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Abstract. Markov chain is a powerful mathematical tool that is used to predict
future state of a randomprocess based on its present state, for classical or first-order
Markov chain, and past states for higher-order Markov chain. Markov chain has a
wide range of applications in various fields of science and technology. To mention
some in the area of telecommunication systems: Internet page ranking; Internet
traffic modeling; language source modeling in natural language processing for
text compression and text generation applications; speech recognition; wireless
channel modeling; spectrum occupancy prediction for cognitive radio; user mobil-
ity modeling, handover management, and operation status monitoring in cellular
mobile networks; network service and maintenance optimization; and in Markov
chain Monte Carlo simulation methods. The main objective of this paper is to
review fundamental concepts in Markov chain for discrete sources with empha-
sis on its application in telecommunication systems. It introduces terminologies,
method to compute transition probabilities from real data, computing different
states of the chain, and possible applications areas. The focus is given for both
classical and higher-orderMarkov chain as well as HiddenMarkovmodels.While
acknowledging a related lecture note published in 2010, which we came to know
lately, this review includes additional topics, such as higher-order Markov chain
and Hidden Markov models, and tries to present core ideas in less mathematically
rigorous but more practicable way. We hope that interested researchers who wish
to apply Markov chain for various applications will benefit from this review.

Keywords: Hidden Markov model · Initial distribution · Markov chain ·
Modeling · Prediction · State · Steady state distribution · Transition probability

1 Background

Markov chain is a class of stochastic processes used in several fields of science and
engineering to model real-world and randomly-varying systems or phenomena. Markov
chain assumes that real life systems aremadeof discrete and countablyfinite states,which
could be values of a random variable at different time t, situations of the phenomena or
output of the system [1–7]. The set of states form a state space. The system is assumed
to randomly transition (evolve or move) in discrete time from one state to another state
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according to a certain transition probability. The collection of transition probabilities
forms the transition probability matrix.

Markov chain is formulated to predict, in probabilistic sense, an immediate future
state of the system based on the present state only, and not on past states. This type of
Markov chain is sometimes referred as classical or first-order Markov chain, while the
dependency on the current state only is characterized as “memorylessness” or Markov
property. Higher-order Markov chain, on the other hand, includes the past states, in
addition to the present state for the prediction of the future state. In natural language
processing area, this dependency in the current and past states is called the N -gram
approach, and the resulting model is called an N -gram model. The N in N -gram is
the order of the Markov chain. The N -gram model improves the prediction accuracy
compared with predication with one order dependency only [24, 26], and [28]. With
knowledge of the future state, Markov chain iteratively estimates the states of the system
after certain number of transitions in the future. In doing so, Markov chain is used to
understand the dynamics of the system, as the system transitions fromone state to another
state.

In many real world problems, however, the states we are interested in are hidden
or non-observable. In such cases, Hidden Markov models are used instead of Markov
chain. In this modeling approach, the assumption is the presence of other observable
parameters (states) that are related to the hidden (or non-observable) states with some
probability function.

Nowadays Markov chain [1–8] and Hidden Markov chain [29, 30] are used to cap-
ture behavior of a wider range of real-world systems and phenomena. Application exam-
ples related to this review include: source modeling in natural language processing that
includes text compression [28] and text generation [31–33]; speech recognition [29,
30]; data compression (like LZMA in 7zip); Internet traffic modeling [36]; Internet page
ranking as in the PageRank used by Google search; spam filtering to determine legiti-
macy of text; and in stochastic simulation methods known asMarkov chainMonte Carlo
simulation methods. Moreover, Markov chains are used for channel modeling [23–27];
usermobilitymodeling inmobile systems [12–16]; handovermanagement inmobile sys-
tems [17]; spectrum occupancy prediction for cognitive radio [18–22]; accessibility and
retainability modeling in mobile networks [34, 35]; to implement proactive maintenance
procedures [37] and the likes.

Navigating through literatures written in the area of Markov chain, one groups of
literatures focus on fundamental concepts with less emphasis on real-world applications.
The other groups are more on the application areas with lesser focus on fundamental
concepts. An exception to this is the lecture note in [11] that discusses performance
modeling of communication networks with Markov chain. However, the lecture note
fails to address topic topics such as higher-order Markov chain and Hidden Markov
models. The intention of this review paper is to bridge the gap between fundamental
concepts and application areas. It introduces basic ideas behind Markov chain, both
for first and higher order, and how they can be used to model real-world problems,
specifically the once that we encounter in telecommunication systems.
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The rest of the paper is organized as follows. Section 2presents a couple of probability
concepts relevant while explaining application of Markov chain. Markov chain for dis-
crete sources is explained in Sect. 3. Basic terminologies that are covered in this section
are: states transition probabilities and transition matrix; initial and steady-state proba-
bility distributions; computing transition probabilities from a data; verifying if a given
systems fulfills the Markov property. Section 4 briefly presents Hidden Markov model.
Section 5 summarizes possible application areas of Markov chain, with concluding
remarks given in Sect. 6.

