Most newer APAP algorithms analyze flow 
changes to recognize apneas and hypopneas 
based on relative reductions in flow amplitude. 

Filtered mean or peak flow, as described previ-
ously, is used to compare a short moving time 
period (e.g., one breath or 2 s) to a moving longer 
period (e.g., 5  min) to evaluate for apnea or 
hypopnea (Berthon-Jones, 2010). Apneas and 
hypopneas are typically defined as a reduction in 
airflow amplitude below a percentage of recent 
amplitude for at least 10 s, with varying methods 
used by different algorithms (see Table 18.2). In 
some devices, the amplitude drop can be altered 
to change the sensitivity of the device to recog-
nize events.

There are several studies that have evaluated 
the reliability of sleep-disordered breathing event 
detection, specifically the apnea–hypopnea index 
(AHI), based on the device flow measurements 
compared to polysomnography (Berry et al., 2012; 
Ueno et al., 2010; Ikeda et al., 2012; Prasad et al., 
2010; Desai et al., 2009; Cilli et al., 2013; Huang 
et  al., 2012; Thomas & Bianchi, 2017; Li et  al., 
2015). Most found reasonable correlation between 
the AHIs, with some studies showing device over-
estimation and others demonstrating underestima-
tions of the AHI (Ueno et  al., 2010; Thomas & 
Bianchi, 2017). Most studies demonstrate a stron-
ger correlation between the PAP and polysomnog-
raphy-defined AHIs at higher AHI levels.

18.2.7	� Differentiating Between 
Obstructive and Central 
Apneas

Some manufacturers use algorithms to differenti-
ate central vs obstructive apneas (see Table 18.2). 
Several algorithms (e.g., ResMed, DeVilbiss 
IntelliPAP 2 AutoAdjust) use the forced oscilla-
tion technique (FOT) to determine airway patency 
to differentiate central from obstructive apneas 
(Galetke et al., 2009; Farre et al., 2001; Herkenrath 
et  al., 2020). Figure  18.2 shows how when a 
potential apnea is detected due to reduced flow, 
the algorithm provides a single pressure pulse or 
small oscillation in the flow, e.g., 1 cm, 4–5 Hz, 
which is only reflected back to the flow sensors if 
the airway is closed (Berthon-Jones, 2010; 
Herkenrath et  al., 2020; Martin & Oates, 2014; 
Axe et al., 2000). Low resistance in the absence of 
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Fig. 18.2  Forced oscillation technique (FOT)

flow (open airway) is interpreted as a central 
event, and increased resistance in the absence of 
flow (closed airway) is interpreted as an obstruc-
tive event. With a similar concept to FOT, Philips 
Respironics’ algorithm uses pressure pulses. The 
airway is determined to be clear if the pressure 
test pulse generates a significant amount of flow; 
otherwise, the airway is determined to be 
obstructed. A mixed apnea can be determined if 
the airway is open for only part of the flow cycle. 
Another method for differentiating events is to 
evaluate the signal for cardiogenic pulse artifact 
in the flow, which is only present if the airway is 
open, but because it is not as reliable, it is not used 
by any device to our knowledge.

While most current algorithms differentiate 
apnea type, most are unable to differentiate obstruc-
tive and central hypopnea type. Thus, in the absence 
of full central apneas, most algorithms will still 
increase pressure in response to periodic breathing. 
One algorithm that does identify and respond dif-
ferently to central hypopneas is DeVilbiss 
IntelliPAP 2 AutoAdjust algorithm, which defines 
periodic breathing as a waxing and waning period 
of greater than 20  s with self-similar repetitive 
mathematical characteristics. Löwenstein’s algo-
rithm uses the presence of snoring or flattening to 
define hypopneas as obstructive.

18.2.8	� Flow Limitation and Snore 
Determination

Many newer algorithms detect flow limitation via 
proprietary algorithms using shape and ampli-

tude changes in the pressure transducer signal 
(see Table 18.3). Snore is typically detected by 
looking for a vibratory signal within the airflow. 
Because high leak and high pressure levels can 
mimic snore signal, the algorithms may be less 
responsive to snore signal if leak or pressures are 
high. Some algorithms rate snore severity by the 
degree of vibratory signal, while others rate by 
the number of breaths within a time period with 
snoring. For example, Löwenstein’s standard 
(std) algorithm defines severe snoring as ≥8 
breaths and mild snoring as ≥4 breaths with snor-
ing within a 2-min epoch. Their dynamic algo-
rithm rates mild snoring as ≥3 breaths with 
snoring within a 2-min epoch.

18.2.9	� Mask and Humidification 
and Sound Technology

There are several technological considerations 
about mask and humidification technology that 
are relevant to clinical care. One major landmark 
in the history of technology was the self-sealing 
“bubble mask” in 1990 (Hansford, 2011). Since 
then, further improvements in mask seal, limiting 
nasal bridge irritation, facilitating use with mag-
nets and quick-release hose connections, and 
reducing noise and intentional leak spraying on 
bed partners with micro-exhalation ports have 
improved tolerance.

Mask and humidification choice can affect 
dead space and potentially CO2 retention. 
Oronasal masks have about 205  mL of dead 
space and nasal masks approximately 120  mL 
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Table 18.3  Flow limitation and other event determination

Algorithm Flow limitation detection Other events Leak detection
ResMed 
AutoSet and 
Autoset for 
Her

S8: Mid-inspiration flatness
S9–S11: Breath-by-breath flow limitation 
index from breath shape index, RMS flatness 
index, and ventilation change and breath duty 
cycle. Ventilation change is the ratio of the 
current breath ventilation to the recent 3-min 
ventilation. Breath duty cycle is the ratio of 
current breath time of inspiration to total 
breath time of recent 5 min. When a breath is 
severely flow limited, the flow limitation index 
will be closer to 1, as opposed to when the 
breath is “normal” or round, the flow limitation 
index will be zero (Armitstead et al., 2011)

S9–S11: Unknown apnea—
apnea with leak >30 L/min

95% Leak 
>24 L/min

Philips 
Respironics 
APAP

Relative changes in the peak, flatness, 
roundness, shape (skewness) of inspiratory 
wave form. Evaluated over short period (4 
breaths) and over long period (several minutes) 
and rates as better, worse, or the same 
compared to baseline. Roundness is 
determined by the similarity of the weighted 
peak flow between 5% and 95% values to a 
sine wave. Flatness is determined by the 
absolute value of the variance between 20% 
and 80% of inspiratory flow from the average 
of all the values in the same period and 
dividing by the 80% volume point. Skewness is 
determined by dividing the average of the 
highest 5% of flows in the mid-third of the 
breath by the average of the highest 5% of 
flows in the first third of the breath (Matthews 
et al., 2010). Statistical measures are used to 
help minimize false event detection while 
allowing the device to be sensitive to even 
small changes

Variable breathing—standard 
deviation/adjusted mean flow 
over a 4 min window above 
threshold

Leak level 
exceeds flow 
limit for a given 
pressure

DeVilbiss 
IntelliPAP 2 
AutoAdjust

Relative flatness of inspiratory waveform of 
breath, detecting positive, negative, or zero 
slope. Score average over 12 s. Scored: none, 
mild, moderate, severe

Expiratory puff index based 
on strings of several breaths 
scores as none, mild, 
moderate, and severe

95 L/min or 
expected leak 
for a given 
CPAP level

Löwenstein 
Prisma APAP

Flow limitation index for each breath based on 
comparison of flow shape with convex hull of 
inspiration flow shape and amplitude reduction 
that doesn’t meet hypopnea criteria
RERA, defined by runs of approximately 5 
breaths with flattening followed by an 
“arousal” based on a sudden high amplitude 
flow change, with or without an inspiratory 
snoring that does not otherwise meet criteria 
for apnea or hypopnea

Unclassified apnea (due to 
leak, position change, or high 
pressure), unclassified 
hypopneas due to leak or 
high pressure, periodic 
breathing (marked on data 
but no pressure change)

High leak 
>50 L/min. 
High leak ends 
if leak is <20 L/
min or if <35 L/
min for >15 s

RERA respiratory effort–related arousal

(Navalesi et al., 2000). Masks with lower inten-
tional leak can lead to more CO2 retention, but 
masks with higher intentional leak can lead to 
failed triggering.

Mask changes may affect the effectiveness of 
a given mode. Oronasal mask can be associated 
with a higher device residual AHI for a given 
CPAP setting than was determined in the lab for 
a nasal mask (Ebben et al., 2014). Different cycle 
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and trigger sensitivities may also be needed if 
mask type is switched.

Nasal masks can promote mouth leak, which 
can lead to high unidirectional nasal flow that 
leads to more loss of humidity, increased nasal 
resistance, nasal/oral dryness, nasal congestion, 
and more mouth opening, which then can worsen 
leaks. Heated humidification can reduce nasal 
resistance and reduce mouth leak (Massie et al., 
1999).

Waterless heat and moisture exchangers 
(HMEs) have been used by Colin Sullivan to 
humidify the air, and updated versions are now 
being incorporated into the tubing (e.g., 
ResMed’s AirMini). HMEs wick moisture from 
exhaled air and then return the moisture to the 
air on inhalation. The same concept can be used 
by small humidifier chambers in which a small 
volume of water is placed in a chamber with a 
hydrophilic wick. By heating an element at one 
end of the wick, the amount of water that is 
vaporized as air is blown over it can be modu-
lated (Harrington et al., 2017). HME humidifi-
cation can cause an increase in minute 
ventilation and work of breathing compared to 
heated humidifier, and higher PaCO2 likely 
occurs due to increased dead space (Esquinas & 
Shah, 2012; Jaber et al., 2002). Another technol-
ogy designed to decrease rainout, save energy, 
and save water is DeVilbiss PulseDose 
Humidification, which switches between 
humidified air during inhalation and dry room 
air during exhalation.

Over time technology has been used to 
reduce the sound of PAP devices through blower 
and mask technology, but also through length of 
the airflow path within the device and sound 
dampening materials. A Federal Drug 
Administration recall in April 2021 led to the 
recall of almost 2 million Philips Respironics’ 
devices due to the risk of degradation of sound 
dampening foam that was in the airflow path 
and risk for irritation from particulates and 
potential carcinogens from chemical breakdown 
(Mell, 2021). It is uncertain whether the use of 
ozone and other PAP cleaners may have exacer-
bated the breakdown.

18.3	� Positive Airway Pressure 
Modes and Algorithms 
to Control the Flow of Air

The control of airflow and pressure by micropro-
cessors allows for algorithms that attempt to 
improve the comfort of air delivery including 
ramping and EPR and the multiple modes of PAP 
therapy that allow for a more individualized treat-
ment of different forms of sleep-disordered 
breathing including CPAP, BPAP, and BPAP with 
a backup rate and adaptive forms of bilevel PAP 
with a backup rate including servoventilation 
(SV) and volume-assured pressure support 
(VAPS).

18.3.1	� Continuous Positive Airway 
Pressure (CPAP)

Standard CPAP mode today, as previously dis-
cussed, is more complex than early algorithms 
because they involve feedback to maintain pres-
sures at the goal level despite leak and changing 
respiratory dynamics throughout the night due to 
medication or alcohol effects, position changes, 
fluid shifts, and sleep stage changes. Most CPAP 
devices allow for pressure settings between 4 and 
20 cm H2O. End-expiratory pressure of 4 cm H2O 
is the lowest pressure needed to provide enough 
flow to clear the dead space from the device, tub-
ing, and airway to prevent rebreathing of exhaled 
air (Ferguson & Gilmartin, 1995). The goal of 
CPAP is to increase upper airway pressure 
enough to provide a pneumatic splint to open the 
airway, which may collapse during inspiration. 
Typically, the pressure is set to prevent hypop-
neas, apneas, snoring, flow limitation, and arous-
als. By providing positive end-expiratory 
pressure, CPAP may also recruit the alveoli and 
improve ventilation. Decreases in intrathoracic 
pressure with CPAP can reduce venous return, 
decreasing afterload, transmural pressure, and 
preload and decreasing atrial natriuretic peptide 
production affecting nocturia. Comfort settings 
of ramp and EPR are available with many CPAP 
devices. A recent review by Killick and Marshall 
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summarizes the lack of randomized control trials 
to show the benefit of any of these modifications 
over fixed CPAP (Killick & Marshall, 2021). 
This is consistent with our clinical experience in 
which patient preference for these settings is 
variable, but understanding what options are 
available and how they work can help a provider 
choose settings to optimize the individual’s expe-
rience of using PAP therapy.

18.3.2	� Autotitrating Continuous 
Positive Airway Pressure 
(APAP)

Autotitrating (also known as auto, automated, 
autoadjusting, or automatic) continuous positive 
airway pressure (APAP) incorporates the ability 
of the PAP device to detect and respond to 
changes in the upper airway flow and/or resis-
tance in real time. APAP can be helpful for 
patients that may need a higher pressure in rapid 
eye movement (REM) or supine position but can-
not tolerate the higher pressure through the entire 
night. APAP may also be able to be used diagnos-
tically to determine a fixed pressure setting 
(Rosen et al., 2012).

Most devices have a therapeutic pressure 
range between 4 cm H2O and 20 cm H2O, giving 
the clinician the ability to adjust the upper 
(EPAPmin) and lower (EPAPmax) pressure lim-
its based on the clinical conditions and the 
patient’s response to therapy. APAP gradually 
increases or decreases the pressure in response to 
respiratory events or airflow changes between 
those limits but similarly maintains the same 
pressure throughout the respiratory cycle unlike 
BPAP or auto-adjusting BPAP (AutoBPAP; dis-
cussed later). When the breathing pattern is sta-
ble, the pressure is gradually reduced. Similar to 
CPAP, EPR is available with some APAP devices.

The responsiveness of the algorithms and the 
ability to detect (and thus respond to) obstructive 
and central events vary, which can affect the effi-
cacy (Nilius et  al., 2020). Because female and 
male have different event types including fewer 
apneas and hypopneas and more flow limitation 
in females, some algorithms have been developed 

to be more responsive to these obstructive fea-
tures (i.e., ResMed AutoSet for Her and 
Lowestein APAPdyn) (Isetta et al., 2015). Some 
algorithms (ResMed APAP) have larger and more 
rapid responses to obstruction than other algo-
rithms (Isetta et  al., 2015). Patients with high 
loop gain or pressure sensitivity may benefit from 
algorithms that respond more slowly and with 
small pressure changes (Philips Respironics 
APAP and Lowestein APAPstd).

Some of the first AutoCPAPs, like Virtuoso 
LX smart and SOMNOsmart, only detected 
vibration-based snore changes making them 
unresponsive to many significant events espe-
cially in patients who do not snore (either due to 
palatal surgery or naturally) (Sullivan & Lynch, 
1993; Morgenthaler et  al., 2008; Berry et  al., 
2002; Littner et  al., 2002). Most newer APAP 
algorithms monitor a combination of changes in 
inspiratory flow patterns, including inspiratory 
flow limitation, snoring, and reductions or the 
absence of airflow, using a pneumotachograph, 
nasal pressure monitors, or alterations in com-
pressor speed as described earlier.

Table 18.4 summarizes the response to events, 
and Table  18.3 summarizes other pressure 
changes and comfort settings for several different 
APAP algorithms including ResMed AutoSet 
(Berthon-Jones & Farrugia, 2014; Armitstead 
et al., 2011), ResMed AutoSet for Her (Armitstead 
et al., 2011), Phillips Respironics AutoCPAP (the 
same for SystemOne REMstarAuto, 
Dreamstation, and Dreamstation 2 except 
RampPlus) (Matthews et al., 2010), and DeVilbiss 
IntelliPAP 2 AutoAdjust (Johnson & Johnson, 
2015; Clinical Overview: DeVilbiss IntelliPAP 
AutoAdjust, 2014) and Löwenstein Prisma Line 
APAP (previous Löwenstein/Weinmann devices 
used different algorithms; Lowenstein sleep ther-
apy products: Clinical benefits whitepaper, 
2021).

Philips Respironics’ APAP algorithm uses 
layers of control including ramp, leak, snore, 
apnea/hypopnea, variable breathing (VB), and 
flow limitation. After 3–5 min with no obstruc-
tive features, it will enter a testing period 
described in Table 18.5 to search for critical pres-
sure (Pcrit; at which flow characteristics [peak, 
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Table 18.4  Event determination

Algorithm A/H flow comparison Apnea detection Non-OA detection Hypopnea detection
ResMed 
AutoSet and 
Autoset for 
Her

Prior 1 min RMS moving 
average

A 2 s RMS moving 
average < 25% for 
10 s

S8: None
S9–S11: 1 cm H2O 
4 Hz FOT throughout 
apnea with mixed 
apnea detection

S8: A 12 s RMS 
scaled average 
25–50% for 10 s
S9–S11: Above 
with at least 1 
obstructed breath

Philips 
Respironics 
AutoCPAP

Average of 80–90th 
percentile WPFs of prior 
4 min moving average

WPF per breath 
<20% of recent 
baseline for 10 s, 
terminating with 
breath >30%

During the apnea, 
one or more pressure 
test pulses. Clear if 
the pressure test 
pulse generates a 
significant amount of 
flow; otherwise, 
obstructed

WPF per breath 
20–60% of recent 
baseline for 10 s 
terminating at 60 s 
or with breath over 
75% of recent WPF

DeVilbiss 
IntelliPAP 2 
AutoAdjust

Three minutes including 
time before and after event 
RMS moving average

A 4 s RMS moving 
average < 10% for 
10 s

Modulating 
micro-oscillation 
(0.07 cm H2O at 
3½–4½ Hz) 
throughout apnea

10–40% Default 
(adjustable to 
30–50%) for 10 s

Löwenstein 
Prisma APAP

No comparison for apneas 
just reduction to a range of 
exponential smoothed peak 
flow. Comparison for 
hypopneas is a smoothed 
weighted average minute 
volume over a variable time 
period that adapts to 
different situations

Start of apnea: 
respiratory flow 
within −4 L/min to 
4 L/min for at least 
3.5 s
End of apnea: 
respiratory flow not 
within −4 L/min ro 
4 L/min for at least 
2 s within a 4 s 
period. Min length, 
10 s

FOT with 0.3 cm 
H2O oscillation at 
4 Hz

Hypopnea detected 
if peak flow 
remains ≤48%–
50% of reference 
rAMV for >10 s. If 
flattening/snoring, 
classified 
obstructive

A/H apnea/hypopnea, rAMV relative average respiratory minute volume, FOT forced oscillation technique, RMS root 
mean squared, WPF weighted peak flow

flatness, roundness, and skew] worsen) and opti-
mal pressure (Popt; at which there is no further 
improvement in flow characteristics) within the 
EPAPmin–EPAPmax limits. The algorithm also 
uses several mechanisms to avoid overtitration, 
which include non-responsive apnea/hypopnea 
(NRAH) logic (Table  18.5), variable breathing 
(Table  18.6), and leak control (Table  18.6) 
(Matthews et  al., 2010; Puertas et  al., 1999; 
Remmers & Feroah, 2003).

Devilbiss’s first IntelliPAP AutoAdjust algo-
rithm allows amplitude and duration cut-points 
for apneas and hypopneas to be set to change sen-
sitivity. IntelliPAP AutoAdjust algorithm evalu-
ates the previous minute for apneas and 
hypopneas based on thresholds set from average 
scaled flow amplitude of the previous 5 min and 

then either increases pressure by 1 cm H2O per 
minute if events of snoring or decreases 0.6 cm 
H2O every 6 min if stable breathing. IntelliPAP 2 
AutoAdjust similarly adjusts pressures once per 
minute but also responds to flow limitation based 
on inspiratory flatness. IntelliPAP 2 prioritizes 
response first on the presence of periodic breath-
ing, then respiratory events, and then flow limita-
tion. If periodic breathing or central apneas are 
noted, the algorithm holds or lowers pressures.

Löwenstein’s APAP algorithm evaluates 
2-min epochs and defines each epoch as epoch 
with severe obstruction (eSO; which contains 
apneas, hypopneas, or severe snoring), epoch 
with mild obstruction (eMO; which contains 
mild flow limitation or respiratory effort–related 
arousal [RERA]), epoch with flattening (eFl; 
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Table 18.5  APAP algorithms for responding to events

Algorithm OA/H response Flow limitation response
Vibratory snore 
response

ResMed 
AutoSet

Increases pressure based on the 
current pressure every 10 s of 
apnea: increment max 3 cm H2O 
when pressure is 4 cm 
H2O. Increment drops linearly 
down to 0.5 cm H2O when 
pressure is 20 cm H2O; S8, no 
increase above 10 cm H2O

S8: Increment max 0.45 cm H2O/
breath. Lower increment if high leak 
or as pressure increases further 
above 10 cm H2O
S9: Uses 3-breath average FL index. 
Increment typically around 0.6 cm 
H2O/breath for severely flow-limited 
breaths. Lower increment if lower 
FL index and high leak or as 
pressure increases further above 
15 cm H2O
S10: Increment max 0.6 cm H2O/
breath. Otherwise, the same as S9 
(Armitstead et al., 2011)

S8–S9: Increment max 
1 cm H2O/breath. 
Lower increment if 
snore is less severe 
and high leak or as 
pressure increases 
further above 10 cm 
H2O
S10: Increment max 
0.6 cm H2O/breath for 
a loud snore. 
Otherwise, the same 
as S9

ResMed 
AutoSet for 
Her

Increases pressure based on the 
current pressure every 10 s of 
apnea: Increment max 2.5 cm H2O 
when pressure is 4 cm 
H2O. Increment drops linearly 
down to 0.5 cm H2O when 
pressure is 20 cm H2O

Uses single-breath FL index: 
Increment max 0.5 cm H2O per 
breath for severely flow-limited 
breaths. Lower increment if lower 
FL index and high leak or as 
pressure increases further above 
10 cm H2O

Increment max 0.5 cm 
H2O per breath. Lower 
increment if snore is 
less severe and high 
leak or as pressure 
increases further 
above 10 cm H2O

Philips 
Respironics 
APAP

If 2 apneas or 1 apnea/1 hypopnea 
or 2 hypopneas: Increases 1 cm 
H2O over 15 s and holds for 30 s. 
NRAH logic activates if pressure 
is at least 11 cm H2O. It limits 
max pressure to 11 or 3 cm H2O 
higher than pre-apnea baseline. If 
more apneas within 8 min, 
decrease pressure by 2 cm H2O 
and then further to 1 cm H2O over 
the level that prevents snore and 
then holds with combined ramp 
down and hold time of ~15 min. 
Pressure will continue to increase 
in response to 2 hypopneas 
(Matthews et al., 2012)

Pressure increases by 0.5 cm H2O/
min in response to FL. Intermittent 
upward scans by 1.5 cm H2O over 
3 min to see if improvement in FL 
and then deceases if no 
improvement. If pressure not held 
by snore, A/H, or VB logic, then 
enters testing protocol that collects 
3–5 min data, and then downward 
search sequence for Pcrit begins 
ramping down 0.5 cm H2O/min until 
Pmin as long as no worsening in 
FL. If worsening, Pcrit is set, and 
pressure quickly increases by 1.5 cm 
H2O and held for 10 min. Then, 
Popt search increases pressure by 
0.5 cm H2O/min for at least 2.5 min 
to test if FL improves, worsens, or 
stays the same. If improvement, 
continues 0.5 cm H2O/min pressure 
increase; if no improvement, 
pressure decreases by 1.5 cm H2O 
and sets Popt and holds for 5 min. 
FL or other events end all holds

If 3 snores within 60 s, 
with no more than 30 s 
between snores, 
increase 1 cm H2O 
over 15 s and then 
hold for 1 min with a 
higher snore threshold 
at higher pressures

DeVilbiss 
IntelliPAP 2 
AutoAdjust

Increases pressure 1 cm H2O/min 
for OA. If event is near end of 
min, response is delayed until the 
following minute so centered 
moving window completes to 
allow event to be scored. Increases 
pressure 0.5 cm H2O/min if 
hypopnea with 1 other event in a 
6 min window or 1/min if 
hypopnea with >1 events in a 
6 min window

Response determined by severity 
and duration (15 s/min) to evoke a 
0.5 cm H2O/min for moderate–
severe FL index. Less response if no 
OA or hypopnea within the past 
8 min. Less response if high leak or 
high expiratory puffs

If high leak or 
expiratory, 0.5 cm 
H2O/min for 
moderate–severe snore 
with no response

(continued)
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Table 18.5  (continued)

Algorithm OA/H response Flow limitation response
Vibratory snore 
response

Löwenstein 
Prisma 
APAPstd

Pressure increase depends on the 
starting pressure quartile
Lowest quartile: 1.5 cm H2O
Middle quartiles: 1 cm H2O
Highest quartile: 0.5 cm H2O
Increases immediately with event 
up to 2 times per 2 min epoch

Pressure increase depends on 
starting pressure quartile
Lowest quartile: 0.5 cm H2O
No response for other quartiles
Increases at the end of a 2 min 
epoch

Severe snoring: 
pressure increases by 
OA rule at the end of 
epoch
Mild snoring
Lowest 2 quartiles: 
1 cm H2O
Highest 2 quartiles: 
0.5 cm H2O
Increases at the end of 
a 2 min epoch

Löwenstein 
Prisma 
APAPdyn

The same as APAPstd Pressure increase depends on the 
starting pressure quartile
Lowest 2 quartiles: 0.5 cm H2O
Third quartile: 0.2 cm H2O
Highest quartile: no response
Increases at the end of a 2 min 
epoch

Severe snoring: 
pressure increases 
immediately after 6th 
and 12th breaths with 
snoring within a 2 min 
epoch by OA rules
Mild snoring: pressure 
increases at the end of 
epoch by APAPstd 
rules

A/H apnea/hypopnea, APAP autotitrating positive airway pressure, dyn dynamic, FL flow limitation, FOT forced oscil-
lation technique, max maximum, min minutes, NRAH nonresponse apnea–hypopnea logic, OA obstructive apnea, Pcrit 
critical pressure, Pmax maximum pressure, Pmin minimum pressure, Popt optimal pressure, s seconds, std standard, VB 
variable breathing

defined by average flattening index for all breaths 
in an epoch >18), or epochs with no events. The 
pressure change in response to the epoch type is 
altered by the reactivity of the algorithm that can 
be set to either standard (APAPstd) and dynamic 
(APAPdyn). With APAPdyn, there are larger and 
more rapid pressure changes to flow limitation 
and snoring than the APAPstd. The response is 
also affected by which quartile of the EPAPmin–
EPAPmax range the current pressure is within.

