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Abstract. Honeypots that are capable of deceiving attackers are an
effective tool because they not only help protect networks and devices,
but also because they collect information that can lead to the under-
standing of an attacker’s strategy and intent. Several trade-offs must be
considered when employing honeypots. Systems and services in a honey-
pot must be relevant and attractive to an adversary and the computing
and manpower costs must fit within the function and budget constraints
of the system.

It is infeasible to instigate a single, static configuration to accommo-
date every type of system or target every possible adversary. The work we
describe in this paper demonstrates a novel approach, introducing new
capabilities to the Cyber Deception Experimentation System (CDES)
to realize selective and on-demand honeypot instantiation. This allows
honeypot resources to be introduced dynamically in response to detected
adversarial actions. These honeypots consist of kernel namespaces and
virtual machines that are invoked from an “at-rest” state. We provide a
case study and analyze the performance of CDES when placed inline on
a network. We also use CDES to start and subsequently redirect traffic
to different honeynets dynamically. We show that these mechanisms can
be used to swap with no noticeable delay. Additionally, we show that
Nmap host-specific scans can be thwarted during a real scan, so that
probes are sent to a honey node instead of to the legitimate node.

Keywords: Cybersecurity · Network security · Dynamic honeypots ·
Experimentation · Testbed

1 Introduction

Honeypots for the most part are static and do not change even as unusual or
adversarial behavior is detected. The research in this field is growing rapidly as
novel technologies allow for more adaptability. These honeypots vary in scope;
some focus on breadth while others focus on depth. OWASP Python-Honeypot
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[11], KFSensor [6] and many others ([9,14] contains a substantial list) are capable
of mimicking several nodes and services simultaneously, using a software back-
end. Others, such as HADES [7], provide high-fidelity, full-system mirroring.

Still lacking are comprehensive, easily configurable and deployable honeynet
infrastructures that are capable of running on the types of small-scale devices
that are seeing broad and expanded usage in the commercial and military sec-
tors. This includes the Internet of Things (IoT), Internet of Battlefield Things
(IoBT), vehicular systems, and many more. We foresee these devices in the
future each hosting and deploying a minimal, yet carefully selected set of hon-
eynets when malicious behavior is suspected. Honeynet inclusion and deploy-
ment must be flexible, allowing the use of small-scale, low-to-medium fidelity,
as well as large-scale (for which traffic may have to be redirect off-machine)
real-system mirroring. We also foresee the use of small-scale, possibly battery-
powered, special purpose devices placed on networks, between existing nodes, to
monitor and automatically deploy these defense mechanisms on-the-fly; all lever-
aging technologies such as kernel network namespaces, container technologies,
virtualization, and software defined networking. Novel research in computational
decision theory, game theory, and machine learning will be used to coordinate
and optimize the deployment of specific resources based on observations of the
network and the costs and constraints on implementing and deploying specific
network modifications.

Before this vision can be used in real operating environments, a substantial
amount of analysis studies must demonstrate the feasibility of these approaches
as well as limitations and expectations in live networks. Real data is also nec-
essary to estimate the costs and effectiveness of different strategies for use in
decision-making modules. Towards this goal we provide the following contribu-
tions in this paper:

– A novel implementation and source code for the cybersecurity deception
experimentation system (CDES) that uses Open vSwitch for traffic redirec-
tion. This novel implementation is scalable and applicable on real networks,
unlike its predecessor.

– A case study used to analyze performance in terms of packet round-trip time
delay when using CDES inline on a network.

– Empirical evidence for a realistic use case showing that CDES has the ability
to dynamically thwart network probes using a standard network scanning
tool.

