
Accessing Secure Data on Android
Through Application Analysis

Richard Buurke and Nhien-An Le-Khac(B)

University College Dublin, Belfield, Dublin 4, Ireland

richard.buurke@ucdconnect.ie, an.lekhac@ucd.ie

Abstract. Acquisition of non-volatile or volatile memory is traditionally
the first step in the forensic process. This approach has been widely used
in mobile device investigations. However, with the advance of encryption
techniques applied by default in mobile operating systems, data access is
more restrictive. Investigators normally do not have administrative con-
trol over the device, which requires them to employ various techniques to
acquire system data. On the other hand, application analysis is widely used
in malware investigations to understand how malicious software operates
without having access to the original source code. Hence, in this paper, we
propose a new approach to access secure data on Android devices, based
on techniques used in the field of malware analysis. Information gained
through our proposed process can be used to identify implementation flaws
and acquire/decode stored data. To evaluate the applicability of our app-
roach, we analysed three applications that stored encrypted user notes. In
two of the applications we identified implementation flaws that enabled
acquisition of data without requiring elevated privileges.

Keywords: Android · Mobile device forensics · Application analysis ·
Secure data acquisition

1 Introduction

Mobile devices are becoming an increasingly important source of information in
criminal investigations. These devices potentially store information about con-
tacts, call logs, location history, images and other data which might be relevant
to an investigation. Current forensic solutions aimed at mobile devices are pri-
marily focused on post-mortem investigations. Often they are able to create a
physical image of a device but are unable to process encrypted data from unsup-
ported applications. This problem is quickly becoming more relevant since the use
of encryption has become more widespread. In literature, most data acquisition
techniques have their caveats in a practical environment. They are for example
difficult to execute, require elevated privileges or are device specific [9,24,28,29].

Besides, application analysis is widely used in the domain of malware analysis
to understand how malicious software operates without having access to the
original source code. It uses a combination of behavioural and static analysis to
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022

Published by Springer Nature Switzerland AG 2022. All Rights Reserved

P. Gladyshev et al. (Eds.): ICDF2C 2021, LNICST 441, pp. 93–108, 2022.

https://doi.org/10.1007/978-3-031-06365-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06365-7_6&domain=pdf
http://orcid.org/0000-0002-9158-8051
http://orcid.org/0000-0003-4373-2212
https://doi.org/10.1007/978-3-031-06365-7_6


94 R. Buurke and N.-A. Le-Khac

map the characteristics of an application. Therefore, in this paper, we propose
a new approach based on this technique to assist the investigator acquire data
where traditional solutions are unable to. Application analysis is relatively easily
to perform, will work cross-platform and does not require elevated privileges. It
also seems to be practically viable since improper API usage is seen as a common
security threat on mobile operating systems [8,14,18,21]. In this study, we have
limited the scope of our research to the Android operating system. The general
approach should however be transferable to other mobile operating systems.

To evaluate the applicability of our approach, we analysed three applications
that focus on protecting user’s data. In two of the applications we identified
implementation flaws that enabled acquisition of data without requiring ele-
vated privileges. We also show that our methodology can be applied to a wide
range of applications. By looking at our experimental results, combined with the
available literature, we expect other applications to exhibit the same behaviour.
We have proven that by analysing individual applications it is possible to acquire
application data without the need for elevated privileges.

The main contribution of this research can be listed as follows:

– We performed an extensive literature survey to identify Android security
mechanisms and various data acquisition techniques.

– We propose an application-analysis based approach for data acquisition. Our
approach can be used by forensic investigators to get a global understand-
ing of the application features and identify possible opportunities for data
acquisition.

– We evaluate our approach to demonstrate its feasibility with three popular
applications that focus on securely storing user notes: Safe Notes, Private
Notepad and Secure Notes.

The rest of this paper is organised as follows: Sect. 2 provides background
information on related work on Android data acquisition. Section 3 describes
our approach for Android application analysis, then we present our experiment
results in Sect. 4. We discuss our results in Sect. 5 and finally Sect. 6 concludes
this paper.

2 Related Work

Smartphone evidence acquisition is a challenge for investigators [1]. In this
section, we review various methods for data acquisition on Android devices. The
results of our review and comparison of the various methods are summarised
in Table 1, where the first column lists relevant characteristics used to compare
these methods.

Binary exploitation and CPU specific vulnerabilities can lead to full con-
trol over the device or escalation of privileges [7,22]. However these attacks are
difficult to perform and binary exploitation depends on specific versions of soft-
ware to be present on the device. The same is true for exploiting the Trusted
Execution Environment (TEE), although common exploit mitigations are often



Accessing Secure Data on Android Through Application Analysis 95

missing in the secure world [3]. Another obstacle is the lack of publicly available
basic tools such as a debugger for the secure world.