2 Review of Probability Theory

In this section, we review few concepts from probability theory relevant to understand
Markov chain.

2.1 Law of Large Numbers for Markov Chain

In probability theory, the law of large numbers is a theorem that describes the result of
performing the same experiment a large number of times [38]. According to the law,
the average of the results obtained from a large number of trials repeated independently
should be close to the expected value, and will tend to become closer to the expected
value as more trials are performed. The law of large numbers is important because it
guarantees stable long-term results for the averages of some random events.

The steady state or equilibrium state ofMarkov chain, which is the limit of observing
the system over larger iterations, is analogous to performing the same experiment a large
number of times. In a way, because of its steady state distribution, systems that obey
Markov chain also comply with the law of large numbers.

2.2 Chain’s Rule

In probability theory, the Chain rule (also called the general product rule) permits the
calculation of any member of joint distributions of a set of random variables using
only conditional probabilities [28]. The rule is useful in the study of N -gram modeling
and Bayesian networks, which describe probability distribution in terms of conditional
probabilities. Suppose that we have a set of random variables (observation) designated
as S1, S2, . . . , Sh, then the probability of occurrence of the observation is:

P(S1, S2, . . . , Sh) =P(S1).P(S2|S1)P(S3|S2, S1) . . .P(Sh|Sh−1, .., S1)

=
h∏

i=1

P(Si|Si−1, . . . , S2, S1) (1)

In higher-order Markov chain or N -gram Markov chain, smaller conditional proba-
bilities make computation using Eq. (1) difficult. Hence, an approximation to the Chain
rule in Eq. (1) is:

P(S1, S2, . . . , Sh) ≈
h∏

i=1

P(Si|Si−1, . . . , Si−N ) (2)
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In practice, frequency counting method is used to compute the conditional prob-
abilities in Eqs. (1) and (2). For example in natural language processing, the random
variable Si could represent letters or words in a language. To compute the probability
of each Si and a combinations of it, a large corpora i.e., a collection of texts written
with the language’s alphabet and containing all the possible letters or words sequences
is organized to count needed probabilities [28]. Using this count method, the conditional
probability in Eq. (2) can be calculated for the N -gram model as:

P(S1, S2, . . . , Sh) = count(S1, S2, . . . , Sh)∑
i count(S1, S2 . . . , Sh)

(3)

The count(S1, S2, . . . , Sh) in the numerator is count of the desired h letters/words
while count in the denominator is all counts of possible combinations of sequences
of h letters/words in the corpora. In the discussion of higher-order Markov chain in
SubSect. 3.4, we will see variant of Eq. (2).

3 Markov Chain for Discrete Sources

AndreyMarkov first introducedMarkov chain in the year 1906 [1]. He explainedMarkov
chain as special classes of stochastic process/system with random variables designating
the states or outputs of the system, such that the probability the system transitions from
its current state to a future state depends only on the current state, and it is independent of
the series of states that preceded it [1, 11]. This is unlikemost studies in stochastic process
that are based on the independent and identically distributed (i.i.d.) assumption, which is
like saying the future state is independent of any other prior states, or the process every
time “resets” itself into fresh. Hence, Markov chain is a sort of compromise between
systems whose states have complete or full dependency, which is difficult to model, and
i.i.d. systems.

Over the years, the dependency of future state on present state only has beenmodified
to model sources where the future state depends on N − 1 past and present states.
This gives rise to the higher-order Markov chain or an N-gram model. Whatever the
order, Markov chain is used to predict, in probability sense, about the future states of
the random variable (or stochastic process), based on current and previous states. This
section sections briefly explains the Markov chain and higher-order Markov chain.

3.1 First-Order Markov Chain

Markov chain is a kind of stochasticmodel used tomodel randomly varying systems, like
information sources, whose future output has dependency only on current state only. This
dependency on the current state only is sometimes characterized as “memorylessness”.
Key issues in applying Markov chain for a certain application require identifying and
computing state, state space, initial (state) distribution (or initial state vector), transition
probability, transition probability matrix, the state probability after certain iterations,
and equilibrium or steady state distribution. These terms are briefly explained below.

To better explain Markov chain using an example from a mobile system, consider a
mobile system with three basestations and a single user, as shown in Fig. 1 (a) below.
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Let BSi for i ∈ {1, 2, 3} designate the three basestations and let the current location of
the user is recorded when a user receives a call. Observing the record over a larger time
interval every time a new call arrives provides information about mobility pattern of the
user, which are the user is likely to stay in the same cell or move to either of the two
cells.

(a) Mobile user moving around three basestations.  (b) Corresponding transition diagram.

Fig. 1. Mobility of a mobile user in a cellular system.

State in Markov Chain: Markov chain assumes that real life systems are made of
states. The states could also be outputs or values of the random process. The state
space, i.e., the set of all possible states, is discrete (usually) and countable (finite). In
discrete Markov chain the system randomly transitions in discrete time from one state
to another state according to certain transition probability.

• In the mobility example shown in Fig. 1, state could be the basestation the user is in
when a call arrives. The current state is the basestation in which the user is connected
when a call arrives. Accordingly, the future state is the basestation the user will visit
(or will be in) when the next call arrives.

