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4.1  Introduction

Development of a scientifically rigorous study 
design that addresses the study questions is a key 
component of clinical trials in oncology. The 
development of the study design is a collaborative 
effort between clinical investigators and biostatis-

ticians. An appropriate study design is critical to 
the success of a clinical trial as it will facilitate the 
ability of the trial to answer the study questions; 
will define the number of patients required for 
enrollment to answer these questions and the 
duration of the study; and, in early phase studies, 
will enable the identification of the desired dose 
to move into subsequent studies (e.g., maximum 
tolerated dose (MTD); recommended Phase II 
dose (RP2D)). In early stage pediatric oncology 
studies, the identification of a safe dose is criti-
cally important, as this dose may vary from adult 
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Table 4.1 Summary of study designs

Category of 
study designs Description
Rule-based 
design 
(algorithm- 
based design)

All the rules for dose escalation, 
de-escalation, or staying at the current 
dose are defined in the protocol and 
prior to conduct of the clinical trial:
   • Traditional 3 + 3 design
   • Accelerated titration design
   • Rolling six design

Model-based 
design

Some assumptions of a parametric 
statistical model for the dose-toxicity 
curve are presented in the protocol. 
Then, the estimate of the dose-toxicity 
curve is continuously updated to 
guide the dose assignment and MTD 
selection based on accumulating trial 
data, on a real-time basis:
   •  Continual reassessment method 

(CRM)
   •  Escalation with overdose 

control (EWOC)
   •  Time-to-event continual 

reassessment method 
(TITE-CRM)

   •  Bayesian logistic regression 
model (BLRM)

   •  Time-to-event escalation with 
overdose control (TITE-EWOC)

Model- 
assisted 
design

Combines the ideas of both rule-based 
and model-based designs. The rules 
for dose escalation, de-escalation, or 
staying at the current dose are 
determined before the start of patient 
enrollment but based on a parametric 
statistical model:
   •  Modified toxicity probability 

interval (mTPI) design
   • Keyboard design
   • mTPI-2 design
   •  Bayesian optimal interval 

(BOIN) design

doses. In this chapter, we introduce Phase I clini-
cal trial designs from three categories based on 
statistical assumptions (Table  4.1): rule-based/
algorithm-based designs; model-based designs; 
and model-assisted design (Wei et al. 2019). This 
chapter will also discuss the advantages and dis-
advantages of these study designs in pediatric 
oncology studies.

The starting dose in adult oncology studies is 
calculated based on nonclinical safety data in 
animal models (Shen et  al. 2019). However, 
most pediatric clinical trials are conducted after 
the completion of adult Phase I clinical trials 

that can provide historical data for the determi-
nation of the starting dose (Smith et al. 1998). 
Typically, pediatric oncology studies start at 
approximately 80% of the adult MTD/RP2D 
(Marsoni et al. 1985; Lee et al. 2005). This pre-
vents the trial from starting with doses that are 
too low and potentially ineffective doses, unnec-
essarily exposing children to toxicity without 
likelihood of benefit and accelerates the dose 
escalation period. However, for drugs where 
there is no MTD in adults, there can be consid-
eration to starting at the adult RP2D, as deter-
mined in adult, single-agent studies. Pediatric 
oncology studies starting at the adult RP2D 
would be designed with plans for dose de-esca-
lation, if necessary.

4.2  Rule-Based Designs

4.2.1  Traditional 3 + 3 Design

The most traditional and straightforward design 
in clinical trials is the 3 + 3 study design (Storer 
1989). The detailed procedure is described in the 
FDA Guidance for Industry Clinical Consid-
erations for Therapeutic Cancer Vaccines (FDA 
2011) which is summarized as follows:

 1. Three patients are enrolled into a pre-defined 
starting dose level:

 (a) If there is no DLT observed in these three 
patients, then escalate the dose level, 
and enroll three additional patients into 
the new dose level. Move to Step 2.

