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Preface

Recent developments in wireless internet technologies have generated an increasing
interest in the diffusion and processing of a large volume of geo-spatial information.
Spatially enabled wireless and internet devices also offer new ways of accessing
and analyzing this geo-referenced information in both real-world and virtual spaces.
Consequently, new challenges and opportunities have appeared in the GIS research
community.

These proceedings contain the papers selected for presentation at the 19th edition of
the International Symposium on Web and Wireless Geographical Information Systems
(W2GIS 2022) held in April 2022 and hosted by the University of Konstanz.

The symposium is intended to provide an up-to-date review of advances in both the
theoretical and technical development of web and wireless geographical information
systems. The 2022 edition was the 19th in a series of successful events, beginning with
W2GIS 2001 in Kyoto and mainly alternating locations annually between East Asia and
Europe.

W2GIS is organized as a full two-day symposium and provides an international
forum for discussing advances in theoretical, technical, and practical issues in the field
of wireless and internet technologies suited for the dissemination, usage, and processing
of geo-referenced data.

This year, the submissions process attracted papers from almost all continents,
demonstrating not only the growing importance of this field for researchers but also
the growing impact these developments have on the daily lives of all citizens.

Each paper received at least three reviews and was ranked accordingly. The 13
accepted papers are all of excellent quality and cover topics such as web technologies
and techniques, paths and navigation, movement analysis, web visualization, and novel
applications.

We wish to thank the authors who contributed to this workshop for the high quality
of their papers and presentations and their support of Springer LNCS. We would also
like to thank the Program Committee for the quality and timeliness of their evaluations.

Finally, many thanks to the Steering Committee for providing continuous advice and
recommendations.

April 2022 Farid Karimipour
Sabine Storandt
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Multiple Views Extraction from Semantic
Trajectories

Hassan Noureddine(B), Cyril Ray, and Christophe Claramunt

Naval Academy Research Institute, Brest, France
{hassan.noureddine,cyril.ray,christophe.claramunt}@ecole-navale.fr

Abstract. The interest in exploiting crowd-sourced location informa-
tion has recently emerged as it can bring many valuable benefits. This is
particularly the case where multi-dimensional semantic information rep-
resent human trajectories and contextual information arising in indoor
and outdoor spaces. Users have different interests when interpreting
and analysing trajectories. While some users just want to visualise the
data, others require either higher-level information or aggregated knowl-
edge. This paper introduces a modelling approach and data manipula-
tion mechanisms that extract from generic semantic trajectories multiple
views at different levels of abstraction to produce hybrid spatial repre-
sentation for mobility patterns. This approach considers a multi-layered
graph representation for trajectories according to some given spatio-
temporal, contextual and user-defined criteria. The approach has been
experimented with real data and implemented within a graph database
that illustrates its potential.

Keywords: Mobility data management · Semantic trajectories ·
Graph database

1 Introduction

The widespread adoption of mobile devices and connected sensors provides
many opportunities to develop location-based services that homogeneously cover
indoor and outdoor spaces. However, common modelling efforts are generally
oriented towards either outdoor [15] or indoor spaces [9]. Moreover, it clearly
appears that indoor and outdoor spaces, when associated in a unified modelling
framework, should also consider different levels of granularity and abstraction to
provide sufficient flexibility at the data manipulation level [6]. This will favour
the emergence of a hierarchy of space that supports micro to macro data repre-
sentations and manipulations. This might be of interest for many urban appli-
cations in which human movements should be manipulated throughout indoor
and outdoor spaces. This is, for instance, the case when human mobility pat-
terns are analysed throughout a series of trajectories that cover daily patterns
from/to some places of interest and where additional contextual information can
be appropriately considered.

c© Springer Nature Switzerland AG 2022
F. Karimipour and S. Storandt (Eds.): W2GIS 2022, LNCS 13238, pp. 1–17, 2022.
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Exploring crowd-sourced location data and associated contextual information
at a large scale should help to reveal mobility patterns and outliers, this being
of benefit for many urban planning tasks using a holistic view in which human
mobility should be considered in both indoor and outdoor spaces [13]. Such a
holistic view can be represented by a generic multi-dimensional approach for
modelling mobility patterns emerging in both spaces and where trajectories are
continuous. There is a wide range of interests among users looking forward to
multi-dimensional approaches for manipulating trajectories emerging in indoor
and outdoor spaces. While some might be interested in a straight visualisation of
these trajectories, others might either analyse trajectory patterns at the macro
level or aggregated views depending on their interests. Such a generic approach
should be flexible enough to represent these trajectories at different levels of
granularity and different views. This raises the need for an abstract and hybrid
representation that considers indoor and outdoor spaces at different levels of
granularity and with a hierarchical and semantic representation.

In a previous work, we introduced a preliminary model for extracting multi-
ple views of semantic trajectories according to users’ interests [14]. In the present
paper, we first develop a formal and logical extension of our previous work by
developing data manipulation mechanisms for extracting semantic trajectories
at different levels of abstraction according to different spatial and contextual
user interests. The whole approach has been implemented on top of the Neo4j
database and Cypher query language. An experimental validation using a real
large set of contextual urban trajectories has been performed. The main contri-
bution of this paper is a flexible view approach of semantic trajectories which
is built upon an indoor/outdoor temporal hierarchy where places are consid-
ered as reference abstractions. The interest of the whole model is exemplified
by a series of graph-based processing operations and performance evaluations
that show its flexibility when implemented on top of a real data context. The
whole framework is applied and experimented within the context of Polluscope
project (polluscope.uvsq.fr), where human trajectories with multiple contextual
data are collected in an environmental crowd-sensing context. The remainder of
this paper is organised as follows. Section 2 discusses related work while Sect. 3
gives the modelling background for the representation of spatial and seman-
tic trajectories. Section 4 introduces the multiple views of semantic trajectories.
Section 5 evaluates the approach, while Sect. 6 concludes the paper and outlines
some perspectives.

2 Related Work

Semantic-based representations of human trajectories have been addressed
over the last years at the database and semantic levels. Regarding semantic
approaches, Parent et al. [15] gives a survey on the representation of semantic
trajectories with a focus on semantic approaches and stop and move abstrac-
tions. Stops and moves abstractions have been firstly introduced by Alvares et
al. [1] and Spaccapietra et al. [17] in order to provide an appropriate semantic

http://polluscope.uvsq.fr
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view of the data that supports valuable data manipulation and also reduce query
complexity at the computational level. Several recent works have extended the
semantic representation of trajectories by considering predefined criteria and in
order to provide further trajectory data analysis [2]. Fileto et al. [4] introduced
a framework to fill the gap between movement data and formal semantics. These
authors provided an ontological model for semantic enrichment. Zheni et al. [18]
developed a spatio-temporal abstract data type to encapsulate the spatial, tem-
poral and semantics associated to a given trajectory. More recently, Mello et
al. [11] extended the work in [2,4] towards multiple aspect trajectory sequences
to support trajectories with any type of annotation. Cayèré et al. [3] considered
multi-level and multiple aspect features to link semantics to trajectories. Ilarri
et al. [6] raised the need for a representation of semantic trajectories at different
levels of abstraction. Accordingly, it should be possible to commute from one
given semantic to another one given some query requirements. Similarly, Pelekis
et al. [16] developed a stop and move trajectory model to support different
scales and spatio-temporal granularities. Kontarinis et al. [9] designed a specific
semantic trajectory model for a museum case study that considers a hierarchical
indoor spatial model. Jin and Claramunt [8] introduced a database manage-
ment approach for representing and analysing human trajectories in an urban
environment. Izquierdo et al. [7] introduced key-word expressions over seman-
tic trajectories to search for individual stops and moves sequences. Our recent
work [12,13] presented the main principles of a hierarchical multi-dimensional
semantic trajectory modelling approach for trajectories evolving in indoor and
outdoor spaces.

3 Background

Spatial Model. The assumptions made to represent human mobility emerging
in indoor and outdoor spaces are to provide (1) a unified indoor and outdoor
spatial model oriented to the representation of semantic trajectories, and where
the specific spatial characteristics of indoor and outdoor spaces are taken into
account, (2) to consider a flexible representation at different levels of abstraction
and within a hierarchy of space and (3) to take into account the places where
the mobility occurs and some points of interest (POI).

Let us first consider an indoor space I made up of a set LI of hierarchically
ordering of nested indoor spatial layers. Similarly, an outdoor space O is made
up of a set LO of hierarchically ordering of nested outdoor spatial layers. Let us
define a reference space as follows:

S = I ∪ O (1)

where S denotes the entire space encapsulating indoor and outdoor spaces and
the embedding layers. Moreover, and in order to secure the connection and conti-
nuity between indoor and outdoor spaces, we define a constraint that guarantees
that there should exist at least one layer L such as L ∈ LO and L ∈ LI. As
outdoor and indoor spaces are defined at complementary levels of abstraction
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and scale, let L denote the finest layer of outdoor space and the coarser layer of
indoor space (e.g., Fig. 1 ‘building’ layer). Overall, these layers represent the suc-
cessive levels of abstraction and describe the spatial hierarchy embedded within
the different indoor and outdoor layers (Fig. 1).

The modelling approach is materialised as a place-based representation where
each place represents a location of interest in space, either indoor or outdoor,
and located in a layer. Places are characterised by a list of spatial and thematic
properties and their ‘location’ in the spatial hierarchy. This spatial hierarchy
denotes the different levels of abstraction considered for the outdoor and indoor
spaces (e.g., state, county, town, road, building; and building, floor, room, for
outdoor and indoor spaces, respectively).

State

County

Town

Road

BuildingBuilding

Floor

Room … Corridor 

…Park 

Spa�al 
hierarchy

Outdoor

Indoor

… Building

… Floor 

…Rural 
Area

…County

…Road

Fig. 1. Spatial model showing the hierarchical relationships between indoor and out-
door spatial layers.

A graph-based representation is defined for S as a multi-layered graph G =

(V,E) where V =
k⋃

i=1

Si ∈ L and E =
n⋃

i=1

Ei where Ei denotes the edges embed-

ding the hierarchy over the indoor and outdoor layers Si for k, n ∈ N (Fig. 1).
This spatial representation further supports a homogeneous representation

of semantic trajectories in indoor and outdoor spaces at the manipulation level,
and whose objective is to define the complete spatial environment where human
mobility takes place. On top of this model, users can define POIs that might
take place at any granularity in the model.
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Semantic Trajectory Representation. The semantic trajectory representa-
tion should support the derivation of different trajectories according to either
spatial (i.e., from micro to macro levels) or contextual properties (e.g., weather
conditions, pollution exposition along a path) associated with raw trajectory
data.

Let us first define Tstart and Tend as time instants sets, and [ts, te] a time
interval where ts ∈ Tstart, te ∈ Tend and te ≤ ts. Next, a human trajectory can be
associated to a sequence of places over a sequence of time intervals ([ts, te], place).
This means that such a trajectory passes through a place at a start time ts and
left it at an end time te. Similarly, we define a sequence of some given contextual
attributes over a sequence of time intervals ([ts, te], value) for each context (e.g.,
NO2) denoted by ci ∈ C where value is its qualitative value that holds during
[ts, te] and C is a set of crowd-sourced contexts. Finally, a semantic trajectory
semTrajid is defined as a sequence of semantic trajectory segments. A semantic
trajectory segment {[ts, te], Sem} denotes a homogeneous part of a trajectory
valid over a time interval [ts, te] and for some contextual semantics where a list
of semantic values Sem holds. A semantic trajectory is defined as:

semTrajid = {([ts1, te1], Sem1), ([ts2, te2], Sem2), ..., ([tsn, ten], Semn)} (2)

where Semi = {space : placei, CSi} denotes a set of integrated spatial (placei)
and contextual semantics (CSi) valid over a given time interval [tsi, tei] with
tei < tsi+1. placei belongs to the finest layer in S either indoor or outdoor and
CSi is a set of contextual semantics/dimensions (NO2 : valueNO2 ;humidity :
valuehumidity; etc..).

Overall, a semantic trajectory is defined as a sequence of annotated time
intervals associated with spatial semantics embedded in the indoor and outdoor
hierarchical spatial representations. A semantic trajectory represents an individ-
ual’s continuous movement while integrating some contextual data that can be
derived from the environment.

Since graphs are fundamental structures that provide an intuitive abstraction
for modelling, interconnected and analysing complex data, we design/manage
the semantic trajectory model as a path graph PST = (VST , EST ) where VST

denotes places embedded in the hierarchical spatial model associated to con-
textual semantic values and time intervals, while EST denotes edges that, on
the one hand, link temporal, contextual and spatial semantics, and on the other
hand link a trajectory segment to the next one; this denotes a movement to a
state upon at least one semantic value change.

4 Multiple Views of Semantic Trajectories

Different levels of abstraction should be considered to provide a flexible enough
representation of crowd-sourced semantic trajectories that continuously arise
in indoor and outdoor spaces. This should facilitate the derivation of differ-
ent points of view and interpretations, from micro to macro levels. We develop
a derivation view mechanism that extracts, from a generic semantic trajectory,



6 H. Noureddine et al.

different flexible views derived from the spatial, temporal and contextual seman-
tics. This concept of view is defined as a function:

SemTrajV iew : semTrajid × UserInterests → viewTrajid

where UserInterests denotes a set of spatial and/or contextual semantics pref-
erences/criteria and is given as:

UserInterests = {Spatial : Layer, Contextual : Semantic} (3)

where Spatial denotes set of layers (Layer) and Contextual the associated set
of semantics (Semantic). For example, UserInterests can denote some specific
layers (e.g., Town, Road), or/and a semantic value of a contextual dimension
(e.g., NO2).

viewTraj denotes some data extracted from semTraj according to some
UserInterests. We derive two types of views that are a hybrid representation
based on either spatial or contextual criteria. The semantic trajectory is a generic
representation, while the hybrid semantic trajectory is based on places of inter-
ests and the contextual-based semantic trajectory on a context of interest.

Hybrid Trajectory Representation. Place-based locations are linked to their
hierarchical layers, this favouring the specification of a given trajectory at dif-
ferent levels of abstraction and of the hierarchy. For instance, when a user is
interested in a finer spatial granularity for some contextual criteria of interests
and coarser spatial granularity for others (or vice versa), the previous semantic
trajectory is still a flat-like representation of the trajectory and do not pro-
vide such flexibility. For that purpose, the semantic trajectory representation is
extended by a hybrid semantic trajectory concept whose purpose is to extract
from a flat-like representation a hybrid one.

The hybrid semantic trajectory can be expressed at either homogeneous or
heterogeneous levels of granularity and according to the user needs. The idea is
to provide a flexible representation of the semantics associated with a human
trajectory according to different application needs and user interests. A hybrid
semantic trajectory is denoted by:

hybTrajid = {([ts1, te1], place1, CS1), ([ts2, te2], place2, CS2), ..., ([tsn, ten], placen, CSn)}
(4)

where placei belongs to a layer L ∈ S either in indoor or outdoor spaces and
CSi is a set of semantic values that hold during [tsi, tei] with tei < tsi+1. placei
represents a spatial place of interest that is an instance of a given layer of interest.
For example, placei can be a floor or a town instance that belongs to the ‘floor’
or ‘town’ layers of the indoor or outdoor space, respectively. Therefore, POIs
can be expressed at different levels of granularity and abstraction.

For example, at a coarse level of granularity, a human trajectory can be
represented from a town ∈ LTown to another town and at a fine level from
a room ∈ LRoom to another room in indoor and from a road or building to
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another road or building in outdoor. Such layers are chosen according to the
users’ interests.

The main difference between hybTraj and semTraj is that place in semTraj
belongs to the finest layer of granularity in the spatial model, and this for either
indoor or outdoor spaces, although in hybTraj can belong to any layer of the
spatial model.

Furthermore, users’ interests are expressed by some criteria of interest, and
where the layer granularity can be adjusted accordingly. Contextual values or
spatial categories can be defined accordingly by the hybrid representation. For
example, a contextual value and user interest can be {temperature : hot} and a
spatial category and user interest can be {category : restaurant}.

According to the user interests, the hybrid semantic trajectory considers one
spatial layer for its POIs when one of the user interests is available and a second
spatial layer when none of the user interests is valid. In other words, given a level
of reference, which is the finer one, it searches for a specified spatial granularity
when one of the user interests is valid and another specified spatial granularity
when there are no valid user interests.

micro

macro

Fig. 2. Hybrid semantic trajectory.

The hybrid trajectory defines a trajectory associated with a hybrid space
representation of different granularities according to the indoor and outdoor
spaces, and where micro and macro places can be considered and a discrete
representation of the spatial dimension (Fig. 2). For example, let us consider
that the user interest denotes a high level of NO2 exposition for a place spatial
layer of interest and a town spatial layer of interest if user interests are not valid.
In this case, the trajectory can be represented from a place (either in indoor or
outdoor spaces) when the criteria are found and to a town when the criteria
are not found and vice versa. In this example, all POIs belong to {place, town}
layers.

Hybrid Trajectory Operations. In order to extract a hybrid representation
of some semantic trajectories, let us introduce a series of basic operations that
are embedded in Algorithm 1. Algorithm 1 shows the extraction process from a
semantic trajectory to a hybrid trajectory.
Operation 1: is defined as:

f1: semTrajid × layer1 × layer2 → hybTrajid
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that takes as parameters a list of spatial layers of interests layer1 ∈ I and
layer2 ∈ O, or, layer1 ∈ O and layer2 ∈ I. f1 extracts from the semantic
trajectory the output hybrid semantic trajectory. The list of layers of interest
represents the user’s interest and refers to the indoor and outdoor spatial mod-
els. ∀([ti, tj ], Semk) ∈ semTrajid, f1 searches in the hierarchy of the spatial
semantic the finest layer between layer1 and layer2 denoted by placek and asso-
ciate it with the contextual dimensions semantics denoted by CSk to get the k
element/segment of the hybrid trajectory ([ti, tj ], placek, CSk) ∈ hybTrajid.

One may be interested in extracting a hybrid trajectory representation
according to the semantic trajectory dimensions values. The following opera-
tion targets the spatial dimension category.
Operation 2: is defined as:

f2: semTrajid × layer1 × layer2 × SC → hybTrajid

where SC is set of geo-tagged semantic values related to place and
layer1, layer2 ∈ S represent two layers of interest. ∀([ti, tj ], Semk) ∈ semTrajid,
if ∃sc ∈ SC where sc ∈ placek for placek ∈ Semk, f2 searches for layer1
hierarchy of spatial semantic of semTrajid. Otherwise, f2 searches for layer2
hierarchy of semTrajid spatial semantic. The found hierarchy layer placek is
associated with the contextual semantics denoted by CSk to get the k element of
the hybrid trajectory ([ti, tj ], placek, CSk) ∈ hybTrajid. For example, this oper-
ation provides a representation oriented towards a specific category of places
(e.g., restaurants, highways).

The following operation focuses on the contextual dimension properties.
Operation 3: defined as:

f3: semTrajid × layer1 × layer2 × CV → hybTrajid

where CV is a set of contextual semantic values that belongs to C.
∀([ti, tj ], Semk) ∈ semTrajid, if ∃cv ∈ CV , where cv ∈ Semk, f3 searches
for layer1 hierarchy of placek. Otherwise, f3 searches for layer2 hierarchy of
placek. The resulting hierarchy layer placek is associated with the contextual
dimensions semantics denoted by CSk to get the k element of the hybrid trajec-
tory ([ti, tj ], placek, CSk) ∈ hybTrajid. For example, this operation provides a
representation oriented towards specific contextual dimensions values (e.g., high
pollution value, in a bus) to extract the hybrid spatial granule.

layer1 and layer2 represent two spatial layers. There are also optional param-
eters for all operations regarding the time interval and the contextual dimensions
to consider in order to constrain the extraction scope if needed.
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Algorithm 1. Extract hybrid trajectory with spatio-temporal aggregation
1: input: semantic trajectory semTrajid; UserInterests : {Spatial :

Layer, Contextual : Semantic} where Layer = {layer1 ∈ S, layer2 ∈ S }
is a set of spatial layers of interest and Semantic is a set of values of interest.

2: output: hybrid semantic trajectory hybTrajid
3: hybTrajid ⇐ ∅
4: for each ([ti, tj ], Semk) ∈ semTrajid do
5: placek ⇐ ∅
6: CSk ⇐ ∅
7: placek−1 ⇐ ∅
8: CSk−1 ⇐ ∅
9: if Semantic not null then

10: if Semk.findContextualInterests(Semantic) then � //searches if one of
the contextual interests is valid

11: placek ⇐ Semk.findSpatialLayer(layer1)
12: else
13: CSk ⇐ Semk.findSpatialLayer(layer2) � //returns a place at a

specific granularity
14: end if
15: else
16: placek ⇐ Semk.findF inerLayer(layer1, layer2) � //one indoor layer and

one outdoor layer
17: end if
18: CSk ⇐ Semk.getContextualDimensions()
19: placek−1 ⇐ hybTrajid.getP lace(k − 1) � //get the last place in hybTrajid
20: CSk−1 ⇐ hybTrajid.getContextualDimensions(k − 1) � //get the last CS in

hybTrajid
21: if placek−1 �= ∅ AND placek−1 == placek AND CSk−1 == CSk then
22: hybTrajid.updateEndT imeInterval(k − 1, tj) � //change end time

interval of segment k-1 with tj
23: else
24: hybTrajid.addSegment([ti, tj ], placek, CSk) � //add a new segment
25: end if
26: end for
27: return hybTrajid

Contextual-based Trajectory Representation. The semantic trajectory
representation supports multiple dimensions, including the spatial and contex-
tual ones. However, and in many cases, a user might require a specific view from
such a generic representation, and this by taking into account some contextual
criterion. For that purpose, we extend the generic model by the contextual-
based semantic trajectory concept that aims to extract from the generic/flat
semantic trajectory representation a new one based on one context of interest.
A contextual-based semantic trajectory is denoted by:

contTrajid = {([ts1, te1], coi1, O1), ([ts2, te2], coi2, O2), ..., ([tsn, ten], coin, On)}
(5)
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coii represents the semantic value of the context of interest and it is denoted by
{c : value}. Oi is a set of the other semantic values that holds during [tsi, tei]
where tei < tsi+1. In this case, Oi represents a set of semantic values, including
the spatial semantic value except for the context of interest value.

For this representation, the user interest is considered as a unique contextual
dimension/semantic of c ∈ C.

Algorithm 2. Extract contextual-based trajectory
1: input: semantic trajectory semTrajid, a context of interest name c ∈ C
2: output: contextual-based semantic trajectory contTrajid
3: contTrajid ⇐ ∅
4: for each ([ti, tj ], Semk) ∈ semTrajid do
5: coik ⇐ ∅
6: Ok ⇐ ∅
7: coik ⇐ Semk.getContextualSemantic(c) � //get the semantic value of the

context of interests c
8: Ok ⇐ Semk.getOtherSemantics(c) � //get all semantics, including spatial

semantics, except for c. Spatial semantics include places with hierarchies
9: contTrajid.addSegment([ti, tj ], coik, Ok) � //add a new segment

10: end for
11: return contTrajid

Contextual-based Trajectory Operation. In order to extract the
contextual-based representation of semantic trajectories, we introduced the fol-
lowing operator that is embedded in Algorithm 2. Algorithm 2 shows the extrac-
tion process from a semantic trajectory to a contextual-based trajectory.
Operation 4: is defined as:

f4: semTrajid × c → contTrajid

that takes as parameter a contextual dimension name c ∈ C and extract from the
semantic trajectory the output contextual-based semantic trajectory. ∀ ([ti, tj ],
Semk) ∈ semTrajid, f4 searches for coik and Ok. This operation provides a
representation that focuses on a specific contextual dimension to return an out-
put of annotated time interval sequences of the specified context state associated
with the remaining dimensions, including the spatial one.

5 Experimentation

Data Integration. This work has been experimented with real environmental
crowd-sensing data collected in the region of Paris. Data have been obtained
by the Polluscope project where participants were equipped with three sensors
that record ambient air data (i.e., temperature, humidity, particulate matter:
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PM2.5, PM10, PM1.0, NO2 and Black Carbon) and with a tablet embedding a
GPS chipset that tracks their locations along their daily activities. Additionally,
these trajectories have been manually self-annotated by the participants using
their tablet to report on their activities and behaviours in both outdoor and
indoor spaces. The activities last for a period of time and include transportation
mode (e.g., car, bus, metro) as well as indoor (e.g., home, office, restaurant)
and outdoor (e.g., park, street) activities. On the other side, behaviours are
temporary acts for a short period of time and include actions related to air
pollution (e.g., open a window, start cooking, smoking, turn on a chimney). The
participants are anonymised. Our experiments have been implemented with a
subset of trajectories over an average period of two weeks.

We used Vita generator [10] for synthetic trajectories in indoor environments
since the collected data do not have precise localisation in indoor environments.
We generated different indoor trajectories in one synthetic indoor building and
where synthetic positioning devices (e.g., RFID) are also generated. Different
moving object types were considered (e.g., destination, random-walk) as pro-
vided in Vita. A list of participants’ trajectories working on the same site was
selected then and merged with real outdoor trajectories according to the annota-
tion “office” the participants indicated it using their toolkit. Data quality issues
have not been considered so far, but this does not impact the principles behind
our data integration and modelling approach.

Implementation. Figure 3 sketches an overview of the processing steps applied
to generating semantic trajectories and their multiple views. Inputs of the frame-
work are synchronised data flows for each participant. According to our spatial
model, the synthetic spatial data of the indoor environment are merged with real
spatial data of the outdoor environment. Spatial data are then characterised by
external information and geo-tagged using OpenStreetMap (openstreetmap.org)
(OSM) reverse geocoding. Time interval spatial sequences are extracted to form
the spatial semantic sequences. On the other hand, contextual data are con-
verted to time interval sequences, where time-series measures data are mapped
to qualitative information.

Finally, all of these sequences are grouped in one sequence and segmented
upon at least one dimension value change to get the multi-dimensional semantic
trajectory sequences associated for each mobile user. Semantic trajectories pro-
duced are stored into a graph database. While the semantic trajectories could be
stored using various relational database management systems, Neo4j has been
logically selected since it is based on a graph-based data model and encompasses
advanced data manipulation capabilities and computational efficiency [5]. Neo4j
is an open-source Java-based graph database that allows extending its func-
tionality with user-defined procedures. These procedures can be easily added as
plugin packed in a .jar file so that they can be invoked directly from the Cypher
query language. The two aforementioned algorithms, Algorithm 1 and Algorithm
2 have been implemented as user-defined procedures in Neo4j.

https://openstreetmap.org
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Fig. 3. Implementation methodology of our approach.

Experiments. For the sake of brevity, experiments are reported on the following
three examples of operations:

(a) f2: semTraj100 × Road × Town × category : tourism → hybTraj100
(b) f3: semTraj100 × Place × County × NO2 : High → hybTraj100
(c) f4: semTraj100 × Activity → contTraj100

The operation (a) extracts hybrid trajectories with ‘Road’ granularity when
there is a tourism place, and ‘Town’ granularity otherwise. The operation (b)
extracts hybrid trajectories with ‘Place’ granularity when there is a High level
of NO2 exposition, a ‘County’ granularity otherwise. The operation (c) extracts,
from the semantic trajectories, contextual-based trajectories with the ‘Activity’
dimension.

In order to show differences between raw trajectories and different trajectory
semantic representations, let us hereafter illustrate the output views of a portion
of one trajectory in each representation and after each Neo4J graph operation.
The experiments are applied on a participant trajectory of 40 min going from
work office to home. The outputs can be explored interactively at the Neo4j
interface level.

Let us apply operation (a) (query in Listing 1.1) to the same part of the
trajectory to get the hybrid semantic trajectory illustrated in Fig. 4.

Listing 1.1. Query using operation (a) example

CALL multiViews.hybridTrajectoryGraph (100, {category:'tourism '}, 'Road ',
'County ')

MATCH (poi:POI {participantID : '100'})
MATCH (poi) -[: HAS_NO2_SEMANTIC ]->(no2:No2Semantic)

MATCH (poi) -[: HAS_PM10_SEMANTIC]->(pm10:Pm10Semantic)

MATCH (poi) -[: HAS_PM1_0_SEMANTIC]->(pm1:Pm1_0Semantic)

MATCH (poi) -[: HAS_PM2_5_SEMANTIC]->(pm2:Pm2_5Semantic)

MATCH (poi) -[: HAS_BC_SEMANTIC]->(bc:BCSemantic)

MATCH (poi) -[: HAS_TEMPERATURE_SEMANTIC]->(temp:TemperatureSemantic)

MATCH (poi) -[: HAS_HUMIDITY_SEMANTIC]->(hum:HumiditySemantic)

MATCH (poi) -[: HAS_ACTIVITY_SEMANTIC]->(act:ActivitySemantic)
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MATCH (poi) -[: HAS_BEHAVIOUR_SEMANTIC]->(eve:BehaviourSemantic)

WHERE poi.start >= '2019 -11 -30 15:36:00+01:00 ' AND poi.end < '2019 -11 -30
16:16:00+01:00 '

RETURN *

Fig. 4. Hybrid semantic trajectory path graph (operation (a)). Orange nodes represent
places (at Road and County granularity) where time intervals are embedded. Coloured
nodes represent other contextual dimensions.

The first clause calls the procedure that extracts the hybrid semantic trajectory
for the participant with id ‘100’. The user interests are a ‘Road’ granularity for
places with a ‘tourism’ category and a ‘Town’ granularity for others. The query
then matches the extracted hybrid trajectory segments associated with multiple
contextual semantics and returns a portion between a time interval. It returns
the hybrid trajectory of the indicated time interval finally (illustrated in Fig. 4).

One can notice the semantic movement, represented by orange nodes, from
‘Town’ granularity to a finer place at the ‘Road’ granularity (Villa Champ
Lagard) since the participant was in a place categorised by tourism in that road.
Other nodes colours represent the different contextual semantics associated with
the trajectory.

When applying the operation (b) (query in Listing 1.2) on the same portion,
one get the hybrid semantic trajectory graph illustrated in Fig. 5.
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Listing 1.2. Query using operation (b) example

CALL multiViews.hybridTrajectoryGraph (100, 'No2Semantic ',{level:'High '},
'Place ', 'County ')

MATCH (poi:POI {participantID : '100'})
MATCH (poi) -[: HAS_NO2_SEMANTIC ]->(no2:No2Semantic)

WHERE poi.start >= '2019 -11 -30 15:36:00+01:00 ' AND poi.end < '2019 -11 -30
16:16:00+01:00 '

RETURN *

The first clause extracts the hybrid semantic trajectory for the participant
with id ‘100’. The user interests are a ‘Place’ granularity for places associ-
ated with a ‘No2Semantic’ with ‘High’ value and ‘County’ granularity for other
‘No2Semantic’ values. The query then matches the extracted POIs with their
associated NO2 semantics and finally returns the extracted hybrid trajectory
during a given time interval (illustrated in Fig. 5).