A cold boot attack requires flashing a custom recovery ROM onto the device
and therefore needs an unlocked bootloader [25]. A copy of volatile memory can
be created after quickly rebooting the device. Current versions of Android utilise
the TEE for cryptographic operations, which makes it more complex to recover
the disk encryption key [19]. Several other mitigations against cold boot attacks
have been created but these are not currently implemented [13,20,30].

An evil maid attack is less difficult to execute and can also result in full
control over the device. However this technique, just as the cold boot attack,
requires an unlocked bootloader [12]. This makes it unlikely to be applicable
in most real world scenarios. Using a duplicate device to trick the suspect into
entering their code is still viable. Although it can also only be applied to devices
for which the bootloader can be unlocked since a custom ROM is still required.

In the last few years we have seen various CPU specific attacks such as Spec-
tre [17], DRAMMER [27] and TRRespass [11]. The aforementioned techniques
can be leveraged to alter or leak information from volatile memory and affect
the ARM architecture, which is used in the vast majority of smartphones [16].
This category of vulnerabilities enables the attacker to read or write arbitrary
memory without the need for elevated privileges or existing software vulnera-
bilities. The lack of standardised tools and the required specialised skills make
these techniques difficult to employ for the average forensic investigators.

Memory forensics has the most potential for gathering sensitive information,
such as decrypted data and login credentials [4,6]. But it almost always requires
elevated privileges on the device which must be obtained through exploitation
[28]. Abusing the update protocol of a device can circumvent this restriction [29].
This technique requires a device of a specific brand. Also these vulnerabilities
might be patched and public tools are unavailable. Migrating data using vendor
specific tools can help to acquire a partial memory dump [9]. However it will not
be possible to acquire data which only exists in volatile memory on the suspects
device.

Network traffic analysis can be used to identify servers hosting information
of interest. This information can then be acquired through legal procedures.
In the vast majority of cases network traffic will be encrypted [15]. This will
make it impossible to capture the plain text contents of packets without having
elevated privileges on the device [10]. If the target application uses unencrypted
connections, the investigator can acquire the data exchanged between the client
and the server. Encrypted connections however still provide the investigator with
relevant meta-data [6].

Authors in [2] proposed a wireless extraction of data for Android devices.
However, it’s only used for the logical extraction of the data from the Android
file-system.



96 R. Buurke and N.-A. Le-Khac

T
a
b
le

1
.

C
o
m

p
a
ri

so
n

o
f

a
cq

u
is

it
io

n
te

ch
n
iq

u
es

(�
:

Y
es

,
X

:
N

o
)

-
R

:
R

eq
u
ir

ed
to

a
p
p
ly

th
is

m
et

h
o
d
;

E
:

T
h
is

m
et

h
o
d

en
a
b
le

s
th

e
in

v
es

ti
g
a
to

r
to

d
o

th
e

fo
ll
ow

in
g
;
P

:
A

p
ro

p
er

ty
o
f
th

is
m

et
h
o
d

Im
p
ro

p
e
r

A
P
I

u
sa

g
e

B
in

a
ry

e
x
p
lo

it
a
ti

o
n

T
E
E

e
x
p
lo

it
a
ti

o
n

M
e
m

o
ry

fo
re

n
si

c
s

C
o
ld

b
o
o
t

a
tt

a
c
k

C
P
U

V
u
ln

e
ra

b
il
it

ie
s

E
v
il

m
a
id

a
tt

a
c
k

N
e
tw

o
rk

fo
re

n
si

c
s

D
ir

e
c
t

a
c
c
e
ss

L
o
a
d
a
b
le

k
e
rn

e
l

m
o
d
u
le

s

K
e
rn

e
l

c
o
d
e

in
je

c
ti

o
n

U
p
d
a
te

p
ro

to
c
o
ls

D
a
ta

M
ig

ra
-

ti
o
n

F
a
u
lt

in
d
u
c
ti

o
n

B
ra

n
c
h

p
re

d
ic

ti
o
n

T
a
rg

e
t

d
e
v
ic

e

D
u
p
li
c
a
te

d
e
v
ic

e

R
E
le

v
a
te

d

p
ri

v
il
e
g
e
s

X
X

X
�

�
�

X
X

X
X

X
X

X
�

a

R
U

n
lo

c
k
e
d

b
o
o
tl

o
a
d
e
r

X
X

X
X

X
X

X
X

�
X

X
�

�
X

R
L
o
c
a
l
c
o
d
e

e
x
e
c
u
ti

o
n

X
�

b
�

�
�

�
X

X
X

�
�

X
X

X

R
C

u
st

o
m

R
O

M
X

X
X

X
X

X
X

X
�

X
X

�
�

X

E
In

fo
rm

a
ti

o
n

le
a
k
a
g
e

�
�

�
�

�
�

�
�

�
�

�
�

�
�

E
F
u
ll

c
o
n
tr

o
l

X
�

c
�

c
N

/
A

N
/
A

N
/
A

X
X

X
�

c
�

c
�

d
�

d
X

E
A

c
q
.
n
o
n
-

v
o
la

ti
le

m
e
m

o
ry

P
a
rt

ia
l

�
c

�
c

N
/
A

N
/
A

N
/
A

X
�

�
d

�
c

�
c

�
d

�
d

P
a
rt

ia
l

E
A

c
q
.
v
o
la

ti
le

m
e
m

o
ry

P
a
rt

ia
l

�
c

�
c

�
�

�
�

P
a
rt

ia
l

�
�

c
�

c
X

X
P
a
rt

ia
l

P
D

iffi
c
u
lt
y

M
e
d

H
ig

h
H

ig
h

L
o
w

M
e
d

M
e
d

H
ig

h
L
o
w

M
e
d

H
ig

h
H

ig
h

M
e
d

M
e
d

L
o
w

P
C

ro
ss

-p
la

tf
o
rm

�
X

X
�

X
X

X
X

X
�

�
X

X
�

P
T
o
o
ls

a
v
a
il
a
b
le

�
�

X
�

�
�

X
�

�
�

�
�

�
�

a
O

n
ly

re
q
u
ir

e
d

fo
r

d
e
c
ry

p
ti

n
g

e
n
c
ry

p
te

d
n
e
tw

o
rk

tr
a
ffi

c
o
n

th
e

ta
rg

e
t

d
e
v
ic

e
b

S
o
m

e
e
x
p
lo

it
s

c
a
n

b
e

tr
ig

g
e
re

d
re

m
o
te

ly
c

D
iff

e
re

n
t

ty
p
e
s

o
f
e
x
p
lo

it
s

e
x
is

t,
ra

n
g
in

g
fr

o
m

in
fo

rm
a
ti

o
n

le
a
k
s

to
fu

ll
c
o
n
tr

o
l
o
v
e
r

th
e

ta
rg

e
t

d
e
v
ic

e
d

S
in

c
e

th
e

b
o
o
tl

o
a
d
e
r

is
u
n
lo

c
k
e
d
,
th

e
in

v
e
st

ig
a
to

r
h
a
s

fu
ll

a
c
c
e
ss

to
th

e
d
e
v
ic

e
w

h
e
n

th
e

p
a
ss

w
o
rd

is
o
b
ta

in
e
d



Accessing Secure Data on Android Through Application Analysis 97

Improper API usage is seen as the number one category of vulnerabilities on
the Android platform by the OWASP community [21]. By analysing applications
and identifying these vulnerabilities it is possible to access sensitive information
without the need for elevated privileges. This technique also works cross-platform
and is less difficult to execute than techniques that rely on the binary exploita-
tion. Application analysis generally will not result in local code executing or full
control over the device and is usually limited to a single application.

3 Proposed Approach

To detect improper API usage in Android applications we propose an applica-
tion analysis approach consisting of four phases (Fig. 1). Our approach combines
concepts from the forensic field (repeatability) with concepts from the field of
malware analysis (behavioural and static analysis). Its four phases can be sum-
marised as in Table 2.

Table 2. Four phases for detecting improper API usage

Phase 1: Preparation Reset the test device to a pre-defined state and check
time and date settings for any deviations

Phase 2: Installation Install the target application and start a network
capture using a proxy or by hooking networking
functions.

Phase 3: Behavioural analysis Interact with the target application and collect relevant
artifacts for later analysis. Capture volatile memory of
the target process during it’s lifetime. Copy the artifacts
and base APK file to the investigative machine.

Phase 4: Static analysis Examine phase 3 preliminary results and identify Points
of Interests (POIs). Use the checklist (Table 3) to
identify additional POIs in the manifest file and code
base.

Repeat If there are uncovered scenarios then hook any functions
of interest and restart the network capture and
behavioural analysis

The investigator should have access to a test device, which supports the
target application. The test device should be rooted that usually requires that
the bootloader can be unlocked. The device would then be configured to include
any required tools (e.g. Frida/gdbserver/LiME) and self-signed CA certificates.
A bit-for-bit image of the device can be created using a custom recovery ROM.
The device should be reverted to an initial state before analysis commences
by re-flashing the backup image. This ensures repeatability of the experiment.
The target application is installed in phase two and networking interception
techniques are employed to capture any network (meta-)data.