• Ifwe take information sourcemodeling for the purpose of text compression as a second
example, each letter (or group of letters) generated from an information source can
be viewed as a state, and the state space contains all possible letters (or group of
letters) generated from the source [28]. Every time the information source generates a
letter, we can think of the chain is moving/transitioning in discrete time and randomly
from one state (in this case a letter) to another state to make meaningful words and
sentences.

Transition Probability: indicates the probability or rate with which the chain transi-
tions in discrete time from one state to another state. The transitions capture hidden
patters in the system, e.g., in the mobility example explained above the transition indi-
cates the rate or frequency with which the user moves from one basestation (area) to
another basestation (area). There are multiple factors dictating the user’s mobility. For
the text generation example, transition from one letter to the next letter in a text is used
as an approximation of the true underlying nature of the language considered.

To have a generalized formulation of the transition probability, suppose that we have
a discrete-time and random source having N states and the state space designated as
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{a0, a1, . . . , aN−1}. Moreover, let the sequence of states generated in time are given as
S1, S2, S3, . . . ., Sn, . . . , where Sn ∈ {a0, a1, . . . , aN−1} and n in Sn indicates the dis-
crete time index. For Markov chain fulfilling the memoryless assumption, the transition
probability is expressed as:

P
(
Sn+1 = aj

∣∣Sn = ai, Sn−1 = ah, Sn−2 = ag, . . .
)

= P
(
Sn+1 = aj

∣∣Sn = ai
) (4)

We learn from the Markov property that only the most recent state (information)
matters to predict the next or future state. Alternatively, the past and the future are
conditionally independent given the present. From now on, the transition probability
from state ai to state aj is designated as:

Pij = P
(
Sn+1 = aj

∣∣Sn = ai
)

(5)

Transition Probability Matrix: collection of the transition probabilities Pij forms the
probability transition matrix, P. The transition probability matrix shows all possible
state transitions. Each element of the matrix represents the probability that the system
switches its state to or remains in the same state. Every state in the state space is included
once as a row and again as a column [11]. P is a square matrix whose order is the same
as the number of states.

Reconsidering themobilitymodeling discussed in Fig. 1, and assuming the following
observations are made after recording the mobility patter of the user.

• If the user is in BS2, it is less likely to stay in the same cell when the next call arrives;
moreover, it is just as likely for the user to be in BS1 as in BS2.

• If the user is either in BS1 or BS3, it has an even chance of staying in the same
basestation when the next call arrives.

• If there is change from BS1 or BS3, only half of the time is this a change to BS2.

With this information, the transition matrix is formed as follows:

p =
⎛

⎝
P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞

⎠ =
⎛

⎝
0.50 0.25 0.25
0.50 0.00 0.50
0.25 0.25 0.50

⎞

⎠ (6)

The entries in the first row of the matrix P in Eq. (6) represent the probabilities for
the mobility of the user following that it is in BS1. Similarly, the entries in the second
and third rows represent the probabilities for the user location following that it is in BS2
and BS3, respectively. In general, an n × n transition probability matrix P must satisfy
the following properties [5].

• Each transition probability is non-negative, i.e., Pij ≥ 0 for all i and j.
• For all i and j, the summation of all transition probabilities in a row must be equal to
one, i.e.,

n∑

j=1

pij = 1 (7)
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Transition Diagram: The transition probability matrix could also be represented using
a transition diagram. Transition diagrams are used to represent all transitions in the
system. Figure 1. (b) shows the transition diagram for the mobility example. Each node
represents the state of the Markov chain and a directed arrow is used to represent the
presence of transition from one state to another. The edge represents the current state
and the arrow indicates the next state [29].

Initial (Probability or State) Distribution: The initial state distribution is usually
expressed as a probability distribution vector, whose entries indicate probability that
the system will be in a given state at a given initial time. Let U be a 1 × n dimension
vector, given in Eq. (8) designating the initial distribution. Each entry of the vector is
non-negative and represents the probability that the chain or system is in that state (or
starts in that state) at a given (initial) time instant.

U = [P1,P2, . . . .,Pn] (8)

All elements of the vector should sum to one. In the absence of clear knowledge on
the initial distribution, the system can be assumed to be in one state with certainty, so that
all entries of the vector except the entry for that state will have zero values. Alternatively,
we can assume that all states are equally likely so that Pi = 1/n for i ∈ {1, 2, . . . , n}.
Steady State Distribution – One of the interesting things about systems that obey
Markov chain is that, from which ever initial states the chain starts from, the chain
will converge to steady state, stationary, equilibrium or static distribution after suffi-
ciently large iterations/transitions. Steady state indicates there exists a condition where
regardless of the current state, the probability for the next state is always the same. In
steady state, however, does not mean that the chain stop from transitioning; rather, from
a given state the probability of outward transitions and inward transitions will be the
same (or is in equilibrium) so that the probability distribution stays same.

With knowledge of the transition matrix P and the initial probability vector U as
defined in Eq. (6) and Eq. (8), respectively, the probability distribution of the chain after
k transitions in the future is given by [2].