Löwenstein’s algorithm limits pressure 
increases in response to just milder snoring, 
RERA, and flow limitation to no more than 4 cm 
H2O. The initial range is from the EPAP min (or 
ramp level) to 4 cm H2O higher. If there is an eSO 
or if the ramp level increases, then the limit range 
increases by the same amount as the pressure 
increases. If the pressure is decreased, then the 
limit also decreases. In Löwenstein’s APAP algo-
rithm, the degree of pressure reduction also 
depends on the preceding event type and starting 
pressure quartile (see Table 18.7).

Another variation of an APAP algorithm, 
Fischer and Paykel’s SensAwake, is designed 
to sense when a patient has awakenings in the 
middle of the night using airflow patterns and 
temporarily lowers the pressure with the aim of 
improving the ability for the patient to fall 
back to sleep. A randomized 4-week crossover 
trial of Fischer and Paykel’s SensAwake was 
found to reduce leak but did not affect adher-
ence or objective sleep quality (Bogan & Wells, 
2017).

18.3.3	� Clinical Considerations 
Related to APAP Technology

There are some important considerations to rec-
ognize about the use of APAP technology. 
Differences between algorithms are important to 
understand for appropriate clinical care as they 
affect the patient’s tolerance of the devices and 
the clinical efficacy:
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Table 18.6  APAP algorithm pressure decreases and comfort features

Algorithm Other pressure changes Ramp
Expiratory pressure 
relief

ResMed 
AutoSet

S8: gradual decrease to Pmin over 
20 min after apnea, over 10 min 
after FL or snoring event as soon 
as breathing is stable
S9–S11: gradual decrease to Pmin 
over 40 min after apnea, over 
20 min after FL or snoring

S8–S9: 0–45 min ramp
S10–11: 0–45 min ramp or AutoRamp 
starts ramping when sleep onset is 
inferred

EPR off, 1–3 cm 
H2O

ResMed 
AutoSet for 
Her

Gradual decrease to Pmin over 
40 min after apnea and over 20 min 
after snoring and 60 min after flow 
limitation as soon as breathing is 
stable (Berthon-Jones, 2010; 
Armitstead et al., 2011)

A 0–45 min ramp or AutoRamp starts 
ramping when sleep onset is inferred

EPR off, 1–3 cm 
H2O

Philips 
Respironics 
APAP

If high variable breathing is noted, 
then if recent (5 min) pressure was 
stable, then pressure stays the 
same, and if recent pressure 
decreases, then pressure increases 
by 0.5 cm H2O/min up to 2 cm 
H2O, and if recent pressure 
increases, then pressure decreases 
by 0.5 cm H2O/min up to 2 cm 
H2O
If there is a large leak, it reduces 
pressure by 1 cm H2O over 10 s 
and holds pressure for 2 min

Fixed ramp (0–45 min ramp) or smart 
ramp (DreamStation): increases faster 
if obstructive events or FL occur
RampPlus (DreamStation 2 APAP 
advanced): Patient sets starting pressure 
between 4 and 10 cm H2O for 15, 30, or 
45 min. Full APAP algorithm including 
Popt and Pcrit searching, after sleep 
onset. Algorithm attempts to keep 
pressure close to selected starting 
pressure within the selected time

C-Flex off, 1–3. 
Pressure drop 
varies based on 
setting airflow 
and patient effort
A-Flex and 
C-Flex plus have 
a more gradual 
increase in 
pressure with 
inhalation than 
C-Flex

DeVilbiss 
IntelliPAP 2 
AutoAdjust

Decides whether to decrease every 
min based on events in prior 6 min. 
If no events in a 1 min period, a 
small decrease of <0.1 cm H2O/
min. If no events in a 6 min period, 
decrease by 0.1 cm H2O/min.
If central apnea, pressure decreases 
and no increase for 6 min. If 
periodic breathing, no increase, 
and then pressure decreases if 
persists
If high expiratory puffs, no 
pressure increases at least 1 min

A 0–45 min ramp Smartflex off, 
1–3 cm

Löwenstein 
Prisma APAP

RERA pressure increase depends 
on the starting pressure quartile—
the same for both std. and dyn 
algorithms
Lower 2 quartiles: 1 cm H2O
Higher 2 quartiles: 0.5 cm H2O
See Table 5 for pressure reduction 
protocol, which varies based on 
prior events and starting pressure

SoftSTART Ramp: 0–45 min. 
Obstructive events cause pressure 
increase during ramp

SoftPAP: off, 
1–1.6 cm H2O

APAP autotitrating positive airway pressure, dyn dynamic, EPR expiratory pressure relief, FL flow limitation, Pmin 
pressure minimum, RERA respiratory effort–related arousal, std standard
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Table 18.7  Löwenstein Prisma APAP pressure reduction algorithm

Time (minutes) before pressure reduction based on epoch type and pressure quartile
Pressure quartile/epoch type Lowest quartile Second quartile Third quartile Highest quartile
eSO 10 8 8 6
eMO 6 6 4 2
eFl or no event 4 4 2 2
Pressure reduction −0.25 cm H2O −0.25 cm H2O −0.5 cm H2O −1 cm H2O

eSO epoch with severe obstruction, eMO epoch with mild obstruction, eFl epoch with flattening

•	 Address leak first. Mask leak limits much of 
the algorithm’s ability to recognize flow limi-
tation and snoring and differentiate central 
from obstructive apneas. A high number of 
unknown (ResMed) or unclassified 
(Löwenstein) apneas indicate high leak.

•	 Don’t leave the EPAPmin too low. Obstruction 
can worsen quickly when a patient enters 
rapid eye movement (REM) sleep or changes 
position, and by the time the device is able to 
adjust to the needed pressure, the patient may 
have had desaturations or awakenings. This is 
why most of the protocols testing the equiva-
lence of AutoCPAP to in-lab titration recom-
mend changing the EPAP to the pressure that 
the device achieves 90–95% of the time 
(Morgenthaler et al., 2008; Loube et al., 1999). 
Too low EPAPmin may present with awaken-
ings a couple hours into sleep, residual symp-
toms, or difficulty tolerating PAP. A large 
difference between the median pressure and 
the 95% pressure despite low residual AHI is 
suggestive. The rate of pressure change to 
events of different algorithms varies, so this 
effect may be different with different APAP 
devices.

•	 Fixed CPAP or limited APAP ranges should 
be considered in patients with high loop gain 
at risk for periodic breathing (i.e., congestive 
heart failure patients) or in patients with high 
residual AHI on APAP (Abdenbi et al., 2004; 
Rigau et al., 2006; Farre et al., 2002; Lofaso 
et al., 2006). APAP is unable to differentiate 
between central hypopneas from periodic 
breathing and obstructive hypopneas, which 
will lead to overtitration. Less dynamic APAP 
algorithms can also be considered.

•	 Low residual AHI does not ensure adequate 
treatment in patients with non-upper airway 

obstruction causes of hypoxia and hypoventi-
lation, i.e., congestive heart failure, lung dis-
eases such as chronic obstructive pulmonary 
disease (COPD), obesity hypoventilation syn-
drome, and neuromuscular disease. In-lab 
titration is recommended in these conditions; 
however, ventilation and respiratory rate data 
from the devices, overnight oximetry, home 
ETCO2 or TCCO2 monitoring, arterial blood 
gas PCO2, or bicarbonate level may help 
screen for adequate treatment and guide ther-
apy adjustments.

•	 APAP may induce sleep fragmentation due to 
pressure changes (Marrone et al., 2002). This 
concern has not been substantiated in studies 
evaluating changes in sleep structure or in 
clinical trials that have measured subjective 
sleepiness as a main outcome. Specifically, the 
frequency of microarousals and sleep 
fragmentation induced by APAP devices 
appears to be small, and clinical outcomes 
related to subjective sleepiness also show no 
significant differences compared with conven-
tional CPAP therapy (Fuchs et al., 2002; Masa 
et al., 2004; Ayas et al., 2004; Hukins, 2004; 
Nussbaumer et  al., 2006; Vennelle et  al., 
2010). However, on an individual basis, if a 
patient is having a suboptimal response to 
APAP especially with disrupted sleep, a trial 
of fixed CPAP should be a consideration.

•	 Shorter data therapy hours than reported by 
the patient may be due to high leak causing the 
device to turn on and off despite being on the 
patient. Automatic “Smart” On/Off features 
sense changes in airflow consistent with 
breathing to turn the device on automatically 
after the patient puts on the device. If the 
device senses that mask has been removed 
(i.e., very high leak for 3 s), then the device 
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will automatically turn off. This will be evi-
dent by frequent starts and stops on adherence 
data as shown in Fig. 18.3.

18.3.4	� Ramp and Starting Pressure 
Adjustments

Ramp functionality was designed because some 
patients have difficulty tolerating high pressures 
preventing them from being able to fall asleep. 
Basic ramp settings typically start with a pressure 
of 4 cmH2O and gradually increase to the goal 
pressure over a set amount of time, typically 
5–45  min. Newer automatic ramp algorithms 
(e.g., Philips Respironics’ SmartRamp and 
RampPlus, ResMed’s AutoRamp, and 
Löwenstein’s SoftSTART) use airflow monitor-
ing to sense breathing patterns consistent with 
sleep or obstruction such as snoring, flow limita-
tion, or apneas and hypopneas and then start 
increasing the pressure after the patient falls 
asleep or events are sensed. The automatic ramp 
can either then increase the pressure linearly at a 
set rate or the pressure can be increased more 
quickly if there are repetitive obstructive events 
(Ramp Plus Discussion Paper, 2021). ResMed’s 
AutoRamp increases pressure more rapidly if 
events or flow limitation or 5 consecutive breaths 
with snoring are noted.

Too low of a starting pressure can cause air 
hunger and intolerance in some patients. 
Typically, the starting ramp pressure can only be 
changed by the provider to a higher level if 

needed for comfort, but Philips Respironics’ 
RampPlus allows for the patient to select the 
starting pressure between 4 and 10 cm H2O and 
choose a set time (15, 30, 45 min) for the ramp. 
For both SmartRamp and RampPlus, APAP algo-
rithm is triggered after sleep onset is sensed. 
RampPlus algorithm attempts to keep patient 
pressure close to their selected starting pressure 
within the selected time.

In addition to ramp, gradually changing 
EPAPmin may help with comfort when PAP ther-
apy is first started and achieve more optimal pres-
sures with ongoing treatment. Philips 
Respironics’ CPAP Check, Opti-Start, and 
EZ-Start algorithms address this. CPAP Check 
evaluates patient obstructive respiratory distur-
bance index (ORDI) every 30  h of therapy use 
and increments pressure ±1 cm H2O if needed, to 
a maximum of ±3 cm H2O from the set pressure 
(Respironics P, 2012).

Opti-Start algorithm can be used with 
APAP. The algorithm evaluates patient respira-
tory events after 30  h and every 30  h of use 
thereafter and establishes a new Opti-Start pres-
sure for the next 30  h of use. The pressure is 
typically close to two-thirds of the patient’s pre-
vious 90% pressure. Opti-Start begins each new 
therapy session at the Opti-Start pressure if 
RampPlus is not enabled. Otherwise, a set 
RampPlus pressure will override the actual 
starting Opti-Start pressure. If RampPlus titrates 
below the Opti-Start pressure, the auto-algo-
rithm will be a little more responsive to obstruc-
tive respiratory events.

Fig. 18.3  Auto On/Off in the setting of high leak
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EZ-Start can be used with CPAP, CPAP-
Check, or APAP mode. EZ-Start for fixed CPAP 
mode reduces the pressure to half of the pre-
scribed setting, but no lower than 5 cm H2O. In 
APAP mode, EZ-Start reduces the maximum 
EPAP to 1 cm H2O above the minimum EPAP. For 
either mode, after each day of successful use, 
defined as a therapy session ≥4  h, the therapy 
pressure will increase by 1 cm H2O until the pre-
scription pressure is reached. From that point for-
ward, the therapy device would operate in normal 
CPAP, CPAP-Check, or auto CPAP mode. If the 
patient has not reached their prescription pres-
sure after 30 days of EZ-Start, then the therapy 
pressure will increase by 1 cm H2O per day until 
the prescription pressure is reached.

18.3.5	� Expiratory Pressure Relief 
Systems

A common complaint in many patients with OSA 
using CPAP is the uncomfortable feeling of 
exhaling against positive pressure. Several PAP 
manufacturers have developed EPR systems in an 
attempt to remedy this potential problem. EPR 
algorithms briefly reduce the PAP pressure, 
between 1 cm H2O and 3 cm H2O, during all (i.e., 
ResMed) or the start of exhalation (i.e., Philips 
Respironics) before returning the pressure to the 
set PAP setting prior to the initiation of inspira-
tion. Only Philips Respironics’ EPR algorithm 
(FLEX) monitors the patient’s airflow during 
exhalation and reduces the expiratory pressure in 
response to the airflow and patient effort. The 
amount of pressure relief varies on a breath-by-
breath basis, depending on the actual patient’s 
airflow, and is also dictated by the 1–3 setting 
level. There are currently no randomized trials 
that demonstrate benefit over fixed PAP therapy 
(Bakker et al., 2010; Kushida et al., 2011; Dungan 
et  al., 2011; Chihara et  al., 2013; Sunderram 
et  al., 2021), but clinically in our experience, 
some individuals do report better tolerance.

Because the smaller pressure drops with EPR 
do not require more expensive motors and power 
sources of bilevel devices, CPAP or APAP with 
EPR activated may be a cost-effective method to 

try before considering a switch to BPAP for toler-
ance. One reason to not use it routinely is that 
EPR may trigger breathing instability and central 
events like BPAP can in susceptible patients 
(Johnson & Johnson, 2005). Additionally, if a 
patient is titrated to a particular setting in the lab 
without EPR, it cannot be assumed that the same 
setting with EPR will still be efficacious (Zhu 
et al., 2016).

18.3.6	� Bilevel PAP (BPAP)

BPAP utilizes the previously described respira-
tory cycle determination to trigger a higher pres-
sure during inspiration (IPAP) and cycle to a 
lower pressure during expiration (EPAP). The 
difference between the EPAP and IPAP is termed 
pressure support (PS). Pressures generally range 
from an EPAP minimum of 4 cm H2O to IPAP 
maximum of 25–30 cm H2O with a PS of at least 
4 cm H2O.

BPAP may help with tolerance in patients who 
have difficulty exhaling against a higher pressure, 
but there are, in fact, no objective outcome stud-
ies that show that BPAP therapy improves adher-
ence and/or daytime sleepiness when compared 
with CPAP therapy for patients with uncompli-
cated OSA (Patil et  al., 2019a; b; Aloia et  al., 
2005). Because upper airway obstruction is typi-
cally worst during inspiration, airway patency 
can be maintained despite lower pressure during 
expiration (Sanders & Kern, 1990). BPAP espe-
cially with higher PS can also increase ventila-
tion and reduce work of breathing. However, the 
overall ventilation for a given pressure will vary 
based on the patient inspiratory effort, respiratory 
compliance, sleep stage and position, and inspi-
ratory time so BPAP does not ensure a specific 
level of ventilation through the night (Pavone 
et  al., 2020). There can be significant variation 
between devices in terms of how quickly pres-
surization levels are met and whether a device 
has a delay or premature cycle, especially in the 
setting of leak (Battisti et al., 2005).

BPAP can be triggered by spontaneous, timed, 
or spontaneous/timed (ST) modes. In spontane-
ous (S) mode, inspiration is only triggered when 
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the device senses a flow change. Large leak may 
cause the trigger to fail if the device does not 
appropriately adjust. Timed (T) mode triggers at 
a fixed rate and makes no attempt to synchronize 
with the patient’s breathing, which can result in 
breath stacking and patient discomfort. 
Spontaneous/timed (ST) mode changes pressures 
with spontaneous breathing efforts, but if the 
patient has not triggered a breath by a set respira-
tory rate, then the algorithm will trigger a breath 
based on time. Spontaneous (S) mode is primar-
ily used for patients with uncomplicated OSA, 
but ST mode may be useful in patients with 
comorbid conditions including COPD, obesity 
hypoventilation syndrome, central apneas due to 
respiratory depression, or neuromuscular weak-
ness or spinal cord injury when patients may be 
unable to trigger a sufficient inspiratory effort 
(Berry et al., 2010).

18.3.7	� Respiratory Control Settings: 
Rise Time, Trigger and Cycle 
Sensitivity, 
and Inspiration Time

Many BPAP devices, especially those with 
backup rate, allow control over the timing and 
sensitivity of the changes between pressures to 
help both tolerance and therapeutic benefit. If 
there is a mismatch between the patient’s respira-
tory cycle and the pressure changes, there can be 
patient discomfort. Rise time, cycle and trigger 
sensitivity, and inspiration time settings can be 
adjusted to enhance effectiveness and patient 
comfort, especially for patients with COPD, obe-
sity hypoventilation, or neuromuscular disorders 
(Zdrojkowski & Estes, 2000; see Table 18.8).

In general, BPAP provides a square wave of 
PS, but manual or automatic adjustments can 
give more of a smooth pressure change, which 
may help with comfort. Rise time adjustments 
from 100 ms to 600 ms change the rate the pres-
sure change as shown in Fig.  18.4. Instead of 
square wave with rise time control, some devices 
have alternative waveforms that can be exponen-
tial, ramp, or sinusoidal to allow for smoother 
transitions. One such example is ResMed’s 

shark-fin-shaped “Easy-Breathe” waveform 
(Douglas et  al., 2011). DeVilbiss IntelliPAP 
allows for multiple waveform shapers through 
their Flow Rounding® option. The shape of the 
waveform may be affected by the compliance and 
resistance of the patient’s respiratory system and 
the breathing effort, as well as mechanical con-
straints of blower momentum and propagation 
delays.

Trigger sensitivity refers to the degree of 
inspiratory flow change needed to change the 
pressure cycle from EPAP to IPAP.  At high 
sensitivity, small changes in inspiratory flow will 
trigger the change to IPAP.  If the trigger is too 
sensitive (too high) as shown in Fig. 18.5, then 
the device may force a breath in response to arti-
fact like leak or abnormally strong heartbeat due 
to cardiogenic oscillations in the airflow signal. 
Mask leak may affect the ability to adequately 
trigger as well. Low PS can lead to early expira-
tion leading to delayed triggering. Cycle sensitiv-
ity sets the level of inspiratory flow below, which 
the device changes from IPAP to EPAP. Inspiratory 
leaks can delay cycling and reduce inspiratory 
sensitivity. High PS can delay cycling.

Inspiration time typically ranges from 0.3 s to 
2  s, often with default of 1.5  s. The higher the 
baseline respiratory rate, the shorter the inspira-
tory time is recommended. Some devices allow 
for minimum and maximum inspiratory time set-
tings, while others allow for a single setting.

18.3.8	� Clinical Considerations 
Related to BPAP Technology

•	 Adequate EPAP is needed to maintain airway 
patency, recruit the lung by preventing bibasi-
lar atelectasis, and in COPD prevent dynamic 
hyperinflation by overcoming auto or intrinsic 
PEEP, but a higher EPAP can also limit venti-
lation by reducing PS.  For a given IPAP, a 
higher EPAP will have a lower PS and gener-
ally results in lower ventilation so both lower 
EPAP or increasing IPAP may lead to 
improved ventilation (Kinnear et  al., 2017). 
The exception would be if the higher EPAP 
improved expiratory flow by offsetting auto 
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PEEP in severe COPD, then a higher EPAP 
with lower PS may improve ventilation.

•	 IPAP needed for BPAP settings to prevent 
obstruction during early inspiration is often 
higher than those needed by CPAP due to 
delays in detecting the onset of inspiration and 
delivery of the pressure adjustment.

•	 BPAP may worsen central apneas due to 
Cheyne–Stokes respiration (CSR) by increas-
ing breath size of spontaneous breaths and 
BPAP ST by forcing a triggered breath during 
the apneic portion, which is when the PCO2 
level is already at its lowest (Johnson & 
Johnson, 2005). By further decreasing the 
PCO2 during a central apnea, respiratory drive 
is reduced further and the duration of the 
apnea will often lengthen, although the oxy-
genation may improve with the deeper or 
forced breath. Sometimes the improved oxy-
genation and PS will help to eventually stabi-
lize the patient’s breathing and associated 
fluctuations in the pulse and electroencephalo-
gram (Willson et al., 2001), but in our experi-
ence, many patients with CSR often find 
BPAP ST intolerable or still have a suboptimal 
clinical response. SV or VAPS (described 
later) may be better for these patients.

•	 BPAP’s squared waveform can mimic flow 
limitation during sleep studies leading to inap-
propriate interpretation and response by tech-
nologist. This is seen most often during 
device-triggered events or those with reduced 
patient effort such as at the nadir of central 
hypopneas as seen in Fig. 18.6.

•	 Short rise time in COPD patients can allow the 
lungs to fill more quickly and give enough 
time to exhale. Long rise time in patients with 
neuromuscular weakness can improve com-

fort and help ensure adequate tidal volume 
and gas exchange (see Fig. 18.4).

•	 Low trigger sensitivity is recommended if the 
patient complains that the breath occurs before 
exhalation is complete or before the patient 
starts inhalation. High setting is recommended 
for patients with weak respiratory effort such 
as in neuromuscular disorders (see Fig. 18.5).

•	 High cycle (less reduction in flow to induce 
cycling) can help patients with severe COPD 
by enhancing exhalation. Loss of alveolar 
attachments reduces elastic recoil needed to 
passively force air out of the lung at the end of 
expiration. This leads to a slower drop in flow 
rate (longer time to reach 25% reduction of 
normal setting) especially when high IPAP 
pressures are pushing air into the lungs. High 
cycle setting can also help if the patient com-
plains that the breaths are too long. Low cycle 
is recommended when longer inspiratory time 
is needed for neuromuscular diseases, weak 
respiratory effort, or stiff lungs or if the patient 
complains that the pressure seems to switch 
from IPAP to EPAP too quickly (see Fig. 18.5).

•	 Short inspiratory time (Ti) settings can help 
exhalation in COPD patients (Zdrojkowski & 
Estes, 2000). Longer Ti can be useful for 
obesity hypoventilation to maintain IPAP for a 
longer period to increase tidal volume.

•	 Don’t assume because a patient has a particu-
lar comorbidity that they require the suggested 
respiratory control settings for that condition. 
Many patients have overlapping comorbidi-
ties, for example, a morbidly obese patient 
with severe COPD, may benefit most from 
normal settings, because their obesity is 
enough to end inspiration early. During a titra-
tion study, normal respiratory control settings 
can be used first and then adjusted as needed 

Table 18.8  Suggested respiratory control settings

Setting Normal COPD OHS Restrictive/neuromuscular
Ti 0.3–2.0 s 0.3–1.0 s 0.8–2.0 s 0.8–1.5 s
Rise time 300 ms 150 ms 150–300 ms 300 ms
Trigger Medium Medium Medium–high High
Cycle Medium High Low–medium Low

COPD chronic obstructive pulmonary disease, OHS obesity hypoventilation syndrome, s second, Ti inspiratory time 
(adapted from ResMed Sleep Lab Titration Guide)
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Fig. 18.4  Rise time

Fig. 18.5  Trigger and cycle sensitivities

for tolerance and dyssynchrony or to improve 
ventilation.

•	 Patients with spontaneous breathing only (i.e., 
obesity hypoventilation) may benefit from 
extending the Ti to help increase breath size 
with the ResMed BPAP ST algorithm, but not 
the Philips Respironics’ BPAP ST algorithm, 
which only affects timed breaths (see 
Fig. 18.7). Philips Respironics spontaneous or 
ST Pressure Control (PC) mode, available 
only in their non-invasive ventilators, allows 
for respiratory control settings to affect spon-
taneous breaths. Like BPAP, PC does not 
ensure a ventilatory level over the course of a 
night as pressure, not volume, is targeted 
(Pavone et al., 2020).

•	 There are 5 main types of dyssynchrony on 
BPAP described in Table  18.9: ineffective 
inspiratory efforts, double triggering, auto 
triggering, short-ventilatory cycling, and long-
ventilatory cycling (Al Otair & BaHammam, 
2020). A sixth less common type is reverse 

triggering when insufflation triggers dia-
phragm muscle contractions by activating 
patient’s respiratory drive (Pavone et  al., 
2020).