98 R. Buurke and N.-A. Le-Khac

Fig. 1. Workflow for application analysis on Android



Accessing Secure Data on Android Through Application Analysis 99

Dynamic analysis is a technique whereby we monitor the interaction between
the application and other components such as the file system or remote servers.
We first create a snapshot of the types of artifacts required for analysis, which will
serve as our baseline. Then we run the application, perform some interactions and
create another snapshot. Finally we compare the baseline with the application
snapshot and determine which artifacts were created by our application. In our
approach, we focus on the following locations:

– File system - We capture changes made to the file system by using standard
Unix utilities.

– API calls - Systems calls made by the application are monitored using strace
(if SELinux can be disabled) or they are hooked using Frida.

– Volatile memory - Application memory is captured by reading the
/proc/<pid>/mem block device. This process is automated by using the
PMDump utility. We also use the GNU debugger to monitor live changes in
process memory.

– Network traffic - Network traffic is captured through an HTTPS proxy
using a self signed CA certificate. Analysis is performed using Wireshark and
Moloch.

An example of behavioural analysis is determining file system changes using
basic Unix tools such as “find”. This enables identification of files that have been
created or modified by the target application or operating system (Fig. 2):

Fig. 2. Detect newly created or modified files in the /data folder

In Phase 4, we employed the well known tool “Frida” to hook or manipulate
any functions of interest, which were detected using static analysis. This enables
the investigator to follow the flow of data as the program runs or to trigger
specific functionalities (such as a enabling a hidden debug menu). Static analysis
is the process of analysing the compiled source code of an application. This
can be achieved by using a decompiler such as “Jadx”. Table 3 contains a non-
exhaustive list of artifacts of interest. These artifacts are a great starting point
for our static analysis. The manifest file of an Android application describes it’s
capabilities and is therefore also a valuable source of information.

The static analysis is aimed at identifying new code paths and to better
understand previously observed behaviour. The behavioural analysis procedure
should be repeated to trigger and analyse newly discovered functionality. The
static analysis phase can be considered completed when no new code paths are
identified. Figure 1 on page 6 contains a graphical representation of the procedure
described in this section.



100 R. Buurke and N.-A. Le-Khac

Table 3. Application analysis checklist - A: API Call; P: Permission; D: Directory; F:
File; M: Manifest entry; V: Volatile memory; N: Network traffic

Artifacts of interest Description

A .getExternalFilesDir() Data is possibly stored in publicly accessible locations

A .getExternalCacheDir()

P READ EXTERNAL STORAGE

P WRITE EXTERNAL STORAGE

D /sdcard

A .bindService() The application might expose a public interface which

could allow extraction of data or exploitationA .onStartCommand()

A .onBind()

A LocalSocket()

A .bind()

M <activity name=“ The application exports an activity that can be started

externallyexported”=“true” />

A MessageDigest.getInstance() The application uses cryptographic operations. Check the

hashing or encryption algorithm and determine if the

developer uses static keys
A Cipher.getInstance()

A Cipher.init()

A .digest()

A .doFinal()

A KeyStore.getInstance() Encryption keys are possibly stored in a trusted execution

environment (TEE)A KeyChain()

A isInsideSecureHardware()

A setIsStrongBoxBacked()

A .load()

A .getEntry()

V Encryption keys Volatile memory can hold sensitive information such as

decryption keys, login credentials, etc.V Login credentials

V Traces of unencrypted data

A Socket() The application uses internet functionality. This could be

an indication of cloud storageA HttpURLConnection()

A .connect()

P INTERNET

A FirebaseFirestore.getInstance() The application uses Google Firebase as a backend. Check

if a Mutual Legal Assistance Treaty (MLAT) existsA FirebaseAuth.getInstance()

A FirebaseStorage.getInstance()

A FirebaseDatabase.getInstance()

N Hostnames/IP-addresses Network meta-data can identify servers that store

application data. Check for use of TLS encryptionN Authentication tokens

N User credentials

N Decrypted data

A ContentProvider() The application provides a custom content provider which

could be used to extract dataA .query(); .insert(); .delete(); .update()

4 Experiment Results

To validate our approach we tested it against three applications that were specif-
ically designed to securely store user notes. We selected our target applications
based on the position in the list of recommended applications, rating, approxi-
mate number of downloads and the total number of ratings (Table 4).



Accessing Secure Data on Android Through Application Analysis 101

Table 4. Top three “secure notes” applications in the Google Play Store

Application Position in
recommendations

Rating Approximate
no. downloads

No. ratings

Safe notes 1 4.5 >100,000 8,239

Private notepad 3 4.5 >1,000,000 35,706

Secure notes 4 4 >100,000 3,486

To get an initial idea of the possible attack vectors we compared the func-
tionality of the selected applications based upon their description. We limited
our research to functionality which was provided free of charge (Table 5).

