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Abstract. Metagenomics sequencing enables the direct study of micro-
bial communities revealing important information such as taxonomy and
relative abundance of species. Metagenomics binning facilitates the sep-
aration of these genetic materials into different taxonomic groups. Mov-
ing from second-generation sequencing to third-generation sequencing
techniques enables the binning of reads before assembly thanks to the
increased read lengths. The limited number of long-read binning tools
that exist, still suffer from unreliable coverage estimation for individ-
ual long reads and face challenges in recovering low-abundance species.
In this paper, we present a novel binning approach to bin long reads
using the read-overlap graph. The read-overlap graph (1) enables a fast
and reliable estimation of the coverage of individual long reads; (2)
allows to incorporate the overlapping information between reads into the
binning process; (3) facilitates a more uniform sampling of long reads
across species of varying abundances. Experimental results show that
our new binning approach produces better binning results of long reads
and results in better assemblies especially for recovering low abundant
species. The source code and a functional Google Colab Notebook are
available at https://www.github.com/anuradhawick/oblr.
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1 Introduction

Recent advancements in sequencing technologies have accelerated microbiome
research significantly. Broadly, metagenomics analysis supports the direct study
of microbial genetic material from the host environments [3,32]. One fundamen-
tal problem that dominates across a wide range of research is the identifica-
tion and characterization of microbial genetic material. Metagenomics binning
specifically determines the species present in a given sample and further sup-
ports the downstream functional analysis of identified microorganisms. There
exist two main paradigms for metagenomics binning; (1) reference-based bin-
ning (e.g. Kraken2 [36], Centrifuge [11], MeganLR [7], Kaiju [20], etc.) and (2)
reference-free binning (e.g. MaxBin 2 [37], MetaBAT 2 [10], VAMB [25], etc.).
Reference-free approaches are preferred when unknown species are present or
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the reference databases are incomplete. Typically, short reads from the second-
generation sequencing technologies (e.g. Illumina, etc.) are assembled into much
longer contigs to be binned as longer contigs usually carry more pronounced
genomic signals, e.g., the coverage and composition information of contigs. The
coverage of an assembled contig is estimated by the aligned reads on this contig
whereas the composition information is computed from the normalized ologonu-
cleotide frequencies.

Long-read technologies from the third-generation sequencing is continuously
gaining popularity [17], especially with the recent introduction of PacBio HiFi
and Nanopore Q20+ technologies. As long reads are getting similar to contigs
(assembled from short reads) in terms of length and accuracy, it is worth inves-
tigating whether long reads themselves can be binned directly before assembly.
Note that the contigs binning tools cannot be directly applied to bin accurate
long reads due to the absence of a coverage value for each read. MetaBCC-LR [35]
and LRBinner [34] are two recent attempts to bin long reads in a reference-free
manner. MetaBCC-LR and LRBinner both use k-mer coverage histograms for
coverage and trinucleotide frequency vectors for composition. While MetaBCC-
LR uses coverage and composition features in two subsequent steps, LRBinner
combine coverage and composition features via an auto-encoder. Although these
two k-mer based approaches show some promising results in binning long reads,
they are highly likely to suffer from unreliable coverage estimation for individ-
ual long reads and poor sensitivity for low-abundance species due to imbalance
clusters (refer to Fig. 3).

In this paper, we propose a novel binning approach (OBLR) to bin long
reads using the read-overlap graph. In contrast with MetaBCC-LR and LRBin-
ner, we adopt a novel coverage estimation strategy and a sampling strategy to
form uniform clusters assisted by the read-overlap graph. We show that read-
overlap graph assists in better estimation of read coverage and enables us to
sample reads more uniformly across species with varying coverages. Moreover,
the connectivity information in the read-overlap graph facilitates more accurate
binning via inductive learning. Experimental results show that our new bin-
ning approach produces better binning results of long reads while reducing the
extensive resources otherwise required for the assembly process.