Fig. 5. Hybrid semantic trajectory path graph (operation (b)). Orange nodes repre-
sent places where time intervals are embedded. Blue nodes represent other contextual
dimensions. We limit the contextual dimension to NO2 semantic for clarification.

We hide all the dimensions except the NO2 dimension for a better illustra-
tion. This highlights how spatial and temporal aggregations impact the trajec-
tory to get a reduced view. This view shows the clear states of the trajectory
regarding the user interests, high level of NO2 at ‘Road’ granularity (Avenue de
Paris) and ‘Town’ granularity for other NO2 levels (Yvelines and Versailles).

Let us apply the operation (c) (query in Listing 1.3) on the same part of
the trajectory to obtain the contextual-based trajectory on ‘Activity’ context of
interest. The first clause extracts the contextual based semantic trajectory for the
participant with id ‘100’ and with ‘ActivitySemantic’ context of interest. Then,
it matches the extracted cois and finally returns the contextual-based trajectory
during an indicated time interval (illustrated in Fig. 6). Figure 6 shows a piece of
this part so that we can clearly inspect the cois trajectory from ‘Bus’ to ‘Rue’
to ‘Domicile’.
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Listing 1.3. Query using operation (c) example

CALL multiViews.contextualBasedTrajectoryGraph (100 , 'ActivitySemantic ')
MATCH (coi:COI {participantID : '100'}) -[:HAS_PLACE]->(p:Place)
WHERE coi.start >= '2019 -11 -30 15:36:00+01:00 ' AND coi.end < '2019 -11 -30

16:16:00+01:00 '
RETURN coi , p

Fig. 6. Contextual-based semantic trajectory path graph (operation (c)). Orange nodes
represent the context of interests (coi) where time intervals are embedded and brown
nodes represent the spatial dimension (the spatial hierarchies are hidden for a better
illustration).

Experimental Evaluation. The experimental evaluation has been performed
on Neo4j 4.2.3 (Enterprise) running on Windows 10. The hardware configuration
is as follows: 6 cores Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz, the machine
has 32 GB in terms of RAM and a SSD storage of 239 GB.

Fig. 7. Execution times of the operation examples

In order to evaluate the execution times of the different operations examples,
three different databases have been prepared. The first one contains 10 semantic
trajectories (98,530 nodes and 920,849 relationships), the second one 40 seman-
tic trajectories (305,879 nodes and 2,838,387 relationships) and the third one
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86 semantic trajectories (780,550 nodes and 7,393,761 relationships). Average
execution times are presented in Fig. 7.

Execution times vary depending on the trajectories length and user interests.
One can notice execution times relatively costly and that increase with the num-
ber of trajectories; this is due to the fact that these operations extract the entire
trajectories and re-manage the representation for each trajectory according to
the desired new representation that depends on the user interests. The results
of these operations are stored in the graph database in order to apply further
queries and analytics. Operation (c) takes additional computational time since
there are no temporal and spatial aggregations to highly reduce the amount of
nodes and relationships. (c) operation combines each time interval node with
the contextual dimension that represents the context of interest operation.

Discussion. The experiments show how this approach supports the generation
of different views of crowd-sourced trajectories in a well-defined graph structure
with associated contextual data. Overall, these trajectory views can be derived
according to different spatial, temporal and semantic criteria that provide flex-
ible data manipulation capabilities at different levels of granularity and user
interests. However, the intrinsic nature of such a model may involve some loss
of information that may occur on some of the represented dimensions. The rele-
vance of the whole data manipulation capabilities and performance figures still
have to be experimented in a context of mobility patterns that arise in both
outdoor and indoor spaces. As for now, outdoor trajectories only were derived
from real data, although indoor trajectories were simulated. Last but not least,
there is still a need to experiment with additional query mechanisms and data
structures to improve computational times.

6 Conclusion

This paper develops a modelling approach for indoor and outdoor semantic tra-
jectories in a crowd-sourcing environment where multiple dimensional annota-
tions are considered, including a place-based spatial annotation. Our approach
provides mechanisms to extract multiple views according to a wide range of user
interests, including granularity, spatial category and contexts. The presented
algorithms support from a continuous trajectory representation derivation of
even a hybrid spatial and contextual view of trajectories from micro to macro lev-
els and vice-versa. This approach has been formally defined and implemented on
top of the Neo4j graph database. Cypher query language has been extended with
different user-defined operations to support the view mechanisms. The experi-
mentation illustrates the whole framework’s potential, performance figures and
its potential for trajectory data exploration, manipulation, and analysis. The
work outcome is instrumental in supporting trajectory data analysis and explor-
ing mobility patterns. As future works, we are developing a streaming system to
apply the modelling approach to real-time detection of patterns over different
levels of granularity. We are also planning to use the modelling approach for
similarity measurement between trajectories.
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Abstract. Over the past two years, the COVID-19 pandemic had a major world-
wide health, economic and daily life impact. Amongst many dramatic conse-
quences, such as major human mobility disruptions at all scales, the tourism sec-
tor has been largely affected. This raises the need for the development of quan-
titative and qualitative research to favor a better understanding of the impact of
the pandemic on human travel behaviors. This study introduces a computational
approach that combines inference mechanisms and statistics to quantify tourists’
travel behaviors before and during the pandemic by exploring the evolution of
the patterns extracted from a local tourism social network from 2019 to 2020 in
the city of Hong Kong. The results show that the COVID-19 pandemic: 1) has a
major influence on travel intentions that mainly swift from journeys with gener-
ally long sequences of attractions to rather single attractions; 2) lead to a decline
when considering connections between popular attractions, while the strength of
connections within other attractions increase; 3) generates novel patterns such as
tourists preferring relaxing visits and even minor attractions.

Keywords: COVID-19 · Travel intention and behavior · Social media data ·
Tourism network

1 Introduction

Tourism is nowadays one of the worldwide fastest growing and most dynamic emerging
industry and amajor player of theworld economydevelopment.Many cities strongly rely
on their tourism industry for the development of their economy. However, the tourism
industry has experienced an unprecedented loss due to the COVID-19 pandemic that
started in December 2019. The United Nations World Tourism Organization (UNWTO)
estimates that international tourism sector has been 20–30% lower in 2020 than in 2019.
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Since the COVID-19 outbreak, activities that involve a high level of human interactions,
like tourism, cannot continue as they have done in the past [1].

During this COVID-19 outbreak, many tourists regard popular and gathering attrac-
tions as high-risk destinations. Previous studies reveal that tourists’ post-disaster travel
behaviors can be influenced by their risk perceptions [2, 3] and motivations [4, 5]. The
impact of COVID-19 is not only dramatic on tourists’ travel behavior, but also on the
way tourists behave, perceive the environment and act while travelling. For example, a
study shows how the current health crisis affects travelers’ preferences between crowded
and non-crowded options [6]. It has been observed that threat severity and susceptibil-
ity can cause ‘travel fear’, which leads to protection motivation and protective travel
intentions during and even after the pandemic outbreak [7]. A methodology has been
suggested to measure the intra-personal anxiety of travelers (and non- travelers) and
pandemic-induced changes in tourist beliefs and travel behaviors [8]. Quantitatively
grasping the changing characteristics of people’s travel intention and behavior before
and after the pandemic is of great significance to the reshaping of the tourism mar-
ket after the epidemic. Pandemic also decreases tourists’ time and frequency to travel
outside, with limited tourism connections and collaboration. For example, tourism in
Kashmir had a fast decrease and local economic groups were deeply affected due to the
COVID-19 lockdown [9]. Although there is a boom in studies addressing the impact of
COVID-19 on tourism activities [10], seldom researches have qualitatively examined
tourists’ intentions and behaviour. To bridge this gap, our study aims to conduct a com-
parative quantitative analysis before and during the pandemic to have a global view of
the COVID-19 impact.

With the development of the digital era and social networks, tourists’ footprints
and check-in data are nowadays widely available, this opening many opportunities for
extracting travel flowswithin and between different tourism attractions, and even analyz-
ing such patterns at the city or country levels using network-basedmodels and approaches
[11–13]. A quantitative method has been introduced for investigating the network char-
acteristics of drive tourism destinations with the help of methodologies derived from
network analysis [14]. Network analysis measures can classify destinations considering
the routes of a self-organized tourists’ samples that visited more than one destination
in Sicily [15]. The characteristics associated with the spatial network structure of the
tourism economy has been examined by adopting the tourism economic gravity model
and social network analysis [16]. Overall, these studies give us a sound theoretical
background for studying the impact of the COVID-19 on the tourism network.

Hong Kong is well-known as a shopping paradise. Every year, a large number of
tourists worldwide come to Hong Kong to travel and go shopping. We select it as a case
study area and propose an approach based on statistics and network theory. The approach
is based on an extraction of tourists’ footprints from the TripAdvisor website which has
abundant travel records worldwide and provides a valuable resource to evaluate the
impact of COVID-19 on the Hong Kong tourism industry from 2019 to 2020, so before
and during the pandemic. To this end, we propose an approach based on statistics to
quantify tourists’ travel intention, then we conduct a tourism network analysis to detect
change of tourists’ behaviors. Last a series of geo-visualization of the structuration of
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the tourism network provides a support for an intuitive perception of the impact of the
pandemic on tourism activities in an urban environment.

2 Materials and Methodology

2.1 Data Collection

The main data source is extracted from qualitative comments made from a well-known
tourism website TripAdvisor (https://www.tripadvisor.com/) that generates user’s foot-
prints during 2019.1–2020.12. The principles applied for the generation of a footprint
database are illustrated (see Fig. 1). Firstly, all attractions inHongKong are crawled from
a TripAdvisor attraction list. Next, a webpage cleaning is applied to get both comment
times and travel times from the reviews page of each attraction (i.e., to avoid differences
between comment times and real travel times). Finally, digital footprints are generated
by sorting all visitor’s travel times and users’ itinerary.

Fig. 1. Footprint generation processing.

2.2 Methodology

Figure 2 shows themain principles behind our approach. The study first extracts tourists’
comments from the TripAdvisor website and generates tourists’ footprints by sorting
their travel times. TripAdvisor website covers tourists’ comments on worldwide attrac-
tions, with an average monthly visit of 415 million times. The tourism network extracted
from tourists’ footprints is basedon attraction’s co-occurrence. Finally, a statistical analy-
sis is conducted to evaluate tourists’ travel behaviors.Weapply a series of network indices
such as weighted degree and strength to explore the evolution of the Hong Kong tourism
network from 2019 to 2020. The objective is to analyze changes of tourists’ intentions
and behaviors via semantic and spatio-temporal analysis applied to the evolution of the
Hong Kong tourism network.

https://www.tripadvisor.com/
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Fig. 2. Conceptual processing graph.

Tourists’ Behavior Assessment. Our study introduces an approach based on statistical
analysis to quantify tourists’ travel intentions and behaviors. In order to take into account
tourists’ behaviors according to different waves of COVID-19 [17], tourists’ footprints
are sorted by month to aggregate them at a comprehensive level of temporal granularity.
We introduced an index named Intention-Index-Value (I-I-V) to evaluate tourists’ travel
intention, Eq. (1) gives the definition of I-I-V. Volume(total) denotes the total number
of footprint records in one month, Volume(i) denotes the amounts of footprints which
contain i attractions in one month. High I-I-V values denote situations in which tourists
prefer itineraries with rather single attractions, while low I-I-V values are likely to show
cases where tourists prefer itineraries with rather long sequences of attractions.

(I-I-V = Normalize (
∑N

i=1

Volume(total)
Volume(i)

× i) (1)

Tourism Network Construction and Analysis. The attraction network of Hong Kong
is based on the co-occurrence of different attractions in tourists’ footprints, and where
each footprint is transferred into a complete subgraph of the entire attraction network
(see Fig. 3). The weight of a given edge between two attraction nodes denotes their
co-occurrence frequency derived from all footprints. Moreover, every pair of connected
attractions are associated to one itinerary, so each tourist’s digital footprint generates a
complete subgraph whose nodes are attractions and connections denote attractions parts
of one of her/his itinerary (Fig. 3 left). Finally, the whole subgraphs are combined into
an entire tourism network (Fig. 3 right).
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Fig. 3. Construction of tourism network from footprints.

Weighted degrees illustrate specific patterns variations such as the most popular
attractions before and during the pandemic while also highlighting travel flows at dif-
ferent scales in Hong Kong. Global and local patterns can be also visualized in order to
perceive them in a more intuitive way. Equation (2) gives the weighted degree wdi of a
node i, where i denotes a given attraction, j all other attractions and Eij is valued by the
unit when two attractions appear in a given itinerary and null otherwise.

wdi =
∑

j
Eij (2)

Therefore, changes of tourists’ behavior are detected via semantic analysis conducted
with statistical and evolution analysis of the local tourism network. Based on the top@10
negative growth rate in 2020 and popular attractions in 2019 and 2020, patterns of
change are analyzed and illustrated using a word cloud technique to show the evolution
of tourists’ behaviors.

3 Experimental Results

3.1 Assessing Tourists’ Travel Intentions

Figure 4 left shows the main tourism patterns of each month from 2019.1 to 2020.12
and the successive decline of tourists’ flows. In 2019, the peak tourist season is con-
centrated in January, March, April and October probably due to the opening of students
in March and April, and the National Day holiday in October. With then a continuous
decline probably due to an influence of local protests in Hong Kong, there is also a local
phenomenon in March, April and October with slight recovery of tourists’ numbers
than other month in 2019 with a slight growth rate. Due to local lockdown and travel
restrictions from 18 January 2020 to 22 April 2020, it clearly appears that the amounts
of tourists dramatically felt in 2020 to then reach very low numbers from March to the
end of the year (see Fig. 4 right). This shows that the tourism sector has been affected
really hard by the COVID-19 pandemic.
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Fig. 4. Tourists number and negative growth rate in Hong Kong during 2019–2020.

In order to get into more details regarding the practical impact of these falling pat-
terns, we generated tourists’ digital footprints by sorting their travel times and counting
the number of attractions in each travel footprint (Fig. 5). It appears that 1057 footprints
with one attraction were recorded in 2019, but only 567 in the same period in 2020, and
in other month, the difference became bigger. Similarly, 753 footprints have more than
five attractions in 2019, but only 75 footprints have more than five attractions in 2019.
I-I-V result is derived and shown in Fig. 6. It appears that although footprints with one
attraction had a sharp decline in 2020, still this type of footprint always has a leading
position. One can remark that footprints with more than one attraction are popular in
2019 but almost not in 2020. One can also infer from this result that the COVID-19
pandemic not only affects the number of attractions a tourist visits, but also impact
multi-attractions travel when tourists visit many attractions in one trip. The results also
showed that tourists are nowadays very likely to minimize interactions while travelling
due to health protection constraints and motivation.

Fig. 5. Tourists numbers distribution of different footprints to Hong Kong in 2019 (left) and 2020
(right). (Note that the Footprints represent number of attractions in each travel itinerary)
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Fig. 6. I-I-V result in 2019 and 2020.

3.2 Tourism Network Changes

For a better understanding of the impact of the COVID-19 on the tourists’ behavior, a
tourism network analysis has been conducted together with a geo-visualization of the
Hong Kong tourism network as shown in Fig. 6. It appears that not only the structure
of the whole tourism network has changed, but also the top 10 popular attractions. As
shown in Fig. 7 left, the leftmost attraction is HongKong-Zhuhai-Macao Bridge in 2019.
This attraction not only has many cooperation with local attractions in Hong Kong, but
also acted as an intermediary and a bridge between Hong Kong and Chinese mainland.
In 2020 (see Fig. 7 right), the network structure of tourism was loose, with limited
important tourism connections and collaboration. These results showed that there is a
more density tourism network with bigger tourist flows and closeness connections of
attractions in 2019.

Fig. 7. Tourism network based on footprints of Hong Kong in 2019 (left) and 2020 (right).

The average degree and network density were derived for assessing the whole net-
work, as well as the local degrees and weighted degrees to have a micro perspective.
Generally, high average degree and density denote that network has more efficiency and
connections respectively, and we inferred that the Hong Kong tourism network has a
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higher cooperation efficiency in 2019 than 2020 as the average degree in 2019 (88.67) is
higher than 2020 (52.04). Similarly, network density in 2019 (0.138) is higher than 2020
(0.101). These results all can explain that tourism network in 2019 has closer connection
and cooperation, while being more density and robust than in 2020. Additional indices
were applied to evaluate the vital attractions in the tourism network. Table 1 shows the
top 10 weighted degrees that reflect the importance of attractions. It appears that Victoria
Peak, Star Ferry, Tian tan Buddha, Peak Tram, St john Cathedral are all amongst the
top 10 attractions in 2019 and 2020. However, the most popular attractions like Ngong
Ping 360, Hong Kong Disneyland don’t show up in 2020 probably due to these are all
overcrowded places, as well as tourists visiting these places are usually not locals. In
contrast, some previously minor attractions like Tung Wan Beach, Cheung Chau Rock
Cravings and so on have broken into top 10 popular attractions in 2020. These attrac-
tions have some common features: they are all minor and relaxing places. In order to
explicitly detect the change of tourists’ behavior, we analyze the change of theme based
on popular attractions in 2019 and 2020, and apply a word cloud technique to show the
evolution of tourists’ behaviors (see Fig. 8). This result illustrates that after lockdown
measures announced, threat severity and susceptibility can cause protection motivation
and protective travel behaviors after the pandemic outbreak, tourists may choose minor
and relaxing place to release their pressure. We also find that the spatial distribution
of top 10 attractions reveals an important difference when comparing 2019 and 2020
figures (Fig. 7.)

Table 1. Node index characteristics.

2019 2020

Rank Attraction Weighted degree Attraction Weighted degree

1 Victoria Peak 4030 Star Ferry 386

2 Star Ferry 4013 Victoria Peak 325

3 Tian Tan Buddha 2380 St John Cathedral 260

4 Hong Kong Skyline 2009 Tian Tan Buddha 233

5 Ngong Ping 360 1610 Peak Tram 213

6 Disneyland 1366 Cheung Chau Mini Great
Wall

201

7 Peak Tram 1108 Cheung Chau Island 198

8 Victoria Harbor 859 Pak Tai Temple 197

9 St John Cathedral 785 Tung Wan Beach 192

10 Lantau island 781 Cheung Chau Rock
Carvings

192
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Fig. 8. Change of popular attractions and related semantic theme of Hong Kong in 2019 (left)
and 2020 (right).

4 Conclusion

The outbreak of the COVID-19 pandemic had a devastating impact on our daily life
and brought the tourism industry to a major breakdown. Figuring out the impact of
COVID-19 on the tourism network is still an area that deserves additional quantitative
studies to provide a better understanding of the real novel patterns that emerge. This
research introduces a quantitative and statistical analysis of the evolution of the Hong
Kong tourism network before and during the COVID-19 pandemic. We apply a network
analysis to study the tourism network of Hong Kong in 2019 and 2020 using tourists’
footprints extracted from theTripAdvisorwebsite. The results show that: 1) the pandemic
have huge impact on tourists’ travel behavior, the specific performance is tourists’ travel
intentions have changed from itineraries with long sequence of attractions to itineraries
with single attraction. 2) COVID-19 led to a decline in the strength of connections
between popular attractions, but the strength of connections within minority attractions
continues to increase. 3) tourists’ behaviors have been changed, relaxing and minority
attractions in the past are more fascinating at present. For instance, the top 10 popular
attractions in 2020 were different from 2019. People always choose the most popular
attraction to travel before the pandemic, like Victoria Peak, Disneyland, etc. But they
may choose a more relaxing and minority attraction to travel like Tung Wan Beach,
Cheung Chau Rock Cravings during the pandemic.

Finally, this work can be extended towards several directions. First, using a similar
methodology, tourismpatterns before and during the pandemic can be applied to different
cities to cross-analysis the impact of different lock-down measures. Furthermore, the
possible recovery of the tourism industry might be nowadays studied as the number of
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lock-down measures is likely to be relaxed, but maybe not the way tourist might behave
in the changing world and by also considering the increasing impact of environment
protection policies.
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Abstract. Keeping crowdsourced maps up-to-date is important for a wide
range of location-based applications (route planning, urban planning, navigation,
tourism, etc.).We propose a novel map updatingmechanism that combines the lat-
est freely available remote sensing data with the current state of online vector map
data to train aDeepLearning (DL) neural network. It uses aGenerativeAdversarial
Network (GAN) to perform image-to-image translation, followed by segmenta-
tion and raster-vector comparison processes to identify changes to map features
(e.g. buildings, roads, etc.) when compared to existing map data. This paper eval-
uates various GANmodels trained with sixteen different datasets designed for use
by our change detection/map updating procedure. Each GAN model is evaluated
quantitatively and qualitatively to select the most accurate DL model for use in
future spatial change detection applications.

Keywords: Generative Adversarial Networks · OpenStreetMap · Remote
sensing · Spatial change detection

1 Introduction

Conventional (manual) crowdsourced map updating procedures utilises remote sensing
imagery as a background layer to guide mappers as they manually digitise objects (e.g.
buildings, roads, etc.). For example,OpenStreetMap (OSM)allows for the use ofmultiple
satellite image sources when updating their maps [1]. However, to detect changes in
satellite imagery automatically when comparing to the latest versions of online vector
maps is an important next step formanyGIScience related problems, includingmapping.

Previously, we introduced our methodology for detecting changes (both construc-
tions and destructions) between vector maps and raster images [2]. Consequently, a
series of experiments was conducted to evaluate the accuracy of this OSM-GAN proce-
dure. This paper reports on these experiments and other related outcomes of OSM-GAN
predictions with various datasets.

Specifically, this study evaluates the prediction accuracy of variousOSM-GANmod-
els on several spatial datasets to select the best change detection model for use in further
map updating operations. Two different raster and vector data sources were tested: 8-bit
(panchromatic) and 24-bit (RGB) raster image data with spatial resolution 15 cm/pixel
and 30 cm/pixel [5] and; OpenStreetMap (OSM) vector map data plus Ordnance Survey
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Ireland1 (OSi) building footprint data of Dublin city centre were also used in conjunction
with the raster data mentioned above.

1.1 Data Sources

Raster Data
Raster satellite image data was used to train the OSM-GAN models for detecting any
changes to the map in a given Area of Interest (AoI). First, a satellite image dataset
was created using freely available Google Earth satellite images discovered online using
customised data crawlers that considers both spatial resolution (15 cm and 30 cm) and
AoI. Second, a 25 cm resolution aerial orthophoto dataset of Dublin area registered to
the Irish Transverse Mercator (ITM) coordinate system was acquired from OSi with an
academic research license.

These TIFF (Tagged Image File Format) orthophotos needed to be pre-processed
before inputting to the deep neural network – e.g., resampled to 30 cm pixels, co-
registered, tiled, and served from QGIS2. Figure 1 shows the qualitative differences
between both data sources (Google Earth and OSi). Note how some buildings currently
visible in the Google Earth imagery are not present in the OSi orthophotos as they have
since been demolished in preparation for constructing the new TU Dublin campus.

Fig. 1. Comparison of Google Earth satellite images (first row) and OSi aerial ortho images
(second row) of the same AoI around Grangegorman, Dublin. The displayed resolution for both
is 30 cm/pixel. The Google Earth images appear more vivid, the OSi images can be obtained at a
higher resolution.

Vector Data
OSM vector data was the primary map data source checked for changes in this study. As
OSi building footprint (vector) data is produced by Ireland’s National Mapping Agency,
it was used as ground truth for model training and prediction purposes. The OSM vector

1 https://osi.ie/.
2 https://docs.qgis.org/3.16/en/docs/user_manual/preamble/preamble.html.

https://osi.ie/
https://docs.qgis.org/3.16/en/docs/user_manual/preamble/preamble.html
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data was downloaded using theirOverpassAPI [3] by first parsing the minimum bound-
ing rectangle (MBR) of a user generated AoI. The OSi building footprints were provided
in DWG (AutoCAD) format. A series of operations converted the DWG formatted data
into GeoJSON format to be compatible with further processing steps. Table 1 gives a
summary of both the OSM and OSi building footprint datasets.

Table 1. Details of the two vector datasets.

OSM dataset OSi dataset

Area of interests Selective areas around
Grangegorman, Dublin

53.3514000, −6.2892000,
53.3596000, −6.2730000

Number of objects 15,000+ 3036

Spatial reference system EPSG:3857 (Spherical
Mercator projection)

Irish Transverse Mercator
(ITM)

License Open Database License
(ODbL)

OSi License

Data format JSON, GeoJSON DWG

1.2 The Kay Supercomputer

The Irish Centre for High-End Computing (ICHEC) allows institutional users (e.g. aca-
demic researchers) access to its super computing infrastructure, named Kay [4]. Kay is
comprised of five sub-components: Cluster, GPU, Phi, High Memory, and Service and
Storage. Specifically, for experiments in this study, the GPU service was utilised.

The GPU service is a partition of 16 nodes where each node has 2× 20-core 2.4 GHz
Intel Xeon Gold 6148 (Skylake) processors, 192 GiB of RAM, a 400 GiB local SSD
for scratch space and a 100 Gbit Omni-Path network adaptor. Two NVIDIA Tesla V100
16 GB PCIe (Volta architecture) GPUs are integrated on each node. Each GPU has 5,120
CUDA cores and 640 Tensor Cores. In order to reduce training times, this study tested
the Kay Supercomputer with various parameter settings [4]. As such, overall training
times per model reduced from a few days spent training on a high-end “gamer spec”
laptop, to just a few hours on Kay.

2 Related Work

Spatial change detection is a well-researched area in both the GIScience and computer
vision domains. Historically, many different image processing techniques, including
Markov Random Field [6] and Principal Component Analysis [7], were used to perform
spatial change detection operations. More recently, artificial neural network-based tech-
niques have been introduced to address various limitations ofmore traditional approaches
(e.g. to overcome low performance, low segmentation accuracy, higher time complexity,
etc.).
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Now, common solutions to this problem rely on applying Machine Learning (ML)
techniques such as U-Net [8], SegNet [9, 10], Mask R-CNN [11], and Pix2Pix among
others [12, 13]. These approaches follow the encoder-decoder architecture to perform
image segmentation, a critical step in any change detection process. In particular to GIS,
image segmentation attempts to isolate various entities in the environment visible in
aerial imagery. For example, entities such as buildings [14–16], road networks [17–24],
and land-use classifications [25–28].

With the emergence of Generative Adversarial Networks (GANs), image segmen-
tation procedures have been redefined as image-to-image translation. GANs are a ML
technique of training a generative neural network model by representing the task as a
supervised learning problem with two sub-models: a generator that learns to generate
new examples; and a discriminator that tries to classify these generated examples as
either real or fake (generated) [29]. Several studies have proposed GAN-based solutions
for various spatial change detection problems, such as generating heat-maps of possible
changes [30], seasonal change detection [31], and image classifications [32].

2.1 OSM-GAN for Spatial Change Detection

The OSM-GAN approach presented in this paper suggests a change detection method-
ology that employs spatial imagery (satellite images) and OSM vector map data [2] to
train its models. The deep learning model should be accurate enough to detect image
objects (e.g. buildings) to predict any change detection outcomes to these map features.
Technically, the OSM-GAN model needs to perform a satellite image to feature-map
translation with a high confidence level [2]. This paper proposes a methodology to eval-
uate various GAN models (trained with different datasets to perform satellite image to
feature-map translation) to detect spatial changes accurately.

Producing our OSM-GAN model begins with the data crawling process. Freely
available raster and vector data sources are crawled (mined) and saved in local directory
structures ready for further processing. Geo-referenced satellite images are merged to
construct the left half of the training sample, and OSM vectors are merged into a binary
(black & white) single image to create the right half of the training sample. This process
results in a single 600 × 300 pixel sized training sample as shown in Fig. 2.

Fig. 2. One sample of the OSM-GAN training dataset. The left side illustrates the satellite image
component, and the right side shows the corresponding feature-map.
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An object-density based data filtering mechanism is used to remove false-negative
data samples from the training dataset [2]. The filtered dataset is then split into a 3:2
ratio of training:validation sets of data. Finally, these datasets were fed into the training
algorithm on the Kay supercomputer to generate the resulting OSM-GAN model.

To initiate the change detection process, a feature-map (binary image that represents
particular map features (e.g. buildings) as white blobs) needs to be predicted for a
particular satellite image using the OSM-GAN model generated previously. Then the
predicted feature-map is segmented into separate objects and compared to current OSM
vector data using an Overlap Score Matrix (percent overlap of a feature-map object and
its OSM vector footprint). Finally, any detected changes are post-processed to compose
OSM-acceptable changesets. Figure 3 illustrates the overall workflow for spatial change
detection based on OSM-GAN.

Fig. 3. System architecture of proposed OSM-GAN methodology for spatial change detection.

3 Experiments and Results

For this study, a series of experiments were conducted to evaluate the accuracy of OSM-
GAN models qualitatively and quantitatively. Sixteen OSM-GAN models were trained
with different datasets. A combination of two different spatial resolutions (15 cm and
30 cm) with two different types of images (panchromatic and RGB) were used to cre-
ate the raster image segment (left half of the training sample). OSM and OSi vector
data were used to create the right half of the training sample (Fig. 2). For instance, the
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Google_OSi_8bit_z19 datasetwas created frompanchromatic (8-bit)GoogleEarth satel-
lite images with 30 cm/pixel and OSi vectors. After the training process, the final model
is named the same as the name of the dataset used to create it.

3.1 Modelling OSM-GAN with OSi Data

OSi raster (orthophotos resampled to 30 cm and 15 cm pixels to match the satellite data)
and vector building footprint data was used in this experiment. Four datasets with dif-
ferent spatial resolutions and bit-depth were created from the above-mentioned sources.
These datasets were smaller than theOSMdatasets since the data provided byOSiwas of
a limited area of Dublin city centre only. Table 2 summarises the two datasets produced
for this experiment.

Table 2. Details of datasets used in OSi-OSi experiment

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Raster
source

OSi Orthophotos

Vector
source

OSi building footprints

Resolution 30 cm (z19) 15 cm (z20)

Bit-depth 8-bit 24-bit 8-bit 24-bit

Number of
samples

581 581 1949 1949

Model ID OP_OSi_8bit_z19 OP_OSi_24bit_z19 OP_OSi_8bit_z20 OP_OSi_24bit_z20

Upon completion of the training process, each model was evaluated on a new dataset
within the same AoI. These results were qualitatively and quantitatively evaluated, and
Accuracy, Recall, Precision and F1 score measurements were calculated for each model
(Table 3). The model trained with 30 cm/pixel resolution RGB images can be considered
more accurate than the other three models.