Table 5. Application features overview

Safes notes Private notepad Secure notes

Encryption algorithm AES AES AESa

Cloud synchronization � � �b

Multiple device synchronisation � � �b

PIN lock � � X

Pattern lock X � �
Fingerprint lock X � X

Password recovery X X �
Image support X � X

Intruder image X � X

Self destruct X � X

Data hiding X � X
a The application advertises using AES symmetric encryption but actually
implements DES
b Online features did not function

For our experiment we used a Samsung SM-935F device with Android version
8.0, build number R16NW.935FXXS6ESI4 and root access. The device also uses
a TWRP recovery image which is used to make a byte-for-byte copy of the
system and user data partitions. Before we start our analysis procedure we will
first restore the device backup. This ensures that the initial state of the device
is the same for every application analysed. We then install the application and
populate it with data. For every experiment we will be using the same dataset
to ensure repeatability and consistency. Since we are creating notes we chose to
define three standard messages:

– Message 1: This is just a test message!
– Message 2: How is this data stored?
– Message 3: I’m encrypted. Nothing to see here.



102 R. Buurke and N.-A. Le-Khac

4.1 Safe Notes

Using behavioural analyses we determined that notes are stored in the directory
/data/data/com.protectedtext.android/shared prefs/ and use the naming conven-
tion com.protectedtext.n[note-number].xml. They are encrypted by default using
one of the following static keys which are hard coded into the application:

1. 7igb2h048io6fyv8h92q3ruag09g8h + <note-number>
2. 7igb2h048io6fyv98hasdfil09g8h + <note-number>

If a user password is specified then it is used to encrypt the note contents. The
program uses AES/CBC/PKCS5 as the encryption algorithm. The decryption
password is stored together with the encrypted text when the note is “unlocked”.
If the note is “locked” the stored decryption password is deleted. We also anal-
ysed the mandatory PIN protection mechanism and identified the hard coded
debug PIN code 556711 using static analysis which displays a message in the
following format:

debug-[prefHintColor]-[prefHintColor2]-[debugPinCodeInHex]-[SHA512OfDebugPin]

The fields prefHintColor and prefHintColor2 are two random groups of six
bytes extracted from the SHA512 hash of the user PIN code. This provides a
high chance of hash collisions since we only need to calculate a SHA512 hash
that contains these bytes. We created a script that can calculate a valid hash
for the PIN code 123456 in less then a second. The application also enables the
user to store their notes on the website protectedtext.com using a custom path.
If the URL portion is known the notes can be downloaded using the following
URL:

https://www.protectedtext.com/<custom-path>?action=getJSON

When the note is downloaded from the protectedtext website it is in a
“locked” state. As a proof of concept (PoC) we wrote a multi-threaded appli-
cation, which performs a dictionary attack on the encrypted note. Currently it
can try approximately 87.500 passwords per second for a 20000 byte long note
using all threads on an Intel i7 4790 processor running at 3.6 GHz. Performance
can easily be improved, for example by utilizing the GPU.

4.2 Private Notepad

Using behavioural analysis we determined that the main database is located
at /data/data/ ru.alexandermalikov.protectednotes/databases/notes.db. It con-
tains a SHA-1 hash of the user password, passcode and pattern lock. The key
needed to decrypt the contents of a note is stored in the file /data/data/ ru.al
exandermalikov.protectednotes/shared prefs/protected notes preferences.xml as
the “encryption key” variable.



Accessing Secure Data on Android Through Application Analysis 103

The application uses AES/CBC/PKCS7 as the encryption algorithm with
an empty initialization vector (IV). It first decrypts the key stored in pro-
tected notes preferences.xml using the Base64 encoded static value 4WJFtk-
wwUJqTHd+dJNtAaw== as the decryption key. The resulting value is then
used to decrypt the contents of the user notes.

Private notepad uses a Google Firebase backend with Google remote proce-
dure calls (gRPC) over the HTTP/2 protocol. Since our software for analysing
network traffic did not support this protocol we used Frida to hook API calls
and monitor the flow of data between the client and server. Through this method
we observed that the notes are decrypted before being sent to Google Firebase.
This means that the developer has the possibility to decrypt this information.
Since the information is stored on servers from Google it might be possible to
obtain it through a Mutual Legal Assistance Treaty (MLAT) request.

Any documents retrieved from the remote database were also stored
unencrypted in a local cache database. In our case they were stored
in the file /data/data/ru.alexandermalikov.protectednotes/databases/firestore.
%5BDEFAULT%5D.private-notepad-bd4a4.%28default%29.

4.3 Secure Notes

Secure Notes stored its notes in the folder /sdcard/.innorriorsnotes/ which is
publicly accessible by the user and other installed applications (that target API
level 29 or lower [23]). The file /data/data/com.inno.securenote/databases/secu
renotepad contains the password used for access control. If a pattern lock is
enabled then it is stored in the file /data/data/ com.inno.securenote/files/pattern
as a byte array hashed with the SHA-1 algorithm.