•	 PAP therapy dilutes the fraction of inspired 
oxygen (FiO2) because most of the exiting air 
is room air entering through the device that is 
combining with a smaller amount of bled in 
oxygen. Higher pressures and higher PS lead 
to more dilution so higher liters of oxygen are 
typically required to maintain the same degree 
of oxygen saturation than when oxygen is 
used without PAP or with lower pressures.

18.3.9	� BPAP Expiratory Pressure 
Relief

EPR is available with some bilevel PAP sys-
tems. The Philips BiFlex® device differs from 
conventional bilevel systems in two major 
respects. First, the inspiratory pressure is 
reduced slightly near the end of inspiration, 
and the expiratory pressure is slightly reduced 
near the beginning of expiration. Second, the 
amount of pressure relief change of the EPAP 
during expiration is proportional to patient 
effort.

Löwenstein’s Trilevel setting has three pres-
sure levels, IPAP (during inspiration), EPAP 
(during early expiration), and EEPAP (during 
end of expiration). When the patient expires, 
pressure is initially reduced to EPAP, but toward 
the end of expiration, the pressure is increased to 
help splint open the upper airway and prevent 
obstruction. In Auto-Trilevel, if the PS difference 
is at least 6 cm H2O, the EEPAP min will increase 
if airway resistance is noted and will decrease if 
no obstruction.
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Fig. 18.6  Square pressure waveform with timed BPAP breaths

Fig. 18.7  Respiratory 
control setting activity 
by mode

18.3.9.1	� AutoBPAP
Like AutoCPAP, not all AutoBPAP devices work 
in the same way. Some devices only allow a fixed 
pressure support, others only set a PS max, and 
others allow for both pressure support minimum 
(PSmin) and pressure support maximum 
(PSmax). Thus, AutoBPAP may be more likely to 
provide inadequate ventilator support if PSmin 
cannot be set. AutoBPAP devices generally do 
not have an ST option so are not recommended 
for central apneas. AutoBPAP only adjusts to 
obstructive events like APAP, and changes in 
pressures are not triggered by tidal volume or 
ventilation.

ResMed’s AutoBPAP and DeVilbiss’ 
AutoBPAP use a fixed set PS.  Philips 
Respironics’ Series 50 AutoBPAP fixes mini-
mum PS (PSmin) at 2 cm H2O and allows setting 

maximal PS (PSmax), while Series 60 AutoBPAP 
allows setting both PSmin and PSmax. Within 
the limits of PSmin and PSmax, Philips 
Respironics’ newer AutoBPAP changes EPAP in 
response to apneas (2 apneas or 1 apnea and 1 
hypopnea) and snoring and IPAP in response to 
hypopneas (2 hypopneas) and flow limitation, 
with algorithms similar to APAP (Matthews 
et  al., 2012). Löwenstein’s AutoBPAP (auto-
PDIFF) has both autoS and autoST modes. Like 
APAPstd, EPAP increases obstructive events and 
flow limitation, but for every 0.5 cm H2O EPAP 
increases, IPAP increases by 1 cm H2O until the 
PDIFFmax (PSmax) is reached, and then they 
increase in parallel. For pressure decreases, as 
long as PS  >  PSmin, EPAP is reduced by the 
APAP algorithm, and IPAP is reduced by 1.5X 
the EPAP reduction. Once at PS min, IPAP and 
EPAP reduce in parallel.
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Table 18.9  BPAP dyssynchrony

Dyssynchrony Description Causes Fixes
Ineffective 
inspiratory 
efforts

Patient’s inspiratory 
effort fails to trigger 
change to IPAP

Low respiratory drive, weak 
inspiratory muscles, dynamic 
hyperinflation

Lower trigger, higher EPAP in 
COPD with intrinsic PEEP to 
reduce inspiratory threshold load 
and reduce dynamic 
hyperinflation

Double-
triggering

Two consecutive breaths 
occur in an interval of 
less than ½ of 
inspiratory time

Insufficient level of pressure 
support when demand is high; 
effort lasts longer than Ti resulting 
in retriggering

Increase PS, higher trigger 
sensitivity

Auto-
triggering

Trigger to IPAP in the 
absence of patient effort

Leak can cause pressure drop 
interpreted as patient effort—less 
of a problem with NIV than vents, 
cardiac contractions, and water in 
tubing

Reduce trigger sensitivity, fix 
leak, excess water condensation

Short 
ventilatory 
cycling

Premature cycling to 
EPAP while patient still 
in inspiratory, Ti <50% 
of mean inspiratory time

Restrictive diseases have short 
respiratory cycle (rapid shallow 
breathing) and an increased 
inspiratory time leads to 
premature cycling

Longer Ti min, lower cycle 
sensitivity

Long 
ventilatory 
cycling

Patient is ready to 
exhale, but machine fails 
to cycle to EPAP; Ti 
>2X mean inspiratory 
time

Due to prolonged expiration, 
COPD has short inspiratory time 
and delayed cycling

Shorter Ti, higher cycle 
sensitivity, shorter rise time to 
meet demand for higher 
inspiratory flow

COPD chronic obstructive pulmonary disease, EPAP expiratory positive airway pressure, IPAP inspiratory positive 
airway pressure, NIV non-invasive ventilation, PEEP positive end-expiratory pressure, PS pressure support, Ti inspira-
tory time

18.3.10	� Adaptive or Anticyclic 
Servoventilation (SV)

Because higher PAP pressures and high PS can 
induce periodic breathing and Cheyne–Stokes 
respiration (CSR), adaptive or anticyclic ser-
voventilation (AcSV) algorithms have been 
developed to try to even out the breathing over 
several breaths. These include ResMed’s (equiva-
lent to Teijin) ASV and AutoSV, and Philips 
Respironics’ BiPAP AutoSV and BiPAP AutoSV 
Advanced. Another device, Prisma CR AcSV is 
available outside of the United States from 
Löwenstein (Weinmann’s SOMNOvent CR 
[acquired by Löwenstein] uses a less dynamic 
algorithm and different blower) (see Table 18.10).

ResMed’s standard ASV algorithm uses a set 
fixed EPAP (samples flow 50 times per second) 
and alters IPAP throughout inspiration to achieve 
a target minute ventilation of 90% of recent aver-
age ventilation. EPAP range is from 4 to 20 cm 
H2O. The pressure support range can be 0–20 cm 

H2O, but default is usually a PSmin of 3 cm H2O 
and PSmax of 15  cm H2O, but the maximum 
IPAP is 25 cm H2O so higher EPAPs may force a 
reduction of PSmax.

Philips Respironics’ BPAP AutoSV Advanced 
is set with EPAP minimum and maximum, PSmin 
and PSmax, max pressure, and auto or fixed rate. 
The level of PS is targeted based on instanta-
neous average inspiratory peak flow, which is the 
sum of the inspiratory flows during a time divided 
by the number of samples during a time in order 
to adjust for spurious values. Compared to mul-
tiple small adjustments in the pressure support 
throughout the breath cycle with ResMed ASV, 
Phillips Respironics’ BPAP AutoSV Advanced’s 
inspiratory PS is changed at the start of the breath 
with a mid-breath adjustment if below the target.

The EPAP adjustment algorithm of AutoSV 
Advanced is similar to Philips Respironics’ 
APAP algorithm but uses a triggered breath rather 
than a pressure pulse to differentiate obstructive 
from open airway events (Javaheri et al., 2014). 
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BPAP AutoSV AutoEPAP has not been shown to 
be superior over fixed EPAP (Pepin et al., 2018; 
Javaheri et  al., 2011). The older BPAP AutoSV 
did not automatically titrate the EPAP, and the 
algorithm for the automatic backup rate was not 
proportional to the baseline breathing rate, but it 
would give a breath if no spontaneous breath 
occurred within 8  s of end of expected breath 
length or within 4 s if there was recent triggered 
breath (Javaheri et al., 2011). Philips Respironics’ 
BPAP AutoSV Advanced has been found to be 
more effective than the older BPAP Auto SV 
(Javaheri et al., 2011).

Löwenstein’s Prisma CR anticyclic servoven-
tilation (AcSV) uses the total inspiratory volume 
for each 2 min and is divided by 2 to determine a 
relative average minute volume (rAMV). A long-
term rAMV is calculated by giving 50% weight 
for the most recent 2  min and 10% weight for 
each of the five 2-min epochs in the preceding 
10 min. The increased weight on recent minute 
volume is designed to not get trapped in expired 
reference values, for example, after a position 
change or sleep stage transition. There are two 
factors that amplify or dampen AcSV’s PS adjust-
ments: (1) The strength of the preceding hyper-
ventilation amplifies the PS changes, whereas a 
period with non-periodic variations, for example, 
during wake or REM, leads to smaller PS 
changes. (2) Hyperventilation without obstruc-
tive features, for example, after an arousal or 
periodic breathing, leads to a firm anticyclic reac-
tion to prevent central apneas and the occurrence 
of periodic breathing.

Because SV targets a reduced ventilation 
state, there is a risk of hypoventilation especially 
in REM or supine position. Jaffuel et  al. tested 
Philips Respironics’ AutoSV and ResMed’s ASV 
with fixed EPAP devices and confirmed hypoven-
tilation risk despite underlying patient sleep 
apnea type. ResMed’s algorithms tended to have 
lower median minute ventilation and tidal vol-
ume compared to Philips Respironics’ algorithms 
(Jaffuel et al., 2020). Phillips Respironics’ BPAP 
AutoSV Advanced has a safety feature that 
ensures at least 5  L  min ventilation, whereby 
mandatory PS is provided to maintain an average 
minute ventilation of at least 5 l.

18.3.11	� Clinical Considerations 
with SV

•	 Appropriately set SV will stabilize loop gain 
and the periodic breathing. If the IPAP repeti-
tively changes from high to low IPAP for long 
periods to maintain the target ventilation, it 
indicates that the underlying periodic pattern 
has not subsided and often the patient will 
either not tolerate the device or there will be a 
suboptimal clinical response (Chokroverty & 
Thomas, 2014). This pattern can be identified 
on pressure tracings of detailed adherence 
data (see Fig. 18.8).

•	 ResMed’s ASV algorithm and Löwenstein’s 
SoftSTART do not fluctuate the IPAP during 
the ramp period and just provide gradually 
increasing BPAP at the PS min. If a patient 
had sleep onset periodic breathing, having the 
ramp on may allow for persistent events that 
can contribute to intolerance or high residual 
AHI as shown in Fig. 18.9.

•	 SV targets a hypoventilatory state, which may 
be a factor contributing to the increased mor-
tality with ASV treatment in patients with 
heart failure and central sleep apnea in the 
SERVE-HF trial (Jaffuel et  al., 2020; Cowie 
et  al., 2016). Higher PSmin can be used to 
limit hypoventilation but may reduce the func-
tionality of the SV algorithm so other modali-
ties such as BPAP or VAPS should be 
considered.

18.3.12	� Volume-Assured 
Pressure Support

VAPS is a variable bilevel PAP that adjusts the 
PS in order to maintain a target average tidal vol-
ume or ventilation over several breaths, which 
allows more control of the ventilation and lower-
ing CO2 than BPAP or SV (Turk et  al., 2018). 
This is useful for patients with combined peri-
odic breathing and hypoventilation or patients 
with REM-related hypoventilation related to con-
ditions like COPD, neuromuscular disorders, or 
obesity hypoventilation, who may need different 
PS levels during different sleep stages or posi-
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Table 18.10  SV algorithms

ResMed ASV (Berthon-
Jones, 2014) and AutoASV 
(Javaheri et al., 2014)

Philips Respironics BPAP 
AutoSV Advanced Löwenstein Prisma CR AcSV

Target Ninety percent of the 
average recent scaled 
low-pass-filtered absolute 
value of respiratory flow 
(an indication of 
ventilation) weighted 
toward the last 3 min

Over the last 4 min, 90–95% of 
mean inspiratory peak flow; 
60th percentile of mean 
inspiratory peak flow if 
obstruction or CSR based on 
CSR index measuring 
fluctuations in breath size with 
at least 2–3 cycles with a 
period of 40–90 s (Kane et al., 
2014)

100% rAMV: long-term 
exponentially smoothed minute 
volume over the last 12 min 
weighted toward the previous 
2 min

Cycle 
determination

Fuzzy logic based on 
direction and rate of flow 
throughout the cycle

Average cycle length and 
midpoint based on previous 
breaths

Cycle phase by adaptive threshold 
method based mainly on flow

EPAP 
adjustments

Fixed EPAP or AutoEPAP 
adjusts like AutoSet 
algorithm with apnea 
defined as MV < 25% 
baseline for 10 s and 
hypopneas as MV < 50% 
of baseline for 10 s

Fixed EPAP or AutoEPAP 
utilizing APAP algorithm with 
events defined as apnea (<20% 
flow), hypopnea (20–60% 
flow), and snoring

EPAP fixed or AutoEPAP utilizing 
APAP algorithm

PS 
adjustments

PS adjusted throughout 
inspiration to achieve a 
goal ventilation with a 
smooth “shark fin” wave. 
The change in pressure is 
calculated by multiplying 
a gain of 0.3 cm H2O/L/
min/s by the difference 
between the target minute 
ventilation and the actual 
minute ventilation. During 
apneic periods, PS 
gradually increases with 
subsequent breaths. 
Limited by PSmin and 
PSmax

PS is changed by gain (moving 
average of pressure needed in 
the last 30 breaths) times the 
difference between the target 
peak inspiratory flow and the 
current breath’s peak 
inspiratory flow. The PS is 
increased in the middle of the 
breath if the actual flow is less 
than the target flow in the 
100 ms prior to the expected 
halfway point of the inspiration 
of the current breath. If the 
actual flow is larger than the 
target flow, the PS will be 
decreased for the following 
breath (Kane et al., 2014)
Limited by PSmin and PSmax

Actual volume during inspiration 
is compared with a third-order 
polynomial based on target volume 
and expected inspiration every 
10 ms. PS for current breath is 
continuously recalculated during 
inspiration ramp and adjusted until 
target volume is reached. PS 
limited by PSmax

Backup rate Auto rate starting at recent 
spontaneous rate adapting 
during apnea over several 
breaths to target rate of 
15 bpm

Fixed rate or auto rate 
delivered relative to 
spontaneous breaths after ~1/3 
of breath period Tbr has 
elapsed from the end of 
previous breath. Tbr—average 
time of 12 recent spontaneous 
breaths. In the absence of 
spontaneous breaths, 10 bpm

Fixed between 5 and 30 bpm or 
auto with 20% below average 
patient rate. Auto accelerates if 
rRMV is rather small or slows 
down in case of hyperventilation. 
Target rate is 15 bpm

Waveform 
options

Shark-fin-shaped 
“Easy-Breathe” waveform

Square wave with rise time and 
pressure relief adjustments

Square wave with optional Bi 
SoftPAP (EPR) and Trilevel, Ti/T 
setting

(continued)
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Table 18.10  (continued)

ResMed ASV (Berthon-
Jones, 2014) and AutoASV 
(Javaheri et al., 2014)

Philips Respironics BPAP 
AutoSV Advanced Löwenstein Prisma CR AcSV

Other Ramp Ramp, BiFlex expiratory relief 
proportional to exhalation flow 
rate. Ti and rise time. Safety 
backup: 5 L MV

SoftSTART ramp

SV servoventilation, APAP autotitrating positive airway pressure, CSR Cheyne–Stokes respiration, EPAP expiratory 
positive airway pressure, EPAPmax maximum EPAP, EPAPmin minimum EPAP, min minute, MV minute ventilation, 
PS pressure support, PSmax PS maximum, PSmin PS minimum, rAMV relative average minute volume, rRMV relative 
respiratory minute volume, SBD sleep-disordered breathing, s second, Tbr breath time

Fig. 18.8  ASV pressure tracings with differing IPAP variability

tions. Because many patients have much worse 
hypoventilation in REM, BPAP with a fixed PS 
may provide too much pressure in NREM, which 
may lead to intolerance or complex sleep apnea 
and may not provide enough pressure support in 
REM to control PCO2 levels and obstruction. 
Lower PS during wake may increase comfort and 

aid sleep onset, reduce risk of barotrauma, and 
lower pressures for more of the time, which can 
improve adherence and better control oxygen-
ation and hypercarbia (Oscroft et al., 2010; Kelly 
et al., 2014).

Table 18.11 summarizes ResMed’s intelligent 
volume-assured pressure support (iVAPS) 
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Fig. 18.9  Sleep onset periodic breathing during ramp period with ASV

(Berthon-Jones, 2003; Berthon-Jones et  al., 
2013; Bassin, 2011) and Philips Respironics’ 
average volume-assured pressure support–
AutoEPAP (AVAPS/AVAPS-AE) (Hill et  al., 
2006) and Löwenstein’s Bilevel S/T and autoS/T 
with set target volume algorithms. Maximum 
IPAP with VAPS is typically either 25 or 30 mm 
H2O often with ventilator algorithms allowing for 
the higher pressures.

Typically, the target tidal volume or ventila-
tion is set based on 6–10  mL/kg ideal body 
weight. To have the most precise control over 
ventilation, alveolar ventilation must be stable. 
With a target tidal volume (e.g., AVAPS), if there 
is a large variance in respiratory rate, there can be 
fluctuations in the alveolar ventilation and thus 
PCO2. When minute ventilation is targeted (i.e., 
ASV), a higher respiratory rate leads to a lower 
tidal volume and greater dead space ventilation 
than at a lower respiratory rate, so there may be 
less alveolar ventilation and higher PCO2 despite 
the increase in respiratory rate. By targeting esti-
mated alveolar ventilation (TVa [minute ventila-
tion  – estimated dead space ventilation]; i.e., 
iVAPS), variations in respiratory rate should not 
affect alveolar ventilation or PCO2 as long as the 
estimated dead space equals physiologic dead 
space. iVAPS estimates the anatomic dead space 
using height (Hart et al., 1963).

iVAPS’ ventilation and rate targets can be con-
figured using the Learn Target® feature. While 
the patient is awake and comfortably breathing at 
rest, the clinician initiates the Learn Target ses-
sion, which typically lasts between 15  min and 
20  min, and monitors the breathing while on a 
base EPAP pressure of 6 cm H2O. It uses the aver-
age respiratory rate, and since metabolic rate 
decreases in sleep, it uses 90% of the average esti-
mated alveolar ventilation of the last 5 min of the 
session to propose a target patient rate and target 
alveolar ventilation, which can then be set by the 
clinician (Berthon-Jones et al., 2013).

Improvements in ventilation and comfort have 
been shown in comparative trials of VAPS to both 
SV and BPAP ST.  Compared to BPAP ST, in 
COPD patients, iVAPS allowed for higher venti-
lation pressures without affecting sleep quality or 
inducing ventilation associated events in COPD 
(Nilius et  al., 2017), and AVAPS resulted in a 
more rapid improvement in Glascow coma scale 
and greater CO2 improvement in patients with 
acute hypercapneic encephalopathy (Briones 
Claudett et al., 2013) and better quality of life and 
a 6-min walking distance and PaCO2 reduction at 
6 months (Magdy & Metwally, 2020). iVAPS also 
resulted in more restful sleep that high pressure 
support BPAP ST and resulted in a larger PCO2 
(Ekkernkamp et  al., 2014). In a bench testing 
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Table 18.11  VAPS algorithms

ResMed iVAPS (Berthon-
Jones, 2003)

Philips Respironics AVAPS 
and AVAPS-AE (Hill et al., 
2006)

Löwenstein Prisma Bilevel S/T and 
autoS/T with set target volume

Ventilation 
calculation

Scaled low-pass-filtered 
absolute value of 
respiratory flow

From total flow minus leak 
flow over breathing cycle

Volume calculated from respiratory 
flow during inspiration

Target Average set target alveolar 
ventilation (TVa), range 
1–30 L/min. TVa = minute 
ventilation – anatomical 
dead space estimated 
using height so target 
volume varies with rate

Average set tidal volume 
over several breaths, range 
200–1500 mL

Set tidal volume; range 300–2000 m

EPAP 
adjustments

Fixed set EPAP
AutoEPAP (available in 
Astral ventilator)

AVAPS, fixed EPAP
AVAPS-AE—set EPAPmin 
and EPAPmax with 
APAP-like algorithm

BiLevel S/T- fixed EPAP
Auto S/T: EPAPmin and max adjusted 
with APAP algorithm

PS 
adjustments

Estimates expected 
ventilation using 
respiratory cycle position 
determined by flow cycle 
and trigger algorithm and 
current pressure. If 
expected flow differs from 
target flow, PS adjustments 
are made throughout 
inspiration (every 8th/50th 
second) to achieve goal 
ventilation with a smooth 
transition
Limited by PSmin and 
PSmax

Determines average PS 
provided over prior 2 min to 
achieve volume. If target 
volume differs from average 
recent ventilation, PS for 
the next breath is changed 
at a rate of 1 cm H2O/min if 
recent stable breathing and 
0.5 cm H2O/min if unstable 
breathing (AE model allows 
a maximum rate of pressure 
change from 1–5 cm H2O/
min). Limited by PSmin 
and PSmax

If the average ventilation during the last 
breaths does not match set target 
volume, PS is adjusted. As long as the 
difference between target volume and 
patient volume is large, a fixed pressure 
increment is applied. If the error is 
small, pressure increments/decrements 
are proportional to error
Speed of PS adjustment can be set to 
slow, medium, or fast. Algorithm 
considers # breaths for average 
ventilation and has different rates of 
pressure change
Slow: 8 breaths/0.5 cm H2O
Medium: 5 breaths/1 cm H2O
Fast: 1 breath/1.5 cm H2O
Limited by PSmin and PSmax

Inspiratory 
waveform

Parabolic pressure profile 
with Ti, trigger, and cycle 
controls

Square wave with Ti and 
rise time settings

Square wave with optional Bi SoftPAP 
(EPR) and Trilevel, Ti setting, 
inspiratory and expiratory ramp 
steepness

Backup rate Intelligent backup at 
two-thirds of set rate 
during spontaneous 
breathing and set rate 
during periods of timed 
breathing (Bassin, 2011)

Fixed or Autoset, which is 2 
breaths per min below 
average rate of recent 50 
spontaneous breaths. Also 
provides sign extension

Off, fixed (S/T) or auto (autoS/T only) 
with 20% below average patient rate. 
Auto accelerates if rRMV is rather 
small and slows down in case of 
hyperventilation. Target rate is 15 bpm

Others Learn target setting – –

APAP autotitrating positive airway pressure; AVAPS average volume-assured pressure support, bpm breaths per minute; 
EPAP expiratory positive airway pressure, EPAPmax maximum EPAP, EPAPmin minimum EPAP, EPR expiratory pres-
sure relief, IPAP inspiratory pressure, iVAPS intelligent volume-assured pressure support, min minute, PS pressure 
support, PSmax PS maximum, PSmin PS minimum, SBD sleep-disordered breathing, s second, S/T spontaneous/timed, 
Ti inspiratory time, TV tidal volume, TVa target alveolar ventilation

experiment, Lofaso et  al. (2020) concluded that 
ResMed’s ASV, Löwenstein’s Prisma CR AcSV, 
and Philips Respironics’ AutoSV algorithms 
responded better to hypopnea/hypoventilation 

events than AVAPS and iVAPS, but they only 
tested short hypopneic hypoventilatory durations 
from 48 s to 144 s more similar to periodic breath-
ing rather than longer-lasting hypoventilation 
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periods as seen in REM (Lofaso et al., 2020). It is 
not surprising that in the setting of single shorter 
hypopneic periods, the quicker responding SV 
algorithms will increase ventilation more during 
the hypopnea than VAPS, which targets maintain-
ing ventilation over a longer period. However, 
they did not study prolonged periods of hypoven-
tilation during which the SV devices would start 
lowering their targeted ventilation as in Jaffuel 
et  al.’s study of SV devices described earlier 
(Jaffuel et al., 2020).

Comparisons of AutoEPAP to fixed EPAP 
iVAPS have also been done. In a study of COPD 
and neuromuscular patients, Auto EPAP iVAPS 
found no significant difference in respiratory 
measures including mean EPAP, residual AHI, 
sleep quality, patient comfort, or preference 
(McArdle et  al., 2017); although in post hoc 
analysis, patients with COPD were found to 
have lower TCCO2 on AutoEPAP than fixed 
EPAP. Mean PS was also higher with AutoEPAP 
than fixed EPAP. It is unclear whether or not the 
presence of CHF and risk of central sleep apnea 
would lead to different results than the studied 
population. A second study by Orr et al. in 38 
patients with more diverse etiologies of 
hypoventilation found that a single night of 
AutoEPAP was noninferior to fixed EPAP 
iVAPS, finding a lower mean 4% oxygen desat-
uration index with AutoEPAP and similar effects 
on ventilation and mean shallow breathing index 
(Orr et al., 2019).

18.3.13	� Clinical Considerations 
with VAPS

•	 iVAPS TVa estimation based on height will 
underestimate conditions with increased phys-
iological dead space (i.e., emphysema). 
Higher TVa may be needed to achieve a 
desired actual alveolar ventilation. 
Alternatively, the “height” can be entered arti-
ficially high for emphysema patients, so cal-
culated dead space will be closer to physiologic 
dead space.

