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Abstract. In this paper, an electrooculography (EOG)-based eyemovement angle
estimation approach, including signal acquisition, pre-processing, outlier removal
and modeling, is proposed. The eye movement angle estimation model is a data-
driven approach that using a non-linear polynomial method. It offers a simple,
analytical, accurate, and cost-effective solution for real-time and large-space eye
movement angle estimation. The feasibility of the proposed model was validated
on a realistic scenario across 18 subjects. Experimental results show the horizontal
estimation error in angle is less than 3.5°. Compared with most of the existing
methods with high computational complexity, the proposed model can provide
comparable results with less computational consumption cost in a large-space
eye movement angle estimation. Meanwhile, the proposed model can be easily
deployed in the embedded platform or mobile device with limited computing
power and limited storage space for real-time eye movement angle estimation.
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1 Introduction

Electrooculography (EOG), as a reliable and non-invasive technique, measures the elec-
trical potentials that arise between the cornea and the retina changes when the eyeball
rotates. By placing a pair of electrodes either horizontally or vertically around the eyes,
these potentials can be recorded. The transitions andmagnitude of the obtained potentials
are essentially corresponding to the rotation angle of the eyes [1]. Thus, EOG has been
widely explored in many health applications, such as wheelchair guidance [2], human-
computer interface [3, 4], fatigue detection [5], etc. While, for these applications, eye
movement angle estimation is considered to be the fundamental step.
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To estimate the eye movement angle, various approaches have been proposed. These
approaches can be roughly classified into the physically-driven white box method and
the data-driven black-box method. The research idea of the physically-driven white-box
model focuses on the EOG eye movement recognition model based on the relationship
between the principle of eye movement and gaze location. Under this idea, Barbara
et al. [6] proposed an eye movement angle fitting model, by employing the EOG battery
model [7] and the spatial geometric relationship between eye movement and the angle
of gaze location. However, the model proposed in this work requires a certain amount of
trigonometric function operations. Furthermore, the calculation of trigonometric func-
tions mainly relies on the Taylor expansion, which has requirements for computer com-
puting power, or the look-up table method, which has certain requirements for computer
storage capacity. As a result, the model training is resource-consuming.

In contrast, the research idea of data-driven black-box focuses on data-driven EOG
eyemovement angle recognitionmodeling. Comparedwith thewhite-box idea, this tech-
nique tends to have higher accuracy. Researches under this idea normally employ data-
driven modeling methods and establish regression models between the eye movement
angle and the collected EOG signal. According to the type of the proposed regression
models, it can be divided into linear models and non-linear models generally. Barbara
et al. proposed a linear model in the research to estimate the eyemovement angle accord-
ing to EOG signals [4]. However, other researches show that the eye movement angle
within 45° is linear, eyemovement angle larger than 45° is non-linear [8–11]. The advan-
tage of the non-linear model is that it has higher accuracy but correspondingly requires
higher computing resources to train the model. Although the linear model has a rela-
tively simple model, the requirements for computing resources are correspondingly low,
but its accuracy for a larger eye movement angle is not satisfactory. Putting aside the
resource usage, focusing only on accuracy and interpretability is not pragmatic enough
to apply EOG signals to health application scenarios. The relationship between resource
consumption and accuracy is an important issue that is yet to be considered.

To address the above issues, an accurate and cost-effectivemodel based on non-linear
polynomial regression for eye movement angle estimation is proposed. The model is
simple, analytical, fast, and with few parameters. Compared with most of the existing
methodswith high computational complexity, the proposedmodel can be easily deployed
in the embedded platform ormobile device for real-time eyemovement angle estimation.
Meanwhile, to verify the feasibility of the proposed method, a series of large-space
experiments (range: −50° to 50°) were conducted. The proposed model provides a
favorable accuracy with less computational time.

2 Experiment

2.1 Materials

In this work, EOG signals were recorded from 19 subjects aged 25 ± 4 years (9 males
and 10 females), these subjects are healthy adults without strabismus and exophthalmos.
All subjects understood and agreed with the experiment process before the experiment.
Polysomnography (PSG) with a sampling frequency of 256 Hz, a 0.3–10 Hz band pass
filter and a 50 Hz notch filter was applied for the EOG data acquisition.
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The electrode configuration was set as shown in Fig. 1, with electrodes placed on the
right side of the right eye socket (dot ‘1’) and on the left side of the left eye socket (dot
‘2’). A reference (dot ‘Ref’) and a ground (dot ‘GND’) electrode were also attached to
the center of the forehead and on the left mastoid respectively.