The application uses the DES encryption algorithm although it advertises
to use RSA. According to an article written by P. Zande in 2001 [26] for the
SANS institute, the DES algorithm uses a 56-bits encryption key and is con-
sidered unsuitable for encrypting sensitive data. During the RSA Data Security
Conference of 1999 it proved possible to break DES encryption within 28 h using
distributed computing. This means that it should be feasible to decrypt any
stored data without the need for knowing the password. However during the
static analysis phase we discovered that the application uses the static password
kalandarkalandar to decrypt any note stored on the file system.

When the user logs into the application any new or modified notes are sent
to the URL “http://52.86.98.234/innorriors securenotes/index.php” via a POST
request, this URL is hard coded into the application. This even occurs with-
out the user having enabled the synchronization feature of the application. The
request contains the contents of the note and meta-data such as a timestamp,
local filename and category. However it does not contain a user identifier, which
means that any legitimate synchronisation features would be unable to function
since the note is not associated with a user account. It is unclear if this is a bug
or some form of malicious behaviour. At the time of writing it was not possible
to create a working account for this application.

http://52.86.98.234/innorriors_securenotes/index.php


104 R. Buurke and N.-A. Le-Khac

The login screen of the application includes a password recovery option.
When activated the application sends the password and e-mail address to a script
on the remote server. This scripts then sends an e-mail message containing the
password to the specified e-mail address. If an investigator activates this feature
he will be able to recover the password by acquiring network traffic since the
connection is unencrypted. This also provides a method for a malicious user to
send a legitimate looking phishing mail. The e-mail is sent from the mail address
support@innorriors.com but the salutation and name of the app are supplied by
the user. This enables an attacker to craft their own message originating from
a legitimate address. The attacker can also specify the recipient of the message
since it is part of the POST request to the server.

4.4 Memory Artifacts

Operations performed by an application, such as decryption or encryption of
data, uses volatile memory to store results and intermediate values. If an inves-
tigator is able to capture this memory, he is able to acquire artifacts which are
otherwise inaccessible. The following is a list of artifacts recovered from volatile
memory during our experiments (Table 6):

Table 6. Recovered memory artifacts per application

Safe notes Private notepad Secure notes

Decryption password � � �
Decrypted text � � �
Decrypted images n/a � n/a

Decrypted labels n/a � n/a

PIN code screen lock � �a n/a

Pattern screen lock n/a � �
Password screen lock n/a � �
Cloud storage URLs � � �
Timestamps � � �
Filenames � � �
E-mail addresses n/a � �
Account password n/a � n/aa

User ID n/a � n/ab

a The PIN code was was encountered multiple times since it was a
4 digit value. Therefore it is likely, but not conclusive, that one of
these values was the actual code.
b Online features did not function.

We were able to recover all relevant artifacts from volatile memory. If a
certain artifact is present in memory depends on user and application activity.



Accessing Secure Data on Android Through Application Analysis 105

For example an image might only be loaded into memory if a certain note is
viewed. Or a password is only present when a login activity is shown. Volatile
memory eventually contains every bit of data used by the application, making it
an invaluable source of information for the investigator, although it is currently
very difficult to acquire.

5 Discussion

Application analysis proved to be a viable method for acquiring data. It should
be used when other forensics solutions do not support acquiring data from a
mobile device or when the software cannot decode/decrypt the application data.
It is not an effective technique for acquiring a forensic image of a device or for
trying to gain full control.

The main limitation of application analysis is that it is may be required to
interact with the target application on the suspects device. This assumes that
the investigator knows the access code of the suspect. However we have shown
that our method can also be used to identify alternate storage locations such as
cloud storage and determine how this information is most likely stored.

While we focused on the application as an attack vector, related research
primarily looked at techniques that could be applied at the system level. For
example by acquiring volatile memory or gaining executed privileges through
exploitation of system components. These techniques are preferred over applica-
tion analysis when system wide acquisition is the main goal of the investigation.
They do however come with other prerequisites that cannot always be fulfilled.

Our methodology can be applied to a wide range of applications. By looking
at our results, combined with the available literature, we expect other appli-
cations to exhibit the same behaviour. It also reinforces the idea that forensic
investigators should not rely on commercial products alone. While these prod-
ucts are proven to be effective, their approach is still very traditional. Live data
acquisition can yield interesting results and is worth the effort. We have proven
that by analysing individual applications it is possible to acquire application
data without the need for elevated privileges. While other methods can possibly
acquire additional data, application analysis is relatively easy to employ and will
work cross-platform.

Application analysis does not only provide a method for acquiring locally
stored application data. By understanding how an application functions addi-
tional methods of acquisition can be identified. By applying our method to the
Private Notepad application we identified Google Firebase as a secondary storage
location.