2 Methods

Our pipeline consists of 5 steps performing the tasks, (1) building the read-
overlap graph, (2) obtaining read features, (3) performing probabilistic sam-
pling, (4) detecting clusters for sampled reads and (5) binning remaining reads
by inductive learning. Figure 1 illustrates the overall pipeline of OBLR. The
following sections explain each step in detail.

2.1 Step 1: Constructing Read-Overlap Graph

As the first step of the pipeline, we construct the read-overlap graph. The read-
overlap graph is introduced to utilize the overlapping information between raw
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Fig. 1. An overview of the workflow of the proposed pipeline OBLR.

reads. Earlier works have demonstrated that the topology of read-overlap graph
can help binning short reads [2] as well as distinguishing between genomes at the
strain level [1]. As for long reads, two reads are overlapping (connected by an
edge in the read-overlap graph) if and only if their overlapping length is at least
Loverlap and the overhang length is at most Loverhang (computed according to
[13]). Note that overhang refers to the region on the sequence that lies along with
the aligned sequence, however, does not have matching bases to meet overlap
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criteria. In our pipeline, we use k-mer bin map (kbm2) program to compute the
approximate overlaps between reads. We use the empirically determined values,
Loverlap = 2560 and Loverhang = 512 as overlap selection criteria in default
setting. Note that kbm2 is a sub-routine of the recent assembler wtdbg2 and is
extremely fast to detect overlapping reads using k-mer bins without performing
pairwise alignment [28]. In the read-overlap graph, each node Ri represents a
read while each edge (Ri, Rj) indicates that Ri and Rj are overlapping. We also
define D(Ri) as the degree of Ri in this read-overlap graph.

2.2 Step 2: Obtaining Read Features

In our pipeline, we intend to derive read features that incorporate both compo-
sition and coverage information of long reads.

The composition information of long reads can be computed as their oligonu-
cleotide frequencies which are shown to be conserved within a given species while
being reasonably distinct between species [30,37]. More specifically, we compute
a tetra-nucleotide frequency vector for each long read Ri, i.e., X(Ri) ∈ R

136

as there are 136 distinct tetra-mers when combining reverse complements. This
vector is used as the composition feature in our pipeline.

The coverage information of long reads usually refers to the coverage of under-
lying genomes from which the long reads are drawn. This is also important in
metagenomics binning as long reads from the same species tend to have simi-
lar coverages [25,35]. While such coverage information is usually available for
contigs assembled from short reads (as a byproduct of assembly), long reads do
not come with their coverage information. However, a read from a high-coverage
genome is likely to have more overlaps compared to that from a low-coverage
genome. Therefore, it is a natural choice to use the node degree in the read-
overlap graph to estimate the coverage of the corresponding read. This choice is
supported by Fig. 2 which shows a clear correlation between the node degree in
the read-overlap graph and the coverage information of the corresponding read.

In summary, we combine both tetra-nucleotide frequency vector X(Ri) (for
composition) and the node-degree information D(Ri) (for coverage) to derive
the read feature vector as XD(Ri) = X(Ri) × max(1, lg(D(Ri))) for each long
read Ri. Note that the max( ) and lg( ) are introduced to dampen rigorous fluc-
tuations in coverage, especially for low-coverage genomes. Henceforth, XD(Ri)
refers to the read features using degree and composition for read Ri.

2.3 Step 3: Performing Probabilistic Sampling

Clustering entire dataset at once can lead to the well-known class-imbalance
problem [9] because metagenomics samples consist of species with varying cov-
erages, i.e., imbalance clusters. However, probabilistic down sampling can effec-
tively address this problem [16]. In order to perform such under sampling, we
recall the degree information of nodes and use the Eq. 1 to compute the relative
probability of sampling Ri. Note that D(Ri) = 0 when Ri is an isolated node and
helps OBLR to discard chimeric reads. The effect of down sampling is illustrated
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(a) Sim-8 (b) Sim-20

Fig. 2. The correlation between the node degree in read-overlap graph and the coverage
information of the corresponding read for Sim-8 and Sim-20 datasets.