18.4	� Research Agenda

Future research and product development should 
be primarily directed at improving adherence, 
which is the primary limiting factor of PAP ther-
apy. Adherence has also been a major factor lim-
iting randomized trials trying to demonstrate 
long-term effects of PAP therapy on cardiovascu-
lar outcomes. This research should take pheno-
typic heterogeneity in consideration since 
understanding which patient will benefit most 
from a given feature will help personalize care. 
Further improvements in device size, device and 
mask noise, mask and air pressure comfort, and 
the ability to clean the device are still needed. 
Further comparative trials especially of advanced 
settings like VAPS are needed to confirm their 
utility in treating patients with different comor-
bidities. Reducing the costs of therapy and creat-
ing devices with multiple modes would assist 
with the large regulatory burdens of caring for 
patients with sleep-disordered breathing. 
Integration of artificial intelligence and algo-
rithms to incorporate patient feedback to help 
optimize comfort and data from both the machine 
and other sources to optimize therapy should be 
evaluated.

18.5	� Conclusion

There are a wide range of PAP devices and dif-
ferent algorithms used to provide PAP therapy 
to treat sleep-disordered breathing. Algorithms 
within a particular category may differ in their 
clinical efficacy and comfort so switching to a 
new device type may lead to a different 
response. Understanding how PAP devices 
function can help the clinician select the best 
PAP device and appropriately titrate, trouble-
shoot, and optimize settings for a particular 
patient. Comfort algorithms, such as ramp and 
EPR and respiratory control settings like cycle 
and trigger sensitivities, may help some patients 
but should not be used as defaults as they may 
reduce efficacy.
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Abstract

Telemonitoring is a frequently used tool in the 
long-term management of many chronic dis-
eases, such as chronic obstructive pulmonary 
disease or chronic heart failure. The use of 
new sensors and telemedical tools will shape 
medical practice in the future, particularly in 
sleep medicine. During the last decades, the 
number of people with sleep disordered 
breathing has been increasing.

Telemedicine (TM) approaches could be 
used in various ways in sleep medicine: teledi-
agnostics, teleconsultation, teletherapy, and 
telemonitoring of patients being treated with 
positive pressure devices.

This chapter aims to summarize the recent 
scientific progresses of these techniques as 
well as their potential clinical applications and 
tries to give consideration to the remaining 
problems with TM applications.

Keywords

Telediagnostics · Teleconsultation · 
Teletherapy · Telemonitoring · Telemedicine · 

Obstructive sleep apnea · Positive airway 
pressure · Therapy management

19.1	� Background

Obstructive sleep apnea (OSA) is the most com-
mon organic sleep disorder. Due to a collapse of 
the upper airways during sleep, breathing distur-
bances occur with resulting short, sleep-
disrupting awakenings and consecutive 
activations of the stress nervous system. The 
resulting increases in blood pressure and heart 
rate can stress the cardiovascular system, increas-
ing the risk of developing cardiac disease. OSA 
patients often complain about snoring, nonrestor-
ative sleep, or daytime sleepiness, which is also 
associated with an increased risk for road traffic 
accidents. Furthermore, patients with untreated 
OSA display a greater burden on the healthcare 
system (Peppard et  al., 2013). The number of 
breathing episodes per hour of sleep apnea-
hypopnea index(AHI) defines OSA severity.

Epidemiological studies based on the AHI 
show a high prevalence of sleep apnea in terms of 
a common disease. For instance, the number of 
affected persons in Germany is currently esti-
mated at 26 million (Benjafield et al., 2019). Due 
to limited diagnostic capacities, it is assumed that 
there is a high number of unreported cases.

However, the indication for a therapy should 
not solely be based on the AHI. This is especially 
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true for patients with low-grade OSA, in whom 
therapy is only indicated in the presence of symp-
toms or a cardiovascular comorbidity. Nocturnal 
positive airway pressure therapy is an effective 
therapeutic method. Positive airway pressure 
(PAP) is applied via a nasal or a full-face mask to 
splint the upper airways. This can be done by 
applying a continuous (CPAP) or an automati-
cally adjusted positive airway pressure (APAP) 
during sleep. Approximately 1 million patients in 
Germany are currently using this therapy. This 
can reduce symptoms and significantly improve 
quality of life (Woehrle et  al., 2017). However, 
regular use of the therapy is a prerequisite for 
this.

Studies reveal that tolerance problems, low 
utilization times, and therapy termination rates of 
up to 20% in the first year of therapy are fre-
quently observed (Woehrle et al., 2017).

The economic pressure with uncertain counter-
financing as well as the corona pandemic has led 
to a reduction of inpatient sleep laboratory capaci-
ties with long waiting times for a diagnostic study 
as polysomnography (PSG) remains the reference 
method for the diagnosis of sleep disordered 
breathing (SDB) (Kapur er  al., 2017). Patients 
spend one night in a sleep laboratory to enable an 
attended, in-lab PSG to be performed. As the num-
ber of obese people continues to rise, OSA is 
becoming increasingly prevalent (Peppard et  al., 
2013), and, as a result, the waiting time to obtain a 
PSG can be very long. Outpatient sleep centers are 
often unable to compensate this great amount of 
patients. According to an analysis of the German 
Sleep Society DGSM among the accredited 
German sleep laboratories from March 2020, 
average waiting times of 4.2  months to a maxi-
mum of 25  months could be reported (internal 
data, not published). Therefore, many potential 
patients remain undiagnosed without any therapy.

In Germany, after PAP therapy initiation in the 
sleep laboratory, an outpatient therapy control by 
means of a portable monitoring by a medical spe-
cialist is performed after 6  months (Jacobsen 
et al., 2017). However, problems affecting long-
term treatment compliance often become appar-
ent during the first weeks of therapy (Patil et al., 
2019). Therefore, the German medical guideline 

also recommends earlier monitoring if there are 
problems with therapy.

19.2	� Recent Advances

Modern PAP devices can already send daily ther-
apy data (time of use, mask fit, remaining respira-
tory disorders) to a cloud of the medical device 
provider via an integrated SIM card (subscriber 
identity module). Thus, telemonitoring is a col-
lective term for a diagnostic or therapeutic moni-
toring using mobile technical tools. Telemedicine 
extends the term telemonitoring and is defined as 
“the use of electronic information and communi-
cation technologies to provide and support 
healthcare when distance separates patient and 
healthcare unit or professional” (https://www.
bundesgesundheitsministerium.de/service/
begriffe-von-a-z/t/telemedizin.html) by means of 
all kinds of telecommunication tools, including 
smartphones, wireless devices, and video and 
telephone consultations.

Studies show that telemonitoring-assisted fol-
low-up incorporating telemedically transmitted 
PAP therapy data reduced therapy termination 
rates and increased PAP usage time. Significant 
effects on quality-of-life outcomes have also 
been observed. Also an improved resolution of 
symptoms such as daytime sleepiness has been 
demonstrated. Telemonitoring is already techni-
cally available from various providers but is 
hardly used by the physicians in charge due to the 
interface problems, the lack of remuneration, and 
the lack of standards of care (Fox et  al., 2012; 
Walker et al., 2018).

Development of medicine has also made great 
strides toward personalized medicine including 
the application of telemedical approaches. 
Various studies have shown the benefits of tele-
medical applications in terms of patient-centered 
outcome (e.g., through increased compliance 
with therapy and more self-determination by 
patients), reduction of costs, and increasing 
access to medical care for patients with chronic 
diseases especially in underserved or rural areas 
and in low-income countries (Flodgren et  al., 
2015; Rada, 2015).
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During the last decade, the use of telemedical 
technology has dramatically increased in devel-
oped countries. This is also reflected in the num-
ber of publications: In 2005, there were still 1090 
publications on the subject of TM, whereas in 
2015, there were 2307 (Bruyneel, 2016).

Telemedicine requires a strong bidirectional 
interaction between patients and healthcare pro-
viders (Flodgren et al., 2015). Unfortunately, the 
kind of data transmitted by the patient, the fre-
quency of data transfer, and the frequency of 
interactions between patient and healthcare pro-
viders vary largely across studies (Flodgren et al., 
2015). Patient data transmission methods as well 
as feedback ways include telephone contacts, the 
Internet, video, and smartphone-based data trans-
fer. In sleep medicine, telemedical solutions for 
patient management are applicable ranging from 
diagnosis to the monitoring of treatment. The 
potential benefits of telemedicine include 
improved access to healthcare, reduced waiting 
time for appointments, and increased adherence 
to chronic illness treatment plans.

A study of Gagnadoux et al. (2002) included 
99 patients in a prospective randomized cross-
over trial. Each patient underwent one home PSG 
and one telemonitored, PSG (TM-PSG) on two 
consecutive nights. The TM-PSG was recorded 
in the medical unit of two peripheral hospitals, 
with remote control from the central sleep lab. 
The sleep technicians checked the quality of the 
recordings every 30 min and instructed the nurs-
ing staff at the two hospitals to replace any insuf-
ficient electrodes. Failure rate was 11% for 
TM-PSG vs. 23% for home PSG.  Thirteen 
TM-PSGs required technical intervention to 
replace lost sensors, but in four cases, the nurse in 
the medical unit was not able to correct the prob-
lem. Without telemonitoring, the failure rate 
would have been 19% but was reduced to 11% 
with remote supervision. A cost analysis was also 
performed and concluded that although telemedi-
cine was more effective (half the number of fail-
ures), it was also very expensive ($244 vs. $153 
for home PSG; Pelletier-Fleury et al., 2001).

Another study (Pelletier-Fleury et  al., 2001) 
investigated telemonitored polygraphy (TM-PG) 
in patients with suspected OSAS.  TM-PG was 

performed on 40 patients, in a “Virtual Sleep 
Unit,” in another hospital some 80 km from the 
central sleep lab. The sleep lab nurses performed 
real-time continuous TM-PG check with addi-
tional continuous video monitoring. No PG fail-
ure was observed, but data transmission failed for 
2.5% of the recordings. The cost analysis showed 
also that telemedicine is associated with addi-
tional costs: TM-PG costs $277 compared to 
$145 for a PSG.

Additionally, recent studies demonstrate the 
positive effect of telemonitoring in patients 
undergoing PAP therapy.

Chumpangern et al. (2021) performed a pro-
spective randomized controlled trial on 60 Asian 
adults (70% male) with moderate-to-severe OSA. 
Two groups (telemonitoring vs. no telemonitor-
ing) with 30 patients each were analyzed. The 
telemonitoring system functioned by transferring 
CPAP usage data via cellular network. When 
there were any triggers occurring 2 nights con-
secutively (usage hours <4 h per night; leakage 
>27 L/min or AHI > 5 events/h), the investigator 
contacted the patients. As the primary outcome of 
this study, the 4-week CPAP usage hours per 
night was chosen. As a result, they found that the 
percentage of good adherence was significantly 
higher in the telemonitoring group (64.2% vs. 
34.4%; P = 0.024). Median leakage per night was 
also significantly lower in the telemonitoring 
group and a significant sleep quality improve-
ment was observed.

Isetta et al. (2014) tested the feasibility of tele-
consultation. Two different schemes were studied 
to assess whether teleconsultation could replace, 
first, continuous positive airway pressure (CPAP) 
follow-up consultation (n  =  50) and, second, 
CPAP training consultation (n = 40 patients, two 
groups: face-to-face vs. teleconsultation). For 
CPAP follow-up, 95% of the patients were satis-
fied with the teleconsultation, and 66% declared 
that teleconsultation could replace up to 100% of 
the CPAP therapy follow-up visits. Younger 
patients (<65 years) were more inclined to rec-
ommend teleconsultation to others. For CPAP 
training, patients trained via videoconference 
demonstrated the same knowledge about OSAS 
and CPAP therapy as the face-to-face group (94% 
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of correct answers vs. 92%). Video-trained 
patients also showed similar performances on 
mask placement and mask leak avoidance.

Woehrle et  al. (2017) analyzed data from a 
large German homecare provider with the aim to 
investigate the effect of a proactive patient man-
agement program supported by remote access to 
PAP therapy data on therapy termination com-
pared with standard care. They found that the 
long-term rate of therapy termination was signifi-
cantly lower by using a telemedicine-based pro-
active management strategy compared with 
standard care independently of sex, age, type of 
device, or type of insurance. Therefore, they con-
clude that the implementation of telemedicine-
based strategies has the potential to improve 
adherence and patient outcomes and may allow a 
more efficient allocation of scarce healthcare 
resources.

In a study of Dellaca et al. (2011), 20 severe 
OSAS patients who were using CPAP for the first 
time were estimated. Here, CPAP was coupled 
with a telemetric unit in order to allow remote 
control of CPAP parameters (flow, pressure, 
leaks) and CPAP pressure adaptation. After 
7 days patients underwent full in-lab PSG with 
another CPAP titration. Pressure level was simi-
lar in both settings: 9.15 at home vs. 9.2  cm 
H2O. Real-time remote CPAP titration is feasible 
and offers pressure-setting outcomes similar to 
in-hospital-attended CPAP titration.

Hwang et  al. (2018) performed a four-arm, 
randomized, factorial design clinical trial which 
enrolled 1455 patients, mainly woman (51.0%) 
referred to sleep laboratory due to suspected 
OSA. Nine hundred and fifty-six patients 
underwent home sleep apnea testing, and 556 
were prescribed CPAP. A total of two telemedi-
cine interventions were implemented: first, a 
web-based OSA education and, second, a CPAP 
telemonitoring with automated patient feedback. 
Patients were randomized to (1) usual care, (2) 
OSA education, (3) CPAP telemonitoring, or (4) 
OSA education and CPAP telemonitoring. They 
found that the use of CPAP telemonitoring with 
an automated feedback messaging system 
improved 90-day adherence in patients with 
OSA. Additionally, telemedicine-based educa-

tion did not significantly improve CPAP adher-
ence in the presented study but did increase clinic 
attendance for OSA evaluation.

Patil et al. (2019) studied in their systematic 
review the effect of telemonitoring-guided PAP 
interventions. They identified a total of five ran-
domized controlled trials (RCT) that evaluated 
the use of remote monitoring as an adjunct to 
PAP therapy in order to optimize treatment 
effects for OSA patients. They defined adherence 
to PAP therapy, sleepiness, QoL, and PAP-
associated side effects as outcomes. Outcomes 
were analyzed at 2–3 months after PAP initiation. 
Triggers for intervention and the interventions 
themselves varied greatly across the analyzed 
studies resulting in a great variety of results. 
Reasons for low usage were, for example, high 
mask leakages, too high delivered pressures, or a 
high residual AHI.

The authors highlighted that also interven-
tions triggered by PAP data varied substantially 
in the analyzed studies: from text messages to 
telephone calls or in-person visits with sleep staff 
or even a sleep physician.

Patil et  al. also performed meta-analyses to 
assess the efficacy of telemedical-guided inter-
ventions in order to increase PAP adherence. 
Here, a clinically significant improvement in PAP 
adherence with the use of telemonitoring could 
been shown.

Additionally, the efficacy of an intervention 
guided by remote monitoring of PAP therapy to 
improve PAP adherence was evaluated using a 
meta-analysis of five RCTs that reported on hours 
per night of PAP usage. All analyzed studies used 
data from PAP devices to guide the intervention. 
Four of the five studies included newly diagnosed 
OSA patients with minimal comorbidity, but fol-
low-up was short ranging from 1 to 3  months. 
The performed meta-analysis demonstrated a 
clinically significant increase in PAP usage of 
1.0 h/night (95% CI: 0.5–1.4 h/night).

19.3	� Discussion

There are two potential explanations for this 
increase in adherence with telemonitoring.

S. Dietz-Terjung et al.
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Firstly, telemedicine allows an immediate, 
low-threshold access to real-time assistance from 
a clinical provider to address PAP-related issues 
for patients in comparison to a long waiting time 
for an appointment to see a clinician face to face.

Secondly, daily monitoring motivates and 
engages patients and increases their health liter-
acy leading to an improved sense of accountabil-
ity for their own healthcare.

However, these mechanisms are still not fully 
evaluated. Overall, the analyses demonstrated a 
clinically significant improvement in adherence 
in adults with OSA using telemonitoring com-
pared to usual care. Additionally, the quality of 
evidence for PAP adherence was high.

The performed meta-analysis did not demon-
strate a clinically significant reduction in the 
Epworth Sleepiness Scale (ESS) with 
telemonitoring-guided intervention as compared 
to no such interventions. However, the quality of 
evidence for self-reported sleepiness was moder-
ate due to imprecision.

Patil et  al. (2019) also identified two RCTs 
that assessed the impact of a telemonitoring-
guided PAP adherence intervention on PAP-
induced side effects, although data were not 
reported in a sufficiently standardized format to 
allow for a meta-analysis.

Identified side effects included CPAP discom-
fort, difficulty exhaling, mask leakages, aeropha-
gia, allergic reactions to device components, 
headache, facial pain or bruises, mouth dryness, 
or nasal congestion independent from the fre-
quency of PAP-related side effects, with the 
exception of one study which suggested that tele-
monitoring was associated with fewer complaints 
of a dry mouth. The quality of evidence was low 
due to imprecision.

They also found no statistically significant 
change in the quality of Life (QOL).

The use of telemonitoring has advantages and 
disadvantages according to Patil et al. The bene-
fits include improvements in PAP adherence to 
improve control of OSA symptoms and reduce 
the need for office visits, more patient confi-
dence, and reduced healthcare costs.

A potential harm of a telemedical-guided 
intervention is the potential loss of privacy. 

Furthermore, a constant contact with physician 
and provider could be stressful for some patients.

Onofri et al. (2021) presented in their work the 
use of telemedicine in children with complex 
conditions on home ventilation (invasive and 
noninvasive) during the COVID-19 pandemic. 
During this intervention, they were able to detect 
a total of 12 healthcare problems during sched-
uled telemedicine consulting. Only one problem 
was not solved by remote intervention. In conclu-
sion, the use of telemedicine in CMC-ventilated 
patients resulted in a feasible tool to avoid in-
person visits during the pandemic without dete-
rioration of clinical care.

Kulkarny et al. (2021) analyzed in their review 
current pulmonary telemonitoring technologies. 
They conclude that despite increasing evidence, 
remote patient monitoring and telehealth could 
improve patient-provider communication in 
remote residential populations as well as in rural 
healthcare settings in the guise of equitable 
patient-specific healthcare. However, they point 
out that a successful implementation of a tele-
health paradigm requires reliable, accountable, 
secure, and accurate real-time remote monitoring 
devices as well as accurate artificial intelligence 
for support of clinical decision-making.

Beside technical solutions for transmitting 
and processing therapy data, it is of great impor-
tance to define replicable standardized interven-
tion descriptions as a basis for a scalable 
telemedical management, e.g., in terms of gener-
ating further evidence for a positive healthcare 
effect and for assessing resources in order to 
implement remuneration for TM (Schöbel et al., 
2020).

19.4	� Conclusion

Telemedicine is a logical and important step for 
sleep medicine.

Various methods are available to estimate 
patients’ adherence and compliance with PAP 
therapy at home. Objective data can be obtained 
by downloads from the memory card of the PAP 
device or by direct interrogation of PAP devices 
to cloud-based systems. Telemedical applications 
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can be used to monitor patients on a large scale 
and encouraging patients’ empowerment. There 
are various mechanisms for supporting virtual 
consulting and remote monitoring, although it 
remains unclear if they can be conducted in an 
economic way. Inclusion of sham telemedicine 
control arms might determine whether increased 
adherence might have been caused by the percep-
tion of monitoring by the patients or by the ear-
lier clinical interventions. Additionally, 
telemedical management of PAP treatment could 
generate more evidence for a positive dose-
response relationship of PAP adherence and 
patient-reported-outcome measures. 
Furthermore, it is of great importance to be aware 
of how to use this technology safely according to 
GDPR or any other current legal confines in the 
respective healthcare system. In addition, stan-
dardized and replicable intervention descriptions 
for telemedicine management will provide a 
more seamless communication flow, to the bene-
fit of medical providers, the healthcare system, 
and ultimately for patients.

Therefore, a structured framework, e.g., the 
MAST (model for assessment of telemedicine) is 
necessary to facilitate the choice of the most effi-
cient and cost-effective device for the treating 
physician. Yet, inclusion of lifestyle devices as 
well as new sensors and technologies needs to be 
validated according to the Medical Device 
Regulations in order to use them in a medical 
context.
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20Innovations in the Treatment 
of Pediatric Obstructive Sleep 
Apnea
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Abstract

Obstructive sleep apnea affects a large propor-
tion of otherwise healthy children in the context 
of interactions between craniofacial elements, 
adenotonsillar hypertrophy and other anatomi-
cal factors, and neuromuscular reflexes of the 
upper airway. In light of the adverse conse-
quences of sleep apnea, it is important not only 
to proceed with early diagnosis but also to 
implement adequate treatment that is guided by 
the pathophysiological determinants of the dis-
ease in each child. Here, we will describe the 
current standard of care approaches to the treat-
ment of pediatric obstructive sleep apnea, and 
will also explore novel management strategies 
that should enable more personalized therapy 
in the near future.
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20.1	� Importance of Sleep

The American Academy of Sleep Medicine 
(AASM) and the National Sleep Foundation set 
forth recommendations for each age group on the 
total amount of sleep needed to promote optimal 
health in children (Paruthi et  al., 2016; 
Hirshkowitz et al., 2015). These technical reports 
summarizing the extant literature and reflecting 
the consensus opinion of panels of experts indi-
cated that sleeping less than the number of hours 
recommended could lead to behavior and aca-
demic problems, as well as various health issues, 
which prompted the endorsement of such recom-
mendations by the American Academy of 
Pediatrics (AAP) (Hirshkowitz et  al., 2015; 
Jenco, 2016). However, it is not only the duration 
of sleep that is important for health, but the qual-
ity and regularity as well. Indeed, reducing dis-
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ruption of sleep (i.e., sleep fragmentation) 
(Fatima et al., 2016; Ohayon et al., 2017; Phillips 
et  al., 2020), as well as promoting regular bed-
times and sleep schedules (Spruyt et al., 2011), 
are critical to derive the best outcome from sleep 
at all ages, and particularly in growing children. 
Whereas sleep restriction, insomnia and delayed 
sleep-wake phase disorder are among the more 
common causes of short sleep duration in adoles-
cents (Phillips et  al., 2020), obstructive sleep 
apnea (OSA), with its concomitant microarousals 
is one of the most common causes of sleep frag-
mentation across the lifespan (Gipson et  al., 
2019; Zhang et  al., 2017). Adult studies have 
shown that even mild OSA and even snoring with 
upper airway resistance syndrome can lead to 
poor sleep quality and can also be associated with 
comorbidities such as hypertension, obesity, dia-
betes and mood symptoms (Young et al., 2002; 
Pinto et  al., 2016). Thus, maintaining a regular 
sleep schedule with the homeostatic need of sleep 
duration being preserved, and suffering from 
minimal disruption are all the more of paramount 
importance in children (Paruthi et  al., 2016; 
Ohayon et al., 2017; Phillips et al., 2020; Gipson 
et al., 2019).

20.2	� Diagnosis of OSA

The gold standard for the diagnosis of OSA 
remains as an in-laboratory diagnostic polysom-
nogram (PSG) (Gipson et al., 2019; Marcus et al., 
2012; Dehlink & Tan, 2016). This is most effec-
tive when clinically correlated with a positive 
patient history and physical examination (Gipson 
et  al., 2019; Marcus et  al., 2012). Alternative 
approaches to the diagnosis of OSA in children 
are emerging. For a more detailed coverage of 
this topic, the reader is referred to a previous 
chapter by the authors in this book.

20.3	� Overview of Treatment

Adenotonsillectomy (AT) remains the most com-
mon and first line management procedure for 
pediatric OSA (Marcus et al., 2012; Kaditis et al., 

2016). However, there is currently no consensus 
algorithm for the management of pediatric OSA, 
or even a consensus regarding which cut-off val-
ues in the polysomnogram designate the need for 
certain interventions (Kaditis et  al., 2012; 
Dehlink & Tan, 2016). An algorithm attempting 
to circumvent such issues was first proposed by 
Kaditis et al in 2011, and is presented in Fig. 20.1 
below.

20.3.1	� Weight Management 
for Obesity

Obesity and OSA are tightly interrelated. Obesity 
is a major risk factor for sleep-disordered breath-
ing in children (Kanney et  al., 2020; Redline 
et al., 1999). There is increasing frequency and 
severity of OSA when obesity is present, and 
obese children are much more likely to suffer 
from persistent OSA after customary treatment, 
which usually consists of surgical removal of 
adenoids and tonsils (Amaddeo et  al., 2017; 
Barlow and Expert Committee, 2007). In a previ-
ous study, we showed that obese children with 
OSA ate more fast food, ate less fruits and vege-
tables, and were significantly less likely to engage 
frequently in organized sports (Alonso-Álvarez 
et al., 2015; Spruyt et al., 2010).

