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Abstract. Parkinson’s Disease (PD) is one of the most relevant neu-
rodegenerative disorder. It is mainly caused by a loss of dopamine neu-
rons leading to a reduction in the neurotransmitter dopamine, which is
essential in the control of movement. While the diagnosis of PD is mainly
clinical, new markers are being used with high accuracy in the later stages
of the disease, where symptoms are clear. However, the early stages of
the disease, when symptoms start to evolve and treatments could poten-
tially be more effective, are yet to be explored. In this work we explore
the low-dimensional latent space of the Parkinson’s Progression Markers
Initiative (PPMI) DaTSCAN imaging dataset, with a twofold objective:
to perform an early diagnosis of PD, and to link the low-dimensional
representation of the images to symptomatology. Different unsupervised
methods have been used to extract the features (ISOMAP and PCA), and
the resulting space is evaluated by means of binary or multiclass classifi-
cation, and linear regression, using Support Vector Machines (SVM). We
obtained a diagnosis of PD with an Area Under the ROC Curve (AUC)
above 0.94 for three different variables, and a relevant link between the
Unified Parkinson’s Disease Rating Scale (UPDRS) and the imaging
composite features with R2 > 0.2 even for a simple linear model. These
results pave the way to explore latent representations in PD and study
the progression of the disease and its symptomatology.
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1 Introduction

Parkinson’s disease (PD) affects more than 6 million people worlwide [15], being
the second most relevant neurodegenerative disorder after Alzheimer’s Disease
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(AD). Parkinson’s disease is a severe, progressive and chronic disease of unknown
origin which is mainly caused by the progressive loss of dopaminergic neurons of
the nigrostriatal pathway [11]. The loss of dopamine neurons leads to a reduction
in the neurotransmitter dopamine, which is essential in the control of movement.
Nowadays, PD is incurable, and when symptoms appear it means that neuronal
destruction is excessive, and any possible treatments that may slow or stop
the progression are mainly ineffective. Therefore the greatest challenge in this
neurodegenerative disorder is an early diagnostic, even before the apparition of
symptoms.

At present, the typical diagnosis of PD is clinical, and based on a subjective
view of a patient’s symptoms. There are however two main reasons that com-
plicate the diagnosis of PD. First and foremost, because there are many similar
movement disorders that conform what is frequently called parkinsoninsm, of dif-
ferent etiology. Secondly, the severity of these symptoms changes over time. For
these reasons, approximately 25% of PD diagnoses are incorrect when compared
to autopsy findings [10].

Diagnosis has improved with time, with the increasing use of biomarkers such
as tau protein, present in Cerebro-Spinal Fluid (CSF). There are also many stud-
ies that aim at diagnosing PD using movement or tremor recorded in wearable
sensors [5,7] or the smartphone data [16]. Or even studies that relate PD with
speech faculties: [12].

Neuroimaging modalities yields early diagnosis of PD by providing nonin-
vasive biomarkers. Among them, Single Photon Emission Computed Tomogra-
phy (SPECT) uses highly specific radiopharmaceuticals –e.g., DaTSCAN– that
bind to dopamine transporters in the striatum, making it possible to observe
dopaminergic deficits in the brain. However, these images provide high dimen-
sional features that could be better exploited by means of computers than by
simple visual inspection. As a consequence, Machine Learning (ML) has thrived
in the latest years, mainly to perform a differential diagnosis and enabling Com-
puter Aided Diagnosis (CAD) systems [6,11,17]. However, there are a lesser
amount of studies that try to make sense of PD progression using these images
and other variables.

This study aims to develop an algorithm that can model the progression of
PD, offering support for its early diagnosis. The proposed system is based on
a non-linear decomposition of the SPECT images using unsupervised machine
learning methods and the modelling of the composite variables via support vector
machines (SVMs). The system is tested in two differential tasks: differential
diagnosis (classification) and disease progression analysis (regression) by means
of a longitudinal dataset, both using SVMs. The system is evaluated by means of
stratified k -fold cross-validation using a different performance metrics in order to
ensure the validity of the decomposition techniques for studying and diagnosing
PD.
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Fig. 1. Flowchart of the study

2 Methodology

2.1 Dataset Description and Image Preprocessing

Data used in the preparation of this article were obtained from the Parkinson’s
Progression Markers Initiative (PPMI) database (https://www.ppmi-info.org/
accessdata-specimens/download-data). For up-to-date information on the study,
visit www.ppmi-info.org.