U (k) = UPk (9)

Pk is the result of multiplying P k times by itself. Each element of U (k), designated as
P(k)
ij , is the probability of going from state i to state j in k iterations. As we keep iterating

through state transitions by applying Pk , the probability vectors U (k) converge to some
fixed value, say π(k). That is called the steady state distribution.

lim
k→∞

U (k) = UPk = π(k) (10)

We note from Eq. (10) that based on knowledge of the state space, initial distribution
and transition matrix, Markov chain can predict/estimate, in probabilistic sense, the
future state of the system after certain transitions in time.
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Regular Markov Chain: is one type of Markov chain, were after long transitions, the
states will become independent of the initial states. For this type of chain, it is true
that long-range predictions are independent of the starting state. Considering again the
mobility example, the transition matrix after the second and six transitions are given
in Eq. (11) below. Note that after the sixth transition, the matrix will remain the same,
indicating the resulting state vector will be the same.

P(2) =
⎛

⎝
0.438 0.188 0.375
0.375 0.250 0.375
0.375 0.188 0.438

⎞

⎠

. . .

P(6) =
⎛

⎝
0.400 0.200 0.400
0.400 0.200 0.400
0.400 0.200 0.400

⎞

⎠

(11)

Note that whatever what the initial distribution vector U is, as an example U =
[1, 0, 0] so that the user is in BS1 initially, the probabilities that the user will be in BS1,
BS2 and BS3 are 0.40, 0.20, and 0.04. This distribution will be the same no matter where
the chain started or what the initial distribution is.

3.2 Additional Properties of Markov Chain

Communicating States: Two states are called communicating states, if state i is acces-
sible from state j and state j is accessible from state i. In other words, it is possible to
travel from state i to state j with some probability Pij greater than zero, and it is possible
also to travel from state j to state i with some probability Pji with value greater than zero
[1–8].

Absorbing State: is a state where once the system entered this state, it cannot leave
the state. The system will loop and stay at the state [32]. In case of an insurance system
modeled as a Markov chain, once people withdrawn their insurance or if the insured is
dead, the next state will stay withdrawn and cannot be active again [32].

Transient State: a state is said to be a transient state if, upon entering this state, the
process might never return to this state again.

Recurrent States: is a state if, upon entering this state, the process definitely will return
to this state again. Therefore, recurrent state is a state that is not transient [46].

Irreducibility: The Markov chain is called irreducible if it is possible to move from
any state i to any state j regardless of the number of transitions it takes. Or we call the
Markov chain irreducible if all the states of the chain are in one communication class.

Aperiodic: The Markov chain is called aperiodic if, after departing from state i, the
system can return to it through following different paths. Otherwise, it is called periodic,
and the system returns to its initial state after some multiplication of period m, where m
is greater than 1. All states in a same class could be either periodic or aperiodic and will
have the same period.
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Positive Recurrent: TheMarkov chain is called positive recurrent if there is a non-zero
probability that after departing from state i, the process will return to it in a finite time.

Ergodicity: happens if all states are aperiodic and positive recurrent.

Reversibility: MarkovChain is said to be reversible if theMarkov process changes from
one state to another in one direction same number of times as in the reverse direction.

3.3 Computing Transition Probabilities from Data

Estimation of future states via Markov chain typically needs starting values for model
parameters, i.e., initial probability distribution and transition matrix [29]. For the initial
distribution if the system under consideration is small and simple, any random starting
values will usually do. With large and complex systems, good starting values are needed
for finding the optimal solution in a reasonable time.

The transitionmatrix, on the other hand, can be estimated by aMaximumLikelihood
approach [29], [43]. Assuming that we have a system having N states designated as
{S1, S2, . . . , SN }. Let nij is the number of transitions from state Si to state Sj and ni is
the total number of transitions from state Si. The Maximum-likelihood estimates of the
transition probability Pij is

Pij = nij
ni

(12)

Moreover,

N∑

j=1

nij = ni (13)

And

N∑

j=1

nij = ni (14)

Table 1, below how the transition probabilities may be represented by the following
table.

3.4 Higher-Order Markov Chain

As mentioned in previous sections, there are sources where the future state depends on
N − 1 past and the present states. This leads to the name higher-order Markov chain or
N-gram model [28]. As an example in natural languages, because of hidden structures
in the language and grammatical rules, the likelihood of a letter generated from a source
is dependent on previously generated N − 1 contiguous sequence of letters. [In most
natural language processing studies, theN -gram indicates sequence ofmeaningfulwords
instead of letters.]
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Table 1. Table for transition probabilities computation.