The American Academy of Pediatrics (AAP) 
outlines a four-stage approach to the diagnosis 
and management of childhood overweight and 
obesity (Barlow and Expert Committee, 2007). 
The first three stages comprise of lifestyle and 
behavior modifications, whereas medications 
and/ or bariatric surgery are considered during 
the fourth stage (Barlow and Expert Committee, 
2007). Lifestyle changes employed in the treat-
ment of obesity comprise caloric restriction (i.e., 
hypocaloric diet and other nutritional modifica-
tions aimed at minimizing for example the glyce-
mic index) and increasing caloric expenditure 
(i.e., exercise or non-exercise thermogenesis) 
(Cuda et  al., 2016). Roche et  al explored the 
effect of this first-line intervention for obesity, 
and showed that a combination of aerobic exer-
cise and a balanced diet led to weight loss, but 
did not affect the AHI (Roche et al., 2018). They 
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Fig. 20.1  Algorithm for the diagnosis and treatment of pediatric OSA, as proposed by Kaditis et al. (2012)

concluded that their subjects had severe obesity 
and despite the significant weight loss, remained 
in the same Body Mass Index (BMI) category, 
and that greater weight loss was required to see 
an improvement in AHI (Roche et  al., 2018). 
Conversely, in another study they showed that a 
comprehensive obesity management program 
yielded improvements in metabolic dysfunction 
independently of the changes in AHI (Roche 
et al., 2020). Verhulst and colleagues found that 
weight loss was successful in treating OSA in 31 
obese teenagers. In addition, a positive associa-
tion between the severity of OSA at the start of 
the treatment and the amount of weight loss 

achieved was detected (Verhulst et  al., 2009). 
Metformin, phentermine, liraglutide, topiramate 
and orlistat are the medications currently used in 
pediatrics for weight loss (Cuda et al., 2016; Page 
& Freemark, 2020; Pharmareviews.in, 2021). 
Only orlistat is FDA-approved for this indication 
(Cuda et  al., 2016). They have all been studied 
for weight loss for various pediatric age groups, 
but to the best of our knowledge none of these 
medications has specifically been examined as 
far as its effect on AHI after weight loss. Jaramillo 
et  al conducted a retrospective chart review of 
patients who underwent laparoscopic sleeve gas-
trectomy and found that most had resolution of 
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their comorbidities after weight loss from sur-
gery, and this includes 16 of 18 patients not need-
ing their CPAP anymore (Jaramillo et al., 2017). 
Thus, when OSA is present in the context of obe-
sity, it is important to emphasize that all efforts 
should be made to improve dietary habits and 
daily physical activity to not only reduce the like-
lihood of residual OSA, but also to improve the 
cardiometabolic dysfunction that is frequently 
present in these children (Koren et al., 2016a, b).

20.3.2	� Anti-Inflammatory Therapy

Systemic and local (topical) anti-inflammatory 
therapy is now commonly used in the manage-
ment of pediatric OSA and includes intranasal 
steroids and montelukast.

It is recognized that in OSA, there is evidence 
of accelerated proliferation of inflammatory cells 
in the airways, such as eosinophils, lymphocytes 
and mast cells (Brockmann & Bertran Salinas, 
2021). Corticosteroids will inhibit chemical mes-
sengers like cytokines, chemokines, and adhe-
sion molecules ultimately reducing the 
recruitment of inflammatory cells to tissues such 
as the adenoids or tonsils (Brockmann & Bertran 
Salinas, 2021). Corticosteroids will also operate 
via inhibition of proliferation, hence potentially 
reducing the hyperplasia and hypertrophy of 
these tissues that play such a fundamental role in 
enhancing the risk of OSA (Brockmann & 
Bertran Salinas, 2021).

Interestingly, only a few randomized con-
trolled studies have been carried out to date. 
Generally speaking, the extant literature clearly 
supports the efficacy of the anti-inflammatory 
approaches in the treatment of OSA in children 
(Gozal et  al., 2021). The initial study by 
Brouillette et al studied the effects of intranasal 
fluticasone on the AHI in a triple-blind random-
ized trial, and found that the AHI in the study 
group decreased from around 10.7 events per 
hour to 5.8 events per hour after 6 weeks of use 
(Brouillette et al., 2001). Since then, most studies 
have particularly explored the impact of this 
treatment in mild cases, based on the ethical 
equipoise that delaying surgical treatment in 

more severe OSA cases may not be appropriate 
(Brockmann & Bertran Salinas, 2021). In a recent 
study, Kajiyama and colleagues confirmed the 
validity of such approach, and showed that 
although adenotonsillectomy could be presented 
in a substantial proportion of mild and moderate 
OSA cases by medical treatment, severely 
affected children were significantly less likely to 
benefit from such approach (Kajiyama et  al., 
2021). Notwithstanding, there appears to be some 
advantage in efficacy when combination treat-
ment with intranasal corticosteroids and monte-
lukast is implemented rather than intranasal 
steroids alone (Liming et al., 2019; Kuhle et al., 
2020). Overall, the empirical experience of our 
group over several years seems to indicate a sub-
stantial benefit from anti-inflammatory 
approaches in mild to moderate OSA, with up to 
>80% of children not requiring surgical interven-
tion (Kheirandish-Gozal et al., 2014). We should 
also indicate that the younger ages (<6–7 years) 
seem to be more responsive to treatment than 
older children, likely because in older children 
the lymphadenoid tissues in the upper airway are 
more likely to be more rigid and less malleable 
due to increased fibroelastic structural content.

Montelukast is a leukotriene receptor antago-
nist and acts via cysteinyl leukotriene receptor-
1 in tonsils and adenoids (Brockmann & Bertran 
Salinas, 2021). Several studies have shown that 
use of montelukast can be used in the short-term 
treatment of mild to moderate OSA (Brockmann 
& Bertran Salinas, 2021; Liming et  al., 2019; 
Kuhle et al., 2020; Ji et al., 2021; Kheirandish-
Gozal et al., 2016; Bao et al., 2021). Kheirandish-
Gozal et al showed in a double-blind randomized 
trial that use of montelukast for 16  weeks 
improved AHI from 9.2 events per hour to 4.2 
events per hour (Kheirandish-Gozal et al., 2016). 
In vitro studies have confirmed decreased prolif-
eration in tonsillar and adenoidal tissue after 
exposure to montelukast (Dayyat et al., 2009). Of 
note similar results were reported by Goldbart 
and colleagues in a preceding RCT (Goldbart 
et al., 2012). Several issues remain unaddressed 
however and will need to be delineated to allow 
for a more uniform implementation of these 
approaches. These issues will need to include 
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whether specific ages are more likely to respond 
favorably, what anatomical attributes need to be 
considered (e.g., extent of tonsillar or adenoidal 
hypertrophy, Mallampati score, degree of retrog-
nathia, etc…), the duration and dosage of treat-
ment, when to use this approach either as single 
vs. combined therapy, etc…

20.3.3	� Orthodontic Management

Certain craniofacial features have been frequently 
linked to pediatric OSA. Syndromic children 
usually present with craniofacial malformations, 
which could include midface hypoplasia, man-
dibular hypoplasia, macroglossia, or a narrowed 
oropharynx (Fernandes Fagundes et  al., 2021). 
These children should be screened regularly by 
both their primary care physicians, and oral 
health providers (Fernandes Fagundes et  al., 
2021). Validated questionnaires can be used for 
screening, albeit being fraught with limited reli-
ability, and clinical imaging and/ or referrals to 
specialists such as ENT are periodically needed 
(Fernandes Fagundes et  al., 2021). Orthodontic 
treatment is currently deemed beneficial in the 
management of OSA in children in the presence 
of certain craniofacial features or malformations 
associated with OSA problems (Fernandes 
Fagundes et al., 2021). However, more expansive 
training of orthodontic specialists in sleep medi-
cine and development of more standardized inter-
ventions along with the appropriate underlying 
clinical trial evidence may propel orthodontic 
options to the high priority standing of treatment 
choices. Presented below are two orthodontic 
procedures currently employed in the manage-
ment of some children suffering from OSA.

20.3.3.1	� Rapid Maxillary Expansion
Rapid Maxillary Expansion (RME) is used for 
correction of dental crowding in pre-pubertal 
children with the presence of maxillary skeletal 
constriction (Fernandes Fagundes et  al., 2021; 
Júnior et al., 2018). Overall, the purpose of the 
procedure is to increase the volumetric space 
within the oral cavity while facilitating improved 
positioning of the tongue, the latter generally 

being displaced backwards and reducing further 
the pharyngeal introitus (Júnior et  al., 2018; 
McNamara Jr et al., 2015). Hence, it may be an 
adjunct treatment in children who have residual 
OSA (Fernandes Fagundes et al., 2021). RME is 
also performed in selected pediatric cases when 
nasal obstruction symptoms are predominant 
(Júnior et al., 2018). It then leads to reduced nasal 
airway resistance and improved respiratory pat-
tern (Júnior et  al., 2018; McNamara Jr et  al., 
2015; White et al., 1989; Kiliç & Oktay, 2008). In 
recent years the selection of rapid vs. intermedi-
ate vs. slow maxillary expansion using the cus-
tomary expanders has prompted renewed interest 
in the advantages and disadvantages of each 
approach (Luiz Ulema Ribeiro et  al., 2020; 
Adobes Martin et al., 2020; Hoxha et al., 2018). 
Villa et al showed that after 12 months of RME, a 
20% reduction in AHI was anticipated, and that 
RME appears to be a safe and efficacious inter-
vention in selected cases with more complex 
forms of OSA in which adenotonsillectomy alone 
is insufficient to normalize the breathing patterns 
during sleep (Villa et al., 2015).

20.3.3.2	� Mandibular Advancement
Mandibular advancement devices (MAD) involve 
changing the mandible to a more forward posi-
tion in relation to the maxilla. This increases the 
sagittal dimension of the oropharyngeal area and 
reduces collapsibility of the airway there 
(Fernandes Fagundes et al., 2021). This treatment 
modality is already regularly employed in the 
treatment of mild-to-moderate OSA in adults, 
especially those with a history of non-compliance 
or non-tolerance of Positive Airway Pressure 
(PAP) Therapy (Ramar et al., 2015). A systematic 
review and meta-analysis by Noller et al found a 
dramatic improvement in AHI (89% decrease) in 
patients with mandibular insufficiency when 
treated with either mandibular advancement or 
mandibular distraction (Noller et  al., 2018). 
Another systematic review and meta-analysis, 
this time by Schwartz et al, found that CPAP is 
still more efficient in reducing AHI, but has less 
compliance (Schwartz et al., 2018). There was no 
difference in quality of life with MAD (Schwartz 
et al., 2018).
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20.3.4	� Surgical Treatment 
of Pediatric OSA

As mentioned above, adenotonsillectomy (T&A) 
is considered the first-line treatment for pediatric 
OSA by the AAP, AASM and the American 
Academy of Otolaryngology-Head and Neck 
Surgery (AAO-HNS) (Marcus et  al., 2012; 
Aurora et  al., 2011; Mitchell et  al., 2019). The 
gold standard technique involves removal of the 
tonsils along with the capsule (i.e., tonsillec-
tomy) (Sarber & Ishman, 2021). Another 
approach, tonsillotomy, refers to the removal of 
the tonsillar tissues, while leaving the tonsillar 
capsule in place (Sarber & Ishman, 2021). This 
has been shown to be associated with less bleed-
ing and pain (Konstantinopoulou et  al., 2015; 
Borgström et al., 2019) but is associated with a 
higher rate of tonsillar re-proliferation and recur-
rence of OSA in a substantial proportion of the 
children (Sarber & Ishman, 2021). T&A is asso-
ciated with improved AHI, behavior and quality 
of life (Sarber & Ishman, 2021; Marcus et  al., 
2013; El-Kersh et al., 2017; Fehrm et al., 2020; 
Song et al., 2016). Obesity, age > 7 years, black 
race, OSA severity before surgery, and presence 
of genetic and metabolic syndromes (especially 
those associated with craniofacial and neuromus-
cular disorders) negatively affect the outcomes of 
T&A and are inherently fraught with a high risk 
of residual OSA that may require additional 
interventions (Konstantinopoulou et  al., 2015; 
Sarber & Ishman, 2021; Connolly et  al., 2020; 
Della Vecchia et al., 2020).

20.3.4.1	� Drug Induced Sleep 
Endoscopy (DISE)

DISE is a technique to evaluate the upper airways 
while the patient is deeply sedated. The sedation 
state using specific drugs is considered as a via-
ble simulation of natural sleep. DISE is presently 
used to aid in surgical decision-making for chil-
dren with persistent OSA, and sometimes used in 
decision making for those children at risk for per-
sistent OSA (Sarber & Ishman, 2021; Baldassari 
et  al., 2021). Dynamic evaluation of the upper 
airway during sedation allows for identification 
of additional sites of obstruction that could be 

potentially addressed surgically (Sarber & 
Ishman, 2021; Baldassari et al., 2021). DISE is 
required for patients being considered for a hypo-
glossal nerve stimulator to evaluate the degree 
and pattern of velopharyngeal collapse (Sarber & 
Ishman, 2021). Of note, nerve stimulation devices 
are not currently approved by the FDA for use in 
children, but have gained popularity among 
adults who are refractory to CPAP.

20.3.4.2	� Nasal and Nasopharyngeal 
Surgery

Nasal surgery has been shown to improve AHI, 
and reduce CPAP pressures (Hoxha et al., 2018). 
Septoplasty has historically been avoided in chil-
dren due to concerns about its effects on nasal 
growth (Cingi et al., 2016). More recently, lim-
ited septoplasty has been shown to be safe espe-
cially for children older than 6 years of age (Cingi 
et al., 2016). Turbinoplasty is a commonly per-
formed procedure to improve nasal breathing in 
children with turbinate hypertrophy (usually 
associated with chronic allergic rhinitis) and 
signs of nasal airway obstruction (Sarber & 
Ishman, 2021; Wright et al., 2020).

20.3.4.3	� Oropharyngeal Surgery
Uvulopalatopharyngoplasty (UPPP) involves 
removal of excessive tissue of the lower soft pal-
ate and uvula (Sarber & Ishman, 2021). Because 
of complications such as velopharyngeal insuffi-
ciency, voice changes, globus, and airway steno-
sis, the traditional technique has undergone many 
modifications over the years (Sarber & Ishman, 
2021). UPPP has been shown to improve OSA in 
children who are neurologically impaired (Kosko 
& Derkay, 1995; Kerschner et al., 2002), and in 
those with severe obesity (Com et al., 2015).

20.3.4.4	� Tongue Surgery
Tongue base reduction (i.e., base-of-tongue sur-
gery, BOT) can be achieved through lingual ton-
sillectomy (Sarber & Ishman, 2021). Other 
surgeries in this category include tongue suspen-
sion and true reduction (Camacho et al., 2017). 
All three were evaluated by Camacho and col-
leagues in a systematic review and meta-analysis. 
BOT was shown to reduce AHI in both syndromic 
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and non-syndromic children. However, the 
majority of reports involve very small series or 
even isolated case reports.

20.3.4.5	� Tracheotomy
Tracheotomy allows for complete bypass of the 
obstructed upper airway structures for the treat-
ment of OSA. It is considered as a salvage treat-
ment option for children with severe OSA after 
other options have failed (Sarber & Ishman, 
2021). Although used in the past, every effort 
should be made to avoid this intervention.

20.3.5	� Positive Airway Pressure (PAP) 
Therapy

PAP preserves airway patency during sleep by 
stenting the collapsible segments of the airway. 
Thus, PAP reduces the inspiratory work of 
breathing in the setting of increased airway resis-
tance. Though PAP therapy is the first-line treat-
ment for adult OSA (Patil et al., 2019), it is often 
reserved for cases of persistent OSA (i.e., refrac-
tory or residual OSA) after T&A, or in those chil-
dren with otherwise little or no evidence of 
adenotonsillar hypertrophy (Dehlink & Tan, 
2016; Gozal et  al., 2020). Usually, continuous 
pressures are delivered throughout the complete 
respiratory cycle (i.e., inspiratory and expiratory 
phases; CPAP). However, when a very high posi-
tive end-expiratory pressure is required, or if the 
patient has a neuromuscular condition or obesity 
hypoventilation syndrome, bi-level PAP (BIPAP) 
may be implemented, whereby the expiratory 
pressure administered is inferior to the inspira-
tory pressure and permits more comfortable 
respiratory efforts while maintaining airway 
patency throughout the respiratory cycle. Though 
PAP therapy is very effective, adherence is usu-
ally a major problem (Gozal et al., 2020; Hawkins 
et  al., 2016; Bhattacharjee et  al., 2020). 
Behavioral interventions such as desensitization 
(Gozal et al., 2020) or family member modeling 
(Puri et  al., 2016) have been developed and 
shown to increase compliance or adherence to 
treatment.

20.3.6	� Myofunctional Approaches

Orofacial myofunctional therapy helps to re-
establish correct habits and functioning of the 
orofacial muscles to avoid residual OSA after 
surgical and orthodontic treatment (Villa & 
Evangelisti, 2021). The treatment must be as 
early as possible for protecting airway health and 
sleep quality (Villa & Evangelisti, 2021).

Children with OSA traditionally present with 
alterations in posture and mobility of the orofa-
cial musculature, and oropharyngeal muscle 
hypotonia is also implicated in the pathogenesis 
of OSA (Villa & Evangelisti, 2021). Exercises 
may improve function and reduce such impair-
ments (Gozal et al., 2020). These exercises aim to 
correct functions such as swallowing, breathing, 
speech, and chewing. Exercises can be catego-
rized into: (1) nasal breathing rehabilitation; (2) 
labial seal and lip tone exercises; and (3) tongue 
posture exercises (Fehrm et al., 2020).

Overall, myofunctional exercises lead to 
decreased mouth-breathing, re-establish nasal 
breathing and improve orofacial muscle perfor-
mance (Villa & Evangelisti, 2021). However, 
their efficacy has not been critically evaluated 
even if preliminary results are encouraging in 
children (Camacho et  al., 2015). In addition, 
adherence to these exercises has been 
problematic.

In summary, a large array of different 
approaches has emerged over the last several 
decades aimed at resolving OSA in the pediatric 
age group. It is likely that as multi-disciplinary 
approaches become the standard, rather than the 
exception, we will witness rapid evolution of 
integrative personalized therapies that are tai-
lored to the specific patient, finally replacing the 
one treatment fits all approach which has domi-
nated to the present day.
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21Hypoglossal Nerve Stimulation 
Therapy

Philipp Arens, Toni Hänsel, and Yan Wang

Abstract

Hypoglossal nerve stimulation (HNS) has 
been shown to be a safe alternative in the treat-
ment of moderate-to-severe obstructive sleep 
apnea (OSA). A recent meta-analysis of 12 
studies by Costantino et al. indicated the sur-
gical success rates at 55–75%, a reduction of 
the apnea hypopnea index (AHI) of 18 
events/h, and a reduction of the Epworth 
Sleepiness Scale (ESS) of 2.9–5.3. After ani-
mal studies in the 1970s, the first trial on 
humans to decrease upper airway resistance 
by transcutaneous electrical stimulation of the 
genioglossus was reported in 1989. A separate 
stimulation of protruding and retracting mus-
cles was realized in 1995 by fine-wire elec-
trodes that were placed into the tongue 
transoral. Over the next years, several compa-
nies developed implantable devices for hypo-

glossal stimulation in OSA. Initially, devices 
were developed that used unilateral stimula-
tion of the hypoglossal nerve. In 2014, a 
device for unilateral respiratory frequency-
controlled hypoglossal stimulation finally 
received FDA approval after a successful 
phase III trial. In recent years, a device for 
bilateral breath rate-independent stimulation 
of the hypoglossal nerve has been added to 
these approaches as a new development. 
Accordingly, hypoglossal nerve stimulation, 
on the one hand, is now an established tool for 
patients with OSA when standard treatments 
are not satisfactory. Beyond that, hypoglossal 
stimulation is undergoing a continuous and 
impressive development like hardly any other 
field of surgical therapy for OSA.

Keywords

Neurostimulation · Hypoglossal nerve 
stimulation therapy · Obstructive sleep apnea

21.1	� Introduction

Standard care for obstructive sleep apnea syn-
drome is positive airway pressure therapy (PAP 
therapy). However, a pertinent portion of patients 
does not benefit of this therapy due to various rea-
sons (Rotenberg et al., 2016). Hypoglossal nerve 
stimulation (HNS) has been shown to be a safe 
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alternative in the treatment of moderate-to-severe 
obstructive sleep apnea (OSA) (Costantino et al., 
2020). During OSA, the collapse of the upper air-
way is prevented by a balance between phasic 
muscle activation and the subatmospheric pharyn-
geal intraluminal pressure. Especially the genio-
glossus muscle  – innervated by the hypoglossal 
nerve  – is responsible for the oropharyngeal 
patency (Kuna & Sant’Ambrogio, 1991). After 
animal studies in the 1970s, the first trial on six 
humans to decrease upper airway resistance by 
transcutaneous electrical stimulation of the genio-
glossus was reported in 1989 (Miki et al., 1989). 
A separate stimulation of protruding and retract-
ing muscles was realized in 1995 by fine-wire 
electrodes that were placed into the tongue tran-
sorally (Schwartz et  al., 1996). Over the next 
15 years, several companies developed implant-
able devices for hypoglossal nerve stimulation in 
OSA. Initially, devices were developed that used 
unilateral stimulation of the hypoglossal nerve. In 
2014, a device for unilateral respiratory frequency-
controlled hypoglossal stimulation finally 
received FDA approval after a successful phase 
III trial (Strollo et  al., 2014). In recent years, a 
device for bilateral breath rate-independent stimu-
lation of the hypoglossal nerve has been added to 
these approaches as a new development (Eastwood 
et al., 2020). A recent meta-analysis of 12 studies 
indicated the surgical success rates at 55–75%, a 
reduction of the apnea hypopnea index (AHI) of 
18 events/h, and a reduction of the Epworth 
Sleepiness Scale (ESS) of 2.9–5.3 (Costantino 
et  al., 2020). Accordingly, hypoglossal nerve 
stimulation, on the one hand, is now an estab-
lished tool for OSA patients when standard treat-
ments are not satisfactory. Beyond that, 
hypoglossal stimulation is undergoing a continu-
ous and impressive development like hardly any 
other field of surgical therapy for OSA.

21.2	� Hypoglossal Nerve 
Stimulation Techniques

The implantable hypoglossal nerve stimulation 
devices that have been developed use different 
technical approaches. From a clinical point of 
view, a distinction must be made between unilat-

eral and bilateral stimulation as well as stimula-
tion at the proximal hypoglossal nerve and 
selective stimulation of distal nerve branches. In 
addition, there are and were devices that stimu-
late respiratory frequency-controlled and stimu-
late respiratory frequency-independent (see also 
Fig. 21.1).

21.2.1	� Unilateral Hypoglossal Nerve 
Stimulation Therapy 
with Respiratory Sensing

Function of the system (Inspire IV System, 
Inspire Medical Systems, Inc.) is based on respi-
ratory rate-controlled phasic stimulation of the 
distal hypoglossal nerve that starts at the end of 
expiration and lasts the entire phase of inspira-
tion. A respiratory sensing lead in the intercostal 
space detects mechanical breathing effort to syn-
chronize the stimulation. During surgery, the 
branching of the distal hypoglossal nerve is being 
visualized to distinguish between medial and lat-
eral division. Lateral branches innervate muscu-
lus hyoglossus and musculus styloglossus – both 
retracting muscles; therefore, stimulation must 
be avoided, whereas medial branches activate 
intrinsic tongue muscles and the musculus 
genioglossus, which lets the tongue protrude. 
Due to palatoglossus coupling, oro- and naso-
pharynx also dilate (Heiser et  al., 2017a). The 
system advanced from the first implant develop-
ments in 1996 (Smith et al., 1996) and was able 
to prove efficacy in the phase III trial for the stim-
ulation therapy for apnea reduction (STAR) at 
12  months of treatment (Strollo et  al., 2014). 
Former studies showed that an AHI with >50/h, 
BMI >32, and a complete concentric collapse at 
velum level predicted a poor response rate (van 
de Heyning et al., 2012). New inclusion criteria 
led to a reduction of AHI by >50% in 124 patients. 
Since there was no control group, 46 responders 
to the therapy were later appointed either to con-
tinuation of stimulation or to a withdrawal group. 
Hence, therapy-related results were inferred with 
an AHI reduction by 68% (p value <0.001) and 
notable improvements in disease-specific quality 
of life measures (Strollo et  al., 2014). Several 
publications reported follow-up data for up to 
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Fig. 21.1  Schematic illustration of different stimulator 
concepts: (a) unilateral distal HNS: breathing cycle con-
trolled (simplified according to Strollo et al. (2015) and 
Kent et  al. (2020)); (b) unilateral proximal HNS: non-

breathing cycle controlled (simplified according to 
Friedman et  al. (2016)); (c) bilateral distal HNS: non-
breathing cycle controlled (simplified according to 
Eastwood et al. (2020))

5 years. Surgical success was defined by a reduc-
tion in AHI >50% of baseline (with <20 events/h) 
and reached by 75% of participants with a 
response rate to treatment with 63% at 5  years 
(Strollo et al., 2015; Woodson et al., 2016, 2018). 
A German post-market study showed an AHI 
reduction of 28.6 to 8.3 events/h in 60 patients 
(Heiser et al., 2017b). Until February 2019, the 
multicenter observational ADHERE Registry 
included 1017 patients. At the 12-month follow-
up, the AHI was reduced from 32.8 to 9.5 in 382 
patients. The multivariate analysis identified 
female sex and lower baseline body mass index 
as important predictors of therapy response 
(Boon et al., 2018; Thaler et al., 2019). To achieve 

blinding integrity, sham stimulation was used in a 
randomized controlled crossover trial with 89 
patients to assess the efficacy of active stimula-
tion and placebo effects. After 1 week of therapy, 
a difference in AHI of 47.2% (95% CI: 24.4–
64.9, p  <  0.001) and difference in ESS of 4.6 
points (95% CI: 3.1–6.1) were reported (Heiser 
et al., 2021).