Table 3. Quantitative evaluation of the model trained with OSi Orthophoto and OSi vector data

Model ID Accuracy Precision Recall F1 score

OP_OSi_8bit_z19 68.3% 82.0% 45.9% 58.8%

OP_OSi_24bit_z19 86.8% 84.6% 82.1% 83.3%

OP_OSi_8bit_z20 65.3% 70.9% 40.6% 51.6%

OP_OSi_24bit_z20 84.0% 85.0% 72.4% 78.2%
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Fig. 4. Predictions of OSM-GAN model trained with OSi Orthophotos and building footprints.

Figure 4 qualitatively compares the outcomes of the above-listed OSM-GANmodel
predictions. It can be seen in Fig. 4a that the OP_OSi_24bit_z19 model gives compar-
atively more accurate results, demonstrating the importance of a qualitative analysis of
testing. For example, the OP_OSi_8bit_z20 model predicted a large building that could
be identified as an “extension” to existing OSi vector data by the subsequent change
detection process.
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3.2 Modelling OSM-GAN with OSi-OSM Data

The second experiment was designed to investigate the consistency/coherence between
OSi Orthophotos and OSM vectors. Apart from a difference in the spatial reference
system used, it was observed that current OSM vectors of the test area are outdated.
Therefore, many data samples were filtered out in the data filtering phase. Table 4
summarises the generated datasets using OSi Orthophoto images and OSM vectors.

Table 4. Details of datasets employed in OSi-OSM experiments.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Raster source OSi orthophotos

Vector source OSM building footprints

Resolution 30 cm (z19) 15 cm (z20)

Bit-depth 8-bit 24-bit 8-bit 24-bit

Number of samples 641 641 1993 1993

Model ID OP_OSM_8bit_z19 OP_OSM_24bit_z19 OP_OSM_8bit_z20 OP_OSM_24bit_z20

A quantitative analysis of the testing results is listed in Table 5. In this case, the
model trained with a 30 cm (z19) 8-bit dataset showed the highest accuracy, while the
first experiment produced a model trained on RGB images as the most accurate; in both
cases with the same resolution.

Table 5. Quantitative results of the OSi-OSM experiment.

Model ID Accuracy Precision Recall F1 score

OP_OSM_8bit_z19 76.4% 58.7% 67.3% 62.71%

OP_OSM_24bit_z19 72.1% 63.4% 70.8% 66.90%

OP_OSM_8bit_z20 50.6% 52.0% 55.4% 53.65%

OP_OSM_24bit_z20 20.2% 47.3% 61.9% 53.62%

Figure 5 illustrates the qualitative comparisons of the models in Table 5. Since
visual comparisons show only two random instances taken from the test dataset, the
visual results perhaps do not support well the quantitativemeasurements obtained above.
However, to improve the change detection workflow, the results should be accurate both
quantitatively and qualitatively.



36 L. Niroshan and J. D. Carswell

Fig. 5. Qualitative analysis of predictions from themodel trainedwith OSi Orthophotos andOSM
building footprints.

3.3 Modelling OSM-GAN with Google-OSi Data

Models with Google Earth satellite images and OSi building footprints were trained in
a third experiment. Four datasets were created using different spatial resolutions and
bit-depths. A relatively small AoI fitting OSi boundary constraints was applied to the
Google Earth image crawler to collect the relevant satellite images or the area. Table 6
summarises the details about these datasets.
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Table 6. Details of the datasets that used in the Google-OSi experiments.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Raster source Google earth satellite images

Vector source OSi building footprints

Resolution 30 cm (z19) 15 cm (z20)

Bit-depth 8-bit 24-bit 8-bit 24-bit

Number of samples 644 644 2110 2110

Model ID Google_OSi_8bit_z19 Google_OSi_24bit_z19 Google_OSi_8bit_z20 Google_OSi_24bit_z20

Table 7 lists the quantitative measurements calculated for the trained models. A
model trained with 15 cm RGB images scored better quantitative results than the other
three models. After comparing to previous experiments (OSi-OSi and OSi-OSM), the
model trained with higher resolution images is quantitatively more accurate.

Table 7. Quantitative results obtained from experiments conducted with Google-OSi datasets

Model ID Accuracy Precision Recall F1 score

Google_OSi_8bit_z19 66.7% 48.7% 30.6% 37.6%

Google_OSi_24bit_z19 83.0% 68.0% 71.2% 69.56%

Google_OSi_8bit_z20 71.9% 66.6% 62.1% 64.2%

Google_OSi_24bit_z20 85.4% 75.80% 81.10% 78.36%

Figure 6 shows a qualitative comparison of some prediction samples. The predictive
results of the Google_OSi_24bit_z20 model (Fig. 6b) agree with the above quantitative
results. The predicted polygons can be used in the subsequent change detection process
since they are allied to ground truth polygons.

3.4 Modelling OSM-GAN with Google-OSM Data

Finally, yet importantly, Google Earth satellite images and OSM vectors were combined
to perform another training phase. Since both data resources are free and unlimited, a
wider AoI was chosen and crawled to create the following datasets.

The above-listed datasets were used to train four OSM-GAN models. These models
were then evaluated using the same accuracy measurements such as Accuracy, Recall,
Precision, and F1 Score (Table 9). The model trained with 30 cm RGB Google Earth
satellite images and OSM vector footprints performed better. Significantly, this is the
most accurate OSM-GAN model obtained when compared to all the models evaluated
in the four experiments.
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Fig. 6. Predictions of models trained with Google Earth satellite images and OSi buildings.

Table 8. Details of datasets used in Google-OSM experiment.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Raster
source

Google earth satellite images

Vector
source

OSM building footprints

Resolution 30 cm (z19) 15 cm (z20)

Bit-depth 8-bit 24-bit 8-bit 24-bit

Number of
samples

644 644 2110 2110

Model ID Google_OSM_8bit_z19 Google_OSM_24bit_z19 Google_OSM_8bit_z20 Google_OSM_24bit_z20
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Table 9. Quantitative measurements obtained from the final experiment.

Model ID Accuracy Precision Recall F1 score

Google_OSM_8bit_z19 86.7% 59.3% 78.1% 67.4%

Google_OSM_24bit_z19 88.4% 62.0% 80.5% 70.0%

Google_OSM_8bit_z20 35.2% 45.8% 61.3% 52.4%

Google_OSM_24bit_z20 68.0% 50.4% 53.7% 52.0%

Fig. 7. Qualitative comparisons of models trained with Google Earth satellite images and OSM
building footprints.
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Figure 7 qualitatively compares the prediction results of models trained with
Google Earth satellite images and OSM building footprints. In this case, the predic-
tion results of Google_OSM_24bit_z19 shows the best qualitative test result, agreeing
with the quantitative results above. Comparing all 16 models tested, the results of model
Google_OSM_24bit_z19 suggests to train 30 cm Google Earth satellite images with
OSM vector data to obtain the most accurate OSM-GAN models for change detection.

4 Conclusions

This paper presented sixteen different OSM-GAN based experiments with a quantitative
analysis of each model produced, as well some qualitative observations. It evaluated
differentOSM-GANmodels against different raster and vector data sources. Each dataset
offers its own benefits and limitations and the qualitative results motivated continued
training with larger area datasets.

The study concludes that the vector footprint generated by OSM-GAN image-to-
image translation could be extended to spatial change detection procedures. Experi-
ments show that model training with larger datasets (i.e. datasets built from Google
Earth satellite images and OSM building footprints) yielded more accurate feature-map
predictions.

Since the proposed spatial change detection methodology is highly based on OSM-
GAN model accuracy, the model should be as accurate as possible to translate a satel-
lite image to its corresponding feature-map. The final experiment reveals that train-
ing on larger sets of geographically similar areas could be a solution to generating
more accurate OSM-GAN models. In other words, models trained with Dublin data
should not be used for mapping Paris, for example. The model trained with Google
Earth satellite images (24-bit, 30 cm/pixel) and OSM building footprints scored the
highest accuracy (88.4%) among all the experiments. Moreover, the predictions of the
Google_OSM_24bit_z19model can also be observed qualitatively as more accurate than
the other model predictions.

The ultimate objective of this research is to build an end-to-end workflow to update
crowdsourced maps automatically with the use of freely available data (satellite images,
vector footprints) and Artificial Intelligence (AI) techniques. Automated map update
success ultimately depends on the accuracy of the ML change detection process since
correctly identifying spatial changes in the map is an initial key step in this process.
Compared to contemporary approaches for automatically detecting spatial changes, the
proposed OSM-GAN approach offers an appropriate mechanism to follow.

As a next step, a new OSM-GANmodel will be trained on the original 25 cm Dublin
orthophotos with a larger AoI to potentially produce even more accurate feature-map
results. The training process will utilise a Transfer Learning approach and so begins by
initiating the process using the Google_OSM_24bit_z19 model parameters as the base
input model. In order to evaluate the performance and accuracy of OSM-GAN against
other spatial change detection models in the literature, a new test phase will also be
carried out on the crowdAI Mapping Challenge dataset3 in future work.

3 https://www.crowdai.org/challenges/mapping-challenge.

https://www.crowdai.org/challenges/mapping-challenge
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Abstract. Although there has been a lot of research on GPS big data analysis to
discover the preferred spots and destinations for tourists, discovering the preferred
streets also plays an important role in improving tourism content and optimizing
transportation systems. In general, GPS data has inaccuracies and redundancies,
and its density is biased to specific locations. This causes difficultymaking tourists
preferred streets stand out by using density-based visualizations such as heatmaps.
In this study, we attempted to apply a mobile sensor-based data cleaning method,
which is executed at the end-user device, and thereby equalize the bias of each
tourist’s trajectory data. This paper examines how to generate a heatmap from such
lightweight and non-unstable data and whether it can effectively visualize tourists
preferred streets using real tourism data. A heat map was created by plotting GPS
data on a geographic grid square and focusing on the quartiles of density values.
The results were almost consistent with the tendency of actual tourist routes. The
contribution of this research is that it does not require any preparation such as a
road network, and does not require a large amount of computation compared to
conventional approaches.

Keywords: GPS big data · Tourists preferred streets · Density-based approach ·
Heatmaps

1 Introduction

In a big data era, various types of data help create understandings of tourist behavior and
enhance tourist experiences. Big data used in the fields of tourism can be categorized
into UGC (User Generated Content, e.g., text, photos, and audio), device (e.g., GPS
and signals from base stations), and transaction (e.g., shopping and accommodation
records) [1]. Especially, GPS data has the advantage that you can collect large quantities
at a low cost, especially with the spread of smartphones. The most popular example of
data mining focusing on GPS data is to detect and predict hot spots (tourists preferred
spots) [2, 3]. However, few studies on the detection and prediction of tourists preferred
streets, which can be also important for regional tourism development. For example, in
the case of walking tourism, a road brimming with cherry blossoms and a street with
a historical atmosphere have the potential to attract many people. In addition, if we
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know streets taken by many pedestrians, we can optimize development plans of urban
landscape and operation schedules of urban buses. Therefore, this study aims to discover
streets that attract a lot of attention by using GPS big data. Density-based visualizations
using conventional methods of generating heatmaps may be useful to achieve our goal.
However, GPS trajectory data collected from tourist users have some characteristics that
prevent visualizing tourists preferred streets because of high contrast between staying
and moving trajectory data. In this paper, we first clarify factors by using GPS data
of actual tourists. Then, we discuss how much our mobile sensor-based data cleaning
approach can contribute to generating visualizations that enable hot streets detection.

2 Related Work

In the fields of transportation, there have been studies on traffic analysis and prediction
using GPS data for congestion detection [4]. Their basic approaches are map match-
ings with road networks [5]. However, pedestrians have higher degrees of freedom of
movement than automobiles. Therefore, these are very cost-intensive businesses for our
research questions.

Some approaches are using Euclidean distance and Dynamic time warping to mea-
sure the similarity of trajectory shapes and detect frequently used routes. However,
tourists preferred streets are often a part of sightseeing routes for them, and it is pointed
out that the computational complexity is still too large to handle a large number of GPS
trajectories [6].

GPS data mining using clustering methods based on point cloud density (e.g., kNN
query [7] and DBSCAN [8]) can be found for hot spot (stay point) detections [9]. GPS
trajectory data of tourists, who tend to stay in the same place for a while, are less affected
in detections of hot spots. On the other hand, regarding tourists preferred streets, as the
number of sample data increases, hot areas become difficult to recognize.

From the above discussion, it is necessary to reduce the cost of preparation and
computation in order to deal with a large amount of universal GPS data. In this paper, we
will study how to improve the existing density-based approach to realize a visualization
that makes the existence of streets more prominent.

3 Heatmap-Based Approaches

3.1 Heatmap Generation of GPS Data

A heatmap is a data visualization technique that presents each value on a certain two-
dimensions by using multiple colors or gradation. Readers can understand data patterns
and distributions through it intuitively. In this paper, we present geographical grid-based
heatmaps. The specific generation method is as follows. First, a target geospatial area is
divided into a 10m× 10m square grid. Then, we plot sample data. The number of GPS
data in each grid g(s, t) is counted, and a score table is generated. Finally, the second
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quartile and the third quartile of the score table (Q2,Q3) are calculated, and the color of
each grid is determined based on Fig. 1.

Fig. 1. Rules for assigning color in each grid square. ng(s,t) is the number of recorded points in
a square g(s, t).

3.2 Difficulty in Visualizing Streets and Paths

We investigated why heatmaps are not suitable for detecting streets and paths by using
twelve sample datasets. The sample data was collected in Akita City by having twelve
subjects carry a cell phone (Apple Inc.’s Phone 11). They walked freely around the city
using a guide map published by Akita City. GPS data is automatically recorded at 15-s
intervals.

Figure 2 and 3 show a density (the number of points in each mesh) distribution of the
twelve trajectories data and a heatmap generated according to Sect. 3.1. At the center
and the upper left part of the heat map, round-shaped red areas are drawn. In general,
tourists often stay for a while in several facilities during their travel. This means that
GPS trajectories of tourists tend to have some parts containing many points within a
small area. In addition, since the accuracy of GPS reception gets significantly lower
indoors, many points with large errors are recorded there. These factors lead to dense
and scattered points in a trajectory.

In addition, places where people have paused for traffic lights or taking breaks and
parts where walking speed is slow tend to be hot areas. Therefore, these cause that the
existence of streets is overshadowed by hot spots because the data bias gets larger as the
number of samples increases.



46 I. Sasaki et al.

Fig. 2. A histogram of raw GPS data points in a grid square. The interval from zero to five are
omitted in this figure because the number of data points is too large to plot other parts in an
understandable way.

Fig. 3. A heatmap using raw trajectory data. It is ambiguous to clarify where are significant paths
for tourists.

4 Solutions to Unclearness of Hot Paths by Data Articulation

4.1 Street-Detectable Heatmap Generation

Considering the problems of heatmap approaches, it would be a feasible solution tomake
distributions of each trajectory homogeneous for generating street-detectable heatmaps.
To mitigate the redundancy of GPS trajectories, reducing sampling rate and/or applying
existing line simplification algorithms would be useful. However, the former can lose
correspondence between a trajectory and a base map, and the drawing is no longer called
walkers’ route. The latter is not enough to eliminate dense noises that are unique to GPS
trajectories. Then, we propose to apply the Multiple Mobile Sensor-Based Articulation
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(MMSBA), which we have proposed so far, to this research. MMSBA was originally
developed for enriching user experiences of a digital diary that you browse through
GPS logs on maps. It is a method that mitigates the redundancy and inaccuracy of GPS
trajectory data by using a combination of data such as acceleration and GPS horizontal
accuracy estimates that can be obtained from smartphones. It is one of purposes of this
paper to verify whether the trajectory data generated through MMSBA, a data cleaning
method executed in the side of end users, play a useful role in tourist behavior analysis.
However, processed trajectory data themselves cannot be used for heatmap generation
because it retains only the minimum number of reference points for trajectory draw-
ing and loses geographical continuity. The conceptual diagram of the street-detectable
heatmaps generation is shown in Fig. 4.

Fig. 4. The conceptual diagram of the street-detectable heatmaps generation.

4.2 Multiple Mobile Sensor-Based Articulation (MMSBA)

MMSBAis amethod to efficientlymitigate the redundancyofGPSdata byusing a combi-
nation of mobile sensor data. It combines three keymethods, that is, (A) an Inside Detec-
tionmethod using GPS accuracy values, (B) a Stop Detectionmethod using acceleration
values, and (C) an existing line simplification algorithm (Douglas-Peucker Algorithm
[10]) to generate trajectories with significantly reduced point clouds [11]. The following
gives a brief explanation of the first two methods.

• Inside Detection

When a user is indoors, the values of GPS accuracy data decrease because of ceilings
and walls. That is why unstable and unreliable trajectories are drawn around there. To
solve this problem, we used GPS horizontal accuracy data and threshold method to
judge indoors and abstracted them into a point by calculating the center point of their
minimum bounding box. The research set 10.0 m to the threshold. Furthermore, we
introduced tolerant distance buffering that makes our inside detection more robust. (1)
Recorded points from the time when the threshold is exceeded until it is lowered again
are defined as a provisional indoor segment. (2) A midpoint of the minimum bounding
box of points in the segment is calculated. (3) The system starts to monitor the distance
between the midpoint and the user’s location. (4) If you are judged to be indoor again
before the distance exceeds the tolerant distance, points in the segment are regarded
as continuous outdoor points and back to (2). (5) If the distance exceeds the tolerant
distance, an indoor segment is determined.
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• Stop Detection

When a tourist is stationary for a while, such as waiting for a traffic light to change, a
messy line is drawn. To solve this problem, we used acceleration data to detect “walk-
ing” and “stopping” states and removed the outdoor stationary points as redundant parts.
Modern mobile devices such as smartphones and tablets can collect three-axis accelera-
tion values. Our research deals with a square root of the sum of the squares of them as a
raw value and applies a low-pass filter to reduce the sensor noise. Then, you can obtain
intuitive changes of acceleration values with low latency (less than 100 ms).

5 Results and Discussion

As in Sect. 3.2, we used twelve sample datasets and compared results between raw GPS
data and articulated GPS data. As a supplementary note, from the preliminary survey,
inside detections and stop detections were accurately conducted in these data. Figure 5
and 6 show a density distribution of the twelve articulated trajectory data and a heatmap
generated according to Fig. 4.

Looking at the histogram (Fig. 5), extremely dense areas disappear compared to
the histogram of the raw data (Fig. 2). In addition, the scattering condition of values is
also smaller, indicating that the effects of staying indoors and stopping for a while are
suppressed. Next, you can recognize that the heatmap (Fig. 6) shows a continuous red
line. The results are almost consistent with the actual tourist behavior. More than 90% of
the data used in this study is collected from students in their early twenties, and we have
not been able to conduct experiments that take into account user attributes and means
of transportation. In actual environments, moving speeds varies from person to person.
However, our method is expected to be less susceptible to differences in sampling rate
and moving speed, because we applied uniform articulation and linear interpolation to
all GPS trajectory data.

Fig. 5. A histogram of data points of articulated GPS trajectory in a grid square. The interval
from zero to five are omitted in this figure because the number of data points is too large to plot
other parts in an understandable way.
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Fig. 6. Aheatmap using trajectory data becomes cleaner after the processing through the proposed
method MMSBA.

6 Conclusion

We examined problems and approaches in visualizing tourists preferred streets using
user trajectory big data in this paper. As tourism styles become more diverse, tourists
come to use a variety of means of transportation for their activities. Hence, an approach
that does not require the cost of road networks is necessary. However, GPS data with
a lot of redundancy can be difficult to detect streets. We attempted to homogenize the
distribution of GPS trajectory data and highlight hot streets by using MMSBA, a data
cleaning approach using multiple mobile sensors. According to our results, articulated
trajectories can successfully visualize the existence of them and have a possibility of
achieving the research goal.

This study used twelve sample datasets, and it is necessary to increase the amount
of data for the next stage. It is difficult to use existing datasets such as GeoLife [12]
because MMSBA also focuses on mobile data that has not been dealt with in previous
research in the fields of GPS trajectory cleaning. Therefore, we are currently preparing
for the release of a walking tour application and building a system to collect our own
datasets.
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Abstract. Space is a natural and indispensable part of the human communica-
tion form, mostly based on natural-spatial descriptions with varying lexical struc-
tures that rely on human spatial cognition and perception. This is a “geographic
language” which machines do not understand, and accordingly do not properly
process. Consequently, geographic information retrieval is limited due to the lack
of rich and comprehensive textual-geographical databases required, for example,
for spatio-query processes. While in English there exists a relatively rich set of
libraries and tools, inHebrew there is a void,with no automatic tools for addressing
this problem.We propose a methodology that mimics human literal place descrip-
tions, utilizing implicit geometries and topologies existing in geospatial databases.
This study focuses on the first stage, which includes collecting a lingual dataset of
human place descriptions with an online survey. Using Hebrew Natural Language
Processes, place entities and their spatial relations were extracted from the survey
descriptions. Similar place entities and relations were simultaneously extracted
from OpenStreetMap database. Through place queries that rely on textual phrases
from these two sources, human descriptions of places were geolocated. Finally,
these locations were compared to retrieved locations acquired through Google
maps API on survey descriptions - showing very promising results in accurately
locating the described places.

Keywords: Geographic information retrieval · Hebrew · Natural language
processing · Human spatial cognition

1 Introduction

Geographic Information Retrieval (GIR) encompasses numerous scientific and engi-
neering challenges, most of which are derived from the lack of rich and comprehensive
spatio-textual databases needed to carry out the process. Until recently, the used textual
databases weremanually tagged for a place or location (Gazetteer). The aspiration nowa-
days is to be able to analyze and understand various human-related phenomena using
GIR algorithms for, e.g., georeferencing text in a mechanized way [1]. GIR processes
present various complex and demanding scientific and engineering challenges, where

© Springer Nature Switzerland AG 2022
F. Karimipour and S. Storandt (Eds.): W2GIS 2022, LNCS 13238, pp. 51–60, 2022.
https://doi.org/10.1007/978-3-031-06245-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06245-2_5&domain=pdf
http://orcid.org/0000-0003-4501-1072
http://orcid.org/0000-0001-7266-7443
http://orcid.org/0000-0002-5639-8009
https://doi.org/10.1007/978-3-031-06245-2_5


52 T. Bauman et al.

various approaches and techniques are developed that present spatial context without
being explicitly linked to a defined location. Current methods are mostly based on text
databases, in which text-entities are manually referenced (tagged) with predefined loca-
tions [2]. These databases are often characterized by poor and homogeneous knowledge
and spatial discontinuities [3], thus deriving limited and non-generic capabilities [4, 5].
Consequently, current GIR processes are not structured to comprehensively consider
human spatial perception and description of place, particularly in Hebrew. English, for
example, presents simplemorphology, and as such canbeprocessedwith automatic anno-
tation pipelines, while Hebrew is a morphologically rich language, so similar pipelines
limit the applicability for text analysis [6].

This study focuses on the investigation, analysis and generation of an enriched
geospatial database that will also store spatio-textual labels on the places and geo-
graphic features it stores. To do this, we examine an “inverted” approach that auto-
matically computes spatio-textual linguistic descriptions from existing geographic and
geospatial databases and linking them to specific geographic features (places). Geo-
graphic databases mostly contain a structured and continuous description of the spatial
information on which geographical knowledge is built. Such that certain descriptions are
inherently expressed in the geometric representation of entities in space - entities that
are associated with certain attributes (accompanying tabular information), as well as the
topological relations between the entities [7]. To compute this type of linguistic descrip-
tions in a textual configuration, thus digitally mimicking the human cognitive-linguistic
process, the verbal “building blocks” commonly used for human spatial description are
explored and formulated. Algorithms that allow automatic computation of specific geo-
tags from untagged geospatial databases are developed to support the process. Such an
enriched database holds great potential for building and institutionalizing complex GIR
processes, and for further research on aspects associated with human spatial perception.
Thiswork-in-progress provides preliminarymissing knowledge and proposes algorithms
to allow enhanced GIR in Hebrew to enable complex and qualitative geographic queries.

2 Methodology

2.1 Online Survey

To obtain natural human place descriptions, an online survey1 was structured that
included 30 known places in Tel-Aviv, depicted in Table 1 and Fig. 1. Tel-Aviv is the
second largest city in Israel, constituting an important financial, cultural, and commer-
cial hub and the center of the largest metropolitan area in Israel. Tel Aviv has a grid-like
streets network with north oriented imageable main streets, which helps residence to
navigate and communicate [8]. The selected places come from a variety of place types,
including 6 squares, 8 compounds, 3 markets, 7 buildings, 3 parks, 2 neighborhoods and
one bridge. The assumption is that due to their differences, e.g., type, geometry, and
context, they will produce diverse human-generated textual descriptions to constitute a
heterogeneous dataset. These places represent urban objects of different function and
experience as well as various urban image elements, for example: district (neighborhood

1 http://wize-web.com/GIR/Default.html (in Hebrew).

http://wize-web.com/GIR/Default.html
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and compounds), landmark (buildings and parks), path (bridge), and node (squares). As
such, they can generate cognitive representations and place descriptions at different
scales, reference frames and spatial knowledge types.

Table 1. Places used in the survey.

ID Place Name Type Area [m2]

1 Rabin Square Square 30,812

2 Tel Aviv University Compound 579,787

3 Jaffa Port Compound 119,180

4 Pishpeshim market Market 76,490

5 New Tel Aviv central bus station Building 20,747

6 Levinsky market Market 130,354

7 Neve Tzedek Neighborhood 371,822

8 Charles Clore Park Park 116,689

9 Great Synagogue of Tel Aviv Building 4,739

10 Shuk HaCarmel Market 39,266

11 Kerem HaTeimanim Neighborhood 119,174

12 TLV Fashion Mall Building 7,666

13 Yehudit bridge Bridge 4,037

14 Sarona Compound 102,285

15 HaKirya Compound 221,875

16 Habima Square Square 32,370

17 Bialik Square Square 1,559

18 Meir Park Park 25,932

19 Dizengoff Center Building 26,422

20 Dizengoff Square Square 9,854

21 London Ministores Tower Building 7,983

22 Azrieli Towers Building 43,972

23 Masaryk Square Square 4,893

24 Ichilov Hospital Compound 105,032

25 Terminal 2000 - Bus Terminal Compound 85,855

26 Hamedina Square Square 88,399

27 Tel Aviv Port Compound 170,389

28 Hayarkon Park Park 780,247

29 Reading Power Station Building 373,492

30 Gordon Beach Compound 90,389
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For the online survey, the respondents inserted their age, gender, education level, and
place of residence, allowing us to explore the relationships between places by groups of
people [9]. After the respondent submits these details, the place names are shown one
by one in increasing order in terms of existing count of descriptions per place in the
dataset. For each place, the respondent is asked whether she/he is familiar with it, and if
so, she/he is asked to describe in free text the place for a person who does not know it -
without explicitly naming the place in the text. Each respondents answers two questions:
where the place is located, and what can be seen in it. The online survey included 239
respondents providing 1,271 textual place descriptions. The respondents were asked to
describe at least 5 places with at least 4 words each.

Fig. 1. The 30 chosen places in Tel Aviv, depicted in red polygons (left), with zoom-in areas
(middle and right).

2.2 Geographic Layers to Vector Space

Based on descriptions and bag-of-words identified from the survey, the 10 most fre-
quently used terms are investigated. OpenStreetMap (OSM) was used to build the initial
description database, mainly since it is open source, containing various vernacular geo-
graphic information with updated street networks and points of interest (POIs). Accord-
ing to the used bag-of-words and terms in the textual descriptions, we focused on the
various topological relations of the places to the street network, namely: main streets
(as defined by OSM road type), intersections (junctions) and directionality (azimuth).
Accordingly, the textual descriptions of streets topology, such as streets intersection,
between streets, streets absolute direction, are computed based onOSMdata and attached
to the entity data (place) stored in OSM. With this method, other descriptions can be
later added from supplementary data represented as POIs and polygon layers.

The city of Tel Aviv was divided into 1,708 blocks based on OSM’s street network
layer by using the road type tag that equals to ‘primary’. A function was developed to
extract the streets that surround each block, separating them into two groups: intersected
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and parallel streets, depicted in Fig. 2. The streets’ name and their relations to other
streets (for example: intersection) was calculated and marked with predefined characters
(symbols). In IR terminology, these characters are termed tokens, whereas here, the
tokens are used to symbolize the relative description of a block by the relevant streets in
terms of intersections, directions, and relative relations.

Fig. 2. 1,708 blocks in Tel Aviv (left). Example of one block with tokenization metadata (right):
parallel streets marked with # and intersections marked with +.

At the end of this process, each block is associated (and tokenized) with the streets
that surround it, their corresponding topology, its relations with other streets that fall
inside it, and the relative directions to primary roads. Figure 3 depicts the binary form of
these blocks - white for ‘False’ (no tokenization exists) and black for ‘True’ (a specific
tokenization exists), where the rows represent the blocks, and the columns represent the
used tokens. Accordingly, the geographic layers in OSM are transformed into a vector
space that will be used for similarity analysis with the textual queries.

Fig. 3. Binary representation of a sample of the formulized database. Rows – blocks; Columns –
tokens. In orange, the token “west to Namir Street” is presented.
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2.3 Textual Place Descriptions to Vector Space

This process aims to transform the ‘free text place descriptions’ that were collected in
the online survey into a ‘binary token’ representation. The first stage includes filtering
punctuation from all descriptions and creating a dictionary of all terms. The second stage
handles the extraction of entities (to this end –only street names) and the prepositions. For
both, a basic Hebrew NLP tool (regex) was used for extracting entities and prepositions.
The results are transformed to a vector space (similarly to the results in Fig. 3 where rows
are place descriptions) that will be used for similarity analysis with the geographic layers
(Sect. 2.4). Table 2 depicts several examples of token extraction translated to English.

Table 2. Example of tokens extracted from place descriptions using the NLP tool.

Place description Parallel tokens Intersection tokens Directional tokens

Located between Namir
Road and Ibn-Gvirol in
the northern part of Old
Tel Aviv

Namir
Road#Ibn-Gvirol

– –

The intersection of
Idelson and Bialik streets

– Idelson + Bialik –

Between Begin Road
and Ayalon Lanes and
Hashalom Road to the
south

Begin
Road#Ayalon

– S*Hashalom Road

Located north of Allenby
south of Meyer Park and
west of King George

– – S*Allenby, S*Meyer
Park, W*King George

Between Pinsker Street
and Meir Garden near
the City Hall south of
Bograshov and north of
Allenby

Pinsker#Meir
Garden

– S*Bograshov,
N*Allenby

2.4 Retrieving Places from Textual Descriptions

The place retrieval methodology used here is termed ‘Vector space model’. Each block
in the database (denoted here as cell) is viewed as a vector of Inverse Cell Frequency
(ICF) values (Eq. 1), where c denotes the cell, C is the collection of all tokens, N is the
number of tokens in C, cf is the cells frequency of token “i” in C, and tf is the token
frequency of the “i”th token in the cell. Similarly, the place description (text query) is
described as a vector, where c is replaced by q. The similarity between query (q) and
block (c) is measured by a cosine similarity (Eq. 2). With cosine similarity, the cells, in
the form of vectors, are sorted in terms of Euclidean distance or angle size compared
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(matched) to the query (textual descriptions) vector. The smaller the angle, the closer
the similarity, i.e., the textual description is analogous to the place. Since each place
description is attached to the true reference position (ground-truth), the place retrieval
error can be calculated as the place location difference in metric units (distance).