State 1 2 … N Row Sum 
1 
2 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
N 

We can think of N -gram as sequence of N letters, and a statistical model assigns
probabilities to the sequences of letters. Common values of N have special names: a 1-g
(or unigram) is a one-letter sequence of letters; a 2-g (or bigram) is a two-letter sequence
of letters; and a 3-g (or trigram) is a three-letter sequence of letter and the likes. The
N -gram model assigns probabilities to letters and sequence of letters, considering the
dependency among the letters. As an example, if we have three sequence of letters
S1, S2, S3 where Si ∈ {a0, a1, . . . , aN−1} drawn from the alphabet A. If we have a
sequence containing three letters, the N -gram model assigns probability to the sequence
as:

P(S1S2S3) = P(S1)P(S2|S1)P(S3|S1S2) (15)

Unigram Model: writes the likelihood in Eq. (15) in terms of the probabilities of the
three letters as:

Puni(S1S2S2) = P(S1)P(S2)P(S3) (16)

One way to estimate the probability in (16) is through the relative frequency count
approach mentioned in Sect. 2.2 above, by taking a substantially large corpus. If M is
the total number of three-letter sequences count in the corpus, the maximum likelihood
estimate of the sequence S1S2S2 is computed from the number of counts as:

Puni(S1S2S2) = count(S1S2S2)

M
(17)

N-gram Model: in a case that the sequence has large number of letters, getting a good
estimate for the probability of the sequence is a bit difficult, as the training corpora may
not be sufficient enough to bring out all the possible combinations of letter sequence in
the source [4]. One approach to simplify the probability estimate is to combine chain
rule and the N -gram assumption, so that probability of observing sequence of letters
S1, . . . , Sh is approximated as [28]:

P(S1, . . . , Sh) =
h∏

i=1

P(Si|S1, . . . , Si−1) ≈
h∏

i=1

P
(
Si|Si−(N−1), . . . , Si−1

)
(18)



376 A. S. Omer and D. H. Woldegebreal

Given a large corpora, the maximum likelihood estimation of the conditional
probabilities in Eq. (18) are computed via the frequency count as:

P
(
Si|Si−(N−1), . . . , Si−1

) = count
(
Si−(N−1), . . . , Si−1, Si

)

count
(
Si−(N−1), . . . , Si−1

) (19)

4 Hidden Markov Models

One inherent assumption in the Markov chain includes: the random variables, result-
ing from state transitions, are observable and transition probabilities can be computed
directly from the observation. In many real world problems, however, the states we are
interested in are hidden or non-observable [9, 10].

Hidden MarkovModels are probabilistic models that are applied when states are not
directly observable or when the sates are hidden; the model assumes the presence of
other observable parameters (emissions) that are related to the hidden states with some
probability function. The observable parameters or symbols are also called emissions
[29, 30]. In the Hidden Markov Model, the hidden states of the system being modeled
are assumed to be of a Markovian process. While parameters of interest in observable
Markov chain are transition matrix, P, and initial-state probabilities,U , Hidden Markov
model requires emission probabilities, say E, as a third and additional parameter.

Application areas for a Hidden Markov model include bio-informatics, linguistic
analysis,mobility analysis, healthcare informatics, and other sequence and pattern recog-
nitions. In telecom related areas, communication channel classifications and analysis,
network traffic identification are observed.

To better illustrate the difference betweenMarkov chain and HiddenMarkov model,
let us consider an example from [29]. Let annual temperature, which can be expressed
as “hot state” or as “cold state”, is our parameter of interest. In the case of Markov chain,
direct measurement of the temperature is required to predict how the temperature will
look like in upcoming days or years.

In the case of Hidden Markov model, say if size of a tree growth (tree ring sizes)
is only observed (measured), so that temperature is hidden state. Assuming correlation
between the size of tree growth and temperature, Hidden Markov model predicts the
temperature based on the observable tree ring sizes. The observable evidences are tree
ring sizes as small, medium and large. Therefore, here the states are hidden but there is
other correlated observation, the size of tree growth.

Considering another example, where a mobile network operator monitors status of
its network. Assume that the operator labels the network status as in “Good” state or
“Bad” state, based on some key performance indicator (KPI) values. As in the case of
Markov chain, the initial distribution and transition matrix can be directly calculated
from observed transitions between the states, i.e., count the observed status, “Good” or
“Bad” and calculate the transition probabilities using Maximum Likelihood estimation
approach mentioned in Sect. 3.3.

Now the question is, what if the KPI values that are not measurable directly? Or what
if the available information is the form of other observations, say peoples’ attempt to
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connect disconnect per unit time, average connected time and/or number of connected
users per cell? The network status is somehow correlated with the probabilities of these
observations. We can use all the three other observations, or just one of them, to make
inference about the network status. In such a case where we do not have the direct status
or KPI information, we can use Hidden Markov model.

Let us take the first one which is people’s attempt to connect disconnect per unit time.
Let us also have prior knowledge that if there is higher attempt to connect disconnect
per unit time, there is a high probability for the network to be in “Bad” status and vice
versa. The network status can also be somehow at an average performance in between
the states. Now we can quantize the attempt to connect disconnect per unit time in to
three parts and assign probabilities. Let the quantized attempts per unit time be 10, 5
and 2. Based on available evidences, the emission probabilities for each symbol from
the Good state is 0.2 for 10, 0.3 for 5 and 0.5 for 2. And the emission probability for
each symbol from the Bad state is 0.5 for 10, 0.3 for 5 and 0.2 for 2.