Another device with respiratory sensing and a 
concept of unilateral distal hypoglossal nerve 
stimulation was developed by Apnex Medical 
Inc. Despite promising results during the phase II 
study (Eastwood et  al., 2011; Kezirian et  al., 
2014), the company ceased business activities in 
2013 before completion of a phase III study.

21  Hypoglossal Nerve Stimulation Therapy
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21.2.2	� Unilateral Hypoglossal Nerve 
Stimulation Therapy Without 
Respiratory Sensing

The targeted hypoglossal neurostimulation sys-
tem (THN) works without respiratory sensing 
and uses a cyclical unilateral stimulation pattern 
of the proximal hypoglossal nerve to avoid mus-
cle fatigue. It was developed by ImThera Medical. 
A small study with 14 participants revealed a 
reduction in AHI from 45.2 events/h at baseline 
to 21.0/h at 12  months of follow-up (Mwenge 
et al., 2013). A subsequent multicenter study sim-
ilarly underlined safety and effectiveness for 43 
participants (Friedman et  al., 2016). LivaNova 
has purchased ImThera with its aura6000™ sys-
tem in 2018.

21.2.3	� Bilateral Hypoglossal Nerve 
Stimulation Therapy Without 
Respiratory Sensing

The Nyxoah Genio™ system works with phasic 
bilateral nerve stimulation without respiratory 
sensing. The surgical approach is different. Only 
one incision is needed, while the idea is to stimu-
late only the most distal part of both hypoglossal 
nerves to ensure symmetric protrusion of the 
tongue. Batteries and activation unit are dispos-
able and to be placed under the chin during the 
night using an adhesive bandage. Published 
results of the BLAST OSA study showed a reduc-
tion in AHI from 23.7/h to 12.9/h in 22 partici-
pants at 6 months of follow-up (Eastwood et al., 
2020).

21.2.4	� Noninvasive Electrical 
Stimulation

Opposed to implantable devices, there is a nota-
ble variety of alternative treatment options with 
electrical stimulation that lack so far consistent 
evidence and are difficult to compare. Further 
research is needed to evaluate this promising 
field (Rodríguez Hermosa et al., 2021).

21.3	� Study Situation 
on Hypoglossal Nerve 
Stimulation

21.3.1	� Effects Following HNS 
Therapy

Previous studies demonstrated that hypoglossal 
nerve stimulation is a safe and effective treatment 
option for selected adult obstructive sleep apnea 
patients; long-term follow-up studies have dem-
onstrated a sustained effect on outcomes after 3 
and 5  years of HNS therapy (Woodson et  al., 
2016, 2018). A meta-analysis of 12 studies indi-
cated the surgical success rates at 55–75%, a 
reduction of the apnea hypopnea index (AHI) of 
18 events/h, and a reduction of the Epworth 
Sleepiness Scale (ESS) of 2.9–5.3 (Costantino 
et  al., 2020). Regarding bilateral distal non-
respiratory rate-controlled HNS therapy (BHNS), 
data are currently available only over a relatively 
short period of time. The effect was proved to be 
comparable with HNS and could reduce OSA 
severity and improve quality of life in the tar-
geted population without device-related compli-
cations (Lewis et  al., 2019; Eastwood et  al., 
2020). However, the potential safety and long-
term efficacy of the BHNS should be studied fur-
ther. Table 21.1 provides an overview of the key 
studies and the longest published follow-up time 
in each of them, subdivided according to stimula-
tion techniques.

For children and adolescents with Down syn-
drome (DS) and OSA, short-term results of an 
early efficacy and safety trial were available, pri-
marily reflecting improvements in AHI, OSA-18 
QOL survey scores with good tolerance of HNS 
(Yu et al., 2021). Adherence to HNS seems better 
for older adults, but one must expect higher rates 
of insomnia symptoms, physical dysfunction, 
cognitive deficits, and depressive symptoms in 
this population (Dzierzewski et  al., 2021). In 
2021, Seda et al. found that OSA treatment, espe-
cially CPAP, appears to mitigate and slow the rate 
of cognitive decline and may reduce the risk of 
dementia (Seda et al., 1910). The potential effect 
of HNS on improving cognitive function remains 
unclear but possible, and further research is 
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required. In addition, the successful application 
of HNS therapy for the treatment of specific OSA 
populations with unusual diseases have been 
reported, including a patient with resolution of 
restless legs syndrome (Myc et al., 2018), veter-
ans with comorbid insomnia and post-traumatic 
stress disorder (PTSD) (Patil et al., 2020), and a 
patient with prior radiation for oropharynx can-
cer complicated by osteoradionecrosis of the 
mandible (Zheng et al., 2017). Lewis et al. pre-
sented the first case of BHNS therapy success-
fully controlling OSA symptoms in a patient with 
complete concentric collapse (CCC) at DISE in 
2021 (Lewis et al., 2021). Regarding a study con-
ducted by Bowen et al. (2018), voice and swal-
lowing function were assessed with the use of 
Voice Handicap Index-10 (VHI-10) and Eating 
Assessment Tool-10 (EAT-10) questionnaires in 
a small group of 14 OSA patients following 
HNS. No sustained changes over 5 months were 
reported (Bowen et al., 2018).

To sum up, large multicenter prospective clin-
ical trials have demonstrated stable and long-
term efficacy of HNS, showing improvement in 
AHI and quality-of-life measures. Specifically, 
HNS could significantly decrease AHI and day-
time sleepiness (measured with ESS) and 
improve oxygen desaturation index (ODI) and 
sleep-related quality of life (e.g., FOSQ 
(Functional Outcomes of Sleep Questionnaire), 
SAQLI (Sleep Apnea Quality of Life), and PSQI 
(Pittsburgh Sleep Quality Index)). Because the 
short-term benefits of HNS therapy for specific 
populations are primarily derived from case 
reports or studies with small samples, these 
results still need to be confirmed in long-term 
studies.

21.3.2	� Sleep Architecture Changes

The 3-year STAR trial data published by Woodson 
et al. demonstrated variable improvement in each 
stage of sleep at 12-, 18-, and 36-month intervals 
(Woodson et  al., 2016). In 2017, Hofauer 
et al. had similar results, but more detailed con-
clusions as they saw a reduction of the time spend 
in N1-sleep stage, the number of arousals, the 

arousal index and the rebound of REM sleep. In 
contrast, time in bed (TIB), total sleep time 
(TST), N2- and N3-sleep period did not change 
during the observation period (Hofauer et  al., 
2017). Equally, Bohorquez et al. demonstrated a 
significant N2 and N3 time improvement among 
patients who responded successfully to HNS 
therapy; in contrast, the N1 sleep percentage, 
arousal index, and wake after sleep onset (WASO) 
decreased, no significant changes were observed 
in REM sleep and sleep latency (Bohorquez 
et al., 2019). This publication indicated that the 
possible explanation for the difference is that 
nonresponders were excluded from this analysis. 
In contrast, the STAR study and Hofauer et  al. 
included nonresponders.

In the future, studies to better understand the 
longitudinal effects of HNS intervention on sleep 
architecture are necessary. These results may 
help demonstrate additional benefits offered by 
HNS therapy, determine factors preoperatively to 
predict the success of HNS, and explain HNS-
related side effects.

21.3.3	� HNS with Down Syndrome

Compared with the prevalence of OSA in the 
general population, it is highest in pediatric 
patients with Down syndrome, where the preva-
lence is 55% to 80%. Anatomical factors, includ-
ing generalized hypotonia, macroglossia, midface 
hypoplasia, small tracheal caliber, and lingual 
tonsil hypertrophy, may contribute to this high 
morbidity rate in the OSA population. Lacking 
effective treatment will lead to cardiopulmonary 
complications, adverse behavior, and reduced 
quality of life. Furthermore, OSA in children 
with down syndrome is associated with lower 
mean verbal IQ scores and lower cognitive flexi-
bility (Simpson et al., 2018). As a result, effective 
treatment and intervention at an early age are 
necessary.

However, a lot of OSA patients with DS fail to 
tolerate CPAP as the standard therapy. To solve 
the problem, an experimental demonstration of 
the effect of HNS in this population was first car-
ried out by Diercks et al. A 14-year-old boy with 
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DS and a longstanding tracheotomy due to severe 
OSA received HNS therapy, resulting in signifi-
cant improvement in the patient’s AHI, and 
5 months after implantation, the patient’s trache-
otomy was successfully closed (Diercks et  al., 
2017). In 2019, Caloway et al. performed implan-
tation of the Inspire HNS for 20 nonobese chil-
dren and adolescents (aged 10–21 years) with DS 
and severe OSA. A significant reduction in AHI 
and improvement of OSA-related QOL(OSA-18 
score) indicate that HNS is a safe and effective 
therapy for children with DS and severe refrac-
tory OSA (Caloway et al., 2019).

Currently, there is an ongoing clinical trial 
(NCT02344108, “A Pilot Study to Evaluate the 
Hypoglossal Nerve Stimulator in Adolescents 
with Down Syndrome and Obstructive Sleep 
Apnea”) that is conducted by Stenerson et al. to 
assess the long-term safety and efficacy of HNS 
among 42 children and young adults with DS and 
persistent OSA (Stenerson et  al., 2021). They 
expect to prove HNS continues to control OSA in 
children with DS as they mature effectively 
because the residual OSA often persists into 
adulthood.

In 2019, the effect of HNS for adult patients 
with DS to treat severe OSA was tested and 
reported (Li et  al., 2018). This indicate HNS is 
very promising for both children and adult OSA 
patient with down syndrome, in whom PAP 
adherence is extremely challenging.

21.3.4	� HNS and Cardiovascular 
Disease

Previous studies demonstrate a strong correlation 
between OSA and deteriorating cardiovascular 
health. Moderate-to-severe OSA is a risk factor 
for cardiovascular diseases (CVD), such as coro-
nary artery disease, congestive heart failure, atrial 
fibrillation, and hypertension. The mechanistic 
pathway of OSA on poor cardiovascular out-
comes is driven by an increased sympathetic tone 
and oxidative stress due to repetitive airway 
obstruction and cyclical hypoxia (Mashaqi et al., 
2021). Rokkas et al. reported HNS impact on a 
patient with OSA and heart failure in 2021, indi-

cating that HNS therapy may become an essential 
adjunct in the comprehensive multidisciplinary 
treatment of heart failure in patients with OSA 
(Rokkas et  al., 2021). However, the literature 
data evaluating the cardiovascular outcomes fol-
lowing HNS use are scarce. Further clinical stud-
ies to investigate the impact of UAS on HRV, 
24-h ambulatory blood pressure, sympathetic 
activity, and vascular function are required, 
which could help the better understanding of 
related pathophysiology and heart disease prog-
nosis following HNS.

21.3.5	� HNS and Heart Rate 
Variability

In 1996, Tsuji et  al. studied the association of 
reduced heart rate variability (HRV) with risk for 
new cardiac events in a large community-based 
population and found that a decreased HRV has 
been associated with an increased risk for inci-
dent coronary heart disease, cardiovascular mor-
tality, and all-cause mortality across populations 
(Tsuji et  al., 1996). HRV represents a dynamic 
measure of autonomic dysfunction, modulated 
by the interaction at the sinoatrial node between 
the sympathetic and parasympathetic nervous 
systems neurotransmitters. Dedhia et  al. 
described the changes of HRV following HNS 
from the STAR trial and demonstrated that suc-
cessful HNS therapy significantly improves HRV 
during sleep after 1 year. The analysis included a 
standard deviation of the R–R interval (SDNN), 
the standard measure to domain HRV, low-
frequency power of the R–R interval, and high-
frequency power of the R–R.  In contrast, no 
significant changes in SDNN were seen during 
sleep observed in the therapy withdrawal group 
(Dedhia et al., 2019).

21.3.6	� HNS and Hypertension

Several longitudinal studies have shown that 
OSA is associated with prevalent and incident 
hypertension (O’connor et  al., 2009; Mokhlesi 
et al., 2014; Marin et al., 2012). Woodson et al. 
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published a study in 2014  in which they evalu-
ated changes in systolic and diastolic blood pres-
sure readings at 12- and 18-month post-implant, 
and a significant decrease compared with blood 
pressure at baseline was reported (Woodson 
et  al., 2014). However, evidence and studies 
focusing on the relationship between HNS ther-
apy and hypertension are limited. Since 2018, 
Dedhia et al. are conducting a randomized cross-
over trial using sham and active HNS therapy to 
examine the effects of HNS on measures of the 
sympathetic nervous system (including 24-h 
ambulatory blood pressure, muscle sympathetic 
nerve activity, and prerejection period (PEP)) and 
vascular health (i.e., flow-mediated dilation, 
pulse wave velocity) (Dedhia et  al., 2018). The 
findings of this ongoing trial of cardiovascular 
endpoints for OSA patients are anticipated.

21.3.7	� HNS and Electrical 
Cardioversion

Cardiac arrhythmias are common in patients with 
OSA and require electrical cardioversion. Four 
OSA patients with cardiac arrhythmias received 
undergoing external electrical cardioversion. 
Vasconcellos et al. observed a change in device 
functionality or complete cessation of functional-
ity after electro-cardioversion in 2019 
(Vasconcellos et  al., 2019). Similarly, in 2021, 
Yacono et al. reported a case of HNS-associated 
neurapraxia after electrical cardioversion of atrial 
fibrillation, indicating the importance of being 
aware of an implanted device (Yacono & Hyman, 
2021).

21.3.8	� HNS with Cardiac Implantable 
Electronic Device

In 2016, Ong et  al. were the first to report a 
62-year-old man simultaneously implanted with 
a cardioverter-defibrillator (ICD) and HNS.  No 
untoward device interference between the two 
implantable devices was reported (Ong et  al., 
2016). Following this study, Parikh et  al. retro-
spectively analyzed 14 ad hoc patients with 
CPAP intolerance, moderate-to-severe OSA, and 

preexisting transvenous cardiac implantable elec-
tronic device (CIED) undergoing HNS implanta-
tion that were followed up for a year. During the 
follow-up, bipolar and unipolar HNS stimulation 
did not impact CIED sensing, with no over-
sensing episodes noted on the CIEDs (Parikh 
et al., 2018). These findings indicate that simulta-
neous HNS with transvenous CIEDs seemed safe 
and effective without any device interactions.

21.4	� Patient Selection

21.4.1	� Baseline Clinical 
Characteristics

Certain variables such as age and gender seem to 
have associations with better response rates to 
HNS. Patel et al. found a positive association to 
younger age but not to gender (Patel et  al., 
2020b). Thaler et al. found a positive association 
to female gender in the ADHERE registry cohort 
(Thaler et  al., 2019). Previous studies showed 
good response rates at BMI ≤  32  kg/m2. More 
recent data from study registries and multicenter 
studies show good efficacy even at higher values 
up to 35  kg/m2 (Steffen et  al., 2018b; Heiser 
et al., 2019). Concomitant diseases that influence 
therapy should be considered when deciding on 
therapy. For example, insomniac disorder is usu-
ally a contraindication to stimulation therapy. 
Neuromuscular diseases are usually contraindi-
cated. In addition, not every stimulator model has 
unrestricted MRI capability. All these aspects 
should be clarified with the patient in advance by 
the physician in charge.

21.4.2	� Drug-Induced Sleep 
Endoscopy

Drug-induced sleep endoscopy (DISE) simulates 
the pharyngeal space during sleep. Common 
drugs are dexmedetomidine, midazolam, or pro-
pofol. DISE is required to determine the location 
and pattern of obstruction in the upper airway. In 
general, the examination is not well standardized. 
A variety of classification systems exist (Dijemeni 
et  al., 2017). In addition, the findings obtained 
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are dependent on the technique of the examina-
tion, in especially the depth of sedation achieved 
(Hong et al., 2013). Under controlled conditions, 
however, a good test-retest reliability could be 
determined (Kim & Heo, 2020).

Vanderveken et  al. demonstrated that com-
plete concentric collapse (CCC) at the velophar-
ynx led to an increased nonresponder rate in 
patients undergoing unilateral distal hypoglossal 
nerve stimulator implantation in a small number 
of patients (Vanderveken et al., 2013). To ensure 
a therapeutic effect, CCC of the velum is to date 
a contraindication for the available unilateral 
respiratory cycle-controlled hypoglossal nerve 
stimulation device (Strollo et  al., 2014). Even 
though CCC is a relatively frequent DISE finding 
in patients with higher BMI and higher AHI, the 
exclusion of all overweight candidates without 
performing a sleep endoscopy is not justifiable 
(Steffen et  al., 2015). Also, the primary role in 
procedure selection was based on an early, small 
study of this technology even though there were 
potential confounders, which indicates a possi-
bility that some patients with CCC will respond 
well. For instance, Lewis et al. reported success-
ful BHNS therapy in a patient with CCC (Lewis 
et al., 2021). Currently, this circumstance is the 
subject of a clinical trial (BETTER SLEEP study; 
NCT03763682).

Refer to a large multicenter cohort study to 
determine the association between findings of 
preoperative DISE according to VOTE classifica-
tion system (velum, oropharynx, tongue base, 
epiglottis) and outcomes of HNS; the finding of 
primary tongue contribution to airway obstruc-
tion was associated with better response to 
HNS.  In contrast, oropharyngeal lateral wall 
collapse and epiglottis-related obstruction were 
associated with the lowest response rates (Huyett 
et al., 2021). This study suggests that the role of 
DISE in counseling candidates for HNS extends 
beyond solely excluding complete concentric 
collapse related to the velum.

In conclusion, we support the predictive value 
of DISE to assess findings associated with better 
or worse outcomes and recommend DISE as a 
patient selection tool for HNS therapy to treat 
OSA.

21.4.3	� Sleep Lab Testing

Patients with OSA are treated by a sleep medi-
cine specialist. Usually at least once a year, an 
at-home polygraphy (PG) or in-lab polysomnog-
raphy (PSG) is scheduled to monitor and adjust 
the treatment. If the standard therapy with PAP 
fails and the patient is not PAP compliant or PAP 
adherent, patients are counseled for hypoglossal 
nerve stimulation and if needed referred to a head 
and neck surgeon. Prior to implantation, diagnos-
tic baseline polysomnography should be per-
formed to verify that the patient meets the 
indication criteria for hypoglossal stimulation.

21.4.3.1	� PSG
In general, when determining the indication for 
HNS therapy, it is important to consider within 
which AHI range the system is approved. Patel 
et al. demonstrated that also patients with an AHI 
>65/h responded to HNS therapy but suffered 
from residual mild-to-moderate OSAS more fre-
quently than the comparison group (Patel et al., 
2020b). The proportion of central events should 
not exceed 25% to qualify for hypoglossal nerve 
stimulation (Mashaqi et al., 2021).

Away from the general indication criteria, 
there is some evidence for further polysomno-
graphic predictors. Especially with regard to the 
concept of OSA phenotyping, there seem to be 
exciting opportunities for further development in 
patient selection.

21.4.3.2	� OSA Phenotyping
In addition to anatomical causes such as a narrow 
or collaptic pharynx, it is now understood that 
nonanatomical phenotypic mechanisms such as 
high loop gain, a low respiratory arousal thresh-
old, and impairment in pharyngeal dilator muscle 
control and function during sleep additional are 
crucial determinants in the development of OSA. 
The PALM (Pcrit, arousal threshold, loop gain, 
and muscle responsiveness) scale was proposed 
to categorize OSA patients according to the 
degree of upper airway anatomy impairment and 
nonanatomical phenotypes (Eckert et al., 2013). 
Eckert et  al. pointed out that each phenotype 
could be a potential therapeutic target for OSA 
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patients and could be used to apply or develop 
targeted non-CPAP therapies (Eckert, 2018).

An analysis of the STAR study cohort data by 
de Beeck et  al. showed no differences between 
responders and nonresponders to HNS therapy at 
the basal polysomnographic measures except for 
the arousal index. The more profound analysis of 
the polysomnographic data revealed that mecha-
nistic PALM factors related to nonanatomical 
deficits influenced the likelihood of treatment 
success. A higher arousal threshold was a factor 
in better treatment efficacy. Higher loop gain was 
associated with lower HNS efficacy. Interestingly, 
they also showed that patients with higher muscle 
compensation had better HNS therapy outcomes, 
which contradicts the assumption that especially 
patients with a low muscle responsiveness benefit 
from stimulation therapy (de Beeck et al., 2021). 
Contrary to the assumption, they found that 
patients with low pharyngeal collapsibility expe-
rienced poorer treatment efficacy. However, the 
authors point out that the cohort included too few 
patients with severe collapsibility to draw further 
conclusions. Lee et al. demonstrated that patients 
requiring lower PAP pressures (<8  cm H2O) to 
treat their OSA had a better outcome with HNS 
therapy (Lee et al., 2019).

Thus, patient selection according to patho-
physiological OSA characteristics based on the 
PALM concept seems to potentially generate 
added value, but at this point can neither replace 
nor question the current selection parameters. 
However, these findings highlight the potential to 
use routinely collected sleep study data and clini-
cal data with machine learning-based approaches 
underpinned by OSA endotype concepts for fur-
ther research.

21.4.4	� Clinical Anatomical/
Radiographic Predictors

To date, there are limited data on anatomical and 
radiologic factors that influence HNS therapy. 
Lateral cephalometry/lateral neck X-rays, com-
puted tomography (CT), and ultrasound have been 
used to assess the upper airway in patients with 
HNS therapy (Goding et al., 2012; Hofauer et al., 

2016; Schwab et al., 2018; Korotun et al., 2020; 
Arens et al., 2021; Lee et al., 2021). Most of these 
studies examine action by stimulation of the nerve.

Evidence for predictors of success or patient 
selection was sought by Schwab et al. in a small 
cohort using CT. Awake CT was used to identify 
anatomical differences between responders and 
nonresponders of HNS. It was found that therapy 
responders had a significant smaller soft palate 
volume (Schwab et  al., 2018). Similar findings 
were found by Lee et al. studying lateral cephalo-
grams of patients with an implanted HNS (Lee 
et al., 2021).

Further research and clinical studies seem to 
be necessary to find objective methods for the 
anatomical or dynamic assessment of patient 
morphology in relation to planned or completed 
implantation of an HNS system. Both, the increase 
of MRI capability of the current HNS systems and 
the already started implementation of ultrasound 
examination techniques will be helpful.

21.5	� Surgical Procedure

The surgical implantation procedures have been 
modified over the course of several studies, and 
the devices mentioned differ in their implantation 
procedure, simply because of the different tech-
nical and medical approaches. All systems are 
implanted under general anesthesia. The systems 
have in common that they initially are inactive 
after the surgery and are activated after complet-
ing the healing process.

21.5.1	� Unilateral Hypoglossal Nerve 
Stimulation Therapy 
with Respiratory Sensing

The Inspire IV system (Inspire Medical 
Systems, Inc.) was initially implanted using three 
incisions. Currently, the procedure is performed 
with two incisions. The basic steps of implanta-
tion are as follows: The first incision is made sub-
mandibular. The hypoglossal nerve is located, 
and its course is followed under the mylohyoid 
muscle until it is revealed in its terminal branches. 
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Now, using neurostimulation and EMG monitor-
ing, the medial-distal branches of the hypoglossal 
nerve are identified. The cuff of the stimulating 
electrode is placed around the branches (see 
Fig.  21.2). If possible, the accompanying C1 
nerve is included. The stimulator cable is also 
fixed to the digastricus muscle at a defined point, 
forming a loop. A second incision is made at the 
chest. The sensor electrode is inserted and fixed 
between the Mm. intercostales externi et interni 
in the second intercostal space. Tunneling is per-
formed between the cervical access and the tho-
racic access, and the connector of the stimulating 
electrode is pulled into the thoracic pocket. The 
sensor and stimulation cable are connected to the 
pulse generator (IPG). The IPG is fixed on the 
fascia of the pectoralis major muscle. The system 
is tested and initially inactivated. Postoperatively, 
the integrity of the system is verified by chest 
X-ray (Heiser et al., 2016b; Kent et al., 2020).

21.5.2	� Unilateral Hypoglossal Nerve 
Stimulation Therapy Without 
Respiratory Sensing

The aura6000™ system (LivaNova PLC, 
London, UK; formerly ImThera Medical San 
Diego, CA, USA) applies neurostimulation inde-

pendently of the respiratory cycle. It is implanted 
completely and consists of an IPG in the subcu-
taneous pocket in the upper chest and subcutane-
ously connected to a six-electrode lead. The cuff 
is placed around the proximal hypoglossal nerve, 
close to the middle tendon of the digastric mus-
cle using a submandibular approach (Mwenge 
et al., 2013).