The rest of the paper includes a description of relevant work in this domain,
followed by a description of the improvements made to CDES. Next, we define
our case study, which focuses on a simple scenario in which traffic is dynami-
cally redirected to honeynets. Finally, we report on the experimental results and
discuss directions for future work.
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2 Related Work

There are several free and open-source honeypot projects available to the pub-
lic [9] that mostly provide different capabilities. For example, the growing trend
of Web Application Attacks has given rise to associated honeypots. The django-
admin-honeypot [3] hosts false login pages to note any malicious attempts, Node-
pot [13] is a NodeJS honeypot, and StrutsHoneypot [12] specifically targets
attackers looking to exploit the Apache Struts service. Others aim to attract
adversaries looking to target physical devices; for example, ADBHoney [4] emu-
lates an Android running an Android Debug Bridge, AMT Honeypot [16] reflects
a vulnerable Intel Firmware. Conpot [5] and GasPot [17] look like industrial con-
trol systems, which are common in critical infrastructure networks.

Others are more broad in the capabilities they provide. Honeyd [10] was
released in 2003 and with much acclaim. Many people have developed additions
to the original code base and extended the functionality, which includes being
able to mimic various services and nodes. Released more recently, KFSensor
[6] is a low-to-medium fidelity honeypot for Windows that provides multiple
services running on multiple ports and even on various IP Addresses. SIREN
works similarly for Linux systems, including ARM systems, and is available as
open source.

HADES [7], developed by Sandia National Laboratories, is a large-scale hon-
eynet platform capable of mimiking large networks and systems, including the
ability to mirror entire networks and switchover on-the-fly. When an attacker
is detected in the operational network, it is migrated into a deception network
where the configurations and monitoring capabilities can be changed dynami-
cally.

Still lacking are honeypot systems that are lightweight, able to run on small-
scale systems, and still able to provide multiple levels of fidelity. Additionally,
such a system need to be extensible, open source, and easy to configure and
deploy. Performance analysis is also critical to real deployment and largely lack-
ing in the literature. This is especially important when incorporating decision
algorithms to strategically (using RL or Game theoretic algorithms) deceive
attackers [1,2] with minimal latency and system load, especially when deployed
on constrained systems. We believe that on-demand instantiation is a solution
that will allow intelligent, adaptive use of these systems suitable to resource-
constrained environments.

3 Implementation

The Cybersecurity Deception Experimentation System (CDES) [1] is a stan-
dalone, emulation-based platform that is aimed at running small-to medium
scale network scenarios. It is built using a modular architecture to encourage
adaptation and extension, and it is open source. CDES runs in parallel to the
Common Open Research Emulator, which provides many of the fundamental
emulation functions including network creation and execution mechanics as well



Lightweight On-Demand Honeypot Deployment for Cyber Deception 297

as a graphical interface. CDES is based on a three-stage pipeline that comprises
the Monitor, Trigger, and Swapper components. These are shown in Fig. 1.

Fig. 1. CDES and the interfaces with CORE

The Monitor observes the output of a particular system process; for example,
previous versions of CDES have used the Suricata Intrusion Detection System
along with other tools to observe the network. This output is passed to the
Trigger, which contains logic (as editable Python code) to determine how to
consolidate and process the inputs. The Swapper provides an API that allows
a user to execute connection redirection. This component communicates with
the CORE backend through various interfaces to achieve this behavior. More
information on the internals of CDES along with several samples are available
in [1].

The original version of CDES was developed for testing primarily within
emulated scenarios, where all nodes reside on a single machine. We have made
several modifications to CDES in order to make it more usable on a real network,
and to improve the general performance and usability of the system. These
changes are backward compatible with the original version, so previous scenarios
will work with CORE version 6 and below. Scenarios developed with the CDES
updates have been tested on CORE version 6.2.0–7.4 (the latest version as of
the writing of this paper). We describe these enhancements below.

3.1 Including Real Networks

CDES previously relied on three different node types to work, two of which we
modified. The decision node is where the three-stage pipeline is executed, the
conditional nodes are connected to the decision node, but only if enabled by
the Swapper. The third node type, the conditional connection gateway was not
modified.