 (b) If there is only one DLT observed in these 
three patients, then stay on the same dose 
level, and enroll three additional patients 
in the current dose level:
• If there is no DLT observed in these 

three patients (i.e., one DLT in six 
patients), then escalate the dose level, 
and enroll three additional patients into 
the new dose level. Move to Step 2.

• If there is one DLT or more observed in 
these three additional patients (i.e., ≥2 
DLTs in six patients), then stop the 
trial and choose the previous dose 
level as MTD.
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 (c) If there are more than one DLT observed 
in these three patients, then stop the trial 
and choose the previous dose level as 
MTD.

 2. Repeat Step 1 for each new dose level.

This study design has all the advantages of 
rule-based designs. It is simple to understand the 
design structure and is convenient for clinical 
operational teams to implement since the param-
eters for dose escalation are clearly defined. 
However, this commonly used study design has 
significant disadvantages and constraints. 
Statistically, it can only estimate the MTD when 
the target probability of DLT is between 20% and 
33% (Le Tourneau et al. 2009). The 3 + 3 design 
is “memory-less” since it is based on only the last, 
most recently enrolled three (or six) patients. This 
design also requires many escalation steps with 
doses that may be too low to be effective, leading 
to suboptimal treatment (if the drug is, in fact, 
effective) for a large number of patients. It is also 
difficult to predict the final sample size since all 
that is known is the cohort size (three or six 
patients) at each dose level. Another concern of 
3 + 3 study design in pediatric oncology studies is 
that this design has significant operational limita-
tions since most of these studies are multicenter 
clinical trials (Doussau et al. 2016).

However, in both adult and pediatric oncology 
studies, the conservative 3 + 3 design is still one 
of the most popular and commonly used study 
designs despite criticism of its inefficiency and 
underestimation of MTD.

4.2.2  Accelerated Titration Design

The accelerated titration design was proposed by 
Simon et  al. (1997). This study design extends 
the traditional 3 + 3 design to reduce the number 
of patients enrolled at lower dose levels by add-
ing an initial accelerated phase before the start of 
a 3 + 3 study design phase.

During the initial accelerated phase, there is 
only one patient per dose level cohort enrolled at 
lower dose levels until the pre-defined stopping 
rules for DLTs or toxicities are met. After the ini-
tial accelerated phase, a traditional 3 + 3 design is 
implemented with cohorts of three to six patients 
at the higher dose levels.

Simon et al. performed simulations based on 
four Phase I designs (Simon et al. 1997): Design 
1 was a traditional 3 + 3 design, while Designs 2, 
3, and 4 were accelerated titration designs with 
different assumptions (Table 4.2). The simulation 
results showed that the average number of 
required patients in a Phase I trial was reduced 
from 39.9 for Design 1 to 24.4, 20.7, and 21.2 for 
Designs 2, 3, and 4, respectively.

Therefore, the accelerated titration design 
has an advantage to have fewer required patients, 
especially when there are many dose levels 
planned. Some accelerated titration designs also 
allow for intra-patient dose escalation during 
the initial accelerated phase to further reduce 
the number of patients and provide some 
patients the opportunity to receive the investiga-
tion agent at higher dose levels (Ivy et al. 2010). 
This has the potential to make the accelerated 

Table 4.2 Summary of phase I simulations by Simon et al. (1997)

Design Initial accelerated phase 3 + 3 phase Condition to 3 + 3 phase Average # of patients
1 Not applicable 40% dose increments Not applicable 39.9
2 Single-patient cohorts

40% dose escalation
40% dose increments At least one first-course 

DLT, or one second 
first-course intermediate 
toxicity

24.4

3 Single-patient cohorts
100% dose escalation

40% dose increments At least one first-course 
DLT, or one second 
first-course intermediate 
toxicity

20.7

4 Single-patient cohorts
100% dose escalation

40% dose increments At least one any course DLT, 
or one any course 
intermediate toxicity

21.2
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titration design more attractive to adult patients 
enrolled in FIH Phase I trials. However, in pedi-
atric oncology clinical trials, the accelerated 
titration design is not compelling since most 
starting doses are based on the MTD in adult 
trials and can be too low when compared to the 
true MTD.