The cohort used for this study is composed by those subjects initially diag-
nosed either as controls (CTL), with no evidence of neurodegenerative deficits,
and Parkinson’s Disease (PD) affected subjects, with different levels of severity.
The CTL group consists of 101 males and 53 females, with 2 of them showing
mild symptomatology (HY on=1). The PD group consists of 284 males and 159
females. Table 1 shows the demographic analysis of the dataset. PD subjects and
some subjects of the CTL group were clinically followed for up to 5 years, pro-
viding data for 1399 sessions, which will be evaluated afterwards to study the
progression of imaging biomarkers and their relationship to PD-specific progres-
sion indicators.

Table 1. Demographics of the PPMI subjects included in the study.

Prim. Diag. Sex HY N Age UPDRS3 on Cognitive state

PD M 1.0 124 60.42 [9.96] 14.411 [5.98] 1.091 [0.29]

2.0 159 64.06 [8.79] 25.346 [8.75] 1.242 [0.44]

3.0 1 67.74 [0.00] 23.000 [0.00] 1.000 [0.00]

F 1.0 76 57.00 [9.39] 14.553 [6.51] 1.000 [0.00]

2.0 81 63.45 [9.26] 24.617 [8.38] 1.045 [0.21]

3.0 2 63.11 [11.10] 30.000 [8.49] 1.000 [0.00]

CTL M 0.0 99 61.25 [11.03] 1.133 [2.04] 1.071 [0.26]

1.0 2 61.07 [9.02] 5.500 [4.95] 1.000 [0.00]

F 0.0 53 59.21 [12.67] 1.283 [2.33] 1.000 [0.00]

DaTSCAN images were preprocessed using affine registration to the MNI
space as in [8]. Intensity normalization was based on a thresholding technique

https://www.ppmi-info.org/accessdata-specimens/download-data
https://www.ppmi-info.org/accessdata-specimens/download-data
www.ppmi-info.org
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based on an alpha-stable modelling of the image intensity distribution using
the algorithm proposed in [2]. Additionally, three categorical variables will be
used for classification: approximate diagnosis at each visit (APPRDX), diagnosis
at the first visit (PRIMDIAG) and the value for Hoehn and Yahr (HY) scale
for PD, that ranges from 0 (no symptoms) to 3 (severe disability). APPRDX
distinguishes between healthy patients, PD’s and SWEDD patients, whereas
PRIMDIAG just between PD and CTL. The Unified Parkinson’s Disease Rating
Scale (UPDRS) degree for PD, that measures the degree of symptomatology, is
also used as a continuous variable in regression.

2.2 Manifold Learning

Manifold Learning builds on the assumption that real, highly dimensional data
such as images lies on a lower-dimensional nonlinear manifold. The group of
algorithms aimed at approximating this manifold and how real data is projected
to it are known as Manifold Learning algorihtms [8].

This work follows the outline at Fig. 1, in which feature extraction via differ-
ent dimensionality reduction techniques is achieved. After the image preprocess-
ing described at Sect. 2, we apply two algorithms: Principal Component Analysis
(PCA) or ISOMAP.

Principal Component Analysis (PCA) is a linear dimensionality reduction
technique which allows to identify new linear subspaces. The principal compo-
nents (PC) are each one of the spatial directions which maximizes the variance
of the data while being orthogonal to each other, therefore they are uncorrelated
variables [9].

In contrast to the linear nature of PCA, we have applied an isometric fea-
ture mapping, or Isomap, an algorithm that performs nonlinear modelling of a
manifold extending metric multidimensional scaling via geodesic distances. The
aim is to find a linear, lower dimensional subspace in which to embed the data
in a high dimensional space, preserving the geodesic distance between the data
[3].