�c = 〈tf (ti, c) × icf (ti,C)〉 =
〈
tf (ti, c) × log

(
N

cf (ti,C)

)〉
(1)

sim(q, c) = �q · �c
‖q‖‖c‖ =

∑n
i=1 qici√∑n

i=1 q
2
i

√∑n
i=1 c

2
i

(2)

3 Experimental Results

3.1 Textual Dataset

Figure 4 depicts the distribution of gender, age, and education of all survey respondents,
showing an almost equal number of males and females. Most of the respondents are aged
20 to 30 and have graduated from elementary school or have an academic diploma. A
third of the respondents live in Tel Aviv, which should provide a good starting point to
examine local knowledge (i.e., spatial knowledge and understanding acquired by direct
experiencewith the environment) in terms of place descriptions. Although to some extent
the respondent population is homogenous, their characteristics distribution still allows
us to assess the description type and commonly used words of each group.

Fig. 4. Respondents’ histograms of gender, age, and education (left to right).

3.2 Place Retrieval Analysis

To evaluate the proposed methodology, we compared our process to Google Maps
geocoder API2. For each textual place description from the online survey, we retrieved
the first-place result from Google Maps and our query on the enriched OSM. The loca-
tion of each retrieved place was compared to the true (known) place location in terms
of Euclidean distance (nearest entity node). Figure 5 depicts the distance comparison

2 https://developers.google.com/maps/documentation/geocoding/overview.

https://developers.google.com/maps/documentation/geocoding/overview
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results of both retrieval processes in boxplots for all places. The overall results are sim-
ilar, where in the 90th percentile (top black line), our proposed process presents a better
retrieval accuracy of 2,810 m compared to 2,927 m. For the 50th percentile (orange
line), Google Maps’ retrieval accuracy is better: 309 m compared to 531. Overall, both
retrieval processes are similar in terms of identifying the queried place, although our
process presents relatively more outliers.

Fig. 5. GIR on OSM and Google Maps geocoder API comparison in terms of distance accuracy.

Figure 6 depicts the retrieval accuracy of all places. In our suggested process (in
blue), more than 50% of places were retrieved within less than half a kilometer, which is
a very promising error value in terms of the relatively small number of used tokens. For
example, TLV mall, London mini-stores and the great synagogue were retrieved in 90%
with an error of few meters only. Riding power station and Tel Aviv port, on the other
hand, were retrieved in 90% with an error of 3,000 m, where Tel Aviv University was
retrieved in 90% with an error of 6,000 m. This might be derived from a lack of relevant
textual representations, but also since place type and attribution may require customized
tools and specific tokenization that should be further investigated and developed. Tel
Aviv University, for example, covers more than 30 acres, thus it is evident that people
will describe it differently relating to various locations and areas within the university’s
extent, thus present it with a larger variety of words, terms, and relations.

Fig. 6. Place distance retrieval error comparison betweenGoogleMaps (orange) and our proposed
process (blue) for all places using boxplots. Y-axis depicts the distance error in a resolution of 1000
m, and X-axis depicts the searched place names (respectively to Table 1). (Color figure online)
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Figure 7 depicts two place retrieval distance distributions according to the number of
used words (left) and place area (right). It is visible that some correlation exists between
the number of used words and the retrieval accuracy, where in general longer place
descriptions lead to better place retrieval. Similarly, the larger the place area - the lesser
the retrieval accuracy (P-value < 0.005).

Fig. 7. Place retrieval error according to the correlation of number of used words per description
(left) and place size (right).

4 Conclusions and Future Work

In this study,we present the first stages of ourmethodology to enrich geospatial databases
by automatically computing literal descriptions of places with the aim to improve GIR,
focusing onHebrewplace text queries. The idea is to digitallymimic the human linguistic
by identifying common words and terms used for place description, compute them
from existing database relations and indexes, and attach them to the corresponding
places as additional attributes. Here, we presented the preliminary survey we conducted
to generate the initial bag-of-words and showed the potential of the tokenization and
vectorization processes in correctly retrieving the places described in text descriptions.
When compared to the commonly used Google Maps geocoder API, our methodology
showed promising results in terms of location accuracy.

Our preliminary analysis showed that people use few syllables as possible to describe
a place, with a preference for descriptions using names and spatial relations - rather than
quantitative geometric indices.Moreover, the use of salient features, such as street names
and landmarks, as reference points, and the use of absolute directions are evident in the
place text descriptions. Since not much was done in relation to the analysis of Hebrew
literal spatial description, it was found that it is similarly structured as other languages
(e.g., [8]).

Several new developments should be considered to improve theGIR in terms of place
location accuracy. One issue is related to the used dataset, being relatively homogenous
(used words and terms) since it was created relying on volunteers who are friends,
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family, and colleagues; a more heterogenous and wider population is needed. Also, the
existing analysis did not consider the different place types, also in terms of their area,
that might affect the used words and terms, which requires additional investigation in
terms of tokenization to further enrich the database. The existing tokens were created
while relying on a limited set of rules, mainly topology, without considering the variety
of spatial relations (e.g., scale) and other database elements, such as reference to POIs,
which should further contribute (e.g., [10]). Tokenization did not use the survey answers
of ‘what exists there’, whichmay include properties and elements that will further enrich
the database, and hence improve the GIR.

To conclude, we showed that by enriching a geospatial database with a set of linguis-
tic rules that present defined existing topologies and salient features, we succeeded in
developing a GIR that produces promising results in terms of location accuracy, which
were comparable to another off-the-shelf GIR service. The results of this study can help
in better understating theHebrew literal place description, thus improving search engines
to support geographic queries, with the potential of translating the developments to other
languages.
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Abstract. This paper presents an approach to solve the antenna cov-
erage location problem (ACLP) in the context of tracking cattle in the
Austrian Alps. In cooperation with ViehFinder a process is determined
for optimizing the placement of the antennas using a DEM with a res-
olution of 1m. The paper identifies several constraints, such as mobile
reception, proximity to a street and a maximum slope, that influence the
number of candidate positions. Further, the demand nodes are restricted
to the alp areas. Of the possible objectives for the ACLP, such as (1)
complete coverage, (2) maximum coverage with a budget and (3) backup
coverage, this paper focuses on maximizing the coverage in respect to a
given budget. The optimization model discussed here uses visibility anal-
yses to determine the viewsheds - i.e. the covered area - of the antennas
and Integer Linear Programming (ILP) to solve the locational problem
of placing the antennas. It will be applied to two study areas. The first
study area is located near Graz in Styria containing about 277.3 mil-
lion candidate positions and demand points. The second is close to the
western border of Carinthia and consists of 47.5 million demand nodes
and possible candidate locations. Due to the size of the problem com-
putational problems might result, when using ILP. Therefore the use of
genetic algorithms and heuristics is considered as well. Especially NSGA-
II that has been suggested as one of the viable solutions for problems of
similar nature and complexity. The sheer size of the problem is unprece-
dented, thus future work will explore the boundaries of the proposed
approach.
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1 Introduction

Alpine farming is an important aspect of agriculture in the Austrian mountain
regions. These permanent grassland areas not only contribute to an attractive
cultural landscape, but are also vital for securing the biodiversity in the alpine
regions [2]. There are about 8,000 alpine pastures with a forage area of 311,000
ha. With 301,000 cattle, 50,000 cows and other animals such as sheep, horses or
goats, it is a huge part of farming in the Austrian mountains [4].

Livestock farming is an important part of agriculture not only in Austria
but has become one of the fastest-growing sectors of agriculture globally due to
the rapid growth in population and expansion of urban areas [23]. Movement
and forage intake of the livestock is most likely to affect and be affected by the
ecosystems surrounding it. Thus parameters such as vegetation growth dynamics,
wildlife behaviour and demographics, and disease transmissions affect livestock
farming. The mobility of cattle can be monitored using modern positing systems
(both GNSS and non-GNSS based systems and techniques) and can provide vital
information to farmers, land managers and conservationists to make informed
decisions [25].

One company that provides a solution for tracking cattle on the Alps is
ViehFinder. The solution uses Long-Range (LoRa) radio frequency antennas
and solar powered GNSS based collars for the cattle to transmit the position
of the cattle and temperature of the environment to the server every 10 min.
The proposed system enables the near real-time monitoring of the cattle alerting
farmers in case the cattle leaves their property (geofencing) or shows any unusual
behaviour (predator attack). The stored mobility and environmental data is
supposed to be analyzed in a variety of ways. For example, extensive spatio-
temporal analysis of the mobility data can be performed to enable farmers to
make informed decisions on the management of their alps [14–16].

Effective monitoring of cattle using ViehFinder’s proposed solution needs the
extensive coverage of the area of interest with a sufficient number of antennas.
However, the unit cost of an antenna is 1,260e and makes up the major chunk
of the ViehFinder hardware setup [17]. In order to make the solution viable
for farmers, it is needed that the minimum numbers of antennas are installed
while maximizing the coverage area of these antennas. We’ll later refer to this
as Antenna coverage location problem (ACLP).

This work in progress paper proposes an approach to optimize the number
and coverage of the antennas using spatial optimization techniques. Visibility
analysis [24] and coverage models, such as maximum coverage location prob-
lem (MCLP) [6] are used to solve the problem at hand. At the end a proce-
dure for determining the optimal positions of the antennas based on an input
digital-elevation-model (DEM) and constraints for antenna positioning will be
developed. Thus the model has to satisfy certain objectives and constraints that
occur when tracking cattle in remote areas. The primary research question this
paper faces is:
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– Can the problem of optimal antenna positions for monitoring cattle movement
in alpine regions be modeled with spatial optimization techniques?

Further questions that are addressed in the paper are:

– Which constraints determine the antenna candidate positions?
– Which algorithmic techniques can be used to improve the optimization pro-

cess?

In Sect. 2 this paper will introduce the ViehFinder system, which can be used
to track cows in the alps. Further a review of locational problems is conducted
and the Antenna coverage location problem is introduced, as an equivalent of
the Maximal Covering Location Problem. Section 3 presents the study areas and
the constraints of the problem. Section 4 shows the proposed solution, as well as
the tools that are used. It also gives insight into first results and other tools that
must be considered. Finally, Sect. 5 concludes this paper with a discussion and
a differentiation of the ACLP from similar problems.

2 Background

2.1 ViehFinder

ViehFinder is an integrated solution for animal tracking in remote areas. With
the focus on robust devices and energy self-sufficient components, it allows a
maintenance-free operation and allows unprecedented high time resolution of
positioning data. ViehFinder consists of two hardware components (Fig. 1) and
one software component. The ViehFinder node, which is a Long-Range (LoRa R©)
based sensor unit with a GNSS module. It is typically fixed on a collar and
mounted around the neck of animals, e.g. cattle or other livestock. In addi-
tion, it contains an acceleration sensor and a temperature probe which allows
the tracking of special animal behavior and the environmental conditions. The
energy source is a 0.5 W solar module with an attached Lithium-Polymer (LiPo)
battery cell installed, which allows continuous operation of the node. The sec-
ond component is the LoRaWAN (Long Range Wide Area Network) antenna.
It receives the sensor signals from the ViehFinder nodes and routes the signals
with a LoRaWAN Gateway and a connected cellular router via the Internet to
the data storage and data processing servers. Due to the range restrictions, and
since the data connection between node and antenna can only be guaranteed in
direct line-of-sight, there might be more than one antenna required for a defined
area, which needs to be covered. Thus the optimal positioning of these antennas
is the focus of this work.

The third part, the ViehFinder control server, contains the essential software
components to operate the system. It needs a controller software that features
the collection and pre-processing of tracking data. This system is implemented
based on Node.js and Node-RED. It also features a time series data platform
for the storage and retrieval of the sensor data. This component is implemented
with InfluxDB, a cloud database for handling real-time temporal data.
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Fig. 1. Two components of the ViehFinder setup, solar powered ViehFinder node (left)
and LoRaWAN antenna (right).

2.2 Locational Problems (LP)

Locational problems are spatial optimization problems that determine optimal
locations of facilities that need to provide a certain coverage. A classical example
are fire stations that need to cover a city. In particular, if one would define that
neighborhoods need to be covered in a way that they are not more than 5
driving minutes away from the next fire station - often having limited resources.
Hence, the planning of new fire stations is a complex computational task that
requires mathematical modeling and optimization techniques. De Smith et al. [8]
compiled a taxonomy of locational problems that lists the components and the
basic classes of locational problems accordingly. According to De Smith et al. [8],
“cover” can be defined and modeled using a variety of metrics ranging from
Euclidean distance, line-of-sight, to service time.

Church and Murray [7] define three different classes of locational problems:

– Location Set Covering Problem (LCSP) [26]
– Maximal Covering Location Problem (MCLP) [6]
– Minimum Impact Location Problem (MILP) [20]

The LCSP minimizes the number of facilities required to cover a demand
area in a way that the maximum service time/distance is still guaranteed [26]
- and the whole area is covered by the service. The MCLP [6] is based on the
LCSP, but does not guarantee a complete service coverage over the whole area
of interest. Furthermore, the MCLP uses a given amount of resources, and tries
to find the maximum (i.e. best) coverage with respect to the bounded resources.
The MILP [20] is a formulation of a spatial optimization problem that seeks to
locate facilities in a way that their impact on neighboring entities is minimal -
such as nuclear power plants.

2.3 Antenna Coverage Location Problem (ACLP)

ACLP is a coverage location problem concerned with the optimal placement of
a minimum number of antennas (transmitters or receivers or both) to achieve
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maximum coverage. MCLP is a non-deterministic polynomial time (NP)-hard
optimization problem thus ACLP is one as well and depending on the size of the
problem it might only be solvable using heuristic approaches [1,19]. There are
several approaches to solve ACLP using mathematical programming languages
like ILP, heuristics, metaheuristics, and evolutionary algorithms. Some papers
also use Machine Learning in combination with evolutionary algorithms to solve
this problem [1,9,21]. There are several possible scenarios for the ACLP in this
case. (1) The farmer wants to have the alp covered completely, which would
require the LSCP. (2) The farmer works with a budget and can only afford a
certain number of antennas leading to the usage of the MCLP. (3) A certain
amount of backup coverage is needed, requiring demand points to be covered
by more than one antenna. Either way it is necessary to compute the viewshed
of each candidate position which returns all locations in the area that can be
seen from the position within a specified distance [24]. Viewshed might be a
simplification of the spread of radio frequencies, but covered areas and areas of
radar shadow can be determined [18]. Further coverage of a collar through an
antenna can only be guaranteed, when it lies in the line of sight. For the ACLP
each pixel of the DEM of a given Area of Interest (AoI) is considered a demand
point that needs to be covered by an antenna. A pixel is considered covered,
when it lies within the viewshed of a candidate position. The viewshed of each
antenna depends on its height, range and the surrounding area. In general plac-
ing antennas on a hilltop will yield better viewsheds, than placing them in a
valley. Although there is only a low correlation between visibility and elevation,
because a peak can be surrounded by other peaks impairing its viewshed [13]. S.
Bao et al. [3] faced a similar problem, when trying to optimize fire watchtower
locations. The major difference between the positioning of the watchtowers and
the antennas in this paper, is that in this case there are no given candidate
positions. Each pixel of the DEM that fulfills certain constraints is considered
a potential antenna position. The following section explains requirements, con-
straints and challenges that arise, when dealing with such a mutable number of
candidate positions.

3 Requirements and Challenges

Two study areas are chosen for developing and testing the proposed procedure as
shown in Fig. 2. The first one is the test area Schöcklland reaching from the outer
borders of Graz to Weiz in Styria, Austria. It covers a total of 277.34 km2, thus
it contains about 277.3 million demand points and possible candidate positions,
when using a DEM with 1 m resolution. The second study area is located in the
upper Mölltal and is 47.55 km2 that’s only about one fifth of the first area’s size.
Yet it still has 47.5 million demand points and candidate positions. Thus it is
vital for the computation time to reduce the number of demand points and the
potential antenna locations.

Furthermore, the computation of the viewsheds requires the height and range
properties of the antennas, as well as the coordinates of the candidate position.
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Fig. 2. Overview maps of the two study areas. Study area Schöckelland in Styria (left)
and study area Upper Mölltal in Carinthia (right).

As mentioned, the proposed antenna uses LoRa-radio frequency technology and
has a range of 8 km [16]. The antenna can be placed at different heights. For
this project a general height of 2 m is assumed. The coordinates are taken from
each candidate pixel of the DEM. There are several requirements that restrict
the number of possible antenna locations. (1) Easy access for the installation
and maintenance of the antenna is important, thus a candidate position has to
be within a range of 100–200 m of the next street. (2) Another aspect, also con-
cerning the accessibility, is that the slope is below 20%–30%, excluding difficult
terrain. (3) The third and last constraint is the reception of a mobile network,
because otherwise the antenna can’t send the tracking data to the server. The
street data can be acquired from OpenStreetMap (OSM), the slope can be cal-
culated from the DEM and the mobile network coverage is provided by the
BMLRT [5].

Concerning the demand points the area of the alps in the study area is used.
Thus excluding all pixels that are not part of an alp. Although a buffer of 200 m
around the alp areas is included, because the cattle should still be trackable in
case animals leave the farmer’s property.

Finally, the MCLP needs the number of allowed antenna positions or rather
a budget for selecting the antenna positions that provide the best coverage. For
example, this constraint can be given as 6,000e allowing the algorithm to place
4 antennas with a price of 1,260e each.

The biggest challenge for this project was mentioned at the beginning of
this section. Handling the immense number of candidate positions and demand
points is a tough task and requires a lot of computational power. Especially
achieving a solution in a reasonable amount of time is complex but important
for the real-world usage of ViehFinder project.
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4 Proposed Solution

The procedure proposed in this paper for solving the ACLP can be seen in Fig. 3.
The figure shows that at the beginning the demand points and candidate points
are generated from the relevant data sets. The demand points are gained from
clipping the DEM with the cadastre areas and converting it to vector points.
The candidate positions however result from applying the three constraints,
mobile network coverage, proximity to a street and maximum slope to the DEM.
For each candidate position a viewshed is computed, which leads to as set of
viewsheds that are handed to the optimization tool Allagash with the demand
points. As a result it returns the optimal viewsheds.

Fig. 3. Spatial optimization approach depicting the relevant inputs and processes.
Describes steps from the raw data at the beginning to the optimized output at the
end.

Once the candidate positions are determined their viewsheds are computed
and handed to the python optimization module Allagash [22] along with the
demand points. Allagash uses GeoPandas in combination with PuLP to model
the spatial optimization problems LSCP and MCLP [22]. We then use the Coin-
or Branch and Cut integer programming solver that comes along with PuLP to
solve the problem [12]. Because most farmers are restrained by a budget, covering
their complete area might not be feasible for them. For that reason, this paper
focuses on the application of the MCLP in the context of this scenario. Therefore,
the objective function for this problem reads as follows:

N∑

j=1

withZj =

{
1 if cell j is covered by at least one antenna
0 otherwise

For now it just tries to maximize the number of covered demand points for
a set of possible antenna positions. Future objectives are covering the complete
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area with a minimum amount of antennas, as well as providing a certain amount
of backup coverage in case of the failure of an antenna.

Figure 4 is an example for the problem at hand and shows the alp areas sur-
rounding St. Radegund bei Graz (47.18◦N, 15.49◦E) together with five manually
set antenna candidate positions. These antenna locations could potentially cover
54.24% of the alp area in the region. Running the MCLP with a maximum of 3
antennas returns the antennas 1, 2 and 3 as optimal and achieves a total coverage
of 42.30%.

Fig. 4. Example for the application of the ACLP with a budget of 3 antennas on a
small subset of the study area Schöcklland. From the five candidate positions 1, 2 and
3 are chosen as optimal, thus achieving a coverage of 42.30%.

Initial test runs were executed on a HP notebook with an i7 with 2.6 GHz
and 16 GB of RAM. The largest data set run so far consisted of 100,000 demand
points and 1000 candidate positions. In total it took about 3 h and 42 min
to receive the optimal solution. Further improvements of the algorithm show
promising results, but benchmark runs are still to be made.

We are aware that the sheer size of the problem, might lead to computational
problems, when using ILP. For that reason, we have alternative solutions in mind
such as using the genetic algorithms, especially NSGA-II that has been suggested
as one of the viable solutions for problems of similar nature and complexity.
Heyns et al. [11] for example used it for solving about 46000 candidate positions.

5 Discussion and Future Prospects

This paper proposes an approach for solving ACLP for monitoring cattle mobility
using spatial optimization. Literature suggests many approaches for the ACLP
in diverse domains such as wildfire detection. Some of the proposed solutions can
handle large problem instances but to the best of our knowledge none of those
can handle millions of demand points and antenna candidate positions. Thus the
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major difference between previous work and our approach is the context and the
sheer size of the problem.

Having this high degree of freedom in the placement of the antennas and the
large amount of demand points leads to a challenging computational burden.
Reducing the number of candidate positions and demand points through the
mentioned constraints might not be enough. There are several ways of further
filtering them. Heyns et al. [10], for example, use a geomorphological approach
to restrict candidate positions to hills and ridges. Heyns [10] uses a reduced
target-resolution strategy to reduce demand points uniformly. Therefore, a sim-
ilar approach might be needed for the problem at hand.

Another way of choosing antennas could be setting a threshold for their
minimum coverage. That means that a candidate position with a viewshed that
covers less than the threshold is skipped. For example, if the threshold is set to
50%, then all antennas that cover less area than 50% of the possible 100% are
skipped. Future work on this project will explore the boundaries of modelling
optimal antenna positions in alpine regions with spatial optimization models.
We evaluate different optimization approaches - ranging from exact to heuristic
methods - for the given problem size and complexity.

Furthermore, we will evaluate antenna constraints for their usefulness and
their influence on the problem size, complexity and computational time. The
same goes for the demand points constraints.
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Abstract. Maps need different representations of the same cartographic
object in order to display it at several scale levels. When a user zooms in,
the object should depict every detail as it is the main focus on the map.
On the contrary, when the user zooms out, there is no need to display
every single detail of the object as most would become as small as to be
invisible. A common technique to speed up the display process is storing
several representations for the same object at different scales. However,
this technique raises redundancy, and therefore it increases space usage.
This work aims at suppressing that redundancy by introducing four alter-
natives that use a unique representation for each cartographic object
while still being able to retrieve simplified versions of them depending
on the requested scale.

Keywords: Cartographic generalization · Compression · Geographical
information systems

1 Introduction

Cartographic generalization is a process in which a given representation of a
geographical object is simplified in order to produce a less detailed version of
the same object adequate to be seen at a certain scale [6]. For example, on a map
that aims at representing the outline of the full European continent, there is no
need to depict every single nook of the coast. However, if the map just covers the
northern coast of Spain, even the smallest peninsula may be of interest. Sending
simpler versions of cartographic objects cheapens transmission costs without an
apparent loss of quality. On the other hand, simplified versions of the map are
cheaper to process, therefore it is of interest to have such simplified versions
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in order to show them when the scale of the map does not need much detail.
These smoother variants of the objects can be obtained through cartographic
generalization algorithms. A cartographic generalization algorithm is one that
takes a complex, fully-detailed, representation of a geographical object as its
input, and outputs a less detailed representation of the same object [6]. The
recursive application of such an algorithm would provide increasingly lesser-
detailed representations of the original object, as illustrated in Fig. 1. There are
several techniques of cartographic generalization: aggregation, reclassification,
simplification, etc. A good survey can be found at [7]. Out of all these, line
simplification is one of the simplest and widely used methods, being the Douglas-
Peucker [2] algorithm the most popular approach.

Fig. 1. An example of geometry generalization in practice taken from Google Maps. A
port is displayed with all details when the user zooms in (left) but the port is reduced
to a simple sketch when the user zooms out (right).

In modern GIS applications, different representations of the objects obtained
from cartographic generalization are stored separately. Hence, the system can
quickly send the requested objects for any given level of scale (zoom).

Storing several representations of the same geographical object at different
levels of detail generates a vast volume of redundant information as every point
of an object displayed at a certain scale would be included again at every more
detailed scale, as exemplified in Fig. 2. Observe how the level with the least
amount of detail (denoted in the image as level 1 ) does not include the point
(x2, y2). However, every successive level does, as well as all the points already
contained in Level 1. The last level (level N ), corresponding with the represen-
tation of the full geometry, contains all the points.

This work aims to design and implement new approaches to efficiently store
and manage multiple representations of the same object by addressing the inher-
ent redundancy of state-of-the-art solutions. We introduce in the following sec-
tions four alternatives, all of them reducing more than 85% the storage space
compared to the traditional representation of an object geometry for each scale
level. Our promising results are due to two reasons: more efficient approaches to
store the raw data using compression techniques, and the complete elimination
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Fig. 2. Multiple representation of the same object at different scales.

of any kind of redundancy. Moreover, we also include, as a proof-of-content, some
experimental results demonstrating how our solutions can recover the represen-
tation of a geographical object at any given level of detail in a reasonable time
compared against a classical relational spatial database (PostgreSQL).

2 Background

2.1 Basic Concepts of GIS Technologies

GIS technologies use one of two primary types of spatial representations: raster
and vectorial. The raster model defines a grid where each cell stores the value of
a particular spatial property (e.g. elevation, temperature, etc.). In opposition,
the vector model stores the geometries of the spatial objects to represent (coun-
try borders, rivers, roads, etc.) using the coordinates of its points. The vector
model considers three basic elements: points, polylines, and polygons. Point data
refers to a single point in space defined by its geographical coordinates (latitude
and longitude), whereas a polyline is a concatenation of points in order where
each point represents a vertex of the polyline (e.g. a nook in a coast border).
Polygons can be thought of as closed polylines, where the first and last points
are equal. Line simplification and other cartographic generalization techniques
work over the vector model, smoothing lines and polygons by excluding some of
their vertices to shape a simplified representation of them.

The coordinate values of each point (longitude and latitude) are usually
expressed in decimal degrees. Double-precision values are the standard data
type for coordinate values in most GIS applications, as well as web mapping
applications. A decimal degree at the equator corresponds roughly to 111 km.
This means that, for example, 0.0001◦ correspond to roughly 11.1 m, whereas
0.00001◦ correspond to 1.11 m at the equator.

Double-precision values are encoded with 64 bits. To save space, doubles can
be converted into integers. The process of transforming doubles to integers is
trivial. First, to avoid working with negative values, we also scale all of our data
to zero by subtracting the minimum value of each axis from all values on that
axis. Then the process consists simply of moving the comma of the double value
until it becomes an integer number. This process of offsetting and scaling double
values to integer values is common in GIS applications.
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The most fundamental query for any GIS user interface is to recover the
polylines contained within a bounding box defined by (xmax, ymax, xmin, ymin).
This implies calculating all the intersection points of the object’s geometry with
the window. Hence, we need to recover all the points in the polyline of the object
between those intersection points. For this purpose, we define the operation
res ← retrieve(ps, pe, lvi) that returns, from the geometry of an object stored
as a coordinate sequence (i.e., each point represented by a longitude and latitude
value), all the intermediate points stored between any two positions, ps and pe,
at a given level of detail lvi.

2.2 Compressed Data Representation

The constant increase of stored information in almost every discipline has
boosted the evolution of new compression techniques that tackle the repeti-
tiveness of the data to reduce their size. In this work, we follow the trail of [1],
introducing new original compressed solutions that may serve as alternatives for
storing representations of a geographical object at different levels of detail.

To explain our solutions, we need to define a commonly used structure in
compression known as bitvector. A bitvector B is a sequence of zeros and ones,
i.e. an array of bit values, of a given length n as displayed in Fig. 3. The two
basic operations supported by a bitvector are rank1 and select1 [4]. rank1(B, p)
counts the number of ones until a given position p on the bitvector B. By storing
counters of the accumulated rank value at at regular intervals, it is possible to
support the rank1 operation in constant time (O(1)) with just o(n) additional
bits for the counters. On the other hand, select1(B,n) returns the position of
the nth 1 on the bitvector B. The select1 operation can be supported by the
same auxiliary structure used for rank1 but its time complexity is O(logn). Note
that similar rank0 and select0 operations can be defined.

Fig. 3. Bitvector example with rank, select and successor operations.

A more complex operation is successor1 [5]. successor1(B, p) returns the
position of the next 1 on B starting from position p. This operation can be
solved with a time complexity of O(1) using the same auxiliary structure for
rank1. Again, the same definition would apply for successor0.

Finally, instead of using 32 bits to represent a value in an array of integer
values, we can use exactly the number of bits needed for representing the bigger
integer, that is, we use �log2M� bits, with M being the largest value in the
array. This guarantees that the least amount of bits possible for encoding the
values is used, gaining compression compared to storing the array as a sequence
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of 32-bit integers. These implementation improvements can be easily handled by
a popular C++ library for efficient data structures [3].

3 Our Proposals

This section introduces four alternatives to represent simplified versions of geo-
graphical objects without redundancy.

3.1 Proposal 1: Naive Solution

For our first proposal, we designed a rather simple solution that we call Naive
Solution. This approach stores the values of both axis (longitude and latitude)
in two integer vectors that we will call X and Y. Then, given N levels of detail,
it also stores N − 1 bitvectors of size n, with n being the total number of points
that describe the original geometry of the object. For every bitvector a 1 is set at
position Bi[j] to indicate that the detail level i includes the point j. Therefore,
Bi indicates which points of the full geometry are included in the representation
of the level of detail lvi. The last level lvN will correspond with the full geometry
of the object, hence it will always include all the points, meaning a bitvector BN

will have all its positions set to 1. This makes it unnecessary to store a bitvector
for the last level of detail.

Fig. 4. Naive solution.

Figure 4 illustrates how this solution works for a geometry with three different
levels of detail represented by the bitvectors B1, B2 and B3. It should be noted
that while there are two integer vectors corresponding to the X and Y axis, only
one bitvector is necessary per level of detail. This is because a point with two
coordinate values either appears or not at a specific level of detail, meaning that
for any xi its pair will share the same position on the Y axis vector.

Thanks to these bitvectors, we can implement the res ← retrieve(ps, pe, lvi)
operation. Executing succesor1 (detailed in Sect. 2.2) repeatedly over Bi from the
position ps−1 until reaching or surpassing the position pe returns all the positions
on Bi set to 1, which are all the positions that describe the geographical object at
the level of detail lvi. We start at the position ps − 1 and not ps in order to also
check whether Bi[ps] is set to 1.