Good Bad

10 25

Hidden states

Observables

Fig. 2. Hidden Markov model for the mobile network example.

In summary:

• 10, 5, 2 are the observation sequences, O, that can occur randomly in any state;
• E is the Hidden Markov model parameter that relates the observation symbols with
the hidden states. E is developed from the available evidence as E0.

• Therefore, E0 will be initialized as;

Bad = {10: 0.5, 5: 0.3, 2:0.2}
Good = {10: 0.2, 5: 0.3, 2:0.5}
In Fig. 2 the emission probabilities are those symbolized by the downward blue

arrows.

• U is the initial-state probabilities and will be fairly initialized, usually equally
distributed as U0 = [0.5, 0.5].

• The transition matrix P is also fairly initialized, usually equally distributed as P0 =
([0.5, 0.5], [0.5, 0.5])
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• Once we determine and initialize those parameters, the Hidden Markov model will
be trained with a list of observation datasets. This dataset contains the observation
symbols. And in this example, the observation datasets will be different combinations
of 10, 5, 2.

Additional considerations regarding Hidden Markov is, since the model tries to
capture more information, the model parameters should be optimized. Otherwise we
might end up in a computationally costly model. One major area to do the optimization
is the emission probability matrix E. Its size is the number of states by the number of
observations. Therefore, for a given number of states, we need to limit our observations
to only the important ones.

5 Applications of Markov Chain

The purpose of this section is to provide summary of potential application areas of the
Markov chain and Hidden Markov model in the context of telecom systems.

5.1 Markov Chain for Natural Language

Probabilistic Language Source Model: A language source is a source that randomly
generates sequence of letters drawn from the language’s alphabet, which is finite in
number. Application areas that require language modeling include text compression and
automated text generation. Each letter has a certain probability of occurrence, which
depends on the language’s structure, context and other factors [28]. Group of letters
from the sequence form meaningful word, where group of words form sentences and
paragraphs.

A probabilistic or statistical language source model assigns a probability distribu-
tion to letters of the alphabet, words of the language, or some sequence of letters which
may not be meaningful. Given such a sequence of letters, say of length m, it assigns a
probability P(l1, l2, . . . ., lm) to the whole sequence.

A Markov language source is a language source whose underlying dynamics are
governed byfiniteMarkov chain i.e., having afinite alphabet, dependency of a given letter
on a sequence is limited to previous N letters, and a stationary probability distribution
for possible sequence of letters.

InMarkovian language sources, letters, words of sequence of letters are equivalent to
states of theMarkov chain. The source is assumed to emit sequence of letters or group of
letters, as in text compression application [28] or sequence of words as in text generation
application [31-32] to create words, sentences and paragraphs. Every emission can be
considered as if the chain is transitioning from one to another state.

The usual assumption in classical Markov chain is the dependency among sequence
of letters (or words) is in the first degree, i.e., the likelihood of a letter (or a word) is
dependent on the likelihood of a letter (or a word) generated one time step earlier only. In
natural languages, because of hidden structures in languages and grammatical rules, the
likelihood of the letter (or the word) is dependent on previously generated N sequence
of co-occurring letters (or words); leading to the name N -gram language model. Hence,
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theN -grammodel is a type of probabilistic language model for predicting the likelihood
of the next letter (or word) from a sequence of (N − 1) previously generated letters (or
words). Note that N − 1 is the order of the Markov chain. Common values of N have
special names: “unigram” for N = 1, “bigram” for N = 2, “trigram” for N = 3, “four-
gram” for N = 4, “five-gram” for N = 5, and so on. Note that in the N -gram model, the
number of states in the Markov chain will be N2 unlike N in unigram model.

TheN -grammodel probabilities are computed from frequency counts of all possible
letters (or words) from a document. However, increasing N is conceptually increasing
the alphabet size of the source. A large training corpora/text is needed to bring out all
possible combination of message sequences in a language [28]. This approach has a
problem when confronted with any N -grams that have not been explicitly seen before.
Instead, some form of smoothing is necessary, assigning some of the total probability
mass to unseen words or N -grams. Various methods are used, from simple “add-one”
smoothing (assign a count of 1 to unseen N -grams, as an uninformative prior) to more
sophisticated models, such as Good-Turing discounting or back-off models [28].

5.2 Markov Chain for Automatic Text Generation

The use of computer programs to generate texts of a language, say English, is an active
research topic. Automated text generation system generate a predictive text based on
previously typed term(s) or word(s). A typical example of text generation is Google’s
autocomplete system when we type in the search tab of Google when composing emails
[31–33]. Other applications of text generation include: to creating artificial texts or
scripts to generate artificial news, create a better movie synopsis, or create poems [31–
33]. Text generation is also used in Chatbots for answering frequently asked question)
and document summarization (extracting important info based on the model), Language
translation.

Markov chain is used for text generation, and as compared to other text generation
schemes has the advantages of being simple and easy to implement, and lower com-
putation time [46]. However, the generated text is as good as the input corpus used for
training, i.e., generating the probability distribution matrix and the order of the N -gram
Markov Chains (high order model) used to capture the context [31–33].