Fig. 1. This is the electrode configuration illustration. The dots mark the placed PSG electrode
positions on the face. The dot is on the right side of the right eye socket labeled ‘1’ and on the left
side of the left eye socket labeled ‘2’. A reference (dot ‘Ref’) and a ground (dot ‘GND’) electrode
are attached to the center of the forehead and on the left mastoid respectively

2.2 Experimental Setup and Procedure

Before the start of the experiment, the subject sat upright in the experimental apparatus
in a comfortable position with arms resting on the desk naturally. The face of the subject
was cleaned with wet wipes and then connected to conductive gel electrodes. Their head
was fixed by a bracket to reduce the impact of head shaking.

The experimenter helped the subject to attach the electrodes. After that, the exper-
imenter configured and tested the PSG (used to acquire EOG signals) and acquisition
program (used to guide the experimenter and subject and marked EOG signals). Then,
the experimenter ran the EOG acquisition program and prompted the subject to make
corresponding saccades according to the experiment requirements. The saccades pro-
cedure is shown in Fig. 2. The symbol � is the angle between the center point and the
target point of saccade. The saccades sequence is {0°, 10°, 0°, −10°, 0°, 20°, 0°, −20°,
0°, 30°, 0°, −30°, 0°, 35°, 0°, −35°, 0°, 38°, 0°, −38°, 0°, 40°, 0°, −40°, 0°, 42°, 0°, −
42°, 0°, 44°, 0°, −44°, 0°, 46°, 0°, −46°, 0°, 48°, 0°, −48°, 0°, 50°, 0°, −50°, 0°}.
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Figure 3 shows the experimental paradigm. At the beginning of the saccade proce-
dure, the subject was asked to gaze at the center point (0° point). Then the subject was
asked tomake a saccade from 0° to 10° according to the audio prompt of the program and
keep gazing at the 10° point for 3 s. At the same time, the program marked the saccade
signal EOG1

0to10 (the potential of electrode 1, saccade from 0° to 10°) and EOG2
0to10 (the

potential of electrode 1, saccade from 0° to 10°) for subsequent signal processing.
Before proceeding to the next step, the subject can take a short break to relax the

eyeballs, blink, etc. The purpose is to reduce the discomfort of the eyes during the
experiment and ensure the quality of the data acquired in the experiment. After asking
for consent that the subject can continue the experiment, the experiment continues. Then
after a short break, the subject was asked to continue to gaze at 10° point to finish the
next saccade (from 10° to 0°).

The subject was required to repeat the above process until all saccades sequences had
been completed. Finally, we got all saccade EOG signal from one subject (EOG1

0to10,
EOG1

10to0, EOG
1
0to−10, EOG

1−10to0, …, EOG1
0to50, EOG

1
50to0, EOG

1
0to−50, EOG

1−50to0
andEOG2

0to10,EOG
2
10to0,EOG

2
0to−10,EOG

2−10to0,…,EOG2
0to50,EOG

2
50to0,EOG

2
0to−50,

EOG2−50to0).
In addition, another experimenter observed the subject’s eye movements and

recorded abnormalities (blinks, wrong saccades, etc.) on the experiment log. These
abnormalities are excluded when processing these EOG data.

Fig. 2. The illustration of eye saccades experiment. The saccades sequence is {0°, 10°, 0°, −10°,
0°, 20°, 0°, −20°, 0°, 30°, 0°, −30°, 0°, 35°, 0°, −35°, 0°, 38°, 0°, −38°, 0°, 40°, 0°, −40°, 0°,
42°, 0°, −42°, 0°, 44°, 0°, −44°, 0°, 46°, 0°, −46°, 0°, 48°, 0°, −48°, 0°, 50°, 0°, −50°, 0°}.
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Fig. 3. The illustration of the experimental paradigm.