In Fig. 4, if a query demands the segment defined from x3 (ps = 3) to
x8 (pe = 8) at the level of detail lvi = 2; we would start by performing
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successor1(B2, 2) = 4. Then, we calculate succesor1(B2, 4) = 5 and so on until
reaching or surpassing pe = 8. Thus, in the example we get that the points that
define the geometry segment between the points ps = 3 and pe = 8 at lv = 2 are
res = [(x4, y4), (x5, y5), (x6, y6), (x8, y8)]. Note that for recovering the last level
of detail we only need to return all the points stored as the full geometry of the
object between positions ps and pe.

3.2 Proposal 2: Differential Solution

For our second approach, we propose an improved version of the Naive Solution
using the inherent spatial locality of the data to reduce the size of the represen-
tation. As the first law of geography states, everything is related to everything
else, but near things are more related than distant things [8]. In our particular
context, this implies that points close to each other in a geometry representation
would also have close coordinates (latitude and longitude). Therefore, the dif-
ference between two close-by values of such coordinates would be a significantly
smaller value that could most likely be codified using a reduced amount of bits
in opposition to the actual values of the real coordinates.

The first step to work with differential encoding is to sample each axis of the
original geometry dividing them into two vectors: one storing some of the original
values (absolutes), and another one containing relative values to those absolutes.
A relative value is calculated using the positive difference between the original
value and the closest previous absolute value. Essentially, for a point value xi,
its value in the relative values vector is equal to |xi −xj |, with j = rank1(B1, i).

The original values would then be recovered by adding the corresponding
absolute to the relative value. Two auxiliary bitvectors (one per axis) are needed
to determine if the relative value results into a positive or a negative point. See
Fig. 5 for clarification, although it should be noted that for simplicity sake the
figure only illustrates the X axis.

Fig. 5. Differential solution.

Observe how we use the points for the first level of detail lvi = 1 as our
absolute values. Given that it has the least amount of points, we consider it
the most reasonable choice for reducing the storage space. Besides, using the
points of an already defined level of detail lvi means there is no need to define
an additional bitvector for the absolute vectors (we use Bi). It also means that,
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if a query requests that particular level lvi, we can simply return the absolute
vectors with no further processing.

The operation res ← retrieve(ps, pe, lvi) is solved basically using the same
algorithm as in our Naive Solution solution, except that this time it is necessary
to consider if the value is an absolute value or a relative one, being mandatory
to convert it accordingly to its original value in the second case.

3.3 Proposal 3: Binary-Naive Solution

The main idea behind this solution is that, for a low level of detail, it is not
necessary to use values with much precision. For example, for the first level of
detail (the least detailed representation of the geometry), it might be enough to
use the b most significant bits of the actual integer values that might correspond
to a precision adequate for representing the map at a high enough scale.

Again, this proposal is based on our Naive Solution but improving the data
recovering working with bit-chunks depending on the level of detail lvi instead
of recovering the full values. As such, we called this our Binary-Naive Solution.
Figure 6a illustrates how in this solution successive levels of detail do not add
only new points, but they also add more precision to the points already included
in the superior levels.

Fig. 6. Our two binary solutions. Binary-Naive (left) just expands the coordinates
through every level while Compressed-Chunks (right) also gets rid of repeated chunks.

For every level of detail lvi, we need to define the length of the bit-chunk bli
that corresponds to that level representation. Any distribution is possible, even
assigning an unequal numbers of bits to the different levels. For our example in
the Fig. 6a, we use 18 bit integers divided into 4 levels of detail. We assign 3 bits
to the first level and 5 bits to the three next levels of detail.

The res ← retrieve(ps, pe, lv) operation can be implemented mostly the
same as before. The only difference is that instead of recovering the points that
are included in the representation of a given level of detail lvi, only the b most
significant bits of the binary representation of that points are recovered, being b
the total number of bits that would correspond to that level, plus the bit-chunks
of any previous level. So, looking at the example in the Fig. 6a, for recovering x3
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at the level of detail 3 we would not return the value of x3 but its 13 (3 + 5 + 5)
most representative bits, that is: 111 from the first level, 11110 from the second
and 10100 from the third.

3.4 Proposal 4: Compressed-Chunks Solution

Our final proposal expands the Binary-Naive Solution. Given the same principle
of spatial locality we took advantage from on our Differential Solution, we assume
consecutive points would have fairly close-by numerical values, and therefore
similar binary representations on the most significant bits. Therefore, the main
idea behind this solution is to only store the bit-chunks on any given level that are
different from the immediate previously stored bit-chunk. We call this approach
our Compressed-Chunks Solution.

Figure 6b illustrates this solution. We have greyed out the bit-chunks that are
not stored. Observe how the first 3 most significant bits that we would recover
for the first level of detail of x2 and x3 are equal to those of x1. Therefore, we do
not need to store them. Instead, we will store a maximum of N bitvectors per
axis of size n (n being the total number of points in the full geometry) where we
set a 1 in the positions corresponding to a bit-chunk actually stored at that level
of detail. These bitvectors are denoted as XP1 to XP4 in the Fig. 6b. Following
the previous example, as we store the 3 most significant bits of x1 at the level
of detail lv1, we set XP1[1] to 1, however, we leave XP1[2] and XP1[3] set to 0.
Another N bitvectors would be necessary for the Y axis values.

Whereas it is fair to assume the 3 or even the 8 or 13 most significant bits
of consecutive values would be equal (as Fig. 6b exemplifies with x1 and x2), no
two points will ever be the same. It could be argued that it is inefficient to store
the two bitvectors XPN and Y PN corresponding to the last level of detail and
the bit-chunks of least significant bits, as most if not all its positions would end
up set to 1 like in the example for XP4. Additionally, for this solution we need
to process the two axis bitvectors XPi and Y Pi separately to recover the level
of detail lvi. Observe how, while in the Fig. 6b the 3 most significant bits of x2

are equal to those of x1 (stored as the first 3 bits bit-chunk for the first level of
detail), it might be the case that the 3 most significant bits of y2 are different
from those of y1, and therefore stored as a different 3 bit-chunk.

The operation res ← retrieve(ps, pe, lv) functions mostly the same as in
the Binary-Naive Solution with the exception that this time it is necessary to
correctly select the bit-chunks corresponding to any value taking into account the
information provided by XPi and Y Pi. Essentially, we use the rank1 operation
over the XP and Y P vectors. For every position p we want to recover, its bit-
chunk at any given level of detail i corresponds to the appropriated bit-chunk of
the point at rank1(XPi, p) and rank1(Y Pi, p).

4 Experimental Evaluation

This section describes the experiments performed to test the efficiency of our
proposals, comparing their space usage reduction and their query performance.
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As a baseline, we filled a PostgreSQL database with the complete geometry
outlining the border of the United States of America. The data was downloaded
from the online repository GADM1 as a collection of geographical points on
decimal degrees that was then rounded to a precision of 4 decimal places as
this would suffice to display the world with enough detail to display streets and
buildings. From this geometry, three less detailed representations were computed
applying the Douglas-Peucker [2] algorithm recursively. This resulted in four
different representations of the border of the United States of America at four
different levels of detail that amounted to a size of roughly 84 megabytes.

Table 1. Size usage of the four proposals (in Mb and in compression-ratio relative to
the size of the original database)

Solution Size (in Mb) Compression-ratio (in %)

PostgreSQL database 84.39 100

Vector of 32-bit integers 42.19 50

Naive solution 10.36 12.28

Differential solution 8.62 10.22

Binary-Naive solution 10.36 12.28

Compressed-Chunks solution 5.38 6.37

Table 1 shows the sizes and compression ratios (defined as the percentage
that the compressed representation occupies with respect to the original data)
achieved by our proposals comparing against the PostgreSQL database. We also
included the cost in megabytes of storing the four levels as 32-bit integer vec-
tors. As expected, both the Naive and Binary-Naive Solution share the same
compression-ratio. The Differential Solution demonstrates an improvement over
both these solutions thanks to its smaller integer vectors, although, not as dra-
matic as the improvement shown by the the Compressed-Chunks Solution.

Table 2. Time comparison of all the solutions for recovering each full level of the
cartographic generalization (in ms)

Level Naive solution Differential solution Binary-Naive solution Compressed-Chunks solution

Coordinate X Coordinate Y Total

1 84.385 70.793 83.318 60.045 61.855 121.900

2 143.121 198.343 145.144 181.291 188.364 369.655

3 181.399 270.279 186.166 314.196 313.736 627.932

4 186.805 291.396 187.212 405.504 406.804 812.308

Next, we study the query performance of each approach comparing the time
each solution needed to retrieve the complete geometry of an object at each
1 https://gadm.org/index.html.

https://gadm.org/index.html
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level of detail, lv1 to l4. For the sake of fairness, we decided that every solution
needed to return the same data type: a generic C vector of 32-bit integers. For
every level of detail lvi, we repeated the experiment 1, 000 times and the times
displayed in Table 2 are the mean value of those repetitions in milliseconds.

The Naive Solution is the fastest one for the second, third and fourth levels
of detail, just surpassed by the Differential Solution when returning the first
level. This happens because the first level in the Differential Solution are used
as the sample points, which are stored separately and therefore can be recovered
directly without need to access the corresponding bitvector, but its performance
drops below both the Naive and the Binary-Naive Solution for every other level.

Finally, the Compressed-Chunks Solution demonstrates the worst perfor-
mance for every level when taking into account the need to process the two
axis separately. Additionally, even when accounting for only one axis, even if the
Compressed-Chunks Solution starts obtaining better results than the alterna-
tives on the first level, and better than the Differential Solution on the second,
it is still the worst performing solution for the third and last levels.

Note that all of these experiments were run with the data structures already
loaded into main memory. We would need to add the loading time of the data
from disk to these processing times. This loading time would be comparable to
a SELECT statement in PostgreSQL to retrieve a level of detail.

5 Conclusions and Future Work

As stated before, classic GIS solutions store several versions of the same carto-
graphic objects to ease their management. Our work introduces four new rep-
resentations that gather those advantages of classic approaches while using a
unique representation for each cartographic object, i.e. our proposals can store
the geometry of an object with variable granularity without storing several rep-
resentations of it.

Despite being a work in progress, we have obtained promising results reducing
the used space by state-of-the-art solutions more than a 85%. Our Compressed-
Chunks approach improves that result achieving a 93% space footprint reduction.

As future work, the main aim would be to speed up the query times without
worsening the space reductions achieved. This can be reached using compact
data structures [5], which have self-indexing properties that enable fast access
to the data.
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Abstract. Indoor navigation systems help people to navigate through
indoor environments. Conventional models of indoor navigation com-
monly assume that a navigator’s location can be precisely determined.
However, the limitations of indoor positioning systems as well as personal
privacy constraints mean it is not always possible to determine individ-
ual’s position precisely. This paper proposes an approach to developing
new algorithms and tools for enabling indoor navigation under impreci-
sion.
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1 Introduction

Applications for providing navigation assistance to wayfinders are at least as
important in indoor environments as outdoors. A key part of indoor navigation
assistance involves planning feasible routes through the indoor environment, and
then guiding the user along the routes to reach the desired destination. Indoor
navigation is especially important because arguably most navigation happens
indoors, whether in shopping centres or airports, hospitals or universities, work-
places or leisure spaces. Recent studies indicate that people spend up to 87% of
their time on average indoors [1–3], with likely at least some of that time spent
wayfinding in unfamiliar indoor environments. Yet most navigation systems are
designed primarily to support outdoor navigation. Therefore, building efficient
wayfinding assistance for indoor navigators is an important research priority.

Indoor navigation under imprecision presents particular research challenges,
when compared with outdoor navigation. Firstly, reliable and ubiquitous indoor
positioning remains a significant challenge, as global navigation satellite systems
(GNSS) cannot be easily used indoors [2]. Other indoor positioning techniques
include radio frequency identification (RFID), infrared (IR), sensor networks,
standard Wi-Fi positioning, and inertial navigation systems (dead reckoning).
However, such approaches carry their own limitations, and are not nearly so well
developed or ubiquitous as GNSS [4,5]. Recently, several studies have focused
on the design and construction of positioning systems in GNSS-denied indoor
environments [6]. Movement indoors is constrained by the architectural struc-
tures, such as doors, floors, corridors, and walls. While on the one hand, these
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-06245-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06245-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-06245-2_8


Towards Indoor Navigation Under Imprecision 83

constraints may help in providing meaningful location information at the logical
and topological levels; on the other hand, the task of achieving accurate indoor
localization is not straightforward [7].

Fig. 1. An example scenario of a user’s location privacy is being breached based in
indoor environment.

Secondly, while established approaches to outdoor navigation, at city- and
national-scale, are well investigated [8,10–13], these outdoor approaches typi-
cally assume a navigator’s location can be precisely determined. Although all
location sensing technology (both indoor and outdoor) is inherently imprecise,
imprecision is a particular problem for indoor navigation. In addition to the chal-
lenges of indoor positioning, mentioned above, the level of precision required for
accurate localization in indoor-scale environments can be much higher (where
for example a meter or centimetres can be the difference between one side of a
wall and the other) [9].

Thirdly, location privacy is a growing concern, as the number of smart, wear-
able, and IoT (Internet of Things) devices collecting location information con-
tinues to grow [33]. Personal location information is sensitive, with information
such as home address, travel, and visits to locations such as medical clinics
etc. among many examples of sensitive personal data [34]. More surprisingly,
one study has indicated that four randomly chosen spatio-temporal points are
enough to uniquely identify 95% of the individuals [35]. Indoor navigators may
have reasonable expectations to be able to restrict the information they share
about their precise location. Again, it is in the nature of indoor environments
that these privacy concerns can be especially salient, and so sensitive. The dif-
ference of a few meters, even a few centimeters, can be the difference between
a secure restricted area versus a public space, a hospital ward versus a wait-
ing room, or a bar versus a gym. Such differences can have significant privacy
implications, especially when considering unscrupulous companies or individuals.
Consider the example scenario in Fig. 1, let us assume a navigator who regularly
visits a medical clinic that is situated at level 2 inside a big shopping complex.
This piece of information might be unfairly collected and used by unscrupulous
shop owner from shop #6 in order to target the user for particular products or
deny particular services.



84 A. Hossain et al.

Whether for privacy reasons, or the inherent imprecision of indoor positioning
systems, this study aims to investigate the case or indoor navigation where an
indoor navigator’s actual location cannot be precisely determined. We propose
an efficient approach designed to aid users in such a situation. We believe that
there may exist many potential scenarios where an individual might wish access
different types of indoor navigation aids without using precise knowledge of
their location. To the best of our knowledge, our work is the first to address this
important issue explicitly in an indoor environment. The remainder of this paper
is organized as follows. Section 2 explains the background. Section 3 outlines our
proposed structure, representing the indoor space as a connected, directed multi-
graph. Finally, we conclude in Sect. 4 with plan for further developments.

2 Related Work

In this section, we review some of the existing literature that bears on our con-
tribution. The relevant literature falls into two main areas of relevance: rep-
resentations of indoor environments and algorithms for generating navigation
instructions, including navigation instructions under imprecision.

2.1 Representing Indoor Environments

Indoor environments contain different types of enclosed spaces, such as rooms
and corridors, each with their own affordances and functions. When modeling
indoor spaces, one of the most natural and effective representations for navi-
gation is as a graph. The influential work of [16] on space syntax investigates
the interior of a building and its relation to social properties. In space syntax,
cells or subdivisions of a cell are represented as points while doors or entrances
are represented as links (i.e., edges) between two points. All corridors that are
interconnected directly are aggregated into one node, not always appropriate for
complex and large corridors.

The topology of graph-based indoor models sometimes also uses geometry in
its construction. Intervisibility, for example, has been used to construct indoor
graphs where edges connect nodes that are mutually intervisible along the line-
of-sight [17,18]. However, this approach can lead to a proliferation of unnecessary
or duplicative edge connections in the resulting graph [15]. An alternative graph
based indoor model uses the straight skeleton from computational geometry, con-
structing the network from the polygonal floor layout [19–21]. Lee [19] developed
a straight medial axis transformation algorithm (S-MAT) to create this network
from the floor geometry. For simple and relatively regular polygons, straight
skeleton based methods such as S-MAT can generate good results. However, in
some complex cases, they too can produce many superfluous nodes and edges,
unnecessary for human wayfinding [14].

Addressing these issues, Clementini and Pagliaro [22] proposed automated
indoor network generation method by eliminating routes that were deemed
unnatural for humans to follow (i.e., a path or paths with narrow angles, too
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close to walls and obstacles). In this model, a straight skeleton of the floor map
is filtered using edge length and intervisibility criteria. We adopt this model in
our work to represent our indoor environments.

2.2 Generating Navigation Instructions

Several alternative approaches to routing outdoors have been developed, such
as shortest paths, the fewest turns [23] and the simplest instructions [10]. These
algorithms can be well utilised in the outdoor routing. Most solutions funda-
mentally vary the costs associated with edges or nodes in the graph, and use the
Dijkstra algorithm [25] to minimize the cost through the graph from origin to
destination.

Indoor environments arguably differ from outdoor environments in the wider
diversity of types of indoor spaces, from museums, convention halls, and airports
to office buildings, hotels, and apartment complexes. Hence, outdoor routing
approaches are not always well-suited to indoor routing applications [24]. Con-
sequently, several attempts have been made by indoor navigation researchers
to improve the route calculations for indoor environments. A simple solution
was proposed by Khan et al. [26] by optimizing travel time based on estimated
speeds, differentiating between regular walked segments and stairs. In related
research on evacuation, the focus of path planning is on speed, but risk, popu-
lation density, accessibility, user restrictions, and turns are also considered [27].

Clementini and D’Orazio [28] proposed a routing instructions algorithm for
indoor navigators that guides them to reach a desired destination within a typical
building floor. The approach uses the graph-based representation of Clementini
and Pagliaro [22] introduced above. The approach works effectively in terms
of guiding indoor visitors to reach their destination, but does not consider the
issues arising from imprecision of location. Hence, this work focuses on bridging
the gap between such indoor navigation system, and the inherent imprecision of
indoor positions.

Fig. 2. Case study floor plan (a) and resulting navigation network for the case study
floor plan after adopting method from [22] (b)
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Although most studies on human navigation deals exclusively with navigation
where an agent’s location can be precisely determined, some work has also begun
to address the more general problem of navigation under imprecision. Chown [29]
first examined the role of uncertainty in the PLAN model. Later, Raubal and
Worboys [30] used rough sets to model imprecise knowledge in the navigation
process. However, neither of these approaches addresses the issue of delivering
location-based navigation services to an agent under imprecision. Duckham et
al. in [9] does consider this issue directly, however. The approach aims to support
outdoor navigation instruction generation when an individual’s precise location
is unknown. Acknowledging the special constraints and characteristics of indoor
environments, this research extends such past work by explicitly addressing the
issue of effective navigation under imprecision in indoor environments.

3 Methodology

In this section, we at first review the construction of the graph-based represen-
tation of an indoor space that supports imprecise navigation. Then we present
the method for computing navigation instructions that help the navigator to
navigate through an indoor space under imprecision.

3.1 Modelling Indoor Space

As indicated above, in this work we adopt an adaptation of the graph-based
approach of [22] for representation of indoor environments (see Fig. 2).

We use a weighted, directed multigraph for modeling the indoor space. A
multigraph is a graph where multiple distinct edges may exist between a pair of
nodes; in contrast a regular graph may have at most one edge between any pair
of nodes. A multigraph is important since at allows us to represent spaces where
multiple different doors or access points may be available to move between two
rooms. However, for simplicity let us assume here a simple weighted, directed
graph G = (V,E), where the set of vertices V represents locations in rooms,
corridors, staircases, etc. and the set of edges E ⊆ V × V represents the links
via doors between those nodes. The weight associated with each edge w : E → Z

represents the cost (e.g., distance) of traversing that edge. A path p through
graph G is a sequence of vertices (v0, v1, ..., vn), where each pair of consecutive
vertices is connected by an edge (vi, vi+1) ∈ E. The shortest path is then defined
in the usual way, as the path that minimizes the total cost associated with
traversal.

3.2 Modeling Indoor Space Under Imprecision

We adopt the model of imprecision proposed by Duckham et al. [9] into our
indoor graph network, due to its simplicity. Imprecision refers to the lack of detail
in information. There are two primary aspects to that lack of detail particularly
relevant to indoor navigation.
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First, there is a lack of detail in an individual’s location information, either
because the person is protecting their privacy or more often simply because we
can not know their exactly position due to the precision limitations of indoor
positioning systems. For example, let us assume that we do not know whether
the person is in Room #1 or Room #2 and he/ she wants to navigate Room #7
(see Fig. 3(a)). Consider the instruction sequence: “leave the room; turn right;
go to the end of the corridor; take the next left and the following left; and enter
the second room on the right”. Even though we do not know whether the person
is in Room #1 or Room #2, this instruction sequence is expected to work well
regardless of the lack of precision in origin location.

Second, there is also inherent imprecision in the turn instruction that we give
people. For example, in Fig. 3(b), there are two distinct navigation paths with
different origins and destinations (orange and red colour arrows) each described
using the same turn instructions. Hence, in this work we aim to use this inherent
imprecision of navigation instructions. Our work builds on this intuition that it
should still be possible—in some cases at least—to navigate in indoor environ-
ments even under imprecision.

Fig. 3. Imprecision of a user location (a) and turn instructions (b) indoor.

More formally, we represent imprecision in location using an equivalence
relation ∼ on the set of vertices V within our graph. Two vertices v1, v2 are
related, v1 ∼ v2, if they cannot be discerned apart by our positioning system,
due to imprecision [9]. This indiscernibility relation ∼ is thus assumed to be
reflexive (v ∼ v), symmetric (v1 ∼ v2 implies v2 ∼ v1), and transitive (v1 ∼ v2
and v2 ∼ v3 implies v1 ∼ v3). Therefore, our indiscernibility relation ∼ is defined
as follows.

Definition 1 (Indiscernibility relation ∼). An indiscernibility relation is an
equivalence relationship on a set of vertices V within a graph G. That is reflexive
(v ∼ v), symmetric (if v1 ∼ v2 then v2 ∼ v1), and transitive (if v1 ∼ v2 and
v2 ∼ v3 then v1 ∼ v3) for any v, v1, v2, v3 ∈ V .

The set of locations indiscernible from a location v ∈ V is the equivalence
class of v, written [v], where [v] ∈ V/ ∼ (V/ ∼ is called the quotient set, a parti-
tion of V ). A navigator cannot directly use paths in the graph G for navigation
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under imprecision, since they refer to precise locations within the graph. Instead,
the problem addressed is to create instructions suitable to follow a precise path
in the graph, but with only imprecise knowledge of locations in that graph.

3.3 Generating Turn Sequences

In this section, we discuss how to generate turn sequences for our indoor envi-
ronment. Generating turn sequences within an indoor environment is a required
step in our proposed work. We first describe how to compute a shortest path
for a given source and destination within our indoor graph and then demon-
strate how to estimate turn sequences of the shortest path for a navigator. Then
we explain all the possible steps of the turn sequences estimation algorithm in
detail.

Compute Shortest Path. Dijkstra’s algorithm [25] is the foundation of most
shortest path algorithms. Dijkstra’s algorithm maintains a set S of vertices whose
final shortest path weights from the source s has already been determined. The
algorithm repeatedly selects the vertex u ∈ V − S with the minimum shortest
path estimate, adds u to s and “relaxes” all edges leaving u.

However, standard Dijkstra’s algorithm is not applicable directly to multi-
graphs [31]. Therefore, we adopt modified version of the traditional Dijkstra’s
algorithm (detail discussion in the paper [32]), while retaining the same broad
and efficient approach of Dijkstra.

Compute Turn Sequences. In general, a turn sequence is the sequence of
navigation instructions to be performed by a person moving through an indoor
network. For example, “turn left,” “continue straight on,” or “turn right” are all
examples of navigation instructions. According to [10], instructions are typically
considered at decision points where path alternatives are available.

We define a labeling function f : V × V × V → C for vertices v ∈ V
in a shortest path p = (v0, v1, ..., vn) using instruction label set C (e.g., C =
{turn left, turn right, ...}). The instructions themselves are formed by examining
the two directed, incident edges in the graph (vi−1, vi) ∈ E and (vi, vi+1) ∈ E, in
the context of the other edges in G incident with vi. A four way intersection, for
example, where (vi−1, vi), (vi, vi+1) form an approximate 90◦ counterclockwise
angle will lead to node vi being labeled with instruction “turn left” in the path
p (i.e., f(vi−1, vi, vi+1) = turn left).

Using the labeling function, a sequence of instructions for following a path can
be generated without directly referring to (precise) locations. For example, there
is a path, p = (v0, v1, ..., vn) and labeling function f , the instruction sequence
I = (f(v0, v1, v2), f(v1, v2, v3), ...) needs to be generated. Note that the length
of the instruction sequence is necessarily the length of the path minus 2.

Of course, an individual instruction may appear in more than one path, and
indeed multiple times in a single path.
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Fig. 4. Shortest path computation between source and destination (a) and turn instruc-
tions generation for the shortest path (b)

Follow Turn Instructions. Finally, to evaluate the turn sequences generated,
we propose to use agent-based simulation. Simulation will enable rapid and scal-
able investigation of how agents could follow turn instructions under imprecision.

Take Fig. 4 as an example. Let us assume that an agent wants to navigate
from somewhere in room 1 (imprecise location, equivalence class {v1, v2} ∈ V/ ∼)
to a precise a destination in room 7 (v7, see Fig. 4(a)). The proposed algorithm
arbitrarily selects any node from the equivalence class {v1, v2} as a start node
(let us assume that v2 is selected arbitrarily as a start node from the equivalence
class {v1, v2}). Then it computes the shortest path from the selected node v2 to
the destination v7, generating the turn instruction for that shortest path (see
Fig. 4(b)).

Then the algorithm executes the sequence of turn instructions, making the
agent follow each instruction in turn while ignoring any instructions that cannot
be completed. The algorithm terminates if it finds that the current location is
in the equivalence class of the destination location [v7] (in this case the single-
ton, precise destination of v7 alone), i.e., the agent has reached its destination
successfully.

3.4 Development and Evaluation

From this basis, the effectiveness of different extensions and variations to our
algorithm can be evaluated by measuring the navigation accuracy, for exam-
ple, in terms of the success rates of simulated navigation agents in reaching
their destination. In brief, the proposed algorithm performance will be evalu-
ated by comparing the level of imprecision with navigation accuracy. The level
of imprecision refers how precisely we have located. For example, high levels
of imprecision mean we have little information about where exactly the person
is located; low levels of imprecision mean that we know precisely the person’s
location. Navigation accuracy refers how close to the destination the user gets
using the generated instruction sequences. There are two extremes of outcomes
from the algorithm performance evaluation. Ideally, good performance means
that the algorithm will continue to provide high levels of navigation accuracy
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even as the level of imprecision increases. Conversely, poor performance means
that even small increases in the level of imprecision result in rapid decreases in
navigation accuracy. Hence, in exploring solutions to the problem of imprecise
indoor navigation, the work described here is a foundation for evaluating and
refining new and effective solutions.

3.5 Discussion

In summary, we have proposed an approach to understanding the fundamen-
tals of what we can compute under imprecision indoors. In our approach, an
indoor environment is represented as a graph and imprecision in location is rep-
resented as an equivalence relation, with equivalence classes giving the “grains”
of indiscernible node sets within the graph. The algorithm presented in this work
provides a way to generate navigation instructions not simply from nodes, as is
usual in shortest paths, but from sets of nodes (i.e., indiscernible equivalence
classes of nodes). In this way, we aim to guide an navigator to his or her desired
destination under this framework, even when precise location is unknown.

Several key issues not covered in this paper will need to be addressed and
these include: richer and more sophisticated indoor representations; richer and
more sophisticated instruction sets, for example incorporating a wider range
of possible instructions or references to environmental signs or landmarks; and
more sophisticated imprecise navigation algorithms, such as including incremen-
tal instructions based on (imprecise) location tracking; using learning approaches
to improve performance over time, or in response to navigation errors; or assum-
ing imprecise destination as well as imprecise navigator location.

4 Conclusion

This working paper focuses on understanding the fundamentals of what naviga-
tion instructions it is possible to compute under imprecision indoors. Imprecision
refers to the lack of detail in information. Our approach aims to discover the best
ways to create useful indoor navigation services utilising this limited informa-
tion. We are progressing towards the completion of the proposed algorithm’s
implementation based on the proposed data structure, as the preliminary step
to extensive simulation, validation, and evaluation.
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Abstract. In times of ongoing pandemic outbreak, public transporta-
tion systems organisation and operation have been significantly affected.
Among others, the necessity to implement in-vehicle social distancing
has fostered new requirements, such as the possibility to know in advance
how many people will likely be on a public bus at a given stop. This is
very relevant for both potential passengers waiting at a stop, and for
decision makers of a transit company, willing to adapt the operational
planning. Within the domain of data-driven Intelligent Transportation
Systems (ITS), some research activities are being conducted towards
Bus Passenger Load (BPL) predictions, with contrasting results. In this
paper we report on an academic/industrial experience we conducted to
predict BPL in a major Italian city, using real-world data. In particular,
we describe the difficulties and challenges we had to face in the data pro-
cessing and mining steps, due to multiple data sources, with noisy data.
As a consequence, in this paper we highlight to the ITS community the
need of more advanced techniques and approaches suitable to support
the instantiation of a data analytic pipeline for BPL prediction.

Keywords: Bus passenger load prediction · Smart mobility ·
Pandemic · Geosensor data · Telematics

1 Introduction

In the last years, also due to the rapid demographic growth of cities, it is pretty
common that transportation systems are struggling to satisfy the needs of urban
mobility, with the demand of commuters being often higher than the transport
supply [1–4]. This leads, among other, to in-vehicle crowding, which is cause of
stress, anxiety and loss of productivity for passengers, while also increasing dwell
and waiting times [5–7].

Within the ITS domain, a lot of research efforts have been aimed at improving
urban public transportation systems. For example, many works have addressed
the problem of predicting metro or bus arrival times (e.g. [8–10]). More recently,
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some researches aimed at defining novel techniques and solutions to predict in
vehicle crowding (e.g. [11,12]). This research area, known as Bus Passenger
Load (BPL) Prediction, aims at forecasting how many people will be present on
buses, using historical crowding data (e.g. [11]) and/or models, such as Original-
Destination (OD) matrices (e.g. [13]). The key benefits of a BPL-based service
are:

– Transport companies can better manage their own resources (e.g. vehicles
and staff), in order to meet users’ needs [13].

– Passengers can know how crowded the buses are. In this way they can plan
their trip based on that information [14].

– Travel quality can be improved [14] and, as a result, it can promote the use
of public transport rather than private one.

Last but not least, studies on BPL have been significantly fostered in times
of ongoing pandemic outbreak. Indeed, during the COVID-19 pandemic, the
concern that public transit poses a high risk of infectious disease transmission
was prevalent [15,16]. For this reason, promoting social distancing was one of
the key public health recommendations [15,17], but this makes it even more
difficult for public transport to meet the commuters demands. Tirachini and
Cats outline a broad range of measures to apply social distancing in public
transportation, including rail and bus crowding management [18]. Thus, BPL
predictive systems could be employed to implement social distancing, in order
to keep vehicle occupancy rates under a predefined threshold [19,20].