Originally, the Swapper would enable or inhibit communication with a node
by running an interface command (specifically ifconfig or ip) on the conditional
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Table 1. High-level CDES improvements and upgrades

Source Type Prior state Modification

Swapper Connection swap Network commands
on conditional nodes
to enable or disable
connections

Connections enabled or
disabled with ovs-ofctl
commands

Connection control Physical
interface-based
swapping

Any layer-based
swapping supported by
flow tables

Performance Connections are
activated individually

Message-based interface
for simultaneous
activation or
deactivation

Trigger Ad-hoc honey VM
instantiation

Written manually in
trigger code

Provided by API

Dec. node Decision node
implementation

Layer-2 switch node
services

Layer-3 node running
Open vSwitch

node. This meant that the conditional node had to exist within the emulation
scenario; in other words, this could not be an external node, such as a physical
node or a virtual machine. To alleviate this issue, we developed a subclass for
the Swapper that instead is based on Open vSwitch that controls the direction
of the traffic directly on the decision node. The conditional node can now be
a device external to CORE (e.g., incorporated into a scenario using the RJ-45
adapter) (Table 1).

Therefore, the decision nodes now execute ovs processes. Every interface on
these nodes is added to a default ovs bridge and flow entries are added and
removed depending on which connections are designated as enabled or disabled,
through calls to the Swapper. To improve performance, the Swapper now exe-
cutes all system call operations in a single function call, allowing a user to spec-
ify active and inactive connections within a single function parameter. Feedback
from users of the system indicated that the previous way of specifying conditional
connection nodes (using an integer value) was difficult, because the ordering was
not always consistent. To remediate this, we created a messaging system, where
different message types use different formats to indicate actions and nodes. This
is also how we maintained backward compatibility with previously developed sce-
narios. Using Open vSwitch also comes with many additional benefits, including
the ability to specify swapping at various layers in the network stack, including
Ethernet-based, IP Address based, etc.

3.2 Ad-Hoc Virtual Machine Instantiation

To faciliate the task of dynamically instantiating external virtual nodes, we
added functions to the backend Trigger API for pausing, saving, resuming, and
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starting virtual machines. A user can specify whether the virtualization system is
local (running VirtualBox on the host) or remote (in which case an SSH session
is instantiated and run as a specified user). Instead of VBoxManage, a user may
also specify to use pyvbox; which would require that the VirtualBox SDK be
installed on the host running VirtualBox.

3.3 Decision Node Configuration

In addition to incorporating Open vSwitch processes on the decision node, the
base type had to change. Recent versions of CORE have evolved and added new
features; at the same time, some interfaces have also changed. Layer 2 switch
nodes are no longer able to be assigned services. To adapt for these changes, the
decision node is now a layer 3 node that behaves like a switch (using ovs). A
benefit of this change is that now processes can be spawned on decision nodes
during a running emulation. This also better fits the logical design and usage
of CORE. However, adding and using this type of node in the CORE GUI
may cause some confusion, since by default the node is treated as a router node
instead of a switch node, e.g., IP addresses are generated and then auto-assigned
when connected to another node.

One of the fundamental objectives of CDES is to leverage CORE without
requiring any modifications to CORE. We have kept this model, but we also
provide users with the option to alleviate some of the confusion presented by the
issue mentioned in the previous paragraph. We modified 3 source files (linkcfg.tcl,
ip4.tcp and ip6.tcl) that will provide a switch behavior for decision nodes when
used in the graphical interface. These are optional and the system will still run
correctly without including these changes.

These modifications also made it possible to incorporate CDES into CORE
scenarios with mobile wireless nodes. In the first case, we tested this functionality
by designating a wireless node as a decision node. The Swapper can switch
between the different wireless networks, which in the real world are synonymous
with different wireless network interfaces connected to different SSIDs. This also
works with what we call base station nodes (with one wired connection and at
least one wireless connection).

The code base now include several new samples, including the changes
described above as well as several which use SDN components (Open vSwitch,
Ryu, etc.) in CORE.

4 Case Study

We envision CDES being used inline on a network, on a limited resource device
that will have minimal impact on network throughput. To demonstrate this we
developed two separate experimentation setups.