Fig. 3. Comparison of (a) uniform sampling and (2) probabilistic sampling of long
reads in Sim-8 dataset. Different colors corresponds to reads that belong to a unique
species.

in Fig. 3. It is evident that clusters after down sampling are of similar sizes and
with less isolated points.

P (Ri) =

{
1

D(Ri)
if D(Ri) �= 0

0 if D(Ri) = 0
(1)

2.4 Step 4: Detecting Clusters for Sampled Reads

We use UMAP [19] to project the sampled reads into lower dimensions and
HDBSCAN [18] then is applied to detect clusters for sampled reads. Note than
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UMAP is a dimensionality reduction technique that is fast and scalable. HDB-
SCAN is a variant of DBSCAN, however it is capable of determining clusters
without fixed parameters. Thus, HDBSCAN is more robust in scenarios where
the cluster densities can vary significantly. To accommodate long-read datasets
with different sizes, 25,000, 50,000, 100,000, 200,000 and 400,000 are used as the
sampled number of reads to detect clusters. For each instance, the Silhouette
score [27] is computed. We use the sample size with the highest Silhouette score
as the chosen sample size for the dataset. This enables us to determine the size
to sample from a given dataset in an unsupervised manner. At the end of this
step; we have a sample of reads with their bin labels i.e., cluster labels.

2.5 Step 5: Binning Remaining Reads by Inductive Learning

As the read-overlap graphs may contain millions of nodes, the classic label prop-
agation approaches face scalability issues to bin the remaining reads [15]. There-
fore, OBLR employs GraphSAGE [6] to bin the remaining reads into the iden-
tified clusters in the previous step. GraphSAGE is a Graph Neural Network
(GNN) architecture and has been designed to perform inductive learning using
large-scale graphs [6]. GraphSAGE can be represented as a layer in a GNN that
aggregates the neighborhood features to represent the features of a node itself.
Formally, the l-th layer can be formulated according to Eqs. 2 and 3 [38].

a
(l)
i = Mean(h(l−1)

j : j ∈ N (Ri)) (2)

h(l)
v = Concatenation(h(l−1)

v , a(l)v ) (3)

where h
(l)
i is the feature vector of node Ri at layer l. Note that h

(0)
v =XD(Ri)

and N (Ri) represent neighbors of node Ri. While GraphSAGE supports arbi-
trary aggregate functions, we choose the Mean( ) as the aggregation operator
to be tolerant towards noise and false connections in the read-overlap graph
due to repeats. Furthermore, we use Concatenation( ) as the layer-wise fea-
ture combination strategy to retain features from both the node itself and its
neighborhood.

We use two GraphSAGE layers followed by a fully-connected layer with K
outputs, where K is the number of bins estimated in Step 4. Two GraphSAGE
layers use LeakyRELU activation while the final layer uses log softmax activation
resulting in the output probabilities for K bins. We train the GNN using 200
epochs using sampled reads binned in Step 4 and use negative log-likelihood
(cross-entropy) as the loss function. During the training phase, we use a neighbor
sampler that samples up to 20 neighbours in GraphSAGE layers. We use Adam
optimizer for gradient descent. The trained GNN on sampled reads provides
assignment probabilities for remaining reads to the bins derived in Step 4. The
remaining reads are thus assigned to the bins with the highest probabilities.
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3 Experimental Setup

We evaluate our pipeline using two simulated and three publicly available real
datasets. Note that, all the experiments are conducted and evaluated using the
same set of parameters. Detailed information about the datasets are available in
Appendix A.

3.1 Simulated Datasets

We simulate four PacBio datasets using SimLoRD [29] containing 8, 20, 50 and
100 [35] species with average read length 5,000 bp and the default PacBio error
profiles in SimLoRD (insertion = 0.11, deletion = 0.04 and substitution = 0.01).
These two datasets are named as Sim-8, Sim-20, Sim-50 and Sim-100 respec-
tively.