6 Conclusion

Our research identified application analysis as a viable method for data acquisi-
tion. Although the Android operating system provides the developer with various
methods for securely storing data, they are often not implemented. Developers



106 R. Buurke and N.-A. Le-Khac

rely on custom security mechanisms and obfuscation for securing stored data
and do not seem to have an adequate understanding of security standards.

In our research we also observed that volatile memory is an important source
of information. Encrypted data stored on non-volatile memory can often be
detected in an unencrypted state in volatile memory. Currently, acquisition of
volatile memory is not a realistic option for the majority of devices because of
the required privileges. More research is needed to identify viable methods for
volatile memory acquisition.

During our network analysis we discovered that interception tools such as
Burp Suite and mitmproxy are currently unable to capture HTTP/2 traffic. We
were therefore unable to capture Google remote procedure calls (gRPC) used for
Firebase communication. Because of this we had to rely on the more complicated
method of function hooking. Additional research could enable easier analysis of
HTTP/2 traffic.

Finally our current solution is aimed at the Android operating system.
Although the general approach can be applied to other mobile operating sys-
tems such as iOS, some aspects need to be modified. For example, our checklist
only applies to Android APK files and cannot be used for Mach-O binaries used
on iOS. Also the checklist could be expanded to encompass more interesting
artifacts. It would also be interesting to provide metrics for our analysis results,
similar to the Common Vulnerability Scoring System (CVSS) [5]. This would
allow us to compare applications and to estimate the value of discovered arti-
facts. Since the current procedure is largely a manual task, it would be desirable
to automate the process by creating an automated vulnerability analysis frame-
work.

References

1. Aouad, L., Kechadi, T., Trentesaux, J., Le-Khac, N.-A.: An open framework for
smartphone evidence acquisition. In: Peterson, G., Shenoi, S. (eds.) DigitalForen-
sics 2012. IAICT, vol. 383, pp. 159–166. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33962-2 11

2. Busstra, B., Kechadi, T., Le-Khac, N.-A.: Android and Wireless data-extraction
using Wi-Fi. In: International Conference on the Innovative Computing Technol-
ogy, pp. 170–175. IEEE (2014). https://doi.org/10.1109/INTECH.2014.6927769

3. Cerdeira, D., et al.: SoK: understanding the prevailing security vulnerabilities in
TrustZone-assisted TEE systems. In: Proceedings of the IEEE Symposium on Secu-
rity and Privacy (S&P), San Francisco, CA, USA, pp. 18–20 (2020)

4. Chelihi, M.A., et al.: An android cloud storage apps forensic taxonomy. In: Con-
temporary Digital Forensic Investigations of Cloud and Mobile Applications, pp.
285–305. Elsevier (2017)

5. Common Vulnerability Scoring System SIG, February 2018. https://www.first.org/
cvss. Accessed 24 Aug 2020

6. Daryabar, F., et al.: Forensic investigation of OneDrive, Box, GoogleDrive and
Dropbox applications on Android and iOS devices. Aust. J. Forensic Sci. 48(6),
615–642 (2016)

https://doi.org/10.1007/978-3-642-33962-2_11
https://doi.org/10.1007/978-3-642-33962-2_11
https://doi.org/10.1109/INTECH.2014.6927769
https://www.first.org/cvss
https://www.first.org/cvss


Accessing Secure Data on Android Through Application Analysis 107

7. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18178-8 30

8. Feng, H., Shin, K.G.: Understanding and defending the Binder attack surface in
Android. In: Proceedings of the 32nd Annual Conference on Computer Security
Applications, pp. 398–409 (2016)

9. Feng, P., et al.: Private data acquisition method based on system-level data migra-
tion and volatile memory forensics for android applications. IEEE Access 7, 16695–
16703 (2019)

10. Four Ways to Bypass Android SSL Verification and Certificate Pinning,
January 2018. https://blog.netspi.com/four-ways-bypassandroid-ssl-verification-
certificate-pinning. Accessed 10 Apr 2020

11. Frigo, P., et al.: TRRespass: exploiting the many sides of target row refresh. In:
S&P, May 2020. https://download.vusec.net/papers/trrespass sp20.pdf. https://
www.vusec.net/projects/trrespassCode. https://github.com/vusec/trrespass

12. Götzfried, J., Müller, T.: Analysing android’s full disk encryption feature. JoWUA
5(1), 84–100 (2014)

13. Groß, T., Ahmadova, M., Müller, T.: Analyzing android’s file-based encryption:
information leakage through unencrypted metadata. In: Proceedings of the 14th
International Conference on Availability, Reliability and Security, pp. 1–7 (2019)