In the first, CDES runs on a recent laptop with considerable memory and
a decent processor. In this setup, which we call In-VM, CORE is used within
a virtual machine. This facilitates deployment, modification, and maintenance.
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This setup makes it easy to install CORE, configure the trigger rules, and apply
updates to CDES and then transfer the latest version as an importable virtual
machine. Other VMs are easily added and their network configurations are pre-
served. No changes are required to execute the setup across different machines,
even those with different host operating systems. For this setup, we used a Lap-
top with 64 GB RAM and the Intel Xeon E3-1505M v6 3.0 GHz processor. The
host operating system is 64-bit Windows 10 and CORE is installed on a virtual
machine running Ubuntu 20 64-bit LTS.

The second setup, which we call Native, runs CDES installed on an older,
less capable laptop. Virtualization is used only to host the honeynet VMs. This
laptop had 16 GB of RAM and a 2.6 GHz Intel Core i7-4720HQ. Ubuntu 20
64-bit LTS was the host operating system.

In both cases, the CDES laptop was placed on an isolated network between
two communicating nodes (see Fig. 2). On the left side is the scanning machine.
This is where traffic originates and where we measure round-trip time for packets.
This laptop was the same model as the host used for the In-VM set up; all specs
were the same, except that is was running Ubuntu 20 64-bit LTS instead of
Windows.

Fig. 2. Case study scenario, developed in CORE

The CDES laptop is connected to the network using two physical interfaces.
The left interface (through enp0s3 in Fig. 2) is connected to the scanning machine
using a USB 3.0, 1 Gbps dongle, and on the right is the native, hardwired network
interface card included with the laptop. It is worth noting that there were no dif-
ferences in results when we reversed the ordering of these interfaces. When using
the In-VM setup, VirtualBox was used to run the CDES node with three virtual
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network interfaces. The first was bound to the Ethernet dongle in bridged mode.
The second was an internal network shared with two honey virtual machines, a
minimal Linux TinyCORE VM, allocated with 2 processors and 128 MB RAM
and an Ubuntu 20 64-bit LTS VM, allocated with 2 processors and 2 GB of
RAM. Finally, the third adapter is bound to the laptop’s internal 1 Gbps net-
work interface card, which is used as the passthrough.

This right-most interface on the CDES laptop connects to a 1 Gbps Ethernet
switch, which is also connected to the passthrough machine. This machine the
same laptop model as that used for the In-VM CDES node, running Ubuntu 20
64-bit LTS so that it mirrors one of the honey VMs.

The honey VMs (connected through the virtual interface enp0s10) and the
passthrough machine (connected through enp0s9) are all configured to use the
same IP Address and the same MAC address. This is so the honey virtual
machines closely mimic the passthrough node from a networking perspective.
It also eliminates the need for additional address resolution traffic when redirec-
tion occurs, which would otherwise cause intermittent delays.

The primary objectives of this case study are as follows:

1. Determine the impact on total throughput that a CDES node will introduce
on the network

2. Understand the delays that are introduced with the additional process-
ing required for CDES to work; specifically when switching between a
passthrough network, a local kernel network namespace (also known as a
native CORE node) and two types of virtual machines connected to a CORE
scenario using a CORE RJ-45 node.

3. Demonstrate the capabilities of CDES for thwarting adversarial behavior,
specifically network service probes.

We used delays in ICMP echos and requests to measure performance impacts
on the network. In each setup, the scanning machine sent requests at a rate of 10
per second. For network probes, the scanning machine used Nmap with different
timing templates. This is explained further in the following sections.

5 System-in-the-Middle Overhead Analysis

We measure overhead first with static connections (no CDES or swapping) and
then with dynamic connections (using CDES with different instantiation and
swapping configurations) in order to characterize delays associated with the dif-
ferent setups.

5.1 Static Connections

To establish a baseline with respect to network delays and the additional load
introduced by the CDES node and accompanying software, we measured the
ICMP echo-response delays without any intermediate nodes during a 1000-s test.
We temporarily removed the CDES node and connected the scanning machine to
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Fig. 3. Ping delays when scanning machine is directly connected to passthrough
machine

the passthrough machine through the network switch. The delays are very stable,
as expected in such as small and simple networking configuration. Figure 3 shows
the delays with statistics exhibited during the duration of the test.