3.2 Real Datasets

Three real datasets with known reference genomes are also used to evaluate
read-level binning performance. Long reads from these datasets were aligned to
references using Minimap2 [14] to obtain the ground truth.

– ZymoEVEN: Oxford Nanopore reads sequenced from GridION device from
NCBI Accession Number ERR3152364 [24]. The dataset consists of 10 species
with average read length 4,119.

– SRR9202034: PacBio CCS reads of the ATCC MSA-1003 Mock Microbial
Community from NCBI BioProject number PRJNA546278 Accession Num-
ber SRR9202034. The dataset contains 15 species with more than 0.1% rela-
tive abundance and average read length 8,263.

– SRX9569057: PacBio-HiFi reads of the NCBI BioSample SAMN16885726
Accession Number SRX9569057. This dataset contains 13 species (18 strains)
with more than 0.1% relative abundance and average read length 9,093.

Table 1 summarizes the information about the datasets including the number
of species, dataset sizes and the number of nodes (reads) and edges of the read-
overlap graphs.

3.3 Baselines and Evaluation Criteria

We benchmark our approach against two recent long-read binners, MetaBCC-
LR [35] and LRBiner [34]. For a binning result of K bins against the ground
truth of S species, we populate a matrix a of size K × S, where aks denotes
the number of reads assigned to bin k from the species s of the sample. The
binning results are evaluated using precision Eq. 4, recall Eq. 5 and F1-score
Eq. 6 [37]. We used AMBER [21] to compute completeness and purity, genome
fractions using MetaQUAST [22], assembly CPU-time and memory usage to
evaluate performance.
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Table 1. Summary of the datasets

Dataset No. of species Dataset size (GB) No. of nodes No. of edges

Sim-8 8 3.5 432,333 47,984,545

Sim-20 20 5.3 666,735 42,642,457

Sim-50 50 9.5 1,119,439 86,245,400

Sim-100 100 24.6 2,991,815 1,198,753,181

ZymoEVEN 10 8.2 1,688,672 611,447,694

SRR9202034 15 19.5 2,358,257 2,105,962,083

SRX9569057 13 18.0 1,978,852 1,421,138,836

precision =
∑

k maxs{aks}∑
k

∑
s aks

(4)

recall =
∑

s maxk{aks}∑
k

∑
s aks

(5)

F1 − score = 2 × Precision × Recall

Precision + Recall
(6)

4 Results and Discussion

We evaluate binning results at the read-level using precision, recall, F1 score,
the number of bins produced. We further evaluate each bin using per-bin F1-
scores using AMBER [21]. Moreover, we conducted a quantitative evaluation of
assemblies using MetaQuast [22] before and after binning.

4.1 Binning Results

We benchmark OBLR against MetaBCC-LR [35] and LRBiner [34] which are
two recent long-read binning tools as presented in Table 2. We observed that
OBLR results in the highest F1-scores across all the datasets with the overall
best performance. OBLR also produces more accurate estimates of the number
of bins in most datasets.

These observations are further supported by the AMBER [21] evaluation
summarized in Fig. 4 and 5 where OBLR produces the best per bin F1-scores
among all three long-read binners. Per bin F1-score evaluates each bin separately
using their purity and completeness while penalizing false bin splits and merged
bins. Note that MetaBCC-LR and LRBinner suffer from fragmented binning
results (i.e., overestimated number of bins) because bins with low completeness
are significantly penalized by AMBER. This observation is explained further in
Appendix B.
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Table 2. Comparison of binning results of MetaBCC-LR, LRBinner and OBLR.