5.3 Spectrum Occupancy Prediction for Cognitive Radio

The radio spectrum is a key and scarce natural resource used to provide a wide variety
of wireless services. Traditionally, radio spectrum is exclusively allocated to users and
strictly regulated to prevent interference among users using same or adjacent frequency
bands. Emergence of new wireless technologies and innovative services has raised the
demand for more radio spectrum bands.

One way to avail more radio spectrum is to apply spectrum sharing concepts to
harvest underutilized bands of the spectrum. Dynamic Spectrum Access is an optimal
spectrum sharing solution to opportunistically allow secondary users (or unlicensed)
to shares bands that are allocated for primary (or licensed) users in a non-interfering
manner [22–24]. To avoid the interference the secondary users, among others, should
have spectrum sensing capability (i.e., to detect the presence of the primary user that
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uses the spectrum), decide if the spectrum is in usage, use the spectrum when free and
evacuate the licensed spectrum if needed by the primary user (called spectrummobility).

Spectrum prediction is one spectrum sensing approach in which the future state of
the spectrum is forecasted on the bases of the historical information available about the
spectrum. Secondary users within the cognitive radio network, collect sensing informa-
tion, and utilize statistical correlation, to infer possible future states of the primary user
usage patterns [18]. Parameters studied by channel prediction broadly target channel
availability i.e., prediction of the channel status as idle, or busy from the perspective of
secondary users, as well as, duty cycle i.e., prediction of the average fraction of time the
primary user is occupying the channel [19].

In the Markov chain-based spectrum occupancy predication, the spectrum shared by
the primary and the secondary users is modeled as a two state (hidden) Markov chain;
in which the states are the spectrum being “occupied/busy” and spectrum is “free/idle”
[18–22]. As the traffic demand by the primary user is dynamic and random, there is a
transition for the channel from “idle” to “busy” state; a similar state transition occurs
“busy” to “idle” occurs when the primary user stops using the spectrum. Sometimes “0”
and “1” are used to indicate the idle and busy states, respectively [24]. Hidden Markov
Model based spectrum prediction assume that the actual spectrum state is assumed to be
hidden from secondary users [23, 24]. With X = {“0”, “1”} denoting the actual/hidden
state space, while Y = {“0”, “1”} denoting the observation/sensing state space, Fig. 3.
below shows the transition diagram for the Hidden Markov Model. In the diagram aij
for i, j ∈ X designate transition probabilities in the hidden state while bij for i, j ∈ Y
are the emission probabilities.

To improve prediction accuracy and considering availability of historic measure-
ment data higher-order Markov model is proposed in [20]. The high-order Markov
model provides better predication accuracy than first-order Markov model as it takes
into account more historical information; however, increase of order increases the com-
plexity exponentially grows, which leads to the increase of the prediction delay of the
model [20].

Fig. 3. Hidden Markov Model (HMM) [20].
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5.4 Channel Modeling for Wireless Communication

Wireless channel is a channel whose gain is random and continuously varying in time.
Widely used stochastic channels models include: Gaussian, Rician and Rayleigh [23]. In
a typical wireless environment with no dominant line of sight propagation path between
a transmitter and a receiver, Rayleigh fading is most applicable to capture the statistical
variation of the channel. On the other hand, Rician model considers the presence of a
dominant line-of-sight, in addition to reflection paths.

Though in reality the wireless channel gain continuously varies in time, what usu-
ally the case is that the gain remains constant or correlated for a certain time interval
called the coherent time of the channel. Such a wireless channel is termed to be a block
fading channel, and most researches that involve the wireless channel are based on this
block fading assumption. In subsequent coherence time intervals, the channel gain either
remains the same (i.e., the underlying factors that contribute for channel change are the
same) or the channel gain changes to different levels. If we further assume that the chan-
nel gains are quantized, i.e., to have finite-values, and have finite discrete steps, then the
Markov chain concept can be applied to model the channel with the following analogy
[23–27]:

• Each level of the channel gain corresponds to states in Markov chain. Depending on
the channel gain values, a two state channel model, where one classified as “good”
and the other one classified as “bad” or a four state model with different types of
statistical channels are investigates [23].

• Coherence time is related with the time with which the chain stays within a state.
• Changes in channel gains correspond to state transitions in Markov chain.
• The rate with which the channel changes states is a function of the underlying factors
that change the channel and form the transition probabilities.

• Classical Markov chain or higher-order Markov chain models can be used to study
the channel, depending on degree of correlation among successive states.

Knowing the possible channels gains that can be present in a transmission channel
and applying Markov chains, it is possible to implement a more realistic channel [23].
Markovchain is alsoused inSwitchedChannelModel i.e., the channel switchingbetween
Rayleigh and Rice fading (the later with different K-factor), is investigated in [24–27].
The results indicate that the more state of the Markov chain, the better of the prediction
of the channel performance.