Next, we measured the delays associated with adding an intermediate node.
In the case of the native setup, these delays encompass processing done by the
hardware and the kernel. In the case of the In-VM setup, results are shown in
Fig. 4.

Fig. 4. Ping delays when scanning machine traffic flows through within-VM CORE
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Additional delays are caused by the processing required for the VirtualBox
bridged adapter and the virtual machine hosting CORE; no other user processes
were instantiated. In general, the namespace node responds the quickest. This
is because the incoming packets are not redirected to external systems; packets
arrive and are processed by a specific kernel network namespace. The CORE
passthrough, which is the case when packets are redirected through the second
physical network interface is the slowest. In this case, packets are pushed through
the network switch to the recipient laptop and processed by that second physical
device and its OS kernel.

Additionally, there are several sporadic delays throughout, sometimes rising
to 0.14 s with the passthrough. To test whether this behavior was consistent,
we repeated the experiment with different combinations of hardware, Operat-
ing System (Linux), and virtualization platform (VMWare). The same behavior
persisted. This is likely due to the internal switching mechanisms used by the
virtualization software. However, it is also worth noting that even though these
additional and sporadic delays exist, the delays are still relatively short, on
average within 1 ms–2 ms compared to 0.5 ms–1.01 ms for the native setup. The
standard deviations are all below 0.6 ms during the 100-s runs.

The results associated with the native setup are shown in Fig. 5. Delays
when using the CORE node as the recipient (kernel network namespace) are on
average only 0.12 ms higher. Adding the additional node, as seen with CORE
passthrough, adds 0.62 ms to the average delay time. The min and max delays in
this setup are all within 1.02 ms, demonstrating connection stability even with
the additional processing.

When comparing the two setups, it is clear that In-VM introduces more delay
across all tests, but they are similar. Depending on the needs of the administrator
(e.g., fidelity versus ease of use) both setups are viable, especially in the case
where a namespace is used.

5.2 Dynamic Connections Using CDES

We used CDES to swap between the different possible recipient nodes
(passthrough, namespace, honey1 VM and honey2 VM). Both of the honey VMs
were connected to the CORE scenario using the RJ-45 node and only one was
active at any given time. For this reason, even though all of these recipient nodes
were configured to use the same addresses there were no conflicts. We tested three
different sets of configurations. In the no inst configuration, the honey VM is
instantiated before the scenario starts and it is never stopped. The pause resume
configuration starts with all VMs in a suspended state, with memory allocated
beforehand, but machines are activated only when resumed. The machines are
again suspended when they are no longer in use. It is important to note that the
ordering of execution has an important role. A VM is instantiated on a thread,
and the CDES swapping logic waits until this operation is complete until swap-
ping to use the associated connection. When a VM is toggled for suspension,
the swapping does not occur until the machine the operation is complete. This
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Fig. 5. Ping delays when scanning machine traffic flows through native-installed CORE

model we used in the case study favors possible delays instead of possible dupli-
cate packets. This eliminates the case where, if two connections were to be active
at the same time, both recipient nodes could respond to the ICMP echo request.
The scanning machine would see these as duplicate packets.

Lastly, in the save state case, the VMs are offloaded, but their state is saved
to disk and restored when they are instantiated. We used the same mechanics
and logical execution as the pause resume configuration. In the In-VM setup,
the VMs are halted and started as needed using an ssh connection to the host
machine and subsequently running the VBoxManage binary to control the VM.
In the native setup, we simple called the VBoxManage binary directly.

To measure the delays associated with the various CDES redirections, the
redirection would occur every 30 s for a total of 7 times (210 s), and in the
following order: passthrough, namespace, passthrough, honey1 VM, passthrough,
honey2 VM, passthrough. This behavior was implemented in the CDES Trigger
script using the CORE graphical interface, and required only 12 additional lines
of Python code.

We started with the no inst configuration (shown in Fig. 6 and we noticed
immediately that in both setups, there was no noticeable delay when the swaps
occurred and zero packets were lost. However, as expected from previous results,
the delays associated with the namespace were noticeably lower (shown in the
upper graphs). We added an intentional delay of 400 ms to the link connecting
the CDES node to the namespace node. This decreased the standard deviations
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from 0.19 ms to 0.09 ms in the Native setup and 0.63 ms to 0.51 ms in the In-VM
setup, as shown in the lower graphs.