Dataset No. of bins Criteria MetaBCC-LR LRBinner OBLR

Sim-8 8 Precision 90.78% 99.14% 99.33%

Recall 96.18% 99.14% 99.33%

F1 score 93.40% 99.14% 99.33%

Bins detected 13 8 8

Sim-20 20 Precision 82.97% 90.53% 97.88%

Recall 81.95% 88.23% 97.88%

F1 score 82.46% 89.36% 97.88%

Bins detected 29 18 20

Sim-50 50 Precision 82.23% 91.92% 92.94%

Recall 70.56% 77.03% 97.81%

F1 score 75.95% 83.82% 95.32%

Bins detected 32 31 45

Sim-100 100 Precision 90.50% 82.60% 87.61%

Recall 84.54% 92.78% 95.00%

F1 score 88.54% 87.39% 91.16%

Bins detected 89 63 74

ZymoEVEN 10 Precision 93.09% 72.41% 75.44%

Recall 73.84% 92.97% 95.33%

F1 score 82.36% 81.41% 84.23%

Bins detected 8 9 8

SRR9202034 15† Precision 91.30% 93.16% 98.48%

Recall 69.59% 91.94% 98.52%

F1 score 78.98% 92.55% 98.50%

Bins detected 11 10 15

SRX9569057 13† Precision 80.94% 80.47% 95.03%

Recall 85.82% 90.68% 97.70%

F1 score 83.31% 85.27% 96.35%

Bins detected 23 16 14

† Species with at least 0.1% abundance.

4.2 Assembly Results

We perform assembly using the long-read metagenomic assembler metaFlye [12].
Table 3 demonstrates the genome fraction and resource usage for assembling raw
reads (termed Raw) and assembling reads binned by OBLR (termed Binned),
respectively. Gains in genome fraction are relatively higher for simulated datasets
with more species (e.g., Sim-50 and Sim-100) while the most significant ben-
efit being the drastic reduction of the resources consumed. Binning long reads
from real datasets before assembly in general maintains the genome fraction
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Fig. 4. Per bin F1-score comparison between MetaBCC-LR, LRBinner and OBLR
computed by AMBER [21] for simulated datasets.

Fig. 5. Per bin F1-score comparison between MetaBCC-LR, LRBinner and OBLR
computed by AMBER [21] for real datasets.

(94.13% to 94.27% in SRX9569057, 86.51% to 86.67% in ZymoEVEN and
90.30% to 90.39% in SRR9202034) while significantly saving on the resources.
The saving on peak memory varies from 40% to 80%. However, CPU hours con-
sumed remains comparable due to re-indexing of reads and the near-linear time
complexity of the assembly process.

5 Implementation

We use multiple optimizations in the OBLR pipeline. In Step 1, we chunk the
reads in to blocks of 250,000 reads, and each block of reads is mapped with
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Table 3. Comparison of genome fraction, memory usage and CPU time consumed for
assemblies conducted using metaFlye [12] before and after binning reads.

Dataset Genome fraction Genone fraction Peak memory CPU time

raw OBLR (GB) (Hours)

Raw Binned Raw Binned

Sim-8 99.90% 99.90% 44.12 9.14 7.98 7.76

Sim-20 99.80% 99.85% 71.70 8.52 14.75 12.84

Sim-50 99.25% 99.32% 58.12 14.36 22.95 20.09

Sim-100 97.70% 97.77% 51.95 25.91 76.62 43.78

ZymoEVEN 86.51% 86.67% 31.67 14.82 15.17 13.22

SRR9202034† 90.30% 90.39% 52.80 28.48 173.20 140.60

SRX9569057† 94.13% 94.27% 49.43 25.84 112.32 98.82
† Genome fraction computed from species with at least 0.1% abundance.

Table 4. Resource usage of each step in the OBLR pipeline.