Despite the many advantages provided by BPL predictions, it is recognised
that there are still a number of open issues [7], compared to the relevant literature
for rail transport crowding predictions (e.g. [21–25]). The problem seems to be
more difficult to solve, compared to rail systems, also because data collection
is more challenging, and affected by multiple external factors undermining data
quality [7].

In this paper we report on an academic/industrial experience aimed at defin-
ing a BPL prediction system for a major Italian urban area. In particular, since
March 2021, more than two dozens of buses were equipped with specific sen-
sors to measure on-board crowding information, shared with a central back-end.
There, some data preprocessing and mining techniques were defined to predict,
for each route/stop of the urban area, the crowding of the next three buses
passing by at the given stop of the given route.

The implementation of this system was far from trivial, with a number of
difficulties, related to the context of spatio-temporal data management. In this
paper, we describe the major challenges we faced and some of the strategies
we applied to overcome them. Moreover, for each spatio-temporal data prepro-
cessing/mining step, we highlight some topics that the research community on
Geographical Information Systems could face, in order to ease the development
of these types of systems for the intended ICT practitioners.
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2 State of the Art on BPL Predictions

Within the ITS domain, some works have focused on defining novel techniques
and solutions to predict Bus Passenger Load (BPL) (e.g. [11,12]). The general
goal of BPL-related studies is to forecast the demand for bus use. This, one hand,
can enable for better route planning and scheduling, while, on the other hand,
can improve commuter’s experience [26]. Let us note that the problem faced by
BPL solutions is somehow similar to the relevant literature for rail transport
crowding predictions (e.g. [21–25]), even if it is recognised that the number of
researches carried out on predicting bus crowding is still limited [7], mainly due
to the following problems:

1. The access to rail transportation systems is somehow more controlled than
the buses. Thus, it is relatively easier to collect passenger load information
regarding rail systems rather than buses.

2. Actual systems to determine the number of bus passengers are less reliable,
giving rise to more noisy datasets.

3. Bus services can be disrupted by road traffic conditions, making the problem
harder than the one regarding rail systems.

Some BPL-related studies address the problem as a (multi-class) classification
one, where the goal is to predict a level of bus crowding. For example, Arabghalizi
et al. [26] propose a method for BPL prediction, where the goal is to forecast
the level of in-vehicle crowding. In particular, they forecast the passenger flow
using a random forest, comparing 9 different types of potential features. The
proposed approach require to train one model for each pair route-stop, leading to
potentially significant scalability issues on a wider urban area. Similarly, Zuo et
al. [27] propose the use of a Radial Basis Function Neural Network (RBFNN) to
determine the future degree of bus crowding among six possible levels, namely:
very comfortable, comfortable, generally crowded, crowded, very crowded and
unbearable. The proposal has been preliminary evaluated using a dataset of the
Chinese town of Dalian.

Other researchers set the problem as a regression one. For example, Wang
et al. [7] suggest a two-step approach to predict the number of passenger on
board. In a first step, the passenger flow for next stops is predicted, using a
Kalman filter; in the second one, Support Vector Regression (SVR) is used for
predicting the BPL. Jenelius propose and compare the use of LASSO regularized
and multivariate partial least squares regressions to predict BPL. In a first study,
he applied the proposed techniques on a dataset collected from buses from the
city of Stockholm [11]. Then, he applied these techniques also on a dataset from a
rail line, again collected in Stockholm [25]. The results show that the prediction
accuracy for bus system is far behind the one for trains. As observed also by
Wang et al., this can be an indicator that predicting passenger loads on buses is
more challenging than in a rail system [7].
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Fig. 1. First type of crowding detection sensors.

3 The Investigated BPL Prediction Scenario

Within a collaboration between industrial and academic partners, we aimed
at setting up a BPL prediction solution for a major Italian city, to face bus
passenger limitations inducted by the pandemic restrictions. Since March 2021,
about two dozens of buses were selected to be equipped with sensors able to
count on-board passengers. The first problem to face was how to choose the
type of sensors. There are many possible strategies to collect passenger load
data, including Automated Fare Collection (AFC) systems, Automatic Passenger
Counter (APC) systems, vehicle weight sensors, video recording data, sniffing of
mobile/wireless networks (e.g. Bluetooth and Wi-Fi) or crowd-sourcing data
(e.g. explicit user feedback in travel app) [13,28,29]. In our case, we opted for
sensors based on processing videos acquired by specifically installed cameras.
We employed sensing solutions provided by two different companies, installed on
different buses, which operate in pretty different ways. The first one is based on
multiple cameras installed on top of the vehicle doors, thus monitoring how many
people get on and off the bus (see Fig. 1). The overall number of people on board
is calculated from these information. The acquisition is triggered by an event
system, every time a door opens, separately for each door. This system generates
a dataset where each tuple corresponds to a door opening event. Each record
is thus characterised by information on the number of boarding and alighting
passengers, along with a timestamp and positioning data.

On the other hand, the second type of sensors collects directly in-vehicle
occupancy, exploiting a single camera able to cover the interior of the bus (see
Fig. 2).

This second system generates data in a different fashion. After an off-line
processing, an Occupancy file is generated, with a tuple for each bus stop, con-
taining directly the number of In-Vehicle passengers and a timestamp. Further-
more, a different Location file is generated, with a positioning information added
every 30 s.

Given the data collected from buses, the goal of the project is to perform a
BPL prediction for each pair route-stop. In particular, for a given route r, stop
s, and time t, we aim at predicting the BPL of subsequent ho buses passing at
the same route-stop rs, where the parameter ho is the horizon. To this aim, we
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Fig. 2. Second type of crowding detection sensors.

want to exploit historical data collected from the last hi buses of the route r
over the stop s, where hi is the number of considered history samples, to build
the prediction model.

3.1 The Adopted Knowledge Discovery Process

The methodology we adopted to implement the project can be traced back to the
Knowledge Discovery in Databases (KDD) process, which was firstly formalized
by Fayyad et al. in [30] as the application “of methods and techniques for making
sense of data”. It consists of the following five key steps:

1. Data Selection, dealing with selecting a subset of data samples or variables
on which discovery is to be performed.

2. Preprocessing, consisting in preprocessing the selected data, e.g. by defining
ways to manage noise or missing information, and to normalise data.

3. Transformation, involving data reduction/projection in order to make the
data as suitable as possible for the next data mining phase.

4. Data Mining, dealing with searching for unknown patterns in the considered
data, typically using Artificial Intelligence (AI) techniques.

5. Interpretation/Evaluation, during which the identified patterns are sub-
mitted to a decision maker for interpretation, often using data visualisation
techniques.

Let us note that the KDD process is not necessarily linear and may generally
involve a significant iteration, with possible loops between any two steps [30].

A solution for BPL prediction can be seen as a particular instantiation of the
KDD process.

3.2 An Architecture for BPL Prediction Systems

The reference architecture for our BPL prediction system is shown in Fig. 3 and
consists of three different modules:

– The Sensing module involves the BPL acquisition system, through which both
the crowding and position data are collected, plus the telemetry solution to
send data to the remote back-end;
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Fig. 3. Architecture of the developed BPL prediction system.

– The acquired data are memorised in the Storage module. In our implementa-
tion, it is deployed in a Cloud infrastructure, leveraging a solution based on
PostGres-PostGIS.

– At the Computational module all the elaborations on the data are performed,
from the preprocessing up to the actual predictions. This module is also
deployed in a Cloud-based infrastructure.

In the following sections, we detail the challenges we faced in the implemen-
tation of this architecture.

4 The Preprocessing Phase: Challenges and Experiences

In this type of problems, the preprocessing phase is particularly complex and
costly, due to the spatio-temporal nature of both the problem and the data. We
start by describing the difficulties we encountered in this phase, highlighting also
potential research directions.

Integration of Different Data Sources. To train a BPL prediction model,
the example dataset should contain at least the following features:

– Timestamp. Store the entry timestamp.
– Latitude/Longitude. Indicate the coordinates of the vehicle.
– Occupancy. Contains the number of persons on board the vehicle

The key problem is that different acquisition systems may generate data with
different formats. In our case, as detailed in Sect. 3, we have buses equipped with
two different acquisition systems, each one collecting data in a distinct format.
Indeed, the one generated by the system described in Fig. 1 does not explicitly
contain the occupancy feature, as it is derived from two different attributes,



Bus Passenger Load Prediction: Challenges from an Industrial Experience 99

i.e. the number of people entering and exiting each door d at time t (ont,d and
offt,d) features, in the following), calculated through the formula:

occupancyt = occupancyt−1 +
∑

d∈D

ont,d −
∑

d∈D

offt,d (1)

On the other hand, the dataset generated by the acquisition system described
in Fig. 2 consists of two different files, one related to the occupancy O, with a
new record for each stop of the bus, and the other one related to the positioning
P , with a new record every 30 s. Therefore, we need to associate each record of O
to a record stored in P . To solve this issue we developed an algorithm matching
each tuple in O to the one with the closest timestamp in P . Furthermore, we
included some heuristics to consider plausibility of the sensor readings.

In our experience, just this preliminary integration phase of the two different
datasets required over a month of coding/testing. A key benefit from the research
community could be the definition of a standard data format for the occupancy
data acquisition.

As a result of the previous step, every occupancy data is associated to a couple
of latitude and longitude coordinates. Now, we need to align this information
to the bus stops, whose coordinates are usually available in the General Transit
Feed Specification (GTFS) format. This process is detailed in the next section.

Bus Stop Matching. To perform a BPL prediction, we need to clearly obtain
bus crowding information, for each considered stop of a given route. As the
bus positioning systems can be characterised by low-precision, we need to align
Global Navigation Satellite System (GNSS) data with the correct geographical
coordinates of the stops on a line. It is worth to point out that this type of align-
ment is different from traditional map-matching, mostly applied to trajectories
(e.g.: [31]). Indeed, rather than requiring to align a series of position points to
a graph representing the road network, we need to match a very few position-
ing data points to single points on the map, corresponding to the bus stops.
Some studies related to the bus domain addressed slightly different problems.
For example, Li, in [32], proposed an algorithm to align bus stops to the road
network.

A first technique to achieve this could be, for a given route, to find the bus
stop rs = (rsx, rsy) that minimises the euclidean distance from the geographical
point P = (Px, Py) collected from the GNSS, relative to the considered entry,
as shown in Fig. 4. However, when applying this procedure to our context, a
problem may arise: the nearest stop, based on euclidean distance, may be on
the same route but in the opposite leg, w.r.t the one the vehicle is heading (see
Fig. 5). Such a mismatch can be corrected by considering the direction of travel
of the vehicle, which can be easily derived. In this way, it is possible to correct
the assigned stop, replacing it with the corresponding one on the correct leg.

From our experience, the process of bus stop matching is thus not trivial, as
it requires also knowledge on the line and the stops that constitute it, as well as
reasoning on the plausibility of the path made, in order to correct any errors.
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Fig. 4. Bus stop matching.

Fig. 5. A mismatch example.

Aggregation by Time Slots. As described in Sect. 3, crowding data are not
sampled with a fixed frequency but according to asynchronous events. Since most
time series models assume that data come from observations that are equally
spaced in time [33], it could be useful to aggregate data by time windows of fixed
size α. Different aggregation strategies can be used. We adopted the mean value
of each slot as representative one. Choosing the window size is also a challenge,
as the higher its value, the smaller the size of the data set. Vice versa the smaller
its value, the greater the presence of missing data. Thus, the window size must
be set according to the frequency with whom buses pass at the considered stop,
which can be very different from stop to stop, as Fig. 6 shows. A possible way
to make this choice is to define the window size considering the average number
of times buses pass by a given stop.

5 The Prediction Phase: Challenges and Experiences

In the KDD process, after the preprocessing phase, data should be transformed
to be used as input for the data mining phase. We do not report any signifi-
cant challenge in the transformation phase, rather focusing on the mining one.
In detail, for BPL prediction, time series forecasting techniques are applied to
predict the future occupancy of vehicles passing at the stop rs, for each stop s
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Fig. 6. Comparison between number of bus passages at stop 125 and stop 2581, in the
same months

of a given route r. In other terms, we are willing to predict what would be the
BPL for the next three buses passing by a given stop of a given route.

5.1 The Experimental Protocol

To understand which mining technique is more suitable, we need to assess the
prediction performance of the trained models. Let us note that, in the present
paper, BPL prediction is set as a regression problem, because the intent is to
predict the number of people on-board the vehicle. As done by similar work (e.g.
[7,27]), some appropriate metrics for this task are Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE), defined as follows:

MAE =
1
n

n∑

i=1

|ei| (2)

RMSE =

√√√√ 1
n

n∑

i=1

e2i (3)

Given these metrics, we applied three machine/deep learning techniques for
the generation of regression models, which are different for “power” and compu-
tational costs, namely:

– Regression tree (RT);
– Multilayer Perceptron (MLP), with one hidden layer of 100 neurons;
– Long Short-Term Memory (LSTM) network, with one layer of 32 neurons.

The dataset was divided using the 70% of the days, selected in the selection
phase, for the training set, the 15% for the validation set and the remaining
15% for the test set. The BPL predictions produced by these models are then
compared with a baseline we defined, i.e. the Naive Forecasting [34] (NF in the
following), where the predicted value at instant t + ho is equal to the observed
value at instant t:

Occupancyt+ho = Occupancyt (4)



102 F. Amato et al.

5.2 Preliminary Results

The MAE and RMSE obtained by the three regression techniques plus the base-
lines, for the considered prediction horizons (i.e. the BPL of the next three
buses), are reported in Tables 1, 2 and 3.

Table 1. RMSE and MAE obtained for Horizon = 1

Metric NF DT MLP LSTM

RMSE 3.85 3.64 3.53 3.58

MAE 2.45 2.22 2.34 2.23

Table 2. RMSE and MAE obtained for Horizon = 2

Metric NF DT MLP LSTM

RMSE 5.57 5.06 4.85 4.75

MAE 3.91 3.64 3.62 3.40

Table 3. RMSE and MAE obtained for horizon=3

Metric NF DT MLP LSTM

RMSE 6.79 6.00 6.04 5.44

MAE 4.92 4.45 4.83 4.08

The Absolute Error (AE) box plots, at different horizon values, are shown
in Fig. 7. It can be observed that none of the models trained with the three
methods is able to outperform the baseline, even in the case of the deep learning
technique.

Further comparisons are made by checking for any statistically significant
differences, by means of the Wilcoxon-signed rank sum test, with p = 0.05.
Given these settings, we found that no statistically significant differences between
machine learning techniques and the baseline can be found, for any of the consid-
ered horizon. Thus, even in presence of state of the art regression technique (e.g.
LSTM) the prediction accuracy obtained with the regression models is compa-
rable with the one achievable by the very simple baseline. To understand why
advanced prediction methods are performing so poorly, we focused our attention
on the raw occupancy data, for each stop of the considered route.
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Fig. 7. Boxplots of the absolute errors of the different regression techniques, with the
considered prediction horizons.

Fig. 8. An example of the dynamics of the raw data: bus occupancy recorded at a stop.
The horizontal line represents the maximum capacity of the bus

An example of plot of the collected raw data is shown in Fig. 8, where we
report the BPLs (in percentage w.r.t. the total capacity of bus) that were mea-
sured over the time at a given bus stop. From this Figure we can observe that
the collected data are characterised by high variability (e.g. large and frequent
jumps). It is well recognised that a signal with strong, abrupt and frequent
changes from one sampling instant to the other can pose problems to regression
algorithms, as it makes it difficult for a model to identify the underlying trend,
worsening its generalizability performances (e.g. [35,36]).

For a more accurate quantification of such signal variability, we computed its
Zero Crossing Rate (ZCR), i.e. a measure of the rate of sign change of the first
derivative (zero crossing) of a signal over the time, which gives an indication
of how often the signal changes direction. This metric, widely used in domains
which deal with noisy signals, such as the acoustic signals analysis [37] or speech
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recognition [38], is defined as follows:

ZCR =
NZC

T
(5)

where NZC is the number of zero crossing and T the number of times taken
into account.

The ZCR calculated on the series given by the first difference gave a value
of about 40%, thus highlighting a very high variability of slope changes over the
time.

Discussion and Open Research Challenges. The dynamics of the collected
data, with this significant number of variability and abrupt changes, could be one
of the reasons why the trained models do not outperform the baseline. It would
be interesting to understand whether such a variability is due to the intrinsic
nature of the problem or to occupancy sensor misreadings. Indeed, the sensing
techniques described in Sect. 4 can present some inaccuracy. For example, it is
known that techniques based on the sniffing of active Wi-Fi and/or Bluetooth
devices, could lead to sudden over-estimations of the passenger load if devices
outside the vehicle are sensed, too [39]. In our experience, we found that video
recording systems may be influenced by particular situations, such as many
people entering or leaving the vehicle together, or objects occluding the camera
views, like umbrellas. Indeed, in this cases it is difficult to identifies each persons,
and the result passenger counting could be very different from the actual number
of people on-board. To make things worse, with the first acquisition system used
in the investigated scenario, which basically monitors the doors of the bus, the
BPL value at time t is calculated from the value at time t − 1 (see Eq. 1).
Therefore, counting errors accumulate over the time, making the BPL estimate
gradually less accurate, the more the bus goes far from the Terminal.

We speculate that the application of more advanced data preprocessing tech-
niques, including a smoothing step, as done in presence of similar data dynamics
(e.g. [36]), could be useful to improve prediction performance.

6 Conclusions

The ability to perform accurate Bus Passenger Load predictions is very relevant
in urban scenarios, to obtain better route planning/scheduling, higher comfort
for commuters, and, in times of on-going pandemics, to achieve a more effective
on-board social distancing. Nevertheless, to date the number of data-driven stud-
ies on BPL predictions is still limited, mostly due to the difficulties in collecting
proper datasets.

Within an industry-academia partnership, we are developing a Urban Mobil-
ity solution based on a BPL predictor for a major Italian city. This solution is
based on a typical Knowledge Discovery in Database (KDD) pipeline, applied on
crowding data collected from about two dozens of buses. In this paper we have
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reported some experiences on the instantiation of a KDD pipeline for BPL pre-
diction. In details, the data preprocessing and the mining steps have turned out
to be particularly challenging, due to the different data formats, collected from
different sensing solutions, to issues in the bus stop matching phase, and above
all in the prediction phase. In particular, even deep learning based techniques
were not able to provide BPL predictions whose performance outperforms the
trivial baseline we defined in a statistically significant way. It would be interest-
ing to assess whether the use of some smoothing techniques, capable of dealing
with the abrupt changes in the data we found, could be beneficial to improve
the prediction performances.

We hope that the scientific community in the field of spatio-temporal data
management could define standards, techniques, and solutions able to relieve
practitioners willing to develop solutions like the one we described.
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Abstract. Analysing text to detect semantic similarities is a recent
breakthrough of Natural Language Processing that brought many novel
applications in different fields. A domain which could greatly benefit of
this innovation is the one regarding Location-based and/or Touristic Rec-
ommender Systems, where the user receives suggestions based on his/her
past liked items. In this work, we consider the use of neural embed-
dings weighted using Smooth-Inverse Frequency (SIF) to detect seman-
tic similarities in textual descriptions found in a large graph database
covering Italian cultural Points of Interests (POIs). Of all detected sim-
ilar pairs on a national scale, 19% are composed by POIs that do not
belong to the same ontological category, highlighting the potential neural
embeddings have to match POIs beyond the categories they have been
assigned to. However, since text descriptions also contain references to
the places where POIs are found, similarities can be detected among
POIs sharing the same location, especially in the case of low-frequency
geographical terms. While this may be desirable, in some cases, it may
harm location-aware applications, as POIs positions are already known.
By comparing city names occurrence probabilities both in the full text
corpus and in location-constrained sub-corpora, we observed probabil-
ity shifts, on average, of 232%. This suggests that, for the specific case
of location-aware services, SIF-weighted neural embeddings should use
location-constrained sub-corpora for term occurrence probability com-
putation in order to efficiently remove uninteresting information.

Keywords: Neural embeddings · Location-based services · Semantic
analysis

1 Introduction

The World Wide Web represent an excellent resource for users willing to plan
touristic/cultural activities, especially at unknown destination. However, the list
of possibilities offered by Web search engines (or even specialised tourism sites)
may be overwhelming, and more advanced solutions to filter relevant informa-
tion are required [3]. Recommender systems (RSs) are tools able to search and
c© Springer Nature Switzerland AG 2022
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filter relevant information to provide suggestions to user about concepts/items
of their interest, based on their preferences, restrictions or tastes [20]. A lot
of research efforts have been aimed at refining even more the quality of the
suggested options, giving rise to a wide discipline (e.g.: [24]), including solu-
tions based on collaborative scenarios (the user gets suggestions based actions of
other similar users), content-based analyses, or hybrid approaches. If we restrict
our focus on Content-based RSs, we notice that with these solutions, the user
will be recommended items that are similar to the ones (s)he liked in the past
[24]. Here, the definition of similarity among items is the key point. In partic-
ular, (Location-Based) RSs can take great advantage from state-of-the-art text
processing techniques. For example, a system could suggest Points of Interests
(POIs) potentially relevant for a user, given an analysis of the textual description
of other POIs he/she previously liked.

Recent developments in text processing through the use of deep neural net-
works led to significant breakthroughs in a number of different fields. In par-
ticular, neural embeddings have boosted the capability to represent text seman-
tics, with significant improvements over older Information Retrieval techniques,
mostly based on term frequency like TF-IDF [2]. Text embeddings, in general, are
vector-based representations of natural language texts that capture semantics by
analysing words in the context they occur and, scaling up, sentences and docu-
ments. Bidirectional Encoder Representations from Transformers (BERT) mod-
els [7], in particular, have become the reference model to obtain semantics rep-
resentations for computational application. The BERT architecture and its vari-
ants consist of a Transformer Deep Neural Network (DNN) [21], trained on the
language modelling tasks. Transformers consist of a sequence of Encoder mod-
ules designed to learn a compact representation of the input and of a sequence of
Decoder modules designed to build the desired output from this representation.
Neural embeddings consist of the output obtained from the last Encoder in the
trained model. Decoders are, therefore, only needed during the training phase
and are, then, discarded. For the specific case of language modelling with BERT,
the training task consists of learning to predict randomly masked words in an
input sequence. Neural embeddings have strong applications for query/document
matching for the case of search engines (e.g. [5]), entity alignment for POIs [25]
and question answering [11], even specifically related to spatial-related queries
[22]. Advanced visual interface for Cultural Heritage, can also make use of text-
based matching [6]. When, for example, 3D models are semantically annotated
[4,13], searches for similar items can make use of this kind of information from
unstructured data.

Nevertheless, text similarity, for the case of POI descriptions, can be strongly
influenced by location-related topics. This can be desirable in some cases, like
for entity alignment, while for the case of location-aware services, this kind of
information may not be relevant, being intrinsically available with good preci-
sion, as with GPS. In this paper, we present a methodology based on the use of
neural embeddings to detect similarities among Italian cultural POIs based on
their descriptions. We use a weighting schema designed to remove common topics
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from a corpus of documents obtained from Wikipedia in order to maximise the
discriminative power of the semantic representation. Then, we show that, in a
significant number of cases, textual similarity allows to detect site pairs across the
ontological categories imported from Wikidata. Since the weighting procedure
is influenced by word occurrence probabilities in the reference corpus, we also
present an in-depth analysis to analyse the difference between location-specific
sub-corpora and the entire dataset. We show how constraining the text used for
term probability computation to material extracted with location-aware queries
produces very different results in the probabilities used for weighting. This is
mainly caused by terms describing relatively small areas, like town names, being
very frequent in the constrained corpus and very rare in the entire corpus. In
this sense, the importance of location-related terms may be overweighted, when
computing description similarities, producing biases towards site pairs that are
simply found in the same place but do not share any other similarity. From this,
we conclude that, depending on whether or not location-related semantic infor-
mation is useful for the considered technological applications, different weighting
schemas should be adopted to either keep or remove location-related semantic
information.

Summarising, our main contributions are:

– an analysis of POIs similarities detected from text and their relationship with
ontological categorisation;

– an analysis of the difference between using location-related corpora and the
full dataset on the adopted weighting schema.

The rest of the paper is organised as follows: in Sect. 2 we describe the
database from which we extracted the data used in our evaluation, Sect. 3
presents the neural embeddings extraction procedure, discussing the weighting
schema that motivates the investigation. Section 4 contains the result of the
analysis conducted on cultural POIs descriptions extracted from the database.

2 Material

In this Section, we present the dataset from which we extract textual descriptions
and locations for Italian cultural heritage sites, representing the case study we
consider for our analysis.

2.1 Data Sources

Handling massive amounts of data can pose several issues to standard relational
solutions [8,9]. The base material is constituted by a graph database representing
Italian cultural heritage POIs integrated with social network activity collected
from Flickr. The database is described in detail in [17] and it contains approx-
imately 690 k nodes and more than 2 M relationships. The collection procedure
was designed to integrate massive information coming from Linked Open Data
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(LOD) with popularity scores coming from Flickr pictures and relevance scores
obtained by considering a set of linguistic measures computed on the Italian
pages linked to the sites of interest. We summarise here the collection procedure
and the database structure, which is further extended in this work.

The database assembling procedure is composed of the following steps:

1. Data ingestion: this involves sources selection and design of the unified
representation in such a way that the original structure is still preserved
while not interfering with other sources;

2. Data enrichment: this involves applying data processing techniques that
can be executed offline to record, in the database, the results of data process-
ing techniques to support subsequent analyses;

3. Data analysis: this involves the deployment stage, where represented and
enriched data are queried to infer conclusions based on the combination of
information coming from the different sources through a single interface.

During the data ingestion step, a starting graph is obtained by replicating the
structure, described in RDF, found in LOD. As LOD are largely available in the
cultural heritage domain (e.g. Wikidata, the Art and Architecture Thesarurus,
Europeana, etc.. . . ), it is plausible to consider these well-established structured
resources as a reference to support this first step. The representational power of
graph databases makes it possible to design a dedicated sub-graph for each of the
considered unstructured data sources, which may be linked to the basic structure
using cross-domain relationships. This is the case, for example, of text data
collected from Wikipedia pages linked to cultural POIs, where the organisation
into sections was used to create deepening trees representing the complexity of
the topics related to the site itself. Lastly, an estimate of the POIs’ popularity
was provided by collecting pictures from the Flickr social network.

The amount of geo-referenced pictures that could be linked to the sites of
interest depending on the pictures tags and descriptions represented the popu-
larity of the site during the data enrichment phase, which includes data analysis
techniques aimed at extracting deeper knowledge from the data collected from
the previous step. Considered measures at this step include the PageRank score
of cultural POIs considering social activity from Flickr users and lexical com-
plexity measures aimed at further detailing the content of the Wikipedia pages
describing cultural POIs.

Data analysis revealed that the collected resource was consistent with respect
to seasonal patterns, that it could be used to evaluate the balance between the
complexity of the geo-referenced text and the amount of social activity detected
from Flickr and that it was able to highlight the connections between cultural
POIs by analysing co-occurrences in visiting patterns among visitors. In this
paper, we further detail visitors behaviour using the collected database and we
report on new insights we gained, which extend the potential applications of the
database.
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2.2 Database Structure

The database is implemented in Neo4j [23], an open source graph database man-
ager that has been developed over the last 16 years and applied to a high number
of tasks related to data representation [10], exploration [12] and visualisation
[14]. Neo4j is characterised by high scalability, ease of use and its proprietary
query language: Cypher. Cypher is designed to be a declarative language that
highlights patterns’ structure using an SQL-inspired ASCII-art syntax.

The graph resulting from the previously described assembling procedure is
composed by nodes and relationships among nodes. Node labels represent dif-
ferent items in the domain like, for example, FLICKRUSERs, PICTUREs and
SITEs. SITEs also have secondary labels to further specify the typology of the
site. The considered labels are mapped onto Wikidata categories as follows:

– Museum (wd:Q33506)
– Archaeological Site (wd:Q839954)
– Palace (wd:Q16560)
– Monument (wd:Q4989906)
– Sacred Architecture (wd:Q47848)
– Protected Area (wd:Q473972)

Concerning textual material related to cultural POIs, the database contains
English and Italian descriptions obtained from Wikipedia and organised into
a deepening tree, reflecting the structure of the Wikipedia page to represent,
through the graph, the complexity of the information organisation. In this work,
we consider the entire descriptions available for POI similarity detection while
including text deepening levels is left for future work. Figure 1 shows the graph
database structure.

3 Text Analysis

In this Section, we describe the procedure used to extract neural embeddings
from the Wikipedia texts describing cultural POIs found in Italy.

3.1 Embeddings

Representing text semantics as numeric vectors is a powerful technique to cap-
ture similarities between documents. The basic concept comes from the distri-
butional semantics field, leveraging on the observation that words occurring in
the same context tend to have similar meanings. The method which paved the
way for the recent developments in representing text semantics using numerical
vectors is represented by word2vec [16], where word embeddings were computed
in a context-independent way: that is, in word2vec, each word in a given corpus
is assigned a numerical vector. This is obtained either by training a simple feed-
forward neural network in predicting the current word given its context (CBOW
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Fig. 1. Database structure. Cultural POIs (orange) linked to two different CITY nodes
(yellow) by LOCATED IN relationships, which also link CITY nodes to the same
REGION (brown). Deepening trees containing textual descriptions are constituted by
CONCRETE (green) nodes, containing actual text and by ABSTRACT (purple) nodes,
containing (sub-)section data. (Color figure online)

architecture) or by predicting the context given the word (Skip-Gram architec-
ture). The word probability distributions given an input word that are returned
by the network trained with one-hot vectors representing words constitute the
embedding. Word2vec is, therefore, context-independent in the sense that words
are assigned a single embedding and meaning similarity is computed using cosine
similarity in general. This poses a problem where the same word can have a dif-
ferent meaning in different contexts.

The most widely used neural embeddings, nowadays, are BERT embeddings
[7] and they have been intensively applied, in the last years, to a large number
of case studies where Natural Language Processing techniques could be applied.
Neural embeddings are obtained by training a Transformer Deep Neural Net-
work in predicting a set of masked words in a large text corpus. After training,
embeddings are obtained as the output of the Encoder section of the Trans-
former, given an input sentence. Being provided at sentence-level, neural embed-
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dings are context-dependent, as the same word can have different embeddings
depending on the specific context it is found into.