Fig. 6. Ping delays using CDES without (upper graphs) and with (lower graphs) inten-
tional delay in both the In-VM (left graphs) and Native configurations (right graphs).

Also coinciding with the results presented in the previous subsection, the
In-VM setup exhibits more sporadic behavior than the Native. However, these
results are in the range of milliseconds. In more complex and congested networks,
the sporadic behavior may be harder to notice.

The delays associated with the pause resume and save state configurations
using intentional delay are shown in Fig. 7. In both configurations, there were no
dropped packets. In the case of the pause resume, there is very little noticeable
difference in delays when compared to the no inst configuration. The minimum
increase was below 0.08 ms, the average increase was 0.4 ms and the max increase
was within 0.15 ms. The standard deviation changed only by 0.01 ms. The resume
VM operation completed within 1 s in both the In-VM and Native case. Since
the switchover doesn’t occur until the VMs are instantiated, this reduces (and
in this case virtually eliminates) additional CDES-incurred delay.

The save state configuration did not perform as well, especifically when
instantiating the Honey2 VM (Ubuntu). Originally, we thought that these results
would closely mimic those in the pause resume configuration due to ordering of
the the swapping logic, but we noticed that this was not the case; there were
additional delays, up to slightly over 2 full seconds. Closer observation revealed
that when a VM is started from a saved state, there is a response gap between
the time that the VM is fully functional and interactive to when its network
devices become active. In the case of the Ubuntu VM this was 2 s. However, it
seems that the packets are queued by the virtualization software, since eventually
there were responses and no packets were lost. This was the case in both setups,
in which the total varied by at most 11 ms. Memory and CPU did not seem to
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Fig. 7. Ping delays using pause resume (upper graphs) and save state (lower graphs)
configurations in both the In-VM (left graphs) and Native configurations (right graphs).

play a role in this behavior, as they were both below maximum utilization. We
discuss these results in the next section.

6 CDES System Utilization

We analyzed the performance in terms of both CPU and memory utilization in
the native setup for the three configurations. CPU usage was recorded using the
mpstat tool, which is part of the sysstat package. The load of the system was
recorded once per second. The results are shown in Fig. 8.

In both the no inst and pause resume configurations, the memory is constant
at 25%, which is roughly 4 GB of memory, throughout the scenario. Utilization
varies much more during save state, when the VMs are instantiated and shut-
down dynamically. There is only a small increase of roughly 2–3% when the
TinyCORE VM (honey1 VM in the chart) is instantiated, but the increase is
roughly 10% when instantiating the Ubuntu VM (or honey2 VM). The memory
usage is not instantaneous. As we show in the graphs, this is gradual and occurs
over 3–5 s.

CPU performance is show in the graphs on the right side of the figure, includ-
ing statistics for the executions. Since all of the configurations start at 100%
utilization (due to CDES instantiation) the maximum statistic is based on the
data after 1 s. CPU utilization is much more stable in the configurations where
VMs are not instantiated from a saved state, as observed in the average being
2.8%–2.98% and standard deviation between 6.81% and 6.79%. Still, even when
using the less capable laptop, the usage remained below 25% throughout.

In summary, the usage of CDES should depend on the availability of
resources. When used on a device with limited memory, and when the inher-
ent delays (presented in Sect. 5, are acceptable, the save state configuration is
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Fig. 8. CPU and memory utilization during the execution of the three configurations.

best. When CPU utilization must remain constant and when delays are a critical
factor, then the pause resume configuration is better suited as it behaves very
similar no inst configuration. The no inst configuration has no benefits in the
case study that we present here. However, there may be situations when honey
systems must be configured and tuned dynamically. In this case, a hybrid sys-
tem would work best. As an example, some honey nodes would be instantiated
at th start, but as information becomes available, they could be modified (by
starting services or changing IP Addresses/MAC Addresses) through scripting,
or stopped all together while another set of honey nodes are instantiated.