Dataset OBLR step Peak memory CPU time Peak GPU

(GB) (H) memory (GB)

Sim-8 Read-overlap graph 7.15 0.93 –

Clustering 5.39 0.06 18.70

Binning 6.38 0.01

Sim-20 Read-overlap graph 7.26 1.27 –

Clustering 5.94 0.05 11.56

Binning 7.15 0.06

Sim-50 Read-overlap graph 7.36 2.68 –

Clustering 7.08 0.06 18.75

Binning 8.80 0.16

Sim-100 Read-overlap graph 19.23 26.62 –

Clustering 14.43 0.13 18.73

Binning 19.03 0.65

ZymoEVEN Read-overlap graph 4.78 4.8 –

Clustering 22.4 0.22 11.57

Binning 28.98 0.11

SRR9202034 Read-overlap graph 36.54 118.73 –

Clustering 15.09 0.15 18.89

Binning 18.48 0.08

SRX9569057 Read-overlap graph 4.97 82.81 –

Clustering 30.20 0.29 18.96

Binning 38.75 0.15
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entire dataset resulting in several mapping files. Finally, the mapping files are
merged into a single file containing edges between reads and degree. For Step 2
we use seq2vec [33] to compute the composition vectors. In Steps 3 and 4 we use
Rapids.AI [31] GPU libraries [26] (on NVIDIA RTX 3090 with 24 GB VRAM)
for UMAP and HDBSCAN. Finally, we use PyTorch Geometric [5] in Step 5 for
GraphSAGE. We conducted our experiments on an Ubuntu 20.04.3 LTS system
running on AMD Ryzen 9 5950X with 16-core Processor with 32 threads and
128 GB of RAM.

Table 4 tabulates the resource usage of each step in OBLR pipeline. In addi-
tion we also present the resource utilization of kbm2 [28]. Note that the GPU
memory utilization is fixed as we perform clustering and silhouette scores only
upto 400,000 data points. However, resource usage for other steps vary depend-
ing on the read size distribution on each read block and the number of data
points.

6 Conclusion

We presented a novel long-read binner, OBLR, which utilizes the read-overlap
graph to bin long reads in metagenomic samples. Recent advances such as the
k-mer bins mapping (kbm2) [28] enables extremely fast detection of overlap-
ping reads and construction of the read-overlap graph before assembly. OBLR
thus makes use of the read-overlap graph to improve the state-of-the-art long-
read binning approaches. The read-overlap graph not only helps to estimate the
coverage of single long read, but also allow us to sample the long-reads more
uniformly across species of varying abundances. The connectivity information in
the read-overlap graph further incorporates the overlapping information between
reads into the binning process as overlapped reads are more likely to be in the
same species. As a result, OBLR demonstrated promising results in produc-
ing more accurate bins for long-read datasets and has the potential to improve
on metagenomics assemblies in terms of computing resources and genome frac-
tion, especially for low-abundance species. In the future, we plan to investigate
how OBLR can be adapted to take the advantage of the high-accuracy long
reads including PacBio HiFi and Nanopore Q20+, how to incorporate the bin-
ning process into long-read metagenomics assemblies [4,12], and how to connect
metagenomics binning to comparative genomics and phylogenetic studies [8,23].

A Dataset Information

Tables 5 and 7 demonstrate the simulated and real dataset information respec-
tively. Note that Table 5 and 6 tabulate the coverages used for simulation using
SimLoRD [29] while Table 7 indicate abundances from the dataset sources.
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Table 5. Information of simulated datasets.

Dataset Number of reads Total size Species Coverage

Sim-8 432,333 3.5 GB Acetobacter pasteurianus 25

Bacillus cereus 50

Chlamydophila psittaci 80

Escherichia coli 125

Haemophilus parainfluenzae 350

Lactobacillus casei 200

Thermococcus sibiricus 150

Streptomyces scabiei 100

Sim-20 666,735 5.3 GB Amycolatopsis mediterranei 25

Arthrobacter arilaitensis 65

Brachyspira intermedia 20

Corynebacterium ulcerans 40

Erysipelothrix rhusiopathiae 55

Enterococcus faecium 50

Mycobacterium bovis 80

Photobacterium profundum 85

Streptococcus pyogenes 100

Xanthobacter autotrophicus 150

Rhizobium leguminosarum 100

Francisella novicida 150

Candidatus Pelagibacter ubique 67

Halobacterium sp 65

Lactobacillus delbrueckii 60

Paenibacillus mucilaginosus 90

Rickettsia prowazekii 100

Thermoanaerobacter brockii 110

Yersinia pestis 105

Nitrosococcus watsonii 95
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Table 6. Information of simulated dataset containing 50 species.