3.2 Procedure

To compute textual similarities in the Wikipedia articles, we consider the results
shown in [19], which demonstrated that, on the sentence similarity task, a stacked
embedding composed of ELMo [18] and BERT embeddings outperformed other
solutions when results were weighted by Smooth Inverse Frequency (SIF) [1].
The procedure consists of three steps:

– Weighted document embeddings computing
– Principal Components Analysis
– Embeddings re-evaluation

First of all, sentence embeddings are computed, using pre-trained networks,
for each sentence s in each document, as the weighted average of word embed-
dings found in the sentence. Weights are computed from the word frequencies,
expressed as the word occurrence probability p(w) : w ∈ W where W are the
words in the entire corpus. Given a constant value a, which we set to 0.001,
weights are computed as a/(p(w)+a), so that more frequent words are weighted
less. The weighted sentence embedding vs is, therefore, obtained as

vs =
1
|s|

∑

w∈s

a

a + p(w)
vw (1)

Document embeddings vd are obtained by considering the average of the sen-
tence embeddings vs : s ∈ d and d ∈ D where D is the set of all documents. After
computing document embeddings, we consider the X matrix whose columns are
the vd embeddings. The final embedding v̄d is obtained by subtracting, from
each vd, the first principal component of the X matrix. This removes, from the
semantic representation, elements that are common to all the documents, leaving
the traits with actual discriminative power in the data.

In this specific case, we compute semantic representations of the considered
pages using stacked embeddings of ELMo and RoBERTa [15] embeddings, which
build upon BERT embeddings and have been shown to produce better results.
For each pair of document embeddings related to pages that do not describe
the same site, similarity is computed as the cosine of the two SIF-weighted
embeddings. A SIMILAR TO relationship is, then, established in the database
between the two POIs. The SIMILAR TO relationship has a degree property
containing the cosine between the two SIF-weighted stacked embeddings.

4 Results

While similarity degrees are computed for all pairs of documents in the corpus,
for our analyses, we only consider pairs of POIs (s1, s2) having a similarity degree
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sdeg > 0.9 to concentrate on the closest document pairs, from a semantic content
point of view. These pairs, together with the Wikidata ontological labels, can be
extracted from the database using the following query:

MATCH (s1:SITE)-[r:SIMILAR_TO]->(s2:SITE) WHERE r.degree > 0.9
RETURN DISTINCT s1, s2,
[x in labels(s1) WHERE NOT x in
[’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]] AS labels1,
[x in labels(s2) WHERE NOT x in
[’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]] AS labels2

There are approximately 18,400 (s1, s2) pairs in the database, matching this
query. First of all, we verify that document embeddings are not simply capturing
ontological categories that are already available in the database, as part of the
Wikidata import procedure. By extracting, from the considered set of pairs, all
the ones having at least one different label, we observed that they constitute
19% of the cases, indicating that, while in the majority of the cases similar POIs
also belong to the same ontological class, the procedure is not merely matching
known categories. The query to extract this subset of data is the following:

MATCH (s1:SITE)-[r:SIMILAR_TO]->(s2:SITE)<-[:DESCRIBES]-(:ROOT)
-[:DEEPENED_BY*]->(n1:CONCRETE) WHERE r.degree > 0.9
WITH [x in labels(s1) WHERE x in labels(s2)
AND NOT x in [’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]]
AS intersection, [x in labels(s1)
WHERE NOT x in [’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]]
AS labels1, [x in labels(s2)
WHERE NOT x in [’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]]
AS labels2, s1, s2 WHERE isEmpty(intersection)
RETURN DISTINCT s1.WikiID, s2.WikiID, labels1, labels2

To better characterise this, we analyse label co-occurrences shown in the
heatmap reported in Fig. 2.

For the case of Italian cultural heritage, SACRED BUILDINGs constitute
the majority, so most of the semantic similarities in text descriptions involve this
kind of cultural POIs. An exception is constituted by PROTECTED AREAs,
which are lower in number with respect to the other categories and do not
constitute built heritage, being mostly natural parks. The observed differ-
ences between SACRED BUILDINGs and PROTECTED AREAs is, there-
fore, expected. Another strong correspondence is constituted by MUSEUM and
PALACE pairs: in many cases, Italian museums are hosted inside buildings that
constitute heritage per se, so the correspondence is expected in this case, too.

Given the potential provided by semantic analysis to bridge over ontological
categories, we proceed to a closer inspection of the matched items with a focus
on location-based services, concentrating on matched POIs that are found in
the same city and have different labels. These are extracted, from the database,
using the following query:
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Fig. 2. Labels co-occurrences for site pairs having cosine similarity sdeg > 0.9.

MATCH (c:CITY)<-[:LOCATED_IN]-(s1:SITE)-[r:SIMILAR_TO]
->(s2:SITE)-[:LOCATED_IN]->(c) WHERE r.degree > 0.9
WITH [x in labels(s1) WHERE NOT x in labels(s2)
AND NOT x in [’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]]
AS intersection, [x in labels(s1) WHERE NOT x in
[’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]] AS labels1,
[x in labels(s2) WHERE NOT x in
[’SITE’, ’MAINSITE’, ’ESTIMATEDPOSITION’]] AS labels2,
s1, s2 WHERE isEmpty(intersection)
RETURN DISTINCT s1.WikiID, s2.WikiID, labels1, labels2

By removing the constraint concerning site pairs having different labels, we
compute the total number of POIs that can be semantically related. Then, we
observe that (s1, s2) pairs bridging over categories constitute 17% of the cases,
once again not being neglectable. Using SIF-weighted embeddings to identify
POIs that have semantically similar descriptions for location-based services, how-
ever, poses a risk linked to the need to compute p(w), since geolocalised texts
have a higher probability to contain systematic references to the surrounding area
where they are found. This has the potential effect, for embedding-based meth-
ods, to capture similarities in the descriptions that simply refer, for example, to
the city where the cultural site is located: SIF-weighting based on probabilities
computed over the global corpus would not remove this information which would
actually be useful in non-geolocalised texts. For this specific case, however, the
risk is to detect similarities caused by an uninteresting similarity. To estimate
the potential impact of this issue, we consider the texts describing matched cul-
tural POIs found in the same CITY, in the database. These are extracted using
the following query:
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MATCH (c:CITY)<-[:LOCATED_IN]-(s1:SITE)-[r:SIMILAR_TO]
->(s2:SITE)-[:LOCATED_IN]->(c)
WHERE r.degree > 0.9 WITH c,
COLLECT(s1.WikiID) + COLLECT(s2.WikiID) AS list
UNWIND list as site RETURN DISTINCT c.name AS city,
COLLECT(DISTINCT site) AS sites

We, then, consider the probabilities to observe the name of each returned
CITY with respect to the probability of observing the same name in the whole set
of descriptions of matched POIs. The probability increase when switching from
global probabilities to local probabilities is, on average, of 232%. POIs found
in smaller towns, in particular, are more likely to be considered similar, as the
CITY name is considerably less frequent, in the global corpus, with respect to the
corresponding local one. The full report is shown in Table 1. This suggests that,
for location based services based on semantic similarities among geolocalised
texts available in LODs, for the case of cultural POIs, it may be important to
remove localisation-related information from the actual comparisons, as they
may not be relevant and mask more interesting relationships.

As a practical application scenario, let’s consider the case of location-aware
POI recommendation, like for example cultural sites. Travelling users may query
for sites similar to the last one they visited and, other than considering ontolog-
ical relationships, search engines are now able to use semantic matching based
on descriptive texts. However, there is a risk that text embeddings trained on
a large corpus of cultural sites descriptions capture location-based text similar-
ities, as they are indeed present in text descriptions and they also represent, in
general, a possible way to match cultural sites. On this basis, the engine may,
therefore, recommend close sites just because they are in the same city and
not because they share, for example, architectural styles or historical characters
linked to their history. In this case, the information, included in the description
text, that the two sites are in the same place is already known by the system
through GPS and is, therefore, not an important point of view for semantic
matching. To remove location-based semantic information from the embeddings
used for semantic matching, training with location-constrained sub-corpora may
yield more reliable results as the procedure would remove topics that are related
to information that is included in the text but is irrelevant for the service.
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Table 1. Global city name observation probabilities from descriptions of strongly sim-
ilar POIs compared with with observation probabilities from descriptions limited to
POIs LOCATED IN the same CITY. Percentage increase is also reported.

City Local Probability Global Probability Change (%)

Todi 0,167 5,23E-05 3188,208

Roccamorice 0,033 5,23E-05 631,570

Serramonacesca 0,031 5,23E-05 601,685

Pescara 0,069 1,57E-04 438,891

Fiesole 0,031 7,84E-05 395,175

Ragusa 0,011 3,92E-05 270,422

Parma 0,010 3,92E-05 266,159

Grosseto 0,050 1,96E-04 254,990

Fermo 0,023 1,05E-04 220,473

Palermo 0,068 3,40E-04 200,291

Piacenza 0,013 7,84E-05 158,460

Modena 0,013 9,15E-05 138,470

Pescia 0,009 6,53E-05 131,653

Lucca 0,018 1,70E-04 106,213

Bergamo 0,007 7,84E-05 90,120

Mantua 0,025 2,87E-04 84,753

Cefalù 0,008 1,05E-04 78,153

Turin 0,009 1,44E-04 59,507

Cortona 0,009 1,96E-04 47,010

Siena 0,010 2,09E-04 45,176

Pisa 0,022 5,10E-04 41,696

Verona 0,021 5,23E-04 38,396

Genoa 0,026 7,45E-04 34,195

Brugherio 0,010 3,27E-04 30,369

Milan 0,017 6,66E-04 24,712

Assisi 0,015 6,01E-04 24,044

Bologna 0,010 4,18E-04 23,781

Venice 0,019 1,10E-03 16,655

Alcamo 0,018 1,19E-03 13,999

Padua 0,011 7,58E-04 13,506

Naples 0,015 1,57E-03 8,847

Florence 0,010 1,15E-03 7,289

Rome 0,010 4,17E-03 1,496
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5 Conclusions

In this paper, we have investigated the use of neural embeddings and, in par-
ticular, the impact of location-related terms on a weighting schema designed to
increase the discriminative power of the obtained vectors. SIF-weighting, in par-
ticular, is performed using term occurrence probabilities over the considered cor-
pus. We have shown that a procedure based on this measure can be sensitive to
location-related terms. While this may be desirable for tasks like entity matching,
semantic analysis for location-aware services can suffer from this aspect. Specif-
ically, detecting similarities between POIs because their description contains
references to the place they are found is irrelevant when the location is already
known through GPS. In these cases, removing the sensitivity to location-related
similarities may provide advantages. Future work will explore this topic more
in depth to further detail the effect of SIF-weighting neural embeddings using
location-constrained sub-corpora instead of the full dataset.
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Abstract. With recent progress of indoor positioning technologies and
mobile devices, several indoor map and navigation applications have been
developed for visually impaired people since 2010s. However there are
also several technical challenges for its massive and public utilization.
Limited efforts have been done for comprehensive requirement analysis
and technical implementations, although a standard, Wayfindr has been
published by ITU-F in 2017. In this working-in-progress paper, we ana-
lyze requirements for indoor navigation services for visually impaired
persons. In particular, we discuss the requirements for verbal user-
interface of indoor navigation service for visually impaired persons and
its data model. The requirements and design discussed in the paper
will be reflected to the development project, called VIM (Voice Indoor
Maps), which is a smartphone-based indoor navigation service for visu-
ally impaired person.

Keywords: Indoor navigation service for visually impaired person ·
Indoor voice map · OGC IndoorGML

1 Introduction

Several Indoor Navigation Services (INS) have been offered for visually impaired
persons (VIP) due to the progress of indoor positioning technologies since 2010.
However they are mostly focused on indoor positioning aspects rather than the
indoor navigation for VIP without rigorous consideration on the specific require-
ments for a service for VIP. In order to develop a convenient and helpful INS for
VIP, several considerations have to be taken on specific requirements of INS for
VIP. First of all, all the instructions are given by audio or verbal ways. It means
more than simple giving verbal instructions but implies verbal user-interface.
Note that we do not include haptic interface such as vibrations in this paper.

In order to develop a convenient and helpful INS for VIP, we first start
from the observation on the difference of INS for VIP from non-VIP. Second, we
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analyze the user requirements of the INS for VIP. Third, we define the functional
specifications to fulfill the user requirements. Since most of the developers are
non-VIPs, they superficially understand the users requirements. It is critical to
fully understand the user requirements and functional requirements for proper
development.

Furthermore, these requirements can be also defined for the functional spec-
ification and guideline of the development of INS for VIP as a complementary
standard of Wayfindr1, which was also published as ITU-T F.921 standard2. It
provides a comprehensive functional specification of INS for VIP and has been
used as a principal reference for developers as it is the only standard for INS
for VIP so far. However we need a more detail requirement analysis and func-
tional specification for the development. In particular, more detail discussion
and guideline are needed on how to provide the verbal instructions to users as
well as the specification of the indoor maps.

The contributions of this work-in-progress paper are therefore summarized as
follows; first, we investigate the requirements and scope of indoor maps. In par-
ticular, we discuss the difference between the native data model of IndoorGML,
which is an OGC standard for indoor maps, and the model of INS for VIP as
an application schema of IndoorGML. Second, we propose a technical guide-
line of verbal instructions although Wayfindr defined a basic one, particularly
on when and which instruction to be given. In Sect. 2, we present the related
works and the motivations of the paper. In Sect. 3, we define the basic setups
and requirements of INS for VIP. In Sect. 4, we discuss the requirements on the
indoor maps and propose an extension of OGC IndoorGML for INS for VIP. We
define the specification for the verbal instructions in Sect. 5 and conclude the
paper in Sect. 6.

2 Related Works and Motivations

Most works on INS for VIP have been focused on indoor positioning technolo-
gies [1–5]. However they require more technical components than indoor posi-
tioning for the implementation. Brief technical requirements of INS for VIP are
presented beside indoor positioning in [6,7]. And several aspects of verbal navi-
gation services for VIP were also investigated in [10,12]. General approaches for
pedestrian navigation service in outdoor space are also presented in [8,9,11]. In
particular, it is shown that replacing braille with simple audio-tactile interaction
significantly improved efficiency and user satisfaction in [11].

A set of specifications of INS for VIP are defined by Wayfindr as a standard,
which includes the basic concepts, requirements, and technical specifications. For
this reason, our work starts from the specifications given by Wayfindr. However
it stays at an abstract level and does not contain sufficient technical aspects
for the implementation. The goal of this paper is to provide more technical
1 https://www.wayfindr.net/ last accessed on 10 Nov. 2021.
2 https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=13185&lang=en last

accessed on 10 Nov. 2021.
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references, which were not discussed in Wayfindr. These technical references will
be used for the implementation guidelines of voice indoor maps service, that we
are developing for VIP. The issues that are not fully discussed in Wayfindr but
included in this paper are summarized as follows;

– Wayfindr does not include the scope and specification of indoor maps. We
present the scope of information in indoor maps demanded by INS for VIP
and propose its standard model. It should start from the observation on the
difference between indoor maps for VIP and non-VIP in terms of INS. In
Sect. 3 we will discuss the requirements of indoor maps for VIP in comparison
with non-VIP.

– Wayfindr briefly describes how and when to provide verbal instructions to VIP
users. Unlike visual presentation of indoor maps and navigation instructions,
verbal user-interface of INS for VIP has serious constraints. For example, the
verbal user-interface has a limited time interval for giving proper instructions
at proper time. We will study the requirements of the verbal user-interface.

In this paper, we therefore discuss these issues and define the functional
specifications of the solution that we are developing, called VIM (Voice Indoor
Maps).

3 Basic Requirements

In this section, we specify the environment of the target solution that we will
analyze and develop. The target solution is a smartphone-based indoor naviga-
tion service for visually impaired person with voice assistant user-interface3. We
assume that VIP users are also assisted by long cane or guide dog for the nav-
igation. We do not assume any specific indoor positioning methods but expect
the average accuracy as 2 m that most indoor positioning methods such as BLE,
WiFi, and geomagnetic sensors can achieve. Regarding the movement factors of
VIP users, we assume one stride 0.85 m and speed 1.4 ms as given in [13].

In brief, there are two approaches for implementing voice indoor maps for
VIPs. The first approach is to generate verbal instructions in dynamic ways
from indoor maps and the current location. Unlike indoor navigation services for
non-VIP, we need an additional step for converting spatial information given by
indoor maps to verbal instructions. The second approach is to prepare and regis-
ter the voice instructions for each position in indoor space. When user arrives at a
position, the voice indoor map service searches the corresponding verbal instruc-
tion to the position and heading from the instruction table. As it is expensive
to prepare all the verbal instructions for every point with different direction of
user, we take the first approach for our design and implementation.

The verbal instructions of INS for VIP are classified into three types; instruc-
tions on the current location, navigation instructions, and POI (Points of Inter-
est) instructions.

3 TalkBack for Android and VoiceOver for iOS.
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The first type of instruction is about the current location, including the verbal
description of the current location. Depending on the case of current location,
three different types of instructions are given to the user as below;

– Case (a): “On the way from A to B” (Fig. 1-a) instruction when the user is
on a way between two named nodes.

– Case (b): “At node C” (Fig. 1-b) when the user is at a named node.
– Case (c): “At intersection M” (Fig. 1-c) when the user is at an intersection.

Fig. 1. Three types of instruction for the current location

The second type of verbal instructions is to provide instructions of turn-
by-turn navigation. It should include not only turn-by-turn but also preparation
instructions. For example, a preparation instruction may be given 2 m before the
turning point. The third type of instructions is about POI such as landmarks
or safety facilities. In addition to these instruction types, we may provide cor-
rection instruction to let the user return back to the correct path, when she/he
is deviated from the correct path. The detail of the verbal instructions for each
type will be discussed in the Sect. 5.

4 Indoor Maps for VIP Navigation Services

4.1 Base Indoor Maps

OGC IndoorGML is an indoor map standard with the richest expressive power
among standard indoor map formats [14]. It is based on Cellular Space Model,
which assumes an indoor space as a set of non-overlapping cells [15,16] and
provides the following features;
– cell geometry,
– cell semantics,
– topology between cells, and
– multi-layered space model.

Due to the rich semantics and extensibility of IndoorGML, we define the data
model for VIP navigation in indoor space as an extension from IndoorGML core
module. It mainly consists of three parts; topographic part, navigation network,
and POI (Points of Interest) for landmarks as shown in Fig. 2.
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Fig. 2. Data model for VIM as an extension of IndoorGML core module

4.2 Navigation Network

The navigation network of INS for VIP has to be configured for non-visual
recognition, while we need geometric information of navigation network for non-
VIP users with proper visualization. VIP users are usually aware of their location
and space in topological ways, for example by the relative location from the
current location. No detail geometry information is required for INS of VIP but
the navigation instructions have to be given in terms of the relative location
and the direction from the current location. For example, we need geometric
information of the network to distinguish the cases given in Fig. 1 of Sect. 3.

The navigation network is to be derived from the topographic indoor map
consisting of rooms, hallways, doors, and vertical connections such as elevators
and stairs either in automated or manual ways. Since the automated derivation
of navigation network is a research topic, we do not discuss it in the paper.
Rather we specify the constraints of INS for VIP, which are not found in INS
for non-VIP;

– Rectilinear path: In order to provide clear navigation instruction, it is recom-
mended to compute the path has as rectilinear as possible rather than slanted
path. For example “turn 30 ◦C” is more confusing than “turn right”.

– Reduce turns: A route with excessive turns makes the navigation difficult and
the number of turns has to be reduced as possible.

– Vertical navigation: It is recommended to make the navigation networks via
elevators and avoid escalators.

– Evolving doors: It is also recommended to avoid revolving doors, which are
dangerous to VIP.

The first and second conditions are conflicting each other and a reasonable
compromise has to be found when generating navigation network. It looks diffi-
cult to generate the navigation network from a given indoor space in automated
way with the consideration of these constraints task. It would be a topic for the
future work and we do not discuss it in detail in this paper. As an alternative, we
will provide an editing tool for our target solution, which facilitates to draw the
navigation network with ease. The navigation network derived from the topo-
graphic indoor map is defined as a space layer of multi-layered space model in
IndoorGML.
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4.3 Landmarks as POIs

In addition to navigation instructions, the INS for VIP should provide the
information that lets VIP users spatially aware of their environments. Most
of the environmental information is given as landmarks such as nearby vending
machines, information kiosks, restrooms, etc., which are all very useful to VIP
users. For this reason, we include landmarks as POI space layer on the top of
IndoorGML Core Module as depicted by Fig. 2. The landmarks can be prioritized
according to its emergency level for the safety measure.

5 Generating and Scheduling Verbal Instructions

An example of verbal instruction given in Appendix A of ITU-F F.9214, which
is an ITU version of Wayfindr, is “Turn left and take the escalator down to the
platforms. The down escalator is the one on the left.” Assuming that it takes 5 s
to read the first sentence, the user moves forward 7 m and the second sentence
may be no longer valid. This means that verbal message should be as short as
possible and given at proper time. In this section, we discuss how to select the
verbal instructions and schedule the delivery time.

The verbal instructions are designed depending on three types of instructions
explained in Sect. 3. We discuss each type in the subsequent subsections.

5.1 Instruction on the Current Location

As explained in Sect. 3, this function is to provide verbal descriptions of the
user’s current location. We assume that VIP user stops when she/he listens the
instructions on the current location. In addition to the current location, it gives
the messages on the direction and nearby landmarks according to the types
classified in Fig. 1.

– case (a): “on the way from B to A” and nearby landmarks
– case (b): “at C on the way from B to A”
– case (c): “at intersection M, forward to A, left to B, right to D” without

message about the backward.

We assume that A,B,C,D, and M are named nodes in the navigation net-
work. An important requirement is to avoid so-called too much information,
which makes the user confused. For this reason, we do not include landmarks
for case (c). Similarly, it is recommended to include small number of landmark
instruction for case (a) such like one for left and right each, for example “a
vending machine on the right and restroom on the left”.

4 http://handle.itu.int/11.1002/1000/13185, last accessed on 31 Dec. 2019.

http://handle.itu.int/11.1002/1000/13185
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5.2 Navigation Instruction

The second instruction type of INS for VIP is to provide turn-by-turn instruc-
tions for navigation. A set of navigation instructions is assigned to each segment
of navigation network, which is defined as transition in IndoorGML. For each
segment, the navigation instructions are given as the following order (we suppose
that the user moves from p1, and p2, to p3 in Fig. 3);

– instruction 1 (starting instruction) at p1: e.g. “go forward 10 steps”,
– instruction 2 (preparation instruction) at p2: e.g. “5 steps before M ”,

and
– instruction 3 (turning instruction) at p3: e.g. “turn right”.

These three instructions are repeated for each segment except the following
cases. The first exception is the case where the segment is too short to read all
these instructions. In this case, we may skip instruction 2 or reduce them into
one single instruction such as “forward 4 steps and turn right”. The second case
is where the segment is too long that there is a long blank interval without any
instruction between instruction 1 and instruction 2 during for example 15 s.
In this case we insert an instruction for the current location (case (a)) defined in
the previous Subsect. 5.1, such as “on the way from A to M, a vending machine
on the left, restroom on the right.”

Fig. 3. Navigation instructions

5.3 Safety Instruction

The instructions about safety measures are of the first priority. It means that any
safety instruction should be scheduled as the message of the first priority. For
example “slippery floor” or “stairs on the left” belong to the safety instructions.
They have to be given at the proper time and position without any delay.

5.4 Scheduling Instructions

Multiple instructions may be offered to VIP user during a limited time interval,
which is determined by segment length and the speed of VIP user. Schedul-
ing instructions is a critical functional requirement of INS for VIP, which are
summarized as below;
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– The instruction for the current location is activated when the VIP user presses
the current location button on the smartphone application. It may start after
the previous instruction or interrupt it upon the configuration. Note that the
user has to stop when she/he listens the instructions on the current location.
It means that the duration for this instruction do not need to be taken into
account.

– The safety instruction should be scheduled as the first priority and overwrite
any ongoing instructions.

– Given a set of instructions, we have to find the optimal schedule that satisfies
their time interval specifications as shown in Fig. 4.

Fig. 4. Time interval specification of verbal instruction

There are mapping between each location on a segment and its passing time
of the user. When an instruction is to be given, we have the meaningful interval
with starting and ending points. For example, the instruction on landmark (e.g.
“vending machine on your left”) becomes meaningless when the user goes too
far from the vending machine. If we define the tolerable starting interval as e.g.
2 m, the message should start within (−2 m, 2 m). Accordingly we can find the
tolerable time intervals for starting and ending points, which determine the total
tolerable time interval (tmin1, tmax1) of a given message m1 as shown in Fig. 4.
At least the message m1 should be given during this time interval and more
strictly it should satisfy the time intervals for starting point and ending point.

We do not discuss the implementation issue of the instruction scheduling.
Several approaches for real-time scheduling seem helpful to solve the instruc-
tion scheduling problem. We may classify the instruction types by their level of
real-time constraints for example, safety real-time as the highest level, turning
instruction as the next level, and landmarks as the lowest level. We leave this
issue as a future work.

6 Conclusion

While several services of indoor navigation for visually impaired people have been
developed, there are few work on the requirements analysis. Most of them are
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commercial products and their functional requirements are not explicitly speci-
fied. Although an outstanding work has been done to define a standard specifi-
cation on INS for VIP, it is still abstract and does not specify technical details.
In this work-in-progress paper, we define the technical specifications, which are
focused on two aspects; indoor maps for VIP users and verbal instructions. The
contributions of this paper are therefore first the specification of standard indoor
maps for VIP, second, specification of verbal instruction generation, third, the
instruction scheduling requirements.

We do not discuss the implementation issues but these requirements and spec-
ifications are to be reflected into a development project, VIM5. In this paper, it is
assumed that the VIP users navigate in an relatively unknown area but it may be
interesting to extend our work to VIP users navigating in a familiar environment
and to partially sighted users as they may have different requirements.
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Abstract. It is known that the transmissibility of COVID-19 is higher
in indoor space than outdoor. The fact that the indoor space is usually
closed and has less factors to take into account than outdoor may facili-
tate the analysis of COVID-19 infection. However, few works have been
done on the analysis on COVID-19 transmissibility in indoor space. In
this paper, we discuss simulation methods to analyze the transmissibility
in indoor space, particularly a simulation environment consisting of three
components; indoor maps, positions and trajectories of persons in indoor
space, and infection models of COVID-19 in indoor space. And we ana-
lyze the requirements and design issues of each component. Among three
COVID-19 infection models, we developed a simulation tool for indoor
person-person infection model. While only the person-person infection
model has been implemented for the simulation, the other two models of
COVID-19 are planned to be designed and implemented in the future.

Keywords: COVID-19 spread simulation · Indoor maps · Indoor
trajectories · InCOVID

1 Introduction

The transmissibility of COVID-19 is strong in indoor space, especially where
space is closed and of high density of people [1]. In order to respond to the spread
of COVID-19 in indoor space, we need to analyze the properties of indoor space,
which are quite different from outdoor. For example, an indoor space is parti-
tioned into a set of cells such as rooms and corridors and they are connected via
doors, stairs, and lifts. The navigation of persons between rooms in indoor space
happens always through these connections [19]. While the infection probability
is mainly determined by the distance, the distance is not always determined by
Euclidean distance. For example if two persons are in other rooms, then the
infection probability becomes zero even though the Euclidean distance is small.
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In our work, we discuss the transmissibility of COVID-19 in indoor space.
Not only the positions and trajectories of people but also the indoor proper-
ties such as indoor structures are taken into account for our work. The analysis
of COVID-19 could be ideally conducted with real data sets collected from the
indoor spaces where spreads of the virus had already taken place. However, these
real data sets are difficult to collect due to privacy issue and limited to cover
sufficiently the whole cases of the analysis. For example, when we analyze the
vulnerability of COVID-19 spread in a given indoor space, we could not conduct
it before it would really happen. For this reason, we discuss simulation methods
for COVID-19 spread in indoor space by using given indoor map and generat-
ing synthetic trajectories of persons in the given indoor space. The simulation
method discussed in the paper is mainly composed of three parts; trajectories of
people, COVID-19 infection models, and indoor maps.

The generation of synthetic trajectories is a crucial function of the simulation
as it determines the position of each person at each second and allows to compute
the distance between people. It means that the synthetic trajectories should be
similar with real ones. Several factors such as user profile, the nature of indoor
space, and the function of cell are helpful in generating realistic trajectories.
In a shopping mall, for example, different movement patterns may be applied
depending on user profile about whether she/he is an employee of store or visitor.
In college campus building, they may be either faculties, students, or staffs,
where faculties and students enter into a classroom and stay there during one
hour while staffs work in office room. We can generate the trajectories according
to this profile.

The COVID-19 infection models are classified into three types; person-person
model, person-space model, and person-object, where each of the infection mod-
els requires different data and functionalities. Indoor maps are essential in not
only generating indoor trajectories but also applying each COVID-19 infection
model.

In this paper, we will discuss the requirements of COVID-19 simulation tool
and design issues. The requirements for each of three infection models will be
analyzed in terms of indoor spatial data and functionalities. In particular, we
focus on the first infection model, that is the person-person model, and present
a prototype implementation of the simulation method called InCOVID. In order
to validate its feasibility, we will show the result of experiment, which was con-
ducted with a real indoor space data. The rest of this paper is organized as
follows; in Sect. 2, we survey the related works on the analysis of COVID-19 in
indoor space. In Sect. 3, we discuss the requirements of the simulation meth-
ods. The prototype developed for person-person infection model is presented in
Sect. 4 with its experiment with a real building and the conclusion is given in
Sect. 5.

2 Related Works and Motivations

In several studies, it has been reported that the COVID-19 infections mostly hap-
pen in indoor space [1,2]. Several factors affect the transmissibility of COVID-19,
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among which the distance between infected and uninfected persons is of most
important one. Unlike outdoor space, there are other factors, such as indoor
structures and mobility of persons, affecting the transmissibility beside the dis-
tance itself. Park et al. [3] reported that the spread of coronavirus at the call
center in South Korea, March 2020, took place in lobby and lifts. It means that
indoor structures such as lobby, stairs, lifts, and hallways have to be considered
in the analysis of COVID-19 spread.

In general, the infection models of COVID-19 are classified into three types
[13,14] as follows;

– person-person model: infection by droplets (≥ 5µm) between an infected
person and uninfected person,

– person-place: infection via airbone (≤ 5µm5) [4], where place means the
space where infected person left the virus such as a room,

– person-surface: indirect infection by object surfaces such as door handles

Note that place and surface of the classification above means While our work
aims to analyze the indoor spread of COVID-19 by these models, we focus on
the first infection model (person-person). As our first step, we aim to develop the
simulation model for the infection of COVID-19 via droplets to nearby persons
[15]. The second and third infection models would be excluded from the first
step of our work as the details of these infection models are not fully discovered.
They would be included in our work of next steps.