4.2.3  Rolling Six Design

In order to shorten the timeline of pediatric 
oncology Phase I trials, the rolling six design was 
proposed by Skolnik et  al. (2008). It is another 
rule-based design that also extends the 3  +  3 
study design (Skolnik et al. 2008).

In the rolling six design, two to six patients 
can be enrolled continuously on the same dose 
level. The escalation and de-escalation rules can 
be summarized as follows:

 1. If 0/3, 0/4, 0/5, 0/6, or 1/6 patients are observed 
with DLTs, then escalate to the dose level.

 2. If 0/2, 1/2, 1/3, 1/4, or 1/5 patients are observed 
with DLTs, then stay on the same level, and 
enroll more patients up to a total of 6.

 3. If there are more than two DLTs observed, 
then de-escalate the dose level.

 4. If six patients have been enrolled on the cur-
rent dose level, escalation/de-escalation deci-
sion will not be made until at least five of 
those six patients have completed the DLT 
period.

The dose level assigned to a new patient is 
based on the following three components:

 1. The number of patients currently enrolled and 
evaluable

 2. The number of patients experiencing a DLT
 3. The number of patients at risk of experiencing 

a DLT

In 1000 study simulations performed by 
Skolnik et  al. (2008), the average (±standard 
deviation) time of study duration was 294 
(±75  days) for the rolling 6 design versus 350 
(±84) days for the traditional 3 + 3 design. This 
design successfully shortens the study duration 

for pediatric oncology studies in situations 
where there is prior information about the adult 
starting dose (Le Tourneau et  al. 2009). Since 
this study design was specifically developed for 
pediatric oncology clinical trials, it has been 
increasingly implemented over the last decade 
(Doussau et al. 2016).

4.3  Model-Based Designs

4.3.1  Continual Reassessment 
Method (CRM)

One of the earliest model based-designs using 
Bayesian statistics, the continual reassessment 
method (CRM), was proposed by O’Quigley 
et  al. (1990). This predated the accelerated 
 titration and rolling six designs. In 2003, it was 
applied in a simulation study on pediatric Phase I 
oncology clinical trials by Onar-Thomas and 
Xiong (2010).

As an example of an adaptive design, a 
Bayesian statistical model is used to fit a dose- 
toxicity curve to find the dose (e.g., MTD) with 
the toxicity rate closest to the target rate. The 
target DLT rate is fixed at the beginning of the 
study, and only one patient is required for each 
dose level or cohort. The assumptions of the 
prior distributions for the parameters of the 
dose-toxicity curve are made based on historical 
data. Dose escalation decisions can then be 
made by investigators and biostatisticians based 
on the whole updated posterior distribution of 
toxicity at each dose, based on accumulating 
DLT information. The dose level recommended 
for the next patient is the one minimizing the 
difference between its probability of toxicity 
and the target toxicity rate.

There are three essential steps in a CRM study 
(Zhou et al. 2018):

 1. Assume a parametric model for dose-toxicity 
curve, like a power model:

 
p j j� � �� �exp ,

 

while pj denotes the true DLT probability of 
dose level j, α is the unknown parameter, and 
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0 < α1 < ⋯ < αJ < 1 are prior guesses for the 
DLT probability at each dose.

 2. Update the estimate of the dose-toxicity curve 
based on the accumulating DLT data across 
all dose levels, and assign the next cohort of 
patients to the “optimal” dose, defined as the 
dose whose posterior mean estimate of the 
DLT probability is closest to the target DLT 
probability.

 3. Rules to forbid skipping doses and safety 
stopping rules.

For the Bayesian CRM, advantages include 
the assumption that the target DLT level is more 
flexible compared to the traditional 3 + 3 design. 
This design allows for a more precise estimate of 
the MTD. Therefore, more patients can be treated 
at a potentially therapeutic dose level. In a com-
parison of simulations among study designs for 
pediatric oncology Phase I clinical trials, CRM 
was also been found to be more efficient than two 
algorithm-based methods (3 + 3 and rolling six) 
and reduce the number of skipped children 
(Doussau et al. 2012).