14. Hayes, D., Cappa, F., Le-Khac, N.-A.: An effective approach to mobile device
management: security and privacy issues associated with mobile applications. Digit.
Bus. 1(1), 100001 (2020)

15. HTTPS encryption on the web – Google Transparency Report, June 2020. https://
transparencyreport.google.com/https/overview?hl=en GB. Accessed 11 Jun 2020

16. Intel cuts Atom chips, basically giving up on the smartphone and tablet markets,
April 2016. https://www.pcworld.com/article/3063508/intel-is-on-the-verge-
of-exiting-the-smartphone-and-tablet-markets-aftercutting-atom-chips.html.
Accessed 11 Jun 2020

17. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE
Symposium on Security and Privacy (S&P 2019) (2019)

18. Liang, H., et al.: Witness: detecting vulnerabilities in android apps extensively
and verifiably. In: 26th Asia-Pacific Software Engineering Conference (APSEC),
pp. 434–441. IEEE (2019)

19. Loftus, R., et al.: Android 7 File Based Encryption and the Attacks Against It
(2017)

20. Nilsson, A., Andersson, M., Axelsson, S.: Key-hiding on the ARM platform. Digit.
Investig. 11, S63–S67 (2014)

21. OWASP Mobile Top 10, June 2020. https://owasp.org/www-project-mobile-top-
10. Accessed 13 Jun 2020

22. Security vulnerability search, April 2020. https://www.cvedetails.com/
vulnerability-search.php?f=1&vendor=google&product=android&opgpriv=1.
Accessed 15 Apr 2020

23. Storage updates in Android 11 j Android Developers, May 2021. https://developer.
android.com/about/versions/11/privacy/storage. Accessed 8 Jun 2021

24. Thantilage, R., Le-Khac, N.-A.: Framework for the retrieval of social media and
instant messaging evidence from volatile memory. In: 18th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications,
pp. 476–482. IEEE (2019). https://doi.org/10.1109/TrustCom/BigDataSE.2019.
00070

https://doi.org/10.1007/978-3-642-18178-8_30
https://doi.org/10.1007/978-3-642-18178-8_30
https://blog.netspi.com/four-ways-bypassandroid- ssl-verification-certificate-pinning
https://blog.netspi.com/four-ways-bypassandroid- ssl-verification-certificate-pinning
https://download.vusec.net/papers/trrespass_sp20.pdf
https://www.vusec.net/projects/trrespassCode
https://www.vusec.net/projects/trrespassCode
https://github.com/vusec/trrespass
https://transparencyreport.google.com/https/overview?hl=en_GB
https://transparencyreport.google.com/https/overview?hl=en_GB
https://www.pcworld.com/article/3063508/intel-is-on-the-verge-of-exiting-the-smartphone-and-tablet-markets-aftercutting-atom-chips.html
https://www.pcworld.com/article/3063508/intel-is-on-the-verge-of-exiting-the-smartphone-and-tablet-markets-aftercutting-atom-chips.html
https://owasp.org/www-project-mobile-top-10
https://owasp.org/www-project-mobile-top-10
https://www.cvedetails.com/vulnerability-search.php?f=1&vendor=google&product=android&opgpriv=1
https://www.cvedetails.com/vulnerability-search.php?f=1&vendor=google&product=android&opgpriv=1
https://developer.android.com/about/versions/11/privacy/storage
https://developer.android.com/about/versions/11/privacy/storage
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00070
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00070


108 R. Buurke and N.-A. Le-Khac

25. Tilo, M., Michael, S., Freiling, F.C.: Frost: forensic recovery of scrambled tele-
phones. In: International Conference on Applied Cryptography and Network Secu-
rity (2014)

26. Van De Zande, P.: The day DES died. In: SANS Institute (2001)
27. Van Der Veen, V., et al.: Drammer: deterministic rowhammer attacks on mobile

platforms. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1675–1689 (2016)

28. Wächter, P., Gruhn, M.: Practicability study of android volatile memory forensic
research. In: IEEE International Workshop on Information Forensics and Security
(WIFS), pp. 1–6. IEEE (2015)

29. Yang, S.J., et al.: Live acquisition of main memory data from Android smartphones
and smartwatches. Digit. Investig. 23, 50–62 (2017)

30. Zhang, X., et al.: Cryptographic key protection against FROST for mobile devices.
Clust. Comput. 20(3), 2393–2402 (2017). https://doi.org/10.1007/s10586-016-
0721-3

https://doi.org/10.1007/s10586-016-0721-3
https://doi.org/10.1007/s10586-016-0721-3

	Accessing Secure Data on Android Through Application Analysis
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experiment Results
	4.1 Safe Notes
	4.2 Private Notepad
	4.3 Secure Notes
	4.4 Memory Artifacts

	5 Discussion
	6 Conclusion
	References