Few works have been done for the analysis of indoor spread of COVID-
19 virus, while some applications have been developed and used to track the
infections of COVID-19 in indoor and outdoor spaces. Tracking applications
such as TraceTogether in Singapore [16], CovidSafe in Australia [17], and [18]
in USA are mostly limited to outdoor space. They do not consider any indoor
structures or movement patters in indoor space. In [19], an interesting study was
presented to track the infections by three infection models in indoor space. They
proposed a method for tracking the infection by using the arrival and departure
times of cell space and OGC IndoorGML, which is a standard of indoor spatial
information. [10,12].

While previous works have focused on tracking the infection in indoor or
outdoor spaces, no work has been done for analyzing how indoor structures
would affect the transmissibility of coronavirus. This analysis would allow to
discover the weak points of COVID-19 spread of a given building and eventually
find preventive measures for minimizing the transmissibility. We therefore aim
to develop analysis methods of COVID-19 spread in indoor space.

3 Requirements for the Analysis on Indoor COVID-19
Spread

The analysis of indoor COVID-19 spread consists of three components as below;
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– infection model: In order to conduct the analysis, a infection model has to
be determined among person-person, person-space, and person-surface mod-
els as different data sets are required accordingly.

– indoor maps: Indoor structures significantly affect the transmissibility. For
example, sharing a single lift of a building by all inhabitants may signifi-
cantly increase the transimissibility of COVID-19, while we may lower the
transmissibity by partitioning a work space into small office rooms for each
staff. Indoor maps are therefore a fundamental requirement for the analysis.

– positions and trajectories of persons: The location of person is also one
of main factors determining the distance between persons and therefore the
infectivity. We need the trajectories of inhabitants determining the locations
of each person at each time. The collection of the trajectories is crucial in
analyzing the COVID-19 spread in indoor space.

3.1 Indoor Maps

Each type of infection models requires different indoor spatial information. First,
staying in the same room with an infected person increases the transmissibil-
ity by the person-person model. The room geometry is necessary to determine
whether or not they stay in the same room. Second, as the virus spread via
airbone according to the person-place model, we need to analyze the airflow
in indoor space and indoor CFD (Computational Fluid Dynamics) is useful in
the analysis. Several types of indoor spatial information are needed to analyze
the airflow, including 3D geometry of rooms, windows, doors, locations of big
furniture and installations, and ventilation facilities affecting airflow. Third, the
person-surface model requires the information about indoor features such as
door handles, handrails, and lift buttons that can be touched by infected and
uninfected persons. These requirements about indoor maps are summarized in
Table 1.

Table 1. Indoor spatial data requirements for three infection models

Infection model Dimension Indoor data requirements

Person-person model 2D Cell boundary

Person-place model 3D Cell boundary, doors, windows,big objects, and ventilation facilities

Person-surface model 2D Cell boundary, surfaces of objects

3.2 Positions and Trajectories of Persons

Next to indoor maps, positions of each person in indoor space need to be prepared
for the analysis of COVID-19 spread. Ideally real position data sets of each person
could be collected for the analysis but it is difficult to collect sufficient and diverse
position data sets due to the privacy issue. A more practical approach is rather
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to generate virtual trajectories in a given indoor space as long as the synthetic
trajectories are similar with real ones. In our work, we adopt the generation of
synthetic trajectories in a given indoor space.

In order to generate realistic trajectories, several factors need to be taken into
account. First, we need indoor navigation networks of given indoor space, which
can be derived from indoor maps and may vary according to time, transportation
modes, and types of disability. Second, different patterns of mobility should be
applied depending on user profile. Employees working at a shop in shopping
mall, enter into the building via a gate, go to their shop and stay there for their
working time. However, visitors go around in the shopping mall after they enter
into the building for shorter time, i.e. one hour. In a campus building, students
may stay in a classroom for a hour and move to other classrooms, while staffs
work in their office room during the working time. All these factors may be
parameterized in the trajectory generation tool.

Several generation tools have been developed so far such as IndoorSTG [22],
Vita [23], and SIMOGEN [24]. In our work, we used SIMOGEN for its flexibility
with several parameters mentioned above.

3.3 Infection Models of COVID-19

Given indoor maps and trajectories in a given indoor space, we apply infection
models of COVID-19 to determine whether an infection happened or not. We
simply define it as an infection function FI as

FI(M,p, q, t) = b (1)

where M is indoor map, p and q are trajectories of infected and uninfected
persons, t is a timestamp, and b ∈ {true, false}.

This infection function can be separated into three functions Fp2person,
Fp2place, and Fp2surface according to the infection model, while FI is defined
as a conjunctive form of three functions;

FI(M,p, q, t) = (Fp2person ∨ Fp2place ∨ Fp2surface)(M,p, q, t). (2)

It means that the infection happens if any of these infection function return
true. Let us discuss each of these infection models.
Person-Person Infection Model : This is the simplest one among three infec-
tion models. As we assume that the COVID-19 is infected by droplets bigger
than 5 µm, the distance between infected and uninfected persons is critical. The
probability of infection p(a, b) by this model is defined as below;

p(a, b) =

⎧
⎪⎨

⎪⎩

0 if a ∈ Ca, b ∈ Cb, where Ca �= Cb

pd if a, b ∈ C, d(a, b) < d0

pd( d0
d(a,b) )

2 if a, b ∈ C, d(a, b) ≥ d0

(3)

where a and b are an infected and uninfected persons, Ca and Cb are the rooms
where they are staying respectively, d(a, b) is the distance between a and b,
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and pd is the infection probability when they are at the threshold distance d0
between them. The basic idea of this model is explained by Fig. 1. When an
infected person a and uninfected person b1 are in the same room C1 and the
distance between them d1 is lower than a threshold d0, the infection probability
is pd. When they are in the same room but d1 ≥ d0, the probability of infection is
proportional to the inverse of the their distance square. If they stay in different
rooms (a and b2), the infection probability becomes 0. We expect that more
accurate models would be replaced with more considerations.

Fig. 1. Person-person infection model

Person-Place Infection Model : Several cases of airbone infection are
reported. It is recommended to reduce air circulation and install HVAC for the
ventilation of fresh air into the building. In order to analyze the person-place
infection model, we first need the airflow analysis in indoor space. It is expected
that CFD tools would be helpful to analyze the airflow considering ventilation
and HVAC facilities as well as doors, windows, and big furniture and installa-
tions [5,6,20,21]. It means the airflow analysis requires the geometries of these
objects and features in indoor space. Second, we have to track the arrival and
departure times of infected persons to each cell including room, lift, hallway, and
lobby. As reported by [7], the coronavirus stays alive during three hours in the
air. It means that we need to track the rooms and airflow containing the coro-
navirus. For example, the persons visiting within three hours at the same room
where any infected person stayed or coronavirus virus is supposed to circulate,
would be suspected to be infected. It is also expected that the longer we stay at
the place where the air contains the virus, the higher is the infection probability.
However, it is difficult to consider all these conditions together including the
arrival and departure times of infected and non infected persons as well as the
indoor airflow and ventilation by HVAC. Unfortunately no integral method for
the infection analysis of this model is available so far.
Person-Surface Infection Model : The third model refers to the case where
the infection happens by touching the surface of the same object such as door
handles, lift buttons, or handrails [8]. The survival time of coronavirus differs
depending on the materials; 4 h for cooper, 24 h for cardboard, and 72 h for
plastic and steel [9]. In order to analyze the spread of COVID-19, we need to
find the objects that the infected person may touch and examine the trajectories
of uninfected persons whether they come across with the surface of the objects
during 72 h.
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4 In COVID- A Simulation Tool for Person-Person
COVID-19 Infection Model

4.1 Design and Implementation of InCOVID

In this section, we present InCOVID that we developed as an open source soft-
ware1 to analyze the COVID-19 spread by simulation. The process of InCOVID
is summarized in Fig. 2.

Fig. 2. Process overview on InCOVID

The first input to InCOVID is indoor maps of a given building. As dis-
cussed in Sect. 3.1, person-person model requires the geometries and properties
of cells, and navigation networks. We extract them from indoor maps in OGC
IndoorGML, which is an OGC standard for indoor maps and provides richer
semantics as well as geometries of indoor space than other indoor map formats
[11]. This standard satisfies the requirements discussed in Sect. 3.1.

After extracting the necessary data from indoor maps, we also receive addi-
tional inputs of the parameters for generating trajectories. It contains several
parameters including the number of persons, profile of each person, arrival and
departure times, and movement patterns, which allow to generate realistic tra-
jectories. We improved an existing open source tool, called SIMOGEN (Synthetic
Indoor MOving objects GENerator)2 for indoor trajectory generation [24]. As
the final step of InCOVID, the person-person infection model is applied using the
trajectories and the cell geometries extracted from indoor maps. We determine
whether uninfected persons are in a same cell of any infected person and approx-
imate the infection probability by the distance between infected and uninfected
persons. We also discover the locations where the infections are supposed to
take place for computing the hot spot zones of the infections. Actually these hot
spots can be considered as week points of given building where proper preventive
measures are required.

4.2 Experiment

In order to validate the feasibility of InCOVID, we conducted an experiment
with a real building, a big shopping complex in Seoul. The numbers of rooms,
1 https://github.com/STEMLab/InCOVID.
2 https://github.com/STEMLab/SIMOGEN.

https://github.com/STEMLab/InCOVID
https://github.com/STEMLab/SIMOGEN
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entrances, floors, and stairs or lifts are 2,162, 8, 17, and 208 respectively and the
left side of Fig. 3 shows this indoor space. The parameter values for generating
trajectories are summarized in Table 2.

Fig. 3. Test site

Table 2. Parameter settings for trajectory generation

Parameters Descriptions Values

n Number of persons 1000, 5000

rs Ratio of stationary persons (employees) 0.1, 0.2, 0.3, 0.4, 0.5

Staying Arrival and - employee: 9 am to 8 pm

Interval Departure time - visitors: one hour between 9 am and 8 pm

The threshold distance for infection and incubation period are set to 2m
and two days, respectively. We set the simulation tool to stop when the ratio of
infected persons arrives to 90%, And we assume that the same persons enters
to this building for each day. A part of simulation results is shown in Fig. 4. It
is only an example of the simulation results and unfortunately we do not have
any real data sets that we could compare with our simulation results so far.
We expect that benchmark data sets would be available and could be used to
validate this simulation tool.

5 Conclusion

The transmissibility of COVID-19 is higher than other epidemic diseases and
particularly, stronger in indoor space than outdoor. In this work-in progress
paper, we discussed several topics of COVID-19 spread analysis in indoor space
and the requirements of three infection models - person-person model, person-
place model, and person-surface model - were presented. InCOVID, a prototype
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Fig. 4. Simulation with different ratios of initially infected persons

simulation tool for analyzing person-person infection model, was shown and an
experiment with real indoor space was presented to validate its feasibility.

Future work will include three parts. First the simulation tool will include
the remaining infection models, person-place and person-surface models. Second
the trajectory generation tool will be improved to produce more realistic cases.
We expect that deep learning approaches such as GAN (Generative Adversarial
Network) would be helpful to generate more realistic trajectories. It may be also
interesting to compare the synthetic data from this tool and real trajectories
if it would be available. Third, the validation of this model and tool is to be
included in the future work. We expect any benchmark test data set would be
available in the future. We may also consider temporal properties of indoor space
such as accessibility of doors depending on time. It may be considered for the
improvement of SIMOGEN.
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Abstract. Location-based service (LBS) has become an indispensable part of our
daily life. However, indoor positioning system at early stage is not able to meet
the urgent need for indoor LBS. Low-cost indoor positioning technology with-
out additional equipment is the current challenge in LBS field. In this paper, two
typical indoor positioning methods are selected: AR (Augmented Reality) based
visual positioning method and WiFi based positioning method. Experiments are
conducted to compare the two indoor positioning methods frommultiple perspec-
tives. Results show that performance of the two methods are similar in the aspects
such as positioning time consumption, equipment cost, usability and difficulty
level during preprocessing. Main differences between them are as follows: AR
visual positioning method is more accurate and stable, with its mean average error
at around 0.85 m and max error at 3.18 m. It’s suitable for indoor environment
rich in texture and stable in light. WiFi positioning has high values in error related
variables. Its MAE is about 3 m and more volatile with extreme values. How-
ever, it has an edge in usability including power consumption indicator. It’s more
efficient in data acquisition stage and is suitable for large-scale positioning. This
paper tends to provide reference for selection of indoor positioning methods.

Keywords: Comparison of indoor positioning methods · AR visual positioning ·
WiFi fingerprint indoor positioning · Indoor positioning and navigation

1 Introduction

With popularization of intelligent mobile devices and continuous improvement of their
sensor configurations, it is becoming more and more common to obtain users’ real-
time location and location-based Service (LBS) by means of mobile devices [1]. Due to
multipath effect of signal caused by blocking of walls, satellite signal intensity is greatly
weakened indoors. Thus, the mature outdoor positioning technology cannot be directly
applied to indoor positioning. Therefore, study on indoor positioning method has been
the focus of indoor LBS, among which, it is a major difficulty how to achieve low-cost
and large-scale indoor positioning without additional equipment [2, 3].
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Most current indoor positioning technologies are limited by site conditions or depen-
dent on additional equipment [5]. Geomagnetic positioning and inertial navigation posi-
tioning method needs user’s mobile device only, but the stability and accuracy cannot
meet the requirements of small-scale indoor scene [6]. Positioning methods based on
Radio Frequency, Infrared, Ultra wide-band and etc. require external equipment layout
in the environment [5]. WiFi signals are the existing external signal sources covering
most of today’s indoor environments, without additional deployment costs, whichmakes
WiFi-based positioning a mainstream method [2]. Visual positioning technology takes
the camera of users’ portable device as sensor and extracts features using computer
vision to match images with location. As it has the advantages of low cost and fine scale,
it has attracted wide attention [4, 8].

Among positioning methods based on WiFi, the fingerprint positioning technology
based on Received Signal Strength (RSS) is relatively typical [9, 12]. Classical posi-
tioning systems based on WiFi location fingerprint include RADAR system [10], Horus
system, etc. [11]. RSS values are obtained through repeated frame listening and response
between mobile terminal devices and surrounding wireless Access Points (AP). With
no need for specific location of AP, the method is relatively convenient in signal data
acquisition and low in cost, however susceptible to ambient interference [12].

Driven by development of computer vision, visual positioning methods based on
image matching have gained popularity. An image retrieval technology called BoW
(Bag of Words) was raised at the International Computer Vision Conference [13]. Lowe
[14] proposed a local feature matching method, SIFT (Scale-invariant Feature Trans-
form), and Bay et al. [15] subsequently proposed SURF (Speeded Up Robust Features),
which are insusceptible for changes in perspective, scaling and illumination. Researchers
realized positioning and navigation systems using methods above [16, 17].

Combination of Augmented Reality (AR) with traditional image vision technology
[4, 26] expands the breadth and depth of related applications [18]. With real-time posi-
tioning andmap construction framework, inertial measurement and artificial intelligence
as supporting technologies [20], AR assisted indoor positioning and navigation naturally
become an essential part of LBS and AR services [7, 19].

As an emerging indoor positioning technology [2, 8], AR visual positioning needs
to be compared with other indoor positioning methods for comprehensive evaluation.
Most studies simply use positioning error to evaluate the quality of positioning methods
[23, 24]. In addition to error indicators, positioning time, method extensibility (locat-
able range and number of users, etc.), algorithm complexity, robustness and cost are
important quantitative indicators [9, 12, 25]. Qualitative factors such as the ability to
resist environmental interference, the need for sample data and deployment of auxiliary
equipment can also be included to measure positioning algorithms [26].

Based on existing studies, this paper selects two typical methods of Wi-Fi position-
ing and AR visual positioning for evaluation and comparison. An indoor positioning
and navigation system is accomplished on Unity platform using these two indoor posi-
tioning methods separately. Wi-Fi positioning module adopts the fingerprint positioning
method based on RSS and applies KNN for location matching and Kalman filter for
signal processing. Experiments are then carried out and a quality evaluation system is
established. The advantages and disadvantages of the two indoor positioning methods



Comparison of Indoor Positioning Methods 143

are compared from multiple perspectives, providing reference for related research and
selection of indoor positioning methods.

2 Related Positioning Methods

2.1 AR Visual Positioning Method

ARvisual positioningmethod is based on computer vision technologywith imagematch-
ing as the core. Feature points with location that can describe the environment will be
extracted from images to build 3D feature point cloud database. By matching the local
feature point cloud extracted from real-time scene and global feature point cloud in
database, users’ position and orientation can be obtained [20–22] (Fig. 1).

Fig. 1. Schematic diagram of positioning based on sparse spatial map

AR visual positioning can be realized by two stages: mapping and positioning. At
the mapping stage, developers need to scan the study area with handheld devices to
construct 3D feature point cloud, namely sparse spatial maps. Firstly, SIFT is used to
extract feature points. Secondly, these features are quantified in the feature space by
clustering algorithm. Each image tile is marked with the nearest clustering label (visual
vocabulary), and the word bag model composed of visual words is trained to extract the
2D feature points. In the process of user movement, the image frames with the highest
similarity are selected for feature matching. Finally, through image feature matching
and multi-view forward intersection measurement, the 3D feature points cloud database
is built to quantify the study scenario [18, 21]. At the positioning stage, after the pre-
constructed sparse spatial map is localized, the user needs to open the camera so as to
construct current 3D feature points around the user. Via feature point cloud matching,
it’s then able to locate the user in real time. The study selects EasyAR, a domestic
Augmented Reality engine, to accomplish the AR visual positioning module [27].

2.2 Wi-Fi Positioning Method

Wi-Fi location methods can be mainly divided into three categories: geometric mea-
surement method, approximation method and scene analysis method [9]. The fingerprint
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positioning method based onWi-Fi belongs to the scene analysis method, in which RSS
is generally selected as the signal feature to describe the environment. According to
IEEE802.11 protocol, users’ terminal can scan all the channels and send Probe Request
frame to all the APs for acquisition of MAC address and RSS [28]. As long as the WiFi
function of the user’s device is turned on, it’s feasible to calculate user’s location.

The RSS fingerprint positioning algorithm can be divided into mapping stage and
positioning stage as well (Fig. 2). At the mapping stage, developers collect RSS finger-
print in the study area with 0.5 m apart. By collecting coordinates, MAC address for
each AP and RSS value of each sample, a position-based fingerprint map is built cover-
ing the scenario. The signal obtained needs to be preprocessed to approximate real user
trajectory by filtering RSS values with large skewness and small probability. Kalman
Filter, a kind of state estimation algorithm, is applied to smooth the signal [29]. At the
positioning stage, the RSS fingerprint of the user’s actual location will be matched with
the fingerprint map via similarity comparison. K-Nearest Neighbor (KNN) is applied to
location matching, which requires a certain density level of fingerprint samples.

Fig. 2. Schematic diagram of fingerprint indoor positioning based on WiFi

2.3 Accuracy Evaluation System of Positioning Method

The index system for evaluating and comparing indoor positioning methods is shown in
the following Table 1:

Table 1. Variable design of the quality measurement of positioning methods.

Indicator type Specific indicators Traits to measure

Error MAE Overall accuracy of algorithm (core)

Extreme error Range of fluctuations in positioning

SDE Stability of algorithm

Cumulative
distribution function
of the distance errors
(CDF)

Overall precision of algorithm

(continued)
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Table 1. (continued)

Indicator type Specific indicators Traits to measure

Usability Positioning time Positioning timeliness (core)

Power consumption Power consumption of algorithm

System size Portability of algorithms

Extensibility Additional
equipment cost

Extensibility of the algorithm (core)

Mapping time per
unit area

Applicability of algorithm

Robustness Error change under
light interference

Ability to resist environmental interference

Error change under
electronic
interference

Ability to resist environmental interference

Subjective judgement Difficulty of
development

Algorithm selection from developers’ view

Complexity of
preprocessing

Algorithm selection from developers’ view

Applicable site area Application scenarios of the algorithm

3 Experiment

3.1 Experimental Area

This study selected the 6th and 7th floors of an office building on a campus as the
experimental area. Eachfloor covers about 1718m2 and the corridor is around 162.36m2.
The room where the first experiment in Sect. 3.2 is conducted covers 80.64 m2. The 3D
diagram of the study area is shown in Fig. 3. The indoor positioning and navigation
system used in the experiment was developed using C# on Unity2019 platform. The
APK was tested on the Xiaomi 10 Ultra edition mobile phone on Android system.

Fig. 3. 3D model of the building in the experiment
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3.2 Experimental Results and Analysis

Experiments on Positioning in Room and Corridor. The overall positioning accu-
racy and stability of WiFi positioning in the room are lower than that in the corridor.
Due to the small scope of the room, the difference within RSS fingerprint is small, and
thus there exist drift phenomenon in location estimation. Besides, WiFi positioning may
be interfered by electronic devices in the room. AR visual positioning indicates a better
result in room than in corridor. In view of the nature of visual positioning, rich texture
features in the room make the feature map construction faster and less prone to tracking
errors (Fig. 4). The initial positioning takes less than 1 s, and MAE is about 0.45 m.

Fig. 4. Verification dot distribution inside the room based on AR visual positioning

Experiments on Positioning During the Day and at Night. AR visual positioning is
greatly affected by ambient light. When 3D point cloud data is collected at night, it is
difficult to capture detailed features. As there are limited number of 3D feature points col-
lected, location tracking sometimes goeswrongduringmapconstruction. In another case,
if sparse spatial map constructed at night is used for daytime positioning, it sometimes
occurred apparent offsets in anchor points. The possible reason is that reflective objects
and texture of walls under sunlight might lead to visual feature distinction between day
and night.

Experiments on Multi-floor Positioning. In this experiment, there exist drawbacks
using both two methods. For AR visual positioning, due to single texture of stairs,
number of feature points are limited. Map constructed in stairwells are prone to separate
or shift from parts to parts. For instance, if the topology relation between corridor and
stairwell is incorrect, positioning might go wrong when a user steps from corridor into
the stairwell. For WiFi positioning, staircases are rather far from APs in the rooms and
hence, fewAP can be detected. Using GetSensorData2.1 software [30], there are over 20
detectable APs in most areas while about 5 to 10 in stairwells. Besides, fingerprint data
in the same horizontal area on the 6th floor and 7th floor are vertically close to each other.
They could be mistakenly determined as adjacent fingerprint nodes by KNN location
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matching method. Therefore, 3D positioning system cannot directly copy the common
2D localization pattern and perhaps floors need to be determined in advance.

Overall Positioning Experiment
In order to compareWiFi positioning andARvisual positioning in amore comprehensive
way, 23 verification pointswere selected in this experiment, and coordinate samplingwas
carriedoutduring localizationusing the twomethods.Theexperimentwasconducteddur-
ing daytime under good light condition. The verification results are shown in Table 2, and
the distribution of verification points is shown in Fig. 5.

Table 2. Verification of indoor positioning results.

Verification
points

Actual
coordinates

Estimated
coordinates
using AR visual
positioning

Miss
distance (m)

Estimated
coordinates
usingWiFi
positioning

Miss
distance (m)

X Y X Y X Y

1 0.062 2.087 0.027 1.778 0.310 0.477 0.237 1.896

2 −1.568 0.577 −1.592 0.511 0.070 −1.546 0.067 0.510

3 1.524 0.620 1.598 0.315 0.314 1.258 0.022 0.655

4 −4.750 1.056 −4.305 1.021 0.446 −2.247 1.227 2.509

5 −6.973 0.356 −6.493 0.347 0.480 −1.785 1.498 5.313

6 −6.883 2.701 −6.466 2.685 0.417 −5.601 2.671 1.282

7 −7.024 4.746 −6.846 4.202 0.573 −5.521 6.739 2.496

8 −6.864 6.140 −6.570 6.440 0.420 −5.955 4.907 1.533

9 −5.909 13.003 −5.398 12.735 0.577 −3.707 10.872 3.064

10 −5.058 14.371 −4.996 14.107 0.271 −4.549 12.136 2.292

11 −4.438 16.739 −4.809 16.521 0.431 −4.015 15.442 1.364

12 −4.044 16.846 −4.320 17.505 0.715 −3.231 17.698 1.178

13 −2.970 19.830 −1.632 21.847 2.420 −2.612 21.850 2.052

14 −2.199 23.315 −1.973 24.041 0.761 −4.049 12.136 11.330

15 −0.798 25.315 −0.175 26.488 1.328 −3.393 13.940 11.667

16 −0.218 24.161 −0.096 24.955 0.803 0.720 26.338 2.371

17 −0.787 26.856 0.976 27.585 1.907 −1.632 23.812 3.159

18 −0.021 30.102 −0.175 30.488 0.415 −0.071 27.433 2.669

19 1.685 33.693 0.976 33.585 0.717 −0.793 33.286 2.510

20 4.682 42.076 4.045 38.965 3.175 6.198 47.329 5.468

21 6.097 48.411 5.783 48.358 0.319 6.198 47.329 1.086

22 6.646 46.784 7.503 47.119 0.920 6.835 48.052 1.282

23 6.559 50.789 8.418 50.720 1.860 6.081 48.804 2.041
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Fig. 5. Verification dot distribution of AR visual positioning and positioning based onWiFi

The experimental results indicate that the positioning results of the twomethods have
the following characteristics: (1) The drift position using WiFi positioning is within the
spatial range of data pre-collection, while some biased points using AR method could
“pass through the wall”. (2) The 20th and the 21th verification point have coincident
estimated coordinates. On noticing both of them lies in the end of a corridor, with sparse
data collection, the sampling density on the edge of scenes should be increased. (3)
According to the distribution diagram of verification points in the experiment (Fig. 5),
as the range of 0–10 m on Y-axis is close to lift lobby with rich texture features, the
predicted locations using AR method in this region almost coincide with true locations,
while in the middle section of corridor, the accuracy is lower due to lots of repeated
textures. Therefore, AR visual positioning method suits for relatively fixed areas with
rich and unique features, avoiding areas with repeated doors and white walls.

Table 3. Comparison between AR visual positioning and Wi-Fi fingerprint indoor positioning.

Indicator types Specific indicators AR visual
positioning

WiFi positioning

Error MAE(m) 0.854 3.032

Error extreme(m) 3.175 11.667

SDE (m) 0.760 2.875

Cumulative distribution function of the
distance errors (CDF)

Shown in analysis Shown in analysis

Usability Positioning time (s) 1.30–1.92 1.05–3.35

Power consumption (Mobile phone) 17% 8%

System size (MB) <20 <20

Extensibility Additional equipment cost (RMB) 0 0

Mapping time per unit area (s/m2) 4.36 1.2

Robustness Error change under light interference Location failure
occurs

No

Error change under electronic
interference

No Not obvious

Subjective
judgement

Difficulty of development Medium-low Medium

Complexity of preprocessing Low Low

Applicable site area Small & Middle Large
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The multi-dimensional comparison between two methods is shown in Table 3.
In terms of error indicators, AR visual positioning accuracy is higher: Mean absolute

error is 0.9 m; Maximum error distance is about 3.2 m, with no obvious abnormal
values; Error of the standard deviation is 0.8 m, which indicates that error is less volatile
in general; From CDF, 80% of errors are controlled within 1 m and the CDF curve
converges to probability of 1.0 faster. In comparison,WiFi positioning accuracy is lower,
withmean absolute error at about 3m. Stability is relatively poor as there is 20%of errors
over 3 mand 15% greater than 5 m. Moreover, there shows an 11 m error extremum,
indicating a drift phenomenon. The probable reason could be that there exist a few similar
fingerprint vectors however spatially apart from each other so that the fingerprint at the
user’s location might be matched to a fingerprint sample far from the true point in space.

In terms of usability, two methods are similar in results: The initial positioning time
of both depends on the speed ofmap loading from server and the efficiency of localization
algorithm, with positioning time cost at 1–2 s; Power consumption and system size of
both are on the same level, as WiFi method stores fingerprint as json file and AR visual
method saves point cloud as txt file, avoiding large capacity data localized. As stated
above, the requirements for mobile devices are quite low.

In view of scalability, both methods don’t require additional equipment to achieve
localization and WiFi method is three times more efficient. In large-scale scenes, WiFi
method has time cost advantagewhileARvisualmethod requires specialized equipment,
such as panoramic camera assisted, to achieve more convenient and productive locating
preparation.

Considering robustness, light has a certain impact to AR visual positioning and thus
feature database at daytime cannot be applied at night and vice versa. For WiFi method,
as it’s hard to control factors including surrounding visitors and electronic devices, its
ability to resist environmental interference requires further experiments.

Judgment from the perspective of developers subjectively, preprocessing difficulty
of both methods are relatively low. As EasyAR engine has encapsulated some core
methods, it’s more convenient and slightly easier for developers to realize AR visual
positioning than WiFi-based methods.

Overall, the applicability of the two indoor positioning methods to specific scenarios
has the following characteristics. WiFi positioning suits for large-scale sites, as the
internal differences within fingerprint samples should be as large as possible. With a
certain density of AP layout, WiFi fingerprint method can be applied in hospital, major
museum, hypermarket, shoppingmall and other places. AR visual positioning, in view of
its nature of vision, is suitable for rooms, libraries, shopping malls and other scenes with
rich texture features and relatively fixed layout. Accuracy may be reduced in scenarios
such as supermarket where goods and decorations change frequently. In scenes like
office building and teaching building with large areas of white walls and repeated doors
and windows, either time cost is increased by collecting feature data in finer details or
money cost is added by using expensive equipment like panoramic camera for better
mapping.
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4 Discussion and Conclusion

In this study, the emerging AR visual positioning method and the widely-used WiFi-
based RSS fingerprint positioning method are selected to analyze the characteristics
of the two indoor positioning methods from multiple perspectives. The results indicate
some commonalities between them: The 3D multi-floor positioning accuracy is rather
poor with mapping problem at the connection of stairs between two floors; Usability
measures such as positioning time, power consumption and storage space occupation
have little difference; No additional equipment is required; Feasibility is heigh as both
only require data collection during preprocessing. The main differences between the two
methods are as follows: AR visual positioningmethod is of higher accuracy and stability,
and is suitable for indoor environment with rich texture, fixed layout and relatively stable
light; Wi-Fi location method is of high volatility with abnormal drift phenomenon now
and then, but with higher efficiency in data collection, it has more advantages in usability
and is suitable for large-scale location with densely-deployed AP.

The experiments are tried to be conducted under general situation so that the tech-
niques could be duplicated by others to the greatest extent. Besides, many small experi-
ments concerning special condition and different scenarios are considered in this study
while there is still much room for progress. Our evaluation methods haven’t been tested
in other scenarios like markets and hospitals to further solidify the conclusions. Future
work will focus on combination of different types of indoor positioning methods, inte-
grating the advantages of emerging technologies and traditional methods. Moreover,
different positioning methods should be selected flexibly, aiming at distinctive types of
scenarios, so as to improve the accuracy and usability of indoor positioning.

Funding. This work is partially supported by the projects funded by theNational Natural Science
Foundation of China (Grant Number: 41771410) and the Ministry of Education of China (Grant
Number: Ministry of Education of Humanities and Social Science Project 19JZD023).
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