Dataset Number of reads Total size Species Coverage

Sim-50 1,119,439 9.5 GB Azorhizobium caulinodans 25

Bacillus cereus 35

Bdellovibrio bacteriovorus 21

Bifidobacterium adolescentis 44

Bifidobacterium animalis 31

Campylobacter jejuni 11

Clostridium tetani 36

Clostridium thermocellum 31

Corynebacterium diphtheriae 42

Corynebacterium ulcerans 33

Ehrlichia ruminantium 26

Enterococcus faecium 24

Erysipelothrix rhusiopathiae 44

Escherichia coli 20

Fervidicoccus fontis 49

Francisella novicida 42

Francisella tularensis 49

Fusobacterium nucleatum 39

Haemophilus influenzae 12

Haemophilus parainfluenzae 11

Haemophilus somnus 44

Helicobacter pylori 47

Hyphomicrobium sp 44

Lawsonia intracellularis 46

Metallosphaera cuprina 33

Methanosarcina barkeri 44

Micrococcus luteus 46

Mycobacterium bovis 42

Mycoplasma gallisepticum 29

Neisseria meningitidis 38

Nitrosococcus watsonii 42

Paenibacillus mucilaginosus 14

Paenibacillus sp 31

Photobacterium profundum 45

Pseudogulbenkiania sp 25

Pseudomonas putida 10

Rhizobium leguminosarum 20

Rickettsia prowazekii 38

(continued)
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Table 6. (continued)

Dataset Number of reads Total size Species Coverage

Rickettsia rickettsii 100

Ruegeria sp 200

Shewanella sp 90

Sodalis glossinidius 120

Staphylococcus aureus 220

Streptococcus pyogenes 110

Streptococcus suis 100

Streptomyces scabiei 110

Symbiobacterium thermophilum 250

Thermoanaerobacter sp 220

Thermococcus sibiricus 210

Variovorax paradoxus 100

Table 7. Information of real datasets.

Dataset Number of reads Total size Species Abundance

ZymoEVEN 1,688,672 8.2 GB P. aeruginosa 9.7%

Escherichia coli 9.9%

Salmonella enterica 10.0%

Lactobacillus fermentum 9.3%

Enterococcus faecalis 12.2%

Staphylococcus aureus 11.2%

Listeria monocytogenes 14.5%

Bacillus subtilis 19.3%

Saccharomyces cerevisiae 2.1%

Cryptococcus neoformans 1.8%

SRR9202034 2,358,257 19.5 GB Acinetobacter baumannii 0.18%

Bacillus pacificus 1.80%

Bacteroides vulgatus 0.02%

Bifidobacterium adolescentis 0.02%

Clostridium beijerinckii 1.80%

Cutibacterium acnes 0.18%

Deinococcus radiodurans 0.02%

Enterococcus faecalis 0.02%

Escherichia coli 18.0%

Helicobacter pylori 0.18%

Lactobacillus gasseri 0.18%

(continued)
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Table 7. (continued)