However, like all Bayesian models, justifica-
tion of prior distributions considered in the CRM 
design analysis is always critical. Incorrect 
assumptions will expose patients to overtreat-
ment risk. With respect to operational consider-
ations, it is more complicated to constantly 
update the posterior distribution based on accrued 
DLT information after each cohort. This requires 
timely collaboration between statisticians, inves-
tigators, and clinical operational team throughout 
the dose escalation period.

The CRM design is still not been widely uti-
lized in clinical trials, but various modifications 
have been made to improve the performance of 
the CRM design, including the escalation with 
overdose control (EWOC) design in 1998 (Babb 
et al. 1998), the time-to-event continual reassess-
ment method (TITE-CRM) in 2000 (Cheung and 
Chappell 2000), an adaptive CRM design called 
TriCRM in 2006 (Zhang et al. 2006), a Bayesian- 
based extension of TriCRM in 2007 (Mandrekar 
et  al. 2007), the Bayesian logistic regression 
model (BLRM) in 2008 (Neuenschwander et al. 
2008), and time-to-event escalation with overdose 

control (TITE-EWOC) in 2011 (Mauguen et  al. 
2011). In the following sections, we will intro-
duce the EWOC, BLRM, TITE-CRM, and TITE-
EWOC study designs.

4.3.2  EWOC and BLRM

EWOC and BLRM are similar when compared to 
the CRM.  They both assume a Bayesian two- 
parameter logistic regression model for dose- 
toxicity curves that actively control for the risk of 
overdosing. But these two designs use two differ-
ent definitions to estimate the optimal dose.

The EWOC selects the optimal dose by select-
ing the highest dose whose posterior probability 
of being higher than the MTD is equal to or less 
than a pre-specified threshold, such as 25% or 
30%. The EWOC was applied in a Phase I dose 
escalation study of oral gefitinib and irinotecan in 
children with refractory solid tumors that was 
published in 2014. In this study, the pre-specified 
threshold to control the overdosing risk was set at 
30% (Brennan et al. 2014).

The BLRM defines the optimal dose that has the 
highest posterior probability of being within a pre-
specified dosing interval (δ1, δ2). Another feature of 
the BLRM is that the dose skipping is not allowed.

In conclusion, in order to find the optimal dose 
with lower risk of overdose, the EWOC puts a 
constraint on the probability, while the BLRM 
puts a constraint on the dose directly.

4.3.3  TITE-CRM and TITE-EWOC

In the model-based designs discussed above, the 
dose-toxicity curve has to be updated by statisti-
cians after all previous patients have completed 
their safety and toxicity evaluations. Enrollment of 
additional patients is delayed in studies with long 
DLT assessment periods (e.g., DLT assessment 
periods greater than 28  days). Time-to- event 
approaches combine existing model-based designs 
to estimate the next dose level from all previous 
patients with some data from patients still in the 
DLT assessment period, or in patients in whom 
follow-up is pending (Doussau et al. 2016).

4 Design and Statistical Considerations for Early Phase Clinical Trials in Pediatric Oncology
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The TITE-CRM was proposed in 2000 to 
estimate of the cumulative probability of late-
onset toxicity over several cycles when some 
patients have not yet completed the DLT assess-
ment period (Cheung and Chappell 2000). In 
2006, Normolle and Lawrence (2006)) used 
Monte Carlo simulations of 60,000 Phase I stud-
ies to demonstrate that TITE-CRM trials are 
considerably shorter compared with traditional 
3  +  3 and CRM study designs when toxicity 
observation times are long. However, Le 
Tourneau et  al. (2009) pointed out that in two 
pancreatic cancer trials (Muler et al. 2004; Desai 
et al. 2007), the TITE-CRM design had accrual 
of more patients to dose levels below the RP2D 
as compared to those using a traditional 3 + 3 
design.