3 Methodology

3.1 EOG Signal Preprocessing

Before building a model, the raw data need to be preprocessed. The data preprocessing
flowchart is shown in Fig. 4. We extracted the data between the begin-mark and the
end-mark in the EOG sample as saccade events. Then we excluded the abnormalities
according to the experiment log (32 data from 18 subjects and all data from one male
subject with completely distorted signal due to bad electrode placement). After the data
were captured, the measured EOGs were manually examined, by employing the wavelet
transform denoising [12] and observation [13], obvious abnormal signals that clearly
included large noise components such as blinking or gazing at the wrong target position
were excluded (45 data from 18 subjects).

To build a simple model between the absolute eye movement angle θ and EOG
information, we define the value �EOGθ :

�EOGθ = max(
∣
∣
∣EOG1

θ − EOG2
θ

∣
∣
∣) (1)

where the �EOGθ is the maximum absolute EOG value after differencing the two
electrodes EOG signal in absolute eye movement angle, θ , saccade.

In this work, four similar saccades (e.g., EOG1
0to10, EOG1

10to0, EOG1
0to−10,

EOG1−10to0) were marked as a same absolute eye movement saccade angle θ (e.g., 10°)
to extend the data set. Hence, for one subject, an eye movement angle θ has 4 absolute
eye movement data. As a result, we have obtained 44 �EOGθ data with 11 absolute eye
movement angle targets (θ = {10°, 20°, 30°, 35°, 38°, 40°, 42°, 44°, 46°, 48°, 50°})
from 18 subjects.

In real life, due to the activities of humans, someunpredictable situationswill happen.
It is not enough to exclude the outliers manually, and other non-manual methods are
needed to assist in processing the data.

To build a robust model, some outlier excluding methods were applied to the training
set before training the model. 3σ criterion (Pauta criterion) [14] and MAD (Median
Absolute Deviation) [15] are both the outlier excluding methods. These methods can
further ensure that the training data will not deviate too much from the normal value.
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Fig. 4. The flowchart of signal preprocessing.

3.2 Polynomial Fitting Eye Movement Angle Estimation Model

Traditional eye movement angle estimation models consider eye movement angle θ to
be a linear relationship with EOG. However, some further studies point out that the
relationship between eye movement angle θ and EOG is not completely linear, but
approximate linear within a certain range. In this work, we build a polynomial model to
represent this incomplete linear relationship.
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Denote the model as:

θ
∧

(i) = f (�EOGθ,i,w) (2)

= w0 + w1 · �EOGθ,i + w2 · �EOGθ,i
2 + · · · + wk · �EOGθ,i

k , k ∈ N+ (3)

where the θ
∧

(i) is the ith angle predicted by the absolute eye movement angle estimation
model.�EOGθ,i is the ith�EOGθ trainingdata of themodel.w = [w0,w1,w2, · · · ,wk ]
is the weight coefficient vector of the polynomial model. k is the order of the polynomial
model.

Denote the loss function as:

Loss =
∑n

i=1
[θ
∧

(i) − θ(i)]2 (4)

where the θ(i) is the ith true target of training data. n is the number of training set data.
The problem of obtaining the optimal model is equivalent to solving the following

equation:

∑n

i=1
[θ
∧

(i) − θ(i)]2 → min (5)

After coding a program to solve this equation, the optimal weight coefficient vector
w has been found. The absolute eye movement angle estimation model is established.
The number of parameters in this polynomial model is k + 1.

4 Results

Leave-one-subject out cross-validation was used to evaluate the performance of the eye
movement estimation model. Both validation and modeling methods used MATLAB
R2021a software. Each model training and testing was conducted on a hardware speci-
fication with an Intel Core i5-9400F CPU, 8G DDR4 RAM and GTX1650 GPU in the
Win10-64bit environment.

MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are used to
evaluate the performance of the model.

MAE = 1

n

∑n

i=1

∣
∣
∣θ
∧

(i) − θ(i)
∣
∣
∣ (6)

RMSE =
√

1

n

∑n

i=1
(θ
∧

(i) − θ(i))
2

(7)

where n is the number of test sample, θ
∧

(i) is the ith predict absolute eye movement angle
value of the model in test set, θ(i) is the ith true target in the test set.
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4.1 The Result of the Proposed Method

In this method, all �EOG data with angle target are separated according to each subject
(totally 18 subjects). For all subjects, leave one of all subjects as the test set in turn, and
all the others as the training set.