We used the algorithm for computing Isomap as defined in [14], that is com-
posed of three steps:

1. First, K-nearest neighbors are applied to construct a neighborhood graph.
2. Second, the shortest path between all pairs of point is calculated by estimating

geodesic distances, usually using the Dijktra or Floyd-Warshall algorithms.
3. Finally, a d-dimensional Euclidean embedding is constructed by a partial

eigenvalue decomposition (i.e., taking the d largest eigenvalues of the kernel.

2.3 Classification and Regression Experiments

Last step in our analysis is the application of machine learning modelling for
predicting scores. We have used an algorithm that has proven robust in many
applications: Support Vector Machines (SVM), which have been widely used in
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Alzheimer’s [13] or cancer [1]. We have used the implementation of LIBLINEAR
for SVM classifiers (SVC) and SVM regression (SVR) [4].

Linear SVC is a particular case of SVR, as both try to predict a target
variable Y from a set of data X, which in our case are the coordinates of the
projections of the images in the manifold. SVMs in general try to model the
curve inherent to the trend of data, creating a linear hyperplane that in the
case of classification, separates (theoretically) the data. In the case of SVR, it
becomes a predictor of certain variables.

5-fold stratified cross-validation (CV) is used to obtain performance mea-
sures both for regression and classification. For the classification approach, the
average and standard deviation of accuracy, sensitivity, specificity and balanced
accuracy are provided, along with the ROC curve in each CV loop. In the case
of regression, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE) and R2 are used as performance measures.

Fig. 2. DaTSCAN central slice placed in the corresponding coordinates of the first 2
dimensions of PCA (left) and Isomap (right).

3 Results and Discussion

First of all, we observe the differences between the linear decomposition with
PCA and non-linear decomposition with Isomap in Fig. 2. First, two dimensions
are shown for each methodology. Both approaches show similar trends in the
first dimension (dimension 0), spanning from negative to positive values that are
related to the intensity of the striatal region. However, the Isomap decomposes in
a more uniformly distributed coordinate space, thanks to its nonlinear modelling,
whereas PCA is more influenced by extreme values and outliers. Dimension 1,
however, differs. In Isomap it is related to the intensity of the tails of the striatal
region (putamen), whereas in PCA seems to measure roughly the asymmetry of
the image.
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With the aim of predicting the symptomatology of a patient just from image
composite values, we trained a SVR with the projections of both Isomap and
ICA. The performance of the SVR in predicting the variable UPDRS is shown
at Table 2. There, the Isomap is shown a more accurate decomposition than the
PCA, with no big differences between the two and three component decomposi-
tion, and higher R2 (above 0.2) than PCA.

Table 2. Performance of the SVR in predicting UPDRS from the 2 and 3-component
PCA and Isomap projections.

ISOMAP 2 ISOMAP 3 PCA 2 PCA 3

MAE 12.317 [0.749] 12.318 [0.746] 12.692 [0.730] 12.692 [0,733]

R2 0.207 [0.063] 0.206 [0.064] 0.190 [0.0557] 0.191 [0.056]

MSE 261.594 [29.299] 261.468 [29.310] 266.494 [27.564] 266.374 [27.516]

RMSE 16.148 [0.917] 16.144 [0.918] 16.302 [0.849] 16.299 [0.847]

The resulting SVR model for Isomap and PCA is shown at Fig. 3. There, the
black lines represent a perfect linear reconstruction. We can observe that the
predictions using Isomap decomposition are more linear with respect to the real
UPDRS score than those of the PCA. The error encountered is due mainly to
larger UPDRS values, which involves a more severe symptomatology.

Fig. 3. Comparison of the predictions obtained by a SVR using the PCA and the
Isomap decomposition with two components.

The composite imaging features obtained from PCA and Isomap are also
used to predict three different targets: PRIMDIAG, APPRDX, and HY scale
(see Sect. 2 for a description of these variables). To do so, a SVC is trained, and
measures of Accuracy, Sensitivity, Specificity, and Balanced Accuracy (average
of Sensitivity and Specificity) are reported in Table 3.
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Table 3. Performance of the SVC when using the two- and three-dimensional projec-
tions of Isomap and PCA.