Similar to the TITE-CRM, when statisti-
cians update the estimates based on the 
Bayesian model in the TITE-EWOC design, 
the observations of patients who have not com-
pleted the follow-up period are likely to be 
down-weighted. Mauguen et al. (2011) showed 
that compared with the EWOC design, trial 
duration can be significantly decreased with 
the TITE-EWOC, without a major impact on 
the probability of overdose risk or the number 
of DLTs. This design also avoids waiting time 
in pediatric cancer chemoradiation trials 
(Doussau et al. 2016).

4.4  Model-Assisted Designs

4.4.1  Modified Toxicity Probability 
Interval (mTPI) Design

In 2007, Ji et al. (2007) proposed a Phase I dose- 
finding approach with simple escalation and de- 
escalation rules based on toxicity probability 
intervals (TPI). In 2010, Ji et al. (2010) presented 
a modified TPI (mTPI) design to improve effi-
ciency while maintaining the simplicity of the 
original TPI design.

In the mTPI design, three intervals are speci-
fied to denote the proper dosing interval (δ1, δ2), 
the underdosing interval (0, δ1), and the overdos-
ing interval (δ2, 1). The mTPI makes the decision 

about dose escalation and de-escalation based on 
the unit probability mass (UPM) of the three 
intervals (Fig. 4.1). Let pcur denote the DLT prob-
ability of the current dose. The UPM is defined as 
the posterior probability that pcur is within the 
interval, divided by the length of the interval.

By assuming the target toxicity rate, dose lev-
els, and potential toxicity rate at each dose level, 
a Monte Carlo experiment can be performed to 
identify the operating characteristics, including 
estimated number of patients and the observed 
number of toxicities. Given the simulation 
results, dose escalation and de-escalation can be 
determined before the onset of the trial, which 
makes the mTPI design easy to use for investiga-
tors. This creates an advantage for the mTPI 
design, namely, the ease of implementation of 
studies with this design.

Two further modifications of the mTPI were 
proposed in 2017: the mTPI-2 design (Guo et al. 
2017) and the keyboard design (Yan et al. 2017). 
These two study designs are very similar and 
have almost the same operating characteristics in 
simulations, but the keyboard design is conceptu-
ally easier to understand.

4.4.2  Keyboard Design

The keyboard design was proposed to improve 
the performance of the mTPI design (Yan 
et  al. 2017), since the original mTPI has a 
higher risk of overdosing patients due to the 
use of the UPM to guide dose escalation. The 
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keyboard design constructs a series of equal-
width dosing intervals, referred to as “keys,” 
to guide dose escalation and de-escalation 
(Fig. 4.2).

The keyboard design starts by eliciting the 
proper dosing interval (referred to as the target 
key) from clinicians, and then forms a series of 
equal-width keys on both sides of the target 
key. The keyboard design makes the decision 
of dose escalation and de-escalation based on 
the location of the “strongest” key, defined as 
the key that has the largest area under the pos-
terior distribution curve of pcur.  The rule of 

dose escalation and de-escalation is intuitive 
by comparing the location of target key and 
strongest key.

4.4.3  Bayesian Optimal Interval 
(BOIN) Design

The BOIN design is another model-assisted 
design that has overdose toxicity controls (Liu 
and Yuan 2015; Yuan et  al. 2016). Unlike the 
mTPI and keyboard designs, the BOIN design 
makes the decision of dose escalation and de- 
escalation simply by comparing the observed 
DLT rate with a pair of fixed, predetermined dose 
escalation and de-escalation boundaries (Fig. 4.3).

The respective dose escalation and de- 
escalation boundaries are derived from a pair of 
pre-specified toxicity probability thresholds: the 
highest DLT probability that is predicted to be 
underdosing such that dose escalation is needed 
and the lowest DLT probability that is predicted 
to be overdosing such that dose de-escalation is 
needed.