Figure 5 shows the performance change of the polynomial model from 1-order to
9-order. The performance increases significantly with the increase in number of orders
before the 3rd order and reaches the best around 3rd or 4th order. The performance
doesn’t improve with the order increasing, but the computational resource consumption
and parameters continue to increase.

Fig. 5. The performance and running-time change of the polynomial model from 1-order to 9-
order. Figure (a) shows the mean MAE and RMSE values of different orders. Figure (b) shows
the training time of different orders.
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The following Table 1 shows the best result of leave-one-subject method. The model
is best when the order of the polynomial is 3 and 4. Parameters of the model are 4 and
5 respectively. To accurately evaluate the model and reduce the interference of random
errors, here the mean and standard deviation of 18 subjects’ results are provided.

Table 1. The results of the eye movement angle estimation model

Model Model parameters Outlier excluding MAE RMSE

3-order polynomial 4 – 3.50 ± 0.72° 4.41 ± 0.99°

4 3σ 3.50 ± 0.74° 4.41 ± 1.01°

4 MAD 3.48 ± 0.76° 4.40 ± 1.03°

4-order polynomial 5 – 3.51 ± 0.71° 4.41 ± 0.97°

5 3σ 3.50 ± 0.73° 4.42 ± 0.99°

5 MAD 3.49 ± 0.75° 4.41 ± 1.01°

Compared with the two results, the 3-order model is slightly better than the 4-
order model without using the outlier excluding method.When implementing the outlier
excluding method, the performance of both 3-order and 4-order models are slightly
enhanced. It also implies that the model is robust even when some outliers exist.

4.2 Comparison with Linear and Some Non-linear Methods

Table 2 shows the speed and accuracy of a polynomial model. The linear model can also
be considered as a 1-order polynomial model. Fourier Model means the model is fitted
by cosine and sine functions. As shown in Table 2, the 3-order polynomial model can
achieve better performance in comparisonwith both linear and other non-linearmethods.

Table 2. Comparison with some other modeling methods

Model MAE RMSE Training time Multiples

3-order polynomial 3.50 ± 0.72° 4.41 ± 0.99° 0.008 s 1.0

4-order polynomial 3.51 ± 0.71° 4.41 ± 0.97° 0.008 s 1.0

Linear 3.76 ± 0.93° 4.70 ± 1.24 0.008 s 1.0

Fourier 3.50 ± 0.71° 4.41 ± 0.98° 0.028 s 3.5

4.3 Compared with the Existing Works

Barbara et al. proposed a physically-driven, white-box and explicit electrical battery
model of the eye movement angle estimation [6]. 2.42 ± 0.91° is the MAE of angle
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estimated by Barbara’s model. The accuracy of the model is better than ours (3.50
± 0.72°). Compared with our model, this battery model is subject-dependent because
it requires the distance between the subject’s face-plane and the target-plane while we
don’t.Barea et al. proposed an electrooculographic eyemodel basedonwavelet transform
and neural networks with an error of less than 2° during long periods of use [16]. But
there is a 250 ms lag between the eye movement and confirmation of the same. In this
paper, the model we proposed is designed to deploy in embedded platforms or mobile
devices with limited computing power limited storage space.

5 Conclusion

In this paper, a non-linear polynomial eyemovement angle estimationmodel is proposed.
With the optimal 3-order of the model, the estimation error in angle is less than 3.5°
within a large-space from−50° to 50°. Themodel is simple, analytical, fast, andwith less
than 5 parameters. For single model training, the minimum time is about 0.008 s with an
Intel Core i5-9400F CPU, 8G DDR4 RAM, and GTX1650 GPU. Experimental results
in realistic scenarios across 18 subjects exhibit that the proposed model can achieve
favorable performance in terms of accuracy and consumption cost. Consequently, the
model can be easily deployed in the embedded platform or mobile device with limited
computing power and limited storage space for real-time eyemovement angle estimation.
The proposed model is expected to be integrated with mobile devices to realize real-time
eye movement angle estimation for EOG-related healthcare applications. However, it is
also worth noticing that this paper is preliminary research that offers a novel and accurate
model for eye movement angle estimation. Currently, only horizontal eye movement
angle was estimated. In further research, experiments to collect both horizontal and
vertical eyemovement data for building a comprehensive eyemovement angle estimation
model will be explored. Meanwhile, to further verify the model, we will deploy it in a
hardware system for realizing real-time estimation.