5.5 Mobility Prediction in Cellular Networks

The mobility or motion pattern of a mobile user often exhibit some degree of regularity
so that whereabouts of the user are predictable. Mobility prediction is widely used to
assist handoff management, resource reservation and provide location-based services
[12–16]. Markov chain-based mobility prediction approaches are widely proposed in
the literature for their ability to yield better accuracy than most other predictors with
lower complexity [12].
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Handover in Cellular Networks: is a process of transferring users from a serving radio
network (cell or basestation) to another radio network because of users’ mobility. Seam-
less handover guarantees service continuity for mobile users, by reserving communica-
tion resources (e.g., bandwidth) on all the cells that the mobile users will probably visit
during its session [17]. In order to achieve a seamless handover, the handover latency
needs to be reduced, as resource allocation takes a lot of time.

By predicting the mobility pattern of users, in terms of future probably visited cells,
the resource allocation can be performed prior to the actual handover, thus can reduce
delays in resource allocation and also the handover latency [12–16].

Markov chain comes in handy for the users’ location (at a cell level) prediction. In
the Markov context:

• A user connected to a given cell over a time interval of interest would form the “state”;
• As the user moves from one cell to another cell, the user is declared to be moving and,
hence, state transition occurs.

• The possible movement of the user within the coverage area would form the transition
matrix. If we track and record the cells visited by an individual user over a certain
period of time, the user’s mobility history generates the Markov chain transition
matrix.

• The initial distribution can be derived from the user’ initial state.

The Markov chain approach can be used to predict the position (or mobility pattern)
of the user over future time steps, which contains temporal information. Higher-order
Markov model can also be used to improve mobility prediction accuracy [14]. One
challenge to apply Markov chain based approach is availability of historical data as
mobile operators may not be allowed by the customers to use their historical data due to
privacy concerns. Moreover, extraction and processing complexity of historical records
is another challenge for the implementation.

5.6 Markov Chain for Network Accessibility and Retainability Prediction

To deliver reliable services to customers,mobile network operatorsmonitor performance
of their radio access network and core network using different key performance indi-
cators, such as accessibility, retainability, mobility, integrity and availability. Moreover,
taking corrective actions based on monitored parameters is a reactive approach and con-
tributes to network and service degradations until corrective actions are taken. With
huge investment mobile network operators implement network management systems
that monitor historic network performance data, and with of upgrade can analyze possi-
ble trends and patters about the network and services. So a systematic way of monitoring
and predicting the network performance status is required to guaranty service quality.

The papers in [34, 35] use discrete time Markov chain model to predict accessibility
performance on Long Term Evolution mobile system based on KPI parameters data
gathered from LTE network for eNode B for a period of one month. Based on the KPI’s
value the network condition could be categorized into three states and after identifying
the state sequence, a transition probability matrix is used to predict future accessibility
state of LTE network.
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5.7 Network Services and Maintenance Optimization

Telecommunication network equipment’s and links fail intermittently for reasons related
to rehabilitation of network infrastructure, physical damage of transmission cables,
power problems etc. In addition, network congestion (as a result of growth in attrac-
tive telecom services and subscribers’ growth), complexity in telecom equipment’s and
other factors increases stress to telecom infrastructure and tomaintenance activity. These
issues have to be solved timely in order to maintain the quality of service. Telecom oper-
ators, like any other industrial company, implement corrective maintenance, preventive
maintenance and predictive maintenance strategies.

• Corrective maintenance is a reactive maintenance that, intervention to repair and
restore normal operation, is done once failures occur. In the past few decades, tele-
com operators have used corrective maintenance based strategy. Though simpler to
implement, this strategy cannot satisfy the need of customers as service outage and
frequent failures of devices affect QoS.

• Preventive maintenance is a proactive approach carried out at predetermined intervals
of time or according to prescribed criteria. It is intended to reduce probability of
failure, degradation of the operation of an item and/or degradation of a service.

• Predictive maintenance is carried out by monitoring indicative or significant/critical
parameters of equipments and services, and extrapolating/predicting based on historic
data potential failures. The prediction is on the probability of the equipment/service
will become faulty in the future and/or fault indication (symptom) of degradation
conditions (events) of devices. Predicting the performance of the network of infras-
tructures is relevant to determining the optimal maintenance activity for a network of
infrastructures.

Different types of Markov chain model can be used for root causes analysis of
existing problems, predicting the performance of the network, optimizing operation and
maintenance, and performance and reliability modeling [37]. Markov chain models have
the ability to capture the time-dependence and uncertainty of the deterioration process.

6 Conclusion

A Markov Chain is one simpler but powerful tool that is used to model dynamical sys-
tems that changes their states or outputs over time. Classical Markov chain formulation
assumes that the evolution of a state depends only on the current state, not on the past
states. This is the Markov property. So far Markov chain is applied in wide range of
disciples, where the telecommunication engineering is one area. In order to improve the
predication accuracy and based on availability of sufficient data, higher-order Markov
chain is used for some applications. Moreover, in cases where parameters of interest are
not directly observable, HiddenMarkovmodels are finding widespread applications.We
hope that the review provides good insight on basic concepts and terminologies used in
the use of Markov chain.
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