Dataset Number of reads Total size Species Abundance

Neisseria meningitidis 0.18%

Porphyromonas gingivalis 18.0%

Pseudomonas aeruginosa 1.80%

Rhodobacter sphaeroides 18.0%

Schaalia odontolytica 0.02%

Staphylococcus aureus 1.80%

Staphylococcus epidermidis 18.0%

Streptococcus agalactiae 1.80%

Streptococcus mutans 18.0%

SRX9569057 1,978,852 18 GB Faecalibacterium prausnitzii 14.82%

Veillonella rogosae 20.01%

Roseburia hominis 12.47%

Bacteroides fragilis 8.36%

Prevotella corporis 6.28%

Bifidobacterium adolescentis 8.86%

Fusobacterium nucleatum 7.56%

Lactobacillus fermentum 9.71%

Clostridioides difficile 1.10%

Akkermansia muciniphila 1.62%

Methanobrevibacter smithii 0.17%

Salmonella enterica 0.0065%

Enterococcus faecalis 0.0011%

Clostridium perfringens 0.00009%

Escherichia coli (JM109) 1.83%

Escherichia coli (B-3008) 1.82%

Escherichia coli (B-2207) 1.65%

Escherichia coli (B-766) 1.66%

Escherichia coli (B-1109) 1.77%

Candida albicans 0.16%

Saccharomyces cerevisiae 0.16%

B Interpretation of AMBER Per-bin F1-Score

The binning evaluations are presented using Precision, Recall and F1 score. Fur-
thermore, stricter evaluations are presented using AMBER [21] for MetaBCC-
LR, LRBinner and OBLR. This section explains the evaluation metrics in detail
and discuss as to why AMBER evaluations are poor in some cases where num-
ber of bins predicted is further away from the actual number of species in the
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dataset. Note that the bin assignment matrix a can be presented as M × N ,
illustrated in Table 8. Note that N = 5 and M = 7.

Table 8. Binning matrix

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 5 Bin 7

Species 1 a11 = 99 a12 = 0 a13 = 0 a14 = 0 a15 = 0 a16 = 1 a17 = 0

Species 2 a21 = 0 a22 = 100 a23 = 0 a24 = 0 a25 = 0 a26 = 0 a27 = 0

Species 3 a31 = 0 a32 = 20 a33 = 0 a34 = 0 a35 = 0 a36 = 0 a37 = 0

Species 4 a41 = 0 a42 = 0 a43 = 1000 a44 = 50 a45 = 0 a46 = 0 a47 = 0

Species 5 a51 = 0 a52 = 0 a53 = 0 a54 = 0 a55 = 200 a56 = 0 a57 = 300

Recall is computed for each species, by taking the largest assignment to a
bin. Precision is computed per bin taking the largest assignment of the bin to
a given species. In contrast, AMBER uses purity and completeness to compute
the per-bin F1 score using the following equations, for each bin b.

The true positives are computed using the majority species in a given bin.
Because of this, if a bin appears as a result of a false bin split (1% reads), the
Completeness of the bin will be very low as the majority of it (approximately 1%)
according to AMBER evaluation. In comparison, the recall of the species using
Eq. 5 will report 99% since 99% of the reads are in a single bin despite having the
false bin split. Similarly, the false split of the bin will report a greater precision
as long as the bin has no other species mixed according to Eq. 4. Consider the
following running example.

Example 1. Suppose Species 1 has a11 = 99 and a16 = 1 with rest of the row
having no reads and Bin 1 and 6 has no reads from another species. Purity in
this case will be 100% for both bins 1 and 6 while completeness will be 99% and
1% respectively. F1-score will be 99.5% and 1.98% with average being very low
at 50.7%. Recall will be 99% for Species 1 with 100% precision on both bins 1
and 6 since there are no impurities in each bin, thus, F1-score is 99.5% for each
bin.

Example 2. Suppose Bin 2 has a22 = 100 and a32 = 20, with two species 2
and 3, with no other contaminants and species 2 and 3 are fully contained in the
bin. Now, the purity of the bin is 83.33% and completeness is 83.33%, hence,
F1-score is 83.33%. Recall for species 2 and 3 will be 100% since it is not broken
into multiple bins. However, the precision for Bin 2 will be 83.33%, hence a F1
score of 90.91%.

This means, AMBER penalize whenever a species is broken into pieces across
bins while not significantly penalizing bin mergers between large bins and smaller
bins. This is because, dominant species in the bin will determine the purity and
completeness.
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