Acknowledgment. Thisworkwas supported in part by ShanghaiMunicipal Science andTechnol-
ogy International R&D Collaboration Project (Grant No. 20510710500) in part by the National
Natural Science Foundation of China under Grant No. 62001118, and in part by the Shanghai
Committee of Science and Technology under Grant No. 20S31903900.

References

1. Heide, W., et al.: Electrooculography: technical standards and applications. The international
federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52,
223–240 (1999)

2. Barea, R., et al.: Wheelchair guidance strategies using EOG. J. Intell. Robot. Syst. 34(3),
279–299 (2002)

3. Deng, L.Y., et al.: EOG-based human–computer interface system development. Expert Syst.
Appl. 37(4), 3337–3343 (2010)

4. Barbara, N., Camilleri, T.A., Camilleri, K.P.: EOG-based eye movement detection and gaze
estimation for an asynchronous virtual keyboard. Biomed. Signal Process. Control 47, 159–
167 (2019)



156 Y. Zhu et al.

5. Zhang, Y.-F., et al.: A novel approach to driving fatigue detection using forehead EOG. In:
2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE (2015)

6. Barbara, N., Camilleri, T.A., Camilleri, K.P.: Eog-based gaze angle estimation using a battery
model of the eye. In: 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE (2019)

7. Shinomiya, K., Shiota, H., Ohgi, Y., et al.: Analysis of the characteristics of electrooculogram
applied a battery model to the eyeball. In: 2006 International Conference on Biomedical and
Pharmaceutical Engineering, pp. 428–431. IEEE (2006)

8. Kumar, D., Poole, E.: Classification of EOG for human computer interface. In: Proceedings
of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical
Engineering Society Engineering in Medicine and Biology, vol. 1. IEEE (2002)

9. Manabe, H., Fukumoto, M., Yagi, T.: Automatic drift calibration for EOG-based gaze input
interface. In: 2013 35thAnnual InternationalConference of the IEEEEngineering inMedicine
and Biology Society (EMBC). IEEE (2013)

10. Naga, R., et al.: Denoising EOG signal using stationary wavelet transform. Measur. Sci. Rev.
12(2), 46 (2012)

11. Sadasivan, P.K., Narayana Dutt, D.: A non-linear estimation model for adaptive minimization
of EOG artefacts from EEG signals. Int. J. Bio-Med. Comput. 36(3), 199–207 (1994). https://
doi.org/10.1016/0020-7101(94)90055-8

12. Bulling, A., et al.: Eye movement analysis for activity recognition using electrooculography.
IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 741–753 (2011)

13. Manabe, H., Fukumoto, M., Yagi, T.: Direct gaze estimation based on nonlinearity of EOG.
IEEE Trans. Biomed. Eng. 62(6), 1553–1562 (2015)

14. Li, L., Wen, Z., Wang, Z.: Outlier detection and correction during the process of groundwater
lever monitoring base on Pauta criterion with self-learning and smooth processing. In: Zhang,
L., Song, X., Wu, Y. (eds.) AsiaSim/SCS AutumnSim 2016. CCIS, vol. 643, pp. 497–503.
Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2663-8_51

15. Leys, C., et al.: Detecting outliers: do not use standard deviation around themean, use absolute
deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013). https://doi.org/
10.1016/j.jesp.2013.03.013

16. Barea, R., et al.: EOG-based eye movements codification for human computer interaction.
Expert Syst. Appl. 39(3), 2677–2683 (2012). https://doi.org/10.1016/j.eswa.2011.08.123

https://doi.org/10.1016/0020-7101(94)90055-8
https://doi.org/10.1007/978-981-10-2663-8_51
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1016/j.eswa.2011.08.123

	An Accurate and Cost-Effective Approach Towards Real-Time Eye Movement Angle Estimation
	1 Introduction
	2 Experiment
	2.1 Materials
	2.2 Experimental Setup and Procedure

	3 Methodology
	3.1 EOG Signal Preprocessing
	3.2 Polynomial Fitting Eye Movement Angle Estimation Model

	4 Results
	4.1 The Result of the Proposed Method
	4.2 Comparison with Linear and Some Non-linear Methods
	4.3 Compared with the Existing Works

	5 Conclusion
	References