21.5.3	� Bilateral Hypoglossal Nerve 
Stimulation Therapy Without 
Respiratory Sensing

Nyxoah provides the Genio system, a partially 
implantable device. The implantable part is 
applied through a single submental incision on 
both Mm. genioglossi in direct proximity to the 
distal terminal branches of the hypoglossal nerve. 
Also with this system, the correct position in the 
area of the correct nerve branches is verified by 
intraoperative neurostimulation. The external 
non-implantable part of the system (pulse gener-
ator, energy source) is applied submental by 
means of an adhesive patch at night after success-
ful initial activation and transfers the energy 
transdermal to the implanted part of the system 
according to the programming (Lewis et  al., 
2019; Eastwood et al., 2020).

Fig. 21.2  (a) Surgical microscopic image of the medial-
distal fibers of the right hypoglossal nerve separated from 
the others with a loop. (b) Surgical microscopic image of 

the cuff of the stimulating electrode, successfully placed 
around the medial-distal fibers of the right hypoglossal 
nerve
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21.5.4	� HNS Therapy Versus 
Traditional Upper Airway 
Surgery

In general, it can be said that hypoglossal stimu-
lation has been the most significant innovation in 
the field of surgical therapies for OSA in the past 
decade and main innovations are taking place 
here. In the field of conventional surgical thera-
pies, however, there has also been a significant 
development. In particular, transoral robotic sur-
gery (TORS) and new pharyngoplasty techniques 
like expansion sphincter pharyngoplasty and 
barbed reposition pharyngoplasty represent sig-
nificant advances (Pang & Woodson, 2007; Vicini 
& Montevecchi, 2019; Iannella et  al., 2022). A 
recent systematic review by Neruntarat et  al. 
compared HNS with other upper airway proce-
dures (UAP). When comparing HNS therapy 
with other UAP in patients with moderate-to-
severe OSA, they found objective improvement 
in outcomes of AHI, oxygen saturation nadir, 
success rate, cure rate, and comparable subjective 
outcomes of ESS (Neruntarat et al., 2022).

Positive data exist on the combination of HNS 
therapy and tonsillectomy-
uvulopalatopharyngoplasty (TE-UPPP). Steffen 
et al. demonstrated that additional surgery at the 
soft palate can improve the outcome in patients 
with insufficient HNS therapy (Steffen et  al., 
2019a).

In the future, the inclusion of the concept of 
OSA phenotyping will play a role in upper air-
way surgery (de Vito et al., 2021) including also 
HNS therapy and is possibly leading to more 
individualized patient-specific targeted therapy.

21.6	� Postoperative Management 
and Care

In order to improve the subjective and objective 
outcomes following HNS implantation, an effec-
tive and long-term postimplantation management 
and care procedure (therapy titration, adjust-
ments, adherence monitoring, and troubleshoot-
ing) need to be addressed and established.

Generally, the HNS device will be activated 
after 1–2-month postimplantation, and sensory 
and motor thresholds and limits are determined 
while awake. Between follow-up visits, the stim-
ulation strength can be adjusted via the remote 
controller/charger (RCC) for comfort and effec-
tiveness by patients themselves. In-laboratory 
polysomnography (PSG) evaluation during fol-
low-up guides to confirm or adjust the stimula-
tion parameters. Stimulation parameters and 
adherence data could be downloaded during RCC 
communication with the patient’s implanted unit 
and obtained by the surgeons and sleep 
technologists.

21.6.1	� Device Titration and Optimal 
Stimulus Parameters

As OSA is a long-term chronic disease, the stim-
ulation parameters, including voltage amplitude, 
impulse voltage, patient control range, and 
threshold, can be titrated in the clinical or sleep 
laboratory setting to optimize effectiveness and 
comfort. Previous studies have pointed that volt-
age, changed electrode configuration, tongue 
motion patterns, and respiratory sensing quality 
affect HNS therapy outcomes (Safiruddin et al., 
2015; Steffen et al., 2019b; Meleca & Kominsky, 
2020). However, these findings were based on 
standalone results for either awake endoscope or 
DISE.

A study conducted by Pawlak et al. compared 
the effects of various combinations of voltage 
and electric field both by DISE and awake endos-
copy, further proving that electric configuration 
changes can improve patient airway patency 
(Pawlak et al., 2021). Meanwhile, Steffen et al. 
carried out a cohort analysis to reduce the voltage 
amplitude in three electrode configurations by 
changing the pulse width and frequency combi-
nation. It indicates stimulation parameters of 
HNS could lower amplitude while still maintain-
ing functional tongue protrusion and a similar 
patient control range, eventually contributing to 
the improvement of patient adherence and effect 
following HNS (Steffen et al., 2021).
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Additionally, the understanding of the anat-
omy and neurophysiology of the tongue and floor 
of the mouth has improved significantly. Previous 
data have demonstrated a correlation between the 
phenotype of tongue motion and therapy 
response. Bilateral protrusion (BP) or right pro-
trusion (RP) of the tongue phenotype is related to 
better therapy response, while the response of 
other tongue motion patterns such as left protru-
sion (LP) and mixed activation (MA) is lower 
(Heiser et  al., 2016a, 2017a). In 2017, Steffen 
et al. evaluated the changes in tongue motion dur-
ing different electrode configuration settings and 
concluded tongue motion patterns and their shift-
ing may make a difference in therapy outcomes. 
Patients with shifting tongue movement in 
response to the change of electrode configuration 
should attract attention. These findings also sug-
gested reassessing intraoperative cuff placement 
when tongue movement shifting is observed 
(Steffen et al., 2018a).

21.6.2	� Patients’ Adherence 
and Experience

In contrast with other surgical treatments of 
OSA, which lead to the permanent modification 
of the upper airway, the patient’s adherence is 
essential to guarantee the long-term effect fol-
lowing HNS. Refer to the reported data from pre-
vious studies; since 2014, the mean usage time 
has ranged from 4  h to 7.5  h per night, with 
patient compliance ranging from 29% to 83%.

In 2021, Coca et al. published a paper compar-
ing nonresponder and responder groups follow-
ing HNS.  The responder group adhered 
significantly better to the recommended duration 
of therapy (>4 h/night) and had a higher number 
of hours of nightly use, which indicated the value 
of usage time and adherence (Coca et al., 2021). 
Most recently, Hofauer et al. evaluated the ther-
apy adherence and experience of 102 patients 
from two German implantation centers following 
HNS implantation, an objective therapy usage of 
5.7-h and subjective reports of 6.8-h nights per 
week with no decrease observed during the fol-
low-up. Accordingly, they concluded that con-

stant use and nightly activation are critical in 
achieving the long-term success of HNS (Hofauer 
et al., 2018). A possible explanation for the high 
adherence and positive attitude toward HNS 
might be related to outpatient visits, home sleep 
studies, and telephone-linked communication 
interventions.

Many pre-surgery factors contribute to adher-
ence to HNS. For example, as discussed above, 
older patients revealed a better adherence to the 
stimulation therapy. In addition, Rosenthal et al. 
underlined an association between insomnia, 
anxiety, depression, emotional distress, and 
hypoglossal nerve stimulator adherence, which 
indicates that screening patients with such cir-
cumstances, the GAD-7 and PHQ-9 before 
implantation may be helpful when evaluating 
patient adherence to therapy (Rosenthal et  al., 
2021).

In summary, improving the patient’s adher-
ence and experience is essential for long-term 
effect following HNS, which could be achieved 
by preimplantation assessment and postoperative 
monitoring.

21.6.3	� Monitoring Methods

Soose et al. analyzed the postimplant care path-
way from 5 years of clinical implementation of 
HNS and addressed that targeted postimplanta-
tion care such as patient education, close clinical 
monitoring, and targeted therapy are essential to 
successful long-term management (Soose et al., 
2021). Nonetheless, due to various reasons, 
including limited sleep, laboratory’s capacity, 
long waiting list, the schedule of patients, and the 
impact of the novel coronavirus, follow-up over-
night sleep study at sleep labor faces enormous 
challenges during the monitoring process.

To solve the problem, daytime polysomnogra-
phy and home sleep testing (HST) have been sug-
gested and recommended alternatively for 
monitoring and overnight titrations due to their 
simple accessibility and low cost. In 2021, 
Bosschieter et al. performed a prospective single-
center observational cohort study to evaluate the 
effect of daytime titration for OSA patients. This 
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study first reported that daytime titrations are a valu-
able alternative for conventional overnight titrations 
and suggested implementing daytime titrations as 
the standard of care (Bosschieter et al., 2021).

At the same time, home sleep testing (HST) 
has been proved helpful as a second-line titration 
control method. Huyett et al. was the first to use 
practical home sleep studies combined with pulse 
oximetry data and demonstrated a successful 
application to titrate hypoglossal nerve stimula-
tion therapy (Huyett & Stagnone, 2020). 
Furthermore, Steffen et al. evaluated the clinical 
and economic value of HST to monitor and direct 
therapy optimization of HST after device activa-
tion; this study also pointed that effective therapy 
adjustment using HST depends on good commu-
nication between the otorhinolaryngology center 
performing the implant, the local sleep lab, and 
the patient (Steffen et al., 2020).

21.7	� Complications and Adverse 
Events

21.7.1	� Treatment-Emergent Central 
Sleep Apnea (TECSA)

Treatment-emergent central sleep apnea 
(TECSA) is a well-known phenomenon occurring 
in obstructive sleep apnea (OSA) patients and has 
been officially recognized in the third edition of 
the international classification of sleep disorders 
(ICSD-3) in 2014. The definition of TECSA is 
as follows: patients with OSA (with a baseline 
CAI <5 events/h) who demonstrated a central 
and mixed apnea index (CMAI) of 5 events/h 
and/or demonstrated Cheyne-Stokes respira-
tion (CSR) becoming prominent or disruptive on 
PAP treatment, measured during the therapeutic 
device titration 6–8 weeks after device activation 
(Berger et  al., 2021). But as many central sleep 
apneas observed with non-PAP therapy with them 
increasingly used in clinical practice, such as HNS 
and mandibular advancement device (MAD), the 
definition of TECSA should refer to the phenom-
enon of transient and/or persistent CSA after not 
only PAP treatment but also all kinds of therapy 
for OSA. Since 2018, there have been three 

patients reported who developed TECSA follow-
ing HNS (Chan et al., 2018; Sarber et al., 2019; 
Hong et  al., 2021). Furthermore, a prospective 
cohort study with 141 patients reported the preva-
lence of TECSA as 3.3% (n  =  5 patients). This 
study also revealed that demographics, comorbid 
conditions, and device settings were not associ-
ated with an elevated postoperative CMAI.  The 
only factor associated with CMAI ≥5 events/h 
was an elevated postoperative AHI. Meanwhile, 
they describe a spontaneous resolution over time 
of early TECSA (Patel et  al., 2020a). However, 
due to insufficient data from the case reports and 
small case series, the true prevalence and clini-
cal relevance of TECSA are challenging to assess. 
The natural course and the underlying pathophys-
iological mechanisms remain controversial and 
limited. The possible pathophysiological mecha-
nisms focused on either an unresolved obstruction 
that may have led to microarousals and overshoot 
of PaCO2 reduction below the apneic threshold 
during sleep or a demasking of an OSA comor-
bidity related elevated loop gain. Nevertheless, 
this phenomenon seems to spontaneously resolve 
over time and with continued use or adjustment of 
stimulation parameters. According to the experi-
ence and findings of previous studies, many fac-
tors might contribute to the development of CSA 
following PAP therapy, including stimulation of 
pulmonary-irritant receptors by pulmonary con-
gestion, increased chemoreceptor sensitivity, 
reduced cerebrovascular blood flow, and exces-
sive sympathetic nervous system activity (Berger 
et al., 2021). These aberrations can be seen in 
congestive heart failure, atrial fibrillation, stroke, 
and renal failure patients. Meanwhile, the body 
position and sleep architecture changes were 
demonstrated as related to the emergency of CSA. 
Consequently, the possible influence of these 
factors should be evaluated further to detect the 
predictors of HNS-related TECSA. In the future, 
further studies should focus on risk assessment, 
early detection of TECSA (including comorbidi-
ties conditions, stimulation parameters, and other 
factors), and clinical management, most impor-
tantly, patients’ specific underlying pathophysiol-
ogy, which could help avoid and resolve TECSA 
following HNS.
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21.7.2	� Cheyne-Stokes Breathing

In 2019, Sarber et al. reported the emergence of 
Cheyne-Stokes breathing after HNS implantation 
in a patient with mixed sleep apnea. They pre-
sented data from a 60-year-old man with moder-
ate OSA (AHI 22.6 event/h, obstructive AHI 
(oAHI) of 22.3, and central apnea index (CAI) of 
0.3 events/h) and medical history of stage 3 
chronic kidney disease, hypertension, hyperlipid-
emia, type 2 diabetes, bladder and kidney cancer, 
and depression. Initially, CPAP and auto PAP 
could not control his central or obstructive events 
with an AHI of 31.0 events/h (oAHI of 5.5 and 
CAI of 25.5 events/h). Three months after device 
activation, an AHI of 83.8 (oAHI of 4.9 and CAI 
of 78.9 events/h) and Cheyne-Stokes breathing 
were observed throughout the study, even without 
HNS activation. Nevertheless, this patient’s 
obstructive events and subjective sleepiness were 
treated effectively despite the new onset of CSA 
with Cheyne-Stokes breathing (Sarber et  al., 
2019). This case report shows that the possible 
factors contributing to this phenomenon are 
unclear. Consequently, they will continue close 
monitoring and consider repeated titration.

21.7.3	� Adverse Events

Implantation of HNS has been demonstrated as a 
safe and effective treatment. Nonetheless, several 
technical difficulties and complications still exist. 
Generally, the adverse events can be divided into 
surgery-related and device-related. Occurring 
surgery-related complications include infection, 
hematoma, localized pain, and brief and mild/
transient tongue paresis. Frequent device-related 
adverse events include discomfort due to electri-
cal stimulation, tongue abrasion, mouth dryness, 
functionality issues with the implanted device, 
and mechanical pain associated with the device 
(Bestourous et  al., 2020; Bellamkonda et  al., 
2021). A systematic review of long-term sequelae 
after HNS reported that tongue discomfort due to 
repetitive stimulation was the most common. It 
can be resolved by modification of the stimula-
tion parameters and sometimes also by dental 

adjustment (Costantino et al., 2020). Three case 
reports observed some unusual complications, 
including pleural effusion, iatrogenic pneumo-
thorax (PTX) during the placement of the chest 
sensor lead (Arteaga et  al., 2018), and sensor 
leads penetrating the pleural space followed by a 
successful reimplantation (Lou et al., 2021).

21.7.4	� Revision Surgery

Hypoglossal nerve stimulators have been 
implanted increasingly worldwide over the past 
two decades; however, as most of the devices 
were implanted only within the last 7 years, long-
term data about adverse events is limited; the 
safety assessment of the revision surgery, includ-
ing explantation or reimplantation, needs to be 
considered. A physician must be aware that a 
patient with an implanted stimulator may need to 
be revised or explanted in the future for various 
reasons. For the stimulator models powered by an 
implanted battery, an IPG change must be per-
formed at least at the end of the battery life. There 
are reviews of adverse events in hypoglossal 
stimulator implantation that refer to the 
Manufacturer and User Facility Device 
Experience (MAUDE) database from the Food 
and Drug Administration (FDA) (Bestourous 
et  al., 2020; Bellamkonda et  al., 2021). Among 
the events listed there, 42.3% required surgical 
revision (Bestourous et al., 2020). However, sci-
entifically published data and field reports with 
technical assistance for revision or explantation 
are rare. Arens et  al. reported a series of nine 
explantations with and without single-staged 
reimplantation in 2020. All foreign material was 
enclosed in a transparent, solid scar tissue up to 
1  mm thick. To free the impulse generator, the 
leads, and the cuff electrode without trauma, this 
scar tissue needed to be sharply severed, partly 
under microscopic view. Due to extensive scar 
tissue formation, all procedures were technically 
challenging. The explantation was successful in 
every case. The complication rate was signifi-
cantly higher when complete reimplantation was 
performed or attempted in the same session than 
explantation alone (Arens et al., 2020).
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21.8	� Current Developments 
and Outlook for the Future

Hypoglossal nerve stimulation therapy is cur-
rently undergoing rapid forward development. 
The number of publications in this field has 
increased exponentially in the last 5–7  years. 
Existing devices have been further developed, on 
the one hand, for example, in terms of MRI capa-
bility, and, on the other hand, in terms of the sur-
gical procedure. Recently, a two-incision 
technique has been established for the respiratory 
frequency-controlled unilateral stimulation sys-
tem (FA Inspire) (Kent et al., 2020). In addition, 
a new stimulation technique is available with 
bilateral medial stimulation of the hypoglossal 
nerve (Eastwood et  al., 2020). The device has 
been approved as a medical device in Europe and 
is currently being further investigated in multi-
center studies. Besides the improvement of exist-
ing stimulation techniques, refining patient 
selection and optimizing postoperative stimula-
tion parameters, the approach of finding new or 
additional targets for neurostimulation seems 
interesting. Kent et al., for example, showed that 
isolated ansa cervicalis stimulation could increase 
the maximum inspiratory airflow in the context 
of a sleep video endoscopy (Kent et al., 2021). In 
the future, it will be exciting to see to what extent 
the different approaches – unilateral versus bilat-
eral stimulation, distal versus proximal nerve 
stimulation, and breathing cycle-controlled ver-
sus phasic or breathing cycle-independent stimu-
lation  – will have an impact on the results and 
patient selection.

Additionally, the understanding of the anat-
omy and neurophysiology of the tongue and floor 
of the mouth has improved significantly. Based 
on the work of Mu and Sanders, current research 
focuses on understanding contralateral tongue 
muscle activation during unilateral stimulation of 
the hypoglossal nerve (Mu & Sanders, 2010; 
Sanders & Mu, 2013). Sturm et al. demonstrated 
that unilateral stimulation resulted in bilateral 
activation of the genioglossal muscle in 39% of 
patients (Sturm et al., 2020). Heiser et al. demon-
strated in a small group of patients that bilateral 
activation of the genioglossal nerve resulted in 

improved velopalatal opening of the airway. In 
contrast to the first mentioned work, this study 
showed that patients with bilateral tongue protu-
sion showed a higher AHI reduction under stimu-
lation therapy (Heiser et  al., 2020). Another 
approach to better understand the function and 
physiology of the tongue under stimulation is 
sonography. Some studies have focused on func-
tional imaging under hypoglossal stimulation, 
while others have attempted to demonstrate 
effects on morphology (Arens et  al., 2019; 
Hofauer et al., 2019; Korotun et al., 2020). One 
approach that could help to better understand 
function and neurophysiology is ultrasound shear 
wave elastography. Arens et al. have shown that 
stimulation of the hypoglossal nerve results in a 
measurable change in shear wave velocity in the 
tongue muscles as a measure of muscle stiffness 
(Arens et al., 2021). This provides a quantifiable 
measure of the effect of stimulation directly on 
the target muscle, which can be used noninva-
sively on the implanted awake patient.

Impressively, the introduction of hypoglossal 
stimulators has led to a major boost in under-
standing the neuroanatomy of the tongue. It 
remains an exciting question whether this will 
influence patient selection and hypoglossal stim-
ulation system selection in the future.

21.9	� Conclusion

Over the past decade, more and more hypoglos-
sal nerve stimulators have been implanted world-
wide. Initially in the context of studies but then 
also in standard care. The available data indicate 
the efficacy and good tolerability of the treatment 
without long-term complications. To achieve the 
best subjective and objective results after HNS 
implantation, a precise procedure for selecting 
patients before implantation and effective man-
agement after implantation are required. This is 
the only way to ensure patient adherence and 
determine optimal stimulus parameters. On the 
other hand, the long-term safety of HNS needs to 
be further investigated. The physician performing 
HNS implantation must be aware of the obliga-
tions that implantation entails and the potential 
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consequences that must be considered. It remains 
exciting to see the further development of various 
stimulation approaches as well as the advance-
ment of existing techniques through an increas-
ingly better understanding of the neurophysiology 
of the tongue.
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Abstract

Mandibular advancement splint (MAS) ther-
apy is the leading alternative to continuous 
positive airway pressure (CPAP) therapy for 
the treatment of obstructive sleep apnoea. A 
MAS is an oral appliance which advances the 
mandible in relation to the maxilla, thus 
increasing airway calibre and reducing col-
lapsibility. Although it is less effective than 
CPAP in reducing the apnoea-hypopnoea 
index (AHI), it has demonstrated equivalence 
to CPAP in a number of key neurobehavioural 
and cardiovascular health outcomes, perhaps 
due to increased tolerability and patient adher-
ence when compared to CPAP.  However, 

response to MAS is variable, and reliable pre-
diction tools for patients who respond best to 
MAS therapy have thus far been elusive; this 
is one of the key clinical barriers to wider 
uptake of MAS therapy. In addition, the most 
effective MAS devices are custom-made by a 
dentist specialising in the treatment of sleep 
disorders, which may present financial or 
accessibility barriers for some patients. MAS 
devices are generally well tolerated but may 
have side effects including temporomandibu-
lar joint (TMJ) dysfunction, hypersalivation, 
tooth pain and migration as well as occlusal 
changes. A patient-centred approach to treat-
ment from a multidisciplinary team perspec-
tive is recommended. Evidence-based clinical 
practice points and areas of future research are 
summarised at the conclusion of the chapter.

Keywords

Mandibular advancement · OSA therapy · 
MAS titration · MAS customisation · 
Apnoea-hypopnoea index

22.1	� Introduction

A mandibular advancement splint (MAS), also 
referred to as a mandibular advancement device 
(MAD) or mandibular repositioning appliance 
(MRA), is an oral appliance for the treatment of 
sleep apnoea and snoring. It is recognised as the 
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lead alternative to continuous positive airway 
pressure (CPAP) therapy for the treatment of 
obstructive sleep apnoea (OSA). Guidelines of 
the American Academy and Sleep Medicine 
(AASM) and American Academy of Dental 
Sleep Medicine (AADSM) recommend MAS 
therapy for the treatment of OSA where CPAP is 
not tolerated, or if there is a patient preference 
for an alternative device (Ramar et al., 2015). A 
MAS advances the mandible in relation to the 
maxilla, increasing the calibre of the upper air-
way and reducing upper airway collapsibility. 
Several iterations of the device exist and may 
differ substantially in terms of design and 
customisation.

22.2	� Mechanism of Action

Imaging studies provide insights into anatomical 
changes in the upper airway which occur with a 
MAS device in situ. MAS functions via two prin-
cipal mechanisms to increase airway size: (1) 
anterior movement of the tongue and (2) lateral 
expansion of the airway walls, especially in the 
velopharynx (Brown et  al., 2013; Chan et  al., 
2010). Although intuitively one might expect a 
MAS to increase the calibre of the airway in an 
anterior-posterior dimension, it is the lateral 
dimension which is increased to the greatest 
degree. This may be due to the MAS increasing 
airway wall tension through direct connections 
between the lateral airway walls and the ramus of 
the mandible (Brown et al., 2013). A schematic 
of MAS airway changes and MRI with and with-
out MAS in situ is depicted in Fig. 22.1.

Structural changes with the MAS in situ cause 
a reduction in airway collapsibility (Chan et al., 
2020) and therefore an improvement in the AHI. 
This has been demonstrated in studies of passive 
pharyngeal collapsibility with MAS in situ (Ng 
et al., 2003). Further, when used in conjunction 
with CPAP therapy, MAS reduces the require-
ment for CPAP pressure in a dose-response rela-
tionship with increasing mandibular 
advancement. This indicates progressive reduc-
tion in airway collapsibility with increasing man-
dibular protrusion (Bamagoos et al., 2020).

22.3	� Efficacy and Adherence: MAS 
Versus CPAP

MAS therapy is often compared to CPAP therapy 
as the accepted ‘gold standard’ for the treatment 
of OSA. Although CPAP is known to provide 
superior control of OSA (measured by the AHI) 
while it is in use (Phillips et al., 2013; Lim et al., 
2006; Schwartz et  al., 2018), adherence and 
patient tolerance are generally higher with MAS 
therapy (Schwartz et  al., 2018). Therefore, the 
reduced efficacy of MAS may be offset by its 
superior adherence, thus leading to the equiva-
lence in neurobehavioural and cardiovascular 
outcomes which has been observed in many com-
parative studies (see below).

Unlike that of CPAP, however, MAS response 
is variable, with the mean proportion of patients 
who respond completely to MAS (residual AHI < 
5/h) reported between 29 and 71% (Bamagoos 
et  al., 2016). One study suggested that around 
two thirds of patients have either a complete 
(37%) or partial (64%) response to MAS, with a 
partial response defined as a reduction in AHI of 

Fig. 22.1  Schematic diagram (above) showing upper air-
way obstruction during sleep in a patient with OSA (with-
out MAS) and mandibular advancement maintaining 
patency of the upper airway (with MAS). Axial MRI 
(below) shows baseline airway calibre in an awake patient 
with OSA (without MAS) and mandibular advancement 
producing an increase in the calibre of the upper airway 
(with MAS). Note the particular increase in airway calibre 
in the lateral dimension (arrows)

A. M. Mohammadieh et al.



375

at least 50% (Sutherland et al., 2015). This high-
lights one of the significant barriers to MAS ther-
apy, which is the selection of patients who are 
most likely to derive benefit.