7 CDES Performance Against Network Probes

According to [18], reconnaissance is the first step in the Cyber Kill Chain and
includes target identification and profiling. We wanted to determine the feasibil-
ity of using CDES to directly mitigate this stage in the kill chain by redirecting
the traffic of a scanning device during a scan. We ran several tests using the
Nmap software on the scanning machine against a recipient node.

Nmap [8] is a well-known tool used to discover nodes on networks as well as
the services they are hosting. Nmap accepts a wide range of flags that determine
it’s behavior, ranging from specifying nodes to specifying network ports, and
timing. There are five timing templates included by default in Nmap. These allow
a user to indicate general behavior related to how fast and how stealthily a scan
should be executed. In general, the highest templates (T4 and T5) favor speed;
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T4 is recommended for use on networks with decent broadband or Ethernet
connections [8]. T5 is very aggressive and has the potential to present more
false negatives. T3 and below are slower and are meant for use on constrained
networks. For our study, we used T4 and T5, since our network was small,
Ethernet-connected, and also because we wanted to stress test CDES against
fast network scans.

We started by documenting the behavior, from a network packet perspective,
of Nmap when using the T4 and T5 timing templates. Additionally, we specified
the specific IP address of the passthrough node and a specific port (5902 for an
open VNC server) on the node; when multiple are specified, they are scanned in a
random order. We executed scans from the scanning machine to the passthrough
machine, with CDES (running various honey nodes) and a network switch in
between (as shown in Fig. 2). This means that Nmap executed a remote network
scan, which differs slightly from a internal network scan. The mechanism used
to discover a remote node uses ICMP requests and responses, as well as TCP
packets, instead of ARP requests and responses. The general set of packets sent
with both templates are for the most part the same, with variations in timings
due to additional parallelism and other optimizations with T5. Figure 9 shows
the behaviors that are most pertinent to our study.

Fig. 9. Network exchanges during Nmap timing templates T4 and T5.

The Nmap behavior occurs in two phases: Host Discovery and Service Probe.
Nmap starts by sending a sequence of ICMP and TCP packets (I–IV) to deter-
mine if a host is running and responding. The ordering of the packets during the
I–VI are not always the same. If the host replies (V and VI), then port probing
starts; the scanning machine sends TCP handshake packets (VII) and services
that are running will respond (VIII). The TCP packets in the Host Discovery
phase do not influence the results of the entirety of the scan. That is, if port 443
was specified as the scan port, an additional TCP SYN packet to port 443 will
be sent again during the service probe phase.
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We tested whether CDES could swap a connection between the two phases.
Specifically, if the swap is fast enough to occur between the time an ICMP Echo
Request is observed (IV) to the time that Nmap begins probing for services (VII).
This way, even if a real host is discovered, the service probes will be directed to
a honey node.

First, we ran Nmap with T4 and T5 five times and recorded timing infor-
mation. Generally, the total time for the scans, when specifying a port (5902
in our case), were between 0.45 s and 0.54 s for T4; T5 took between 0.44 s and
0.46 s. With both templates, the time between I–IV from Fig. 9 was less then
.01 ms. The time from the last packet in Host Discovery (IV) to the first packet
in Service probe (VII) occurred within 0.3 s. Therefore, for CDES to achieve our
desired effect, it had to respond within 0.3 s.

The CDES Monitor was configured to run a custom network packet sniffer
developed using PyPacker [15]. Anytime an ICMP Echo Request packet was
encountered, an indicator would print to stdout. This stdout is passed to the
Trigger, which then calls the Swapper to switch from the passthrough to a dif-
ferent honey node. Because the timing required to swap to a virtual machine
varied depending on the operating system, in addition to the namespace and
honey2 VM (TinyCORE) and honey2 VM (Ubuntu 20) used in previous tests,
we included 11 additional virtual machines. All VMs are 64-bit operating systems
unless otherwise specified.