Variable Performance ISOMAP 3 PCA 3 PCA 2 ISOMAP 2

APPRDX Accuracy 0.879 [0.028] 0.856 [0.043] 0.855 [0.041] 0.871 [0.034]

Bal. Accuracy 0.882 [0.043] 0.847 [0.052] 0.847 [0.054] 0.877 [0.048]

Sensitivity 0.886 [0.088] 0.835 [0.091] 0.835 [0.091] 0.886 [0.097]

Specificity 0.878 [0.032] 0.859 [0.046] 0.858 [0.043] 0.869 [0.040]

PRIMDIAG Accuracy 0.880 [0.031] 0.857 [0.046] 0.856 [0.044] 0.873 [0.036]

Bal. Accuracy 0.751 [0.046] 0.724 [0.054] 0.722 [0.054] 0.745 [0.048]

Specificity 0.520 [0.086] 0.474 [0.099] 0.470 [0.099] 0.507 [0.091]

Sensitivity 0.982 [0.014] 0.973 [0.015] 0.973 [0.015] 0.982 [0.015]

HY Accuracy 0.611 [0.038] 0.594 [0.020] 0.593 [0.022] 0.606 [0.021]

Bal. Accuracy 0.466 [0.021] 0.441 [0.019] 0.438 [0.013] 0.457 [0.009]

Class 0 0.897 [0.066] 0.817 [0.108] 0.829 [0.086] 0.903 [0.066]

Class 1 0.143 [0.060] 0.126 [0.039] 0.086 [0.038] 0.072 [0.040]

Class 2 0.824 [0.065] 0.821 [0.061] 0.838 [0.059] 0.852 [0.057]

Class 3 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000]

It can be observed that the best performing decomposition is again Isomap
with three dimensions. In this cases, it is able to approximate each subject’s and
session diagnosis with high accuracy. It is also capable of predicting primary
diagnosis with high sensitivity (>0.98). For its part, the symptomatology as
measured by HY, was predicted with a Multiclass one-vs-all SVC. The results
were good for classes 0 and 2, but not for classes 1 and 3. This is relevant for
interpreting this result, as class 0 are controls and class 2 has severe symptoms.
Class 3 subjects were interpreted as class 2, probably because they show similar
dopaminergic deficit, in contrast to controls. Class 1 is so close to class 0 that
some subjects with primary diagnosis as CTL have class 1 assigned. However, it
is very likely that some of these subjects are incorrectly interpreted as controls
and other as class 2 because they show dopaminergic deficit.

ROC curves for the differential binary diagnosis are shown at Fig. 4. Indi-
vidual curves for each CV fold are shown, and the mean ROC curve is shown
in blue. There it can be seen that the AUC of our methodology is very high for
providing a good differential diagnosis of PD based solely on imaging markers.
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Fig. 4. ROC curves obtained with SVC applied to ISOMAP 3 output with the apporx-
imate diagnosis, HY scale and primary diagnosis.

4 Conclusions

Due to the critical importance and the difficulty of diagnosing Parkinson’s dis-
ease, it is necessary to find reliable and accurate methods of early diagnosis.
The aim of this work is to explore the usefulness of nonlinear manifold learn-
ing methodologies to inform a new space in which imaging features relate to
symptomatology of PD, allowing for the creation of longitudinal PD progres-
sion models. The proposed methodology, using Isomap as a manifold learning
method, and Support Vector Machines (SVM) as machine learning models for
classification and regression, yielded high performance in regression, binary clas-
sification, and multi-class classification, as in the case of the HY score.

Each of the dimensions of the nonlinear subspace found by Isomap can be
related to relevant changes in the brain such as the concentration of dopamine
transporters (DaT) in the striatum or DaT concentration at the putamen (as it
is the case of dimension 1). This builds a machine learning model that, unlike
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many in the literature, is fully interpretable by healthcare professionals, paving
the way for a more informed diagnosis.

The latent space of Isomap and other manifold learning algorithms in
DaTSCAN images is yet to be fully explored. Other decomposition methods
based on self-supervised neural networks could be of help here, along with more
complex regression models that account for differences in distribution and hier-
archical models with covariates, paving the way for new interpretable Computer
Aided Diagnosis systems to understand the diagnosis and progression of PD.
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