The BOIN design can target any pre-specified 
DLT rate without limitations. During the escala-
tion phase, the process is very transparent and 
assessable for non-statisticians.

Keyboard design
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4.5  New Designs

Because the practical demands of recent advances 
in oncology treatments, many new study designs 
are under development or being tested prospec-
tively in upcoming clinical trials (George et  al. 
2016). Some of these new designs have been 
incorporated into clinical trials, but have not yet 
been published and validated statistically.

4.5.1  Modified 4 + 4 Design

As the name suggests, the 4 + 4 design is a modi-
fication of the traditional 3 + 3 design. In addition 
to the three patients treated by study drug in each 
cohort, it adds one more patient on placebo. The 
4  +  4 design is blinded and needs the safety 
review committee (SRC) involvement for the 
evaluation for each cohort.

The following guidelines are provided for 
each dose level:

 1. If 0/4 patients are observed with DLTs, then 
escalate the dose level.

 2. If 1/4 patients are observed with DLTs, then 
stay on the same level and enroll 4 more 
patients:

 (a) If 1/8 patients are observed with DLTs, 
then escalate the dose level.

 (b) If 2/8 patients are observed with DLTs, 
then SRC is unblinded to treatment:
• If there are ≥1 DLTs in placebo group, 

then escalate the dose level.
• If both DLTs are in treatment group, 

then stop the trial and choose the pre-
vious dose level as MTD.

 3. If 2/4 patients are observed with DLTs, then 
SRC is unblinded to treatment:

 (a) If there is 1 DLT in treatment group, then 
stay on the same level and enroll 4 more 
patients:
• If 1/8 patients are observed with DLTs, 

then escalate the dose level.
• If 2/8 patients are observed with DLTs, 

then SRC unblinded to treatment:
 – If there is 1 DLT in placebo group, 

then escalate the dose level.

 – If both DLTs are in treatment group, 
then stop the trial and choose the 
previous dose level as MTD.

 (b) If there are two DLTs in treatment group, 
then stop the trial and choose the previous 
dose level as MTD.

 4. If 3/4 patients are observed with DLTs, then 
the trial stops and the previous dose level is 
defined as the MTD.

This design is perhaps applicable to the stud-
ies where it is difficult to ascertain the difference 
between adverse events related to the investiga-
tional agent and adverse events that are expected 
due to the underlying disease. In this scenario, 
the placebo group can help increase the probabil-
ity to escalate the dose level. This idea can also 
be borrowed into oncology studies by replacing 
the placebo group with a control group of the 
other lines of therapy if efficacy is a secondary 
objective in Phase I.

4.6  Conclusions

While there is great interest and enthusiasm 
about model-based study designs, over the past 
decade, the rule-based designs, like the tradi-
tional 3 + 3 design and newer rolling six study 
design, are still the most commonly used in 
pediatric oncology trials. As noted above, these 
study designs are easy to execute since the rules 
about dose escalation and de-escalation are a 
priori defined in the protocol based on observed 
DLTs.

Model-based designs have significant advan-
tages on reducing numbers of study patients and 
shortening study durations. However, they 
require significant involvement of statisticians 
for the development of the study design, for mon-
itoring of the study, and in dose escalation/de- 
escalation decisions. Model-based designs are 
also operationally complicated, due to a require-
ment for repeated model fitting, conceptual and 
computational complexity, and nontransparent 
approach to decision-making.

The model-assisted designs combine the 
superior performance of model-based designs 
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with the simplicity of algorithm-based designs. 
They offer more flexible approaches to patient 
enrollment while retaining clear escalation and 
de- escalation rules. Because of their good per-
formance and simplicity, model-assisted designs 
have been increasingly used in practice. In addi-
tion, many software and online tools are now 
available to support the simulation of operating 
characteristics for both model-based and model-
assisted designs. But since model-assisted 
designs are relatively new, they are not com-
monly utilized in pediatric oncology trials. In the 
future, we believe more model-assisted designs 
will be developed by investigators and biostatis-
ticians and applied to pediatric oncology 
studies.
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