As discussed in Sect. 5.2, when using the save state configuration, the time
network device activation time gap (roughly 1 s–2 s) is too high to achieve the
swap in time, therefore, we only tested using the no inst and pause resume con-
figurations. Table 2 shows the results.

CDES was successful in most cases. The most time consuming task is the sys-
tem calls which are used to control the switch configuration and to VBoxManage,
which controls the virtual machines. A note of interest is that when using the
T5 template against honey2 VM (TinyCORE), Nmap results indicated a filtered
port (as opposed to an open port). This occurred even when scanning it directly,
without CDES or any intermediate nodes, and was due to the processing con-
straints of the VM. As indicated in the Table, with both no inst and save state,
the swap did occur in time which we validated by analyzing the network traffic
on each pathway node.

Looking further into the timings using packet arrival times and recorded
timestamps within CDES revealed the following. The time from when a packet
is received by the sniffer to when a no inst swap occurs (when VMs are not
instantiated or suspended) is 0.12 s. Within this time, the system call (to the
Open vSwitch service) takes 0.10 s to complete. System calls that involve swap-
ping to the honey VMs in the pause resume case (which includes pausing the
previous and resuming the current) varied – we show the total time, from packet
arrival through system call in the third column of Table 2. The Ubuntu VMs
showed the highest resume times, which are above the 0.3 s threshold before the
probes start. One way to alleviate this issue is by using a more capable machine
to run the VMs.
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Table 2. CDES swap capability against Nmap service probe

Config Swap from
passthrough to

Swap time
(seconds)

Win over T4 Win over T5

no inst namespace 0.12 Yes Yes

Any VM 0.12 Yes Yes

pause resume TinyCORE VM 0.18 Yes Yes

Ubuntu 20 VM 0.53 Yes w/defaults Yes w/defaults

Alpine 3.11 VM 0.14 Yes Yes

CentOS 8.3 VM 0.14 Yes Yes

Fedora 3 VM 0.15 Yes Yes

FerenOS 2021.01 VM 0.15 Yes Yes

Debian 10.7 VM 0.18 Yes Yes

Manjaro 21.0 VM 0.19 Yes Yes

PopOS 20.04 VM 0.17 Yes Yes

Ubuntu 18 VM 0.50 Yes w/defaults Yes w/defaults

WinXP 32-bit VM 0.14 Yes Yes

Win7 VM 0.16 Yes Yes

Win10 VM 0.15 Yes Yes

When a port is not specified, Nmap will scan the top 1000 most common
ports. Using this default behavior, scan completion times ranged from 1.57 s–
1.58 s with T4 and 1.56–1.58 with T5. The duration of the Host Discovery
phase was the same as when specifying a port (discussed earlier in this section).
Chances are higher that CDES will swap before a specific port is probed, result-
ing in successes when using Ubuntu VMs. This is because ports are not always
scanned in the same order.

8 Future Work

We have shown that the open source software, CDES, is a viable solution for
employing inline honeynets that can be instantiated and suspended on-the-fly
as needed. This solution works well on limited resource devices and with the
graphical interface and mechanisms provided by CORE and our adaptations,
make this a usable and scalable system. Using this setup, honeynets can range
from small-scale (such as using kernel namespaces) to medium-scale (virtual
machines) to large-scale external physical machines and networks. Our empirical
results show that using CDES has minimal noticeable delay to the connected
entities. Finally, we demonstrated that CDES can thwart Nmap probes in real
time by redirecting traffic fast enough during an active scan to swap connections
before a legitimate node’s services are revealed.

The capability demonstrated by this system opens up many possibilities for
further improvements, especially in using more sophisticated AI algorithms to
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decide dynamically which honeynets to activate at any particular time, based
on the network monitoring observations. These algorithms can also take into
account the available resources and potential impact on load to determine the
best course of action. Another direction for research is to test this system using
other small-scale systems such as ARM portable devices. We also plan to inves-
tigate the feasibility of attaching other software defined networking components
such as a controller to synchronize several CDES instances running on multiple
devices. Evaluating the performance of the system as well as the effectiveness
of different strategies for deploying honeypots in a more complex network setup
will also be an important direction for additional experiments.
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