For the severe OSA group (AHI ≥30/h), titrat-
able MAS therapy is less effective at reducing the 
AHI and the oxygen desaturation index (ODI) 
compared with CPAP; however, this is offset by 
increased adherence and patient preference in 
favour of MAS (Trzepizur et al., 2021). Further, 
MAS is equivalent to CPAP in terms of improve-
ment in sleep architecture, with equivalent 
increases in slow wave and rapid eye movement 
(REM) sleep (Trzepizur et al., 2021). A MAS is 
therefore recognised as a viable alternative to 
CPAP therapy even in the treatment of severe 
OSA.

22.4	� Patient Selection 
and Prediction of Response: 
Endotypes and Phenotypes

MAS therapy is highly efficacious in selected 
patients, including those with severe OSA. 
However, reliable prediction tools for treatment 
success remain elusive. An ideal prediction tool 
would be readily available from simple anatomi-
cal or routine polysomnographic data and would 
predict MAS treatment response with a high 

degree of accuracy. Studies looking at predictors 
of MAS response have investigated endotypic 
and phenotypic traits.

An endotype refers to a subtype of a condition 
with a distinct functional or pathobiological 
mechanism (Edwards et al., 2019). Examples of 
OSA characteristics which may be used to define 
endotypes include arousal threshold (defined as 
the degree of ventilatory drive required to trigger 
an arousal from sleep), loop gain (defined as 
instability in ventilatory control in response to a 
disturbance) and airway collapsibility. 
Traditionally, these parameters have only been 
available from physiological studies performed 
in a highly controlled research setting (Edwards 
et  al., 2016; Bamagoos et  al., 2019a); however, 
more recently endotypic data have been extracted 
from routine clinical polysomnography. For 
example, in the case of loop gain, Terril et  al. 
have developed a mathematical algorithm to reli-
ably impute loop gain from the rise in ventilatory 
drive that follows an obstructive respiratory event 
(Terrill et al., 2015). The mathematical basis of 
this method is depicted in Fig. 22.2.

In a group of 93 patients with, on average, 
moderate OSA, greater MAS efficacy was asso-
ciated with 5 endotypic traits derived using algo-
rithms applied to clinical polysomnographic 
data: lower loop gain, higher arousal threshold, 
lower ventilatory response to arousal, moderate 

Fig. 22.2  Mathematical basis of the method. (a) 
Schematic of the feedback loop controlling ventilation 
showing the influence of arousal and airflow obstruction. 
Ventilatory drive is the sum of chemical drive and the 
response to arousal (γ). Airflow obstruction provides a 
disturbance that reduces ventilation from the intended 
level (i.e., ventilatory drive). In response, chemical drive 
rises as determined by the chemical control system (loop 

gain). (b) Time course of chemical drive during a step 
reduction in ventilation (e.g., obstructive hypopnoea). The 
rise in chemical drive is governed by and the parameters 
that determine its gain (LG0), time constant (τ) and delay 
(δ); these system characteristics are revealed in the time 
course of ventilation when the airway is reopened. 
(Reproduced with permission of the © ERS 2022: Terrill 
et al. (2015))
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pharyngeal collapsibility and weaker muscle 
compensation. The association of lower loop 
gain and MAS response has been confirmed in 
another smaller study (Op de Beeck et al., 2021).

Similarly, characteristics which act as direct 
or surrogate markers for the site of airway col-
lapse have been studied as predictors of response 
to MAS therapy. For example, the level and spe-
cific type of airway collapse observed on drug-
induced sleep endoscopy (DISE) have been 
associated with response to MAS. Tongue base 
collapse indicates a favourable outcome, whereas 
complete concentric collapse or complete latero-
lateral oropharyngeal collapse is seen in those 
less likely to respond (Op de Beeck et al., 2019), 
as is complete anteroposterior epiglottic collapse 
(Zhou et  al., 2021). Further, certain ‘airflow 
shapes’ derived from routine polysomnography 
have been used to predict the site of airway col-
lapse and thereby response to MAS.  Increased 
drop in airflow during respiratory events as well 
as a ‘pinched’ expiratory flow shape (indicative 
of palatal prolapse) are associated with the least 
response to MAS therapy (Vena et  al., 2020). 
Research is ongoing in order to translate these 
endotypic characteristics into reliable clinical 
predictive tools.

Phenotype refers to ‘observable’ anatomical 
features or consequences of the disease. Small 
individual studies as well as meta-analyses have 
identified certain phenotypic characteristics asso-
ciated with increased response to MAS therapy. 
These include younger age, female gender, lower 
body mass index (BMI), shorter neck circumfer-
ence, milder and supine-dependent OSA 
(Sutherland et al., 2015; Chen et al., 2020) and 
the absence of a tendinous pterygomandibular 
raphe (Brown et  al., 2021), the latter of which 
may allow increased mandibular advancement. 
Craniofacial characteristics associated with a 
positive MAS response include a retracted max-
illa and mandible, a narrower airway and shorter 
soft palate (Chen et al., 2020). However, the pre-
dictive ability of these individual characteristics 
is relatively low. Research is ongoing to find 
more accurate predictors of clinical response to 
MAS therapy. In clinical practice, many patients 
undergo a repeat diagnostic sleep study with the 

MAS device in situ to assess clinical response 
and guide decisions about ongoing therapy. This 
strategy is recommended in the guidelines of the 
AASM/AADSM (Ramar et al., 2015).

MAS relies on dental retention for its efficacy 
and, therefore, candidates for this therapy should 
be selected only after careful dental review. 
Patients are likely to be ineligible if they suffer 
from significant periodontal disease, insufficient 
native teeth to ensure device retention, severe 
TMJ disease or a severe gag reflex (Basyuni 
et al., 2018).

22.5	� Health Outcomes

A number of health outcomes are derived from 
effective OSA treatment, some of which may 
have more ascribed importance than others for 
each individual patient. Health outcomes can be 
discussed in terms of neurobehavioural out-
comes, quality of life and cardiovascular 
outcomes.

22.6	� Neurobehavioural Outcomes

MAS has been shown to improve daytime sleepi-
ness as measured by the Epworth Sleepiness 
Scale (ESS) when compared to conservative 
management, though the average effect is modest 
(Sharples et  al., 2016). Nonetheless, a meta-
analysis found that the improvement in ESS was 
not significantly different to that of CPAP (Lim 
et al., 2006). Not all studies of MAS effects on 
ESS are consistent, however, with one ran-
domised control trial showing that MAS did not 
improve the ESS when compared to a placebo 
device for mild-to-moderate OSA (Marklund 
et al., 2015).

Small- and medium-sized studies indicate that 
MAS improves driving simulator performance to 
the same degree as CPAP (Phillips et al., 2013; 
Hoekema et  al., 2007). One trial compared the 
performance of patients treated with a titratable, 
bi-bloc, fully customised MAS device with CPAP 
therapy on a monotonous driving simulator task. 
After 8 weeks of therapy, performance in terms 
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of lapses of attention improved to the same 
degree with both therapies (Hoekema et  al., 
2007). In a 1-month crossover trial of a titratable 
bi-bloc MAS vs CPAP, speed deviation and reac-
tion times to divided attention tasks during driv-
ing simulation improved to the same extent with 
both treatments (Phillips et al., 2013).

A meta-analysis found that there was no dif-
ference between MAS and CPAP for functional 
outcomes and neurocognitive tasks (Schwartz 
et al., 2018). Despite the superiority of CPAP in 
improving the AHI, it was hypothesised that the 
similarity in neurocognitive outcomes was due to 
the increased nightly adherence that was seen 
with MAS.

Taken together, these studies suggest non-
inferiority of MAS to CPAP therapy for neurobe-
havioural outcomes, though sample sizes have 
been modest, and many studies were not blinded 
and/or did not include placebo control groups.

22.7	� Quality of Life

MAS improves the quality of life to at least the 
same degree as CPAP (Phillips et  al., 2013; 
Schwartz et al., 2018). This is true for both the 
mental component score and the physical compo-
nent score of the SF-36, a validated quality-of-
life questionnaire (Kuhn et al., 2017). Similarly, 
when considering severe OSA only, a meta-
analysis of RCTs comparing MAS to CPAP 
shows a similar impact on both the SF-36 and 
FOSQ questionnaires, two validated tools for the 
assessment of quality of life (Trzepizur et  al., 
2021).

22.8	� Cardiovascular Outcomes

There is a paucity of data examining the effect of 
MAS therapy on cardiovascular outcomes, 
though some short-term studies exist. For exam-
ple, in a subgroup of hypertensive patients, MAS 
improved blood pressure by 2–4 mmHg and was 
non-inferior to CPAP (Phillips et  al., 2013; 
Bratton et al., 2015). MAS also improves mark-
ers of oxidative stress and cardiac autonomic 

activity when compared with placebo (Dal-
Fabbro et al., 2014). To date there are no large, 
randomised control trials looking at the effect of 
MAS therapy on cardiovascular endpoints. In 
contrast, a few moderately sized randomised con-
trol trials have examined the effect of CPAP ther-
apy on cardiovascular endpoints including stroke, 
myocardial infarction and revascularisation of 
coronary artery disease, but have failed to dem-
onstrate a benefit (McEvoy et  al., 2016; Peker 
et  al., 2016; Sanchez-de-la-Torre et  al., 2020). 
However, these trials have all been characterised 
by very poor CPAP adherence (less than 4 h per 
night), which may have contributed to the nega-
tive result. In addition, subgroup analysis in 
groups with higher adherence have shown some 
significant cardiovascular benefits (Dissanayake 
et  al., 2021). As MAS therapy has increased 
adherence when compared to CPAP, further 
research is required to examine the impact of 
MAS therapy on cardiovascular outcomes.

22.9	� Design and Customisation

MAS design falls generally into one of two cate-
gories: (i) a single piece (monobloc) design or (ii) 
an upper and lower component with a coupling 
mechanism (bi-bloc/duo-bloc design). Bi-bloc 
designs have the advantage of facilitating some 
lateral and vertical jaw movement, to varying 
degrees, and may improve patient comfort and 
tolerance.

MAS may be prefabricated from thermoplas-
tic material (the ‘boil-and-bite’ model) or can be 
formally customised to the patient’s own denti-
tion. The ‘boil-and-bite’ model, in which thermo-
plastic trays are heated by immersion in hot water 
and then moulded directly to the patient’s man-
dibular and maxillary dental arches, foregoes the 
need for specialist dentist impressions and is 
therefore less costly and more accessible. 
However, boil-and-bite designs have a higher 
failure rate due to reduced dental retention and 
are less effective at lowering the AHI than a fully 
customised device (Vanderveken et  al., 2008; 
Quinnell et  al., 2014). In contrast, customised 
designs provide superior fit and dental retention 
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and are better tolerated (Johal et al., 2017). For 
these reasons, fully customised, titratable devices 
are recommended in MAS guideline statements 
from the AASM and AADSM (Ramar et  al., 
2015).

For a fully customised device, dental impres-
sions and measurements of occlusal relationships 
are taken by a specialist dentist. More recently, 
dental scan technology has been introduced, 
allowing for a digitalised model of the teeth and 
intra-oral tissues (Piskin et al., 2021). Full-arch 
digital impressions have been shown to be more 
accurate than traditional impressions (Amin 
et al., 2017) and also allow a more streamlined 
digital workflow production process.

Devices also differ significantly in terms of 
fabrication materials and construction. Materials 
include hard acrylics, thermal acrylics, lami-
nates, biocompatible polymers and alloys (Chan 
et al., 2020). Devices may be manufactured by 
3D milling or 3D printing. There is little data 
available to allow comparisons between the vari-
ous models or brands of fully customised MAS 
devices in the treatment of OSA (Marklund 
et al., 2019); hence, data from individual studies 
should be extrapolated with caution. An example 
of a customised MAS device is shown in 
Fig. 22.3.

22.10	� Adherence

An additional design feature for some models is 
an in-built adherence recorder which allows col-
lection and storage of patient adherence data 
using a thermal-sensor chip. These devices, about 
the size of a button cell battery, can be embedded 
into the MAS during the manufacturing process 
(see Fig. 22.4). When the temperature lies within 
a certain range (generally 31.5–33  °C to 38.5–
39.2 °C), it is inferred that the device is in situ 
within the oral cavity and therefore in use 
(Sutherland et al., 2021a). This information can 
be downloaded and read in a research or clinical 
setting and may assist with clinical management. 
An example of downloaded data from an inbuilt 
compliance recorder is shown in Fig.  22.5. 
Previous studies of CPAP adherence have shown 

that subjective patient recollection tends to 
underestimate objectively recorded adherence 
data (Kribbs et al., 1993). However, few studies 
have assessed whether MAS subjectively 
reported adherence is consistent with objective 
adherence data. One small study showed that 
there was no difference between objective and 
self-reported MAS adherence at 3  months 
(Vanderveken et al., 2013). At 12 months, close 
correlation between subjective and objective 
measures of adherence continued, with an over-
estimation of 30 min by subjective (self-reported) 
adherence compared with objective data col-

Fig. 22.3  An example of a bi-bloc, fully customised 
MAS device. This model (Avant device, SomnoMed 
Australia) uses a series of straps, incrementally shorter in 
length, to titrate the mandible forward and articulate the 
upper and lower components. The strap is also designed to 
limit jaw opening

Fig. 22.4  An example of an in-built adherence recorder 
(DentiTrac, Braebon Medical) embedded within a MAS 
device
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Fig. 22.5  An example of downloaded data from an in-
built MAS adherence recorder in a highly adherent 
patient. This particular device (DentiTrac, Braebon 
Medical) also records sleep position: supine (S) vs non-

supine (NS); number of hours used per night (Hr) and the 
difference between the physician-set ‘goal’ adherence 
time, in this case 7 h; and the actual time worn each night 
(±Hr)

lected by an in-built thermal sensor chip 
(Dieltjens et al., 2013).

Disadvantages of the in-built adherence moni-
tors include a small increase in bulk added to the 
device, although this is usually well tolerated, as 
well as an increased manufacturing cost. In 
future, in-built monitors may also collect other 
clinically relevant data including cardiorespira-

tory parameters. One prototype device captures 
intra-oral photoplethysmography (PPG) signals 
and correlates highly to PPG signals obtained 
from the more traditional and commonly used 
finger probe (Nabavi et  al., 2020). PPG has 
numerous applications including the acquisition 
of heart rate, respiratory rate and percent of 
oxygen-saturated haemoglobin (SpO2).
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As with CPAP, adherence to MAS can be vari-
able, though in general MAS adherence is supe-
rior to that of CPAP (Schwartz et  al., 2018). 
Cluster analysis over 60  days of MAS usage 
identified three adherence subtypes: 48.3% were 
‘consistent users’ who used MAS most of the 
time (daily usage 7.3  ±  0.8  h), 32.8% were 
‘inconsistent users’ with variable usage (daily 
usage 4.6 ± 0.8 h), and 19.0% were ‘non-users’ 
(daily usage 1.0  ±  0.6  h) (Sutherland et  al., 
2021b). Patients could be identified into these 
subtypes within the first 20 days of therapy, sug-
gesting that the early period of MAS therapy is a 
critical time for close clinical monitoring and 
support.

22.11	� MAS Titration

Titration refers to the incremental advancement 
of the mandible towards the level of protrusion 
which provides maximal clinical efficacy. This is 
an important practice point since increased MAS 
efficacy has been demonstrated with increasing 
mandibular protrusion, in a dose-dependent rela-
tionship (Kato et  al., 2000). Some specialist 
research centres have used remotely controlled 
titratable MAS devices in the sleep laboratory, 
allowing real-time assessment of MAS efficacy 
at progressive levels of protrusion (Dieltjens 
et al., 2019; Tsai et al., 2004; Sutherland et al., 
2017). A commercially available remotely con-
trolled mandibular protrusion device (MATRx, 
Zephyr Sleep Technologies Inc., Calgary, 
Canada) has been used both to predict clinical 
response to MAS, as well as to determine the 
optimal level of mandibular protrusion. This 
device consists of upper and lower dental trays 
which are fitted to the patient’s teeth with an 
impression material. A small motor which sits 
just outside the patient’s mouth is able to titrate 
the mandible forward in small increments during 
sleep, under the control of a remote operator. 
With the use of this device, one study was able to 
demonstrate a positive predictive value of 87% 
for therapeutic success, defined as an AHI <10/h 
and ≥50% reduction from baseline at the deter-
mined effective target protrusive position 

(Remmers et  al., 2013). In addition, a portable 
version of this device has been used in an at-
home setting, consisting of the titratable man-
dibular protrusion device, nasal cannula to detect 
flow and pulse oximetry, together with a portable 
laptop computer for signal processing. Using this 
system, unattended mandibular titrations were 
performed at home using real-time feedback 
from the nasal cannulae and oximetry to guide 
the titration. Overnight titrations in the patient’s 
home using this device yielded a positive predic-
tive value of 97% and negative predictive value 
72% to predict a residual oxygen desaturation 
index (ODI) ≤10/h (Remmers et al., 2017).

Other researchers have used overnight oxime-
try devices alone to assess hypoxic burden at 
various levels of protrusion and titrate accord-
ingly. In the absence of these research tools, for 
practical clinical purposes, the titration goal may 
be the maximal level of protrusion that is well 
tolerated by the patient. Symptoms, such as snor-
ing or daytime somnolence, can also be used as 
titration guides by the patient at home.

Titration mechanisms will depend upon the 
individual design of the device and its coupling 
mechanism. Coupling mechanisms are variable 
and may include elastic or plastic connectors, 
metal pin and tube connectors, hook connectors, 
acrylic extensions or magnets. All titration mech-
anisms will incrementally advance the mandible 
forward in relation to the maxilla.

22.12	� Side Effects

Patients should be warned of the possibility of 
both short- and long-term side effects prior to 
commencement of the MAS therapy. Short-term 
side effects are common and often temporary. 
They include hyper-salivation, temporomandibu-
lar joint (TMJ) pain and discomfort, a dry mouth 
and pain or irritation of the intra-oral tissues. 
Many of these side effects, if not temporary, can 
be addressed by minor device adjustments.

Long-term side effects include progressive 
changes in dental occlusion and have been 
observed for as long as 11  years (Pliska et  al., 
2014). The prominent changes are a reduction in 
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overbite (−2.3  ±  1.6  mm) and overjet 
(−1.9 ± 1.9 mm), as well as an expansion of the 
mandibular arch with reduction in mandibular 
dental crowding (Pliska et  al., 2014). Of note, 
some of these dental changes may be favourable, 
depending upon baseline dentition.

MAS devices have a finite lifespan and are 
commonly reported by providers to last approxi-
mately 5 years, though evidence on the lifespan 
of MAS devices is limited. One study followed 
15 patients out to 5 years of MAS therapy and 
found that the most commonly encountered tech-
nical problems requiring review by a dental tech-
nician were acrylic breakage at the point of 
articulation attachment, poor retention and other 
required adjustments to improve comfort 
(Martínez-Gomis et al., 2010).

22.13	� Patient-Centred Approach

One of the key indications for MAS therapy is 
patient preference when compared to CPAP 
(Ramar et al., 2015), and, as with management of 
any chronic condition, a patient-centred approach 
is central to treatment success. Patient prefer-
ences around treatment must be elucidated after 
the diagnosis of OSA, incorporating a discussion 
around the advantages and disadvantages of 
available suitable therapeutic options. Qualitative 
analysis has identified MAS convenience and 
transportability as factors which influence patient 
choice in favour of MAS therapy, while altera-
tions in bite and concerns about durability are 
identified as important disadvantages (Almeida 
et al., 2013). In addition, the cost of MAS therapy 
will be an insurmountable barrier to some 
patients, particularly in jurisdictions where 
CPAP, but not MAS, may attract a government 
subsidy. Therefore, the choice to proceed with a 
trial of MAS therapy must be tailored to the indi-
vidual patient’s treatment goals.

When commencing CPAP therapy, patients 
may undergo a therapeutic trial of a rental or loan 
device, before making a decision about progres-
sion to permanent therapy. With MAS therapy 
however, this approach is more challenging, since 
the device is manufactured specifically for the 

individual patient and normally requires an initial 
financial investment before the therapy can be tri-
alled. Some patients may choose to undergo an 
initial trial with a commercially available ‘boil-
and-bite’ MAS, to see whether the sensation of 
mandibular advancement is tolerable for them 
and whether they experience any improvement in 
symptoms. If this approach is undertaken, the 
patient should be informed that boil-and-bite 
devices are more likely to cause gum discomfort 
and may be less adherent and less effective than 
custom-made devices.

22.14	� Multidisciplinary 
Management

As MAS treatment of OSA lies at the intersection 
of dentistry and sleep medicine, it is recom-
mended that both of these specialists play an 
ongoing role in the care of MAS patients (Ramar 
et  al., 2015). Other specialists such as ear nose 
throat (ENT) surgeons and general practitioners 
may also play an active role. An initial clinical 
review will be required to confirm the diagnosis 
of OSA, to quantify the severity of OSA with a 
baseline nocturnal sleep study and to confirm 
patient suitability and preference for MAS ther-
apy. Once the device is fabricated, follow-up is 
important to ensure ongoing efficacy of the MAS 
(e.g. using overnight polysomnography with the 
MAS in situ), to monitor patient satisfaction with 
the device and to screen for and treat short- and 
long-term side effects.

22.15	� Future Directions

Recognition of OSA as a heterogenous disorder 
is increasing. As with other areas of medicine, a 
‘one-size-fits-all’ approach to the treatment of 
OSA is being abandoned, in favour of a more per-
sonalised approach, which takes into account 
specific clinical features and the disease subtype 
of the individual patient. For example, there is 
now recognition that some OSA is driven by 
‘pharyngeal’ endotypes (e.g. high airway col-
lapsibility), while other OSA is driven by non-
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pharyngeal traits including high loop gain and 
reduced arousal threshold (Bamagoos et  al., 
2019b). Future research will focus on further dif-
ferentiating OSA as a whole into clinically rele-
vant subgroups, some of which may be more 
responsive to MAS therapy than others (Edwards 
et al., 2019). At the time of writing, there is little 
personalisation in the choice of MAS therapy for 
an individual patient in the clinic, other than a 
failed trial of CPAP or on the basis of patient 
preference. Future research will focus on the 
development of reliable endotypic and pheno-
typic prediction tools for MAS treatment success 
and translation of these into a clinical setting.

Another advancement in the field of sleep 
medicine as a whole is the increasing trend 
towards automated and remote (at-home) diagno-
sis and management of sleep apnoea (Penzel 
et al., 2021). This includes the explosion of wear-
able devices and ‘apps’ which collect physiologi-
cal data relating to sleep, including sleep times 
and staging, snoring, oximetry and ECG data. In 
future we may anticipate that MAS therapy will 
also progress in this regard. For example, the 
technology for remote (at-home) MAS titration 
studies already exists (Remmers et al., 2017) and 
may expand to a clinical setting, thus reducing 
the need for in-laboratory titration studies which 
are resource intensive. In addition, in-built MAS 
adherence data recorders described above raise 
the possibility of remote monitoring and assess-
ments via telemedicine, a technology which is 
already in common usage with CPAP.

22.16	� Clinical Practice Points: 
Evidence-Based Summary

•	 There is a variable clinical response to MAS, 
with approximately one third achieving a 
complete response and a further one third 
achieving a partial response (reduction in the 
AHI of ≥50%).

•	 Increasing MAS efficacy is observed with 
increasing mandibular protrusion. In practice, 
patients may be advised to titrate their MAS to 

the maximal comfortable limit of protrusion 
to optimise OSA control.

•	 Although CPAP is more effective than MAS at 
lowering the AHI, this may be offset by 
improved patient tolerance and adherence 
with MAS therapy, leading to equivalence in 
key neurobehavioural and cardiovascular 
outcomes.

•	 MAS improves key outcomes including day-
time somnolence, driving risk and quality of 
life to the same extent as CPAP. Further 
research is needed to examine the impact of 
MAS on cardiovascular endpoints.

•	 MAS is generally well tolerated. Short-term 
side effects include hypersalivation, TMJ dys-
function and pain or irritation of the intra-oral 
tissues. Long-term side effects include tooth 
migration and dental occlusal changes.

22.17	� Areas of Future Research

•	 Moderately sized CPAP trials have failed to 
demonstrate a benefit when looking at cardio-
vascular endpoints; however, these have all 
been characterised by poor compliance. Since 
MAS compliance is generally higher than that 
of CPAP, further research is required to exam-
ine the impact of MAS therapy on cardiovas-
cular outcomes.

•	 A number of phenotypic and endotypic traits 
have been associated with MAS response, but 
accurate and reliable clinical predictive tools 
remain lacking. Further research is required 
into the development and refinement of reli-
able prediction tools for MAS treatment suc-
cess and translation of these into a clinical 
setting.

•	 A major barrier to more widespread MAS 
usage is the expense of the device and the 
need to have the device custom-made by a 
specialist dentist, which also increases patient 
cost and reduces accessibility. Future research 
should focus on reducing production cost and 
improving the quality of affordable ‘boil-and-
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bite’ or other preliminary models to allow for 
effective MAS trial phases.

•	 Remote monitoring of adherence and other 
data is already commonplace for CPAP ther-
apy. Future research will focus on the devel-
opment of MAS in-built adherence recorders 
including the availability of remote access, as 
well as the collection of other relevant data to 
assess nightly efficacy, including haem-
oxygen saturation, heart rate, position sensors, 
snore microphones, respiratory events and 
even sleep staging.
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